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Preface

This book contains well-written monographs within the broad spectrum of applied
mathematics, with the aim of offering an interesting reading of current trends

and problems in this fascinating and critically important field of mathematics to a
broad category of researchers and practitioners. Recent developments in
high-performance computing are radically changing the way we do numerics as
applied mathematicians. Because of the impressive advances in computer technol-
ogy and the introduction of fast methods that require less algorithmic cost and
fewer memory resources, nowadays a rigorous numerical solution of many difficult
computational science applications has become possible. In the future we will be
solving much bigger problems, and even more factors will need to be considered
than in the past when attempting to identify the optimal solution approach. The gap
between fast and slow algorithms is rapidly growing. Methods that do more opera-
tions per grid node, cell, or element, such as higher-order and discontinuous
Galerkin discretization schemes and spectral element methods, are becoming very
attractive to use against more traditional techniques such as finite element
discretization schemes. Structured data are already coming back, because they may
achieve a better load balance than unstructured grids on computers with hundreds
of thousands of processors. Novel classes of numerical methods with reduced com-
putational complexity will need to be found to solve large-scale problems arising in
an industrial setting.

The book is structured in three distinct parts, according to the aims and methodol-
ogies used by the authors in the development of their studies, ranging from optimi-
zation techniques to graph-oriented approaches and approximation theory,
providing overall a good mix of both theory and practice. Chapters 1-2 present an
overview of unconstrained optimization techniques, covering both line search and
trust-region methods that are essential ingredients to guarantee global convergence
of descent schemes. Numerical optimization is the primary tool used in Chapter 3 to
analyze the shape factor of exceedance probability curves, which is a critical analysis
tool to assess risks, e.g., in the study of natural disasters such as floods, hurricanes,
and earthquakes. Chapters 4-5 describe graph-oriented approaches. Chapter 4
develops a graph-based model for the topological design of the wide area network
using dynamic programming and dynamic programming with state-space relaxa-
tion methodologies. Chapter 5 uses graph and subgraph models to speed up the
computations of scalar multiplication algorithms on elliptic curves defined over
finite fields, which is one central and time-consuming operation in elliptic curve
cryptography. Finally, the contributions of the last two chapters deal with some
aspects of functional approximation. Chapter 6 proposes a study of different forms
of bounded variation sequence spaces of invariant means with the help of ideal
operators and functions such as Orlicz function and modulus function. The results
show the potential of the new theoretical tools to deal with the convergence prob-
lems of sequences in sigma-bounded variation occurring in many branches of sci-
ence, engineering, and applied mathematics. Chapter 7 is devoted to an overview of
the mathematics of special polynomials showing how to obtain them in a simple and
straightforward approach using basic linear algebra concepts. Overall, the collection
of contributions demonstrates the highly interdisciplinary character of the



discipline, and emphasizes the continuing need for close cooperation between
applied mathematicians, experimental physicists, engineers, and computer scien-
tists in modern applied data science.

We express appreciation to all those who helped in the preparation of this book, and
in particular to Luka Cvjetkovi¢ at IntechOpen for his tireless editorship assistance.

Bruno Carpentieri
Free University of Bozen-Bolzano,
Bolzano, Italy
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Chapter 1

Some Unconstrained
Optimization Methods

Snezana S. Djordjevic

Abstract

Although it is a very old theme, unconstrained optimization is an area which is
always actual for many scientists. Today, the results of unconstrained optimization
are applied in different branches of science, as well as generally in practice. Here,
we present the line search techniques. Further, in this chapter we consider some
unconstrained optimization methods. We try to present these methods but also to
present some contemporary results in this area.

Keywords: unconstrained optimization, line search, steepest descent method,
Barzilai-Borwein method, Newton method, modified Newton method, inexact
Newton method, quasi-Newton method

1. Introduction

Optimization is a very old subject of a great interest; we can search deep into a
human history to find important examples of applying optimization in the usual life
of a human being, for example, the need of finding the best way to produce food
yielded finding the best piece of land for producing, as well as (later on, how the
time was going) the best ways of treatment of the chosen land and the chosen
seedlings to get the best results.

From the very beginning of manufacturing, the manufacturers were trying to
find the ways to get maximum income with minimum expenses.

There are plenty of examples of optimization processes in pharmacology (for
determination of the geometry of a molecule), in meteorology, in optimization of a
trajectory of a deep-water vehicle, in optimization of power management (optimi-
zation of the production of electrical power plants), etc.

Optimization presents an important tool in decision theory and analysis of
physical systems.

Optimization theory is a very developed area with its wide application in sci-
ence, engineering, business management, military, and space technology.

Optimization can be defined as the process of finding the best solution to a
problem in a certain sense and under certain conditions.

Along with the passage of time, optimization was evolving. Optimization
became an independent area of mathematics in 1940, when Dantzig presented the
so-called simplex algorithm for linear programming.

The development of nonlinear programming became great after presentation of
conjugate gradient methods and quasi-Newton methods in the 1950s.

1 IntechOpen
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Today, there exist many modern optimization methods which are made to solve
a variety of optimization problems. Now, they present the necessary tool for solving
problems in diverse fields.

At the beginning, it is necessary to define an objective function, which, for
example, could be a technical expense, profit or purity of materials, time, potential
energy, etc.

The object function depends on certain characteristics of the system, which are
known as variables. The goal is to find the values of those variables, for which the
object function reaches its best value, which we call an extremum or an optimum.

It can happen that those variables are chosen in such a way that they satisfy
certain conditions, i.e., restrictions.

The process of identifying the object function, variables, and restrictions for the
given problem is called modeling.

The first and the most important step in an optimization process is the con-
struction of the appropriate model, and this step can be the problem by itself.
Namely, in the case that the model is too much simplified, it cannot be a faithful
reflection of the practical problem. By the other side, if the constructed model is too
complicated, then solving the problem is also too complicated.

After the construction of the appropriate model, it is necessary to apply the
appropriate algorithm to solve the problem. It is no need to emphasize that there
does not exist a universal algorithm for solving the set problem.

Sometimes, in the applications, the set of input parameters is bounded, i.e., the
input parameters have values within the allowed space of input parameters D,; we
can write

x €D,. (1)

Except (1), the next conditions can also be imposed:

@1(X1, ey X)) = @op L =1, o, my <m, 2)
Wi(%1, e Xn) SWopj =1, oo M2 3)

Optimization task is to find the minimum (maximum) of the objective function
f(x) =f(x1,....x,), under the conditions (1), (2), and (3).

If the object function is linear, and the functions ¢;(x1, ...,x,) [l =1, ..., m1 and
Wj (%1, .. %n)j = 1, ..., my are linear, then it is about the linear programming problem,
but if at least one of the mentioned functions is nonlinear, it is about the nonlinear
programming problem.

Unconstrained optimization problem can be presented as

min f(x), (4)

x€ER"

where f € R” is a smooth function.

Problem (4) is, in fact, the unconstrained minimization problem. But, it is well
known that the unconstrained minimization problem is equivalent to an
unconstrained maximization problem, i.e.

minf (x) = —max(—f(x)), (5)

as well as

maxf(x) = —min(—f(x)). (6)
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Definition 1.1.1 x* is called a global minimizer of f if f (x*) <f (x) for all x €R".

The ideal situation is finding a global minimizer of f. Because of the fact that our
knowledge of the function f is usually only local, the global minimizer can be very
difficult to find. We usually do not have the total knowledge about f. In fact, most
algorithms are able to find only a local minimizer, i.e., a point that achieves the
smallest value of f in its neighborhood.

So, we could be satisfied by finding the local minimizer of the function f. We
distinguish weak and strict (or strong) local minimizer.

Formal definitions of local weak and strict minimizer of the function f are the
next two definitions, respectively.

Definition 1.1.2 x* is called a weak local minimizer of f if there exists a neighbor-
hood N of x*, such that f (x*) <f (x) for all x € N.

Definition 1.1.3 x* is called a strict (strong) local minimizer of f if there exists a
neighborhood N of x*, such that f (x*) <f(x) for all x €N.

Considering backward definitions 1.1.2 and 1.1.3, the procedure of finding
local minimizer (weak or strict) does not seem such easy; it seems that we
should examine all points from the neighborhood of x*, and it looks like a very
difficult task.

Fortunately, if the object function f satisfies some special conditions, we can
solve this task in a much easier way.

For example, we can assume that the object function f is smooth or, further-
more, twice continuously differentiable. Then, we concentrate to the gradient
Vf (x*) as well as to the Hessian V*f(x*).

All algorithms for unconstrained minimization require the user to start from a
certain point, so-called the starting point, which we usually denote by x,. It is good
to choose x such that it is a reasonable estimation of the solution. But, to find such
estimation, a little more knowledge about the considered set of data is needed, and
the systematic investigation is needed also. So, it seems much simpler to use one of
the algorithms to find x¢ or to take it arbitrarily.

There exist two important classes of iterative methods—Iine search methods and
trust-region methods—made in the aim to solve the unconstrained optimization
problem (4).

In this chapter, at first, we discuss different kinds of line search. Then, we
consider some line search optimization methods in details, i.e., we study steepest
descent method, Barzilai-Borwein gradient method, Newton method, and quasi-
Newton method.

Also, we try to give some of the most recent results in these areas.

2. Line search

Now, let us consider the problem

min f(x), (7)
x€eR"
wheref : R” — R is a continuously differentiable function, bounded from below.
There exists a great number of methods made in the aim to solve the problem (7).
The optimization methods based on line search utilize the next iterative
scheme:

X1 = X + trdps (8)
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where x;, is the current iterative point, x4 is the next iterative point, dj, is the
search direction, and ¢, is the step size in the direction d,.

At first, we consider the monotone line search.

Now, we give the iterative scheme of this kind of search.

Algorithm 1.2.1. (Monotone line search).

Assumptions: € > 0, xg, k:=0.

Step 1. If |g,, || <€, then STOP.

Step 2. Find the descent direction d.

Step 3. Find the step size t;, such that f (x;, + tpdi) <f(xz).
Step 4. Set xj,41 = xp, + trdy,.

Step 5. Take k:=k + 1 and go to Step 1.

Denote

D(t) = f (g + tdy).

Trying to solve the minimization problem, we are going to search for the step
size t = 1y, in the direction dj, such that the next relation holds:

D(t,) < D(0).

That procedure is called the monotone line search.
We can search for the step size #; in such a way that the next relation holds:

[ + trdy) = rtréi(r)lf(xk + trdy), C))
ie.
(1) = rtr;i(r)ltb(t), (10)

or we can use the next formula:
t, = min{t|g(xk + tdk)Tdk =0,t> 0}. (11)

In this case we are talking about the exact or the optimal line search, where the
parameter t;,, which is received as the solution of the one-dimensional problem
(10), is the optimal step size.

By the other side, instead of using the relation (9), or the relation (11), we can be
satisfied by searching for such t;, which is acceptable if the next relation suits us:

f(JCk) 7f(xk + tkdk) > 6k > 0.

Then, we are talking about the inexact or the approximate or the acceptable line
search, which is very much utilized in the practice.

There are several reasons to use the inexact instead of the exact line search. One
of them is that the exact line search is expensive. Further, in the cases when the
iteration is far from the solution, the exact line search is not efficient. Next, in the
practice, the convergence rate of many optimization methods (such as Newton or
quasi-Newton) does not depend on the exact line search.

First, we are going to mention so-called basic and, by the way, very well-known
inexact line searches.

Algorithm 1.2.2. (Backtracking).
Assumptions: x, the descent direction dy, 0 <§ < %, ne€(0,1).
Step 1.z:=1.
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Step 2. While f(x;, + tdy) >f (xx) + 5tg [, t:=1t - 1.
Step 3. Set 1, =t.
Now, we describe the Armijo rule.

Theorem 1.2.1. [1] Let f € CY(R") and let dj, be the descent direction. Then, there
exists the nonnegative number my, such that

foxr + ™ dp) <f(xx) + c1n™gi dgs

where ¢; €(0,1) and 7€ (0,1).
Next, we describe the Goldstein rule [2].
The step size t;, is chosen in such a way that

f o, +tdy) <f(xi) + 51g | s
[l +tdy) >f (x) + (1 — 8)1g [

where 0 <6< %
Now, Wolfe line search rules follow [3], [4].
Standard Wolfe line search conditions are

f(ocr + tady) — f (xi) < Sti. g s (12)
1%k = 0g),dhs (13)

where dj, is a descent direction and 0 <5<o<1.

This efficient strategy means that we should accept a positive step length ¢, if
conditions (12)—(13) are satisfied.

Strong Wolfe line search conditions consist of (12) and the next, stronger ver-
sion of (13):

FARCAER % (14)

In the generalized Wolfe line search conditions, the absolute value in (14) is
replaced by the inequalities:

ang:dk < g;_ldk < - ongdk, 0<6<61<1,0,2>0. (15)

By the other side, in the approximate Wolfe line search conditions, the inequal-
ities (15) are changed into the next ones:

1
ogidr < gl 1Ak < (26— V)gldy, 0<6< 5 5<o<1. (16)

The next lemma is very important.

Lemma 1.2.1. [5] Let f € C(R"). Let dy, be a descent direction at the point xy, and
assume that the function f is bounded from below along the direction {x;, + tdy|t > 0}.
Then, if 0<6<o <1, there exist the intervals inside which the step length satisfies
standard Wolfe conditions and strong Wolfe conditions.

By the other side, the introduction of the non-monotone line search is
motivated by the existence of the problems where the search direction does not
have to be a descent direction. This can happen, for example, in stochastic optimi-
zation [6].

Next, some efficient quasi-Newton methods, for example, SR1 update, do not
produce the descent direction in every iteration [5].
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Further, some efficient methods like spectral are not monotone at all.

Some numerical results given in [7-11] show that non-monotone techniques are
better than the monotone ones if the problem is to find the global optimal values of
the object function.

Algorithms of the non-monotone line search do not insist on a descent of the
object function in every step. But, even these algorithms require the reduction of
the object function after a predetermined number of iterations.

The first non-monotone line search technique is presented in [12]. Namely, in
[12], the problem is to find the step size which satisfies

f(xp +tedr) < max k)f (xk,j) + 5tkngdk,

0<j<m(

where m(0) = 0, 0 <m(k) <min{m(k — 1) +1,M}, fork>1, 6€(0,1), where M
is a nonnegative integer.

This strategy is in fact the generalization of Armijo line search. In the same
work, the authors suppose that the search directions satisfy the next conditions for
some positive constants b; and b;:

gid < = bilig, %
lldell <b2ll g II-

The next non-monotone line search is described in [11].
Let xo be the starting point, and let

OsnminS’]maxsl’0<5<o—<1</):/">0-

Let Cy :f(Xo), QO =1.
The step size has to satisfy the next conditions:

f(xk + tpdr) <Cp + 5tkggdk, (17)
g% + tidp) > og;, .. (18)

The value 7, is chosen from the interval [,,;,, 4] and then

e Qi Cr +f (%r41)
Qi1 .

Non-monotone rules which contain the sequence of nonnegative parameters
{ex} are used firstly in [13], and they are successfully used in many other algo-
rithms, for example, in [14]. The next property of the parameters ¢, is assumed:

Qi1 =mQp + 1 Cey1 =

€.>0, Ye,=€e<oo,
k

and the corresponding rule is

f o + trd) <f(xx) + citegide + €.
Now, we give the non-monotone line search algorithm, shortly NLSA, presented
in [11].

Algorithm 1.2.3. (NLSA).
Assumptions: x9, 0 <1, <1 <1, 0<6 <o <1<p, u>0.
Set Cy :f(JC()), QO =1,k=0.
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Step 1. If || Vf (s ) || is sufficiently small, then STOP.

Step 2. Set xp.11 = x3 + tpdy, where t;, satisfies either the (non-monotone) Wolfe
conditions (17) and (18) or the (non-monotone) Armijo conditions: #, = £p"*,
where £}, > 0 is the trial step and %, is the largest integer such that (17) holds
and z;, <p.

Step 3. Choose 1, € [1,ins Mmax)> and set

Qi1 = mQp + 1L Cr1 = (1eQeCr +f (Xk41))/ Qe

Step 4. Set k:=k + 1 and go to Step 1.

We can notice [11] that C,4 is a convex combination of f (x¢), f (%1), ..., f(xz).
The parameter 7, controls the degree of non-monotonicity.

If , = 0 for all k, then this non-monotone line search becomes monotone Wolfe
or Armijo line search.

If , = 1 for all k, then C, = Ay, where

1 k
A, = migf(xi)-

Lemma 1.2.2. [11] If V£ (x;)"d}, < O for each k, then for the iterates generated by the
non-monotone line search algorithm, we have f,, < Cj, <Ay, for each k. Moreover, if

Vf (x)"dy, < 0 and f (x) are bounded from below, then theve exists t, satisfying either
Wolfe or Armijo conditions of the line search update.

This study would be very incomplete unless we mention that there are many
modifications of the abovementioned line searches. All these modifications are
made to improve the previous results.

For example, in [15], the new inexact line search is described by the next way.

Let f€(0,1), 6 € (0,3); let B, be a symmetric positive definite matrix which

. Td,
approximates V2 (x;) and s, = — d?%k R

{sk,sk/},skﬁz, } such that

The step size ¢}, is the largest one in

1
f(xk + tdk) —f(xk) <ot [g;dk + Etdlszdk] .

Further, in [16], a new inexact line search rule is presented. This rule is a
modified version of the classical Armijo line search rule. We describe it now.

Let g = Vf(x) be a Lipschitz continuous function and L the Lipschitz constant.
Let L;, be an approximation of L. Set

Zed

B = — :
T Lellde

Find a step size ¢, as the largest component in the set {ﬁk, PP, ﬁkpz...} such that
the inequality

1
f(xk + tedi) <f (xr) + oty (g;fdk - EtkﬂLk”dk”2>

holds, where 6 € (0,1), p € [0, ), and p € (0,1) are given constants.
Next, in [17], a new, modified Wolfe line search is given in the next way.
Find t;, > 0 such that
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f (e + tedy,) — f (i) <min{6te gl di, —yt2ldell*},
g(xp + tkdk)Tdk > Gggdk,

where §€(0,1), 6 € (5,1), and y > 0.
More recent results on this topic can be found, for example, in [18-23].

2.1 Steepest descent (SD)

The classical steepest descent method which is designed by Cauchy [24] can
be considered as one among the most important procedures for minimization of
real-valued function defined on R”.

Steepest descent is one of the simplest minimization methods for unconstrained
optimization. Since it uses the negative gradient as its search direction, it is known
also as the gradient method.

It has low computational cost and low matrix storage requirement, because it
does not need the computations of the second derivatives to be solved to calculate
the search direction [25].

Suppose that f(x) is continuously differentiable in a certain neighborhood of a
point x;, and also suppose that g, 2Vf (x;) # 0.

Using Taylor expansion of the function f near x;, as well as Cauchy-Schwartz
inequality, one can easily prove that the greatest fall of f exists if and only if
dr = —g,, i.e., —g, is the steepest descent direction.

The iterative scheme of the SD method is

Xet1 = Xk — Uk gy- (19)

The classical steepest descent method uses the exact line search.
Now, we give the algorithm of the steepest descent method which refers to the
exact as well as to the inexact line search.

Algorithm 1.2.4. (Steepest descent method, i.e., SD method,).
Assumptions: 0 <e <1, x0€R". Letk = 0.

Step 1. If || g, || <&, then STOP, else set dj, = —g,.

Step 2. Find the step size t;, which is the solution of the problem

minf (x, + tdy), (20)

else find the step size #; by any of the inexact line search methods.

Step 3. Set xp11 = xp + trdk-

Step 4. Set k:=k + 1 and go to Step 1.

The classical and the oldest steepest descent step size t, which was designed by
Cauchy (in the case of the exact line search), is computed as [26]

f, = k& ,
£ Gg
where g, = Vf(x;) and G = V*f(xy,).

Theorem 1.2.2. [27] (Global convergence theorem of the SD method) Let f € C'.
Then, each accumulation point of the iterative sequence {x,}, generated by Algorithm
1.2.4, is a stationary point.
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Remark 1.2.1. The steepest descent method has at least the linear convergence rate.

More information about the convergence of the SD method can be found in
(5, 27].

Although known as the first unconstrained optimization method, this method is
still a theme considered by scientists.

Different modifications of this method are made, for example, see [25, 28-32].

In [28], the authors presented a new search direction from Cauchy’s method in
the form of two parameters known as Zubai’ah-Mustafa-Rivaie-Ismail method,
shortly, ZMRI method:

di, = =g, — I1gell gp_1- (21)

So, in [28], a new modification of SD method is suggested using a new search
direction, dj, given by (21). The numerical results are presented based on the
number of iterations and CPU time. It is shown that this new method is efficient
when it is compared to the classical SD.

In [25], a new scaled search direction of SD method is presented. The inspiration
for this new method is the work of Andrei [33], in which the author presents and
analyzes a new scaled conjugate gradient algorithm, based on an interpretation of
the secant equation and on the inexact Wolfe line search conditions.

The method proposed in [25] is known as Rashidah-Rivaie-Mamat (RRM)
method, and it suggests the direction d;, given by the next relation:

dk:{ —g,,ifk =0,

(22)
—0kg), — 11211 215

. . dy.
where 6}, is a scaling parameter, 6, = ”’e;y V1 =8 ~&r1-
k-1

Further, in [25], a comparison among RRM, ZMRI, and SD methods is made; it is
shown that RRM method is better than ZMRI and SD methods.

It is interesting that the exact line search is used in [25].

In [34], the properties of steepest descent method from the literature are
reviewed together with advantages and disadvantages of each step size procedure.

Namely, the step size procedures, which are compared in this paper, are:

1t = gfl’ggk’fg X Step size method by Cauchy [24], computed by exact line search

(C step size).
2. Givens >0, §, 6€(0,1), t; = max{s,sp,sp’, ...} such that
Fxk + tadp) <f (1) + otrgld), — Armijo sline search (Astep size).
3. Given f, 0 €(0,1),f, = 1, and #;, = fi,, such that

f (e + trdr) <f(xx) + oti. g} di — Backtracking line search (Bstep size).

llyy 11
Barzilai and Borwein’s formula. The convergence is R-superlinear.

e Ve o .
4.1, = 1283, (BB1), t = il (BB2), si1 =Xk — X1 Y 1 =8k — 81

2 glg .. . . . . .
5.t = k=1okoh : Elimination line search (EL step size), which esti-
k 2(f (i) —f (i) +Hr-187.5 ( P )s

mates the step size without computation of the Hessian.
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The comparison is based on time execution, number of total iteration, total
percentage of function, gradient and Hessian evaluation, and the most decreased
value of objective function obtained.

From the numerical results, the authors conclude that the A method and BB1
method are the best methods among others.

Further, in [34], the general conclusions about the steepest descent method are
given:

1. This method is sensitive to the initial point.

2. This method has a descent property, and it is a logical starting procedure for all
gradient based methods.

3.x;, approaches the minimizer slowly, in fact in a zigzag way.

In [35], in the aim to achieve fast convergence and the monotone property, a
new step size for the steepest descent method is suggested.

In [36], for quadratic positive definite problems, an over-relaxation has been
considered. Namely, Raydan and Svaiter [36] proved that the poor behavior of the
steepest descent method is due to the optimal Cauchy choice of step size and not to
the choice of the search direction. These results are extended in [29] to convex,
well-conditioned functions. Further, in [29], it is shown that a simple modification
of the step length by means of a random variable uniformly distributed in (0, 1], for
the strongly convex functions, represents an improvement of the classical gradient
descent algorithm. Namely, in this paper, the idea is to modify the gradient descent
method by introducing a relaxation of the following form:

X1 = X + Optrdy, (23)

where 6y, is the relaxation parameter, a random variable uniformly distributed
between 0 and 1.

In the recent years, the steepest descent method has been applied in many
branches of science; one can be inspired, for example, by [37-43].

2.2 Barzilai and Borwein gradient method

Remind to the fact that SD method performs poorly, converges linearly, and is
badly affected by the ill-conditioning.

Also, remind to the fact that this poor behavior of SD method is due to the
optimal choice of the step size and not to the choice of the steepest descent
direction —g,.

Barzilai and Borwein presented [44] a two-point step size gradient method,
which is well known as BB method.

The step size is derived from a two-point approximation to the secant equation.

Consider the gradient iteration form:

Xe+1 = Xk — Lrgp,-

It can be rewritten as X1 = x, — Dig,, where Dy, = ;1.
To make the matrix D;, having quasi-Newton property, the step size t;, is com-
puted in such a way that we get

min|lse_1 — Dey,_ql-

10



Some Unconstrained Optimization Methods
DOI: http://dx.doi.org/10.5772 /intechopen.83679

This yields that

T
s

o :y?71§k71 58k=1 =Xk = Xk—15 V-1 = & — Lk—1- (24)
-1Yk—1

But, using symmetry, we may minimize ||D;, “s,_1 — y,_, ||, with respect to t;, and
we get:

2
(BB2 _ Il

= >Sk1 =Xk — Xk Vp_1 =&k — &p_1- (25)
Se—1)r—1

Now, we give the algorithm of BB method.

Algorithm 1.2.5. (Barzilai-Borwein gradient method, i.e., BB method).

Assumptions: 0 <e<1,x9€R". Letk = 0.

Step 1. If || g, || <€, then STOP, else set d, = —g,.

Step 2. If k = 0, then find the step size t( by the line search, else compute #,
using the formula (24) or (25).

Step 3. Set x4 = x1, + trdy,.

Step 4. Set k:=k + 1 and go to Step 1.

Considering Algorithm 1.2.5, we can conclude that this method does not require
any matrix computation or any line search.

The Barzilai-Borwein method is in fact the gradient method, which requires less
computational work than SD method, and it speeds up the convergence of the
gradient method. Barzilai and Borwein proved that BB algorithm is R—superlinearly
convergent for the quadratic case.

In the general non-quadratic case, a globalization strategy based on non-
monotone line search is applied in this method.

In this general case, t;, computed by (24) or (25), may be unacceptably large or
small. That is the reason why we assume that there exist the numbers t! and ¢, such
that

0<# <t <t forallk.

Using the iteration

1
Xp+1 = Xp — agk =X — Mgy (26)
with
t = St-1Jk1 Ay = 1
S]Z_lsk,l tr
1
Sk = _t_kgk = &
we get

S _ AED _ &
ek Mgig AeZigk

Tkt1

Now, we give the algorithm of the Barzilai-Borwein method with non-monotone
line search.

11
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Algorithm 1.2.6. (BB method with non-monotone line search).

Assumptions: 0 <e <1, x9 €R", M >0 is an integer, p € (0,1), 5§ >0,
0<o1<o, <1, t,t. Letk =0.

Step 1. If || g, || <€, then STOP.

Step 2. If t;, <t!, or t;, > ¢, then set t;, = 4.

Step 3. Set 4 = i
Step 4. (non-monotone line search) If

flo—tg)< | max f(xe) = pigige

then set
Mo = Ay Xpy1 = Xpp — M Zps

and go to Step 6.
Step 5. Choose ¢ € [01, 03], set 4 = 6, and go to Step 4.

T,
Step 6. Set tj1 = — l‘f"%‘; and k:=Fk + 1, and return to Step 1.

Obviously, the above algorithm is globally convergent.

Several authors paid attention to the Barzilai-Borwein method, and they pro-
posed some variants of this method.

In [8], the globally convergent Barzilai-Borwein method is proposed by using
non-monotone line search by Grippo et al. [12]. In the same paper, Raydan proves
the global convergence of the non-monotone Barzilai-Borwein method.

Further, Grippo and Sciandrone [45] propose another type of the non-monotone
Barzilai-Borwein method.

Dai [7] gives the basic analysis of the non-monotone line search strategy.

Moreover, in [46] numerical results are presented, using

T
s
= ) 7)
Suk)Su(k)

173
and

v(k) =M. - L%J’

where for » €R, | 7, denotes the largest integer j such thatj < and Mcis a
positive integer. The gradient method with (27) is called the cyclic Barzilai-Borwein
method. Numerical results in [46] prove that their method performs better than the
Barzilai-Borwein method.

Many researchers study the gradient method for minimizing a strictly convex
quadratic function, namely,

minf(x) = %xTAx —b'x, (28)

where A € R**" is a symmetric positive definite matrix and b € R” is a given
vector. For an application of the Barzilai-Borwein method to the problem (28),
Raydan [47] establishes global convergence, and Dai and Liao [48] prove R-linear
rate of convergence. Friedlander, Martinez, Molina, and Raydan [49] propose a new
gradient method with retards, in which #, is defined by

12
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k)+1
plk)+ %)

T &)
z/(k)Ap o)

LA

t, = u(k) ekl —1,..., max{0,k — m}} (29)

and p(k) € {ql, ...,qm}, where m is a positive integer and ¢, ..., q,, > — 2 are
integers. In the same paper, they establish its global convergence for problem (28)
and prove the Q-superlinear rate of convergence in the special case.

In [50], the authors extend the Barzilai-Borwein method, and they give extended
Barzilai-Borwein method, which they denote EBB. They also establish global and
Q —superlinear convergence properties of the proposed method for minimizing a
strictly convex quadratic function. Furthermore, they discuss an application of their
method to general objective functions. In [50], a new step size is proposed by
extending (29). Namely, in this paper, following Friedlander et al. [49], a new step
size is proposed as follows:

T i (k)+1
. ! gbi<k)Aﬂ k)
O Aritk) ’
i=1 gpi<k) gui(k)

520, X =1
i=1
vi(k) € {k,k —1,...,max{0,k —m}}

and

¢i(k) €{d1, 14,0 }>

where [ and m are positive integers and ¢, ..., q,, are integers.

Also, an application of algorithm EBB to general unconstrained minimization
problems (4) is considered.

Following Raydan [8], the authors [50] further combine the non-monotone line
search and algorithm EBB to get the algorithm called NEBB. They also prove the
global convergence of the algorithm NEBB, under some classical assumptions.

The Barzilai-Borwein method and its related methods are reviewed by Dai and
Yuan [51] and Fletcher [52].

In [53], a new concept of the approximate optimal step size for gradient method
is introduced and used to interpret the BB method; an efficient gradient method
with the approximate optimal step size for unconstrained optimization is presented.
The next definition is introduced in [53].

Definition 1.2.1. Let ®(t) be an approximation model of f (xp — tg). A positive
constant t* is called approximate optimal step size associated to ®(t) for gradient method,
if t* satisfies

= in ®(z).
arg min @(r)

The approximate optimal step size is different from the steepest descent step
size, which will lead to the expensive computational cost. The approximate optimal
step size is generally calculated easily, and it can be applied to unconstrained
optimization.

Due to the effectiveness of 25! and the fact that 25! = argmin, -~ ¢®(t), we can
naturally ask if more suitable approximation models can be constructed to generate
more efficient approximate optimal step-sizes.

13
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This is the purpose of work [53]. Further, if the objective function f (x) is not
close to a quadratic function on the line segment between x;_; and xy, in this
paper a conic model is developed to generate the approximate optimal step
size if the conic model is suitable to be used. Otherwise, the authors consider
two cases:

i If 513—1 Yi_1 > 0, the authors construct a new quadratic model, to derive the
approximate optimal step size.

ii. If 513;1 9,1 <0, they construct a new quadratic model or two other new
approximation models to generate the approximate optimal step size for
gradient method. They also analyze the convergence of the proposed method
under some suitable conditions. Numerical results show the proposed
method is better than the BB method.

In [54], derivative-free iterative scheme that uses the residual vector as search
direction for solving large-scale systems of nonlinear monotone equations is
presented.

The Barzilai-Borwein method is widely used; some interesting results can be
found in [55-57].

2.3 Newton method

The basic idea of Newton method for unconstrained optimization is the iterative
usage of the quadratic approximation ¢*) to the objective function f at the current
iterate x;, and then minimization of such approximation g*).

Letf : R” — R be twice continuously differentiable, x, € R”, and let the Hessian
V*f(x;,) be positive definite.

We model f at the current point x;, by the quadratic approximation ¢(*):

1
flo+5) g™ () =f () + Vf (i) "5 + 55V (r)s, s = x — 3.
Minimization of g*)(s) gives the next iterative scheme:

X1 =X — (VA () VF (),

which is known as Newton formula.
Denote G, = V*f(xx), g, = Vf (x).
Then, we have a simpler form:

Xpy1 = Xpp — Gk_lgk. (30)
A Newton direction is

Sp = Xpp1 — Xp = —G,;lgk. (31)

We have supposed that G, is positive definite. So, the Newton direction is a
descent direction. This we can conclude from

gisk = £, Gy 'g, <0.

14
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Now, we give the algorithm of the Newton method.

Algorithm 1.2.7. (Newton method,).

Assumptions: € >0, xo € R”. Let k = 0.

Step 1. If || g, || <€, then STOP.

Step 2. Solve Gs = —g, for sp,.

Step 3. Set xp11 = x5 + sk

Step 4. k:=k + 1, return to Step 1.

The next theorem shows the local convergence and the quadratic convergence
rate of Newton method.

Theorem 1.2.3. [27] (Convergence theorem of Newton method) Let f € C? and x;, be
close enough to the solution x* of the minimization problem with g(x*) = 0. If the
Hessian G(x*) is positively definite and G(x) satisfies Lipschitz condition

|Gii(x) — Gii()| < Bllx — yl, for some p, forall i, j,

where G;j(x) is the (7,j) element of G(x) and then for all k, Newton direction
(31) is well-defined; the generated sequence {x; } converges to x* with a
quadratic rate.

But, in spite of this quadratic rate, the Newton method is a local method: when
the starting point is far away from the solution, there is a possibility that G, is not
positive definite, as well as Newton direction is not a descent direction.

So, to guarantee the global convergence, we can use Newton method with line
search. We can remind to the fact that only when the step size sequence {#;} tends
to 1, Newton method is convergent with the quadratic rate.

Newton iteration with line search is as follows:

dp = =Gy, 'gp 32)
Xp1 = Xp + trdy. (33)

Now, we give the algorithm.

Algorithm 1.2.8. (Newton method with line search).
Assumptions: € >0, xo € R". Let k = 0.

Step 1. If || g, || <€, then STOP.

Step 2. Solve Gid = —g,, for dj.

Step 3. Line search step: find #;, such that

f(xk + tydy) = I;rii(l)]f(xk + tdy),

or find #, such that (inexact) Wolfe line search rules hold.

Step 4. Set xp,1 = x + td, and k = k + 1, and go to Step 1.

The next theorems claim that Algorithm 1.2.8 with the exact line search, as well
as Algorithm 1.2.8 with the inexact line search, are globally convergent.

Theorem 1.2.4. [27] Let f : R" — R be twice continuously differentiable on open
convex set DCR". Assume that for any xo € D there exists a constant m > 0, such that

f(x) satisfies
uTVZf(x)u 2m||u||2,fomllu eR",x€L(xo), (34)

where L(xg) = {x|f(x) <f(x0)} is the corresponding level set. Then, the
sequence {x}, generated by Algorithm 1.2.8, with the exact line search, satisfies:

15
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1. When {x;} is a finite sequence, g, = 0 for some k.

2. When {x;} is an infinite sequence, {x; } converges to the unique minimizer x*

of f.
Note that the next relation holds from the standard Wolfe line search:
o) — f (xk + tedie) 2711 g, |1 cos > 2 (i, —gp,)» (35)

where the constant 77 does not depend on k.

Theorem 1.2.5. [27] Let f : R” — R be twice continuously differentiable on open
convex set DCR". Assume that for any xo € D there exists a constant m > 0, such that
[ (x) satisfies the velation (34) on the level set L(xo). If the line search satisfies the relation
(35), then the sequence {xy}, generated by Algorithm 1.2.8, with the inexact Wolfe line
search, satisfies

lim flg, | = 0

and {x;} converges to the unique minimizer of f(x).

2.4 Modified Newton method

The main problem in Newton method could be the fact that the Hessian G, may
be not positive definite. In that case, we are not sure that the objective function f
has its minimizers; furthermore, when G, is indefinite, the objective function f is
unbounded.

So, many modified schemes are made. Now, we describe the next two methods
shortly.

In [58], Goldstein and Price use the steepest descent method when Gy, is not
positive definite. Denoting the angle between d}, and —g, by 6, as well as having in
view the angle rule, < 5 — u, where u > 0, they determine the direction d, as

g — —Gk_lgk, if cos@>1,
k= —g;,, otherwise,

where 7> 0 is a given constant.

In [59], the authors present another modified Newton method. When G, is not
positive definite, Hessian G, is changed into Gj, + 141, where v, > 0 is chosen in
such a way that G, + v,/ is positive definite and well-conditioned. Otherwise, when
Gy, is positive definite, v = 0.

To consider the other modified Newton methods, such as finite difference New-
ton method, negative curvature direction method, Gill-Murray stable Newton
method, etc., one can see [27], for example.

2.5 Inexact Newton method

By the other side, because of the high cost of the exact Newton method, espe-
cially when the dimension # is large, the inexact Newton method might be a good
solution. This type of method means that we only approximately solve the Newton
equation.

16
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Consider solving the nonlinear equations:
F(x) =0, (36)

where F : R” — R” is assumed to have the next properties:

A, There exists x* such that F(x*) = 0.

A, F is continuously differentiable in the neighborhood of x*.

A3 F'(x*) is nonsingular.

Remind that the basic Newton step is obtained by solving
F'(xk)sk = 7F(xk)

and setting

X1 = Xk + Sk-

The inexact Newton method means that we solve

F'(xp)sr = —F(xp) + 71 (37)
where
l7ell <mellF (e ) Il (38)
Set
Xpt1 = Xk + Sk (39)

Here, 7, denotes the residual, and the sequence {1, }, where 0 <, <1, is the
sequence which controls the inexactness.

Now, we give two theorems; the first of them claims the linear convergence, and
the second claims the superlinear convergence of the inexact Newton method.

Theorem 1.2.6. [27] Let F : R" — R” satisfy the assumptions A1—As. Let the
sequence {ny,} satisfies 0 <my, <n <t <1. Then, for some € > 0, if the starting point is
sufficiently near x*, the sequence {x;, } generated by inexact Newton’s method (37)—(39)
converges to x*, and the convergence vate is linear, i.e.

llocie+1 — X7 <tlloce — x|

where [lyll. = IIF' (x*)yll.
Theorem 1.2.7. [27] Let all assumptions of Theovem 1.2.6 hold. Assume that the
sequence {xy,}, generated by the inexact Newton method, converges to x*. Then

I7ell = o(IF (xi)ll), & — oo,

if and only if {x),} converges to x* superlinearly.
The relation

()

m' (X — Xp-1)s (40)

Xe+1 = Xk —

presents the secant method.

17
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In [60], a modification of the classical secant method for solving nonlinear,
univariate, and unconstrained optimization problems based on the development of
the cubic approximation is presented. The iteration formula including an approxi-
mation of the third derivative of f(x) by using the Taylor series expansion is
derived. The basic assumption on the objective function f (x) is that f(x) is a real-
valued function of a single, real variable x and that f (x) has a minimum at x*.
Furthermore, in this chapter it is noted that the secant method is the simplification
of Newton method. But, the order of the secant method is lower than one of the
Newton methods; it is Q-superlinearly convergent, and its order is

p=¥31x1,618.

This modified secant method is constructed in [60], having in view, as it is
empbhasized, that it is possible to construct a cubic function which agrees with f (x)
up to the third derivatives. The third derivative of the objective functionf is

approximated as

2 [f/(xk)_f(xk)’f<xk—l>

3 }f ()

fx)=

Xk—1 — Xk

In [61], the authors propose an inexact Newton-like conditional gradient
method for solving constrained systems of nonlinear equations. The local conver-
gence of the new method as well as results on its rate is established by using a
general majorant condition.

2.6 Quasi-Newton method

Consider the Newton method.

For various practical problems, the computation of Hessian may be very expen-
sive, or difficult, or Hessian can be unavailable analytically. So, the class of so-called
quasi-Newton methods is formed, such that it uses only the objective function
values and the gradients of the objective function and it is close to Newton method.
Quasi-Newton method is such a class of methods which does not compute Hessian,
but it generates a sequence of Hessian approximations and maintains a fast rate of
convergence.

So, we would like to construct Hessian approximation By, in quasi-Newton
method. Naturally, it is desirable that the sequence {B.} possesses positive defi-
niteness, as well as its direction d, = —Bj, 'g, should be a descent one.

Now, let f : R” — R be twice continuously differentiable function on an open
set DCR". Consider the quadratic approximation of f at x;1:

1
Floe)Rf (hs1) + g1 (6 = Xpsa) + 5 (x = k1) Grya (¥ — xp41).
Finding the derivatives, we get

g(x) Rri1 + Gk+1(x - .X'k+1).

Setting x = x;, and using the standard notation: s = X1 — X&s ¥}, = 21 — o>
from the last relation, we get

Gk’ilyk RS, (41)
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Relation (41) transforms into the next one if f is the quadratic function:

Gy =i (42)

Let H), be the approximation of the inverse of Hessian. Then, we want Hj, to
satisfy the relation (42). In this way, we come to the quasi-Newton condition or
quasi-Newton equation:

Hp 19y, = k- (43)

Let By;1 = H,}; be the approximation of Hessian Gy1. Then

Bri1sk =y, (44)

is also the quasi-Newton equation.

If
T
Sk Yk = 05 (45)
then the matrix By is positive definite. The condition (45) is known as the
curvature condition.

Algorithm 1.2.9. (A general quasi-Newton method,).

Assumptions: 0 <e <1,x9 €R", Hy€R"". Let k = 0.

Step 1. If || g, || <€, then STOP.

Step 2. Compute d, = —H, g,

Step 3. Find t;, by line search and set x;.1 = x;, + t3d.

Step 4. Update H}, into Hy 4 such that quasi-Newton equation (43) holds.
Step 5. Set k =k + 1 and go to Step 1.

In Algorithm 1.2.9, usually we take Ho = I, where I is an identity matrix.
Sometimes, instead of H},, we use By, in Algorithm 1.2.9.

Then, Step 2 becomes

Step 2*. Solve

Byd = —g,, ford,,.

By the other side, Step 4 becomes
Step 4*. Update By, into By 1 in such a way that quasi-Newton equation (44)
holds.

2.7 Symmetric rank-one (SR1) update

Let H), be the inverse Hessian approximation of the kth iteration. We are trying
to update Hj, into Hy 4, i.e.

Hy1 = Hp + Ep,
where E}, is a matrix with a lower rank. If it is about a rank-one update, we get
Hyp = H, + w7, (46)
where u, v € R”. Using quasi-Newton equation (43), we can get
Hi1yy, = (He +u0” )y, = si,

wherefrom
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(©7y)u = se — Hi,. (47)
Further, from (46) and (47), we have
1 T
Hk+1 = Hk + T (Sk — Hkyk)i) .
" Yk
Having in view that the inverse Hessian approximation Hj, has to be the

symmetric one, we use v = s — Hyy,, so we get the symmetric rank-one update
(i.e., SR1 update):

(5 — Hiy,) (s — Hk)’k)T
T .
(5 — Hiy,) 7
Theorem 1.2.8. [27] (Property theovem of SR1 update) Let sq, s1, and s,_1 be
linearly independent. Then, for quadratic function with a positive definite Hessian, SR1

method terminates at n + 1 steps, i.e., H, = G L
More information about SR1 update can be found.

Hpy =Hp + (48)

2.8 Davidon-Fletcher-Powell (DFP) update

There exists another type of update, which is a rank-two update. In fact, we get
Hy 1 using two symmetric, rank-one matrices:

Hpi1 = Hy + auu” + b, (49)
where u, v €R” and 4, b are scalars which have to be determined.
Using quasi-Newton equation (43), we can get
Hyy, + auuTyk + bvayk = 5. (50)
The values of , v are not determined in a unique way, but the good choice is
U = S, 0 = Hyy,,.

Now, from (50), we get:

Hence, we get the formula

sy HypyiHe
T

Hp1 = H + s
SV YiHW,,

(51)

which is DFP update.
Theorem 1.2.9. [27] (Positive definiteness of DFP update) DFP update (51) retains
positive definiteness if and only if sTy, > 0.

Theorem 1.2.10. [27] (Quadratic termination theovem of DFP method) Let f (x) be a
quadratic function with positive definite Hessian G. Then, if the exact line search is used, the
sequence {s]- }, genevated from DEP method, satisfies, fori = 0,1, ..., m, where m <n — 1:
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1. Hi+1yj =s,j = 0,1, ..., i (hereditary property).
2. sz-T Gsj = 0,j = 0,1, ..., i — 1 (conjugate direction property).

3. The method terminatesatm + 1 <nsteps. If m =n — 1, then H, = G .

2.9 Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

BFGS update is given by the formula

YeJi _ Bususi By

(52)
yrsi sTBis

B Bt

The BFGS update is also said to be a complement to DFP update.

In [62], an adaptive scaled BFGS method for unconstrained optimization is
presented. In this paper, the author emphasizes that the BFGS method is one of the
most efficient quasi-Newton methods for solving small-size and medium-size
unconstrained optimization problems. The third term in the standard BFGS update
formula is scaled in order to reduce the large eigenvalues of the approximation to
the Hessian of the minimizing function. In fact, in [62], the general scaling BFGS
updating formula is considered:

T T
Besisi Br | VY
k >
53 Besye Yse

Bry1 =B — (53)

where y, is a positive parameter. Obviously, using y, = 1forallk =0, 1, ..., we
get the standard BFGS formula. By the way, there exist several procedures created
to select the scaling parameter y,, for example, see [62-69]. The approach for
determining the scaling parameters of the terms of the BFGS update in [62] is to
minimize the Byrd and Nocedal measure function.

Namely, in [70], the next function was introduced:

9(A) = tr(A) — In (det(A)), (54)

which is defined on positive definite matrices.

This function is a measure of matrices involving all the eigenvalues of A, not
only the smallest one and the largest one, as it is traditionally used in the analysis of
the quasi-Newton method based on the condition number of matrices.

Observe that function ¢ works simultaneously with the trace and the determi-
nant, thus simplifying the analysis of the quasi-Newton methods. Fletcher [71]
proves that this function is strictly convex on the set of symmetric and positive
definite matrices, and it is minimized by A = I. Besides, this function becomes
unbounded when A becomes singular or infinite, and therefore it works as a barrier
function that keeps A positive definite. It is worth saying that the BFGS update
tends to generate updates with large eigenvalues.

Further, in [62], a double-parameter scaling BFGS update is considered, in
which the first two terms on the right-hand side of the BFGS update (52) are scaled
with a positive parameter, while the third one is scaled with another positive
parameter:
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BysisIB r
Bpi1 = & {Bk — Rk k} +p e (55)
53, Bist, Vi Sk

where 8, and y,, are the two positive parameters that have to be determined.
In [62], the next proposition is proved.

Proposition 1.2.1. If the step sige t;, is determined by the standard Wolfe line search
(12) and (13), By, is positive definite and y;, > 0, and then Byy1, given by (55), is also
positive definite.

From (55), it can be seen that ¢(By1) depends on the scaling parameters &, and
7g- In [62], these scaling parameters are determined as solution of the minimizing
problem:

min__¢(Bysa). (56)

0, >0,7,>0

Further, the next values of the scaling parameters &, and y;, are reached:

-1
b= [Besel” 7)
tr(Bi) — sy
T
YiSk
Ye = . (58)
||;V;e||2
Consider the relation
Xptr1 = Xp + trdps (59)

where d}, is the BFGS search direction obtained as solution of the linear algebraic
system

Bydr = —g,

where the matrix By, is the BFGS approximation to the Hessian V?f (x;), being
updated by the classical formula (52).
The next theorems are also given in [62].

Theorem 1.2.11. If the step size in (59) is determined by the Wolfe search conditions
(12)-(13), then the scaling parameters given by (57) and (58) are the unique global
solutions of the problem (56).

Theorem 1.2.12. Let 6, be computed by (57). Then, for any k = 0,1, ..., &, is positive
and close to 1.

Next, in [72], using chain rule, a modified secant equation is given, to get a more
accurate approximation of the second curvature of the objective function. Then,
based on this modified secant equation, a new BFGS method is presented. The
proposed method makes use of both gradient and function values, and it utilizes
information from two most recent steps, while the usual secant relation uses only
the latest step information. Under appropriate conditions, it is shown that the
proposed method is globally convergent without convexity assumption on the
objective function.

Some interesting applications of Newton, modified Newton, inexact Newton,
and quasi-Newton methods can be found, for example, in [73-83], etc.

A very interesting paper is [84].

An interesting application of BFGS method can be found in [85].
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3. Conclusion

Today, the modifications of the line search techniques are very actual and all in
the aim to create new, better optimization methods.

Further, following recent trends in unconstrained optimization, we can notice
that almost all optimization methods, which are considered in this chapter, are still
actual.

They are applied in the other areas of Mathematics, as well as in practice. Also,
different modifications of these methods are made, in the aim to improve them.

Let us emphasize that BFGS update is very popular now.
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Chapter 2

Unconstrained Optimization
Methods: Conjugate Gradient
Methods and Trust-Region
Methods

Snezana S. Djordjevic

Abstract

Here, we consider two important classes of unconstrained optimization
methods: conjugate gradient methods and trust region methods. These two classes
of methods are very interesting; it seems that they are never out of date. First, we
consider conjugate gradient methods. We also illustrate the practical behavior of
some conjugate gradient methods. Then, we study trust region methods. Consider-
ing these two classes of methods, we analyze some recent results.

Keywords: conjugate gradient method, hybrid conjugate gradient method,
three-term conjugate gradient method, modified conjugate gradient method,
trust region methods

1. Introduction

Remind to the unconstrained optimization problem which we can present as

min f(x), (1)
x€R"

where f : R” — R is a smooth function.

Here, we consider two classes of unconstrained optimization methods: conjugate
gradient methods and trust region methods. Both of them are made with the aim to
solve the unconstrained optimization problem (1).

In this chapter, at first, we consider the conjugate gradient methods. Then, we
study trust region methods. Also, we try to give some of the most recent results in
these areas.

2. Conjugate gradient method (shortly CG)

The conjugate gradient method is the method between the steepest descent
method and the Newton method.

The conjugate gradient method in fact deflects the direction of the steepest
descent method by adding to it a positive multiple of the direction used in the
last step.
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The restarting and the preconditioning are very important to improve the con-

jugate gradient method [47].
Some of well-known CG methods are [12, 19, 20, 23, 24, 31, 39, 40, 49]:

ﬂkHS 7ng+1)’1€
- T
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Consider positive definite quadratic function
1r T
f(x)zix Gx+b'x+c, (2)

where G is an # x # symmetric positive definite matrix, » € R", and c is a real

number.
Theorem 1.2.1. [47] (Property theorem of conjugate gradient method) For positive

definite quadratic function (2), FR conjugate gradient method with the exact line search
terminates after m < n steps, and the following properties hold for all i, 0 <i < m:
d/Gd;i =0,j=0,1,..,i— L

giTg]. =0,j=0,1,..,i—1
dig; =885
[i),gl,---?gi] C 56 Ggo - Ggol
e, ... di] & (86, Ggo - Gigo s
where m is the number of distinct eigehvalues of G.

Now, we give the algorithm of conjugate gradient method.

Algorithm 1.2.1. (CG method).
Assumptions: e <0 and xo €R". Let k = 0,19 = 0,d_1 = 0,do = —g,, .1 =0,

and ﬂo = O.
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Step 1. I |l g, || < &, then STOP.

Step 2. Calculate the step-size t;, by a line search.

Step 3. Calculate p), by any of the conjugate gradient method.
Step 4. Calculate dy, = —g,, + Pj,_1dk—1.

Step 5. Set xp11 = xp + tidy.

Step 6. Set k =k + 1 and go to Step 1.

2.1 Convergence of conjugate gradient methods

Theorem 1.2.2. [47] (Global convergence of FR conjugate gradient method) Suppose
that f : R" — R is continuously diffeventiable on a bounded level set

L= {xeR"|f(x)<f(xo)}

and let FR method be implemented by the exact line search. Then, the produced
sequence {x} has at least one accumulation point, which is a stationary point, i.e.:

1. When {x},} is a finite sequence, then the final point x* is a stationary point of f.

2. When {x}} is an infinite sequence, then it has a limit point, and it is a stationary
point.

In [35], a comparison of two methods, the steepest descent method and the
conjugate gradient method which are used for solving systems of linear equations, is
illustrated. The aim of the research is to analyze, which method is faster in solving
these equations and how many iterations are needed by each method for solving.

The system of linear equations in the general form is considered:

Ax = B, (3)

where matrix A is symmetric and positive definite.

The conclusion is that the SD method is a faster method than the CG, because it
solves equations in less amount of time.

By the other side, the authors find that the CG method is slower but more
productive than the SD, because it converges after less iterations.

So, we can see that one method can be used when we want to find solution very
fast and another can converge to maximum in less number of iterations.

Again, we consider the problem (1), where f : R” — R is a smooth function and
its gradient is available.

A hybrid conjugate gradient method is a certain combination of different conju-
gate gradient methods; it is made to improve the behavior of these methods and to
avoid the jamming phenomenon.

An excellent survey of hybrid conjugate gradient methods is given in [5].

Three-term conjugate gradient methods were studied in the past (e.g., see
[8, 32, 34], etc.); but, from recent papers about CG methods, we can conclude that
maybe the mainstream is made by three-term and even four-term conjugate gradi-
ent methods. An interesting paper about a five-term hybrid conjugate gradient
method is [1]. Also, from recent papers we can conclude that different modifica-
tions of the existing CG methods are made, as well as different hybridizations of CG
and BFGS methods.

Consider unconstrained optimization problem (1), where f : R” — R is a con-
tinuously differentiable function, bounded from below. Starting from an initial
point xg € R”, the three-term conjugate gradient method with line search generates
a sequence {x}, given by the next iterative scheme:
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Xp+1 = Xi + tkdk, (4)

where t, is a step-size which is obtained from the line search, and

do = —gp dki1 = —Liq + OkSk + MYy

In the last relation, §, and #, are the conjugate gradient parameters,

Sk = Xp41 — Xp, g, = Vf (%), and y, = g, .1 — g,- We can see that the search direction
dj41 is computed as a linear combination of —g,, ., s¢, and y,.

In [6], the author suggests another way to get three-term conjugate gradient
algorithms by minimization of the one-parameter quadratic model of the functionf.
The idea is to consider the quadratic approximation of the function f in the current
point and to determine the search direction by minimization of this quadratic
model. It is assumed that the symmetrical approximation of the Hessian matrix B4
satisfies the general quasi-Newton equation which depends on a positive parameter:

Bi1sk = @ 'y, 0 = 0. (5)
In this paper the quadratic approximation of the function f is considered:
1
Dpi1(d) =fr14 +gl§+1d + idTBkHd'
The direction dj, 1 is computed as

A1 = =81+ Pk (6)

where the scalar g, is determined as the solution of the following minimizing
problem:

ﬂrkrlel% D1 1(dper1)- @)

From (6) and (7), the author obtains

T T
_ Zr1Br+1Sk — a5k

(8)
P 57 Br+15
Using (5), from (7), the next expression for f, is obtained:
T T
B, _ SV — “Bki1Sk (9)

T
Vi Sk

Using the idea of Perry [36], the author obtains

T T T
ViBrr1 — PiBrs1 SkEks1

A1 = — +
TSk Vit Vit

-

In fact, in this approach the author gets a family of three-term conjugate gradi-
ent algorithms depending of a positive parameter w.

Next, in [52], the WYL conjugate gradient (CG) formula, with ﬂZVYL >0,is
further studied. A three-term WYL CG algorithm is presented, which has the suffi-
ciently descent property without any conditions. The global convergence and the
linear convergence are proven; moreover, the #-step quadratic convergence with a
restart strategy is established if the initial step length is appropriately chosen.
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The first three-term Hestenes-Stiefel (HS) method (TTHS method) can be
found in [55].

Baluch et al. [7] describe a modified three-term Hestenes-Stiefel (HS) method.
Although the earliest conjugate gradient method HS achieves global convergence
using an exact line search, this is not guaranteed in the case of an inexact line search.
In addition, the HS method does not usually satisfy the descent property. The
modified three-term conjugate gradient method from [7] possesses a sufficient
descent property regardless of the type of line search and guarantees global con-
vergence using the inexact Wolfe-Powell line search [50, 51]. The authors also
prove the global convergence of this method. The search direction, which is con-
sidered in [7], has the next form:

4 —g,,ifk=0,
£ —gp + B 1 — 07y, if k21,

BZA & (gg1) ZA grdy
where = ok ok Ok 1) = =kt >,
be ALy gl Tk Ay tueldia” H
In [13], an accelerated three-term conjugate gradient method is proposed, in
which the search direction satisfies the sufficient descent condition as well as

extended Dai-Liao conjugacy condition:

T T
A1 = Sk 20

This method seems different from the existent methods.
Next, Li-Fushikuma quasi-Newton equation is

V2F ()Sk-1 = Zk—15 (10)

where

_ C 7 _527Jk71 0
Ze-1 = Y41 + Cllg_1II"Sk—1 + max >,0 ¢sp1,
llse—all

where C and r are two given positive constants. Based on (10), Zhou and Zhang
[56] propose a modified version of DL method, called ZZ method in [13].

In [30], some new conjugate gradient methods are extended, and then some
three-term conjugate gradient methods are constructed. Namely, the authors
remind to [41, 42], with its conjugate gradient parameters, respectively:

T
ZeVr—1

ﬂRMIL — s (11)
* llde-1]I?

ﬂz/IRMIL :g;f (gk — &k z_dkfl) , (12)
gl

wherefrom it is obvious that }/RME = BRMIL for the exact line search. Let us say

that these methods, presented in [41, 42], are RMIL and MRMIL methods.
The three-term RMIL and MRMIL methods are introduced in [30].
The search direction dj, can be expressed as

do = ~£o de = —g + Pedr1+ 01y,
where f, is given by (11) or (12), and
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An important property of the proposed methods is that the search direction
always satisfies the sufficient descent condition without any line search, that is, the
next relation always holds

grde < — gl

Under the standard Wolfe line search and the classical assumptions, the global
convergence properties of the proposed methods are proven.

Having in view the conjugate gradient parameter suggested in [49], in [45] the
next two conjugate gradient parameters are presented:

2 llgll T

MHS ll g llI” — ||gk,il||gkgk—l

3 - T > (13)

dj,_1 (gk _gkfl)

2 llgell T

MLS __ ”gk” B ||gklj1||gkgk*1

ko= T . (14)
—dy,_18), 1

Motivated by [49], as well as by [45], in [1], a new hybrid nonlinear CG method
is proposed; it combines the features of five different CG methods, with the aim of
combining the positive features of different non-hybrid methods. The proposed
method generates descent directions independently of the line search. Under some
assumptions on the objective function, the global convergence is proven under the
standard Wolfe line search. Conjugate gradient parameter, proposed in [1], is

2 llg,ll T
oo Mgl —maxfo, el ore 4

£ max{”gk—lllz’dg—l (é’k *g/e—l), *dif—lgkq} .

(15)

Let’s note that the proposed method is hybrid of FR, DY, WYL, MHS, and MLS.

The behaviors of the methods BZA, TTRMIL, MRMIL, MHS, MLS, and ZAQO are
illustrated by the next tables.

The test criterion is CPU time.

The tests are performed on the computer Workstation Intel Celeron CPU
1,9 GHz.

The experiments are made on the test functions from [3].

Each problem is tested for a number of variables # = 1000 and # = 5000.

The average CPU time values are given in the last rows of these tables (Tables 1-4).

In [2], based on the numerical efficiency of Hestenes-Stiefel (HS) method, a new
modified HS algorithm is proposed for unconstrained optimization. The new direction
independent of the line search satisfies the sufficient descent condition. Motivated by
theoretical and numerical features of three-term conjugate gradient (CG) methods
proposed by [33], similar to the approach in [10], the new direction is computed by
minimizing the distance between the CG direction and the direction of the three-term
CG methods proposed by [33]. Under some mild conditions, the global convergence
of the new method for general functions is established when the standard Wolfe line
search is used. In this paper the conjugate gradient parameter is given by

B = B0k (16)
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function BZA TTRMIL MRMIL MHS MLS hAO

Ext.Pen. 21.793340 20.966534 16.036903 19.812127 21.933741 20.326930
Pert.Quad. 21.855740 22.542144 15.506499 20.904134 22.230142 18.954121
Raydan1 6.801644 7.066845 6.349241 7.098045 7.066845 7.332047
Raydan2 0.608404 0.592804 0.577204 0.592804 0.608404 0.639604
Diag.1 0.608404 0.608404 0.577204 0.608404 0.514803 0.577204
Diag.2 5.163633 5.600436 4.695630 4.758031 5.662836 4.851631
Diag.3 5.616036 5.694037 5.241634 5.756437 5.584836 5.506835
Gen.Tridiag.-1 3.042019 2.932819 2.683217 2.948419 2.792418 2.808018
Hager 2.917219 2.932819 2.620817 3.042019 2.917219 2.886019
Ext.Tridiag.-1 2.886019 2.932819 2.761218 2.932819 2.730018 2.917219
Ext.ThreeExp. 2.979619 2.964019 2.605217 2.886019 3.042019 2.714417
Diag.4 2.901619 2.870418 2.574016 2.792418 2.948419 2.652017
Diag.5 2.792418 2.917219 2.574016 2.901619 3.026419 2.901619
Ext.Himm. 2.761218 2.714417 2.667617 2.964019 2.995219 2.854818
Ext.PSC1 2.932819 2.745618 2.714417 2.511616 3.026419 2.792418
FullHess.FH2 2.870418 2.948419 2.886019 2.839218 3.010819 2.948419
Ext.Bl.Diag.BD1 2.979619 2.886019 2.948419 2.886019 2.901619 2.542816
Quad.QF1 2.854818 2.870418 3.057620 2.964019 2.964019 2.886019
Ext.Quad.Pen.QP1 2.948419 2.808018 2.605217 2.964019 2.823618 2.542816
Quad.QF2 2.839218 2.620817 2.886019 2.979619 2.901619 2.683217
Ext.EP1 2.730018 2.402415 2.932819 2.698817 2.792418 2.652017
Ext.Tridiag.-2 2.683217 2.605217 2.839218 2.870418 2.886019 2.542816
Tridia 2.683217 2.511616 2.964019 2.823618 2.823618 2.511616
Arwhead 2.917219 2.995219 2.745618 2.823618 2.745618 2.012413
Dqdrtic 2.761218 2.995219 2.901619 2.823618 2.730018 2.589617
Quartc(Cute) 2.886019 2.776818 2.886019 2.776818 2.870418 2.839218
Dixon3dq(Cute) 2.808018 2.948419 2.948419 2.839218 2.917219 2.605217

Table 1.
n = 1000.

function BZA TTRMIL MRMIL MHS MLS hAO

Biggsb1(Cute) 2.792418 2.870418 2.870418 2.917219 2.979619 2.901619
Gen.quart. 2.917219 2.932819 2.464816 2.948419 2.808018 2.620817
Diag.7 2.574016 2.589617 2.870418 2.620817 3.026419 2.698817
Diag.8 2.730018 2.979619 2.839218 2.964019 2.792418 2.979619
Full Hess.FH3 2.948419 2.574016 2.698817 3.026419 2.636417 2.745618
Himmelbg 2.854818 3.010819 2.901619 2.854818 2.995219 2.730018
Ext.Pow. 2.901619 2.854818 2.761218 2.808018 2.870418 2.995219
Ext.Maratos 2.854818 2.948419 2.870418 2.995219 2.870418 2.917219
Ext.Cliff 2.964019 3.042019 2.854818 2.932819 2.886019 2.854818
Pert.quad.diag. 2.714417 3.104420 2.683217 2.964019 2.667617 2.901619
Ext.Wood 2.995219 2.932819 2.948419 2.948419 2.964019 2.948419
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function BZA TTRMIL MRMIL MHS MLS hAO
Ext.Trigon. 2.792418 2.995219 2.839218 3.010819 2.995219 2.745618
Ext.Rosenbr. 2.964019 2.839218 2.948419 2.932819 2.995219 2.776818
Average 3.915625 3.928105 3.533423 3.868045 3.973345 3.722184

Table 2.

n = 1000.
function BZA TTRMIL MRMIL MHS MLS hAO
Ext.Pen. 46.160696 46.831500 48.656712 66.284825 65.863622 63.695208
Pert.Quad. 48.375910 45.801894 52.307135 66.612427 66.113224 65.551620
Raydanl 12.994883 12.105678 13.759288 16.972909 16.598506 16.754507
Raydan2 1.170008 1.029607 1.076407 1154407 1.092007 1107607
Diag.1 8.845257 0.904806 1.076407 1123207 1170008 1.092007
Diag.2 8.658055 7.831250 7.924851 9.094858 10.358466 10.327266
Diag.3 8.361654 9.141659 8.673656 10.686068 10.358466 10.514467
Gen.Tridiag.-1 5.616036 5.382034 5.865638 6.021639 6.489642 6.364841
Hager 5241634 4.851631 5.881238 6.286840 5304034 6.021639
Ext.Tridiag.-1 5.007632 4.804831 5740837 5.787637 6.224440 5.803237
Ext. ThreeExp. 4.882831 4.820431 5.522435 6.115239 6.333641 5.834437
Diag.4 4.929632 4.898431 5179233 5.803237 6.177640 6.427241
Diag.5 5.694037 4.851631 5.538036 5.709637 5.896838 6.115239
Ext.Himm. 5.834437 5116833 5382034 6.099639 5.772037 6.411641
Ext.PSC1 5.023232 5.054432 5163633 6.411641 6.115239 5.990438
FullHess.FH2 5210433 4.929632 4.851631 6.068439 6.349241 6.349241
Ext.Bl.Diag.BD1 4.851631 5.007632 5226033 6.364841 6.364841 5569236
Quad.QF1 5.475635 5.662836 6.302440 6.177640 6.146439 6.286840
Ext.Quad.Pen.QP1 5.226033 5.163633 4.929632 6.130839 5.818837 5.943638
Quad.QF2 5.335234 4.836031 5.990438 6.084039 6.084039 6.084039
Ext.EP1 5.070032 5.038832 6.052839 6.115239 4.992032 6.177640
Ext.Tridiag.-2 4.851631 4.976432 4.851631 6.349241 5.990438 6.099639
Tridia 5.413235 4.820431 5.475635 5569236 5.818837 6.021639
Arwhead 4.867231 4.882831 5.023232 6.099639 6.380441 6.177640
Dqdrtic 5.163633 4.945232 5.023232 5.428835 6.006038 5.850038
Quartc(Cute) 5912438 5350834 5.834437 5.787637 5.896838 6.193240
Dixon3dq(Cute) 5.428835 4.789231 5163633 6.162039 5.616036 5.881238

Table 3.

n = 5000.
where

6 —1— (gF 1)’ .
Il g 111 11*

But this new CG direction does not fulfill a descent condition, so further modi-
fication is made, namely, having in view [53], the authors [2] introduce
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function BZA TTRMIL MRMIL MHS MLS hAO

Biggsb1(Cute) 5.148033 4.695630 5.413235 5.912438 6.052839 6.349241

Gen.quart. 5.288434 4.758031 5.023232 6.349241 6.052839 4.960832
Diag.7 5.163633 4.664430 5.054432 5.959238 6.193240 6.255640
Diag.8 5.787637 4.742430 4.898431 6.099639 5.600436 6.208840
Full Hess.FH3 5.444435 4.789231 5.569236 6.177640 6.162039 6.224440
Himmelbg 5.584836 6.130839 5.475635 5.475635 6.006038 5.912438
Ext.Pow. 5.569236 4.789231 4.773631 5.990438 5.772037 6.162039
Ext.Maratos 5.148033 5.740837 4.976432 6.021639 6.286840 6.130839
Ext.Cliff 5.943638 5.850038 4.976432 5.990438 5.304034 6.286840

Pert.quad.diag. 5.912438 6.427241 4.976432 6.318041 6.115239 6.068439

Ext.Wood 5.584836 5.647236 4.789231 6.255640 5.350834 6.021639
Ext.Trigon. 5.366434 5.709637 4.773631 6.115239 6.021639 5.787637
Ext.Rosenbr. 6.177640 5.319634 4.617630 6.333641 6.021639 6.021639
Average 7.79302995 7.327367 7.694749 9.287519525 9.206789 9.225899
Table 4.
n = 5000.

where 2> 1 is a parameter. Also, the global convergence is proven under stan-
dard conditions.

It is worth to mention the next papers about this theme, which can be interesting
[4, 1417, 25-27].

3. Trust region methods

We remind that the basic idea of Newton method is to approximate the objective
function f (x) around x;, by using a quadratic model:

1
9" () =f () +gi5 + 55 Gis

where g, = Vf(xz), G, = V?f (x1.), and also use the minimizer s, of q(k)(s) to set
X1 = Xk + Sk

Also, remind that Newton method can only guarantee the local convergence, i.e.,
when s is small enough and the method is convergent locally.

Further, Newton method cannot be used when Hessian is not positive definite.

There exists another class of methods, known as trust region methods. It does
not use the line search to get the global convergence, as well as it avoids the
difficulty which is the consequence of the nonpositive definite Hessian in the line
search.

Furthermore, it produces greater reduction of the function f than line search
approaches.

Here, we define the region around the current iterate:
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Q= {x 1 llx — xell < Ae}s

where Ay, is the radius of €, inside which the model is trusted to be adequate to
the objective function.

Our further intention is to choose a step which should be the approximate
minimizer of the quadratic model in the trust region. In fact, xj + s, should be the
approximately best point on the sphere:

{ocr +slIsll < Ar}s

with the center x;, and the radius A,.

In the case that this step is not acceptable, we reduce the size of the step, and
then we find a new minimizer.

This method has the rapid local convergence rate, and that’s the property of
Newton method and quasi-Newton method, too, but the important characteristic of
trust region method is also the global convergence.

Since the step is restricted by the trust region, this method is also called the
restricted step method.

The model subproblem of the trust region method is

minq<k) (8) =f(x) + g,fs + %STBkS, (17)

s.t.|Is|| < Ap, (18)

where A}, is the trust region radius and Bj, is a symmetric approximation of the
Hessian Gy.

In the case that we use the standard /, norm || - ||,, 5, is the minimizer of ¢*)(s) in
the ball of radius Aj. Generally, different norms define the different shapes of the
trust region.

Setting Bj, = Gy, in (17)—(18), the method becomes a Newton-type trust region
method.

The problem by itself is the choice of A, at each single iteration.

If the agreement between the model g*)(s) and the objective function f (x; + s) is
satisfactory enough, the value A, should be chosen as large as it is possible. The
expression Ared), = f (x) — f (xr + s) is called the actual reduction, and the expres-
sion Pred;, = q*)(0) — q®(s;,) is called the predicted reduction; here, we emphasize
that

. _ Ared,
kT Pred,,

measures the agreement between the model function ¢ (s) and the objective
function f (x;, + ).

If 7y, is close to O or it is negative, the trust region is going to shrink; otherwise,
we do not change the trust region.

The conclusion is that 7, is important in making the choice of new iterate x4 as
well as in updating the trust region radius A,. Now, we give the trust region
algorithm.

Algorithm 1.3.1. (Trust region method).

Assumptions: xo, A, Ag € (0,A),e>0,0<nm<n,<1,and 0<y; <1<yp,.

Let ke = 0.

Step 1. If || g, || < &, then STOP.

Step 2. Approximately solve the problem (17)-(18) for s,
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Step 3. Compute f (xj, + si) and ry. Set

. X+ Sk if TR 2,
k+1 = .
Xp,  otherwise.

Step 4. If 1 <ny, then Apiq € (0,71Ap).

If v, € [y, 1) then Agi1 € (18, Ag).

If rp >, and |Isgll = Ag, then Agiq € [Ag, min{y, Ay, A}].

Step 5. Generate By, 1, update q®), set k = k + 1, and go to Step 1.

In Algorithm 1.3.1, A is a bound for all A,. Those iterations with the property
7y > 11, (and so those for which Ay 1 > A) are called very successful iterations; the
iterations with the property 7, >#, (and so those for which xj,1 = x;, + 53,) are called
successful iterations; and the iterations with the property 7, <#; (and so those for
which x4 = x;) are called unsuccessful iterations. Generally, the iterations from the
two first cases are called successful iterations.

Some choices of parameters are #; = 0,01,7, =0,75,7, =0,5,7, =2, A¢ =1,
and A = 3 11g,l. The algorithm is insensitive to change of these parameters.

Next, if 7, <0, 01, then A, ; can be chosen from (0.01, 0.5)||s¢|| on the basis of a
polynomial interpolation.

In the case of quadratic interpolation, we set

A1 = Alsells

where

T
_ —8r Sk

" 2(flovk +50) —f o) —gls)

3.1 Convergence of trust region methods

Assumption 1.3.1 (Assumption Ao).

We assume that the approximations of Hessian {By} ave uniformly bounded in norm
and the level set L = {x|f (x) < f(x0)} is bounded, as well as f : R* — R is continuously
differentiable on L. We allow the length of the approximate solution s, of the subproblem
(17)—(18) to exceed the bound of the trust region, but we also assume that

lisell < 774k

where ij is a positive constant.

In this kind of trust region way of thinking, generally we do not seek an accurate
solution of the subproblem (17)-(18); we are satisfied by finding a nearly optimal
solution of the subproblem (17)-(18).

Strong theoretical as well as numerical results can be obtained if the step s,
produced by Algorithm 1.3.1, satisfies

0.(0) - 9.0 > g min] a0, 1 $42 L pr e 0,1

Theorem 1.3.1 [47] Under Assumption Ao, if Algorithm 3.1 has finitely many
successful iterations, then it converges to the first-order stationary point.

Theorem 1.3.2 [47] Under Assumption Ao, if Algovithm 3.1 has infinitely many
successful iterations, then
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liminf [ g, || = 0.

In [44], it is emphasized that trust region methods are very effective for
optimization problems and a new adaptive trust region method is presented.
This method combines a modified secant equation with the BFGS update formula
and an adaptive trust region radius, where the new trust region radius makes
use of not only the function information but also the gradient information. Let By,
be a positively definite matrix based on modified Cholesky factorization [43].
Under suitable conditions, in [44] the global convergence is proven; also, the
local superlinear convergence of the proposed method is demonstrated. Motivated
by the adaptive technique, the proposed method possesses the following nice
properties:

1. The trust region radius uses not only the gradient value but also the function
value.

. B . ~ -1
2. Computing the matrix B, of the inverse and the value of ||B, ||, at each
iterative point xy, is not required.

3. The computational time is reduced.

A modified secant equation is introduced:
Bk+1dk = qk’ (19)
where g, =y, + hidi, [, =f (xx), and by, = (g0 2:) lsiiﬁf(fkffk“).

When f is twice continuously differentiable and By is generated by the BFGS
formula, where By = I, this modified secant Eq. (19) possesses the following nice

property:

1 7
fe = —gleT+1dk + Edk By 1dy,

and this property holds for all k.

Under classical assumptions, the global convergence of the method presented in
[44] is also proven in this paper.

In [28], the hybridization of monotone and non-monotone approaches is made;
a modified trust region ratio is used, in which more information is provided about
the agreement between the exact and the approximate models. An adaptive trust
region radius is used, as well as two accelerated Armijo-type line search strategies to
avoid resolving the trust region subproblem whenever a trial step is rejected. It is
shown that the proposed algorithm is globally and locally superlinearly convergent.
In this paper trust region methods are denoted shortly by TR; it is emphasized that
in TR method, having in view that the iterative scheme is

x0 ER", x40 1 =% + 50,k =0,1, ...,

and it often happens that s, is an approximate solution of the following quadratic
subproblem:

1
min  my(s) :gZS + iskTBks. (20)

sER", [Isell < A
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Performance of the TR methods is much influenced by the strategy of choosing
the TR radius at each iteration. To determine the radius Ay, in the standard TR
method, the agreement between f (x;, +s) and m;,(s) is evaluated by the so-called TR
ratio py:

(o) — f (o + %)

mk(O) — mk(sk) '

Pk =

When p;, is negative or a small positive number near to zero, the quadratic model
is a poor approximation of the objective function. In such situation, A, should be
decreased and, consequently, the subproblem (20) should be solved again. How-
ever, when p, is close to 1, it is reasonable to use the quadratic model as an
approximation of the objective function. So, the step s; should be accepted and A,
can be increased. Here, the authors use the modified version of p,:

Ry —f(xp +s)

Pk T —mi(se)
where Rk - nkfl 1 Mg fk’ e € nmmv nmax] Ninin € [07 1)) and Nmax € [nminv 1]
Also,
S = oz {fk ]} fi =1, =0,0<q(k) <min{q(k — 1) + 1,N},

where N € N which is originally used by Toint [48].
Something more about trust region methods can be found in [9, 18, 21, 22, 54].

4. Conclusion

The conjugate gradient methods and trust region methods are very popular now.

Many scientists consider these methods.

Namely, different modifications of these methods are made, with the aim to
improve them.

Next, the scientists try to make not only new methods but also whole new classes
of methods. For the specific values of the parameters, individual methods are
distinguished from these classes. It is always more desirable to make a class of
methods instead of individual methods.

Hybrid conjugate gradient methods are made in many different ways; this class
of conjugate gradient methods is always actual.

Further, one of the contemporary trends is to use BFGS update in constructions
of new conjugate gradient methods (e.g., see [46]).

Finally, let us emphasize that contemporary papers often use the Picard-Mann-
Ishikawa iterative processes and they make the connection of these kinds of pro-
cesses with the unconstrained optimization (see [29, 37, 38]).
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Chapter 3

What Determines EP Curve
Shape?

Frank Xuyan Wang

Abstract

Propose use kurtosis divided by skewness squared as shape factor, and use the
global or conditional minimum/maximum of this shape factor for selecting and
differentiating distribution families. Semi-empirical formulas for that lower/upper
bound are calculated for various distribution families, with the aid of Computer
Algebra System, for fitting hard to match distributions. Previous studies show high
CV distribution is hard to fit and simulate, this study extends that conclusion to
cases with low CV but still hard to match EP curves, characterized by having shape
factors close to 1. The maximal likelihood approach of distribution fit can tell us
which distribution family is better suited for an empirical distribution, but the
shape factor range information can tell us why a distribution cannot fit well, or is
not suitable at all. So the shape factor, in a sense, determines the EP curve shape.

Keywords: Skewness, kurtosis, TVaR, shape factor, reinsurance, computer algebra
system, Beta distribution, Kumaraswamy distribution, asymptotic expansion, GB2
distribution, numerical optimization, generalized hyperbolic distribution

1. Introduction

In reinsurance industry, losses for a contract are simulated and represented by
the losses cumulative distribution function (CDF), survival, or quantile functions.
The plots of these functions are called the EP curves with the following terminology
[1]: for a given annual or aggregated loss, the probability of seeing annual loss
exceeding that loss is the exceeding-probability (EP) or aggregate-exceeding-
probability (AEP). The average of all annual losses exceeding that given loss is the
AEP tail value at risk, called the AEP TVaR, or simply TVaR. The EP curve is
represented by a table consisting of pairs of probability and loss. It is desirable to fit
a parametric distribution to this table for a more succinct representation and more
reasonable interpolations for values not in the table. Then which distribution family
to use and what characteristics of the data are needed or determine the distribution
are the questions to answer.

The (scaled) Beta distribution is widely used in reinsurance for fit loss or loss
ratio, perhaps because the Beta distribution has only two parameters and very
simple formulas for mean and standard deviation using these parameters, whose
inverse function also has simple formulas, so that the two statistics of mean and
standard deviation can be used to easily determine the parameters.

For about 85% of the perils, this approach works well, in the sense that the TVaR
of the fitted distribution for quantile of interest, such as the 0.96, 0.99 or 0.996
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quantile TVaR which is needed for pricing and risk monitoring, is close to a few
percent of the original data TVaR. The remaining 15% perils, such as the North
American Tornado Hail (NATH), Australia Wind Storm (AUWS), Hawaii Wind
Storm (HIWS), and Mexico Earthquake (MXEQ), can have more than 10%
deviations.

The maximum likelihood estimation method is a way to find alternative fitting
distributions [2, 3]. Instead of finding approximations of the smoothed empirical
distribution, we optimize an objective function whose optimum solution gives us
the candidate distribution form. Suppose the annual losses x; occurred #; times in
our observation; to find a probability function that gives probabilities p; for these
losses, we just maximize the objective function [[; p,”. It is easily seen that for the
optimum solution we haveg—]f =

the probability function. In the objective function, if we replace the p, by a power
function of p;, the conclusion still holds, but not if we use a logarithm or exponen-
tial function.

While the maximum likelihood approach works well for many perils and iden-
tifies a few best fitted distribution families (Mathematica has more than 200 distri-
bution families that can be used for extensive searches), it did not work for the
NATH peril. The NATH has {Mean, StandardDeviation, Skewness, Kurtosis,
0.99TVaR} = {7418611.10904006, 9517336.93024634, 5.99378199789956,
65.8901734355745, 68867612.8345741}.

This is not contradictory to the maximum likelihood principal, since in any
implementation, only known forms of the probability density function (PDF) and
as-small-as-possible numbers of parameters can be used. To overcome this limita-
tion, we need to look into the particularity of those distributions and come up with
or select more suitable function forms for the PDF or CDF. In [4] it is found that a
high coefficient of variation (CV) distribution is hard to fit or simulate. But the
NATH has a small CV of 1.28. The skewness and kurtosis alone also not differentiate
them from other distributions.

Trial and error found the empirical rule that these hard distributions have small
values of kurtosis divided by skewness squared, Table 1. This finding prompted us
for the study of the property of kurtosis/skewness”2 (K/S*2), henceforth will be
called the shape factor (SF).

Numerical optimization or solution will be our primary tool for this SF study.
Analytical deduction, symbolic algebra, and symbolic limit from computer algebra
system (CAS) Mathematica will be another major tool, as well as Mathematica’s plot
functions. Those plots can help reveal the patterns or tendencies of functions. The
found pattern can in turn aid in taking special directional/constraint limit or sub-
stitutions in CAS to get the analytical formula for SF bound when it is possible.

The overall lower bound we find of SF is presented in Section 2, through the
triple analytical, graphical, and numerical methods. Followed by in-detail studies of
SF of various selected distribution families, which are either widely used in practice,

°: the relative occurring frequency is maintained in
7

Peril CVv Shape factor
NATH 1.283 1.834
AUWS 5.711 1.260
HIWS 4.678 1.238
MXEQ 3.930 1.878
Table 1.

Numerical chavacteristics of a few hard to fit and simulate perils.
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such as the Beta distribution in Section 3 and the generalized Gamma distribution in
Section 6, or is most simple to simulate, such as the Kumaraswamy distribution in
Section 4. The most inclusive distribution, BetaPrime distribution, is in Section 5,
for which we do not get an analytical formula, so the empirical formula for SF lower
bound is provided. Some distributions that have wide matching capabilities, but for
the NATH may have fitted distribution facing numerical difficulties, such as the
Fleishman distribution, whose fit has non-monotonically increasing polynomial
form and hence is hard to solve for inverse CDF, are only briefly mentioned in
Section 7. The top distribution found through maximum likelihood fit, the general-
ized hyperbolic distribution (GH), even with the most complex PDF, has unex-
pectedly simple and beautiful analytical formulas for SF lower bound; the results
are in the final Section 8. All our studies will focus on SF bound deductions and
applications.

2. Lower bound of the shape factor

For a random variable f with mean my, the following characteristics are defined:
* Moment (M), M[r] = [f"du, >0,

* Absolute Moment (AM), AM[r] = [|f|"du, 7> 0,

¢ Central Moment (CM), CM[r] = [ (f — mf)ydy, r>0,

* Absolute Central Moment (ACM), ACM[r| = | |f — Mf’rdﬂ, r>0,

Skewness (S), S = CM[3

Kurtosis (K), K = CCJI\\/I/I[;]Z’

¢ Shape Factor (SF), SF = é—g = %&W.

We can prove by Hélder inequality (https://en.wikipedia.org/wiki/Hélder's_ine
quality) that.
SF>1:

(| = mY i< [1f =P = [1f = Plf=mlan @

<(] ’f—mf|4dﬂ>%<J ’f—mf|2dﬂ>%- @

A better inequality K > S* + 1is proved in [5-7]. But by Hélder inequality we can

ACM[4[+ACM[2] _ 4 +cc - - e
Aoy = 1ifff is constant: if f is not constant, the shape factor

must be larger than the lower bound 1.

The contribution to SF > 1 plausibly comes from two parts: Eq. (1) due to
symmetry, the more symmetric the distribution, the larger the contribution to SF,
or conversely, the smaller the SF, the more asymmetric the distribution; and Eq. (2)
due to ACM convexity or steepness, the steeper the PDF, the smaller the SF.

also know that
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This property of the shape factor identified our exceptional perils as possessing
very steep and asymmetric PDF whose SF are small.
2.1 Are there better definitions of shape factor?

To measure the steepness or the convexity, we can get similar inequality to
Eq. (2) by Holder inequality for absolute moment:

AMAAMP] - AMBAMIL]

AM[3]> T AM[2)?
From absolute central moment define:
sp1 = ACMIACMP] | | 4 spp = ACMBACM[T] +ACM 1]
ACM][3]2 ACM]2]

For nonnegative random variables such as the reinsurance contract loss distri-
bution, use the following inequality for moment:

M[4ME2] | MBM
M3 M

From another application of Holder inequality, we get yet other measures of
convexity from absolute central moment:

ACMIr] < ACM]s)", where 0 <r <s,

ACM]s|

= JoMr >1, wheres>1.

SF3lr] _:CCIZI[E] <1, where 0 <r <1and SF3[s] =

Similar definition from absolute moment:
AMIr] < AM][s|", where 0 <7 <s,

SF4[r] _AM[[l] <1, where 0 <v <1 and SF4[s| _AM[[H] >1, wheres>1.

Checking against NormalDistribution[u, 6], we see their minimum based on

AM[4+AMR)  AM[3]=AM[1 AM]2]
A amMpE and SF4[2] = am are all 1, but that by

absolute central moment are not: min SF1 = 1.1781, min SF2 = 1.27324, min SF3 [2]
=1.5708. Moreover, the convex index SF1, SF2, and SF3 out of absolute central
moment are shift invariant besides the scale transformation invariant of the random
variable, so they are preferred over the ones based on absolute moment.
fM[4 [eMP2] ) MM
M3’ M2
error with extreme parameters arrive at negative kurtosis, then the calculated SF
are meaningless (An example of BesselK function inaccuracy brings about negative
kurtosis for generalized hyperbolic distribution can be found in [8]).

Even though both SF and SF1 are invariant under linear transformation of the
distribution, and both measure the convexity, SF > SF1 can additionally measure
the asymmetry, combining these two into one quantity. Since most distributions in
reinsurance are not symmetric, SF is preferred over SF1. That only SF measured
both asymmetry and convexity, while the others cannot, can be seen from Figure 1,
for the case of exponential distribution family with PDF e nx 1™, x € (0, ), 7 > 0,
which is WeibullDistribution[n, 1] or GammaDistribution[1,1,n, 0], where only SF has
a nontrivial interior global minimum.

absolute moment:

The only case in favor o is when the numerical calculation
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Figure 1.

SF SF1 SF2 SF3[2] plot of exponential distribution =" nx~*". The horizontal axis is the order of the
exponential and the vertical axis is shape factors values.

An intuitive reason for why using shape factor SF in favor of skewness and
kurtosis alone is provided by studying the simple example power distribution fam-
ily with PDF ":13&, x€10,1],n < —1||n > 0 (or BetaDistribution[1/n + 1,1]). This
distribution family has the largest value of skewness and kurtosis, and at the same
time the smallest shape factor SF when n turns to —1, where the PDF is the steepest,
but the skewness and kurtosis take the indistinguishable value of infinity. In com-
parison, the shape factor SF takes the finite and distribution family specific value of
1.125. The shape factor SF thus makes meaning out of the meaningless infinities.

2.2 Alternative way of defining shape factor for symmetric distribution

For symmetric distribution, CM[3] = 0, our SF will be indiscriminately infinity.
We can now employ SF1 in place of SF. Other measures from ACM such as SF2 and
SF3 may also be candidates. From the SF3 plot Figure 2 of NormalDistributionu, o]
we see that 0r<nrir<1 1SF3[V] = 0.919824. The lower the value of SF3[2|, the higher the

min SF3[r]. We can use either SF3[2] or min SF3[r] as a shape factor for symmet-
0<r<1 0<r<i1

ric distribution to describe the convexity of the ACM curve. The second measure

Figure 2.
SF3 plot of Normal distribution. The horizontal axis is the ovder v of the power and the vertical axis is SF3[r.
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has the merit of independence to the power order 7, by additional efforts of numer-

ical minimization. For our power distribution family, the maximum of the mini-

mum is: max 0rnir<1 1SF3 [r] = 0.942085, higher than the Normal distribution family.
n> <r

When all SF, SF1, and SF2 are available, however, we will prefer SF to SF1 and
SF2 since its dependency on parameters show simpler patterns than the other two;
this can be shown from their contour plots for Beta distribution Figures 3-5, where
SF contours are almost lines.

2.3 Lower bound of SF for well-known distributions

Using numerical optimization [9, 10], for most of the top-fitted distributions
from the maximum log likelihood approach, we get the minimum SF values, with
distribution definition in [11] whose naming and parameterization for probability
distributions will be used throughout this chapter, in Table 2.

From this table, we know that most of the distributions are not able to describe
NATH since NATH has SF 1.834. More involved numerical integration and optimi-
zation also eliminated the Beckmann Distribution [12], with admissible SF range

Figure 3.

Figure 4.
SF2 contour plot of Beta distribution. The horizontal axis is a and the vertical axis is .
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Figure 5.
SF contour plot of Beta distribution. The horizontal axis is a and the vertical axis is f.

Distribution Min SF Location of the Min
FrechetDistribution|a, B, y] 2.9555 o — 7.9305
ExtremeValueDistribution|a, p] 4.15843 any o, B
MaxStableDistribution[y, 5, ] 1.91227 £ — -1.55970090120176
InverseGaussianDistribution|u, 4, 6] 1.5 Mp— 0
SkewNormalDistribution|u, 6, a] 3.90603 o — o0
ExpGammaDistribution|x, 6, ] 225 k—0
BirnbaumSaundersDistribution|a, 4] 1.63481 o — 0
MeixnerDistribution|a, b, m,d] 15 d—0,b— +n
Table 2.

Lower bound of SF for some well-known distributions.

3.63-8.16, being the top four-parameter-distribution in another distribution fit case
study that has SF 4.58.

The Alpha-Skew-Normal Distribution from [13] has minimum SF4.95061 when
« is 2.07764, from its proposition 2.3, is thus also not eligible for NATH.

The global lower bound of SF for parametric distribution can be used to filter out
those distributions whose values are larger than the losses data SF, so that we can
focus on distributions that do not violate the bound. In the following sections we
will study typical distribution SF bound, beginning with the Beta distribution.

3. Beta distribution

Regardless of the fact that multitude distribution types have been used for the
frequency and severity distribution of individual contract losses, the aggregated
portfolio losses for the majority of perils can be fitted by a compound Poisson
distribution with Beta distribution as the severity, somehow an attest of its preva-
lence. Beta distribution has min SF = 1.0, so we need an in-detail study of why it
cannot fit NATH.

When matching a BetaDistribution|a, ] for skewness 5.99378 and kurtosis
65.8902, we must have f < 0. When matching a Beta distribution for CV(=std/
mean, the standard deviation divided by the mean) 1.2829 and either skewness
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5.99378 or kurtosis 65.8902, we must have either both « < 0 and § < O or at least
one of o or B less than 0. Since CV, skewness, and kurtosis are scale invariant, so no
scaled Beta distribution can at the same time match any two of the three statistics
CV, skewness, and kurtosis.

3.1 Minimum shape factor for given CV

Using Mathematica, we can solve the parameter a and p by cv and std for
BetaDistribution|a, f):

cv — std — cv?std cv? — 2cvstd — cv3std + std? 4 cv?std?
a— p— .

cv3 ? cvi3std

Since o > 0, we must have:

cv

td < ——,
s 1+ cv?

or

1— V1 — 4std? 1+ V1 — 4std?

< <
2std v 2std

We also know std must be between 0 and 0.5 for these solutions to exist. By
computer-aided exploration through contour plot, we can find the location of the
std where SF takes minimum for a given cv.

The overall observation is that when cv < 1, SF approaches infinity in the middle
value of std, and decreases when deviating from it. When cv > 1, SF approaches its
minimum in the middle value of std and increases when departing. Together with
the fact that std has an allowable upper bound of cv/(1 + cv2) and lower bound of
0, the minimum of SF must be attained either at the global extreme where the
derivative of SF with respect to std is zero or at the two boundaries when cv > 1, and
attained at the two boundaries when cv < 1.

Using Mathematica to take the derivative of the shape factor with respect to std
to find the std where shape factor attained extreme values, and solving it for the
intersection with std upper and lower bound, we know the minimal shape factor for
Beta distribution for a given CV when CV is below 0.707107 or above 2.48239

(intersecting std upper bound) is attained at std upper bound %% with value:

1— 2 4
min_ SF =~ ihen cv < 0.707107]lcv > 2.48239. 3)
B ]

When CV is between 0.707107 and 1.024766 (intersecting std lower bound) the
minimal shape factor is attained at std lower bound 0 with value:

min SF=15+ 0-75

o 2
0 <std < cv

, when 0.707107 <cv <1.024766. 4)

When CV is between 1.024766 and 2.48239, the minimum SF is attained at std
that is the zero derivative points of the shape factor. The piecewise curve plot of the
minimum SF for given CV is in Figure 6. The formula for the central piece,
minshape, is given in Figure 7 which is too complex for manual derivation without
the aid of computer algebra system.
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Figure 6.
Plot of Beta distribution min shape factor for given cv.
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Figure 7.
Formula for minshape obtained using Mathematica.

From the curve we know when CV = 1.28, the minimal shape factor is 1.88,
larger than 1.83 of NATH. In the best effort to match the input, we may elect to
relax CV, for example, to 1.3, then the minimum shape factor is 1.85. With the
constraint of a given CV, the minimum shape factor of the Beta Distribution may be
significantly larger than its global minimum 1, so that it cannot attain to the wanted

SF value.
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Figure 8.
Contour plot of Beta distribution [ parameter. The horizontal axis is the skewness and the vertical axis is the
kurtosis.

3.2 Shape factor range for given skewness

By solving Beta distribution parameters o and p through skewness sk and kurto-
sis kt, and examining the contour plot of f, we can see the allowable region is bound
by two parabolas, Figure 8.

For a fixed skewness, « is monotonic increasing with respect to kurtosis; on the
other hand, f has a singular point in some kurtosis, below that kurtosis is positive
and monotonic increasing(in the region where a is positive), Figure 9.

Solving for that singular point we get the permissible kurtosis upper bound
343 sk?, and solve for # = 0 get the permissible kurtosis lower bound 1 + sk?.

Observe that the upper bound is when p turns to infinity, we can also get a
simpler derivation of the upper bound by representing skewness and shape factor in
a and f, letting f — o0, and then eliminating a to get shape factor as a function of
skewness (Mathematica cannot solve equation for skewness which includes square
root expression, we get around that by solving equation for the square of skewness,
and then abandoning the negative solution introduced by this square).

A third way of more tedious calculation is through solving a by skewness and g,
substituting the real solution into shape factor, and then take the limit for f — .

All three methods get the same upper bound of SF =3 + Sk%.

Figure 9.
Plots of Beta distribution ff parameter and a parameter vs. kurtosis for a given skewness 5.99378.
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So for Beta distribution, the allowable region of skewness and kurtosis is bound
below by kurtosis = skewness*2 + 1 where f — 0, and above by kurto-
sis = 3 + 1.5%*skewness”2 where § — oo:

1 3
1+?SSF31.5+§. (5)

For the given skewness of 5.99378 of NATH, the maximum allowable kurtosis is
56.88813, less than the wanted 65.8902. So NATH cannot be fitted by any affine
transformation of Beta distribution, certifying NATH as a trying case for distribu-
tion fitting. We will use it to test many of the well-known distributions in later
sections. We also see surprisingly that unlike many of the other distribution families
whose shape factors are too high, the Beta distributions have the shape factor range
too low, or too close to 1. This suggests us to search for distributions with shape
factors ranges in between.

4. Kumaraswamy distribution

Using the same approach as in the Beta distribution, we first study the skewness
and kurtosis tendency of KumaraswamyDistribution|a, ] [14], since the latter tested

Figure 10.
Contour plot of Kumaraswamy distribution skewness.

Figure 11.
Contour plot of Kumaraswamy distribution kurtosis.
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Figure 12.
Contour plot of Kumaraswamy distribution shape factor.

Figure 13.
Contour plot of Kumaraswamy distribution skewness, kurtosis, and shape factor for given values 5.99, 65.89,
and 1.83. The hovizontal axis is the a parameter and the vertical axis is the  parameter.

to be a better choice in our experiment and is also the easiest for simulation,
Figures 10-12; and then study the SF bound for given skewness.

From these plots, we see an overall rough tendency of the skewness, kurtosis and
shape factor. For a given «, the shape factor converges to a finite limit when f — .
For a given skewness or a given kurtosis, there exists a maximum allowable « that is
arrived when f# — oo. In the parameters space of (a,p), for a given «, the kurtosis is
increasing with respect to f in the top left portion where the skewness is positive,
and decreasing in the right bottom portion where the skewness is negative. And in
the parameters space of (a,p), for a given o, the shape factor is decreasing with
respect to f in the top left portion where the skewness is positive, and increasing in
the right bottom portion where the skewness is negative. But we will see later that
the tendencies are more delicate than the monotonicity shown through visual
observation.

Combining the tendency of shape factor and the contour plot for given skew-
ness, kurtosis, and shape factor as in Figure 13, we may guess that for a given
positive skewness, when a turn to its upper limit and p turn to infinity, the shape
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Derivation of Kumaraswamy distribution skewness upper bound for given a.
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Figure 15.
Derivation of Kumaraswamy distribution kurtosis upper bound for given a and shape factor boundary value for
given a when f — .

factor will converge to its minimum. We use Mathematica to calculate the asymp-
totic expansion of the Gamma function and the quotient of Gamma function at
infinity for orders up to 4 or 2, take the symbolic limit for f# — oo, to get these
boundary values, Figures 14 and 15.

We thus have a simple formula for boundary value of Kumaraswamy distribu-
tion shape factor:

2Gamma 2] 3 6aGamma|[l|Gamma 2] + 3a*Gamma 2]

e (a(—aGamma 1+ %] + 2Gamma 2] ) ) i&

; (6)
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—3Gamma [%] (Gamma [%]3 — 4aGamma E] Gamma [ﬂ + 40’Gamma [%]) + a“Gamma[%}

limit K = . . 3 ,
poeo Gamma[}]” — 4¢Gamma [1]"Gamma 2] + o*Gamma[2¢]
(7)
. . K
it =

@ (—aGamma [1 + ﬂ ’ 4 2Gamma [%})3 (—3Gamma [ﬂ (Gamma [ﬂ ? _ 4aGamma [ﬂ Gamma [,—Zx] + 4a’Gamma [,—ﬂ) + a*Gamma [%D

a

(ZGamma [ﬂs — 6aGamma [!] Gamma [2| + 302 Gamma [%})Z(Gamma [}J“ — 4aGamma [(11}2Gamma [2] + a*Gamma [%}2)
(8)

Its plot Figure 16 has two branches, the dividing point is
a — 3.602349425719043 where the skewness is zero, and below it is mainly the
positive skewness region while above it is the negative skewness region.

The minimum value at the left branch of Figure 16 is 1.91227 and arrived at
a = 0.641149. When o > 1000 the numerical value for that boundary can be negative
and is thus unreliable. The value 1.91227 is not the global minimum of the shape
factor: for o = 0.641149 the shape factor plot Figure 17 with respect to p decreases
first, at the point 10.6095 arriving at the minimum value of 1.80935, and increasing
after the point 10.6095.

In principle, the extreme value of the shape factor for a given skewness will
arrive either at the upper boundary where p — o or at the lower boundary where

Figure 16.
Plot of Kumaraswamy distribution shape factor boundary value for given a when  — .

Figure 17.
Plot of Kumaraswamy distribution shape factor for given a = 0.641149, f in the range 0.3—1 and 1-300.
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Figure 18.
Plot of Eq. (6)—(8) and plot of Kumaraswamy distribution maximum shape factor for given skewness.

a — 0, or at some middle point where the contour plot of the skewness and the
contour plot of the kurtosis will be tangent to each other. The Mathematica contour
plot does not work for a very small a, but by numerical minimization we know the
global minimum of the Kumaraswamy distribution shape factor is 1.03709

when o = 1.80143%10 7, p = 0.247044. The conditional minimum of the shape factor
when skewness = 5.99378 is about 1.04753 when o = 10710, f = 0.149286 through
list calculation,; this is higher than 1 + 1/S72 = 1 + 1/5.99378199789956/2 = 1.02784, the
lower boundary of Beta distribution.

The Mathematica contour plot works for large o, and we see the shape factor is
increasing along the contour of skewness, which attains its maximum when  — oo.
For example, for NATH skewness 5.99378199789956, the maximum shape factor is
1.97131, arriving at o = 0.5239510562868946. The maximum shape factor of
Kumaraswamy distribution for given skewness is in Figure 18, which is algebrai-
cally represented by the parametric curve of Eq. (6) and Eq. (8).

So the permissible shape factor range of the Kumaraswamy distribution still
spans the lower end of the whole allowable range of (1,0), but higher than that of
the Beta distribution. Affine transformed Kumaraswamy distribution can fit all the
first four moments of NATH, with the fitted distribution TVaR close to NATH
TVaR in the error range of 5-6%, while the best effort affine transformed Beta
distribution is in the error range of 9-10%.

To further improve the fit, we need additional freedom in parameters, such as
the GB1 distribution [15], since
KumaraswamyDistribution|a, fl~GeneralizedBetaDistributionl[1, 8, a,1], and the
maximum shape factor plot in Figure 18 is lower than that of LogNormalDis-
tribution, the upper bound of GB1. The following section will study a sibling
distribution to GBI, fitted as good as GB1, but is more widely known.

5. BetaPrime distribution

Beta distribution and Kumaraswamy distribution are a few exceptions which
have analytical formulas for the shape factor bounds; for other distributions to be
studied, numerical optimization and empirical plot or formula will be the only
feasible approach.
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Transformation of Beta Distribution by x/(1-x) is the GB2([15]), or
BetaPrimeDistributionlp = a,q = f,a =1, = 1] ([11]): TransformedDistribution
[+~ , x~BetaDistribution|a, f| ~BetaPrimeDistribution|a, f]. The minimum shape

factor of Beta Distribution is 1, but that of the transformed is 1.5:

o [{3(—3+ﬂ)(2(—1+ﬂ)2—|—a2(5+ﬂ)+a(—1—|—ﬁ)(5+ﬂ)) }
NMinimize ,a>0,8>4 5,

4(—4+p)(-1+ 2a + p)’?

{a, ﬂ}] = {1.5000000239052607, {a — 0., — 6.274769836372949 x 107} }.

Empirically, the larger the third parameter a, the smaller the minimum shape
factor. The smallest shape factor we get of the BetaPrimeDistribution is 1.125, when
o = 446.49537:

Kurtosis|BetaPrimeDistribution(p,q, a, f]]
Skewness|BetaPrimeDistribution|p,q, a, f]

1
FindMinimum H 5/.a— p /q—4x

+y/x—10%1.5>p>0,y>1,-4.<z< — 1.}, {{p, 6.384125235007732 x 10 °},
{»,1.0032844709998097}, {z, —2.157370895027263} }, MaxIterations — 5000]
= {1.1250258984236121, {p — 2.083731454230264 x 10",

y — 42:816363091057056, 2 — —2.6498169598310573} }.

This is the same value as the minimum shape factor for
GammaDistribution|a, f,y, u] (in Section 6). When o > 10,000, the Gamma function
involved will not calculate or will calculate incorrectly.

With the transformation of p-> 10*w, a-> 10*-z, g-> 4*10%z + y, we can study
the GB2 shape factor change tendency with respect to o, Figure 19, and shape factor
change tendency with respect to p, Figure 20.

The GB2 shape factor is mainly determined by o and p, only slightly changing
with respect to q when q is smaller than 5. The change with respect to a and p is
similar, having two peaks, or three peaks if we regard the two sides of the infinity as

] i

Figure 19.
GB2 distribution shape factor vs. a for fixed p = 10"-3.312 = 0.000487528.
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Figure 20.
GB2 distribution shape factor vs. p for fixed a = 1072.6498169598310573 = 446.495.

two branches since that border is not easily crossable for searching or optimization
algorithms.

GB2 shape factor’s dependency with p and a, or w and z through transformation
p = 10*w, a = 107-z, is mostly unaffected by q except for right-most values of z.
They are p-shaped (Figure 21), this is different from Hyperbolic Distribution (in
Section 8), whose shape factor dependency with A is V-shaped. We guess V-shaped
curves have unique global minimums, but p-shaped curves will show bifurcation
behavior: the converged solution in optimization will be very different when the
initial point or interval is slightly different.

The knowledge that the shape factor curve attained extreme values in —3.3,-1.25
and 1 with respect to z, and attained extreme values in —2.65, —1.11 and 1 with
respect to w, can be used to set the initial interval, the paramount factor determin-
ing the quality of the numerical optimization solution, for solving the GB2 fitting
problem.

5.1 Minimum shape factor for GB2

The skewness and kurtosis matching problem for GB2 is very sensitive to the
initial parameter ranges given. A study of the minimum shape factor of GB2 with

Figure 21.
GB2 distribution skewness kurtosis and shape factor vs. a or 2, vs. p or w plots for fixed y = q-4/a.
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Figure 22.
The numerical minimum GB2 shape factor for given p in horizontal axis.

respect to each parameter will give us permissible ranges for those parameters.
Direct work with shape factor encounters problems from Mathematica’s numerical
optimization function NMinimize, minimizing the log shape factor instead can
overcome this difficulty. The plot is in Figure 22.

In the range (0.0001, 5.0) of p, the numerical minimum shape factor plot of GB2
is a very smooth curve. The fitted formula of GB2 min SF for given p by
Mathematica’s machine learning function FindFormula is Eq. (9).

ming = 1.1593871374775397 + 1,4702458297305288>z<0.51484991588003611”"’32154331282777008

9)

As a test, for NATH the log shape factor is Log[1.83408] = 0.60654412, the
solution of Eq. (9) for p with NATH SF is p = 0.608342; the minimum log shape
factor of GB2 for this p is 0.60603997, only 0.08% smaller than input.

From the contour plot Figure 20 we know for given a, the shape factor of GB2
has two singular points with p or 10¥. The minimization for given a needs to carry
out in each of the three regions cut by these two singular points. The plot is in
Figure 23. With a new parameterization, p = £, g = *, the minimization of shape

Figure 23.
The numerical minimum GB2 shape factor for given a or given pa in horizontal axis.
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factor for GB2, for given A = pa, is easier to perform. The plot is included in
Figure 23 as well.

Figures 22 and 23 show that the permissible parameters for NATH are
p<0.63, a> 0.5 pa<0.5. This is confirmed by GB2 fit practice. The best fit by
GB2 for NATH is at w = —0.329075005, p = 0.468732, with about 5% error from
input TVaR. The discontinuity of fitted GB2 TVaR with respect to parameter
change is also observed, this w value is such a critical point.

6. Generalized gamma distribution

The generalized gamma distribution in Mathematica is the Amoroso distribution
[16], with the parameter correspondence: a <> @, f < 0,y < f, y < a.

For generalized gamma distribution GammaDistribution|a, 8, y, ], the shape
factor depends only on a and y. It seems the smaller the @, and the bigger the 7,
the smaller the X. When « = 3.318512677036329 x 10~ ", y = 8811.572418686921,

& =1.125, close to the global minimum 1 of K/S"2.

So there arises the question: the generalized gamma and GB2 can match smaller
shape factors than Hyperbolic Distribution (Section 8), why they cannot fit as good
as the latter for NATH with shape factor 1.83409?

One explanation is that the numerical solution for GB2 or generalized Gamma
distribution is trapped in the shape factor curve right branch by the combined
constraints of skewness and kurtosis, which is not the branch that can attain 1.125,
unlike the generalized hyperbolic distribution whose shape factor has a global

minimum in A = 0.

7. Fleishman distribution

We guess 1.5 is the lower bound of shape factor for most unbounded parametric
distribution families. For example, for Fleishman distribution, by the empirical
formula from [5], y, > 1.738y5 — 0.3544y; + 1.978, the minimum shape factor is
1.72213, larger than 1.5.

The lower bound of shape factor from unbounded distributions seems, in gen-
eral, to be higher than bound distributions’. Outside of the latter’s upper bound and
near the former’s lower bound, for a SF value slightly larger than 1.5, in practice,
most parametric distributions have difficult matching both the kurtosis and skew-
ness: the comparatively best one is selected for study in the next section.

8. Hyperbolic distribution

Taking a sequence of numerical minimization of the shape factor, for various
values of fixed A, we get the empirical minimum shape factor curve for generalized
hyperbolic distribution (GH), HyperbolicDistribution|A, a, B, 8, u], in Figure 24.

We observed that when A > —0.6, the minimum shape factor is attained when
a”2-p~2-> 0 and B-> 0, that is, it is attained by a skew hyperbolic t distribution
[17-19]. When looking at the plot of shape factor with respect to A, we feel that it
must have some simple formula. So we utilize Mathematica symbolic calculation to
expand the shape factor with asymptotic expansion for BesselK[A,a], or K, (a) in
[20], with respect to a*2-p~2 and then take the symbolic limit, Figure 25.
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Figure 24.
V-shape of the numerical minimum GH shape factor for given 2 in horizontal axis.
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Figure 25.
Derivation of the GH shape factor limit when 1 > —2.
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The semi-empirical formula for the minimum shape factor in this range thus
obtained is very simple, Eq. (10-11), which has the global minimum of 1.5 when A
turns to 0.

r};ligl SF = 1.5+ 0.754, when 1> 0, (10)
@ P 05
. 1
min SF=14+——,when —0.6<1<0 (11)
& Py 05 2"!_2

When A < —0.65, however, the minimum shape factor is not attained when a2-
pr2-> 0. When M is in the interval [-9,—0.65], the attainable smallest shape factor is
between 3.15 and 1.74, with an empirical 10th order polynomial formula Eq. (12), or
less accurately a mixed exponential and power function Eq. (13), found through the
Mathematica FindFormula.

min SF = 1.1130471668735116 — 1.6512030619809768 — 1.61373769568333654

a Py Oy
— 1.148503817221011443 — 0.54217856158531321*
— 0.170945788342652234° — 0.036037447947493871° — 0.0050004410432974721
— 0.00043721895475575934% — 0.0000217910710489630544°
— 4.711954312790356 x 10771
(12)

min SF = 2.2104215691249425 — 0.6522131009473879+1.6355318649123258"

a f5 65
N 0.018965779149540653

P — 0.10515423606037264

(13)

So for each given K/S*2 value, there exists a permissible interval of A, whose
lower bound is calculated via Eq. (11-12) and upper bound is calculated via
Eq. (10). When A changes inside this interval, we noticed that the 0.99 TVaR of the
first four moments matched generalized hyperbolic distribution will increase with
respect to A. If the lower bound still has 0.99 TVaR bigger than the input TVaR, then
it is not possible to fit with moments matched HyperbolicDistribution. The opposite
statement is also valid for the interval upper bound.

With this knowledge, the NATH permissible A interval is [—0.8439,0.4454], and
the left end point still have 0.99 TVaR larger than the input TVaR, but now only by
4.05%, better than the 5% error of GB2.

9. Conclusion and discussions

We proposed using the ratio of kurtosis by squared skewness as the best candidate
for shape factor that can characterize the distribution asymmetry, as well as the PDF
steepness. The closer this factor to 1, the more asymmetry and the steeper the PDF.
The asymptotic approximation and symbolic limit is used to calculate the boundary
of this factor for various distributions: the Beta, the Kumaraswamy, and the Hyper-
bolic Distributions, for example. This range information of the shape factor, with
the surprisingly simple formulas in the three above examples (Egs. 5-8, 10, 11), can
be used to select or eliminate candidate distributions for fitting. The plot of the
shape factor together with plot for skewness and kurtosis can aid in setting the
initial value or parameter intervals when fitting distribution to data by numerical
optimization, which usually would not work well without this information.
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The idea of the shape factor and the careful study of each distribution for this
shape factor is the preliminary for the numerical optimization that finally finds the
best fit. The information provided by shape factor plot is rough but the numerical
optimization’s dependence on initial value or intervals is delicate, exemplified by
GB2 case. The optimization function NMinimize and FindMinimum in Mathematica
sometimes can only find a local optimum at best. As shown in [21, 22], the DyHF
and the CMODE algorithms are the two best no-adjustment-needed global optimi-
zation algorithms. Now that the C%*oDE algorithm is better than these two [23], it
would be desirable to see how it works on the GB2 fit problem. With a foolproof
universally applicable global optimization algorithm, the ado with shape factor and
their boundaries will no longer be needed, or be used merely as some validations;
but before that time, the hard earned knowledge about shape factor through CAS is
still indispensable. This is a good topic for subsequent research.

Our shape factor idea is only a small step ahead of the skewness-kurtosis plot of
Pearson [6] and McDonald et al [15, 24-26]. Or we just made the idea implicitly in
their plot explicit. But with this clearly defined form, anyone can readily start
calculating it for any interested candidate distribution.

Our formula Eq. (5) is not new, since Beta distribution has the same range of
skewness, kurtosis, and shape factor as the scaled Beta distribution, the B1 distri-
bution in [15]. Our presentation is an example of how our method can be used to
easily arrive at those formulas. Theoretically equivalent expressions are not equiva-
lent in application. With data distributions usually not having small skewness,

Eq. (5) says that the Beta distribution has a shape factor roughly in the range of
(1, 1.5), this not only reveals an intrinsic property of Beta distribution, but is also
more easily applicable in practice than the skewness-kurtosis plot.

The residual error of all the distributions tested so far indicates that the power
function or simple exponential function PDF is not enough to provide the additional
freedom of shifting for the EP curve on the condition of matched first four
moments. Other forms such as mixtures, combinations, or transformations of dis-
tributions may need to be considered. A previous study indicated the following
transformations are good candidates [4, 27-32]: EWGU, KGG, EG, EWED, LIG,
THT. Further research will be done along these lines.

Acknowledgements
This research is supported by Validus Research Inc. The author thanks his
colleagues and former colleagues for helpful suggestions and feedbacks, the editor

for revision suggestions, and Claire Wang for help with grammar and language
corrections.

Conflict of interest

The author declares no conflict of interest.

68



What Determines EP Curve Shape?
DOI: http://dx.doi.org/10.5772 /intechopen.82832

Author details

Frank Xuyan Wang
Validus Research Inc., Waterloo, Ontario, Canada

*Address all correspondence to: frank.wang@validusresearch.com

IntechOpen

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

69


http://creativecommons.org/licenses
mailto:frank.wang@validusresearch.com
http://dx.doi.org/10.5772/intechopen.82832

Applied Mathematics

References

[1] Sharma K. Natural Catastrophe
Modeling for Pricing in Insurance
[Thesis]. Tartu: University of Tartu;
2014

[2] Currie ID. Maximum likelihood
estimation and mathematica. Applied
Statistics. 1995;44(3):379-394

[3] Wang F. Dfittool for Mathematica
[Internet]. 2016. Available from: https://
web.archive.org/web/20181109205350/
https://www.linkedin.com/pulse/df
ittool-mathematica-wang-frank/
[Accessed: 2018-11-09]

[4] Wang FX. An inequality for
reinsurance contract annual loss
standard deviation and its application.
In: Salman A, Razzaq MGA, editors.
Accounting from a Cross-Cultural
Perspective. IntechOpen; 2018.

pp. 73-89. DOI: 10.5772/
intechopen.76265 Available from:
https://www.intechopen.com/books/acc
ounting-from-a-cross-cultural-perspec
tive/an-inequality-for-reinsurance-c
ontract-annual-loss-standard-deviation-
and-its-application

[5] Ferenci T. The Use of Fleishman
Distribution in the Empirical
Investigation of Statistical Tests
[Thesis]. Budapest University of
Technology and Economics; 2012.
Available from: http://www.medstat.hu/
DiplomaFerenciTamasAlkMatMSc.pdf
[Accessed: 2018-05-02]

[6] Pearson K IX. Mathematical
contributions to the theory of evolution.
—XIX. Second supplement to a memoir
on skew variation. Published 1 January
1916. DOI: 10.1098/rsta.1916.0009.
Available from: http://rsta.royalsocie
typublishing.org/content/216/538-548/
429 full.pdf [Accessed: 2018-04-23]

[7] Klaassen CAJ, Mokveld PJ, van Es B.

Squared Skewness minus kurtosis
bounded by 186/125 for unimodal

70

distributions. Statistics & Probability
Letters. 2000;50(2):131-135

[8] Wang F. Problem with BesselK
Function [Internet]. 2018. Available
from: https://web.archive.org/web/
20181112185421/https://www.linkedin.c
om/pulse/problem-besselk-function-wa
ng-frank/ [Accessed: 2018-11-12]

[9] Wolfram Mathematica Tutorial
Collection. Constrained Optimization.
Wolfram Research, Inc; 2008

[10] Loehle C. Global optimization using
mathematica: A test of software tools.
Mathematica in Education and
Research. 2006:139-152

[11] Marichev O, Trott M. The Ultimate
Univariate Probability Distribution
Explorer [Internet]. 2013. Available
from: http://blog.wolfram.com/2013/
02/01/the-ultimate-univariate-probab
ility-distribution-explorer/ [Accessed:
2018-06-06]

[12] Hill RJ, Frehlich RG. Probability
distribution of irradiance for the onset
of strong scintillation. Journal of the
Optical Society of America. A. 1997;
14(7):1530-1540. DOL: 10.1364/
JOSAA.14.001530

[13] Olivero DE. Alpha-skew-normal
distribution. Proyecciones Journal of
Mathematics. 2010;29(3):224-240.
Available from: https://pdfs.semantic
scholar.org/a4f2/5b36ccbdb6845ae6fe
4487ce88a87c97463b.pdf [Accessed:
2018-05-01]

[14] de Pascoa MAR, Ortega EMM,
Cordeiro GM. The Kumaraswamy
generalized gamma distribution with
application in survival analysis.
Statistical Methodology. 2011;8(5):
411-433. DOI: 10.1016/j.
stamet.2011.04.001 Available from:
http://www.sciencedirect.com/science/a
rticle/pii/S1572312711000323


http://www.sciencedirect.com/science/a
https://scholar.org/a4f2/5b36ccbdb6845ae6fe
https://pdfs.semantic
http://blog.wolfram.com/2013
https://web.archive.org/web
https://typublishing.org/content/216/538-548
http://rsta.royalsocie
http://www.medstat.hu
https://www.intechopen.com/books/acc
https://www.linkedin.com/pulse/df
https://web.archive.org/web/20181109205350

What Determines EP Curve Shape?
DOI: http://dx.doi.org/10.5772/intechopen.82832

[15] McDonald JB, Sorensen J, Turley
PA. Skewness and kurtosis properties of
income distribution models. LIS
working paper series, No. 569, 2011.
Review of Income and Wealth. 2011.
DOI: 10.1111/j.1475-4991.2011.00478 x
Available from: https://pdfs.semantic
scholar.org/eabd/0599193022dfc65ca
00f28c8a071e43edc32.pdf

[16] Crooks GE. The Amoroso
Distribution [Internet]. 2010. Available
from: https://arxiv.org/pdf/1005.3274.
pdf [Accessed 2018-05-03]

[17] Aas K, Haff IH. The generalized
hyperbolic skew Student’s t-
distribution. Journal of Financial
Econometrics. 2006;4(2):275-309. DOI:
10.1093/jjfinec/nbj006

[18] Hu W, Kercheval A. Risk
management with generalized
hyperbolic distributions. In: Locke P,
editor. Proceedings of the Fourth
IASTED International Conference on
Financial Engineering and Applications
(FEA '07). Anaheim, CA, USA: ACTA
Press; 2007. pp. 19-24

[19] Scott DJ, Wiirtz D, Dong C, Tran
TT. Moments of the generalized
hyperbolic distribution. Computational
Statistics. 2011;26(3):459-476. DOLI:
10.1007/5s00180-010-0219-z

[20] Abramowitz M, Stegun IA.
Handbook of Mathematical Functions
with Formulas, Graphs, and
Mathematical Tables. New York: Dover;
1972

[21] Wang FX. Relay Optimization
Method [Internet]. May 2014. Available
from: http://www.optimizationonline.
org/DB_FILE/2014/05/4345.pdf
[Accessed 2018-07-28]

[22] Wang FX. Design index-based
hedging: Bundled loss property and
hybrid genetic algorithm. In: Tan Y, Shi
Y, Buarque F, Gelbukh A, Das S,
Engelbrecht A, editors. Advances in

71

Swarm and Computational Intelligence.
ICSI 2015. Lecture Notes in Computer
Science, vol 9140. Cham: Springer; 2015.
pp. 266-275. DOI: 10.1007/978-3-
319-20466-6_29

[23] Wang BC, Li HX, Li JP, Wang Y.
Composite differential evolution for
constrained evolutionary optimization.
IEEE Transactions on Systems, Man,
and Cybernetics: Systems. . DOL:
10.1109/TSMC.2018.2807785

[24] Vargo E, Pasupathy R, Leemis LM.
Moment-ratio diagrams for Univariate
distributions. Journal of Quality
Technology. 2010;42(3):1-11

[25] Celikoglu A, Tirnakli U. Skewness
and kurtosis analysis for non-Gaussian
distributions. Physica A: Statistical
Mechanics and its Applications. 2018;
499:325-334. DOI: 10.1016/j.
physa.2018.02.035

[26] Huerlimann W. Normal variance-
mean mixtures (I) an inequality
between skewness and kurtosis.
Advances in Inequalities and
Applications. 2014;2014(2)

[27] Cordeiro GM, Ortega EMM,
Ramires TG. A new generalized Weibull
family of distributions: Mathematical
properties and applications. Journal of
Statistical Distributions and
Applications. 2015;2(13). DOI: 10.1186/
s40488-015-0036-6

[28] Barreto-Souza W, Santos AHS,
Cordeiro GM. The Beta generalized
exponential distribution. Journal of
Statistical Computation and Simulation.
2010;80:159-172 https://arxiv.org/abs/
0809.1889v1

[29] Lemonte AJ, Cordeiro GM. The
exponentiated generalized inverse
Gaussian distribution. Statistics &
Probability Letters. 2011;81(4):
506-517. DOI: 10.1016/j.spl.2010.
12.016


https://arxiv.org/abs
http://www.optimizationonline
https://arxiv.org/pdf/1005.3274
https://scholar.org/eabd/0599193022dfc65ca
https://pdfs.semantic
http://dx.doi.org/10.5772/intechopen.82832

Applied Mathematics

[30] Alzaghal A, Famoye F, Lee C.
Exponentiated T-X family of
distributions with some applications.
International Journal of Statistics and
Probability. 2013;2(3). DOI: 10.5539/
ijsp.v2n3p31

[31] Okorie IE, Akpanta AC, Ohakwe J,
Chikezie DC, Shiraishi H. The modified
power function distribution. Cogent
Mathematics. 2017;4(1). DOI: 10.1080/
23311835.2017.1319592

[32] Borzadaran GR, Borzadaran HAM.
Log-concavity property for some well-
known distributions. Surveys in
Mathematics and its Applications. 2011;
6:203-219

72



Chapter 4

Topological Properties and
Dynamic Programming Approach
for Designing the Access Network

Franco Robledo, Pablo Romero, Pablo Sartor, Luis Stdbile
and Omar Viera

Abstract

A wide area network (WAN) can be considered as a set of sites and a set of
communication lines that interconnect the sites. Topologically a WAN is organized
in two levels: the backbone network and the access network composed of a certain
number of local access networks. Each local access network usually has a treelike
structure, rooted at a single site of the backbone and connected users (terminal
sites) either directly to this backbone site or to a hierarchy of intermediate concen-
trator sites which are connected to the backbone site. The backbone network has
usually a meshed topology, and this purpose is to allow efficient and reliable com-
munication between the switch sites that act as connection points for the local
access networks. This work tackled the problem of designing the Access Network
Design Problem (ANDP). Only the construction costs, e.g., the costs of digging
trenches and placing a fiber cable into service, are considered here. Different results
related to the topological structure of the ANDP solutions are studied. Given the
complexity of the ANDP (the problem belongs to the NP-hard class), recurrences to
solve it are proposed which are based on Dynamic Programming and Dynamic
Programming with State-Space Relaxation methodology.

Keywords: topological design, access network, dynamic programming
with state-space relaxation

1. Introduction

Telecommunication networks have become strategic resources for private- and
state-owned institutions, and its economic importance continuously increases.
There are series of recent tendencies that have a considerable impact on the econ-
omy evolution such as growing integration of networks in the productive system,
integration of different services in the same communication system, and important
modification in the telephone network structure. Such evolutions accompany a
significant growth of the design complexity of these systems. The integration of
different sorts of traffics and services and the necessity of a more accurate manage-
ment of the service quality are factors that make this type of systems very hard to
design, to dimension, and therefore to optimize. This situation is aggravated with a
very high competitiveness context in an area of critical strategic importance.
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The conception of a WAN is a process in which dozens of sites with
different characteristics require to be connected in order to satisfy certain reliability
and performance restrictions with minimal costs. This design process involves
the terminal site location, the concentrator location, the backbone (central
network or kernel) design, the routing procedures, as well as the lines and nodes
dimensioning. A key aspect on WAN design is the high complexity of the problem,
as much in its globality as in the principal subproblems in which it is necessary to
decompose it. Due to the high investment levels, a cost decrease of very few
percentage points while preserving the service quality results in high
economic benefits.

Typically, a WAN network global topology can be decomposed into two main
components: the access network and the backbone network. These components
have very different properties, and consequently they introduce specific design
problems (although they are strongly interdependent). On the one hand, this causes
complicated problems (particularly algorithmic ones); on the other hand, it leads to
stimulating and difficult research problems.

A WAN access network is composed of a certain number of access subnetworks,
having treelike topologies; and the flow concentration nodes allow to diminish the
costs. These integrated flows reach the backbone which has a meshed topology, in
order to satisfy security, reliability, vulnerability, survivability, and performance
criteria. Consequently, the backbone is usually formed by high-capacity communi-
cation lines such as optic fiber links.

Modeling a WAN design by means of the formulation of a single mathematical
optimization problem is very intricate due to the interdependence of its large
amount of parameters. Therefore the design of a WAN is usually divided into
different subproblems [1-4]. A good example of a possible decomposition approach
for the WAN design process is the following [5]:

1. Access and backbone network topologies design. Specific knowledge about the
cost of laying lines between different network sites (terminals, concentrators,
and backbone) is assumed. Frequently, these costs are independent of the type
of line that will effectively be installed since they model the fixed one-time
costs (cost of digging trenches in the case of optic fiber, installing cost, placing
a fiber cable into service). A high percentage from the total construction
network budget is spent in this phase [6].

2. Dimensioning of the lines that will connect the different sites of the access and
backbone networks and the equipment to be settled in the mentioned sites.

3. Definition of the routing strategy of the flow on the backbone network.

This work focuses on phase (1) of the decomposition of a WAN design
process. More precisely, it deals with the topology planning process concerning
the access network. Due to the NP-hard nature of the problem and even though
there exist some results, there is still room for improving industrial practices
applied today. In this sense, the authors believe it is of strategic importance to
design powerful quantitative analysis techniques, potentially easy to integrate
into tools. Combinatorial optimization models are introduced that formally
define the topological design of the access networks. Moreover, different results
related to the topological structure are introduced. Finally, different algorithms
are proposed for the topological design which are based on Dynamic
Programming and Dynamic Programming with State-Space Relaxation
methodology.
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2. A model for a WAN design

In this section, a model for the design of a WAN is introduced. The model tries
to show the most essential aspects which are considered when designing access and
backbone networks. In this model, some parameters are not considered: the opera-
tion probability of the lines and equipment, the number of equipment ports, and the
memory capacity of the equipment. The objective is to design a WAN with the
smallest possible installation cost, so that the constraints are satisfied.

In what follows, the data of the model are presented as well as its formalization
as a combinatorial optimization problem on weighted graphs. The goal is to find the
optimal topology that satisfies the imposed constraints to the access and backbone
networks. Figure 1 shows an example of a wide area network. The information
available for each type of equipment (switch and concentrator) and each type of
connection line, as well as the line laying, is the following:

* E, is the set of types of connection lines available. Furthermore Ve € E, the
following data are given:
* ¢, is the cost by kilometer of the line type e. Here the laying cost is not
included.

* v, is the speed in Kbits/s of the line type e.

* K is the set of types of concentrator equipment available. Furthermore Vk € K
the following data are given:

sw-switch site
sc-concentrator site
st-terminal site LemTTee

Backbone
\Network

_____

< -

—————

-~ -

Sub-Access Network

Figure 1.
WAN example.
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* ¢, is the installation cost of the concentrator type k.
* v}, is the speed in Kbits/s of the concentrator type k.

* W is the set of types of switch equipment available. Furthermore Vi € W the
following data are given:

* ¢, is the installation cost of the switcher type w.
* vy, is the speed in Kbits/s of the switcher type w.

e C=F.u(L) = {c,-j = direct connection costs between the sites i,j;Vi €S,
Vj € ScUSp}; this matrix gives us, for a site of S and a site of S¢ USp, the
cost of laying a line among them. When the direct connection among both
places is not possible, we assume that ¢;; = .

In terms of graph theory, a model for the design of a WAN, based on the
problem, is presented as follows. Some notation is introduced next, that is then used

to formally define the problem.

* E; = {(i,j); Vi€ Sr,¥j €Sc USp/dij < oo} is the set of feasible connections
between a terminal site and a concentrator or switch site.

e ) = {(i,j); Vi€ Sc,Vj €ScUSp/d;j < oo} is the set of feasible connections
between a concentrator site and a switcher or another concentrator site.

e 3= {(i,j); VieSp,Vj€Sp/dij < oo} is the set of feasible connections between
two switch sites.

e E = E{UE, UEj; is the set of all feasible connections on the WAN.

* Dg, = {Dy,ti €St}, where * Dy, is the set of terminal nodes which demand
connections with ¢; € St.

. Vs, = {v; j}i’je s, is the traffic demand matrix.

Definition 1 (WANDP—wide area network design problem). Let G = (S, E) be
the graph of feasible connections on the WAN. The wide area network design
problem (S,E,K,W,E,,C,Ds,, Vs, ) consists in finding a subnetwork of G of mini-
mum cost which satisfies the following points:

1. The backbone network topology must be at least 2-node-connected.

2. The access and backbone networks must be able to support the demand of
connection and traffic required by the terminal sites.

Given the complexity of the WANDDP, to facilitate its solution, the topological
design problem is divided into three subproblems:

1. The Access Network Design Problem

2. The backbone network design problem (BNDP)
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3. The routing (or flow assignment) and capacity assignment problem (RCAP)

The remainder of this work concentrates only in the first problem (ANDP).

3. Access Network Design Problem

The Access Network Design Problem is defined as follows.

Definition 2 (ANDP—Access Network Design Problem). Let G4 = (S, E; UE;)
be the graph of feasible connections on the access network and C the matrix of
connection costs defined previously. The Access Network Design Problem
(S,E1UE,, C) consists in finding a subgraph of G4 of minimum cost such that
Vi e St; there exists a path from i to some site j € Sp of the backbone network.

Notation 1. I'anpp denotes the space of feasible solutions of ANDP(S, E; UE;, C)
that do not have any cycle and with an output only toward the backbone network
Vt € St. These have forest topology as we illustrate in Figure 2.

In order to define these problems in terms of graph theory, the following nota-
tion is introduced:

¢ St is the set of terminal sites (clients) to be connected to the backbone.

¢ Sc is the set of feasible concentrator sites of the access network. On each one of
these sites, an intermediate server equipment might be placed. From this one, a
trunk line is laid toward the backbone or other concentrator site.

e Sp is the set of feasible switch sites of the backbone network. On each one of
these sites, a powerful server might be placed and, from it, connection lines
toward other backbone server equipment.

e V =S7UScUSp are all the feasible sites of the WAN network.

c A= {“if}ijev is a matrix which gives for any pair of sites 7, j € V, the cost
a;; > 0 of laying a line between them. When the direct connection between i
and  is not possible, we define a;; = co.

=, A :

[y ) i [

N NiY 2/
Figure 2.

A feasible solution of ANDP.
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* U={(i,j)li,j € V,a; < 00} is the set of all the feasible connections between the
different sites of the WAN network.

* G = (V,U) is the simple graph which models every node and feasible
connection of the WAN.

The General Access Network Design Problem (GANDP) consists of finding a
minimum-cost subgraph H C G such that all the sites of Sy are communicated with
some node of the backbone. This connection can be direct or through intermediate
concentrators. The use of terminal sites as intermediate nodes is not allowed; this
implies that they must have degree one in the solution.

The GANDP is here simplified by collapsing the backbone into a fictitious node
and given the name of “Access Network Design Problem.” The equivalence
between both problems, GANDP and ANDP, as well as the NP-hardness of the
ANDP, is proved in [7].

This work concentrates on the ANDP with the objective of proposing a new
approach for solving this problem. We study different results related to the topo-
logical structure of the ANDP solutions. In particular we present results that char-
acterize the topologies of the feasible solutions of an ANDP instance. The following
proposition shows the topological form of the feasible solutions of TANDP for a
given ANDP instance.

Proposition 1. Given an ANDP with associated graph G4 = (S, E; UE;) and
matrix of connection costs C. If the subnetwork H = (SpUS, E) (with SCScUSp

and ECE; UE,) is an optimal solution of TANDP, it is composed of a set of disjoint
trees H = {Hj, ..., H,, } that satisfy:

1.VH; € H, 3j € Sp unique /j € H;

2.VH, € H, 3 a subset S.C St, S, #+ @ - CNODES(H,)
T

3. U;rlzlsgr =St

Proof. Trivial.

The following propositions present results that characterize the structure of the
global optimal solution.

Proposition 2. Let ANDP (S, E; UE;, C) be a problem where s, € S¢,5€ScUSp
and s € Sy U S¢ such that {(s,s.), (s;,5)} CE1 UE; and 35, €Sp /¢y, 5, <Cs,5, + 5,5 Then,
if To € TANDP is a globally optimal solution, it is fulfilled that g(s;) >3 in T4,

Vs, €Ta,s. €Sc.

Proof. Let us suppose that there exists T4 € TANDP global optimal solution
such that 3s, € T4 a concentrator site with g, <3inTy. Ifg(sc) =1; thens.isa
pendant in T4; therefore, eliminating this, a feasible solution of smaller cost would
be obtained. This is a contradiction; hence, g(s.) # 1. If g(s.) = 2, let5€Sc USp be
the site adjacent to s, in T4 which its output site is toward the backbone network.
Let s € St USc be the other adjacent site in T 4. Considering the network
H = (Ta{s;})U{(s,sw)}, where s, €Sp satisfies ¢; ;, <c,s, it is fulfilled:

COST(H) = COST(Ta) — ¢5,5, — Cs,,5 + €55, <COST(Ty) (1)
Furthermore, it is easy to see that H e 'TANDP. Hence, this implies that H is a

better feasible solution compared with T4. This is a contradiction, entailing that
g(sc) >3 in Ty, as required and completing the proof.
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Proposition 3. Given an ANDP (S, E; UE;, C) such that for any three sites
(51,52,53), with s €STUSc, 52 €S and s3 € Sc U Sp, the strict triangular inequality is
satisfied, i.e., ¢;, 5, <55 F Cs50 1o J> ke{1,2,3}. Then, if T4 € I'ynpp is a globally
optimal solution, it is fulfilled that g(s;) >3 in Ty, Vs, € T4, s, € Sc.

Proof. As in the previous proposition, let us suppose that there exists T4 €
I' anpp global optimal solution such that 3s, € T4, a concentrator site with g(s.) <3
in T4. Clearly g(s;) must be different to 1. Now, let us consider the case g(s;) =2
inT 4. Let 51, 5, be the adjacent sites to s, in T4. By hypothesis ¢y, 5, <¢;, 5, + ¢s,,5,-
Considering the network T4 = (Ta{s.}) U{(s1,52)}, a feasible solution is found,
and moreover

COST(T4) = COST(Ta) — sy, — Cops, + 5150 < COST(T4) )

This is a contradiction; therefore, g(s;) >3 in T4, hence completing the proof.

The next section presents algorithms applied to the ANDP=® with k€ {1,2}. A
way of computing the global optimal solution cost of it using the Dynamic Pro-
gramming approach is obtained. Considering that the ANDP=V is a NP-hard prob-
lem, we obtain lower bounds to the global optimal solution cost by Dynamic
Programming with State-Space Relaxation in polynomial time.

4. Algorithms applied to the ANDP

This chapter presents the Dynamic Programming approach as alternative meth-
odology to find a global optimal solution cost for the ANDP=" and ANDP=?, After
we introduce the Dynamic Programming with State-Space Relaxation as a method
to obtain lower bounds for the original problem.

4.1 Dynamic Programming

Proposition 4. Given an ANDP (S, E; UE,, A), the cost of a global optimal solu-
tion of I 5ypp is given by f (5r2.49)> withf defined by the following expression of

Dynamic Programming:

COST (51, Z) +f s, (S{s:}, Z, A2),

; COST (s;,s:) + COST (s, Z)+ S —
min 1 =0
fse (STvZ’AQ) =\ *€5 | min Jor
w5 | fo, (Srisih 2, A2V 620

0 otherwise

€©)
where COST(s,Z) = min;es, {COST(s,2)}, (5,Z) = argmin,_ 5 {COST(s,2)}

and the matrix of connection costs A2 = {ai;}, jeE;UE, is defined by

(4)

0 otherwise

w {COST(iJ) if(i.))£Q

Proposition 5. Given an ANDP (S, E; UE,, A), the cost of a global optimal solu-
tion of I'52,» is given by f (5r2.49)> withf defined by the following expression of

Dynamic Programming

fyeye
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COST(s;.Z) +fs, Sris:}, Z, AQ),

COST (s;,s:) + COST (s, Z)+
min 5
sc€Sc¢ fSC (ST{ft}: Z, AQU{@Z)})

min ifSt # @ (

fs. (81,2, A%) = { siesc COST s;,5*)+ 5)

min 4 COST(s*,s?) + COST s%,Z)+

crvc
(:psg) €k,

fse (ST{st}, z, AQU{(X?%”)(f?Z)})

0 otherwise

where COST(s,Z) = min;es, {COST(s,2)}, (s,Z) = argmin,_ 5 {COST(s,2)}

. . Q _ . . .
and the matrix of connection costs A~ = a; }l.)]. CE UE, 18 defined by

- {COST(@;‘) if(i.j)£Q ©

0 otherwise

4.2 Dynamic programming with state-space relaxation

In order to find a lower bound of f s. S1.Z ,AQ), the Dynamic Programming
with State-Space Relaxation is now applied. It is a general relaxation procedure
applied to a number of routing problems [8]. The motivation for this methodology
stems from the fact that very few combinatorial optimization problems can be
solved by Dynamic Programming alone due to the dimensionality of their state-
space. To overcome this difficulty, the number of states is reduced by mapping the
state-space associated with a given Dynamic Programming recursion to a smaller
cardinality space. This mapping, denoted by g, must associate to every transition
from a state S; to a state S, in the original state-space, a transition g(S1) to g(Sz) in
the new state-space. To be effective, the function g must give rise to a transformed
recursion over the relaxed state-space which can be computed in polynomial time.
Furthermore, this relaxation must generate a good lower bound for the original
problem.

With the aim of illustrating this methodology, we present this approach in the
context of the minimization of the total schedule time for the Traveling Salesman
Problem with Time Window (TSPTW), after we apply it to the Dynamic Program-
ming recursion presented in Proposition 5. The objective of the TSPTW is to find an
optimal tour where a single vehicle is required to visit each of a given set of
locations (customers) exactly once and then return to its starting location. The
vehicle must visit each location within a specified time window, defined by an
earliest service start time and latest service start time. If the vehicle arrives at a
service location before the earliest service start time, it is permitted to wait until the
earliest service start time is reached. The vehicle conducts its service for a known
period of time and immediately departs for the location of the next scheduled
customer. Assume that the time constrained path starts at fixed time value a,.
Define F(S, ) as the shortest time it takes for a feasible path starting at node o,
passing through every node of SCN exactly once, to end at node i €S. Note that
optimization of the total arc cost would involve an additional dimension to account
for the arrival time at a node. The function F(S, i) can be computed by solving the
following recurrence equations:

F(S,j) = ({Bi& {F(S = {j},i) + t;li€S — {j}}VSCN,j €S (7)
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The recursion formula is initialized by

o maxi{a;,a, +t;} if(0,j)€E
F({J}J)Z{ e tig} Fo))€ (®)
+oo otherwise
The optimal solution to the TSPTW is given by
min {F(N.j) +tja} )

Note that Eq. (7) is valid if a; <F(S,j) <b;. If however F(S,j) <aj, then
F(S,j) = aj; if F(S,j)>bj, F(S,j) = co. Equations (7) and (9) define a shortest path
algorithm on a state graph whose nodes are the states (S,7) and whose arcs represent
transitions from one state to another. This algorithm is a forward Dynamic Pro-
gramming algorithm where at step s, withs =1, ..., # + 1, a path of length s is
generated. The state (S,7) of cost F(S,i) are defined as follows: S is an unordered set
of visited nodes and i is the last visited node, i €S.

Several alternatives for the mapping g have been suggested [9]. Here is
presented the shortest r-path relaxation, i.e., g(S) = = ), . i, where r; >1is an
integer associated with node i € N; then g(S{i}) = g(S) — ;. Define R = ), . ¢7i.
Hence the transformed recursion equations are

F(rj) = mlnE{F( Vj,i) +t1~j|VijZVi},VE{1, ...R}LjEN (10)
(ij)e

Recursion (10) holds if a; <F(r,j) <b;. Otherwise, if F(r,j) <aj, then F(r,j) = a;;
if F(r,j)>bj, F(r,j) = oo. The recursion formula is initialized by
max{a;,da, + 1y } if (0.j) EEand q = q;

F({j}.)) = { (11)
+\infty otherwise, forq €{1,...,Q},jEN

The lower bound is given by

mln{F J) +ta} (12)

The complexity of the bounding procedure is O(n* x Q) for a n-node problem.
Now, we present this apEroaCh in the context of finding a “good” lower bound for
the solution of ANDP‘=?, The following proposition gives a lower bound for the

fs.(S1.2,A Q) presented in Proposition 5 (the optimum value of the ANDP&?),
Proposition 6. Given an ANDP (S, E; UE), C), a lower bound of fg_ (ST,Z,AQ) is

derived from the following expression of Dynamic Programming with State-Space
Relaxation

COST (s}, Z) +gs, (r — 7, Z,A%),
COST (si.) + cosT (s, 2) +
{gsc (V - r,-,Z,AQU{(S’nZ)}) Ir—R —7;>7; }’

min . . if St # @
8. (rZ,A%) = { ses: COST(sﬁ,sé) + COST(sJC,sf) +COST (s*,Z)+ (13)

min
s.eSc

(S,,‘“zgnE £se (V—V,,Z,AQU{(’{‘f)~(‘f~Z)})|
¢ S ) €L

r—R—r> i+ 1
0 otherwise
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where 1<7; <R is an integer associated with the sitei €St US¢, R = ZieSTUSCVi’
R= 2jes. and the matrix of connection costs A = {a; j}i’j cE,uE, 18 defined by
COST(i.j) if (i.,5)EQ
a;; = { i) i . (14)
0 otherwise

The lower bound is given by g 7 40/

5. Computational results

This section presents the experimental results obtained with the recursions of
above. The algorithms were implemented in ANSI C. The experimental results were
obtained in an Intel Core i7, 2.4 GHz, and 8 GB of RAM running under a home PC.
The recursions presented in Propositions 4 and 5 were applied to the ANDP=" and
the ANDP=?), respectively, whereas the recursion presented in Proposition 6 was
applied to ANDP=?. They were tested using a large test set, by modifying the
Steiner Problem in Graphs (SPG) instances from SteinLib [10]. This library con-
tains many problem classes of widely different graph topologies. Most of the prob-
lems were extracted from these classes: C, MC, X, PUC, 1080, 1160, P6E, P6Z, and
WRP3. The SPG problems were customized, transforming them into ANDP
instances by means of the following changes. For each considered problem:

1. The terminal node with greatest degree was chosen as the z node (modeling the
back- bone).

2. The Steiner nodes model the concentrator sites, and the terminal nodes model
the terminal sites.

3. All the edges between terminal sites were deleted (as they are not allowed in
feasible ANDP solutions).

Moreover, if the resulting topology was unconnected, the problem instance was
discarded. Let us notice that since in the ANDP the terminals cannot be used as
intermediate nodes (which implies also that edges between pairs of terminals are
not allowed), the cost of a SPG optimum is a lower bound for the optimum of the
corresponding ANDP. Therefore they are for ANDP*® withk€1...2.

Table 1 shows the results obtained by applying the recurrences presented in
Propositions 4 and 5. In each one of them, the first column contains the names of
the original SteinLib classes with the name of the customized instance. The entries
from left to right are:

* The size of the selected instance in terms of number of nodes, edges, and
terminal sites, respectively

* A lower bound for the optimal cost; the SPG optimum cost (LBspg)

and ¢2 . where cfpt is the cost of the best feasible solution found in Fﬁ\,lgp

opt

1
Copt

* The gap of the cost for the best feasible solution of I' glsvlgp with respect to the
lower bound LBg;;)G with k€ {1,2} (LB_GAPg;,)G>
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Set Name \4| [E| [T| LBspg Copit Copt? LBGAP g, LBGAP gy,
1080  i080-001 80 120 6 1787 ) 2187 22.38%
1080 i080-011 80 350 6 1479 oo 1499 1.35%
1080  i080-012 80 350 6 1484 © 1497 0.88%
1080  i080-013 80 350 6 1381 o 1383 0.14%
1080 i080-014 80 350 6 1397 0o 1505 7.73%
1080  i080-111 80 350 8 2051 © 2159 5.27%
1080  i080-112 80 350 8 1885 2201 1887  16.76% 0.11%
1080 i080-113 80 350 8 1884 0o 1884 0%
1080  i080-114 80 350 8 1895 © 2099 10.77%
1080  i080-115 80 350 8 1868 2174 1969  16.38% 5.41%
1080 i080-233 80 160 16 4354 00 4564 4.82%
1160  i160-011 160 812 7 1677 0 1875 11.81%
1160  i160-012 160 812 7 1750 ) 1891 8.06%
1160 i160-013 160 812 7 1661 00 1862 12.10%
1160 1160-014 160 812 7 1778 o0 1991 11.98%
1160  i160-015 160 812 7 1768 2281 1864  29.02% 5.43%
PUC cc3-4p 64 288 8 2338 00 2553 9.20%
PUC  cc3-4u 64 288 8 23 S 25 8.70%
Average 20.72% 7.01%
Table 1.

Results obtained by applying Dynamic Programming to cgpt and cgpt.
The LB_GAPg;)G is computed as

¢ — LB
LB_GAPY),, =100 x ”’”TSPG. (15)
SPG

Feasible solutions were obtained here only for 1080-112, 1080-115, and i160-015
with k = 1 because, as can be seen, the cost is finite. The optimal values of the
SPG instances (LBSP G) provided lower bounds for the optimal values of the ANDP
(therefore to ANDP(<k) with k> 0), considering that in the ANDP generation
process, all the connections between terminal nodes were deleted and further that
ANDPs feasible solution space is more restrictive than of SPG. The experimental
results obtained for cll,pt have an average gap with respect to the lower bound of
20.72%. Increasing k to 2 (applying the recursion presented in Proposition 5),
feasible solutions were obtained for all the testing networks, and the experimental
results obtained have an average gap with respect to the lower bound of 7.01%.

It can be proved that (it is out of the scope of this chapter) increasing k, the
following inequality is fulfilled:

C];P_fl <1+1 (ﬂc) 1 Cmax 1 (16)
k = oot ? k+nt Comin

Copt

Table 2 shows the results obtained. Despite the bound was not good in these
cases (due the heterogeneity of costs of the lines), it can help us in some cases to
answer the following question: how much can be saved with a higher k?
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Name nr nc Ciin Cmax Coprt ne) (1) (Coar _
“ ‘a::tz 1 +f1007'( 2) (2+n1~> (c,,,,-,, 1)
1080-112 7 72 85 209 1.166401 5.997385619
1080-115 7 72 86 302 1.1004114 10.325581395
i160-015 6 153 86 300 1.223712 23.639534884
Table 2.

Relation between optimal solutions of ANDP(=Y and ANDP(=?),

Set Name V] |E| |T| Copt? e LBy tLB 0 LBGAPgg)
1080 i080-001 80 120 6 2187 0 1698 0 28.8%
1080 i080-011 80 350 6 1499 6.04 1307 0.27 14.69%
1080 1080-012 80 350 6 1497 5.33 1486 0.16 0.74%
1080 1080-013 80 350 6 1383 8.20 1000 0.92 38.3%
1080 i080-014 80 350 6 1505 4.89 1211 0.25 24.28%
1080 i080-111 80 350 8 2159 3.09 1982 0.45 8.93%
1080 i080-112 80 350 8 1887 1812 1501 7.52 25.72%
1080 1080-113 80 350 8 1884 1809 1591 393.8 18.42%
1080 i080-114 80 350 8 2099 44.81 1988 6.65 5.58%
1080 i080-115 80 350 8 1969 479.8 1496 15.41 31.62%
1080 1080-233 80 160 16 4564 361.1 3997 6.75 14.19%
1160 i160-011 160 812 7 1875 45.67 1399 217 34.02%
1160 1160-012 160 812 7 1891 8.83 1502 1.13 25.9%
1160 1160-013 160 812 7 1862 6.58 1381 1.81 34..83%
1160 i160-014 160 812 7 1991 6.06 1783 0.86 11.67%
1160 1160-015 160 812 7 1864 70.28 1793 6.21 3.96%
PUC cc3-4p 64 288 8 2553 79.37 2177 2.54 17.27%
PUC cc3-4u 64 288 8 25 80.04 21 5.18 19.05%
Average 19.89%

Table 3.
Lower bounds obtained to ANDP'=? by applying Dynamic Programming with State-Space Relaxation.

Table 3 shows the results obtained by applying the recursion presented in
Proposition 6. As before the first column contains the names of the original SteinLib
classes with the name of the customized instance. The entries from left to right are:

* The size of the selected instance in terms of number of nodes, edges, and
terminal sites, respectively

* The cost of a global optimal solution of I 1(5\121) (cgpt)
¢ The execution time, in seconds, for cg t(tcz )
Pt \ " Copt

* A lower bound for the cost of a global optimal solution of I' ﬁi\,gp by applying
Dynamic Programming with State-Space Relaxation (presented in

Proposition 6) (LBézs)R)
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¢ The execution time, in seconds, for LBé?R (tLB(Z) )
SSR

* The gap of the cost for a global optimal solution of FI(;V?))P (cgpt> with respect to
the lower bound LB;ZS)R; LB_GAP@R

The LB_GAPES?R is computed as

2 2
Copr — LB SS
LB_GAPY, =100 x -2~ %

LBPggr

(17)

In general, the gaps related to the lower bounds were low. The #;to each terminal
site and concentrator site were distinct integers chosen from {1, ...|St USc|}. This
lower bound can be increased by modifying the state-space through the application
of subgradient optimization to 7;. As future work, it is possible to incorporate the
method for a better choice of ;.

It can be noticed that the execution times of computing global optimal solution
costs were much longer than using Dynamic Programming with State-Space
Relaxation.

6. Conclusions

The implementation of the algorithms was tested on a number of different
problems with heterogeneous characteristics. In particular, a set of ANDP instances
transforming 18 SPG instances extracted from SteinLib was built. The optimal
values for the selected SPG instances are lower bound for the corresponding ANDP.
The solutions found by the algorithm were, in average, 21% and 7% lower than the
mentioned bounds in ANDP*" and ANDP=?, respectively. It is reasonable sup-
posing that the gaps related to the global optimum of the ANDP instances be even
lower since the feasible solutions of the ANDP that are also feasible solutions of the
original SPG, but not reciprocally. In this sense, remember that in any ANDP
instance generated, all the edges between pairs of terminal nodes were deleted
(because in our ANDP such connections are not allowed) having the additional
constraint that the terminal nodes must have degree one in the solution.

Besides, a Dynamic Programming with State-Space Relaxation algorithm was
developed which can give a lower bound in polynomial time. The average gaps with
respect to the global optimal solution costs were lower than 20%.

Notice that, as expected, the execution times of the proposed algorithms are
strongly dependent on the number of sites, edges, and terminal sites. To sum up, as
far as the authors are concerned, the results obtained with the recurrences above are
very good, considering that computing the global optimal solution of an ANDP?
is a NP-hard problem.
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Chapter 5

The Graphs for Elliptic Curve
Cryptography

Ruma Kareem K. Ajeena

Abstract

The scalar multiplication on elliptic curves defined over finite fields is a core
operation in elliptic curve cryptography (ECC). Several different methods are used
for computing this operation. One of them, the binary method, is applied depending
on the binary representation of the scalar v in a scalar multiplication vP, where P is a
point that lies on elliptic curve E defined over a prime field F,. On the binary
method, two methodologies are performed based on the implementation of the
binary string bits from the right to the left (RLB) [or from the left to the right
(LRB)]. Another method is a nonadjacent form (NAF) which depended on the
signed digit representation of a positive integer v. In this chapter, the graphs and
subgraphs are employed for the serial computations of elliptic scalar multiplications
defined over prime fields. This work proposed using the subgraphs H of the graphs
G or the (simple, undirected, directed, connected, bipartite, and other) graphs to
represent a scalar v directly. This usage speeds up the computations on the elliptic
scalar multiplication algorithms. The computational complexities of the proposed
algorithms and previous ones are determined. The comparison results of the
computational complexities on all these algorithms are discussed. The experimental
results show that the proposed algorithms which are used the sub-graphs H and
graphs G need to the less costs for computing vP in compare to previous algorithms
which are employed the binary representations or NAF expansion. Thus, the
proposed algorithms that use the subgraphs or the graphs to represent the scalars
v are more efficient than the original ones.

Keywords: ECC, scalar multiplication, BRL, BLR, NAF, graphs, subgraphs,
computational complexity

1. Introduction

The scalar multiplication on elliptic curves defined over finite fields is consid-
ered as a central and most time-consuming operation in elliptic curve cryptography
(ECC) [1-7]. Different methods are used for computing the scalar multiplication
such as the binary method, nonadjacent form, and others [8-15]. The binary
method is applied depending on the binary representation of the scalar v in a scalar
multiplication vP, where P is a point that lies on elliptic curve E defined over a
prime field F,,. On the binary method, two methodologies are performed based on
the implementation of the binary string bits from the right to the left (RLB) [or
from the left to the right (LRB)], whereas the nonadjacent form (NAF) depends on
the signed digit representation of a positive integer v [1].
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In this chapter, the computation of the scalar multiplication vP on elliptic curve
E defined over a prime field F, has been done using the (undirected or directed)
graph and (undirected or directed) subgraph. These graph and subgraph are used to
represent the scalar v in two ways. The first one is the binary representation and the
second one is the sign digit representation.

Also, the I-tuple of the elliptic scalar multiplications is computed using the
proposed generalized binary methods (GRLB) and (GLRB) and GNAF. The com-
putational complexities of the proposed algorithms and previous ones are deter-
mined. The comparison results of the computational complexities on all these
algorithms are discussed. Several experimental results showed that the proposed
algorithms which are used the graphs G need to the less costs for computing »P in
compare to previous algorithms which are employed the binary representations or
NAF expansion. Therefore, the proposed algorithms that use the subgraphs or the
graphs to represent the scalars v are more efficient than the original ones.

This chapter is organized as follows: Section 2 presents the vector representation
of the graph. Section 3 discusses the matrix representation of the graph. Section 4
includes the binary methods of the elliptic scalar multiplication which are the right-
to-left binary and left-to-right binary representations. Section 5 explains the
non-adjacent form method, whereas Section 6 discusses the graphic binary methods
of the elliptic scalar multiplications. Section 7 displays the digraphic NAF method.
Section 8 presents the subgraphs for computing the elliptic scalar multiplication.
Section 9 determines the computational complexities on the original elliptic scalar
multiplication methods. Section 10 shows the computational complexity for serial
computing /-tuple of the scalar multiplications. The computational complexity of
the graphic elliptic scalar multiplication methods is explained in Section 11. Section
12 illustrates the computational complexity comparison on the serial and graphic
computation methods. Finally, Section 13 draws the conclusions.

2. The vector representation of the graph

Suppose G is a graph as shown in Figure 1.
A graph G has four vertices and five edges ey, ¢, €3, €4, and es. A subgraph H
(and any other subgraphs) of G is represented by a 5-tuple.
This means that E = (eq, e, €3,¢€4,¢5) such that
e; =1, ife; isin H,
e; =0, ife; isnotin H.

The subgraphs H; and H; in Figure 1 can be represented by (1,0,1,0,1) and
(0,1,1,1,0), respectively. Here, there are 22=32 possible cases for 5-tuples which

G H, H

Figure 1.
The subgraphs Hy and H, of the graph G [16].
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correspond to 32 subgraphs. Among them are the (0,0,0,0,0) and (1,1,1,1,1) which
represent a null graph and a graph G itself, respectively [16].

3. The matrix representation of the graph

Suppose G is any undirected graph that is formed by two finite sets V and E,
which are called the vertices and edges, respectively. In other words,
V = {v1,02,...,v;} and E = {ey, ¢,, ..., ;s }. The matrix representation A(G) = (e;)
on graph G has been defined by

Ixm

0 €1, €2, €3 ... €y
vy €, €2, €3, e Emy
AG =", . . . @
v
Lley ey ey .. e

with [ rows corresponding to the [ vertices v; and the m columns corresponding
to the m edges ;. Whereas the incidence matrix of a connected digraph can be

defined by A = (e;),,.,, where ¢;; € {0, 1}. In other words, if j”edge is incident
out of " vertex, then ej = 1, whilee; = —1, if jth edge is incident into i vertex and

Ixm

if jth edge is neither incident out nor incident into " vertex, then e; = 0 [16, 17].

4. The binary methods for the elliptic scalar multiplication

Two methods for computing the scalar multiplication vP have been created
based on using the binary representation of a scalar v. One of them is called the
right-to-left binary (RLB) method, and another one is called left-to-right binary
(LRB) method [1, 9, 10]. These methods depend on the basic repeated-square-and
multiply methods for exponentiation with additive version. Using the RLB method,
the process of v-bits starts from the right to the left, whereas the v-bits processing
starts from the left to the right using the LRB method. The RLB and LRB methods
are discussed mathematically as follows.

4.1 The right-to-left binary method

Suppose E is an elliptic curve defined over a prime field F,,. The equation of E is
given by E:y* = x> + ax + b (mod p). Let P = (x, y) be a generator point that lies on
E which has a (large) prime order #. Choosing v to compute vP can be done from the
range [1, n—1]. So, it should first write v in a binary representation string (e; s, ...,
e1, €9)2. The starting will be happened with a point Q in E (F,), (that is, Q = o).
With the i index that takes the values 0, 1, ..., ¢ — 1, the computation of Q = Q + P
can be done if ¢; = 1. After then, the value 2P is computed and plugging 2P by P. The
processing continues until the last value t — 1. Therefore, the last computed value of
a point Q is the scalar multiplication point vP [1]. The summary of the RLB method
can be given in the following algorithm.

Algorithm 4.1 The RLB algorithm

Input: A scalar v in [1, #-1] and a point P in E(F),).
Output: A scalar multiplication vP.
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1. Write down a scalar v as a binary string v = (¢; _ 1, ..., €1, €0)2-
2.Q=oo.
3.Fori=0,1,..,t—1do
31Ife;=1thenQ=Q + P.
3.2 Compute P = 2P.
3.3 Else compute P = 2P.
3.4 End if
4. End for

5. Return Q = vP.

4.2 The left-to-right binary method

With the same parameters E, P, 7, and v which are used in the RLB method, the
computation of vP using the LRB method can be done easily. A scalar v can be
written in a binary representation string (e; _ 1, ..., €1, €9)2. Let us start with a point
Qin E(F,), where Q = co. With the i index which takes the valuest — 1,..., 1, 0, then
the computation of 2Q can be done and plugged into Q. After then, the value
Q = Q + P is computed. The processing continues until the last value 0. Therefore,
the last computed value of a point Q is the scalar multiplication point vP. The LRB
method can be summarized in Algorithm (4.2) [1].

Algorithm 4.2 The LRB algorithm

Input: A scalar v in [1, #-1] and a point P in E(F),).
Output: A scalar multiplication vP.

1. Write down a scalar v as a binary string v = (e; _ ..., €1, €0)2.
2.Q =oo.
3.Fori=t —1,..,1,0do
3.1 Compute Q = 2Q.
321fe; =1thenQ=Q + P.
3.3 Else go to step (3.4).
3.4 End if
4. End for

5. Return Q = vP.
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5. The non-adjacent form for the elliptic scalar multiplication

The motivation to use the signed digit representation of a scalar v, in a scalar

multiplication vP, is the computation of the subtraction and addition of the points
lying on elliptic curve E which has the same efficient. A signed digit representation

of v is given by v :{f;;eizi, where ¢; € {0, +1}«will be explained in this section
with more details. The signed digit representation forms the nonadjacent form
(NAF) [1, 9, 10] which is given in the next algorithm.

Algorithm 5.1 The NAF computation of a positive integer

Input: A positive integer v in [1, #-1].
Output: The expansion NAF (v).

1.i O.
2. Whilev > 1 do
211Ifvisodd thene; 2 —«» mod 4),
v v —;
2.2 Else:e; O.
2.3 End if
3.v wv/2,i i+l
4. End while
5. Return (¢;_1, ...,€1,€0).

The computation of a scalar multiplication P by employing the NAF algorithm

can be done using the following algorithm:
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Algorithm 5.2 The NAF method for computing the scalar multiplication

Input: A positive integer v in [1, #-1] and P €E(F),).
Output: A scalar multiplication vP.

1. Algorithm (5.1) uses to compute NAF (v).
2.Q oo.
3.Fori=t—-4...,1,0 do

31Q 2Q.

321Ife;=1thenQ Q-+

3.3 Elselfe; = —1thenQ Q —
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3.4 Else go to step (3.5).
3.5 End if
4. End for

5. Return (Q = vP).

6. The graphic methods for the elliptic scalar multiplications

This section discusses the generalization on the binary methods and NAF to
compute [-tuple of the scalar multiplications on elliptic curve E defined over prime
field Fp. This generalization employed the simple undirected and directed graphs.

6.1 The graphic right-to-left binary (GRLB) method

Suppose Ec is an elliptic curve defined over a prime field F,, [1-7]. The equation
of Ec is given by

Ec:y* = x> +ax +b (mod p). (2)

Let P = (x,y) be a point that lies on Ec which has a (large) prime order r. Let
G(V,E) be a simple (or multigraph or others) graph, where V is a vertex set and E is
an edge set. The matrix representation A(G) oa-G(V, E) is defined as given in
Eq. (1). Directly from the rows of the matrix A(G), the binary representation

strings (e(m,l)l, e €1, eO,)2 are obtained. The starting will happen with an elliptic

point Q; which belongs to E(F,), where Q; = oo. With the i index which takes the
values 0y, 13, ..., (m — 1)¢in the first row of A(G), the computation of Q; = Q, +P
can be done if ¢;, = 1. After then, the value 2P is computed and plugging it by P. The
processing on the first row continues until the last value m — 1. Therefore, the last
computed value of a point Q, is the value of the first scalar multiplication point v,P
in [-tuple (vP). Imn-similar way, the processing on others rows can be done. The
summary of the GRLB method can be given in the following algorithm:

Algorithm 6.1 The GRLB method
Input: A graph G(V,E), P€ E(F,), | and m, where [ and m are the order and
size of a graph G, respectively.

Output: The m-tuple of the scalar multiplications (vP) = (v1P, ..., v,P).

1. Write down the matrix representation A(G) of-the graph G(V,E).

2. Directly determine the binary representation strings v; :«Ge(m,l)j, ey elj7eoj)2
from A(G). —

3. Forj=1,2..,1
4. Qoo
5. Fori=0;:(m—1),do
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51 Ifeij = 1thean =Q;+P.
5.2 Else go to step (6).
5.3 End if
6. Compute P 2P.
7. End for
8. Return (Qj = v;P).
9. End for
10. Return ((Q) =4P) = (v1P,v,P, ...,v;P)).
6.2 The implementation results on the GRLB method
With different kinds of graphs which are given in Figure 2, the matrix

representations of the graphs have been computed by A(G,), A(Gy), A(G,), ard
A(G,), respectively.

»n 1011001
» |1 100000 ”11(1’(1)22(1)
A(G,) = 001010 0|,AGy)=]".
(Ga) 3 (Gy) »710 001 1 1
v |0 001010 wlo11010
s 10001111
»T1 0110000 110000010
v (1 1.0 000 00 “» 001100100
lp o0 111000 »looo0oo011001
ACGI=1,lo 100111 of ™G], 1o 01010010
0500000101 1)5010000101
v L0 000001 1) v L1 00101000

The [-tuple computations of the scalar multiplications that correspond to these
graphs are shown in Table 1.

6.3 The graphic left-to-right binary method

With the same parameters p, E, P, G, and V which are used in the GRLB method,
the computations of [-tuple (vP) using the GLRB method can be done easily. The
scalars v, ..., v, can be written in the binary representation strings

(e(m,l)]_, ey €15 eof)z’ forj=1,2, .., 1, directly from the matrix representation A(G)

of G. Let us start with a point Q; in E(F, ), where Q; = co. With the i index which
takes the values (m — 1), ..., 13, 01, then the computation of 2Q; can be done and
plugged into Q;. After then, the value Q; = Q; + P is computed. The processing
continues until the last value 0;. Therefore, the last computed value of a point Q,
is the first scalar multiplication point in an /-tuple (vP). Similarly, the processing

on others rows can be computed. The GLRB method can be summarized in
Algorithm (6.2).
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Figure 2.
Different kinds of graphs [16].

P E(ab) N Generator G G (I,m) (vP)—
point
101 E(10,2) 109 P= (68,14) G, G, (57) (01P,02P, 03P, v4P, vsP) =—

((14,19), (91,66), (44, 68), (5,51), (93,4))—

61 E4,1) 67 P=(24,14) G, G, (4,6) (v1P,v2P, 03P, v4P) = «—
((0,60), (4,52), (43,21),(0,1))—

191 E(72) 193 P=(41,91) G. G.(6,8) (1P, 2P, 03P, 04P, vsP,v6P) = —
((24,137), (41,100), (43,113), (18,109), (16,114), (105, 86))—

449 E(22) 467 P=(50,27) G; G;(6,9) (0P, 2P, 03P, 04 P, 0sP, v6P) = —
((93,281), (405,104), (96, 20), (266, 382), (236,399), (31,391))—

Table 1.
The experimental vesults of the 1-tuple of the scalar multiplications that correspond to the graphs G,, Gy,
G, and Gg.

Algorithm 6.2 The GLRB method

Input: A graph G35 E), PE E(F,),l and m.
Output: The [-tuple of the scalar multiplications (vP) =«&P, ..., v, P)+—

1. Write down the matrix representation A(G) of the graph G(35 E)+

2. Directly determine the binary representation strings v; :eée(m,l)j, e elj,eoj>2,
forj=1,2,..., from A(G). «

3.Forj=12.,1
4, QJ co.

5. Fori=(m—1);:0;do
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5.1 Compute Q; = 2Q;.
S.ZIfeij = 1thean =Q; +P.

5.3 Else go to Step (5.4).
5.4 End if

6. End for
7.  Return (Qj = v;P).
8. End for

9. Return ((Q) = (vP) = (1P, v,P,...,v;P)).

7. The digraphic NAF for the elliptic scalar multiplication

The signed digit representation of an / -tuple ( v) of scalars v;, which are used to
compute an [-tuple ( vP) of the scalar multiplications v;P, can be represented
directly from the digraphs. The signed digit representations of v; are given by

v = Zﬁ;(l)eijZ"f, where ¢; € {0, £1}. The signed digit representations form the gen-
eralized nonadjacent form (GNAF). These representations are computed using the
following algorithm:

Algorithm 7.1 The GNAF computation of an /-tuple of the positive integers

Input: An [-tuple of positive integers v;.
Output:( NAFs(v)) = ( NAFs(v1), NAFs(v2), ..., NAFs(v;)).

1. Determine v;,j = 1, 2, ..., and (elj,ezj, ...,eml)in any digraph G.

2.Forj=1,2,..,1

3. Fori=1,..,m.

4, If v, is an incident out of v,, where s, t €3
5. thene; = 1.

6. Elseif v, is an incident into v,

7. thene; = —1.

8. Else there is no edge between v, and v;,.

0. thene; = 0.

10. End if

11. End For
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12.  Return (elj,ezj, ...,em/).
13. End For
14. Return NAF (v;) = (emj, ...,ezj,elj>.

In Figure 3, the digraph G has the vertices v; forj=1,2, 3, 4 and edges e, for

m=1,2,..,7.
'l'_1 f-*j 'I";I
;o
) ’ < )
, —
Vi €3 Vy
Figure 3.

The digraph has the vertices vjfor j = 1, 2, 3, 4 and edges ey, form = 1, 2, ..., 7.

The incidence matrix of G that is given in Figure 3 is

n[f-1 0 0 1 -1 0 -1

nu'tO 0 1 -1 0 -1 1

So, the NAF representations of 4-tuple (v1,v,,v3,04) are
((-1,0,0,1,-1,0,-1),(1,1,0,0,0,1,0), (0,~1,-1,0,1,0,0), (0,0,1, —1,0, -1, 1)).

The GNAF method for [-tuple of the scalar multiplications can be performed
using Algorithm (7.2).

Algorithm 7.2 The GNAF method for computing /-tuple of the scalar
multiplication

Input: The I-tuple of positive integers v; and P €E(F,,).
Output: The [-tuple of the scalar multiplications (vP). «—

1. Algorithm (7.1) uses to compute GNAF(v).
2.Qj oco.

3.Forj=1,2,..,1

4, Fori=t—1,..,1,0

41Q; 20,
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421fe; =1thenQ; Q;+P.
4.3 Elseife;, = —1thenQ; Q; —P.
4.4 Else go to step (4.5).
4.5 End if
5. End for

6. End for
7. Return <Qj = ij>.

Using Algorithm (7.2), the final result of 4-tuple of the scalar multiplications is
given by

(1P, 02P, 03P, v4P) = ((28,32), (46,63), (25,90), (82,15)).

8. The subgraphs for the elliptic scalar multiplication
8.1 The binary representations

Suppose G is a graph and H;, for i = 1, 2, 3 are subgraphs as shown in Figure 4.
Next algorithm can be applied for determining the binary representation of any
subgraph from a given graph.

Algorithm 8.1 The graphic binary representation of a subgraph from a given
graph

Input: A graph G(V, E), where V = (vy, vy, ..., v;) and E = (ey, €25..., €,,)-
Output: The BRyupgraph ().

1. Determine (vq, vy, ..., ¥;) and (ey, €a,..., €,,) in any subgraph H of G.
2.1 0.

3.Forj = 0: k, where k <.

4. If there is an edge between v, and v;, wheres, t €
5. thene; = 1.

6. Else there is no edge between v, and v;.

7. thene; = 0.

8. End if

9.i i+1

10. Return BRgubgraph = (€m-1, .., €1, €0)2.
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Figure 4.
The subgraphs Hi, fori = 1, 2, 3, for a graph G.

Subgraphs (01, V2, oer D) (e1, 25105 €1) BRgubgraph = (€m — 1, ..., €1, €0)2

H; (v1, V2, V3, V4, Vg) (e1, €2, €3, €6, €7) (1,1,0,0,1,1,1)

H, (v1, V2, V3, V4, Vg) (€1, €3, €6, €7) (1,1,0,0,1,0,1)

Hj (1, V2, V3, V4, Vs, V) (€1, €3, €4, €5, €7) (1,0,1,1,1,0,1)
Table 2.

The experimental vesults of the binary representations of scalars using subgraphs.

P E (a,b) n Gen Pt P Subgraph BRoubgraph = (em —1, .., €1,€0)2 H;P
191 E (7,2) 193 P =(41,91) H, (1,1,0,0,1,1,1) (80,142)
H, (1,1,0,0,1,0,1) (0,57)
H;y (1,0,1,1,1,0,1) (36,146)
Table 3.

The experimental vesults for computing of the scalar multiplications based on using the binary representation of
the subgraphs.

The small numerical results based on Figure 4 can be shown in Table 2.

On the binary representations which are found directly from the subgraphs, the
scalar multiplications H;P on elliptic curve E defined over a prime field Fp can be
computed using Algorithm (4.1) or (4.2). Some experimental results for computing
the scalar multiplications based on using the subgraphs to represent the scalars are
given in Table 3.

9. The signed digit representations
Suppose G is a digraph and H;, fori =1, 2, 3, are directed subgraphs as shown in

Figure 5. Algorithm (8.2) can be used to find the signed digit representation of any
subgraph from a given graph.
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H,

Figure 5.
The directed subgraphs Hi, for i = 1, 2, 3, 4, for a digraph G.

Algorithm 8.2 The di-subgraph signed digit representation of the positive
integers

Input: A directed graph G(V, E), where V = (v, 02, ..., v;) and E = (eq, €2, ..., €,).
Output: The SDRpgraph(?).

1. Determine (vy, vy, ..., ¥;) and (eq; €1,..., €, _ 1) in any subgraph H of G.
2.1 0.

3.Forj = 0: k, where kb 1.

4. If v, is an incident out of v;, wheres, t €
5. thene; = 1.

6. Elseif v, is an incident into v,

7. thene;, = —1.

8. Else there is no edge between v, and v,.

0. thene; = 0.

10. Endif

11. End for

11,7 i+1.

12. Return (e, — 1, ., €1, €0).
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Subgraphs L-tuple (v) I-tuple ( NAFg(v))

H, (v1,02,03,06) ((1,0,0,0,0,0,0),(~1,1,0,0,0,0,1),(0,~1,1,0,0,1,0),
(0,0,0,0,0, -1, ~1))

H, (01,02,03,04,6) ((1,0,0,0,0,0,0),(~1,0,0,0,0,0,1),(0,0,1,0,0,1,0),
(0,0,-1,0,0,0,0),(0,0,0,0,0, -1, 1))

Hy (v1.02,03,04,05.06)  ((1,0,0,0,0,0,0),(~1,0,0,0,0,0,1),(0,0,1,~1,0,0,0),
(0,0,-1,0,0,0,0),(0,0,0,1,~1,0,0),(0,0,0,0,1,0, 1))

Table 4.
The experimental vesults for sign digit vepresenting 1-tuple of the scalars using the subgraphs.

P P Directed subgraphs l-tuple (v) (vP)
191 P = (41,91) H (v1,00,03,06)  {(133,91), (171,71), (132,144), (16,77))
H, (v1,02,03,04,06) ((133,91), (17,91), (177,186), (177.5),
(16,77))
H; (v1,v2,v3,04,05,06) ((133,91), (17,91), (49, 23), (177,5)

(79,97), (105, 86))

Table 5.
The experimental vesults for computing l-tuple of the scalar multiplications based on using the subgraphs.

The computational results based on Figure 5 and using Algorithm (8.2) are given in
Table 4. With the signed digit representations which are given in Table 4, the [-tuple of
the scalar multiplications on elliptic curve E defined over a prime field F}, can be com-
puted. Some experimental results for computing the I-tuple of the scalar multiplications
based on using the directed subgraphs to represent the scalars are given in Table 5.

10. The computational complexity on the elliptic scalar multiplication
methods

This chapter discusses the problems of the computational complexities which
are determined depending on the account operations. These operations are the
elliptic curve operations, namely, the addition A and doubling D on the points
which lie on elliptic curve E defined over a prime field F,,. Also, the finite field
operations which are field inversion I, field multiplication M and a field squaring S.
The computational complexity problems are determined first of the original binary
methods and NAF for computing the scalar multiplications on E. The computational
complexities of the proposed methods which are dependent on the graphs and
subgraphs are determined as well.

10.1 The computational complexity of the binary methods

Let #E (F,) = n, where 7 is prime number and it is the nearest number to prime
p. A point P in E(Fp) which has order #. Suppose v is a scalar such as v is a randomly
selected integer from the interval [1, n—1]. The binary representation of v is
denoted (e, _ 1... €2.61.€0)2 Where m ~ t = log, p.

The computational complexity of Algorithm (4.1) or (4.2) is roughly ¢/2 point
additions and ¢ point doublings, which is denoted by

%A +1D, 3)
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in addition to the time of binary representation which is approximately t/2d and
t/2S, where d and S are normal addition and squaring. Using Lemmas (6.1) and
(6.2) in [18, 19], the points addition A and doubling D can be re-expressed by
11+ 2M + 1S and 11 4+ 2 M + 2§, respectively. In other words, the computational
complexity of Algorithm (4.1) or (4.2) is expressed in terms of field operations by.

3tS + 3tM + 1.5t 4 0.5td. (4)

Several computational complexity results to compute a scalar multiplication by
applying the binary method are given in Table 6.

10.2 The computational complexity of the NAF

With same the multiplier v which belongs to the interval [1,n — 1], the compu-
tational complexity to compute a scalar multiplication vP using the NAF is given by

t t
D+§A+tD:§A+(t+1)D. (5)

In Eq. (5), D in the first term is the cost of NAF to represent a positive integer v,
t/3A + tD is the cost of computing a scalar multiplication vP using NAF method,
and t is the length of the NAF string. In other words, the running time of Algorithm
(5.1) is expressed in terms of field operations by

t/31I+2M+1S)+ (t+1)(IT+2M+2S) = ((t/3) +t+ 1)I+ ((2/3)t+ 2t +2)M
+((t/3)+2t+2)S.

(6)
P E (a,b) n Gen.pt.P  vP Bin. representation Comp. complexity
101 E(10,2) 109  (68,14) 93P (1,0,1,1,1,0, 1) 21S + 21 M + 10.5I + 3.5d
61 E (4,1) 67 (24,14) 23P (1,0,1,1,1) 158 +15M + 7.5 + 2.5d
113  E(12,4) 103 (52,41) 39pP (1,0,0,1,1,1) 18S + 18 M + 91 + 4.5d
149 E (13,1) 167 (32,133) 13P (1,1,0,1) 12S+12M+ 61+ 2d

1031 E(157) 1061 (217,808) 281P (1,0,0,0,1,1,0,0,1) 275+ 27 M + 13.5I + 4.5d

Table 6.
The experimental results of the computational complexity for the scalar multiplications using the binary
method.

P E (a,b) N Gen.pt.P P NAF. rep. Comp. complexity

101 E(10,2) 109  (68,14) 93P (1,0,-1,0,0,-1,0,1)  11.6I +23.3 M + 20.6S

61 E(41) 67 (24,14)  23P (1,0, -1,0,0, -1) 91 + 18 M + 16S
113 E(12,4) 103  (52,41)  39P (1,0, -1,-1,0, 0, —1) 10.31 + 20.6 M + 23S
149 E@13,1) 167  (32,133) 13P (1,0,0, -1, —1) 7.61 + 153 M + 13.6S

1031 E(157) 1061 (217,808) 281P (1,0,0,1,0,0, -1, -1, —1) 131 + 26 M + 23S

Table 7.
The experimental results of the computational complexity for the scalar multiplications using the NAF
method.
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Some numerical results of the computational complexity to compute a scalar
multiplication using the NAF method are given in Table 7.

11. The computational complexity for serial computing /-tuple of the
scalar multiplications

11.1 The computational complexity of the serial GBR

On [-tuple of the scalar multiplications (vP) = (v1P,v,P, ...,v;P), the computa-
tions of v1P, V2P, ..., v;P without using the graphs or subgraphs can be done serially.
So, the computational cost of these computations using the binary representations
of v1, v, ..., vy is given by

%IA 44D + 0.5¢ld. %

In other words, the running time can be expressed in terms of field operations

by
3¢lS + 3tIM + 1.5t1I + 0.5¢tld. (8)
Table 8 displays some small experimental results for computational complexi-

ties for serial computations of /-tuples (vP)using the generalized binary method.

11.2 The computational complexity of the serial GNAF

The computational complexity for computing [-tuple of the scalar multiplica-
tions using GNAF representations in serial way is given by

lD+§lA+tlD :glAJr(tJrl)lD. C))

Using the field operations, the formula in Eq. (9) can be rewritten by.
((t/3) +t+ DI+ ((2/3)t +2t+2)IM+ ((t/3) + 2t +2)IS. (10)

The computational complexity results for serial computations of /-tuples (vP)
using the GNAF method are given in Table 9.

P E (a,b) n Gen. pt. P (vP) Comp. complexity
101 E(10,2) 109 (68,14) (93P, 25P, 66P) 63S + 63 M + 31.5I + 10.5d
61 E (4,1) 67 (24,14) (23P, 19P, 12P) 455 + 45M + 22.51 + 7.5d
113 E (12,4) 103 (52,41) (39P, 21P) 36S +36 M + 181 + 9d
149 E (13,1) 167 (32,133) (13P, 5P) 24S +24 M + 121 + 4d

1031 E(157) 1061  (217,808) (281P,91P,63P,55P)  108S -+ 108 M + 541 + 18d

Table 8.
The experimental vesults for computational complexities for serial computations of l-tuples (vP) using the
genevalized binary method.
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P E (a,b) N Gen. pt. P (vP) Comp. complexity

101 E (10,2) 109 (68,14) (93P, 25P, 66P) 34.81 + 69.9 M + 61.85

61 E (4,1) 67 (24,14) (23P,19P,12P) 271+ 54 M + 48S

113 E (12,4) 103 (52,41) (39P, 21P) 20.61 + 41.2 M + 46S

149 E (13,1) 167 (32,133) (13P, 5P) 15.21 + 30.6 M + 27.28

1031 E (15,7) 1061 (217,808) (281P,91P, 63P, 55P) 521 + 104 M + 928
Table 9.

The experimental vesults of the computational complexities for the sevial computations of I-tuples (vP) using the
GNAF.

12. The computational complexity of the graphic elliptic scalar
multiplication methods

Suppose (vP) = (1P, v,P, ...,v;P) is an [-tuple of the scalar multiplications. The
graphic computations of v1P, v,P, ..., v;P can be done using the graphs or subgraphs
in two ways. One of them is using the graphs directly to find the binary represen-
tations of the scalars v, vy, ..., v;, whereas another one uses the digraphs to repre-
sent these scalars. The computational costs of these computations can be discussed
as follows.

12.1 The computational complexity of the graphic binary representation (GBR)

Using the graphs to compute /-tuple of the scalar multiplications costs

glA +4D. 1)

In terms of field operations, the computational complexity of GBR can be
expressed by

3¢S + 3¢tIM + 1.5¢t11. (12)

Table 10 displays some small experimental results for computational complexi-
ties for the graphic representations of /-tuples (vP) using the generalized binary
method.

P E (a,b) n Gen. pt. P (vP) Cgar using graphic representations
101 E(102) 109  (68,14) (93P, 25P, 66P) 63S + 63 M -+ 31.5
61 E(41) 67 (24,14) (23P,19P, 12P) 455 + 45M + 22.51
113 E (12,4) 103 (52,41) (39P,21P) 36S + 36 M + 18I
149  E(13,1) 167  (32,133) (13P, 5P) 24S + 24 M + 121
1031 E(157) 1061 (217,808)  (281P,91P,63P,55P) 108S + 108 M + 541
Table 10.

The experimental vesults for computational complexities for graphic computations of l-tuples (vP) using the
genevalized binary method.
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P E (a,b) N Gen. pt. P (vP) Cgar using graphic representations
101 E (10,2) 109 (68,14) (93P, 25P, 66P) 321 + 64 M + 568
61 E(41) 67 (24,14) (23P,19P, 12P) 241 + 48 M + 428
113 E(12,4) 103  (52,41) (39P,21P) 18.61 + 37.3 M + 32.6S
149 E (13,1) 167 (32,133) (13P, 5P) 13.31 4+ 26.6 M + 23.3S
1031 E (15,7) 1061 (217,808)  (281P,91P, 63P,55P) 481 + 96 M + 84S
Table 11.

The experimental vesults for computational complexities for graphic computations of I-tuples of (vP) using the
GNAF method.

12.2 The computational complexity of the digraphic NAF

The computational complexity for computing [-tuple of the scalar multiplica-
tions using the digraphs is given by

glA +14D. (13)

Eq. (13) can be rewritten using field operations by:
((t/3) + )T+ ((2/3)t + 2 t)IM + ((t/3) + 2 v)IS. (14)

Several experimental results for computational complexities for digraph
representations of [-tuples (vP) are given in Table 11.

13. Computational complexity comparison on the serial and graphic
computations of GBR and GNAF methods

This section discusses first the experimental results of the GBR method that uses
serial computations to calculate I-tuple of the scalar multiplications and the GBR
method that depends directly on using the graphs. Selecting the scalars vy, v5,.... v;
from the interval [1. n — 1] to represent using the GBR method which needs the cost
0.5tld, where t is the length of the string binary representation, [ is the length of the
tuple and d is a normal addition operation. The final computational cost as given in
Eq. (8).

Whereas, the binary representing of the scalars v4, v,, ... v; can be taken directly
from graphs or subgraphs without need to extra cost. This saves the 0.5t/d opera-
tions to compute [-tuple of the scalar multiplications (vP). The total cost of the
graphic GBR method has been determined previously in Eq. (12). The serial GBR
and graphic GBR computational costs for several experimental results are given in
Table 12. In this table, one can see the serial GBR method with various values of p is
more costly compared to the graphic GBR method.

Also, the experimental results of the serial GNAF and graphic GNAF methods
that are used to calculate I-tuple of the scalar multiplications are discussed in this
section. Selecting the scalars vy, vy, ... v; from the interval [1. n — 1] to represent
using the GNAF method which needs the LI + 2IM + 2IS cost, [ is the length of the
tuple, M is a field multiplication, S is a field squaring, and I is a field inversion. So,
the total computational cost as given in Eq. (10).

The graphic GNAF of the scalars vy, vy, .... v; can be taken directly from graphs.
So it can save 11 + 2IM + 2IS operations for computing /-tuple of the scalar
multiplications (vP). The total cost of the graphic GNAF method is determined
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P E (a,b) N Gen. pt. P Cgpr using serial computations Cggr using graphs

101 E (10,2) 109 (68,14) 63S + 63 M + 31.51 + 10.5d 63S + 63 M + 31.51

61 E (4,1) 67 (24,14) 458 + 45M + 22.51 4 7.5d 458 + 45 M + 22.51

113 E(124) 103 (52,41) 36S + 36 M + 18I + 9d 36S + 36 M + 181

149  E(13,1) 167 (32,133) 24S + 24 M + 121 + 4d 24S + 24 M + 121

1031 E(15,7) 1061 (217,808) 108S + 108 M + 541 + 18d 108S + 108 M + 541
Table 12.

The computational costs of the serial GBR and graphic GBR with different values of p.

P E (a,b) N  Gen.pt. P Costgnra using serial computations Costgnra using graphs

101 E (10,2) 109 (68,14) 34.81 4+ 69.9 M + 61.8S 321 + 64 M + 56S

61 E(4,1) 67 (24,14) 271 + 54 M + 48S 241 + 48 M + 428

113 E(12,4) 103  (52,41) 20.61 + 41.2 M + 46S 18.61 + 37.3 M + 32.65

149 E(13,1) 167  (32,133) 15.21 + 30.6 M + 27.2S 13.31 4+ 26.6 M + 23.3S

1031 E (15,7) 1061 (217,808) 521 + 104 M + 92S 481 4+ 96 M + 84S
Table 13.

The computational costs of the serial GNAF and graphic GNAF with different values of p.

previously in Eq. (14). Several experimental results on the serial GNAF and graphic
GNAF computational costs are given in Table 13. With various values of p as shown
in Table 13, it can observe that the graphic GNAF method is less costly than the
serial GNAF method.

14. Conclusions

The present chapter was concerned with presenting new graphic elliptic scalar
multiplication algorithms for speeding up the computations of the scalar multipli-
cation defined on elliptic curves over a prime field in different ways. These ways
employed the undirected graphs and subgraphs to construct the binary representa-
tions of the scalars v in the scalar multiplications vP. Also, the sign digit representa-
tion of v has been obtained directly from using the digraphs or di-subgraphs.

These representations are used to compute one scalar multiplication vP and [-tuple
<vP> of the scalar multiplications. The computational complexities of the proposed
graphic elliptic scalar multiplication algorithms have been determined. The compu-
tational complexity comparison of the proposed algorithms and original ones is
discussed based on the elliptic curve and field operations. The experiment results of
the computational complexities show that the proposed algorithms are less costly
for computing the scalar multiplication or [-tuple of the scalar multiplications than
original algorithms which are dependent on the computations of the binary repre-
sentations or NAF expansions. The new propositions with graphic representations
speed up the computations on elliptic scalar multiplication algorithms. Also, it gives
the generalized cases with the computations of the /-tuples <vP> using (undirected
or directed) graphs or subgraphs. This insight makes the working with graphic
elliptic scalar multiplication algorithms more efficient in comparison with the serial
original ones.
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Chapter 6

A Study of Bounded Variation
Sequence Spaces

Vakeel Ahmad Khan, Hira Fatima and Mobeen Ahmad

Abstract

In the theory of classes of sequence, a wonderful application of Hahn-Banach
extension theorem gave rise to the concept of Banach limit, i.e., the limit functional
defined on ¢ can be extended to the whole space [, and this extended functional is
called as the Banach limit. After that, in 1948 Lorentz used this concept of a week
limit to introduce a new type of convergence, named as the almost convergence.
Later on, Raimi generalized the concept of almost convergence known as c—
convergence and the sequence space BV, was introduced and studied by Mursaleen.
The main aim of this chapter is to study some new double sequence spaces of
invariant means defined by ideal, modulus function and Orlicz function. Further-
more, we also study several properties relevant to topological structures and inclu-
sion relations between these spaces.

Keywords: invariant mean, bounded variation, ideal, filter, I-convergence,
Orlicz function, modulus function, paranorm

1. Introduction

The concept of convergence of a sequence of real numbers has been extended to
statistical convergence independently by Fast [1] and Schoenberg [2]. There has
been an effort to introduce several generalizations and variants of statistical con-
vergence in different spaces. One such very important generalization of this notion
was introduced by Kostyrko et al. [3] by using an ideal I of subsets of the set of
natural numbers, which they called I-convergence. After that the idea of
I-convergence for double sequence was introduced by Das et al. [4] in 2008.

Throughout a double sequence is defined by x = (x;;) and we denote ;& showing
the space of all real or complex double sequences.

Let X be a nonempty set then a family I  2¥ is said to be an ideal in X if @ €1,
I is additive, i.e., for all A, Be€I = AUB el and I is hereditary, i.e., for all
A€l B CA = Bel. A nonempty family of sets F C 2¥ is said to be a filter on X if
for all A, Be F implies AnB € F and for all A € F with A C B implies B€ F. An
ideal I ¢ 2% is said to be nontrivial if I # 2%, this non trivial ideal is said to be
admissible if I2 {{x} :x €X} and is said to be maximal if there cannot exist any
nontrivial ideal J # I containing I as a subset. For each ideal I there is a filter F(I)
called as filter associate with ideal I, that is

F(I)={K CX :K°€I}, where K*=X\K. 1
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A double sequence x = (x;) € is said to be I-convergent [5-8] to a number L
if for every >0, we have {(i,j) €N x N : |x; — L| > e} €1. In this case, we write
I —limx; = L. A double sequence x = (x;;) € is said to be I-Cauchy if for every
€>0 there exists numbers m = m(e), n = n(e) such that
{(G,j)) ENXN: |x;; — xpn| 2 €} €L

A continuous linear functional ¢ on [, is said to be an invariant mean [9, 10] or
o-mean if and only if:

1. ¢(x) > O where the sequence x = (x) has x;, > 0 for all k,

2. ¢p(e) = 1wheree = {1,1,1,1, ...},

3. ¢(Xo(n)) = P(x) for all x €,

where ¢ be an injective mapping of the set of the positive integers into itself
having no finite orbits.

If x = (xz), write Tx = (Tx;,) = (X,()), so we have

Vy= {x = (xz) : lim t,, ,(x) = L uniformly in k,L =0 — limx} (2)
wherem > 0,%k>0.

X+ Xo(l) T ooe + Xgm(p
() = G and 1y =0, (3)

where 6™ (k) denote the mth-iterate of o(k) at k. In this case ¢ is the translation
mapping, that is, (k) = k + 1, 6— mean is called a Banach limit [11] and V,, the set
of bounded sequences of all whose invariant means are equal, is the set of almost
convergent sequences. The special case of (3) in which o(k) = k + 1 was given by
Lorentz [12] and the general result can be proved in a similar way. It is familiar that
a Banach limit extends the limit functional on c in the sense that

¢(x) =limx, for all x€c. (4)
Definition 1.1 A sequence x €, is of o-bounded variation if and only if:
(i) Xl i (x)| converges uniformly in k,

(i1) limp— e Em, £ (x), which must exist, should take the same value for all k.

We denote by BV, the space of all sequences of s-bounded variation:

BV, = {xeloo : 2 |#m k()| < 00, uniformly in k}.

is a Banach space normed by

lxll = sup 3 [ )] 5)
k. m=0

A function M : [0, ) — [0, o0) is said to be an Orlicz function [13, 14] if it
satisfies the following conditions:

(i) M is continuous, convex and non-decreasing,
(i1) M(0) = 0, M(x)>0 and M(x) — o0 as x — oo.

Remark 1.1 If the convexity of an Orlicz function is replaced by
M(x +y) < M(x) + M(y), then this function is called Modulus function [15-17].
If M is an Orlicz function, then M(AX) < AM(x) for all 2 with 0 <A <1. An Orlicz
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function M is said to satisfy 4,-condition for all values of u if there exists a constant
K > 0 such that M(Lu) < KLM(u) for all values of L >1 [18].

Definition 1.2 A double sequence space X is said to be:
[i] solid or normal if (x;;) €X implies that (ajx;;) €X for all sequence of scalars

(aij) with o] <1 forall (i,j) eN x N.

[ii] symmetric if (x,r(i J)) € X whenever (x,]) € X, where 7(i,§) is a permutation
on N x N.

[iii] sequence algebra if (xi]yij> €E whenever (x;), (y ) €X.

i

[iv] convergence free if (yy) € X whenever (x;;) €X and x;; = 0 implies ¥; =0,
for all (i,j) eN x N.
Definition 1.3 Let K = { (n;,k;) : (i,j) : m1 <ny<n3<... and ki<k,

<k3<...} €N x Nand X be a double sequence space. A K-step space of X is a
sequence space

A = { (xg) : (x5) €X}.

A canonical preimage of a sequence (x,,,kj) € X is a sequence (b,) € X defined as

follows:

b an, forn kekK
k= 0, otherwise.

A sequence space X is said to be monotone if it contains the canonical preimages
of all its step spaces.

The following subspaces [(p), [ (p), c(p) and co(p) wherep = (p,) isa

sequence of positive real numbers. These subspaces were first introduced and
discussed by Maddox [16]. The following inequalities will be used throughout the

section. Let p = (p ) be a double sequence of positive real numbers [19]. For any

i
complex A with 0 <p;; < sup;; p; = G < 00, we have

AP < max(1, WG).

Let D = max(1,2°") and H = max{l, supijpij}, then for the sequences (a;))

and (b;) in the complex plane, we have

jag + byl < C(|agl™ + |bs™).

2. Bounded variation sequence spaces defined by Orlicz function

In this section, we define and study the concepts of I-convergence for double
sequences defined by Orlicz function and present some basic results on the above
definitions [8, 20].

() — L

BV (M) = {(x,-j) €w:I— limM( p

) =0, for some LE(C,p>O}
(6)
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2(0BVL(M)) = {(x,-j) €w: - limM(W’””;ﬂ) = 0,p>0}, @)
2(«BVE(M)) = {(x,-j) ew: {(i,j) : EIk>05.tM<w> > k} EI,p>O}
(8)

J(BV, (M) = {(xij) - supm(%f(x)') <cop> o}. ©)

Now, we read some theorems based on these sequence spaces. These theorems
are of general importance as indispensable tools in various theoretical and practical
problems.

Theorem 2.1 Let My, M, be two Orlicz functions with 4, condition, then

(@) x(My) Cx(M:M,)
(b) x(M1) ny(My) Cx(Mq + M,) for y =, BV, (o0BVY).

Proof. (a) Letx = (x;;) € 2(oBV.(M,)) be an arbitrary element, so there exists
p > 0 such that
I —limM, (W) =0. (10)

Let € > 0 and choose & with 0 <8 <1 such that M;(¢) <e for 0 <t < 6.
Write Y = M, (M) Consider,

lim Ma(y,) = tim  Mi(y;) + Jim _ Mi(y;). (1)

Now, since M is an Orlicz function so we have M;(Ax) < AM;(x), 0<A<1.
Therefore, we have

<im  Mi(ry) < M@ i () 12)

For yij>5, we have Vi < ’% <1+ )% Now, since M is non-decreasing and convex, it
follows that,

¥\ 1 1 (Y
M, (yij> <M <1 T 5]) <5Mi(2) +35 My (5]) (13)

Since M; satisfies the A,-condition, so we have

1 i 1 2 i
M, (yl]) Adime) + —I(Ml( y’)

208 2 5

10 10 (14)
< 5 K= Mi(2) + 5K~ M (2)
— KMy (2).

5
This implies that,
Yij

M, (yi]) <K2My(2). (15)
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Hence, we have

lim Ml(yij) Smax{l,K&—lMl(z) lim (y])} (16)

3,73 i €N 3,>3 isj €N
Therefore from (12) and (16), we have
I—limM,; (y]> ~o.
i
(X
= I — limM;M, <M> —o.
i P

This implies that x = (x;) €, (0BV.(M:1M,)). Hence y(M,) C y(MiM,) for
x =2(oBV.). The other cases can be proved in similar way.

(b) Let x = (x;) €2(0BVL(M1)) N 2(0BVZ(M2)). Let €>0 be given. Then there
exist p>0, such that

I—limM; (Mb’”](x)l> =0, (17)
ij p
and
I —limM, (M) =0. (18)
i P
Therefore

j p ij P ij p

from Egs. (17) and (18), we get
I — lim (M + M) (M) =0.
j P

so we have x = (x;) €2(0BVL(M1 + M,)).

Hence, ;(0BV.(M1)) N 2(0BV.(Ma)) € 2(0BVE (M1 + My)). For y =, BV the
inclusion are similar.

Corollary y Cy(M) for y =,(BV?) and ,BV".

Proof. For this let M(x) = x, for all x = (x;) €X. Let us suppose that
x = (x;7) €2(obBV?). Then for any given €>0, we have

{G)* bpgl0)| 2} €1
Now let A, = {(ZJ) 2 |Prnij (20)| < e} €1, be such that A{ €. Consider for p > 0,

u <|¢mm-j<x>|) @) e

— <E€.
P P P

This implies that I — lim M (w) = 0, which shows that
X = (x,]) Ez(oBV{T(M))
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Hence, we have
2(0BV) S2(0BV4(M)).
=y Cx(M).

Using the definition of convergence free sequence space, let us give another
theorem which will be of particular importance in our future work:

Theorem 2.2 The spaces ,(oBV.(M)) and ,BV’ (M) are not convergence free.
Example 2.1 To show this let I = I and M(x) = x, for all x = [0, 00). Now

consider the double sequence (x;), (yl]) which defined as follows:

1 .
x,]:m and yZ]:1+];Vl)]EN

Then we have (x;;) belong to both ; (0BV’,(M)) and ,BV, (M), but (J’y) does not

belong to » (0BV’(M)) and ,BV (M). Hence, the spaces , (oBV’,(M)) and ,BV (M)
are not convergence free.

To gain a good understanding of these double sequence spaces and related
concepts, let us finally look at this theorem on inclusions:

Theorem 2.3 Let M be an Orlicz function. Then

2(0BVL(M)) € 2BVL(M) G (BVL(M)).

Proof. For this let us consider x = (x;) € »(oBVZ(M)). It is obvious that it must
belong to BV’ (M). Now consider

(A=) an(P) ()

Now taking the limit on both sides we get

(x) — L
(P E)
ij p

Hence x = (x;) €,BV.(M). Now it remains to show that
2(BV;(M)) C2(BVe(M)).

For this let us consider x = (x;;) € ,BV! (M) this implies that there exist p > 0 s.t

(x) =L
I-lim M<7|¢’”"” ) l) =0.
i P

Now consider,

(B0 () ()

Now taking the supremum on both sides, we get

M 7J> <
s1;p ( p )

Hence, x = (x;) € 2(BVL(M)). .
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3. Paranorm bounded variation sequence spaces

In this section we study double sequence spaces by using the double sequences
of strictly positive real numbers p = (pl]) with the help of BV, space and an Orlicz

function M. We study some of its properties and prove some inclusion relations
related to these new spaces. For m, n > 0, we have

SBVL(M,p) = {(x5) €0+ { (i) - M(L=2 ) > ed e

(19)
for some LeC, p>0

(o) N\ Pii
2(0BVL(M,p)) = {(x,-j) € : {(i,j) :M(M> > e} EI,p>0}, (20)

p

2(«BV,(M.p)) = {(x,]) SPIO: {(17]) :3K>0 :M<|¢mn;)ﬂ)pif > K} ELP>O}

(21)

; Pij
Ao (M,p) = {(x,]) €rw: supM(ld)WZﬂ) <00,p> 0}. (22)

We also denote
2MIBVJ(M7P) = ZBVL(Mvp) N2 lDO(Map)

and

2(0M53V5(M>P)) = 2(OBV{;(MaP)) N2le(M,p).

We can now state and proof the theorems based on these double sequence spaces
which are as follows:

Theorem 3.1 Letp = (py) € 1l then the classes of double sequence
2M§3V‘, (M,p) and , <0M§VJ M, p)) are paranormed spaces, paranormed by

ij . Pi
g(x;j) = inf {ppff : sup M(w> <1, for somep > 0}
" p

hj21 i

where H = max{l, supijpij}.

Proof. (P1) It is clear that g(x) = 0 if and only if x = 0.
(P2) g(—x) = g(x) is obvious.

(P3) Letx = (x;),y = (J’z;) € My (M, p). Now for py, p, > 0, we denote

3 Py
Ay = {/’1 : sup M(M) < 1} (23)

g

. Pij
Ay = {Pz : sup M(W) < 1} (24)

y

Let us take p3 = p; + p,. Then by using the convexity of M, we have
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P ) P1 ) P2

which in terms give us

sup M
i

<|¢mm’j(x +)’)I>F"f <1
p

and

g(xij +}’ij) = inf{(/’1 JrPz) :p1E€AL P, GAz}

sinf{(pl)%:pleAl} mf{() €]

—g(xy) +2(v;)-

Therefore g(x +y) < g(x) +g).
(P4) Let (4;) be a double sequence of scalars with (4;) — 4 (i,j — o) and

(xj), L e ZMIBV” (M, p) such that
xj — L (i,j — o),

in the sense that

gl ~L) =0 (ij — o).
Then, since the inequality

8(xj) <glwy —L) +g(L)

holds by subadditivity of g, the sequence g(x;) is bounded.
Therefore,

g (x5 — AL)| =g [(Agpcy — ey + dociy — AL)]
= [(ﬂq )i+ A(xy — L)]
£l (45~ )xy] +g[Aley — L)]
<] %
< \(/Lj — 2)[Fgeg) + 121¥g (x5 — L) — 0
as (i,j — o0). That implies that the scalar multiplication is continuous. Hence

zMgV” (M, p) is a paranormed space. For another space , (OMgV” (M, p)) , the result is

similar.
We shall see about the separability of these new defined double sequence spaces
in the next theorem.

Theorem 3.2 The spaces ZMIB‘,“ (M,p) and , <0M§3V6 (M, p)) are not separable.

Example 3.1 By counter example, we prove the above result for the space
2M§3Va (Map) .

Let A be an infinite subset of increasing natural numbers, i.e., A €N x N such

that Ael.
Let

2, otherwise.

_{1, if(i,j) €A
;=
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Let Po = {(x;) : x5 = 0 or 1,for i,j €M and x; = 0, otherwise }.
Since A is infinite, so Py is uncountable. Consider the class of open balls

- {a(s2) eer).

Let C; be an open cover of ZMIIBV“ (M, p) containing B;.

Since B, is uncountable, so C; cannot be reduced to a countable subcover for
2M§3V6 (M,p). Thus szgV” (M, p) is not separable.

We shall now introduce a theorem which improves our work.

Theorem 3.3 Let (Pz]) and (%) be two double sequences of positive real
numbers. Then , (OM{W (M, p)) 2, (OMgV (M, q)) if and only if lim;, jc inf 22 >0,
. . i
where K CN x N such that K €1.
Proof. Let lim; ek inf? >0 and (x,]) €, <0M§V (M,q)). Then, there exists >0
i .

such that p;; > § q,; for sufficiently large (i,j) €K.
Since (x;) € » <0MIBV” (M, q)) For a given € > 0, there exist p > 0 such that

. qii
By = {(uj)eN <N M('d”"pﬂ) 5 e}e[.

Let Go = K° UBjy. Then for all sufficiently large (i,5) € Go.

{(i,j) :M(W)pﬁze} - {(i, ) :M(ld)mn;)ﬂ)ﬂqij > e} el.

Therefore, (x;) € » (OMIBV” (M, p)> The converse part of the result follows obvi-
ously.

Remark 3.1 Let (sz) and (%) be two double sequences of positive real num-
bers. Then ; <0Mgvﬁ (M, q)) 2, (OM{WU M, p)) if and only if lim;,jcx inf % >0 and

if
2 (OM{W“ (M, q)) = (OMgV,, (M,p)) if and only if lim; ;e x inf% >0 and
ij
lim;, ; ¢ i inf ;—J >0, where K* CN x N such that K €1
if
Theorem 3.4 The set ;My,, (M, p) is closed subspace of 7le (M, p).
Proof. Let (xg) q>) be a Cauchy double sequence in 2Mgva (M, p) such that

x9) — x. We show that x € ;M (M,p). Since, (xZ@]M)) € ;M (M,p), then there

exists a,,, and p>0 such that

{(i,j) : M<|¢’””if(x1j) - “pq|>pij 26} el.

We need to show that
(1) (ayq) converges to a.

@ 1£U = { (i) M("”(’;ﬁ)p <e}, thenUrel.
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Since (xf]p q>) be a Cauchy double sequence in zMgvﬁ (M, p) then for a given e>0
there exists kg €N such that

<|¢mnq ('qu) - ¢mm’j (xm)l

sup M
1p S

y

Pi €
> < 3 for all p,g,7,s > ko.

For a given >0, we have
- (B (£77) — Py (X )\ P M
qurs = {(17]) M( : P ’ ) ' < (%) }’
. |y (79) —apg |\ P M
Byy = { (i) : (=) < (),
> f mnij X" )— s Py € M
By = {(i) : M(L= =) )

Then B;qu’ B;q, Bl el.LetB* = B;qrs N B;q nB:,

— Pi
where B = {(z,]) : M(m"”/—)a”l) "< e}, then B° € I. We choose kg € B°, then for

each p, q, 7, s > ko, we have
{(i,j) FUCE R 6}2 {z JEN : M (et bt NN (g)M}
(i) (P < ()

0 {ay w7 < gy

Then (a,,) is a Cauchy double sequence in C. So, there exists a scalar a € C such

that (a,,) — a, as p,q — .
(2) For the next step, let 0 < § <1 be given. Then, we show that if

then U° €1. Since x??) — x, then there exists p,, g, €N such that,

where D = max{l, 261 }, G= sup;; pj; = 0 and H = max{l, supijpl.j} implies

P° el. The number (po,qo) can be so chosen that together with (25), we have

Q- {(i,j) ‘M ('“%—‘“')p ) (3%)H}

such that Q° €. Since (xgw) € ZMIBV“ (M, p).
We have

.. 04o0) — P
{(i,j) :M("’smnv(’cp ;) “P°q°|> > 5} el
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Then we have a subset S CN x N such that S° €I, where

Let U° = P° U Q° U S, where

(x) — Py
U= {(w‘) (P Y 5}
p
Therefore, for (i,j) € U°, we have
.. | () —al\ Pii
{6 m(Pei2=)" <o)

2 H(l,]) :M(w)% <(2) }

. |6lp q a| th M
Nne(,j): M &
{(l]) ( ) 3D

fun e (5)1)]

Hence the result ;M (M,p) C 2l (M, p) follows.
Since the inclusions ;Mf,, (M,p) C 2l (M,p) and , <0MIBV” (M,p)) C 2lw(M,p)

are strict so in view of Theorem (3.3), we have the following result.
The above theorem is interesting and itself will have various applications in our
future work.

4. Bounded variation sequence spaces defined by modulus function

In this section, we study some new double sequence spaces of invariant
means defined by ideal and modulus function. Furthermore, we also study
several properties relevant to topological structures and inclusion relations
between these spaces. The following classes of double sequence spaces are as
follows:

my, n=0

zBVi(f)—{(x,-j)ezwz{(i,j): 3 f(\(/)mm] x) — L|)2e}e[;for someLEC};
(26)

2<oBvL<f>):{<xg>ezw:{(m‘) 2 (i) 2 }er}; (27)

m, n=0

2(mBVf,(f)) = {(x,]) €L : {(z,]) :3K>0: Z f(|¢mm] )Z (} EI}; (28)

m, n=0

iyj myn=0

Z(WBVG(f)): {(XU)Eza) Sup Z f<|¢mm] )|) 00} (29)
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We also denote

My (f)=2BVL(f) N2(BV,(f))

and

> (oMhy, () =2 (BVL(F)) Na2(BV,()):

We shall now consider important theorems of these double sequence spaces by
using modulus function.

Theorem 4.1 For any modulus function f, the classes of double sequence 5 (oBV(f)),
2BVL(), 2 (OMEV,; f )) and ;Myy, (f) are linear spaces.

Proof. Suppose x = (x;;) andy = (yl]) € ,BV.(f) be any two arbitrary elements.
Let a, § are scalars. Now, since (x;), (ylj) € ,BV(f). Then this implies that there

exists some positive numbers L;, L, € C and such that the sets

A= {(u) ) S (1Bmnge0) = 111) g} €L (30)
Ay = {(i,j) 5 (W)~ Lal) 2 §} el (31)

Now, assume
B, = {(u) S F (gl ~ L) < 2} e F (1), (32)

B, = {(u) 5 F(bmy0) ~Lal) < } eF() (33)
be such that Bj, B €1. Since f is a modulus function, we have
2 f (o (x + ) — (aLs +pL2)])

= 3 (@) + By ) — (s + pL2))

my n=0

>

(B ) = 1) + B( ) — L2) )

3

TN
I

T

IN

( .
(1ehns ) = Lal) + 3 £ (1610) ~La)
(

3
NCARNINCE

(=}

\

by) = Lal) + 3 £ (1mnyl) ~ La])

mn—

3

IA
NI e

+o=¢

¢
2
This implies that { (i.7) : 25 ,—o.f (Ithm(ax + By) — (aLs + pLa)|) 2 e} €l
Thus a(x;) + ﬂ(yij) € 2BVL(f). As (x;) and ( ) are two arbitrary element then

122



A Study of Bounded Variation Sequence Spaces
DOI: http://dx.doi.org/10.5772/intechopen.8190 7

a(xij) +ﬁ(yij) € ,BVL(f) for all (x;), (J’z]) € »,BVL(f) and for all scalars a, . Hence

,BVL(f) is linear space. The proof for other spaces will follow similarly.

We may go a step further and define another theorem on ideal convergence
which basically depends upon the set in the filter associated with the same ideal.

Theorem 4.2 A sequence x = (x;;) € ;Myy (f) I-convergent if and only if for
every €>0, there exists M, N, €N such that

{(zpj) 5 (b les) - ¢mj<xMe,N€>|)<e}ef<I>.

Proof. Let x = (x;) € 2M§3V“ (f). Suppose I — limx = L. Then, the set

B. = {(z}j) ) f(lqum](xy) |) 2}EF(I), for all e>0.

my, n=0

Fix M., N, € B.. Then we have

3 £ (s o5) ~ D)) < 3 (o) — L)

my

+ 5 P Bungle))

which holds for all (i,j) € B

Hence
{(l)j): 5 F(Immis) - ¢mnij<xMc,Nt>|)<e}ef<I>.

Conversely, suppose that

{(i,j) 5 F(mles) - ¢m,-j<fo,N€>|)<e}ef<I>.

Then, being f a modulus function and by using basic triangular inequality, we
have

{(i,j) |m§7 F (1 (e)l) = 2 f(|¢mm] xm, N)|)|<e}eF(I), for all 0.

m, n=0

Then, the set

mn—

c. - {(u) R (ZANE

Li F(mirnnl) e 5 F(idmytomon]) + e[} €7 ).

n= m,n 0

LetJ. = [ 259 veof (19mm(cmn)l) = € oo eof (1dmms i)l ) +¢].
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If we fix €>0 then, we have C. € F(I) as well as Cc € F(I).
Hence C. N C; € F(I). This implies that
J=J.0J; # 0.
That is
{(u) - 5 S (b)) e]} e F ().
This shows that
diam ] < diam ]

where the diam ] denotes the length of interval J. In this way, by induction we
get the sequence of closed intervals

Je=1021121L,2 .22 ..

with the property that diam I, < 1diam I, i for (k = 2,3,4,...) and
() : g o f (| (9)]) €1} € F(D) for (k = 1,2,3,4,...).

Then there exists a £ € NI, where k €N such that

e=1-tm 5 (b))

L] myn=

showing that x = (x;) € 2M§Vﬁ (f) is I-convergent. Hence the result holds.

As the reader knows about solid and monotone sequence space now turn to
theorem on solid and monotone double sequence spaces of invariant mean defined
by ideal and modulus function.

: 1

Theorem 4.3 For any modulus function f, the spaces ; (¢BV,(f)) and

2 (OM{SV“ f )) are solid and monotone.

Proof. We consider , (oBV’(f)) and for , (oMgV” (f )> the proof shall be similar.
Letx = (x;;) € 2(oBV.(f)) be an arbitrary element, then the set

{(AJ’) xS (IE e} €l (34)

Let (a;j) be a sequence of scalars with |a;j| < 1for alli,j€N.
Now, since f is a modulus function. Then the result follows from (2.18) and the
inequality

F (105 0N ) < 1651 (1 () < F (1 1)

Therefore,

{(m: fof(wmg(xn)ze}g{a,j): E:Of(qumj(x)l)Ze}eI

m, n= m, n=

implies that
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{(u) : 2 F (I l) 2 } 3
my, n=0
Thus we have (a,]x,]) €, (OBVf,(f)). Hence , (OBVi(f)) is solid. Therefore
2 (OBVf;(f )) is monotone. Since every solid sequence space is monotone.
Remark 4.1 The space ,BV. (f) and , (M v (f )) are neither solid nor monotone

in general.
Example 4.1 Here we give counter example for establishment of this result. Let

X= BV{, and , (MBVL)' Let us consider I = Iy and f(x) = x, for all x = (x,]) and
x;; € [0, 00). Consider, the K-step space X(f) of X(f) defined as follows:
Letx = (x;) €X(f) andy = (yz]) € Xk (f) be such that

xij, if i, j are even
i 0, otherwise.

Consider the sequence (x;) defined by (x;) = 1 for alli,j€N.
Then, x = (x;) € 2BV (f) and 2My (f), but K-step space preimage does not
belong to BV (f) and 2Mj,, (f). Thus, BV’ (f) and 2M},, (f) are not monotone and

hence they are not solid.
After discussing about solid and monotone sequence space now we come to the
concept of sequence algebra which will help to understand our further work.

Theorem 4.4 For any modulus function f, the spaces »(o0BV. (f)) and ,BV’ (f)
are sequence algebra.

Proof. Letx = (x;),y = (yl]) € 2(0BVL(f)) be any two arbitrary elements.
Then, the sets

{(i,j) % f (b)) 2 } el

and
. . : ® . I.
{(h]) m’§:0f<|¢mny(y)|) > e} €
Therefore,

{(i,j) : mgzof(‘¢mnﬁ(x)'¢mnij(y)|) = e} el

Thus, we have (x;). (yij) € 2(oBVL(f)). Hence 2 (oBV.(f)) is sequence algebra.
And for ,BV! (f) the result can be proved similarly.

Remark 4.2 If I is not maximal and I # I; then the spaces ,BV. (f) and
2(0BVL(f)) are not symmetric.

Example 4.2 Let A €1 be an infinite set and f (x) = x for allx = (x;;) and
Xij € [O, 00) If
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{1, if (i,j)eA
x,-]- =

0, otherwise

Then, it is clearly seen that (x;;) €, (0BV.(f)) C 2BVL(f).
Let K CN x Nbesuchthat K¢l and K°¢I.Let¢p: K — A and w : K — A°bea
bijective maps (as all four sets are infinite). Then, the mapping 7 : N x N - N x N

defined by

7(i.f) = {W% if (i) €K

w(i,j), otherwise.

is a permutation on N x N.
But (x,(; J)) &,BV! (f) and hence (o6 j))ﬁz (OBVfI (f)) showing that »BVL(f) and
2(0BVL(f)) are not symmetric double sequence spaces.

5. Conclusion

In this chapter, we study different forms of BV, double sequence spaces of
invariant means with the help of ideal, operators and some functions such as Orlicz
function and modulus function. The chapter shows the potential of the new
theoretical tools to deal with the convergence problems of sequences in sigma
bounded variation, occurring in many branches of science, engineering and applied
mathematics.
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Chapter 7

Simple Approach to Special
Polynomials: Laguerre, Hermite,

Legendre, Tchebychett, and
Gegenbauer

Vicente Aboites and Miguel Ramirez

Abstract

Special polynomials: Laguerre, Hermite, Legendre, Tchebycheff and
Gegenbauer are obtained through well-known linear algebra methods based on
Sturm-Liouville theory. A matrix corresponding to the differential operator is found
and its eigenvalues are obtained. The elements of the eigenvectors obtained corre-
spond to each mentioned polynomial. This method contrasts in simplicity with
standard methods based on solving the differential equation by means of power
series, obtaining them through a generating function, using the Rodrigues formula
for each polynomial, or by means of a contour integral.

Keywords: special polynomials, special functions, linear algebra, eigenvalues,
eigenvectors

1. Introduction

The polynomials covered in this chapter are solutions to an ordinary differential
equation (ODE), the hypergeometric equation. In general, the hypergeometric
equation may be written as:

s(x)F () + t(x)F'(x) + AF(x) = 0, (1)

where F(x) is a real function of a real variable F : U — R, where U CR is an open
subset of the real line, and 1 €R a corresponding eigenvalue, and the functions s(x)
and ¢(x) are real polynomials of at most second order and first order, respectively.

There are different cases obtained, depending on the kind of the s(x) function in
Eq. (1). When s(x) is a constant, Eq. (1) takes the form F’ (x) — 2axF'(x) 4+ AF(x) = 0,
and if « = 1 one obtains the Hermite polynomials. When s(x) is a polynomial of the
first degree, Eq. (1) takes the form xF  (x) + (—ax + f + 1)F'(x) + AF(x) = 0, and
when a = 1and § = 0, one obtains the Laguerre polynomials. There are three differ-
ent cases when s(x) is a polynomial of the second degree. When the second degree

polynomial has two different real roots, Eq. (1) takes the form (1 — x2)F (x)+
[ —a— (a+ p+2)x]F'(x) + AF(x) = 0; this is the Jacobi equation, and for different
values of a and f3, one obtains particular cases of polynomials: Gegenbauer
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polynomials if @ = §, Tchebycheff I and Il if @« = § = +1/2, and Legendre
polynomials if = f = 0. When the second degree polynomial has one double
root, Eq. (1) takes the form x?F (x) + [(& + 2)x + ]F'(x) + AF(x) = 0, and
when a = —1 and f = 0, one obtains the Bessel polynomials. Finally, when
the second degree polynomial has two complex roots, Eq. (1) takes the form
(1+x)°F (x) + (2x + a)F' (x) 4+ AF(x) = 0, which is the Romanovski equation [1].
These results are summarized in Table 1.

The Sturm-Liouville Theory is covered in most advanced physics and engineer-
ing courses. In this context, an eigenvalue equation sometimes takes the more
general self-adjoint form: Lu(x) + Aw(x)u(x) = 0, where £ is a differential operator;

Lu(x) =4 {p (x) d‘;gf)} + q(x)u(x), A an eigenvalue, and w(x) is known as a weight

or density function. The analysis of this equation and its solutions is called the
Sturm-Liouville theory. Specific forms of p(x), ¢(x), A and w(x) are given for
Legendre, Laguerre, Hermite and other well-known equations in the given refer-
ences. There, the close analogy of this theory with linear algebra concepts is also
shown. For example, functions here take the role of vectors there, and linear
operators here take that of matrices there. Finally, the diagonalization of a real
symmetric matrix corresponds to the solution of an ordinary differential equation,
defined by a self-adjoint operator £, in terms of its eigenfunctions, which are the
“continuous” analog of the eigenvectors [2, 3].

s(x) Canonical form and weight function Example
Constant F’ () — 2axF'(x) + AF(x) = 0 (2) When a = 1 one obtains the
w(x) = e (3) Hermite equation, F(x) = H(x);

this produces the Hermite
polynomials, denoted as {Hf;’)}.

First degree  xF"(x) + (—ax + f + 1)F'(x) + AF(x) = 0 (4) Whena =1andf = 0, one
w(x) = xPe (5) obtains the Laguerre equation,
F(x) = L(x); this produces the
Laguerre polynomials, denoted as

(L)
Second (1—x)F (%) + [ — a— (a+ f+2)x]F (x) Eq. (6) is the Jacobi equation,
degree: with + AF(x) =0 (6) considering F(x) = P(x), and for
two different s ()= (1—x)*(1+x) @ each pair (a, 8), one obtains the
real roots Jacobi polynomials, denoted as
{PL“'/’ ) } Particular cases:
Gegenbauer polynomials if a = f,
Tchebycheff I and II if
a = f = +1, and Legendre
polynomials if a = = 0.
Second x2F" (x) + [(a +2)x + IF'(x) + AF(x) = 0 (8) Whena = —1and f = 0, one
degree: with | () (x) = o ) obtains the Bessel equation,
one double F(x) = B(x); this produces the
real root Bessel polynomials, denoted as
B},
Second (1 +x)zF”(x) + (2x + a)F' (x) + AF(x) = 0 (10) Eqg. (10) is the Romanovski
degree: with w@h) ®)=( +x2)ﬂfle’“°°t 1, a1 equation; considering F(x) = R(x),
two complex then one obtains the Romanovski
roots polynomials, denoted as {RL”’"}) b
Table 1.

Polynomials obtained depending on the s(x) function of Eq. (1).
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The next section shows some of the most important applications of Hermite,
Gegenbauer, Tchebycheff, Laguerre and Legendre polynomials in applied Mathe-
matics and Physics. These polynomials are of great importance in mathematical
physics, the theory of approximation, the theory of mechanical quadrature, engi-
neering, and so forth.

2. Physical applications
2.1 Laguerre

Laguerre polynomials were named after Edmond Laguerre (1834-1886).
Laguerre studied a special case in 1897, and in 1880, Nikolay Yakovlevich Sonin
worked on the general case known as Sonine polynomials, but they were anticipated
by Robert Murphy (1833).

The Laguerre differential equation and its solutions, that is, Laguerre polyno-
mials, are found in many important physical problems, such as in the description of
the transversal profile of Laguerre-Gaussian laser beams [4]. The practical impor-
tance of Laguerre polynomials was enhanced by Schrédinger’s wave mechanics,
where they occur in the radial wave functions of the hydrogen atom [5].

The most important single application of the Laguerre polynomials is in the
solution of the Schrédinger wave equation for the hydrogen atom. This equation is

€
-5V W*TW:E% (12)

in which Z = 1 for hydrogen, 2 for single ionized helium, and so on. Separating
variables, we find that the angular dependence of y is Yff (8, @). The radial part,
R(7), satisfies the equation

R’ 1d [ ,dR\ Ze’_ L(L+1)
By use of the abbreviations
E 2mZe?
p=ar, withazz—s%,E<O,}»:%, (14)
Eq. (14) becomes
1d [ ,dxlp) A1 L(L+1)
_— _ _—— =0, 1
pde<p o )T\, 2 x(p)=0 (15)
where y(p) = R(p/a). Eq. (15) is satisfied by
px(p) = e 5L (o), (16)

in which & is replaced by 2L + 1and # by A — L — 1, in order to consider the
associated Laguerre polynomials L (p).

These polynomials are also used in problems involving the integration of
Helmholtz’s equation in parabolic coordinates, in the theory of propagation of
electromagnetic waves along transmission lines, in describing the static Wigner
functions of oscillator systems in quantum mechanics in phase space [6], etc.
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2.2 Hermite

Hermite polynomials were defined into the theory of probability by Pierre-
Simon Laplace in 1810, and Charles Hermite extended them to include several
variables and named them in 1864 [7].

Hermite polynomials are used to describe the transversal profile of Hermite-
Gaussian laser beams [4], but mainly to analyze the quantum mechanical simple
harmonic oscillator [8]. For a potential energy V = %Kz2 = %mwzzz (force

F = VV = —Kz), the Schrédinger wave equation is

o~ V2¥(z) + 1Kzzlp(z) =EY¥(z) (17)
2m 2 '

The oscillating particle has mass 7 and total energy E. By use of the
abbreviations

x = az with o* =

mK mle? 2E /m\1/2 2E
— = A==(2)" ==, 18
n? % h (K) ho (18)

in which w is the angular frequency of the corresponding classical oscillator,
Eq. (17) becomes

2
% + (A= x)y(x)

0, (19)
where y(x) = ¥(z) = ¥(x/a). With 1 = 2n + 1, Eq. (19) is satisfied by

W, (x) = 2745 (nl) Fe TH, (x), (20)

where H, (x) corresponds to Hermite polynomials.

Hermite polynomials also appear in probability as the Edgeworth series, in
combinatorics as an example of an Appell sequence, obeying the umbral calculus,
in numerical analysis as Gaussian quadrature, etc.

2.3 Legendre

Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre.
Spherical harmonics are an important class of special functions that are closely
related to these polynomials. They arise, for instance, when Laplace’s equation is
solved in spherical coordinates. Since continuous solutions of Laplace’s equation are
harmonic functions, these solutions are called spherical harmonics [9].

In the separation of variables of Laplace’s equation, Helmholtz’s or the space-
dependence of the classical wave equation, and the Schrodinger wave equation for
central force fields,

V2 + Kf (r)y = 0, (21)

the angular dependence, coming entirely from the Laplacian operator, is

O(p) d ( d®> N CIC)] dch)((ﬁ) +n(n+1)0(0)®(4) = 0. (22)

sin(0) do Smg% sin20  d¢?

The separated azimuthal equation is
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1 do(¢) 2
— = —m’, (23)
(p) d¢’
with an orthogonal and normalized solution,
1 .
D,y = ——e"?. 24
= (24)

Splitting off the azimuthal dependence, the polar angle dependence (9) leads to
the associated Legendre equation, which is satisfied by the associated Legendre
functions; that is, ®(0) = P/’ (cos0). Normalizing the associated Legendre function,
one obtains the orthonormal function

2n+1(n— m): P (cos). (25)

), (cos0) = 2 (nim)

Taking the product of Egs. (24) and (25) to define,

V0.0) = (1 P e o, (26)

These Y7} (0, ¢) are the spherical harmonics [10].

Legendre polynomials are frequently encountered in physics and other technical
fields. Some examples are the coefficients in the expansion of the Newtonian
potential that gives the gravitational potential associated to a point mass or the
Coulomb potential associated to a point charge, the gravitational and electrostatic
potential inside a spherical shell, steady-state heat conduction problems in spherical
problems inside a homogeneous solid sphere, and so forth [11].

2.4 Tchebycheff

Tchebycheff polynomials, named after Pafnuty Tchebycheff (also written as
Chebyshev, Tchebyshev or Tschebyschow), are important in approximation theory
because the roots of the Tchebycheff polynomials of the first kind, which are also
called Tchebycheff nodes, are used as nodes in polynomial interpolation. Approxi-
mation theory is concerned with how functions can best be approximated with
simpler functions, and through quantitatively characterizing the errors introduced
thereby.

One can obtain polynomials very close to the optimal one by expanding the given
function in terms of Tchebycheff polynomials, and then cutting off the expansion
at the desired degree. This is similar to the Fourier analysis of the function, using
the Tchebycheff polynomials instead of the usual trigonometric functions.

If one calculates the coefficients in the Tchebycheff expansion for a function,

Flx) ~ i ;T (x), 27)

and then cuts off the series after the Ty term, one gets an Nth-degree polyno-
mial approximating f(x).

Tchebycheff polynomials are also found in many important physics, mathe-
matics and engineering problems. A capacitor whose plates are two eccentric
spheres is an interesting example [12], another one can be found in aircraft aero-
dynamics [13], etc.
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2.5 Gegenbauer

Gegenbauer polynomials, named after Leopold Gegenbauer, and often called
ultraspherical polynomials, include Legendre and Tchebycheff polynomials as spe-
cial or limiting cases, and at the same time, Gegenbauer polynomials are a special
case of Jacobi polynomials (see Table 1).

Gegenbauer polynomials appear naturally as extensions of Legendre polyno-
mials in the context of potential theory and harmonic analysis. They also appear in
the theory of Positive-definite functions [14].

Since Gegenbauer polynomials are a general case of Legendre and Tchebycheff
polynomials, more applications are shown in Section 2.3 and 2.4.

The most common methods to obtain the special polynomials are described in
the next section.

3. Special polynomials

To obtain the polynomials described in the previous section, one can use differ-
ent methods, some tougher than others. These polynomials are typically obtained as
a result of the solution of each specific differential equation by means of the power
series method. Usually, it is also shown that they can be obtained through a gener-
ating function and also by using the Rodrigues formula for each special polynomial,
or finally, through a contour integral. Most Mathematical Methods courses also
include a study of the properties of these polynomials, such as orthogonality, com-
pleteness, recursion relations, special values, asymptotic expansions and their rela-
tion to other functions, such as polynomials and hypergeometric functions. There is
no doubt that this is a challenging and demanding subject that requires a great deal
of attention from most students.

3.1 Differential equation

The most common way to solve the special polynomials is solving the associated
differential equation through power series and the Frobenius method
y = Y oanx". The corresponding polynomials satisfy the following differential
equations:

the Laguerre differential equation,

xy"+(1—x)y +ny =0, (28)
the Hermite differential equation,
¥y =2y +2ny =0, (29)
the Legendre differential equation,
(1=x%y" =29/ +n(n+1)y =0, (30)
the Tchebycheff differential equation,
(1=x%)y" =y +n%y =0, (31)
and the Gegenbauer differential equation,

(1—x%)y" — 22+ 1%y +n(n+22)y =0, (32)
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withn = 0,1,2, 3, ... inall the previous cases. Note that if A = %, Eq. (32) reduces

to the Legendre differential equation (Eq. (30)), and if 1 = 0, Eq. (32) reduces to
the Tchebycheff differential equation (Eq. (31)).

3.2 Rodrigues formula

For polynomials y,, (x), with interval I, weight function w(x), and an eigenvalue
equation of the form

PO, (%) +q(x)y, (x) + Ay, (x) = O, (33)

and with g(x) = W’;T(‘;()x)),, the general formula

4 d
dx"

Wy (%) = w(x) [p(e)"w(x)] (34)

is known as the Rodrigues formula, useful to obtain the nth-degree polynomial
of w [15].

3.3 Generating function and contour integral

Let I" be a curve that encloses x €I but excludes the endpoints of I. Then,
considering the Cauchy integral formula [16] for derivatives of w(x)p(x)" to derive
an integral formula from Eq. (34), one obtains

WWL_1JWQ)P@" dz

n! 27 Jrwx) (z—x)"z—x

(35)

The generating function for the orthogonal polynomials {"’" (x)} is defined as

n!

Glx,s) = 3 ) (36)

In the following section, Laguerre [2], Hermite [17], Legendre, Tchebycheff [18]
and Gegenbauer [3] polynomials are obtained through a simple method, using basic
linear algebra concepts, such as the eigenvalue and the eigenvector of a matrix.

4. Simple approach to special polynomials

The general algebraic polynomial of degree 7,

ag + arx + axx® + azx> + ... ax”, (37)
with a,, ay,...,a, € R, is represented by vector

"o
a1
az

A, = . (38)
a3

an
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Taking the first derivative of the above polynomial (x), one obtains the
polynomial

d
— [a0 + a1x + axx® + asx® + ... a,x"| = a1 + 2arx + 3a3x” + ... nayx" ", (39)

dx

which may be written as

ay
2a;
dAn 3(13
= . 40
e : (40)
na,
L 0 ]

Taking the second derivative of the polynomial (Eq. (37)) one obtains
P
e (a0 + arx + axx® + asx® + ... ayx"] = 2a, + 6azx + ... n(n — Da,x" 2, (41)

which may be written as

© o, ]
6(13
d*A, :
= 42
dx? n(n — 1a, (42)
0
L 0 _
Using Eq. (40), Eq. (39) may be written as
0o 1 0 07 [a0] [ ar ]
0 0 2 0 -« O0f|a 2a;
0 00 3 - 0]|m 3a3
= | (43)
as :
0O 0 0 0 - =m : nay,
LO O 0 0 - 0] La,l L 0
therefore, the first derivative operator A, may be written as
[0 1. 0 0 - O]
o020 - O
d 000 3 - 0 »
N P “
0 0 0O n
00 00 0

Doing the same for Eq. (41),
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o 0 2 0 0 ao a1
0 0 0 6 0 a1 2a,
AR R : a :
, 45
0 00O n(n—1) : n(n — a, (45)
0 00O 0 Ay_1 0
L0 0 0 0 - 0 JL a, | L 0 i
the second derivative operator A, may be written as
o o 2 0 - 0 )
0O 0 0 6 - 0
da’ A :
el 46
x> |0 0 0 0 n(n —1) (46)
0O 0 0 O - 0
L0 0O 0 0 - 0o |
4.1 Laguerre
The Laguerre differential operator is given by.
d’ d
o (1 x) o 4
xdxz +(1-x) dx (47)

substituting Egs. (41) and (44) into Eq. (47),

x (25 + 6azx + ... +n(n —Dax""*] + (1—x)[ar + 2a0x + 3asx” + ... +nax"""]
= a1+ (4ay — a1)x + (9az — 2a;)x* + (16a4 + 3a3)x> + - — nay,

(48)
which may be written as
(0 1.0 0 O 07 la0] [ m i
0 -1 4 0 0 0 aq 4a) — m
o 0 -2 9 0 0 a 9a3 — 2a
2 3 2 (49)
0 0 0 -3 16 0 as 16%4 - 3{13
LO O 0 0 0 -]l La, ] —na, |
For simplicity, the Laguerre differential operator, as a 4x4 matrix, is
represented by
01 0 ©0
2 0 -1 4 0
—+(1—-x)— 0
xdx2+( x)dx_> 0 0 -2 9 (50)
o 0 0 -3

The eigenvalues of a matrix M are the values that satisfy the equation
Det(M — AI) = 0. However, since the matrix (Eq. (50)) is a triangular matrix, the
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eigenvalues 4; of this matrix are the elements of the diagonal, namely: 1; = 0,
A = =1, A3 = =2, A4 = —3. The corresponding eigenvectors are the solutions of the
equation (M — 4I) -v = 0, where the eigenvector v = [ao,al,az,a3]T:

0—4 1 0 0 aop 0
0 —-1-4 4 0 a 0
1 1 _ (51)
0 0 -2 — ﬂ.i 9 ay 0
0 0 0 —3—4] Las 0
Substituting eigenvalue 4; = 0 in Eq. (51), we obtain eigenvector v;:
1
0
V= ; 52
=1, (52)
0

the elements of this eigenvector correspond to the first Laguerre polynomial,
Lo (x) =1.

Substituting eigenvalue 4, = —1 in Eq. (51), we obtain eigenvector v;:
1
N (53)
vy = ;
o
0

the elements of this eigenvector correspond to the second Laguerre polynomial,
Li(x)=1—x.
Substituting eigenvalue 13 = —2 in Eq. (51), we obtain eigenvector v3:

1
-2
V3 = 1 5 (54)
2
0

the elements of this eigenvector correspond to the third Laguerre polynomial,
Lz(x) =1-—2x+ %xz.

Substituting eigenvalue 14 = —3 in Eq. (51), we obtain eigenvector v4:
1
-3
ve=1| 3 |; (55)
2
1
6

the elements of this eigenvector correspond to the fourth Laguerre polynomial,
Li(x) =1—3x +3x? — 1x3.

4.2 Hermite

The Hermite differential operator is given by
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&’ d
— —Dx—
dx? dx
substituting Egs. (41) and (44) into Eq. (56),

(56)

[24; + 6azx + ... +n(n—D)ax" 2] — 2x[as + 2ax + 3a3x* + ... +nax"""]
= 2a; + (6a3 — 2a1)x + (1244 — 4az)x* + (20as — 6a3)x> + -+ — 2nay,

(57)
which may be written as
[0 0 2 0 O 0 Jlao0] [ 24 ]
0 2 0 6 0 0 ||a 6as — 2a1
0 0 -4 0 12 0 a 1244 — 4a
2 _ 4 2 ) (58)
0 0 0 -6 0 0 as 20%5 — 6613
LO 0 0 0 0 -« -2n]la,l L —2na,
For simplicity, the Hermite differential operator, as a 4x4 matrix, is
represented by
0 0 2 o0
d’ d 0 -2 0 6
A i
dx? dx |0 0 -4 (59
0 0 0 -6

The eigenvalues of a matrix M are the values that satisfy the equation
Det(M — AI) = 0. However, since the matrix (Eq. (59)) is a triangular matrix, the
eigenvalues /; of this matrix are the elements of the diagonal, namely: 1; = 0,

Ay = =2, A3 = —4, 14 = —6. The corresponding eigenvectors are the solutions of
the equation (M — A1) - v = 0, where the eigenvector v = [ag, a1, a2, as)":
0—4 0 2 0 a0 0
0 —2—X 0 6 a 0
: = . (60)
0 0 —4 — ﬂi 0 a) 0
0 0 0 —6 — ﬂ,‘ as 0
Substituting eigenvalue 1; = 0 in Eq. (60), we obtain eigenvector v;:
v = ; (61)

S O O -

the elements of this eigenvector correspond to the first Hermite polynomial,
Ho (x) =1.

Substituting eigenvalue 1, = —2 in Eq. (60), we obtain eigenvector v,:
0
2
V) = ; 62
2= |, (62)
0
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the elements of this eigenvector correspond to the second Hermite polynomial,
H1 (x) = 2.

Substituting eigenvalue 13 = —4 in Eq. (60), we obtain eigenvector v3:
-2
0
vz = ; 63
3 4 (63)
0

the elements of this eigenvector correspond to the third Hermite polynomial,
Hj(x) = 4x? — 2.

Substituting eigenvalue 14 = —6 in Eq. (60), we obtain eigenvector vy4:
0
-12
V4 = 0 5 (64)
8

the elements of this eigenvector correspond to the fourth Hermite polynomial,
Hj(x) = 8x% — 12x.

4.3 Legendre
The Legendre differential operator is given by

d? d
2
substituting Egs. (41) and (44) into Eq. (65),

(1 - x2) (65)

(1—x%)[2a; + 6asx + ... +n(n—Dax"?] — 2x[ar + 2arx + 3a3x> + ... +nax"""]
=2a; + (6az — 2a1)x + (12a4 — 6a;)x” + (20as — 12a3)x> + - — (n* + n)ay,

(66)
which may be written as
(0 o 2 0 O 0 a0 [ 24 ]
0 -2 0 6 0 0 a1 6(13 — 2ﬂ1
0O 0 -6 0 12 0 a, | | 12a4 —6ay (67)
0 0 0 -12 0 0 as | | 20as —12a5 |
L0 0 0 0 0 -« —m+n)]la,l L-mn*>+n)a,.
For simplicity, the Legendre differential operator, as a 4x4 matrix, is
represented by
0 O 2 0
d’ d |0 -2 0 6
1-:2) %
=2 2% o 0 -6 o (9
0o 0 0 -12
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The eigenvalues of a matrix M are the values that satisfy the equation
Det(M — AI) = 0. However, since the matrix (Eq. (68)) is a triangular matrix, the
eigenvalues /; of this matrix are the elements of the diagonal, namely: 1; = 0,
Ay = =2, 3 = —6, 14 = —12. The corresponding eigenvectors are the solutions of the
equation (M — 4I) - v = 0, where the eigenvector v = [ao,al,az,ag]T:

0—4 0 2 0 ag 0
0 -2 — /1,' 0 6 a1 0
= . 69
0 0 -6 — ﬂl' 0 a) 0 ( )
0 0 0 —12—-2] Las 0
Substituting eigenvalue 4; = 0 in Eq. (69), we obtain eigenvector v;:
1
0
v = ; 70
1 0 (70)
0

the elements of this eigenvector correspond to the first Legendre polynomial,
Po (x) =1.

Substituting eigenvalue 4, = —2 in Eq. (69), we obtain eigenvector v,:
0
! )
vy = ;
7o
0

the elements of this eigenvector correspond to the second Legendre polynomial,
Pi(x) =x.

Substituting eigenvalue 13 = —6 in Eq. (69), we obtain eigenvector v3:
1
0
V3 = ; 72
3= | 5 (72)
0

the elements of this eigenvector correspond to the third Legendre polynomial,

Py(x) = %xz - %

Substituting eigenvalue 14 = —12 in Eq. (69), we obtain eigenvector v4:
0
3
=5

the elements of this eigenvector correspond to the fourth Legendre polynomial,
Ps3(x) = %x3 — 3y,

2
4.4 Tchebycheff

The Tchebycheff differential operator is given by
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&
a2 Cdx’

substituting Egs. (41) and (44) into Eq. (74),

(1—«? (74)

(1—x?)[2a; + 6asx + ... +n(n—Dax"?*] —x[ar + 2arx + 3a3x>
+ oo+ 0a,x" ] = 2a; + (643 — aq)x + (12a4 — 4ay)x> (75)

+ (20as — 9a3)x® 4 -+ — n’a,,

which may be written as

[0 0 2 0 0 0 ag 2a;
0 -1 0 6 0 0 a1 6(13 — a1
0O 0 —4 0 12 0 a 12a4 — 4a,
= . (76)
O 0 0 -9 0 0 as 20as — 9as3
0 0 0 0 0 - —n*|l|a,] | -n'a,
For simplicity, the Tchebycheff differential operator, as a 4x4 matrix, is
represented by
0 0 2 0
4? d 0 -1 0 6
1-x) 2 2%
(1-x )dx2 *ix 0 0 -4 0 70

0O 0 0 -9

The eigenvalues of a matrix M are the values that satisfy the equation
Det(M — AI) = 0. However, since the matrix (Eq. (77)) is a triangular matrix, the
eigenvalues /; of this matrix are the elements of the diagonal, namely: 1; = 0,
A = —1, 43 = —4, A4 = —9. The corresponding eigenvectors are the solutions of the

equation (M — 4I) - v = 0, where the eigenvector v = [ao,a1,a2,a3)";

0— ﬂ,‘ 0 2 0 ao 0
—1—4 0 6 aq 0
= . (78)
0 0 —4 — ﬂi 0 a) 0
0 0 0 —9— 2] Las 0

Substituting eigenvalue 4; = 0 in Eq. (78), we obtain eigenvector v;:

; (79)

V1 =

S O O -

the elements of this eigenvector correspond to the first Tchebycheff polynomial,
To (x) =1.
Substituting eigenvalue 4, = —1 in Eq. (78), we obtain eigenvector v,:
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; (80)

V) =

oSO O »m O

the elements of this eigenvector correspond to the second Tchebycheff polyno-
mial, T1(x) = x.

Substituting eigenvalue 13 = —4 in Eq. (78), we obtain eigenvector v3:
-1
0
= 5 81
v3 ) (81)
0

the elements of this eigenvector correspond to the third Tchebycheff polyno-
mial, Th(x) = 2x? — 1.

Substituting eigenvalue 14 = —9 in Eq. (78), we obtain eigenvector v4:
0
-3
vy = . 82
4 0 (82)
4

the elements of this eigenvector correspond to the fourth Tchebycheff polyno-
mial, T3(x) = 4x3 — 3x.

4.5 Gegenbauer

The Gegenbauer differential operator is given by

2

d d
1-x%) == — (24 + 1x——; 8
(1-x%) 7 — @+ Dx (83)
substituting (41) and (44) into (83),
(1—x?)[2a2 + 6asx + ... +n(n—Dax"?*] — (24 + Dx[m
+ 2% + 3a3x” + ... +nax""| =2a, + [6a3 — (24 + 1)aq)x (84)
+ [12a4 — 4(4 + Daa)x? + [20as — 3(24 + 3)az)x’
+ e — [nz + 2/1n]an,
which may be written as
0 0 2 0 0 0 agp 2a,
0 —(24+1) 0 6 0 0 a 6as — (24 + 1)ay
0 0 —4(A+1) 0 12 0 @ | | 1240 — 40+ 1)a,
0 0 0 -3(24+3) 0 0 as | | 20as—3(24+3)as |
0 0 0 0 0 - —n?—-2m] la, —(n? + 2n)a,
(85)
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For simplicity, the Gegenbauer differential operator, as a 4x4 matrix, is
represented by

0 0 2 0
da’ d 0 —(22+1) 0 6
1-xt)-—=—- (2 +1)x—— 86
(=) g = @ o= 0 —4(A+1) 0 (86)
0 0 0 —3(22+3)

The eigenvalues of a matrix M are the values that satisfy the equation
Det(M — A'I) = 0. However, since the matrix (Eq. (86)) is a triangular matrix, the
eigenvalues 4; of this matrix are the elements of the diagonal, namely: 2} = 0,
Xy =—(224+1), 25 = —4(A+ 1), 2, = —3(24 + 3). The corresponding eigenvectors
are the solutions of the equation (M — 4I) - v = 0, where the eigenvector
v = [ag, a1, a2,a3]";

0—2 0 2 0 ag 0
0 —(224+1) - % 0 6 ar| |0
0 0 —4(A+1) =2 0 lay| |0
0 0 0 —3(20+3) -4 as 0
(87)
Substituting eigenvalue 1; = 0 in Eq. (87), we obtain eigenvector v;:
V1 = 5 (88)

S O O -

the elements of this eigenvector correspond to the first Gegenbauer polynomial,
Ch(x) =1.
Substituting eigenvalue 2, = —(24 + 1) in Eq. (87), we obtain eigenvector v,:

V) =

0
24
; 89
0 (89)
0

the elements of this eigenvector correspond to the second Gegenbauer polyno-
mial, C}(x) = 2.
Substituting eigenvalue A} = —4(1 + 1) in Eq. (87), we obtain eigenvector vs:

_J
0

21+ | (90)
0

the elements of this eigenvector correspond to the third Gegenbauer polynomial,
Ch(x) = =2+ 221+ 2)x2.
Substituting eigenvalue 2, = —3(24 + 3) in Eq. (87), we obtain eigenvector v4:
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0
21+ 2)
vy = 0 ; (91)
%m + D2+ 2)

the elements of this eigenvector correspond to the fourth Gegenbauer polyno-
mial, C(x) = 2A(1+ A)x + 2 A(1+ 4)(2 + A)x>.

5. Conclusions

Laguerre, Hermite, Legendre, Tchebycheff and Gegenbauer polynomials are
obtained in a simple and straightforward way using basic linear algebra concepts,
such as the eigenvalue and the eigenvector of a matrix. Once the matrix of the
corresponding differential operator is obtained, the eigenvalues of this matrix are
found, and the elements of its eigenvectors correspond to the coefficients of each
kind of polynomials. Using a larger matrix, higher order polynomials may be found;
however, the general case for an #zxn matrix was not obtained since it seems that in
this general case, standard methods would be easier to use. The main advantage of
this method lies in its easiness, since it relies on simple linear algebra concepts. This
method contrasts in simplicity with standard methods based on solving the differ-
ential equation using power series, using the generating function, using the Rodri-
gues formula, or using a contour integral.
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