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Preface

This book contains well-written monographs within the broad spectrum of applied
mathematics, with the aim of offering an interesting reading of current trends
and problems in this fascinating and critically important field of mathematics to a
broad category of researchers and practitioners. Recent developments in
high-performance computing are radically changing the way we do numerics as
applied mathematicians. Because of the impressive advances in computer technol-
ogy and the introduction of fast methods that require less algorithmic cost and
fewer memory resources, nowadays a rigorous numerical solution of many difficult
computational science applications has become possible. In the future we will be
solving much bigger problems, and even more factors will need to be considered
than in the past when attempting to identify the optimal solution approach. The gap
between fast and slow algorithms is rapidly growing. Methods that do more opera-
tions per grid node, cell, or element, such as higher-order and discontinuous
Galerkin discretization schemes and spectral element methods, are becoming very
attractive to use against more traditional techniques such as finite element
discretization schemes. Structured data are already coming back, because they may
achieve a better load balance than unstructured grids on computers with hundreds
of thousands of processors. Novel classes of numerical methods with reduced com-
putational complexity will need to be found to solve large-scale problems arising in
an industrial setting.

The book is structured in three distinct parts, according to the aims and methodol-
ogies used by the authors in the development of their studies, ranging from optimi-
zation techniques to graph-oriented approaches and approximation theory,
providing overall a good mix of both theory and practice. Chapters 1–2 present an
overview of unconstrained optimization techniques, covering both line search and
trust-region methods that are essential ingredients to guarantee global convergence
of descent schemes. Numerical optimization is the primary tool used in Chapter 3 to
analyze the shape factor of exceedance probability curves, which is a critical analysis
tool to assess risks, e.g., in the study of natural disasters such as floods, hurricanes,
and earthquakes. Chapters 4–5 describe graph-oriented approaches. Chapter 4
develops a graph-based model for the topological design of the wide area network
using dynamic programming and dynamic programming with state-space relaxa-
tion methodologies. Chapter 5 uses graph and subgraph models to speed up the
computations of scalar multiplication algorithms on elliptic curves defined over
finite fields, which is one central and time-consuming operation in elliptic curve
cryptography. Finally, the contributions of the last two chapters deal with some
aspects of functional approximation. Chapter 6 proposes a study of different forms
of bounded variation sequence spaces of invariant means with the help of ideal
operators and functions such as Orlicz function and modulus function. The results
show the potential of the new theoretical tools to deal with the convergence prob-
lems of sequences in sigma-bounded variation occurring in many branches of sci-
ence, engineering, and applied mathematics. Chapter 7 is devoted to an overview of
the mathematics of special polynomials showing how to obtain them in a simple and
straightforward approach using basic linear algebra concepts. Overall, the collection
of contributions demonstrates the highly interdisciplinary character of the
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Chapter 1 

Some Unconstrained 
Optimization Methods 
Snezana S. Djordjevic 

Abstract 

Although it is a very old theme, unconstrained optimization is an area which is 
always actual for many scientists. Today, the results of unconstrained optimization 
are applied in different branches of science, as well as generally in practice. Here, 
we present the line search techniques. Further, in this chapter we consider some 
unconstrained optimization methods. We try to present these methods but also to 
present some contemporary results in this area. 

Keywords: unconstrained optimization, line search, steepest descent method, 
Barzilai-Borwein method, Newton method, modified Newton method, inexact 
Newton method, quasi-Newton method 

1. Introduction 

Optimization is a very old subject of a great interest; we can search deep into a 
human history to find important examples of applying optimization in the usual life 
of a human being, for example, the need of finding the best way to produce food 
yielded finding the best piece of land for producing, as well as (later on, how the 
time was going) the best ways of treatment of the chosen land and the chosen 
seedlings to get the best results. 

From the very beginning of manufacturing, the manufacturers were trying to 
find the ways to get maximum income with minimum expenses. 

There are plenty of examples of optimization processes in pharmacology (for 
determination of the geometry of a molecule), in meteorology, in optimization of a 
trajectory of a deep-water vehicle, in optimization of power management (optimi-
zation of the production of electrical power plants), etc. 

Optimization presents an important tool in decision theory and analysis of 
physical systems. 

Optimization theory is a very developed area with its wide application in sci-
ence, engineering, business management, military, and space technology. 

Optimization can be defined as the process of finding the best solution to a 
problem in a certain sense and under certain conditions. 

Along with the passage of time, optimization was evolving. Optimization 
became an independent area of mathematics in 1940, when Dantzig presented the 
so-called simplex algorithm for linear programming. 

The development of nonlinear programming became great after presentation of 
conjugate gradient methods and quasi-Newton methods in the 1950s. 

1 
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Today, there exist many modern optimization methods which are made to solve 
a variety of optimization problems. Now, they present the necessary tool for solving 
problems in diverse fields. 

At the beginning, it is necessary to define an objective function, which, for 
example, could be a technical expense, profit or purity of materials, time, potential 
energy, etc. 

The object function depends on certain characteristics of the system, which are 
known as variables. The goal is to find the values of those variables, for which the 
object function reaches its best value, which we call an extremum or an optimum. 

It can happen that those variables are chosen in such a way that they satisfy 
certain conditions, i.e., restrictions. 

The process of identifying the object function, variables, and restrictions for the 
given problem is called modeling. 

The first and the most important step in an optimization process is the con-
struction of the appropriate model, and this step can be the problem by itself. 
Namely, in the case that the model is too much simplified, it cannot be a faithful 
reflection of the practical problem. By the other side, if the constructed model is too 
complicated, then solving the problem is also too complicated. 

After the construction of the appropriate model, it is necessary to apply the 
appropriate algorithm to solve the problem. It is no need to emphasize that there 
does not exist a universal algorithm for solving the set problem. 

Sometimes, in the applications, the set of input parameters is bounded, i.e., the 
input parameters have values within the allowed space of input parameters Dx; we 
can write 

x ∈ Dx: (1) 

Except (1), the next conditions can also be imposed: 

φlðx1; …; xnÞ ¼ φ0l, l  ¼ 1, …, m1 , n, (2) 

ψ jðx1; …; xnÞ≤ ψ0j, j  ¼ 1, …, m2: (3) 

Optimization task is to find the minimum (maximum) of the objective function 
f xð  Þ ¼ f xð 1; …; xnÞ, under the conditions (1), (2), and (3). 

If the object function is linear, and the functions φlðx1; …; xnÞ l ¼ 1, …, m1 and 
ψ jðx1; …; xnÞ j ¼ 1, …, m2 are linear, then it is about the linear programming problem, 
but if at least one of the mentioned functions is nonlinear, it is about the nonlinear 
programming problem. 

Unconstrained optimization problem can be presented as 

min f xð Þ, (4) 
x ∈ Rn 

where f ∈ Rn is a smooth function. 
Problem (4) is, in fact, the unconstrained minimization problem. But, it is well 

known that the unconstrained minimization problem is equivalent to an 
unconstrained maximization problem, i.e. 

min f x maxð�f ð ÞÞ, (5)ð  Þ ¼ �  x 

as well as 

max f xð  Þ ¼ �minð�f xð ÞÞ: (6) 

2 
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∗Definition 1.1.1 x ∗ is called a global minimizer of f if f ð Þ  ð Þ for all x ∈ Rn.x ≤ f x  
The ideal situation is finding a global minimizer of f . Because of the fact that our 

knowledge of the function f is usually only local, the global minimizer can be very 
difficult to find. We usually do not have the total knowledge about f . In fact, most 
algorithms are able to find only a local minimizer, i.e., a point that achieves the 
smallest value of f in its neighborhood. 

So, we could be satisfied by finding the local minimizer of the function f . We 
distinguish weak and strict (or strong) local minimizer. 

Formal definitions of local weak and strict minimizer of the function f are the 
next two definitions, respectively. 

Definition 1.1.2 x ∗ is called a weak local minimizer of f if there exists a neighbor-
∗hood N of x ∗, such that f ð Þ≤ f x for all x ∈ N.x ð Þ  

Definition 1.1.3 x ∗ is called a strict (strong) local minimizer of f if there exists a 
∗ ∗neighborhood N of x , such that f ð Þ  ð Þ for all x ∈ N.x , f x  

Considering backward definitions 1.1.2 and 1.1.3, the procedure of finding 
local minimizer (weak or strict) does not seem such easy; it seems that we 

∗should examine all points from the neighborhood of x , and it looks like a very 
difficult task. 

Fortunately, if the object function f satisfies some special conditions, we can 
solve this task in a much easier way. 

For example, we can assume that the object function f is smooth or, further-
more, twice continuously differentiable. Then, we concentrate to the gradient 

∗∇f x as well as to the Hessian ∇2f x∗ .ð Þ  ð Þ  
All algorithms for unconstrained minimization require the user to start from a 

certain point, so-called the starting point, which we usually denote by x0. It is good 
to choose x0 such that it is a reasonable estimation of the solution. But, to find such 
estimation, a little more knowledge about the considered set of data is needed, and 
the systematic investigation is needed also. So, it seems much simpler to use one of 
the algorithms to find x0 or to take it arbitrarily. 

There exist two important classes of iterative methods—line search methods and 
trust-region methods—made in the aim to solve the unconstrained optimization 
problem (4). 

In this chapter, at first, we discuss different kinds of line search. Then, we 
consider some line search optimization methods in details, i.e., we study steepest 
descent method, Barzilai-Borwein gradient method, Newton method, and quasi-
Newton method. 

Also, we try to give some of the most recent results in these areas. 

2. Line search 

Now, let us consider the problem 

min f xð Þ, (7) 
x ∈ Rn 

where f : Rn ! R is a continuously differentiable function, bounded from below. 
There exists a great number of methods made in the aim to solve the problem (7). 
The optimization methods based on line search utilize the next iterative 

scheme: 

xkþ1 ¼ xk þ tkdk, (8) 

3 
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where xk is the current iterative point, xkþ1 is the next iterative point, dk is the 
search direction, and tk is the step size in the direction dk. 

At first, we consider the monotone line search. 
Now, we give the iterative scheme of this kind of search. 

Algorithm 1.2.1. (Monotone line search). 
Assumptions: ϵ . 0, x0, k ≔0. 
Step 1. If ∥gk∥≤ ϵ, then STOP. 
Step 2. Find the descent direction dk. 
Step 3. Find the step size tk, such that f xð k þ tkdkÞ, f xk .ð Þ  
Step 4. Set xkþ1 ¼ xk þ tkdk. 
Step 5. Take k ≔ k þ 1 and go to Step 1. 
Denote 

Φ t ð :ð Þ ¼ f xk þ tdkÞ 
Trying to solve the minimization problem, we are going to search for the step 

size t ¼ tk, in the direction dk, such that the next relation holds: 

Φ tk ð Þð Þ, Φ 0 : 

That procedure is called the monotone line search. 
We can search for the step size tk in such a way that the next relation holds: 

f xð k þ tkdkÞ ¼ min f xð k þ tkdkÞ, (9)
t ≥0 

i.e. 

ΦðtkÞ ¼ min Φð Þt , (10)
t ≥0 

or we can use the next formula: 

n o 
tk ¼ min tj g xð k þ tdkÞTdk ¼ 0; t ≥0 : (11) 

In this case we are talking about the exact or the optimal line search, where the 
parameter tk, which is received as the solution of the one-dimensional problem 
(10), is the optimal step size. 

By the other side, instead of using the relation (9), or the relation (11), we can be 
satisfied by searching for such tk, which is acceptable if the next relation suits us: 

f xð kÞ � f ðxk þ tkdkÞ. δk . 0: 

Then, we are talking about the inexact or the approximate or the acceptable line 
search, which is very much utilized in the practice. 

There are several reasons to use the inexact instead of the exact line search. One 
of them is that the exact line search is expensive. Further, in the cases when the 
iteration is far from the solution, the exact line search is not efficient. Next, in the 
practice, the convergence rate of many optimization methods (such as Newton or 
quasi-Newton) does not depend on the exact line search. 

First, we are going to mention so-called basic and, by the way, very well-known 
inexact line searches. 

Algorithm 1.2.2. (Backtracking). 
1Assumptions: xk, the descent direction dk, 0  , δ , 2, η ∈ ð0; 1Þ. 

Step 1. t ≔ 1. 
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Step 2. While f ðxk þ tdkÞ. f xð kÞ þ δ tg Tk dk, t ≔ t � η. 
Step 3. Set tk ¼ t. 
Now, we describe the Armijo rule. 

RnTheorem 1.2.1. [1] Let f ∈ C1ð Þ and let dk be the descent direction. Then, there 
exists the nonnegative number mk, such that 

Tf xk þ ηmk dkð Þ≤ f ðxkÞ þ c1ηmk gk dk, 

where c1 ∈ 0; 1ð Þ and η ∈ 0; 1ð Þ. 
Next, we describe the Goldstein rule [2]. 
The step size tk is chosen in such a way that 

f ðxk þ tdkÞ≤ f ðxkÞ þ δ tg T 
k dk, 

f ðxk þ tdkÞ. f xð kÞ þ  1 � δð Þ tg T 
k dk, 

where 0 , δ , 1 
2. 

Now, Wolfe line search rules follow [3], [4]. 
Standard Wolfe line search conditions are 

Tf xk þ tkdkð  Þ � f xkð Þ≤ δtk gk dk, (12) 
T Tgkþ1dk ≥ σgk dk, (13) 

where dk is a descent direction and 0 , δ ≤ σ , 1. 
This efficient strategy means that we should accept a positive step length tk, if 

conditions (12)–(13) are satisfied. 
Strong Wolfe line search conditions consist of (12) and the next, stronger ver-

sion of (13): 

T T∣ gkþ1dk∣ ≤  � σgk dk: (14) 

In the generalized Wolfe line search conditions, the absolute value in (14) is 
replaced by the inequalities: 

T T Tσ1 gk dk ≤ gkþ1dk ≤ � σ2 gk dk, 0 , δ ≤ σ1 , 1, σ2 ≥ 0: (15) 

By the other side, in the approximate Wolfe line search conditions, the inequal-
ities (15) are changed into the next ones: 

T T Tσgk dk ≤ gkþ1dk ≤ ð2δ � 1Þgk dk, 0 , δ , 
1 
, δ , σ , 1: (16)

2 

The next lemma is very important. 

Lemma 1.2.1. [5] Let f ∈ C Rn . Let dk be a descent direction at the point xk, andð Þ  
assume that the function f is bounded from below along the direction fxk þ tdkjt . 0g. 
Then, if 0 , δ , σ , 1, there exist the intervals inside which the step length satisfies 
standard Wolfe conditions and strong Wolfe conditions. 

By the other side, the introduction of the non-monotone line search is 
motivated by the existence of the problems where the search direction does not 
have to be a descent direction. This can happen, for example, in stochastic optimi-
zation [6]. 

Next, some efficient quasi-Newton methods, for example, SR1 update, do not 
produce the descent direction in every iteration [5]. 
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Further, some efficient methods like spectral are not monotone at all. 
Some numerical results given in [7–11] show that non-monotone techniques are 

better than the monotone ones if the problem is to find the global optimal values of 
the object function. 

Algorithms of the non-monotone line search do not insist on a descent of the 
object function in every step. But, even these algorithms require the reduction of 
the object function after a predetermined number of iterations. 

The first non-monotone line search technique is presented in [12]. Namely, in 
[12], the problem is to find the step size which satisfies 

˜ ° Tf ðxk þ tkdkÞ≤ max f xk-j þ δtk gk dk, 0 ≤ j ≤m kð Þ  

where m 0 ð Þ  f ð Þ þ 1; Mg, for k ≥ 1, δ ∈ ð0; 1Þ, where Mð Þ ¼ 0, 0 ≤m k  ≤min m k  - 1 
is a nonnegative integer. 

This strategy is in fact the generalization of Armijo line search. In the same 
work, the authors suppose that the search directions satisfy the next conditions for 
some positive constants b1 and b2: 

Tgk dk ≤ - b1∥ gk∥
2 , 

∥dk∥≤ b2∥ gk∥: 

The next non-monotone line search is described in [11]. 
Let x0 be the starting point, and let 

0 ≤ ηmin ≤ ηmax ≤ 1, 0 , δ , σ , 1 , ρ, μ . 0: 

Let C0 ¼ f x0 , Q0 ¼ 1.ð Þ  
The step size has to satisfy the next conditions: 

Tf ðxk þ tkdkÞ≤Ck þ δtk gk dk, (17) 
Tg xð k þ tkdkÞ≥ σgk dk: (18) 

The value ηk is chosen from the interval ½ηmin; ηmax l and then 

ηkQkCk þ f xð kþ Þ1Q kþ1 ¼ ηkQk þ 1, Ckþ1 ¼ :
Qkþ1 

Non-monotone rules which contain the sequence of nonnegative parameters 
ϵk are used firstly in [13], and they are successfully used in many other algo-f g  

rithms, for example, in [14]. The next property of the parameters ϵk is assumed: 

ϵk . 0, ∑ ϵk ¼ ϵ , ∞, 
k 

and the corresponding rule is 

Tf ðxk þ tkdkÞ≤ f xð kÞ þ c1tk gk dk þ ϵk: 

Now, we give the non-monotone line search algorithm, shortly NLSA, presented 
in [11]. 

Algorithm 1.2.3. (NLSA). 
Assumptions: x0, 0  ≤ ηmin ≤ ηmax ≤ 1, 0 , δ , σ , 1 , ρ, μ . 0. 
Set C0 ¼ f x0 , Q0 ¼ 1, k ¼ 0.ð Þ  
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Step 1. If ∥∇f xð Þk ∥ is sufficiently small, then STOP. 
Step 2. Set xkþ1 ¼ xk þ tkdk, where tk satisfies either the (non-monotone) Wolfe 

conditions (17) and (18) or the (non-monotone) Armijo conditions: tk ¼ tkρhk , 
where tk . 0 is the trial step and hk is the largest integer such that (17) holds 
and tk ≤ μ. 

Step 3. Choose ηk ∈ ½ηmin; ηmax�, and set 

Qkþ1 ¼ ηkQk þ 1, Ckþ1 ¼ ðηkQkCk þ f xð kþ1ÞÞ=Qkþ1: 

Step 4. Set k ≔ k þ 1 and go to Step 1. 
We can notice [11] that Ckþ1 is a convex combination of f x0 , f  ð Þ  xk .ð Þ  x1 , …, f  ð Þ  

The parameter ηk controls the degree of non-monotonicity. 
If ηk ¼ 0 for all k, then this non-monotone line search becomes monotone Wolfe 

or Armijo line search. 
If ηk ¼ 1 for all k, then Ck ¼ Ak, where 

k1
Ak ¼ ∑ f xð Þi :k þ 1 i¼0 

Lemma 1.2.2. [11] If ∇f xð Þk 
Tdk ≤ 0 for each k, then for the iterates generated by the 

non-monotone line search algorithm, we have f k ≤ Ck ≤ Ak for each k. Moreover, if 
∇f ð ÞTdk , 0 and f ð Þx are bounded from below, then there exists tk satisfying either xk 

Wolfe or Armijo conditions of the line search update. 
This study would be very incomplete unless we mention that there are many 

modifications of the abovementioned line searches. All these modifications are 
made to improve the previous results. 

For example, in [15], the new inexact line search is described by the next way. ˜ ° 
1Let β ∈ ð0; 1Þ, σ ∈ 0; ; let Bk be a symmetric positive definite matrix which 2 

approximates ∇2f xk and sk ¼ � dT
gTdkð Þ  k . The step size tk is the largest one in 
k Bkdk˛ 

sk; skβ; skβ2; … ̋
 
such that 

˙ ˆ 
Tf ðxk þ tdkÞ � f ð Þ≤ σt g dk þ k Bkdk :xk 

1 
tdT 

k 2 

Further, in [16], a new inexact line search rule is presented. This rule is a 
modified version of the classical Armijo line search rule. We describe it now. 

Let g ¼ ∇f xð Þ be a Lipschitz continuous function and L the Lipschitz constant. 
Let Lk be an approximation of L. Set 

Tgk dkβk ¼ �  
Lk∥dk∥2 : 

Find a step size tk as the largest component in the set 
˛ 
βk; βkρ; βkρ

2 … ̋
 
such that 

the inequality 

ˇ ˘ 
Tf ðxk þ Þ≤ f xk σtk gk dk � 

1 
tkμLk∥dk∥2tkdk ð Þ þ  

2 

holds, where σ ∈ ð0; 1Þ, μ ∈ ½0; ∞Þ, and ρ ∈ ð0; 1Þ are given constants. 
Next, in [17], a new, modified Wolfe line search is given in the next way. 
Find tk . 0 such that 

7 
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˜ ° 
Tf xð k þ Þ � f ð Þ≤ min δtk g γt2∥dk∥2 ,tkdk xk k dk; � k 

Tg xð k þ tkdkÞTdk ≥ σg dk,k 

where δ ∈ ð0; 1Þ, σ ∈ ðδ; 1Þ, and γ . 0. 
More recent results on this topic can be found, for example, in [18–23]. 

2.1 Steepest descent (SD) 

The classical steepest descent method which is designed by Cauchy [24] can 
be considered as one among the most important procedures for minimization of 
real-valued function defined on Rn . 

Steepest descent is one of the simplest minimization methods for unconstrained 
optimization. Since it uses the negative gradient as its search direction, it is known 
also as the gradient method. 

It has low computational cost and low matrix storage requirement, because it 
does not need the computations of the second derivatives to be solved to calculate 
the search direction [25]. 

Suppose that f ð Þx is continuously differentiable in a certain neighborhood of a 
point xk and also suppose that gk≜∇f xð Þk 6¼ 0. 

Using Taylor expansion of the function f near xk as well as Cauchy-Schwartz 
inequality, one can easily prove that the greatest fall of f exists if and only if 
dk ¼ �gk, i.e., �gk is the steepest descent direction. 

The iterative scheme of the SD method is 

xkþ1 ¼ xk � tk gk: (19) 

The classical steepest descent method uses the exact line search. 
Now, we give the algorithm of the steepest descent method which refers to the 

exact as well as to the inexact line search. 

Algorithm 1.2.4. (Steepest descent method, i.e., SD method). 
Assumptions: 0 , ϵ ≪ 1, x0 ∈ Rn . Let k ¼ 0. 
Step 1. If ∥ gk∥≤  ε, then STOP, else set dk ¼ �gk. 
Step 2. Find the step size tk, which is the solution of the problem 

min f ðxk þ tdkÞ, (20)
t ≥ 0 

else find the step size tk by any of the inexact line search methods. 
Step 3. Set xkþ1 ¼ xk þ tkdk. 
Step 4. Set k ≔ k þ 1 and go to Step 1. 
The classical and the oldest steepest descent step size tk, which was designed by 

Cauchy (in the case of the exact line search), is computed as [26] 

gT 
k gktk ¼ , 

gTGgkk 

where gk ¼ ∇f xð Þk and G ¼ ∇2f xð Þk . 

Theorem 1.2.2. [27] (Global convergence theorem of the SD method) Let f ∈ C1 . 
Then, each accumulation point of the iterative sequence f g, generated by Algorithm xk 

1.2.4, is a stationary point. 
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Remark 1.2.1. The steepest descent method has at least the linear convergence rate. 
More information about the convergence of the SD method can be found in 

[5, 27]. 
Although known as the first unconstrained optimization method, this method is 

still a theme considered by scientists. 
Different modifications of this method are made, for example, see [25, 28–32]. 
In [28], the authors presented a new search direction from Cauchy’s method in 

the form of two parameters known as Zubai’ah-Mustafa-Rivaie-Ismail method, 
shortly, ZMRI method: 

dk ¼ �gk � ∥ gk∥ gk�1: (21) 

So, in [28], a new modification of SD method is suggested using a new search 
direction, dk, given by (21). The numerical results are presented based on the 
number of iterations and CPU time. It is shown that this new method is efficient 
when it is compared to the classical SD. 

In [25], a new scaled search direction of SD method is presented. The inspiration 
for this new method is the work of Andrei [33], in which the author presents and 
analyzes a new scaled conjugate gradient algorithm, based on an interpretation of 
the secant equation and on the inexact Wolfe line search conditions. 

The method proposed in [25] is known as Rashidah-Rivaie-Mamat (RRM) 
method, and it suggests the direction dk given by the next relation: 

˜ �gk, if k ¼ 0,
dk ¼ (22)�θkgk � ∥ gk∥ gk�1, 

k�1 yk�1where θk is a scaling parameter, θk ¼ dT 

∥2 , yk�1 ¼ gk � gk�1.∥ gk�1 

Further, in [25], a comparison among RRM, ZMRI, and SD methods is made; it is 
shown that RRM method is better than ZMRI and SD methods. 

It is interesting that the exact line search is used in [25]. 
In [34], the properties of steepest descent method from the literature are 

reviewed together with advantages and disadvantages of each step size procedure. 

Namely, the step size procedures, which are compared in this paper, are: 
gT 

1. tk ¼ k gk : Step size method by Cauchy [24], computed by exact line search gT Hk gkk 

(C step size). ° 
s; sβ; sβ2 

˛ 
2. Given s . 0, β, σ ∈ ð0; 1Þ, tk ¼ max ; … such that 

Tf xð k þ tkdkÞ≤ f ðxkÞ þ σtk gk dk � Armijo ’ s line search ðAstep sizeÞ: 

3. Given β, σ ∈ ð0; 1Þ, ~t0 ¼ 1, and tk ¼ β~tk such that 

Tf xð k þ tkdkÞ≤ f ðxkÞ þ σtk gk dk � Backtracking line search ðBstep sizeÞ: 
sk�1yk�14. tk ¼ ∥ 

T

yk�1∥
2 , (BB1), tk ¼ ∥sk�1∥

2
, (BB2), sk�1 ¼ xk � xk�1 yk�1 ¼ gk � gk�1, : sT 

k�1yk�1 

Barzilai and Borwein’s formula. The convergence is R-superlinear. 
Tt2 g gkk�1 k5. tk ¼ : Elimination line search (EL step size), which esti-

2 f xð k þtkdkÞ�f xð kÞþtk�1 gTgk,ð k 

mates the step size without computation of the Hessian. 
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The comparison is based on time execution, number of total iteration, total 
percentage of function, gradient and Hessian evaluation, and the most decreased 
value of objective function obtained. 

From the numerical results, the authors conclude that the A method and BB1 
method are the best methods among others. 

Further, in [34], the general conclusions about the steepest descent method are 
given: 

1. This method is sensitive to the initial point. 

2. This method has a descent property, and it is a logical starting procedure for all 
gradient based methods. 

3. xk approaches the minimizer slowly, in fact in a zigzag way. 

In [35], in the aim to achieve fast convergence and the monotone property, a 
new step size for the steepest descent method is suggested. 

In [36], for quadratic positive definite problems, an over-relaxation has been 
considered. Namely, Raydan and Svaiter [36] proved that the poor behavior of the 
steepest descent method is due to the optimal Cauchy choice of step size and not to 
the choice of the search direction. These results are extended in [29] to convex, 
well-conditioned functions. Further, in [29], it is shown that a simple modification 
of the step length by means of a random variable uniformly distributed in ð0; 1�, for 
the strongly convex functions, represents an improvement of the classical gradient 
descent algorithm. Namely, in this paper, the idea is to modify the gradient descent 
method by introducing a relaxation of the following form: 

xkþ1 ¼ xk þ θktkdk, (23) 

where θk is the relaxation parameter, a random variable uniformly distributed 
between 0 and 1. 

In the recent years, the steepest descent method has been applied in many 
branches of science; one can be inspired, for example, by [37–43]. 

2.2 Barzilai and Borwein gradient method 

Remind to the fact that SD method performs poorly, converges linearly, and is 
badly affected by the ill-conditioning. 

Also, remind to the fact that this poor behavior of SD method is due to the 
optimal choice of the step size and not to the choice of the steepest descent 
direction �gk. 

Barzilai and Borwein presented [44] a two-point step size gradient method, 
which is well known as BB method. 

The step size is derived from a two-point approximation to the secant equation. 
Consider the gradient iteration form: 

xkþ1 ¼ xk � tkgk: 

It can be rewritten as xkþ1 ¼ xk � Dk gk, where Dk ¼ tkI. 
To make the matrix Dk having quasi-Newton property, the step size tk is com-

puted in such a way that we get 

min∥sk�1 � Dkyk�1∥: 
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This yields that 

Ts 
tBB1 k�1 yk�1¼ , sk�1 ¼ xk � xk�1, yk�1 ¼ gk � gk�1: (24)k yT 

k�1 yk�1 

But, using symmetry, we may minimize ∥D�1sk�1 � yk�1∥, with respect to tk, and k 

we get: 

tBBk 
2 

s 
∥ 
T
sk�1∥2 

¼ , sk�1 ¼ xk � xk�1, yk�1 ¼ gk � gk�1: (25) 
k�1 yk�1 

Now, we give the algorithm of BB method. 

Algorithm 1.2.5. (Barzilai-Borwein gradient method, i.e., BB method). 
Assumptions: 0 , ϵ ≪ 1, x0 ∈Rn . Let k ¼ 0. 
Step 1. If ∥ gk∥≤ ϵ, then STOP, else set dk ¼ �gk. 
Step 2. If k ¼ 0, then find the step size t0 by the line search, else compute tk 

using the formula (24) or (25). 
Step 3. Set xkþ1 ¼ xk þ tkdk. 
Step 4. Set k ≔ k þ 1 and go to Step 1. 
Considering Algorithm 1.2.5, we can conclude that this method does not require 

any matrix computation or any line search. 
The Barzilai-Borwein method is in fact the gradient method, which requires less 

computational work than SD method, and it speeds up the convergence of the 
gradient method. Barzilai and Borwein proved that BB algorithm is R�superlinearly 
convergent for the quadratic case. 

In the general non-quadratic case, a globalization strategy based on non-
monotone line search is applied in this method. 

In this general case, tk, computed by (24) or (25), may be unacceptably large or 
small. That is the reason why we assume that there exist the numbers tl and tr, such 
that 

0 , tl ≤ tk ≤ tr , for all k: 

Using the iteration 

1 
xkþ1 ¼ xk � gk ¼ xk � λk gk,tk 

(26) 

with 

Ts 1k�1 yk�1tk ¼ , λk ¼ , 
sT 
k�1sk�1 tk 

1 
sk ¼ �  gk ¼ �λk gk,tk 

we get 

T T Tsk yk �λk gk yk gk yktkþ1 ¼ ¼ ¼ �  : 
sT λ2 

k g
T λk gT 

k sk k gk k gk 

Now, we give the algorithm of the Barzilai-Borwein method with non-monotone 
line search. 
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Algorithm 1.2.6. (BB method with non-monotone line search). 
Assumptions: 0 , ϵ ≪ 1, x0 ∈Rn , M ≥0 is an integer, ρ ∈ ð0; 1Þ, δ . 0, 

0 , σ1 , σ2 , 1, tl , tr . Let k ¼ 0. 
Step 1. If ∥ gk∥≤ ϵ, then STOP. 
Step 2. If tk ≤ tl , or tk ≥ tr , then set tk ¼ δ. 
Step 3. Set λ ¼ 1 .tk 

Step 4. (non-monotone line search) If 

˜ ° ˜ ° Tf xk � λgk ≤ max f xk�j � ρλ gk gk, 0 ≤ j ≤minðk;MÞ 

then set 

λk ¼ λ, xkþ1 ¼ xk � λk gk, 

and go to Step 6. 
Step 5. Choose σ ∈ ½σ1; σ2�, set λ ¼ σλ, and go to Step 4. 

gTykStep 6. Set tkþ1 ¼ �  k and k ≔ k þ 1, and return to Step 1. 
λk gTgkk 

Obviously, the above algorithm is globally convergent. 
Several authors paid attention to the Barzilai-Borwein method, and they pro-

posed some variants of this method. 
In [8], the globally convergent Barzilai-Borwein method is proposed by using 

non-monotone line search by Grippo et al. [12]. In the same paper, Raydan proves 
the global convergence of the non-monotone Barzilai-Borwein method. 

Further, Grippo and Sciandrone [45] propose another type of the non-monotone 
Barzilai-Borwein method. 

Dai [7] gives the basic analysis of the non-monotone line search strategy. 
Moreover, in [46] numerical results are presented, using 

tk ¼ 
sν 
T 
ð Þk yνð Þk 

: (27)
sT 
νð Þk sνð Þk 

and 

k � 1 
ν k ⌟ ,ð Þ ¼Mc � ⌞ 

Mc 

where for r ∈R, ⌞r⌟ denotes the largest integer j such that j ≤ r and Mc is a 
positive integer. The gradient method with (27) is called the cyclic Barzilai-Borwein 
method. Numerical results in [46] prove that their method performs better than the 
Barzilai-Borwein method. 

Many researchers study the gradient method for minimizing a strictly convex 
quadratic function, namely, 

1
min f x xTAx � bTð Þ ¼  x, (28)

2 

where A ∈Rn�n is a symmetric positive definite matrix and b ∈Rn is a given 
vector. For an application of the Barzilai-Borwein method to the problem (28), 
Raydan [47] establishes global convergence, and Dai and Liao [48] prove R-linear 
rate of convergence. Friedlander, Martinez, Molina, and Raydan [49] propose a new 
gradient method with retards, in which tk is defined by 
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T Aρ k 1ð Þþ gνð Þk gνð Þk tk ¼ , νð Þk ∈ fk; k � 1; …; maxf0; k �mgg (29) 
gT Aρð Þk 
νð Þk gνð Þk 

˜ ° 
and ρð Þk ∈ q1; …; q , where m is a positive integer and q1, …, q  ≥ � 2 arem m 

integers. In the same paper, they establish its global convergence for problem (28) 
and prove the Q-superlinear rate of convergence in the special case. 

In [50], the authors extend the Barzilai-Borwein method, and they give extended 
Barzilai-Borwein method, which they denote EBB. They also establish global and 
Q�superlinear convergence properties of the proposed method for minimizing a 
strictly convex quadratic function. Furthermore, they discuss an application of their 
method to general objective functions. In [50], a new step size is proposed by 
extending (29). Namely, in this paper, following Friedlander et al. [49], a new step 
size is proposed as follows: 

gT Aρi ð Þþ l k 1gνið Þkνið Þktk ¼ ∑ ϕi , 
gT Aρii¼1 νi kð Þ  

ð Þk gνið Þk 

n 
ϕi ≥ 0, ∑ϕi ¼ 1, 

i¼1 

νið Þk ∈ fk; k � 1; …; maxf0; k �mgg 
and 

˜ ° 
ϕið Þk ∈ q1; …; q ,m 

where l and m are positive integers and q1, …, q  are integers.m 
Also, an application of algorithm EBB to general unconstrained minimization 

problems (4) is considered. 
Following Raydan [8], the authors [50] further combine the non-monotone line 

search and algorithm EBB to get the algorithm called NEBB. They also prove the 
global convergence of the algorithm NEBB, under some classical assumptions. 

The Barzilai-Borwein method and its related methods are reviewed by Dai and 
Yuan [51] and Fletcher [52]. 

In [53], a new concept of the approximate optimal step size for gradient method 
is introduced and used to interpret the BB method; an efficient gradient method 
with the approximate optimal step size for unconstrained optimization is presented. 
The next definition is introduced in [53]. 

Definition 1.2.1. Let Φð Þt be an approximation model of f ðxk � tg kÞ. A positive 
constant t ∗ is called approximate optimal step size associated to Φð Þt for gradient method, 
if t ∗ satisfies 

t ∗ ¼ arg min Φð Þt : 
t . 0 

The approximate optimal step size is different from the steepest descent step 
size, which will lead to the expensive computational cost. The approximate optimal 
step size is generally calculated easily, and it can be applied to unconstrained 
optimization. 

Due to the effectiveness of tBB1 and the fact that tBB1 ¼ argmin t . 0Φð Þt , we cank k 
naturally ask if more suitable approximation models can be constructed to generate 
more efficient approximate optimal step-sizes. 

13 

http://dx.doi.org/10.5772/intechopen.83679


Applied Mathematics 

This is the purpose of work [53]. Further, if the objective function f xð Þ is not 
close to a quadratic function on the line segment between xk�1 and xk, in this 
paper a conic model is developed to generate the approximate optimal step 
size if the conic model is suitable to be used. Otherwise, the authors consider 
two cases: 

Ti. If s 1 . 0, the authors construct a new quadratic model, to derive the k�1 yk� 
approximate optimal step size. 

Tii. If s 1 yk� ≤ 0, they construct a new quadratic model or two other newk� 1 
approximation models to generate the approximate optimal step size for 
gradient method. They also analyze the convergence of the proposed method 
under some suitable conditions. Numerical results show the proposed 
method is better than the BB method. 

In [54], derivative-free iterative scheme that uses the residual vector as search 
direction for solving large-scale systems of nonlinear monotone equations is 
presented. 

The Barzilai-Borwein method is widely used; some interesting results can be 
found in [55–57]. 

2.3 Newton method 

The basic idea of Newton method for unconstrained optimization is the iterative 
usage of the quadratic approximation qð Þk to the objective function f at the current 

ð Þkiterate xk and then minimization of such approximation q . 
Let f : Rn ! R be twice continuously differentiable, xk ∈ Rn, and let the Hessian 

∇2f xð Þk be positive definite. 
ð ÞkWe model f at the current point xk by the quadratic approximation q : 

1ð Þk T T ∇2ff ðxk þ sÞ≈ q ð Þ ¼ f xð kÞ þ ∇f xk s þ s xk s, s ¼ x �s ð Þ  ð Þ  xk:2 

ð ÞkMinimization of q ð Þs gives the next iterative scheme: 

˜ ° �1 
xkþ xk1 ¼ xk � ∇2f xð Þk ∇f ð Þ, 

which is known as Newton formula. 
Denote Gk ¼ ∇2f xk , gk ¼ ∇f xk .ð Þ  ð Þ  
Then, we have a simpler form: 

1xkþ1 ¼ xk � Gk 
� gk: (30) 

A Newton direction is 

G�1sk ¼ xkþ1 � xk ¼ �  gk: (31)k 

We have supposed that Gk is positive definite. So, the Newton direction is a 
descent direction. This we can conclude from 

T T 1gk sk ¼ �gk G
� gk , 0:k 
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Now, we give the algorithm of the Newton method. 

Algorithm 1.2.7. (Newton method). 
Assumptions: ϵ . 0, x0 ∈Rn . Let k ¼ 0. 
Step 1. If ∥ gk∥≤ ϵ, then STOP. 
Step 2. Solve Gks ¼ �gk for sk. 
Step 3. Set xkþ1 ¼ xk þ sk. 
Step 4. k ≔ k þ 1, return to Step 1. 
The next theorem shows the local convergence and the quadratic convergence 

rate of Newton method. 

Theorem 1.2.3. [27] (Convergence theorem of Newton method) Let f ∈C2 and xk be 
close enough to the solution x ∗ of the minimization problem with gðx ∗ Þ ¼ 0. If the 

∗Hessian G x ð Þ satisfies Lipschitz condition ð Þ is positively definite and G x 

∣Gij x ð Þ∣ ≤ β∥x �ð Þ � Gij y y∥, for some β, forall i, j, 

where Gij x i; j ð Þ and then for all k, Newton direction ð Þ is the ð Þ element of G x  
(31) is well-defined; the generated sequence xk 

∗ with af g converges to x 
quadratic rate. 

But, in spite of this quadratic rate, the Newton method is a local method: when 
the starting point is far away from the solution, there is a possibility that Gk is not 
positive definite, as well as Newton direction is not a descent direction. 

So, to guarantee the global convergence, we can use Newton method with line 
search. We can remind to the fact that only when the step size sequence f g tendstk 

to 1, Newton method is convergent with the quadratic rate. 
Newton iteration with line search is as follows: 

1dk ¼ �G� 
k gk, (32) 

xkþ1 ¼ xk þ tkdk: (33) 

Now, we give the algorithm. 

Algorithm 1.2.8. (Newton method with line search). 
Assumptions: ϵ . 0, x0 ∈Rn . Let k ¼ 0. 
Step 1. If ∥ gk∥≤ ϵ, then STOP. 
Step 2. Solve Gkd ¼ �gk for dk. 
Step 3. Line search step: find tk such that 

f ðxk þ tkdkÞ ¼ min f xð k þ tdkÞ, 
t ≥0 

or find tk such that (inexact) Wolfe line search rules hold. 
Step 4. Set xkþ1 ¼ xk þ tkdk and k ¼ k þ 1, and go to Step 1. 
The next theorems claim that Algorithm 1.2.8 with the exact line search, as well 

as Algorithm 1.2.8 with the inexact line search, are globally convergent. 

Theorem 1.2.4. [27] Let f : Rn ! R be twice continuously differentiable on open 
convex set D⊂Rn. Assume that for any x0 ∈D there exists a constant m . 0, such that 
f xð Þ satisfies 

uT∇2f x u ≥m∥u∥2, forall u ∈Rn ð Þ, (34)ð Þ  , x  ∈L x0 

where L xð 0Þ ¼ fxj f ð Þx ≤ f ð Þg is the corresponding level set. Then, the x0 

sequence xk , generated by Algorithm 1.2.8, with the exact line search, satisfies: f g  
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1. When xk is a finite sequence, gk ¼f g  0 for some k. 

∗2. When xk is an infinite sequence, f g converges to the unique minimizer xf g  xk 

of f . 

Note that the next relation holds from the standard Wolfe line search: 

f xk f xð k þ Þ≥ η∥ gk∥
2 cos 2∠ dk; �gk , (35)ð Þ �  tkdk 

where the constant η does not depend on k. 

Theorem 1.2.5. [27] Let f : Rn ! R be twice continuously differentiable on open 
convex set D⊂Rn. Assume that for any x0 ∈ D there exists a constant m . 0, such that 
f xð Þ  ð Þsatisfies the relation (34) on the level set L x0 . If the line search satisfies the relation 
(35), then the sequence xk , generated by Algorithm 1.2.8, with the inexact Wolfe line f g  
search, satisfies 

lim ∥ gk∥ ¼ 0 
k!∞ 

and f g converges to the unique minimizer of f xð Þ.xk 

2.4 Modified Newton method 

The main problem in Newton method could be the fact that the Hessian Gk may 
be not positive definite. In that case, we are not sure that the objective function f 
has its minimizers; furthermore, when Gk is indefinite, the objective function f is 
unbounded. 

So, many modified schemes are made. Now, we describe the next two methods 
shortly. 

In [58], Goldstein and Price use the steepest descent method when Gk is not 
positive definite. Denoting the angle between dk and �gk by θ, as well as having in 
view the angle rule, θ ≤ π � μ, where μ . 0, they determine the direction dk as2 

( 
G�1� gk, if cos θ ≥ η,

dk ¼ k 

�gk, otherwise, 

where η . 0 is a given constant. 
In [59], the authors present another modified Newton method. When Gk is not 

positive definite, Hessian Gk is changed into Gk þ νkI, where νk . 0 is chosen in 
such a way that Gk þ νkI is positive definite and well-conditioned. Otherwise, when 
Gk is positive definite, νk ¼ 0. 

To consider the other modified Newton methods, such as finite difference New-
ton method, negative curvature direction method, Gill-Murray stable Newton 
method, etc., one can see [27], for example. 

2.5 Inexact Newton method 

By the other side, because of the high cost of the exact Newton method, espe-
cially when the dimension n is large, the inexact Newton method might be a good 
solution. This type of method means that we only approximately solve the Newton 
equation. 
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Consider solving the nonlinear equations: 

F xð Þ ¼ 0, (36) 

where F : Rn ! Rn is assumed to have the next properties: 
A1 There exists x ∗ such that F x∗ 0.ð Þ ¼  

∗A2 F is continuously differentiable in the neighborhood of x . 
∗A3 F0 x is nonsingular. ð Þ  

Remind that the basic Newton step is obtained by solving 

F0 xk sk ¼ �F xkð Þ  ð Þ  

and setting 

xkþ1 ¼ xk þ sk: 

The inexact Newton method means that we solve 

F0 xk sk ¼ � ð Þ þ rk, (37)ð Þ  F xk 

where 

∥rk∥≤ ηk∥F xð Þk ∥: (38) 

Set 

xkþ1 ¼ xk þ sk: (39) 

Here, rk denotes the residual, and the sequence ηk , where 0 , ηk , 1, is the f g  
sequence which controls the inexactness. 

Now, we give two theorems; the first of them claims the linear convergence, and 
the second claims the superlinear convergence of the inexact Newton method. 

Theorem 1.2.6. [27] Let F : Rn ! Rn satisfy the assumptions A1–A3. Let the 
sequence f g satisfies 0 ≤ ηk ≤ η , t , 1. Then, for some ϵ . 0, if the starting point is ηk 
sufficiently near x ∗, the sequence f gxk generated by inexact Newton’s method (37)–(39) 
converges to x ∗, and the convergence rate is linear, i.e. 

∥xkþ1 � x ∗∥∗ ≤ t∥xk � x ∗∥∗, 

∗where ∥y∥∗ ¼ ∥F0ð Þy∥.x 

Theorem 1.2.7. [27] Let all assumptions of Theorem 1.2.6 hold. Assume that the 
∗ sequence xk , generated by the inexact Newton method, converges to xf g  . Then 

∥rk∥ ¼ oð∥F xð Þk ∥Þ, k  ! ∞, 

if and only if xk converges to x ∗ superlinearly.f g  
The relation 

f 0ð Þ  
xkþ1 ¼ xk � 

xk � ðxk � xk�1Þ, (40)
f 0 f 0ð Þ �  Þxk ðxk�1 

presents the secant method. 

17 

http://dx.doi.org/10.5772/intechopen.83679


Applied Mathematics 

In [60], a modification of the classical secant method for solving nonlinear, 
univariate, and unconstrained optimization problems based on the development of 
the cubic approximation is presented. The iteration formula including an approxi-
mation of the third derivative of f xð Þ by using the Taylor series expansion is 
derived. The basic assumption on the objective function f xð Þ is that f ð Þx is a real-

∗valued function of a single, real variable x and that f xð Þ has a minimum at x . 
Furthermore, in this chapter it is noted that the secant method is the simplification 
of Newton method. But, the order of the secant method is lower than one of the 
Newton methods; it is Q-superlinearly convergent, and its order is pffiffi 

5þ1p ¼ ≈ 1; 618.2 
This modified secant method is constructed in [60], having in view, as it is 

emphasized, that it is possible to construct a cubic function which agrees with f xð Þ  
up to the third derivatives. The third derivative of the objective function f is 
approximated as 

8 h i 9 
f xð Þk -f xð k- Þ< f 0 =2 ðxk Þ- 1 

xk-xk-13 xk- - f ″ xkð Þ  : xk-1 ; 
f ‴ð Þ ¼x : 

xk-1 - xk 

In [61], the authors propose an inexact Newton-like conditional gradient 
method for solving constrained systems of nonlinear equations. The local conver-
gence of the new method as well as results on its rate is established by using a 
general majorant condition. 

2.6 Quasi-Newton method 

Consider the Newton method. 
For various practical problems, the computation of Hessian may be very expen-

sive, or difficult, or Hessian can be unavailable analytically. So, the class of so-called 
quasi-Newton methods is formed, such that it uses only the objective function 
values and the gradients of the objective function and it is close to Newton method. 
Quasi-Newton method is such a class of methods which does not compute Hessian, 
but it generates a sequence of Hessian approximations and maintains a fast rate of 
convergence. 

So, we would like to construct Hessian approximation Bk in quasi-Newton 
method. Naturally, it is desirable that the sequence Bkf g possesses positive defi-

1niteness, as well as its direction dk ¼ -B- gk should be a descent one.k 

Now, let f : Rn ! R be twice continuously differentiable function on an open 
set D⊂Rn . Consider the quadratic approximation of f at xkþ1: 

1Tf xð Þ≈ f xð kþ1Þ þ gkþ1ðx - xkþ1Þ þ  ðx - xkþ1ÞTGkþ1ðx - xkþ1Þ:2 

Finding the derivatives, we get 

g xð Þ≈ gkþ1 þ Gkþ1ðx - xkþ1Þ: 
Setting x ¼ xk and using the standard notation: sk ¼ xkþ1 - xk, yk ¼ gkþ1 - gk, 

from the last relation, we get 

1G-kþ1 yk ≈ sk: (41) 
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Relation (41) transforms into the next one if f is the quadratic function: 

G� 
kþ 
1
1 yk ¼ sk: (42) 

Let Hk be the approximation of the inverse of Hessian. Then, we want Hk to 
satisfy the relation (42). In this way, we come to the quasi-Newton condition or 
quasi-Newton equation: 

Hkþ1yk ¼ sk: (43) 

Let Bkþ1 ¼ H�1 
kþ1 be the approximation of Hessian Gkþ1. Then 

Bkþ1sk ¼ yk (44) 

is also the quasi-Newton equation. 
If 

Tsk yk . 0, (45) 

then the matrix Bkþ1 is positive definite. The condition (45) is known as the 
curvature condition. 

Algorithm 1.2.9. (A general quasi-Newton method). 
nAssumptions: 0 ≤ ϵ , 1, x0 ∈Rn , H0 ∈Rn� . Let k ¼ 0. 

Step 1. If ∥ gk∥≤ ϵ, then STOP. 
Step 2. Compute dk ¼ �Hk gk. 
Step 3. Find tk by line search and set xkþ1 ¼ xk þ tkdk. 
Step 4. Update Hk into Hkþ1 such that quasi-Newton equation (43) holds. 
Step 5. Set k ¼ k þ 1 and go to Step 1. 
In Algorithm 1.2.9, usually we take H0 ¼ I, where I is an identity matrix. 
Sometimes, instead of Hk, we use Bk in Algorithm 1.2.9. 
Then, Step 2 becomes 
Step 2∗ . Solve 

Bkd ¼ �gk, for dk: 
By the other side, Step 4 becomes 
Step 4∗ . Update Bk into Bkþ1 in such a way that quasi-Newton equation (44) 

holds. 

2.7 Symmetric rank-one (SR1) update 

Let Hk be the inverse Hessian approximation of the kth iteration. We are trying 
to update Hk into Hkþ1, i.e. 

Hkþ1 ¼ Hk þ Ek, 

where Ek is a matrix with a lower rank. If it is about a rank-one update, we get 

THkþ1 ¼ Hk þ uv , (46) 

where u, v ∈Rn . Using quasi-Newton equation (43), we can get 
˜ ° THkþ1yk ¼ Hk þ uv yk ¼ sk, 

wherefrom 
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˜ ° Tv yk u ¼ sk �Hkyk: (47) 

Further, from (46) and (47), we have 

1 ˜ ° THkþ1 ¼ Hk þ sk �Hkyk v : 
vTyk 

Having in view that the inverse Hessian approximation Hk has to be the 
symmetric one, we use v ¼ sk �Hkyk, so we get the symmetric rank-one update 
(i.e., SR1 update): 

˜ °˜ ° T sk �Hkyk sk �HkykHkþ1 ¼ Hk þ ˜ ° : (48)T sk �Hkyk yk 

Theorem 1.2.8. [27] (Property theorem of SR1 update) Let s0, s1, and sn�1 be 
linearly independent. Then, for quadratic function with a positive definite Hessian, SR1 
method terminates at n þ 1 steps, i.e., Hn ¼ G�1 . 

More information about SR1 update can be found. 

2.8 Davidon-Fletcher-Powell (DFP) update 

There exists another type of update, which is a rank-two update. In fact, we get 
Hkþ1 using two symmetric, rank-one matrices: 

Hkþ1 ¼ Hk þ auuT þ bvvT, (49) 

where u, v ∈ Rn and a, b are scalars which have to be determined. 
Using quasi-Newton equation (43), we can get 

THkyk þ auu yk þ bvvTyk ¼ sk: (50) 

The values of u, v are not determined in a unique way, but the good choice is 

u ¼ sk, v  ¼ Hkyk: 

Now, from (50), we get: 

1 1 
a ¼ , b  ¼ �  : 

sT yT 
k yk k Hkyk 

Hence, we get the formula 

T Tsks Hkykyk HkkHkþ1 ¼ Hk þ � , (51)
sT yT 
k yk k Hkyk 

which is DFP update. 

Theorem 1.2.9. [27] (Positive definiteness of DFP update) DFP update (51) retains 
Tpositive definiteness if and only if sk yk . 0. 

Theorem 1.2.10. [27] (Quadratic termination theorem of DFP method) Let f ð Þx be a 
quadratic function with positive definite Hessian G. Then, if the exact line search is used, the ˛ ˝  
sequence sj , generated from DFP method, satisfies, for i ¼ 0, 1, …, m, where m ≤ n � 1: 
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1. Hiþ1yj ¼ sj, j  ¼ 0, 1, …, i ðhereditary propertyÞ. 

T2. si Gsj ¼ 0, j  ¼ 0, 1, …, i  � 1 ðconjugate direction propertyÞ. 

3. The method terminatesat m þ 1 ≤ n steps: If m ¼ n � 1, then Hn ¼ G�1. 

2.9 Broyden-Fletcher-Goldfarb-Shanno (BFGS) update 

BFGS update is given by the formula 

T T 

BBFGS yk yk Bksksk Bk 
kþ1 ¼ Bk þ yT � 

sT : (52) 
k sk Bkskk 

The BFGS update is also said to be a complement to DFP update. 
In [62], an adaptive scaled BFGS method for unconstrained optimization is 

presented. In this paper, the author emphasizes that the BFGS method is one of the 
most efficient quasi-Newton methods for solving small-size and medium-size 
unconstrained optimization problems. The third term in the standard BFGS update 
formula is scaled in order to reduce the large eigenvalues of the approximation to 
the Hessian of the minimizing function. In fact, in [62], the general scaling BFGS 
updating formula is considered: 

T TBksks Bk yk yk kBkþ1 ¼ Bk � þ γk , (53)
sTBksk yTk skk 

where γk is a positive parameter. Obviously, using γk ¼ 1 for all k ¼ 0, 1, …, we 
get the standard BFGS formula. By the way, there exist several procedures created 
to select the scaling parameter γk, for example, see [62–69]. The approach for 
determining the scaling parameters of the terms of the BFGS update in [62] is to 
minimize the Byrd and Nocedal measure function. 

Namely, in [70], the next function was introduced: 

φðAÞ ¼ trðAÞ � ln ðdetð ÞA Þ, (54) 

which is defined on positive definite matrices. 
This function is a measure of matrices involving all the eigenvalues of A, not 

only the smallest one and the largest one, as it is traditionally used in the analysis of 
the quasi-Newton method based on the condition number of matrices. 

Observe that function φ works simultaneously with the trace and the determi-
nant, thus simplifying the analysis of the quasi-Newton methods. Fletcher [71] 
proves that this function is strictly convex on the set of symmetric and positive 
definite matrices, and it is minimized by A ¼ I. Besides, this function becomes 
unbounded when A becomes singular or infinite, and therefore it works as a barrier 
function that keeps A positive definite. It is worth saying that the BFGS update 
tends to generate updates with large eigenvalues. 

Further, in [62], a double-parameter scaling BFGS update is considered, in 
which the first two terms on the right-hand side of the BFGS update (52) are scaled 
with a positive parameter, while the third one is scaled with another positive 
parameter: 
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˜ ° T TBksks Bk yk yk kBkþ1 ¼ δk Bk � þ γk , (55)
sTBksk yTk skk 

where δk and γk are the two positive parameters that have to be determined. 
In [62], the next proposition is proved. 

Proposition 1.2.1. If the step size tk is determined by the standard Wolfe line search 
(12) and (13), Bk is positive definite and γk . 0, and then Bkþ1, given by (55), is also 
positive definite. 

From (55), it can be seen that φðBkþ1Þ depends on the scaling parameters δk and 
γk. In [62], these scaling parameters are determined as solution of the minimizing 
problem: 

min φðBkþ1Þ: (56)
δk . 0, γk . 0 

Further, the next values of the scaling parameters δk and γk are reached: 

n � 1 
δk ¼ (57) 

trðBkÞ � ∥Bksk∥2 

sT 
k 
Bksk 

yT 
k skγk ¼ (58)
∥2 : ∥yk 

Consider the relation 

xkþ1 ¼ xk þ tkdk, (59) 

where dk is the BFGS search direction obtained as solution of the linear algebraic 
system 

Bkdk ¼ �gk, 

where the matrix Bk is the BFGS approximation to the Hessian ∇2f xð Þk , being 
updated by the classical formula (52). 

The next theorems are also given in [62]. 

Theorem 1.2.11. If the step size in (59) is determined by the Wolfe search conditions 
(12)–(13), then the scaling parameters given by (57) and (58) are the unique global 
solutions of the problem (56). 

Theorem 1.2.12. Let δk be computed by (57). Then, for any k ¼ 0, 1, …, δk is positive 
and close to 1. 

Next, in [72], using chain rule, a modified secant equation is given, to get a more 
accurate approximation of the second curvature of the objective function. Then, 
based on this modified secant equation, a new BFGS method is presented. The 
proposed method makes use of both gradient and function values, and it utilizes 
information from two most recent steps, while the usual secant relation uses only 
the latest step information. Under appropriate conditions, it is shown that the 
proposed method is globally convergent without convexity assumption on the 
objective function. 

Some interesting applications of Newton, modified Newton, inexact Newton, 
and quasi-Newton methods can be found, for example, in [73–83], etc. 

A very interesting paper is [84]. 
An interesting application of BFGS method can be found in [85]. 
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3. Conclusion 

Today, the modifications of the line search techniques are very actual and all in 
the aim to create new, better optimization methods. 

Further, following recent trends in unconstrained optimization, we can notice 
that almost all optimization methods, which are considered in this chapter, are still 
actual. 

They are applied in the other areas of Mathematics, as well as in practice. Also, 
different modifications of these methods are made, in the aim to improve them. 

Let us emphasize that BFGS update is very popular now. 
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Chapter 2 

Unconstrained Optimization 
Methods: Conjugate Gradient 
Methods and Trust-Region 
Methods 
Snezana S. Djordjevic 

Abstract 

Here, we consider two important classes of unconstrained optimization 
methods: conjugate gradient methods and trust region methods. These two classes 
of methods are very interesting; it seems that they are never out of date. First, we 
consider conjugate gradient methods. We also illustrate the practical behavior of 
some conjugate gradient methods. Then, we study trust region methods. Consider-
ing these two classes of methods, we analyze some recent results. 

Keywords: conjugate gradient method, hybrid conjugate gradient method, 
three-term conjugate gradient method, modified conjugate gradient method, 
trust region methods 

1. Introduction 

Remind to the unconstrained optimization problem which we can present as 

min f xð Þ, (1) 
x ∈ Rn 

where f : Rn ! R is a smooth function. 
Here, we consider two classes of unconstrained optimization methods: conjugate 

gradient methods and trust region methods. Both of them are made with the aim to 
solve the unconstrained optimization problem (1). 

In this chapter, at first, we consider the conjugate gradient methods. Then, we 
study trust region methods. Also, we try to give some of the most recent results in 
these areas. 

2. Conjugate gradient method (shortly CG) 

The conjugate gradient method is the method between the steepest descent 
method and the Newton method. 

The conjugate gradient method in fact deflects the direction of the steepest 
descent method by adding to it a positive multiple of the direction used in the 
last step. 
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The restarting and the preconditioning are very important to improve the con-
jugate gradient method [47]. 

Some of well-known CG methods are [12, 19, 20, 23, 24, 31, 39, 40, 49]: 

T 

βHS gkþ1yk 
k ¼ 

dT 
k yk 

βFRk 

∥ gkþ 

∥ 
1∥ 
2

2 

¼ 
∥ gk 

Tgkþ1ykβPRP ¼k ∥ gk∥
2 

βCD ∥ gkþ1∥
2 

k ¼ �dT 
k gk 

gT 

βLS kþ1yk 
k ¼ �dT 

k gk 

βDY ∥ gkþ1∥
2 

k ¼ 
dT 
k yk
 !T 

∥yk∥
2 gkþ1βN ¼ yk � 2dkk dT dT 

k yk k yk 

T ∥ gk ∥ 
k gk � ∥ gk�1 

βWYL 
g ∥ gk�1¼k ∥ gk�1∥

2 

Consider positive definite quadratic function 

f x x x þ c, (2)ð  Þ ¼  
1 TGx þ bT 

2 

where G is an n � n symmetric positive definite matrix, b ∈ Rn, and c is a real 
number. 

Theorem 1.2.1. [47] (Property theorem of conjugate gradient method) For positive 
definite quadratic function (2), FR conjugate gradient method with the exact line search 
terminates after m ≤ n steps, and the following properties hold for all i, 0 ≤ i ≤ m: 

dTi Gdj ¼ 0, j  ¼ 0, 1, …, i  � 1; 

Tgi gj ¼ 0, j  ¼ 0, 1, …, i  � 1; 

TdTi gi ¼ �gi gi; 
g0; g1; …; gi ¼ g0; Gg0; …; Gig0 ; 

½d0; d1; …; di� ¼  g0; Gg0; …; Gig0 , 

where m is the number of distinct eigenvalues of G. 
Now, we give the algorithm of conjugate gradient method. 
Algorithm 1.2.1. (CG method). 
Assumptions: ε , 0 and x0 ∈ Rn . Let k ¼ 0, t0 ¼ 0, d�1 ¼ 0, d0 ¼ �g0, β�1 ¼ 0, 

and β0 ¼ 0. 
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Step 1. If ∥ gk∥≤  ε, then STOP. 
Step 2. Calculate the step-size tk by a line search. 
Step 3. Calculate βk by any of the conjugate gradient method. 
Step 4. Calculate dk ¼ �gk þ βk�1dk�1. 
Step 5. Set xkþ1 ¼ xk þ tkdk. 
Step 6. Set k ¼ k þ 1 and go to Step 1. 

2.1 Convergence of conjugate gradient methods 

Theorem 1.2.2. [47] (Global convergence of FR conjugate gradient method) Suppose 
that f : Rn ! R is continuously differentiable on a bounded level set 

x ≤ f x0L ¼ fx ∈Rnj f ð Þ  ð Þg, 
and let FR method be implemented by the exact line search. Then, the produced 

sequence xk has at least one accumulation point, which is a stationary point, i.e.: f g  

1. When f g is a finite sequence, then the final point x ∗ is a stationary point of f .xk 

2. When f g is an infinite sequence, then it has a limit point, and it is a stationaryxk 

point. 

In [35], a comparison of two methods, the steepest descent method and the 
conjugate gradient method which are used for solving systems of linear equations, is 
illustrated. The aim of the research is to analyze, which method is faster in solving 
these equations and how many iterations are needed by each method for solving. 

The system of linear equations in the general form is considered: 

Ax ¼ B, (3) 

where matrix A is symmetric and positive definite. 
The conclusion is that the SD method is a faster method than the CG, because it 

solves equations in less amount of time. 
By the other side, the authors find that the CG method is slower but more 

productive than the SD, because it converges after less iterations. 
So, we can see that one method can be used when we want to find solution very 

fast and another can converge to maximum in less number of iterations. 
Again, we consider the problem (1), where f : Rn ! R is a smooth function and 

its gradient is available. 
A hybrid conjugate gradient method is a certain combination of different conju-

gate gradient methods; it is made to improve the behavior of these methods and to 
avoid the jamming phenomenon. 

An excellent survey of hybrid conjugate gradient methods is given in [5]. 
Three-term conjugate gradient methods were studied in the past (e.g., see 

[8, 32, 34], etc.); but, from recent papers about CG methods, we can conclude that 
maybe the mainstream is made by three-term and even four-term conjugate gradi-
ent methods. An interesting paper about a five-term hybrid conjugate gradient 
method is [1]. Also, from recent papers we can conclude that different modifica-
tions of the existing CG methods are made, as well as different hybridizations of CG 
and BFGS methods. 

Consider unconstrained optimization problem (1), where f : Rn ! R is a con-
tinuously differentiable function, bounded from below. Starting from an initial 
point x0 ∈Rn , the three-term conjugate gradient method with line search generates 
a sequence xk , given by the next iterative scheme: f g  
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xkþ1 ¼ xk þ tkdk, (4) 

where tk is a step-size which is obtained from the line search, and 

d0 ¼ �g0, dkþ1 ¼ �gkþ1 þ δksk þ ηkyk: 

In the last relation, δk and ηk are the conjugate gradient parameters, 
sk ¼ xkþ1 � xk, gk ¼ ∇f xkð Þ, and yk ¼ gkþ1 � gk. We can see that the search direction 
dkþ1 is computed as a linear combination of �gkþ1, sk, and yk. 

In [6], the author suggests another way to get three-term conjugate gradient 
algorithms by minimization of the one-parameter quadratic model of the function f . 
The idea is to consider the quadratic approximation of the function f in the current 
point and to determine the search direction by minimization of this quadratic 
model. It is assumed that the symmetrical approximation of the Hessian matrix Bkþ1 

satisfies the general quasi-Newton equation which depends on a positive parameter: 

Bkþ1sk ¼ ω�1yk, ω ¼ 0: (5) 

In this paper the quadratic approximation of the function f is considered: 

1TΦkþ1 d kþ1d þð  Þ ¼ f kþ1 þ g dTBkþ1d:2 

The direction dkþ1 is computed as 

dkþ1 ¼ �gkþ1 þ βksk, (6) 

where the scalar βk is determined as the solution of the following minimizing 
problem: 

min Φkþ1ðdkþ1Þ: (7)
βk ∈ R 

From (6) and (7), the author obtains 

T Tgkþ1Bkþ1sk � gkþ1skβk ¼ : (8)
sTBkþ1skk 

Using (5), from (7), the next expression for βk is obtained: 

gT T 
kþ1yk � ωgkþ1skβk ¼ : (9)

yT 
k sk 

Using the idea of Perry [36], the author obtains 

T T Tyk gkþ1 � ωsk gkþ1 sk gkþ1dkþ1 ¼ �gkþ1 þ sk � yk: yT yT 
k sk k sk 

In fact, in this approach the author gets a family of three-term conjugate gradi-
ent algorithms depending of a positive parameter ω. 

Next, in [52], the WYL conjugate gradient (CG) formula, with βWYL ≥ 0, is k 
further studied. A three-term WYL CG algorithm is presented, which has the suffi-
ciently descent property without any conditions. The global convergence and the 
linear convergence are proven; moreover, the n-step quadratic convergence with a 
restart strategy is established if the initial step length is appropriately chosen. 
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The first three-term Hestenes-Stiefel (HS) method (TTHS method) can be 
found in [55]. 

Baluch et al. [7] describe a modified three-term Hestenes-Stiefel (HS) method. 
Although the earliest conjugate gradient method HS achieves global convergence 
using an exact line search, this is not guaranteed in the case of an inexact line search. 
In addition, the HS method does not usually satisfy the descent property. The 
modified three-term conjugate gradient method from [7] possesses a sufficient 
descent property regardless of the type of line search and guarantees global con-
vergence using the inexact Wolfe-Powell line search [50, 51]. The authors also 
prove the global convergence of this method. The search direction, which is con-
sidered in [7], has the next form: 

( 
�gk, if k ¼ 0,

dk ¼ �gk þ βBZAdk�1 � θBZAyk�1, if k ≥ 1,k k 

k ðgk �gk�1Þ , θBZA k dk�1where βBZA ¼ 
gT 

¼ 
gT 

, μ . 1:k dT k dT 
k�1yk�1þμ∣gTdk�1 ∣ k�1yk�1þμ∣gTdk�1∣k k 

In [13], an accelerated three-term conjugate gradient method is proposed, in 
which the search direction satisfies the sufficient descent condition as well as 
extended Dai-Liao conjugacy condition: 

dTk yk�1 ¼ � tg Tk sk�1, t  ≥ 0: 

This method seems different from the existent methods. 
Next, Li-Fushikuma quasi-Newton equation is 

∇2f ð Þxk sk�1 ¼ zk�1, (10) 

where 

Tsk�1yk�1zk�1 ¼ yk�1 þ C∥ gk�1∥
rsk�1 þmax � sk�1,∥sk�1∥2 ; 0 

where C and r are two given positive constants. Based on (10), Zhou and Zhang 
[56] propose a modified version of DL method, called ZZ method in [13]. 

In [30], some new conjugate gradient methods are extended, and then some 
three-term conjugate gradient methods are constructed. Namely, the authors 
remind to [41, 42], with its conjugate gradient parameters, respectively: 

T 

βRMIL gk yk�1¼ (11)k ∥dk�1∥2 , 

Tg gk � gk�1 � dk�1
βMRMIL k¼ , (12)k ∥dk�1∥2 

¼ βRMILwherefrom it is obvious that βMRMIL for the exact line search. Let us sayk k 
that these methods, presented in [41, 42], are RMIL and MRMIL methods. 

The three-term RMIL and MRMIL methods are introduced in [30]. 
The search direction dk can be expressed as 

d0 ¼ �g0, dk ¼ �gk þ βkdk�1 þ θkyk�1, 

where βk is given by (11) or (12), and 
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T 

∥ 

g
dk�1∥2 :
k dk�1θk ¼ �  

An important property of the proposed methods is that the search direction 
always satisfies the sufficient descent condition without any line search, that is, the 
next relation always holds 

Tgk dk ≤ � ∥ gk∥
2: 

Under the standard Wolfe line search and the classical assumptions, the global 
convergence properties of the proposed methods are proven. 

Having in view the conjugate gradient parameter suggested in [49], in [45] the 
next two conjugate gradient parameters are presented: 

∥∥2 � ∥ gk T∥ gk k gk�1
βMHS ∥ gk�1∥ g ¼ � � , (13)k dT 

k�1 gk � gk�1 

∥ gk∥ T∥ gk∥
2 � ∥ gk gk�1

βMLS ∥ gk�1¼ : (14)k �dT 
k�1gk�1 

Motivated by [49], as well as by [45], in [1], a new hybrid nonlinear CG method 
is proposed; it combines the features of five different CG methods, with the aim of 
combining the positive features of different non-hybrid methods. The proposed 
method generates descent directions independently of the line search. Under some 
assumptions on the objective function, the global convergence is proven under the 
standard Wolfe line search. Conjugate gradient parameter, proposed in [1], is 

n o 
∥ gk ∥ T∥ gk∥

2 �max 0; ∥ gk gk�1 
βhAO ∥ gk�1¼ � � � � : (15)k max ∥ gk�1∥

2; dTk�1 gk � gk�1 ; �dTk�1 gk�1 

Let’s note that the proposed method is hybrid of FR, DY, WYL, MHS, and MLS. 
The behaviors of the methods BZA, TTRMIL, MRMIL, MHS, MLS, and hAO are 

illustrated by the next tables. 
The test criterion is CPU time. 
The tests are performed on the computer Workstation Intel Celeron CPU 

1,9 GHz. 
The experiments are made on the test functions from [3]. 
Each problem is tested for a number of variables n ¼ 1000 and n ¼ 5000. 
The average CPU time values are given in the last rows of these tables (Tables 1–4). 
In [2], based on the numerical efficiency of Hestenes-Stiefel (HS) method, a new 

modified HS algorithm is proposed for unconstrained optimization. The new direction 
independent of the line search satisfies the sufficient descent condition. Motivated by 
theoretical and numerical features of three-term conjugate gradient (CG) methods 
proposed by [33], similar to the approach in [10], the new direction is computed by 
minimizing the distance between the CG direction and the direction of the three-term 
CG methods proposed by [33]. Under some mild conditions, the global convergence 
of the new method for general functions is established when the standard Wolfe line 
search is used. In this paper the conjugate gradient parameter is given by 

βk ¼ βHS (16)k θk, 
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function BZA TTRMIL MRMIL MHS MLS hAO 

Ext.Pen. 21.793340 20.966534 16.036903 19.812127 21.933741 20.326930 

Pert.Quad. 21.855740 22.542144 15.506499 20.904134 22.230142 18.954121 

Raydan1 6.801644 7.066845 6.349241 7.098045 7.066845 7.332047 

Raydan2 0.608404 0.592804 0.577204 0.592804 0.608404 0.639604 

Diag.1 0.608404 0.608404 0.577204 0.608404 0.514803 0.577204 

Diag.2 5.163633 5.600436 4.695630 4.758031 5.662836 4.851631 

Diag.3 5.616036 5.694037 5.241634 5.756437 5.584836 5.506835 

Gen.Tridiag.-1 3.042019 2.932819 2.683217 2.948419 2.792418 2.808018 

Hager 2.917219 2.932819 2.620817 3.042019 2.917219 2.886019 

Ext.Tridiag.-1 2.886019 2.932819 2.761218 2.932819 2.730018 2.917219 

Ext.ThreeExp. 2.979619 2.964019 2.605217 2.886019 3.042019 2.714417 

Diag.4 2.901619 2.870418 2.574016 2.792418 2.948419 2.652017 

Diag.5 2.792418 2.917219 2.574016 2.901619 3.026419 2.901619 

Ext.Himm. 2.761218 2.714417 2.667617 2.964019 2.995219 2.854818 

Ext.PSC1 2.932819 2.745618 2.714417 2.511616 3.026419 2.792418 

FullHess.FH2 2.870418 2.948419 2.886019 2.839218 3.010819 2.948419 

Ext.Bl.Diag.BD1 2.979619 2.886019 2.948419 2.886019 2.901619 2.542816 

Quad.QF1 2.854818 2.870418 3.057620 2.964019 2.964019 2.886019 

Ext.Quad.Pen.QP1 2.948419 2.808018 2.605217 2.964019 2.823618 2.542816 

Quad.QF2 2.839218 2.620817 2.886019 2.979619 2.901619 2.683217 

Ext.EP1 2.730018 2.402415 2.932819 2.698817 2.792418 2.652017 

Ext.Tridiag.-2 2.683217 2.605217 2.839218 2.870418 2.886019 2.542816 

Tridia 2.683217 2.511616 2.964019 2.823618 2.823618 2.511616 

Arwhead 2.917219 2.995219 2.745618 2.823618 2.745618 2.012413 

Dqdrtic 2.761218 2.995219 2.901619 2.823618 2.730018 2.589617 

Quartc(Cute) 2.886019 2.776818 2.886019 2.776818 2.870418 2.839218 

Dixon3dq(Cute) 2.808018 2.948419 2.948419 2.839218 2.917219 2.605217 

Table 1. 
n = 1000. 

function BZA TTRMIL MRMIL MHS MLS hAO 

Biggsb1(Cute) 2.792418 2.870418 2.870418 2.917219 2.979619 2.901619 

Gen.quart. 2.917219 2.932819 2.464816 2.948419 2.808018 2.620817 

Diag.7 2.574016 2.589617 2.870418 2.620817 3.026419 2.698817 

Diag.8 2.730018 2.979619 2.839218 2.964019 2.792418 2.979619 

Full Hess.FH3 2.948419 2.574016 2.698817 3.026419 2.636417 2.745618 

Himmelbg 2.854818 3.010819 2.901619 2.854818 2.995219 2.730018 

Ext.Pow. 2.901619 2.854818 2.761218 2.808018 2.870418 2.995219 

Ext.Maratos 2.854818 2.948419 2.870418 2.995219 2.870418 2.917219 

Ext.Cliff 2.964019 3.042019 2.854818 2.932819 2.886019 2.854818 

Pert.quad.diag. 2.714417 3.104420 2.683217 2.964019 2.667617 2.901619 

Ext.Wood 2.995219 2.932819 2.948419 2.948419 2.964019 2.948419 
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function BZA TTRMIL MRMIL MHS MLS hAO 

Ext.Trigon. 2.792418 2.995219 2.839218 3.010819 2.995219 2.745618 

Ext.Rosenbr. 2.964019 2.839218 2.948419 2.932819 2.995219 2.776818 

Average 3.915625 3.928105 3.533423 3.868045 3.973345 3.722184 

Table 2. 
n = 1000. 

function BZA TTRMIL MRMIL MHS MLS hAO 

Ext.Pen. 46.160696 46.831500 48.656712 66.284825 65.863622 63.695208 

Pert.Quad. 48.375910 45.801894 52.307135 66.612427 66.113224 65.551620 

Raydan1 12.994883 12.105678 13.759288 16.972909 16.598506 16.754507 

Raydan2 1.170008 1.029607 1.076407 1.154407 1.092007 1.107607 

Diag.1 8.845257 0.904806 1.076407 1.123207 1.170008 1.092007 

Diag.2 8.658055 7.831250 7.924851 9.094858 10.358466 10.327266 

Diag.3 8.361654 9.141659 8.673656 10.686068 10.358466 10.514467 

Gen.Tridiag.-1 5.616036 5.382034 5.865638 6.021639 6.489642 6.364841 

Hager 5.241634 4.851631 5.881238 6.286840 5.304034 6.021639 

Ext.Tridiag.-1 5.007632 4.804831 5.740837 5.787637 6.224440 5.803237 

Ext.ThreeExp. 4.882831 4.820431 5.522435 6.115239 6.333641 5.834437 

Diag.4 4.929632 4.898431 5.179233 5.803237 6.177640 6.427241 

Diag.5 5.694037 4.851631 5.538036 5.709637 5.896838 6.115239 

Ext.Himm. 5.834437 5.116833 5.382034 6.099639 5.772037 6.411641 

Ext.PSC1 5.023232 5.054432 5.163633 6.411641 6.115239 5.990438 

FullHess.FH2 5.210433 4.929632 4.851631 6.068439 6.349241 6.349241 

Ext.Bl.Diag.BD1 4.851631 5.007632 5.226033 6.364841 6.364841 5.569236 

Quad.QF1 5.475635 5.662836 6.302440 6.177640 6.146439 6.286840 

Ext.Quad.Pen.QP1 5.226033 5.163633 4.929632 6.130839 5.818837 5.943638 

Quad.QF2 5.335234 4.836031 5.990438 6.084039 6.084039 6.084039 

Ext.EP1 5.070032 5.038832 6.052839 6.115239 4.992032 6.177640 

Ext.Tridiag.-2 4.851631 4.976432 4.851631 6.349241 5.990438 6.099639 

Tridia 5.413235 4.820431 5.475635 5.569236 5.818837 6.021639 

Arwhead 4.867231 4.882831 5.023232 6.099639 6.380441 6.177640 

Dqdrtic 5.163633 4.945232 5.023232 5.428835 6.006038 5.850038 

Quartc(Cute) 5.912438 5.350834 5.834437 5.787637 5.896838 6.193240 

Dixon3dq(Cute) 5.428835 4.789231 5.163633 6.162039 5.616036 5.881238 

Table 3. 
n = 5000. 

where 

˜ ° 2Tgk dk�1θk ¼ 1 � 
∥ gk∥

2∥dk�1∥2 : 

But this new CG direction does not fulfill a descent condition, so further modi-
fication is made, namely, having in view [53], the authors [2] introduce 
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function BZA TTRMIL MRMIL MHS MLS hAO 

Biggsb1(Cute) 5.148033 4.695630 5.413235 5.912438 6.052839 6.349241 

Gen.quart. 5.288434 4.758031 5.023232 6.349241 6.052839 4.960832 

Diag.7 5.163633 4.664430 5.054432 5.959238 6.193240 6.255640 

Diag.8 5.787637 4.742430 4.898431 6.099639 5.600436 6.208840 

Full Hess.FH3 5.444435 4.789231 5.569236 6.177640 6.162039 6.224440 

Himmelbg 5.584836 6.130839 5.475635 5.475635 6.006038 5.912438 

Ext.Pow. 5.569236 4.789231 4.773631 5.990438 5.772037 6.162039 

Ext.Maratos 5.148033 5.740837 4.976432 6.021639 6.286840 6.130839 

Ext.Cliff 5.943638 5.850038 4.976432 5.990438 5.304034 6.286840 

Pert.quad.diag. 5.912438 6.427241 4.976432 6.318041 6.115239 6.068439 

Ext.Wood 5.584836 5.647236 4.789231 6.255640 5.350834 6.021639 

Ext.Trigon. 5.366434 5.709637 4.773631 6.115239 6.021639 5.787637 

Ext.Rosenbr. 6.177640 5.319634 4.617630 6.333641 6.021639 6.021639 

Average 7.79302995 7.327367 7.694749 9.287519525 9.206789 9.225899 

Table 4. 
n = 5000.

 !2 
∥y 1∥θkk� Tβk ¼ βk � λ gk dk�1,Tdk�1yk�1 

1where λ . is a parameter. Also, the global convergence is proven under stan-4 
dard conditions. 

It is worth to mention the next papers about this theme, which can be interesting 
[4, 14–17, 25–27]. 

3. Trust region methods 

We remind that the basic idea of Newton method is to approximate the objective 
function f xð Þ around xk by using a quadratic model: 

1ð Þk T Tq s ð kÞ þ g þ sk Gks,ð Þ ¼ f x  k s 2 

ð Þkwhere gk ¼ ∇f xð Þk , Gk ¼ ∇2f xð Þk , and also use the minimizer sk of q ð Þs to set 
xkþ1 ¼ xk þ sk. 

Also, remind that Newton method can only guarantee the local convergence, i.e., 
when s is small enough and the method is convergent locally. 

Further, Newton method cannot be used when Hessian is not positive definite. 
There exists another class of methods, known as trust region methods. It does 

not use the line search to get the global convergence, as well as it avoids the 
difficulty which is the consequence of the nonpositive definite Hessian in the line 
search. 

Furthermore, it produces greater reduction of the function f than line search 
approaches. 

Here, we define the region around the current iterate: 
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Ωk ¼ fx : ∥x � xk∥≤ Δkg, 
where Δk is the radius of Ωk, inside which the model is trusted to be adequate to 

the objective function. 
Our further intention is to choose a step which should be the approximate 

minimizer of the quadratic model in the trust region. In fact, xk þ sk should be the 
approximately best point on the sphere: 

fxk þ sj∥s∥≤ Δkg, 
with the center xk and the radius Δk. 
In the case that this step is not acceptable, we reduce the size of the step, and 

then we find a new minimizer. 
This method has the rapid local convergence rate, and that’s the property of 

Newton method and quasi-Newton method, too, but the important characteristic of 
trust region method is also the global convergence. 

Since the step is restricted by the trust region, this method is also called the 
restricted step method. 

The model subproblem of the trust region method is 

ð Þk Tminq s Þ þ g 
1 
sTBks, (17)ð Þ ¼ f xð k k s þ 2 

s:t:∥s∥≤ Δk, (18) 

where Δk is the trust region radius and Bk is a symmetric approximation of the 
Hessian Gk. 

ð ÞkIn the case that we use the standard l2 norm ∥ � ∥2, sk is the minimizer of q ð Þs in 
the ball of radius Δk. Generally, different norms define the different shapes of the 
trust region. 

Setting Bk ¼ Gk in (17)–(18), the method becomes a Newton-type trust region 
method. 

The problem by itself is the choice of Δk at each single iteration. 
ð ÞkIf the agreement between the model q ð Þs and the objective function f ðxk þ sÞ is 

satisfactory enough, the value Δk should be chosen as large as it is possible. The 
expression Aredk ¼ f xð kÞ � f ðxk þ skÞ is called the actual reduction, and the expres-

ð Þk 0 ð Þksion Predk ¼ q ð  Þ � q ð Þ is called the predicted reduction; here, we emphasizesk 

that 

Aredk rk ¼ Predk 

ð Þkmeasures the agreement between the model function q ð Þs and the objective 
function f xð k þ sÞ. 

If rk is close to 0 or it is negative, the trust region is going to shrink; otherwise, 
we do not change the trust region. 

The conclusion is that rk is important in making the choice of new iterate xkþ1 as 
well as in updating the trust region radius Δk. Now, we give the trust region 
algorithm. 

Algorithm 1.3.1. (Trust region method).˜ ° 
Assumptions: x0, Δ, Δ0 ∈ 0; Δ , ε ≥0, 0 , η1 ≤ η2 , 1, and 0 , γ1 , 1 , γ2. 
Let k ¼ 0. 
Step 1. If ∥ gk∥≤  ε, then STOP. 
Step 2. Approximately solve the problem (17)–(18) for sk. 
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Step 3. Compute f ðxk þ skÞ and rk. Set 

˜ 
xk þ sk, if rk ≥ η1, xkþ1 ¼ 
xk, otherwise: 

Step 4. If rk , η1, then Δkþ1 ∈ ð0; γ1ΔkÞ. 
If rk ∈ ½η1; η2Þ, then Δkþ1 ∈ ðγ1Δk; ΔkÞ.̋  ° ˛˙ 
If rk ≥ η2 and ∥sk∥ ¼ Δk, then Δkþ1 ∈ Δk; min γ2Δk; Δ . 

ð ÞStep 5. Generate Bkþ1, update q k , set k ¼ k þ 1, and go to Step 1. 
In Algorithm 1.3.1, Δ is a bound for all Δk. Those iterations with the property 

rk ≥ η2 (and so those for which Δkþ1 ≥Δk) are called very successful iterations; the 
iterations with the property rk ≥ η1 (and so those for which xkþ1 ¼ xk þ sk) are called 
successful iterations; and the iterations with the property rk , η1 (and so those for 
which xkþ1 ¼ xk) are called unsuccessful iterations. Generally, the iterations from the 
two first cases are called successful iterations. 

Some choices of parameters are η1 ¼ 0, 01, η2 ¼ 0, 75, γ1 ¼ 0, 5, γ2 ¼ 2, Δ0 ¼ 1, 
and Δ0 ¼ 1 ∥ g0∥. The algorithm is insensitive to change of these parameters. 10 

Next, if rk , 0, 01, then Δkþ1 can be chosen from ð0:01; 0:5Þ∥sk∥ on the basis of a 
polynomial interpolation. 

In the case of quadratic interpolation, we set 

Δkþ1 ¼ λ∥sk∥, 

where 

�gTk skλ ¼ ˆ ˇ : 
2 f ðxk þ skÞ � f xð kÞ � gTk sk 

3.1 Convergence of trust region methods 

Assumption 1.3.1 (Assumption A0). 
We assume that the approximations of Hessian Bk are uniformly bounded in normf g  

and the level set L ¼ fxjf ð Þ  ð Þg is bounded, as well as f : Rn ! R is continuously x ≤ f x0 

differentiable on L. We allow the length of the approximate solution sk of the subproblem 
(17)–(18) to exceed the bound of the trust region, but we also assume that 

∥sk∥≤ ~ηΔk, 

where ~η is a positive constant. 
In this kind of trust region way of thinking, generally we do not seek an accurate 

solution of the subproblem (17)–(18); we are satisfied by finding a nearly optimal 
solution of the subproblem (17)–(18). 

Strong theoretical as well as numerical results can be obtained if the step sk, 
produced by Algorithm 1.3.1, satisfies 

˜ ˘
∥ gk∥2 qkð Þ � qk sk , β1 ∈ ð0; 10 ð Þ≥ β1∥ gk∥2min Δk; Þ:
∥Bk∥2 

Theorem 1.3.1 [47] Under Assumption A0, if Algorithm 3.1 has finitely many 
successful iterations, then it converges to the first-order stationary point. 

Theorem 1.3.2 [47] Under Assumption A0, if Algorithm 3.1 has infinitely many 
successful iterations, then 
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liminf ∥ gk∥ ¼ 0: 
k!∞ 

In [44], it is emphasized that trust region methods are very effective for 

^ 

optimization problems and a new adaptive trust region method is presented. 
This method combines a modified secant equation with the BFGS update formula 
and an adaptive trust region radius, where the new trust region radius makes 

Bkuse of not only the function information but also the gradient information. Let 
be a positively definite matrix based on modified Cholesky factorization [43]. 
Under suitable conditions, in [44] the global convergence is proven; also, the 

^ 

local superlinear convergence of the proposed method is demonstrated. Motivated 
by the adaptive technique, the proposed method possesses the following nice 
properties: 

1. The trust region radius uses not only the gradient value but also the function 
value. 

Bk of the inverse and the value of ∥Bk 
^2. Computing the matrix 

�1
∥, at each 

iterative point xk, is not required. 

3. The computational time is reduced. 

A modified secant equation is introduced: 

Bkþ1dk ¼ qk, (19) 

Tðgkþ1þgkÞ dkþ2ðf k�f kþ1 Þwhere qk ¼ yk þ hkdk, f k ¼ f xð Þk , and hk ¼ .∥dk∥2 

When f is twice continuously differentiable and Bkþ1 is generated by the BFGS 
formula, where B0 ¼ I, this modified secant Eq. (19) possesses the following nice 
property: 

1T dTf k ¼ f kþ1 � gkþ1dk þ 2 k Bkþ1dk, 

and this property holds for all k. 
Under classical assumptions, the global convergence of the method presented in 

[44] is also proven in this paper. 
In [28], the hybridization of monotone and non-monotone approaches is made; 

a modified trust region ratio is used, in which more information is provided about 
the agreement between the exact and the approximate models. An adaptive trust 
region radius is used, as well as two accelerated Armijo-type line search strategies to 
avoid resolving the trust region subproblem whenever a trial step is rejected. It is 
shown that the proposed algorithm is globally and locally superlinearly convergent. 
In this paper trust region methods are denoted shortly by TR; it is emphasized that 
in TR method, having in view that the iterative scheme is 

x0 ∈Rn, xkþ1 ¼ xk þ sk, k  ¼ 0, 1, …, 

and it often happens that sk is an approximate solution of the following quadratic 
subproblem: 

1T Tmin mk s k s þ sk Bks:ð Þ ¼ g (20) 
s ∈Rn, ∥sk∥≤  Δk 2 
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Performance of the TR methods is much influenced by the strategy of choosing 
the TR radius at each iteration. To determine the radius Δk, in the standard TR 
method, the agreement between f ðxk þ sÞ and mkð Þs is evaluated by the so-called TR 
ratio ρk: 

f ðxkÞ � f xð k þ skÞ ρk ¼ : 
mk 0 mkð Þð Þ �  sk 

When ρk is negative or a small positive number near to zero, the quadratic model 
is a poor approximation of the objective function. In such situation, Δk should be 
decreased and, consequently, the subproblem (20) should be solved again. How-
ever, when ρk is close to 1, it is reasonable to use the quadratic model as an 
approximation of the objective function. So, the step sk should be accepted and Δk 

can be increased. Here, the authors use the modified version of ρk: 

Rk � f ðxk þ skÞ ρk ¼ ,
Pk �mkð Þsk 

where Rk ¼ ηkf l kð Þ þ ð1 � ηkÞf k, ηk ∈ ½ηmin; ηmax�, ηmin ∈ ½0; 1Þ, and ηmax ∈ ½ηmin; 1�. 
Also, 

n o 
f l kð Þ ¼ max j , f i ¼ f xi , q  0 ð Þ  f ð Þ þ 1; Ng,f k� ð Þ  ð Þ ¼ 0, 0 ≤ q k  ≤ min q k  � 1 

0 ≤ j ≤ q kð Þ  

where N ∈ N which is originally used by Toint [48]. 
Something more about trust region methods can be found in [9, 18, 21, 22, 54]. 

4. Conclusion 

The conjugate gradient methods and trust region methods are very popular now. 
Many scientists consider these methods. 
Namely, different modifications of these methods are made, with the aim to 

improve them. 
Next, the scientists try to make not only new methods but also whole new classes 

of methods. For the specific values of the parameters, individual methods are 
distinguished from these classes. It is always more desirable to make a class of 
methods instead of individual methods. 

Hybrid conjugate gradient methods are made in many different ways; this class 
of conjugate gradient methods is always actual. 

Further, one of the contemporary trends is to use BFGS update in constructions 
of new conjugate gradient methods (e.g., see [46]). 

Finally, let us emphasize that contemporary papers often use the Picard-Mann-
Ishikawa iterative processes and they make the connection of these kinds of pro-
cesses with the unconstrained optimization (see [29, 37, 38]). 
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Chapter 3 

What Determines EP Curve 
Shape? 
Frank Xuyan Wang 

Abstract 

Propose use kurtosis divided by skewness squared as shape factor, and use the 
global or conditional minimum/maximum of this shape factor for selecting and 
differentiating distribution families. Semi-empirical formulas for that lower/upper 
bound are calculated for various distribution families, with the aid of Computer 
Algebra System, for fitting hard to match distributions. Previous studies show high 
CV distribution is hard to fit and simulate, this study extends that conclusion to 
cases with low CV but still hard to match EP curves, characterized by having shape 
factors close to 1. The maximal likelihood approach of distribution fit can tell us 
which distribution family is better suited for an empirical distribution, but the 
shape factor range information can tell us why a distribution cannot fit well, or is 
not suitable at all. So the shape factor, in a sense, determines the EP curve shape. 

Keywords: Skewness, kurtosis, TVaR, shape factor, reinsurance, computer algebra 
system, Beta distribution, Kumaraswamy distribution, asymptotic expansion, GB2 
distribution, numerical optimization, generalized hyperbolic distribution 

1. Introduction 

In reinsurance industry, losses for a contract are simulated and represented by 
the losses cumulative distribution function (CDF), survival, or quantile functions. 
The plots of these functions are called the EP curves with the following terminology 
[1]: for a given annual or aggregated loss, the probability of seeing annual loss 
exceeding that loss is the exceeding-probability (EP) or aggregate-exceeding-
probability (AEP). The average of all annual losses exceeding that given loss is the 
AEP tail value at risk, called the AEP TVaR, or simply TVaR. The EP curve is 
represented by a table consisting of pairs of probability and loss. It is desirable to fit 
a parametric distribution to this table for a more succinct representation and more 
reasonable interpolations for values not in the table. Then which distribution family 
to use and what characteristics of the data are needed or determine the distribution 
are the questions to answer. 

The (scaled) Beta distribution is widely used in reinsurance for fit loss or loss 
ratio, perhaps because the Beta distribution has only two parameters and very 
simple formulas for mean and standard deviation using these parameters, whose 
inverse function also has simple formulas, so that the two statistics of mean and 
standard deviation can be used to easily determine the parameters. 

For about 85% of the perils, this approach works well, in the sense that the TVaR 
of the fitted distribution for quantile of interest, such as the 0.96, 0.99 or 0.996 

47 



Applied Mathematics 

quantile TVaR which is needed for pricing and risk monitoring, is close to a few 
percent of the original data TVaR. The remaining 15% perils, such as the North 
American Tornado Hail (NATH), Australia Wind Storm (AUWS), Hawaii Wind 
Storm (HIWS), and Mexico Earthquake (MXEQ), can have more than 10% 
deviations. 

The maximum likelihood estimation method is a way to find alternative fitting 
distributions [2, 3]. Instead of finding approximations of the smoothed empirical 
distribution, we optimize an objective function whose optimum solution gives us 
the candidate distribution form. Suppose the annual losses xi occurred ni times in 
our observation; to find a probability function that gives probabilities pi for these Q nilosses, we just maximize the objective function i pi . It is easily seen that for the 
optimum solution we have pi ¼ ni: the relative occurring frequency is maintained in pj nj 

the probability function. In the objective function, if we replace the pi by a power 
function of pi, the conclusion still holds, but not if we use a logarithm or exponen-
tial function. 

While the maximum likelihood approach works well for many perils and iden-
tifies a few best fitted distribution families (Mathematica has more than 200 distri-
bution families that can be used for extensive searches), it did not work for the 
NATH peril. The NATH has {Mean, StandardDeviation, Skewness, Kurtosis, 
0.99TVaR} = {7418611.10904006, 9517336.93024634, 5.99378199789956, 
65.8901734355745, 68867612.8345741}. 

This is not contradictory to the maximum likelihood principal, since in any 
implementation, only known forms of the probability density function (PDF) and 
as-small-as-possible numbers of parameters can be used. To overcome this limita-
tion, we need to look into the particularity of those distributions and come up with 
or select more suitable function forms for the PDF or CDF. In [4] it is found that a 
high coefficient of variation (CV) distribution is hard to fit or simulate. But the 
NATH has a small CV of 1.28. The skewness and kurtosis alone also not differentiate 
them from other distributions. 

Trial and error found the empirical rule that these hard distributions have small 
values of kurtosis divided by skewness squared, Table 1. This finding prompted us 
for the study of the property of kurtosis/skewness^2 (K/S^2), henceforth will be 
called the shape factor (SF). 

Numerical optimization or solution will be our primary tool for this SF study. 
Analytical deduction, symbolic algebra, and symbolic limit from computer algebra 
system (CAS) Mathematica will be another major tool, as well as Mathematica’s plot 
functions. Those plots can help reveal the patterns or tendencies of functions. The 
found pattern can in turn aid in taking special directional/constraint limit or sub-
stitutions in CAS to get the analytical formula for SF bound when it is possible. 

The overall lower bound we find of SF is presented in Section 2, through the 
triple analytical, graphical, and numerical methods. Followed by in-detail studies of 
SF of various selected distribution families, which are either widely used in practice, 

Peril CV Shape factor 

NATH 1.283 1.834 

AUWS 5.711 1.260 

HIWS 4.678 1.238 

MXEQ 3.930 1.878 

Table 1. 
Numerical characteristics of a few hard to fit and simulate perils. 
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such as the Beta distribution in Section 3 and the generalized Gamma distribution in 
Section 6, or is most simple to simulate, such as the Kumaraswamy distribution in 
Section 4. The most inclusive distribution, BetaPrime distribution, is in Section 5, 
for which we do not get an analytical formula, so the empirical formula for SF lower 
bound is provided. Some distributions that have wide matching capabilities, but for 
the NATH may have fitted distribution facing numerical difficulties, such as the 
Fleishman distribution, whose fit has non-monotonically increasing polynomial 
form and hence is hard to solve for inverse CDF, are only briefly mentioned in 
Section 7. The top distribution found through maximum likelihood fit, the general-
ized hyperbolic distribution (GH), even with the most complex PDF, has unex-
pectedly simple and beautiful analytical formulas for SF lower bound; the results 
are in the final Section 8. All our studies will focus on SF bound deductions and 
applications. 

2. Lower bound of the shape factor 

For a random variable f with mean mf , the following characteristics are defined: 

Ð 
f rdμ, r  >0,• Moment (M), M r½ � �  

Ð

� 

rdμ, r  >0,• Absolute Moment (AM), AM r j jf½ � �  

�rÐ 
• Central Moment (CM), CM r f �½ � �  dμ, r  >0,mf 

Ð 
f �mf 

r
• Absolute Central Moment (ACM), ACM r½ � �  dμ, r  >0, 

CM½ �3
• Skewness (S), S � ,3 

CM½ �2 2 

CM½ �4
• Kurtosis (K), K � 2 ,CM½ �2 

CM½ �4 ∗CM½ �2
• Shape Factor (SF), SF �

S
K 
2 ¼ 2 .

CM½ �3 

We can prove by Hölder inequality (https://en.wikipedia.org/wiki/Hölder's_ine 
quality) that. 

SF ≥ 1 :  

ð ðð 
2�3 3 1∣ f � dμ∣ ≤  f � dμ ¼ f � f � dμ (1)mf mf mf mf 

ð �1 �1ð 
4 2 2 

dμ : (2)2≤ f � dμ f �mf mf 

A better inequality K ≥ S2 þ 1 is proved in [5–7]. But by Hölder inequality we can 
½ �∗ACM½ �2also know that ACM 4 ¼ 1 iff f is constant: if f is not constant, the shape factor 2ACM½ �3 

must be larger than the lower bound 1. 
The contribution to SF > 1 plausibly comes from two parts: Eq. (1) due to 

symmetry, the more symmetric the distribution, the larger the contribution to SF, 
or conversely, the smaller the SF, the more asymmetric the distribution; and Eq. (2) 
due to ACM convexity or steepness, the steeper the PDF, the smaller the SF. 
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This property of the shape factor identified our exceptional perils as possessing 
very steep and asymmetric PDF whose SF are small. 

2.1 Are there better definitions of shape factor? 

To measure the steepness or the convexity, we can get similar inequality to 
Eq. (2) by Hölder inequality for absolute moment: 

AM½ �4 ∗AM½ �2 AM½ �3 ∗AM½ �1 
2 ≥ 1 and 2 ≥ 1: 

AM½ �3 AM½ �2 

From absolute central moment define: 

ACM½ �4 ∗ACM½ �2 ACM½ �3 ∗ACM½ �1
SF1 � 2 ≥ 1 and SF2 � 2 ≥ 1: 

ACM½ �3 ACM½ �2 

For nonnegative random variables such as the reinsurance contract loss distri-
bution, use the following inequality for moment: 

M½ �4 ∗M½ �2 M½ �3 ∗M½ �1 
2 ≥ 1 and 2 ≥ 1: 

M½ �3 M½ �2 

From another application of Hölder inequality, we get yet other measures of 
convexity from absolute central moment: 

ACM½ �r ≤ ACM½ �s rs , where 0 , r , s, 

ACM½ �r ACM½ �sSF3 r ≤ 1, where 0 , r , 1 and SF3 s ≥ 1, where s > 1:½ � �  ½ � �  r sACM½ �1 ACM½ �1 

Similar definition from absolute moment: 

AM½ �r ≤ AM½ �s rs , where 0 , r , s, 

AM½ �r AM½ �sSF4 r ≤ 1, where 0 , r , 1 and SF4 s ≥ 1, where s > 1:½ � �  ½ � �  r sAM½ �1 AM½ �1 

Checking against NormalDistribution½μ; σ�, we see their minimum based on 
½ �∗AM½ �2 AM½ �3 ∗AM½ �1 AM½ �2absolute moment: AM 4 , , and SF4 2½ � ¼  2, are all 1, but that by 2 2AM½ �3 AM½ �2 AM½ �1 

absolute central moment are not: min SF1 = 1.1781, min SF2 = 1.27324, min SF3 [2] 
=1.5708. Moreover, the convex index SF1, SF2, and SF3 out of absolute central 
moment are shift invariant besides the scale transformation invariant of the random 
variable, so they are preferred over the ones based on absolute moment. 

½ �∗M½ �2 ½ �∗M½ �1The only case in favor of M 4 and M 3 is when the numerical calculation 2 2M½ �3 M½ �2 

error with extreme parameters arrive at negative kurtosis, then the calculated SF 
are meaningless (An example of BesselK function inaccuracy brings about negative 
kurtosis for generalized hyperbolic distribution can be found in [8]). 

Even though both SF and SF1 are invariant under linear transformation of the 
distribution, and both measure the convexity, SF ≥ SF1 can additionally measure 
the asymmetry, combining these two into one quantity. Since most distributions in 
reinsurance are not symmetric, SF is preferred over SF1. That only SF measured 
both asymmetry and convexity, while the others cannot, can be seen from Figure 1, 

�xn 1þnfor the case of exponential distribution family with PDF e nx� , x  ∈ ð0; ∞Þ, n  > 0, 
which is WeibullDistribution½n; 1� or GammaDistribution½1; 1; n; 0�, where only SF has 
a nontrivial interior global minimum. 
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Figure 1. 
xn 1þnSF SF1 SF2 SF3 2½ � plot of exponential distribution e� nx� . The horizontal axis is the order of the 

exponential and the vertical axis is shape factors values. 

An intuitive reason for why using shape factor SF in favor of skewness and 
kurtosis alone is provided by studying the simple example power distribution fam-

1ily with PDF nþ xn 
1 
, x  ∈ ½0; 1�, n  , � 1∥n > 0 (or BetaDistribution½1=n þ 1; 1�). This n 

distribution family has the largest value of skewness and kurtosis, and at the same 
time the smallest shape factor SF when n turns to �1, where the PDF is the steepest, 
but the skewness and kurtosis take the indistinguishable value of infinity. In com-
parison, the shape factor SF takes the finite and distribution family specific value of 
1.125. The shape factor SF thus makes meaning out of the meaningless infinities. 

2.2 Alternative way of defining shape factor for symmetric distribution 

For symmetric distribution, CM 3½ � ¼ 0, our SF will be indiscriminately infinity. 
We can now employ SF1 in place of SF. Other measures from ACM such as SF2 and 
SF3 may also be candidates. From the SF3 plot Figure 2 of NormalDistribution½μ; σ� 
we see that min ½ � ¼ 0:919824. The lower the value of SF3  2  , the higher the SF3 r ½ �  

0 , r , 1 

min SF3½ �r . We can use either SF3 2½ � or min SF3½ �r as a shape factor for symmet-
0 , r , 1 0 , r , 1 

ric distribution to describe the convexity of the ACM curve. The second measure 

Figure 2. 
SF3 plot of Normal distribution. The horizontal axis is the order r of the power and the vertical axis is SF3½ �r . 
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has the merit of independence to the power order r, by additional efforts of numer-
ical minimization. For our power distribution family, the maximum of the mini-
mum is: max min ½  � ¼ 0:942085, higher than the Normal distribution family. SF3 r 

n >0  0 , r , 1 

When all SF, SF1, and SF2 are available, however, we will prefer SF to SF1 and 
SF2 since its dependency on parameters show simpler patterns than the other two; 
this can be shown from their contour plots for Beta distribution Figures 3–5, where 
SF contours are almost lines. 

2.3 Lower bound of SF for well-known distributions 

Using numerical optimization [9, 10], for most of the top-fitted distributions 
from the maximum log likelihood approach, we get the minimum SF values, with 
distribution definition in [11] whose naming and parameterization for probability 
distributions will be used throughout this chapter, in Table 2. 

From this table, we know that most of the distributions are not able to describe 
NATH since NATH has SF 1.834. More involved numerical integration and optimi-
zation also eliminated the Beckmann Distribution [12], with admissible SF range 

Figure 3. 
SF1 contour plot of Beta distribution. The horizontal axis is α and the vertical axis is β. 

Figure 4. 
SF2 contour plot of Beta distribution. The horizontal axis is α and the vertical axis is β. 
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Figure 5. 
SF contour plot of Beta distribution. The horizontal axis is α and the vertical axis is β. 

Distribution Min SF Location of the Min 

FrechetDistribution α; β; μ½ � 2.9555 α ! 7.9305 

ExtremeValueDistribution α; β½ � 4.15843 any α, β 

MaxStableDistribution μ; σ; ξ½ � 1.91227 ξ ! -1.55970090120176 

InverseGaussianDistribution μ; λ; θ½ � 1.5 λ/μ ! 0 

SkewNormalDistribution μ; σ; α½ � 3.90603 α ! ∞ 

ExpGammaDistribution κ; θ; μ½ � 2.25 κ ! 0 

BirnbaumSaundersDistribution α; λ½ � 1.63481 α ! ∞ 

MeixnerDistribution a; b; m; d½ � 1.5 d ! 0,b !  �π 

Table 2. 
Lower bound of SF for some well-known distributions. 

3.63–8.16, being the top four-parameter-distribution in another distribution fit case 
study that has SF 4.58. 

The Alpha-Skew-Normal Distribution from [13] has minimum SF4.95061 when 
α is 2.07764, from its proposition 2.3, is thus also not eligible for NATH. 

The global lower bound of SF for parametric distribution can be used to filter out 
those distributions whose values are larger than the losses data SF, so that we can 
focus on distributions that do not violate the bound. In the following sections we 
will study typical distribution SF bound, beginning with the Beta distribution. 

3. Beta distribution 

Regardless of the fact that multitude distribution types have been used for the 
frequency and severity distribution of individual contract losses, the aggregated 
portfolio losses for the majority of perils can be fitted by a compound Poisson 
distribution with Beta distribution as the severity, somehow an attest of its preva-
lence. Beta distribution has min SF ¼ 1:0, so we need an in-detail study of why it 
cannot fit NATH. 

When matching a BetaDistribution½α; β� for skewness 5.99378 and kurtosis 
65.8902, we must have β < 0. When matching a Beta distribution for CV(=std/ 
mean, the standard deviation divided by the mean) 1.2829 and either skewness 
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5.99378 or kurtosis 65.8902, we must have either both α < 0 and β < 0 or at least 
one of α or β less than 0. Since CV, skewness, and kurtosis are scale invariant, so no 
scaled Beta distribution can at the same time match any two of the three statistics 
CV, skewness, and kurtosis. 

3.1 Minimum shape factor for given CV 

Using Mathematica, we can solve the parameter α and β by cv and std for 
BetaDistribution½α; β�: 

cv � std � cv2std cv2 � 2cvstd � cv3std þ std2 þ cv2std2 

α ! , β ! : 
cv3 cv3std 

Since α > 0, we must have: 

cv
std , 

1 þ cv2 
, 

or 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
1 � 1 � 4std2 1 þ 1 � 4std2 

, cv , :
2std 2std 

We also know std must be between 0 and 0.5 for these solutions to exist. By 
computer-aided exploration through contour plot, we can find the location of the 
std where SF takes minimum for a given cv. 

The overall observation is that when cv < 1, SF approaches infinity in the middle 
value of std, and decreases when deviating from it. When cv > 1, SF approaches its 
minimum in the middle value of std and increases when departing. Together with 
the fact that std has an allowable upper bound of cv/(1 + cv^2) and lower bound of 
0, the minimum of SF must be attained either at the global extreme where the 
derivative of SF with respect to std is zero or at the two boundaries when cv > 1, and 
attained at the two boundaries when cv < 1. 

Using Mathematica to take the derivative of the shape factor with respect to std 
to find the std where shape factor attained extreme values, and solving it for the 
intersection with std upper and lower bound, we know the minimal shape factor for 
Beta distribution for a given CV when CV is below 0.707107 or above 2.48239 

cv(intersecting std upper bound) is attained at std upper bound with value: 1þcv2 

41 � cv2 þ cv
min SF ¼ , when cv , 0:707107∥cv > 2:48239: (3)

0 , std , 
1þ 
cv
cv2 ð�1 þ cv2Þ2 

When CV is between 0.707107 and 1.024766 (intersecting std lower bound) the 
minimal shape factor is attained at std lower bound 0 with value: 

0:75
min SF ¼ 1:5 þ , when 0:707107 ≤ cv ≤ 1:024766: (4)

cv0 , std , cv2 
1þcv2 

When CV is between 1.024766 and 2.48239, the minimum SF is attained at std 
that is the zero derivative points of the shape factor. The piecewise curve plot of the 
minimum SF for given CV is in Figure 6. The formula for the central piece, 
minshape, is given in Figure 7 which is too complex for manual derivation without 
the aid of computer algebra system. 

54 



What Determines EP Curve Shape? 
DOI: http://dx.doi.org/10.5772/intechopen.82832 

Figure 6. 
Plot of Beta distribution min shape factor for given cv. 

Figure 7. 
Formula for minshape obtained using Mathematica. 

From the curve we know when CV = 1.28, the minimal shape factor is 1.88, 
larger than 1.83 of NATH. In the best effort to match the input, we may elect to 
relax CV, for example, to 1.3, then the minimum shape factor is 1.85. With the 
constraint of a given CV, the minimum shape factor of the Beta Distribution may be 
significantly larger than its global minimum 1, so that it cannot attain to the wanted 
SF value. 
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Figure 8. 
Contour plot of Beta distribution β parameter. The horizontal axis is the skewness and the vertical axis is the 
kurtosis. 

3.2 Shape factor range for given skewness 

By solving Beta distribution parameters α and β through skewness sk and kurto-
sis kt, and examining the contour plot of β, we can see the allowable region is bound 
by two parabolas, Figure 8. 

For a fixed skewness, α is monotonic increasing with respect to kurtosis; on the 
other hand, β has a singular point in some kurtosis, below that kurtosis is positive 
and monotonic increasing(in the region where α is positive), Figure 9. 

Solving for that singular point we get the permissible kurtosis upper bound 
3 þ 3 sk2, and solve for β ¼ 0 get the permissible kurtosis lower bound 1 þ sk2.2 

Observe that the upper bound is when β turns to infinity, we can also get a 
simpler derivation of the upper bound by representing skewness and shape factor in 
α and β, letting β ! ∞, and then eliminating α to get shape factor as a function of 
skewness (Mathematica cannot solve equation for skewness which includes square 
root expression, we get around that by solving equation for the square of skewness, 
and then abandoning the negative solution introduced by this square). 

A third way of more tedious calculation is through solving α by skewness and β, 
substituting the real solution into shape factor, and then take the limit for β ! ∞. 

All three methods get the same upper bound of SF ¼ 3 þ 3 
2 sk2 : 

Figure 9. 
Plots of Beta distribution β parameter and α parameter vs. kurtosis for a given skewness 5.99378. 

56 



What Determines EP Curve Shape? 
DOI: http://dx.doi.org/10.5772/intechopen.82832 

So for Beta distribution, the allowable region of skewness and kurtosis is bound 
below by kurtosis = skewness^2 + 1 where β ! 0, and above by kurto-
sis = 3 + 1.5*skewness^2 where β ! ∞: 

1 3
1 þ ≤ SF ≤ 1:5 þ (5)

S2 S2 : 

For the given skewness of 5.99378 of NATH, the maximum allowable kurtosis is 
56.88813, less than the wanted 65.8902. So NATH cannot be fitted by any affine 
transformation of Beta distribution, certifying NATH as a trying case for distribu-
tion fitting. We will use it to test many of the well-known distributions in later 
sections. We also see surprisingly that unlike many of the other distribution families 
whose shape factors are too high, the Beta distributions have the shape factor range 
too low, or too close to 1. This suggests us to search for distributions with shape 
factors ranges in between. 

4. Kumaraswamy distribution 

Using the same approach as in the Beta distribution, we first study the skewness 
and kurtosis tendency of KumaraswamyDistribution½α; β� [14], since the latter tested 

Figure 10. 
Contour plot of Kumaraswamy distribution skewness. 

Figure 11. 
Contour plot of Kumaraswamy distribution kurtosis. 
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Figure 12. 
Contour plot of Kumaraswamy distribution shape factor. 

Figure 13. 
Contour plot of Kumaraswamy distribution skewness, kurtosis, and shape factor for given values 5.99, 65.89, 
and 1.83. The horizontal axis is the α parameter and the vertical axis is the β parameter. 

to be a better choice in our experiment and is also the easiest for simulation, 
Figures 10–12; and then study the SF bound for given skewness. 

From these plots, we see an overall rough tendency of the skewness, kurtosis and 
shape factor. For a given α, the shape factor converges to a finite limit when β ! ∞. 
For a given skewness or a given kurtosis, there exists a maximum allowable α that is 
arrived when β ! ∞. In the parameters space of (α,β), for a given α, the kurtosis is 
increasing with respect to β in the top left portion where the skewness is positive, 
and decreasing in the right bottom portion where the skewness is negative. And in 
the parameters space of (α,β), for a given α, the shape factor is decreasing with 
respect to β in the top left portion where the skewness is positive, and increasing in 
the right bottom portion where the skewness is negative. But we will see later that 
the tendencies are more delicate than the monotonicity shown through visual 
observation. 

Combining the tendency of shape factor and the contour plot for given skew-
ness, kurtosis, and shape factor as in Figure 13, we may guess that for a given 
positive skewness, when α turn to its upper limit and β turn to infinity, the shape 
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Figure 14. 
Derivation of Kumaraswamy distribution skewness upper bound for given α. 

Figure 15. 
Derivation of Kumaraswamy distribution kurtosis upper bound for given α and shape factor boundary value for 
given α when β ! ∞. 

factor will converge to its minimum. We use Mathematica to calculate the asymp-
totic expansion of the Gamma function and the quotient of Gamma function at 
infinity for orders up to 4 or 2, take the symbolic limit for β ! ∞, to get these 
boundary values, Figures 14 and 15. 

We thus have a simple formula for boundary value of Kumaraswamy distribu-
tion shape factor: 

˜ °  ˜ ° ˜ °  ˜ °32Gamma 1 � 6αGamma 1 Gamma 2 þ 3α2Gamma 3 
α α α αlimit S ¼ ˛ ˛ ˝˝ , (6)˜ ° ˜ °  3=2β!∞ 2

α �αGamma 1 þ 1 þ 2Gamma 2 
α α 
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˛ ˝˜ °  ˜ °  ˜ °  ˜ °  ˜ °  ˜ ° 3�3Gamma 1 Gamma 1 � 4αGamma 1 Gamma 2 þ 4α2Gamma 3 þ α4Gamma 4þα 
α α α α α α 

limit K ¼ ˜ °4 ˜ °2 ˜ °  ˜ ° 2 , 
β!∞ Gamma 1 � 4αGamma 1 Gamma 2 þ α4Gamma 2þα 

α α α α 

(7) 
K

limit ¼ 
β!∞ S2 

˛ ˝ ˛ ˛ ˝ ˝˜ ° ˜ °  3 ˜ °  ˜ °  ˜ ° ˜ °  ˜ °  ˜ ° 2 3
α3 �αGamma 1 þ 1 þ 2Gamma 2 �3Gamma 1 Gamma 1 � 4αGamma 1 Gamma 2 þ 4α2Gamma 3 þ α4Gamma 4þα 

α α α α α α α α ˛ ˝ ˛ ˝ :˜ °  ˜ ° ˜ °  ˜ °  2 ˜ °  ˜ ° ˜ °  ˜ ° 3 4 2 22Gamma 1 � 6αGamma 1 Gamma 2 þ 3α2Gamma 3 Gamma 1 � 4αGamma 1 Gamma 2 þ α4Gamma 2þα 
α α α α α α α α 

(8) 

Its plot Figure 16 has two branches, the dividing point is 
α ! 3:602349425719043 where the skewness is zero, and below it is mainly the 
positive skewness region while above it is the negative skewness region. 

The minimum value at the left branch of Figure 16 is 1.91227 and arrived at 
α = 0.641149. When α > 1000 the numerical value for that boundary can be negative 
and is thus unreliable. The value 1.91227 is not the global minimum of the shape 
factor: for α = 0.641149 the shape factor plot Figure 17 with respect to β decreases 
first, at the point 10.6095 arriving at the minimum value of 1.80935, and increasing 
after the point 10.6095. 

In principle, the extreme value of the shape factor for a given skewness will 
arrive either at the upper boundary where β ! ∞ or at the lower boundary where 

Figure 16. 
Plot of Kumaraswamy distribution shape factor boundary value for given α when β ! ∞. 

Figure 17. 
Plot of Kumaraswamy distribution shape factor for given α = 0.641149, β in the range 0.3–1 and 1–300. 
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Figure 18. 
Plot of Eq. (6)–(8) and plot of Kumaraswamy distribution maximum shape factor for given skewness. 

α ! 0, or at some middle point where the contour plot of the skewness and the 
contour plot of the kurtosis will be tangent to each other. The Mathematica contour 
plot does not work for a very small α, but by numerical minimization we know the 
global minimum of the Kumaraswamy distribution shape factor is 1.03709 
when α ¼ 1:80143∗10�9 , β ¼ 0:247044. The conditional minimum of the shape factor 
when skewness = 5.99378 is about 1.04753 when α ¼ 10�10:5 , β ¼ 0:149286 through 
list calculation; this is higher than 1 + 1/S^2 = 1 + 1/5.99378199789956^2 = 1.02784, the 
lower boundary of Beta distribution. 

The Mathematica contour plot works for large α, and we see the shape factor is 
increasing along the contour of skewness, which attains its maximum when β ! ∞. 
For example, for NATH skewness 5.99378199789956, the maximum shape factor is 
1.97131, arriving at α = 0.5239510562868946. The maximum shape factor of 
Kumaraswamy distribution for given skewness is in Figure 18, which is algebrai-
cally represented by the parametric curve of Eq. (6) and Eq. (8). 

So the permissible shape factor range of the Kumaraswamy distribution still 
spans the lower end of the whole allowable range of (1,∞), but higher than that of 
the Beta distribution. Affine transformed Kumaraswamy distribution can fit all the 
first four moments of NATH, with the fitted distribution TVaR close to NATH 
TVaR in the error range of 5–6%, while the best effort affine transformed Beta 
distribution is in the error range of 9–10%. 

To further improve the fit, we need additional freedom in parameters, such as 
the GB1 distribution [15], since 
KumaraswamyDistribution½α; β�≈GeneralizedBetaDistributionI½1; β; α; 1�, and the 
maximum shape factor plot in Figure 18 is lower than that of LogNormalDis-
tribution, the upper bound of GB1. The following section will study a sibling 
distribution to GB1, fitted as good as GB1, but is more widely known. 

5. BetaPrime distribution 

Beta distribution and Kumaraswamy distribution are a few exceptions which 
have analytical formulas for the shape factor bounds; for other distributions to be 
studied, numerical optimization and empirical plot or formula will be the only 
feasible approach. 
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Transformation of Beta Distribution by x/(1-x) is the GB2([15]), or 
BetaPrimeDistribution p½ ¼ α; q ¼ β; α ¼ 1; β ¼ 1� ([11]): TransformedDistribution 

x ; x≈BetaDistribution½α; β� ≈BetaPrimeDistribution½α; β�. The minimum shape 1�x 
factor of Beta Distribution is 1, but that of the transformed is 1.5: 

28 � � 9 <3ð�3 þ βÞ 2ð�1 þ βÞ2 þ α2ð5 þ βÞ þ αð�1 þ βÞð5 þ βÞ = 
4NMinimize 2 ; α >0; β >4  ;: 4ð�4 þ βÞ �ð 1 þ 2α þ βÞ ; 
# 

fα; βg ¼ 1:5000000239052607; α ! 0:; β ! 6:274769836372949 � 107 : 

Empirically, the larger the third parameter α, the smaller the minimum shape 
factor. The smallest shape factor we get of the BetaPrimeDistribution is 1.125, when 
α = 446.49537: 

"( 
Kurtosis BetaPrimeDistribution p½ ½ ; q; α; β�� 1

FindMinimum 2 =:α ! =:q ! 4 x 
Skewness BetaPrimeDistribution p½ ½ ; q; α; β�� x 

þ y=:x ! 10z; 1: > p >0:; y > 1:; �4: , z , � 1:g; p; 6:384125235007732 � 10�10 ; 

fy; 1:0032844709998097g; fz; �2:157370895027263gg; MaxIterations ! 5000� 

¼ 1:1250258984236121; p ! 2:083731454230264 � 10�8; 

y ! 42:816363091057056; z ! �2:6498169598310573gg: 
This is the same value as the minimum shape factor for 

GammaDistribution½α; β; γ; μ� (in Section 6). When α > 10,000, the Gamma function 
involved will not calculate or will calculate incorrectly. 

With the transformation of p-> 10^w, α-> 10^-z, q-> 4*10^z + y, we can study 
the GB2 shape factor change tendency with respect to α, Figure 19, and shape factor 
change tendency with respect to p, Figure 20. 

The GB2 shape factor is mainly determined by α and p, only slightly changing 
with respect to q when q is smaller than 5. The change with respect to α and p is 
similar, having two peaks, or three peaks if we regard the two sides of the infinity as 

Figure 19. 
GB2 distribution shape factor vs. α for fixed p = 10^-3.312 = 0.000487528. 
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Figure 20. 
GB2 distribution shape factor vs. p for fixed α = 10^2.6498169598310573 = 446.495. 

two branches since that border is not easily crossable for searching or optimization 
algorithms. 

GB2 shape factor’s dependency with p and α, or w and z through transformation 
p = 10^w, α = 10^-z, is mostly unaffected by q except for right-most values of z. 
They are μ-shaped (Figure 21), this is different from Hyperbolic Distribution (in 
Section 8), whose shape factor dependency with λ is V-shaped. We guess V-shaped 
curves have unique global minimums, but μ-shaped curves will show bifurcation 
behavior: the converged solution in optimization will be very different when the 
initial point or interval is slightly different. 

The knowledge that the shape factor curve attained extreme values in ˜3.3,-1.25 
and 1 with respect to z, and attained extreme values in ˜2.65, ˜1.11 and 1 with 
respect to w, can be used to set the initial interval, the paramount factor determin-
ing the quality of the numerical optimization solution, for solving the GB2 fitting 
problem. 

5.1 Minimum shape factor for GB2 

The skewness and kurtosis matching problem for GB2 is very sensitive to the 
initial parameter ranges given. A study of the minimum shape factor of GB2 with 

Figure 21. 
GB2 distribution skewness kurtosis and shape factor vs. α or z, vs. p or w plots for fixed y = q-4/α. 
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Figure 22. 
The numerical minimum GB2 shape factor for given p in horizontal axis. 

respect to each parameter will give us permissible ranges for those parameters. 
Direct work with shape factor encounters problems from Mathematica’s numerical 
optimization function NMinimize, minimizing the log shape factor instead can 
overcome this difficulty. The plot is in Figure 22. 

In the range (0.0001, 5.0) of p, the numerical minimum shape factor plot of GB2 
is a very smooth curve. The fitted formula of GB2 min SF for given p by 
Mathematica’s machine learning function FindFormula is Eq. (9). 

K 1 
p0:3215433282777008min ¼ 1:1593871374775397 þ 1:4702458297305288∗0:5148499158800361 

S2 

(9) 

As a test, for NATH the log shape factor is Log½1:83408� ¼ 0:60654412, the 
solution of Eq. (9) for p with NATH SF is p ¼ 0:608342; the minimum log shape 
factor of GB2 for this p is 0.60603997, only 0.08% smaller than input. 

From the contour plot Figure 20 we know for given α, the shape factor of GB2 
has two singular points with p or 10w . The minimization for given α needs to carry 
out in each of the three regions cut by these two singular points. The plot is in 
Figure 23. With a new parameterization, p ¼ λ , q  ¼ 4þν , the minimization of shape α α 

Figure 23. 
The numerical minimum GB2 shape factor for given α or given pα in horizontal axis. 
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factor for GB2, for given λ ¼ pα, is easier to perform. The plot is included in 
Figure 23 as well. 

Figures 22 and 23 show that the permissible parameters for NATH are 
p , 0:63, α >0:5, pα , 0:5: This is confirmed by GB2 fit practice. The best fit by 
GB2 for NATH is at w ¼ �0:329075005, p  ¼ 0:468732, with about 5% error from 
input TVaR. The discontinuity of fitted GB2 TVaR with respect to parameter 
change is also observed, this w value is such a critical point. 

6. Generalized gamma distribution 

The generalized gamma distribution in Mathematica is the Amoroso distribution 
[16], with the parameter correspondence: α $ α, β $ θ, γ $ β, μ $ a: 

For generalized gamma distribution GammaDistribution½α; β; γ; μ�, the shape 
factor depends only on α and γ. It seems the smaller the α, and the bigger the γ, 
the smaller the 

S
K 
2. When α ¼ 3:318512677036329 � 10�12 , γ ¼ 8811:572418686921, 

K ¼ 1:125, close to the global minimum 1 of K/S^2. 
S2 

So there arises the question: the generalized gamma and GB2 can match smaller 
shape factors than Hyperbolic Distribution (Section 8), why they cannot fit as good 
as the latter for NATH with shape factor 1.83409? 

One explanation is that the numerical solution for GB2 or generalized Gamma 
distribution is trapped in the shape factor curve right branch by the combined 
constraints of skewness and kurtosis, which is not the branch that can attain 1.125, 
unlike the generalized hyperbolic distribution whose shape factor has a global 
minimum in λ = 0. 

7. Fleishman distribution 

We guess 1.5 is the lower bound of shape factor for most unbounded parametric 
distribution families. For example, for Fleishman distribution, by the empirical 
formula from [5], γ4 > 1:738γ23 � 0:3544γ3 þ 1:978, the minimum shape factor is 
1.72213, larger than 1.5. 

The lower bound of shape factor from unbounded distributions seems, in gen-
eral, to be higher than bound distributions’. Outside of the latter’s upper bound and 
near the former’s lower bound, for a SF value slightly larger than 1.5, in practice, 
most parametric distributions have difficult matching both the kurtosis and skew-
ness: the comparatively best one is selected for study in the next section. 

8. Hyperbolic distribution 

Taking a sequence of numerical minimization of the shape factor, for various 
values of fixed λ, we get the empirical minimum shape factor curve for generalized 
hyperbolic distribution (GH), HyperbolicDistribution½λ; α; β; δ; μ�, in Figure 24. 

We observed that when λ > �0.6, the minimum shape factor is attained when 
α^2-β^2-> 0 and β-> 0, that is, it is attained by a skew hyperbolic t distribution 
[17–19]. When looking at the plot of shape factor with respect to λ, we feel that it 
must have some simple formula. So we utilize Mathematica symbolic calculation to 
expand the shape factor with asymptotic expansion for BesselK½λ; a�, or Kλð Þa in 
[20], with respect to α^2-β^2 and then take the symbolic limit, Figure 25. 
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Figure 24. 
V-shape of the numerical minimum GH shape factor for given λ in horizontal axis. 

Figure 25. 
Derivation of the GH shape factor limit when λ > ˜2. 
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The semi-empirical formula for the minimum shape factor in this range thus 
obtained is very simple, Eq. (10–11), which has the global minimum of 1.5 when λ 
turns to 0. 

min SF ¼ 1:5 þ 0:75λ, when λ ≥ 0,
α, β, δ, μ 

(10) 

1
min SF ¼ 1 þ , when � 0:6 ≤ λ ≤ 0 

α, β, δ, μ 2 þ λ 
(11) 

When λ ≤ �0.65, however, the minimum shape factor is not attained when α^2-
β^2-> 0. When λ is in the interval [�9,�0.65], the attainable smallest shape factor is 
between 3.15 and 1.74, with an empirical 10th order polynomial formula Eq. (12), or 
less accurately a mixed exponential and power function Eq. (13), found through the 
Mathematica FindFormula. 

min SF ¼ 1:1130471668735116 � 1:6512030619809768λ � 1:6137376956833365λ2 

α, β, δ, μ 

� 1:1485038172210114λ3 � 0:5421785615853132λ4 

� 0:17094578834265223λ5 � 0:03603744794749387λ6 � 0:005000441043297472λ7 

� 0:0004372189547557593λ8 � 0:000021791071048963054λ9 

� 4:711954312790356 � 10�7λ10 

(12) 

min SF ¼ 2:2104215691249425 � 0:6522131009473879∗1:6355318649123258λ 

α, β, δ, μ 

0:018965779149540653 þ � 0:1051542360603726λ 
λ3 

(13) 

So for each given K/S^2 value, there exists a permissible interval of λ, whose 
lower bound is calculated via Eq. (11–12) and upper bound is calculated via 
Eq. (10). When λ changes inside this interval, we noticed that the 0.99 TVaR of the 
first four moments matched generalized hyperbolic distribution will increase with 
respect to λ. If the lower bound still has 0.99 TVaR bigger than the input TVaR, then 
it is not possible to fit with moments matched HyperbolicDistribution. The opposite 
statement is also valid for the interval upper bound. 

With this knowledge, the NATH permissible λ interval is [�0.8439,0.4454], and 
the left end point still have 0.99 TVaR larger than the input TVaR, but now only by 
4.05%, better than the 5% error of GB2. 

9. Conclusion and discussions 

We proposed using the ratio of kurtosis by squared skewness as the best candidate 
for shape factor that can characterize the distribution asymmetry, as well as the PDF 
steepness. The closer this factor to 1, the more asymmetry and the steeper the PDF. 
The asymptotic approximation and symbolic limit is used to calculate the boundary 
of this factor for various distributions: the Beta, the Kumaraswamy, and the Hyper-
bolic Distributions, for example. This range information of the shape factor, with 
the surprisingly simple formulas in the three above examples (Eqs. 5–8, 10, 11), can 
be used to select or eliminate candidate distributions for fitting. The plot of the 
shape factor together with plot for skewness and kurtosis can aid in setting the 
initial value or parameter intervals when fitting distribution to data by numerical 
optimization, which usually would not work well without this information. 
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The idea of the shape factor and the careful study of each distribution for this 
shape factor is the preliminary for the numerical optimization that finally finds the 
best fit. The information provided by shape factor plot is rough but the numerical 
optimization’s dependence on initial value or intervals is delicate, exemplified by 
GB2 case. The optimization function NMinimize and FindMinimum in Mathematica 
sometimes can only find a local optimum at best. As shown in [21, 22], the DyHF 
and the CMODE algorithms are the two best no-adjustment-needed global optimi-
zation algorithms. Now that the C2oDE algorithm is better than these two [23], it 
would be desirable to see how it works on the GB2 fit problem. With a foolproof 
universally applicable global optimization algorithm, the ado with shape factor and 
their boundaries will no longer be needed, or be used merely as some validations; 
but before that time, the hard earned knowledge about shape factor through CAS is 
still indispensable. This is a good topic for subsequent research. 

Our shape factor idea is only a small step ahead of the skewness-kurtosis plot of 
Pearson [6] and McDonald et al [15, 24–26]. Or we just made the idea implicitly in 
their plot explicit. But with this clearly defined form, anyone can readily start 
calculating it for any interested candidate distribution. 

Our formula Eq. (5) is not new, since Beta distribution has the same range of 
skewness, kurtosis, and shape factor as the scaled Beta distribution, the B1 distri-
bution in [15]. Our presentation is an example of how our method can be used to 
easily arrive at those formulas. Theoretically equivalent expressions are not equiva-
lent in application. With data distributions usually not having small skewness, 
Eq. (5) says that the Beta distribution has a shape factor roughly in the range of 
(1, 1.5), this not only reveals an intrinsic property of Beta distribution, but is also 
more easily applicable in practice than the skewness-kurtosis plot. 

The residual error of all the distributions tested so far indicates that the power 
function or simple exponential function PDF is not enough to provide the additional 
freedom of shifting for the EP curve on the condition of matched first four 
moments. Other forms such as mixtures, combinations, or transformations of dis-
tributions may need to be considered. A previous study indicated the following 
transformations are good candidates [4, 27–32]: EWGU, KGG, EG, EWED, LIG, 
THT. Further research will be done along these lines. 
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Chapter 4 

Topological Properties and 
Dynamic Programming Approach 
for Designing the Access Network 
Franco Robledo, Pablo Romero, Pablo Sartor, Luis Stábile 
and Omar Viera 

Abstract 

A wide area network (WAN) can be considered as a set of sites and a set of 
communication lines that interconnect the sites. Topologically a WAN is organized 
in two levels: the backbone network and the access network composed of a certain 
number of local access networks. Each local access network usually has a treelike 
structure, rooted at a single site of the backbone and connected users (terminal 
sites) either directly to this backbone site or to a hierarchy of intermediate concen-
trator sites which are connected to the backbone site. The backbone network has 
usually a meshed topology, and this purpose is to allow efficient and reliable com-
munication between the switch sites that act as connection points for the local 
access networks. This work tackled the problem of designing the Access Network 
Design Problem (ANDP). Only the construction costs, e.g., the costs of digging 
trenches and placing a fiber cable into service, are considered here. Different results 
related to the topological structure of the ANDP solutions are studied. Given the 
complexity of the ANDP (the problem belongs to the NP-hard class), recurrences to 
solve it are proposed which are based on Dynamic Programming and Dynamic 
Programming with State-Space Relaxation methodology. 

Keywords: topological design, access network, dynamic programming 
with state-space relaxation 

1. Introduction 

Telecommunication networks have become strategic resources for private- and 
state-owned institutions, and its economic importance continuously increases. 
There are series of recent tendencies that have a considerable impact on the econ-
omy evolution such as growing integration of networks in the productive system, 
integration of different services in the same communication system, and important 
modification in the telephone network structure. Such evolutions accompany a 
significant growth of the design complexity of these systems. The integration of 
different sorts of traffics and services and the necessity of a more accurate manage-
ment of the service quality are factors that make this type of systems very hard to 
design, to dimension, and therefore to optimize. This situation is aggravated with a 
very high competitiveness context in an area of critical strategic importance. 
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The conception of a WAN is a process in which dozens of sites with 
different characteristics require to be connected in order to satisfy certain reliability 
and performance restrictions with minimal costs. This design process involves 
the terminal site location, the concentrator location, the backbone (central 
network or kernel) design, the routing procedures, as well as the lines and nodes 
dimensioning. A key aspect on WAN design is the high complexity of the problem, 
as much in its globality as in the principal subproblems in which it is necessary to 
decompose it. Due to the high investment levels, a cost decrease of very few 
percentage points while preserving the service quality results in high 
economic benefits. 

Typically, a WAN network global topology can be decomposed into two main 
components: the access network and the backbone network. These components 
have very different properties, and consequently they introduce specific design 
problems (although they are strongly interdependent). On the one hand, this causes 
complicated problems (particularly algorithmic ones); on the other hand, it leads to 
stimulating and difficult research problems. 

A WAN access network is composed of a certain number of access subnetworks, 
having treelike topologies; and the flow concentration nodes allow to diminish the 
costs. These integrated flows reach the backbone which has a meshed topology, in 
order to satisfy security, reliability, vulnerability, survivability, and performance 
criteria. Consequently, the backbone is usually formed by high-capacity communi-
cation lines such as optic fiber links. 

Modeling a WAN design by means of the formulation of a single mathematical 
optimization problem is very intricate due to the interdependence of its large 
amount of parameters. Therefore the design of a WAN is usually divided into 
different subproblems [1–4]. A good example of a possible decomposition approach 
for the WAN design process is the following [5]: 

1. Access and backbone network topologies design. Specific knowledge about the 
cost of laying lines between different network sites (terminals, concentrators, 
and backbone) is assumed. Frequently, these costs are independent of the type 
of line that will effectively be installed since they model the fixed one-time 
costs (cost of digging trenches in the case of optic fiber, installing cost, placing 
a fiber cable into service). A high percentage from the total construction 
network budget is spent in this phase [6]. 

2. Dimensioning of the lines that will connect the different sites of the access and 
backbone networks and the equipment to be settled in the mentioned sites. 

3. Definition of the routing strategy of the flow on the backbone network. 

This work focuses on phase (1) of the decomposition of a WAN design 
process. More precisely, it deals with the topology planning process concerning 
the access network. Due to the NP-hard nature of the problem and even though 
there exist some results, there is still room for improving industrial practices 
applied today. In this sense, the authors believe it is of strategic importance to 
design powerful quantitative analysis techniques, potentially easy to integrate 
into tools. Combinatorial optimization models are introduced that formally 
define the topological design of the access networks. Moreover, different results 
related to the topological structure are introduced. Finally, different algorithms 
are proposed for the topological design which are based on Dynamic 
Programming and Dynamic Programming with State-Space Relaxation 
methodology. 
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2. A model for a WAN design 

In this section, a model for the design of a WAN is introduced. The model tries 
to show the most essential aspects which are considered when designing access and 
backbone networks. In this model, some parameters are not considered: the opera-
tion probability of the lines and equipment, the number of equipment ports, and the 
memory capacity of the equipment. The objective is to design a WAN with the 
smallest possible installation cost, so that the constraints are satisfied. 

In what follows, the data of the model are presented as well as its formalization 
as a combinatorial optimization problem on weighted graphs. The goal is to find the 
optimal topology that satisfies the imposed constraints to the access and backbone 
networks. Figure 1 shows an example of a wide area network. The information 
available for each type of equipment (switch and concentrator) and each type of 
connection line, as well as the line laying, is the following: 

• Ea is the set of types of connection lines available. Furthermore ∀e ∈ Ea the 
following data are given: 

• ce is the cost by kilometer of the line type e. Here the laying cost is not 
included. 

• ve is the speed in Kbits/s of the line type e. 

• K is the set of types of concentrator equipment available. Furthermore ∀k ∈ K 
the following data are given: 
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Figure 1. 
WAN example. 
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• ck is the installation cost of the concentrator type k. 

• vk is the speed in Kbits/s of the concentrator type k. 

• W is the set of types of switch equipment available. Furthermore ∀w ∈ W the 
following data are given: 

• cw is the installation cost of the switcher type w. 

• vw is the speed in Kbits/s of the switcher type w. 

˜ 
• C ¼ FcostðLÞ ¼ cij ¼ direct connection costs between the sites i; j; ∀i ∈ S; 

∀j ∈ SC ∪ SDg; this matrix gives us, for a site of S and a site of SC ∪ SD, the 
cost of laying a line among them. When the direct connection among both 
places is not possible, we assume that cij ¼ ∞. 

In terms of graph theory, a model for the design of a WAN, based on the 
problem, is presented as follows. Some notation is introduced next, that is then used 
to formally define the problem. 

˜ ° 
• E1 ¼ ð Þi; j ; ∀i ∈ ST; ∀j ∈ SC ∪ SD=dij < ∞ is the set of feasible connections 
between a terminal site and a concentrator or switch site. 

˜ ° 
• E2 ¼ ð Þi; j ; ∀i ∈ SC; ∀j ∈ SC ∪ SD=dij < ∞ is the set of feasible connections 
between a concentrator site and a switcher or another concentrator site. 

˜ ° 
• E3 ¼ i; j ; ∀i ∈ SD; ∀j ∈ SD=dij < ∞ is the set of feasible connections between ð Þ  
two switch sites. 

• E ¼ E1 ∪ E2 ∪ E3 is the set of all feasible connections on the WAN. 

• DST ¼ fDti ; ti ∈ ST g, where • Dti is the set of terminal nodes which demand 
connections with ti ∈ ST . 

˜ ° 
• VST ¼ vi, j is the traffic demand matrix. i, j ∈ ST 

Definition 1 (WANDP—wide area network design problem). Let G ¼ ðS; EÞ be 
the graph of feasible connections on the WAN. The wide area network design 
problem ðS; E; K; W; Ea; C; DST ; VST Þ consists in finding a subnetwork of G of mini-
mum cost which satisfies the following points: 

1. The backbone network topology must be at least 2-node-connected. 

2. The access and backbone networks must be able to support the demand of 
connection and traffic required by the terminal sites. 

Given the complexity of the WANDP, to facilitate its solution, the topological 
design problem is divided into three subproblems: 

1. The Access Network Design Problem 

2. The backbone network design problem (BNDP) 
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3. The routing (or flow assignment) and capacity assignment problem (RCAP) 

The remainder of this work concentrates only in the first problem (ANDP). 

3. Access Network Design Problem 

The Access Network Design Problem is defined as follows. 
Definition 2 (ANDP—Access Network Design Problem). Let GA ¼ ðS; E1 ∪ E2Þ 

be the graph of feasible connections on the access network and C the matrix of 
connection costs defined previously. The Access Network Design Problem 
ðS; E1 ∪ E2; CÞ consists in finding a subgraph of GA of minimum cost such that 
∀i ∈ ST; there exists a path from i to some site j ∈ SD of the backbone network. 

Notation 1. ΓANDP denotes the space of feasible solutions of ANDPðS; E1 ∪ E2; CÞ 
that do not have any cycle and with an output only toward the backbone network 
∀t ∈ ST . These have forest topology as we illustrate in Figure 2. 

In order to define these problems in terms of graph theory, the following nota-
tion is introduced: 

• ST is the set of terminal sites (clients) to be connected to the backbone. 

• SC is the set of feasible concentrator sites of the access network. On each one of 
these sites, an intermediate server equipment might be placed. From this one, a 
trunk line is laid toward the backbone or other concentrator site. 

• SD is the set of feasible switch sites of the backbone network. On each one of 
these sites, a powerful server might be placed and, from it, connection lines 
toward other backbone server equipment. 

• V ¼ ST ∪ SC ∪ SD are all the feasible sites of the WAN network. 

˜ °  
• A ¼ aij is a matrix which gives for any pair of sites i, j ∈ V, the cost i, j ∈ V 

aij ≥ 0 of laying a line between them. When the direct connection between i 
and j is not possible, we define aij ¼ ∞. 

Figure 2. 
A feasible solution of ANDP. 
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˜ ° 
• U ¼ ði; jÞji; j ∈ V; aij < ∞ is the set of all the feasible connections between the 
different sites of the WAN network. 

• G ¼ ðV; UÞ is the simple graph which models every node and feasible 
connection of the WAN. 

The General Access Network Design Problem (GANDP) consists of finding a 
minimum-cost subgraph H ⊂ G such that all the sites of ST are communicated with 
some node of the backbone. This connection can be direct or through intermediate 
concentrators. The use of terminal sites as intermediate nodes is not allowed; this 
implies that they must have degree one in the solution. 

The GANDP is here simplified by collapsing the backbone into a fictitious node 
and given the name of “Access Network Design Problem.” The equivalence 
between both problems, GANDP and ANDP, as well as the NP-hardness of the 
ANDP, is proved in [7]. 

This work concentrates on the ANDP with the objective of proposing a new 
approach for solving this problem. We study different results related to the topo-
logical structure of the ANDP solutions. In particular we present results that char-
acterize the topologies of the feasible solutions of an ANDP instance. The following 
proposition shows the topological form of the feasible solutions of ΓANDP for a 
given ANDP instance. 

Proposition 1. Given an ANDP with associated graph GA ¼ ðS; E1 ∪ E2Þ and˛ ˝ 
matrix of connection costs C. If the subnetwork H ¼ ST ∪ S; E (with S⊆SC ∪ SD 

and E⊆E1 ∪ E2) is an optimal solution of ΓANDP, it is composed of a set of disjoint 
trees H ¼ fH1; …; Hmg that satisfy: 

1. ∀Hl ∈ H, ∃j ∈ SD unique =j ∈ Hl 

2. ∀Hl ∈ H, ∃ a subset SlT ⊂ ST, SlT ¼ ∅ 
Sl 

ð Þ6 ⊆NODES Hl 
T 

3. ⋃m
l¼1S

l
T ¼ ST 

Proof. Trivial. 
The following propositions present results that characterize the structure of the 

global optimal solution. 
Proposition 2. Let ANDP ðS; E1 ∪ E2; CÞ be a problem where sc ∈ SC, s ∈ SC ∪ SD 

and s ∈ ST ∪ SC such that fðs; scÞ; ðsc; sÞg⊂ E1 ∪ E2 and ∃sw ∈ SD=cs, sw < cs, sc þ csc, s: Then, 
if TA ∈ ΓANDP is a globally optimal solution, it is fulfilled that g sð Þc ≥ 3 in TA, 
∀sc ∈ TA, sc ∈ SC. 

Proof. Let us suppose that there exists TA ∈ ΓANDP global optimal solution 
such that ∃sc ∈ TA a concentrator site with g < 3 in TA. If g sð cÞ ¼ 1; then sc is asc 
pendant in TA; therefore, eliminating this, a feasible solution of smaller cost would 
be obtained. This is a contradiction; hence, g sð Þc ¼6 1. If g sð cÞ ¼ 2, let s ∈ SC ∪ SD be 
the site adjacent to sc in TA which its output site is toward the backbone network. 
Let s ∈ ST ∪ SC be the other adjacent site in TA. Considering the network 
H ¼ TA sc < csc, sð f gÞ∪ fðs; swÞg, where sw ∈ SD satisfies cs, sw , it is fulfilled: 

COSTðHÞ ¼ COSTðTAÞ � cs, sc � csc, s þ cs, sw < COSTðTAÞ (1) 

Furthermore, it is easy to see that H ∈ ΓANDP. Hence, this implies that H is a 
better feasible solution compared with TA. This is a contradiction, entailing that 
g sð Þc ≥ 3 in TA, as required and completing the proof. 
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Proposition 3. Given an ANDP ðS; E1 ∪ E2; CÞ such that for any three sites 
ðs1; s2; s3Þ, with s1 ∈ ST ∪ SC, s2 ∈ SC and s3 ∈ SC ∪ SD, the strict triangular inequality is 
satisfied, i.e., cs1, sk < csi, Sj þ csj, sk , i, j, k  ∈ f1; 2; 3g. Then, if TA ∈ ΓANDP is a globally 
optimal solution, it is fulfilled that g sð Þc ≥ 3 in TA, ∀sc ∈ TA, sc ∈ SC. 

Proof. As in the previous proposition, let us suppose that there exists TA ∈ 
ΓANDP global optimal solution such that ∃sc ∈ TA, a concentrator site with g sð Þc < 3 
in TA. Clearly g sð Þs ð Þ ¼ 2must be different to 1. Now, let us consider the case g sc 
inTA. Let s1, s2 be the adjacent sites to sc in TA. By hypothesis cs1, s2 < cs1, sc þ csc, s2 . 
Considering the network TA ¼ ðTA sc Þ∪ fð Þg, a feasible solution is found, f g  s1; s2 

and moreover 

COST TA ¼ COSTðTAÞ � cs1, sc � csc, s2 þ cs1, s2 < COSTðTAÞ (2) 

This is a contradiction; therefore, g sð Þc ≥ 3 in TA, hence completing the proof. 
The next section presents algorithms applied to the ANDP(≤k) with k ∈ f1; 2g. A  

way of computing the global optimal solution cost of it using the Dynamic Pro-
gramming approach is obtained. Considering that the ANDP(≤1) is a NP-hard prob-
lem, we obtain lower bounds to the global optimal solution cost by Dynamic 
Programming with State-Space Relaxation in polynomial time. 

4. Algorithms applied to the ANDP 

This chapter presents the Dynamic Programming approach as alternative meth-
odology to find a global optimal solution cost for the ANDP(≤1) and ANDP(≤2). After 
we introduce the Dynamic Programming with State-Space Relaxation as a method 
to obtain lower bounds for the original problem. 

4.1 Dynamic Programming 

Proposition 4. Given an ANDP ðS; E1 ∪ E2; AÞ, the cost of a global optimal solu-
tion of ΓANDP 

≤ 1 is given by f ðST ;Z;AQ Þ, with f ð:;:;:Þ defined by the following expression of 

Dynamic Programming: 
8 >>>>< 

9 >>>>= 

8 >>>>>>< 

9 >>>>>>= 

, Z, AQCOSTðst; ZÞ þ f SC 
f gST st , 

8< 
9

COSTðst; scÞ þ COSTðsc; ZÞþ if ST ¼ ∅min = 
ST; Z; AQf SC 

¼ st ∈ ST>>>>: 
>>>>; 

min >>>>>>; 

>>>>>>: 

ðsc;Z, Z, AQ ∪sc ∈ SC: ;f Þf SC 
ST 

gf gst
0 otherwise 

(3) 

where COSTðs; Z COSTðs; z , sð ; Z 

and the matrix of connection costs AQ ¼ ai, j is defined by i, j ∈ E1 ∪ E2 

COST i; j ð Þ∉Qð Þ  if i; j 
(4) 

COSTðs; zÞ ¼ minz ∈ SD Þ ¼ argminÞg Þf f gz ∈ SD 

ai, j ¼ 
0 otherwise 

ðS; E1 ∪ E2; AProposition 5. Given an ANDP Þ, the cost of a global optimal solu-
tion of ΓANDP 

≤ 2 is given by f ðST ;Z;AQ Þ, with f ð:;:;:Þ defined by the following expression of 

Dynamic Programming 
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8 >>>>>>>>>>>>>>>>>>< 

 8 >>>>>>>>>>>>>>>< 
, 

9 >>>>>>>>>>>>>>>= 

, Z, AQCOSTðst; ZÞ þ f SC 
f gST st , 

8< 
9=COSTðst; scÞ þ COSTðsc; ZÞþ 

min ðsc;Z, Z, AQ ∪sc ∈ SC : ;f Þf SC 
ST f gst g 

if ST 6¼ ∅  min  8 >>>>< 

9 >>>>= 

ST ; Z; AQ (5)f SC 
¼ COST st; su 

c 
st ∈ SC >>>>>>>>>>>>>>>: 

>>>>>>>>>>>>>>>; 

þ>>>>>>>>>>>>>>>>>>: 

   
COST su; sv þ COST sv; Z þmin c c c 

su;svð Þ∈ E2c c 
>>>>: 

>>>>;su;sv ; sv;Zfð Þ ð Þgc c cf g, Z, AQ ∪f SC 
ST st

0 otherwise 

COSTðs; z 

and the matrix of connection costs AQ ¼ ai, j

where COSTðs; Z Þg, sð ; Z Þ ¼ argminz ∈ SD 
fCOSTðs; zÞ ¼ minz ∈ SD f Þg 

is defined by i, j ∈ E1 ∪ E2 

ð Þ  if i; j ∉Qð Þ  
 
COST i; j 

(6)ai, j ¼ 
0 otherwise 

4.2 Dynamic programming with state-space relaxation 

 
ST ; Z; AQIn order to find a lower bound of f SC 

, the Dynamic Programming 
with State-Space Relaxation is now applied. It is a general relaxation procedure 
applied to a number of routing problems [8]. The motivation for this methodology 
stems from the fact that very few combinatorial optimization problems can be 
solved by Dynamic Programming alone due to the dimensionality of their state-
space. To overcome this difficulty, the number of states is reduced by mapping the 
state-space associated with a given Dynamic Programming recursion to a smaller 
cardinality space. This mapping, denoted by g, must associate to every transition 
from a state S1 to a state S2 in the original state-space, a transition g Sð Þ1 to g Sð Þ2 in 
the new state-space. To be effective, the function g must give rise to a transformed 
recursion over the relaxed state-space which can be computed in polynomial time. 
Furthermore, this relaxation must generate a good lower bound for the original 
problem. 

With the aim of illustrating this methodology, we present this approach in the 
context of the minimization of the total schedule time for the Traveling Salesman 
Problem with Time Window (TSPTW), after we apply it to the Dynamic Program-
ming recursion presented in Proposition 5. The objective of the TSPTW is to find an 
optimal tour where a single vehicle is required to visit each of a given set of 
locations (customers) exactly once and then return to its starting location. The 
vehicle must visit each location within a specified time window, defined by an 
earliest service start time and latest service start time. If the vehicle arrives at a 
service location before the earliest service start time, it is permitted to wait until the 
earliest service start time is reached. The vehicle conducts its service for a known 
period of time and immediately departs for the location of the next scheduled 
customer. Assume that the time constrained path starts at fixed time value ao. 
Define F Sð ; iÞ as the shortest time it takes for a feasible path starting at node o, 
passing through every node of S⊆N exactly once, to end at node i ∈ S. Note that 
optimization of the total arc cost would involve an additional dimension to account 
for the arrival time at a node. The function F Sð ; iÞ can be computed by solving the 
following recurrence equations: 

 Þ þ tij 
  i ∈ S - fjgg∀S⊆N, j ∈ S (7)F Sð ; jÞ ¼ min F Sð - fjg; i 

i;j ∈ Eð Þ  
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The recursion formula is initialized by 

max aj; ao þ toj if ð Þ∈ Eo; j
F f gj ; j (8)ð  Þ ¼  þ∞ otherwise 

The optimal solution to the TSPTW is given by 

min F N; jÞ þ tjd (9)ð 
j ∈ N 

Note that Eq. (7) is valid if aj ≤ F Sð ; jÞ≤ bj: If however F Sð ; jÞ< aj, then 
F Sð ; jÞ ¼ aj; if F Sð ; jÞ>bj, F Sð ; jÞ ¼ ∞. Equations (7) and (9) define a shortest path 
algorithm on a state graph whose nodes are the states ðS; iÞ and whose arcs represent 
transitions from one state to another. This algorithm is a forward Dynamic Pro-
gramming algorithm where at step s, with s ¼ 1, …, n  þ 1, a path of length s is 
generated. The state ðS; iÞ of cost F Sð ; iÞ are defined as follows: S is an unordered set 
of visited nodes and i is the last visited node, i ∈ S. 

Several alternatives for the mapping g have been suggested [9]. Here is 
presented the shortest r-path relaxation, i.e., g Sð  Þ ¼ r ¼ ∑i ∈ Sri, where ri ≥ 1 is an 
integer associated with node i ∈ N; then g Sð f gi Þ ¼ g Sð  Þ � ri. Define R ¼ ∑i ∈ Sri. 
Hence the transformed recursion equations are 

� þ tij r � rj ≥ rig, r  ∈ f1; …; Rg, j  ∈ N (10)F rð ; jÞ ¼  min F r  � rj; i 
i;jð Þ∈ E 

Recursion (10) holds if aj ≤ F rð ; jÞ≤ bj. Otherwise, if F rð ; jÞ< aj, then F rð ; jÞ ¼ aj; 
if F rð ; jÞ>bj, Fðr; jÞ ¼ ∞. The recursion formula is initialized by 

(
max aj; ao þ toj if ð Þ∈ E and q ¼ qjo; j 

F f gj ; j (11)ð  Þ ¼  
þ\infty otherwise, for q ∈ f1; …; Qg, j  ∈ N 

The lower bound is given by 

min F R; jÞ þ tjd (12)ð 
j ∈ N 

The complexity of the bounding procedure is O nð 2 � QÞ for a n-node problem. 
Now, we present this approach in the context of finding a “good” lower bound for 
the solution of ANDP(≤2) 

presented in Proposition 5 (the optimum value of the ANDP(≤2)). 
. The following proposition gives a lower bound for the 

ST; Z; AQf SC 

ST ; Z; AQProposition 6. Given an ANDP ðS; E1 ∪ E2; CÞ, a lower bound of f SC 
is 

derived from the following expression of Dynamic Programming with State-Space 
Relaxation 

8 >>>>>>>>>>>>>>>>>>< 

9 >>>>>>>>>>>>>>>>>>= 

þ gSC 
r � ri; Z; AQ , 

8 >>>>>>>>>>>>>>>>>>>>< 

i 
t; ZCOST s 

i j jCOST st; sc þ COST sc; Z þ 
8 >< 

9 >= 
min ,
j 
c ∈ SC>: >;j 

c;Zfð Þr � ri; Z; AQ ∪s g ∣r � R̂ � ri ≥ rj sgSC 

if ST 6¼ ∅min 
i 
t; s

j j 
c; sk k 

8 >>>>>< 

9 >>>>>= 

(13)r; Z; AQ ¼ si ∈ ST>>>>>>>>>>>>>>>>>>: 

>>>>>>>>>>>>>>>>>>; 

gSC t COST þ COST s þ COST sc ; Z þs>>>>>>>>>>>>>>>>>>>>: 

c c 

jð Þk k 
c;smin r � ri; Z; AQ ∪ f ;Zð Þs ; s g ∣gSC 

c c 
juðs ;skÞ∈ E2c c 

>>>>>: 

>>>>>; 
r � R̂ � ri ≥ rj þ rk 

0 otherwise 
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where 1 ≤ ri ≤ R is an integer associated with the site i ∈ ST ∪ SC, R ¼ ∑i ∈ ST ∪ SCri,˜ ° 
R̂ ¼ ∑j ∈ SCrj and the matrix of connection costs AQ ¼ ai, j i, j ∈ E1 ∪ E2 

is defined by 

˛ 
COST i; j i; j ∉Qð Þ  if ð Þ  

ai, j ¼ (14)
0 otherwise 

The lower bound is given by g R;Z;A∅ .ð Þ 

5. Computational results 

This section presents the experimental results obtained with the recursions of 
above. The algorithms were implemented in ANSI C. The experimental results were 
obtained in an Intel Core i7, 2.4 GHz, and 8 GB of RAM running under a home PC. 
The recursions presented in Propositions 4 and 5 were applied to the ANDP(≤1) and 
the ANDP(≤2), respectively, whereas the recursion presented in Proposition 6 was 
applied to ANDP(≤2). They were tested using a large test set, by modifying the 
Steiner Problem in Graphs (SPG) instances from SteinLib [10]. This library con-
tains many problem classes of widely different graph topologies. Most of the prob-
lems were extracted from these classes: C, MC, X, PUC, I080, I160, P6E, P6Z, and 
WRP3. The SPG problems were customized, transforming them into ANDP 
instances by means of the following changes. For each considered problem: 

1. The terminal node with greatest degree was chosen as the z node (modeling the 
back- bone). 

2. The Steiner nodes model the concentrator sites, and the terminal nodes model 
the terminal sites. 

3. All the edges between terminal sites were deleted (as they are not allowed in 
feasible ANDP solutions). 

Moreover, if the resulting topology was unconnected, the problem instance was 
discarded. Let us notice that since in the ANDP the terminals cannot be used as 
intermediate nodes (which implies also that edges between pairs of terminals are 
not allowed), the cost of a SPG optimum is a lower bound for the optimum of the 
corresponding ANDP. Therefore they are for ANDP(≤k) with k ∈ 1:::2. 

Table 1 shows the results obtained by applying the recurrences presented in 
Propositions 4 and 5. In each one of them, the first column contains the names of 
the original SteinLib classes with the name of the customized instance. The entries 
from left to right are: 

• The size of the selected instance in terms of number of nodes, edges, and 
terminal sites, respectively 

• A lower bound for the optimal cost; the SPG optimum cost ðLBSPGÞ 

Þ1 2 k• c and c where c is the cost of the best feasible solution found in Γð≤ k 
opt opt opt ANDP 

Þ
• The gap of the cost for the best feasible solution of Γð≤ k 

ANDP with respect to the ˝ ˙ ð Þ  ð Þlower bound LB k f1; 2g LB_GAP k 
SPG with k ∈ SPG 
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Set Name |V| |E| |T| LBSPG copt1 copt2 LBGAPSPG 1ð Þ  LBGAPSPG 2ð Þ  

I080 i080-001 80 120 6 1787 ∞ 2187 22.38% 

I080 i080-011 80 350 6 1479 ∞ 1499 1.35% 

I080 i080-012 80 350 6 1484 ∞ 1497 0.88% 

I080 i080-013 80 350 6 1381 ∞ 1383 0.14% 

I080 i080-014 80 350 6 1397 ∞ 1505 7.73% 

I080 i080-111 80 350 8 2051 ∞ 2159 5.27% 

I080 i080-112 80 350 8 1885 2201 1887 16.76% 0.11% 

I080 i080-113 80 350 8 1884 ∞ 1884 0% 

I080 i080-114 80 350 8 1895 ∞ 2099 10.77% 

I080 i080-115 80 350 8 1868 2174 1969 16.38% 5.41% 

I080 i080-233 80 160 16 4354 ∞ 4564 4.82% 

I160 i160-011 160 812 7 1677 ∞ 1875 11.81% 

I160 i160-012 160 812 7 1750 ∞ 1891 8.06% 

I160 i160-013 160 812 7 1661 ∞ 1862 12.10% 

I160 i160-014 160 812 7 1778 ∞ 1991 11.98% 

I160 i160-015 160 812 7 1768 2281 1864 29.02% 5.43% 

PUC cc3-4p 64 288 8 2338 ∞ 2553 9.20% 

PUC cc3-4u 64 288 8 23 ∞ 25 8.70% 

Average 20.72% 7.01% 

Table 1. 
1 2Results obtained by applying Dynamic Programming to copt and copt. 

ð ÞThe LB_GAP k 
SPG is computed as 

kcð Þ  opt � LBSPG
LB_GAPSPG

k ¼ 100 � : (15)
LBSPG 

Feasible solutions were obtained here only for i080-112, i080-115, and i160-015 
with k ¼ 1 because, as can be seen, the cost is finite. The optimal values of the 
SPG instances (LBSP G) provided lower bounds for the optimal values of the ANDP 
(therefore to ANDP(≤k) with k ≥ 0), considering that in the ANDP generation 
process, all the connections between terminal nodes were deleted and further that 
ANDP’s feasible solution space is more restrictive than of SPG. The experimental 

1results obtained for copt have an average gap with respect to the lower bound of 
20.72%. Increasing k to 2 (applying the recursion presented in Proposition 5), 
feasible solutions were obtained for all the testing networks, and the experimental 
results obtained have an average gap with respect to the lower bound of 7.01%. 

It can be proved that (it is out of the scope of this chapter) increasing k, the 
following inequality is fulfilled: 

˛ ˝ ˛ ˝k�1 ˜ °copt nC 1 cmax≤ 1 þ floor � � � 1 (16)
ck k k þopt nT cmin 

Table 2 shows the results obtained. Despite the bound was not good in these 
cases (due the heterogeneity of costs of the lines), it can help us in some cases to 
answer the following question: how much can be saved with a higher k? 

83 

http://dx.doi.org/10.5772/intechopen.86223


Applied Mathematics 

Name nT nC cmin cmax c opt1 

c 
opt2 

˜ °˜ ° ˛ ˝ nc 1 cmax1 þ floor � 12 2þnT cmin 

i080-112 7 72 85 209 1.166401 5.997385619 

i080-115 7 72 86 302 1.1004114 10.325581395 

i160-015 6 153 86 300 1.223712 23.639534884 

Table 2. 
ÞRelation between optimal solutions of ANDPð≤ 1Þ and ANDPð≤ 2 . 

Set Name |V| |E| |T| copt2 tcopt2 LBSSR 2ð Þ  tLB
SSR 2ð Þ  

LBGAPSSR 2ð Þ  

I080 i080-001 80 120 6 2187 0 1698 0 28.8% 

I080 i080-011 80 350 6 1499 6.04 1307 0.27 14.69% 

I080 i080-012 80 350 6 1497 5.33 1486 0.16 0.74% 

I080 i080-013 80 350 6 1383 8.20 1000 0.92 38.3% 

I080 i080-014 80 350 6 1505 4.89 1211 0.25 24.28% 

I080 i080-111 80 350 8 2159 3.09 1982 0.45 8.93% 

I080 i080-112 80 350 8 1887 1812 1501 7.52 25.72% 

I080 i080-113 80 350 8 1884 1809 1591 393.8 18.42% 

I080 i080-114 80 350 8 2099 44.81 1988 6.65 5.58% 

I080 i080-115 80 350 8 1969 479.8 1496 15.41 31.62% 

I080 i080-233 80 160 16 4564 361.1 3997 6.75 14.19% 

I160 i160-011 160 812 7 1875 45.67 1399 2.17 34.02% 

I160 i160-012 160 812 7 1891 8.83 1502 1.13 25.9% 

I160 i160-013 160 812 7 1862 6.58 1381 1.81 34..83% 

I160 i160-014 160 812 7 1991 6.06 1783 0.86 11.67% 

I160 i160-015 160 812 7 1864 70.28 1793 6.21 3.96% 

PUC cc3-4p 64 288 8 2553 79.37 2177 2.54 17.27% 

PUC cc3-4u 64 288 8 25 80.04 21 5.18 19.05% 

Average 19.89% 

Table 3. 
Lower bounds obtained to ANDPð≤ 2Þ by applying Dynamic Programming with State-Space Relaxation. 

Table 3 shows the results obtained by applying the recursion presented in 
Proposition 6. As before the first column contains the names of the original SteinLib 
classes with the name of the customized instance. The entries from left to right are: 

• The size of the selected instance in terms of number of nodes, edges, and 
terminal sites, respectively 

˜ ° Þ 2• The cost of a global optimal solution of Γð≤ 2 cANDP opt 

˜ ° 
2• The execution time, in seconds, for copt tc2 

opt 

Þ
• A lower bound for the cost of a global optimal solution of Γð≤ 2 

ANDP by applying 
Dynamic Programming with State-Space Relaxation (presented in 

ð ÞProposition 6) (LB 2 
SSR) 
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˜ ° ð Þ
• The execution time, in seconds, for LB 2 tLB 2SSR ð Þ  

SSR 

˜ ° Þ 2• The gap of the cost for a global optimal solution of Γð≤ 2 c with respect to ANDP opt 

ð Þ  ð Þthe lower bound LB 2 
SSR; LB_GAP 2 

SSR 

ð ÞThe LB_GAP 2 
SSR is computed as 

c2 � LBð Þ2 
ð Þ  opt SSR 

LB_GAP 2 (17)SSR ¼ 100 � ð ÞLB 2 
SSR 

In general, the gaps related to the lower bounds were low. The rito each terminal 
site and concentrator site were distinct integers chosen from f1; …jST ∪ SCjg. This 
lower bound can be increased by modifying the state-space through the application 
of subgradient optimization to ri. As future work, it is possible to incorporate the 
method for a better choice of ri. 

It can be noticed that the execution times of computing global optimal solution 
costs were much longer than using Dynamic Programming with State-Space 
Relaxation. 

6. Conclusions 

The implementation of the algorithms was tested on a number of different 
problems with heterogeneous characteristics. In particular, a set of ANDP instances 
transforming 18 SPG instances extracted from SteinLib was built. The optimal 
values for the selected SPG instances are lower bound for the corresponding ANDP. 
The solutions found by the algorithm were, in average, 21% and 7% lower than the 
mentioned bounds in ANDP(≤1) and ANDP(≤2), respectively. It is reasonable sup-
posing that the gaps related to the global optimum of the ANDP instances be even 
lower since the feasible solutions of the ANDP that are also feasible solutions of the 
original SPG, but not reciprocally. In this sense, remember that in any ANDP 
instance generated, all the edges between pairs of terminal nodes were deleted 
(because in our ANDP such connections are not allowed) having the additional 
constraint that the terminal nodes must have degree one in the solution. 

Besides, a Dynamic Programming with State-Space Relaxation algorithm was 
developed which can give a lower bound in polynomial time. The average gaps with 
respect to the global optimal solution costs were lower than 20%. 

Notice that, as expected, the execution times of the proposed algorithms are 
strongly dependent on the number of sites, edges, and terminal sites. To sum up, as 
far as the authors are concerned, the results obtained with the recurrences above are 
very good, considering that computing the global optimal solution of an ANDP(≤2) 

is a NP-hard problem. 
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Chapter 5

The Graphs for Elliptic Curve
Cryptography
Ruma Kareem K. Ajeena

Abstract

The scalar multiplication on elliptic curves defined over finite fields is a core
operation in elliptic curve cryptography (ECC). Several different methods are used
for computing this operation. One of them, the binary method, is applied depending
on the binary representation of the scalar v in a scalar multiplication vP, where P is a
point that lies on elliptic curve E defined over a prime field Fp. On the binary
method, two methodologies are performed based on the implementation of the
binary string bits from the right to the left (RLB) [or from the left to the right
(LRB)]. Another method is a nonadjacent form (NAF) which depended on the
signed digit representation of a positive integer v. In this chapter, the graphs and
subgraphs are employed for the serial computations of elliptic scalar multiplications
defined over prime fields. This work proposed using the subgraphs H of the graphs
G or the (simple, undirected, directed, connected, bipartite, and other) graphs to
represent a scalar v directly. This usage speeds up the computations on the elliptic
scalar multiplication algorithms. The computational complexities of the proposed
algorithms and previous ones are determined. The comparison results of the
computational complexities on all these algorithms are discussed. The experimental
results show that the proposed algorithms which are used the sub-graphs H and
graphs G need to the less costs for computing vP in compare to previous algorithms
which are employed the binary representations or NAF expansion. Thus, the
proposed algorithms that use the subgraphs or the graphs to represent the scalars
v are more efficient than the original ones.

Keywords: ECC, scalar multiplication, BRL, BLR, NAF, graphs, subgraphs,
computational complexity

1. Introduction

The scalar multiplication on elliptic curves defined over finite fields is consid-
ered as a central and most time-consuming operation in elliptic curve cryptography
(ECC) [1–7]. Different methods are used for computing the scalar multiplication
such as the binary method, nonadjacent form, and others [8–15]. The binary
method is applied depending on the binary representation of the scalar v in a scalar
multiplication vP, where P is a point that lies on elliptic curve E defined over a
prime field Fp. On the binary method, two methodologies are performed based on
the implementation of the binary string bits from the right to the left (RLB) [or
from the left to the right (LRB)], whereas the nonadjacent form (NAF) depends on
the signed digit representation of a positive integer v [1].
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(ECC) [1–7]. Different methods are used for computing the scalar multiplication 
such as the binary method, nonadjacent form, and others [8–15]. The binary 
method is applied depending on the binary representation of the scalar v in a scalar 
multiplication vP, where P is a point that lies on elliptic curve E defined over a 
prime field Fp. On the binary method, two methodologies are performed based on 
the implementation of the binary string bits from the right to the left (RLB) [or 
from the left to the right (LRB)], whereas the nonadjacent form (NAF) depends on 
the signed digit representation of a positive integer v [1]. 
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In this chapter, the computation of the scalar multiplication vP on elliptic curve 
E defined over a prime field Fp has been done using the (undirected or directed) 
graph and (undirected or directed) subgraph. These graph and subgraph are used to 
represent the scalar v in two ways. The first one is the binary representation and the 
second one is the sign digit representation. 

Also, the l-tuple of the elliptic scalar multiplications is computed using the 
proposed generalized binary methods (GRLB) and (GLRB) and GNAF. The com-
putational complexities of the proposed algorithms and previous ones are deter-
mined. The comparison results of the computational complexities on all these 
algorithms are discussed. Several experimental results showed that the proposed 
algorithms which are used the graphs G need to the less costs for computing vP in 
compare to previous algorithms which are employed the binary representations or 
NAF expansion. Therefore, the proposed algorithms that use the subgraphs or the 
graphs to represent the scalars v are more efficient than the original ones. 

This chapter is organized as follows: Section 2 presents the vector representation 
of the graph. Section 3 discusses the matrix representation of the graph. Section 4 
includes the binary methods of the elliptic scalar multiplication which are the right-
to-left binary and left-to-right binary representations. Section 5 explains the 
non-adjacent form method, whereas Section 6 discusses the graphic binary methods 
of the elliptic scalar multiplications. Section 7 displays the digraphic NAF method. 
Section 8 presents the subgraphs for computing the elliptic scalar multiplication. 
Section 9 determines the computational complexities on the original elliptic scalar 
multiplication methods. Section 10 shows the computational complexity for serial 
computing l-tuple of the scalar multiplications. The computational complexity of 
the graphic elliptic scalar multiplication methods is explained in Section 11. Section 
12 illustrates the computational complexity comparison on the serial and graphic 
computation methods. Finally, Section 13 draws the conclusions. 

2. The vector representation of the graph 

Suppose G is a graph as shown in Figure 1. 
A graph G has four vertices and five edges e1, e2, e3, e4, and e5: A subgraph H 

(and any other subgraphs) of G is represented by a 5-tuple. 
This means that E ¼ ðe1; e2; e3; e4; e5Þ such that 

ei ¼ 1, if ei is in H, 

ei ¼ 0, if ei is not in H: 

The subgraphs H1 and H2 in Figure 1 can be represented by (1,0,1,0,1) and 
(0,1,1,1,0), respectively. Here, there are 25 = 32 possible cases for 5-tuples which 

Figure 1. 
The subgraphs H1 and H2 of the graph G [16]. 
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correspond to 32 subgraphs. Among them are the (0,0,0,0,0) and (1,1,1,1,1) which 
represent a null graph and a graph G itself, respectively [16]. 

3. The matrix representation of the graph 

Suppose G is any undirected graph that is formed by two finite sets V and E, 
which are called the vertices and edges, respectively. In other words, � �  
V ¼ v1; v2; …; vlg and E ¼ f : The matrix representation A Gf e1; e2; …; emg ð Þ ¼  eij l�m 
on graph G has been defined by 

� 2 3 
e11 e21 e31 … em1v1� 6 7� 6 7 

A Gð  Þ ¼ �� 66 
77 (1) 

v2 e12 e22 e32 … em2 

� 6 7⋮ ⋮ ⋮ ⋮ ⋮ ⋮� 4 5 
� vl e1l e2l e2l … eml 

with l rows corresponding to the l vertices vi and the m columns corresponding 
to the m edges ei: Whereas the incidence matrix of a connected digraph can be 
defined by A ¼ eij , where eij ∈ f0; ∓ 1g: In other words, if jthedge is incident l�m 

out of ith vertex, then eij ¼ 1, while eij ¼ �1, if jth edge is incident into ith vertex and 

if jth edge is neither incident out nor incident into ith vertex, then eij ¼ 0 [16, 17]. 

4. The binary methods for the elliptic scalar multiplication 

Two methods for computing the scalar multiplication vP have been created 
based on using the binary representation of a scalar v. One of them is called the 
right-to-left binary (RLB) method, and another one is called left-to-right binary 
(LRB) method [1, 9, 10]. These methods depend on the basic repeated-square-and 
multiply methods for exponentiation with additive version. Using the RLB method, 
the process of v-bits starts from the right to the left, whereas the v-bits processing 
starts from the left to the right using the LRB method. The RLB and LRB methods 
are discussed mathematically as follows. 

4.1 The right-to-left binary method 

Suppose E is an elliptic curve defined over a prime field Fp. The equation of E is 
given by E: y2 = x3 þ ax þ b (mod p). Let P = (x, y) be a generator point that lies on 
E which has a (large) prime order n. Choosing v to compute vP can be done from the 
range [1, n�1]. So, it should first write v in a binary representation string (et-1, …, 
e1, e0)2. The starting will be happened with a point Q in E (Fp), (that is, Q = ∞). 
With the i index that takes the values 0, 1, …, t � 1, the computation of Q = Q þ P 
can be done if ei = 1. After then, the value 2P is computed and plugging 2P by P. The 
processing continues until the last value t � 1. Therefore, the last computed value of 
a point Q is the scalar multiplication point vP [1]. The summary of the RLB method 
can be given in the following algorithm. 

Algorithm 4.1 The RLB algorithm 

Input: A scalar v in [1, n-1] and a point P in E(Fp). 
Output: A scalar multiplication vP. 
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1. Write down a scalar v as a binary string v = (et � 1, …, e1 , e0)2. 

2. Q =  ∞. 

3. For i =  0,1,…, t � 1 do 

3.1 If ei = 1 then Q = Q + P. 

3.2 Compute P =  2P. 

3.3 Else compute P = 2P. 

3.4 End if 

4. End for 

5. Return Q = vP. 

4.2 The left-to-right binary method 

With the same parameters E, P, n, and v which are used in the RLB method, the 
computation of vP using the LRB method can be done easily. A scalar v can be 
written in a binary representation string (et � 1, …, e1, e0)2. Let us start with a point 
Q in E(Fp), where Q = ∞. With the i index which takes the values t � 1,…, 1, 0, then 
the computation of 2Q can be done and plugged into Q. After then, the value 
Q = Q þ P is computed. The processing continues until the last value 0. Therefore, 
the last computed value of a point Q is the scalar multiplication point vP. The LRB 
method can be summarized in Algorithm (4.2) [1]. 

Algorithm 4.2 The LRB algorithm 

Input: A scalar v in [1, n-1] and a point P in E(Fp). 
Output: A scalar multiplication vP. 

1. Write down a scalar v as a binary string v = (et � 1,…, e1, e0)2. 

2. Q =  ∞. 

3. For i= t � 1,…,1, 0 do 

3.1 Compute Q = 2Q. 

3.2 If ei =1 then Q = Q + P. 

3.3 Else go to step (3.4). 

3.4 End if 

4. End for 

5. Return Q = vP. 
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5. The non-adjacent form for the elliptic scalar multiplication 

The motivation to use the signed digit representation of a scalar v, in a scalar 
multiplication vP, is the computation of the subtraction and addition of the points 
lying on elliptic curve E which has the same efficient. A signed digit representation 

of v is given by v ¼ ∑l
i 
�
¼ 
1
0ei2

i, where ei ∈ f0; �1g will be explained in this section 
with more details. The signed digit representation forms the nonadjacent form 
(NAF) [1, 9, 10] which is given in the next algorithm. 

Algorithm 5.1 The NAF computation of a positive integer 

Input: A positive integer v in [1, n-1]. 
Output: The expansion NAF (v). 

1. i 0. 

2. While v ≥ 1 do 

2.1 If v is odd then ei 2 � (v mod 4), 

v v � ei ; 

2.2 Else: ei 0. 

2.3 End if 

3. v v /2, i i +1. 

4. End while 

5. Return ðei�1; …; e1; e0Þ: 

The computation of a scalar multiplication vP by employing the NAF algorithm 
can be done using the following algorithm: 

Algorithm 5.2 The NAF method for computing the scalar multiplication 

Input: A positive integer v in [1, n-1] and P ∈E(Fp). 
Output: A scalar multiplication vP. 

1. Algorithm (5.1) uses to compute NAF(v). 

2. Q ∞. 

3. For i = t � 1,…,1,0 do 

3.1 Q 2Q. 

3.2 If ei = 1 then Q Q þ P. 

3.3 ElseIf ei = �1 then Q Q � P. 
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3.4 Else go to step (3.5). 

3.5 End if 

4. End for 

5. Return (Q = vP). 

6. The graphic methods for the elliptic scalar multiplications 

This section discusses the generalization on the binary methods and NAF to 
compute l-tuple of the scalar multiplications on elliptic curve E defined over prime 
field Fp. This generalization employed the simple undirected and directed graphs. 

6.1 The graphic right-to-left binary (GRLB) method 

Suppose Ec is an elliptic curve defined over a prime field Fp [1–7]. The equation 
of Ec is given by 

Ec : y2 ¼ x3 þ ax þ b ðmod pÞ: (2) 

Let P ¼ ðx; yÞ be a point that lies on Ec which has a (large) prime order r: Let 
G Vð ; EÞ be a simple (or multigraph or others) graph, where V is a vertex set and E is 
an edge set. The matrix representation A G  on G Vð ; EÞð Þ  is defined as given in 
Eq. (1). Directly from the rows of the matrix A G , the binary representation ð Þ˜ ° 
strings eðm�1Þ ; …; e1l ; e0l are obtained. The starting will happen with an elliptic

2l ˛ ˝  
point Q1 which belongs to E Fp , where Q1 ¼ ∞: With the i index which takes the 
values 01, 11, …, mð � 1Þ ð Þ, the computation of Q1 ¼ Q1 þ1 in the first row of A G  P 
can be done if ei1 ¼ 1: After then, the value 2P is computed and plugging it by P: The 
processing on the first row continues until the last value m � 1: Therefore, the last 
computed value of a point Q1 is the value of the first scalar multiplication point v1P 
in l-tuple vP : In similar way, the processing on others rows can be done. The h i  
summary of the GRLB method can be given in the following algorithm: 

Algorithm 6.1 The GRLB method 

˛ ˝  
Input: A graph G Vð ; EÞ, P  ∈ E Fp , l  and m, where l and m are the order and 

size of a graph G, respectively. 
Output: The m-tuple of the scalar multiplications hvPi ¼ hv1P; …; vlPi: 

1. Write down the matrix representation A G  of the graph G Vð ; EÞð Þ  : 

˜ ° 
2. Directly determine the binary representation strings vj ¼ eðm�1Þj ; …; e1j ; e0j 

from A G  :ð Þ  

3. For j ¼ 1, 2, …, l: 

4. Qj ∞: 

5. For i ¼ 0j : ðm � 1Þj do 

2 
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5.1 If eij ¼ 1 then Qj ¼ Qj þ P: 

5.2 Else go to step (6). 

5.3 End if 

6. Compute P 2P: 

7. End for 

8. Return (Qj ¼ vjP). 

9. End for 

10. Return ( Q ¼ h i ¼ hv1P; v2P; …; vlPi).h i  vP 

6.2 The implementation results on the GRLB method 

With different kinds of graphs which are given in Figure 2, the matrix 
representations of the graphs have been computed by A Ga ,A Gb , A Gc , andð Þ ð Þ ð Þ  
A Gd , respectively.ð Þ  

� 2 3 
v1 1 0 1 1 0 0 1� � 2 3� 6 7 � v1 1 0 1 0 0 1  v2 6 1  1 0 0 0 0 0  7 � 6 7� v2 1 1 0 1 0 0

A Ga � v3 :66
6 
0 0 1 0 1 0 0  77

7 ð Þ ¼ ��
� 

:6 7ð Þ ¼  , A Gb 
6 7 

� v3 40 0 0 1  1  1  56 7 �� v4 40 0 0 1 0 1 0  5 �� v4 0 1 1 0 1 0  
v5 0 0 0 1 1 1 1  

2 3� v1 1 0 1 1 0 0 0 0  2 3� v1 1 1 0 0 0 0 0 1 0� 6 7v2 6 1  1 0 0 0 0 0 0  7 � v2 6 7� 6 7 � 60 0 1  1  0 0 1  0 0  7� � 6 7� v3 60 0 1  1  1 0 0 0  7 v3 60 0 0 0 1  1 0 0 1  7
and A  Gd :A Gð Þ ¼c � :6 7 ð Þ ¼ �� 6 76 7 6 7� v4 60 1 0 0 1  1  1 0  7 � v4 60 0 1 0 1 0 0 1 0 7� � 6 7 � 64 
75 � v5 

40 1 0 0 0 0 1  0 1  5v5 0 0 0 0 0 1 0 1  � � � v6 
1 0 0 1 0 1 0 0 0  v6 0 0 0 0 0 0 1 1  

The l-tuple computations of the scalar multiplications that correspond to these 
graphs are shown in Table 1. 

6.3 The graphic left-to-right binary method 

With the same parameters p, E, P,G, and V which are used in the GRLB method, 
the computations of l-tuple vP using the GLRB method can be done easily. The h i  
scalars v1,…, vn can be written in the binary representation strings 

eðm�1Þ ; …; e1j; e0j , for j = 1, 2, …, l, directly from the matrix representation A(G)
j 2 

of G. Let us start with a point Q1 in E Fp ,where Q1 ¼ ∞: With the i index which 
takes the values ðm� 1Þ1,…, 11,01, then the computation of 2Q1 can be done and 
plugged into Q1: After then, the value Q1 ¼ Q1 þ P is computed. The processing 
continues until the last value 01: Therefore, the last computed value of a point Q1 
is the first scalar multiplication point in an l-tuple vP : Similarly, the processing h i  
on others rows can be computed. The GLRB method can be summarized in 
Algorithm (6.2). 
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Figure 2. 
Different kinds of graphs [16]. 

P E (a,b) N Generator G G (l,m) hvPi 
point 

101 E (10,2) 109 P =  (68,14) Ga Ga (5,7) hv1P; v2P; v3P; v4P; v5Pi ¼ 
hð14; 19Þ; ð91; 66Þ; ð44; 68Þ; ð5; 51Þ; ð93; 4Þi 

61 E (4,1) 67 P =  (24,14) Gb Gb (4, 6) hv1P; v2P; v3 P; v4Pi ¼  
hð0; 60Þ; ð4; 52Þ; ð43; 21Þ; ð0; 1Þi 

191 E (7,2) 193 P = (41,91) Gc Gc (6, 8) hv1P; v2P; v3P; v4 P; v5P; v6Pi ¼  
hð24; 137Þ; ð41; 100Þ, ð43; 113Þ, ð18; 109Þ, ð16; 114Þ; ð105; 86Þi 

449 E (2,2) 467 P = (50,27) Gd Gd (6, 9) hv1P; v2P; v3P; v4 P; v5P; v6Pi ¼  
hð93; 281Þ; ð405; 104Þ, ð96; 20Þ, ð266; 382Þ, ð236; 399Þ; ð31; 391Þi 

Table 1. 
The experimental results of the l-tuple of the scalar multiplications that correspond to the graphs Ga, Gb, 
Gc, and Gd. 

Algorithm 6.2 The GLRB method 

˜ °  
Input: A graph G Vð ; EÞ, P  ∈ E Fp , l  and m: 
Output: The l-tuple of the scalar multiplications vP h :h i ¼ v1P; …; vlPi 

1. Write down the matrix representation A G  ð :ð Þ of the graph G V; EÞ 
˛ ˝ 

2. Directly determine the binary representation strings vj ¼ eðm�1 ; …; e1j ; e0j ,Þj 2 
for j=1,2,…, l from A G  :ð Þ  

3. For j ¼ 1, 2, …, l: 

4. Qj ∞: 

5. For i ¼ ðm � 1Þj : 0j do 
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5.1 Compute Qj ¼ 2Qj: 

5.2 If eij ¼ 1 then Qj ¼ Qj þ P: 

5.3 Else go to Step (5.4). 

5.4 End if 

6. End for 

7. Return (Qj ¼ vjP). 

8. End for 

9. Return ( Q ¼ vP ¼ hv1P; v2P; …; vlPi).h i  h i  

7. The digraphic NAF for the elliptic scalar multiplication 

The signed digit representation of an l -tuple h iv of scalars vj, which are used to 
compute an l-tuple h vPi of the scalar multiplications vjP, can be represented 
directly from the digraphs. The signed digit representations of vj are given by 

∑l�1 2ijvj ¼ , where eij ∈ f0; �1g. The signed digit representations form the gen-i¼0eij 
eralized nonadjacent form (GNAF). These representations are computed using the 
following algorithm: 

Algorithm 7.1 The GNAF computation of an l-tuple of the positive integers 

Input: An l-tuple of positive integers vj. 
v v1 v2 ; …; NAFSð ÞOutput:h NAFSð Þi ¼ h NAFSð Þ; NAFSð Þ  vl i: 

˜ ° 
1. Determine vj, j =  1, 2, …,l and e1j; e2j; …; emj in any digraph G. 

2. For j = 1, 2, …, l. 

3. For i =  1,…,m. 

4. If vs is an incident out of vt, where s, t ∈ j 

5. then eij ¼ 1: 

6. Elseif vs is an incident into vt 

7. then eij ¼ �1: 

8. Else there is no edge between vs and vt. 

9. then eij ¼ 0: 

10. End if 

11. End For 

97 

http://dx.doi.org/10.5772/intechopen.83579


 

 

� � 

� � � � 

���������� 

Applied Mathematics 

12. Return e1j; e2j; …; emj . 

13. End For 

14. Return NAF vj ¼ emj ; …; e2j; e1j : 

In Figure 3, the digraph G has the vertices vj for j =  1, 2, 3, 4 and edges em for 
m =  1, 2, …, 7. 

Figure 3. 
The digraph has the vertices vj for j = 1, 2, 3, 4 and edges em for m = 1, 2, …, 7. 

The incidence matrix of G that is given in Figure 3 is 

A ¼ 

2 3�1 0 0 1 �1 0 �1v1 

66664 

77775 

1 1 0 0 0 1 0 

0 �1 �1 0 1 0 0 

v2 

v3 

: 

v4 0 0 1 �1 0 �1 1 

So, the NAF representations of 4-tuple hv1; v2; v3; v4i are 

hð�1; 0; 0; 1; �1; 0; �1Þ; ð1; 1; 0; 0; 0; 1; 0Þ; ð0; �1; �1; 0; 1; 0; 0Þ; ð0; 0; 1; �1; 0; �1; 1Þi: 
The GNAF method for l-tuple of the scalar multiplications can be performed 

using Algorithm (7.2). 

Algorithm 7.2 The GNAF method for computing l-tuple of the scalar 
multiplication 

Input: The l-tuple of positive integers vj and P ∈E(Fp). 
Output: The l-tuple of the scalar multiplications vP :h i  

1. Algorithm (7.1) uses to compute GNAF(v). 

2. Qj ∞. 

3. For j = 1, 2, …, l 

4. For i = t � 1, … , 1, 0  

4.1 Qj 2Qj. 
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4.2 If eij ¼ 1 then Qj Qj +P. 

4.3 Elseif eij ¼ �1 then Qj Qj �P. 

4.4 Else go to step (4.5). 

4.5 End if 

5. End for 

6. End for 

D E 
7. Return Qj ¼ vjP : 

Using Algorithm (7.2), the final result of 4-tuple of the scalar multiplications is 
given by 

hv1P; v2P; v3P; v4Pi ¼ hð28; 32Þ; ð46; 63Þ; ð25; 90Þ; ð82; 15Þi: 

8. The subgraphs for the elliptic scalar multiplication 

8.1 The binary representations 

Suppose G is a graph and Hi, for i = 1, 2, 3 are subgraphs as shown in Figure 4. 
Next algorithm can be applied for determining the binary representation of any 

subgraph from a given graph. 

Algorithm 8.1 The graphic binary representation of a subgraph from a given 
graph 

Input: A graph G(V, E), where V = (v1, v2, …, vl) and E = (e1, e2,…, em). 
Output: The BRsubgraph(v). 

1. Determine (v1, v2, …, vk) and (e1, e2,…, em) in any subgraph H of G. 

2. i 0. 

3. For j = 0: k, where k ≤ l. 

4. If there is an edge between vs and vt, where s, t ∈ j 

5. then ei ¼ 1: 

6. Else there is no edge between vs and vt. 

7. then ei ¼ 0: 

8. End if 

9. i i +  1. 

10. Return BRsubgraph = (em-1, …, e1, e0)2. 
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Figure 4. 
The subgraphs Hi, for i = 1, 2, 3, for a graph G. 

Subgraphs (v1, v2, …, vk) (e1, e2,…, em) BRsubgraph = (em ˜ 1, …, e1, e0)2 

H1 (v1, v2, v3, v4, v6) (e1, e2, e3, e6, e7) (1, 1, 0, 0, 1, 1, 1) 

H2 (v1, v2, v3, v4, v6) (e1, e3, e6, e7) (1, 1, 0 ,0, 1, 0, 1) 

H3 (v1, v2, v3, v4, v5, v6) (e1, e3, e4, e5, e7) (1, 0, 1, 1, 1, 0, 1) 

Table 2. 
The experimental results of the binary representations of scalars using subgraphs. 

p E (a,b) n Gen Pt P Subgraph BRsubgraph = (em ˜ 1, …, e1, e0)2 HiP 

191 E (7,2) 193 P = (41,91) H1 (1, 1, 0, 0, 1, 1, 1) (80,142) 

H2 (1, 1, 0 ,0 ,1 , 0, 1) (0,57) 

H3 (1, 0, 1, 1, 1, 0, 1) (36,146) 

Table 3. 
The experimental results for computing of the scalar multiplications based on using the binary representation of 
the subgraphs. 

The small numerical results based on Figure 4 can be shown in Table 2. 
On the binary representations which are found directly from the subgraphs, the 

scalar multiplications HiP on elliptic curve E defined over a prime field Fp can be 
computed using Algorithm (4.1) or (4.2). Some experimental results for computing 
the scalar multiplications based on using the subgraphs to represent the scalars are 
given in Table 3. 

9. The signed digit representations 

Suppose G is a digraph and Hi, for i = 1, 2, 3, are directed subgraphs as shown in 
Figure 5. Algorithm (8.2) can be used to find the signed digit representation of any 
subgraph from a given graph. 
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Figure 5. 
The directed subgraphs Hi, for i = 1, 2, 3, 4, for a digraph G. 

Algorithm 8.2 The di-subgraph signed digit representation of the positive 
integers 

Input: A directed graph G(V, E), where V = (v1, v2, …, vl) and E = (e1, e2, …, em). 
Output: The SDRsubgraph(v). 

1. Determine (v1, v2, …, vk) and (e0, e1,…, em � 1) in any subgraph H of G. 

2. i 0. 

3. For j = 0: k, where k ≤ l. 

4. If vs is an incident out of vt, where s, t ∈ j 

5. then ei ¼ 1: 

6. Elseif vt is an incident into vs 

7. then ei ¼ �1: 

8. Else there is no edge between vs and vt. 

9. then ei ¼ 0: 

10. End if 

11. End for 

11. i i+1. 

12. Return (em � 1, …, e1, e0). 
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Subgraphs l-tuple vh i  l-tuple h NAFSðvÞi 
H1 h v1; v2; v3; v6 i h 1; 0; 0; 0; 0; 0; 0ð Þ; ð�1; 1; 0; 0; 0; 0; 1Þ; ð0; �1; 1; 0; 0; 1; 0Þ; 

0; 0; 0; 0; 0; �1; �1ð Þi 
H2 h v1 ; v2; v3; v4; v6i h 1; 0; 0; 0; 0; 0; 0ð Þ; ð�1; 0; 0; 0; 0; 0; 1Þ; ð0; 0; 1; 0; 0; 1; 0Þ; 

ð0; 0; �1; 0; 0; 0; 0Þ; ð0; 0; 0; 0; 0; �1; �1Þi 
H3 h v1; v2; v3; v4; v5 ; v6i h 1; 0; 0; 0; 0; 0; 0ð Þ; ð�1; 0; 0; 0; 0; 0; 1Þ; ð0; 0; 1; �1; 0; 0; 0Þ; 

0; 0; �1; 0; 0; 0; 0ð Þ; ð0; 0; 0; 1; �1; 0; 0Þ; ð0; 0; 0; 0; 1; 0; �1Þi 

Table 4. 
The experimental results for sign digit representing l-tuple of the scalars using the subgraphs. 

P P Directed subgraphs l-tuple h iv h vPi 
191 P = (41,91) H1 h v1; v2; v3; v6 i h ð133; 91Þ; ð171; 71Þ; ð132; 144Þ; ð16; 77Þi 

H2 h v1; v2; v3; v4; v6i hð133; 91Þ; ð17; 91Þ; ð177; 186Þ; ð177; 5Þ; 
ð16; 77Þi 

H3 h v1; v2; v3; v4; v5 ; v6i hð133; 91Þ; ð17; 91Þ; ð49; 23Þ; ð177; 5Þ 
ð79; 97Þ; ð105; 86Þi 

Table 5. 
The experimental results for computing l-tuple of the scalar multiplications based on using the subgraphs. 

The computational results based on Figure 5 and using Algorithm (8.2) are given in 
Table 4. With the signed digit representations which are given in Table 4, the l-tuple of 
the scalar multiplications on elliptic curve E defined over a prime field Fp can be com-
puted. Some experimental results for computing the l-tuple of the scalar multiplications 
based on using the directed subgraphs to represent the scalars are given in Table 5. 

10. The computational complexity on the elliptic scalar multiplication 
methods 

This chapter discusses the problems of the computational complexities which 
are determined depending on the account operations. These operations are the 
elliptic curve operations, namely, the addition A and doubling D on the points 
which lie on elliptic curve E defined over a prime field Fp. Also, the finite field 
operations which are field inversion I, field multiplication M and a field squaring S. 
The computational complexity problems are determined first of the original binary 
methods and NAF for computing the scalar multiplications on E. The computational 
complexities of the proposed methods which are dependent on the graphs and 
subgraphs are determined as well. 

10.1 The computational complexity of the binary methods 

Let #E (Fp) = n, where n is prime number and it is the nearest number to prime 
p. A point P in E(Fp) which has order n. Suppose v is a scalar such as v is a randomly 
selected integer from the interval [1, n�1]. The binary representation of v is 
denoted (em – 1… e2.e1.e0)2 where m ≈ t = log2 p. 

The computational complexity of Algorithm (4.1) or (4.2) is roughly t/2 point 
additions and t point doublings, which is denoted by 

t 
A þ tD, (3)

2 
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in addition to the time of binary representation which is approximately t/2d and 
t/2S, where d and S are normal addition and squaring. Using Lemmas (6.1) and 
(6.2) in [18, 19], the points addition A and doubling D can be re-expressed by 
1I þ 2 M  þ 1S and 1I þ 2 M  þ 2S, respectively. In other words, the computational 
complexity of Algorithm (4.1) or (4.2) is expressed in terms of field operations by. 

3tS þ 3tM þ 1:5tI þ 0:5td: (4) 

Several computational complexity results to compute a scalar multiplication by 
applying the binary method are given in Table 6. 

10.2 The computational complexity of the NAF 

With same the multiplier v which belongs to the interval [1,n � 1], the compu-
tational complexity to compute a scalar multiplication vP using the NAF is given by 

t t
D þ A þ tD ¼ A þ ðt þ 1ÞD: (5)

3 3 

In Eq. (5), D in the first term is the cost of NAF to represent a positive integer v, 
t/3A þ tD is the cost of computing a scalar multiplication vP using NAF method, 
and t is the length of the NAF string. In other words, the running time of Algorithm 
(5.1) is expressed in terms of field operations by 

t=3ð1I þ 2 M  þ 1SÞ þ ðt þ 1Þð1I þ 2 M  þ 2SÞ ¼ ððt=3Þ þ t þ 1ÞI þ ðð2=3Þt þ 2 t  þ 2ÞM 

þ ððt=3Þ þ 2 t  þ 2ÞS: 
(6) 

P E (a,b) n Gen. pt. P vP Bin. representation Comp. complexity 

101 E (10,2) 109 (68,14) 93P (1, 0, 1, 1, 1, 0, 1) 21S þ 21 M þ 10.5I þ 3.5d 

61 E (4,1) 67 (24,14) 23P (1, 0, 1, 1, 1) 15S þ 15 M þ 7.5I þ 2.5d 

113 E (12,4) 103 (52,41) 39P (1, 0, 0, 1, 1, 1) 18S þ 18 M þ 9I þ 4.5d 

149 E (13,1) 167 (32,133) 13P (1, 1, 0, 1) 12S þ 12 M þ 6I þ 2d 

1031 E (15,7) 1061 (217,808) 281P (1, 0, 0, 0, 1, 1, 0, 0, 1) 27S þ 27 M þ 13.5I þ 4.5d 

Table 6. 
The experimental results of the computational complexity for the scalar multiplications using the binary 
method. 

P E (a,b) N Gen. pt. P vP NAF. rep. Comp. complexity 

101 E (10,2) 109 (68,14) 93P (1, 0, �1, 0, 0, �1, 0, 1) 11.6I þ 23.3 M þ 20.6S 

61 E (4,1) 67 (24,14) 23P (1, 0, �1, 0, 0, �1) 9I þ 18 M þ 16S 

113 E (12,4) 103 (52,41) 39P (1, 0, �1, �1, 0, 0, �1) 10.3I þ 20.6 M þ 23S 

149 E (13,1) 167 (32,133) 13P (1, 0, 0, �1, �1) 7.6I þ 15.3 M þ 13.6S 

1031 E (15,7) 1061 (217,808) 281P (1, 0, 0, 1, 0, 0, �1, �1, �1) 13I þ 26 M þ 23S 

Table 7. 
The experimental results of the computational complexity for the scalar multiplications using the NAF 
method. 
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Some numerical results of the computational complexity to compute a scalar 
multiplication using the NAF method are given in Table 7. 

11. The computational complexity for serial computing l-tuple of the 
scalar multiplications 

11.1 The computational complexity of the serial GBR 

On l-tuple of the scalar multiplications vP ¼ h i, the computa-h i  v1P; v2P; …; vlP 
tions of v1P, v2P, …, vlP without using the graphs or subgraphs can be done serially. 
So, the computational cost of these computations using the binary representations 
of v1, v2, …, vl is given by 

t 
lA þ tlD þ 0:5tld: (7)

2 

In other words, the running time can be expressed in terms of field operations 
by 

3tlS þ 3tlM þ 1:5tlI þ 0:5tld: (8) 

Table 8 displays some small experimental results for computational complexi-
ties for serial computations of l-tuples vP using the generalized binary method. h i  

11.2 The computational complexity of the serial GNAF 

The computational complexity for computing l-tuple of the scalar multiplica-
tions using GNAF representations in serial way is given by 

t t
lD þ lA þ tlD ¼ lA þ t þð 1ÞlD:

3 3 
(9) 

Using the field operations, the formula in Eq. (9) can be rewritten by. 

ð t=3ð  Þ þ t þ 1ÞlI þ ð2=3Þð t þ 2 t  þ 2ÞlM þ t=3ð  Þ þð 2 t  þ 2ÞlS: (10) 

The computational complexity results for serial computations of l-tuples vPh i  
using the GNAF method are given in Table 9. 

P E (a,b) n Gen. pt. P hvPi Comp. complexity 

101 E (10,2) 109 (68,14) 93P; 25P; 66Ph i 63S þ 63 M þ 31.5I þ 10.5d 

61 E (4,1) 67 (24,14) 23P; 19P; 12Ph i 45S þ 45 M þ 22.5I þ 7.5d 

113 E (12,4) 103 (52,41) 39P; 21Ph i 36S þ 36 M þ 18I þ 9d 

149 E (13,1) 167 (32,133) 13P; 5Ph i 24S þ 24 M þ 12I þ 4d 

1031 E (15,7) 1061 (217,808) 281P; 91P; 63P; 55Ph i 108S þ 108 M þ 54I þ 18d 

Table 8. 
The experimental results for computational complexities for serial computations of l-tuples vP using the h i  
generalized binary method. 

104 



The Graphs for Elliptic Curve Cryptography 
DOI: http://dx.doi.org/10.5772/intechopen.83579 

P E (a,b) N Gen. pt. P hvPi Comp. complexity 

101 E (10,2) 109 (68,14) 93P; 25P; 66Ph i 34.8I þ 69.9 M þ 61.8S 

61 E (4,1) 67 (24,14) 23P; 19P; 12Ph i 27I þ 54 M þ 48S 

113 E (12,4) 103 (52,41) 39P; 21Ph i 20.6I þ 41.2 M þ 46S 

149 E (13,1) 167 (32,133) 13P; 5Ph i 15.2I þ 30.6 M þ 27.2S 

1031 E (15,7) 1061 (217,808) 281P; 91P; 63P; 55Ph i 52I þ 104 M þ 92S 

Table 9. 
The experimental results of the computational complexities for the serial computations of l-tuples vP using the h i  
GNAF. 

12. The computational complexity of the graphic elliptic scalar 
multiplication methods 

Suppose vP ¼ hv1P; v2P; …; vlPih i  is an l-tuple of the scalar multiplications. The 
graphic computations of v1P, v2P, …, vlP can be done using the graphs or subgraphs 
in two ways. One of them is using the graphs directly to find the binary represen-
tations of the scalars v1, v2, …, vl, whereas another one uses the digraphs to repre-
sent these scalars. The computational costs of these computations can be discussed 
as follows. 

12.1 The computational complexity of the graphic binary representation (GBR) 

Using the graphs to compute l-tuple of the scalar multiplications costs 

t 
lA þ tlD: (11)

2 

In terms of field operations, the computational complexity of GBR can be 
expressed by 

3tlS þ 3tlM þ 1:5tlI: (12) 

Table 10 displays some small experimental results for computational complexi-
ties for the graphic representations of l-tuples vP using the generalized binary h i  
method. 

P E (a,b) n Gen. pt. P hvPi CGBR using graphic representations 

101 E (10,2) 109 (68,14) 93P; 25P; 66Ph i 63S þ 63 M þ 31.5I 

61 E (4,1) 67 (24,14) 23P; 19P; 12Ph i 45S þ 45 M þ 22.5I 

113 E (12,4) 103 (52,41) 39P; 21Ph i 36S þ 36 M þ 18I 

149 E (13,1) 167 (32,133) h13P; 5Pi 24S þ 24 M þ 12I 

1031 E (15,7) 1061 (217,808) 281P; 91P; 63P; 55Ph i 108S þ 108 M þ 54I 

Table 10. 
The experimental results for computational complexities for graphic computations of l-tuples vP using the h i  
generalized binary method. 
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P E (a,b) N Gen. pt. P hvPi CGBR using graphic representations 

101 E (10,2) 109 (68,14) h93P; 25P; 66Pi 32I þ 64 M þ 56S 

61 E (4,1) 67 (24,14) 23P; 19P; 12Ph i 24I þ 48 M þ 42S 

113 E (12,4) 103 (52,41) 39P; 21Ph i 18.6I þ 37.3 M þ 32.6S 

149 E (13,1) 167 (32,133) 13P; 5Ph i 13.3I þ 26.6 M þ 23.3S 

1031 E (15,7) 1061 (217,808) 281P; 91P; 63P; 55Ph i 48I þ 96 M þ 84S 

Table 11. 
The experimental results for computational complexities for graphic computations of l-tuples of vP using the h i  
GNAF method. 

12.2 The computational complexity of the digraphic NAF 

The computational complexity for computing l-tuple of the scalar multiplica-
tions using the digraphs is given by 

t 
lA þ tlD: (13)

3 

Eq. (13) can be rewritten using field operations by: 

t=3 tÞ ð t þ 2 tÞlM þ ð t=3 2 tÞðð  Þ þ lI þ ð2=3Þ ð Þ þ  lS: (14) 

Several experimental results for computational complexities for digraph 
representations of l-tuples vP are given in Table 11.h i  

13. Computational complexity comparison on the serial and graphic 
computations of GBR and GNAF methods 

This section discusses first the experimental results of the GBR method that uses 
serial computations to calculate l-tuple of the scalar multiplications and the GBR 
method that depends directly on using the graphs. Selecting the scalars v1, v2,…. vl 
from the interval [1. n � 1] to represent using the GBR method which needs the cost 
0.5tld, where t is the length of the string binary representation, l is the length of the 
tuple and d is a normal addition operation. The final computational cost as given in 
Eq. (8). 

Whereas, the binary representing of the scalars v1, v2, … vl can be taken directly 
from graphs or subgraphs without need to extra cost. This saves the 0.5tld opera-
tions to compute l-tuple of the scalar multiplications vP : The total cost of the h i  
graphic GBR method has been determined previously in Eq. (12). The serial GBR 
and graphic GBR computational costs for several experimental results are given in 
Table 12. In this table, one can see the serial GBR method with various values of p is 
more costly compared to the graphic GBR method. 

Also, the experimental results of the serial GNAF and graphic GNAF methods 
that are used to calculate l-tuple of the scalar multiplications are discussed in this 
section. Selecting the scalars v1, v2, … vl from the interval [1. n � 1] to represent 
using the GNAF method which needs the 1lI þ 2lM þ 2lS cost, l is the length of the 
tuple, M is a field multiplication, S is a field squaring, and I is a field inversion. So, 
the total computational cost as given in Eq. (10). 

The graphic GNAF of the scalars v1, v2, …. vl can be taken directly from graphs. 
So it can save 1lI þ 2lM þ 2lS operations for computing l-tuple of the scalar 
multiplications vP : The total cost of the graphic GNAF method is determined h i  
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P E (a,b) N Gen. pt. P CGBR using serial computations CGBR using graphs 

101 E (10,2) 109 (68,14) 63S þ 63 M þ 31.5I þ 10.5d 63S þ 63 M þ 31.5I 

61 E (4,1) 67 (24,14) 45S þ 45 M þ 22.5I þ 7.5d 45S þ 45 M þ 22.5I 

113 E (12,4) 103 (52,41) 36S þ 36 M þ 18I þ 9d 36S þ 36 M þ 18I 

149 E (13,1) 167 (32,133) 24S þ 24 M þ 12I þ 4d 24S þ 24 M þ 12I 

1031 E (15,7) 1061 (217,808) 108S þ 108 M þ 54I þ 18d 108S þ 108 M þ 54I 

Table 12. 
The computational costs of the serial GBR and graphic GBR with different values of p. 

P E (a,b) N Gen. pt. P Cos tGNFA using serial computations Cos tGNFA using graphs 

101 E (10,2) 109 (68,14) 34.8I þ 69.9 M þ 61.8S 32I þ 64 M þ 56S 

61 E (4,1) 67 (24,14) 27I þ 54 M þ 48S 24I þ 48 M þ 42S 

113 E (12,4) 103 (52,41) 20.6I þ 41.2 M þ 46S 18.6I þ 37.3 M þ 32.6S 

149 E (13,1) 167 (32,133) 15.2I þ 30.6 M þ 27.2S 13.3I þ 26.6 M þ 23.3S 

1031 E (15,7) 1061 (217,808) 52I þ 104 M þ 92S 48I þ 96 M þ 84S 

Table 13. 
The computational costs of the serial GNAF and graphic GNAF with different values of p. 

previously in Eq. (14). Several experimental results on the serial GNAF and graphic 
GNAF computational costs are given in Table 13. With various values of p as shown 
in Table 13, it can observe that the graphic GNAF method is less costly than the 
serial GNAF method. 

14. Conclusions 

The present chapter was concerned with presenting new graphic elliptic scalar 
multiplication algorithms for speeding up the computations of the scalar multipli-
cation defined on elliptic curves over a prime field in different ways. These ways 
employed the undirected graphs and subgraphs to construct the binary representa-
tions of the scalars v in the scalar multiplications vP. Also, the sign digit representa-
tion of v has been obtained directly from using the digraphs or di-subgraphs. 
These representations are used to compute one scalar multiplication vP and l-tuple 
<vP> of the scalar multiplications. The computational complexities of the proposed 
graphic elliptic scalar multiplication algorithms have been determined. The compu-
tational complexity comparison of the proposed algorithms and original ones is 
discussed based on the elliptic curve and field operations. The experiment results of 
the computational complexities show that the proposed algorithms are less costly 
for computing the scalar multiplication or l-tuple of the scalar multiplications than 
original algorithms which are dependent on the computations of the binary repre-
sentations or NAF expansions. The new propositions with graphic representations 
speed up the computations on elliptic scalar multiplication algorithms. Also, it gives 
the generalized cases with the computations of the l-tuples <vP> using (undirected 
or directed) graphs or subgraphs. This insight makes the working with graphic 
elliptic scalar multiplication algorithms more efficient in comparison with the serial 
original ones. 
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Chapter 6

A Study of Bounded Variation
Sequence Spaces
Vakeel Ahmad Khan, Hira Fatima and Mobeen Ahmad

Abstract

In the theory of classes of sequence, a wonderful application of Hahn-Banach
extension theorem gave rise to the concept of Banach limit, i.e., the limit functional
defined on c can be extended to the whole space l∞ and this extended functional is
called as the Banach limit. After that, in 1948 Lorentz used this concept of a week
limit to introduce a new type of convergence, named as the almost convergence.
Later on, Raimi generalized the concept of almost convergence known as σ�
convergence and the sequence space BVσ was introduced and studied by Mursaleen.
The main aim of this chapter is to study some new double sequence spaces of
invariant means defined by ideal, modulus function and Orlicz function. Further-
more, we also study several properties relevant to topological structures and inclu-
sion relations between these spaces.

Keywords: invariant mean, bounded variation, ideal, filter, I-convergence,
Orlicz function, modulus function, paranorm

1. Introduction

The concept of convergence of a sequence of real numbers has been extended to
statistical convergence independently by Fast [1] and Schoenberg [2]. There has
been an effort to introduce several generalizations and variants of statistical con-
vergence in different spaces. One such very important generalization of this notion
was introduced by Kostyrko et al. [3] by using an ideal I of subsets of the set of
natural numbers, which they called I-convergence. After that the idea of
I-convergence for double sequence was introduced by Das et al. [4] in 2008.

Throughout a double sequence is defined by x ¼ xij
˜ °

and we denote 2ω showing
the space of all real or complex double sequences.

Let X be a nonempty set then a family I⊂ 2X is said to be an ideal in X if Ø∈ I,
I is additive, i.e., for all A,B∈ I) A∪B∈ I and I is hereditary, i.e., for all
A∈ I, B ⊆A) B∈ I. A nonempty family of sets F ⊂ 2X is said to be a filter on X if
for all A, B∈F implies A∩B∈F and for all A∈F with A ⊆B implies B∈F . An
ideal I⊂ 2X is said to be nontrivial if I 6¼ 2X, this non trivial ideal is said to be
admissible if I⊇ xf g : x∈Xf g and is said to be maximal if there cannot exist any
nontrivial ideal J 6¼ I containing I as a subset. For each ideal I there is a filter F Ið Þ
called as filter associate with ideal I, that is

F Ið Þ ¼ K ⊆X : Kc ∈ If g, where Kc ¼ X\K: (1)
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A double sequence x ¼ xij ∈2ω is said to be I-convergent [5–8] to a number L 
if for every ϵ>0, we have i; j ∈ N � N : jxij � Lj≥ ϵð Þ  ∈ I: In this case, we write 
I � lim xij ¼ L: A double sequence x ¼ xij ∈2ω is said to be I-Cauchy if for every 
ϵ>0 there exists numbers m ¼ mð Þϵ , n  ¼ nð Þϵ such that 
ð Þi; j ∈ N � N : jxij � xmnj≥ ϵ ∈ I: 
A continuous linear functional ϕ on l∞ is said to be an invariant mean [9, 10] or 

σ-mean if and only if: 

1. ϕð Þx ≥ 0 where the sequence x ¼ xkð Þ has xk ≥ 0 for all k, 
2. ϕ e f ,ð Þ ¼ 1 where e ¼ 1; 1; 1; 1; …g 
3. ϕ xσð Þn ¼ ϕð Þx for all x ∈ l∞, 

where σ be an injective mapping of the set of the positive integers into itself 
having no finite orbits. � � 

If x ¼ xk , write Tx ¼ ðTxk , so we haveð Þ  Þ ¼  xσð Þk 

n o 
Vσ ¼ x ¼ ð Þxk : lim tm, kð Þ ¼ L uniformly in k; L ¼ σ � lim xx (2)

m!∞ 

where m ≥ 0, k  >0: 

xk þ xσð Þk þ… þ xσmð Þktm,k x and 1, k ¼ 0, (3)ð Þ ¼  t� m þ 1 

where σmð Þk denote the mth-iterate of σð Þk at k. In this case σ is the translation 
mapping, that is, σ k mean is called a Banach limit [11] and Vσ, the set ð Þ ¼ k þ 1, σ� 
of bounded sequences of all whose invariant means are equal, is the set of almost 
convergent sequences. The special case of (3) in which σ kð Þ ¼ k þ 1 was given by 
Lorentz [12] and the general result can be proved in a similar way. It is familiar that 
a Banach limit extends the limit functional on c in the sense that 

ϕ x for all (4)ð Þ ¼ lim x, x ∈ c: 

Definition 1.1 A sequence x ∈ l∞ is of σ-bounded variation if and only if: 

(i) ∑∣ϕm,kð Þx ∣ converges uniformly in k, 

(ii) limm!∞ tm, kð Þx , which must exist, should take the same value for all k. 

We denote by BVσ , the space of all sequences of σ-bounded variation: 

BVσ ¼ x ∈ l∞ : ∑ jϕm,k x < ∞; uniformly in k :ð Þj 
m 

is a Banach space normed by 

∞ 
∥x∥ ¼ sup ∑ ∣ϕm,kð Þx ∣: (5) 

k m¼0 

A function M : ½0; ∞Þ ! ½0; ∞Þ is said to be an Orlicz function [13, 14] if it 
satisfies the following conditions: 

(i) M is continuous, convex and non-decreasing, 

(ii) M 0 ð Þ>0 and M xð Þ ¼ 0,M  x  ð Þ !∞ as x ! ∞: 

Remark 1.1 If the convexity of an Orlicz function is replaced by 
Mðx þ yÞ ≤ M xð Þ þMð Þy , then this function is called Modulus function [15–17]. 
If M is an Orlicz function, then MðλXÞ ≤ λM xð Þ for all λ with 0< λ < 1: An Orlicz 
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function M is said to satisfy Δ2-condition for all values of u if there exists a constant 
K > 0 such that M Lu ð Þ for all values of L > 1 [18]. ð Þ ≤ KLM u 

Definition 1.2 A double sequence space X is said to be: 

[i] solid or normal if xij ∈ X implies that αijxij ∈ X for all sequence of scalars 
αij with ∣αij∣ < 1 for all i; j ∈ N �ð Þ  N. 

[ii] symmetric if xπ i;j ∈ X whenever xij ð Þ is a permutation∈ X, where π i; j 
on N � N. 

ð Þ  

[iii] sequence algebra if xijyij ∈ E whenever xij , yij ∈ X: 

[iv] convergence free if yij ∈ X whenever xij ∈ X and xij ¼ 0 implies yij ¼ 0, 

for all i; j ∈ N �ð Þ  N. 

Definition 1.3 Let K ¼ ni; kj : i; j : n1 < n2 < n3 < :…ð Þ  and k1 < k2 

< k3 < :…g ⊆ N � N and X be a double sequence space. A K-step space of X is a 
sequence space 

�� � � � � 
λEk ¼ αijxij : xij ∈ X : 

A canonical preimage of a sequence xnikj ∈ X is a sequence ðbnkÞ∈ X defined as 

follows: 

ank, for n, k ∈ K 
bnk ¼ 

0, otherwise: 

A sequence space X is said to be monotone if it contains the canonical preimages 
of all its step spaces. � �  

The following subspaces l pð Þ, l∞ð Þp , cð Þp and c0ð Þp where p ¼ pk is a 
sequence of positive real numbers. These subspaces were first introduced and 
discussed by Maddox [16]. The following inequalities will be used throughout the

section. Let p ¼ pij be a double sequence of positive real numbers [19]. For any 

complex λ with 0< pij ≤ supij pij ¼ G < ∞, we have 

Gj jλ pij ≤ max 1; j jλ : 

n o 
1Let D ¼ max 1; 2G� and H ¼ max 1; supij pij , then for the sequences aij 

and bij in the complex plane, we have 

� � �� � � � �� �pij � �pij þ �bij�pijaij þ bij ≤ C aij : 

2. Bounded variation sequence spaces defined by Orlicz function 

In this section, we define and study the concepts of I-convergence for double 
sequences defined by Orlicz function and present some basic results on the above 
definitions [8, 20]. 

� �  ∣ϕmnij x L∣ð Þ �  
2BVI 

σðMÞ ¼  xij ∈ 2w : I � lim M ¼ 0; for some L ∈ C; ρ >0  
ρ 

(6) 
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˙ ˛ ˝ ˆ˜ ° ˜ °  ∣ϕmnijð Þx ∣ 
2 0BVI ðMÞ ¼ xij ∈ 2w : I � lim M ¼ 0; ρ >0  , (7)σ ρ 

˙ ˙ ˛ ˝ ˆ ˆ˜ ° ˜ °  ∣ϕmnijð Þx ∣ 
σ ð Þ : ∃ k >0  s:t M2 ∞BVI ð ÞM ¼ xij ∈ 2w : i; j ≥ k ∈ I; ρ >0  

ρ 

(8) 
˙ ˛ ˝ ˆ ˜ °  ∣ϕmnijð Þx ∣ 

2ð∞BVσ ðMÞÞ ¼  xij ∈ 2w : supM < ∞; ρ >0  : (9)
ρ 

Now, we read some theorems based on these sequence spaces. These theorems 
are of general importance as indispensable tools in various theoretical and practical 
problems. 

Theorem 2.1 Let M1,M2 be two Orlicz functions with Δ2 condition, then 

(a) χðM2Þ ⊆ χðM1M2Þ ˜ ° 
(b) χðM1Þ∩ χðM2Þ ⊆ χðM1 þM2Þ for χ ¼2 BVI 

σ , 2 0BVI :σ ˜ ° ˜ ° 
Proof. (a) Let x ¼ xij ∈ 2 0BVI ðM2Þ be an arbitrary element, so there exists σ 

ρ > 0 such that 
˛∣ϕmnijð Þx ∣˝ 

I � lim M2 ¼ 0: (10)
ρ 

Let ϵ > 0 and choose δ with 0< δ < 1 such that M1ð Þt < ε for 0< t ≤ δ.ˇ ˘
∣ϕmnijWrite yij ¼M2 

ð Þx ∣ 
. Consider,ρ 

ˇ ˘  ˇ ˘ ˇ ˘  
lim ¼ lim þ lim : (11)M1 yij M1 yij M1 yijij yij ≤ δ, i, j ∈ N yij >δ, i, j ∈ N 

Now, since M1 is an Orlicz function so we have M1 λx x , 0<  λ < 1. ð Þ ≤ λM1ð Þ  
Therefore, we have 

ˇ ˘  ˇ ˘  
lim M1 ≤ M1ð Þ2 lim : (12)yij yij≤ δ, i, j ∈ N ≤ δ, i, j ∈ Nyij yij 

yij yijFor yij>δ, we have yij < < 1  þ δ . Now, since M1 is non-decreasing and convex, it δ 

follows that, 

˛ ˝ ˛ ˝ˇ ˘  yij 1 1 2yijM1 < M1 1 þ < 2 M1 : (13)M1ð Þ þ  yij δ 2 2 δ 

Since M1 satisfies the Δ2-condition, so we have 
˛ ˝ˇ ˘  1 yij 1 2yijM1 < K M1ð Þ þ2 KM1yij 2 δ 2 δ 

1 yij 1 yij (14)< K M1ð Þ þ  K M1 22 ð Þ
2 δ 2 δ 

yij¼ K M1ð Þ2 : 
δ 

This implies that, 
ˇ ˘  yijM1 < K M1ð Þ2 : (15)yij δ 
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Hence, we have 
( ) 

lim M1 ≤ max 1; Kδ�1M1ð Þ2 lim : (16)yij yijyij>δ, i, j ∈ N yij>δ, i, j ∈ N 

Therefore from (12) and (16), we have 

I � lim M1 ¼ 0:yijij �∣ϕmnijð Þx ∣� 

) I � lim M1M2 ¼ 0: 
ij ρ 

This implies that x ¼ xij ð Þ . Hence χðM2 ð Þ for � � ∈ 2 0BVI 
σ M1M2 Þ ⊆ χ M1M2 

χ = 2 0BVI : The other cases can be proved in similar way. σ 

(b) Let x ¼ xij ∈ 2 0BVI ðM1Þ ∩ 2 0BVI ðM2Þ . Let ϵ>0 be given. Then there σ σ 

exist ρ>0, such that 
�∣ϕmnijð Þx ∣� 

I � lim M1 ¼ 0, (17)
ij ρ 

and 

�∣ϕmnijð Þx ∣� 

I � lim ðM1 þM2Þ ¼ I � lim M1 þ I � lim M2 

I � lim M2 
ij ρ 

¼ 0: (18) 

Therefore 

�∣ϕmnijð Þx ∣� �∣ϕmnijð Þx ∣� �∣ϕmnijð Þx ∣� 

ij ρ ij ρ ij ρ 
, 

from Eqs. (17) and (18), we get 
�∣ϕmnijð Þx ∣� 

I � lim ðM1 þM2Þ ¼ 0: 
ij ρ 

so we have x ¼ xij ∈ 2 0BVI ðM1 þM2Þ :σ 

Hence, 2 0BVI ðM1Þ ∩ 2 0BVI ðM2Þ ⊆ 2 0BVI ðM1 þM2Þ : For χ = 2 BVσ 
I theσ σ σ 

inclusion are similar. 
Corollary χ ⊆ χðMÞ for χ ¼2 

� 
BVI 

σ 

� 
and 2BVI 

σ . 
Proof. For this let Mð Þ ¼x x, for all x ¼ xij ∈ X. Let us suppose that 

x ¼ xij ∈ 2 0BVσ 
I . Then for any given ϵ>0, we have 

n o 
ð Þi; j : jϕmnijð Þj≥ ϵx ∈ I: 

n o 
Now let A1 ¼ i; j : jϕmnijð Þj ∈ I, be such that Acð Þ  x < ϵ 1 ∈ I. Consider for ρ > 0, 

�∣ϕmnijð Þx ∣� ∣ϕmnijð Þx ∣ ϵ
M ¼ < < ϵ: 

ρ ρ ρ 

∣ϕmnijð Þx ∣
This implies that I � lim M ¼ 0, which shows that ρ 

x ¼ xij ∈ 2 0BVσ 
I M .ð Þ  
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Hence, we have 
˜ ° ˜ ° 

2 0BVI ⊆2 0BVI 
σσ M :ð Þ  

) χ ⊆ χ M :ð Þ  

Using the definition of convergence free sequence space, let us give another 
theorem which will be of particular importance in our future work: ˜ ° 

Theorem 2.2 The spaces 2 0BVI and 2BVI 
σσ Mð Þ  M are not convergence free. ð Þ  

Example 2.1 To show this let I ¼ If and MðxÞ ¼ x, for all x ¼ ½0; ∞Þ. Now ˜ ° ˛ ˝  
consider the double sequence xij , yij which defined as follows: 

xij ¼ 
1 

i þ j 
and yij ¼ i þ j, ∀i, j ∈ N: 

Then we have 
˜ °  
xij° 

˜ 
belong to both 2 0BVI Mð Þσ

° 
σand 2BVI Mð Þ, but 

° 
˛ ˝  
yij˜ 

belong to 2 0BVI 
σ Mð Þ  and 2BVI M . Hence, thð Þσ e sp σ

˜ 
aces 2 0BVI Mð Þ  σand 2BVI 

does not 

Mð Þ  
are not convergence free. 

To gain a good understanding of these double sequence spaces and related 
concepts, let us finally look at this theorem on inclusions: 

Theorem 2.3 Let M be an Orlicz function. Then 
˜ IBV2 0 σ σσ 

° ˜ ° 
2BVI 

∞BVI⊆ ⊆2Mð Þ  Mð Þ  Mð Þ  : 

σ 

˜ ° ˜ ° 
∈ 2 0BVIProof. For this let us consider x ¼ xij 

belong to 2BVI 
σ 

M : It is obvious that it must ð Þ  

M : Now consider ð Þ  

˙ ˆ ˙ ˆ ˙ ˆ∣ϕmnijðxÞ � L∣ ∣ϕmnijð Þx ∣ ∣L∣
M ≤ M þM : 

ρρ ρ 

Now taking the limit on both sides we get 
˙∣ϕmnijðxÞ � L∣ˆ 

I � lim M ¼ 0: 
ρ 

σ 

ij 

˜ °  
∈ 2BVIHence x ¼ xij Mð Þ  : Now it remains to show that 

σ 

σ 

σ 

˜ ° ˜ ° 
BVI 

∞BVI 

∈ 2BVI 

M ⊆2ð Þ  Mð Þ :2 

˜ °  
For this let us consider x ¼ xij Mð Þ this implies that there exist ρ > 0 s.t 

˙∣ϕmnijðxÞ � L∣ˆ 

I � lim M ¼ 0: 
ij 

Now consider, 

ρ 

˙ ˆ ˙ ˆ ˙ ˆ∣ϕmnijð Þx ∣ ∣ϕmnijðxÞ � L∣ ∣L∣
M ≤ M þM : 

ρρ ρ 

Now taking the supremum on both sides, we get 

˙∣ϕmnijð Þx ∣ˆ 

sup M < ∞: 
ρ 

: ▪σ 

ij 

˜ ° ˜ ° 
∞BVIHence, x ¼ xij ∈ Mð Þ2 
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3. Paranorm bounded variation sequence spaces 

In this section we study double sequence spaces by using the double sequences

of strictly positive real numbers p ¼ pij with the help of BVσ space and an Orlicz 

function M. We study some of its properties and prove some inclusion relations 
related to these new spaces. For m, n ≥ 0, we have 

n � � o� �  ∣ϕmnij x L∣ð Þ� pij 
2BVI ðM; pÞ ¼ { xij ∈2ω : i; j : M ≥ ϵ ∈ I;σ ð Þ  ρ (19) 

for some L ∈ C, ρ>0 
( ( ) )� � � �  

�∣ϕmnijð Þx ∣�pij 

2 0BVI ðM; pÞ ¼ xij ∈ 2ω : i; j : M ≥ ϵ ∈ I; ρ>0 , (20)ð Þσ ρ 
( ( ) )

� � � �  ∣ϕmnijð Þx ∣ pij 

2 ∞BVσ 
I ðM; p ¼ xij ∈ 2ω : ð Þ : ∃ K>0 : M ≥ K ∈ I; ρ >0Þ i; j 

ρ 

(21) ( )pij� �  
�∣ϕmnijð Þx ∣� 

2l∞ðM; pÞ ¼  xij ∈ 2ω : sup M 
ρ 

< ∞; ρ >0  : (22) 

We also denote 

2MI ðM; pÞ ¼ 2BVI ðM; pÞ ð ÞBVσ σ ∩ 2 l∞ M; p 

and 

2 0MI ðM; pÞ ¼ 2 0BVI ðM; pÞ ∩ 2 l∞ðM; pÞ:BVσ σ 

We can now state and proof the theorems based on these double sequence spaces 
which are as follows: 

Theorem 3.1 Let p ¼ pij ∈ 2l∞ then the classes of double sequence 

2MI 
BVσ 
ðM; pÞ and 2 0MBV

I 
σ 
ðM; pÞ are paranormed spaces, paranormed by 

( )� �  pij ∣ϕmnijð Þ∣ pijx 
Hg xij ¼ inf ρ : sup M ≤ 1, for someρ >0  

i, j ≥ 1 ρij 

n o 
where H ¼ max 1; sup ij pij . 

Proof. P1 ð Þ ¼ 0 if and only if x ¼ 0:ð Þ It is clear that g x  
P2 ð xÞ ¼ g x  � �ð Þ g � ð Þ is obvious. 
P3 

� �  
∈ 2MI ð . Now for ρ1, ρ2 > 0, we denoteð Þ Let x ¼ xij , y  ¼ yij BVσ 

M; pÞ 
( )

∣ϕmnijð Þx ∣ pij 

A1 ¼ ρ1 : sup M ≤ 1 (23)
ρij 

( )�∣ϕmnijð Þx ∣�pij 

A2 ¼ ρ2 : sup M ≤ 1 (24)
ρij 

Let us take ρ3 ¼ ρ1 þ ρ2. Then by using the convexity of M, we have 
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∣ϕmnijðx þ yÞ∣ ρ1 ∣ϕmnijð Þx ∣ ρ2 ∣ϕmnijð Þy ∣M ≤ M þ M 
ρ ρ1 þ ρ2 ρ1 ρ1 þ ρ2 ρ2 

which in terms give us 

∣ϕmnijðx þ yÞ∣ pij 

sup M ≤ 1 
ρij 

and 

� � n opij 
Hg xij þ yij ¼ inf ðρ1 þ ρ2Þ : ρ1 ∈ A1; ρ2 ∈ A2 

n o n opij pij

≤ inf ρ1 : ρ1 ∈ A1 þ inf ρ2 : ρ2 ∈ A2ð ÞH ð ÞH 

¼ g xij þ g yij : 

Therefore g xð þ yÞ≤ g xð Þ þ g yð Þ: 
P4 λij be a double sequence of scalars with λij ! λ ði; j ! ∞Þ andð Þ Let � �  
, L  ∈ 2MI ðM; pÞ such that xij BVσ 

xij ! L ði; j ! ∞Þ, 

in the sense that 

g xij � L ! 0 ði; j ! ∞Þ: 
Then, since the inequality 

g xij ≤ g xij � þ g LL ð Þ  

holds by subadditivity of g, the sequence g xij is bounded. 
Therefore, 

�� �� �� �� 
g λijxij � λL ¼ g λijxij � λxij þ λxij � λL �� � � �� ¼ g λij � λ xij þ λ xij � L �� � � � � �� 

≤ g λij � λ xij þ g λ xij � L 
�� ��pij � �  pij � � 

≤ � λij � λ �Mg xij þ j jλ Mg xij � L ! 0 

as ði; j ! ∞Þ. That implies that the scalar multiplication is continuous. Hence

2MI ðM; pÞ is a paranormed space. For another space 2 0MI ðM; pÞ , the result is BVσ BVσ 

similar. 
We shall see about the separability of these new defined double sequence spaces 

in the next theorem. 

Theorem 3.2 The spaces 2MI ðM; pÞ and 2 0MI ðM; pÞ are not separable. BVσ BVσ 

Example 3.1 By counter example, we prove the above result for the space 

2MI ðM; pÞ.BVσ 

Let A be an infinite subset of increasing natural numbers, i.e., A ⊆ N � N such 
that A ∈ I. 

Let 
�
1, if i; j ∈ Að Þ  

pij ¼ 
2, otherwise: 
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Let P0 ¼ xij : xij ¼ 0 or 1; for i; j ∈ M and xij ¼ 0; otherwise : 
Since A is infinite, so P0 is uncountable. Consider the class of open balls 

1
B1 ¼ B z; : z ∈ P0 :

2 

Let C1 be an open cover of 2MI ðM; pÞ containing B1.BVσ 

Since B1 is uncountable, so C1 cannot be reduced to a countable subcover for 
2MI 

BVσ 
ðM; pÞ. Thus 2MBV

I 
σ 
ðM; pÞ is not separable. 

We shall now introduce a theorem which improves our work. 

Theorem 3.3 Let and be two double sequences of positive real pij qij 

numbers. Then 2 0MI ðM; pÞ ⊇ 2 0MI ðM; qÞ if and only if limi, j ∈ K inf 
p
qij
ij >0,BVσ BVσ 

where Kc ⊆ N � N such that K ∈ I. 

Proof. Let limi, j ∈ K inf 
p
qij
ij >0 and xij ∈ 2 0MI ðM; qÞ : Then, there exists β >0BVσ 

such that pij > β qij for sufficiently large i; j ∈ K:ð Þ  

Since xij ∈ 2 0MI ðM; qÞ : For a given ϵ >0, there exist ρ > 0 such that BVσ 

( )
∣ϕmnijð Þx ∣ qij 

B0 ¼ ð Þi; j ∈ N � N : M ≥ ϵ ∈ I: 
ρ 

Let G0 ¼ Kc ∪ B0: Then for all sufficiently large ð Þ∈ G0:i; j 

( ) ( )
∣ϕmnijð Þx ∣ pij ∣ϕmnijð Þx ∣ βqij 

ð Þi; j : M ≥ ϵ ⊆ ð Þ : M ≥ ϵi; j ∈ I: 
ρ ρ 

Therefore, xij ∈ 2 0MI ðM; pÞ . The converse part of the result follows obvi-BVσ 

ously. 

Remark 3.1 Let and be two double sequences of positive real num-pij qij 

BVσ 
⊇ 2 0MI qijbers. Then 2 0MI ðM; qÞ ðM; pÞ if and only if limi, j ∈ K inf pij >0 and BVσ 

2 0MI
BVσ 
ðM; qÞ ¼2 0MI ðM; pÞ if and only if limi, j ∈ K inf 

pij >0 and BVσ qij 

limi, j ∈ K inf p
qij
ij 
>0, where Kc ⊆ N � N such that K ∈ I. 

Theorem 3.4 The set 2MI ðM; pÞ is closed subspace of 2l∞ðM; pÞ.BVσ 

pqð ÞProof. Let x be a Cauchy double sequence in 2MI ðM; pÞ such that ij BVσ 

ð Þ  x pq pqð Þ ! x. We show that x ∈ 2MI ðM; pÞ: Since, x ∈ 2MI ðM; pÞ, then there BVσ ij BVσ 

exists apq, and ρ>0 such that 

( ) 
xpq pij�∣ϕmnijð  Þ � apq∣

� 

i; j : M ∈ I:ð Þ  ≥ ϵ 
ρ 

We need to show that
(1) apq converges to a. n � � o ð Þ�∣ϕmnij xpq a∣ pij
(2) If U ¼ i; j : M , then Uc ∈ I.ð Þ  ρ < ϵ 
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pqð ÞSince x be a Cauchy double sequence in 2MI ðM; pÞ then for a given ϵ>0ij BVσ 

there exists k0 ∈ N such that 

xpq xrs∣ϕmnijð  Þ � ϕmnijð Þ∣ pij ϵ 
sup M < , for all p, q, r, s ≥ k0: 

ρ 3ij 

For a given ϵ>0, we have 
n � � o 

xpq xrs pij � �∣ϕmnijð Þ�ϕmnijð Þ∣ Mϵð Þ : M ρ < 3 ,Bpqrs ¼ i; j
n � � o 

xpq � �∣ϕmnijð Þ�apq∣ pij Mð Þ : M < ϵ ,Bpq ¼ i; j ρ 3 n � � o 
xrs � �∣ϕmnijð Þ�ars∣ pij Mð Þ : M < :Brs ¼ i; j ϵ 
ρ 3 

Then Bc , Bc , Bc ∈ I. Let Bc ¼ Bc ∩ Bc ∩ Bc ,pqrs pq rs pqrs pq rs n � � o 
: M ∣apq�ars∣ pij

where B ¼ ð Þi; j < ϵ , then Bc ∈ I. We choose k0 ∈ Bc, then for ρ 

each p, q, r, s ≥ k0, we have 
� � �� � 

pij xpq xrs pij � �ð Þ  
: M ∣apq�ars∣ ∣ϕmnijð Þ�ϕmnij ∣ ϵ Mð Þi; j < ϵ ⊇ i; j ∈ N : M <ρ ρ 3 

n � � o 
xpq � �∣ϕmnijð Þ�apq∣ pij ϵ M∩ i; j : Mð Þ  <ρ 3 

n � � o 
xrs � �∣ϕmnijð Þ�ars ∣ pij ϵ M∩ i; j : M < :ð Þ  ρ 3 

Then apq is a Cauchy double sequence in C. So, there exists a scalar a ∈ C such 
that apq ! a, as p, q ! ∞: 

(2) For the next step, let 0 < δ < 1 be given. Then, we show that if 

( ) 
xpq pij�∣ϕmnijð  Þ � a∣� 

U ¼ ð Þi; j : M ≤ δ 
ρ 

ð Þthen Uc ∈ I: Since x pq ! x, then there exists p0, q0 ∈ N such that, 

( ) 
xp0 q0 

pij H∣ϕmnijð  Þ � ϕmnijð Þx ∣ δ
P ¼ i; j : M (25)ð Þ  < 

ρ 3D 

n o 
1where D ¼ max 1; 2G� , G  ¼ supij pij ≥ 0 and H ¼ max 1; supij pij implies 

Pc ∈ I. The number p0; q0 can be so chosen that together with (25), we have 

( )
H∣ap0 q0 

� a∣ pij δ
Q ¼ ð Þi; j : M < 

ρ 3D 

pqð Þsuch that Qc ∈ I: Since x ∈ 2MI ðM; pÞ.ij BVσ 

We have 

( )
∣ϕmnijðxp0q0 Þ � ap0q0 

∣ pij 

i; j : M ∈ I:ð Þ  ≥ δ 
ρ 
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Then we have a subset S ⊆ N � N such that Sc ∈ I, where 

( )� � � �  xp0 q0 
pij H∣ϕmnijð  Þ � ap0q0 

∣ δ
S ¼ i; j <ð Þ : M : 

ρ 3D 

Let Uc ¼ Pc ∪ Qc ∪ Sc, where 

( )
∣ϕmnijð Þ � a∣ pijx 

U ¼ i; j < δð Þ : M 
ρ 

Therefore, for i; j , we haveð Þ∈ Uc 

n � � o
∣ϕmnijð Þ�x a∣ pij

i; j < δð Þ : M ρ 

hn � � o
∣ϕmnij ðxp0q0 Þ�ϕmnijð Þx ∣ pij � �H⊇ i; j <ð Þ : M δ 

ρ 3D 

( )� � � �M∣ap0q0 
� a∣ pij δ

∩ i; j <ð Þ : M 
ρ 3D 

#� � � � �H�∣ϕmnijðxp0q0 Þ � ap0q0 
∣ pij δ

∩ i; j <ð Þ : M : 
ρ 3D 

Hence the result 2MI ðM; pÞ⊂ 2l∞ðM; pÞ follows.BVσ 

Since the inclusions 2MI ðM; p ð Þ and 2 0MI ðM; pÞ ð ÞBVσ 
Þ⊂ 2l∞ M; p BVσ 

⊂ 2l∞ M; p 

are strict so in view of Theorem (3.3), we have the following result. 
The above theorem is interesting and itself will have various applications in our 

future work. 

4. Bounded variation sequence spaces defined by modulus function 

In this section, we study some new double sequence spaces of invariant 
means defined by ideal and modulus function. Furthermore, we also study 
several properties relevant to topological structures and inclusion relations 
between these spaces. The following classes of double sequence spaces are as 
follows: 

( ( ) ) 

2BVI f 
� �  

∈ 2ω : ð Þ : ∑
∞ 

f j x ≥ ϵ ∈ I; for some L ∈ C ;σð Þ ¼  xij i; j ϕmnijð Þ � Lj 
m, n¼0 

(26) ( ( ) )
∞ � � 

2 0BVσ 
I ð Þf ¼ xij ∈ 2ω : ð Þ : ∑ f jϕmnijð Þjx ≥ ϵ ∈ I ;i; j (27) 

m, n¼0 

( ( ) )
∞ � � 

2 ∞BVI f ¼ xij i; j ∑ f jϕmnijð Þj ≥ K ∈ I ; (28)σ ð Þ  ∈ 2ω : ð Þ : ∃ K>0 : x 
m, n¼0 

( )
∞ � � 

2ð∞BVσ f Þ ¼  xij ∈ 2ω : sup ∑ f jϕmnij x < ∞ : (29)ð Þ  ð Þj 
i, j m,n¼0 
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We also denote 

2MI ð Þf = 2 BVI ð Þf ∩ 2ð∞BVσð Þf ÞBVσ σ 

and 

2 0MI ð Þf = 2 0BVI ð Þf ∩ 2ð∞BVσð Þf Þ:BVσ σ 

We shall now consider important theorems of these double sequence spaces by 
using modulus function. 

Theorem 4.1 For any modulus function f , the classes of double sequence 2 0BVI ð Þf ,σ 

2BVI ð Þf ð Þf and 2MI ð Þf are linear spaces. σ , 2 0MI 
BVσBVσ 

Proof. Suppose x ¼ xij and y ¼ yij ∈ 2BVI ð Þf be any two arbitrary elements. σ 

Let α, β are scalars. Now, since xij , yij ∈ 2BVI ð Þf . Then this implies that there σ 

exists some positive numbers L1, L2 ∈C and such that the sets 

( )
∞ � � ϵ ð Þ : f mnijð  Þ � L1j ∈ (30)A1 ¼ i; j ∑ jϕ x ≥ I, 

m,n¼0 2 
( )

∞ ϵ
A2 ¼ i; j ∑ f jϕ ð Þ � L2j ≥ ∈ I: (31)ð Þ : mnij y 

m, n¼0 2 

Now, assume 

( )
∞ � � ϵ

B1 ¼ i; j ∑ f jϕmnij x < ∈F I ,ð Þ : ð  Þ � L1j ð Þ  (32) 
m, n¼0 2 

( )
∞ � � ϵ

B2 ¼ i; j ∑ f j ð Þ � L2j < ∈ ð Þð Þ : ϕmnij y F I (33) 
m, n¼0 2 

be such that Bc 
1, B

c 
2 ∈ I: Since f is a modulus function, we have 

∞ 
∑ f jϕmnijðαx þ βyÞ � ðαL1 þ βL2Þj 

m, n¼0 

∞ 
¼ ∑ f j αϕmnijð  Þ þ βϕmnijð Þy � ðαL1 þ βL2x Þj 

m,n¼0 

∞ � � � � � � 
¼ ∑ f jα ϕ  x þ β ϕ  ð Þ � L2 jð  Þ � L1mnij mnij y 

m,n¼0 : 
∞ � � ∞ � � 

≤ ∑ f jαkϕmnijð  Þ � L1j þ ∑ f jβkϕmnij yx ð Þ � L2j 
m, n¼0 m, n¼0 

∞ � � ∞ � � 
≤ ∑ f jϕmnijð  Þ � L1j þ ∑ f jϕmnij yx ð Þ � L2j 

m, n¼0 m,n¼0 

ϵ ϵ
≤ þ ¼ ϵ 

2 2 
n � � o 

∞This implies that i; j m,n¼0 f j mnijðαx þ β ð L1 þ β ≥ ∈ð Þ : ∑ ϕ yÞ �  α L2Þj ϵ I: 

Thus α xij þ β yij ∈ 2BVσ 
I ð Þf : As xij and yij are two arbitrary element then 
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α xij þ β yij ∈ 2BVI ð Þf for all xij , yij ∈ 2BVσ 
I ð Þf and for all scalars α, β. Henceσ 

2BVI ð Þf is linear space. The proof for other spaces will follow similarly. σ 
▪ 

We may go a step further and define another theorem on ideal convergence 
which basically depends upon the set in the filter associated with the same ideal. 

Theorem 4.2 A sequence x ¼ xij ∈ 2MI ð Þf I-convergent if and only if for BVσ 

every ϵ>0, there exists Mε, Nε ∈N such that 
( )

∞ � �  
i; j ∑ f jϕmnij xij � ϕmnijðxMϵ,Nϵ Þj < ϵ ∈ ð Þ:ð Þ : F I 

m, n¼0 

� �  
2MIProof. Let x ¼ xij ∈ ð Þf . Suppose I � lim x ¼ L. Then, the set BVσ 

( )
∞ � �  ϵ

Bϵ ¼ ð Þi; j : ∑ f jϕmnij xij � Lj < ∈ F Ið Þ, for all ϵ>0: 
m, n¼0 2 

Fix Mε, Nε ∈Bε: Then we have 

∞ � � ∞ � � 
∑ f jϕmnij xij � ϕmnijðxMϵ ,Nϵ Þj ≤ ∑ f jϕmnijðxMϵ,Nϵ Þ � Lj 

m, n¼0 m,n¼0 

∞ � � 
þ ∑ f jL � ϕmnij xij j 

m, n¼0 

ϵ ϵ 
< þ ¼ ϵ 
2 2 

which holds for all i; j Bϵ:ð Þ∈ 
Hence 

( )
∞ � �  

i; j ∑ f jϕmnij xij � ϕmnijðxMϵ,Nϵ Þj < ϵ ∈ ð Þ:ð Þ : F I 
m, n¼0 

Conversely, suppose that 
( )

∞ � �  
i; j ∑ f j xij xMϵ,Nϵ Þj < ϵ ∈ ð Þ:ð Þ : ϕmnij � ϕmnijð F I 

m, n¼0 

Then, being f a modulus function and by using basic triangular inequality, we 
have 

( )
∞ � � ∞ � � 

i; j f jϕmnij xij j � ∑ f jϕmnijðxMϵ,Nϵ Þj j < ϵ ∈ F I , for all ϵ>0:ð Þ : j ∑ ð Þ  
m,n¼0 m, n¼0 

Then, the set 
( 

∞ � � 
Cε ¼ i; j ∑ f jϕmnij xij j ∈ð Þ : 

m, n¼0" # 
∞ ∞ 
∑ f jϕmnijðxMϵ,Nϵ Þj � ϵ; ∑ f jϕmnijðxMϵ,Nϵ Þj þ ϵ g∈Fð ÞI : 

m,n¼0 m, n¼0 

h � � � � i 
∞ ∞Let Jϵ ¼ ∑m, n¼0f jϕmnijðxMϵ,Nϵ Þj � ϵ; ∑m, n¼0f jϕmnijðxMϵ,Nϵ Þj þ ϵ : 
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If we fix ϵ>0 then, we have Cϵ ∈F Ið Þ as well as Cϵ ∈Fð ÞI . 
2 

Hence Cϵ ∩Cϵ ∈F ð ÞI . This implies that 
2 

J ¼ Jϵ ∩ Jϵ 6¼ ϕ: 
2 

That is 

( )
∞ � � 

i; j ∑ f jϕmnij j ∈ J ∈F ð ÞI :ð Þ : xij 
m, n¼0 

This shows that 

diam J ≤ diam Jϵ 

where the diam J denotes the length of interval J. In this way, by induction we 
get the sequence of closed intervals 

Jϵ ¼ I0 ⊇ I1 ⊇ I2 ⊇ … ⊇ Ik ⊇ … 

with the property that diam Ik ≤ 1 diam Ik�1 for ðk ¼ 2; 3; 4; …Þ and2n � � o 
∞i; j m,n¼0 f jϕmnij xij j ∈ Ik ð Þ for ðk ¼ 1; 2; 3; 4; …Þ.ð Þ : ∑ ∈ F I  

Then there exists a ξ ∈ ∩ Ik where k ∈N such that 

∞ � �  
ξ ¼ I � lim ∑ f j xij j ,

i, j 
ϕmnij 

m,n¼0 

showing that x ¼ xij ∈ 2MI ð Þf is I-convergent. Hence the result holds. BVσ 

As the reader knows about solid and monotone sequence space now turn to 
theorem on solid and monotone double sequence spaces of invariant mean defined 
by ideal and modulus function. 

Theorem 4.3 For any modulus function f , the spaces 2 0BVI ð Þf andσ 

2 0MI ð Þf are solid and monotone. BVσ 

Proof. We consider 2 0BVI ð Þf and for 2 0MI ð Þf the proof shall be similar. σ BVσ 

Let x ¼ xij ∈ 2 0BVI ð Þf be an arbitrary element, then the set σ 

( )
∞ � � 

i; j ∑ f j x ≥ ϵ ∈ I: (34)ð Þ : ϕmnijð Þj 
m, n¼0 

Let αij be a sequence of scalars with ∣αij∣ ≤ 1 for all i, j ∈N: 
Now, since f is a modulus function. Then the result follows from (2.18) and the 

inequality 

f jαijϕmnijð Þj jϕmnijð Þj ≤ f jϕmnijð Þj :x ≤ ∣αij∣ f x x 

Therefore, 
( ) ( )

∞ � � ∞ � � 
ð Þi; j : ∑ f j x ≥ ϵ ⊆ i; j ∑ f j x ≥ ϵαijϕmnijð Þj ð Þ : ϕmnijð Þj ∈ I 

m, n¼0 m, n¼0 

implies that 

124 



� � � � � � 
� � 

� � 

� �  

� 

� �  � �  

� � 

� �  � � 

� �  � �  � � � � 

� � 
� �  

A Study of Bounded Variation Sequence Spaces 
DOI: http://dx.doi.org/10.5772/intechopen.81907 

( )
∞ � � 

i; j ∑ jαijϕmnijð Þj ∈ I:ð Þ : f x ≥ ϵ 
m, n¼0 

∈ 2 0BVI : Hence 2 0BVI 
σσThus we have ð Þf ð Þf is solid. Therefore αijxij 

2 0BVI 

Remark 4.1 The space 2BVI 
σ 

σð Þf is monotone. Since every solid sequence space is monotone.

MBVI 
σ 

ð Þf and 2 ð Þf are neither solid nor monotone 

in general. 
Example 4.1� Here�we give counter example for establishment of this result. Let 

2 BVI � �  
MBVI 

σσX¼ and 2 . Let us consider I ¼ If and f x andð Þ ¼ x, for all x ¼ xij 
½ Þ. Consider, the K-step space XK ð Þf of X fð Þ defined as follows:xij ∈ 0; ∞ � �  

Let x ¼ xij ∈ X fð Þ and y ¼ yij ∈ XK ð Þf be such that 

xij, if i, j are even 
yij ¼ 

0 otherwise:, 

σ 

Consider the sequence xij defined by xij ¼ 1 for all i, j ∈ N. � �  
∈ 2BVI 

belong to BVI . Thus, 2BVI 
σ 

σ 

Then, x ¼ xij
σ 

ð Þf and 2MBVI ð Þf , but K-step space preimage does not 

ð Þf and 2MI 
BVσ 

ð Þf and 2MI 
BVσ 

ð Þf ð Þf are not monotone and 

σσ 

hence they are not solid. 
After discussing about solid and monotone sequence space now we come to the 

concept of sequence algebra which will help to understand our further work. 
Theorem 4.4 For any modulus function f , the spaces 2 0BVI and 2BVIð Þf ð Þf 

σ 

are sequence algebra. � �  
∈ 2 0BVIProof. Let x ¼ xij ð Þf be any two arbitrary elements. , y  ¼ yij 

σ 

σσ 

σ 

Then, the sets 

( )
∞ � � 

ð Þi; j : ∑ f j x ≥ ϵ ∈ Iϕmnijð Þj 
m, n¼0 

and 

( )
∞ � � 

i; j ∑ f j ð Þj ≥ ϵ ∈ I:ð Þ : ϕmnij y 
m, n¼0 

Therefore, 

( )
∞ � � 

ð Þi; j : ∑ f j ð Þx ð Þj ≥ ϵ ∈ I:ϕmnij :ϕmnij y 
m,n¼0 

∈ 2 0BVI : Hence 2 0BVI 

And for 2BVI 

¼ If then the spaces 2BVI 

Thus, we have ð Þf ð Þf is sequence algebra. xij : yij 
ð Þf the result can be proved similarly. 

Remark 4.2 If I is not maximal and I ð Þf and6 
σ2 0BVI ð Þf are not symmetric. 

Example 4.2 Let A ∈ I be an infinite set and f x andð Þ ¼ x for all x ¼ xij 
xij ∈ ½0; ∞Þ: If 
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1, if ð Þ  
˜ 

i; j ∈ A 
xij ¼ 

0, otherwise 
° ˛ ° ˛ 

Then, it is clearly seen that xij ∈ 2 0BVI 
σðf Þ ⊂ 2BVI ðf Þ:σ 

Let K ⊆ N � N be such that K ∉ I and Kc ∉ I: Let ϕ : K ! A and ψ : Kc ! Ac be a 
bijective maps (as all four sets are infinite). Then, the mapping π : N � N ! N � N 
defined by 

˜
ϕ i; j , i; j ∈ Kð Þ  if ð Þ  

π i; jð  Þ ¼  
ψð Þi; j , otherwise: 

is a permutation on N � N:° ˛ ° ˛ ° ˛ 
But xπ i;j ∉2BVI f and hence ð Þ  0BVI f showing that 2BVI ð Þf andð Þ  σð Þ  xπ i;j ∉2 σð Þ  σ° ˛ 

2 0BVI 
σðf Þ are not symmetric double sequence spaces. 

5. Conclusion 

In this chapter, we study different forms of BVσ double sequence spaces of 
invariant means with the help of ideal, operators and some functions such as Orlicz 
function and modulus function. The chapter shows the potential of the new 
theoretical tools to deal with the convergence problems of sequences in sigma 
bounded variation, occurring in many branches of science, engineering and applied 
mathematics. 
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Chapter 7

Simple Approach to Special
Polynomials: Laguerre, Hermite,
Legendre, Tchebycheff, and
Gegenbauer
Vicente Aboites and Miguel Ramírez

Abstract

Special polynomials: Laguerre, Hermite, Legendre, Tchebycheff and
Gegenbauer are obtained through well-known linear algebra methods based on
Sturm-Liouville theory. A matrix corresponding to the differential operator is found
and its eigenvalues are obtained. The elements of the eigenvectors obtained corre-
spond to each mentioned polynomial. This method contrasts in simplicity with
standard methods based on solving the differential equation by means of power
series, obtaining them through a generating function, using the Rodrigues formula
for each polynomial, or by means of a contour integral.

Keywords: special polynomials, special functions, linear algebra, eigenvalues,
eigenvectors

1. Introduction

The polynomials covered in this chapter are solutions to an ordinary differential
equation (ODE), the hypergeometric equation. In general, the hypergeometric
equation may be written as:

s xð ÞF0 0 xð Þ þ t xð ÞF0 xð Þ þ λF xð Þ ¼ 0, (1)

where F xð Þ is a real function of a real variable F : U ! R, where U ⊂R is an open
subset of the real line, and λ∈R a corresponding eigenvalue, and the functions s xð Þ
and t xð Þ are real polynomials of at most second order and first order, respectively.

There are different cases obtained, depending on the kind of the s xð Þ function in
Eq. (1).When s xð Þ is a constant, Eq. (1) takes the form F

0 0
xð Þ � 2αxF0 xð Þ þ λF xð Þ ¼ 0,

and if α ¼ 1 one obtains the Hermite polynomials. When s xð Þ is a polynomial of the
first degree, Eq. (1) takes the form xF

0 0
xð Þ þ �αxþ β þ 1ð ÞF0 xð Þ þ λF xð Þ ¼ 0, and

when α ¼ 1 and β ¼ 0, one obtains the Laguerre polynomials. There are three differ-
ent cases when s xð Þ is a polynomial of the second degree. When the second degree
polynomial has two different real roots, Eq. (1) takes the form 1� x2ð ÞF0 0 xð Þþ
β � α� αþ β þ 2ð Þx½ �F0 xð Þ þ λF xð Þ ¼ 0; this is the Jacobi equation, and for different
values of α and β, one obtains particular cases of polynomials: Gegenbauer
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1. Introduction 

The polynomials covered in this chapter are solutions to an ordinary differential 
equation (ODE), the hypergeometric equation. In general, the hypergeometric 
equation may be written as: 

s xð ÞF0 0 ð  Þ þ t x  x ð  Þ ¼ 0,x ð ÞF0ð  Þ þ λF x  (1) 

where F xð Þ is a real function of a real variable F : U ! R, where U ⊂ R is an open 
subset of the real line, and λ ∈ R a corresponding eigenvalue, and the functions s xð Þ  
and t xð Þ are real polynomials of at most second order and first order, respectively. 

There are different cases obtained, depending on the kind of the s xð Þ function in 
Eq. (1). When s xð Þ is a constant, Eq. (1) takes the form F

0 0 ð  Þ � 2αxF0ð  Þ þ λF xð  Þ ¼ 0,x x 
and if α ¼ 1 one obtains the Hermite polynomials. When s xð Þ is a polynomial of the 
first degree, Eq. (1) takes the form xF

0 0  
x ð x ð  Þ ¼ 0, and ð Þ þ  �αx þ β þ 1ÞF0ð  Þ þ λF x  

when α ¼ 1 and β ¼ 0, one obtains the Laguerre polynomials. There are three differ-
ent cases when s xð Þ is a polynomial of the second degree. When the second degree 
polynomial has two different real roots, Eq. (1) takes the form ð1 � x2ÞF0 0 ð Þþx 
β � α � ðα þ β þ 2Þx�F0ð  Þ þ λF xð  Þ ¼ 0; this is the Jacobi equation, and for different ½ x 
values of α and β, one obtains particular cases of polynomials: Gegenbauer 
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polynomials if α ¼ β, Tchebycheff I and II if α ¼ β ¼ �1=2, and Legendre 
polynomials if α ¼ β ¼ 0. When the second degree polynomial has one double 

0root, Eq. (1) takes the form x2F
0 0  
x ½ðα þ 2Þxþ β�F x ð  Þ ¼ 0, and ð Þ þ  ð Þ þ λF x  

when α ¼ �1 and β ¼ 0, one obtains the Bessel polynomials. Finally, when 
the second degree polynomial has two complex roots, Eq. (1) takes the form 

0ð1 þ xÞ2F0 0 ð  Þ þ ð2βxþ αÞF x ð  Þ ¼ 0, which is the Romanovski equation [1]. x ð  Þ þ λF x  
These results are summarized in Table 1. 

The Sturm-Liouville Theory is covered in most advanced physics and engineer-
ing courses. In this context, an eigenvalue equation sometimes takes the more 
general self-adjoint form: Lu xð  Þ þ λw xð Þu xð  Þ ¼ 0, where L is a differential operator; h i 

du xð Þ  Lu xð  Þ ¼  d ð Þ  þ q xð Þu xð Þ, λ an eigenvalue, and w xð Þ is known as a weightdx p x  dx 

or density function. The analysis of this equation and its solutions is called the 
Sturm-Liouville theory. Specific forms of p xð Þ, q xð Þ, λ and w xð Þ are given for 
Legendre, Laguerre, Hermite and other well-known equations in the given refer-
ences. There, the close analogy of this theory with linear algebra concepts is also 
shown. For example, functions here take the role of vectors there, and linear 
operators here take that of matrices there. Finally, the diagonalization of a real 
symmetric matrix corresponds to the solution of an ordinary differential equation, 
defined by a self-adjoint operator L, in terms of its eigenfunctions, which are the 
“continuous” analog of the eigenvectors [2, 3]. 

s xð Þ  Canonical form and weight function Example 

Constant 0 0  0F xð  Þ � 2αxF xð  Þ þ λF xð  Þ ¼ 0 
2 

w xð  Þ ¼ e�αx
(2) 

(3) 

When α ¼ 1 one obtains the 
Hermite equation, F xð  Þ ¼ H xð Þ; 
this produces the Hermite � � ð Þpolynomials, denoted as H α

n : 

First degree 0 0  0xF xð  Þ þ  �αxþ β þ 1ð ÞF xð  Þ þ λF xð  Þ ¼ 0 
β �αxw xð  Þ ¼ x e

(4) 
(5) 

When α ¼ 1 and β ¼ 0, one 
obtains the Laguerre equation, 
F xð  Þ ¼ L xð Þ; this produces the 
Laguerre polynomials, denoted as � � 
Lðα;βÞ n . 

Second 
degree: with 
two different 
real roots 

2 0 0  01 � xð ÞF xð  Þ þ  β � α � α þ β þ 2½ ð Þx�F xð Þ  
þ λF xð  Þ ¼ 0 

ðα;βÞ α β w xð  Þ ¼  1 � xð Þ ð1 þ xÞ
6ð Þ  

(7) 

Eq. (6) is the Jacobi equation, 
considering F xð  Þ ¼ P xð Þ, and for 
each pair ðα; βÞ, one obtains the 
Jacobi polynomials, denoted as � � 
Pðα;βÞ n . Particular cases: 

Gegenbauer polynomials if α ¼ β, 
Tchebycheff I and II if 
α ¼ β ¼ � 1 

2, and Legendre 

polynomials if α ¼ β ¼ 0: 

Second 
degree: with 
one double 
real root 

0 0  0x2F xð  Þ þ  ½ α þ 2ð Þxþ β�F xð  Þ þ λF xð  Þ ¼ 0 
βðα;βÞ α �w xð  Þ ¼ x e x 

(8) 

(9) 

When α ¼ �1 and β ¼ 0, one 
obtains the Bessel equation, 
F xð  Þ ¼ B xð Þ; this produces the 
Bessel polynomials, denoted as � � 
Bðα;βÞ n . 

Second 
degree: with 
two complex 
roots 

0 0  01 þ xð Þ2F xð  Þ þ  2βxþ αð ÞF xð  Þ þ λF xð  Þ ¼ 0 
ðα;βÞ 2 β�1 �α cot �1 xw xð  Þ ¼  1 þ xð Þ e

(10) 

(11) 

Eq. (10) is the Romanovski 
equation; considering F xð  Þ ¼ R xð Þ, 
then one obtains the Romanovski � � 

Rðα;βÞpolynomials, denoted as n . 

Table 1. 
Polynomials obtained depending on the s xð Þ function of Eq. (1). 
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The next section shows some of the most important applications of Hermite, 
Gegenbauer, Tchebycheff, Laguerre and Legendre polynomials in applied Mathe-
matics and Physics. These polynomials are of great importance in mathematical 
physics, the theory of approximation, the theory of mechanical quadrature, engi-
neering, and so forth. 

2. Physical applications 

2.1 Laguerre 

Laguerre polynomials were named after Edmond Laguerre (1834–1886). 
Laguerre studied a special case in 1897, and in 1880, Nikolay Yakovlevich Sonin 
worked on the general case known as Sonine polynomials, but they were anticipated 
by Robert Murphy (1833). 

The Laguerre differential equation and its solutions, that is, Laguerre polyno-
mials, are found in many important physical problems, such as in the description of 
the transversal profile of Laguerre-Gaussian laser beams [4]. The practical impor-
tance of Laguerre polynomials was enhanced by Schrödinger’s wave mechanics, 
where they occur in the radial wave functions of the hydrogen atom [5]. 

The most important single application of the Laguerre polynomials is in the 
solution of the Schrödinger wave equation for the hydrogen atom. This equation is 

ℏ2 Ze2 

� ∇2ψ � ψ ¼ Eψ , (12)
2m r 

in which Z ¼ 1 for hydrogen, 2 for single ionized helium, and so on. Separating 
variables, we find that the angular dependence of ψ is YMðθ; φÞ. The radial part, L 
R rð Þ, satisfies the equation 

ℏ2 1 d 
˜ ° 

Ze2 ð2 dR L L  þ 1Þ � r � R þ R ¼ ER: (13)
2m r2 dr dr r r2 

By use of the abbreviations 

8mE 2mZe2 

ρ ¼ αr, with α2 ¼ �  , E , 0, λ ¼ , (14)
ℏ2 αℏ2 

Eq. (14) becomes 

˜ ° ˜ ° 
1 d ð Þ  λ 1 ð2 dχ ρ  L L  þ 1Þ 

ρ þ � � χ ρð  Þ ¼ 0, (15)2 2ρ dρ dρ ρ 4 ρ 

where χ ρð  Þ ¼ Rðρ=αÞ. Eq. (15) is satisfied by 

ρ� Lþ1L2Lþ1ρχ ρð  Þ ¼ e 2 ρ ð Þρ , (16)λ�L�1 

in which k is replaced by 2L þ 1 and n by λ� L � 1, in order to consider the 
associated Laguerre polynomials Lkð Þρ .n 

These polynomials are also used in problems involving the integration of 
Helmholtz’s equation in parabolic coordinates, in the theory of propagation of 
electromagnetic waves along transmission lines, in describing the static Wigner 
functions of oscillator systems in quantum mechanics in phase space [6], etc. 
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2.2 Hermite 

Hermite polynomials were defined into the theory of probability by Pierre-
Simon Laplace in 1810, and Charles Hermite extended them to include several 
variables and named them in 1864 [7]. 

Hermite polynomials are used to describe the transversal profile of Hermite-
Gaussian laser beams [4], but mainly to analyze the quantum mechanical simple 
harmonic oscillator [8]. For a potential energy V ¼ 1 Kz2 ¼ 2

1 mω2z2 (force2 
F ¼ ∇V ¼ �Kz), the Schrödinger wave equation is 

ℏ2 1 � ð Þ þ  ð Þ ¼ EΨ z : (17)∇2Ψ z Kz2Ψ z ð Þ
2m 2 

The oscillating particle has mass m and total energy E. By use of the 
abbreviations 

˜ °mK m2ω2 2E m 1=2 2E 
x ¼ αz with α4 ¼ ¼ , λ ¼ ¼ , (18)

ℏ2 ℏ2 ℏ K ℏω 

’ 
’ 

in which ω is the angular frequency of the corresponding classical oscillator, 
Eq. (17) becomes 

d2ψð Þx ˛ 2˝ þ λ � x ð Þ ¼ 0,ψ x (19)
dx2 

where ψ x ð Þ ¼ Ψðx=αÞð Þ ¼ Ψ z . With λ ¼ 2n þ 1, Eq. (19) is satisfied by 

2n 1 1 x
ψn x 2 π�4 n! 2 e 2 Hnð Þ,ð Þ ¼ 2� ð Þ  x (20) 

where Hnð Þx corresponds to Hermite polynomials. 
Hermite polynomials also appear in probability as the Edgeworth series, in 

combinatorics as an example of an Appell sequence, obeying the umbral calculus, 
in numerical analysis as Gaussian quadrature, etc. 

2.3 Legendre 

Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre. 
Spherical harmonics are an important class of special functions that are closely 

s equation is 
s equation are 

related to these polynomials. They arise, for instance, when Laplace 
solved in spherical coordinates. Since continuous solutions of Laplace 

’’ 
harmonic functions, these solutions are called spherical harmonics [9]. 

s equation, Helmholtz s or the space-In the separation of variables of Laplace 
dependence of the classical wave equation, and the Schrödinger wave equation for 
central force fields, 

∇2ψ þ k2f ð Þr ψ ¼ 0, (21) 

the angular dependence, coming entirely from the Laplacian operator, is 

Φ ϕ d dΘ Θ θ ð Þð Þ  
˙ ˆ ð Þ d2Φ ϕ
sin θ þ þ n n  þ 1ÞΘ θ ð  Þ ¼ 0:ð ð ÞΦ ϕ (22)

sinð Þθ dθ dθ sin 2θ dϕ2 

The separated azimuthal equation is 
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1 d2Φ ϕ 2ð Þ  ¼ �m , (23)
Φ ϕ dϕ2ð Þ  

with an orthogonal and normalized solution, 

1 imϕΦm ¼ pffiffiffiffiffi e : (24)
2π 

Splitting off the azimuthal dependence, the polar angle dependence (θ) leads to 
the associated Legendre equation, which is satisfied by the associated Legendre 
functions; that is, Θ θ ðcosθÞð  Þ ¼ Pm . Normalizing the associated Legendre function, n 
one obtains the orthonormal function 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
2n þ 1 ðn �mÞ! 

℘mðcosθÞ ¼  PmðcosθÞ: (25)n n2 ðn þmÞ! 

Taking the product of Eqs. (24) and (25) to define, 
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
2n þ 1 ðn �mÞ!m imϕYmðθ; ϕÞ � ð�1Þ PmðcosθÞe : (26)n n4π ðn þmÞ! 

These Ymðθ; ϕÞ are the spherical harmonics [10]. n 
Legendre polynomials are frequently encountered in physics and other technical 

fields. Some examples are the coefficients in the expansion of the Newtonian 
potential that gives the gravitational potential associated to a point mass or the 
Coulomb potential associated to a point charge, the gravitational and electrostatic 
potential inside a spherical shell, steady-state heat conduction problems in spherical 
problems inside a homogeneous solid sphere, and so forth [11]. 

2.4 Tchebycheff 

Tchebycheff polynomials, named after Pafnuty Tchebycheff (also written as 
Chebyshev, Tchebyshev or Tschebyschow), are important in approximation theory 
because the roots of the Tchebycheff polynomials of the first kind, which are also 
called Tchebycheff nodes, are used as nodes in polynomial interpolation. Approxi-
mation theory is concerned with how functions can best be approximated with 
simpler functions, and through quantitatively characterizing the errors introduced 
thereby. 

One can obtain polynomials very close to the optimal one by expanding the given 
function in terms of Tchebycheff polynomials, and then cutting off the expansion 
at the desired degree. This is similar to the Fourier analysis of the function, using 
the Tchebycheff polynomials instead of the usual trigonometric functions. 

If one calculates the coefficients in the Tchebycheff expansion for a function, 

∞ 
f xð  Þ �  ∑ ciTið Þx , (27) 

i¼0 

and then cuts off the series after the TN term, one gets an Nth-degree polyno-
mial approximating f(x). 

Tchebycheff polynomials are also found in many important physics, mathe-
matics and engineering problems. A capacitor whose plates are two eccentric 
spheres is an interesting example [12], another one can be found in aircraft aero-
dynamics [13], etc. 
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2.5 Gegenbauer 

Gegenbauer polynomials, named after Leopold Gegenbauer, and often called 
ultraspherical polynomials, include Legendre and Tchebycheff polynomials as spe-
cial or limiting cases, and at the same time, Gegenbauer polynomials are a special 
case of Jacobi polynomials (see Table 1). 

Gegenbauer polynomials appear naturally as extensions of Legendre polyno-
mials in the context of potential theory and harmonic analysis. They also appear in 
the theory of Positive-definite functions [14]. 

Since Gegenbauer polynomials are a general case of Legendre and Tchebycheff 
polynomials, more applications are shown in Section 2.3 and 2.4. 

The most common methods to obtain the special polynomials are described in 
the next section. 

3. Special polynomials 

To obtain the polynomials described in the previous section, one can use differ-
ent methods, some tougher than others. These polynomials are typically obtained as 
a result of the solution of each specific differential equation by means of the power 
series method. Usually, it is also shown that they can be obtained through a gener-
ating function and also by using the Rodrigues formula for each special polynomial, 
or finally, through a contour integral. Most Mathematical Methods courses also 
include a study of the properties of these polynomials, such as orthogonality, com-
pleteness, recursion relations, special values, asymptotic expansions and their rela-
tion to other functions, such as polynomials and hypergeometric functions. There is 
no doubt that this is a challenging and demanding subject that requires a great deal 
of attention from most students. 

3.1 Differential equation 

The most common way to solve the special polynomials is solving the associated 
differential equation through power series and the Frobenius method 
y ¼ ∑∞ 

n¼0anx
n . The corresponding polynomials satisfy the following differential 

equations: 
the Laguerre differential equation, 

xy″ þ 1 - xð Þy0 þ ny ¼ 0, (28) 

the Hermite differential equation, 

y0 - 2xy0 þ 2ny ¼ 0, (29) 

the Legendre differential equation, 

˜ ° 21 - x y″ - 2xy0 þ n n  þ 1ð Þy ¼ 0 , (30) 

the Tchebycheff differential equation, 

˜ ° 2 21 - x y″ - xy0 þ n y ¼ 0, (31) 

and the Gegenbauer differential equation, 

˜ ° 21 - x y″ - 2λ þ 1ð Þxy0 þ n n  þ 2λð Þy ¼ 0, (32) 
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with n ¼ 0, 1, 2, 3, … in all the previous cases. Note that if λ ¼ 1, Eq. (32) reduces2 
to the Legendre differential equation (Eq. (30)), and if λ ¼ 0, Eq. (32) reduces to 
the Tchebycheff differential equation (Eq. (31)). 

3.2 Rodrigues formula 

For polynomials ψnð Þx , with interval I, weight function w xð Þ, and an eigenvalue 
equation of the form 

ψ 00p xð Þ xð Þ þ q xð Þψ 0 xð Þ þ λnψn xð Þ ¼ 0,n n (33) 

0ð ð Þw xð ÞÞand with q xð Þ ¼ p x , the general formula w xð Þ  

ψn xð Þ ¼
dn 

�1 n w xð Þ p x½ ð Þ w xð Þ�
dxn 

(34) 

is known as the Rodrigues formula, useful to obtain the nth-degree polynomial 
of ψ [15]. 

3.3 Generating function and contour integral 

Let Γ be a curve that encloses x ∈ I but excludes the endpoints of I. Then, 
considering the Cauchy integral formula [16] for derivatives of w xð Þp xð Þn to derive 
an integral formula from Eq. (34), one obtains 

ð n dzψnð Þx 1 w zð Þ  p zð Þ  
(35)¼ :n2πi w xð Þ ðz � xÞΓn! z � x 

n o 
ψn ð ÞxThe generating function for the orthogonal polynomials is defined as n! 

∞ ψnð Þx nG xð ; sÞ ¼ ∑ s : (36)
n!n¼0 

In the following section, Laguerre [2], Hermite [17], Legendre, Tchebycheff [18] 
and Gegenbauer [3] polynomials are obtained through a simple method, using basic 
linear algebra concepts, such as the eigenvalue and the eigenvector of a matrix. 

4. Simple approach to special polynomials 

The general algebraic polynomial of degree n, 

na0 þ a1x þ a2x2 þ a3x3 þ… anx , (37) 

with ao, a1,…,an ∈ ℜ, is represented by vector 

32 
a0 

a1 

a2An ¼ 

666666664 

777777775 

: (38)
a3 

⋮ 

an 
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Taking the first derivative of the above polynomial (x), one obtains the 
polynomial 

d 
dx 

a0 þ a1x þ a2x2 þ a3x3 þ … anxn ¼ a1 þ 2a2x þ 3a3x n�12 þ … nanx , (39) 

which may be written as 

32 

666666664 

a1 

2a2 

3a3 

⋮ 

nan 

0 

777777775 

dAn 

dx 
¼ (40): 

Taking the second derivative of the polynomial (Eq. (37)) one obtains 

d2 

a0 þ a1x þ a2x2 þ a3x3 þ … anx n�2n ¼ 2a2 þ 6a3x þ … n nð � 1 (41)Þanx ,
dx2 

which may be written as 

2 3
2a2 

6a3 

⋮ 

n nð � 1Þan 

0 

0 

666666664 

777777775 

d2An (42)¼ :
dx2 

Using Eq. (40), Eq. (39) may be written as 

2 32323 a0 a10 1 0 0  ⋯ 0 
66666666664 

66666666664 

77777777775 

a1 

a2 

a3 

⋮ 

77777777775 

¼ 

66666666664 

2a2 

3a3 

⋮ 

nan 

77777777775 

0 0 2 0  ⋯ 0 

0 0 0 3  ⋯ 0 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮  

0 0 0 0  ⋯ n 

(43); 

0 0 0 0  ⋯ 0 an 0 

therefore, the first derivative operator An may be written as 

32 

d 
dx 
! 

666666666664 

0 1 0  0  ⋯ 0 

0  0 2 0  ⋯ 0 

0 0 0  3  ⋯ 0 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮  

0 0 0 0  ⋯ n 

0 0 0 0  ⋯ 0 

777777777775 

: (44) 

Doing the same for Eq. (41), 
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32323 
a0 a10 0 2 0  ⋯ 0 

0 0 0 6  ⋯ 0 2a2a1 

⋮ ⋮ ⋮ ⋮ ⋱  ⋮  ⋮a2 
(45)¼ ,

0 0 0 0  ⋯ n nð � 1 ⋮ n nð � 1Þ Þan 

6666666640 0 0 0  ⋯ 0 

666666664 

777777775 an�1 

777777775 

666666664 0 

777777775 

0 0 0 0  ⋯ 0 an 0 

the second derivative operator An may be written as 

2
0 0 2 0  ⋯ 0 

0 0 0 6  ⋯ 0 

⋮ ⋮ ⋮ ⋮ ⋱  ⋮  

0 0 0 0  ⋯ n nð � 1Þ 
0 0 0 0  ⋯ 0 

0 0 0 0  ⋯ 0 

3 

777777775 

: 

666666664 

d2 

(46)!
dx2 

4.1 Laguerre 

The Laguerre differential operator is given by. 

d2 d 
x þ ð1 � xÞ ; (47)
dx2 dx 

substituting Eqs. (41) and (44) into Eq. (47), 

x 2a2 þ 6a3x þ… þ n nð � 1Þanxn�2 þ ð1 � xÞ a1 þ 2a2x þ 3a3x n�12 þ… þ nanx 

¼ a1 þ ð4a2 � a1Þx þ ð9a3 � 2a2Þx2 þ ð16a4 þ 3a3Þx3 þ⋯� nan, 

(48) 

which may be written as 

2 32323 
a0 a10 1 0 0 0 ⋯ 0 

666666664 

666666664 

777777775 

a1 

a2 

a3 

⋮ 

777777775 

¼ 

666666664 

4a2 � a1 

9a3 � 2a2 

16a4 � 3a3 

⋮ 

777777775 

0 �1 4 0 0 ⋯ 0 

0 0 �2 9 0 ⋯ 0 

0 0 0 �3 16 ⋯ 0 

⋮ ⋮  ⋮  ⋮ ⋮ ⋱ ⋮  

(49): 

0 0 0 0 0 ⋯ �n an �nan 

For simplicity, the Laguerre differential operator, as a 4x4 matrix, is 
represented by 

2 3
0 1 0 0 

0 �1 4 0 

0 0 �2 9 

0 0 0 �3 

6664 

7775 
x 
d2 d þ ð1 � xÞ ! (50):
dx2 dx 

The eigenvalues of a matrix M are the values that satisfy the equation 
DetðM � λIÞ ¼ 0. However, since the matrix (Eq. (50)) is a triangular matrix, the 

2 
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eigenvalues λi of this matrix are the elements of the diagonal, namely: λ1 ¼ 0, 
λ2 ¼ �1, λ3 ¼ �2, λ4 ¼ �3. The corresponding eigenvectors are the solutions of the 

Tequation ðM � λiIÞ � v ¼ 0, where the eigenvector v ¼ ½a0; a1; a2; a3� : 
2 2323 3
0 � λi 1 0 0 0a0 

6664 

6664 

7775 

7775 
¼ 
6664 

7775 
: 

0 �1 � λi 4 0 

0 0 �2 � λi 9 

0 

0 

a1 

a2 
(51) 

0 0 0 �3 � λi a3 0 

Substituting eigenvalue λ1 ¼ 0 in Eq. (51), we obtain eigenvector v1: 

2 3
1 

0 

0 

0 

6664 

7775 (52)v1 ¼ ; 

the elements of this eigenvector correspond to the first Laguerre polynomial, 
L0 xð  Þ ¼ 1: 

Substituting eigenvalue λ2 ¼ �1 in Eq. (51), we obtain eigenvector v2: 

2 3
1 

�1 

0 

0 

6664 

7775; (53)v2 ¼ 

the elements of this eigenvector correspond to the second Laguerre polynomial, 
L1 xð  Þ ¼ 1 � x: 

Substituting eigenvalue λ3 ¼ �2 in Eq. (51), we obtain eigenvector v3: 

2 3
1 

�2 
1 
2 
0 

66664 

77775 
; (54)v3 ¼ 

the elements of this eigenvector correspond to the third Laguerre polynomial, 
2L2 x 2 x :ð  Þ ¼ 1 � 2x þ 1 

Substituting eigenvalue λ4 ¼ �3 in Eq. (51), we obtain eigenvector v4: 

2
1 

�3 
3 
2 
1 
6 

3 

7777775 

; (55) 

6666664 

v4 ¼ 

the elements of this eigenvector correspond to the fourth Laguerre polynomial, 
2 � 1 3L3 x 2 x 6 x :ð  Þ ¼ 1 � 3x þ 3 

4.2 Hermite 

The Hermite differential operator is given by 
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d2 d � 2x ; (56)
dx2 dx 

substituting Eqs. (41) and (44) into Eq. (56), 

anx2a2 þ 6a3x þ… þ n nð � 1Þ n�2 � 2x a1 þ 2a2x þ 3a3x n�12 þ… þ nanx 

¼ 2a2 þ ð6a3 � 2a1Þx þ ð12a4 � 4a2Þx2 þ ð20a5 � 6a3Þx3 þ⋯ � 2nan, 

(57) 

which may be written as 
323 32 2

0 0 2 0 0 ⋯ 0 2a2a0 

777777775 

666666664 

777777775 

777777775 

666666664 

666666664 

0 �2 0 6 0 ⋯ 0 

0 0 �4 0 12 ⋯ 0 

0 0 0 �6 0  ⋯ 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

6a3 � 2a1 

12a4 � 4a2 

20a5 � 6a3 

⋮ 

a1 

a2 

a3 

⋮ 

(58)¼ : 

0 0 0 0 0 ⋯ �2n an �2nan 

For simplicity, the Hermite differential operator, as a 4x4 matrix, is 
represented by 

2 3
0 0 2 0 

0 �2 0 6 

0 0 �4 0 

0 0 0 �6 

6664 

7775 
d2 

dx2 

d � 2x (59)! :
dx 

The eigenvalues of a matrix M are the values that satisfy the equation 
DetðM � λIÞ ¼ 0. However, since the matrix (Eq. (59)) is a triangular matrix, the 
eigenvalues λi of this matrix are the elements of the diagonal, namely: λ1 ¼ 0, 
λ2 ¼ �2, λ3 ¼ �4, λ4 ¼ �6. The corresponding eigenvectors are the solutions of 

Tthe equation ðM � λiIÞ � v ¼ 0, where the eigenvector v ¼ ½a0; a1; a2; a3� : 
2 2323 3
0 � λi 0 2 0 0a0 

6664 

6664 

7775 

7775 
¼ 
6664 

7775 

0 �2 � λi 0 6 

0 0 �4 � λi 0 

0 

0 

a1 

a2 
(60): 

0 0 0 �6 � λi a3 0 

Substituting eigenvalue λ1 ¼ 0 in Eq. (60), we obtain eigenvector v1: 
2 3
1 

0 

0 

0 

6664 

7775 (61)v1 ¼ ; 

the elements of this eigenvector correspond to the first Hermite polynomial, 
H0 xð  Þ ¼ 1: 

Substituting eigenvalue λ2 ¼ �2 in Eq. (60), we obtain eigenvector v2: 
2 3 

v2 ¼ 
6664 

0 

2 

0 

0 

7775; (62) 
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the elements of this eigenvector correspond to the second Hermite polynomial, 
H1 xð  Þ ¼ 2x: 

Substituting eigenvalue λ3 ¼ �4 in Eq. (60), we obtain eigenvector v3: 

2 3 

v3 ¼ 
6664 

�2 

0 

4 

0 

7775; (63) 

the elements of this eigenvector correspond to the third Hermite polynomial, 
H2 x 2 � 2:ð  Þ ¼ 4x 

Substituting eigenvalue λ4 ¼ �6 in Eq. (60), we obtain eigenvector v4: 

2 3
0 

�12 

0 

8 

6664 

77;75 (64)v4 ¼ 

the elements of this eigenvector correspond to the fourth Hermite polynomial, 
H3 x 3 � 12x:ð  Þ ¼ 8x 

4.3 Legendre 

The Legendre differential operator is given by 

2� d2 d
1 � x � 2x ; (65)

dx2 dx 

substituting Eqs. (41) and (44) into Eq. (65), 

1 � x2 2a2 þ 6a3x þ… þ n nð � 1Þanxn�2 2 þ… n�1� 2x a1 þ 2a2x þ 3a3x þ nanx 
3 þ⋯ � n2 þ nx2 þ ð20a5 � 12a3Þx¼ 2a2 þ ð6a3 � 2a1Þx þ ð12a4 � 6a2Þ an, 

(66) 

which may be written as 

2 2323 
a0 

3
0 0 2 0 0 ⋯ 0 2a2 

666666664 

666666664 

777777775 

a1 

a2 

a3 

⋮ 

777777775 

¼ 

666666664 

777777775 

0 �2 0 6 0 ⋯ 0 

0 0 �6  0  12  ⋯ 0 

0 0 0 �12 0 ⋯ 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

6a3 � 2a1 

12a4 � 6a2 

20a5 � 12a3 

⋮ 

: (67) 

0 0 0 0 0 ⋯ �ðn2 þ nÞ an �ðn2 þ nÞan 

For simplicity, the Legendre differential operator, as a 4x4 matrix, is 
represented by 

2 3
0 0 2 0 

0 �2 0 6 

0 0 �6 0 

0 0 0 �12 

! 
6664 

7775 
: (68) 

� d2 d21 � x � 2x
dx2 dx 
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The eigenvalues of a matrix M are the values that satisfy the equation 
DetðM � λIÞ ¼ 0. However, since the matrix (Eq. (68)) is a triangular matrix, the 
eigenvalues λi of this matrix are the elements of the diagonal, namely: λ1 ¼ 0, 
λ2 ¼ �2, λ3 ¼ �6, λ4 ¼ �12. The corresponding eigenvectors are the solutions of the 

Tequation ðM � λiIÞ � v ¼ 0, where the eigenvector v ¼ ½a0; a1; a2; a3� : 
2 2323 3
0 � λi 0 2 0 0a0 

6664 

6664 

7775 

7775 
¼ 
6664 

777: 5
0 �2 � λi 0 6 

0 0 �6 � λi 0 

0 

0 

a1 

a2 
(69) 

0 0 0 �12 � λi a3 0 

Substituting eigenvalue λ1 ¼ 0 in Eq. (69), we obtain eigenvector v1: 
2 3
1 

0 

0 

0 

6664 

77;75 (70)v1 ¼ 

the elements of this eigenvector correspond to the first Legendre polynomial, 
P0 xð  Þ ¼ 1: 

Substituting eigenvalue λ2 ¼ �2 in Eq. (69), we obtain eigenvector v2: 

2 3
0 

1 

0 

0 

6664 

7775; (71)v2 ¼ 

the elements of this eigenvector correspond to the second Legendre polynomial, 
P1 xð  Þ ¼ x: 

Substituting eigenvalue λ3 ¼ �6 in Eq. (69), we obtain eigenvector v3: 

2 3
1 

0 

�3 

0 

6664 

7775; (72)v3 ¼ 

the elements of this eigenvector correspond to the third Legendre polynomial, 
P2 x 2 x

2 � 2
1 :ð  Þ ¼ 3 

Substituting eigenvalue λ4 ¼ �12 in Eq. (69), we obtain eigenvector v4: 

2
0 

3 

0 

�5 

3 

7775; (73) 
6664 

v4 ¼ 

the elements of this eigenvector correspond to the fourth Legendre polynomial, 
P3 x 2 x

3 � 2
3 x:ð  Þ ¼ 5 

4.4 Tchebycheff 

The Tchebycheff differential operator is given by 
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2� d2 d � x ;
dx2 dx

1 � x (74) 

substituting Eqs. (41) and (44) into Eq. (74), 

1 � x2 n�2 22a2 þ 6a3x þ… � x a1 þ 2a2x þ 3a3xþ n nð � 1Þanx 
n�1 2¼ 2a2 þ ð6a3 � a1Þx þ ð12a4 � 4a2Þx (75)þ… þ nanx 

2þ ð20a5 � 9a3Þx3 þ⋯ � n an, 

which may be written as 

323232 
0 0 2 0 0 ⋯ 0 a0 2a2 666666666664 

0 �1 0 6 0 ⋯ 0 

0 0 �4  0  12  ⋯ 0 

0 0 0 �9 0  ⋯ 0 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 

666666666664 

777777777775 

a1 

a2 

a3 

⋮ 

777777777775 

¼ 

666666666664 

6a3 � a1 

12a4 � 4a2 

20a5 � 9a3 

⋮ 

777777777775 

(76): 

0 0 0 0 0 ⋯ �n2 an �n2an 

For simplicity, the Tchebycheff differential operator, as a 4x4 matrix, is 
represented by 

32 
0 0 2 0 

666664 

0 �1 0 6 

0 0 �4 0 

0 0 0 �9 

777775 
: 

� d2 d21 � x (77)� x !
dx2 dx 

The eigenvalues of a matrix M are the values that satisfy the equation 
DetðM � λIÞ ¼ 0. However, since the matrix (Eq. (77)) is a triangular matrix, the 
eigenvalues λi of this matrix are the elements of the diagonal, namely: λ1 ¼ 0, 
λ2 ¼ �1, λ3 ¼ �4, λ4 ¼ �9. The corresponding eigenvectors are the solutions of the 

Tequation ðM � λiIÞ � v ¼ 0, where the eigenvector v ¼ ½a0; a1; a2; a3� ; 
2 2323 3
0 � λi 0 2 0 0a0 

77775 
: 

0 0 0 �9 � λi a3 0 

Substituting eigenvalue λ1 ¼ 0 in Eq. (78), we obtain eigenvector v1: 

66664 

66664 

77775 

77775 

66664 

0 �1 � λi 0 6 0a1 
(78)¼ 

0 0 �4 � λi 0 0a2 

2 3
1 

0 

0 

0 

6664 

7775 (79)v1 ¼ ; 

the elements of this eigenvector correspond to the first Tchebycheff polynomial, 
T0 xð  Þ ¼ 1: 

Substituting eigenvalue λ2 ¼ �1 in Eq. (78), we obtain eigenvector v2: 
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2 3
0 

1 

0 

0 

6664 

7775 (80)v2 ¼ ; 

the elements of this eigenvector correspond to the second Tchebycheff polyno-
mial, T1 xð  Þ ¼ x: 

Substituting eigenvalue λ3 ¼ �4 in Eq. (78), we obtain eigenvector v3: 

2 3 �1 

0 

2 

0 

6664 

7775; (81)v3 ¼ 

the elements of this eigenvector correspond to the third Tchebycheff polyno-
mial, T2 x 2 � 1:ð  Þ ¼ 2x 

Substituting eigenvalue λ4 ¼ �9 in Eq. (78), we obtain eigenvector v4: 

2 3
0 

�3 

0 

4 

6664 

7775 
: (82)v4 ¼ 

the elements of this eigenvector correspond to the fourth Tchebycheff polyno-
mial, T3 x 3 � 3x:ð  Þ ¼ 4x 

4.5 Gegenbauer 

The Gegenbauer differential operator is given by 

2� d2 d
1 � x � ð2λ þ 1Þx ; (83)

dx2 dx 

substituting (41) and (44) into (83), 

1 � x2 n�22a2 þ 6a3x þ… þ n nð � 1Þ � ð2λ þ 1Þx a½ 1anx 
n�1þ 2a2x þ 3a3x2 þ… þ nanx ¼ 2a2 þ ½6a3 � ð2λ þ 1Þa1�x 

(84)32 þ ½20a5 � 3 2ð λ þ 3Þa3�xþ ½12a4 � 4ðλ þ 1Þa2�x 

þ⋯ � n2 þ 2λn an, 

which may be written as 

0 0 2 0 0 ⋯ 0
2 2323 3

2a2a0 

666666664 

777777775 

777777775 

¼ 

666666664 

777777775 

666666664 

0 �ð2λ þ 1Þ 0 6 0 ⋯ 0 

0 0 �4ðλ þ 1Þ 0 12 ⋯ 0 

0 0 0 �3 2ð λ þ 3Þ 0 ⋯ 0 

6a3 � ð2λ þ 1Þa1 

a2 

a1 

12a4 � 4ðλ þ 1Þa2 
: 

20a5 � 3 2ð λ þ 3a3 Þa3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

0 0 0 0 0 ⋯ �n2 � 2λn an �ðn2 þ 2λnÞan 

(85) 
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For simplicity, the Gegenbauer differential operator, as a 4x4 matrix, is 
represented by 

2 3
0 0 2 0 

6664 

0 �ð2λ þ 1Þ 0 6 

0 0 �4ðλ þ 1Þ 0 

0 0 0 �3 2ð λ þ 3Þ 

777: 5 (86) 
� d2 d21 � x � ð2λ þ 1Þx !

dxdx2 

The eigenvalues of a matrix M are the values that satisfy the equation 
DetðM � λ0IÞ ¼ 0. However, since the matrix (Eq. (86)) is a triangular matrix, the 
eigenvalues λi of this matrix are the elements of the diagonal, namely: λ0 1 ¼ 0, 
λ0 2 ¼ �ð2λ þ 1Þ, λ0 , λ0 

are the solutions of the equation 
Þ. The corresponding eigenvectors 3 ¼ �4ðλ þ 1Þ 4 ¼ �3 2ð λ þ 3 

M � λ0 iI � v ¼ 0, where the eigenvector 

v ¼ ½a0; a1; a2; a3�T ; 

2 2323 3 

7775 

0 � λ0 i 0 2 0 0a0 
6664 

7775 

6664 

7775 

6664 

0 �ð2λ þ 1Þ � λ0 0 6i 0a1 ¼ : 

0 0 0 �3 2ð λ þ 3Þ � λ0 a3 0i 

(87) 

Substituting eigenvalue λ0 1 ¼ 0 in Eq. (87), we obtain eigenvector v1: 

: Þ � λ0 i 0 00 0 �4ðλ þ 1 a2 

2 3
1 

0 

0 

0 

6664 

7775; (88)v1 ¼ 

the elements of this eigenvector correspond to the first Gegenbauer polynomial, 
Cλ 
0 xð  Þ ¼ 1: 
Substituting eigenvalue λ0 2 ¼ �ð2λ þ 1Þ in Eq. (87), we obtain eigenvector v2: 

2 3
0 

2λ 

0 

0 

6664 

7775; (89)v2 ¼ 

the elements of this eigenvector correspond to the second Gegenbauer polyno-
mial, Cλ xð  Þ ¼ 2λx.1 

Substituting eigenvalue λ0 3 ¼ �4ðλ þ 1Þ in Eq. (87), we obtain eigenvector v3: 

2 3 �λ 

0 

2λð1 þ λÞ 
0 

6664 

7775; (90)v3 ¼ 

the elements of this eigenvector correspond to the third Gegenbauer polynomial, 
Cλ 
2 x ð x2.ð  Þ ¼ �λ þ 2λ 1 þ λÞ 
Substituting eigenvalue λ0 4 ¼ �3 2ð λ þ 3Þ in Eq. (87), we obtain eigenvector v4: 
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0 

�2λð1 þ λÞ66664 

77775 
(91)v4 ¼ ;0 

4 
λð1 þ λÞð2 þ λÞ

3 

the elements of this eigenvector correspond to the fourth Gegenbauer polyno-
3mial, Cλ x ð Þx þ 4 λð1 þ λ ð Þx .ð  Þ ¼ 2λ 1 þ λ Þ 2 þ λ3 3 

5. Conclusions 

Laguerre, Hermite, Legendre, Tchebycheff and Gegenbauer polynomials are 
obtained in a simple and straightforward way using basic linear algebra concepts, 
such as the eigenvalue and the eigenvector of a matrix. Once the matrix of the 
corresponding differential operator is obtained, the eigenvalues of this matrix are 
found, and the elements of its eigenvectors correspond to the coefficients of each 
kind of polynomials. Using a larger matrix, higher order polynomials may be found; 
however, the general case for an nxn matrix was not obtained since it seems that in 
this general case, standard methods would be easier to use. The main advantage of 
this method lies in its easiness, since it relies on simple linear algebra concepts. This 
method contrasts in simplicity with standard methods based on solving the differ-
ential equation using power series, using the generating function, using the Rodri-
gues formula, or using a contour integral. 
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