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Scope of the Series

Biochemistry, the study of chemical transformations occurring within living organ-
isms, impacts all of life sciences, from molecular crystallography and genetics, to 
ecology, medicine and population biology. Biochemistry studies macromolecules - 
proteins, nucleic acids, carbohydrates and lipids –their building blocks, structures, 
functions and interactions. Much of biochemistry is devoted to enzymes, proteins 
that catalyze chemical reactions, enzyme structures, mechanisms of action and 
their roles within cells. Biochemistry also studies small signaling molecules, co-
enzymes, inhibitors, vitamins and hormones, which play roles in the life process. 
Biochemical experimentation, besides coopting the methods of classical chemistry, 
e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron 
microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic 
tools, e.g., auxotroph mutants and their revertants, fermentation etc. More recently, 
biochemistry embraced the ‘big data’ omics systems.

Initial biochemical studies have been exclusively analytic: dissecting, purifying and 
examining individual components of a biological system; in exemplary words of 
Efraim Racker, (1913 - 1991) “Don’t waste clean thinking on dirty enzymes.” Today 
however, biochemistry is becoming more agglomerative and comprehensive, setting 
out to integrate and describe fully a particular biological system. The “big data” me-
tabolomics can define the complement of small molecules, e.g., in a soil or biofilm 
sample; proteomics can distinguish all the proteins comprising e.g., serum; metage-
nomics can identify all the genes in a complex environment e.g., bovine rumen. This 
Biochemistry Series will address both the current research on biomolecules, and the 
emerging trends with great promise. 
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Preface

DNA, which is the basic determinant of life, is a molecule that has very interest-
ing properties and can be complex and simple simultaneously. Since Watson 
and Crick, who discovered the molecular structure of DNA, we still continue to 
understand DNA.

One of these interesting features of DNA is epigenetic modifications. Non-
inherited molecular changes that occur without any change in DNA sequence are 
called “epigenetics”. Epigenetics, the existence of which was known before Watson 
and Crick, was first described by Conrad Waddington in 1942 as phenotypic 
changes caused by the relationship between gene and gene products. Although it 
was then thought to be related to cell division only, it has been shown that epigen-
etic processes can be passed on to the next generations. It is now known to have a 
similar functioning in yeasts, fruit flies, mice, humans, and especially plants. The 
genome is the sum of genetic information in the DNA sequence of a cell/organism. 
The epigenome is when a cell/organism regulates gene expression independently 
from the DNA sequence by chemical modifications of DNA and histone molecules.

The purpose of this book is to cover the mechanisms of action of epigenetic changes 
in different living species while also looking at the environmental factors, cancer, and 
embryonic life  for a better understanding of epigenetic changes. It is also to create a 
resource book that can appeal to people from many different fields of science, from 
beginners to professionals, to investigate epigenetic mechanisms.

Metin Budak and Mustafa Yildiz 
Trakya University,

Turkey
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Chapter 1

Radiation and DNA Methylation 
Mechanisms
Metin Budak

Abstract

There are two types of radiation, namely ionising and non-ionising radiation, 
the former of which interacts with atoms or molecules while the latter does not. 
Technological advances, evolving with the development of mankind, have led to 
gradually increasing exposure to radiation. Radiation-related influences affect the 
cells that make up organisms in different ways, which means that they result in vari-
ous effects in the affected organism. DNA methylation altered by radiation is one of 
the cellular systems affected in this context. DNA methylation is a major epigenetic 
mechanism that is particularly associated with cellular radiosensitivity, and it 
may also be associated with increased resistance to radiotherapy or chemotherapy. 
There is increasing scientific evidence that support this notion across a variety of 
study types from those that involve plants to those conducted with human subjects. 
Recent results with an increasing trend are available in this field. Our aim in this 
chapter is to describe the radiation environment and increasing exposure among 
humans as well as other living species, and to shed light on the effects of radiation 
on epigenetic mechanisms based on relevant scientific studies.

Keywords: ionising radiation, non-ionising radiation, epigenetic, DNA damage, 
methylation

1. Introduction

There are two types of radiation, namely ionising and non-ionising radiation, 
the former of which interacts with atoms or molecules while the latter does not. 
Radiation exposure is known to be gradually increasing among humans, and such 
exposure affects organisms in different ways. DNA methylation, a major epigenetic 
mechanism, is one of the cellular systems affected by radiation and of particular 
importance, it is involved in cancer in that it may alter sensitivity or resistance to 
radiotherapy at cellular level [1, 2]. In physics, radiation is defined as the emission 
or transmission of energy in the form of waves or particles through space or through 
a material medium. This is generally divided into two main types. The first type 
includes radiowaves, microwaves, visible light, ultraviolet and infrared. Radiation 
such as X-rays and gamma-radiation shows wave characteristics, while the other 
type of radiation refers to particles such as alpha, beta and neutron particles in elec-
tromagnetic spectrum (Figure 1) [3, 4]. In addition to these, there is also wave-like 
radiation in sound radiation and in the magnetic field of the earth. Ionising radia-
tion is the type that has the power to displace electrons in the orbits of the atoms 
they encounter. Examples of this type of radiation include medical imaging devices 
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such as X-rays, tomography and PET (positron emission tomography) and certain 
medical applications including radiotherapy devices as well as the security X-rays, 
alpha, beta and gamma rays utilised in imaging systems used in airports and shop-
ping malls, etc. [5]. Other types of radiation we often encounter and use include 
radio-TV waves, microwaves, visible light, ultraviolet and infrared radiation. All 
these radiation types have a variety of effects on individual species and living cells, 
depending on the dose and duration of exposure.

2. Effects of radiation on the cell

The effects of radiation on the cell are dose-dependent, and the radiation dose 
is expressed in Grey (Gy) units. Gy is briefly defined as the energy absorbed by a 
substance. However, spatial distribution of the irradiated volume is not taken into 
consideration in this definition. On the other hand, linear energy transfer (LET) 
is more important in radiobiology. LET is the amount of energy transferred by an 
ionising particle to the material traversed per unit distance, and homogeneous 
distribution can be achieved with low-LET, while heterogeneous distribution may 
occur with high LET (particulate energy). As a result of the energy transfer, differ-
ent damages occur in the cell. DNA is the main target of radiation in the cell. Under 
normal circumstances, DNA breaks can be repaired within minutes or hours, and 
such breaks do not result in cell death. However, cell death may occur after double-
strand breaks. The effect of radiation on DNA can be classified in two categories, 
i.e., direct and indirect effects [7, 8].

2.1 Direct effect

When ionising radiation strikes an atom or molecule and breaks electrons 
from the atom to form ionisation, direct interaction occurs. Alpha, beta and 
high-dose gamma rays, both with low and high unit-distance energy transfer 
(LET), ionise a given molecule at the point of radiation impact of radiation. This 
results in formation of two adjacent reactive parts in DNA structure. There may 
be no resultant damage if these two fragments are immediately reassembled 
to form the same original molecule. However, in a large macromolecule such 
as DNA, bond fractures may occur with this direct effect. Ionising radiation 
directly acting on DNA may result in open purine rings, or phosphodiester 
bonds may be broken, or breaks may occur in single- or double-strand DNA. On 
the other hand, ionising radiation is utilised in medicine, especially in nuclear 
medicine and radiation oncology clinics, for the treatment of cancer patients by 
destroying cancer cells [9, 10].

Figure 1. 
Electromagnetic spectrum [6].
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2.2 Indirect effect

Radiation can interact with molecules in the body without directly affecting 
DNA, such effects include ionising molecules and forming free radicals. The effect 
of these reactive free radicals on DNA is defined as an indirect effect. A free radical 
is a highly reactive atom or molecule containing one or more unpaired electrons. 
The unpaired single electron imparts characteristic chemical properties to the free 
radical, which translate into toxic effects in living cells. For example, ionised radia-
tion can be delivered through free radicals by acting on water molecules that are 
present abundantly in the human body [11, 12].

The disintegration of water with radiation (radiolysis) occurs as follows: 
(1) H2O + IR (ionising radiation) → e− + H2O+, (2) e− + H2O → H2O−, (3) 
H2O− → OH− + H+, (4) H2O− → H+ + OH−. This reaction results in formation of 
four free radical products, i.e., H •, OH •, H + and OH− (Figure 2) [13, 14]. Ionising 
particles react with DNA and cross-linking results in breakage of chemical bonds as 
well as structural breakdown. In the presence of oxygen, radiation produces highly 
destructive reactions within the cell. As a result of the indirect interaction of these 
toxic chemical structures with DNA, the cell may repair itself and continue to live, 
may fail to repair itself and die (apoptosis), or the repair may fail and lead to a 
mutation in the cell. With the indirect effect of ionising radiation, DNA damage can 
be almost two-fold higher than that caused by direct effect.

The severity of this damage depends on the radiation dose. DNA base damage is 
the most important type of DNA damage. Thymidine is the most radiosensitive base 
in this regard, followed by cytosine, adenine and guanine [15]. A 100 Rad (1 Gy) 
dose of low-LET radiation can produce 60–70 double-strand breaks and 1000 
single-strand breaks per cell. Simple single- or double-strand breaks are responsible 
for cell death. Damage in DNA strands is a serious cellular phenomenon [16, 17]. 
However, the cell is equipped with chromosomal repair mechanisms. These repair 

Figure 2. 
(A) DNA damage by ionising of water and (B) ionise to water by ionising radiation.
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mechanisms, like any other biological mechanism, are not 100% effective. DNA 
repairing enzymes are more effective in single-strand breaks than in double-strand 
breaks. If both strands of DNA are mutually damaged, they cannot repair the 
problem, and the damage results in cell death. Chromosomal abnormalities caused 
by ionising radiation generally manifest as chromosome breaks and chromatid 
breakage. Chromosome breaks usually occur as a result of radiation exposure in a 
cell during the first stage (G or early S phase) of interphase during the cell cycle 
[18, 19]. Chromatid breaks occur as a result of radiation exposure in the last stage 
of interphase (late S or G2 phase). If the chromosomal repair mechanisms fail 
to repair the chromosomal damage before the cell enters mitosis or meiosis, the 
pairing is bound to fail. This results in cell death or genetically problematic genera-
tions. Generally, cells exposed to radiation during mitosis have less time for repair; 
therefore, a greater number of genetic mutations and abnormal cell functions are 
triggered in the mitosis phase. Cells that exhibit less frequent mitotic activity (e.g., 
cells in the lens, nerve cells, muscle cells, skeletal cells), on the contrary, show less 
radiosensitivity. In radiation oncology, treatment is administered as fractions of low 
radiation doses (5 days, 2 Gy/day). Radiation in fractions causes both single- and 
double-strand breaks. Single-strand breaks are repaired between fractions within 
0.3–3 h on average. Additionally, the repair capacity is higher in normal tissue com-
pared to that in tumour tissue [20, 21]. Thus, normal tissues are protected during 
radiation therapy. There are several reasons for radiation to be delivered in frac-
tions. These are called the five Rs: (1) radiosensitivity: Tissues within the organism 
exhibit different levels of radiosensitivity. (2) Repair: Cells have DNA repair mecha-
nisms. In particular, single-strand breaks can be repaired rapidly by highly complex 
biological mechanisms. (3) Repopulation: Cells have the opportunity to replicate 
in between the fractions. During fractions, hypoxic cells may regain oxygen and 
become more susceptible to radiation. Radiation can be applied without interrup-
tion during radionuclide treatment. Both single- and double-strand breaks may 
occur. Within this continuity, single-strand breaks can be repaired. Radionuclide 
treatments may also be administered in fractions. For example; the radioactive 
iodine treatment, Lu-177 octreotide, and prostate-specific membrane antigen treat-
ments are given at intervals of 6–8 weeks with intervals of 3–6 months. However, 
there is no scientific basis for such fractionation [22–24]. Effect of Radiation on the 
Cell Membrane: The main function of cell membranes is to control intracellular and 
extracellular substance exchange. Radiation affects the double-layer lipid structure 
of the cell membrane, and ionisation of membrane proteins inactivates all trans-
port mechanisms by inactivating associated molecules. Oxidation of unsaturated 
molecules in their compounds with oxygen forms free radicals in double bonds and 
carbonyl groups, and this mechanism interacts with other organic molecules by 
intracellular chain reactions to convert those molecules into free radicals. There are 
various defence mechanisms in the body to slow down and stop this chain reaction. 
The Effect of Radiation Outside the Cell: There are no cells that are completely 
resistant to radiation. Each cell has a different level of sensitivity to radiation. While 
radiosensitivity is higher in frequently dividing and slightly differentiating cells 
(ovarian and testicular germinal cells, haematopoietic system cells, epithelial cells 
of the gastrointestinal system), non-dividing and highly differentiating cells (liver, 
kidney, muscle, nerve cells) are less sensitive to radiation [25, 26].

Effects of radiation on different types of cells: (1) change in blood parameters: 
Generally, a decrease in blood components may occur after a gamma dose of 
500 mGy (500 rad). (2) Symptoms in the blood-producing system: Doses around 
200 mGy (2 Gy) cause damage in the bone marrow, while doses above 4–6 Gy 
may result in complete destruction. Bone marrow may sometimes repair itself 
and survive at these doses; however, bone marrow repair is impossible at 7 Gy and 
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above. (3) Symptoms in the digestive system: Doses of and above 10 Gy in whole 
body irradiation cause intestinal exfoliation. (4) Symptoms in the central nervous 
system: Doses of and above 20 Gy and in whole body irradiation cause loss of 
consciousness within a few hours or days. Extracellular effects of radiation are clas-
sified as deterministic effects and stochastic effects [27–30]. Deterministic Effects: 
Exposure to high-dose ionising radiation may result in sudden death, particularly 
owing to the rapid effect on bone marrow and the digestive tract. Individuals may 
survive acute exposure to radiation doses of up to 5 Gy. However, exposure to 
radiation of 50 Gy or more results in death even if medical treatment is applied. If 
ionising radiation exposure affects a particular region, and not the whole body, the 
effect of radiation exposure varies depending on the radiosensitivity of the exposed 
body part as well as the type and intensity of the radiation exposure. Possible con-
sequences include skin burns and infertility with radiation exposure of the gonadal 
region in men (3.5–6 Gy) and in women (2.5–6 Gy), and cataract may develop 
due to radiation exposure of the eye (5 Gy). The deterministic effect may occur 
in external radiotherapy and radionuclide treatments. Stochastic Effects: These 
effects can be observed in a delayed manner (somatic) in non-acute (severe) radia-
tion exposure. In particular, the effects of doses between 0.01 Sv (1 rem) and 1 Sv 
(100 rem) are the subject matter of extensive research. Detailed reviews have been 
published by the United Nations Scientific Committee on the Effects of Atomic 
Radiation and the United States National Academy of Sciences, The Committee on 
the Biological Effects of Ionising Radiation. Delayed effects of radiation can occur 
either by exposure to extremely high doses of irradiation at one time, or through 
continuous exposure to high doses of irradiation. No threshold dose can be deter-
mined for the occurrence of harmful effects. When the relation is linear and more 
radiation is received, the greater the likelihood of developing radiation-related 
harm (nonlinear model). There is no concrete data to show that low-dose radiation 
exposure is the cause of cancer in humans. The effects of low-dose exposure are 
estimated based on animal experiments and studies in subjects exposed to high-
dose radiation. Possible side effects of exposure to low-dose radiation may include 
cancer and genetic changes [31–34].

2.3 Factors affecting the effectiveness of radiation

The health effects of exposure to ionising radiation depend on several factors. 
These factors are as follows: type of radiation: any type of ionising radiation may 
cause detrimental effects on healthy tissue. However, different radiation types at the 
same dose exhibit different effects. This depends on the quality factor (Q ) of the 
radiation in question. X-rays, β-rays and positrons (Q = 1) cause the same damage in 
tissues, while certain heavy particles such as alpha particles, neutrons and protons 
cause greater damage in biological tissues than X-rays. The quality factor for alpha 
particles is Q = 20 [35]. Dose received: high doses cause greater health problems. 
Dose rate: Low-dose and time intervals of radiation exposure make biological 
systems resistant. While DNA and chromosomes are exposed to multiple damage 
in a short period of time, the repair process in response to damage takes a longer 
time. Single-strand breaks in DNA can usually be repaired in less than 1 h. However, 
double-strand breaks are more difficult to repair. Exposed body part: Although 
parts of extremities, such as hands and feet, are exposed to higher radiation doses, 
less damage occurs in these parts compared to that in other organs and tissues, such 
as blood. The affected individual’s age: the body becomes less susceptible to the 
effects of radiation as cell division decreases with age. Biological differences: The 
tolerance against radiation varies across individuals. The studies in this area are 
not sufficient to determine these differences. Heat: due to the suppression of DNA 
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DNA Methylation Mechanism

8

repair at low temperatures, most cells are more sensitive to radiation at high tem-
peratures. Chemical agents: Certain natural or artificial chemical agents may affect 
radiosensitivity, resulting in higher damage with radiation exposure. If dissolved 
oxygen in the tissues can increase the stability and toxicity of free radicals [36, 37].

One of the important biological effects of ionising radiation is that it can alter 
the epigenome, thereby leading to changes that may be transferred from one 
generation to the next. Such effects of radiation may occur at the somatic or repro-
ductive cell level. These effects are often in the form of reduced global methylation 
of cellular DNA. Ionising radiation can damage intracellular molecules, mainly 
complex molecules such as proteins, lipids and RNA, leading to double-strand 
breaks in DNA. Therefore, such damage may cause cell cycle arrest and when this 
exceeds a certain level, it may even lead the cell to apoptosis or may sometimes 
cause abnormal cell growth. Several types of cancer cells can be completely elimi-
nated by radiotherapy with ionising radiation; however, some others, such as stem 
cells, and certain types of cancer cells with survivin protein expression may exhibit 
resistance. Non-coding RNAs, different histone forms and chemical changes in 
histones as well as DNA methylations, particularly those involving cytosine and 
to a smaller extent, adenine, are known to be epigenetic markers. In vertebrates, 
especially cytosine methylation is known to affect the chromatin structure and gene 
expression. Epigenetic modifications such as histone modification and non-coding 
RNAs may be transferred through generations via cross-transitions. Several studies 
have shown that epigenetic changes in the first generation exposed to environmen-
tal pollutants, such as methylone, may be passed on through approximately four 
generations. Although there is currently no data concerning the intergenerational 
transmission of genome-wide methylation changes caused by ionising radiation in 
vertebrates, the intergenerational transmission of methylated DNAs associated with 
low-dose ionising radiation has been demonstrated in invertebrates [38–40].

3. Herbal effects

Flavonoids, which often have low molecular weight, are a group of second-
ary metabolites that may show a broad spectrum of effects in reproductive and 
signalling pathways such as UV-protection, protection against phytopathogens and 
providing signalling pathways as well as playing certain roles in different physi-
ological pathways. The synthesis of these molecules, usually synthesised by plants, 
occurs via the phenylpropanoid pathway, which forms the basis of biosynthetic 
pathways. These molecules are synthesised by the shikimic acid pathway, leading to 
the formation of p-Coumaroyl-CoA through the phenylpropanoid pathway, follow-
ing the formation of aromatic amino acids containing phenylalanine. This synthesis 
metabolism is carried out by three enzymes, namely phenylalanine ammonia lyase 
(PAL), cinnamate 4-hydroxylase (C4H), and 4 coumarate-CoA (4CL). Coumaroyl-
CoA is also converted to naringenin from different flavonoid molecules by interact-
ing with chalcone synthase (CHS) and chalcone isomerase (CHI). Ultraviolet-B 
(UV-B) radiation, a type of non-ionising radiation, generally shows a positive effect 
on flavonoid biosynthesis in plants. Ultraviolet-B rays usually enhance flavonoid 
synthesis. Ultraviolet-B rays are the only type that lead to an increase in the syn-
thesis of flavonoids. However, apart from ultraviolet-B, ROS of solar or non-solar 
sources in a wider band range affect haemostasis [41, 42]. Current stress conditions 
may neutralise several enzymatic antioxidants, while flavonoids can act as a second-
ary defence system. Due to the increasing knowledge about the effects of epigen-
etic mechanisms on gene expression in recent years, effective mechanisms have 
emerged also in this field. In particular, intracellular regulation of the increase or 
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decrease in gene expression by methylated cytosines has been shown to be also valid 
in plants. A number of abiotic stress factors have been found to be effective on DNA 
methylation dynamics. An association has been shown between cytosine methyla-
tion and ultraviolet-B rays for demethylation of the DBR2 gene and the biosynthesis 
of artemisinin [42, 43].

3.1 SPACE radiation

In recent years, the National Aeronautics and Space Administration (NASA) and 
other countries’ space agencies have begun to pursue policies to develop manned-
space missions and technologies between meteors or to the Moon and Mars, or on 
asteroids close to the Earth, in other words, they have had to initiate such policies 
in order to replace the diminishing resources of the Earth. As expected, the biggest 
problem with these tasks is the several dangerous situations astronauts may face in 
deep space environment, some of which may be predicted while others tend to be 
unpredictable. Among these dangerous situations, the major ones include pro-
tons, radiation with high-energy (H) or high-atomic number (HZE; high-atomic 
number (Z) and energy) and galactic cosmic radiation (GCR). HZEs, owing to 
their electrical charge being +2, cause damage in the cells or tissues they encounter 
through ionisation. This type of radiation, which the astronauts would be exposed 
to during deep space missions such as travelling to Mars, has been shown to cause 
serious cognitive disorders [44–46]. Other radiation-related effects in space 
missions include increased oxidative stress in the brain, neuroinflammation and 
other functional and structural changes, including disruption of neuronal struc-
tures and synaptic integrity [47]. There is rather a small number of studies on the 
mechanisms by which space radiation may cause these effects; however, molecular 
mechanisms likely to produce these dramatic changes in central nervous system 
(CNS) functions have been relatively elucidated. Biological functions of the brain 
are multi-layered and multi-functional, and epigenetic mechanisms—particularly 
DNA methylation and histone modifications—are highly important for proper 
functioning, which is critical for cognition. Recent developments, especially those 
in the field of neuroepigenetics, have shown that permanent changes in DNA meth-
ylation can significantly affect learning skills and memory. In particular, reduced 
activity of the DNA methyltransferase (DNMT) enzyme by 5-azadeoxycytidine 
(5-aza) or Zebularine, a cytidine analogue nucleoside, has been observed as well as 
loss or reduction of normal memory stability, reward learning or spatial learning 
abilities in rats that were administered RG108, a direct DNMT inhibitor [48–50]. 
Studies in animals exposed to a methyl-group donor diet for the manipulation of 
DNA methylation have shown expression changes in glutamate receptor-associated 
genes, and new object recognition and fearlessness [51]. Considering the effects of 
DNMT inhibitor agents on major methylation enzymes in the absence of toxicity 
and chemical stability, it has been shown that the learning and memory of certain 
DNA methylation enzymes can be genetically altered through DNA methylation 
mechanisms [51–53]. Some studies have demonstrated that memory organisation 
and behaviours such as dependence may be altered by decreasing the activity of 
certain DNMTs that add or remove methyl-group via viruses and through the 
changes in the expression of 10–11 translocation methylcytosine dioxygenase 
(TET) enzymes. Of the several epigenetic modifications, the most investigated 
one is the 5-methylcytosine (5mC) modification of the cytosine in DNMT. Such 
modifications are mostly concentrated in the promoter regions that affect the 
transcription of genes [48, 54, 55]. However, scientific research shows that 5mC is 
dynamic and may also be concentrated along the entire DNA strand or on a par-
ticular chromosome, such as the X chromosome.
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DNA methylation of the DNMT enzyme group (especially DNMT1) in dividing 
cells is quite important for cell differentiation. In terminally differentiated neurons 
that make up an adult’s brain, DNMT enzymes (DNMT3a and 3b in particular) 
are especially important since the de novo methyltransferase activity adds methyl 
groups to the predetermined cytosines in the DNA making up the genome. 
Especially when the amount of DNMT3a expression is high in mitotic neurons, 
it is important for the adult brain. In addition, 5mC can be oxidised by ambient 
oxygen or modified by TET enzymes. Of the TET enzyme group, TET3 is the most 
common enzyme in CNS and is known to be closely associated with learning and 
memory function. Likewise, the potential importance of TET1 is related to DNA 
methylation motifs, which may vary according to neuronal activity. Although there 
is less data on TET2, it is thought to be involved in developmental processes [56–59]. 
5-hydroxymethylcytosine (5hmC), a highly stable, modified and oxidised form 
of 5mC, is found at higher levels in the brain than other organs of the body [58]. 
In addition, 5hmC can be actively deaminated by DNA repair mechanisms when 
necessary, and, despite its stability, it can be reversed to unlabelled cytosines.

3.2 Low-dose ionising radiation and oxidative stress

Ionising radiation may exhibit ionising effects directly or indirectly on the atoms 
of the substances it encounters. The positively charged particles are direct ionisers 
since they contain enough energy to disrupt the atomic structure of the substances 
they encounter. These charged particles are relatively large-mass and highly effec-
tive over short distances. However, since massless and wave-like radiation such as 
gamma travels at the light of speed and ionising radiation travels rapidly as is the 
case with electrons, they leave their energy in the atoms they encounter, thereby 
producing charged particles. As a result of this rapid action, should they encounter 
biological organisms, they can directly damage biomolecules such as DNA, RNA 
and proteins in living cells, or form highly reactive oxygen species (ROS). It has also 
been reported that radiation such as Laser Direct Infrared (LDIR) has considerable 
effects on biological substances [32, 60, 61]. Ionising radiation can also stimulate 
ROS production by causing nitric oxide synthase (NO) formation in the presence 
of biological substances such as amino acids. This NO molecule can interact with 
the superoxide radical (O2-) to produce peroxynitrite (ONOO-). Peroxynitrite is a 
powerful oxidant radical that can interact with biomolecules such as DNA bases, 
proteins and lipids. Nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase is another important molecular source that causes intracellular ROS produc-
tion. NADPH oxidase is a complex enzyme with multiple subunits located in the 
membrane of activated and non-phagocytic cells [62–64]. NADPH oxidase produces 
superoxide anions by transporting electrons from the cell membrane to extracellular 
molecular oxygen through cytoplasmic NADPH. Activation of NOX4 and NOX5, 
members of the NADPH oxidase family, by LDIR accelerator has been associated 
with potential DNA damage. The effect of stimuli such as LDIR on mitochondria 
occurs almost through the same pathway. Mitochondria are organelles that contain a 
group of enzymes. A series of reactions occurring in mitochondria may also lead to 
formation of free radical by-products due to the escape of electrons from the mito-
chondria. These escaping electrons contribute to the formation of superoxide at the 
basal level [65, 66]. High-energy radiation affects the electron flow by increasing the 
electron release from mitochondria, resulting in excessive superoxide production. 
Furthermore, ionising radiation disrupts the function of mitochondria by inhibiting 
the electron transport chain (ETC) enzymes from mitochondrial proteins, includ-
ing aconitase. Such LDIR-mediated mitochondrial effects increase intracellular 
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oxidative stress levels and lead to high ROS signalling. These programmed cellular 
changes occur in daughter cells that are formed after cell divisions following the first 
exposure. Genomic instability and increased changes in non-Mendelian mecha-
nisms after LDIR-induced changes suggest that LDIR acts through epigenetic-based 
mechanisms. Although studies have shown cellular alterations such as RNA expres-
sion of radiation-induced DNA methylation, histone modification and nonsense 
transformation of gene sequences often in cancer models, the molecular and 
mechanical information gained across these studies are highly applicable to several 
biological cellular systems. Recent studies have demonstrated that LDIR exposure 
can change the intracellular DNA methylation profile. Using animal models, LDIR 
exposure has been shown to have different dose-, gender- and tissue-specific effects 
on reduced global methylation [67–69]. LDIR-type radiation has been shown to 
cause locus-specific DNA hypomethylation in the TRAPC1, FOXC1 and LINE1 
(Long Interspersed Nuclear Element-1) genes in breast cancer cells. As a result of 
such hypomethylation, a decrease was observed in expression levels of DNA methyl-
transferase enzymes such as DNMT1, DNMT3A and DNMT3B as well as methylated 
CpG binding proteins such as MeCP2. Similarly, LDIR has been associated with the 
hypomethylation and activation of LINE-1, leading to increased levels of LINE-1 
expression and increased genomic irregularities as a result of enhanced LINE-1 
mobilisation. The effects of LDIR on reduced global DNA methylation appear to be 
more favourable in control groups compared to those who work in nuclear industry, 
thereby inherently exposed to irradiation. In relevant studies, the amount of LINE-1 
methylation was higher in irradiated workers compared to controls. In these work-
ers, reduced global methylation is observed to be significantly greater in cellular 
chromosomal anomalies. Thus, LDIR-mediated reduced global methylation models 
indicate a connection between radiation exposure and increased genomic irregular-
ity. Although exposure to LDIR energy causes reduction in global methylation, 
promoter hypermethylations have been shown to be more stable compared to global 
hypomethylation [70–72].

4. Conclusion

After the discovery of radiation at the end of the nineteenth century, radioactiv-
ity came into use in many disciplines and in everyday life and started to be used for 
human benefit in some areas. It is used for the destruction of cancer cells, especially 
in the field of medicine, and has been increasingly used in industry, agriculture 
and scientific studies in recent years. The ionised radiation has effects on DNA and 
cells. The type of radiation varies depending on the total energy trapped in the 
tissues, the energy of the radiation and the tissue properties. Ionising radiation can 
cause different types of damage to organic tissues depending on the dose taken. 
Radionuclide treatments, which have been developing and diversifying rapidly in 
recent years, have revealed the fact that we know well the effects of radiation on tis-
sues and cells. In addition, while the researches of the effects of this kind of radia-
tion, especially on epigenetic mechanisms, will be important for human health. 
For this reason, it is important for belief that such studies are increasing gradually. 
This chapter summarises the recent studies, which provide compelling evidence 
that ionising radiation provides a mechanistic link between LDIR and epigenetic 
gene regulation via ROS or other mechanisms, such as low-LET. Epigenetic changes 
are mediated by oxidative stress. Numerous studies have demonstrated that ROS 
scavengers such as n-acetylcysteine  and tempol prevent epigenetic DNA methyla-
tion changes induced by oxidative stress through direct or indirect mechanisms.
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producing charged particles. As a result of this rapid action, should they encounter 
biological organisms, they can directly damage biomolecules such as DNA, RNA 
and proteins in living cells, or form highly reactive oxygen species (ROS). It has also 
been reported that radiation such as Laser Direct Infrared (LDIR) has considerable 
effects on biological substances [32, 60, 61]. Ionising radiation can also stimulate 
ROS production by causing nitric oxide synthase (NO) formation in the presence 
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molecular oxygen through cytoplasmic NADPH. Activation of NOX4 and NOX5, 
members of the NADPH oxidase family, by LDIR accelerator has been associated 
with potential DNA damage. The effect of stimuli such as LDIR on mitochondria 
occurs almost through the same pathway. Mitochondria are organelles that contain a 
group of enzymes. A series of reactions occurring in mitochondria may also lead to 
formation of free radical by-products due to the escape of electrons from the mito-
chondria. These escaping electrons contribute to the formation of superoxide at the 
basal level [65, 66]. High-energy radiation affects the electron flow by increasing the 
electron release from mitochondria, resulting in excessive superoxide production. 
Furthermore, ionising radiation disrupts the function of mitochondria by inhibiting 
the electron transport chain (ETC) enzymes from mitochondrial proteins, includ-
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changes occur in daughter cells that are formed after cell divisions following the first 
exposure. Genomic instability and increased changes in non-Mendelian mecha-
nisms after LDIR-induced changes suggest that LDIR acts through epigenetic-based 
mechanisms. Although studies have shown cellular alterations such as RNA expres-
sion of radiation-induced DNA methylation, histone modification and nonsense 
transformation of gene sequences often in cancer models, the molecular and 
mechanical information gained across these studies are highly applicable to several 
biological cellular systems. Recent studies have demonstrated that LDIR exposure 
can change the intracellular DNA methylation profile. Using animal models, LDIR 
exposure has been shown to have different dose-, gender- and tissue-specific effects 
on reduced global methylation [67–69]. LDIR-type radiation has been shown to 
cause locus-specific DNA hypomethylation in the TRAPC1, FOXC1 and LINE1 
(Long Interspersed Nuclear Element-1) genes in breast cancer cells. As a result of 
such hypomethylation, a decrease was observed in expression levels of DNA methyl-
transferase enzymes such as DNMT1, DNMT3A and DNMT3B as well as methylated 
CpG binding proteins such as MeCP2. Similarly, LDIR has been associated with the 
hypomethylation and activation of LINE-1, leading to increased levels of LINE-1 
expression and increased genomic irregularities as a result of enhanced LINE-1 
mobilisation. The effects of LDIR on reduced global DNA methylation appear to be 
more favourable in control groups compared to those who work in nuclear industry, 
thereby inherently exposed to irradiation. In relevant studies, the amount of LINE-1 
methylation was higher in irradiated workers compared to controls. In these work-
ers, reduced global methylation is observed to be significantly greater in cellular 
chromosomal anomalies. Thus, LDIR-mediated reduced global methylation models 
indicate a connection between radiation exposure and increased genomic irregular-
ity. Although exposure to LDIR energy causes reduction in global methylation, 
promoter hypermethylations have been shown to be more stable compared to global 
hypomethylation [70–72].

4. Conclusion

After the discovery of radiation at the end of the nineteenth century, radioactiv-
ity came into use in many disciplines and in everyday life and started to be used for 
human benefit in some areas. It is used for the destruction of cancer cells, especially 
in the field of medicine, and has been increasingly used in industry, agriculture 
and scientific studies in recent years. The ionised radiation has effects on DNA and 
cells. The type of radiation varies depending on the total energy trapped in the 
tissues, the energy of the radiation and the tissue properties. Ionising radiation can 
cause different types of damage to organic tissues depending on the dose taken. 
Radionuclide treatments, which have been developing and diversifying rapidly in 
recent years, have revealed the fact that we know well the effects of radiation on tis-
sues and cells. In addition, while the researches of the effects of this kind of radia-
tion, especially on epigenetic mechanisms, will be important for human health. 
For this reason, it is important for belief that such studies are increasing gradually. 
This chapter summarises the recent studies, which provide compelling evidence 
that ionising radiation provides a mechanistic link between LDIR and epigenetic 
gene regulation via ROS or other mechanisms, such as low-LET. Epigenetic changes 
are mediated by oxidative stress. Numerous studies have demonstrated that ROS 
scavengers such as n-acetylcysteine  and tempol prevent epigenetic DNA methyla-
tion changes induced by oxidative stress through direct or indirect mechanisms.
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Chapter 2

Demethylation in Early Embryonic 
Development and Memory
Carol Bernstein and Harris Bernstein

Abstract

DNA repair processes arose early in evolution. During evolution, DNA base 
excision repair apparently acquired additional roles in demethylation of cytosines 
in DNA. Demethylation is central to two mammalian fundamental processes. 
Embryonic reprogramming and neuronal memory require rapid gene expression 
alterations depending in part on demethylations. The active demethylation reac-
tions in both processes primarily depend, first, on the family of 5-methylcytosine 
oxidases sharing the acronym ten-eleven translocation (TET methylcytosine 
dioxygenases) and, second, on DNA base excision repair enzymes. In mice, within 
6 h of fertilization, the paternal chromosomes are close to 100% actively demethyl-
ated through TET and repair activity. (Methylation of maternal DNA is blocked 
during subsequent cycles of replication, so methyl groups on maternal DNA, pas-
sively, becomes highly diluted over the next 4 days.) Rats subjected to one instance 
of contextual fear conditioning create an especially strong long-term memory. At 
24 h after training, 9.2% of the genes in the rat genomes of hippocampus neurons 
are differentially methylated, including over 500 genes with demethylation. The 
emergence of embryonic development in evolution depended on preexisting DNA 
methylation/demethylation pathways to modify gene expression. The further emer-
gence of memory likely evolved from the earlier set of methylation/demethylation 
capabilities associated with embryonic development.

Keywords: TET enzymes, OGG1, epigenetic, base excision repair, DNA repair, 
neuroepigenetics, neurogenesis, brain evolution

1. Introduction

DNA repair processes have a central role in epigenetic demethylation reactions 
that are employed in both early embrylonic development and in memory. DNA 
likely emerged as the genetic material as long as 3.5 billion years ago [1]. From its 
inception as the genetic material, DNA was likely subject to damage. In present day 
organisms damage to DNA is frequent and occurs due to both metabolic and hydro-
lytic processes [2] as well as a result of environmental agents such as UV light and 
ionizing radiation. Thus, enzymes promoting DNA repair likely have been retained 
based on their adaptive benefit since early evolution. Currently, in humans, about 
169 different DNA repair proteins have been identified [3]. During the course of 
evolution, many of these DNA repair proteins developed more than one enzymatic 
capability. For instance, at least 17 DNA repair proteins act in both a DNA repair 
pathway and in an apoptosis pathway [4]. These dual role proteins are required 
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for DNA repair when DNA damages are at relatively low levels but are active and 
required for apoptosis when DNA damages are at high levels.

In addition to the multiple roles of some DNA repair proteins, some endoge-
nously produced DNA damaging agents also appear to have multiple roles. Reactive 
oxygen species (ROS) are produced by mitochondria during oxidative metabolism, 
and a small proportion are released from the mitochondria and interact with pro-
teins, lipids and DNA to alter their structures. ROS can damage DNA in ways that 
are mutagenic or disruptive to expression. Thus, excessive ROS can cause mutations 
and other alterations leading to cancer [5]. However, ROS can interact with DNA to 
serve important positive roles. A large body of literature has shown the necessary 
roles of appropriate levels of ROS in embryonic development [6, 7] and in learning 
and memory [8, 9].

2. Demethylation in embryogenesis

During early embryogenesis of mammals, pathways of rapid demethylation 
are employed at multiple DNA sites to form totipotent cells. Subsequently, locally 
deposited methylations enable formation of subsets of cells that became specialized 
tissue types, such as primordial germ cells and neuronal stem cells [10]. Such rapid 
demethylations and subsequent methylations have also now been found to occur in 
the formation of memories and learning [11] and in both cases the mechanism of 
methyl group removal occurs by similar pathways involving TET enzymes and base 
excision DNA repair.

In embryogenesis, rapid and large scale demethylations occur at two stages 
[12]. One extensive set of demethylations occurs within a few hours after the 
sperm enters the egg, forming the zygote. Almost all methyl groups are removed 
from the paternal-origin chromosomes within 6 h of forming the zygote, before 
any replication has occurred [13]. Another extensive demethylation occurs early 
in embryogenesis, in the nuclei of the primordial germ cells shortly after they 
devolve from the other cells which are forming somatic tissues [14]. This stage of 
demethylation occurs in two phases. There is a first phase of rapid proliferation 
without methylation, causing dilution of methylation with a loss of methylation 
at almost all genomic sequences. Then there is a second phase, involving specific 
sites including germ-line and meiosis specific genes, where the demethylation is 
active and proceeds by pathways involving TET enzymes and base excision DNA 
repair.

Methylation of sites (which can be demethylated) in mammalian DNA are 
usually restricted to cytosines, forming 5-methylcytosine (5mC) (Figure 1). In this 
figure, the addition of a methyl group at the 5 position of cytosine is shown within a 
red oval. Of all the cytosines in DNA, the 5mCs occur primarily at “CpG” sites [16]. 
A CpG site is where a cytosine in a DNA strand is followed by a guanine nucleotide 
in the linear sequence of bases along the 5′ to 3′ direction. There are 28 million CpG 
sites in the human genome [17]. In humans, about 60% of the 28 million CpG sites 
are methylated in most somatic tissues [18]. CG dinucleotides (CpG sites) represent 
about 1% of total bases in the mammalian genome [19]. Three DNA methyltransfer-
ases in humans can methylate a base in DNA. These enzymes show a strong prefer-
ence for methylating cytosines in CpG sites [20].

Mouse DNA is very similar to human DNA, with about 99% of mouse genes 
having a homolog in the human genome, and mice and humans having about the 
same number of genes [21]. However, the mouse sequence is about 14% shorter 
than the human sequence [21]. The mature mouse sperm genome has 80–90% 
overall methylation of its CpG sites, the highest global DNA methylation level of 
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any cell in the mouse [12]. Because of its shorter sequence, we can speculate that 
there may be fewer than 28 million CpG sites in the mouse genome, perhaps 86% as 
many as in the human genome, or about 24 million CpG sites. Thus, of the likely 24 
million CpG sites, there are about 19–22 million methylated sites in mouse sperm 
DNA. In mouse zygotes, partial demethylation of the paternal nucleus is already 
evident 3 h after formation of the zygote [13]. By 6 h, demethylation of the paternal 
nucleus appears to be complete (Figure 2). During the subsequent first mitosis, 
there is just a small but significant residual methylation signal in some but not all 
of the paternally derived chromosomes [13]. By 3–4 days after fertilization, after 
replication to generate 16 cells, the embryo has formed a morula (a round body 
of cells with no differentiation) (Figure 2). By this time both the paternal and 
maternal chromosomes have mixed together in a single nuclear area and all have 
very low levels of methylation (In Figure 2, the methylation levels of the paternal 
and maternal chromosome are approximately represented by the blue lines during 
the period they can be distinguished. When the chromosomes become mixed, after 
two mitoses, the methylation level of the mixed chromosomes is represented by a 
brown line).

The almost compete demethylation of the zygote DNA in the paternal chro-
mosomes at 22–25 million CpG sites occurs before any DNA replication. Thus, it 
occurs by an active process not connected to replication. The demethylation of the 
maternal chromosomes appears to largely take place by blockage of the methylat-
ing enzymes from acting on maternal-origin DNA and dilution of the methylated 

Figure 1. 
DNA methylation most often is the addition of a methyl group to cytosine in DNA. The image shows cytosine 
and 5-methylcytosine. In mammals, DNA methylation most frequently occurs at a cytosine followed by guanine 
in the DNA [15].

Figure 2. 
Methylation levels during mouse early embryonic development.
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maternal DNA during replication. At the second metaphase after fertilization, 
maternal chromosomes showed methylation on only one of the two sister chro-
matids. This sister chromatid differentiation is consistent with mostly replication-
dependent passive maternal chromosome demethylation [22]. Consequently, 
four-cell embryos have a much lower methylation density over the maternal nuclear 
compartment. Methylation of the maternal genome further decreases with every 
additional replication cycle. The morula (at the 16 cell stage), overall, has much 
reduced methylation of DNA.

High levels of de novo DNA methylation then occur in the cells of the inner cell 
mass of the blastocyst, to establish the specific methylation patterns of principal 
cell lineages in the early embryo [13]. Afterwards, by day 5 of mouse embryogen-
esis, the epiblast is formed, followed by implantation of the epiblast in the uterine 
epithelium (Figure 2). By day seven after fertilization, the newly formed primor-
dial germ cells (PGC) in the implanted embryo devolve from the remaining somatic 
cells. At this point the PGCs have high levels of methylation. These cells migrate 
from the epiblast along the hindgut toward the genital ridges starting about day 7.8. 
By day 8.5 they are rapidly proliferating and beginning demethylation in two waves. 
In the first wave, demethylation is by replicative dilution, but in the second wave 
demethylation is by an active process. The second wave, during days 9.5–13.5, leads 
to demethylation of specific loci. At day 13.5, the PGC genomes display the lowest 
levels of DNA methylation of any cells of the mouse in the entire life cycle [14].

2.1 Mechanisms of demethylation

The demethylation of methylated CpG sites of DNA occurs in three stages: (1) 
recruitment of a TET enzyme to initiate demethylation (although there is one minor 
mechanism that does not utilize a TET enzyme); (2) intermediate steps of oxidation 
or oxidative deamination (forming intermediate products of demethylation); and 
(3) culminating steps of DNA base excision repair resulting in final replacement of 
5-methylcytosine with cytosine.

The pathways by which demethylation can occur [23] are shown in outline in 
Figure 3. This figure indicates two types of oxidation reactions that may occur in 
demethylation. One occurs by oxidation of the added methyl group at the 5 position 
of cytosine. The other occurs through oxidative deamination of the amine group at 
the 4 position of cytosine. The pathway on the left depends on oxidation of each of 
the adducts on the 5 position of cytosine, sequentially, by a TET enzyme, followed 
by action of base excision repair (BER) enzymes. TET enzymes (ten-eleven trans-
location methylcytosine dioxygenases) oxidize adducts on cytosine in an iron and 
alpha-ketoglutarate dependent process. This TET-type dependent pathway likely 
carries out the bulk of the demethylations discussed here. However, as reviewed 
[25], two other pathways involving AID/APOBEC and base excision repair enzymes 
can occur. In one pathway there is an initial TET reaction. The other pathway 
involving AID/APOBEC results in oxidative deamination of 5mC directly to thymine 
followed by base excision repair. The activity of AID/APOBEC appears to cooperate 
with a TET enzyme in neuronal functions [26]. It is notable that demethylation, in 
all its pathways, employs the enzymes of the base excision repair pathway.

3. Base excision repair

In Figure 3, base excision repair is indicated by the highlighted acronym 
“BER”. To complete the description of the mechanism shown above, we include a 
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diagram illustrating the base excision repair pathway used in the latter stages of 
the conversion of 5mC to C (Figure 4). In this diagram the two strands of DNA 
are represented by parallel horizontal lines. With the first downward arrow we 
show thymine DNA glycosylase (TDG) removing 5-formylcytosine (5fC) from 
the DNA backbone, leaving an apyrimidinic site. Then AP endonuclease cleaves 
the 5′ deoxyribose-phosphate in the DNA backbone of a single strand, leaving a 
3′ hydroxy end and a 5′ deoxyribose phosphate end (second downward arrow). 
This is followed by either short patch or long patch repair. In short patch repair, 
5′ dRP lyase trims the 5′ dRP end to form a phosphorylated 5′ end. This is fol-
lowed by DNA polymerase β adding a single cytosine to pair with the pre-existing 
guanine in the complementary strand and then DNA ligase to seal the cut strand. 
In long patch repair, DNA synthesis is thought to be mediated by polymerase δ and 
polymerase ε performing displacing synthesis to form a flap. Pol β can also perform 
long-patch displacing synthesis. Long-patch synthesis typically inserts 2–10 new 
nucleotides. Then flap endonuclease removes the flap, and this is followed by DNA 
ligase to seal the strand.

In an example below (see “Targeting TET to 5-methylcytosine”) we show that, 
in at least one well documented case, the ROS-induced damage of 8-OHdG at a CpG 
site initiates demethylation. In the base excision pathways shown in Figure 4, it is 
not clear at what stage 8-OHdG itself may be removed. Thus, 8-OHdG is allowed to 
remain in most steps of this diagram.

Figure 3. 
Demethylation of 5-Methylcytosine (5mC) in neuron DNA. As reviewed in [23], in brain neurons 5mC is 
oxidized by the ten-eleven translocation (TET) family of dioxygenases (TET1, TET2, TET3) to generate 
5-hydroxymethylcytosine (5hmC). In successive steps TET enzymes further hydroxylate 5hmC to generate 
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Thymine-DNA glycosylase (TDG) recognizes the 
intermediate bases 5fC and 5caC and excises the glycosidic bond resulting in an apyrimidinic site (AP 
site). In an alternative oxidative deamination pathway, 5hmC can be oxidatively deaminated by activity-
induced cytidine deaminase/apolipoprotein B mRNA editing complex (AIP/APOBEC) deaminases to form 
5-hydroxymethyluracil (5hmU) or 5mC can be converted to thymine (Thy). 5hmU can be cleaved by TDG, 
single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), Nei-Like DNA Glycosylase 1 
(NEIL1), or methyl-CpG binding protein 4 (MBD4). AP sites and T:G mismatches are then repaired by base 
excision repair (BER) enzymes to yield cytosine (Cyt). Figure by [24].
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excision repair (BER) enzymes to yield cytosine (Cyt). Figure by [24].



DNA Methylation Mechanism

26

4. TET enzymes

As described by Jin et al. [27] and Melamed et al. [28], there are a number of 
TET enzymes, including at least two isoforms of TET1, one of TET2 and three 
isoforms of TET3. As reviewed [28], the full-length canonical TET1 isoform 
appears virtually restricted to early embryos, embryonic stem cells and PGCs. The 
dominant TET1 isoform in most somatic tissues, at least in the mouse, arises from 
alternative promoter usage which gives rise to a short transcript and a truncated 
protein designated TET1s. The isoforms of TET3 are the full length form TET3FL, 
a short form splice variant TET3s, and a form that occurs in oocytes and neurons 
designated TET3o. TET3o is created by alternative promoter use and contains an 
additional first N-terminal exon coding for 11 amino acids. TET3o only occurs in 
oocytes and neurons and was not expressed in embryonic stem cells or in any other 
cell type or adult mouse tissue tested [27]. Whereas TET1 expression can barely be 
detected in oocytes and zygotes, and TET2 is only moderately expressed, the TET3 
variant TET3o shows extremely high levels of expression in oocytes and zygotes, 
but is nearly absent at the 2-cell stage [29].

The TET enzymes generally do not specifically bind to 5-methylcytosine 
except under particular conditions, such as the two conditions described below, 
in “Targeting TET1 to 5-methylcytosine” and in “TET in learning and memory.” 
Without targeting, TET1 predominantly binds to high CG promoters and CpG 
islands (CGIs) genome-wide by its CXXC domain that can recognize un-methylated 
CGIs [30]. TET2 does not have an affinity for 5-methylcytosine in DNA [31]. The 
CXXC domain of the full-length TET3, which is the predominant form expressed 
in neurons, binds most strongly to CpGs modified by 5-carboxycytosine (5caC) 
(Figure 3), although it does also bind to un-methylated CpGs [28].

Figure 4. 
An example of base excision repair of 5-formylcytosine (5fC) (adjacent to 8-OHG, an oxidized guanine) by 
short patch repair or long patch repair.
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4.1 Targeting TET to 5-methylcytosine

One mode of recruitment of a TET enzyme to 5-methylcytosine in DNA, in 
order to initiate demethylation, was investigated by Zhou et al. [32]. In this mode, 
recruitment was found to depend on ROS treatment of cells. This finding is signifi-
cant because appropriate levels of ROS are known to be needed in both embryogen-
esis [6, 7] and in learning and memory [8, 9]. ROS cause oxidative damages to DNA, 
but these damages are not random. Because electron “hole” pausing at the sites of 
the lowest ionization potential increases the probability of stable adduct forma-
tion, DNA oxidation tends to be sequence dependent [19]. As reviewed by Ming 
et al. [19], cytosine methylation increases the reactivity of guanine bases in 5mCpG 
dinucleotides toward electrophiles and oxidants. This is likely due to the transmis-
sion of an electronic effect from the 5mC to its partner guanine through hydrogen 
bonding within the 5mC:G base pair. Ming et al. [19] experimentally showed that 
oxidation of guanines was enhanced within endogenously methylated 5mCpG 
dinucleotides.

There are many types of oxidative DNA damage, but the most common 
endogenous oxidative damage in DNA is 8-OHdG [33]. The molecular structure 
of 8-OHdG is shown as part of Figure 5. In Figure 5, the structure labeled in red 
as “8-OHdG” is a guanine with the oxidative damage, an added OH group at the 8 
position of the pentane (5-sided) ring, shown in red. 8-OHdG can be experimen-
tally increased in cells by treatment with Hoechst dye followed by micro-irradiation 
with 405 nm light [34]. The irradiation can be performed along a narrow line. 

Figure 5. 
Initiation of DNA demethylation at a CpG site. In adult somatic cells DNA methylation typically occurs in the 
context of CpG dinucleotides (CpG sites), forming 5-methylcytosine-pG, or 5mCpG. Reactive oxygen species 
(ROS) may attack guanine at the dinucleotide site, forming 8-hydroxy-2′-deoxyguanosine (8-OHdG), and 
resulting in a 5mCp-8-OHdG dinucleotide site. The base excision repair enzyme OGG1 targets 8-OHdG and 
binds to the lesion without immediate excision. OGG1, present at a 5mCp-8-OHdG site recruits TET1 and TET1 
oxidizes the 5mC adjacent to the 8-OHdG. This initiates demethylation of 5mC [37].
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Within 6 s of the irradiation with 405 nm light, there is half-maximum recruit-
ment of OGG1 to the irradiated line. OGG1 (8-oxoguanine DNA glycosylase) is 
an enzyme that removes the oxidative damage 8-OHdG from DNA [35]. Removal 
of 8-OHdG, during base excision repair, occurs with a half-life of 11 min [36]. 
Thus, OGG1 protein rapidly complexes with 8-OHdG (6 s) but the OGG1-8-OHdG 
complex has a relatively long half-life (11 min).

H2O2 is a reactive oxygen species. Zhou et al. [32] treated cells in culture with 
500 μM H2O2 for 6 h and this caused a more than 3-fold increase in 8-OHdG. The 
cells treated with H2O2 also became substantially demethylated, with methylation 
reduced to less than 1/4th the original methylation level. They then used cells in 
which OGG1 was inhibited, either by applying siRNA or by using OGG1 mutant 
knockout cells. In cells with inhibited or absent OGG1, treatment with H2O2 did not 
cause demethylation. These first experiments indicate that OGG1 has a role in  
H2O2 -induced demethylation.

Zhou et al. [32] examined the interaction between OGG1 and the TET enzymes 
that are involved in demethylation [23]. OGG1 did not interact with TET2 or 
TET3. However, OGG1 interacted with TET1. They found that the two proteins 
co-immunoprecipitated, and this co-immunoprecipitation did not depend on 
interactions with DNA or with 8-OHdG. Thus, OGG1 can attract or “recruit” TET1. 
They then used a double-stranded oligonucleotide containing 8-OHdG in solution 
in a pull-down assay using streptavidin beads. They found that OGG1 added to the 
assay could be pulled down by oligonucleotides containing 8-OHdG. TET1 could 
not be pulled down by oligonucleotides containing 8-OHdG, but TET1 could be 
pulled down if in the presence of OGG1. Their results imply that OGG1 attaches 
to 8-OHdG and then recruits TET1 to 8-OHdG lesions. They indicated that this 
could allow TET1 to initiate DNA demethylation of methylated CpGs after 8-OHdG 
lesions are formed (Figure 5). As shown in this figure, TET1 first interacts with 
OGG1 and then is close enough to the methyl group CH3 (shown in red) on the 5 
position of the cytosine, to initiate the oxidation of the methyl group. This mecha-
nism is notable for likely using two co-opted elements of DNA base excision repair 
(BER). First, OGG1 is an initiating enzyme in BER of 8-OHdG, but acts here to 
recruit TET1. Second, once the intermediate products of demethylation are formed 
by TET1, such as 5fC or 5caC as shown in Figure 3, then thymine DNA glycosylase 
(TDG) can initiate BER as shown in Figure 4, and complete the demethylation of 
5mC to C.

OGG1 knockout mice seem to undergo a fairly normal embryogenesis, and the 
young new mice appear to be mostly normal [38], though they have a deficit in 
learning and memory as shown by a passive avoidance test [39] and a deficiency 
in immune responses (reviewed in [40]). TET1 knockout mice are also viable and 
fertile, with no discernible morphological or growth abnormality. However, TET1 
knockout mice have an impairment in spatial learning and short-term memory [41] 
as well as deficiencies in fear memory extinction and spacial memory extinction 
[42]. On the other hand, over-expression of TET1 impairs hippocampus-dependent 
long-term associative memory [43]. A TET3 homozygous mutation, unlike a TET1 
knockout, leads to neonatal lethality [44]. Thus TET3 is essential in embryogenesis. 
As pointed out above, TET3 (but not TET1 and TET2) is highly expressed in oocytes 
and zygotes (also shown in [45]).

5. Demethylation in neurogenesis

Neurogenesis in mouse takes place starting about day 10.5 after fertiliza-
tion of the egg. Early in neurogenesis, some embryonic stem cells (ESCs) begin 
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differentiating into neural stem cells (NSCs) and neural progenitor cells (NPCs) 
[46]. At this point, 8% of CpGs unmethylated in ESCs become largely methyl-
ated in NPCs, whereas approximately 2% of CpGs methylated in ESCs become 
unmethylated [46]. These data suggest that 5mC undergoes significant dynamic 
changes during ESC differentiation into NSCs. As shown by Pilz et al. [47], NPCs 
generate neurons throughout life in the dentate gyrus of the hippocampus of mice. 
Zhang et al. [41] examined adult NPCs purified from wild type and TET1 knockout 
mice. They found that 478 genes showed elevated promoter methylation levels in 
TET1-null NPCs compared to the wild-type control, while only 32 genes had lower 
methylation. Thus, TET1 appears to function in demethylation during neurogenesis 
in the adult brain.

6. Demethylation in learning and memory

Learning and memory have levels of permanence, differing from other mental 
processes such as thought, language, and consciousness, which are temporary 
in nature. Learning and memory can be either slowly accumulated (multiplica-
tion tables) or rapidly (touching a hot stove), but once attained, can be recalled 
into conscious use for a long time. As pointed out by Alberini [48], humans can 
generally recall a painful fact or trauma in detail for a lifetime. Similarly, humans 
remember a very happy day for a long time afterwards. At least two early propos-
als were presented, indicating, on theoretical grounds, that the methylation and 
demethylation of DNA in neurons is the physical basis of memories. In 1969 Griffith 
and Mahler [49] published an article that made a number of salient points. They 
noted that, at least in man, memories may survive for periods of almost the entire 
lifetime. Further, DNA is the one molecule which, apart from possible minor effects 
due to genetic damage and repair, is surely present in neurons for the whole of the 
lifetime of the organism. This led them to the suggestion that the physical basis of 
memory could lie in the enzymatic modification of the DNA of nerve cells. They 
further indicated that a plausible suggestion would be that the modification consists 
of methylation (or demethylation) of DNA.

In 1999 Holliday [50] noted that long-term human memory can be retained for 
many decades. The exceptional stability required suggests that essential memory 
components may be based on chemical changes. He proposed that the enzymatic 
modification of cytosine in DNA to 5-methylcytosine may provide this necessary 
stability. The general model proposed is that specific sites in the DNA of neurons 
required for memory can exist in alternative methylated or non-methylated states. 
The initial signal, which is to be memorized, switches the DNA from a modified to 
an unmodified state, or vice versa. It should be noted that the presence or absence 
of DNA methylation at a particular sequence of DNA can be thought of as a 0, 1 
binary code. Thus, 10 such sites have 210 (1024) epigenotypes and potential pheno-
types, and 30 such sites could have up to 230, or 1.07 × 109 epigenotypes. Clearly, 
such a set of control mechanisms has enormous potential for neuronal specificity.

One form of long-term memory, associative learning, is contextual fear con-
ditioning [51]. As an example of contextual fear conditioning, a rodent is placed 
in a novel environment (a new context) and is then subjected to an electric shock 
(e.g. a footshock). The rodent then experiences robust fear learning, shown by a 
strong fear response, when the rodent is placed in that context again. Contextual 
fear conditioning occurs very rapidly (it can occur with a single event) and it has a 
lasting effect [51]. Kim and Jung [51] reviewed the evidence that the hippocampus 
region of the brain is where contextual fear memories are first stored, and that this 
storage is transient and does not remain in the hippocampus (Figure 6). (Note that 
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Within 6 s of the irradiation with 405 nm light, there is half-maximum recruit-
ment of OGG1 to the irradiated line. OGG1 (8-oxoguanine DNA glycosylase) is 
an enzyme that removes the oxidative damage 8-OHdG from DNA [35]. Removal 
of 8-OHdG, during base excision repair, occurs with a half-life of 11 min [36]. 
Thus, OGG1 protein rapidly complexes with 8-OHdG (6 s) but the OGG1-8-OHdG 
complex has a relatively long half-life (11 min).

H2O2 is a reactive oxygen species. Zhou et al. [32] treated cells in culture with 
500 μM H2O2 for 6 h and this caused a more than 3-fold increase in 8-OHdG. The 
cells treated with H2O2 also became substantially demethylated, with methylation 
reduced to less than 1/4th the original methylation level. They then used cells in 
which OGG1 was inhibited, either by applying siRNA or by using OGG1 mutant 
knockout cells. In cells with inhibited or absent OGG1, treatment with H2O2 did not 
cause demethylation. These first experiments indicate that OGG1 has a role in  
H2O2 -induced demethylation.

Zhou et al. [32] examined the interaction between OGG1 and the TET enzymes 
that are involved in demethylation [23]. OGG1 did not interact with TET2 or 
TET3. However, OGG1 interacted with TET1. They found that the two proteins 
co-immunoprecipitated, and this co-immunoprecipitation did not depend on 
interactions with DNA or with 8-OHdG. Thus, OGG1 can attract or “recruit” TET1. 
They then used a double-stranded oligonucleotide containing 8-OHdG in solution 
in a pull-down assay using streptavidin beads. They found that OGG1 added to the 
assay could be pulled down by oligonucleotides containing 8-OHdG. TET1 could 
not be pulled down by oligonucleotides containing 8-OHdG, but TET1 could be 
pulled down if in the presence of OGG1. Their results imply that OGG1 attaches 
to 8-OHdG and then recruits TET1 to 8-OHdG lesions. They indicated that this 
could allow TET1 to initiate DNA demethylation of methylated CpGs after 8-OHdG 
lesions are formed (Figure 5). As shown in this figure, TET1 first interacts with 
OGG1 and then is close enough to the methyl group CH3 (shown in red) on the 5 
position of the cytosine, to initiate the oxidation of the methyl group. This mecha-
nism is notable for likely using two co-opted elements of DNA base excision repair 
(BER). First, OGG1 is an initiating enzyme in BER of 8-OHdG, but acts here to 
recruit TET1. Second, once the intermediate products of demethylation are formed 
by TET1, such as 5fC or 5caC as shown in Figure 3, then thymine DNA glycosylase 
(TDG) can initiate BER as shown in Figure 4, and complete the demethylation of 
5mC to C.

OGG1 knockout mice seem to undergo a fairly normal embryogenesis, and the 
young new mice appear to be mostly normal [38], though they have a deficit in 
learning and memory as shown by a passive avoidance test [39] and a deficiency 
in immune responses (reviewed in [40]). TET1 knockout mice are also viable and 
fertile, with no discernible morphological or growth abnormality. However, TET1 
knockout mice have an impairment in spatial learning and short-term memory [41] 
as well as deficiencies in fear memory extinction and spacial memory extinction 
[42]. On the other hand, over-expression of TET1 impairs hippocampus-dependent 
long-term associative memory [43]. A TET3 homozygous mutation, unlike a TET1 
knockout, leads to neonatal lethality [44]. Thus TET3 is essential in embryogenesis. 
As pointed out above, TET3 (but not TET1 and TET2) is highly expressed in oocytes 
and zygotes (also shown in [45]).

5. Demethylation in neurogenesis

Neurogenesis in mouse takes place starting about day 10.5 after fertiliza-
tion of the egg. Early in neurogenesis, some embryonic stem cells (ESCs) begin 
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differentiating into neural stem cells (NSCs) and neural progenitor cells (NPCs) 
[46]. At this point, 8% of CpGs unmethylated in ESCs become largely methyl-
ated in NPCs, whereas approximately 2% of CpGs methylated in ESCs become 
unmethylated [46]. These data suggest that 5mC undergoes significant dynamic 
changes during ESC differentiation into NSCs. As shown by Pilz et al. [47], NPCs 
generate neurons throughout life in the dentate gyrus of the hippocampus of mice. 
Zhang et al. [41] examined adult NPCs purified from wild type and TET1 knockout 
mice. They found that 478 genes showed elevated promoter methylation levels in 
TET1-null NPCs compared to the wild-type control, while only 32 genes had lower 
methylation. Thus, TET1 appears to function in demethylation during neurogenesis 
in the adult brain.

6. Demethylation in learning and memory

Learning and memory have levels of permanence, differing from other mental 
processes such as thought, language, and consciousness, which are temporary 
in nature. Learning and memory can be either slowly accumulated (multiplica-
tion tables) or rapidly (touching a hot stove), but once attained, can be recalled 
into conscious use for a long time. As pointed out by Alberini [48], humans can 
generally recall a painful fact or trauma in detail for a lifetime. Similarly, humans 
remember a very happy day for a long time afterwards. At least two early propos-
als were presented, indicating, on theoretical grounds, that the methylation and 
demethylation of DNA in neurons is the physical basis of memories. In 1969 Griffith 
and Mahler [49] published an article that made a number of salient points. They 
noted that, at least in man, memories may survive for periods of almost the entire 
lifetime. Further, DNA is the one molecule which, apart from possible minor effects 
due to genetic damage and repair, is surely present in neurons for the whole of the 
lifetime of the organism. This led them to the suggestion that the physical basis of 
memory could lie in the enzymatic modification of the DNA of nerve cells. They 
further indicated that a plausible suggestion would be that the modification consists 
of methylation (or demethylation) of DNA.

In 1999 Holliday [50] noted that long-term human memory can be retained for 
many decades. The exceptional stability required suggests that essential memory 
components may be based on chemical changes. He proposed that the enzymatic 
modification of cytosine in DNA to 5-methylcytosine may provide this necessary 
stability. The general model proposed is that specific sites in the DNA of neurons 
required for memory can exist in alternative methylated or non-methylated states. 
The initial signal, which is to be memorized, switches the DNA from a modified to 
an unmodified state, or vice versa. It should be noted that the presence or absence 
of DNA methylation at a particular sequence of DNA can be thought of as a 0, 1 
binary code. Thus, 10 such sites have 210 (1024) epigenotypes and potential pheno-
types, and 30 such sites could have up to 230, or 1.07 × 109 epigenotypes. Clearly, 
such a set of control mechanisms has enormous potential for neuronal specificity.

One form of long-term memory, associative learning, is contextual fear con-
ditioning [51]. As an example of contextual fear conditioning, a rodent is placed 
in a novel environment (a new context) and is then subjected to an electric shock 
(e.g. a footshock). The rodent then experiences robust fear learning, shown by a 
strong fear response, when the rodent is placed in that context again. Contextual 
fear conditioning occurs very rapidly (it can occur with a single event) and it has a 
lasting effect [51]. Kim and Jung [51] reviewed the evidence that the hippocampus 
region of the brain is where contextual fear memories are first stored, and that this 
storage is transient and does not remain in the hippocampus (Figure 6). (Note that 
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while this diagram shows a single hippocampus in a human brain, humans have 
two hippocampi, one in each hemisphere of the brain.) They point out, in rats, that 
contextual fear conditioning is abolished when the hippocampus is subjected to 
hippocampectomy just 1 day after conditioning. However, the rats retain a consider-
able amount of contextual fear when a long delay of 28 days is imposed between the 
time of conditioning and the time of hippocampectomy. Using localized lidocaine 
injections to impede brain functions, Frankland et al. [53] showed that much of the 
long term storage of contextual fear conditioning memory appears to take place in 
the anterior cingulate cortex (Figure 6) (Note that there is a single anterior cin-
gulate cortex of the human brain and it resides in the medial wall of the two cerebral 
hemispheres).

When methods to detect DNA methylation at specific locations on chromosomes 
became available, early experiments focused on particular genes known to be 
important for memory. One such gene is PP2B (protein phosphatase 2B), also known 
as calcineurin (CaN). This gene is of particular interest because it is the only Ca++-
activated protein phosphatase in the brain and a major regulator of key proteins 
essential for synaptic transmission and neuronal excitability [54]. Miller et al. [55] 
found that persistent, specific hypermethylation of the CaN gene in the anterior 
cingulate cortex was induced in rats by a single contextual fear conditioning event 
at a time when a long-term memory was formed. Demethylation at a specific locus 
also has been investigated. Brain-derived neurotrophic factor (BDNF) is known 
to be important in memory [56]. As reviewed by Lubin et al. [57], the bdnf gene 
consists of eight 5′ exons each linked to individual promoter regions, and a 3′ exon 
(IX). Lubin et al. [57] subjected rats to contextual fear conditioning. Their sequenc-
ing data confirmed active demethylation of bdnf exon IV after fear conditioning 
along with a strong increase in expression of exon IV in the hippocampus at 2 h 
after fear conditioning. As noted above [51], the hippocampus region of the brain 
is where contextual fear memories are first stored, but this storage is transient. In 
the experiments of Lubin et al. [57] the RNA expression of exon IV of the bdnf gene 
returned to baseline level by 24 h after the fear conditioning.

More recently, methods became available to identify differentially methylated 
genes in entire genomes. In 2016, Halder et al. [58] used mice subjected to contextual 
fear conditioning and evaluated whole neuron genomes for differentially methylated 
genes and for differentially expressed genes. In one part of their study they looked at 
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the hippocampal CA1 region, a region that is crucial for short-term memory forma-
tion during contextual fear conditioning. In the hippocampus 1 h after contextual 
fear conditioning, there were 675 demethylated genes and 613 hypermethylated 
genes. The consolidation of memory at 1 h after contextual fear conditioning was 
accompanied by the differential methylation of genes coding for ion channels, 
transcription factors, and constituents of the CREB and PKA signaling cascades, all 
of which have been shown to contribute to the early phases of learning and memory 
processes. These changes were transient in the hippocampal neurons, and almost 
none were present after 4 weeks. This also implies that the hypermethylated genes 
at 1 h then underwent active demethylation during the 4 weeks after contextual fear 
conditioning. Halder et al. [58], in addition, examined the anterior cingulate cortex, 
a brain region important for associative memory acquisition and maintenance of 
long-term memory. In the anterior cingulate cortex, at 1 h after contextual fear con-
ditioning, there were 6250 differentially methylated genes, including 2423 demethyl-
ated genes. At 4 weeks after training 1223 differentially methylated genes persisted, 
including 118 demethylated genes. In addition, at 4 weeks after training they found 
1700 differentially expressed genes in the anterior cingulate cortex. Their findings 
suggest that long-term memory (4 weeks) is associated with differential methylation 
of DNA and altered expression of more than a thousand genes in mouse neurons.

In 2017, Duke et al. [59], working with rats, studied neuron genomes in the 
hippocampus after contextual fear conditioning. At 24 h after contextual fear 
conditioning there were 2097 differentially methylated genes, with about 40% 
being demethylated. There were also 564 genes with upregulated expression and 
1048 genes with downregulated expression. Hypermethylated regions overlapping 
differentially expressed genes were associated with decreased gene expression, 
consistent with the concept that cytosine methylation is often a mechanism for sup-
pressing transcription. At 24 h after training, 9.2% of the genes in the rat genome of 
hippocampus neurons were differentially methylated. Gene Ontology term analysis 
was performed, and differentially expressed gene enrichment analysis revealed 
that many of the genes involved in synaptic functions were up-regulated 24 h after 
contextual fear conditioning in rats.

6.1 TET in learning and memory

In 2011, Guo et al. [26] were the first to show that TET1 is involved in neuronal 
activity-induced DNA demethylation and increased expression of memory-related 
genes in the mouse hippocampal dentate neurons. Demethylation of neuronal 
genes by TET1 appears to depend on TET1 being recruited to relevant genes. One 
mechanism of recruitment of TET appears to be by complexing with a specific 
“immediate early gene.” The immediate early genes (IEGs) are a class of genes that 
are rapidly and transiently activated by a variety of signaling cascades and phos-
phorylation events, usually in a protein synthesis-independent manner, in response 
to neuronal activation [60]. ERG1 (Krox-24, Zif268) is an IEG product and is a 
neuronal activity-induced transcription factor. ERG1 appears to play an important 
role in learning and memory [60]. ERG1 is required specifically for the consolida-
tion of long-term memory (while the related transcription factor ERG3 is primarily 
essential for short-term memory). As reviewed by Sun et al. [61], the short form 
of TET1, TET1s, is present in the brain. Sun et al. [61] experimentally showed that 
EGR1 and TET1s form a complex, independently of attachment to DNA. ERG1 
undergoes rapid induction and appears to attach to binding sites at many genes 
upon neuronal activation. When ERG1 binds to a site, it is able to recruit a TET1s 
enzyme to that site. This allows TET1s to cause demethylation of a gene downstream 
of the binding site of EGR1, with upregulation of that gene’s expression.



DNA Methylation Mechanism

30

while this diagram shows a single hippocampus in a human brain, humans have 
two hippocampi, one in each hemisphere of the brain.) They point out, in rats, that 
contextual fear conditioning is abolished when the hippocampus is subjected to 
hippocampectomy just 1 day after conditioning. However, the rats retain a consider-
able amount of contextual fear when a long delay of 28 days is imposed between the 
time of conditioning and the time of hippocampectomy. Using localized lidocaine 
injections to impede brain functions, Frankland et al. [53] showed that much of the 
long term storage of contextual fear conditioning memory appears to take place in 
the anterior cingulate cortex (Figure 6) (Note that there is a single anterior cin-
gulate cortex of the human brain and it resides in the medial wall of the two cerebral 
hemispheres).

When methods to detect DNA methylation at specific locations on chromosomes 
became available, early experiments focused on particular genes known to be 
important for memory. One such gene is PP2B (protein phosphatase 2B), also known 
as calcineurin (CaN). This gene is of particular interest because it is the only Ca++-
activated protein phosphatase in the brain and a major regulator of key proteins 
essential for synaptic transmission and neuronal excitability [54]. Miller et al. [55] 
found that persistent, specific hypermethylation of the CaN gene in the anterior 
cingulate cortex was induced in rats by a single contextual fear conditioning event 
at a time when a long-term memory was formed. Demethylation at a specific locus 
also has been investigated. Brain-derived neurotrophic factor (BDNF) is known 
to be important in memory [56]. As reviewed by Lubin et al. [57], the bdnf gene 
consists of eight 5′ exons each linked to individual promoter regions, and a 3′ exon 
(IX). Lubin et al. [57] subjected rats to contextual fear conditioning. Their sequenc-
ing data confirmed active demethylation of bdnf exon IV after fear conditioning 
along with a strong increase in expression of exon IV in the hippocampus at 2 h 
after fear conditioning. As noted above [51], the hippocampus region of the brain 
is where contextual fear memories are first stored, but this storage is transient. In 
the experiments of Lubin et al. [57] the RNA expression of exon IV of the bdnf gene 
returned to baseline level by 24 h after the fear conditioning.

More recently, methods became available to identify differentially methylated 
genes in entire genomes. In 2016, Halder et al. [58] used mice subjected to contextual 
fear conditioning and evaluated whole neuron genomes for differentially methylated 
genes and for differentially expressed genes. In one part of their study they looked at 
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the hippocampal CA1 region, a region that is crucial for short-term memory forma-
tion during contextual fear conditioning. In the hippocampus 1 h after contextual 
fear conditioning, there were 675 demethylated genes and 613 hypermethylated 
genes. The consolidation of memory at 1 h after contextual fear conditioning was 
accompanied by the differential methylation of genes coding for ion channels, 
transcription factors, and constituents of the CREB and PKA signaling cascades, all 
of which have been shown to contribute to the early phases of learning and memory 
processes. These changes were transient in the hippocampal neurons, and almost 
none were present after 4 weeks. This also implies that the hypermethylated genes 
at 1 h then underwent active demethylation during the 4 weeks after contextual fear 
conditioning. Halder et al. [58], in addition, examined the anterior cingulate cortex, 
a brain region important for associative memory acquisition and maintenance of 
long-term memory. In the anterior cingulate cortex, at 1 h after contextual fear con-
ditioning, there were 6250 differentially methylated genes, including 2423 demethyl-
ated genes. At 4 weeks after training 1223 differentially methylated genes persisted, 
including 118 demethylated genes. In addition, at 4 weeks after training they found 
1700 differentially expressed genes in the anterior cingulate cortex. Their findings 
suggest that long-term memory (4 weeks) is associated with differential methylation 
of DNA and altered expression of more than a thousand genes in mouse neurons.

In 2017, Duke et al. [59], working with rats, studied neuron genomes in the 
hippocampus after contextual fear conditioning. At 24 h after contextual fear 
conditioning there were 2097 differentially methylated genes, with about 40% 
being demethylated. There were also 564 genes with upregulated expression and 
1048 genes with downregulated expression. Hypermethylated regions overlapping 
differentially expressed genes were associated with decreased gene expression, 
consistent with the concept that cytosine methylation is often a mechanism for sup-
pressing transcription. At 24 h after training, 9.2% of the genes in the rat genome of 
hippocampus neurons were differentially methylated. Gene Ontology term analysis 
was performed, and differentially expressed gene enrichment analysis revealed 
that many of the genes involved in synaptic functions were up-regulated 24 h after 
contextual fear conditioning in rats.

6.1 TET in learning and memory

In 2011, Guo et al. [26] were the first to show that TET1 is involved in neuronal 
activity-induced DNA demethylation and increased expression of memory-related 
genes in the mouse hippocampal dentate neurons. Demethylation of neuronal 
genes by TET1 appears to depend on TET1 being recruited to relevant genes. One 
mechanism of recruitment of TET appears to be by complexing with a specific 
“immediate early gene.” The immediate early genes (IEGs) are a class of genes that 
are rapidly and transiently activated by a variety of signaling cascades and phos-
phorylation events, usually in a protein synthesis-independent manner, in response 
to neuronal activation [60]. ERG1 (Krox-24, Zif268) is an IEG product and is a 
neuronal activity-induced transcription factor. ERG1 appears to play an important 
role in learning and memory [60]. ERG1 is required specifically for the consolida-
tion of long-term memory (while the related transcription factor ERG3 is primarily 
essential for short-term memory). As reviewed by Sun et al. [61], the short form 
of TET1, TET1s, is present in the brain. Sun et al. [61] experimentally showed that 
EGR1 and TET1s form a complex, independently of attachment to DNA. ERG1 
undergoes rapid induction and appears to attach to binding sites at many genes 
upon neuronal activation. When ERG1 binds to a site, it is able to recruit a TET1s 
enzyme to that site. This allows TET1s to cause demethylation of a gene downstream 
of the binding site of EGR1, with upregulation of that gene’s expression.
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TET1 knockout mice [62] and ERG1 knockout mice [63] are viable. Both have 
some developmental deficiencies [62, 63], and TET1 knockouts [41, 43] and ERG1 
knockouts [64] each have some learning and memory deficiencies. Sun et al. [61] 
examined where differentially methylated regions occurred in the two types of 
knockout mice. Compared to wild-type mice, 322 and 2373 differentially methyl-
ated regions were identified in the brain frontal cortices (Figure 6) of EGR1 knock-
out and TET1 knockout mice respectively. There were 184 of these differentially 
methylated regions overlapping in the two types of knockout mice. This indicated 
that while ERG1 can bring TET1 to a DNA site to promote demethylation, TET1 is 
also brought too many other sites as well, presumably by other factors.

7. Conclusions

In evolutionary biology, the term exaptation refers to an evolutionary shift in 
the function of a trait over the course of natural selection [65]. For instance, a trait 
may evolve initially because it serves a particular function, but during the course of 
further evolution it may come to serve another function or an additional function. 
Such shifts in function are thought to be common in evolutionary history. As one 
example, bird feathers likely evolved initially for temperature regulation, and were 
later adapted for flight [65].

The idea that the function of a trait may shift during evolution was for many 
decades referred to as “preadaptation”. However, this term suggests teleology in 
biology in conflict with natural selection and thus the term “preadaptation” has 
been replaced in the literature by “exaptation.” This concept has recently been 
applied to the cognitive neurosciences [66]. It was proposed that substantial 
changes in function such as development of contemporary complex cognition 
including grammatical language, reading, writing and calculation abilities have 
occurred without evident changes in brain morphology over the past 150,000 years.

The evolutionary emergence of embryonic development also appears to have 
depended on an early exaptation. Enzymatic pathways that repair damage to the 
DNA genome likely existed very early in the history of life [67]. Processes that 
repair DNA, such as base excision repair, can also facilitate epigenetic modifica-
tions, particularly demethylation reactions, that alter gene expression and hence 
the function of cell lineages. Such epigenetic modifications play a central role in 
embryonic development including neurogenesis. Epigenetic alterations such as 
5-methylcytosine are structurally similar to unwanted damages that are the primary 
target of DNA repair processes. Thus acquiring the new function of recogniz-
ing epigenetically methylated bases may have been enabled by this similarity. 
However, in the case of epigenetic demethylations, the effect of removing methyl 
groups and restoring the genome is to allow expression of genes that had been 
previously epigenetically silenced by methylation. Methylation and demethylation 
are reciprocal processes that appear to act coordinately to direct gene expression 
during embryonic development. DNA methylation reactions often cause silencing 
of gene expression, while demethylation reactions can reverse this process to allow 
expression. These mechanisms for controlling gene expression and the consequent 
facilitation of cell differentiation leading to embryonic development may have 
emerged in evolution as early as the origin of multicellular organisms more than 1 
billion years ago [68].

Just as the evolutionary shift in the function of DNA repair appears to be 
central to the emergence of embryonic development and neurogenesis, this derived 
capability likely also gave rise to memory and learning. The molecular processes of 
epigenetic methylation and demethylation that underlie embryonic development 
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also appear to underlie memory and learning. Thus the capacity for memory and 
learning may have evolved from a set of earlier epigenetic capabilities whose func-
tion was to promote embryonic reprogramming and neurogenesis.

In several neurodegenerative diseases epigenetic alterations appear to underlie 
characteristic features of the disease phenotype [69]. Proper functioning of the 
nervous system likely depends on DNA repair processes that not only restore DNA 
sequence information, but also facilitate normal gene expression by maintaining 
an appropriate set of epigenetic markers, particularly DNA methylation patterns. 
Understanding changes in DNA methylation patterns during early development and 
neurogenesis may contribute to the prevention or treatment of particular neurode-
generative diseases.

Parkinson disease patients treated with levodopa are subject to dyskinesia, 
a persistent behavioral sensitization that develops after levodopa exposure. 
Reorganization of DNA methylation patterns in the genome due to aberrant 
expression of DNA demethylation enzymes appears to have a pivotal role in the 
development of levodopa-induced dyskinesia [70]. Modification of DNA methyla-
tion is considered to be a promising novel therapeutic target for use in preventing 
or reversing dyskinetic behaviors [70]. Huntington’s disease is a neurodegenera-
tive disease that typically becomes apparent in midlife. This disease is associated 
with substantial changes in brain DNA methylation levels [71]. Aicardi-Goutieres 
syndrome (AGS) is a neurodegenerative condition characterized by early onset, 
often in infancy. Cells deficient in AGS proteins display a substantial 5–20% reduc-
tion in genomic methylation levels overall, and this reduction is distributed widely 
in the genome [72]. The fragile X syndrome is a prevalent form of mental retarda-
tion. This condition is caused by loss of expression of the FMR1 gene, usually due 
to expansion of a CGG repeat sequence (>200 repeats) in the first exon of FMR1. 
This sequence expansion leads to abnormal methylation of the promoter region 
that then causes transcriptional silencing of the FMR1 gene and an absence of the 
fragile X mental retardation protein [73]. Several studies have described methyla-
tion alterations in various regions of the brain in Alzheimer’s disease, as reviewed 
by Yokoyama et al. [74]. The results of these studies, so far, appear to be somewhat 
contradictory and additional studies will be needed to provide clear conclusions. 
These various studies of DNA methylation alterations are still at an early stage, but 
nevertheless suggest that as our basic understanding of how epigenetic DNA meth-
ylation patterns influence neurodegenerative disease advances, this understanding 
will contribute to disease prevention and treatment.
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DNA genome likely existed very early in the history of life [67]. Processes that 
repair DNA, such as base excision repair, can also facilitate epigenetic modifica-
tions, particularly demethylation reactions, that alter gene expression and hence 
the function of cell lineages. Such epigenetic modifications play a central role in 
embryonic development including neurogenesis. Epigenetic alterations such as 
5-methylcytosine are structurally similar to unwanted damages that are the primary 
target of DNA repair processes. Thus acquiring the new function of recogniz-
ing epigenetically methylated bases may have been enabled by this similarity. 
However, in the case of epigenetic demethylations, the effect of removing methyl 
groups and restoring the genome is to allow expression of genes that had been 
previously epigenetically silenced by methylation. Methylation and demethylation 
are reciprocal processes that appear to act coordinately to direct gene expression 
during embryonic development. DNA methylation reactions often cause silencing 
of gene expression, while demethylation reactions can reverse this process to allow 
expression. These mechanisms for controlling gene expression and the consequent 
facilitation of cell differentiation leading to embryonic development may have 
emerged in evolution as early as the origin of multicellular organisms more than 1 
billion years ago [68].

Just as the evolutionary shift in the function of DNA repair appears to be 
central to the emergence of embryonic development and neurogenesis, this derived 
capability likely also gave rise to memory and learning. The molecular processes of 
epigenetic methylation and demethylation that underlie embryonic development 
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also appear to underlie memory and learning. Thus the capacity for memory and 
learning may have evolved from a set of earlier epigenetic capabilities whose func-
tion was to promote embryonic reprogramming and neurogenesis.

In several neurodegenerative diseases epigenetic alterations appear to underlie 
characteristic features of the disease phenotype [69]. Proper functioning of the 
nervous system likely depends on DNA repair processes that not only restore DNA 
sequence information, but also facilitate normal gene expression by maintaining 
an appropriate set of epigenetic markers, particularly DNA methylation patterns. 
Understanding changes in DNA methylation patterns during early development and 
neurogenesis may contribute to the prevention or treatment of particular neurode-
generative diseases.

Parkinson disease patients treated with levodopa are subject to dyskinesia, 
a persistent behavioral sensitization that develops after levodopa exposure. 
Reorganization of DNA methylation patterns in the genome due to aberrant 
expression of DNA demethylation enzymes appears to have a pivotal role in the 
development of levodopa-induced dyskinesia [70]. Modification of DNA methyla-
tion is considered to be a promising novel therapeutic target for use in preventing 
or reversing dyskinetic behaviors [70]. Huntington’s disease is a neurodegenera-
tive disease that typically becomes apparent in midlife. This disease is associated 
with substantial changes in brain DNA methylation levels [71]. Aicardi-Goutieres 
syndrome (AGS) is a neurodegenerative condition characterized by early onset, 
often in infancy. Cells deficient in AGS proteins display a substantial 5–20% reduc-
tion in genomic methylation levels overall, and this reduction is distributed widely 
in the genome [72]. The fragile X syndrome is a prevalent form of mental retarda-
tion. This condition is caused by loss of expression of the FMR1 gene, usually due 
to expansion of a CGG repeat sequence (>200 repeats) in the first exon of FMR1. 
This sequence expansion leads to abnormal methylation of the promoter region 
that then causes transcriptional silencing of the FMR1 gene and an absence of the 
fragile X mental retardation protein [73]. Several studies have described methyla-
tion alterations in various regions of the brain in Alzheimer’s disease, as reviewed 
by Yokoyama et al. [74]. The results of these studies, so far, appear to be somewhat 
contradictory and additional studies will be needed to provide clear conclusions. 
These various studies of DNA methylation alterations are still at an early stage, but 
nevertheless suggest that as our basic understanding of how epigenetic DNA meth-
ylation patterns influence neurodegenerative disease advances, this understanding 
will contribute to disease prevention and treatment.
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Chapter 3

Global DNA Methylation 
as a Potential Underlying 
Mechanism of Congenital Disease 
Development
Aleksandra Stanković

Abstract

During the last decade, quantitative measurement of the methylation status in 
white blood cells (WBCs) has been used as a potential biomarker in a variety of 
diseases. Long interspersed nucleotide element-1 (LINE-1) has been used widely as 
a surrogate marker of global DNA methylation. Altered maternal DNA methylation 
is suggested to be an underlying mechanism in the trisomy 21 and the development 
of birth defects, including congenital heart defects (CHDs). The molecular mecha-
nisms that underlie the epigenetic regulation of gene transcription are independent 
of DNA sequence, but they do depend on environmental stimuli, which are espe-
cially important in fetal development in utero environment. Folic acid deficiency 
and genetic variations of folate pathway genes, such as the methylenetetrahydro-
folate reductase gene (MTHFR), are foremost among these maternal risk factors. 
Also, there are exogenous risk factors (cigarette smoking, alcohol intake, medica-
tion use, periconceptional maternal supplementation, body mass index, and dietary 
habits) with impact on maternal LINE-1 methylation. MTHFR C677T genotype/
diet and other environmental factors as significant predictors of LINE-1 DNA 
methylation in regard to congenital diseases will be discussed in the chapter.

Keywords: DNA methylation, LINE-1, congenital anomaly, development, nutrition, 
folate intake, genotype

1. Introduction

According to WHO, congenital anomalies (CAs) are birth defects that can be 
defined as structural or functional malformations [1]. CAs occur during intra-
uterine life and can be identified prenatally or at birth or later in infancy. CAs are 
important causes of infant and childhood deaths and chronic illness/disability. 
Long-term disability may have significant impacts on patients, families, health-
care systems, and societies. Some CAs can be prevented by adequate intake of folic 
acid (FA) through fortification of staple foods or supplementation. Among severe 
congenital anomalies, the most common ones are congenital heart defects (CHDs), 
neural tube defects (NTD), and Down syndrome (DS). For renal dysplasia an 
increasing trend was observed recently in Europe [2]. Several factors have been 
proposed to have a significant role in the development of CAs: one or more genes; 
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important causes of infant and childhood deaths and chronic illness/disability. 
Long-term disability may have significant impacts on patients, families, health-
care systems, and societies. Some CAs can be prevented by adequate intake of folic 
acid (FA) through fortification of staple foods or supplementation. Among severe 
congenital anomalies, the most common ones are congenital heart defects (CHDs), 
neural tube defects (NTD), and Down syndrome (DS). For renal dysplasia an 
increasing trend was observed recently in Europe [2]. Several factors have been 
proposed to have a significant role in the development of CAs: one or more genes; 
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infectious, maternal diabetes or obesity; and nutritional and environmental factors 
[2]. Identification of the exact cause/causes recently became even more complicated 
with addition of new factors. Epigenetic factors, as it is DNA methylation, have 
been shown to have an impact on the gene expression, through modulation by 
nutrition or environmental stimuli that occur during intrauterine development, but 
could even be a consequence of maternal or paternal lifestyle factors. Altered DNA 
methylation was suggested to be an underlying mechanism in the development of 
CAs, CHDs, NTD, congenital anomaly of the kidney and urinary tract (CAKUT), 
and autism spectrum disorders (ASD) and in imprinting genetic disorders [3–12]. 
Congenital heart defects (CHDs) are the most common birth defects in humans 
with a prevalence of 0.8% [13, 14]. Only about 15–20% of CHDs can be attributed 
to known causes, whereas chromosomal abnormalities occur in 5–10% of cases 
[14]. The highest association with major heart abnormalities is observed in DS [15]. 
CHDs are reported in approximately 40% of DS cases, typically involving septal 
defects such as atrial septal defect, ventricular septal defect, and complete atrio-
ventricular canal [16]. The etiology of most CHDs remains largely unknown, but it 
is considered to involve multiple genetic, epigenetic, environmental, and lifestyle 
factors [13, 14, 17]. Risk factors, including aging, body mass index (BMI), cigarette 
smoking, alcohol intake, folate deficiency, MTHFR polymorphisms, and hyper-
homocysteinemia, have been proposed to be the modulators of DNA methylation 
patterns [3–6, 18–20]. Maternal intrauterine milieu, such as maternal environment 
during pregnancy (hypoxia, stress, obesity, diabetes, toxins, altered nutrition, 
inflammation, and reduced utero-placental blood flow) could affect fetal methyla-
tion programming, thereby affecting fetal growth and the lifelong health of the 
fetus [21, 22]. It was reported that the maternal LINE-1 hypomethylation is linked 
with the increased risk for non-syndromic CHD, particularly septal defects [4, 5].

2. DNA gene-specific methylation and global DNA methylation

DNA methylation is a key factor of the epigenetic machinery that is responsible 
for regulating gene expression and, therefore, cell function. This component is one 
of the most important in mammalian embryonic development, differentiation, and 
many of congenital and complex diseases [3–6, 23–25]. The DNA methylation has 
nonrandom, well-regulated, and tissue-specific patterns [26]. Abnormal gene-
specific demethylation and global hypomethylation (involving repeat sequences 
throughout the genome) can potentially lead to overexpression of genes and activa-
tion of transposable elements contributing to disease. Regulation of gene expression 
through methylated or unmethylated human genome can exist at approximately 
3 × 107 CpG short sequences of 5–10 CpG dinucleotides [27, 28].

DNA methylation is required in many processes such as X chromosome inac-
tivation, imprinting, embryogenesis, gametogenesis, and silencing of repetitive 
DNA elements [29]. It refers to the covalent addition of a methyl group to the 
cytosine located at the 5′-position to guanosine in a CpG dinucleotide, catalyzed 
by the activity of three DNA methyltransferases (DNMTs) [30]. Recent findings of 
tissue-specific expression of ten-eleven translocation (TET) proteins revealed that 
this epigenetic event is not irreversible and, even more, TET was shown to be able to 
modify methylcytosine and potentially erase DNA methylation [31].

Each of the three DNMT genes was found to be mutated in specific and diverse 
human syndromes [32]. DNA methylation is required to protect chromosomal 
integrity, by preventing reactivation of endoparasitic sequences that cause chro-
mosomal instability, translocations, increased mutation events, loss of imprinting, 
and gene disruption [29]. Genome-wide methylation profiling has recently become 
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possible and revealed genes of interest that were enriched in multiple biological 
processes involved in fetal development [3], and specific hypermethylation was 
linked to gene silencing in some pediatric disorders [33, 34]. Moreover, epigen-
etic mechanisms including parent of origin-specific DNA methylation include 
genomic imprinting as restriction of gene expression [35]. Moreover, imprinting 
in embryos was found to be parentally sex-specific, and this effect could be more 
complex than previously suggested [36]. Hypomethylation of imprinted loci (HIL) 
throughout the genome was observed in patients with imprinted disorders. Among 
approximately 70 known imprinted genes, there are some that are causing disorders 
affecting growth, including one in the DS critical region [35]. Aberrant methylation 
in four maternally methylated regions was observed at whole genome methylation 
analysis. However, methylation of a CpG island does not necessarily lead to gene 
silencing. For example, the gene for telomerase has been shown to be activated by 
methylation [37]. Telomerases are crucial elements in maintaining cell life, could 
possibly reverse an aging mechanism, and rejuvenate cell viability. Enzyme telom-
erase modulates elongation of telomeres, by adding repeating DNA sequences to 
the ends of the chromosomes, and telomere serves as a bioprotective mechanism of 
chromosome attrition at each cell division [38]. Telomeres could become too short 
to allow replication or dysfunctional in some congenital disease which may lead 
to chromosome instability or cell death [39]. Besides DNA coding region, studies 
have shown that DNA methylation of noncoding DNA plays an important role in 
modulating structure and dynamics of chromatin, as well as many other chromatin-
dependent processes and their associated biological functions [27].

2.1 LINE-1 DNA methylation

Gene-specific DNA methylation analysis does not provide a global picture of 
DNA methylation changes within a genome. Global DNA hypomethylation occurs 
mainly at heavily methylated noncoding regions of DNA, particularly repeat 
sequences and transposable elements [40, 41].

In humans, nearly 80% CpG islands occur in transposon-derived sequences, 
throughout the genome, such as long interspersed nuclear elements (LINEs) and 
short interspersed nuclear elements (SINEs) [42]. LINE-1 is the largest member of 
the LINE family with more than 500,000 copies comprising approximately 17% 
of the genome [43]. CpG islands within LINE-1 sequences and their methylation 
levels correlate with the global genomic DNA methylation level [44, 45], so LINE-1 
methylation has been widely used as a surrogate marker of global genomic DNA 
methylation [46], and methylation status of LINE-1 in white blood cells (WBC) 
is a potential biomarker in a variety of diseases [4, 45–48] in research on cancer, 
cardiovascular, neurodegenerative, and CAs [3–6, 48–51]. Human genome has on 
average 80–100 active LINE-1, and it has been estimated that new LINE-1 insertion 
in genome occurs in at least 1 in every 50 humans within a parental germ cell or 
during early fetal development [40]. Thus, LINE-1 hypomethylation in the parental 
germline, along with altered miRNA expression, might also significantly affect 
genome stability during the fetal development [52, 53].

3. DNA methylation during gametogenesis and embryogenesis

DNA methylation changes are particularly dynamic in gametogenesis and early 
embryogenesis. During the course of mammalian differentiation and develop-
ment, DNA methylation undergoes remodeling to eventually generate the cell 
type-specific methylation patterns, found in somatic cells of adults. During the 
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infectious, maternal diabetes or obesity; and nutritional and environmental factors 
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CHDs are reported in approximately 40% of DS cases, typically involving septal 
defects such as atrial septal defect, ventricular septal defect, and complete atrio-
ventricular canal [16]. The etiology of most CHDs remains largely unknown, but it 
is considered to involve multiple genetic, epigenetic, environmental, and lifestyle 
factors [13, 14, 17]. Risk factors, including aging, body mass index (BMI), cigarette 
smoking, alcohol intake, folate deficiency, MTHFR polymorphisms, and hyper-
homocysteinemia, have been proposed to be the modulators of DNA methylation 
patterns [3–6, 18–20]. Maternal intrauterine milieu, such as maternal environment 
during pregnancy (hypoxia, stress, obesity, diabetes, toxins, altered nutrition, 
inflammation, and reduced utero-placental blood flow) could affect fetal methyla-
tion programming, thereby affecting fetal growth and the lifelong health of the 
fetus [21, 22]. It was reported that the maternal LINE-1 hypomethylation is linked 
with the increased risk for non-syndromic CHD, particularly septal defects [4, 5].

2. DNA gene-specific methylation and global DNA methylation

DNA methylation is a key factor of the epigenetic machinery that is responsible 
for regulating gene expression and, therefore, cell function. This component is one 
of the most important in mammalian embryonic development, differentiation, and 
many of congenital and complex diseases [3–6, 23–25]. The DNA methylation has 
nonrandom, well-regulated, and tissue-specific patterns [26]. Abnormal gene-
specific demethylation and global hypomethylation (involving repeat sequences 
throughout the genome) can potentially lead to overexpression of genes and activa-
tion of transposable elements contributing to disease. Regulation of gene expression 
through methylated or unmethylated human genome can exist at approximately 
3 × 107 CpG short sequences of 5–10 CpG dinucleotides [27, 28].

DNA methylation is required in many processes such as X chromosome inac-
tivation, imprinting, embryogenesis, gametogenesis, and silencing of repetitive 
DNA elements [29]. It refers to the covalent addition of a methyl group to the 
cytosine located at the 5′-position to guanosine in a CpG dinucleotide, catalyzed 
by the activity of three DNA methyltransferases (DNMTs) [30]. Recent findings of 
tissue-specific expression of ten-eleven translocation (TET) proteins revealed that 
this epigenetic event is not irreversible and, even more, TET was shown to be able to 
modify methylcytosine and potentially erase DNA methylation [31].

Each of the three DNMT genes was found to be mutated in specific and diverse 
human syndromes [32]. DNA methylation is required to protect chromosomal 
integrity, by preventing reactivation of endoparasitic sequences that cause chro-
mosomal instability, translocations, increased mutation events, loss of imprinting, 
and gene disruption [29]. Genome-wide methylation profiling has recently become 
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possible and revealed genes of interest that were enriched in multiple biological 
processes involved in fetal development [3], and specific hypermethylation was 
linked to gene silencing in some pediatric disorders [33, 34]. Moreover, epigen-
etic mechanisms including parent of origin-specific DNA methylation include 
genomic imprinting as restriction of gene expression [35]. Moreover, imprinting 
in embryos was found to be parentally sex-specific, and this effect could be more 
complex than previously suggested [36]. Hypomethylation of imprinted loci (HIL) 
throughout the genome was observed in patients with imprinted disorders. Among 
approximately 70 known imprinted genes, there are some that are causing disorders 
affecting growth, including one in the DS critical region [35]. Aberrant methylation 
in four maternally methylated regions was observed at whole genome methylation 
analysis. However, methylation of a CpG island does not necessarily lead to gene 
silencing. For example, the gene for telomerase has been shown to be activated by 
methylation [37]. Telomerases are crucial elements in maintaining cell life, could 
possibly reverse an aging mechanism, and rejuvenate cell viability. Enzyme telom-
erase modulates elongation of telomeres, by adding repeating DNA sequences to 
the ends of the chromosomes, and telomere serves as a bioprotective mechanism of 
chromosome attrition at each cell division [38]. Telomeres could become too short 
to allow replication or dysfunctional in some congenital disease which may lead 
to chromosome instability or cell death [39]. Besides DNA coding region, studies 
have shown that DNA methylation of noncoding DNA plays an important role in 
modulating structure and dynamics of chromatin, as well as many other chromatin-
dependent processes and their associated biological functions [27].

2.1 LINE-1 DNA methylation

Gene-specific DNA methylation analysis does not provide a global picture of 
DNA methylation changes within a genome. Global DNA hypomethylation occurs 
mainly at heavily methylated noncoding regions of DNA, particularly repeat 
sequences and transposable elements [40, 41].

In humans, nearly 80% CpG islands occur in transposon-derived sequences, 
throughout the genome, such as long interspersed nuclear elements (LINEs) and 
short interspersed nuclear elements (SINEs) [42]. LINE-1 is the largest member of 
the LINE family with more than 500,000 copies comprising approximately 17% 
of the genome [43]. CpG islands within LINE-1 sequences and their methylation 
levels correlate with the global genomic DNA methylation level [44, 45], so LINE-1 
methylation has been widely used as a surrogate marker of global genomic DNA 
methylation [46], and methylation status of LINE-1 in white blood cells (WBC) 
is a potential biomarker in a variety of diseases [4, 45–48] in research on cancer, 
cardiovascular, neurodegenerative, and CAs [3–6, 48–51]. Human genome has on 
average 80–100 active LINE-1, and it has been estimated that new LINE-1 insertion 
in genome occurs in at least 1 in every 50 humans within a parental germ cell or 
during early fetal development [40]. Thus, LINE-1 hypomethylation in the parental 
germline, along with altered miRNA expression, might also significantly affect 
genome stability during the fetal development [52, 53].

3. DNA methylation during gametogenesis and embryogenesis

DNA methylation changes are particularly dynamic in gametogenesis and early 
embryogenesis. During the course of mammalian differentiation and develop-
ment, DNA methylation undergoes remodeling to eventually generate the cell 
type-specific methylation patterns, found in somatic cells of adults. During the 
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gametogenesis, DNA is demethylated within each developing germ cell and then 
remethylated/reset to the methylation patterns specific to gametogenesis. The 
differentially methylated regions (DMRs) are sperm and egg specific [54, 55]. This 
process establishing the specific methylation of imprinted loci before fertilization, 
as well as other non-imprinted loci, may also be subject to at least partial erasure of 
methylation during gametogenesis [56–58]. The zygotic DNA demethylation after 
fertilization in mouse embryogenesis affects parental genome on a genome-wide 
level including single gene loci and repetitive elements. The maternal genome-wide 
methylation is unaffected [59]. This process changes the methylation patterns of the 
gametes and establishes the DNA methylation patterns found in somatic differenti-
ated cells in adults through induced expression of DNMT and de novo methylation 
of genome in post-implantation mouse embryos [60–62]. It has been shown that in 
small studies of human embryos, there is a demethylation process at the 4-cell stage 
followed by remethylation at late morula [63]. Even more, expression patterns of 
DNMTs after cryopreservation of human embryos could be disturbed and could 
have long-term developmental consequences [64] that suggest the importance 
of DNA methylation program maintenance during development. Periods during 
gametogenesis and embryogenesis may also present windows of opportunity for 
environmental influences on DNA methylation pattern. The DMRs are established 
during gametogenesis at imprinted and non-imprinted loci and are susceptible to 
environmental factors [65, 66]. LINE-1 methylation in sperm could be a risk marker 
of infertility in man at nicotine/alcohol exposure [67]. It is also possible to alter 
DNA methylation levels and patterns within intact mammalian cells by treatment 
with various chemical inhibitors, DNA-demethylating drugs, which have recently 
been introduced as potential therapeutic agents for the treatment of human dis-
eases, particularly myelodysplastic syndromes [68].

The dynamic reprogramming and other epigenetic patterns which could affect 
normal patterns of gene expression/genome stability during development could 
lead to an increased risk of CAs or complex diseases later in life [65–67].

4.  LINE-1 DNA methylation and environmental influences  
(e.g., diet and nutrition)

Previous research was focused on the effect of specific foods on the DNA 
methylation process, but there is currently growing interest in determining how 
dietary patterns may affect global and local DNA methylation in humans. There are 
some studies that suggest that frequent use of vegetables and/or fruits decreased 
the risk of LINE-1 hypomethylation [69–71]. Biological explanation could be in 
beneficial modulation of pathways involved in epigenetic mechanisms by intake of 
high variety of nutritive and bioactive substances included in fruit- and vegetable-
rich food. These components were polyphenols; flavonoids; carotenoids; folates; 
vitamins C, E, and A; minerals; and fibers [72, 73]. As it is known that many crucial 
cellular processes depend on folate, including DNA methylation [74], low folate 
intake in daily food could be supplemented by synthetic form as folic acid (FA) 
and through fortification programs [75]. Even more, harmful effect of particulate 
matter exposure on LINE-1 methylation level could be counteracted by healthy food 
consumption such as Mediterranean diet [76]. Also, fatty acids can modify DNA 
methylation in vitro, but limited information is available from human studies. Some 
studies observed that intake of vegetable oil/dietary fat seemed to be negatively cor-
related with LINE-1 methylation [69, 77]. Others show no changes in methylation 
profile after supplementation with grape seed flavanols [78]. The interindividual 
variation in blood cell DNA methylation in interventional studies, which are usually 
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rather small, demands studies with larger sample size to avoid masking the possibly 
subtle changes in DNA methylation in response to dietary factors.

4.1  Methylenetetrahydrofolate reductase (MTHFR), folate metabolism,  
and its role in DNA methylation

Folate can be a limiting factor in many biological reactions. The methylene 
tetrahydrofolate reductase (MTHFR) is an enzyme important for the folate metabo-
lism which is in the basis of the DNA, RNA, and protein methylation. Genomic 
DNA methylation directly correlates with folate status and inversely with plasma 
homocysteine (tHcy) levels [79–82]. The one-carbon pathway and thus DNA 
methylation function under tight regulatory controls. S-Adenosyl methionine 
(SAM) is the major regulator of folate-dependent Hcy remethylation because it 
is a potent inhibitor of MTHFR. When the SAM concentration is high, MTHFR is 
inhibited and hence remethylation of homocysteine. Conversely, if SAM concentra-
tions are low, remethylation of homocysteine is favored. Hyperhomocysteinemia is 
an emerging risk factor for various cardiovascular diseases, and, with the increasing 
significance of this genetic variant in the view of morbidity and mortality impact 
on the patients, further prevention strategies and nutritional recommendations 
with the supplementation of folate would be necessary as part of future health 
education. Other essential nutrients that are naturally present in some foods 
or as dietary supplement, like vitamin B6, B12, B2, and choline, are necessary in 
addition to folate to maintain DNA methylation [83]. It is also recognized that 
S-adenosylhomocysteine (SAH) functions as a potent product inhibitor of SAM-
dependent methyltransferases [84]. For this reason, continual hydrolysis of SAH 
to homocysteine is important for DNA methylation [85]. Plasma homocysteine 
elevation has been associated with increased concentration of SAH, and increased 
SAH was in correlation with global DNA hypomethylation [86]. Methionine is the 
substrate for SAM, a cofactor and methyl group donor for numerous methylation 
reactions including the methylation of DNA, RNA, and histones [87]. A number of 
SAM-dependent reactions have regulatory roles by affecting both, genome stability 
and gene transcription [88].

4.2  Epigenetic, genetic, and nutrigenomic risk factors for congenital 
diseases: DNA methylation, global DNA methylation, miRNA, MTHFR 
polymorphism, and low folate status

Low folate status (as defined by various measures including blood folate 
concentrations, folate intake, and/or FA intake) has been associated with an 
increased risk of cardiovascular disease, cancers, CAs, CHD, and NTD [5, 6, 
89–94]. Also, this deficiency is clearly detrimental to the embryo and shows 
possible longer-term risks of diabetes or other health outcomes and health 
problems associated with child mortality and morbidity [95]. Periconceptional 
supplementation of FA also reduces the risk of congenital heart diseases (previous 
ref) and preterm birth and low birth weight [96, 97]. The prevalence of neural 
tube defects (NTDs) has been significantly lowered in more than 70 countries 
worldwide by applying fortification with FA, but in all European governments 
there is still an issue with FA fortification of centrally processed and widely 
eaten foods in prevention of unwanted birth outcomes [98]. The mechanisms by 
which low folate status contributes to these disorders have not been understood 
completely but, to a certain extent, could be explained by different molecular 
pathways. Folate depletion could be a destabilizing factor during DNA replication. 
If inadequate folate availability is present during cell division, the production of 
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gametogenesis, DNA is demethylated within each developing germ cell and then 
remethylated/reset to the methylation patterns specific to gametogenesis. The 
differentially methylated regions (DMRs) are sperm and egg specific [54, 55]. This 
process establishing the specific methylation of imprinted loci before fertilization, 
as well as other non-imprinted loci, may also be subject to at least partial erasure of 
methylation during gametogenesis [56–58]. The zygotic DNA demethylation after 
fertilization in mouse embryogenesis affects parental genome on a genome-wide 
level including single gene loci and repetitive elements. The maternal genome-wide 
methylation is unaffected [59]. This process changes the methylation patterns of the 
gametes and establishes the DNA methylation patterns found in somatic differenti-
ated cells in adults through induced expression of DNMT and de novo methylation 
of genome in post-implantation mouse embryos [60–62]. It has been shown that in 
small studies of human embryos, there is a demethylation process at the 4-cell stage 
followed by remethylation at late morula [63]. Even more, expression patterns of 
DNMTs after cryopreservation of human embryos could be disturbed and could 
have long-term developmental consequences [64] that suggest the importance 
of DNA methylation program maintenance during development. Periods during 
gametogenesis and embryogenesis may also present windows of opportunity for 
environmental influences on DNA methylation pattern. The DMRs are established 
during gametogenesis at imprinted and non-imprinted loci and are susceptible to 
environmental factors [65, 66]. LINE-1 methylation in sperm could be a risk marker 
of infertility in man at nicotine/alcohol exposure [67]. It is also possible to alter 
DNA methylation levels and patterns within intact mammalian cells by treatment 
with various chemical inhibitors, DNA-demethylating drugs, which have recently 
been introduced as potential therapeutic agents for the treatment of human dis-
eases, particularly myelodysplastic syndromes [68].

The dynamic reprogramming and other epigenetic patterns which could affect 
normal patterns of gene expression/genome stability during development could 
lead to an increased risk of CAs or complex diseases later in life [65–67].

4.  LINE-1 DNA methylation and environmental influences  
(e.g., diet and nutrition)

Previous research was focused on the effect of specific foods on the DNA 
methylation process, but there is currently growing interest in determining how 
dietary patterns may affect global and local DNA methylation in humans. There are 
some studies that suggest that frequent use of vegetables and/or fruits decreased 
the risk of LINE-1 hypomethylation [69–71]. Biological explanation could be in 
beneficial modulation of pathways involved in epigenetic mechanisms by intake of 
high variety of nutritive and bioactive substances included in fruit- and vegetable-
rich food. These components were polyphenols; flavonoids; carotenoids; folates; 
vitamins C, E, and A; minerals; and fibers [72, 73]. As it is known that many crucial 
cellular processes depend on folate, including DNA methylation [74], low folate 
intake in daily food could be supplemented by synthetic form as folic acid (FA) 
and through fortification programs [75]. Even more, harmful effect of particulate 
matter exposure on LINE-1 methylation level could be counteracted by healthy food 
consumption such as Mediterranean diet [76]. Also, fatty acids can modify DNA 
methylation in vitro, but limited information is available from human studies. Some 
studies observed that intake of vegetable oil/dietary fat seemed to be negatively cor-
related with LINE-1 methylation [69, 77]. Others show no changes in methylation 
profile after supplementation with grape seed flavanols [78]. The interindividual 
variation in blood cell DNA methylation in interventional studies, which are usually 
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rather small, demands studies with larger sample size to avoid masking the possibly 
subtle changes in DNA methylation in response to dietary factors.

4.1  Methylenetetrahydrofolate reductase (MTHFR), folate metabolism,  
and its role in DNA methylation

Folate can be a limiting factor in many biological reactions. The methylene 
tetrahydrofolate reductase (MTHFR) is an enzyme important for the folate metabo-
lism which is in the basis of the DNA, RNA, and protein methylation. Genomic 
DNA methylation directly correlates with folate status and inversely with plasma 
homocysteine (tHcy) levels [79–82]. The one-carbon pathway and thus DNA 
methylation function under tight regulatory controls. S-Adenosyl methionine 
(SAM) is the major regulator of folate-dependent Hcy remethylation because it 
is a potent inhibitor of MTHFR. When the SAM concentration is high, MTHFR is 
inhibited and hence remethylation of homocysteine. Conversely, if SAM concentra-
tions are low, remethylation of homocysteine is favored. Hyperhomocysteinemia is 
an emerging risk factor for various cardiovascular diseases, and, with the increasing 
significance of this genetic variant in the view of morbidity and mortality impact 
on the patients, further prevention strategies and nutritional recommendations 
with the supplementation of folate would be necessary as part of future health 
education. Other essential nutrients that are naturally present in some foods 
or as dietary supplement, like vitamin B6, B12, B2, and choline, are necessary in 
addition to folate to maintain DNA methylation [83]. It is also recognized that 
S-adenosylhomocysteine (SAH) functions as a potent product inhibitor of SAM-
dependent methyltransferases [84]. For this reason, continual hydrolysis of SAH 
to homocysteine is important for DNA methylation [85]. Plasma homocysteine 
elevation has been associated with increased concentration of SAH, and increased 
SAH was in correlation with global DNA hypomethylation [86]. Methionine is the 
substrate for SAM, a cofactor and methyl group donor for numerous methylation 
reactions including the methylation of DNA, RNA, and histones [87]. A number of 
SAM-dependent reactions have regulatory roles by affecting both, genome stability 
and gene transcription [88].

4.2  Epigenetic, genetic, and nutrigenomic risk factors for congenital 
diseases: DNA methylation, global DNA methylation, miRNA, MTHFR 
polymorphism, and low folate status

Low folate status (as defined by various measures including blood folate 
concentrations, folate intake, and/or FA intake) has been associated with an 
increased risk of cardiovascular disease, cancers, CAs, CHD, and NTD [5, 6, 
89–94]. Also, this deficiency is clearly detrimental to the embryo and shows 
possible longer-term risks of diabetes or other health outcomes and health 
problems associated with child mortality and morbidity [95]. Periconceptional 
supplementation of FA also reduces the risk of congenital heart diseases (previous 
ref) and preterm birth and low birth weight [96, 97]. The prevalence of neural 
tube defects (NTDs) has been significantly lowered in more than 70 countries 
worldwide by applying fortification with FA, but in all European governments 
there is still an issue with FA fortification of centrally processed and widely 
eaten foods in prevention of unwanted birth outcomes [98]. The mechanisms by 
which low folate status contributes to these disorders have not been understood 
completely but, to a certain extent, could be explained by different molecular 
pathways. Folate depletion could be a destabilizing factor during DNA replication. 
If inadequate folate availability is present during cell division, the production of 
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thymidine could be compromised and may be substituted in the DNA sequence 
by uracil. This mutagenic event may trigger the defect in an effort to repair DNA 
and increase the frequency of chromosomal breaks [90]. Low FA in tissue culture 
has been shown to result in the formation of micronuclei (chromosome breakage) 
and that the presence of MTHFR C677T polymorphism (TT genotype) increases 
the micronuclei formation, under the low folate conditions [99]. This MTHFR 
polymorphism was associated with various diseases, and allele frequencies vary 
depending on ethnicity (reviewed in [100]). This gene is mapped on chromosome 
1 (1p36.6), and the genetic variant assigned as C677T (rs1801133) is located in 
exon 4 in this gene. This polymorphism results in the conversion at codon 222, 
valine to alanine. Carriers of the T allele have lower enzyme activity [101]. The 
MTHFR 677TT homozygous subjects have higher homocysteine levels than the 
normal, non-mutated controls. To date, most studies have shown that the MTHFR 
C677T genotype is related to biomarkers, such as serum folate, tHcy concentration, 
and folate intake. Elevated blood tHcy is a well-recognized and modifiable risk 
factor for cerebral and cardiovascular disease [101, 102]. Reduction of the enzyme 
activity leads to elevated Hcy concentrations [103]. The TT genotype has been 
associated with elevated tHcy levels in populations with low folate intake [104]. 
Previous tHcy-lowering trials have not considered whether and to what extent 
these factors could modify the efficacy of folic acid (FA) treatment. In some 
countries with folate fortification like America, Australia, and New Zealand, the 
effect of TT genotype is not so obvious like in Asia region where folate intake is 
low [94]. In those who are homozygous for the mutation (TT genotype), enzyme 
function is only 30% of normal, and data provide evidence that nutrition can 
counteract genetic susceptibility. Recently, large, randomized trial in a population 
without mandatory FA fortification demonstrated that the adverse effect of the TT 
genotype on tHcy levels can be ameliorated by raising serum folate levels above the 
threshold (15 ng/mg or 34 nmol/L) via FA treatment and it provides new evidence 
to support a personalized FA treatment [94]. The gene-nutrient interaction 
between MTHFR C677T variant and folate status was also observed on the risk 
of anencephaly. Mothers with 677TT genotype with serum folate levels in the 
upper tercile (>14.1 ng/ml) had a 95% lower risk to have a child with anencephaly 
than mothers with serum folate levels in the first and second terciles [92]. Results 
about DS and MTHFRC677T polymorphism as a risk factor of its occurrence are 
still conflicting. The recent meta-analysis suggested that MTHFR 677T is a major 
risk factor for DS birth [105], while previous smaller studies did not recognize 
such risk [106, 107]. Studies performed analyzing peripheral lymphocytes of 
women with DS offspring revealed several markers of global genome instability, 
including an increased frequency of micronuclei, shorter telomeres, and impaired 
DNA methylation at MTHFR promoter [108, 109]. Hypermethylation of MTHFR 
promoter may lead to CHD in DS subjects [109]. Functional inactivation of 
MTHFR gene expression could be a mechanism of impaired folate metabolism, 
which is known to play a role in chromosomal breakage, abnormal chromosomal 
segregation, and genomic instability and therefore a developmental defect in 
the CHD in DS. Another suggested mechanism is lower LINE-1 methylation, the 
surrogate marker for global methylation levels, in young mothers of DS compared 
to controls, suggesting the possibility of impaired DNA methylation causing 
maternally derived trisomy 21 [6]. Also, there is evidence from intervention studies 
of the effects of dietary factors, where FA was the most common intervention agent 
(33%). Meta-regression analysis showed that the dose of supplementary FA was 
the only identified factor (p < 0.001) showing a positive relationship with DNA 
methylation patterns in humans [93]. MTHFR genotype-dependent association 
between lower global DNA methylation and lower plasma folate concentration 
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was detected in observational studies in healthy subjects [81, 82, 110]. Global 
DNA methylation at maternal front (p = 0.04) and hypomethylation of MTHFR 
gene at fetal front (p = 0.001) might be a characteristic of preeclampsia [111]. The 
combination of MTHFR C677T genotype and diet significantly influenced global 
DNA methylation in mothers with DS children. The lowest values of global DNA 
methylation were observed in mothers with MTHFR 677 CT+TT genotype and low 
dietary folate [6]. Even more, recently the association between maternal LINE-1 
methylation and the occurrence of CHD in children with DS was shown, as well 
as the impact of endogenous maternal factors (MTHFR C677T polymorphism) 
and exogenous maternal factors (body mass index and dietary habits such as folate 
intake) on maternal LINE-1 methylation and on the occurrence of CHD in children 
with DS. Study showed that the MTHFR genotype/diet combination and BMI were 
significantly associated with LINE-1 methylation in mothers of children with DS/
CHD+ [5]. Recently, micro-RNA signatures discordant for CHD in monozygotic 
twins were observed [112].

4.3  DNA methylation in developmental exposure to the maternal environment 
and diet

It has been suggested that disease risk of long-term health outcomes may be in 
part determined by maternal (in utero effects of environmental exposures, toxins/
nutrition) [21, 113] and paternal diet [114, 115].

Birth defects occur in 6–10% of babies born to mothers with pregestational 
diabetes, which is a significant health problem. It has been demonstrated that 
exposure to maternal diabetes during pregnancy changes gene expression levels 
in the mouse embryo, disrupting essential cellular activities [116], and could 
lead to disruption of crucial epithelial and mesenchymal cell interactions in 
developing kidney, leading to kidney and urinary tract malformation [117]. 
Underlying mechanisms are still unknown. There is a proposed lack of precision 
in the developmental program, which is essential for organogenesis induced by 
hyperglycemia effects on oxidative stress. That exposure to a diabetic intrauterine 
environment during pregnancy could be teratogenic by leading to defects like 
CAKUT in the fetus and associate with metabolic or cardiovascular diseases in 
later life [118–121].

Changes in maternal dietary FA can affect the DNA methylation patterns of 
offspring in mice [61]. The agouti mouse is a best-studied example [122]. Recently, 
in the human genome, loci were found to show differential methylation in response 
to season of birth that is similar to the agouti locus, but the identity of the causative 
agent for the changes in DNA methylation is unclear [123]. Recent study examined 
the prospective association between multivitamin supplementation during preg-
nancy and maternal plasma folate/vitamin B12 levels at birth and child’s autism 
spectrum disorder (ASD) risk. Moderate (3–5 times/week) self-reported supple-
mentation during pregnancy was associated with decreased risk of ASD, consistent 
with previous findings. But, extremely high maternal plasma folate and B12 levels 
at birth were associated with ASD risk. This study raises new questions about the 
impact of extremely elevated levels of plasma folate and B12 exposure in utero 
on early brain development [124]. However, study on postmortem cortical brain 
samples reveals that global DNA methylation was markedly enriched in ASD brains 
[125]. In some diseases, methylation mosaicism was found to be present. This is a 
common phenomenon in Fragile X syndrome (FXS). A decreased gene expression 
was found to be a main contributor to the cognitive impairment observed in the 
study of 12 FXS males with atypical mosaicism, seven of whom presented with 
ASD [126].



DNA Methylation Mechanism

44

thymidine could be compromised and may be substituted in the DNA sequence 
by uracil. This mutagenic event may trigger the defect in an effort to repair DNA 
and increase the frequency of chromosomal breaks [90]. Low FA in tissue culture 
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and that the presence of MTHFR C677T polymorphism (TT genotype) increases 
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than mothers with serum folate levels in the first and second terciles [92]. Results 
about DS and MTHFRC677T polymorphism as a risk factor of its occurrence are 
still conflicting. The recent meta-analysis suggested that MTHFR 677T is a major 
risk factor for DS birth [105], while previous smaller studies did not recognize 
such risk [106, 107]. Studies performed analyzing peripheral lymphocytes of 
women with DS offspring revealed several markers of global genome instability, 
including an increased frequency of micronuclei, shorter telomeres, and impaired 
DNA methylation at MTHFR promoter [108, 109]. Hypermethylation of MTHFR 
promoter may lead to CHD in DS subjects [109]. Functional inactivation of 
MTHFR gene expression could be a mechanism of impaired folate metabolism, 
which is known to play a role in chromosomal breakage, abnormal chromosomal 
segregation, and genomic instability and therefore a developmental defect in 
the CHD in DS. Another suggested mechanism is lower LINE-1 methylation, the 
surrogate marker for global methylation levels, in young mothers of DS compared 
to controls, suggesting the possibility of impaired DNA methylation causing 
maternally derived trisomy 21 [6]. Also, there is evidence from intervention studies 
of the effects of dietary factors, where FA was the most common intervention agent 
(33%). Meta-regression analysis showed that the dose of supplementary FA was 
the only identified factor (p < 0.001) showing a positive relationship with DNA 
methylation patterns in humans [93]. MTHFR genotype-dependent association 
between lower global DNA methylation and lower plasma folate concentration 
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as the impact of endogenous maternal factors (MTHFR C677T polymorphism) 
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exposure to maternal diabetes during pregnancy changes gene expression levels 
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lead to disruption of crucial epithelial and mesenchymal cell interactions in 
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environment during pregnancy could be teratogenic by leading to defects like 
CAKUT in the fetus and associate with metabolic or cardiovascular diseases in 
later life [118–121].
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offspring in mice [61]. The agouti mouse is a best-studied example [122]. Recently, 
in the human genome, loci were found to show differential methylation in response 
to season of birth that is similar to the agouti locus, but the identity of the causative 
agent for the changes in DNA methylation is unclear [123]. Recent study examined 
the prospective association between multivitamin supplementation during preg-
nancy and maternal plasma folate/vitamin B12 levels at birth and child’s autism 
spectrum disorder (ASD) risk. Moderate (3–5 times/week) self-reported supple-
mentation during pregnancy was associated with decreased risk of ASD, consistent 
with previous findings. But, extremely high maternal plasma folate and B12 levels 
at birth were associated with ASD risk. This study raises new questions about the 
impact of extremely elevated levels of plasma folate and B12 exposure in utero 
on early brain development [124]. However, study on postmortem cortical brain 
samples reveals that global DNA methylation was markedly enriched in ASD brains 
[125]. In some diseases, methylation mosaicism was found to be present. This is a 
common phenomenon in Fragile X syndrome (FXS). A decreased gene expression 
was found to be a main contributor to the cognitive impairment observed in the 
study of 12 FXS males with atypical mosaicism, seven of whom presented with 
ASD [126].
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5.  Epigenetic pattern transmission from parent to offspring: 
understanding disease inheritance

The heritability of epigenetic modifications, including histone modifica-
tions and DNA methylation, provides a memory of cell function and identity. 
Transmission of epigenetic information to subsequent generations may provide 
evolutionary mechanisms that impact on adaptation to changed environment. 
Defining the mechanisms that establish and regulate the transmission of epigenetic 
information from parent to offspring is critical for understanding disease heredity. 
Detection of modified methylation patterns is important in inappropriate imprint-
ing of certain either maternal or paternal genes, which are “turned on” by epigene-
tic phenomenon that leads to diseases such as Angelman syndrome and Prader-Willi 
syndrome. Methylation patterns with detrimental effects on development have 
been established for disorders of methylation, by several groups of researchers [127, 
128]. One of the developed blood tests (EpiSign) claims to diagnose 19 congenital 
diseases [129]. Also, it is important to establish the potential for epigenomic drugs 
that have an impact on the germline epigenome and subsequent offspring [130, 
131]. Currently, the molecular pathways that regulate epigenetic information 
in the germline and its transmission to offspring are poorly understood. Recent 
study reveals a novel role for the histone-modifying complex, PRC2, in maternal 
intergenerational transmission of epigenetic effects on offspring, with important 
implications for understanding disease inheritance [115]. PRC2 is involved in the 
regulation of many fundamental biological processes and is especially essential 
for embryonic stem cells. However, how the formation and function of PRC2 are 
regulated is mostly unknown. Recent findings identify miR-323-3p as a new regula-
tor for PRC2, providing a new approach for regulating PRC2 activity via microRNAs 
[132]. Specific epigenetic pattern was observed to be essential in the development of 
CHD and CAKUT. Impaired transcriptional profiles in individuals with CHDs [133] 
and CAKUT [134, 135] were shown to be affected by epigenetic regulators of gene 
expression, using bioinformatical analysis and integrated prediction algorithms 
[136]. The miRNA-145 expression was confirmed in infants with CHD that nega-
tively regulates gene expression important for heart development [133]. The altered 
hsa-miR-144 expression was, for the first time, identified in CAKUT and could be 
connected with biological processes crucial for normal development of kidney and 
urinary tract [135]. Although the importance of mothers’ health prior to concep-
tion and during pregnancy is now well accepted, recent data also implicate fathers’ 
health/nutritional status (overnutrition, undernutrition, and other forms of stress) 
in contribution to the risk of metabolic disease and obesity in offspring. Epigenetic 
paternal inheritance of chronic disease provides novel opportunities for multigen-
erational disease prevention [137]. Germ cell-dependent mechanisms have recently 
been linked to these intergenerational effects. There is increasing evidence that dis-
ruptions in male germ cell epigenetic reprogramming are associated with offspring 
abnormalities. Adequate supply of methyl donors is required in the fetal period, 
which is the critical time of DNA methylation pattern acquisition for developing 
male germ cells. In addition, DNA methylation patterns continue to be remod-
eled postnatal during spermatogenesis. Previous studies have shown that lifetime 
(prenatal and postnatal) folic acid deficiency and high-dose supplementation can 
alter the DNA methylation in sperm [138]. Recent study examined the genome-wide 
DNA methylation patterns in placentas and embryos in correlation with maternal 
FA supplementation in the prevention of CAs associated with assisted reproductive 
technologies (ART). Results demonstrate dose-dependent and sex-specific effects of 
FA intake; moderate dose of FA supplements may be optimal in ART for both sexes 
[139]. Even more, recent data suggest that genome-wide DNA methylation in the 
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placentas from preterm infants could be associated with maternal socioeconomic 
status [140]. On the other hand, genomic information was identical in monozygotic 
twins, but they could be discordant for congenital renal agenesis which could be a 
consequence of epigenomic regulation of gene expression [141].

6. Future perspectives

CAs are complex traits with polygenic, epigenetic, and environmental compo-
nents. Advances in human DNA methylation research and growing epigenetic data 
offer a new avenue for the translation of research to clinical applications. Current 
methylome analysis has been helpful in major human diseases revealing an epigen-
etic influence, but current approaches are inadequate for the translation of these 
advances to clinical diagnostics. There is a need to deal with big data in modern 
genomic medicine, so bioinformatics and applied mathematics are of a fundamen-
tal help in simulation studies and tests of methylome datasets. Signal detection 
theory and machine learning approaches applied on methylome datasets from 
ASD patients demonstrate high discriminatory power for the methylation signal 
induced by disease [142]. Even more, advanced machine learning analysis includes 
a combination of active learning and imbalanced class learning and deep learning 
to develop a more efficient feature selection process and for the generation and 
simultaneous computation of any genomic or biological dataset applied to medicine 
[143]. This approach demonstrates the feasibility in clinical diagnostics. Genetic 
risk scores (GRS) are widely used for risk prediction in complex diseases. Evidence 
is growing that methylation risk scores (MRS) may be constructed for multiple 
health purposes. MRS is defined as weighted sums of the individual’s methylation 
markers’ beta values of a preselected number of CpG sites and can be useful in 
interaction and mediation analyses, for environmental exposures as biomarker, 
and for prediction of individual risks of disease predisposition or treatment success 
[144]. As we know that methylation data is specific (for different tissues) and sensi-
tive to confounding factor, e.g., by age or sex, adaption of current GRS approaches 
is complex and needs deep profiling in construction of such risk scores. The analysis 
of whole biomarker genomic and epigenomic regions and prediction of disease 
predisposition, course and therapy response by risk scores could in future suffice 
for a diagnostic and decreasing cost of patients’ treatment.

7. Conclusion

The heritability of epigenetic modifications, including histone modifica-
tions and DNA methylation, provides a memory of cell function and identity. 
The dynamic reprogramming and other epigenetic patterns which could affect 
normal patterns of gene expression/genome stability during development could 
lead to an increased risk of CAs or complex diseases later in life. The sperm- and 
egg-specific DMT established during gametogenesis at imprint and non-imprint 
loci are susceptible to environmental factors. Embryogenesis may also present a 
window of opportunity for environmental influences on DNA methylation pattern. 
Changes in maternal dietary FA can affect the DNA methylation of offspring that 
could affect CA development. LINE-1 hypomethylation in the parental germline 
might also significantly affect genome stability during the fetal development. The 
MTHFR T carriers have lower enzyme activity, and dose of supplementary FA 
shows a positive relationship with DNA methylation patterns in humans. The lowest 
values of LINE-1 methylation, the surrogate marker for global DNA methylation, 
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that have an impact on the germline epigenome and subsequent offspring [130, 
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study reveals a novel role for the histone-modifying complex, PRC2, in maternal 
intergenerational transmission of epigenetic effects on offspring, with important 
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tor for PRC2, providing a new approach for regulating PRC2 activity via microRNAs 
[132]. Specific epigenetic pattern was observed to be essential in the development of 
CHD and CAKUT. Impaired transcriptional profiles in individuals with CHDs [133] 
and CAKUT [134, 135] were shown to be affected by epigenetic regulators of gene 
expression, using bioinformatical analysis and integrated prediction algorithms 
[136]. The miRNA-145 expression was confirmed in infants with CHD that nega-
tively regulates gene expression important for heart development [133]. The altered 
hsa-miR-144 expression was, for the first time, identified in CAKUT and could be 
connected with biological processes crucial for normal development of kidney and 
urinary tract [135]. Although the importance of mothers’ health prior to concep-
tion and during pregnancy is now well accepted, recent data also implicate fathers’ 
health/nutritional status (overnutrition, undernutrition, and other forms of stress) 
in contribution to the risk of metabolic disease and obesity in offspring. Epigenetic 
paternal inheritance of chronic disease provides novel opportunities for multigen-
erational disease prevention [137]. Germ cell-dependent mechanisms have recently 
been linked to these intergenerational effects. There is increasing evidence that dis-
ruptions in male germ cell epigenetic reprogramming are associated with offspring 
abnormalities. Adequate supply of methyl donors is required in the fetal period, 
which is the critical time of DNA methylation pattern acquisition for developing 
male germ cells. In addition, DNA methylation patterns continue to be remod-
eled postnatal during spermatogenesis. Previous studies have shown that lifetime 
(prenatal and postnatal) folic acid deficiency and high-dose supplementation can 
alter the DNA methylation in sperm [138]. Recent study examined the genome-wide 
DNA methylation patterns in placentas and embryos in correlation with maternal 
FA supplementation in the prevention of CAs associated with assisted reproductive 
technologies (ART). Results demonstrate dose-dependent and sex-specific effects of 
FA intake; moderate dose of FA supplements may be optimal in ART for both sexes 
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placentas from preterm infants could be associated with maternal socioeconomic 
status [140]. On the other hand, genomic information was identical in monozygotic 
twins, but they could be discordant for congenital renal agenesis which could be a 
consequence of epigenomic regulation of gene expression [141].

6. Future perspectives

CAs are complex traits with polygenic, epigenetic, and environmental compo-
nents. Advances in human DNA methylation research and growing epigenetic data 
offer a new avenue for the translation of research to clinical applications. Current 
methylome analysis has been helpful in major human diseases revealing an epigen-
etic influence, but current approaches are inadequate for the translation of these 
advances to clinical diagnostics. There is a need to deal with big data in modern 
genomic medicine, so bioinformatics and applied mathematics are of a fundamen-
tal help in simulation studies and tests of methylome datasets. Signal detection 
theory and machine learning approaches applied on methylome datasets from 
ASD patients demonstrate high discriminatory power for the methylation signal 
induced by disease [142]. Even more, advanced machine learning analysis includes 
a combination of active learning and imbalanced class learning and deep learning 
to develop a more efficient feature selection process and for the generation and 
simultaneous computation of any genomic or biological dataset applied to medicine 
[143]. This approach demonstrates the feasibility in clinical diagnostics. Genetic 
risk scores (GRS) are widely used for risk prediction in complex diseases. Evidence 
is growing that methylation risk scores (MRS) may be constructed for multiple 
health purposes. MRS is defined as weighted sums of the individual’s methylation 
markers’ beta values of a preselected number of CpG sites and can be useful in 
interaction and mediation analyses, for environmental exposures as biomarker, 
and for prediction of individual risks of disease predisposition or treatment success 
[144]. As we know that methylation data is specific (for different tissues) and sensi-
tive to confounding factor, e.g., by age or sex, adaption of current GRS approaches 
is complex and needs deep profiling in construction of such risk scores. The analysis 
of whole biomarker genomic and epigenomic regions and prediction of disease 
predisposition, course and therapy response by risk scores could in future suffice 
for a diagnostic and decreasing cost of patients’ treatment.

7. Conclusion

The heritability of epigenetic modifications, including histone modifica-
tions and DNA methylation, provides a memory of cell function and identity. 
The dynamic reprogramming and other epigenetic patterns which could affect 
normal patterns of gene expression/genome stability during development could 
lead to an increased risk of CAs or complex diseases later in life. The sperm- and 
egg-specific DMT established during gametogenesis at imprint and non-imprint 
loci are susceptible to environmental factors. Embryogenesis may also present a 
window of opportunity for environmental influences on DNA methylation pattern. 
Changes in maternal dietary FA can affect the DNA methylation of offspring that 
could affect CA development. LINE-1 hypomethylation in the parental germline 
might also significantly affect genome stability during the fetal development. The 
MTHFR T carriers have lower enzyme activity, and dose of supplementary FA 
shows a positive relationship with DNA methylation patterns in humans. The lowest 
values of LINE-1 methylation, the surrogate marker for global DNA methylation, 
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were observed in mothers with MTHFR 677 CT+TT genotype and low dietary 
folate, suggesting the possibility of impaired DNA methylation causing maternally 
derived trisomy 21. Also, MTHFR genotype/diet and BMI combination influence 
LINE-1 methylation in mothers that could be a risk factor for DS/CHD+ develop-
ment in children. The studies discussed in this chapter provide new evidence to 
support nutrigenomic personalized FA treatment of mothers with risk genotype to 
prevent global DNA hypomethylation as potential underlying mechanism of CA 
development.
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were observed in mothers with MTHFR 677 CT+TT genotype and low dietary 
folate, suggesting the possibility of impaired DNA methylation causing maternally 
derived trisomy 21. Also, MTHFR genotype/diet and BMI combination influence 
LINE-1 methylation in mothers that could be a risk factor for DS/CHD+ develop-
ment in children. The studies discussed in this chapter provide new evidence to 
support nutrigenomic personalized FA treatment of mothers with risk genotype to 
prevent global DNA hypomethylation as potential underlying mechanism of CA 
development.
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Chapter 4

Recent Insights into the 
Mechanisms of De Novo and 
Maintenance of DNA Methylation 
in Mammals
Motoko Unoki

Abstract

DNA methylation is one of the key epigenetic mechanisms essential for 
transcriptional regulation, silencing of transposable elements, and genome sta-
bilization. Under physiological conditions, DNA methylation is erased and then 
established genome-wide during gametogenesis and embryogenesis. De novo DNA 
methylation by the enzymatic reaction of the de novo DNA methyltransferases 
(DNMTs), DNMT3A and DNMT3B, occurs during the establishment of DNA 
methylation patterns specific to each germ cell type or somatic cell type after the 
erasure. Once cell type-specific DNA methylation patterns are established dur-
ing embryogenesis, which can extend to early childhood, the maintenance of 
DNA methyltransferase DNMT1 and its cofactor UHRF1 cooperatively maintain 
the pattern throughout the individual’s lifetime. Recently, our group found that 
UHRF1 is also involved in de novo DNA methylation during oogenesis. Moreover, 
our group has identified two genes, CDCA7 and HELLS, to be the causative genes 
of ICF syndrome, characterized by hypomethylation of centromeric and peri-
centromeric repetitive sequences. Because CDCA7/HELLS comprise a chromatin 
remodeling complex, there are evidently certain regions where chromatin remodel-
ing is required to achieve maintenance of DNA methylation. In this chapter, the 
current situation with respect to our understanding of de novo and maintenance 
of DNA methylation mechanisms under physiological conditions in mammals is 
summarized.

Keywords: de novo DNA methylation, maintenance of DNA methylation, 
embryogenesis, gametogenesis, oocyte, PGC, ubiquitylation, UHRF1, DNMT1, 
DNMT3A, DNMT3B, DNMT3L, ICF syndrome, CDCA7, HELLS,  
chromatin remodeling

1. Introduction

Methylation at the C5 positions of cytosine (i.e., 5mC) in the CpG context 
(hereafter called DNA methylation) plays a major role in the transcriptional regula-
tion of gene expression, the silencing of transposable elements (TEs), and genome 
integrity. The enzymatic activities catalyzing DNA methylation can be classified 
into two types. One is de novo DNA methylation, which is an activity by which 
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methyl groups are added to cytosine at unmethylated DNA; de novo DNA methyl-
transferases DNMT3A and DNMT3B, together with their coactivator DNMT3L, 
are known to catalyze this reaction [1]. The other DNA methylation type is mainte-
nance of DNA methylation, an activity by which unmethylated cytosine residues of 
hemi-methylated DNA (cytosine methylation on only one strand of the CG dyad) 
are methylated after DNA replication; DNA methyltransferase 1 (DNMT1) and its 
cofactor, ubiquitin-like, containing PHD and RING finger domains 1 (UHRF1), are 
responsible for this function [2]. In this chapter, the current status of knowledge 
of the two types of DNA methylation, including recent findings from our group, is 
summarized. In addition, possible mechanisms underlying the control of region-
specific methylation by de novo DNMTs as well as possible maintenance of DNA 
methylation mechanisms, with or without chromatin remodeling, are discussed.

2. De novo DNA methylation

2.1 Timing of physiological de novo DNA methylation

De novo DNA methylation is a process by which methyl groups are added to 
unmethylated DNA at specific CpG sites, catalyzed by DNMT3A and DNMT3B 
[1]. In most differentiated cells, de novo DNA methylation is basically undesirable, 
since precise maintenance of the DNA methylation pattern, once established, is 
essential to sustain the appropriate functions of each cell type. Under physiological 
conditions, DNA methylation is widely erased, and then cell-type specific DNA 
methylation patterns are established during gametogenesis and embryogenesis 
[3] (Figure 1). During oogenesis and spermatogenesis, de novo DNA methylation 
occurs to establish oocyte- and sperm-specific DNA methylation patterns, fol-
lowing its elimination in primordial germ cells (PGCs). During post-implantation 
embryogenesis, which can extend to early childhood, de novo DNA methylation 
occurs to establish DNA methylation patterns specific to each cell type after they are 
erased in preimplantation embryos.

Figure 1. 
Known factors involved in dynamic physiological demethylation and de novo DNA methylation during mouse 
gametogenesis and embryogenesis. DNA methylation is widely erased, and then sex-specific or cell type-
specific DNA methylation patterns are established during gametogenesis and embryogenesis. Levels of DNA 
methylation of imprinting control regions (ICRs) and some transposable elements (TEs) are maintained in the 
face of genome-wide demethylation in preimplantation embryos. DOHaD, developmental origins of health 
and disease; SCMC, subcortical maternal complex; E6.5, embryonic day 6.5; E10.5, embryonic day10.5; E12.5, 
embryonic day 12.5.
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The erasure of DNA methylation in PGCs is probably the result of a defect 
in maintenance of DNA methylation, caused by the diminished expression of 
UHRF1 in the cells [4]. After the demethylation, DNMT3A establishes the methyla-
tion pattern in combination with DNMT3L, which itself does not possess enzymatic 
activity but is indispensable for the activity of DNMT3A [5–7] in oocytes arrested at 
an early stage of the first meiotic division or in prospermatogonia arrested at the G1 
phase [8]. Although the major role of UHRF1 is in the maintenance of DNA meth-
ylation (Section 2.2), our group has recently found that UHRF1 is involved in 25% 
of the genome-wide de novo DNA methylation in oocytes [9]. The absence of the 
UHRF1 protein preferentially decreased DNA methylation levels at transcription-
ally inactive regions without histone H3 trimethylation at lysine 36 (H3K36me3) 
mark. Given that only a small percentage decrease in DNA methylation was 
observed in DNMT1 KO oocytes [10] and that UHRF1 has the potential to interact 
with de novo DNMTs [11], UHRF1 may cooperate with DNMT3A for the establish-
ment of methylation patterns. Despite the involvement of UHRF1 in de novo DNA 
methylation in oocytes, our group found that the localization of UHRF1 in oocytes 
is mainly in the cytoplasm [9]. Recently, cytoplasmic Stella (also known as DPPA3 
and PGC7), which is localized in both the cytoplasm and the nucleus, is reported to 
contribute to the cytoplasmic localization of UHRF1 in oocytes to prevent aber-
rantly excessive de novo DNA methylation by the UHRF1 protein complex [12]. 
Nuclear Stella is also reported to inhibit the association of UHRF1 with chromatin, 
resulting in a possible double-layer mechanism to prevent aberrant de novo DNA 
methylation by the complex [13].

During post-implantation embryogenesis and early childhood, not only 
DNMT3A but also DNMT3B proves to be essential for establishing the characteristic 
methylation pattern [14]. These enzymes may work together or independently to 
establish specific DNA methylation patterns in each cell type. However, it still has 
to be determined when the establishment of the methylation pattern is completed, 
although it probably depends on the cell type. The “developmental origins of health 
and disease” (DOHaD) is a concept that has emerged over the past three decades, 
linking the risk of diseases in later childhood and adult life with the environ-
mental conditions of the early life, including nutrient availability to the mothers. 
Accumulating evidence suggests that the environment can change the epigenetic 
state, including DNA methylation of the fetus and infant, with the state being 
maintained throughout the lifetime of the individual [15]. A well-known experi-
ment showed that early experience in childhood permanently alters behavior and 
physiology; interactions between rat mothers and their offspring, including the 
licking and grooming of the pups by their mother in the first week of life, altered 
the DNA methylation status of the glucocorticoid receptor promoter in the hippocam-
pus of the offspring, resulting in differential stress tolerance among the offspring 
[16]. This indicates that the establishment of DNA methylation is not complete by 
the first week after birth, at least in the hippocampal neurons of the rat.

2.2 Specification of de novo DNA methylation sites

The mechanisms underlying the specification of the genomic regions targeted 
by de novo DNMTs have remained largely elusive. In oocytes, a significant positive 
correlation between transcription and highly methylated regions has been reported 
[17]. It is known that transcriptionally active regions are marked with H3K36me3 
and that the histone methyltransferase SET domain containing 2 (SETD2) is 
responsible for the histone methylation in oocytes [18]. Since SETD2 is reported to 
interact with the phosphorylated C-terminal domain of RNA polymerase II (RNA 
pol II) [19], SETD2 appears to methylate histones at regions actively transcribed 
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physiology; interactions between rat mothers and their offspring, including the 
licking and grooming of the pups by their mother in the first week of life, altered 
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pus of the offspring, resulting in differential stress tolerance among the offspring 
[16]. This indicates that the establishment of DNA methylation is not complete by 
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and that the histone methyltransferase SET domain containing 2 (SETD2) is 
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pol II) [19], SETD2 appears to methylate histones at regions actively transcribed 
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by the polymerase. On the other hand, the PWWP domain of DNMT3A recognizes 
H3K36me3 [20], and mutations in this domain, which disrupt this recognition, 
cause microcephalic dwarfism with aberrant DNA methylation in humans and 
in a mouse model [21, 22]. Oocyte-specific SETD2 KO also causes aberrant DNA 
methylation [23]. Taken together, it appears that SETD2 methylates H3K36 accom-
panied by transcription by RNA pol II and DNMT3A recognizes the histone mark 
and methylates the DNA, resulting in the establishment of DNA methylation 
patterns specific to oocytes (Figure 2). However, there are exceptions. For example, 
as described above, UHRF1 is involved in 25% of the genome-wide de novo DNA 
methylation, mostly at transcriptionally inactive regions lacking the H3K36me3 
mark [9]. It is still unknown which factors trigger transcription in oocytes, although 
transcription from long terminal repeat (LTR)-retrotransposons, whose methyla-
tion is erased in PGCs, could be one such trigger [24].

During embryogenesis, transcription factors probably define certain transcribed 
regions in each cell type as only four transcriptional factors (OCT3/4, SOX2, 
KLF4, and MYC), together known as OSKM or Yamanaka factors, can drive drastic 
transcriptional change and define epigenetically active regions in differentiated 
cells, resulting in induced pluripotent stem (iPS) cells [25]. DNMTs can access 
regions, where the transcription factors are absent, to passively specify regions for 
DNA methylation (Figure 3). Noncoding RNAs, such as PIWI-interacting RNAs 
(piRNAs) and long noncoding RNAs (lncRNAs), can also contribute to the speci-
fication of regions for DNA methylation (Figure 3). piRNAs are the largest class 
(26–31 nucleotides) of small noncoding RNA expressed in animal cells, which were 
first discovered in Drosophila as RNAs interacting with the PIWI protein; human 
and mouse homologs are HIWI and MIWI, respectively. In most cases, precursor 
piRNAs are derived from piRNA clusters in the genome composed of mutated TEs. 
The precursor piRNAs are processed by several steps and matured by the addition 
of a methyl group at their 3′ ends [26]. Then, the maturated piRNAs interact with 
Argonaute (AGO) family proteins and cleave the TEs, which are undesirably tran-
scribed by the erasure of DNA methylation in PGCs [26]. Although the underlying 
mechanisms are unknown, piRNAs silence these TEs by epigenetic modifications, 
including DNA methylation, especially during spermatogenesis [27]. In addition, 
lncRNAs can specify de novo DNA methylation-acquired regions. X-inactive spe-
cific transcript (XIST) is one of the best-studied lncRNAs. XIST RNA is randomly 
expressed from one of two X-chromosomes in mammalian female cells during 

Figure 2. 
A model for transcription-coupled and transcription-uncoupled de novo DNA methylation in oocytes. 
SETD2 methylates H3K36 accompanied with transcription by RNA polymerase II, and DNMT3A recognizes 
the histone mark and methylates DNA, resulting in the establishment of DNA methylation pattern specific 
to oocytes. Long terminal repeat (LTR)-retrotransposons activated in PGCs may be partially involved in 
triggering the transcription. Although UHRF1 is involved in the de novo DNA methylation of regions without 
the H3K36me3 mark, there could be additional mechanisms for transcription-uncoupled de novo DNA 
methylation.
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embryogenesis and covers the X-chromosome in cis to trigger silencing of most 
genes on it by several layers of epigenetic modifications, including DNA methyla-
tion, to achieve dosage compensation [28, 29].

3. Maintenance of DNA methylation

3.1 Maintenance of DNA methylation by the DNMT1/UHRF1 complex

Once DNA methylation patterns specific to each cell type are established, the 
pattern is maintained by the DNMT1/UHRF1 complex throughout the individual’s 
lifetime [2]. UHRF1 (also known as Np95 or ICBP90) is a multidomain protein, 
which contains a ubiquitin-like (UBL) domain, a tandem Tudor domain (TTD), a 
plant homeodomain (PHD) finger, a SET and RING-associated (SRA) domain, and 
a really interesting new gene (RING) domain. The TTD recognizes di−/tri-methyl-
ated H3K9 (H3K9me2/me3) and also LIG1 (LIG1K126me2/me3) [30, 31], the  
PHD recognizes the unmethylated N-terminus of histone H3 and LIG1 [32], the 
SRA domain recognizes hemi-methylated DNA at the replication fork [33–35], 
and the RING domain mono-ubiquitylates multiple lysines of histone H3 at K14, 
K18, and K23 and those of the PCNA-associated factor 15 (PAF15) at K15 and K24 
[36–39]. The UBL domain facilitates both the RING-mediated ubiquitylation and 
the SRA-mediated recognition of hemi-methylated DNA [40, 41].

Current consensus has it that the process of maintenance of DNA methylation 
operates as follows. After DNA replication, UHRF1 directly recognizes hemi-methyl-
ated DNA and mono-ubiquitylates histone H3K14, K18, and K23, to recruit DNMT1 
to the hemi-methylation sites. Then, DNMT1 recognizes two of the three ubiquity-
lated histone lysine residues through the replication foci targeting sequence (RFTS) 

Figure 3. 
A model for formation of transcriptionally active and silenced regions during embryogenesis. 
Transcription factors (TFs) could define transcriptionally active regions, while small RNAs and lncRNAs 
could define transcriptionally silenced regions in addition to transcription-coupled de novo DNA 
methylation. After transcriptionally active and silenced regions could be actively determined, suppressive 
mark modifiers, such as de novo DNMTs, may add suppressive epigenetic marks to accessible regions, 
which transcriptional machineries do not occupy, resulting in the passive formation of transcriptionally 
silenced regions.
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K18, and K23 and those of the PCNA-associated factor 15 (PAF15) at K15 and K24 
[36–39]. The UBL domain facilitates both the RING-mediated ubiquitylation and 
the SRA-mediated recognition of hemi-methylated DNA [40, 41].

Current consensus has it that the process of maintenance of DNA methylation 
operates as follows. After DNA replication, UHRF1 directly recognizes hemi-methyl-
ated DNA and mono-ubiquitylates histone H3K14, K18, and K23, to recruit DNMT1 
to the hemi-methylation sites. Then, DNMT1 recognizes two of the three ubiquity-
lated histone lysine residues through the replication foci targeting sequence (RFTS) 

Figure 3. 
A model for formation of transcriptionally active and silenced regions during embryogenesis. 
Transcription factors (TFs) could define transcriptionally active regions, while small RNAs and lncRNAs 
could define transcriptionally silenced regions in addition to transcription-coupled de novo DNA 
methylation. After transcriptionally active and silenced regions could be actively determined, suppressive 
mark modifiers, such as de novo DNMTs, may add suppressive epigenetic marks to accessible regions, 
which transcriptional machineries do not occupy, resulting in the passive formation of transcriptionally 
silenced regions.
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domain and methylates the nascent strand in hemi-methylated DNA, resulting in the 
maintenance of the methylation patterns (Figure 4). Immediately prior to the meth-
ylation of hemi-methylated DNA by DNMT1, it has been reported that the deubiq-
uitylation of histones by ubiquitin specific peptidase 7 (USP7) is required [42]. DNA 
ligase 1 (LIG1), which is critical for the joining together of Okazaki fragments [43], 
is also involved in this process [31]. Euchromatic histone lysine methyltransferase 2 
(EHMT2, also called G9a) and EHMT1 (also called GLP) methylate K126 of LIG1. 
UHRF1 recognizes the methylated LIG1, and this interaction facilitates the recruit-
ment of UHRF1 to DNA replication sites. Since LIG1 is indispensable for completing 
the lagging strand synthesis, the interaction between UHRF1 and LIG1 may be 
especially important for maintenance of DNA methylation of the strand (Figure 4).

3.2  Maintenance of DNA methylation by the CDCA7/HELLS chromatin 
remodeling complex

The cell division cycle-associated 7 (CDCA7)/helicase lymphoid-specific 
(HELLS) chromatin remodeling complex is also involved in maintenance of DNA 
methylation. Recently, an international group including us identified CDCA7 

Figure 4. 
A model of maintenance of DNA methylation where the CDCA7/HELLS complex is unrequired or required. 
After DNA replication, UHRF1 directly recognizes hemi-methylated DNA, and mono-ubiquitylates multiple 
histone lysines, H3K14, K18, and K23, to recruit DNMT1 to the hemi-methylation sites. Consequently, 
DNMT1 recognizes two of the three ubiquitylated lysine residues through the replication foci targeting sequence 
(RFTS) domain and methylates the nascent strand in hemi-methylated DNA, resulting in the maintenance 
of the methylation pattern. LIG1 methylated by G9a/GLP helps UHRF1 to maintain DNA methylation. In 
addition, the CDCA7/HELLS complex is required for maintaining the DNA methylation of centromeric and 
pericentromeric regions. The complex may also be required for maintaining regions that are heterochromatic, 
late replicating, and histone H1 rich, all these regions being nucleosome dense.
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and HELLS (also known as LSH) to be causative genes of the immunodeficiency, 
centromeric instability, facial anomalies (ICF) syndrome type-3 and type-4 
(hereafter ICF3 and ICF4), respectively [44]. The syndrome is a rare autosomal 
recessive disorder characterized by reduced immunoglobulin levels in the serum 
and recurrent infection [45]. Centromeric instability manifests as stretched het-
erochromatin, chromosome breaks, and multiradial configurations involving the 
centromeric/pericentromeric regions of chromosomes 1, 9, and 16 in activated 
lymphocytes [46], and the cytological defects are accompanied by DNA hypo-
methylation in pericentromeric satellite-2 and -3 repeats of these chromosomes.

Patients with the ICF syndrome are classified into two groups [47]. One group 
includes ICF syndrome type-1 (ICF1), which shows DNA hypomethylation only at the 
pericentromeric repeats. A causative gene for this group is DNMT3B [1, 48, 49]. The 
second group includes ICF syndrome type-2, type-3, and type-4 (ICF2, ICF3, and ICF4, 
respectively), which shows DNA hypomethylation at centromeric α-satellite repeats in 
addition to the pericentromeric repeats. As described above, causative genes for ICF3 
and ICF4 are CDCA7 and HELLS, respectively [44]. The causative gene for ICF2 is zinc 
finger and BTB domain containing 24 (ZBTB24) [50]. As ZBTB24 is a transcriptional acti-
vator of CDCA7 [51, 52], and CDCA7 and HELLS constitute a chromatin remodeling 
complex, in which CDCA7 stimulates the nucleosome remodeling activity of HELLS 
[53], the same pathway seems to be disrupted in ICF2, ICF3, and ICF4.

A recent study revealed that, in addition to centromeric and pericentromeric 
repeats, DNA methylation levels of other heterochromatic late-replicating regions 
are affected in ICF2, ICF3, and ICF4 patients, though not in ICF1 patients [54]. As 
UHRF1 KO and DNMT1 KO cause hypomethylation of the entire genome, including 
centromeric and pericentromeric repeats [2], the DNMT1/UHRF1 complex is surely 
essential for maintaining these regions. However, the CDCA7/HELLS complex 
seems to be required for assisting the DNMT1/UHRF1 complex to methylate hemi-
methylated DNA, possibly by sliding nucleosomes in a region-specific manner 
[53]. Supporting this idea, our group detected an interaction between CDCA7 and 
UHRF1 [55]. Late-replicating regions tend to be heterochromatic regions, where the 
nucleosome density is high. Therefore, the CDCA7/HELLS chromatin remodeling 
complex may be required for such regions (Figure 4).

Using human embryonic kidney 293 cells, our group reported that DNMT3B 
KO caused a slight decrease in DNA methylation of pericentromeric repeats after 
4 months of KO by the CRISPR/Cas9 system, while CDCA7 KO and HELLS KO 
caused drastic decreases in DNA methylation even after only 2 months [55], indicat-
ing that the CDCA7/HELLS chromatin remodeling complex is essential for main-
taining the DNA methylation of the repeats, whereas the requirement of DNMT3B 
for the maintenance is limited in differentiated cells. In the CDCA7 KO and HELLS 
KO cells, DNA methylation levels of centromeric repeats were also decreased, 
but the level of decrease was much less than that of pericentromeric repeats. This 
indicates that the CDCA7/HELLS complex is less essential for maintenance of DNA 
methylation of centromeric repeats. Because the chromatin structure, density of 
nucleosomes, and histone variants are different between centromeric and pericen-
tromeric regions, these differences may determine the levels of requirement for 
the chromatin remodeling complex. In addition, it has been reported that nucleo-
somes and the linker histone H1 are barriers to access of DNMTs to DNA and that 
HELLS and deficient in DNA methylation 1 (DDM1), a plant homolog of HELLS, 
are required for the methylation of DNA wrapped around nucleosomes [56, 57]. 
Consistent with these reports, the most abundant proteins co-immunoprecipitated 
with human CDCA7 were histone H1 and core histones in our group’s report [55]. 
The interaction between the CDCA7/HELLS complex and histone H1 may also be 
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are affected in ICF2, ICF3, and ICF4 patients, though not in ICF1 patients [54]. As 
UHRF1 KO and DNMT1 KO cause hypomethylation of the entire genome, including 
centromeric and pericentromeric repeats [2], the DNMT1/UHRF1 complex is surely 
essential for maintaining these regions. However, the CDCA7/HELLS complex 
seems to be required for assisting the DNMT1/UHRF1 complex to methylate hemi-
methylated DNA, possibly by sliding nucleosomes in a region-specific manner 
[53]. Supporting this idea, our group detected an interaction between CDCA7 and 
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nucleosome density is high. Therefore, the CDCA7/HELLS chromatin remodeling 
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caused drastic decreases in DNA methylation even after only 2 months [55], indicat-
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for the maintenance is limited in differentiated cells. In the CDCA7 KO and HELLS 
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methylation of centromeric repeats. Because the chromatin structure, density of 
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tromeric regions, these differences may determine the levels of requirement for 
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a cue to identify regions where the complex is required for maintenance of DNA 
methylation (Figure 4).

3.3  Maintenance of DNA methylation by the proteins associated  
with multi-locus imprint disorder

It is reported that mutations in genes encoding zinc finger protein 57 (ZFP57) 
and components of subcortical maternal complex (SCMC), including NLRP2, 
NLRP5, NLRP7, PADI6, OOEP, and TLE6, cause the multi-locus imprint disorder, 
which exhibits DNA hypomethylation at multiple imprinting control regions 
(ICRs) [58–61]. Since the hypomethylation is observed in both paternally and 
maternally methylated ICRs, these factors are thought to be involved in mainte-
nance of DNA methylation against genome-wide DNA demethylation in preimplan-
tation embryos (Figure 1). Mutations in ZFP57 cause transient neonatal diabetes 
mellitus [61]. As ZFP57 is a nuclear protein, which recognizes the methylated 
TGCCGC hexanucleotide found in almost all ICRs and which acts together with 
ZNF445, KRAB-associated protein-1 (KAP1), DNMTs, SET domain bifurcated 
histone lysine methyltransferase 1 (SETDB1), and heterochromatin protein 1 (HP1) 
[62, 63], ZFP57 is considered to maintain DNA methylation by directly binding to 
ICRs with such proteins. However, the mechanism by which SCMC components, 
which are localized adjacent to the oocyte membrane, can maintain DNA methyla-
tion at ICRs remains elusive [59]. Among the multi-locus imprint disorder cases, 
just one case, who has a heterozygous mutation (V159 M in isoform 1, V172 M in 
isoform 2) in the TTD of UHRF1, has been reported [60].

4. Conclusions

I identified UHRF1 as a novel methyl-CpG binding protein in 2004 by biotin-
avidin pulldown assay using biotin-labeled methylated DNA mixed with nuclear 
extracts and subsequent mass spectrometric analysis [64, 65]. Since then, an 
understanding of the mechanism by which maintenance of DNA methylation 
is achieved has quickly expanded and deepened, progress that I would never 
have imagined at that time. When the involvement of UHRF1 in maintenance of 
DNA methylation was reported [2], the recognition of hemi-methylated DNA 
by UHRF1 was reported [32, 34, 35], and the ubiquitylation of histone H3 by 
UHRF1 was reported [36], each time I felt that the mechanism of maintenance 
of DNA methylation had been resolved. However, the mechanism is more 
complicated than expected, and more factors could still be involved to assist 
the DNMT1/UHRF1 complex, depending on context such as replication timing, 
replication strand, and higher-order chromatin structure. We still cannot take 
our eyes off advances in this field.
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Abstract

Chromatin in cancer undergoes chemical and structural changes that alter gene
expression patterns. One of the chemical modifications that impacts gene regulation
is 5-hydroxymethylcytosine (5hmC), also called DNA hydroxymethylation. 5hmC is
a stable mark that is commonly associated with transcriptional activation. In cancer,
the global loss of 5hmC is a hallmark. In addition, the deregulation of 5hmC in
specific regions of the genome, such as enhancers, promoters, and body of the gene,
alters the expression of genes in cancer. These alterations have been detected by the
improvement in the mapping of 5hmC at genomic scale, which has allowed us to
evaluate the sites where 5hmC alterations occur and the genes that are affected. In
this chapter, the recent knowledge about the status of 5hmC in genome specific sites
of human solid cancers, the relationship with enzymes ten-eleven translocation
(TET) and isocitrate dehydrogenase (IDH) involved in the dynamic regulation of
5hmC levels, and the impact of the 5hmC aberrant changes on the genic expression
in these malignances is reviewed.

Keywords: DNA hydroxymethylation, 5hmC, cytosine modifications,
DNA demethylation, epigenetics, chromatin, gene expression, cancer

1. Introduction

In carcinogenesis, genetic alterations are necessary along with the deregulation
of the epigenetic phenomena. Epigenetics could be defined as the study of the
mechanisms that control gene expression without modifying the DNA sequence [1].
In cancer, epigenetic changes can be used to identify the site of origin of the tumor,
detect malignant tumors in the earliest stages, and also allow the identification of
more aggressive tumors and predict the response to drug therapy [2, 3]. On the
other hand, they can be used as therapeutic targets in epigenetic therapy [4].

DNA methylation is a widely studied epigenetic phenomenon, and it occurs
predominantly (80%) in a CpG context, where cytosine (C) is methylated in carbon
5, generating 5-methylcytosine (5mC). 5mC constitutes approximately 1% of all
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DNA bases [5] and is associated with the regulation of gene expression, recruitment
of transcription factors, nucleosome positioning, splicing, and imprinting. Specifi-
cally, in cancer, the overall decrease of 5mC is a general brand and is enriched in
specific areas such as the promoter and the first exon, which generates gene silenc-
ing and is associated with the development of cancer [6]. Although 5mC is a stable
mark, 5mC was shown to oxidize to 5-hydroxymethylcytosine (5hmC). In mam-
mals, the conversion of 5mC to 5hmC is catalyzed by members of the ten-eleven
translocation family (TET1, TET2, and TET3), α-ketoglutarate (αKG), and Fe2+-
dependent dioxygenases. TET enzymes also oxidize 5hmC to 5-formylcytosine
(5fC) and 5-carboxycytosine (5cC) [7].

Currently, it is reported that DNA hydroxymethylation is a stable epigenetic
mark that the cells can inherit to its daughter’s cells rather than just a transition state
[8]. This mark represents the second most abundant C variant in the mammalian
genome, always at levels below 5mC, but on the other hand, the 5hmC is 10–100
times higher than the 5fC and 5cC [9, 10].

In mammals, 5hmC occurs almost always (99.89%) in a CpG context [11] and,
interestingly, is more enriched in distal regulatory elements of the promoter
(46.4%), the body of the gene, and near the cis elements of transcription factors
and is less abundant in the promoter region [9–11], suggesting that the
hydroxymethylation of DNA has an extensive function in gene regulation. In
addition, the enrichment of 5hmC in the different functional elements has been
associated with gene transcriptional activation [9].

In humans, the presence of 5hmC would vary significantly between tissues: in
the brain (0.67%), rectum (0.57%), liver (0.46%), colon (0.45%), and kidney
(0.38%), the 5hmC levels are high, while in the lung (0.14%), they are relatively
low and very low in the heart (0.05%), breast (0.05%), and placenta (0.06%) [12].
Compared to normal tissue, many solid neoplasms (e.g., breast, colon, prostate,
and melanoma) are characterized by the overall loss of 5hmC. In some isolated
cases of cancer, it was reported that 5hmC usually increases; however, the general
trend is a global decrease of 5hmC in carcinogenesis [13]. Importantly, hypo-5hmC
in cancer occurs in the body of the gene, enhancers, and near cis elements of
transcription factors, altering gene expression [14, 15]. However, so far, the role of
hydroxymethylation of DNA in cancer biology is not completely clear, and more
studies are needed that provide deeper information on functions or potential
applications as biomarkers. The purpose of this chapter is to provide current
knowledge of the deregulation of 5hmC in genome specific sites, the relationship
with enzymes ten-eleven translocation (TET) and isocitrate dehydrogenase
(IDH) involved in the dynamic regulation of 5hmC levels, and its impact on gene
expression in different human cancers.

2. 5hmC status in solid cancer

2.1 5hmC status in melanoma

Melanoma is a type of melanocyte neoplasm that is considered highly aggressive
[16]. As one of the most aggressive human tumors, it can perform distal and lethal
metastases despite the volume of the tumor being 1 mm3 [17].

Melanoma is a complex disease influenced by genetic and epigenetic alterations.
Importantly, epigenetic phenomena in this tumor include hypermethylation of the
phosphatase and tensin homolog (PTEN) promoter and p16ink4, which is associated
with the silencing of tumor suppressor genes [18, 19]. In addition, repressive chro-
matin marks that silence the TGF-pathway have been reported [20]. On the other
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hand, the increase in chromatin-modifying enzymes, such as Ezh2 methyltransferase,
has been published [21]. A significant decrease inmembers of the TET enzyme family
has been reported, which correlates with low global levels of 5hmC [17–22]. Thus,
altered patterns of 5hmC in melanomas have been observed, and in this sense, the
analysis of 5hmC in melanomas showed a hypo-hydroxymethylation in the body of
the Ras-related C3 botulinum toxin substrate 3 (RAC3) gene, the type 1 insulin-like
growth factor receptor (IGF1R), and tissue inhibitor of metalloproteinases 2
(TIMP2) (Table 1). However, the effect at the expression level was not determined.
In two studies published independently, they reported that in melanoma the
expression levels of IGF1R and TIMP2 are high [23, 24], suggesting that hypo-5hmC
in the body of the gene probably contributes to the high expression of the IGF1R
and TIMP2 gene. On the other hand, it has been observed that the overexpression of
TIMP2 in B16F10 melanoma cells reduces invasion and angiogenesis and inhibits
apoptosis [24].

2.2 5hmC status in glioma cancer

Gliomas are the most common brain tumors, being classified by grades (I–IV),
based on differentiation status, malignant potential, response to treatment, and
patient survival rate. Grades III and IV are referred as high-grade glioma and have
the worst prognosis with a median survival for grade III of 2–3 years, while grade
IV, named glioblastoma (GBM), has approximately 15 months [45]. In 2016, the

Name of gene 5hmC status 5hmC variable
position

Effect Target cancer Refs.

RAC3, IGF1R, TIMP2 Hypo-5hmC Gene body ND Melanoma [17]

SOX2-OT, CHD2 Hyper-5hmC TSS1500 Activation Glioma [25]

LSMEM1 Hyper-5hmC 50UTR Activation Glioma [25]

v-myc, FAM49A, DDX1, IL-2, IL-
15, PRC2

Hyper-5hmC ND Activation Neuroblastoma [26, 27]

PTEN, hMLH1, IRX1 Hypo-5hmC Promoter Repression Gastric [28]

GATA6, MMP11, VAV2, LATS2 Hyper-5hmC Promoter and
gene body

Activation Pancreas [29]

TBX15 Hyper-5hmC Promoter Activation HCC [30]

COMT, FMO3, LCAT Hypo-5hmC Promoter Repression HCC [30]

CCNY, CDK16 Hyper-5hmC Loci and
promoter

Activation HuRCSC [31]

VHL, SETD2 Hypo-5hmC Gene body Repression ccRCC [14]

CA2, FMN2, PDCD4, PKIB,
SLC26A2, ALOX15*, GHRHR*,
TFP12*, TKTL1*

Hypo-5hmC Loci, promoter Repression Colon [32–42]

TESC, TGFBI, BMP7, NKD2 Hyper-5hmC Loci Activation Colon [32]

GLO1 Hyper-5hmC Promoter Activation Endometrial [43]

LZTS1 Hypo-5hmC Loci Repression Breast [44]

*The effect of 5hmC was not determined in these genes. 5hmC, 5-hydroxymethylcytosine; TSS1500, 1500 bases upstream
transcription start site; 50 UTR, 50 untranslated region; HCC, Hepatocellular carcinoma; HuRCSS, Kidney renal stem cells;
ccRCC, Clear cell renal cell carcinoma; ND, not determined.

Table 1.
Genes with aberrant 5hmC in different solid human neoplasms.
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World Health Organization (WHO) introduced a new classification where molecu-
lar markers were taken into account. In this classification glioma are divided into
subtypes based on the isocitrate dehydrogenase 1 (IDH1) gene mutation status [46].
IDH can affect DNA hypermethylation at certain promoter regions, resulting in a
glioma CpG island methylator phenotype [47]. In glioma, it has been described as
an aberrant 5mC status in CpG island shores and is 5hmC-dependent, and it corre-
lates with disease progression [15]. Moreover, in a previous report, the 5hmC
patterns were analyzed in GBM samples. They observed a 3.5 reduction in the total
5hmC content and of what was present, localized primarily in super-enhancers and
cis elements of transcription factors associated with proliferation. Also, they
observed a significant enrichment of 5hmC sites in active transcribed genes in GBM.
They reported a total of 2121 active transcribed genes of which 146 have the highest
proportion of 5hmC.

As an example, genes with hyper-5hmC in 1500 bases upstream of the tran-
scription star site (TSS1500) that are transcriptionally active are SOX2 overlapping
transcript (SOX-OT) and chromodomain-helicase-DNA-binding protein 2
(CHD2) (Table 1). Additionally, the gene that encodes the leucine-rich single-pass
membrane protein 1 (LSMEM1, also called C7orf53) is transcriptionally active and
also presented elevated levels of 5hmC in the 50 untranslated region (50UTR)
(Table 1) [25].

2.3 5hmC status in pediatric embryonal tumors

The pediatric embryonal tumors are a rare type of childhood cancers that derive
from neuroectodermal tissue and share related histopathological features despite
distinct anatomical locations and diverse clinical outcomes [48]. These tumors can
originate in many parts of the body, the ones that are derived from the sympathetic
nervous system are called neuroblastoma, and the ones that are derived in the brain
are called medulloblastoma [49].

2.3.1 Medulloblastoma

Medulloblastoma (MB) is the most common malignant brain tumor of child-
hood, the overall 5-year disease-free survival remains low (36%) for patients with
dissemination, and prognosis remains poor for patients with recurrent MB [50]. In
addition, majority of survivors exhibit long-term neurocognitive and neuroendo-
crine complication as a result of therapy [51, 52].

The analysis of the 5hmC levels in MB showed a reduction, in comparison to
non-neoplastic cerebellum [53]. This finding agrees with other reports where the
loss of 5hmC is a common event in other brain tumors as well as tumors of different
origins [54]. With this discovery, the expression of TET1, TET2, TET3, IDH1, and
IDH2 was analyzed, but the profile could not explain the reduction of 5hmC [53],
although the difference in expression of this genes did correlate with the different
MB molecular subgroups, suggesting a possible role for TET and IDH genes in the
control of specifically developmental pathways activated in MB subgroups. This
inability to associate the overall reduction of 5hmC levels and the expression of TET
and IDH genes could be due to the method of selection of the 5hmC screening and
the lack of analysis of the genomic distribution of 5hmC.

2.3.2 Neuroblastoma

Neuroblastoma is accountable for more than 7% of malignancies in patients
younger than 15 years and is responsible for 15% of all pediatric oncology deaths.
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Risk assessment based on several clinical and biological features, including age,
stage, avian myelocytomastosis viral oncogene (v-myc) status, ploidy, and histol-
ogy, classified the patients into three groups, low-risk (LR), intermediate-risk (IR),
and high-risk (HR) disease [26]. Comparison of the 5hmC profile in LR vs. HR
permitted the identification of 3320 genes with differential 5hmC levels between
the groups. In the LR group, genes with 5hmC enrichment and increased expression
were v-myc, family with sequence similarity 49 member A (FAM49A), and DEAD-
box helicase 1 (DDX1) (Table 1). Regarding the HR group, the genes with hyper-
5hmC and high expression include genes involved in inflammation (IL-2 and IL-15)
and in the polycomb repressive complex 2 (PRC2) [27].

2.4 5hmC status in parathyroid cancer

Parathyroid cancer is a rare, indolent, and slowly progressive tumor, being the
rarest cause of primary hyperparathyroidism. Surgery is the option of treatment;
thus the early identification in the preoperative period is vital [55]. Clinical charac-
teristics of parathyroid cancer can overlap with benign parathyroid disease [55, 56].
Barazeghi E. et al. showed reduced global levels of 5hmC in samples of parathyroid
carcinoma compared with samples of normal tissues as well as benign parathyroid
adenomas; thus, it was suggested that 5hmC level could be a marker to differentiate
between benign and malign tumors [56]. Analysis of TET protein expression indi-
cated variable expression of TET1 in parathyroid adenomas and carcinomas, and
additionally reduced or absent expression of TET2 was observed in parathyroid
carcinomas as compared with normal parathyroid tissue in concordance with the
reduced levels of 5hmC reported in parathyroid carcinoma [56, 57]. Furthermore,
increased levels of methylation in promoter CpG islands from TET2 were reported
[57]. Analysis of genes regulated by hydroxymethylation on this cancer has not been
reported, yet.

2.5 5hmC status in thyroid cancer

Thyroid cancer is the most common tumor of the endocrine organs, accounting
for 90% of endocrine tumors. In general, thyroid cancer is originated of follicular
cells being divided in papillary thyroid carcinoma and follicular thyroid carcinoma;
a reduced percent of thyroid cancers is generated from parafollicular C cells being
classified as medullary thyroid carcinomas [58]. The information about 5hmC status
is extremely limited, but it has been observed that levels of 5hmC are reduced in
papillary thyroid carcinomas as compared with control tissue [59]. However, infor-
mation about expression of TET proteins and regulation by hydroxymethylation or
target genes in this cancer or its subtypes is absent.

2.6 5hmC status in oral cancer

Cancer of the oral cavity is the most common tumor worldwide, the squamous
cell carcinoma being the most common histopathology type [60]. A decreased
expression of TET2 and a reduction of 5mhC levels in samples of oral squamous
cell carcinomas have been reported compared with healthy oral tissues by immu-
nohistochemistry [61]. Also, 5hmC levels decreased progressively from benign
oral mucosal lesions to oral squamous cell carcinoma [62]. Expression analysis of
target genes regulated by 5hmC or mechanisms implicated have not been
reported yet.
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2.7 5hmC status in gastric cancer

Gastric cancer is the third cause of cancer death. Environment factors, infec-
tions, and genetic and epigenetic alterations are related with development of this
cancer [63]. Decreased expression of TET1 mRNA and protein has been reported in
gastric cancer, while the expression of TET2 and TET3 did not show differences in
expression compared with control tissue. In addition, diminished expression of
TET1 has been associated with decreased levels of 5hmC in the promoter of PTEN,
human mutL homolog 1 (hMLH1), and iroquois homeobox 1 (IRX1), correlating
with their reduced expression levels (Table 1) [28]. Thus, reduced expression of
TET1 and decreased levels of 5hmC in gastric cancer could be related with the
decreased expression of suppressor tumors genes. An in-depth analysis of genes
regulated by hydroxymethylation on this cancer could allow new therapeutic
strategies.

2.8 5hmC status in pancreatic cancer

Pancreatic cancer is a disease with high mortality rate, being the fourth cause of
cancer-related deaths in the United States and most developed countries. Different
types of pancreatic cancer can rise; however, the subtype termed pancreatic ductal
adenocarcinoma (PDAC) is the most common, which accounts for about 85–90% of
cases [64, 65]. The absence of early detection methods, delay in diagnosis, and
unsuccessful treatments contribute to the high mortality of this cancer [65].

Low global levels of 5hmC have been reported in pancreatic cancer cell lines and
in samples of human tumors compared with healthy pancreatic cells [29]. The
reduced levels of 5hmC in samples of human pancreatic tumor tissues correlated
with the decreased expression of TET1 [66]. A redistribution of 5hmCs was
observed in pancreatic cancer, with enrichment in genomic specific regions as pro-
moters and gene body, particularly of the transcriptional factor GATA6, matrix
metallopeptidase 11 (MMP11), vav guanine nucleotide exchange factor 2 (VAV2),
and large tumor suppressor kinase 2. The enrichment of 5hmC in this genes is in
accordance with the increased expression in human samples of pancreatic cancer
[29]. Additionally, it has been suggested that pancreatic cancer patients with high
GATA6 survive longer so that GATA6 was proposed as a prognosis marker [67]. On
the other hand, high levels of MMP11 were associated with poor prognosis of
pancreatic cancer patients [68].

2.9 5hmC status in hepatocellular cancer

Globally, hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and
the third leading cause of cancer-related death, estimated to cause the death of
500,000–600,000 people per year [69]. The factors that contribute to mortality in
HCC are the 5-year recurrence rates standing at 70% after tumor resection and
15–30% posttransplant [70].

Hepatic B virus (HBV) and hepatitis C (HCV) are the main cause of HCC. For
HCC related to HBV, epigenetic alterations play vital roles in hepatocarcinogenesis
through direct and indirect mechanisms initiated by HBV [69].

Low global levels of 5hmC have been reported in HCC [69]. A redistribution of
5hmCs was observed in HCC, with an enrichment in specific genomic region as
promoters. In this same report, a decrease in the levels of hydroxymethylation was
observed in the promoter of different genes, this catechol-O-methyltransferase
(COMT), the flavin-containing monooxygenase 3 (FMO3), and lecithin-cholesterol
acyltransferase (LCAT) [30] (Table 1). The gene T-Box transcription factor 15
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(TBX15) with enrichment in the 5hmC promoter region was associated with tran-
scriptional activation, while those that presented a decrease of 5hmC were low [30].

2.10 5hmC status in renal cell carcinoma (RCC)

RCC is the most common parenchymal neoplasm in adults. Among urogenital
tumors, it is the second with the highest incidence, which represents 2 to 3% of
cancer in humans and 80 to 90% of kidney neoplasms. The most common subtypes
of RCC are clear cell carcinoma (ccRCC) and papillary carcinoma [31].

Recently, it was reported that kidney cancer and ccRCC have global decreased
levels of 5hmC with respect to normal tissue [14]. Paradoxically in kidney renal
stem cells (HuRCSC), hyper-5hmC patterns were detected in specific regions such
as the cyclin Y (CCNY) promoter and loci and cyclin-dependent kinase-16 (CDK16)
(Table 1), which was associated with a transcriptional activation. Likewise, the
increased levels of TET1 in HuRCSC were detected, which probably explains the
increase of 5hmC in HuRCSC [31].

In another study in which ccRCC was analyzed, it was shown that low levels of
5hmC in the body of the von Hippel–Lindau gene (VHL) and SETD2
methyltransferase are associated with low expression [14] (Table 1). In ccRCC loss
of SETD2 is associated with genomic instability, aberrant transcriptional program,
RNA processing defects, and impacts on cell proliferation, differentiation, and cell
death [71]. Additionally, it has been observed that the IDH1 enzyme was signifi-
cantly downregulated in ccRCC compared to normal kidney cells. Thus, in ccRCC
the reduction of IDH1 can be a mechanism for the loss of 5hmC through the
downregulation of 2-keto glutarate [14].

2.11 5hmC status in colon cancer

The colon cancer or colorectal cancer is the third most common cancer in the
world with more incidence in developed countries [72, 73].

Decreased levels of global hydroxymethylation has been reported in colon can-
cer [32]. In accordance, decreased expression of TET1 has been reported in samples
of human colorectal cancer tissue [33]. Moreover, loss of nuclear expression of
TET2 has been observed in colorectal cancer tissue [34]. Thus, aberrant patterns of
hydroxymethylation in colorectal cancer has been observed. In this sense, analysis
of 5hmC status in colon cancer tissues showed hypo-hydroxymethylation in the
promoter region of genes such as:

• Carbonic anhydrase 2 (CA2), which belongs to a group of zinc-binding
enzymes, which catalyzes the reversible hydration of CO2 to bicarbonate, that
is important for maintenance of pH [32–35]

• Formin 2 (FMN2), involved in cell polarity and cytoskeleton organization and
prevents degradation of p21, promoting cell cycle arrest [32–36]

• Programmed cell death 4 (PDCD4), considered a tumor suppressor in
colorectal cancer, which can inhibit proliferation and invasion, preventing
AP-1 transcription and inhibiting mTOR/Akt [37]

• cAMP-dependent protein kinase inhibitor beta (PKIB), which promotes
activation of Akt, contributing to cell growth and proliferation (however, the
function of PKIB in colon cancer remains to be determined) [32–39]
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• Solute carrier family 26 member 2 (SLC26A2) (low expression of this protein
promotes proliferation in vitro observed in colon cancer cell lines) [32–41]

• Arachidonate 15-lipoxygenase (ALOX15)

• Growth hormone-releasing hormone (GHRHR)

• Inhibitor of the tissular factor pathway 2 (TFPI2)

• Transketolase-like protein 1 (TKTL1) (Table 1).

Related to 5hmC status and expression, in some cases, the decreased levels of
expression of these genes were corroborated. Additionally, hyper-
hydroxymethylation and increased expression of different genes have been
observed in samples of human primary colon cancer [32–42]. The genes with hyper-
5hmC status and high expression include tescalcin (TESC), a calcium-binding pro-
tein involved in the promotion of tumorigenesis in colorectal cancer, which acti-
vates Akt-dependent NF-κB pathway, promoting proliferation and also
contributing to invasion and metastasis in colon cancer [32–42, 74, 75];
transforming growth factor-beta-induced (TGFBI) that promotes cell proliferation,
migration, metastasis, and inflammation [32–42, 74–76]; and bone morphogenetic
protein 7 (BMP7) that has an augmented expression, but in this case there has been
a controversy because in colorectal cancer it has also been reported to have low
levels. Additionally, it has been reported that, in colorectal cancer, BMP7 has anti-
cancer activity [32–42, 74–78] and naked cuticle homolog 2 (NKD2) [32].

2.12 5hmC status in endometrial cancer

Endometrial cancer is the most common tumor in the genital tract in developed
countries [43]. A report showed a decreased level of 5hmC in samples of endome-
trial cancer by an ELISA-like reaction. In addition, decreased expression levels of
TET1 and TET2 mRNA and increased levels of TET3 mRNA were observed [79].
However, in another report, increased levels of TET1 protein and increased levels of
5hmC in endometrial cancer and hyperplasia using immunohistochemistry were
indicated [43]. This discrepancy could be associated to the different levels of regu-
lation of TET1 expression. Interestingly, the authors determined that TET1 could
promote the accumulation of 5hmC in the promoter of the glyoxalase I (GLO1) gene
(Table 1), resulting in the increased expression of GLO1 in endometrial cancer
[43]. GLO1 promotes proliferation and chemotherapeutic resistance and contrib-
utes to progestin resistance used in the treatment of endometrial cancer [43, 79,
80]. Moreover, it was reported that metformin treatment reduced the expression of
TET1 and 5hmC levels, promoting the reduction of GLO1 expression and increasing
the sensitivity to progestin in a model in vitro [43].

2.13 5hmC status in breast cancer

Breast cancer (BC) is the most frequent neoplasia in women worldwide; data
from the WHO suggests that it comprises 16% of the total of cancer cases. In
addition, every year 138 million new cases are detected, and approximately 458,000
deaths occur due to the pathology [81].

In breast cancer, low levels of 5hmC in the locus of the gene leucine zipper
putative tumor suppressor (LZTS1) (Table 1) have been reported. In addition, the
level of LZTS1 expression was low in breast cancer samples compared to normal
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breast tissue. These results coincide with the low expression of TET1. The results
suggest that low levels of 5hmC in the locus of LZTS1 are probably due to the
decrease in TET1 [44]. In human cancer, loss of LZTS1 expression has been associ-
ated with tumor progression, metastasis, and poor prognosis [82].

3. Conclusion

In the tumors researched in this document, in most of them, an overall global
reduction of 5hmC, with accumulation in certain genetic locations or genes, is
reported. Some are also related to the overexpression of genes, taking into account
that 5hmC is an epigenetic mark of transcription activation. However, the methods
used to determine the 5hmC vary between the studies, and not all the methods can
be considered reliable to distinguish between 5mC and 5hmC with confidence.
Moreover, an area that has not been explored is the effect that 5hmC has on the
expression in miRNAs and lncRNA. These observations can be taken to reassess the
role of DNA hydroxymethylation status in tumorigenesis.

Expression analyses of TET family members and correlation with 5hmC status
have been performed in a wide variety of cancers. However, the biological effect of
this aberrant changes in 5hmC levels has not been deeply determined. For example,
targeted genes regulated by hydroxymethylation in many cancers have not been
established, characterization of the hydroxymethylation patterns in regulator
regions of target genes is not determined in some cases, and their expression levels
are not corroborated with 5hmC status. Importantly, the effects resulting in the
modification or the return to the original state of the hydroxymethylation patterns
in cancer are extensively unknown. In addition, since hydroxymethylation can be
regulated in different physiological process in health and disease, modifications in
5hmC status could generate undesirable side effects. Thus, more studies are neces-
sary to have a comprehensive understanding of the biological effects and dynamic
changes of the hydroxymethylation in cancer, which could allow new therapeutic
strategies in the future.

Acknowledgements

We acknowledge support from Universidad Hipócrates and Consejo Nacional de
Ciencia y Tecnología CONACyT.

Conflict of interest

The authors declare no conflict of interest.

Appendices and nomenclature

ALOX15 Arachidonate 15-lipoxygenase
BMP7 Bone morphogenetic protein 7
bHlH Basic helix–loop–helix
C Cytosine
CA2 Carbonic anhydrase 2
CCNY Cyclin Y promoter and loci
ccRCC Clear cell carcinoma cell renal

85

DNA Hydroxymethylation in the Regulation of Gene Expression in Human Solid Cancer
DOI: http://dx.doi.org/10.5772/intechopen.92016



• Solute carrier family 26 member 2 (SLC26A2) (low expression of this protein
promotes proliferation in vitro observed in colon cancer cell lines) [32–41]

• Arachidonate 15-lipoxygenase (ALOX15)

• Growth hormone-releasing hormone (GHRHR)

• Inhibitor of the tissular factor pathway 2 (TFPI2)

• Transketolase-like protein 1 (TKTL1) (Table 1).

Related to 5hmC status and expression, in some cases, the decreased levels of
expression of these genes were corroborated. Additionally, hyper-
hydroxymethylation and increased expression of different genes have been
observed in samples of human primary colon cancer [32–42]. The genes with hyper-
5hmC status and high expression include tescalcin (TESC), a calcium-binding pro-
tein involved in the promotion of tumorigenesis in colorectal cancer, which acti-
vates Akt-dependent NF-κB pathway, promoting proliferation and also
contributing to invasion and metastasis in colon cancer [32–42, 74, 75];
transforming growth factor-beta-induced (TGFBI) that promotes cell proliferation,
migration, metastasis, and inflammation [32–42, 74–76]; and bone morphogenetic
protein 7 (BMP7) that has an augmented expression, but in this case there has been
a controversy because in colorectal cancer it has also been reported to have low
levels. Additionally, it has been reported that, in colorectal cancer, BMP7 has anti-
cancer activity [32–42, 74–78] and naked cuticle homolog 2 (NKD2) [32].

2.12 5hmC status in endometrial cancer

Endometrial cancer is the most common tumor in the genital tract in developed
countries [43]. A report showed a decreased level of 5hmC in samples of endome-
trial cancer by an ELISA-like reaction. In addition, decreased expression levels of
TET1 and TET2 mRNA and increased levels of TET3 mRNA were observed [79].
However, in another report, increased levels of TET1 protein and increased levels of
5hmC in endometrial cancer and hyperplasia using immunohistochemistry were
indicated [43]. This discrepancy could be associated to the different levels of regu-
lation of TET1 expression. Interestingly, the authors determined that TET1 could
promote the accumulation of 5hmC in the promoter of the glyoxalase I (GLO1) gene
(Table 1), resulting in the increased expression of GLO1 in endometrial cancer
[43]. GLO1 promotes proliferation and chemotherapeutic resistance and contrib-
utes to progestin resistance used in the treatment of endometrial cancer [43, 79,
80]. Moreover, it was reported that metformin treatment reduced the expression of
TET1 and 5hmC levels, promoting the reduction of GLO1 expression and increasing
the sensitivity to progestin in a model in vitro [43].

2.13 5hmC status in breast cancer

Breast cancer (BC) is the most frequent neoplasia in women worldwide; data
from the WHO suggests that it comprises 16% of the total of cancer cases. In
addition, every year 138 million new cases are detected, and approximately 458,000
deaths occur due to the pathology [81].

In breast cancer, low levels of 5hmC in the locus of the gene leucine zipper
putative tumor suppressor (LZTS1) (Table 1) have been reported. In addition, the
level of LZTS1 expression was low in breast cancer samples compared to normal

84

DNA Methylation Mechanism

breast tissue. These results coincide with the low expression of TET1. The results
suggest that low levels of 5hmC in the locus of LZTS1 are probably due to the
decrease in TET1 [44]. In human cancer, loss of LZTS1 expression has been associ-
ated with tumor progression, metastasis, and poor prognosis [82].

3. Conclusion

In the tumors researched in this document, in most of them, an overall global
reduction of 5hmC, with accumulation in certain genetic locations or genes, is
reported. Some are also related to the overexpression of genes, taking into account
that 5hmC is an epigenetic mark of transcription activation. However, the methods
used to determine the 5hmC vary between the studies, and not all the methods can
be considered reliable to distinguish between 5mC and 5hmC with confidence.
Moreover, an area that has not been explored is the effect that 5hmC has on the
expression in miRNAs and lncRNA. These observations can be taken to reassess the
role of DNA hydroxymethylation status in tumorigenesis.

Expression analyses of TET family members and correlation with 5hmC status
have been performed in a wide variety of cancers. However, the biological effect of
this aberrant changes in 5hmC levels has not been deeply determined. For example,
targeted genes regulated by hydroxymethylation in many cancers have not been
established, characterization of the hydroxymethylation patterns in regulator
regions of target genes is not determined in some cases, and their expression levels
are not corroborated with 5hmC status. Importantly, the effects resulting in the
modification or the return to the original state of the hydroxymethylation patterns
in cancer are extensively unknown. In addition, since hydroxymethylation can be
regulated in different physiological process in health and disease, modifications in
5hmC status could generate undesirable side effects. Thus, more studies are neces-
sary to have a comprehensive understanding of the biological effects and dynamic
changes of the hydroxymethylation in cancer, which could allow new therapeutic
strategies in the future.

Acknowledgements

We acknowledge support from Universidad Hipócrates and Consejo Nacional de
Ciencia y Tecnología CONACyT.

Conflict of interest

The authors declare no conflict of interest.

Appendices and nomenclature

ALOX15 Arachidonate 15-lipoxygenase
BMP7 Bone morphogenetic protein 7
bHlH Basic helix–loop–helix
C Cytosine
CA2 Carbonic anhydrase 2
CCNY Cyclin Y promoter and loci
ccRCC Clear cell carcinoma cell renal

85

DNA Hydroxymethylation in the Regulation of Gene Expression in Human Solid Cancer
DOI: http://dx.doi.org/10.5772/intechopen.92016



CHD2 Chromodomain-helicase-DNA-binding protein 2
CDK16 Cyclin-dependent kinase-16
COMT Catechol O-methyltransferase
CpG Islands cytokine phophate guanine
DDX1 DEAD-box helicase 1
DNA Deoxyribonucleic acid
Ezh2 Histone-lysine methyltransferase
FAM49A Family with sequence similarity 49 member A
Fe2+ Iron 2+
FMN2 Formin 2
FMO3 Flavin-containing monooxygenase 3
GATA6| GATA binding protein 6
GBM Glioblastoma
GHRHR Growth hormone-releasing hormone
GLO1 Glyoxalase I
G9a Euchromatic histone-lysine N-methyltransferase 2 (EHMT2)
HIF1α Hypoxia-inducible factor 1 alpha subunit
HIF2α Hypoxia-inducible factor 2 alpha subunit
hMLH1 Human mutL homolog 1
HR High-risk
hypo-5hmC Hypo-5 hydroxymethylcytosine
HuRCSC Kidney renal stem cell
H3K36me3 Trimethylation of lysine 36 of histone H3
IDH Isocitrate dehydrogenase
IDH1 Isocitrate dehydrogenase 1
IDH2 Isocitrate dehydrogenase 2
IGF1R Insulin-like growth factor 1 receptor
lncRNA Long noncoding RNAs
IR Intermediate-risk
IRX1 Iroquois homeobox 1
LCAT Lecithin-cholesterol acyltransferase
LATS2 Suppressor kinase of large tumors 2
LR Low-risk
LSMEM1 Leucine-rich single-pass membrane protein 1
MB Medulloblastoma
mm3 Cubic millimeter
mRNA Messenger RNA
MMP11 Matrix metalloproteinase-1
MRPL50 Mitochondrial ribosomal protein L50
MYCN Proto-oncogene, bHLH transcription factor
NDRG3 Neuregulin 3
NKD2 Naked cuticle homolog 2
NF-κB Nuclear factor kappa B
PCTAIRE1 Serine/threonine protein kinase (PCTK1)
PDAC Pancreatic ductal adenocarcinoma
PDCD4 Programmed cell death 4
PKIB CAMP-dependent protein kinase inhibitor beta
PPP1R3A Protein phosphatase 1 regulatory subunit 3A
PRC2 Polycomb repressive complex 2
PTEN Phosphatase and tensin homolog
p16ink Protein 16 ink
RAC3 Ras-related C3 botulinum toxin substrate 3
RCC Renal cell carcinoma
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RNA Ribonucleic acid
SETD2 SET domain containing 2, histone lysine methyltransferase
SLC26A2 The solute carrier family 26 member 2 (diastrophic dysplasia sul-

fate transporter)
SOX2-OT SOX2 overlay transcript
TESC Tescalcin
TET Ten-eleven translocation
TET1 Ten-eleven translocation 1
TET2 Ten-eleven translocation 2
TET3 Ten-eleven translocation 3
TFPI2 Tissue factor pathway inhibitor 2
TGF Transforming growth factor
TGFBI Transforming growth factor-beta-induced
TKTL1 Transketolase-like protein1
TIMP2 Tissue inhibitor of metalloproteinase 2
TRDN Triadin
v-myc Avian myelocytomastosis viral oncogene
VAV2 Vav guanine nucleotide exchange factor 2
VHL Von Hippel–Lindau gene
5fC 5-Formylcytosine
5cC 5-Carboxycytosine
5mC 5-Methylcytosine
5hmC 5-Hydroxymethylcytosine
50UTR 50 untranslated region
αKG α-Ketoglutarate
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IDH1 Isocitrate dehydrogenase 1
IDH2 Isocitrate dehydrogenase 2
IGF1R Insulin-like growth factor 1 receptor
lncRNA Long noncoding RNAs
IR Intermediate-risk
IRX1 Iroquois homeobox 1
LCAT Lecithin-cholesterol acyltransferase
LATS2 Suppressor kinase of large tumors 2
LR Low-risk
LSMEM1 Leucine-rich single-pass membrane protein 1
MB Medulloblastoma
mm3 Cubic millimeter
mRNA Messenger RNA
MMP11 Matrix metalloproteinase-1
MRPL50 Mitochondrial ribosomal protein L50
MYCN Proto-oncogene, bHLH transcription factor
NDRG3 Neuregulin 3
NKD2 Naked cuticle homolog 2
NF-κB Nuclear factor kappa B
PCTAIRE1 Serine/threonine protein kinase (PCTK1)
PDAC Pancreatic ductal adenocarcinoma
PDCD4 Programmed cell death 4
PKIB CAMP-dependent protein kinase inhibitor beta
PPP1R3A Protein phosphatase 1 regulatory subunit 3A
PRC2 Polycomb repressive complex 2
PTEN Phosphatase and tensin homolog
p16ink Protein 16 ink
RAC3 Ras-related C3 botulinum toxin substrate 3
RCC Renal cell carcinoma
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RNA Ribonucleic acid
SETD2 SET domain containing 2, histone lysine methyltransferase
SLC26A2 The solute carrier family 26 member 2 (diastrophic dysplasia sul-

fate transporter)
SOX2-OT SOX2 overlay transcript
TESC Tescalcin
TET Ten-eleven translocation
TET1 Ten-eleven translocation 1
TET2 Ten-eleven translocation 2
TET3 Ten-eleven translocation 3
TFPI2 Tissue factor pathway inhibitor 2
TGF Transforming growth factor
TGFBI Transforming growth factor-beta-induced
TKTL1 Transketolase-like protein1
TIMP2 Tissue inhibitor of metalloproteinase 2
TRDN Triadin
v-myc Avian myelocytomastosis viral oncogene
VAV2 Vav guanine nucleotide exchange factor 2
VHL Von Hippel–Lindau gene
5fC 5-Formylcytosine
5cC 5-Carboxycytosine
5mC 5-Methylcytosine
5hmC 5-Hydroxymethylcytosine
50UTR 50 untranslated region
αKG α-Ketoglutarate
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Chapter 6

Research Progress of DNA
Methylation in Thyroid Cancer
Zhu Gaohong and Xie Lijun

Abstract

We have summarized increasing data from all kinds of experiment results of
papers in recent years, which are associated with tumor suppressor genes, onco-
genes, and thyroid-specific genes and attempt to elucidate the importance of epige-
netic modifications and the mechanisms of aberrant DNA methylation in thyroid
cancer in this review. The results showed that current articles have revealed the
importance of epigenetic modifications and the different types of mechanisms in
thyroid cancer. The mechanisms of DNA methylation related to thyroid cancer
demonstrate that acquired epigenetic abnormalities together with genetic changes
play an important role in alteration of gene expression patterns. Aberrant DNA
methylation has been well known in the CpG regions. Among the genes identified,
we have shown the status of DNA promoter methylation in papillary, follicular,
medullary, and anaplastic thyroid cancer. It suggested that thyroid cancer subtypes
present differential promoter methylation signatures, which will encourage poten-
tial thyroid cancer detection in its early stages, assessment of prognosis, and
targeted cancer treatment.

Keywords: thyroid carcinoma, DNA methylation, epigenetic inheritance, tumor
suppressor genes, oncogene genes, thyroid-specific genes

1. Introduction

Thyroid cancer is the most frequent endocrine neoplasia. The National Cancer
Institute estimated that there would be 44,670 new cases of thyroid cancer (TC)
with 1690 deaths in 2010, and with an overall estimate of 56,870 new cases by 2017,
and its incidence has been increasing in recent decades. Compared with other adult
cancers, TC tends to occur in younger people between the ages of 20 and 60. It is
three times more common in women than men [1] and has the fastest rising
incidence rates in women and the second fastest in men with an annual percentage
change of approximately 5%, making TC the sixth most common cancer in women
[2]. There are four main types of which papillary and follicular (PTC, FTC) types
together account for >90% followed by medullary thyroid cancers (MTC) with
3–5% and anaplastic carcinomas (ATC) making up <3% [3]. Reasons for this trend
have been attributed to improvement in imaging (ultrasound technology) that is
allowing the identification of ever smaller thyroid nodules. However, with this gain
in detection, determining which benign nodules (adenomas) will progress to cancer
cannot be determined on the basis of histology alone, underscoring the need for
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genetic markers of early detection for TC. Recently, epigenetic alterations have
been shown to play a role in the development and progression of thyroid cancer.

With the deepening of tumor research, it has been gradually found that epige-
netics plays an important role in the occurrence and development of tumors.
Mechanisms of epigenetics include, but are not limited to, DNA methylation
(methylating of ciliary carbon at position 5), posttranslation modification of his-
tone, chromatin remodeling (structural change), gene imprinting, RNA interfer-
ence (noncoding RNA or gene silencing), etc. The epigenetic mechanisms of tumor
cells have lost a fine regulation, and the breakdown of epigenetic patterns will lead
to tumor phenotype expression. These mechanisms have been reviewed elsewhere,
and here we will focus on DNA methylation in thyroid cancer.

DNA methylation is an important epigenetic change, which is persistent and
hereditary. The methylation of promoter CpG can regulate gene expression and
maintain chromosome integrity and DNA recombination. Based on 789 samples
from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA)
databases, the five-CpG signature could provide a novel biomarker with useful
applications in thyroid cancer (PTC, FTC, ATC, and MTC) diagnosis and the
diagnostic score formula on the condition of DNA methylation data [4]. However,
the methylation pattern is unstable and can be reversed by small molecules and
endogenous enzymes, leading to dedifferentiation and tumor heterogeneity.
Abnormal DNA methylation, including a decrease in the overall methylation level
of the genome, was accompanied by hypermethylation in some gene promoter
regions. The hypermethylation of tumor suppressor gene promoter can reduce its
expression, while the hypomethylation of tumor suppressor gene promoter can
increase its expression, leading to tumorigenesis [5–8]. The following will describe
the state of aberrant DNA methylation in different thyroid cancers.

2. DNA methylation in PTC

RET/PTC rearrangement and mutations in Ras and BRAF genes often occur in
papillary thyroid carcinoma (PTC) [9]. In addition, many methylation of cancer
suppressor genes are associated with BRAF gene mutations, such as Ras-association
domain family 1A (RASSF1A), solute carrier family 5 member 8 gene (SLC5A8),
retinoic acid receptor β2 (RARβ2), tissue inhibitor of metalloproteinase3 (TIMP3),
phosphatase and tensin homolog deleted on chromosome ten (PTEN),
metallothionein 1G (MT1G), ataxia-telangiectasia mutated (ATM), E-cadherin
(ECAD), death-associated protein kinase (DAPK), multiple tumor suppressor 1
(MTS1 or P16), and mut-L homolog 1 (MLH1). Mutations of TSHR gene are not
common in thyroid cancer, but high methylation and low expression of TSHR gene
often occur. Recent studies have found that thyroid-specific genes (thyroid-
stimulating hormone receptor and sodium/iodide symporter (TSHR and NIS),
thyroid transcription factor-1 (TTF-1)) play an important role in occurrence and
development of PTC. This part summarizes the related research on methylation
genes in PTC in recent years (see Table 1).

2.1 DNA methylation of cancer suppressor genes in PTC

2.1.1 Ras association domain family 1 (RASSF1A)

RASSF1A is a member of Ras superfamily, which is located at chromosome 3
(exactly on 3p21.3). Hypermethylation of CpG islands in the RASSF1A promoter
region contributes to epigenetic inactivation. It is a tumor suppressor gene widely
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genetic markers of early detection for TC. Recently, epigenetic alterations have
been shown to play a role in the development and progression of thyroid cancer.

With the deepening of tumor research, it has been gradually found that epige-
netics plays an important role in the occurrence and development of tumors.
Mechanisms of epigenetics include, but are not limited to, DNA methylation
(methylating of ciliary carbon at position 5), posttranslation modification of his-
tone, chromatin remodeling (structural change), gene imprinting, RNA interfer-
ence (noncoding RNA or gene silencing), etc. The epigenetic mechanisms of tumor
cells have lost a fine regulation, and the breakdown of epigenetic patterns will lead
to tumor phenotype expression. These mechanisms have been reviewed elsewhere,
and here we will focus on DNA methylation in thyroid cancer.

DNA methylation is an important epigenetic change, which is persistent and
hereditary. The methylation of promoter CpG can regulate gene expression and
maintain chromosome integrity and DNA recombination. Based on 789 samples
from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA)
databases, the five-CpG signature could provide a novel biomarker with useful
applications in thyroid cancer (PTC, FTC, ATC, and MTC) diagnosis and the
diagnostic score formula on the condition of DNA methylation data [4]. However,
the methylation pattern is unstable and can be reversed by small molecules and
endogenous enzymes, leading to dedifferentiation and tumor heterogeneity.
Abnormal DNA methylation, including a decrease in the overall methylation level
of the genome, was accompanied by hypermethylation in some gene promoter
regions. The hypermethylation of tumor suppressor gene promoter can reduce its
expression, while the hypomethylation of tumor suppressor gene promoter can
increase its expression, leading to tumorigenesis [5–8]. The following will describe
the state of aberrant DNA methylation in different thyroid cancers.

2. DNA methylation in PTC

RET/PTC rearrangement and mutations in Ras and BRAF genes often occur in
papillary thyroid carcinoma (PTC) [9]. In addition, many methylation of cancer
suppressor genes are associated with BRAF gene mutations, such as Ras-association
domain family 1A (RASSF1A), solute carrier family 5 member 8 gene (SLC5A8),
retinoic acid receptor β2 (RARβ2), tissue inhibitor of metalloproteinase3 (TIMP3),
phosphatase and tensin homolog deleted on chromosome ten (PTEN),
metallothionein 1G (MT1G), ataxia-telangiectasia mutated (ATM), E-cadherin
(ECAD), death-associated protein kinase (DAPK), multiple tumor suppressor 1
(MTS1 or P16), and mut-L homolog 1 (MLH1). Mutations of TSHR gene are not
common in thyroid cancer, but high methylation and low expression of TSHR gene
often occur. Recent studies have found that thyroid-specific genes (thyroid-
stimulating hormone receptor and sodium/iodide symporter (TSHR and NIS),
thyroid transcription factor-1 (TTF-1)) play an important role in occurrence and
development of PTC. This part summarizes the related research on methylation
genes in PTC in recent years (see Table 1).

2.1 DNA methylation of cancer suppressor genes in PTC

2.1.1 Ras association domain family 1 (RASSF1A)

RASSF1A is a member of Ras superfamily, which is located at chromosome 3
(exactly on 3p21.3). Hypermethylation of CpG islands in the RASSF1A promoter
region contributes to epigenetic inactivation. It is a tumor suppressor gene widely
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expressed in various normal organs but is often deleted in tumors. It is speculated
that BRAFV600E gene mutation in PTC regulated the RASSF1A-MST1-FoxO3 sig-
naling pathway, which led to RASSF1A hypomethylation and affected the malig-
nant degree of thyroid cancer. It is found that the methylation rate of RASSF1A in
thyroid cancer is 15–75% [10]. Studies indicated RASSF1A methylation differed in
PTC compared with normal thyroid and was correlated with extracapsular invasion
inversely. It suggested that RASSF1A has a potential role as a molecular marker for
characterization of PTC histopathology [11–15]. It is shown that hypermethylation
of RASSF1A promoter region is 20–32% in PTC. Hypermethylation of RASSF1A in
PTC was related to the multifocal and extracapsular invasion of tumors [16].

2.1.2 Solute carrier gene family 5A, member 8 (SLC5A8)

SLC5A8 is a passive iodine transporter located in the parietal membrane of
thyroid follicular cells. SLC5A8 is not regulated by thyrotropin in normal thyroid
tissues but methylated in thyroid tumors. Hypermethylation often occurred in the
first exon of CpG islands in SLC5A8, which results in gene silencing and restoring
expression inhibiting cancer cell growth. It has been pointed out that SLC5A8
was an anti-oncogene of colon cancer [17]. SLC5A8 was also frequently
hypermethylated in thyroid cancer. Its function is unclear nowadays, but its
hypermethylation might play a key role in the occurrence of thyroid cancer [18].
Studies revealed that SLC5A8 gene was highly methylated in typical PTC (90%) and
only 20% in other types of PTC. In addition, low expression of SLC5A8 was also
associated with BRAF T1796A, suggesting that SLC5A8 methylation may be impor-
tant in MAPK pathway [19].

2.1.3 Retinoic acid receptor beta2

RARβ2 is a type of nuclear receptor that is activated by both all-trans retinoic
acid and 9-cis retinoic acid, which has been shown to function as a tumor suppres-
sor gene in different types of human tumors. It has been found that RARβ2 expres-
sion was decreased or deleted in tumors. It meant that RARβ2 inactivation was
related to tumorigenesis. In the treatment of metastasis and recurrence of thyroid
cancer, retinoic acid therapy could restore the iodine uptake ability of metastasis
and then improved the efficacy of 131-I radiotherapy. Researches indicated that the
methylation rate of RARβ2 in thyroid cancer was 14%, higher than that in normal
thyroid tissues (7%). RARβ2 gene methylation was associated with BRAF gene
mutation in Wnt/beta catenin pathway [20]. Studies found there was RARβ2 gene
hypermethylation in thyroid cancer cell lines. And after treatment with 5-
azacytidine, RARβ2 expression was significantly increased, and the growth of
tumors was inhibited, while the inhibition still existed after removing 5-azacytidine.
RARβ2 gene methylation took part in tumorigenesis and development in PTC [21].

2.1.4 Tissue inhibitor of metalloproteinases-3 (TIMP3)

TIMP3 can bind to matrix metalloproteinases (MMPs), inhibiting the activity of
MMPs effectively [20, 22]. Methylation of TIMP3 promoter has been demonstrated
in many malignant tumors. It is often associated with growth, invasion, and lymph
node metastasis of malignant tumors. It is pointed out that BRAF mutation caused
low expression of TIMP3 in PTC, which could cause invasion and progression of
tumors. It was found that 38% of TIMP3 are hypermethylated in PTC [23].
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2.1.5 Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)

The PTEN gene is located on chromosome 10 (especially on the region of
10q23), which could encode a specific phosphatidylinositol triphosphate 3 dephos-
phorylation and inhibit the activation of PI3K/Akt signaling pathway. PTEN
expression alteration is crucial to the pathogenesis of cancer and other diseases. Low
level of PTEN caused by homozygous deletions, frameshift, nonsense mutations or
hypermethylation, or PTEN protein destability occurs frequently in various human
cancers [24, 25]. It was shown that PTEN gene expression was low in thyroid
cancer. One study found the methylation status of PTEN in FA, FTC, and PTC. The
results indicated that PTEN methylation level was gradually increased in PTC
(45.7%), FA (83.3%), and FTC (85.7%). PTEN methylation was related to muta-
tions genes in PI3K/Akt signaling pathway, such as PIK3CA and Ras genes,
suggesting that PTEN methylation and PI3K/Akt signaling pathway played an
important role in the process of occurrence and development in PTC [26].

2.1.6 Metallothionein 1G (MT1G)

MT1G, a member of the metallothionein family, is a highly conserved cysteine-
rich small molecule, which is mainly involved in metal-related transport. MT1G
exists in normal cells; it can regulate and maintain intracellular metal ion balance,
cell proliferation, and apoptosis. MT1G promoter methylation is associated with
decreasing gene expression, but not complete abrogation. Studies have shown that
MT1G gene has abnormal methylation in thyroid cancer, liver cancer, colon cancer,
and prostate cancer. It is confirmed that restoring MT1G gene expression could
inhibit tumors growth in vivo and in vitro, suggesting that MT1G gene has antican-
cer effect [27]. It is shown that MT1G gene was abnormally methylated in thyroid
cancer (30.3% in malignant tumors and 18.8% in benign tumors). Its expression was
significantly decreased, and that methylation of MT1G gene was associated with its
low expression. Further studies suggested that restoring MT1G gene expression
could inhibit the growth and infiltration of PTC and induced cell cycle inhibition
and apoptosis. The mechanism may inhibit PI3K/AKT pathway. In addition,
hypermethylation of MT1G was also associated with lymph node metastasis [28].

2.1.7 Ataxia-telangiectasia mutated

ATM belongs to the PI3/PI4 enzyme family. Although there is emerging evi-
dence for a role of ATM in promoting tumorigenesis, ATM signaling provides a
barrier to activated oncogenes and tumor progression, rather than promoting can-
cer early in tumorigenesis. ATM is ubiquitous in human and other higher animal
tissues and cells, such as testicular tissue. And a study showed that ATM was
hypermethylated in PTC (50%) and 0% in normal thyroid tissue [29].

2.1.8 E-cadherin

ECAD is a family of transmembrane glycoproteins responsible for calcium-
dependent cell adhesion. It is the key structural components of adherens junctions.
It is reported that ECAD may also act as a gene transcriptional regulator. Two main
mechanisms including hypermethylation of the promoter and microRNA imbalance
have been widely studied under the ECAD regulation in head and neck tumors. The
methylation of ECAD promoter region was accounted for 39.3% in PTC, and ECAD
expression decreased in the early stage of tumorigenesis. The experiment data
showed that methylation level of ECAD in thyroid cancer increased to 56% (18/32)
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and 0% (0/27) in normal thyroid tissue. Further studies found that there was no
significant correlation between ECAD methylation and T stage of lymph node
metastasis in thyroid cancer. After 2.6 years of follow-up, the recurrence of thyroid
cancer associated with ECAD methylation has no correlation [8].

2.1.9 Death-associated protein kinase

DAPK is a calmodulin-regulated ATK, which has an important role in the pro-
cess of apoptosis. DAPK mechanism is largely due to promoter hypermethylation,
leading to gene silencing. DAPK is ubiquitous in normal tissues. When the promoter
of DAPK is methylated, it will cause an abnormal gene expression. Abnormal
expression of DAPK can hinder the normal process of apoptosis and bring about
tumorigenesis. And its low expression or deletion is one of the important mecha-
nisms of cell carcinogenesis. It has been found that methylation of CpG island in the
promoter region in DAPK is an important reason for expression silencing. The loss
of DAPK protein in sporadic colorectal cancer is caused by the promoter
hypermethylation. It existed in very small tumors. Therefore, the loss of DAPK gene
plays an important role in the early stage of tumor formation. It is reported that
DAPK promoter methylation accounts for 51% in PTC and abnormal methylation
and DAPK gene silencing existed in many kinds of cancer cells [30]. It is pointed out
that the high methylation level of DAPK gene was associated with tumor size and
multiple lesions [31].

2.1.10 Multiple tumor suppressor 1 (MTS1 or P16)

MTS1 is hereafter called p16. It is an anti-oncogene in many tumors. The 50-CpG
fragment in the promoter region of P16 gene is the most susceptible to methylation,
inhibiting its expression products. Abnormal expression of P16 gene can over-
activate cyclin-dependent protein kinase 4 and stimulate abnormal cell prolifera-
tion, leading to tumorigenesis. Aberrant methylation of promoter region in P16
gene is the main cause for P16 gene inactivation [32]. Some scholars reported that
the P16 gene was hypermethylated (35.9%) in PTC [33].

2.1.11 Mut-L homolog 1

MLH1 is one of the DNA mismatch repair genes located on the 3p21 region in
chromosome 3. A correlation between MLH1 promoter methylation, specifically the
‘C’ region stops in MLH1 protein formation, can prevent the normal activation of
DNA repair gene. Low expression of MLH1 gene was associated with BRAFV600E
mutation and RET/PTC rearrangement. Hypermethylation of MLH1 promoter was
found in colon cancer as well. A study indicated that abnormal methylation of
MLH1 was significantly correlated with lymph node metastasis of PTC, suggesting
that MLH1 might be a molecular marker of lymph node metastasis in PTC [34].
Another study found that there were abnormal methylation and low expression of
MLH1 in thyroid cancer and MLH1 expression is associated with BRAF, IDH1, and
NRAS gene mutations [35].

2.2 DNA methylation of thyroid-specific genes in PTC

2.2.1 Thyroid-stimulating hormone receptor and sodium/iodide symporter

On the other hand, methylation of thyroid-specific genes is also one of the
causes for occurrence and development of PTC. Thyroid-specific genes mainly
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include TSHR, NIS, thyroglobulin (Tg), and thyroid peroxidase (TPO), which
participate in thyroid iodine uptake and maintenance of normal thyroid function.
Under normal conditions, TSH stimulates TSHR on thyroid follicular epithelial
cells and activates NIS to ingest iodine into cells. TSH is produced by the pituitary
thyrotrophs and stimulates thyroid functions using TSHR. The iodine ingested
synthesizes thyroid hormones catalyzed by TPO and is stored in Tg. It is found that
abnormal expression of these molecules is related to iodine metabolism in PTC.
Studies have shown that the expression of TSHR, NIS, Tg, and TPO with BRAF
mutated in thyroid cancer is decreased [36]. In PTC, both TSHR and NIS are
abnormally methylated, and their expression is decreased. Low expression of TSHR
and NIS may be related to the occurrence and development of tumors. It also
reduces the uptake of iodine capacity in tumor cells. Scholars found TSHR and
NIS become an important cause for PTC in 131-I radiotherapy [37, 38]. In human
and rabbit thyroid cancer cells, BRAFV600E mutant, a carcinogenic homolog of
murine sarcomatous virulent bacterium, could cause activation of BRAF/MEK/
MAPK signaling pathway and expression silencing of thyroid-specific genes
including TPO, Tg, TSHR, and NIS. At last, it resulted in the reduction of iodine
uptake in PTC.

2.2.2 Thyroid transcription factor-1

TTF-1 is known as thyroid-specific enhancer-binding protein (T/EBP). It is a
transcription factor with homologous domains in the thyroid, lung, and central
nervous system. TTF-1 gene is located in region 14q13.3 on chromosome 14. It is
comprised of three exons and two introns. Under physiological conditions, TTF-1 is
stable positive in thyroid tissue. TTF-1 can regulate the expression of thyroid-
related genes such as TG, TPO, TSHR, and NIS. Thus it acts a pivotal part in
regulating growth, development, and function of thyroid. It showed hNIS mRNA
expression loss might be related to methylation of thyroid-specific transcription
factor genes. Abnormal methylation caused loss of transcription factor expression
with indirect loss of hNIS mRNA expression through the KAT-5 and KAT-10
responses to 5-azacytidine treatment with acquisition of parallel TTF-1 and hNIS
mRNA expression. It was found that insufficient expression of TTF-1 and Pax-8
may result in the decrease of activity of thyroglobulin gene promoter in thyroid
cancer cells. Some confirmed that TTF-1 gene was expressed lowly in thyroid
cancer [39]. Other researchers studied the methylation status of TTF-1 in thyroid
cancer and found that TTF-1 gene was highly methylated and lowly expressed in
thyroid cancer cell lines, but not in normal thyroid [40].

2.3 DNA methylation of oncogene gene in PTC

At present, BRAF gene mutation has been found in melanoma, ovarian serous
tumor, colorectal cancer, glioma, liver cancer, and leukemia. A large number of
studies also showed that BRAF gene mutation in PTC is closely related to methyla-
tion of tumor suppressor. BRAF gene is an important transducer for Ras/Raf/MEK/
ERK/MAPK pathways. About 90% of T1799A point mutation in BRAFV600E hap-
pen in PTC, which can increase BRAF activity. The BRAF gene plays its biological
role by activating MEK/ERK signaling pathway. The result showed that PTC with
BRAF gene mutation had strong tissue invasiveness and was easy to infiltrate tissues
around thyroid gland [41]. Methylation of TIMP3 gene, SLC5A8 gene, and DAPK
gene, which are tumor suppressor genes, are related to BRAF gene mutation and
PTC invasion. The overexpression of BRAFV600E gene could lead to silencing
of some thyroid-specific genes (like NIS, TG, TPO) in the activation state of
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BRAF/MEK/MAPK pathway. It could cause iodine uptake activity decrease and
ineffectiveness of radioiodine therapy. Therefore, it could affect thyroid cancer
progression.

2.4 Other potentially aberrant methylation genes in PTC

In recent years, DNA methylation has become a new research hotspot. Many
genes have been studied as potential abnormal methylation sites, including Ras
association domain family 2 (RASSF2), Ras-association domain family 10
(RASSF10), disheveled-binding antagonist of beta-catenin 2 (DACT2), retinoblas-
toma protein-interacting zinc finger gene 1 (RIZ1), 14-3-3 protein family (14-3-3
sigma), and other signaling pathways such as JAK-STAT pathway, NF-kappa B
pathway, HIF1 alpha pathway, and Notch pathway in thyroid cancer [42–45].
However, there are relatively few reports on these genes and pathways in thyroid
cancer. Most of the mechanisms are not clear at present and need further study.

3. DNA methylation in FTC

DNA methylation analysis revealed 2130 and 19 differentially methylated CpGs
in PTC and follicular thyroid carcinoma (FTC), respectively [46]. Aberrant DNA
methylation of tumor suppressor genes is common in FTC and ATC. Certain spe-
cific tumor suppressor genes are mainly PTEN, RASSF1A, Rap1-GTPase activating
protein, and thyroid-specific gene TRSH in FTC. This part summarizes the related
research on methylation genes in FTC in recent years (see Table 2).

References Gene Function DNA
methylation

BRAFE Incidence%

Tumor suppressor genes

[39–42] RASSFIA RASSF1A localizes to microtubules and
promotes their stabilization

↑ + 75% of FTC

[50] RAP1GAP RAP1GAPase-activating protein ↑ + 38% of FTC

[25] PTEN PTEN is involved in the regulation of cell
cycle and preventing cells from growing and
dividing rapidly

↑ + 85.7% of FTC

Thyroid-specific genes

[58] NIS Sodium transporter ↑ + 53.8% of
thyroid cancers

[58] TSHR Thyrotropin receptor ↑ + 47% of FTC

Oncogene genes

[52, 53] Maspin A member of serine protease inhibitor ↑ + 100% of
WDTC

Other genes

[61] DMCpG — ↑ — 84% of FTC

[61] RASAL1 — ↑ — 4.88% of FTC

[57] COL4A2 — ↑ — 56% of FTC

[64] RASSF10 — ↑ — 50% of FTC

Table 2.
Aberrant methylated genes in FTC.
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3.1 DNA methylation of tumor suppressor genes in FTC

3.1.1 PTEN

PTEN negatively regulates AKT/PKB signaling pathway. It is involved in regu-
lation of cell cycle, cell growth inhibition, and rapid division [47]. Aberrant DNA
methylation in this gene is also mostly reported in FTC. It confirmed that PTEN
promoter hypermethylation was detected in six of seven (85%) FTC and five of six
(83.3%) follicular adenomas. The results showed a high frequency of PTEN pro-
moter hypermethylation, especially in follicular tumors. It means that it has a
possible role in thyroid cancer [25]. Studies found methylation status of PTEN in FA
and FTC. And PTEN methylation level was gradually increased in FA (83.3%) and
FTC (85.7%). Authors have shown that methylation of PTEN promoter plays an
important role in FTC [48].

3.1.2 RASSF1A

Differential expression of RASSF1A gene is related to occurrence of thyroid
cancer. Aberrant DNA methylation is an important mechanism of RASSF1A gene
inactivation. Studies found 44% benign adenomas, 75% follicular thyroid cancers
tumors, and 20% PTC tumors harbored promoter methylation in greater than or
equal to 25% of RASSF1A alleles by real-time quantitative methylation-specific PCR
[39–42]. Methylation frequency was higher in invasive thyroid cancer. It was found
to be 70% of the RASSF1A methylation rate in FTC, 80% in MTC, and 78% in UTC
compared with benign PTC [14]. Inactivation of RASSF1A in different stages of
thyroid cancer was detected by tumor metastasis classification, and compared with
FTC, only a small part of RASSF1A methylation in PTC is abnormal. These studies
indicated follicular cell-derived thyroid tumorigenesis may be an early step [15, 49].

3.1.3 Rap1-GTPase-activating protein

RAP1GAP gene encodes a type of GTPase-activating protein that downregulates
Ras-related protein activity. Ras oncoproteins are very important for both develop-
ment and maintenance of many tumor types. RAP1GAP is involved in the regula-
tion of mitosis and carcinogenesis in thyroid cells. Researchers aimed to determine
the global patterns of aberrant DNA methylation in thyroid cancer using DNA
methylation arrays [50]. And the study identified 262 and 352 hypermethylated and
13 and 21 hypomethylated genes in PTC and FTC, respectively. In addition, 86 and
131 hypermethylated genes were identified. Among these genes, four potential
oncogenes (INSL4, DPPA2, TCL1B, and NOTCH4) were frequently regulated by
aberrant methylation in primary thyroid tumors [51].

3.1.4 Mammary serine protease inhibitor (Maspin)

Besides, a member of the serine protease inhibitor superfamily named Maspin is
a unique tumor suppressor gene encoding SERPINB5 gene. Epigenetic changes of
Maspin expression occurred in the 50 regulatory region of Maspin gene and involved
cytosine methylation, histone deacetylation, and chromatin accessibility. The epi-
genetic deregulation frequently participates in tumorigenesis by inactivation of
tumor suppressor genes. The association of promoter hypermethylation and gene
silencing is an established oncogenic process in cancer. Promoter methylation of
Maspin gene could lead to gene silencing in thyroid cancer, breast cancer, skin
cancer, and colon cancer. Studies have indicated that overexpression of Maspin in
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3.1 DNA methylation of tumor suppressor genes in FTC
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and FTC. And PTEN methylation level was gradually increased in FA (83.3%) and
FTC (85.7%). Authors have shown that methylation of PTEN promoter plays an
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[39–42]. Methylation frequency was higher in invasive thyroid cancer. It was found
to be 70% of the RASSF1A methylation rate in FTC, 80% in MTC, and 78% in UTC
compared with benign PTC [14]. Inactivation of RASSF1A in different stages of
thyroid cancer was detected by tumor metastasis classification, and compared with
FTC, only a small part of RASSF1A methylation in PTC is abnormal. These studies
indicated follicular cell-derived thyroid tumorigenesis may be an early step [15, 49].

3.1.3 Rap1-GTPase-activating protein

RAP1GAP gene encodes a type of GTPase-activating protein that downregulates
Ras-related protein activity. Ras oncoproteins are very important for both develop-
ment and maintenance of many tumor types. RAP1GAP is involved in the regula-
tion of mitosis and carcinogenesis in thyroid cells. Researchers aimed to determine
the global patterns of aberrant DNA methylation in thyroid cancer using DNA
methylation arrays [50]. And the study identified 262 and 352 hypermethylated and
13 and 21 hypomethylated genes in PTC and FTC, respectively. In addition, 86 and
131 hypermethylated genes were identified. Among these genes, four potential
oncogenes (INSL4, DPPA2, TCL1B, and NOTCH4) were frequently regulated by
aberrant methylation in primary thyroid tumors [51].

3.1.4 Mammary serine protease inhibitor (Maspin)

Besides, a member of the serine protease inhibitor superfamily named Maspin is
a unique tumor suppressor gene encoding SERPINB5 gene. Epigenetic changes of
Maspin expression occurred in the 50 regulatory region of Maspin gene and involved
cytosine methylation, histone deacetylation, and chromatin accessibility. The epi-
genetic deregulation frequently participates in tumorigenesis by inactivation of
tumor suppressor genes. The association of promoter hypermethylation and gene
silencing is an established oncogenic process in cancer. Promoter methylation of
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cancer, and colon cancer. Studies have indicated that overexpression of Maspin in
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gastric cancer, pancreatic cancer, and ovarian cancers resulted from CpG promoter
of Maspin demethylation. A study detected DNA methylation status in Maspin
promoter region, indicating that overexpression of the gene was the result of DNA
hypomethylation [52]. It was closely related to the morphological dedifferentiation
of thyroid cancer. Another study found 100%Maspin hypermethylation was closely
associated with morphological dedifferentiation in thyroid cancers [52, 53].

3.2 DNA methylation of thyroid-specific genes in FTC

In addition to tumor suppressor genes and oncogenes, hypermethylation could
lead to NIS and TSHR gene silencing in FTC, too. NIS methylation is of great
significance in treatment of thyroid cancer. Therefore, abnormal methylation of
these genes may be the pathogenesis or progression factor in FTC [54, 55]. Aberrant
promoter methylation was examined in 24 tumor suppressor genes using
methylation-specific multiplex ligation-dependent probe amplification (MS-
MLPA) assay and methylation-specific PCR (MSP). In thyroid cancers, CASP8
(caspase-8), RASSF1, and NIS were methylated in 9/13, 10/13, and 7/13, respec-
tively [56]. Some researches also found combination gene panels TPO and UCHL1
(ROC = 0.607, sensitivity 78%) discriminated FTC from FA and RASSF1 and TPO
(ROC = 0.881, sensitivity 78%) discriminated FTC from normal. Methylation of
TSHR distinguished PTC from FTC (ROC = 0.701, sensitivity 84%) and PTC from
FA (ROC = 0.685, sensitivity 70%) [57]. And the six-gene panel of TIMP3, RARβ2,
SERPINB5, RASSF1, TPO, and TSHR, which differentiates PTC from normal thy-
roid, had the best combination sensitivity (91%) and specificity (81%) of the panels
addressing discrimination of cancer tissue by quantitative methylation-specific
polymerase chain reaction (QMSP) in a retrospective cohort of 329 patients [58, 59].

3.3 Other abnormal methylation genes in FTC

Nowadays, there are a few studies on methylation of FTC genes. However, many
genes still have been studied as potential abnormal methylation sites in FTC. For
example, one of the ZIC families called ZIC1 (C2H2-type zinc finger proteins) is
frequently hypermethylated in FTCs [60]. Moreover, 3564 differentially methyl-
ated CpGs (DMCpG) were detected in FTC and 84% hypermethylated with respect
to normal controls. It is suggested that perturbed DNA methylation, in particular
hypermethylation, is a component of the molecular mechanisms leading to FTC
formation and that DNA methylation profiling might help in differentiating FTCs
from their benign counterpart [61]. Also, others identified the presence of RASAL1
mutations, with a prevalence of 4.88% (n = 2 of 41) in FTC and 16.67% (n = 5 of 30)
in ATC [62]. Studies found a more detailed analysis showing that 53.9% of the
hypermethylated and 81.5% of the hypomethylated CpG sites identified in differ-
entiated primary tumors (PTCs and FTCs) were also present in differentiated
thyroid carcinoma-derived cancer cell [61]. Aside from that, COL4A2 was
hypermethylated in 56% of the FTC samples by array measurement in the discovery
series [57, 63]. Another study indicated that RASSF10 was frequently
hypermethylated in thyroid cancer. It showed 50% of methylation frequency of
RASSF10 in FTC and the highest (100%) in MTCs [64].

4. DNA methylation in ATC

Promoter methylation of PTEN is also common in anaplastic thyroid cancer
(ATC) [65]. PTEN methylation is related to gene changes of PI3K Akt pathway in
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thyroid tumors, including PTEN mutations, various subtypes of Ras mutations,
PIK3CA mutations, and amplification [66, 67]. One study analyzed 24 genetic
alterations in the major genes of MAPK and PI3K-AKT pathways in 48 ATC samples
and found that the majority of (81%) samples that harbored genetic alterations
could be likely activated in both pathways [68]. Accordingly, another DNA meth-
ylation pan-cancer study focused on promoters found that thyroid carcinoma
exhibited one of the lowest frequencies in both hypomethylation and
hypermethylation events. And ATC exhibits a high frequency of DNA methylation
alterations (tenfold higher than PTC) [69, 70]. A recent pan-cancer analysis on
whole exome sequencing revealed that the mutation frequency in PTC was one of
the lowest (approximately 1 change/Mb across the entire exome) among solid
tumors, while the mutation frequency in ATC was at the opposite extreme and was
closer to that in melanoma and lung cancer, exceeding 100 changes/Mb [71, 72].

In addition, solute carrier family 26, member 4 (SLC26A4) gene, encodes a
transmembrane protein named pendrin with up to 15 predicted membrane span-
ning domains and affects the flow of iodine into follicular lumen. The following
were reported: 71% of ATC, 44% of benign tumors, 46% of FTC, and 71% of PTC,
with abnormal SLC26A4 gene methylation in 64 cases of primary thyroid tumors
and 6 cases of thyroid tumor cell lines [18, 73]. In addition, 81.5% of
hypermethylated genes and 89% of hypomethylated genes were also present in
nondifferentiated primary tumors (MTCs and ATCs) and nondifferentiated thyroid
carcinoma-derived cancer cell lines [74], while Ras protein activator like-1 gene
(RASAL1) displayed MAPK- and PI3K-suppressing and thyroid tumor-suppressing
activities, which can be impaired by the mutations. Hypermethylation and muta-
tions of RASAL1 were found in 33.33% (n = 10 of 30) of ATCs and in 0 of 20 (0%)
of benign thyroid tumors [62]. However, ATC showed more hypomethylation than
hypermethylation events, indicating that hypomethylation is related to dedifferen-
tiation [70]. The authors validated four genes (NOTCH4 and TCL1B in ATCs,
INSL4 and DPPA2 in MTCs) that become aberrantly hypomethylated in nondiffer-
entiated thyroid tumors. All of them have been proposed to have an oncogenic role
in cancer. And NOTCH4 (a member of the Notch family of transmembrane recep-
tors) is frequently overexpressed in thyroid tumors [75, 76].

This part summarizes the related research on methylation genes in ATC in
recent years (see Table 3).

Authors Gene Function DNA
methylation

BRAFE Incidence%

Oncogene genes

[70] TCL1B An oncogene frequently activated
by reciprocal translocations

↑ + 64% of ATC

[70] NOTCH4 A Member of notch family, which
plays a role in a variety of
developmental processes

↑ + 45% of ATC

Thyroid-specific genes

[18, 73] SLC26A4 Dysfunctional pendrin ↑ — 71% ATC

Tumor suppressor genes

[25] PTEN PI3K–AKT pathway ↑ — 81% of ATC

[62] RASAL1 MAPK- and PI3K-suppressing ↑ — 33.33% of ATC

Table 3.
Aberrant methylated genes in ATC.
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tions of RASAL1 were found in 33.33% (n = 10 of 30) of ATCs and in 0 of 20 (0%)
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tiation [70]. The authors validated four genes (NOTCH4 and TCL1B in ATCs,
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entiated thyroid tumors. All of them have been proposed to have an oncogenic role
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5. DNA methylation in MTC

Medullary thyroid cancer is a neuroendocrine tumor originating from
parafollicular C cells, and it is highly resistant to chemo- and radiotherapy [77].
Spry1 is a candidate tumor-suppressor gene in MTC. The hyper-activation of PI3K/
Akt/mTOR cascade has a relevant role in the pathogenesis and progression of MTC.
In fact, most of pro-oncogenic effects of RET and Ras mutations are modulated by
the activation of PI3K/Akt/mTOR pathway [78, 79]. For patients with metastatic
disease, standard treatment modalities include local treatments (radiofrequency
ablation, radiation therapy, embolization) and systemic treatment chemotherapy
and more recently tyrosine kinase inhibitors (TKIs) targeting RET protein. As
experience has been limited to case reports or case series, response rates (RR)
ranged from 0 to 25% for periods of up to a few months. In nondifferentiated
thyroid tumors, INSL4 and DPPA2 become aberrantly hypomethylated, both of
which have been proposed to have an oncogenic role in MTC.

5.1 Sprouty1 (Spry1)

Sprouty (Spry) family of genes is composed of four members in mammals
(Spry1–4). The Spry1 promoter is frequently methylated in MTC, and that Spry1
expression is consequently decreased. These findings identify Spry1 as a candidate
tumor-suppressor gene in MTC. In mammals, the situation is more complicated as
Spry proteins have been shown to be activators or inhibitors of receptor tyrosine
kinase signaling depending on the cellular context or the receptor tyrosine kinase
analyzed [80, 81]. Spry family members have been proposed to function as tumor-
suppressor genes in a growing list of cancerous malignancies, including prostate and
hepatocellular carcinoma, B-cell lymphoma, or neuroblastoma [82]. Finally, the
authors found that SPRY1 promoter is frequently methylated and its expression
decreased in human MTC. The mRNA levels of Spry1 are detected in murine C cells
of thyroid with real-time RT-PCR. In situ hybridization showed expression of Spry1
mRNA in the fourth pharyngeal pouch, where thyroid C-cells originate and beta-
galactosidase staining of thyroids from 1-month-old Spry1LacZ/þ mice. One study
used the hypomethylating agent 50-aza-deoxycytidine (50-Aza-dC) to confirm a
causal relationship between promoter methylation and Spry1 expression [83]. As
expected, TT cells treated with 50-aza-dC showed an increase of approximately
sixfold in the levels of Spry1 mRNA when compared to vehicle-treated cells.
50-Aza-deoxycytidine (AZA), a demethylating agent, is in combination with the
mTOR inhibitor everolimus in MTC cells (MZ-CRC-1 and TT). An innovative
bioinformatic pipeline identified four potential molecular pathways implicated in
the synergy between AZA and everolimus: PI3K-Akt signaling, the neurotrophin
pathway, ECM-receptor interaction, and focal adhesion. Among these, the
neurotrophin signaling pathway was most directly involved in apoptosis, through
NGFR and Bax gene overexpression. Increased expression of genes involved in the
NGFR-MAPK10-TP53-Bax/Bcl2 pathway during incubation with AZA plus
everolimus was validated by western blotting in MZ-CRC-1 cells [84].

5.2 Insulin-like 4 (INSL4)

INSL4 (pro-EPIL) belongs to the insulin and insulin-like growth factor family
and is expressed strongly during the first trimester of pregnancy by the differenti-
ated syncytiotrophoblast [85]. It has been shown to be overexpressed in breast
tumors with an aggressive phenotype [86], but the underlying mechanisms are still
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unknown. The aberrant overexpression of INSL4 in breast tumors, together with
the aberrant promoter hypomethylation reported in this study, suggests that pro-
moter demethylation might be a frequent mechanism of activation of INSL4 onco-
gene activation in cancer.

5.3 Developmental pluripotency-associated 2 (DPPA2)

DPPA2 is expressed early in the embryo’s development [87] but also in some
tumor types [88]. Although the underlying molecular mechanism has not been
reported yet, the authors’ data indicated that promoter hypomethylation might play
an important role. The frequent promoter hypomethylation observed in nondiffer-
entiated tumors might be relevant for treatment with demethylating drugs [51, 88].

6. Conclusion

More and more researches have realized that the occurrence of tumors is not
only entirely determined by genes but also epigenetics. The changes of epigenetics
in thyroid cancer are mainly manifested in the aberrant methylation of tumor
suppressor genes and thyroid-related genes. Numerous studies on DNAmethylation
in thyroid cancer have improved our understanding of thyroid carcinogenesis.
Some of the recent findings, including the huge catalog of DNA methylation alter-
ations, the association of DNA hypomethylation with cancer progression and
dedifferentiation, the existence of different methylomes related to different clinical
and molecular phenotypes, and the influence of immune-infiltrating cells in tumor
DNAmethylation patterns, are most likely to lead the direction of future research in
the field of DNA methylation in thyroid cancer. A large number of studies con-
firmed the importance of DNA methylation as a source of novel biomarkers for
early diagnosis, therapeutic perspective, and prognosis evaluation in thyroid cancer.
In addition, the design of specific target demethylation drugs, which reactivate the
function of tumor suppressor genes, is expected to become a new scheme for cancer
treatment. Therefore, further functional experiments in vitro and in vivo are nec-
essary for better understanding of the meaning and potential mechanism of DNA
methylation changes in thyroid cancer as well as the evaluation of candidate bio-
markers through case-control studies and prospective trials.
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5. DNA methylation in MTC

Medullary thyroid cancer is a neuroendocrine tumor originating from
parafollicular C cells, and it is highly resistant to chemo- and radiotherapy [77].
Spry1 is a candidate tumor-suppressor gene in MTC. The hyper-activation of PI3K/
Akt/mTOR cascade has a relevant role in the pathogenesis and progression of MTC.
In fact, most of pro-oncogenic effects of RET and Ras mutations are modulated by
the activation of PI3K/Akt/mTOR pathway [78, 79]. For patients with metastatic
disease, standard treatment modalities include local treatments (radiofrequency
ablation, radiation therapy, embolization) and systemic treatment chemotherapy
and more recently tyrosine kinase inhibitors (TKIs) targeting RET protein. As
experience has been limited to case reports or case series, response rates (RR)
ranged from 0 to 25% for periods of up to a few months. In nondifferentiated
thyroid tumors, INSL4 and DPPA2 become aberrantly hypomethylated, both of
which have been proposed to have an oncogenic role in MTC.

5.1 Sprouty1 (Spry1)

Sprouty (Spry) family of genes is composed of four members in mammals
(Spry1–4). The Spry1 promoter is frequently methylated in MTC, and that Spry1
expression is consequently decreased. These findings identify Spry1 as a candidate
tumor-suppressor gene in MTC. In mammals, the situation is more complicated as
Spry proteins have been shown to be activators or inhibitors of receptor tyrosine
kinase signaling depending on the cellular context or the receptor tyrosine kinase
analyzed [80, 81]. Spry family members have been proposed to function as tumor-
suppressor genes in a growing list of cancerous malignancies, including prostate and
hepatocellular carcinoma, B-cell lymphoma, or neuroblastoma [82]. Finally, the
authors found that SPRY1 promoter is frequently methylated and its expression
decreased in human MTC. The mRNA levels of Spry1 are detected in murine C cells
of thyroid with real-time RT-PCR. In situ hybridization showed expression of Spry1
mRNA in the fourth pharyngeal pouch, where thyroid C-cells originate and beta-
galactosidase staining of thyroids from 1-month-old Spry1LacZ/þ mice. One study
used the hypomethylating agent 50-aza-deoxycytidine (50-Aza-dC) to confirm a
causal relationship between promoter methylation and Spry1 expression [83]. As
expected, TT cells treated with 50-aza-dC showed an increase of approximately
sixfold in the levels of Spry1 mRNA when compared to vehicle-treated cells.
50-Aza-deoxycytidine (AZA), a demethylating agent, is in combination with the
mTOR inhibitor everolimus in MTC cells (MZ-CRC-1 and TT). An innovative
bioinformatic pipeline identified four potential molecular pathways implicated in
the synergy between AZA and everolimus: PI3K-Akt signaling, the neurotrophin
pathway, ECM-receptor interaction, and focal adhesion. Among these, the
neurotrophin signaling pathway was most directly involved in apoptosis, through
NGFR and Bax gene overexpression. Increased expression of genes involved in the
NGFR-MAPK10-TP53-Bax/Bcl2 pathway during incubation with AZA plus
everolimus was validated by western blotting in MZ-CRC-1 cells [84].

5.2 Insulin-like 4 (INSL4)

INSL4 (pro-EPIL) belongs to the insulin and insulin-like growth factor family
and is expressed strongly during the first trimester of pregnancy by the differenti-
ated syncytiotrophoblast [85]. It has been shown to be overexpressed in breast
tumors with an aggressive phenotype [86], but the underlying mechanisms are still

108

DNA Methylation Mechanism

unknown. The aberrant overexpression of INSL4 in breast tumors, together with
the aberrant promoter hypomethylation reported in this study, suggests that pro-
moter demethylation might be a frequent mechanism of activation of INSL4 onco-
gene activation in cancer.

5.3 Developmental pluripotency-associated 2 (DPPA2)

DPPA2 is expressed early in the embryo’s development [87] but also in some
tumor types [88]. Although the underlying molecular mechanism has not been
reported yet, the authors’ data indicated that promoter hypomethylation might play
an important role. The frequent promoter hypomethylation observed in nondiffer-
entiated tumors might be relevant for treatment with demethylating drugs [51, 88].

6. Conclusion

More and more researches have realized that the occurrence of tumors is not
only entirely determined by genes but also epigenetics. The changes of epigenetics
in thyroid cancer are mainly manifested in the aberrant methylation of tumor
suppressor genes and thyroid-related genes. Numerous studies on DNAmethylation
in thyroid cancer have improved our understanding of thyroid carcinogenesis.
Some of the recent findings, including the huge catalog of DNA methylation alter-
ations, the association of DNA hypomethylation with cancer progression and
dedifferentiation, the existence of different methylomes related to different clinical
and molecular phenotypes, and the influence of immune-infiltrating cells in tumor
DNAmethylation patterns, are most likely to lead the direction of future research in
the field of DNA methylation in thyroid cancer. A large number of studies con-
firmed the importance of DNA methylation as a source of novel biomarkers for
early diagnosis, therapeutic perspective, and prognosis evaluation in thyroid cancer.
In addition, the design of specific target demethylation drugs, which reactivate the
function of tumor suppressor genes, is expected to become a new scheme for cancer
treatment. Therefore, further functional experiments in vitro and in vivo are nec-
essary for better understanding of the meaning and potential mechanism of DNA
methylation changes in thyroid cancer as well as the evaluation of candidate bio-
markers through case-control studies and prospective trials.
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Abstract

The barley (Hordeum vulgare) genome comprises over 32,000 genes, with 
differentiated cells expressing only a subset of genes; the remainder being 
silent. Mechanisms by which tissue-specific genes are regulated are not entirely 
understood, although DNA methylation is likely to be involved. To shed light on 
the dynamic of DNA methylation during development and its variation between 
organs, methylation-sensitive genotyping by sequencing (ms-GBS) was used to 
generate methylation profiles for roots, leaf-blades and leaf-sheaths from five 
barley varieties, using seedlings at the three-leaf stage. Robust differentially 
methylated markers (DMMs) were characterised by pairwise comparisons of 
roots, leaf-blades and leaf-sheaths of three different ages. While very many 
DMMs were found between roots and leaf parts, only a few existed between 
leaf-blades and leaf-sheaths, with differences decreasing with leaf rank. Organ-
specific DMMs appeared to target mainly repeat regions, implying that organ 
differentiation partially relies on the spreading of DNA methylation from repeats 
to promoters of adjacent genes. Identified DMMs indicate that different organs 
do possess diagnostic methylation profiles and suggest that DNA methylation is 
important for both tissue differentiation and organ function and will provide the 
basis to the understanding of the role of DNA methylation in plant organ differ-
entiation and development.

Keywords: epigenomics, Hordeum vulgare, leaf, root, tissue-specific methylation, 
developmental epigenomics

1. Introduction

DNA methylation is an important characteristic of plant genomes [1, 2], and 
can occur in all cytosine contexts (CG, CHG and CHH, where H = A, C or T) [3]. 
The effect of DNA methylation variants on plant development has been demon-
strated through methylation alteration tests, which led to plant abnormalities [4, 5]. 
Furthermore, DNA methylation has been reported to vary from tissue to tissue in 
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many species [6–10], and these methylation changes seemed to be essential for normal 
plant development [11, 12].

Additionally, tissue-specific methylation was proposed to have a strong 
correlation with the differential expression of some tissue-specific genes. 
Examples include tissue-specific pigmentation in maize, which is reported to be 
under epigenetic control [13], and differential gene expression between organs 
attributed to differentially methylated regions in soybean [14] and sorghum 
[10]. These studies extended our understanding of the functional importance 
of tissue-specific DNA methylation, including its role in setting developmental 
trajectories [9, 13, 15].

A substantial proportion of developmentally expressed genes have alternative 
promoters (multiple promoters that regulate the same gene) which are under dif-
ferent regulatory programmes [16]. Maunakea et al. [17] proposed that alternative 
promoters are, at least sometimes, controlled by intragenic DNA methylation. This 
form of developmental gene regulation is reasoned to be dependent on transposon 
activity [16] and by implication would mean that silencing of transposons due to 
DNA methylation may be central to tissue-specific gene expression. Also, tissue-
specific gene expression has been associated with methylation changes in promoter 
regions [2, 18, 19], especially CG islands within promoters [20]. These studies 
indicate that tissue-specific gene expression does not rely on a single methylation 
pattern in the genome but, probably, on a combination of variable DNA methyla-
tion features.

The magnitude of differential methylation between tissues has been the sub-
ject of controversy. It was believed that significant distinctive DNA methylation 
existed only between specialised tissues such as endosperm, pollen, leaves and 
roots [9, 10, 21, 22]. Nevertheless, many of these studies also showed that dif-
ferential DNA methylation between organs, such as roots and leaves, was minor 
in rice [23], maize [24], sorghum [10] and Arabidopsis [9]. DNA methylation 
differences between roots and leaves were small in both mCG and mCHG contexts 
[9, 10], with about 1% and 5% divergence, respectively, reported in Arabidopsis 
[9]. While these studies of differential DNA methylation between tissues gener-
ally compared the overall methylation levels [9, 10, 24], these results differ from 
comparisons made with differentially methylated markers (DMMs) between the 
same tissues [10], probably due to differences in methylation profiling methods, 
making it difficult to compare results from different studies. Therefore, it is dif-
ficult to know whether differences in the results concerning tissue-specific DNA 
methylation are due to the plant species or to the approach taken. The study of 
DNA methylation patterns in plant tissues is important for a better understanding 
of how these epigenetic markers determine tissue differentiation. Thus, further 
investigation is warranted to clarify organ specificity of cytosine methylation and 
the distribution patterns of tissue-specific DNA methylation markers in the plant 
genome.

To undertake such an investigation, we used barley, a globally important cereal 
crop, the genome of which has been sequenced recently [25]. The availability of a 
reference genome made barley a model for the study of cereal crops such as wheat, 
oats or rye. In this study, we assessed differential DNA methylation between two 
barley (Hordeum vulgare) organs (roots and leaves), using methylation-sensitive 
genotyping by sequencing (ms-GBS) on five genetically distinct varieties (Barque 
73, Flagship, Hindmarsh, Schooner and Yarra). For the sake of simplicity and 
consistency with the literature, roots and leaves or leaf parts (sheath, blade) may be 
referred to here as tissues and not organs.
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2. Materials and methods

2.1 Plant material and growth conditions

Five spring barley varieties (Barque 73, Flagship, Hindmarsh, Schooner and 
Yarra), were selected based on their similarity in phenology in order to mini-
mize epigenetic variability between varieties associated with developmental 
differences. Seeds from all varieties were provided by the Salt Focus Group at 
the Australian Centre for Plant Functional Genomics (ACPFG, Adelaide, South 
Australia), and planted at the same time in potting mix comprising 50% UC 
(University of California at Davis), 35% coco-peat and 15% clay/loam (v v−1) 
in 3.3 L pots, 17.5 cm deep, free-draining and placed on saucers. The experi-
ment was conducted from 30th January to 20th February 2015 in a greenhouse 
at the Waite Campus, University of Adelaide, South Australia (34°58′11″S, 
138°38′19″E). The seedlings were grown under natural photoperiod, while tem-
peratures were set at 22°C/15°C (day/night). The experiment consisted of five 
randomized blocks of five varieties (25 seedlings per block). Pots were watered 
to weight every 2 days to a gravimetric water content of 16.8% (w w−1) (0.8 × 
field capacity) [26] until sampling 21 days after sowing, when seedlings were 
at three-leaf stage (Zadok stage 13 [27]). Blades and sheaths of leaves 1–3 were 
sampled separately. Leaves 1 and 2 were fully expanded prior to sampling, whilst 
leaf 3 had just completed growth. About 50 mg of plant material was cut from 
the middle section of each leaf blade and each leaf sheath and collected in 2 ml 
micro tubes. Roots were cut from the seedlings and washed using tap water to 
remove soil particles, then blotted dry with paper towels before sampling 50 mg 
of root tissue. All samples were snap frozen in liquid nitrogen, and then stored at 
−80°C until DNA extraction. In total, 175 tissue samples were collected, includ-
ing 25 root samples (i.e. 5 plants per each of the five varieties used in the study), 
75 leaf blade samples (i.e. from leaves 1, 2 and 3 from each of the 5 plants per 
variety used in the study) and 75 leaf sheath samples (i.e. from leaves 1, 2 and 3 
from each of the 5 plants per variety used in the study).

2.2 DNA isolation

Prior to DNA extraction, frozen plant material was homogenized in a bead 
beater (2010-Geno/Grinder, SPEX SamplePrep®, USA). DNA isolation was per-
formed from pulverised plant samples using a Qiagen DNeasy kit and following 
the manufacturer’s instructions. DNA samples were quantified using a NanoDrop® 
1000 Spectrophotometer (V 3.8.1, ThermoFisher Scientific Inc., Australia) and 
concentrations were standardized to 10 ng/μl for subsequent library preparation.

2.3 Methylation-sensitive genotyping by sequencing (ms-GBS)

The ms-GBS was performed using a modified version [28] of the original GBS 
technique [56]. Genomic DNA was digested using the combination of a methyla-
tion-insensitive rare cutter, EcoRI (GAATTC), and a frequent and methylation-sen-
sitive cutter, MspI (CCGG). Each sample of DNA was digested in a reaction volume 
of 20 μl containing 2 μl of NEB Smartcut buffer, 8 U of HF-EcoRI (High-Fidelity) 
and 8 U of MspI (New England BioLabs, Australia). The reaction was performed in 
a BioRad 100 thermocycler at 37°C for 2 h, followed by enzyme inactivation at 65°C 
for 10 min.
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of 20 μl containing 2 μl of NEB Smartcut buffer, 8 U of HF-EcoRI (High-Fidelity) 
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a BioRad 100 thermocycler at 37°C for 2 h, followed by enzyme inactivation at 65°C 
for 10 min.
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Then the ligation of adapters to individual samples was achieved in the same 
plates by adding 0.1 pmol of the respective barcoded adapters with an MspI cut site 
overhang, 15 pmol of the common Y adapter with an EcoRI cut site overhang, 200 
U of T4 Ligase and T4 Ligase buffer (New England BioLabs, Australia) in a total 
volume of 40 μl. Ligation was carried out at 24°C for 2 h followed by an enzyme 
inactivation step at 65°C for 10 min.

DNA samples were allocated to plates, 81 samples each, including the nega-
tive control, water. Prior to pooling plate samples into a single 81-plex library, the 
ligation products were individually cleaned up to remove excess adapters using an 
Agencourt AMPure XP purification system (Beckman Coulter, Australia) at a ratio 
of 0.85 (AMPure magnetic beads/ligation product), following the manufacturer’s 
instructions. Individual GBS libraries were produced by pooling 25 ng of DNA from 
each sample. Each constructed library was then amplified in eight separate PCR (25 
μl each) containing 10 μl of library DNA, 5 μl of 5× Q5 high fidelity buffer, 0.25 μl 
polymerase Q5 high fidelity, 1 μl each of Forward and Reverse common primers at 
10 μM, 0.5 μl of 10 μM dNTP and 7.25 μl of sterile pure water. PCR amplification 
was performed in a BioRad T100 thermocycler, consisting of DNA denaturation at 
98°C (30 s) and 10 cycles of 98°C (30 s), 62°C (20 s) and 72°C (30 s), followed by 
72°C for 5 min. PCR products were next pooled to reconstitute libraries. DNA frag-
ments between 200 and 350 bp in size were captured using AMPure XP magnetic 
beads following the manufacturer’s instructions. Bead-captured fragments were 
eluted in 35 μl of water, of which 30 μl were collected in a new labelled microtube. 
Libraries were next paired-end sequenced in an Illumina HiSeq 2500 (Illumina 
Inc., USA) at the Australian Genome Research Facility (AGRF, Melbourne Node, 
Australia). Sequencing results were deposited in the European Nucleotide Archive 
(ENA) (Study Accession Number: PRJEB27251).

2.4 Analysis of global differences in DNA methylation between samples

Differences in ms-GBS profiles between samples were explored by perform-
ing principal component-linear discriminant analysis (PC-LDA) (a supervised 
clustering approach for high dimensional data), using different levels of hierarchy 
between samples as the putative drivers in DNA methylation differences (i.e. 
grouping samples by organ (root vs. leaf), tissue (root vs. blade vs. sheath, and 
tissue) and age (root vs. leaf 1 vs. leaf 2 vs. leaf 3 vs. sheath 1 vs. sheath 2 vs. sheath 
3)). PC-LDA was implemented using the R package FIEmspro 1.1-0 [29] on the 
standardized coverage, the count per million reads (CPM) of the 913,697 ms-GBS 
markers generated. PC-LDA results were visualized by a scatter plot of the first two 
discriminant factors (DFs), and a 3D plot using the first three DFs. Finally we used 
an unsupervised hierarchical cluster analysis to generate a dissimilarity tree based 
on Mahalanobis distance [30] generated also based on the standardized coverage 
(CPM) of the 913,697 ms-GBS markers.

2.5 Detection of DMMs in barley

Differentially methylated DNA was assessed in mCCGG motifs (recognised by 
MspI), between barley leaf parts (blade and sheath) and roots. To do so, samples 
were grouped according to organ type (root, blade and sheath) regardless of the 
genotype of origin, making 25 samples per organ. This approach aimed to minimise 
genotype-dependent methylation markers. DMMs were identified using the pack-
age, msgbsR, developed by Mayne et al. [31]. DMMs were selected based on FDR 
adjusted P-values with a threshold of 0.05 [32, 33]. The significance of the marker 
also fulfilled the condition that the read counts reached at least 1 CPM and was 
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present in at least 20 samples per organ type (maximum sample per group = 25). 
The logFC (logarithm 2 of fold-change) was computed to estimate the intensity 
and directionality of differential DNA methylation between tissues. Determining 
the directionality of DNA methylation uses the fold change as an inverse proxy 
for change in the methylation level. That is, higher methylation levels on a specific 
locus will reduce the number of MspI restriction products and therefore reduce the 
number of sequences generated for that locus [34].

2.6 Distribution of DMMs around genomic features

To test whether there was a relationship between tissue-specific DMMs and 
particular genomic features (e.g., genes and repeat regions as defined in Ensembl 
database (http://plants.ensembl.org/biomart/martview/)), DMM distribution 
was assessed in the barley genome. Therefore, DMMs stable between tissues were 
mapped to the barley reference genome. Then, the number of DMMs within 
genomic features (repeats, genes, exons, UTRs and tRNA genes) and per 1 kb 
bins within 5 kb flanking regions [24, 28] was tallied using the shell module, 
bedtools/2.22.0 [35].

3. Results

3.1 Methylation-sensitive genotyping by sequencing

The sequencing of the 170 samples of barley tissue which met DNA quality 
requirements yielded over 900 million raw reads, with more than 91% bases above 
Q30 (99.9% accuracy of base call [36]) across all samples (Table 1). Of these reads, 
99.27% contained the barcode and EcoRI/MspI adapters ligated during library 
construction. Further filtering was performed to retain reads that strictly aligned 
with the barley reference genome. In this way, we obtained nearly 450 million reads 
(50.10%), with a mean of 2,637,916 high quality reads per sample. These high-qual-
ity reads accounted for 913,697 sequence tags, representing 32.30% of the 2,828,642 
CCGG sites in the barley genome. Of these sequence tags, 748,594 (80.62%) showed 
some form of polymorphism for methylation between samples.

3.2 Estimation of tissue- and tissue rank-dependent epigenetic differentiation

The PC-LDA plots revealed clear evidence of structuring of methylation 
between samples (Figure 1a). A 3D plot using the first three discriminant factors 

Sequencing parameters Yield

Raw reads 901,617,058

Reads that matched barcodes 895,013,295

Reads aligned to barley reference genome 448,445,748

Samples 170

Average reads per sample 2,637,916

Total unique tags 913,697

Polymorphic tags 748,594

Table 1. 
Data yields from ms-GBS, generated using the Illumina HiSeq 2500 platform.
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Differentially methylated DNA was assessed in mCCGG motifs (recognised by 
MspI), between barley leaf parts (blade and sheath) and roots. To do so, samples 
were grouped according to organ type (root, blade and sheath) regardless of the 
genotype of origin, making 25 samples per organ. This approach aimed to minimise 
genotype-dependent methylation markers. DMMs were identified using the pack-
age, msgbsR, developed by Mayne et al. [31]. DMMs were selected based on FDR 
adjusted P-values with a threshold of 0.05 [32, 33]. The significance of the marker 
also fulfilled the condition that the read counts reached at least 1 CPM and was 
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present in at least 20 samples per organ type (maximum sample per group = 25). 
The logFC (logarithm 2 of fold-change) was computed to estimate the intensity 
and directionality of differential DNA methylation between tissues. Determining 
the directionality of DNA methylation uses the fold change as an inverse proxy 
for change in the methylation level. That is, higher methylation levels on a specific 
locus will reduce the number of MspI restriction products and therefore reduce the 
number of sequences generated for that locus [34].

2.6 Distribution of DMMs around genomic features

To test whether there was a relationship between tissue-specific DMMs and 
particular genomic features (e.g., genes and repeat regions as defined in Ensembl 
database (http://plants.ensembl.org/biomart/martview/)), DMM distribution 
was assessed in the barley genome. Therefore, DMMs stable between tissues were 
mapped to the barley reference genome. Then, the number of DMMs within 
genomic features (repeats, genes, exons, UTRs and tRNA genes) and per 1 kb 
bins within 5 kb flanking regions [24, 28] was tallied using the shell module, 
bedtools/2.22.0 [35].

3. Results

3.1 Methylation-sensitive genotyping by sequencing

The sequencing of the 170 samples of barley tissue which met DNA quality 
requirements yielded over 900 million raw reads, with more than 91% bases above 
Q30 (99.9% accuracy of base call [36]) across all samples (Table 1). Of these reads, 
99.27% contained the barcode and EcoRI/MspI adapters ligated during library 
construction. Further filtering was performed to retain reads that strictly aligned 
with the barley reference genome. In this way, we obtained nearly 450 million reads 
(50.10%), with a mean of 2,637,916 high quality reads per sample. These high-qual-
ity reads accounted for 913,697 sequence tags, representing 32.30% of the 2,828,642 
CCGG sites in the barley genome. Of these sequence tags, 748,594 (80.62%) showed 
some form of polymorphism for methylation between samples.

3.2 Estimation of tissue- and tissue rank-dependent epigenetic differentiation

The PC-LDA plots revealed clear evidence of structuring of methylation 
between samples (Figure 1a). A 3D plot using the first three discriminant factors 
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(DF1, DF2 and DF3) revealed that blades and sheaths were further grouped 
according to the rank of the leaf from which they were harvested. The distance 
between blades and sheaths seems to shrink with leaf rank (Figure 1b). This leaf 
rank-dependent grouping was also supported by hierarchical cluster analysis 
(HCA) of the distances between sample group centres (Figure 1c), based on the 
Mahalanobis distance [29, 30], and sample clusters matched the leaf developmental 
age (Figure 1c). Leaf rank-dependent DNA methylation differences were further 
assessed between tissues by comparing the methylation profiles of blades and 
sheaths for each rank of leaf appearance. No DMMs were observed between the 
three leaf blades, whereas sheaths 1 and 3 presented 18 DMMs (Table 2).

3.3 Differentially methylated DNA markers between roots and leaves

DMMs between barley roots and leaves were obtained through compari-
son of the read count per million of tissue types, independently of genotypes. 

Figure 1. 
Analysis of the differentiation of DNA methylation profiles of barley roots, leaf sheaths and leaf blades. (a) 
Scatter plot of the first two discriminant factors of the principal component-linear discriminant analysis 
(PC-LDA) (DF1 and DF2) using 913,697 ms-GBS markers generated from genomic DNA of roots, leaf sheaths 
and leaf blades, collected from 25 barley plants at the three-leaf stage (21 days after sowing), comprising five 
varieties (Barque 73, Flagship, Hindmarsh, Schooner and Yarra). (b) Three-dimensional plot of the first three 
discriminant factors of the PC-LDA of the same ms-GBS data. (c) Hierarchical cluster of the distances between 
sample group centres, based on Mahalanobis distance. Blade 1-3 and sheath 1-3 indicate the rank of the organ 
type, first, second and third leaf of seedlings, respectively.
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This comparison revealed substantial DMMs between both roots vs. blades and 
roots vs. sheaths (Figure 2a), and there were more DMMs between roots and blades 
(6510 DMMs Figure 2b) than between roots and sheaths (4116 DMMs Figure 2c). 
Of these markers, 3266 DMMs were present in both blades and sheaths when 
compared to roots, and their methylation changed consistently in the same direc-
tion in each comparison (Figure 3a). The number of DMMs between roots and leaf 
blades increased with leaf-rank, whereas DMMs between roots and leaf sheaths 
did not show any relationship with rank (Figure 2a). Tissue-specific DMMs were 
predominantly hypomethylated (95–98%) in leaf parts (sheath or blade) compared 
to roots (Figure 2a). This result was in line with the median of the fold-changes 
of DMMs, which indicated an overall DNA hypomethylation in leaves (Figure 4a 
and b). From here on, DMMs consistently present in roots vs. sheaths and roots vs. 
blades will be designated as stable markers between roots and leaves.

3.4 Differentially methylated DNA markers between the leaf blade and sheath

There was only a small number of DMMs between leaf blades and sheaths (0–73 
DMMs, Table 2 and Figure 2d). These DMMs were basically between leaf blades 
and sheaths 1 and 2; and there was none between blade 1 and sheath 3. There was 
only 1 DMM between sheath 3 and blades 2 and 3 (Table 2 and Figure 2d). Pairwise 
comparisons between blades 1–2 and sheaths 1–2 revealed 20 common DMMs, 
which were all hypermethylated in sheaths compared to blades (Figures 2e and 4b). 
Half of the 20 common DMMs between blades and sheaths were located on chro-
mosome 5H. Furthermore, there were no DMMs in pairwise comparisons among 
blades 1–3 and among sheaths 1–3, except between sheath 1 and sheath 3 which had 
18 DMMs (Table 2). However, comparing blades and sheaths of the same leaf rank 
showed 32 DMMs between blade 1 and sheath 1, 36 DMMs between blade 2 and 
sheath 2 and 1 DMM between blade 3 and sheath 3.

3.5 Distribution of tissue-specific DMMs around genes

Relatively few of the tissue-specific DMMs were located around gene exons. 
Indeed, of the 3266 stable DMMs between root and leaf samples, only 60 (1.8%) 
were located within 5 kb of a gene, including 21 overlaps with genes and 39 DMMs 
that were spread within 5 kb upstream and downstream of genes (Figure 5a). 
Apart from the absence of DMMs within 1 kb upstream of transcription start sites, 
there was no obvious tissue-specific DMM distribution pattern around the genes 

Blade 1 Blade 2 Blade 3 Sheath 1 Sheath 2 Sheath 3

Blade 1 —

Blade 2 0 —

Blade 3 0 0 —

Sheath 1 32 37 73 —

Sheath 2 29 36 40 0 —

Sheath 3 0 1 1 18 0 —

Differentially methylated markers (FDR <0.05) were obtained from 913,697 ms-GBS tags generated from genomic 
DNA of barley roots, leaf sheaths and leaf blades, collected from 25 plants at three-leaf stage (21 days after sowing) 
of five barley varieties (Barque 73, Flagship, Hindmarsh, Schooner and Yarra). Blade 1–3 and sheath 1–3 indicate 
the rank of the leaf; first, second and third, respectively, on seedlings.

Table 2. 
Number of differentially methylated markers in barley tissues of different ages.
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(DF1, DF2 and DF3) revealed that blades and sheaths were further grouped 
according to the rank of the leaf from which they were harvested. The distance 
between blades and sheaths seems to shrink with leaf rank (Figure 1b). This leaf 
rank-dependent grouping was also supported by hierarchical cluster analysis 
(HCA) of the distances between sample group centres (Figure 1c), based on the 
Mahalanobis distance [29, 30], and sample clusters matched the leaf developmental 
age (Figure 1c). Leaf rank-dependent DNA methylation differences were further 
assessed between tissues by comparing the methylation profiles of blades and 
sheaths for each rank of leaf appearance. No DMMs were observed between the 
three leaf blades, whereas sheaths 1 and 3 presented 18 DMMs (Table 2).

3.3 Differentially methylated DNA markers between roots and leaves

DMMs between barley roots and leaves were obtained through compari-
son of the read count per million of tissue types, independently of genotypes. 
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(PC-LDA) (DF1 and DF2) using 913,697 ms-GBS markers generated from genomic DNA of roots, leaf sheaths 
and leaf blades, collected from 25 barley plants at the three-leaf stage (21 days after sowing), comprising five 
varieties (Barque 73, Flagship, Hindmarsh, Schooner and Yarra). (b) Three-dimensional plot of the first three 
discriminant factors of the PC-LDA of the same ms-GBS data. (c) Hierarchical cluster of the distances between 
sample group centres, based on Mahalanobis distance. Blade 1-3 and sheath 1-3 indicate the rank of the organ 
type, first, second and third leaf of seedlings, respectively.
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This comparison revealed substantial DMMs between both roots vs. blades and 
roots vs. sheaths (Figure 2a), and there were more DMMs between roots and blades 
(6510 DMMs Figure 2b) than between roots and sheaths (4116 DMMs Figure 2c). 
Of these markers, 3266 DMMs were present in both blades and sheaths when 
compared to roots, and their methylation changed consistently in the same direc-
tion in each comparison (Figure 3a). The number of DMMs between roots and leaf 
blades increased with leaf-rank, whereas DMMs between roots and leaf sheaths 
did not show any relationship with rank (Figure 2a). Tissue-specific DMMs were 
predominantly hypomethylated (95–98%) in leaf parts (sheath or blade) compared 
to roots (Figure 2a). This result was in line with the median of the fold-changes 
of DMMs, which indicated an overall DNA hypomethylation in leaves (Figure 4a 
and b). From here on, DMMs consistently present in roots vs. sheaths and roots vs. 
blades will be designated as stable markers between roots and leaves.

3.4 Differentially methylated DNA markers between the leaf blade and sheath

There was only a small number of DMMs between leaf blades and sheaths (0–73 
DMMs, Table 2 and Figure 2d). These DMMs were basically between leaf blades 
and sheaths 1 and 2; and there was none between blade 1 and sheath 3. There was 
only 1 DMM between sheath 3 and blades 2 and 3 (Table 2 and Figure 2d). Pairwise 
comparisons between blades 1–2 and sheaths 1–2 revealed 20 common DMMs, 
which were all hypermethylated in sheaths compared to blades (Figures 2e and 4b). 
Half of the 20 common DMMs between blades and sheaths were located on chro-
mosome 5H. Furthermore, there were no DMMs in pairwise comparisons among 
blades 1–3 and among sheaths 1–3, except between sheath 1 and sheath 3 which had 
18 DMMs (Table 2). However, comparing blades and sheaths of the same leaf rank 
showed 32 DMMs between blade 1 and sheath 1, 36 DMMs between blade 2 and 
sheath 2 and 1 DMM between blade 3 and sheath 3.

3.5 Distribution of tissue-specific DMMs around genes

Relatively few of the tissue-specific DMMs were located around gene exons. 
Indeed, of the 3266 stable DMMs between root and leaf samples, only 60 (1.8%) 
were located within 5 kb of a gene, including 21 overlaps with genes and 39 DMMs 
that were spread within 5 kb upstream and downstream of genes (Figure 5a). 
Apart from the absence of DMMs within 1 kb upstream of transcription start sites, 
there was no obvious tissue-specific DMM distribution pattern around the genes 
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Blade 1 —

Blade 2 0 —

Blade 3 0 0 —

Sheath 1 32 37 73 —

Sheath 2 29 36 40 0 —

Sheath 3 0 1 1 18 0 —

Differentially methylated markers (FDR <0.05) were obtained from 913,697 ms-GBS tags generated from genomic 
DNA of barley roots, leaf sheaths and leaf blades, collected from 25 plants at three-leaf stage (21 days after sowing) 
of five barley varieties (Barque 73, Flagship, Hindmarsh, Schooner and Yarra). Blade 1–3 and sheath 1–3 indicate 
the rank of the leaf; first, second and third, respectively, on seedlings.

Table 2. 
Number of differentially methylated markers in barley tissues of different ages.
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(Figure 5a). The same assessment process showed that, as with common DMMs, 
only a small proportion of blade-specific DMMs (44 of 3246, 1.3%) was positioned 
close to a gene (Figure 5b). Of these, 15 DMMs overlapped with a gene transcript, 
whereas the remaining 29 DMMs were distributed within 5 kb of the gene without 
any clear pattern (Figure 5b), except that the number of DMMs located between 
2 and 3 kb bins was higher both upstream and downstream, than any other 1 kb 
bin within the 5 kb flanking regions (Figure 5b). There were fewer sheath-specific 
methylation markers within 5 kb from genes than blade-specific markers (13 of 

Figure 2. 
Analysis of the number of DMMs among three barley tissues. (a) Number of DMMs between roots and leaf 
blades (root vs. blade) and roots and sheaths (roots vs. sheaths). Histogram colour indicates whether the DMMs 
are hypomethylated (blue) or hypermethylated (red) in leaf parts compared to roots. (b and c) Venn diagram 
showing the number of DMMs stable between root and blade tissues (b) and between root and sheath tissues 
(c). (d) Number of DMMs from pairwise comparison between leaf blades 1–3 and sheaths 1–3. Histogram 
colour indicates whether the DMMs are hypomethylated (blue) or hypermethylated (red) in sheaths compared 
with blades. (e) Venn diagram showing the number of DMMs common in pairwise comparisons between leaf 
blades 1–3 and sheaths 1–2. Tissue samples were collected from seedlings at the three-leaf stage of five barley 
varieties grown in five replicates for 21 days after sowing. Blade 1–3 and sheath 1–3 indicate the rank of the 
organ type; first, second and third, respectively, on seedlings. DMMs were selected based on the significance of 
the false discovery rate, FDR, <0.05. DMMs present in both sheaths and blades when compared with roots, have 
been designated as markers between roots and leaves.
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Figure 3. 
Hierarchical clustering analysis of the DMMs. (a) The 3266 common DMMs between roots and all leaf parts 
(sheath 1–3, blade 1–3). The colours in the heat map indicate whether the DMM is hypomethylated (blue) 
or hypermethylated (red) in leaf parts compared to roots. (b) Hierarchical clustering of the 20 stable DMMs 
between blades and sheaths. In this heat map the red colour shows hypermethylation of DMMs in sheaths 
compared with blades. Blade and sheath samples were collected from seedlings at three-leaf stage of five barley 
varieties grown in five replicates for 21 days after sowing. Blade 1–3 and sheath 1–3 indicate the rank of the leaf 
on seedlings, first, second and third, respectively. The first number of the marker label on the y axis indicates 
the chromosome number on which the marker is located.

Figure 4. 
Directionality of the methylation in tissue-specific DNA methylation markers. (a) Boxplots showing the spread of 
the fold-change of locus read counts between blades and sheaths, roots and blades, and roots and sheaths.  
(b) Detail of boxplots, highlighting the median of methylation fold-change of all loci in each comparison. The 
fold-change of DNA methylation was estimated by computing 2(log2FC), with log2FC = logarithm 2 of fold-change 
in read counts for each sequenced locus between pairwise comparisons of tissues collected from three-leaf stage 
barley seedlings. Leaf blades were the reference state for blade-sheath comparison, whereas roots were the reference 
for root-blade and root-sheath comparisons. Negative and positive values on the y axis indicate respectively, 
hypermethylation and hypomethylation of the tissue that is compared to the reference. Locus coverage was 
estimated for each tissue by using 25 replicates for roots and 75 for blades and sheaths (5 plants from each of the 5 
varieties included in the study (DNA was extracted from 1 single root and from 3 independent leaves per plant)).
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(Figure 5a). The same assessment process showed that, as with common DMMs, 
only a small proportion of blade-specific DMMs (44 of 3246, 1.3%) was positioned 
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whereas the remaining 29 DMMs were distributed within 5 kb of the gene without 
any clear pattern (Figure 5b), except that the number of DMMs located between 
2 and 3 kb bins was higher both upstream and downstream, than any other 1 kb 
bin within the 5 kb flanking regions (Figure 5b). There were fewer sheath-specific 
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varieties grown in five replicates for 21 days after sowing. Blade 1–3 and sheath 1–3 indicate the rank of the 
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Figure 3. 
Hierarchical clustering analysis of the DMMs. (a) The 3266 common DMMs between roots and all leaf parts 
(sheath 1–3, blade 1–3). The colours in the heat map indicate whether the DMM is hypomethylated (blue) 
or hypermethylated (red) in leaf parts compared to roots. (b) Hierarchical clustering of the 20 stable DMMs 
between blades and sheaths. In this heat map the red colour shows hypermethylation of DMMs in sheaths 
compared with blades. Blade and sheath samples were collected from seedlings at three-leaf stage of five barley 
varieties grown in five replicates for 21 days after sowing. Blade 1–3 and sheath 1–3 indicate the rank of the leaf 
on seedlings, first, second and third, respectively. The first number of the marker label on the y axis indicates 
the chromosome number on which the marker is located.

Figure 4. 
Directionality of the methylation in tissue-specific DNA methylation markers. (a) Boxplots showing the spread of 
the fold-change of locus read counts between blades and sheaths, roots and blades, and roots and sheaths.  
(b) Detail of boxplots, highlighting the median of methylation fold-change of all loci in each comparison. The 
fold-change of DNA methylation was estimated by computing 2(log2FC), with log2FC = logarithm 2 of fold-change 
in read counts for each sequenced locus between pairwise comparisons of tissues collected from three-leaf stage 
barley seedlings. Leaf blades were the reference state for blade-sheath comparison, whereas roots were the reference 
for root-blade and root-sheath comparisons. Negative and positive values on the y axis indicate respectively, 
hypermethylation and hypomethylation of the tissue that is compared to the reference. Locus coverage was 
estimated for each tissue by using 25 replicates for roots and 75 for blades and sheaths (5 plants from each of the 5 
varieties included in the study (DNA was extracted from 1 single root and from 3 independent leaves per plant)).
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2391 DMMs, 0.5%) (Figure 5c). The majority of these (10 out of 13 DMMs) were 
sited within 3 kb of a gene, and no DMMs were present 3–5 kb from transcription 
margins (Figure 5c). Of 37 gene-body DMMs detected across all comparisons 
(Figure 5a–c), 27 overlapped with an exon and the remaining 10 markers were in 
intronic regions, 70–604 bp upstream of exons, except 1 DMM, which was 62 bp 
downstream an exon (Appendix A).

3.6 Distribution of tissue-specific DMMs near repeat regions

Many more tissue-specific DMMs were detected near repeats than near genes. 
The DMMs around repeat regions (as defined in the Ensembl database (http://
plants.ensembl.org/biomart/martview/)) were concentrated either within the 
repeats or within 1 kb of their margins (Figure 6a). A similar distribution pattern 
was obtained with both blade-specific and sheath-specific DMMs when contrasted 
with roots, with more DMMs overlapping with the repeats themselves than in the 1 
kb stretches flanking their margins (Figure 6b and c). The few markers that were 
differentially methylated between blades and sheaths (20 DMMs in total) were all 
located within 1 kb of a repeat (Figure 6d). Therefore, stable tissue-specific DMMs 
appeared to occur preferentially within repeats and 1 kb flanking regions, with 
higher frequency within 1 kb downstream than within 1 kb upstream, regardless of 
tissue types (Figure 6a–d).

3.7 Distribution of genes around differentially methylated (DM) repeats

To investigate a possible interaction between differentially methylated (DM) 
repeats and genes, the distance of genes from DM repeats between root and leaf 
samples was evaluated. In this way, we found 105 genes near repeats (up to 5 kb 
either side), of which 37 overlapped with a repeat and the remaining genes were 
scattered up- and downstream from the repeat (Figure 7). The number of DM 
repeats surrounded by genes thus represented only a tiny proportion of the total 
repeats that were differentially methylated between roots and leaves (105 out of 
3266 DM repeats, 3.21%). About half of genes near DM repeats (52 of 105 genes) 
were also differentially methylated, whereas the remainder (53 genes) were not.

Figure 5. 
Distribution of tissue-specific differentially methylated markers (DMMs) around genes. (a) DMMs between 
roots and leaves, present in both blades and sheaths as in Figure 2b and c; (b) blade-specific DMMs between 
roots and leaves and (c) sheath-specific DMMs between roots and leaves. The y axis indicates the distance to 
genes in kilo base pairs (kb) on both flanking regions. Negative and positive values indicate upstream and 
downstream of genes, respectively. DMMs overlapping with genes are considered as changes in gene-body 
methylation (body). The x axis shows the number of DMMs per 1 kb window.
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Figure 6. 
Distribution of tissue-specific differentially methylated markers (DMMs) around repeats. (a) DMMs between 
roots and leaves, present in both blades and sheaths as in Figure 2b and c; (b) blade-specific DMMs between 
roots and leaves; (c) sheath-specific DMMs between roots and leaves; (d) DMMs between blades and sheaths. 
The x axis indicates the distance to repeats in kilo base pairs (kb) on both flanking regions. Negative and 
positive values indicate upstream and downstream repeat regions, respectively. RR: repeat regions. The y axis 
shows the number of DMMs per 1 kb window.

Figure 7. 
Distribution of genes around differentially methylated repeat regions. The x axis indicates the distance to 
repeats in kilo base pairs (kb) on both flanking regions. Negative and positive values indicate upstream and 
downstream repeat regions, respectively. RR, repeat regions. The y axis shows the number of genes per 1 kb 
window.
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either side), of which 37 overlapped with a repeat and the remaining genes were 
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repeats surrounded by genes thus represented only a tiny proportion of the total 
repeats that were differentially methylated between roots and leaves (105 out of 
3266 DM repeats, 3.21%). About half of genes near DM repeats (52 of 105 genes) 
were also differentially methylated, whereas the remainder (53 genes) were not.

Figure 5. 
Distribution of tissue-specific differentially methylated markers (DMMs) around genes. (a) DMMs between 
roots and leaves, present in both blades and sheaths as in Figure 2b and c; (b) blade-specific DMMs between 
roots and leaves and (c) sheath-specific DMMs between roots and leaves. The y axis indicates the distance to 
genes in kilo base pairs (kb) on both flanking regions. Negative and positive values indicate upstream and 
downstream of genes, respectively. DMMs overlapping with genes are considered as changes in gene-body 
methylation (body). The x axis shows the number of DMMs per 1 kb window.
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roots and leaves, present in both blades and sheaths as in Figure 2b and c; (b) blade-specific DMMs between 
roots and leaves; (c) sheath-specific DMMs between roots and leaves; (d) DMMs between blades and sheaths. 
The x axis indicates the distance to repeats in kilo base pairs (kb) on both flanking regions. Negative and 
positive values indicate upstream and downstream repeat regions, respectively. RR: repeat regions. The y axis 
shows the number of DMMs per 1 kb window.

Figure 7. 
Distribution of genes around differentially methylated repeat regions. The x axis indicates the distance to 
repeats in kilo base pairs (kb) on both flanking regions. Negative and positive values indicate upstream and 
downstream repeat regions, respectively. RR, repeat regions. The y axis shows the number of genes per 1 kb 
window.
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4. Discussion

4.1 Extensive epigenetic differentiation between roots and leaves

In this study, we detected large numbers of DDMs between roots and leaves that 
were conserved across a diverse array of barley genotypes, and so were deemed far 
more likely to be organ-specific than genotype-dependent. Of these, hypomethyl-
ation of the mCCGG motif predominated in leaves (Figures 2b and c, 3b and 4a). 
More surprisingly, we also detected similarly conserved DMMs between leaf-blades 
and leaf-sheaths (Figures 2e and 4b). The number of conserved DMMs between 
blades and sheaths (20 DMMs), all hypermethylated in sheaths, was relatively consis-
tent with the closeness of these structures in position and function. These findings are 
broadly congruent with previous studies, which reported differential DNA methyla-
tion between variable tissues (e.g. endosperm, pollen, leaves, and roots) in diverse 
plant species [7–10], but additionally hint that the developmental closeness of struc-
tures being compared may also be reflected in the distinctiveness of their methylation 
profiles. However, controversy over the extent and validity of organ-specific DMMs 
[9, 10, 21–23] could cast doubt over their utility for organ diagnosis or as a tool to gain 
greater insight into the genes responsible for organ development/identity. Here, we 
sought to mitigate against the possibility of type I errors in DMM assignment through 
the unprecedented use of five diverse varieties and five biological replicates of each 
variety in the identification of these marks. In contrast to our findings, previous 
workers have reported little difference in the methylation levels of both mCG and 
mCHG motifs between roots and leaves in Arabidopsis [9] and sorghum [10]. Further, 
no significant difference was detected at all for mCG and mCHG methylation levels 
between tissues in cotton [37]. These divergences may simply reflect genuine biologi-
cal differences between taxonomic groups. However, it is also important to recognise 
that such differences may also arise from the approach used to identify organ-specific 
DMMs. Variability in the techniques used to assess plant methylation profiles may 
introduce different forms of bias and preclude or complicate comparison among stud-
ies. DMM detection can be influenced by factors such as (1) the genome coverage of 
the methylation profiling method (low coverage methods such as MSAP are likely to 
miss many markers) [7], and (2) the data analysis approach used, which can compare 
either global methylation levels (e.g. percent methylation) [9] or methylated loci 
(e.g. DMMs) [28]. We contend that relying solely on global methylation levels can be 
misleading in comparing tissue profiles, because similar methylation levels may show 
completely different patterns and so vital information content is lost.

The current study revealed that tissue-specific DNA methylation occurred abun-
dantly in the mCHG context (in particular mCCGGs) (Figure 2a and c). This concurs 
with reports of the CHG context similarly dominating differential DNA methylation 
between organs in Brachypodium distachyon [8] and sorghum [10]. Although tissue-
specific methylation also occurs in other cytosine contexts [10], our results and other 
studies [10, 22] suggest that mCCGG is a primary motif of epigenetic distinctiveness 
of plant organs. However, since MspI activity is affected by the presence of cytosine 
hydroxymethylation on its recognition sequence [38], some of the markers identified 
here as being cytosine methylation induced, could be due to the presence of (de)
hydroxymethylation events instead. Additionally, while tissue-specific DMMs were 
mostly hypomethylated in leaves compared to roots in the present study (Figure 3b), 
in Arabidopsis, Widman et al. [9] found that hypermethylation prevailed in leaves 
compared with roots. This apparent contradiction in the directionality of methyla-
tion in DMMs between roots and leaves may be a reflection a difference in the 
polarity of early divisions in the monocotyledonous barley and the dicotyledonous 
Arabidopsis embryos or else the methylation profiling method implemented.
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4.2  DNA methylation flux is tissue-specific during barley seedlings 
development

In addition to tissue-specificity of methylation profiles, one notable finding in 
the current study was that leaf cohorts exhibited a strong tendency to co-cluster. 
This suggests that the nature of methylation divergence between organs is not abso-
lutely fixed and instead appears to change with developmental progression. This 
observation accords with previous reports that genome-wide methylation patterns 
are not static during plant development [39]. Additionally, a considerable portion of 
DMMs between roots and leaves was also specific to the leaf rank, due to the steady 
decrease in the number of DMMs between roots and leaf blades with the rank of the 
latter (Figure 2a–c). In this case, therefore, the slow but progressive accumulation 
of additional methylation marks in the leaves increases their divergence from root 
profiles and enables the separation of leaf cohorts. However, the small number 
of DMMs distinguishing between leaf blades and leaf sheaths ran counter to this 
trend such that there were no DMMs capable of discrimination between these leaf 
parts among the oldest cohort studied (leaf 1) (Figure 2d and Table 2). It seems 
intuitively improbable that older cohorts of leaves would simply lose differentia-
tion between structurally distinct parts, especially if these marks had a functional 
role in defining function. Perhaps the most plausible biological explanation for the 
apparent erosion of divergence lies in the different chronological ages of the leaf 
cohorts that were sampled. Put simply, the third leaves were the least mature of the 
three cohorts collected and so it is entirely possible that the blade-sheath differ-
ential marks had yet to appear in these samples. Thus, it is important to consider 
the developmental and ageing progression chronology when assigning DMMs and 
that some organ- or structure-specific marks may only become organ-specific late 
in their development. Such late-emerging developmental DMMs should mean that 
the cumulative number of tissue-specific markers increases and so the organs or 
structures become more distinct, through leaf growth stages [40], each of which 
may carry a specific epigenetic profile. Certainly, others have noted that methyla-
tion profiles vary progressively as the organ develops [3, 41, 42] before reaching, 
at maturity, a “default” methylome, which may be conserved across varieties [24]. 
These results suggest that, once leaves are differentiated and mature, they do not 
show significant differences in DNA methylation profiles, regardless of their rank 
of appearance. Additionally, the location of half of the 20 common DMMs between 
blades and sheaths on chromosome 5H implies that this chromosome carries loci 
important for blade and sheath identities.

4.3  Tissue-specific DNA methylation preferably occurs in repeat regions  
of the barley genome

Organ-specific DMMs identified here were primarily associated with repeat 
regions. No significant difference was observed between the frequency of CCGG 
sites in and around genes and repeats. However, 84% of the barley genome is 
comprised of mobile elements or other repeat structures [25, 43], indicating that 
the fact that the majority of detected DMMs are located within or in the proxim-
ity of a repeat is due to the intrinsic repetitive nature of the studied genome. 
Nevertheless, the fact that 27 DMMs overlapped with exons and 10 were located in 
introns (Appendix A) contradicts previous claims that CHG methylation marks are 
exclusively restricted to repeat regions and intergenic regions [20, 21, 44, 45]. The 
possible regulatory significance of such gene body CHG methylation marks requires 
further investigation [46]. However, it is already well-established that tissue-
specific DMMs can influence gene expression by enhancing gene transcription [9] 
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and alternative splicing [47] or through repression due to immediate proximity to 
transcription start site [48].

The predominance of DMMs around and within repeats leads us to speculate 
that they could play an important role in defining organ identity in barley, and 
accords with previous findings in Brachypodium distachyon [8]. This flux of DNA 
methylation patterns in repeats [8, 42, 49] has been proposed to regulate [44] devel-
opmental shifts during plant growth and development [11, 39]. Nevertheless, the 
association between DMMs in/around repeat regions and organ identity described 
here does not establish a causal link between the two. However, there are grounds 
for reasoning that this may be the case and that the possibility warrants further 
study. First, repeat regions were previously proposed to be involved in alternative 
promoters, a substantial proportion of which (>40%) was reported to shape tissue 
differentiation [16]. Therefore, tissue-specific DMMs in repeats may contribute 
to alternative promoters, and thus determine organ identity. Second, differential 
gene expression between roots and leaves [25, 50] implies a firm regulatory system, 
including epigenetic mechanisms to guarantee tissue-specific cell development. 
Tissue-specific DMMs in repeats show that repeats are not the so-called “selfish 
parasites” of the genome [51], but can directly or indirectly affect tissue-specific 
gene expression [42, 52, 53]. Finally, it has been suggested that transposons coordi-
nate splice variants, a genomic event that occurs in more than 60% of plant genes 
[54, 55], thus generating multiple mRNA transcripts from a single gene [56, 57]. 
Many splice variants are tissue-specific [58], suggesting that it is entirely possible 
that tissue-specific DMMs in repeats affect alternative splicing and subsequent gene 
expression. Also, some DM genes might potentially be regulated simultaneously 
by their own methylation and that of repeats [53, 59], due to proximity with DM 
repeats.

5. Conclusions

This study provides a comprehensive set of robust tissue specific epimark-
ers which were conserved in all barley genotypes tested and can therefore be 
considered genotype independent. Such markers have potential to be converted 
into locus-specific methylation sensitive cleaved amplified polymorphic sequence 
markers (ms-CAPS) to be used as diagnostic of sample origin. Moreover, these 
markers provide a basis for the understanding of the role of DNA methylation in 
plant organ differentiation and development. Our data illustrates that during tissue 
development, DNA methylation evolves to reach a default profile once the tissue is 
completely differentiated at maturity. It is possible that the plant organ formation 
and maturation is under at least partial control of DNA methylation changes. In 
addition, repeats could play an important role in tissue definition. The existence 
of tissue-specific mCCGG sites suggests that this context carries important factors 
of tissue differentiation. Expression analysis of tissue samples would conclusively 
demonstrate the role of tissue-specific DMMs in gene regulation. These markers 
will provide a basis for future studies of the role of DNA methylation in plant organ 
differentiation and development.
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Appendix 

Chrom. Exons DMMs Tissue

Start End ID Rank Start End bp to 
exon

3H 256588863 256589313 exon:MLOC_37071.2:3 3 256588258 256588258 −604 leaf

1H 173809114 173809167 exon:MLOC_44613.1:2 2 173808619 173808619 −494 leaf

2H 427507334 427507612 exon:MLOC_61110.4:1 1 427506881 427506881 −452 blade

7H 584462328 584462663 exon:MLOC_6930.1:4 4 584461984 584461984 −343 blade

3H 48188588 48188710 exon:MLOC_36518.3:9 9 48188256 48188256 −331 leaf

4H 531043445 531043540 exon:MLOC_66787.2:5 5 531043255 531043255 −189 leaf

3H 282775878 282775978 exon:MLOC_57866.1:2 2 282775689 282775689 −188 leaf

2H 507101612 507102232 exon:MLOC_57766.1:6 6 507101429 507101429 −182 blade

3H 451801679 451801792 exon:MLOC_4568.8:12 12 451801608 451801608 −70 blade

1H 295869691 295869957 exon:MLOC_57040.1:1 1 295869907 295869907 0 blade

1H 372664328 372665243 exon:MLOC_11591.1:1 1 372665217 372665217 0 leaf

1H 398203764 398206694 exon:MLOC_52730.3:1 1 398204886 398204886 0 leaf

2H 436039625 436040167 exon:MLOC_16240.2:1 1 436040156 436040156 0 leaf

2H 550574223 550574658 exon:MLOC_7365.2:1 1 550574622 550574622 0 leaf

3H 141116151 141117572 exon:MLOC_70576.2:1 1 141116946 141116946 0 blade

4H 428185287 428190462 exon:MLOC_52907.1:1 1 428185685 428185685 0 leaf

5H 449547966 449548309 exon:MLOC_66740.1:1 1 449548006 449548006 0 blade

6H 5471445 5474755 exon:MLOC_54256.1:1 1 5473235 5473235 0 leaf

6H 247447067 247450327 exon:MLOC_7517.2:1 1 247448194 247448194 0 blade

7H 96048516 96048816 exon:MLOC_36488.1:1 1 96048734 96048734 0 leaf

7H 440064807 440067513 exon:MLOC_72767.1:1 1 440065330 440065330 0 leaf

7H 544501261 544504310 exon:MLOC_39738.1:1 1 544501865 544501865 0 sheath

6H 69839676 69839776 exon:MLOC_11882.4:2 2 69839743 69839743 0 leaf

7H 331094393 331097017 exon:MLOC_54330.1:2 2 331096165 331096165 0 blade

1H 61790876 61791279 exon:MLOC_66388.8:3 3 61791253 61791253 0 leaf

3H 421991486 421991892 exon:MLOC_18521.3:3 3 421991580 421991580 0 leaf
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3H 256588863 256589313 exon:MLOC_37071.2:3 3 256588258 256588258 −604 leaf

1H 173809114 173809167 exon:MLOC_44613.1:2 2 173808619 173808619 −494 leaf

2H 427507334 427507612 exon:MLOC_61110.4:1 1 427506881 427506881 −452 blade

7H 584462328 584462663 exon:MLOC_6930.1:4 4 584461984 584461984 −343 blade

3H 48188588 48188710 exon:MLOC_36518.3:9 9 48188256 48188256 −331 leaf

4H 531043445 531043540 exon:MLOC_66787.2:5 5 531043255 531043255 −189 leaf

3H 282775878 282775978 exon:MLOC_57866.1:2 2 282775689 282775689 −188 leaf

2H 507101612 507102232 exon:MLOC_57766.1:6 6 507101429 507101429 −182 blade

3H 451801679 451801792 exon:MLOC_4568.8:12 12 451801608 451801608 −70 blade

1H 295869691 295869957 exon:MLOC_57040.1:1 1 295869907 295869907 0 blade

1H 372664328 372665243 exon:MLOC_11591.1:1 1 372665217 372665217 0 leaf

1H 398203764 398206694 exon:MLOC_52730.3:1 1 398204886 398204886 0 leaf

2H 436039625 436040167 exon:MLOC_16240.2:1 1 436040156 436040156 0 leaf

2H 550574223 550574658 exon:MLOC_7365.2:1 1 550574622 550574622 0 leaf

3H 141116151 141117572 exon:MLOC_70576.2:1 1 141116946 141116946 0 blade

4H 428185287 428190462 exon:MLOC_52907.1:1 1 428185685 428185685 0 leaf

5H 449547966 449548309 exon:MLOC_66740.1:1 1 449548006 449548006 0 blade

6H 5471445 5474755 exon:MLOC_54256.1:1 1 5473235 5473235 0 leaf

6H 247447067 247450327 exon:MLOC_7517.2:1 1 247448194 247448194 0 blade

7H 96048516 96048816 exon:MLOC_36488.1:1 1 96048734 96048734 0 leaf

7H 440064807 440067513 exon:MLOC_72767.1:1 1 440065330 440065330 0 leaf

7H 544501261 544504310 exon:MLOC_39738.1:1 1 544501865 544501865 0 sheath

6H 69839676 69839776 exon:MLOC_11882.4:2 2 69839743 69839743 0 leaf

7H 331094393 331097017 exon:MLOC_54330.1:2 2 331096165 331096165 0 blade

1H 61790876 61791279 exon:MLOC_66388.8:3 3 61791253 61791253 0 leaf

3H 421991486 421991892 exon:MLOC_18521.3:3 3 421991580 421991580 0 leaf
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Chrom. Exons DMMs Tissue

Start End ID Rank Start End bp to 
exon

7H 96049105 96050237 exon:MLOC_36488.1:3 3 96049134 96049134 0 leaf

3H 516390233 516390451 exon:MLOC_37766.1:4 4 516390244 516390244 0 blade

4H 434415593 434415838 exon:MLOC_58529.1:4 4 434415773 434415773 0 blade

2H 578608506 578608551 exon:MLOC_54514.1:5 5 578608549 578608549 0 blade

5H 484203288 484203413 exon:MLOC_73139.2:5 5 484203386 484203386 0 blade

2H 2183704 2183865 exon:MLOC_57446.2:9 9 2183753 2183753 0 leaf

7H 41386814 41387497 exon:MLOC_57450.2:9 9 41387134 41387134 0 leaf

4H 434420196 434420586 exon:MLOC_58529.6:13 13 434420355 434420355 0 blade

3H 541205210 541205401 exon:MLOC_37244.3:16 16 541205351 541205351 0 leaf

7H 570620131 570620572 exon:MLOC_14604.2:16 16 570620258 570620258 0 blade

7H 583930566 583930636 exon:MLOC_62970.1:2 2 583930697 583930697 62 leaf

DMMs: differentially methylated markers; Chrom: chromosome; bp: base pair

Table A1. 
List of differentially methylated exons. Bolded value is the only first exon methylated upstream 452 bp from a 
transcription start.
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Chapter 8

Library Preparation for Whole
Genome Bisulfite Sequencing of
Plant Genomes
Kendall R. Corbin and Carlos M. Rodriguez Lopez

Abstract

Epigenetic mechanisms are a key interface between the environment and the
genotype. These mechanisms regulate gene expression in response to plant develop-
ment and environmental stimuli, which ultimately affects the plant’s phenotype. DNA
methylation, in particular cytosine methylation, is probably the best studied epige-
netic modification in eukaryotes. It has been associated to the regulation of gene
expression in response to cell/tissue differentiation, organism development and adap-
tation to changing environments. Whole genome bisulfite sequencing (WGBS) is
considered the gold standard to study DNA methylation at a genome level. Here we
present a protocol for the preparation of whole genome bisulfite sequencing libraries
from plant samples (grapevine leaves) which includes detailed instructions for sample
collection andDNA extraction, sequencing library preparation and bisulfite treatment.

Keywords: whole genome bisulfite sequencing, methylome analysis,
DNA methylation, epigenetic modifications, Vitis vinifera

1. Introduction

Plants being sessile have developed strategies to adapt to their environment,
specifically via epigenetic modification of their genome [1, 2]. Epigenetic mecha-
nisms, both heritable and reversible, allow an organism to respond to its environment
through changes in gene expression, without changing the underlying genome [3–6].
One of the most widely studied epigenetic mechanisms is cytosine methylation
(5mC), which is the result of a methyl group replacing a hydrogen in the cyclic
carbon-5 of cytosines. In plants, methylation of cytosine bases can occur in three
contexts (DNA base sequences) CG, CHG or CHH, where H is any nucleotide other
than G [7]. Plant nuclear genomes are known to contain more extensive and expan-
sive DNA methylation than that found in animals [8]. DNA methylation has been
identified in a range of plants and plays a role in a wide variety of biological processes
from plant development and organ differentiation to response to stress [9–20].

Due to the functional importance of DNAmethylation in many species, a plethora
of DNAmethylation analysis approaches has been developed in recent years. These can
be mainly grouped into three functional types that (1) indicate the methylation status
of a specific sequence; (2) reveal the degree and patterning of DNAmethylation across
partly characterized genomes; or (3) facilitate the discovery and sequencing of new
epialleles [7]. From a technical point of view, such methodologies can be grouped into
those using global estimation of all nucleic base species (e.g. HPLC and LC-MS/MS),
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methylation-sensitive restriction enzymes [18, 21, 22], high-resolutionmelting analysis
[10, 23, 24], methylcytosine-specific antibodies andmethylated DNA-binding
domains [25, 26], bisulfite conversion of DNA, and third-generation DNA sequencing
technologies, including single molecule real-time (SMRT) sequencing and nanopore
sequencing (for extensive reviews in these methodologies, see [27–29]).

Of all these techniques currently available, only bisulfite conversion of DNA and
third-generation DNA sequencing provide a single-base resolution view of methyl-
ated cytosines across the selected target sequence. This approach is not limited by
genome size and may be applied to a relatively small fraction of a genome or a
whole genome. More recently developed techniques are capable of reading 5mC,
and other DNA modifications, without the need for any chemical alteration of the
target DNA molecule. However, their throughput, accuracy and affordability are
still not sufficient for routine use. Bisulfite conversion of DNA, in turn, is based on
the selective chemical modification of unmethylated cytosines (C) into uracils (U)
(which are read as thymines (T) by DNA polymerases during PCR amplification)
(Figure 1), while leaving unchanged 5mC (Figure 2). Due to its high throughput,
reliability and low cost, bisulfite conversion is considered the “gold standard” DNA
methylation analysis. Next-generation sequencing (NGS) allows the rapid sequenc-
ing of whole genomes. Combined with bisulfite conversion of the target DNA, it
also permits the identification of methylated cytosines at a single-base resolution of
whole genomes (i.e. whole genome bisulfite sequencing (WGBS)).

Figure 1.
Bisulfite conversion of unmethylated cytosines. Bisulfite conversion reaction starts with the addition of a sodium
bisulfite group (sulphonation step) to the pyrimidine ring double bond between carbons 5 and 6 to form a 5,6-
dihydrocytosine-6-sulphonate. Next, spontaneous and irreversible hydrolytic deamination results in a 5,6-
dihydrouracil-6-sulphonate (deamination step). Finally, high pH conditions favor the loss of the sulphonate
group (desulphonation step) to form uracil. Only unmethylated cytosines are susceptible to the bisulfite reaction.
Methylated (5mC and 5-hmC) cytosines do not undergo conversion.

Figure 2.
Bisulfite conversion of a sample DNA sequence. Nucleotides highlighted in blue (methylated cytosines) are
protected from bisulfite conversion and are maintained as cytosines. Unmethylated cytosines are converted to
uracils. Loss of the original base pairing will yield two different PCR products from each DNA fragment.
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2. Procedure

2.1 Equipment

i. Ultralow freezer (�80°C)

ii. Mortar and pestle—used to grind leaf samples prior to DNA extraction. Use
a clean set for each sample to avoid cross-contamination. Wash both parts
using warm water and soap, air-dry, wrap in aluminium foil and autoclave.

iii. NanoDrop™ 2000 Spectrophotometer—this UV-Vis spectrophotometer
has the capability to quantify and assess the purity of small volumes of
DNA (0.5 μL). The sample may be pipetted directly onto the optical
measurement surface. Additional information regarding DNA
quantification and quality assessment using NanoDrop can be found at
https://www.thermofisher.com/us/en/home/industrial/spectroscopy-eleme
ntal-isotope-analysis/molecular-spectroscopy/ultraviolet-visible-visible-
spectrophotometry-uv-vis-vis/uv-vis-vis-instruments/nanodrop-mic
rovolume-spectrophotometers/nanodrop-nucleic-acid-quantification.html

iv. Thermocycler (PCR machine)—thermocyclers amplify segments of nucleic
acid following a series of temperature-controlled enzymatic reactions.

v. Covaris M220 Focused-Ultrasonicator™ and MicroTUBE-50 (Covaris,
catalog number: 520166) (or equivalent models and parts)—sonicators are
used for shearing DNA to a desired size.

vi. Magnetic rack for 1.5 mL tubes—magnetic racks are used for separation
and purification of nucleic acids in combination with paramagnetic beads
(e.g. AMPure XP beads).

vii. Qubit Fluorometric Quantification and Qubit dsDNA HS (High Sensitivity)
Assay Kit (Thermo Fisher Scientific, catalog number: Q32854). Qubit
assays accurately quantify nucleic acids quickly and require small volumes
of sample.

viii. Agilent Fragment Analyzer, Agilent Bioanalyzer (Agilent Technologies) or
the Bio-Rad Experion (Bio-Rad Laboratories).

ix. High-speed centrifuge.

2.2 Consumables

i. Sterile microcentrifuge tubes 1.5 mL (Eppendorf® Safe-Lock™)

ii. 15 mL polypropylene centrifuge tubes (Laboratory Product Sales)

iii. Filtered pipette tips

iv.Wide-bore pipette tips

v. Sterile 200 μL PCR tubes

vi. Sterile 500 μL tubes
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2.3 Chemicals and reagents

i. Molecular biology grade ethanol (MilliporeSigma or Fisher BioReagents)

ii. Molecular biology grade water (MilliporeSigma)

iii. Cetyltrimethylammonium bromide (CTAB)

iv. Ethylenediaminetetraacetic acid (EDTA)

v. Tris hydrochloride (Tris-HCl)

vi. Hydrochloric acid (HCl)

vii. Polyvinylpolypyrrolidone (PVP)

viii. Chloroform

ix. Octane

x. Sodium chloride (NaCl)

xi. RNAse A (Sigma-Aldrich, catalog number: R4642)

xii. Agencourt AMPure XP magnetic beads (Beckman Coulter, catalog number:
A63880)

xiii. Q5® High-Fidelity 2� Master Mix (New England Biolabs, catalog number:
M0492S)

xiv. 10� End Repair Buffer (New England Biolabs, catalog number: B6052S)

xv. End Repair Enzyme Mix (New England Biolabs, catalog number: E6051)

xvi. 10� dA-Tailing Reaction Buffer (New England Biolabs, catalog number:
B6059S)

xvii. A-tailing Enzyme (e.g. Klenow Fragment (30 ! 50 exo-) (New England
Biolabs, catalog number: M0212S)

xviii. 10� T4 DNA Ligation Buffer and T4 DNA Ligase (New England Biolabs,
catalog numbers: B0202S and M0202)

xix. TruSeq Sequencing adapters: adapters are ordered as lyophilized
oligonucleotides with the specified modifications1 from the provider of

1 Order the oligonucleotides with standard desalting. Request that all cytosines are methylated. This will

allow the sequence integrity of the adapters to be maintained after bisulfite treatment. Also, order the

indexed adapter with a 50 phosphate group and TruSeq Universal Adapter with phosphorothioate bond

between the 30 end C and T nucleotides.
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your choice (sequences are provided below2). To prepare the adapters,
resuspend both oligonucleotides with TE buffer to a final concentration of
200 μM. Then add 75 μL from each into a 200 μL sterile PCR tube. To allow
annealing of the complementary sections of the oligos, heat the mixture
using a thermocycler to 95°C for 1 min, and then slowly lower the
temperature to 30°C at a rate of 1°C/min. This can be accomplished by
programming your thermocycler with a single step PCR cycle at 95°C for 1
min followed by 65 cycles during which the temperature is reduced by 1°C
each cycle. Store double-stranded adapters at �20°C.

I.TruSeq universal adapter: 50-AATGATACGGCGACCACCGAGATCT
ACACTCTTTCCCTACACGACGCTCTTCCGATC*T-30

II.TruSeq INDEX adapter: 50-P*GATCGGAAGAGCACACGTCTGAAC
TCCAGTCAC[i7]ATCTCGTATGCCGTCTTCTGCTTG-30

xx. Library amplification primers: primers are ordered as lyophilized
oligonucleotides with standard desalting from the provider of your choice
(sequences are provided below). To prepare the primers, resuspend both
oligonucleotides with TE buffer to a final concentration of 100 μM. (This is
your stock solution. Store at �20°C.) To prepare the Forward and Reverse
Primer Mix, mix 10 μL from each in a new tube, and add 80 μL of
molecular grade water to achieve a final concentration of 10 μM.

I.Forward primer: 50-AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGA-30

II.Reverse primer: 50-CAAGCAGAAGACGGCATACGAGAT-30

2.4 Additional items required

i. Insulated polystyrene box

ii. Pipettes

iii. Water bath

iv. Liquid nitrogen

v. Refrigerator (4°C) and freezer (�20°C)

3. Set-up

i. Label all tubes prior to starting any of the described protocols to reduce the
likeliness of downstream errors.

2 [i7] index sequences can be found at https://support.illumina.com/content/dam/illumina-support/

documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-

1000000002694-09.pdf
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using a thermocycler to 95°C for 1 min, and then slowly lower the
temperature to 30°C at a rate of 1°C/min. This can be accomplished by
programming your thermocycler with a single step PCR cycle at 95°C for 1
min followed by 65 cycles during which the temperature is reduced by 1°C
each cycle. Store double-stranded adapters at �20°C.

I.TruSeq universal adapter: 50-AATGATACGGCGACCACCGAGATCT
ACACTCTTTCCCTACACGACGCTCTTCCGATC*T-30

II.TruSeq INDEX adapter: 50-P*GATCGGAAGAGCACACGTCTGAAC
TCCAGTCAC[i7]ATCTCGTATGCCGTCTTCTGCTTG-30

xx. Library amplification primers: primers are ordered as lyophilized
oligonucleotides with standard desalting from the provider of your choice
(sequences are provided below). To prepare the primers, resuspend both
oligonucleotides with TE buffer to a final concentration of 100 μM. (This is
your stock solution. Store at �20°C.) To prepare the Forward and Reverse
Primer Mix, mix 10 μL from each in a new tube, and add 80 μL of
molecular grade water to achieve a final concentration of 10 μM.

I.Forward primer: 50-AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGA-30

II.Reverse primer: 50-CAAGCAGAAGACGGCATACGAGAT-30

2.4 Additional items required

i. Insulated polystyrene box

ii. Pipettes

iii. Water bath

iv. Liquid nitrogen

v. Refrigerator (4°C) and freezer (�20°C)

3. Set-up

i. Label all tubes prior to starting any of the described protocols to reduce the
likeliness of downstream errors.

2 [i7] index sequences can be found at https://support.illumina.com/content/dam/illumina-support/

documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-

1000000002694-09.pdf
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ii. Use sterilized tools (scissors, knives, tweezers, etc.) for harvesting plant
material, and clean utensils thoroughly between samples using 70% (v/v)
ethanol.

iii. Gloves should be worn at all times while handling samples to minimize
cross-contamination (change gloves as needed).

iv. DNA extractions, next-generation sequencing library preparations and
bisulfite treatments should be carried out in a PCR cabinet or similar to
minimize contamination.

v. General safety notes.

• Follow safe operating procedures when handling cryogenic products
(dry ice and liquid nitrogen). Prior to usage (and transport) of
cryogenic products, a risk assessment should be conducted to evaluate
hazards and identify control measures that may be implemented to
minimize the level of risk. Additional information about cryogenic
materials precautions and safe handling procedures may be available
from your local Office of Environmental Health and Safety.

• β-Mercaptoethanol (also known as 2-hydroxyethylmercaptan, BME or
thioethylene glycol) is a toxic chemical that should be handled with
extreme caution. Exposure to this product may cause respiratory
issues, vomiting or skin irritation. Long-term exposure to this product
can result in death. Personal protective equipment should be worn
when handling this product and all experimental work conducted in a
fume hood. Hazard control measures include wearing nitrile laboratory
gloves (if gloves get splashed or tear, change immediately), safety
glasses, closed toe shoes, a laboratory coat, and if spills are possible, a
face shield. Safety documentation about this product, including
information relevant to storage, transport and disposal, may be found
on manufacturers Website.

3.1 Collection of plant material

i. Collect three individual leaves at bud burst (E-L 7 [30]) from the number
of desired grapevines. The rationale for using immature vegetative tissue
(leaves) is that cell number is fixed very early during development; thus
the number of genome copies per gram of tissue is higher in younger leaves
relative to older leaves. It is also advantageous to use younger plant material
as some plant species accumulate secondary metabolites (such as alkaloids
and flavonoids) as their tissues age. High levels of these metabolites can
impede DNA extraction or PCR amplification [31].

Note: DNA methylation has been shown to change with the plant’s circadian cycle
[32] and during plant development [19]. Thus, when collecting samples for DNA
methylation analysis from more than one plant, it is extremely important to harvest
all plant tissue at approximately the same time of day and at the same developmental
stage in order to minimize unwanted variability in DNA methylation.

ii. Immediately upon harvesting the leaves, put the material in a pre-labelled
1.5 mL centrifuge tube. Place the tubes in an insulated container
(i.e. polystyrene box) and cover with dry ice (solid CO2).
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Note: By immediately snap-freezing the samples, changes in DNA methylation
profiles induced during harvesting and cell death will be minimized.

iii. Store all samples at �80°C until required for DNA extraction.

Note: Storage of samples at ultralow temperatures will minimize DNA
degradation. Avoid unnecessary freeze-thawing cycles, including during the period
of material transport from the field to laboratory.

3.2 Recipes for buffers, solutions and reagents

i. Ethanol (70, 80 and 95% v/v). Store at room temperature.

ii. CTAB DNA extraction buffer (per 100 mL): 20 mM sodium EDTA (1 mL of
0.5 M stock) and 100 mM Tris-HCl (10 mL of 1 M stock), adjust pH to 8.0
with HCl; add 1.4 M NaCl (8.2 g), 1% (w/v) PVP (1.0 g), and 2.0% (w/v)
CTAB (2.0 g). Dissolve CTAB by heating to 60°C. Store at 37°C.

iii. Chloroform-octanol 24:1 (v/v). Store at room temperature.

iv. 5 M sodium chloride (NaCl)—dissolve 292 g of NaCl in 800 mL of water,
and then adjust the volume to 1 L with water.

v. 1� Tris-EDTA buffer (TE buffer)—10 mM Tris-HCl and 1 mM EDTA,
adjust pH to 8.0 and autoclave. Store at room temperature

4. Protocol

4.1 DNA extraction

DNA extraction is carried out following a modified CTAB protocol [33].

i. Pour liquid nitrogen on to a mortar and pestle.

Note: The mortar should be fully cooled in liquid nitrogen prior to and during
usage. In addition, the sample must remain frozen during the grinding process.
Accidental thawing may result in DNA degradation.

ii. Grind 500 mg of leaf material in a mortar and pestle. Continue to add liquid
nitrogen to ensure the equipment remains cold.

Note: Over grinding of plant biomass will cause DNA shearing, which
results in lower yields after bisulfite treatment due to degradation of small DNA
fragments.

iii. Add 5 mL of CTAB extraction buffer to the ground leaves and mix with a
sterile spatula.

iv. Transfer the slurry to a 15 mL polypropylene centrifuge tube. Rinse the
mortar and pestle with 1 mL of extraction buffer, and add to the tube
(added to original extract).

v. Add 50 mg polyvinylpolypyrrolidone (PVP), screw the cap on the tube
tightly, and invert the tube several times to mix thoroughly.
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ii. Use sterilized tools (scissors, knives, tweezers, etc.) for harvesting plant
material, and clean utensils thoroughly between samples using 70% (v/v)
ethanol.

iii. Gloves should be worn at all times while handling samples to minimize
cross-contamination (change gloves as needed).

iv. DNA extractions, next-generation sequencing library preparations and
bisulfite treatments should be carried out in a PCR cabinet or similar to
minimize contamination.

v. General safety notes.

• Follow safe operating procedures when handling cryogenic products
(dry ice and liquid nitrogen). Prior to usage (and transport) of
cryogenic products, a risk assessment should be conducted to evaluate
hazards and identify control measures that may be implemented to
minimize the level of risk. Additional information about cryogenic
materials precautions and safe handling procedures may be available
from your local Office of Environmental Health and Safety.

• β-Mercaptoethanol (also known as 2-hydroxyethylmercaptan, BME or
thioethylene glycol) is a toxic chemical that should be handled with
extreme caution. Exposure to this product may cause respiratory
issues, vomiting or skin irritation. Long-term exposure to this product
can result in death. Personal protective equipment should be worn
when handling this product and all experimental work conducted in a
fume hood. Hazard control measures include wearing nitrile laboratory
gloves (if gloves get splashed or tear, change immediately), safety
glasses, closed toe shoes, a laboratory coat, and if spills are possible, a
face shield. Safety documentation about this product, including
information relevant to storage, transport and disposal, may be found
on manufacturers Website.

3.1 Collection of plant material

i. Collect three individual leaves at bud burst (E-L 7 [30]) from the number
of desired grapevines. The rationale for using immature vegetative tissue
(leaves) is that cell number is fixed very early during development; thus
the number of genome copies per gram of tissue is higher in younger leaves
relative to older leaves. It is also advantageous to use younger plant material
as some plant species accumulate secondary metabolites (such as alkaloids
and flavonoids) as their tissues age. High levels of these metabolites can
impede DNA extraction or PCR amplification [31].

Note: DNA methylation has been shown to change with the plant’s circadian cycle
[32] and during plant development [19]. Thus, when collecting samples for DNA
methylation analysis from more than one plant, it is extremely important to harvest
all plant tissue at approximately the same time of day and at the same developmental
stage in order to minimize unwanted variability in DNA methylation.

ii. Immediately upon harvesting the leaves, put the material in a pre-labelled
1.5 mL centrifuge tube. Place the tubes in an insulated container
(i.e. polystyrene box) and cover with dry ice (solid CO2).
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Note: By immediately snap-freezing the samples, changes in DNA methylation
profiles induced during harvesting and cell death will be minimized.

iii. Store all samples at �80°C until required for DNA extraction.

Note: Storage of samples at ultralow temperatures will minimize DNA
degradation. Avoid unnecessary freeze-thawing cycles, including during the period
of material transport from the field to laboratory.

3.2 Recipes for buffers, solutions and reagents

i. Ethanol (70, 80 and 95% v/v). Store at room temperature.

ii. CTAB DNA extraction buffer (per 100 mL): 20 mM sodium EDTA (1 mL of
0.5 M stock) and 100 mM Tris-HCl (10 mL of 1 M stock), adjust pH to 8.0
with HCl; add 1.4 M NaCl (8.2 g), 1% (w/v) PVP (1.0 g), and 2.0% (w/v)
CTAB (2.0 g). Dissolve CTAB by heating to 60°C. Store at 37°C.

iii. Chloroform-octanol 24:1 (v/v). Store at room temperature.

iv. 5 M sodium chloride (NaCl)—dissolve 292 g of NaCl in 800 mL of water,
and then adjust the volume to 1 L with water.

v. 1� Tris-EDTA buffer (TE buffer)—10 mM Tris-HCl and 1 mM EDTA,
adjust pH to 8.0 and autoclave. Store at room temperature

4. Protocol

4.1 DNA extraction

DNA extraction is carried out following a modified CTAB protocol [33].

i. Pour liquid nitrogen on to a mortar and pestle.

Note: The mortar should be fully cooled in liquid nitrogen prior to and during
usage. In addition, the sample must remain frozen during the grinding process.
Accidental thawing may result in DNA degradation.

ii. Grind 500 mg of leaf material in a mortar and pestle. Continue to add liquid
nitrogen to ensure the equipment remains cold.

Note: Over grinding of plant biomass will cause DNA shearing, which
results in lower yields after bisulfite treatment due to degradation of small DNA
fragments.

iii. Add 5 mL of CTAB extraction buffer to the ground leaves and mix with a
sterile spatula.

iv. Transfer the slurry to a 15 mL polypropylene centrifuge tube. Rinse the
mortar and pestle with 1 mL of extraction buffer, and add to the tube
(added to original extract).

v. Add 50 mg polyvinylpolypyrrolidone (PVP), screw the cap on the tube
tightly, and invert the tube several times to mix thoroughly.
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Note: PVP is added at a concentration of 100 mg PVP/g leaf tissue used in step ii.

vi. Incubate the tube in a water bath set at 60°C for 25 min. Carefully remove
the tube from the bath and cool to room temperature.

Note: Take care when removing the sample from the water bath, wear personal
protective equipment (laboratory jacket, safety glasses and heat-resistant gloves).

vii. Centrifuge the homogenate for 5 min at 14,000 � g (room temperature),
and transfer the supernatant to a clean 1.5 mL tube.

viii. Treat with 1 μL RNase A per 100 μL DNA solution and incubate at 37°C for
15 min.

Note: An RNAse treatment step is included to enzymatically digest RNA in the
material, minimizing the amount of RNA extracted with the DNA. Contaminating
RNA will result in the overestimation of DNA quantity.

ix. Add 6 mL of chloroform-octanol, and mix gently by inverting the tube
20–25 times to form an emulsion.

x. Spin at 14,000 � g for 15 min in a centrifuge (room temperature).

xi. Using a wide-bore pipette tip, transfer the top aqueous phase to a new
15 mL tube. A second chloroform-octanol extraction may be performed
if the aqueous phase is cloudy due to the presence of PVP (repeat steps
ix to xi).

xii. Add 3 mL of 5 M NaCl to the aqueous solution and mix well (invert gently
by hand).

xiii. Add two volumes of cold (�20°C) 95% (v/v) ethanol and refrigerate
(4–6°C) until DNA strands begin to appear.

Note: The solution should be left for at least 15 min but can stay refrigerated for
longer if necessary.

xiv. Spin at 10,000 � g for 3 min (room temperature).

xv. Increase the speed of the centrifuge to 14,000 � g. Spin samples for an
additional 3 min.

Note: Differential centrifugation steps aid in keeping the DNA at the bottom of
the tube.

xvi. Carefully pour off supernatant and wash pellet with 1 mL of chilled
(0–4°C) 70% (v/v) ethanol.

xvii. Remove ethanol by pipetting—do not disturb the DNA pellet. Air-dry the
remaining ethanol by leaving the tubes uncovered at room temperature for
10 min.

xviii. Solubilize the DNA pellet in 200–300 μL TE buffer.

xix. Quantify isolated DNA using the NanoDropTM 2000.
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Note: TE buffer should be used as the reference blank.

xx. Normalize DNA concentrations to 20 ng/μL using molecular grade water.

xxi. Store DNA samples at �20°C (short-term) or �80°C (long-term).

4.2 DNA shearing

i. Aliquot 1 μg of genomic DNA (equivalent to 50 μL of DNA with a
concentration of 20 ng/μL) into a Covaris MicroTUBE-50, and add 5 μL of
molecular biology water. The final volume in the microtube is 55 μL.

ii. Shear DNA to 200 bp fragments using the Covaris M220 Focused-
Ultrasonicator™, using the following specifications:

Duration, 90 s; peak power, 75 W; duty factor, 25%; cycles per burst, 1000

iii. Transfer 50 μL of the fragmented DNA to a clean, pre-labelled 200 μL PCR
tube.

Note: Label the top and the side of the PCR tubes.

4.3 Sheared DNA end repair

i. Prepare End Repair Master Mix containing 8 μL molecular grade water, 7
μL of 10� end repair buffer and 5 μL end repair enzyme.

Note: When preparing Master Mixes, prepare 10% extra to account for pipetting
errors, and allow enough reaction mix for all sample. For example, for 10 samples,
prepare enough Master Mix for those samples plus one extra (11 in total): combine
88 μL molecular grade water, 77 μL of 10� end repair buffer and 55 μL end repair
enzyme.

ii. Add 20 μL of End Repair Master Mix to each of the sheared samples.

iii. Incubate in a thermocycler at 20°C for 30 min.

Note: At this point remove AMPure XP beads from the refrigerator and allow the
bottle to reach room temperature before use. Immediately before pipetting,
resuspend the beads by vortexing vigorously. The AMPure purification system
selectively binds DNA fragments to paramagnetic beads, allowing the removal of
excess primers, nucleotides, salts and enzymes during a simple washing step. These
clean-up steps result in a more purified PCR product. For further information about
using AMPure XP for PCR purification, please refer to the manufacturer’s manual.

iv. Capture DNA by adding 120 μL of AMPure XP beads, pipette up and down to
achieve a homogenous mixture, and incubate at room temperature for 5 min.

v. Transfer the beads with captured DNA to a 1.5 mL tube.

vi. Place the tube on a magnetic rack for 2 min.

vii. Keep the tube on the magnetic rack and remove the supernatant using a
pipette. Do not disturb the beads.

149

Library Preparation for Whole Genome Bisulfite Sequencing of Plant Genomes
DOI: http://dx.doi.org/10.5772/intechopen.90716



Note: PVP is added at a concentration of 100 mg PVP/g leaf tissue used in step ii.

vi. Incubate the tube in a water bath set at 60°C for 25 min. Carefully remove
the tube from the bath and cool to room temperature.

Note: Take care when removing the sample from the water bath, wear personal
protective equipment (laboratory jacket, safety glasses and heat-resistant gloves).

vii. Centrifuge the homogenate for 5 min at 14,000 � g (room temperature),
and transfer the supernatant to a clean 1.5 mL tube.

viii. Treat with 1 μL RNase A per 100 μL DNA solution and incubate at 37°C for
15 min.

Note: An RNAse treatment step is included to enzymatically digest RNA in the
material, minimizing the amount of RNA extracted with the DNA. Contaminating
RNA will result in the overestimation of DNA quantity.

ix. Add 6 mL of chloroform-octanol, and mix gently by inverting the tube
20–25 times to form an emulsion.

x. Spin at 14,000 � g for 15 min in a centrifuge (room temperature).

xi. Using a wide-bore pipette tip, transfer the top aqueous phase to a new
15 mL tube. A second chloroform-octanol extraction may be performed
if the aqueous phase is cloudy due to the presence of PVP (repeat steps
ix to xi).

xii. Add 3 mL of 5 M NaCl to the aqueous solution and mix well (invert gently
by hand).

xiii. Add two volumes of cold (�20°C) 95% (v/v) ethanol and refrigerate
(4–6°C) until DNA strands begin to appear.

Note: The solution should be left for at least 15 min but can stay refrigerated for
longer if necessary.

xiv. Spin at 10,000 � g for 3 min (room temperature).

xv. Increase the speed of the centrifuge to 14,000 � g. Spin samples for an
additional 3 min.

Note: Differential centrifugation steps aid in keeping the DNA at the bottom of
the tube.

xvi. Carefully pour off supernatant and wash pellet with 1 mL of chilled
(0–4°C) 70% (v/v) ethanol.

xvii. Remove ethanol by pipetting—do not disturb the DNA pellet. Air-dry the
remaining ethanol by leaving the tubes uncovered at room temperature for
10 min.

xviii. Solubilize the DNA pellet in 200–300 μL TE buffer.

xix. Quantify isolated DNA using the NanoDropTM 2000.
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Note: TE buffer should be used as the reference blank.

xx. Normalize DNA concentrations to 20 ng/μL using molecular grade water.

xxi. Store DNA samples at �20°C (short-term) or �80°C (long-term).

4.2 DNA shearing

i. Aliquot 1 μg of genomic DNA (equivalent to 50 μL of DNA with a
concentration of 20 ng/μL) into a Covaris MicroTUBE-50, and add 5 μL of
molecular biology water. The final volume in the microtube is 55 μL.

ii. Shear DNA to 200 bp fragments using the Covaris M220 Focused-
Ultrasonicator™, using the following specifications:

Duration, 90 s; peak power, 75 W; duty factor, 25%; cycles per burst, 1000

iii. Transfer 50 μL of the fragmented DNA to a clean, pre-labelled 200 μL PCR
tube.

Note: Label the top and the side of the PCR tubes.

4.3 Sheared DNA end repair

i. Prepare End Repair Master Mix containing 8 μL molecular grade water, 7
μL of 10� end repair buffer and 5 μL end repair enzyme.

Note: When preparing Master Mixes, prepare 10% extra to account for pipetting
errors, and allow enough reaction mix for all sample. For example, for 10 samples,
prepare enough Master Mix for those samples plus one extra (11 in total): combine
88 μL molecular grade water, 77 μL of 10� end repair buffer and 55 μL end repair
enzyme.

ii. Add 20 μL of End Repair Master Mix to each of the sheared samples.

iii. Incubate in a thermocycler at 20°C for 30 min.

Note: At this point remove AMPure XP beads from the refrigerator and allow the
bottle to reach room temperature before use. Immediately before pipetting,
resuspend the beads by vortexing vigorously. The AMPure purification system
selectively binds DNA fragments to paramagnetic beads, allowing the removal of
excess primers, nucleotides, salts and enzymes during a simple washing step. These
clean-up steps result in a more purified PCR product. For further information about
using AMPure XP for PCR purification, please refer to the manufacturer’s manual.

iv. Capture DNA by adding 120 μL of AMPure XP beads, pipette up and down to
achieve a homogenous mixture, and incubate at room temperature for 5 min.

v. Transfer the beads with captured DNA to a 1.5 mL tube.

vi. Place the tube on a magnetic rack for 2 min.

vii. Keep the tube on the magnetic rack and remove the supernatant using a
pipette. Do not disturb the beads.
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Note: The aim of this step is to remove the AMPure XP buffer. At this stage the
DNA is captured by the beads which are kept in the tube by the magnet. The buffer
can be discarded.

viii. Keep the tube on the magnetic rack and add 200 μL of 80% (v/v) ethanol.

Note: Due to the different evaporation rates of H20 and ethanol, it is important to
use freshly prepared ethanol.

ix. Incubate for 30 s on the magnetic rack and use a pipette to remove the
ethanol.

x. Repeat steps viii and ix.

Note: After the second ethanol wash, remove as much ethanol as possible using a
10 μL pipette. These wash steps are important to remove any remains of the End
Repair Master Mix. At this stage the DNA is captured by the AMPure beads which
are kept in the tube by the magnet.

xi. Remove residual ethanol by leaving the tube open on the magnetic rack for
5 min (air-dry).

Note: Do not over dry the beads as it will lower DNA yields. Appearance of
cracks on the bead pellet is indicative of over drying.

xii. Remove the tube from the magnetic rack, add 42 μL of molecular grade
water, and pipette up and until beads are fully resuspended.

xiii. Leave the tube at room temperature for 5 min to allow the DNA to be
released from the AMPure beads.

xiv. Place the tube in the magnetic rack and leave at room temperature for
2 min.

xv. Transfer 40 μL of the supernatant to a clean 200 μL PCR tube.

Note: At this stage the DNA is resuspended in the water. Beads can be safely
discarded. Do not attempt to pipette the entire volume in the tube (42 μL) as some
of the AMPure beads may be transferred which could affect later reactions. If beads
are disturbed during pipetting, simply put the whole volume back in the tube and
proceed from step xiv.

4.4 Fragmented DNA A-tailing

i. Prepare the A-tailing Master Mix containing 2 μL molecular grade water,
5 μL of 10� A-tailing buffer and 3 μL A-tailing enzyme.

Note: When preparing Master Mixes, prepare 10% extra to account for pipetting
errors and allow enough reaction mix for all samples.

ii. Add 10 μL of A-tailing Master Mix to each of the samples (200 μL PCR
tube).

iii. Incubate in a thermocycler at 30°C for 30 min.
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iv. Capture DNA by adding 90 μL of AMPure XP beads, pipette up and
down to achieve a homogenous mix, and leave at room temperature for
5 min.

v. Transfer the beads with the capture DNA to a clean 1.5 mL tube.

vi. Place the tube on a magnetic rack for 2 min.

vii. Keep the tube on the magnetic rack and remove the supernatant without
disturbing the beads using a pipette.

Note: The aim of this step is to remove the AMPure XP buffer. At this stage the
DNA is captured by the beads which are kept in the tube by the magnet. The buffer
can be safely discarded.

viii. Keep the tube on the magnetic rack and add 200 μL of 80% (v/v) ethanol.

ix. Incubate for 30 s on the magnetic rack and use a pipette to remove the
ethanol.

x. Repeat steps viii and ix.

xi. Evaporate ethanol by leaving the tube open on the magnetic rack for 5 min.

xii. Remove the tube from the magnetic rack and resuspend the beads by
adding 32 μL of molecular grade water and pipette up and down.

xiii. Leave the tube at room temperature for 5 min to allow the DNA to be
released from the AMPure beads.

xiv. Place the tube in the magnetic rack and leave at room temperature for 2
min.

xv. Transfer 30 μL of the supernatant to a clean 200 μL PCR tube. Do not
transfer beads.

4.5 Ligation of sequencing adapters

i. Prepare the Ligation Master Mix containing 5 μL of 10� Ligation Buffer, 2.5
μL T4 DNA Ligase and 7.5 μL molecular grade water.

ii. Add 5 μL of TruSeq Adapter to each of the samples in a 200 μL PCR tube.

Note: Add 5 μL of adapters (10 μM) for every 1 μg of starting DNA. If you are
planning to multiplex more than one sample in each sequencing lane, use adapters
with different index sequences.

iii. Add 15 μL of Ligation Master Mix to each of the samples in the 200 μL PCR
tube and mix by pipetting up and down.

iv. Incubate in a thermocycler at 20°C for 15 min.

v. Capture DNA by adding 90 μL of AMPure XP beads, pipette up and down
to achieve a homogenous mix. Leave at room temperature for 5 min.
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Note: The aim of this step is to remove the AMPure XP buffer. At this stage the
DNA is captured by the beads which are kept in the tube by the magnet. The buffer
can be discarded.

viii. Keep the tube on the magnetic rack and add 200 μL of 80% (v/v) ethanol.

Note: Due to the different evaporation rates of H20 and ethanol, it is important to
use freshly prepared ethanol.

ix. Incubate for 30 s on the magnetic rack and use a pipette to remove the
ethanol.

x. Repeat steps viii and ix.

Note: After the second ethanol wash, remove as much ethanol as possible using a
10 μL pipette. These wash steps are important to remove any remains of the End
Repair Master Mix. At this stage the DNA is captured by the AMPure beads which
are kept in the tube by the magnet.

xi. Remove residual ethanol by leaving the tube open on the magnetic rack for
5 min (air-dry).

Note: Do not over dry the beads as it will lower DNA yields. Appearance of
cracks on the bead pellet is indicative of over drying.

xii. Remove the tube from the magnetic rack, add 42 μL of molecular grade
water, and pipette up and until beads are fully resuspended.

xiii. Leave the tube at room temperature for 5 min to allow the DNA to be
released from the AMPure beads.

xiv. Place the tube in the magnetic rack and leave at room temperature for
2 min.

xv. Transfer 40 μL of the supernatant to a clean 200 μL PCR tube.

Note: At this stage the DNA is resuspended in the water. Beads can be safely
discarded. Do not attempt to pipette the entire volume in the tube (42 μL) as some
of the AMPure beads may be transferred which could affect later reactions. If beads
are disturbed during pipetting, simply put the whole volume back in the tube and
proceed from step xiv.

4.4 Fragmented DNA A-tailing

i. Prepare the A-tailing Master Mix containing 2 μL molecular grade water,
5 μL of 10� A-tailing buffer and 3 μL A-tailing enzyme.

Note: When preparing Master Mixes, prepare 10% extra to account for pipetting
errors and allow enough reaction mix for all samples.

ii. Add 10 μL of A-tailing Master Mix to each of the samples (200 μL PCR
tube).

iii. Incubate in a thermocycler at 30°C for 30 min.
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iv. Capture DNA by adding 90 μL of AMPure XP beads, pipette up and
down to achieve a homogenous mix, and leave at room temperature for
5 min.

v. Transfer the beads with the capture DNA to a clean 1.5 mL tube.

vi. Place the tube on a magnetic rack for 2 min.

vii. Keep the tube on the magnetic rack and remove the supernatant without
disturbing the beads using a pipette.

Note: The aim of this step is to remove the AMPure XP buffer. At this stage the
DNA is captured by the beads which are kept in the tube by the magnet. The buffer
can be safely discarded.

viii. Keep the tube on the magnetic rack and add 200 μL of 80% (v/v) ethanol.

ix. Incubate for 30 s on the magnetic rack and use a pipette to remove the
ethanol.

x. Repeat steps viii and ix.

xi. Evaporate ethanol by leaving the tube open on the magnetic rack for 5 min.

xii. Remove the tube from the magnetic rack and resuspend the beads by
adding 32 μL of molecular grade water and pipette up and down.

xiii. Leave the tube at room temperature for 5 min to allow the DNA to be
released from the AMPure beads.

xiv. Place the tube in the magnetic rack and leave at room temperature for 2
min.

xv. Transfer 30 μL of the supernatant to a clean 200 μL PCR tube. Do not
transfer beads.

4.5 Ligation of sequencing adapters

i. Prepare the Ligation Master Mix containing 5 μL of 10� Ligation Buffer, 2.5
μL T4 DNA Ligase and 7.5 μL molecular grade water.

ii. Add 5 μL of TruSeq Adapter to each of the samples in a 200 μL PCR tube.

Note: Add 5 μL of adapters (10 μM) for every 1 μg of starting DNA. If you are
planning to multiplex more than one sample in each sequencing lane, use adapters
with different index sequences.

iii. Add 15 μL of Ligation Master Mix to each of the samples in the 200 μL PCR
tube and mix by pipetting up and down.

iv. Incubate in a thermocycler at 20°C for 15 min.

v. Capture DNA by adding 90 μL of AMPure XP beads, pipette up and down
to achieve a homogenous mix. Leave at room temperature for 5 min.

151

Library Preparation for Whole Genome Bisulfite Sequencing of Plant Genomes
DOI: http://dx.doi.org/10.5772/intechopen.90716



vi. Transfer the beads with the captured DNA to a clean 1.5 mL tube.

vii. Place the tube on a magnetic rack for 2 min.

viii. Keep the tube on the magnetic rack, and remove the supernatant without
disturbing the beads using a pipette.

Note: The aim of this step is to remove the AMPure XP buffer. At this stage the
DNA is captured by the beads which are kept in the tube by the magnet. The buffer
can be safely discarded.

ix. Keep the tube on the magnetic rack and add 200 μL of 80% (v/v) ethanol.

x. Incubate for 30 s on themagnetic rack and use a pipette to remove the ethanol.

xi. Repeat steps ix and x.

xii. Evaporate ethanol by leaving the tube open on the magnetic rack for 5 min.

xiii. Remove the tube from the magnetic rack, add 105 μL of molecular grade
water, and pipette up and down until beads are resuspended.

xiv. Leave the tube at room temperature for 5 min to allow the DNA to be
released from the AMPure beads.

xv. Place the tube in the magnetic rack and leave at room temperature for 2 min.

xvi. Transfer 100 μL of the supernatant to a clean 1.5 mL tube. Do not transfer
beads.

4.6 Sequencing library fragment size selection

i. Add60μLofAMPurebeads to captureDNAfragments>450bp,pipetteup and
down to achieve a homogenousmix, and leave at room temperature for 5min.

Note: Beads preferentially capture larger fragments of DNA. The size range that
the beads capture is determined by the volume to volume ratio of AMPure XP
buffer and DNA aqueous solution. In this case a ratio of 0.6 (60 μL AMPure XP
buffer/100 μL DNA) will capture fragments above 450 bp.

ii. Place the tube on a magnetic rack for 2 min.

iii. With the tube on the magnetic rack, transfer 155 μL of supernatant to a new
tube without disturbing the beads.

Note: Do not discard the supernatant in this case. The supernatant contains the
fragment size range required for sequencing, while larger, unwanted fragments are
still captured by the beads. At this stage the beads and the tube containing them can
be discarded.

iv. Add 20 μL of beads to the 155 μL of supernatant collected in step iii, pipette
up and down to achieve a homogenous mix, and leave at room temperature
for 5 min.

v. Place the tube on a magnetic rack for 2 min.
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vi. Keep the tube on the magnetic rack, and remove the supernatant without
disturbing the beads using a pipette.

Note: In this case a ratio of 0.88 (82 μL AMPure XP buffer/93 μL DNA) will
capture fragments above 100 bp. The supernatant, containing unligated TruSeq
adapters or DNA fragments below that size can be safely discarded.

vii. Keep the tube on the magnetic rack and add 200 μL of 80% (v/v) ethanol.

viii. Incubate for 30 s on the magnetic rack and use a pipette to remove the
ethanol.

ix. Repeat steps vii and viii.

x. Evaporate ethanol by leaving the tube open on the magnetic rack for 5 min.

xi. Remove the tube from the magnetic rack and resuspend the beads by
adding 22 μL of molecular grade water and pipette up and down until beads
are fully resuspended.

xii. Leave the tube at room temperature for 5 min to allow the DNA to be
released from the AMPure beads.

xiii. Place the tube in the magnetic rack and leave at room temperature for
2 min.

xiv. Transfer 20 μL of the supernatant to a clean 200 μL PCR tube. Make sure
not to transfer the beads.

Storage: At this stage the size-selected samples can be stored until required for
bisulfite treatment. For short-term storage keep at�20°C, for long-term store at�80°C.

4.7 Bisulfite conversion of size-selected library

DNA samples are bisulfite converted using the EZ DNA Methylation-Lightning
Kit (Zymo Research).

i. Thaw samples completely (if stored in the freezer prior to bisulfite
treatment), and centrifuge to bring droplets to the bottom.

ii. Add 130 μL of Lightning Conversion Reagent to the tube containing the 20
μL size-selected library.

Note: Mix and then centrifuge briefly to ensure there are no droplets in the cap or
sides of the tube.

iii. Place the PCR tube in a thermal cycler and incubate using the following
programme:

a. 98°C for 8 min3

3 High temperature is used to achieve complete denaturation of the double stranded DNA molecule and

to favor the forward reaction during the reversible sulphonation step.
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tube without disturbing the beads.

Note: Do not discard the supernatant in this case. The supernatant contains the
fragment size range required for sequencing, while larger, unwanted fragments are
still captured by the beads. At this stage the beads and the tube containing them can
be discarded.

iv. Add 20 μL of beads to the 155 μL of supernatant collected in step iii, pipette
up and down to achieve a homogenous mix, and leave at room temperature
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vi. Keep the tube on the magnetic rack, and remove the supernatant without
disturbing the beads using a pipette.

Note: In this case a ratio of 0.88 (82 μL AMPure XP buffer/93 μL DNA) will
capture fragments above 100 bp. The supernatant, containing unligated TruSeq
adapters or DNA fragments below that size can be safely discarded.

vii. Keep the tube on the magnetic rack and add 200 μL of 80% (v/v) ethanol.

viii. Incubate for 30 s on the magnetic rack and use a pipette to remove the
ethanol.

ix. Repeat steps vii and viii.

x. Evaporate ethanol by leaving the tube open on the magnetic rack for 5 min.

xi. Remove the tube from the magnetic rack and resuspend the beads by
adding 22 μL of molecular grade water and pipette up and down until beads
are fully resuspended.

xii. Leave the tube at room temperature for 5 min to allow the DNA to be
released from the AMPure beads.

xiii. Place the tube in the magnetic rack and leave at room temperature for
2 min.

xiv. Transfer 20 μL of the supernatant to a clean 200 μL PCR tube. Make sure
not to transfer the beads.

Storage: At this stage the size-selected samples can be stored until required for
bisulfite treatment. For short-term storage keep at�20°C, for long-term store at�80°C.

4.7 Bisulfite conversion of size-selected library

DNA samples are bisulfite converted using the EZ DNA Methylation-Lightning
Kit (Zymo Research).

i. Thaw samples completely (if stored in the freezer prior to bisulfite
treatment), and centrifuge to bring droplets to the bottom.

ii. Add 130 μL of Lightning Conversion Reagent to the tube containing the 20
μL size-selected library.

Note: Mix and then centrifuge briefly to ensure there are no droplets in the cap or
sides of the tube.

iii. Place the PCR tube in a thermal cycler and incubate using the following
programme:

a. 98°C for 8 min3

3 High temperature is used to achieve complete denaturation of the double stranded DNA molecule and

to favor the forward reaction during the reversible sulphonation step.
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b. 54°C for 60 min4

c. 4°C storage for up to 20 h5

iv. Add 600 μL of M-Binding Buffer to a Zymo-SpinTM IC Column, and place
the column into the collection tube (provided by supplier).

Note: Do not touch the bottom of the column with a pipette tip; this may damage
the filtering matrix.

v. Load the sample (from step iii) into the Zymo-SpinTM IC Column
containing the M-Binding Buffer. Close the cap and mix by inverting the
column 10 times.

Note: Do not touch the bottom of the column with a pipette tip; this may damage
the filtering matrix.

vi. Centrifuge at full speed (>10,000 � g) for 30 s. Discard the flow-through.

Note: At this stage the DNA is captured in the column matrix and the flow-
through liquid can be safely discarded.

vii. Add 100 μL of M-Wash Buffer6 to the column. Centrifuge at full speed
(>10,000 � g) for 30 s in benchtop centrifuge. Discard the flow-through.

Note: This is a wash step. At this stage, the DNA is still captured in the column
matrix and the flow-through can be safely discarded.

viii. Add 200 μL of L-desulphonation buffer to the column, and leave at room
temperature (20–30°C) for 15–20 min.

Note: This is an alkali desulphonation step that chemically removes the SO32

group added to unmethylated cytosines during the sulphonation step (Figure 1). At
the end of this stage, cytosines that were originally unmethylated will be converted
to uracils.

ix. After the incubation period, centrifuge at full speed for 30 s. Discard the
flow-through.

Note: The aim of this centrifugation step is to remove the L-desulphonation
buffer. At this stage the DNA is still captured in the column matrix.

x. Add 200 μL of M-Wash Buffer to the column. Centrifuge at full speed for
30 s. Discard the flow-through.

4 This step consists of two consecutive chemical reactions. First, a sulphonation step selectively adds a

SO3
� group to unmethylated cytosines leaving methylated cytosines unchanged. Then, a spontaneous

hydrolytic deamination exchanges de amino group (NH2) for an oxygen atom in the sulfonated cytosines
during the sulphonation step (Figure 1).
5 The 4°C storage step is optional. Ideally continue with the rest of the protocol right after the

incubation. Longer storage at 4°C could result in DNA degradation.
6 Ensure that molecular grade 100% ethanol is added to the M-DNA Wash Buffer as recommended by

the manufacturer. For example, add 24 mL of ethanol to the 6 mL M-Wash Buffer concentrate (D5030)

or 96 mL to the 24 mL M-Wash Buffer concentrate (D5031). M-DNA Wash Buffer included with

D5030S and D5030T kits is supplied ready-to-use and does not require the addition of ethanol.
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xi. Add 200 μL of M-Wash Buffer to the column. Centrifuge at full speed for
30 s. Discard the flow-through and collection tube. Keep the column
matrix.

Note: These are wash steps. At this stage the DNA is still captured in the column
matrix, and the flow-through can be safely discarded.

xii. Place the column into a 1.5 mL microcentrifuge tube, and add 12 μL of
M-Elution Buffer directly to the column matrix. Centrifuge for 30 s at
full speed to elute the DNA.

Storage: Ideally use bisulfite-treated DNA immediately after treatment. After
bisulfite conversion of non-methylated cytosines into uracils, genomic DNA does
not maintain its original base pairing. This typically leads to single-stranded A-, U-,
and T-rich DNA that is more susceptible to degradation. Long-term storage of
bisulfite-converted DNA will lead to loss of sample concentration. If long-term
storage is required, place in an ultralow freezer (�80°C).

4.8 PCR amplification of bisulfite-converted library

i. Prepare the PCR Master Mix: 25 μL Q5® High-Fidelity 2� Master Mix, 2.5
μL Forward and Reverse Library Amplification Primer Mix at 10 μM and
12.5 μL molecular grade water.

Note: When preparing Master Mixes, prepare 10% extra to account for pipetting
errors and allow enough reaction mix for all samples.

ii. Thaw samples completely (if stored prior to bisulfite treatment) and
centrifuge to bring droplets to the bottom.

iii. Transfer 10 μL of the bisulfite-treated library to a new 200 μL PCR tube.

iv. Add 40 μL of PCR Master Mix to each tube.

v. Place the PCR tube/tubes in a thermal cycler and incubate using the
following program:

98°C for 30 s
98°C for 30 s
60°C for 30 s
Go to step 2: 7–12 times7

72°C for 4 min
72°C for 10 min
4°C hold8

vi. Centrifuge the PCR tube for a few seconds to ensure there are no droplets
in the cap or sides of the tube due to condensation generated during PCR
amplification.

7 Maintain the number of cycles as low as possible to minimize DNA polymerase base substitution

errors.
8 After PCR amplification, bisulfite-treated DNA recovers its base pairing. This stabilizes the DNA

molecule making long-term storage possible.
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the column into the collection tube (provided by supplier).

Note: Do not touch the bottom of the column with a pipette tip; this may damage
the filtering matrix.
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(>10,000 � g) for 30 s in benchtop centrifuge. Discard the flow-through.

Note: This is a wash step. At this stage, the DNA is still captured in the column
matrix and the flow-through can be safely discarded.

viii. Add 200 μL of L-desulphonation buffer to the column, and leave at room
temperature (20–30°C) for 15–20 min.

Note: This is an alkali desulphonation step that chemically removes the SO32

group added to unmethylated cytosines during the sulphonation step (Figure 1). At
the end of this stage, cytosines that were originally unmethylated will be converted
to uracils.

ix. After the incubation period, centrifuge at full speed for 30 s. Discard the
flow-through.

Note: The aim of this centrifugation step is to remove the L-desulphonation
buffer. At this stage the DNA is still captured in the column matrix.

x. Add 200 μL of M-Wash Buffer to the column. Centrifuge at full speed for
30 s. Discard the flow-through.

4 This step consists of two consecutive chemical reactions. First, a sulphonation step selectively adds a

SO3
� group to unmethylated cytosines leaving methylated cytosines unchanged. Then, a spontaneous

hydrolytic deamination exchanges de amino group (NH2) for an oxygen atom in the sulfonated cytosines
during the sulphonation step (Figure 1).
5 The 4°C storage step is optional. Ideally continue with the rest of the protocol right after the

incubation. Longer storage at 4°C could result in DNA degradation.
6 Ensure that molecular grade 100% ethanol is added to the M-DNA Wash Buffer as recommended by

the manufacturer. For example, add 24 mL of ethanol to the 6 mL M-Wash Buffer concentrate (D5030)

or 96 mL to the 24 mL M-Wash Buffer concentrate (D5031). M-DNA Wash Buffer included with

D5030S and D5030T kits is supplied ready-to-use and does not require the addition of ethanol.
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xi. Add 200 μL of M-Wash Buffer to the column. Centrifuge at full speed for
30 s. Discard the flow-through and collection tube. Keep the column
matrix.

Note: These are wash steps. At this stage the DNA is still captured in the column
matrix, and the flow-through can be safely discarded.

xii. Place the column into a 1.5 mL microcentrifuge tube, and add 12 μL of
M-Elution Buffer directly to the column matrix. Centrifuge for 30 s at
full speed to elute the DNA.

Storage: Ideally use bisulfite-treated DNA immediately after treatment. After
bisulfite conversion of non-methylated cytosines into uracils, genomic DNA does
not maintain its original base pairing. This typically leads to single-stranded A-, U-,
and T-rich DNA that is more susceptible to degradation. Long-term storage of
bisulfite-converted DNA will lead to loss of sample concentration. If long-term
storage is required, place in an ultralow freezer (�80°C).

4.8 PCR amplification of bisulfite-converted library

i. Prepare the PCR Master Mix: 25 μL Q5® High-Fidelity 2� Master Mix, 2.5
μL Forward and Reverse Library Amplification Primer Mix at 10 μM and
12.5 μL molecular grade water.

Note: When preparing Master Mixes, prepare 10% extra to account for pipetting
errors and allow enough reaction mix for all samples.

ii. Thaw samples completely (if stored prior to bisulfite treatment) and
centrifuge to bring droplets to the bottom.

iii. Transfer 10 μL of the bisulfite-treated library to a new 200 μL PCR tube.

iv. Add 40 μL of PCR Master Mix to each tube.

v. Place the PCR tube/tubes in a thermal cycler and incubate using the
following program:

98°C for 30 s
98°C for 30 s
60°C for 30 s
Go to step 2: 7–12 times7

72°C for 4 min
72°C for 10 min
4°C hold8

vi. Centrifuge the PCR tube for a few seconds to ensure there are no droplets
in the cap or sides of the tube due to condensation generated during PCR
amplification.

7 Maintain the number of cycles as low as possible to minimize DNA polymerase base substitution

errors.
8 After PCR amplification, bisulfite-treated DNA recovers its base pairing. This stabilizes the DNA

molecule making long-term storage possible.
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vii. Add 45μL of beads to the PCR product, pipette up and down to achieve a
homogenous mix, and leave at room temperature for 5 min.

viii. Place the tube on a magnetic rack for 2 min.

ix. Keep the tube on the magnetic rack, and remove the supernatant without
disturbing the beads using a pipette.

Note: In this case a ratio of 0.9 (45 μL AMPure XP buffer/50 μL PCR product)
will capture fragments above 100 bp. The supernatant containing unused PCR
primers or DNA fragments below that size can be safely discarded.

x. Keep the tube on the magnetic rack and add 200 μL of 80% (v/v) ethanol.

xi. Incubate for 30 s on the magnetic rack and use a pipette to remove the
ethanol.

xii. Repeat steps ix and x.

xiii. Air-dry any ethanol by leaving the tube open on the magnetic rack for
5 min.

xiv. Remove the tube from the magnetic rack and resuspend the beads by
adding 22 μL of molecular grade water and pipette up and down until beads
are fully resuspended.

xv. Leave the tube at room temperature for 5 min to allow the DNA to be
released from the AMPure beads.

xvi. Place the tube in the magnetic rack and leave at room temperature for
2 min.

xvii. Transfer 20 μL of the supernatant to a clean 500 μL tube. Make sure not
to transfer the beads.

xviii. Check sequencing library concentration using Qubit and fragment size
distribution using the Agilent Fragment Analyzer, Agilent Bioanalyzer
(Agilent Technologies) or the Bio-Rad Experion (Bio-Rad).

Note: A good WGBS library should show a fragment distribution between 150
and 500 bp (Figure 3 Box B). Smaller peaks in the electropherogram would be
indicative of sequencing adapters or PCR primers (Figure 3 Box A). The presence
or primers will reduce the quality and yield of the sequencing run. If present, they
can be removed by repeating the AMPure XP bead clean-up described in steps vii to
xvii of the PCR amplification of bisulfite-converted library protocol. Make sure that
molecular grade water is added to the library to adjust to a final volume of 50 μL
before adding the 45 μL of AMPure beads. Once the library passes the QC, it can be
stored until sequenced. For short-term storage, keep at �20°C, for longer-term
keep at �80°C.

xix. Sequence the final library using the HiSeq Illumina platform.

xx. Analyse sequencing results.
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5. Data analysis and results

i. Perform FastQC Analysis to remove low-quality sequences.

ii. Use Trim Galore! (http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore) to trim sequencing adapters and to remove low-quality
sequence.

iii. Perform FastQC Analysis to remove low-quality trimmed sequences.

iv. Map trimmed reads using Bismark aligner.

v. Remove PCR duplicates with Bismark Deduplicate function.

vi. Obtain methylation calls and methylation percentages per each CpG site
using the Bismark Methylation Extractor function.

6. Conclusion

By following the protocol described herein, you have have a single-base resolu-
tion methylome for your sample. The quality of this methylome will depend on two
main factors: (a) the sequencing depth of the produced methylome and (b) the
number of replicates included in your experiment. With this data, you can infer
methylation density at different genomic levels (i.e. along chromosomes; in differ-
ent genomic features like genes, transposable elements, etc.) and within specific
genomic features like promoters and gene bodies. If you are trying to identify
changes in DNA methylation associated to a specific variable (e.g. growing envi-
ronment, stress, tissue/cell type, age, disease, etc.), then you can identify

Figure 3.
Example electropherogram of successful WGBS library. Gel image on the left of the figure includes the gel images
for (A1) the internal ladder and (B1) the WGBS library. The electropherogram on the right shows the lower
and upper fragments of the internal ladder and the fragment size distribution for the WGBS (highlighted in
blue in box B). The presence of peaks below 100 bp in the electropherogram is indicative of sequencing adapters
or PCR primers. The presence of DNA fragments over 500 bp (Box C) indicates large fragments of DNA that
could reduce the quality and output of the sequencing run. Both types of fragments should be removed using
AMP XP beads size selection.
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will capture fragments above 100 bp. The supernatant containing unused PCR
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xi. Incubate for 30 s on the magnetic rack and use a pipette to remove the
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xii. Repeat steps ix and x.

xiii. Air-dry any ethanol by leaving the tube open on the magnetic rack for
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xiv. Remove the tube from the magnetic rack and resuspend the beads by
adding 22 μL of molecular grade water and pipette up and down until beads
are fully resuspended.

xv. Leave the tube at room temperature for 5 min to allow the DNA to be
released from the AMPure beads.

xvi. Place the tube in the magnetic rack and leave at room temperature for
2 min.

xvii. Transfer 20 μL of the supernatant to a clean 500 μL tube. Make sure not
to transfer the beads.

xviii. Check sequencing library concentration using Qubit and fragment size
distribution using the Agilent Fragment Analyzer, Agilent Bioanalyzer
(Agilent Technologies) or the Bio-Rad Experion (Bio-Rad).

Note: A good WGBS library should show a fragment distribution between 150
and 500 bp (Figure 3 Box B). Smaller peaks in the electropherogram would be
indicative of sequencing adapters or PCR primers (Figure 3 Box A). The presence
or primers will reduce the quality and yield of the sequencing run. If present, they
can be removed by repeating the AMPure XP bead clean-up described in steps vii to
xvii of the PCR amplification of bisulfite-converted library protocol. Make sure that
molecular grade water is added to the library to adjust to a final volume of 50 μL
before adding the 45 μL of AMPure beads. Once the library passes the QC, it can be
stored until sequenced. For short-term storage, keep at �20°C, for longer-term
keep at �80°C.

xix. Sequence the final library using the HiSeq Illumina platform.

xx. Analyse sequencing results.
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5. Data analysis and results

i. Perform FastQC Analysis to remove low-quality sequences.
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iii. Perform FastQC Analysis to remove low-quality trimmed sequences.

iv. Map trimmed reads using Bismark aligner.

v. Remove PCR duplicates with Bismark Deduplicate function.
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using the Bismark Methylation Extractor function.
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By following the protocol described herein, you have have a single-base resolu-
tion methylome for your sample. The quality of this methylome will depend on two
main factors: (a) the sequencing depth of the produced methylome and (b) the
number of replicates included in your experiment. With this data, you can infer
methylation density at different genomic levels (i.e. along chromosomes; in differ-
ent genomic features like genes, transposable elements, etc.) and within specific
genomic features like promoters and gene bodies. If you are trying to identify
changes in DNA methylation associated to a specific variable (e.g. growing envi-
ronment, stress, tissue/cell type, age, disease, etc.), then you can identify
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for (A1) the internal ladder and (B1) the WGBS library. The electropherogram on the right shows the lower
and upper fragments of the internal ladder and the fragment size distribution for the WGBS (highlighted in
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could reduce the quality and output of the sequencing run. Both types of fragments should be removed using
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differentially methylated cytosines (DMCs) or differentially methylated regions
(DMRs) between groups of samples (i.e. control vs treatment). Methods such as
Fisher’s exact test can be used in the absence of replicates [34]. However, this
approach does not consider the possibility of biological variability which is of great
importance on a plastic trait such as DNA methylation. Linear or logistic regression-
based methods are better suited to capture biological variability since they can
compare methylation levels between groups of samples. One example of linear
regression method is BSmooth [35] which assumes that data follows a binomial
distribution and uses linear regression and t-tests to identify methylation differ-
ences for each site. One issue with linear regression is overfitting of DNA methyla-
tion levels beyond the 0 to 1 range that methylation proportion/fraction values
regenerate. Logistic regression methods, implemented by software such as
methylKit can deal better with data restricted to a 0 to 1 range by correcting to data
dispersion.
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differentially methylated cytosines (DMCs) or differentially methylated regions
(DMRs) between groups of samples (i.e. control vs treatment). Methods such as
Fisher’s exact test can be used in the absence of replicates [34]. However, this
approach does not consider the possibility of biological variability which is of great
importance on a plastic trait such as DNA methylation. Linear or logistic regression-
based methods are better suited to capture biological variability since they can
compare methylation levels between groups of samples. One example of linear
regression method is BSmooth [35] which assumes that data follows a binomial
distribution and uses linear regression and t-tests to identify methylation differ-
ences for each site. One issue with linear regression is overfitting of DNA methyla-
tion levels beyond the 0 to 1 range that methylation proportion/fraction values
regenerate. Logistic regression methods, implemented by software such as
methylKit can deal better with data restricted to a 0 to 1 range by correcting to data
dispersion.
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