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Preface 
 

This book explains the basic science of steroids and is targeted towards professionals 
engaged in health services.  

It should be noted that medical science evolves rapidly and some information like the 
understanding of steroids and their therapeutic use may change with new concepts 
quickly. 

Steroids are either naturally occurring or synthetic fat-soluble organic compounds. 
They are found in plants, animals, and fungi. They mediate a very diverse set of 
biological responses. The most widespread steroid in the body is cholesterol, an 
essential component of cell membranes, and the starting point for the synthesis of 
other steroids.  

Since the science of steroids has an enormous scope, we decided to put the clinical 
aspects of steroids in a different book titled “Steroids: Clinical Aspects”. The two 
books complete each other.  

We hope that the reader will gain valuable information from both books and enrich 
their knowledge about this fascinating topic.  

 
Hassan Abduljabbar 

Professor of Obstetrics and Gynecology, 
King Abdulaziz University,  

Kingdom of Saudi Arabia 
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Hormonal and Neural Mechanisms 
 Regulating Hormone Steroids Secretion 

Roberto Domínguez1, Angélica Flores1 and Sara E. Cruz-Morales2 
1Facultad de Estudios Superiores Zaragoza, 

2Facultad de Estudios Superiores Iztacala 
Universidad Nacional Autónoma de México 

México 

1. Introduction 
Hormonal and neural signals participate in regulating the synthesis and release of steroid 
hormones from the adrenals, ovaries and testicles. Hormonal signals arise from the 
hypothalamus, pituitary, thyroid, thymus, adipose tissue, as well as from the adrenals, 
ovaries and testicles. Neural signals originating in the hypothalamus and other regions of 
the central and peripheral nervous system modulate the responses to the hormonal signals 
sent to the adrenals, ovaries and testicles.  
In female, the involvement of the adrenal and ovarian innervations in regulating the 
synthesis and release of steroid hormones have shown that right and left organs have 
different abilities to carry out these functions (Gerendai et al., 2000; Domínguez et al., 2003). 
The asymmetric capacity to release steroid hormones is related to differences in the origin 
and type of innervations received by right and left organs (Tóth et al., 2007; Gerendai et al., 
2009). In addition, the way neuroendocrine signals participate in regulating steroid 
hormones secretion is different for each hormone, and the release of ovarian hormones is 
regulated according to the day of the estrus cycle. 
Scientific reviews on the biochemical steps that take place during the capture and processing 
of cholesterol and synthesis of steroid hormones, as well as in the regulation of the enzymes 
activities have been published in the last decade (Auchus & Miller, 2000; Straus & Hsue, 
2000; Stocco, 2008; Boon et al., 2010; Chung et al., 2011). In such regard, the present chapter 
presents only a summary of those aspects we think are relevant to analyze the 
neuroendocrine regulation of steroid hormones secretion.  

2. Steroid hormones 
Steroid hormones are classified according to the number of carbon (C) atoms in the molecule 
deriving from the pregnane (C-21), androstane (C-19) or estrane (C-18) nucleus. C-21 
hormones include progesterone, cortisol, corticosterone and aldosterone; C-19 testosterone, 
androstenedione (A4) and dihydrotestosterone; and C-18 estradiol, estrone and estriol. 
Based on its functional actions, steroid hormones are classified into five principal classes: 
estrogens (estradiol, estrone, estriol), progestins (progesterone), androgens (testosterone, A4, 
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dihydrotestosterone), glucocorticoid (cortisol, corticosterone), and mineralocorticoids 
(aldosterone, deoxicorticosterone). 
All steroid hormones derive from cholesterol in a process that includes:  
- de novo synthesis of cholesterol from acetate, the cholesterol release from cholesterol esters 

stored in lipid cytoplasmic droplets, and the capture and processing of blood cholesterol   
- the transport of cholesterol to the mitochondria;  
- the conversion of cholesterol to pregnenolone;  
- the transport of pregnenolone to the smooth endoplasmic reticulum;  
- modifications of the pregnenolone molecule and the synthesis of active hormones;  
- the transport of active hormones to the cell membrane and the release of hormones to 

the blood stream;  
- the biosynthesis of new hormones in the peripheral tissues through enzymes acting on 

steroid hormones as precursors;  
- the activation or inactivation of steroid hormones by organs or tissues; the catabolism 

and elimination of catabolites by urine, bilis or feces;  
- the esterification of the steroid hormone molecules and its elimination through the 

urine, bilis or feces. 

3. Capture and processing of cholesterol 
Cells synthesizing steroid hormones (steroidogenic cells) use several pathways that ensure 
the constant supply of cholesterol for steroid hormone synthesis, including:  
1. De novo synthesis from acetate in the endoplasmic reticulum;  
2. The mobilization of cholesterol esters stored in lipid droplets through cholesterol-ester 

hydrolase;  
3. The uptake of blood lipoproteins carrying cholesterol (low-density (LDL) and high-

density lipoproteins (HDL). 
The incorporation of lipoproteins into the cells is mediated by a receptor-endocytic 
mechanism that delivers the lipoproteins to the lysosomes where apolipoproteins are 
degraded. High density lipoproteins (HDL) are incorporated by the scavenger receptor class 
B, type I (SR-BI)-mediated selective uptake. Depending on the cell, the synthesis of 
lipoprotein receptors is stimulated by the adreno-corticotropin-hormone (ACTH) and 
luteinizing hormone (LH). The source of cholesterol for steroidogenesis varies according to 
the animal studied (Azhar et al., 2003; Hu et al., 2011). SR-BI synthesis in adrenal cells is 
stimulated by ACTH and inhibited by glucocorticoids (Mavridou et al., 2010). 
The membrane-bound transcription factor sterol regulatory element binding protein 
(SREBP) is the main regulator for cholesterol synthesis and cellular uptake. In mammalian 
cells, protein Insig, an endoplasmic- reticulum membrane protein, controls the activity of 
SREBP and the sterol-dependent degradation of the biosynthetic enzyme HMG-CoA 
reductase (Espenshade & Hughes 2007).  
The cholesterol side chain cleavage reaction is the first step, and also the rate-limiting 
process in steroid hormone synthesis. The reaction takes place on the inner mitochondrial 
membranes and is catalyzed by the cholesterol-side-chain cleavage enzyme, cytochrome P-
450scc; Cyp11a1 (Straus & Hsue, 2000). The translocator protein (TSPO) and the 
steroidogenic acute regulatory (StAR) protein mediate this transfer. TSPO is a high-affinity 
cholesterol-binding mitochondrial protein and StAR is a hormone-induced mitochondria 
protein that initiates the transfer of cholesterol into the mitochondria (Hu et al., 2010). In 
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vitro studies show that treating Leydig cells with testosterone decreases the expression of 
SR-BI, TSPO, StAR and cytochrome P-450scc (Kostic et al., 2011). In the adrenals, ACTH 
induces StAR synthesis by stimulating the synthesis of cyclic adenosin mono phosphate 
(cAMP), while the early steps in steroidogenic synthesis are mediated by post-
transcriptional and post-translational changes in the StAR protein (Spiga et al., 2011). In the 
gonads, gonadotropic hormones transcriptionally control StAR gene expression via a cAMP 
second messenger (Sugawara et al., 1997). A characteristic feature of steroidogenic cells is 
the presence of numerous cytoplasmic lipid droplets containing cholesterol esters. 
Cholesterol esters in these droplets are synthesized by acyl coenzymeA-cholesterol 
acyltransferase, an endoplasmic reticulum-enzyme. The esters synthesized by cholesterol 
acyltransferase accumulate within the endoplasmic reticulum membranes and bud off as 
lipid droplets. Cholesterol esters in lipid droplets are hydrolyzed by a soluble sterol ester 
hydrolase. Gonadotropins stimulate the activation of cAMP-dependent-protein kinase that 
activates this enzyme by phosphorylating specific serine residues, thus promoting binding 
of the sterol esterase to lipid droplets and the hydrolysis of cholesterol esters. 
Cholesterol is converted into pregnenolone, and the rate of pregnenolone synthesis is 
determined by: 
1. The rate of cholesterol delivery to the mitochondria;  
2. The access of the inner mitochondrial membranes to cholesterol;  
3. The available quantity of cholesterol side chain cleavage enzyme and, secondarily its 

flavoprotein and iron sulfur protein electron transport chain;  
4. The catalytic activity of P-450scc.  
Acute alterations in steroidogenesis generally result from changes in the delivery of 
cholesterol to P-450scc, whereas long-term alterations involve changes in the quantity of 
enzyme proteins, as well as cholesterol delivery (Straus & Hsue, 2000). 

4. Enzymes participating in the synthesis of steroid hormones 
The synthesis of the numerous enzymes participating in steroid hormones synthesis is 
under the stimulatory effects of hormones secreted by the pituitary ACTH, LH and follicle 
stimulating hormone (FSH). Other pituitary hormones, such as growth hormone (GH) and 
prolactin (PRL), also play a role regulating the synthesis of some of these enzymes. 
Based on the progression of changes occurring to the cholesterol molecule, four enzymes 
seem to be crucial for hormone synthesis: cytochrome P-450scc, 3β-hydroxysteroid 
dehydrogenase/Δ5-4-isomerases (3β-HSDs), 17 α-Hydroxylase/17,2O-desmolase, and 
aromatase cytochrome P450 

4.1 Cytochrome P-450scc 
The cytochrome P-450scc side chain cleavage is an enzyme present in the inner 
mitochondrial membranes. The enzyme is involved in three catalytic cycles on the 
cholesterol molecule: the introduction of hydroxyl groups at positions C-22 and C-20, and 
the subsequent scission of the side chain between these carbons. ACTH and LH stimulate 
cytochrome P-450scc synthesis in a mechanism that depends on cAMP synthesis as a second 
messenger (Auchus & Miller, 2000; Straus & Hsue, 2000).  

4.2 3β-Hydroxysteroid dehydrogenase/∆5-4-isomerases 
3β-Hydroxysteroid dehydrogenase/Δ5-4-isomerases (3β-HSDs) are located at the 
microsomal fraction, and are expressed in the adrenal cortex and in steroidogenic cells of the 
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gonads. The expression of 3β-HSDs is enhanced by ACTH and LH. These isomerases 
catalyze the formation of Δ4-3-ketosteroids from A5-3β-hydroxysteroids, an obligate step in 
the biosynthesis of progestins, androgens, estrogens, mineralocorticoids and 
glucocorticoids. 3β-HSDs catalyze the dehydrogenation of the 3B-equatorial hydroxyl group 
and the subsequent isomerization of the olefinic bond to yield the A4 3-ketone structure; 
converting pregnenolone into progesterone, l7α-hydroxypregnenolone into 17α-
hydroxyprogesterone, and dehydroepiandrosterone into A4.  
Protein kinase A signaling activators (forskolin, dibutyrylcAMP) increase the synthesis of 
dehydroepiandrosterone and A4, as well as the levels of 3β-HSD and P-450c17 mRNA 
transcripts. Activation of the protein kinase C pathway by phorbol ester treatment also 
elevates 3β-HSD mRNA levels and lowers P-450cl17 mRNA levels (Auchus & Miller. 2000).  

4.3 17 -Hydroxylase/17,2O-Desmolase 
The 17 -Hydroxylase/17,2O-Desmolase (P-45Oc7f or CYP17A1 lTl) is a cytochrome P450 
enzyme with 17-hydroxylase and 17,20-lyase activities that catalyzes two reactions: the 
hydroxylation of pregnenolone and progesterone at carbon 17, and the conversion of 
pregnenolone into C-19 steroids. P-450c17 is a key enzyme in the steroidogenic pathway 
producing all steroid hormones (progestins, mineralocorticoids, glucocorticoids, androgens, 
and estrogens). The theca cells of the follicle and the theca lutein cells of the corpus luteum, 
as well as the ovarian stroma, the adrenal gland, and Leydig cells express P-450c17. (Auchus 
& Miller, 2000; Straus & Hsue, 2000). 

4.4 Aromatase cytochrome P-450c17 
Aromatase cytochrome P-450 c17 is an enzyme found in the endoplasmic reticulum 
membrane that acts on aromatizable androgen. Aromatase P 450 catalyses the biosynthesis 
of all estrogens from androgens by transforming the A-ring of steroids to an aromatic state 
through the oxidation and elimination of the C19 methyl group (Ghosh et al., 2009; Straus & 
Hsueh, 2000). Aromatase expression is present in fetal and immature ovaries, and in 
rodents, aromatase expression/activity is restricted to the gonads and the brain. In humans, 
aromatase activity is expressed by the adrenal medulla (Belgorosky et al., 2008), adipose 
tissue, breast, skin, and bone (Czajka-Oraniec & Simpson, 2010). 
FSH is the main factor inducing aromatase activity in mural granulosa cells located on the 
outer edge of healthy large antral follicles and luteal cells. Aromatase is not expressed in 
cumulus granulosa cells. The stimulatory effects of FSH are modulated in an inhibitory way by 
glucocorticoids, prolactin, progestins, inhibin, triiodothyronine and thyroxine (T3-T4) (Chen et 
al., 2010). Transforming growth factor-β (TGF-β) enhances FSH effects (Stocco, 2008). 
Bone morphogenetic protein 15 (BMP-15) and growth differentiating factor 9 (GDF9) 
produced by the oocytes also stimulate aromatase expression and the stimulatory effects of the 
tumor necrosis factor- (TNF-), epidermal growth factor (EGF), transferrin, nitric oxide 
(NO), and superoxide dismutase (Stocco 2008). Leptin has stimulatory or inhibitory effects on 
aromatase expression depending on the animal studied (Sirotkin & Grossman, 2007).   
Acting as an autocrine signal, estradiol enhances the stimulatory effects of FSH on 
aromatase activity in granulosa cells, and its effects are mediated by the activation of 
estrogen receptor β (Wang et al., 2010).  
Androgens enhance FSH effects on aromatase expression by increasing cAMP levels. 
Aromatizable androgens synthesized by theca-internal cells are the substrate for estrogen 
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synthesis. The stimulating actions of FSH on aromatase are potentiated by insulin-like 
growth factor-1 (IGF-1), because IGF-I stimulates the capacity of granulosa cells to respond 
to FSH (Stocco 2008).  
FSH stimulates the synthesis of cAMP, which in turn acts as an intracellular messenger 
mediating FSH stimulation of aromatase expression, leading to the activation of the cAMP-
dependent protein kinase A (PKA) which is cAMP-dependent (Stocco, 2008).  FSH 
stimulates the mRNA for LH receptor synthesis, explaining why LH is the main aromatase 
inductor before ovulation (Boon et al., 2010).  

5. Hormonal signals 
The regulation of steroid hormones synthesis is mediated by hormones secreted by the 
pituitary, thyroid, adipose tissue, neuropeptides, adrenals, ovaries and testicles. 

5.1 Pituitary hormones 
The pituitary secretes several hormones that stimulate the release of steroid hormones. In 
this process, two key hormones are the ACTH and LH, and their release is pulsating. Higher 
cortisol, progesterone, testosterone, and estradiol levels in serum are observed minutes after 
each ACTH or LH pulse. By acting on the expression of several genes, ACTH and LH 
stimulate the synthesis of enzymes participating in the conversion of cholesterol to steroid 
hormones, a process that can take hours or even days.  The rapid increase in steroid 
hormone concentrations after the injection of ACTH or LH cannot be explained by the 
synthesis of enzymes participating in steroid hormones synthesis and release. Based on 
several studies, it has been proposed that the rapid increase in steroid hormones levels is 
mediated by a c-AMP action resulting in StAR synthesis, one of the proteins carrying the 
cholesterol to the mitochondria, the first step in steroid hormones synthesis (Auchus & 
Miller, 2000). 
The first step in the acute response to hormonal stimulation for steroid biosynthesis is the 
delivery of cholesterol from the outer to the inner mitochondrial membrane; a process that 
depends on de novo StAR protein synthesis and phosphorylation. LH and ACTH stimulate 
the synthesis of StAR by increasing cAMP levels and its phosphorylation rate (Luo et al., 
2010). 
LH plays a dual role in regulating P-450 enzymes participating in the synthesis of steroid 
hormones. Following the initial stimulation synthesis of the enzyme, LH exerts a down 
regulation on the synthesis of granulosa-specific CYP19A1 and theca-specific CYP17A1 
transcripts and lowers the abundance of HSD3B1 transcripts (Nimz et al., 2010). 
In female rabbits, hyperprolactinemia inhibits the peripheral and ovarian venous 
progesterone and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OHP) levels increase 
stimulated by human chorionic gonadotropin (hCG), without causing changes in the 
estradiol, androstenedione and testosterone levels (Lin et al., 1987). 

5.2 Adipose tissue hormones 
The adipose tissue secretes several adipose-derived polypeptidic hormones. Together, 
adipose-derived polypeptidic hormones receive the name of adipokines. Adipokines act 
locally and distally through autocrine, paracrine and endocrine effects (Ronti et al., 2006), and 
participate in the regulation of appetite and metabolic processes. Experimental studies show 
that some adipokines play a role regulating steroid hormones secretion by different organs. 
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5.2.1 Leptin   
Leptin is a hormone secreted by the adipose tissue, and its participation in the regulation 
of steroid hormones is controversial. In vitro studies show that the participation of leptin 
in the regulation of steroid hormones release depends on the species studied. In avian 
ovarian cells leptin stimulates the release of progesterone and estradiol, blocks 
testosterone secretion, and does not affect arginine-vasotocin secretion (Sirotkin & 
Grossmann 2007). In granulosa cells from rats, high leptin concentrations inhibits the 
stimulatory effects of insulin-like growth factor I (IGF-I) on FSH-stimulated estradiol 
secretion, but does not affect progesterone secretion (Zachow and Magoffin, 1997; Duggal 
et al., 2002; Ricci et al., 2006). In cultured granulosa cells leptin also suppresses the 
stimulating effect of the transforming growth factor β (TGF-β) on FSH-dependent estrone 
and estradiol secretion, as well as in aromatase mRNA expression and aromatase activity 
(Zachow et al., 1999).  
Leptin inhibits insulin-induced estradiol secretion by granulosa cells and decreases the 
insulin-induced increases of progesterone production in bovine granulosa cells (Spicer & 
Francisco, 1997). Co-stimulated by FSH and dexamethasone, leptin blocks steroid hormone 
synthesis by the ovaries and the synthesis of pregnenolone, progesterone, and 20alpha-
hydroxy-4-pregnen-3-one. Leptin also reduces the expression of adrenodoxin, an enzyme in 
the P50scc electron transport system (Barkan et al., 1999), and inhibits the synthesis of 
insulin-stimulated progesterone production from human luteinized granulosa cells 
(Brannian et al., 1999). The synthesis of functional leptin receptors depends on pituitary 
hormones, since hypophysectomized rat theca cells do not have such receptors (Zachow et 
al., 1999).  
Studies in human granulosa cells suggest that in vitro the effects of leptin on the secretion of 
estradiol and progesterone depend on the doses used; with low doses of leptin having a 
stimulatory effect and high doses an inhibitory effect (Karamouti et al., 2009). Leptin and 
leptin fragments enhance the secretory activity of aldosterone and corticosterone by the 
adrenal cortex of rats (Malendowicz et al., 2003; Markowska et al., 2004). However, later 
studies by Malendowicz et al., (2007) reported that leptin inhibits steroid-hormone secretion 
from the adrenal cortex by lowering the response to stress of the hypothalamic-pituitary-
adrenal (HPA) axis and by increasing the release of catecholamines from the adrenal 
medulla. Because leptin Ob-receptor is expressed in the adrenal gland, it seems that leptin 
modulates adrenal hormones secretion by acting as a circulating hormone (Malendowicz et 
al., 2007). Leptin blocks the ovarian steroid synthesis co-stimulated by FSH and 
dexamethasone. In vitro studies show that leptin inhibited the secretion of pregnenolone, 
progesterone, and 20alpha-hydroxy-4-pregnen-3-one, as well as the secretion of 
progesterone induced by the co-stimulation by forskolin and dexametasene; without 
modifying the forskolin induction of cAMP (Barkan et al., 1999). 

5.2.2 Adiponectin 
Adiponectin is an adipocyte hormone participating in lipid metabolism and glucose 
homeostasis. Adiponectine receptors and its mRNA are expressed in the ovaries and 
testicles. Pituitary gonadotropins have low effects on adiponectin mRNA testicular levels. 
Metabolic signals, such as glucocorticoids, thyroxine, and peroxisome proliferator-activated 
receptor-gamma modulate the expression of adiponectin mRNA. In vitro studies show that 
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recombinant adiponectin inhibits basal and human chorio-gonadotropin-stimulated 
testosterone secretion by adult rat testicles (Caminos et al., 2008). 

5.3 Gut hormones 
The gut secretes several polypeptidic hormones that participate in regulating the brain-gut 
relationship with different organs in the digestive system. Experimental studies show that 
some gut hormones also play a role regulating the secretion of steroid hormone. 

5.3.1 Secretin and gastric inhibitory polypeptide 
Secretin and gastric inhibitory polypeptide (GIP), together with glucagon, parathyroid 
hormone (PTH), vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-
activating polypeptide, belong to the VIP-secretin-glucagon super family.  
Secreted by the duodenum, secretin is a hormone that selectively depresses the 
glucocorticoid response to ACTH of dispersed zona fasciculata-reticularis cells. By 
inhibiting the cascade of AC/protein kinase A, glucagon, and glucagon-like peptide-1 
secretin depresses the response of cells in the zona fasciculata-reticularis to ACTH. PTH and 
PTH-related protein stimulate aldosterone and glucocorticoid secretion of dispersed zone 
glomerulosa and zone fasciculata-reticularis cells (Nussdorfer, 2000). 
The intra-peritoneal injection of GIP increases corticosterone plasma concentrations in a 
dose-dependent manner, without affecting aldosterone levels. GIP did not affect aldosterone 
and cyclic-AMP release by dispersed zone glomerulosa cells, but increased basal 
corticosterone secretion and cyclic-AMP release by dispersed inner adrenocortical cells. In 
rats, GIP stimulates the basal secretion of glucocorticoids by acting through specific 
receptors coupled with the adenylatecyclase/PKA-dependent signaling pathway 
(Mazzocchi et al 1999). 

5.3.2 Obestatin 
Produced in the stomach and other tissues, obestatin is one of the metabolic hormones that 
has effects on systems other than the digestive system. In in vitro porcine granulosa cells, 
obestatin increases the secretion of progesterone, without modifying testosterone or 
estradiol secretion (Mészárosová et al., 2008). Thus, it is possible that obestatin stimulates 
StAR phosphorylation without affecting the activity of the enzymes participating in 
androgen synthesis. 

5.4 Neuropeptides 
The term neuropeptide refers to polypeptidic molecules synthesized and released by 
neurons that can act neurotransmitters and/or hormones. Common neuropeptides include 
orexins (A & B) and galanin. 

5.4.1 Orexins 
Orexin-A and orexin-B (hypocretin-1 and -2) are two neuropeptides produced by neurones 
located in the lateral hypothalamus. Orexins A and B bind to two different receptors that are 
coupled to G proteins.  Both neuropeptides raise basal corticosterone secretion by dispersed 
cells obtained from the rat’s fasciculate-reticular zone, and do not affect either maximally 
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recombinant adiponectin inhibits basal and human chorio-gonadotropin-stimulated 
testosterone secretion by adult rat testicles (Caminos et al., 2008). 

5.3 Gut hormones 
The gut secretes several polypeptidic hormones that participate in regulating the brain-gut 
relationship with different organs in the digestive system. Experimental studies show that 
some gut hormones also play a role regulating the secretion of steroid hormone. 

5.3.1 Secretin and gastric inhibitory polypeptide 
Secretin and gastric inhibitory polypeptide (GIP), together with glucagon, parathyroid 
hormone (PTH), vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-
activating polypeptide, belong to the VIP-secretin-glucagon super family.  
Secreted by the duodenum, secretin is a hormone that selectively depresses the 
glucocorticoid response to ACTH of dispersed zona fasciculata-reticularis cells. By 
inhibiting the cascade of AC/protein kinase A, glucagon, and glucagon-like peptide-1 
secretin depresses the response of cells in the zona fasciculata-reticularis to ACTH. PTH and 
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dose-dependent manner, without affecting aldosterone levels. GIP did not affect aldosterone 
and cyclic-AMP release by dispersed zone glomerulosa cells, but increased basal 
corticosterone secretion and cyclic-AMP release by dispersed inner adrenocortical cells. In 
rats, GIP stimulates the basal secretion of glucocorticoids by acting through specific 
receptors coupled with the adenylatecyclase/PKA-dependent signaling pathway 
(Mazzocchi et al 1999). 

5.3.2 Obestatin 
Produced in the stomach and other tissues, obestatin is one of the metabolic hormones that 
has effects on systems other than the digestive system. In in vitro porcine granulosa cells, 
obestatin increases the secretion of progesterone, without modifying testosterone or 
estradiol secretion (Mészárosová et al., 2008). Thus, it is possible that obestatin stimulates 
StAR phosphorylation without affecting the activity of the enzymes participating in 
androgen synthesis. 

5.4 Neuropeptides 
The term neuropeptide refers to polypeptidic molecules synthesized and released by 
neurons that can act neurotransmitters and/or hormones. Common neuropeptides include 
orexins (A & B) and galanin. 

5.4.1 Orexins 
Orexin-A and orexin-B (hypocretin-1 and -2) are two neuropeptides produced by neurones 
located in the lateral hypothalamus. Orexins A and B bind to two different receptors that are 
coupled to G proteins.  Both neuropeptides raise basal corticosterone secretion by dispersed 
cells obtained from the rat’s fasciculate-reticular zone, and do not affect either maximally 
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ACTH stimulated corticosterone production by cells of the fasciculate-reticular zone or the 
basal and agonist-stimulated aldosterone secretion of dispersed cells from the glomerulosa 
zone. The ACTH-receptor antagonist corticotropin-inhibiting peptide blocks the secretion of 
corticosterone induced by ACTH to cells from the fasciculate-reticular zone, but does not 
modify orexins effects. Both orexins enhance cyclic-AMP release by cells in the fasciculate-
reticular zone. The selective inhibitor capacity of protein-kinase A (PKA) H-89 decreased 
corticosterone responses to both ACTH and orexins. A subcutaneous injection of orexin A 
and B evokes a clear-cut increase in the plasma concentration of corticosterone, but not of 
aldosterone. The effect of orexin-A on corticosterone release is higher than the effect of 
orexin-B. Based on these results the authors suggest that orexins exert a selective and direct 
glucocorticoid secretagogue action on the adrenals of the rat, acting through a receptor-
mediated activation of the adenylate cyclase/PKA-dependent signaling pathway 
(Malendowicz et al., 1999). 
Stimulating orexin receptors results in higher ACTH secretion by the pituitary and has a 
direct stimulatory effect on adrenocortical cells (Malendowicz et al., 1999; Spinazzi et al., 
2006; Kagerer & Jöhren 2010).  

5.4.2 Galanin 
Galanin is a 29- or 30- amino acid long neuropeptide expressed in the brain, spinal cord, and 
gut that acts via three subtypes of G protein-coupled receptors. Galanin increases the basal 
secretion of cortisol from dispersed inner adrenocortical cells, without affecting the effects of 
ACTH (Belloni et al., 2007). Galanin stimulates the release of corticotrophin releasing 
hormone (CRH) and ACTH, enhances glucocorticoid secretion by the adrenal cortex, and 
directly stimulates corticosterone secretion from the adrenals through GAL-R1 and GAL-R2 
receptors and the release of noradrenaline from the adrenal medulla. Other results suggest 
that galanin increases corticosterone release via an indirect paracrine mechanism involving 
the local release of catecholamines, which in turn activates beta-adrenoceptors located on 
adrenocortical cells (Tortorella et al., 2007). 

5.4.3 Vasoactive intestinal peptide and neuropeptide Y  
The VIP and neuropeptide Y (NPY) are the most abundant transmitter-peptides in the 
adrenal gland (Whitworth et al., 2003). These peptides act as neurotransmitters and exert 
endocrine, paracrine or autocrine effects in numerous cell types, particularly in the adrenals 
and ovaries. In vitro, the adrenal responsiveness to VIP depends on the model used: in rats, 
VIP stimulates aldosterone production by the adrenal capsular tissue (Cunningham & 
Holzwarth, 1988) and by intact perfused adrenal glands (Hinson et al., 1992), but not by 
dispersed zona glomerulosa cells (Enyedi et al., 1983; Hinson et al., 1992). There is evidence 
that VIP acts on chromaffin cells present beneath the adrenal capsule, stimulating the release 
of catecholamines, which in turn stimulate aldosterone secretion (Whitworth et al., 2003). It 
seems that the mechanisms used by NPY in the adrenals are the same as those used by VIP 
(Renshaw et al., 2000). 

5.4.4 Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) 
The pituitary adenylate-cyclase activating polypeptide (PACAP) and its receptors are 
present in the central nervous system (CNS), the testicles, adrenals, and ovaries. LH 
increases PACAP mRNA levels in pre-ovulatory follicles, and stimulates estrogen and 
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progesterone secretion by granulosa cells stimulated with hCG (Lee et al. 1999). In the 
adrenals, PACAP stimulates VIP synthesis, which in turn stimulates hormones release (Ait-
Ali et al., 2010). 

5.5 Adrenal hormones 
The adrenals secrete steroid hormones, catecholamines and peptidergic hormones. 
Evidence suggests that almost all the adrenal hormones play a role on their own 
regulatory process. 

5.5.1 Endothelins 
Endothelins (ETs) are a family of vasoactive peptides secreted by vascular endothelium. ETs 
play autocrine/paracrine regulatory functions, acting via two subtypes of receptors, ET-A 
and ET-B. The endocrine cells in the glomerulosa cells of the adrenal cortex express both ET-
A and ET-B. The cells of the zone fasciculata/reticularis mainly express ET-B. ETs stimulate 
the secretion of mineralocorticoids by glomerulosa cells. Its effects on glucocorticoid 
secretion are lower (Nussdorfer et al., 1997). The effects of ETs on steroidogenic cells are 
mediated through the activation of various signaling mechanisms, including the stimulation 
of phospholipase C, phospholipase A2 and adenyl cyclase activity, as well as calcium influx 
through plasma channels (Delarue et al., 2004). 

5.5.2 Noradrenaline 
Noradrenaline (NA) is a cathecolamine secreted by neurons in the adrenal medulla and by 
chromaffin cells present in the adrenal cortex. In luteal bovine cells NA stimulates 
progesterone secretion through the beta 1- and beta 2-adrenoceptors. NA also increases 
cytochrome P-450scc and 3 beta-HSD activity. Prostaglandin F (PGF) inhibits the luteotropic 
effect of NA on the luteal tissue (Miszkiel&, Kotwica, 2001).  

5.5.3 Dopamine 
Human granulosa cells (GCs) express 4 out of 5 dopamine (DA) receptors (D1 and D5 
coupled and linked to cAMP increase, D2 and D4; Gi/Gq coupled and linked to IP3/DAG. 
In vitro, the stimulation of human granulosa cells with hCG did not increase mRNA or 
protein levels of DA receptors. D1 and D2 receptors are also present in the ovaries of rats 
(Rey-Ares et al., 2007). 

5.6 Thyroid hormones 
The thyroid mainly secretes triyodo tyrosine (T3), tiroxine (T4) and calcitonin. T3 and T4 
play several roles in regulating all the mammalian organs and systems. 
Rats with hypothyroidism present high progesterone and low testosterone levels, without 
apparent changes in basal estradiol levels (Hatsuta et al., 2004). Acute experiments with 
murine Leydig cells, T3 induced StAR expression and progesterone production (Manna et 
al., 1999). In contrast, chronically stimulating mice Leydig tumor cells with T3 inhibits StAR 
expression and progesterone production, mainly by decreasing the delivery of cholesterol to 
the inner mitochondrial membrane (Manna et al., 2001). In cultivated Leydig cells, T3 
treatment increased testosterone and estradiol secretions in a dose dependent manner 
(Maran et al., 2000). 
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progesterone secretion by granulosa cells stimulated with hCG (Lee et al. 1999). In the 
adrenals, PACAP stimulates VIP synthesis, which in turn stimulates hormones release (Ait-
Ali et al., 2010). 

5.5 Adrenal hormones 
The adrenals secrete steroid hormones, catecholamines and peptidergic hormones. 
Evidence suggests that almost all the adrenal hormones play a role on their own 
regulatory process. 

5.5.1 Endothelins 
Endothelins (ETs) are a family of vasoactive peptides secreted by vascular endothelium. ETs 
play autocrine/paracrine regulatory functions, acting via two subtypes of receptors, ET-A 
and ET-B. The endocrine cells in the glomerulosa cells of the adrenal cortex express both ET-
A and ET-B. The cells of the zone fasciculata/reticularis mainly express ET-B. ETs stimulate 
the secretion of mineralocorticoids by glomerulosa cells. Its effects on glucocorticoid 
secretion are lower (Nussdorfer et al., 1997). The effects of ETs on steroidogenic cells are 
mediated through the activation of various signaling mechanisms, including the stimulation 
of phospholipase C, phospholipase A2 and adenyl cyclase activity, as well as calcium influx 
through plasma channels (Delarue et al., 2004). 

5.5.2 Noradrenaline 
Noradrenaline (NA) is a cathecolamine secreted by neurons in the adrenal medulla and by 
chromaffin cells present in the adrenal cortex. In luteal bovine cells NA stimulates 
progesterone secretion through the beta 1- and beta 2-adrenoceptors. NA also increases 
cytochrome P-450scc and 3 beta-HSD activity. Prostaglandin F (PGF) inhibits the luteotropic 
effect of NA on the luteal tissue (Miszkiel&, Kotwica, 2001).  

5.5.3 Dopamine 
Human granulosa cells (GCs) express 4 out of 5 dopamine (DA) receptors (D1 and D5 
coupled and linked to cAMP increase, D2 and D4; Gi/Gq coupled and linked to IP3/DAG. 
In vitro, the stimulation of human granulosa cells with hCG did not increase mRNA or 
protein levels of DA receptors. D1 and D2 receptors are also present in the ovaries of rats 
(Rey-Ares et al., 2007). 

5.6 Thyroid hormones 
The thyroid mainly secretes triyodo tyrosine (T3), tiroxine (T4) and calcitonin. T3 and T4 
play several roles in regulating all the mammalian organs and systems. 
Rats with hypothyroidism present high progesterone and low testosterone levels, without 
apparent changes in basal estradiol levels (Hatsuta et al., 2004). Acute experiments with 
murine Leydig cells, T3 induced StAR expression and progesterone production (Manna et 
al., 1999). In contrast, chronically stimulating mice Leydig tumor cells with T3 inhibits StAR 
expression and progesterone production, mainly by decreasing the delivery of cholesterol to 
the inner mitochondrial membrane (Manna et al., 2001). In cultivated Leydig cells, T3 
treatment increased testosterone and estradiol secretions in a dose dependent manner 
(Maran et al., 2000). 
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5.7 Protein kinases and cAMP 
Protein kinases (PKs) are a group of enzymes that modify other enzymes by adding 
phosphate groups (phosphorylation), which changes the enzyme’s activity.  
PKs participate in regulating the release of steroid hormones. Ovarian cells produce a 
number of PKs whose expression depends on the type of cell, their state and the action of 
hormones and other PKs (Sirotkin et al., 2011). In mammalian ovarian cells, PK-A stimulates 
the release of progesterone and estradiol (Makarevich et al., 2004); while others affirm that 
PKA inhibits progesterone, testosterone and estradiol release by mammalian ovarian 
follicular cells (Dupont et al., 2008). In chickens, PK-A either stimulates or suppresses the 
release of progesterone, testosterone and estradiol (Sirotkin & Grossmann, 2006, 2007b). In 
corpus luteum, PK-A promotes the release of progesterone by large luteal cells, while PK-C 
inhibits the release of progesterone and maintains luteal prostaglandin 2 alpha release (Diaz 
et al., 2002; Niswender, 2002). According to Makarevich (2004) PK-A type II is more 
important for the control of ovarian steroidogenesis than PK-A type I.  
Rabbit ovaries treated in vitro with dbcAMP secrete less progesterone and testosterone, but 
basal estradiol release remained unchanged. Adding FSH, IGF-I, and ghrelin reduced 
progesterone release, and adding only ghrelin increased the release of testosterone without 
modifying estradiol output. Previous treatment with dbcAMP inverted the inhibitory to 
stimulatory action of FSH, IGF-I and ghrelin on progesterone release (Chrenek et al., 2010).   

5.8 Ovarian signals 
Like the adrenal glands, the ovaries secrete steroid and polypeptidic hormones that regulate 
/modulate the synthesis and release of ovarian hormones.  
Estradiol regulates the synthesis of androgens by the follicular theca interna in an inhibitory 
way. Estrogens and androgens inhibit progesterone secretion by the human corpus luteum. 
The effects of testosterone and androstenedione are mediated by their conversion to 
estrogens (Tropea et al., 2010). Androgens stimulate cytochrome P450 aromatase mRNA 
concentrations in granulosa cells. The effects depend on the androgen studied, suggesting 
that the expression of the aromatase gene has differential regulation in the developing 
follicle (Hamel et al., 2005). GnRH-like peptides in the testicle and ovary play an inhibitory 
regulation on steroidogenesis (Franchimont, 1983).  

6. Neuroendocrine signals 
At present there is no doubt that in addition to pituitary and non-pituiraty hormone control, 
ovarian functions, hormone synthesis and ovulation, as well as adrenal cortex secretions, 
and perhaps the secretion of hormones by the testicles and even spermatogenesis, are under 
direct local neural modulation. 
Kawakami et al. (1979, 1981) obtained the first unequivocal results indicating that the 
regulation of ovarian functions is accomplished by hormonal signals that are modulated by 
neural signals. Applying electric stimulation to the ventromedial hypothalamus and the 
medio-basal prechiasmathic area in hypophysectomized and adrenalectomized rats 
provoked the release of progesterone and estradiol without modifying ovarian blood flow.  
The synthesis and secretion of steroids from the adrenal cortex and ovaries are also under 
direct modulation by local neurons. Without making synaptic contact, many noradrenergic 
nerve endings are in close proximity to zona-glomerulosa cells. NA acts as a direct 
modulator of local steroid secretion. Catecholamines and adenosine triphosphate (ATP) 
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diffuse into zone glomerulosa cells and modulate the synthesis of aldosterone in a paracrine 
way. The enzymes that may terminate the effect of ATP are present in the nerve endings, 
suggesting that ATP and its metabolites influence the production of aldosterone. Thus, 
catecholamines and ATP play a paracrine non-synaptic modulator role of in the regulation 
of adrenocortical steroid secretion (Szalay et al., 1998).  
Stimulation of beta-adrenoreceptors, VIP receptors or the forskolin-induced activation of 
cAMP formation of 2-day-old rat ovaries increases the steady state levels of the mRNAs 
encoding P-450aromatase and FSH receptors. Based on these results it was suggested that 
ovarian nerves, acting via neurotransmitters coupled to the cAMP generating system, 
contribute to the differentiation process by which newly formed primary follicles acquire 
FSH receptors and responsiveness to FSH. Follicles that grow in more densely innervated 
ovarian regions may have a selective advantage over those not exposed to neurotransmitter-
activated, cAMP-dependent signals; and thus may become more rapidly subjected to 
gonadotropin control (Mayerhofer et al., 1997). 
The intra-cerebro-ventricular injection (icv-i) of isoproterenol (beta-adrenergic agonist) to 
rats in diestrus 2 lowers progesterone levels in the ovarian vein blood. However, no 
apparent effects are observed when both superior ovarian nerves (SON) are sectioned before 
the icv-i treatment.  Blocking the beta-adrenergic receptors with propranolol icv-i increased 
progesterone levels, an effect that was not observed when both SONs were sectioned (De 
Bortoli et al., 1998, 2002). According to De Bortoli et al. (2000), the neural signals arriving to 
the ovary through the SON antagonize the ovarian LH regulation of progesterone and 
androstenedione. 

7. Ovarian and adrenal innervations 
The adrenal gland and the ovaries receive innervation from several nerve fibers of extrinsic 
and intrinsic origin. Most of the extrinsic innervations in the adrenal derive from the 
sympathetic nervous system, including cholinergic fibers containing nitric oxide synthase 
(Holgert et al., 1995), thyrosine hydroxylase- and neuropeptide Y-positive postganglionic 
sympathetic fibers (Holgert et al., 1998; Kondo, 1985). Encephalin was exclusively found in 
choline-acethyl-transferase positive fibers among adrenaline chromaffin cells (Holgert et al., 
1995). Intrinsic innervation originates from two different types of medullary ganglion cells: 
Type I and Type II cells. Type I cells are NPY-positive noradrenergic, while type II ganglion 
cells synthesize VIP and nitric oxide synthase (Holgertet al., 1998; Ulrich-Lai et. al., 2006).  
The adrenals have efferent fibers connecting to the dorsal motor nucleus of the vagus nerve, 
while other fibers of vagal origin reach the gland via the celiac or suprarenal ganglion 
(Berthoud and Powley, 1993; Coupland et al., 1989). In the rat, the motor and sensory vagal 
innervations of the adrenal gland originate from bilaterally situated cell bodies that have 
slight ipsi-lateral predominance (Coupland et al., 1989). Nerve fibers that go to and from the 
adrenal gland also possess afferent viscero-sensory fibers. According to Tóth et al. (2007), 
the steroid feedback mechanism affects the cerebral structures that send descending input to 
the sympathetic preganglionic neurons innervating the adrenal gland.  
The bilateral sectioning of the thoracic splanchnic nerve resulted in lower corticosterone 
plasma levels measured in the afternoon seven days after treatment, without apparent changes 
in ACTH levels; results that suggest that the splanchnic adrenal innervation modulates the 
response to ACTH. The effects are related to functional changes in the adrenal medulla and do 
not depend on the sensitive of the afferent fibers (Ulrich-Lai et al., 2006).  
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diffuse into zone glomerulosa cells and modulate the synthesis of aldosterone in a paracrine 
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suggesting that ATP and its metabolites influence the production of aldosterone. Thus, 
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contribute to the differentiation process by which newly formed primary follicles acquire 
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activated, cAMP-dependent signals; and thus may become more rapidly subjected to 
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while other fibers of vagal origin reach the gland via the celiac or suprarenal ganglion 
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innervations of the adrenal gland originate from bilaterally situated cell bodies that have 
slight ipsi-lateral predominance (Coupland et al., 1989). Nerve fibers that go to and from the 
adrenal gland also possess afferent viscero-sensory fibers. According to Tóth et al. (2007), 
the steroid feedback mechanism affects the cerebral structures that send descending input to 
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plasma levels measured in the afternoon seven days after treatment, without apparent changes 
in ACTH levels; results that suggest that the splanchnic adrenal innervation modulates the 
response to ACTH. The effects are related to functional changes in the adrenal medulla and do 
not depend on the sensitive of the afferent fibers (Ulrich-Lai et al., 2006).  
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The ovaries receive motor innervations from the sympathetic and the parasympathetic 
system via the vagus nerve, and possess afferent fibers travelling sympathetic and vagal 
routes (Burden et al 1983; Klein and Burden, 1988, Gerendai et al., 2000, 2009).  The vagus 
nerve connects the ovaries with the area postrema, the nucleus of the solitary tract, the 
dorsal vagal complex, the parapyramidal nucleus, A1, A5, and A7 -cell groups, the caudal 
raphe nuclei, the hypothalamic paraventricular nucleus, the lateral hypothalamus, the 
Barrington’s nucleus, the locus coeruleus, the periaqueductal gray, and the dorsal 
hypothalamus. All of these areas form a neural circuit that directly participates in the neural 
communication between the CNS and the ovaries (Gerendai et al., 2000; Tóth et al., 2007). 
As in the adrenals, the ovaries have micro-ganglia with tyrosine hidroxilase positive 
neurons (D’Albora & Barcia, 1996; Dees et al., 1995; D’Albora et al., 2002), and along some 
capillaries there are neurons resting on the basal (D’Albora & Barcia, 1996). 

8. Methodologies used to analyze the participation of neural signals 
The participation of the peripheral nervous system in the regulation of adrenal, ovarian and 
testicular functions is studied using two main experimental approaches: in vitro and in vivo 
methods. Studies in vitro allow for the understanding of the isolated participation of one, 
two or even three neurotransmitters in the regulation of hormones secretion by one type of 
cell, or even an organ tissue. Studies in vitro have certain advantages, such as the possibility 
of analyzing the cellular mechanisms regulated by neurotransmitters, identifying the 
receptors participating in the regulation, and the molecular changes that occur. In vitro 
methods also have disadvantages, since in many studies the amount of neurotransmitters 
added to the culture medium is much higher than the normal concentration measured in the 
organ. Another problem of in vitro studies is the loss of the interplay occurring between 
different kinds of cells.  
In vivo methods include the analysis of nerve stimulation and/or sectioning, the extirpation 
of one or both organs, the denervation of the in situ organ, as well as the local or systemic 
injection of neurotransmitters or blocking agents. The information obtained from in vivo 
studies gives an idea about the animal’s response to such manipulations (changes in 
hormone levels; metabolic modifications, etc.). In general, the cellular mechanisms 
participating in the modifications resulting from such manipulations are not clearly evident. 

8.1 In vitro methods 
Taken together, the results of in vitro and in vivo studies give an idea about the participation of 
neurotransmitters in regulating steroid hormone secretion. Studies on the participation of 
different systems regulating the secretion of steroid hormones analyze the effects of directly 
injecting neurotransmitters or substances known to block its receptors. Incubating steroid-
hormones producing cells, with or without specific neurotransmitters, or in neurotransmitters 
“cocktails”, is the main methodology used for studying the participation of neural signals 
regulating the secretion of steroid hormones.  
Serotonin inhibits testosterone, dihydrotestosterone, and androstane-3alpha, 17beta-diol 
production from testicles of peripubertal and adult hamsters maintained in long or short 
photoperiods. Serotonin also inhibits the stimulation induced by hCG, cAMP and 
testosterone production, by its union to 5-HT1A and 5-HT2A receptors subtypes. The 
testicular activity of the serotoninergic system is mediated by the corticotrophin releasing 
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hormone (CRH) and by the noradrenergic system. CRH has an inhibitory modulation of 
testosterone, dihydro-testosterone, and androstane-3alpha, 17beta-diol secretion, while 
epinephrine and norepinephrine have a stimulatory effect through alpha1/beta1-adrenergic 
receptors (Frungeri et al., 2002). 
Stress induced by sleep deprivation results in lower testosterone levels in serum and lower 
testicular StAR protein expression, while serotonin and corticosterone serum levels are 
elevated (Wu et al., 2011). These results suggest that serotonin regulation of steroid 
hormones release depends on the cells where such sterols originate. 
Acting through -1 and -2 receptors, NA stimulates progesterone secretion from luteal 
slices of heifers, and increases cytochrome P-450scc and 3 beta-HSD activity (Miszkiel & 
Kotwica, 2001). Nitric oxide (NO) inhibits the activity of cytochrome P450 aromatase and the 
secretion of estradiol by granulosa cells in culture (Ishimaru et al., 2001). In vitro studies 
show that in the rat, the participation of neurotransmitters regulating the secretion of 
ovarian progesterone varies throughout the day of the estrous cycle. In diestrus-1, NPY, NA, 
and VIP inhibit progesterone secretion by the ovaries, while on diestrus-2 these 
neurotransmitters stimulate progesterone secretion. In diestrus 1 and 2, NA+VIP or 
NA+NPY had a synergic effect on progesterone secretion, since measured concentrations 
were higher than VIP or NPY treatment alone (Aguado, 2002). In the rat, ovarian 
denervation reduces the synthesis and secretion of progesterone by inhibiting 3-betaHSD 
activity (Burden & Lawrence, 1977). Sectioning the plexus nerve and the SON of pigs led to 
lower LH, progesterone, androstenedione (A4), testosterone, estrone and estradiol-17beta 
plasma levels. In addition, a significant increase in the immune-expression of cholesterol 
side-chain cleavage cytochrome P450 occurs in follicles, as well as a decrease in 3-betaHSD 
activity, and in LH, progesterone, androstenedione (A4), testosterone, estrone and estrogen 
plasma levels (Jana et al., 2007). 
Using an ex vivo celiac ganglion (CG)-SON-ovary (CG-SON-O) system, Aguado’s research 
group has contributed to the understanding of the participation of the SON, the plexus 
ovarian nerve and the vagus nerve in regulating the secretion of ovarian hormones. In in 
vitro studies, the release of ovarian hormones is modulated by the stimulation/inhibition of 
neurons present in the CG.  
According to Morán et al., (2005), the CG form a bilateral structure with the superior 
mesenteric ganglia in the rat, receiving the name of celiac-superior mesenteric ganglion 
(CSMG) which is composed of noradrenergic neurons called principal neurons, small 
intensely fluorescent cells, and peptidergic interneurons.  
In in vitro studies, adding NPY, VIP or substance P (SP) to the ovaries obtained from rats in 
diestrus 1 resulted in lower release of progesterone, while the same treatment to ovaries 
obtained from rats in diestrus 2 increased it. Adding these three neuropeptides to the CG 
from rats in diestrus 2 resulted in higher progesterone secretion (Garraza et al., 2004). These 
results suggest that the way neural signals participate in the regulation of steroid secretions 
depends on the day of the estrous cycle and the type of cells receiving the signal.  
Adding NA to the CG obtained from rats on diestrus 1 resulted in ovarian dopaminergic 
and noradrenergic activity increases, while adding NA to the CG system from rats on 
diestrus 2 only increased noradrenergic activity. Such changes in dopaminergic and 
noradrenergic ovarian activities resulted in lower release of androstenedione in systems 
obtained from rats on diestrus 1, and higher release of androstenedione in systems obtained 
from rats on diestrus 2 (Bronzi et al., 2011).  
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hormone (CRH) and by the noradrenergic system. CRH has an inhibitory modulation of 
testosterone, dihydro-testosterone, and androstane-3alpha, 17beta-diol secretion, while 
epinephrine and norepinephrine have a stimulatory effect through alpha1/beta1-adrenergic 
receptors (Frungeri et al., 2002). 
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elevated (Wu et al., 2011). These results suggest that serotonin regulation of steroid 
hormones release depends on the cells where such sterols originate. 
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Kotwica, 2001). Nitric oxide (NO) inhibits the activity of cytochrome P450 aromatase and the 
secretion of estradiol by granulosa cells in culture (Ishimaru et al., 2001). In vitro studies 
show that in the rat, the participation of neurotransmitters regulating the secretion of 
ovarian progesterone varies throughout the day of the estrous cycle. In diestrus-1, NPY, NA, 
and VIP inhibit progesterone secretion by the ovaries, while on diestrus-2 these 
neurotransmitters stimulate progesterone secretion. In diestrus 1 and 2, NA+VIP or 
NA+NPY had a synergic effect on progesterone secretion, since measured concentrations 
were higher than VIP or NPY treatment alone (Aguado, 2002). In the rat, ovarian 
denervation reduces the synthesis and secretion of progesterone by inhibiting 3-betaHSD 
activity (Burden & Lawrence, 1977). Sectioning the plexus nerve and the SON of pigs led to 
lower LH, progesterone, androstenedione (A4), testosterone, estrone and estradiol-17beta 
plasma levels. In addition, a significant increase in the immune-expression of cholesterol 
side-chain cleavage cytochrome P450 occurs in follicles, as well as a decrease in 3-betaHSD 
activity, and in LH, progesterone, androstenedione (A4), testosterone, estrone and estrogen 
plasma levels (Jana et al., 2007). 
Using an ex vivo celiac ganglion (CG)-SON-ovary (CG-SON-O) system, Aguado’s research 
group has contributed to the understanding of the participation of the SON, the plexus 
ovarian nerve and the vagus nerve in regulating the secretion of ovarian hormones. In in 
vitro studies, the release of ovarian hormones is modulated by the stimulation/inhibition of 
neurons present in the CG.  
According to Morán et al., (2005), the CG form a bilateral structure with the superior 
mesenteric ganglia in the rat, receiving the name of celiac-superior mesenteric ganglion 
(CSMG) which is composed of noradrenergic neurons called principal neurons, small 
intensely fluorescent cells, and peptidergic interneurons.  
In in vitro studies, adding NPY, VIP or substance P (SP) to the ovaries obtained from rats in 
diestrus 1 resulted in lower release of progesterone, while the same treatment to ovaries 
obtained from rats in diestrus 2 increased it. Adding these three neuropeptides to the CG 
from rats in diestrus 2 resulted in higher progesterone secretion (Garraza et al., 2004). These 
results suggest that the way neural signals participate in the regulation of steroid secretions 
depends on the day of the estrous cycle and the type of cells receiving the signal.  
Adding NA to the CG obtained from rats on diestrus 1 resulted in ovarian dopaminergic 
and noradrenergic activity increases, while adding NA to the CG system from rats on 
diestrus 2 only increased noradrenergic activity. Such changes in dopaminergic and 
noradrenergic ovarian activities resulted in lower release of androstenedione in systems 
obtained from rats on diestrus 1, and higher release of androstenedione in systems obtained 
from rats on diestrus 2 (Bronzi et al., 2011).  
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The results presented above suggest that the adrenergic activation of the CG plays a role in 
regulating ovarian androgen secretion, and that this role varies along the estrous cycle. 
Therefore, steroidogenesis appears to be controlled by a balance between the stimulatory 
effects of hormones secreted by the pituitary, the inhibitory effects of other hormones, and 
the modulating participation of the ovarian innervations. 
Pituitary hormones and innervations, including sympathetic and sensory nerves, also regulate 
the adrenal cortex secretion of hormones. The nerves innervating the adrenal cortex include  
heterogeneous populations containing various different neuropeptides (Kondo, 1985). The 
sympathetic innervation is composed of cholinergic preganglionic fibers and 
catecholaminergic postganglionic fibers that are positive for tyrosine hydroxylase (TH) and 
NPY (Kondo, 1985; Holgert et al., 1998). Sensory innervations consist of primary afferent fibers 
that are positive for calcitonin gene–related peptide (CGRP) and SP (Kuramoto et al. 1987). 
Intrinsic innervations on the adrenal cortex arise from two types of medullar ganglion cells: 
Type I cells are noradrenergic and NPY-positive, whereas Type II cells produce neuronal nitric 
oxide synthase and VIP (Holgert et al., 1998). Preganglionic sympathetic and primary afferent 
fibers are carried in the thoracic splanchnic nerve (Ulrich-Lai & Engeland 2000).  

9. Experimental methods in vivo  
Figure 1 shows the innervations received by the ovaries and adrenals originating in the 
CMSG and the centers originating in the vagus nerve (Vagus centers). The CMSG and the 
 

 
Fig. 1. The diagram shows the neural pathways connecting the adrenals and ovaries with 
the celiac-superior mesenteric ganglia (CSMG). The interconnections between the right and 
left CSMG, as well as the innervations to the vagus nerves are also represented. 
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vagus centers seem to be the place where information from other regions of the CNS 
converges. Both centers send and receive neural information that modulates the reactivity of 
the endocrine cells to hormonal signals from the ovaries and adrenals. The existence of 
neural communication between the right and left CMSG implies the existence of neural 
communication between the ovaries. The modulation exerted by the neural signals over the 
ovaries and the adrenals varies during the estrous cycle (ovaries) and along the day 
(adrenals and ovaries). Such modulation is asymmetric, and the asymmetry varies during 
the estrous cycle and the hour of the day.  
Extirpating one ovary or one adrenal result in acute neural stimulation of the in situ ovary 
and/or adrenal, that modifies the response of endocrine cells to the hormonal signals. 
Sectioning one nerve also results in an acute neural stimulation of the denervated organ, 
though such stimulation is more restricted. For the ovaries and adrenals, the partially 
denervated organ still has neural pathways regulating its functions and, in theory, the 
innervated organ received only one different neural signal. 
To study the role played by the ovarian innervations in regulating progesterone, 
testosterone and estradiol levels in serum we have used five experimental models. The 
experimental models were performed on cyclic rats and our studies analyzed the influence 
of the day of the estrous cycle on treatment results.  
1. The effects of dorsal and ventral surgery to reach the ovaries and their innervation.  
2. The effects of bilateral ovariectomy or adrenalectomy  
3. The effects of unilateral ovariectomy 
4. The effects of unilateral or bilateral section of the SON 
5. The effects of unilateral adrenalectomy. 

9.1 The effects of dorsal and ventral surgical approaches 
The unilateral perforation of the dorsal or ventral abdominal wall results in different 
changes in progesterone, testosterone and estradiol serum levels. Irrespective of the day of 
the estrous cycle surgery was performed, rats with a ventral sectioning of the abdominal 
wall showed higher progesterone and testosterone levels in serum than control rats and rats 
with dorsal sectioning of the abdominal wall (Figure 2). The increase in hormone release 
could be explained by an increase in StAR protein phosphorylation and/or synthesis 
stimulated by the neurotransmitters released by the neural terminals arriving to the ovaries 
and adrenals. Changes in ACTH, LH and FSH serum levels induced by sectioning the 
abdominal wall cannot be ruled out. Since estradiol levels were not modified, we presume 
that P-450 aromatase activity is not influenced by the neural information arising from the 
abdominal wall.  
Uchida et al. (2005) showed the existence of asymmetry in the neural reflexes arising 
from the abdominal skin that arrive to the ovaries and affect the ovarian blood flow and 
the activity of the SON. Stimulating the left abdomen produced a much stronger effect 
on the activity of the left ovarian sympathetic nerve than stimulating the right abdomen. 
The magnitude of the changes in hormone levels induced by ventral or dorsal surgery 
depend on both, the dorsal or ventral side (left or right) of the surgery and the day of the 
estrous cycle when surgery is performed. These results suggest the existence of a multi-
synaptic neural pathway between the abdominal wall, the adrenals and the ovaries, a 
pathway that is mediated through the innervations of the adrenals and ovaries (Flores et 
al., 2008). 
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of the day of the estrous cycle on treatment results.  
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wall showed higher progesterone and testosterone levels in serum than control rats and rats 
with dorsal sectioning of the abdominal wall (Figure 2). The increase in hormone release 
could be explained by an increase in StAR protein phosphorylation and/or synthesis 
stimulated by the neurotransmitters released by the neural terminals arriving to the ovaries 
and adrenals. Changes in ACTH, LH and FSH serum levels induced by sectioning the 
abdominal wall cannot be ruled out. Since estradiol levels were not modified, we presume 
that P-450 aromatase activity is not influenced by the neural information arising from the 
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Uchida et al. (2005) showed the existence of asymmetry in the neural reflexes arising 
from the abdominal skin that arrive to the ovaries and affect the ovarian blood flow and 
the activity of the SON. Stimulating the left abdomen produced a much stronger effect 
on the activity of the left ovarian sympathetic nerve than stimulating the right abdomen. 
The magnitude of the changes in hormone levels induced by ventral or dorsal surgery 
depend on both, the dorsal or ventral side (left or right) of the surgery and the day of the 
estrous cycle when surgery is performed. These results suggest the existence of a multi-
synaptic neural pathway between the abdominal wall, the adrenals and the ovaries, a 
pathway that is mediated through the innervations of the adrenals and ovaries (Flores et 
al., 2008). 
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Fig. 2. Comparative effects of ventral or dorsal sectioning the abdominal wall on 
progesterone, testosterone, and estradiol serum levels. Based in data published by Flores et 
al., (2008) * p<0.05 vs. control (MANOVA followed by Tukey’s test) 

9.2 The effects of bilateral ovariectomy or adrenalectomy performed using a dorsal or 
ventral approach 
Compared to animals with a ventral abdominal wall surgery, the effects of ventral bilateral 
ovariectomy one hour after surgery include lower testosterone and estradiol levels; while 
ventral bilateral adrenalectomy resulted in lower the progesterone levels (Figure 3). Similar 
effects were observed when surgeries were performed using the dorsal approach.  
The effects of bilateral ovariectomy depend on the day of the cycle when surgery is 
performed (Flores et al., 2008). For instance, ventral bilateral ovariectomy on diestrus 1 
resulted in lower progesterone levels than in animals with ventral wall surgery. These 
effects were not observed when the treatment was performed on diestrus 2, proestrus or 
estrus. In turn, dorsal bilateral ovariectomy on proestrus or estrus resulted in higher 
progesterone levels in serum than in rats with ventral abdominal wall surgery. The effects of 
bilateral adrenalectomy on progesterone were not impacted by the day of the cycle when 
surgery was performed or by the surgical approach (Flores et al., 2008). These results 
suggest that the neural information arriving to the adrenals and ovaries play different roles 
in regulating progesterone secretion by both organs.  
Compared to ventral approach wall surgery treatment, animals with ventral bilateral 
ovariectomy had lower testosterone serum levels on each day of the estrous cycle. Similarly, 
ventral bilateral adrenalectomy performed on estrus resulted in lower hormone levels. 
Testosterone levels were not modified when the adrenals were removed on diestrus 1, 
diestrus 2 or proestrus. Compared to animals with dorsal wall surgery treatment, 
testosterone serum levels were lower in rats with dorsal bilateral ovariectomy performed on 
diestrus 2 or proestrus and higher when treatment was performed on estrus (Flores et al., 
2008).  
Compared to ventral or dorsal abdominal wall surgery treatment, ventral or dorsal bilateral 
ovariectomy performed on proestrus resulted in lower estradiol serum levels. Ventral 
bilateral adrenalectomy performed on diestrus 1 or 2 resulted in higher hormone levels, and 
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lower when surgery was performed using a dorsal approach; and an inverse result occurred 
when the animals were treated on estrus (Flores et al., 2008).  
Bilateral ovariectomy and adrenalectomy modify progesterone, testosterone and estradiol 
serum levels depending on the day of the cycle and the surgical approach. Analyzing the 
effects of dorsal or ventral bilateral ovariectomy or adrenalectomy on progesterone, 
testosterone and estradiol levels, suggest that the stimulatory/inhibitory signals arising 
from the dorsal or ventral abdominal wall modifies the sensitivity of the theca interna and 
granulosa cells to the hormonal signals regulating their functions.  
The results obtained from rats with bilateral ovariectomy or adrenalectomy suggests that the 
ovaries mainly produce testosterone and estradiol, while the adrenals are the main producer 
of progesterone. The effects of bilateral adrenalectomy performed on different days of the 
estrous cycle on testosterone and estradiol serum levels (Flores et al., 2008) suggest that 
endocrine signals arising from the adrenals (corticosterone and progesterone) play a role 
regulating ovarian steroids release. It is possible that at the CSMG level, bilateral 
adrenalectomy modified the functions of the neurons originating in the SON and the nerve 
of the ovarian plexus that innervate the ovaries. 
 

0

20

40

60

80

100

120

140

160

PROGESTERONE TESTOSTERONE ESTRADIOL

ABDOMINAL WALL 
SURGERY
BILATERAL OVARIECTOMY

BILATERAL 
ADRENALECTOMY*

*

*

 

Fig. 3. Comparative effects of ventral bilateral ovariectomy or ventral adrenalectomy on 
progesterone, testosterone and estradiol serum levels. Based on data published by Flores et 
al., (2008) * p<0.05 vs. abdominal wall surgery (MANOVA followed by Tukey’s test) 

9.3 The effects of unilateral ovariectomy 
The acute effects of hemiovariectomy on progesterone, testosterone, estradiol, and LH 
concentrations in serum depends on the surgical approach and the day of the cycle when 
surgery is performed (Barco et al., 2003; Flores et al., 2005, 2006, 2011; Cruz et al., 2006).  
Figure 4 shows the comparative effects of ventral unilateral mechanical stimulation of the 
SON and unilateral ventral ovariectomy, performed on each day of the estrous cycle, on 
progesterone, testosterone and estradiol serum levels analyzed one hour after treatment. 
The ventral mechanical stimulation of the left or right SON of rats in estrus resulted in 
higher progesterone levels. While extirpating the left ovary eliminated the progesterone 
levels increase, extirpating the right ovary did not.  Regardless of the day of the estrus cycle 
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Fig. 4. Comparative effects of ventral unilateral mechanical stimulation of the SON and 
ventral unilateral ovariectomy performed each day of the estrous cycle on: progesterone 
(ng/mL), testosterone and estradiol (pg/mL) one hour after surgery. * p<0.05 vs. surgery. 

 Ventral surgery; mechanical stimulation of the SON;  unilateral ovariectomy (ULO) 

rats were treated on, stimulating the left SON resulted in higher testosterone levels, while  
stimulating the right SON did not have an apparent effect on testosterone. Higher 
testosterone levels in serum resulting from the stimulation of the left SON were eliminated 
when the right ovary was subsequently removed.  In rats on estrus, stimulating the left or 
right SON increased estradiol levels, and ventral ovariectomy eliminated it. 
These results suggest that mechanically stimulating the SON on estrus day stimulates the 
transport of cholesterol to the mitochondria, and the performance of the enzymes 
participating in the synthesis of progesterone and estradiol in both ovaries. Effects on 
testosterone levels were observed only when the left ovary was manipulated, suggesting an 
asymmetric participation of the ovarian innervation in regulating testosterone, and that such 
asymmetry depends on the day of the estrous cycle. 
In other studies, the acute  and non-acute effects of dorsal unilateral ovariectomy on 
progesterone, testosterone and estradiol serum levels vary according to the time elapsed 
between surgery and autopsy (Morales et al., 2011). 
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9.4 The effects of unilateral or bilateral ovarian denervation 
The ovaries receive innervations arriving through the SON, the ovarian plexus nerve, and 
the vagus nerve. Since each nerve carries different neural information, we postulate that the 
unilateral or bilateral sectioning of each nerve will produce different effects on the secretion 
of steroid hormones by the ovaries.  
The SON and the ovarian plexus nerve carry catecholaminergic fibers that innervate 
endocrine ovarian cells. These fibers are distributed in the peri-follicular theca layer and are 
closely related to the theca internal cells. According to Burden (1978) and Aguado (2002), 
most neurons originating in the SON fibers are located in the CSMG. Aside from the 
catecholaminergic innervation, the SON provides VIP (Garraza et al., 2004) and NO (Casais 
et al., 2007) innervations to the ovaries. 24 and 72 hrs after unilateral or bilateral sectioning 
of the SON of pre-pubertal rats, NA levels in the denervated ovary were lower than in 
untouched (control) or laparotomized animals (Chávez et al., 1994). 
Aguado & Ojeda (1984) observed that after sectioning both SON on proestrus the secretion 
of progesterone and estradiol from both ovaries dropped immediately (four minutes). 
Progesterone secretion was recovered 15 minutes later, but estradiol levels kept low. 
Sectioning the SON on estrus did not modify hormone secretion. The effects of denervation 
depended on the hour of the day when surgery was performed. According to the authors, 
their results support the idea that the CNS controls directly the hormone release by the 
ovaries.  
In gilts, sectioning the plexus and the SON during the middle luteal phase of the estrous 
cycle lowered the number of dopamine-beta-hydroxylase- and/or neuropeptide tyrosine-
immunereactive nerve terminals. The treatment also lowered the levels of progesterone, 
androstenedione, and testosterone in the fluid and the wall of follicles. Neurectomy 
increased the immune expression of cholesterol side-chain cleavage cytochrome P450, 
lowered the expression of 33-hydroxysteroid dehydrogenase, and lowered the plasma levels 
of LH, progesterone, androstenedione, testosterone, estrone and estradiol-17beta. The 
results suggest that ovarian innervations play a role regulating the steroidogenic activity of 
the ovary (Jana et al., 2007).  
Figure 5 shows the comparative effects of ventral unilateral mechanical stimulation of the 
SON on ovarian hormone secretion. From the graph, it is apparent that progesterone and 
testosterone levels in serum were modified by mechanically manipulating the SON, while 
changes in estradiol serum levels are not significant.  
As with unilateral ovariectomy, the acute effects of ventral unilateral sectioning of the SON 
on progesterone, testosterone and estradiol serum levels presents asymmetry and vary 
according the day of the cycle when surgery was performed (Flores et al., 2011). 
Ovarian denervation performed by unilaterally sectioning the vagus nerve, by a ventral 
approach, has different effects on normal cyclic rats and ULO rats. Sectioning the left vagus 
nerve resulted in lower ovulation rates than in sham operated animals; while sectioning the 
right vagus nerve did not modify ovulation rates. Sectioning the right or left vagus nerves to 
right-ULO rats (left ovary in-situ) reduced compensatory ovarian hypertrophy. Sectioning 
the left vagus nerve to ULO rats induced different effects depending on which ovary 
remained in-situ. Left-side vagotomy performed to right ULO rats (left ovary in-situ) 
resulted in higher ovulation rates, compensatory ovarian hypertrophy, and number of ova 
shed; while the same procedure to left ULO rats (right ovary in-situ) resulted in a decrease 
of the same parameters.  



 
Steroids – Basic Science 20

 

Progesterone

Left Right

0

10

20

30

40

50

60

70

80

90

100

D1 D2 P E

Sugery Stimulation ULO

0

10

20

30

40

50

60

70

80

90

100

D1 D2 P E

Sugery Stimulation ULO

*
*

 

Testosterone

Left Right

0

50

100

150

200

250

300

350

400

D1 D2 P E

Sugery Stimulation ULO

0

50

100

150

200

250

300

350

400

D1 D2 P E

Sugery Stimulation ULO  
 

Estradiol

Left Right

0

20

40

60

80

100

120

140

160

D1 D2 P E

Sugery Stimulation ULO

0

20

40

60

80

100

120

140

160

D1 D2 P E

Sugery Stimulation ULO  
Fig. 4. Comparative effects of ventral unilateral mechanical stimulation of the SON and 
ventral unilateral ovariectomy performed each day of the estrous cycle on: progesterone 
(ng/mL), testosterone and estradiol (pg/mL) one hour after surgery. * p<0.05 vs. surgery. 

 Ventral surgery; mechanical stimulation of the SON;  unilateral ovariectomy (ULO) 

rats were treated on, stimulating the left SON resulted in higher testosterone levels, while  
stimulating the right SON did not have an apparent effect on testosterone. Higher 
testosterone levels in serum resulting from the stimulation of the left SON were eliminated 
when the right ovary was subsequently removed.  In rats on estrus, stimulating the left or 
right SON increased estradiol levels, and ventral ovariectomy eliminated it. 
These results suggest that mechanically stimulating the SON on estrus day stimulates the 
transport of cholesterol to the mitochondria, and the performance of the enzymes 
participating in the synthesis of progesterone and estradiol in both ovaries. Effects on 
testosterone levels were observed only when the left ovary was manipulated, suggesting an 
asymmetric participation of the ovarian innervation in regulating testosterone, and that such 
asymmetry depends on the day of the estrous cycle. 
In other studies, the acute  and non-acute effects of dorsal unilateral ovariectomy on 
progesterone, testosterone and estradiol serum levels vary according to the time elapsed 
between surgery and autopsy (Morales et al., 2011). 

 
Hormonal and Neural Mechanisms Regulating Hormone Steroids Secretion 21 

9.4 The effects of unilateral or bilateral ovarian denervation 
The ovaries receive innervations arriving through the SON, the ovarian plexus nerve, and 
the vagus nerve. Since each nerve carries different neural information, we postulate that the 
unilateral or bilateral sectioning of each nerve will produce different effects on the secretion 
of steroid hormones by the ovaries.  
The SON and the ovarian plexus nerve carry catecholaminergic fibers that innervate 
endocrine ovarian cells. These fibers are distributed in the peri-follicular theca layer and are 
closely related to the theca internal cells. According to Burden (1978) and Aguado (2002), 
most neurons originating in the SON fibers are located in the CSMG. Aside from the 
catecholaminergic innervation, the SON provides VIP (Garraza et al., 2004) and NO (Casais 
et al., 2007) innervations to the ovaries. 24 and 72 hrs after unilateral or bilateral sectioning 
of the SON of pre-pubertal rats, NA levels in the denervated ovary were lower than in 
untouched (control) or laparotomized animals (Chávez et al., 1994). 
Aguado & Ojeda (1984) observed that after sectioning both SON on proestrus the secretion 
of progesterone and estradiol from both ovaries dropped immediately (four minutes). 
Progesterone secretion was recovered 15 minutes later, but estradiol levels kept low. 
Sectioning the SON on estrus did not modify hormone secretion. The effects of denervation 
depended on the hour of the day when surgery was performed. According to the authors, 
their results support the idea that the CNS controls directly the hormone release by the 
ovaries.  
In gilts, sectioning the plexus and the SON during the middle luteal phase of the estrous 
cycle lowered the number of dopamine-beta-hydroxylase- and/or neuropeptide tyrosine-
immunereactive nerve terminals. The treatment also lowered the levels of progesterone, 
androstenedione, and testosterone in the fluid and the wall of follicles. Neurectomy 
increased the immune expression of cholesterol side-chain cleavage cytochrome P450, 
lowered the expression of 33-hydroxysteroid dehydrogenase, and lowered the plasma levels 
of LH, progesterone, androstenedione, testosterone, estrone and estradiol-17beta. The 
results suggest that ovarian innervations play a role regulating the steroidogenic activity of 
the ovary (Jana et al., 2007).  
Figure 5 shows the comparative effects of ventral unilateral mechanical stimulation of the 
SON on ovarian hormone secretion. From the graph, it is apparent that progesterone and 
testosterone levels in serum were modified by mechanically manipulating the SON, while 
changes in estradiol serum levels are not significant.  
As with unilateral ovariectomy, the acute effects of ventral unilateral sectioning of the SON 
on progesterone, testosterone and estradiol serum levels presents asymmetry and vary 
according the day of the cycle when surgery was performed (Flores et al., 2011). 
Ovarian denervation performed by unilaterally sectioning the vagus nerve, by a ventral 
approach, has different effects on normal cyclic rats and ULO rats. Sectioning the left vagus 
nerve resulted in lower ovulation rates than in sham operated animals; while sectioning the 
right vagus nerve did not modify ovulation rates. Sectioning the right or left vagus nerves to 
right-ULO rats (left ovary in-situ) reduced compensatory ovarian hypertrophy. Sectioning 
the left vagus nerve to ULO rats induced different effects depending on which ovary 
remained in-situ. Left-side vagotomy performed to right ULO rats (left ovary in-situ) 
resulted in higher ovulation rates, compensatory ovarian hypertrophy, and number of ova 
shed; while the same procedure to left ULO rats (right ovary in-situ) resulted in a decrease 
of the same parameters.  
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Fig. 5. Comparative effects of ventral abdominal wall surgery, unilateral stimulation or 
sectioning of the superior ovarian nerve on progesterone (ng/mL, testosterone and estradiol 
serum levels (pg/mL).  

Sectioning the right or left vagus nerves to right-ULO rats (left ovary in-situ) reduces 
compensatory ovarian hypertrophy, while the effects of sectioning the left vagus nerve 
depended on which ovary remained in-situ. Left-side vagotomy performed to right ULO rats 
(left ovary in-situ) resulted in higher ovulation rates, higher compensatory ovarian 
hypertrophy, and higher number of ova shed; while the same procedure to left ULO rats (right 
ovary in-situ) resulted in lower levels of the same parameters (Chávez et al.1987, 1989).  
Sensorial innervations also play a role in regulating ovarian functions. Sensorial denervation 
induced by injecting capsaicin subcutaneously or into the ovarian bursa lowered 
spontaneous ovulation and secretion of progesterone and estradiol. Capsaicin treatment to 
ULO rats affected ovulation and the secretion of ovarian steroids, and these effects 
depended on which ovary remained in situ and the day of the cycle when treatment was 
performed (Trujillo et al., 2001, 2004).  

9.5 The effects of unilateral adrenalectomy 
Figure 6 shows the acute effects (one hour after surgery) of unilateral adrenalectomy, 
conducted on each day of the estrous cycle, on progesterone, testosterone and estradiol 
serum levels. The results show that the lack of one adrenal modified in different ways the 
concentration of the three hormones. The results  suggest that the acute diminution and 
recovery of adrenal hormones affects the transportation of cholesterol to the ovaries in 
different ways, and the hormone secretion by the in situ ovary is only affected in diestrus 1, 
when unilateral adrenalectomy resulted in lower progesterone levels.  
The effects of unilateral ovariectomy on testosterone and estradiol serum levels are 
asymmetric, mostly when surgery was performed on diestrus 2 (testosterone) or proestrus 
(testosterone and estradiol). The results suggest that the activity of enzymes participating in 
the synthesis of testosterone and estradiol are regulated by the levels of adrenal hormones 
and are not related to the synthesis of progesterone, since progesterone levels were not 
modify when the surgery was performed on diestrus 2 or proestrus. 
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Fig. 6. Comparative effects of ventral unilateral adrenalectomy and ventral unilateral 
adrenalectomy followed by sectioning the SON ipsilateral to the extirpated adrenal, 
performed on each day of the estrous cycle on: progesterone (ng/mL), testosterone and 
estradiol (pg/mL) one hour after surgery.  *p<0.05 vs. surgery.  Ventral surgery;  
unilateral adrenalectomy;  unilateral ovariectomy followed by the SON section. 
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Fig. 5. Comparative effects of ventral abdominal wall surgery, unilateral stimulation or 
sectioning of the superior ovarian nerve on progesterone (ng/mL, testosterone and estradiol 
serum levels (pg/mL).  

Sectioning the right or left vagus nerves to right-ULO rats (left ovary in-situ) reduces 
compensatory ovarian hypertrophy, while the effects of sectioning the left vagus nerve 
depended on which ovary remained in-situ. Left-side vagotomy performed to right ULO rats 
(left ovary in-situ) resulted in higher ovulation rates, higher compensatory ovarian 
hypertrophy, and higher number of ova shed; while the same procedure to left ULO rats (right 
ovary in-situ) resulted in lower levels of the same parameters (Chávez et al.1987, 1989).  
Sensorial innervations also play a role in regulating ovarian functions. Sensorial denervation 
induced by injecting capsaicin subcutaneously or into the ovarian bursa lowered 
spontaneous ovulation and secretion of progesterone and estradiol. Capsaicin treatment to 
ULO rats affected ovulation and the secretion of ovarian steroids, and these effects 
depended on which ovary remained in situ and the day of the cycle when treatment was 
performed (Trujillo et al., 2001, 2004).  

9.5 The effects of unilateral adrenalectomy 
Figure 6 shows the acute effects (one hour after surgery) of unilateral adrenalectomy, 
conducted on each day of the estrous cycle, on progesterone, testosterone and estradiol 
serum levels. The results show that the lack of one adrenal modified in different ways the 
concentration of the three hormones. The results  suggest that the acute diminution and 
recovery of adrenal hormones affects the transportation of cholesterol to the ovaries in 
different ways, and the hormone secretion by the in situ ovary is only affected in diestrus 1, 
when unilateral adrenalectomy resulted in lower progesterone levels.  
The effects of unilateral ovariectomy on testosterone and estradiol serum levels are 
asymmetric, mostly when surgery was performed on diestrus 2 (testosterone) or proestrus 
(testosterone and estradiol). The results suggest that the activity of enzymes participating in 
the synthesis of testosterone and estradiol are regulated by the levels of adrenal hormones 
and are not related to the synthesis of progesterone, since progesterone levels were not 
modify when the surgery was performed on diestrus 2 or proestrus. 
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Fig. 6. Comparative effects of ventral unilateral adrenalectomy and ventral unilateral 
adrenalectomy followed by sectioning the SON ipsilateral to the extirpated adrenal, 
performed on each day of the estrous cycle on: progesterone (ng/mL), testosterone and 
estradiol (pg/mL) one hour after surgery.  *p<0.05 vs. surgery.  Ventral surgery;  
unilateral adrenalectomy;  unilateral ovariectomy followed by the SON section. 
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Some of the effects of unilateral adrenalectomy seem to be related to the SON ovarian 
innervation since the unilateral section of the SON modified some of the changes in 
testosterone and estradiol serum levels induced by unilateral adrenalectomy. Thus, the 
extirpation of one adrenal could modify the activity of the neurons in the CSMG originating 
SON fibers. 

10. Ovarian and adrenal asymmetries  
The supra-spinal innervations of the adrenals and ovaries show left side predominance, 
and some neurons exclusively innervate a given organ (Gerendai et al., 2009). Each 
adrenal gland is innervated both by side-specific neurons and by neurons that project to 
both organs (Tóth et al., 2007). The left and right ovaries have different abilities to 
spontaneously release oocytes. Such differences appear to be related to the ovarian 
innervations, and the left ovary appears to be more competent to spontaneously release 
oocytes (Domínguez et al., 1989).  
According to Klein and Burden (1988), the number of neural fibers received by the right 
ovary is higher than in the left; while Toth et al., (2007) showed that the left ovary sends 
more neural information to the CNS than the right ovary. The right and left ovaries show 
different ovulatory responses to surgical denervation, and these responses vary according 
to the day of the estrous cycle when surgery is performed (Chávez et al., 1987, 1989; 
Chávez & Domínguez, 1994). These results suggest that the endocrine performances by 
the ovaries and adrenals present asymmetries, which are related to the innervations 
received by the organs. 

11. Conclusions  
Taken together the results obtained by different experimental approaches show that the 
synthesis and release of hormone by the adrenals and ovaries are under multiple 
controls. The hormonal signals arise from different sources, including the adrenals and 
ovaries. The adrenal and ovarian innervations modulate the effects of the hormonal 
signals, possibly by differences in the frequency and amplitude release of different 
neurotransmitters.  
Because the mechanisms regulating the release of steroid hormones changes during the 
estrous cycle and throughout the day, it is possible that circadian signals arising from the 
suprachiasmatic nucleus exert a fine modulation of adrenal and ovarian cells to hormone 
and neural signals (Buijs et al.,2006). 
Currently we do not have a clear hypothesis to explain why the organs secreting steroid 
hormones are asymmetric, or why such asymmetry varies during the estrous cycle and the 
hour of the day. Questions arising in the intent to present a hypothesis include: 
1. Is the expression of hormones and/or neurotransmitters receptors secreted by 

endocrine cells under the control of proteins synthesized under the directions of the 
clock genes present in the cells?  

2. Do the release characteristics (frequency and amplitude) of neurotransmitters by the 
axons arriving to the endocrine cells vary during the day, and do they present 
differences between one organ and the other? 

3. What are the functions of the micro-ganglia in the adrenals, testicles and ovaries? 
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1. Introduction  
The purpose of this chapter is to review the tissue-specific role of estrogen (E2) and 
progesterone (P4) in human endometrium and mammary gland. It is well known that both 
E2 and P4 are essential for the development and differentiation of human endometrium and 
mammary gland, but the exact basis for differential tissue-specific signalling of E2 and P4 
are still not fully understood. This chapter explores observed functions of two major female 
steroid hormones and their cognate receptors in normal physiology of human reproductive 
system but also in assisted reproductive technology and breast cancer treatment. 
The normal reproductive physiology requires tightly coordinated action of hypothalamus, 
pituitary gland, ovaries and endometrium. Also functioning of other endocrine units such as 
the thyroid and adrenal glands are essential for regular ovulation and cyclic changes. The 
production of ovarian steroid hormones is coordinated by the hypothalamic-pituitary-
gonadal axis which is activated in puberty (Figure 1). The hypothalamus produces and 
secretes luteinizing hormone-releasing hormone (LHRH), which binds to its receptors in 
pituitary gland. This causes cascade of biochemical events culminating in the production of 
two hormones in pituitary gland, luteinizing hormone (LH) and follicle-stimulating 
hormone (FSH). LH and FSH are secreted into the general blood circulation and attach to 
receptors on the ovary, where they trigger ovulation and stimulate the production of E2 and 
P4. Ovarian steroid hormones themselves have direct role in the development of the inner 
lining of the uterus but they also act as a positive feedback system to hypothalamus and 
pituitary gland for continuous cyclic changes until the beginning of menopause (Kanis and 
Stevenson, 1994). 
Cholesterol is the building block for all steroid hormones, which is carried into the 
bloodstream and through a sequence of enzymatic changes is synthesized into final 
products. In the bloodstream steroid hormones are distributed rapidly throughout the 
tissues and act on distant targets. This secretory process is called endocrine action and the 
function of many target tissues as mammary gland, brain, bones, liver and heart are affected 
by circulating hormones. Steroid hormones can also act very close to their site of secretion 
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function of many target tissues as mammary gland, brain, bones, liver and heart are affected 
by circulating hormones. Steroid hormones can also act very close to their site of secretion 
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Fig. 1. The female hypothalamic–pituitary–gonadal axis. The hypothalamus produces and 
secretes luteinizing hormone–releasing hormone (LHRH) into a system of blood vessels that 
link the hypothalamus and the pituitary gland. LHRH stimulates the pituitary gland by 
attaching to specific molecules (i.e., receptors). After the coupling of LHRH with these 
receptors, a cascade of biochemical events causes the pituitary gland to produce and secrete 
two hormones, luteinizing hormone (LH) and follicle–stimulating hormone (FSH). LH and 
FSH are two of a class of hormones commonly known as gonadotropins. They are secreted 
into the general circulation and attach to receptors on the ovary, where they trigger 
ovulation and stimulate ovarian production of the hormones estrogen and progesterone. 
These female hormones cause monthly menstrual cycling and have multiple effects 
throughout the body. In particular, estrogen has profound effects on the skeletal system and 
is crucial to maintaining normal bone health (Figure adapted from Kanis and Stevenson, 
1994). 

on adjacent cells and tissues as it happens in gonads, testis and ovaries- paracrine action.  
Gonads produce only three classes of steroids: progestins, androgens and estrogens where 
progestins are obligatory precursors of both androgens and estrogens. Likewise, androgens 
are obligatory precursors of estrogens. Steroidogenesis in the ovary is compartmentalized in 
a cell-specific manner: the theca cells primarily producing androstenedione and the 
granulosa cells completing the synthesis of E2. After the ovulation the corpus luteum of the 
ovary starts to produce P4. Albeit the vast amount of sex steroids are synthesized locally in 
peripheral tissue, providing individual target tissues with the means to adjust synthesis and 
metabolism to their local requirements (Venken et al.,  2008). 
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Beside the reproductive system, one of the most widely recognized effects of E2 is the 
prevention of the osteoporosis. Adequate E2 levels through E2 replacement therapy has 
shown to prevent or diminish calcium loss from bones in menopausal women (Venken et 
al., 2008). In the nervous system both estrogens and androgens have been reported to 
influence verbal fluency, performance of spatial tasks, verbal memory capacity and fine 
motor skills (Kelly and Ronnekleiv, 2008). The major role for P4 in humans is related to 
initiation and maintenance of the pregnancy. P4 is essential for milk preparation and 
secretion in mammary gland and for mediating signals required for sexually responsive 
behaviour. Recent evidence also supports a role for P4 in the modulation of bone mass 
(Seifert-Kaluss and Prior, 2010). 
NRs function as transcription factors. The biological activities of E2 and P4 are mediated 
mainly by nuclear receptors (NRs). Binding of a steroid hormone to its cognate receptor 
results in a conformational change in the nuclear receptor that allows the ligand-receptor 
complex to bind with high affinity to response elements in DNA and regulate transcription 
of target genes. In the absence of ligand, NRs are held in a multi-subunit complex containing 
heatshock proteins such as Hsp90, SP70, HSP40, Hop, and p23 (Wolf et al., 2008). After 
binding to ligand, these receptors, undergo conformational changes, dissociate themselves 
from chaperone proteins, dimerize and in some cases translocate into the nucleus (if not 
already locked into the nucleus) (Bain et al., 2007). The differences in specificity of molecular 
mechanisms result from receptor subcellular location and binding to genomic DNA as 
homo- or heterodimers in either head-to-tail or head-to-head orientation to different 
consensus sequences known as hormone response elements (HREs) (Bain et al., 2007). Upon 
NR activation a hydrophobic pocket is created in their tertiary structure for interaction with 
co-activators such as members of the steroid receptor co-activator (SRC) protein family or 
co-repressors such as NR co-repressor (NCoR) and silencing mediator for retinoic acid and 
thyroid hormone receptor (SMRT) ( Hall et al., 2005). The recruitment of co-regulators leads 
to alterations in the rate of gene expression via modification of initiation complex formation 
process. Two types of estrogen receptors, ERα and ERβ, encoded by separate genes, are 
found in humans (Enmark etal., 1997; Kuiper and Gustafsson, 1997).  P4 signalling is also 
mediated by two receptors, PRA and PRB, which are encoded by the same gene but 
transcribed from different promoters, resulting in a PRB that has an additional 164 amino 
acids at the N-terminus (Wen et al., 1994; Kastner et al., 1990). PRB is a stronger 
transcriptional activator in most cell types, while PRA acts often as a dominant negative 
repressor for PRB activity (Tung et al., 1993; Vegeto et al., 1993). 
In addition to operating as TFs in the nucleus, NRs have been shown to possess non-
genomic action which is usually characterized by a shorter lag time required to elicit a 
biological response following steroid hormone stimulation. For instance ERs can regulate 
gene expression independent of estrogen responsive element (ERE) through tethering 
different TFs and by membrane- initiated ER interference with other intracellular pathways. 
Examples of motifs recognized by ER other than ERE is the activator protein-1 site (AP-1 
site) commonly occupied by the TFs c-Fos/c- Jun B (Björnström and Sjöberg., 2004). 

2. The role of E2 and P4 in human endometrium  
Human endometrium is the inner tissue lining of uterine cavity that undergoes monthly 
cyclic changes dictated by ovarian steroid hormones E2 and P4 (Figure 2). As endometrium 
is a regenerative tissue it is subjected to proliferation, secretion and degeneration on 
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monthly basis. Nearly all morphologic and biochemical processes that the uterus undergoes 
during its acquisition of receptivity are directly or indirectly regulated by ovarian steroid 
hormones (Lim et al., 2002). The development of human endometrium is divided into 
follicular and luteal phase. During the follicular phase ovarian E2 is produced with 
increasing quantities until ovulation, stimulating the proliferation and growth of the 
epithelial and stromal components of the endometrium. During the luteal phase the 
increasing amounts of the P4 and secondary maintaining levels of E2 are both involved in 
the differentiation of the endometrium but P4 reverses the proliferative effects of E2 (Lim et 
al., 2002). Together, coordinated action of steroid hormones produced by the follicle and 
corpus luteum prepare the endometrium every month for potential embryo implantation. In 
the event of embryo implantation P4 predominantly facilitates and permits decidualization 
of the endometrium and supports maintenance of pregnancy. On the contrary, in the 
absence of implantation declining levels of E2 and P4 lead to degeneration of the 
endometrial tissue, which is followed by regeneration during the next cycle. In addition to 
cell differentiation, P4 plays the key role in the decision of cell survival or death prior to the 
menstruation. Three proteins related to apoptotic activation in endometrial cells are proto-
oncogene p53, FOXO1 (forkhead box-O) and BIM which act as a switches between apoptosis 
and survival (Brosens and Gellersen, 2006). 
 

 
Fig. 2. E2 and P4 in human endometrium. E2 causes the growth or proliferation of the 
endometrium during the first two weeks of the menstrual cycle. After ovulation, the corpus 
luteum produces P4. This hormone causes the endometrial glands to secrete nutritive 
substances required by the embryo and to allow it to implant into the endometrial lining 
(figure adapted from internet http://www.tubal-reversal.net/uterus-menstrual-cycle.htm). 

Ovarian steroids mediate their signals through genomic or non-genomic pathways.  The 
genomic signal is passed on by cognate receptors, ERs and PRs, in endometrial cells. As E2 
is dominant hormone during the follicular phase of the cycle genes regulated by E2 are also 
more often related to tissue proliferation. Under the actions of E2 the epithelial cells respond 
by rapid induction of gene expression that promotes DNA synthesis and cell replication 
(Lessey et al., 2010). During the luteal phase P4 induces the genes related to differentiation. 
Clinically used steroid hormone analogues (Tamoxifen, Fluvestrant, Progestin, 
Mifepristone) could have a suppressive or repressive impact on normal steroid hormone 
signalling in endometrial cells (Figure 2). The expression of ERs and PRs in spatiotemporal 
manner is crucial for the successful implantation process (Lessey et al., 2003). Although ERα 
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and ERβ are present in all endometrial cell types throughout the entire menstrual cycle, they 
are expressed at higher levels during the proliferative phase and show lower activity during 
the secretory phase because of the suppressive effect of P4. After the proliferative phase P4 
takes the E2-primed endometrium towards a state of receptivity. P4, acting through its 
cognate receptors, is absolutely mandatory for successful implantation and post-
implantation embryo survival. PRA and PRB levels are similar during the follicular phase of 
the menstrual cycle while the PRA is down-regulated at the time of implantation but higher 
stromal PRB levels during the mid-luteal phase have been reported (Arnett-Mansfield et al., 
2004). The expression of the PR gene in endometrial glands is controlled by E2 and P4, 
where E2 induces PR synthesis and P4 down-regulates the expression of its own receptor 
(Graham et al., 1990). The actions of P4 counter the effects of P4 in the endometrium through 
paracrine regulators from the stromal part. Recent studies about small non-protein coding 
RNAs (microRNA, miRNA) have revealed their important role in gene regulation in 
endometrium (Kuokkanen et al., 2010; Li et al.,  2011). The regulation  of specific microRNAs 
is a mechanism that appears to fine tune gene expression by blocking cell proliferation at the 
time of implantation P4 dependently (Lessey et al., 2010). 
 

 
Fig. 3. E2 and P4 genomic signalling in human endometrial cell. E2 produced by ovary 
enters into the cell and binds to its specific receptors ERα or ERβ. Formed complex moves 
into the cell and has an impact on target gene expression. After the ovulation corpus luteum 
starts to produce P4 which also diffuses into the endometrial cells and through its receptors 
regulate gene expression.  Steroid hormone analogues (Tamoxifen, Fluvestrant, Progestin, 
Mifepristone) have a suppressive or repressive impact on ER , PR signalling.  

2.1 Endometrial gene expression during the time of embryo implantation  
In a restricted period, called implantation window (IW), endometrium is most receptive for 
the embryo attachment. In humans IW is temporally confined to days 20-24 of menstrual 
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cycle (8-10 days after ovulation). During this time period corpus luteum induces high level 
of P4 and stable level of E2 expression. For successful pregnancy the apposition, adhesion 
and invasion of developing embryo is needed which can only happen if the endometrium is 
at the right developmental stage posessing a receptive atmosphere.   
There is a certain group of women who repeatedly fail to achieve pregnancy in spite of good 
quality embryos transferred during IVF (in vitro fertilisation) treatments. This has led to the 
search for better solutions to improve implantation rates. In a molecular level embryo 
implantation is a dialog between blastocyst and receptive endometrium which is mediated 
by various growth factors, cytokines, lipid mediators, transcription factors and other 
putative molecules often regulated by steroid hormones. In recent years, numerous studies 
applying global gene expression analysis have found a wide range of genes up- or down 
regulated in human endometrium during the IW (Carson et al., 2002; Kao et al., 2002; 
Riesewijk et al., 2003; Horcajadas et al., 2004; Krikun et al., 2005; Mirkin et al., 2005; Simon et 
al., 2005; Punyadeera et al., 2005; Talbi et al., 2006;  Horcajadas et al.,  2008; Haouzi et al., 
2009a,b; Altmäe et al., 2010). Each study has brought out candidate genes believed to be 
crucial in embryo implantation process but the overlap of potential marker genes between 
different publications has still remained relatively low. However, today there are already 
some biomarkers confirmed in separate studies which are pivotial during implantation 
process. For example, the most potential endometrial marker identified is leukemia 
inhibitory factor (LIF) and its importance has been proven in animal and human studies 
(Stewart et al., 1994; Arici et al., 1995; Steck et al., 2004). Unfortunately, the development of 
recombinant human LIF (r-fLIF) has not met the expectations of increasing implantation 
rates in infertile women (Brinsden et al., 2009). The localization of immune system related 
molecules like cytokines, IL-6 and IL-11, has been identified in endometrial cells and they 
have shown coincidental expression changes at the time of high levels of E2 and P4 
(Tabibzadeh et al.,  1995; Robertson et al., 2000; Vandermolen and Gu, 1996; Cork et al., 2001; 
Dimitriadis et al., 2000; von Rango et al., 2004). The two integrins, α4βl and αvβ3, appear to 
be good markers of the receptive endometrium in normal fertile women (Lessey et al., 1994). 
Recognized growth factors related to endometrial receptivity and implantation are 
transforming growth factor β (TGF-β), epidermal growth factor (EGF), heparin binding-
epidermal growth factor (HB-EGF) and inlsulin like growth factor (IGF) (Jones et al., 2006b; 
Hofmann et al., 1991; Dadi et al., 2007; Lessey et al., 2002; Stavreus-Evers et al., 2002). 
Growth factors and their respective receptors have shown to enhance embryo development 
and improve implantation rates in IVF cycles (Kabir-Salmani et al., 2004). 
It is more likely that there is no single molecule, which could solve the implantation issue 
and help patients with recurrent implantation failures. As a complex process implantation 
seems to depend on many factors, which influence the development of the embryo and 
endometrial dating in synchronized manner. Moreover, the individual differences and 
monthly cyclic changes of the regenerative tissue make the search for universal markers 
relevant to implantation complex. 

2.2 The influence of the IVF treatment on endometrial receptivity  
Since the first announcement of successful IVF treatment in 1978 (Steptoe and Edwards, 
1978) assessed fertilization procedures have been increasingly used world-wide. Based on 
the report by European Society of Human Reproduction and Embryology (ESHRE) in 2008, 
more than three million babies have been born with the help of IVF (ESHRE 2008). 
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Nowadays the number of couples seeking for aid to achieve pregnancy is constantly 
increasing as at least every tenth couple requires infertility treatments.   
Ovarian stimulation and ovulation induction with gonadotrophin administration has been a 
success from the 1960s (Fowler and Edwards, 1957). Ovulation induction leads to multi-
follicular growth instead of a single follicle in natural cycles escalating possible successful 
fertilisation. Still, the general success rates for clinical pregnancies have stayed around 30-
40% for more than three decades (Department of Health and Human Services Centres for 
Disease Control and Prevention Report 2001). The focus to develop more effective ovarian 
stimulation protocols to increase the number of oocytes and embryos obtained from one 
cycle has by some means overlooked the relevance of supraphysiological levels of ovarian 
steroid hormones and their collateral effect on the endometrium (Simon et al., 2008). In 
modern IVF, drugs used to stimulate ovaries during the follicular phase include clomiphene 
citrate, urinary and recombinant gonadotrophins and gonadotrophin releasing hormone 
(GnRH) agonists and antagonists (Edwards et al., 2005). The usage of ovarian stimulating 
drugs often results in shorter luteal phase of the endometrium, which is therefore no longer 
synchronized with embryo development. The use of GnRH agonists may have a negative 
effect on implantation. Several studies observing endometrial biopsies from patients 
undergoing IVF treatment show 1-3 day advancement in endometrial development (Lass et 
al., 1998; Nikas et al 1999). The formation of pinopodes, considered as morphological 
markers for receptive endometrium, has also been shifted to day 17 or 18 compared to day 
20 in normal cycle (Stavreus-Evers et al., 2001). Elevated concentrations of E2 and subtle P4 
increases in the late follicular phase lead to modulated steroid hormone receptor profile 
(Papanikolau et al., 2005).  Histological study has shown down-regulation of the ERs and 
PRs and pinopode expression in stimulated cycles compared to natural cycles (Develioglu et 
al., 1999). There is some evidence of a negative impact of supraphysiological steroid levels 
on endometrium because increased pregnancy rates have been observed in the presence of 
reduced production of serum E2. This explains the fact that there are higher pregnancy and 
implantation rates recorded for oocyte recipients versus donors who have only P4 support 
prior to embryo transfer (Check et al., 1995). A premature reduction in PRs in the early luteal 
phase has been found after ovarian stimulation. Horcajadas and colleagues have demonstrated 
that gene expression profiling of the endometrium is different between natural and controlled 
ovarian stimulation cycles in the receptive phase (Horcajadas et al., 2008). 
There are ways to restore the length of luteal phase by stimulating corpus luteum with hCG or 
by supplementing the luteal phase with steroids, such as E2 and P4 (Smitz et al., 1992). Also, to 
overcome the side effects caused by high doses of drugs milder stimulation protocols have 
been developed (Olivennes et al., 2002; Nargund and Frydman, 2007; Pennings and Ombelet, 
2007; Ubaldi et al., 2007). The evidence regarding a potentially negative effect of 
supraphysiological steroid levels on endometrial receptivity (Simon et al., 1995; Devroey et al., 
2004), corpus luteum function (Fauser and Devroey, 2003; Beckers et al., 2006), oocyte and 
embryo quality (Valbuena et al., 2001; Baart et al., 2007) indicate that limited ovarian 
stimulation and response might have a beneficial effect on implantation potential. 

2.3 E2 and P4 endometriosis  
The ovarian steroid hormones play also a central role in pathogenesis of several uterine 
disorders, including endometriosis, which is characterized by the presence of endometrial 
tissue outside the uterine cavity like the peritoneum and ovary. It has been shown that both 
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eutopic and ectopic endometrial tissues expresses ERs and PRs and they respond to ovarian 
steroid hormones but the predominance of ERα and PRA receptors have been described in 
cases of ectopic lesions (Matsuzaki et al., 2001; Attia et al., 2000). Despite the obvious 
importance of E2/P4 in the development of the endometriosis, the exact aetiology and 
pathogenesis of it are still unclear. It is predicted that in general endometriosis could affect 
about 10% of women of reproductive age and up to 25-50% of women seeking infertility 
treatment. There is still uncertainty whether the decreased fertility is related to reduction of 
the oocyte/embryo quality or dysregulation of the endometrium (Kim et al., 2007). Aberrant 
gene expression in endometrium which is suboptimal for implanting blastocyst has been 
shown by several studies in cases of endometriosis (Giudice et al., 2002; Kao et al., 2003). 
Even though endometriosis has been characterized as E2-dependent gynaecological disease, 
where E2 favours the growth of the tissue, the dysregulation of the P4 response on the 
molecular level is suggested in endometriosis. It has been noticed that endometriotic tissue 
does not respond to P4 as normal endometrium does. Altered PR expression or diminished 
activity predictably results in differential gene expression compared to eutopic tissue 
(Cakmak et al., 2010). For example, altered P4 signalling can cause unpaired regulation of 
HOXA 11, HOXA12 genes in ectopic tissue which are expressed in high levels during the IW 
in normal tissue (Cakmak et al., 2010). The up-regulation of HOXA10 and HOXA11 
expression fails to occur in women with endometriosis (Taylor et al., 1999). Recent studies 
looking for functional miRNA-s have shown up-regulation of miR-21 in eutopic 
endometrium of women with versus without endometriosis (Luo et al., 2010; Aghajanova et 
al., 2011). 
Hopefully further studies in the future help us understand the molecular mechanisms, 
which are responsible for the development of endometriosis. 

3. The role of E2 and P4 in mammary gland  
The development and physiology of human mammary gland is also under the strict control 
of steroid hormones, including E2 and P4. The mammary gland is not completely formed at 
birth, but begins to develop in early puberty when the primitive ductal structures enlarge 
and branch (Russo et al., 1987). From that point ovarian E2 and P4 are fundamental for the 
growth and differentiation of the duct system. There are slight cyclical changes during each 
menstrual cycle caused by ovarian steroid hormones where E2 is increasing the volume of 
the tissue and P4 is responsible of the acinar growth of breast tissue. During pregnancy, the 
mammary gland epithelium experiences its greatest and most rapid proliferation initially as 
a response to the hormones produced by corpus luteum, following by placental hormones. 
Due to difficulties in studying developing mammary gland there is relatively small amount 
of information about normal ER and PR expression in breast tissue. It has been confirmed 
that PRs and ERs are found in a minority population (7–10%) of luminal, non-dividing 
epithelial cells. As E2 is required to induce progesterone receptor (PR) expression it is 
difficult to separate the effects of P4 alone from E2. However, the obligate role of the ERs 
and PRs in mammary gland development has been confirmed with knocked out mice 
studies (Bocchinfuso and Korach, 1997; Humphreys et al., 1997). 

3.1 E2 and P4 in breast cancer development  
Broad spectrum of physiological activity of steroid hormones displays its dark side in cases 
when cells in steroid hormone guided organs lose their normal responsiveness to hormone. 
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Third of female malignancies are hormone dependent in their growth. Most prominent 
leading death causing factors for women under age of 50 are breast cancer and also various 
cancers of reproductive system. Many factors are involved in the development of breast 
cancer, including genetics, lifestyle, diet, endogenous hormone status and environment. 
Demographic risk factors for breast cancer are early age of menarche, nulliparity, late full-
term pregnancy, higher social class and increasing age. Known factors with protective 
effects on breast cancer development are early full-term pregnancy, increasing number of 
births, longer periods of anovulation and more physical activity (Bernstein et al., 1994). The 
incidence of this lethal cancer has steadily increased during the last centuries in part due to 
the better and more widespread screening procedures. Increased ERα expression is one of 
the earliest changes occurring in the tumorigenic process and is associated with 
uncontrolled proliferation of the breast tissue (Khan et al., 1994). Some data is showing that 
ERβ could negatively modulate the effects of ERα but the prognosis for endocrine therapy 
are still under the question because of the somehow contradictory outcomes (Roger et al., 
2001; Speirs et al., 2002). Similarly PR isoform ratio also seems to have a role in breast 
tumorigenesis as the ration of PRA and PRB has been altered with PRA prevalence (Mote et 
al., 2002). 
Currently, only the expression level of ERα is measured for clinical decision-making and 
treatment of breast cancer patients as a favourable prognosis in primary tumours. Still, only 
50% of ERα-positive tumours respond well to hormonal therapy. Large research programs 
are dedicated to search for better and more specific clinical breast cancer markers. The 
significance of ERβ status is still controversial and further analysis of the role it plays in the 
pathogenesis of breast cancer is required. As more experimental information on E2-
mediated signalling accumulates, new possibilities emerge for breast cancer therapy. 

3.2 Selective ER and PR modulators  
Selective ER modulators (SERMs) function through ERs, acting as agonists or antagonists of 
E2 depending on the target tissue and modulate the signal transduction pathway to E2-
responsive genes. The implementation of SERMs in clinical aspects is wide. They are used to 
treat or prevent breast cancer and osteoporosis, to cure ovulatory dysfunction in women but 
also for contraceptive purposes. SERMs have an ability to differently regulate many ER-
regulated genes (Berrodin et al., 2009; Chang et al., 2010). In general, most SERMs have E2 
agonist activity in bone and antagonist activity in the breast, while the activity in the uterus 
varies among the molecules. The tissue specificity depends on various co-activators (CoA) 
and co-repressors (CoR) expressed and recruited in different tissues (Riggs et al., 2003). E2 
binds to either ERα or ERβ and subsequently binds CoA molecules required to form a 
transcription complex at EREs located in the promoter region of estrogen-responsive genes. 
The antiestrogenic action of a SERM results from the inappropriate folding of an ERα or ERβ 
complex that either cannot recruit CoA molecules or instead recruits CoR molecules. This 
programmed change in conformation produces antiestrogen action at specific sites like the 
breast, but estrogen-like effects in the uterus if an excess of CoA molecules is present. 
SERM–ER complexes may initiate gene transcription to produce an estrogen-like effect, by 
forming a protein–protein interaction at fos/jun that activates AP-1 sites (Jordan et al., 2001) 
(Figure 4). Although widely used and with many beneficial effects in treating breast cancer 
SERMs still battle with several side effects where most common is the stimulation of the 
endometrium. 
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eutopic and ectopic endometrial tissues expresses ERs and PRs and they respond to ovarian 
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Third of female malignancies are hormone dependent in their growth. Most prominent 
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SERM–ER complexes may initiate gene transcription to produce an estrogen-like effect, by 
forming a protein–protein interaction at fos/jun that activates AP-1 sites (Jordan et al., 2001) 
(Figure 4). Although widely used and with many beneficial effects in treating breast cancer 
SERMs still battle with several side effects where most common is the stimulation of the 
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Fig. 4. The signal transduction pathways available to E2 or a SERM to initiate gene 
transcription. E2 receptors – ERα, ERβ, selective ER modulator-SERM, coactivator –CoA, 
corepressor CoR, E2 response element-ERE, activating protein -1-AP-1 (Figure adapted from 
Jordan et al., 2001).  

Tamoxifen (TAM), the first SERM available for clinical use, is regarded as a highly effective 
agent for the prevention and treatment of breast cancer in premenopausal and 
postmenopausal women. TAM has been used in women to treat breast cancer for over 40 
years (Fisher et al., 1998; Fisher et al., 2005). This compound binds with high affinity to ER, 
thereby blocking the action of native E2. Subsequently it inhibits or modifies the interaction 
of ER with DNA, which impedes the transcriptional activation of target genes (Berry et al., 
2005). TAM strongly counteracts E2 effects, including secretion of several growth factors 
and growth controlling enzymes, so that a woman’s own E2 cannot stimulate growth of the 
tumor cells. TAM has been a successful drug especially in treating hormone-responsive 
breast cancer, being one of the main reasons why ER-positive breast cancer patients have a 
better prognosis compared to those with an ERα-negative breast tumours. Another positive 
effect was noticed when postmenopausal women’s bone density increased after breast 
cancer treatment (Love et al., 1992). One of the most significant side effects of the treatment 
with the TAM appears to be its proliferative effect on the endometrium (estrogen-agonistic 
effect; Buzdar et al., 1998; Bergman et al., 2000). The use of TAM results significant 3.3 fold 
increase of endometrial cancer (Fisher 2005). The repression of the cell proliferation during 
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breast cancer treatment could lead to endometrial cell proliferation later on (Figure 5). 
Endometrial pathologies associated with TAM use include hyperplasia, polyps, carcinomas 
and sarcomas (Cohen et al., 2004). The full mechanism of this paradox remains still 
undiscovered.  
Another well-studied antiestrogen, Raloxifen, has an E2-antagonistic effect similarly to TAM 
but it is reported to have small or no proliferative effect on uterus (Fugere et al., 2000). 
Although Raloxifen was developed initially for breast cancer treatment, its use was 
abandoned in the late 1980s because clinical trials showed no activity in TAM-resistant 
patients (Buzdar et al, 1998). Today, Raloxifen is used specifically to reduce the risk of 
osteoporosis in postmenopausal women at high risk for osteoporosis (Jordan et al., 2001, 
Cohen et al., 2000).  
As SERMs have the ability to provide mixed functional ER agonist or antagonist activity, 
depending on the target tissue, compaunds devoid of agonist activity have been developed. 
The most known „pure“ antiestrogen is Fulverstant (aslo known as ICI 182780) (Bowler et 
al., 1989; Wakeling et al., 1991). In addition to blocking the ER activity Fulvestrant induces 
ER degradation by changing its conformation (Dauvois et al., 1993; Gibson et al., 1991; Reese 
and Katzenellenbogen 1992).  This forces the receptor into conformation that it is recognized 
as being misfolded, which induces its rapid degradation (Wu et al 2005). Fulvestrant is 
currently licensed for the use in postmenopausal women with ER-positive recurrent disease 
(Johnston et al., 2010). However, the lack of agonist activity limits its beneficial effects in 
bone. 
SERM might inhibit the ER found in breast cells but activate the ER present in uterine 
endometrial cells. That would inhibit cell proliferation in breast cells, but stimulate the 
proliferation of uterine endometrial cells (Figure 5). There are number of decision points that 
determine the biological response to a SERM, which is linked to its E2-like ability to recruit 
CoA-s and CoR-s. ER contains a ligand-binding domain, called Activating Function-2 (AF-
2), which is essential for the activation of genes that mediate the E2 effect in tissues like 
breast and uterus. Therefore, the different ligands can induce distinct gene transcription 
processes. For example, the union of the ligand binding domain with TAM results in partial 
agonistic effect in the uterus, whereas the same interaction is fully antagonistic in the breast 
(Perez et al., 2006). 
Similarly to anti-estrogens, anti-progestins or Selective Progesterone Receptor Modulators 
(SPRMs) are developed in order to antagonize the processes activated by P4. Mifepristone 
(RU-486) acts as a P4 antagonist by competing with endogenous P4 for receptor binding and 
has three primary pharmacological effects: endometrial, gonadotropic, and adrenocortical 
(Goldberg et al., 1998). It has 2 to 10 time higher affinity compared to P4 to bind PRs 
(Brogden et al., 1993). Because PRs are found primarily in reproductive organs, Mifepristone 
exerts its principal effect on the uterus. More precisely, Mifepristone blocks the effects of 
natural P4 on the endometrium and decidua. While P4 is supposed to support the 
pregnancy, anti-P4 leads to degeneration and shedding of the endometrial lining, thereby 
preventing or disrupting implantation of the conceptus. Mifepristone also increases both 
uterine production of prostaglandins and uterine sensitivity to the contractile effects of 
prostaglandins, stimulating uterine contractions. It is postulated that Mifepristone acts 
directly on the uterine muscle through an entirely separate mechanism, perhaps by 
increasing gap junctions in the myometrium (Weiss et al., 1993). Tissue culture studies have 
shown that Mifepristone continues to display procontractile effects on the uterus even when 
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the effects of prostaglandins are neutralized (Brogden et al., 1993). Most research and 
clinical experience with Mifepristone involves its use as an aborted material. Several studies 
reported its effectiveness in softening and dilation of the cervix prior to surgical abortion, 
decrease of pain in women with diagnosed endometriosis and in labour inducement 
(Goldberg et al., 1998). In the absence of P4, however, Mifepristone can act as a partial 
agonist (Spitz et al., 1993) and upregulate P4-responsive genes, such as p53, and through 
this possesses a slight anticarcinogenic effect. 
 

 
Fig. 5. The opposite effect of SERM on breast and uterine cell proliferation. SERM might 
inhibit the ER found in breast cancer cells but activate the ER present in uterine endometrial 
cells. A SERM of this type would inhibit cell proliferation in breast cells, but stimulate the 
proliferation of uterine endometrial cells. (Figure adapted from internet:  
http://www.cancer.gov/cancertopics/understandingcancer/estrogenreceptors/page14) 

3.3 The risk for cancer development after IVF treatment  
The impact of infertility and fertility treatments on cancer risk has become more and more 
prevalent since the increasing need to use IVF treatment in current society. Relatively low 
number of studies has been published to investigate the relation between IVF treatment and 
developing cancer risk. The administration of high doses of gonadotrophin analogues 
during the induction of the ovaries and synthetic E2 and P4 preparations in order to support 
the endometrium has raised the question of a possible contribution of supraphysiological 
levels of hormones to the development of breast or other cancer types. Previous studies have 
demonstrated a possible association between infertility treatments and breast cancer for 
women treated with at least six cycles with clomiphene citrate, or within the first year after 
starting IVF (Venn et al., 1995, 2001). Also women who start IVF after the age of 30 appear to 
be at increased risk of developing breast cancer (Katz et al., 2008; Pappo et al., 2008). Other 
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studies have found elevated risk for ovarian cancer too but probably the risk was already 
higher prior to the first IVF (Källen et al., 2005; Kristiansson et al., 2007). However, there are 
publications, which have not found a relation between infertility treatments and any cancer 
development (Potashnik et al., 1999, Doyle et al., 2002; Dor et al., 2002; Lerner-Geva et al., 
2010; Brinton et al., 2004). For example, a case-control study (1380 pairs) showed no risk for 
IVF treatment even among women who carry mutations in breast cancer susceptibility gene 
1 (BRCA1) or BRCA2 gene (Kotsopoulos et al., 2008). The common opinion today is that the 
use of fertility medications does not increase the risk of breast cancer among those with 
family history of BRCA mutations. 
A more recent study, published by Källen and colleagues using Swedish cancer register, 
showed that there was no or significantly low cancer risk among women udergoing IVF 
treatment compared to general population. The study included 24 058 women who had 
been treated with IVF where 1279 women later appeared in the cancer register. For 
comparison, total of 1 394 061 women in the general population were studied as a control 
group where 95 775 women had registered cancer (Källen et al., 2011). 
The phrase “healthy patient effect” has emerged saying that women who choose IVF 
treatment might be more aware of risks or more health conscious at the time of conception 
compared to non-IVF women (Venn et al., 2001). In addition, there are numerous 
confounding factors which could influence the outcome of the study like the age at the time 
of the first IVF cycle or the first delivery, the number of the unsuccessful cycles and the 
follow up time after last IVF treatment. It is obvious that the question needs to be studied in 
more detail involving large number of women and with attention to precise subgroups. 

4. Genome-wide E2 and P4 signalling 
There are hundreds of studies presenting how expression of a single gene could change 
upon E2 or P4 treatment in different cell culture. Knock out studies with transgenic animals 
have confirmed the importance of ERs and PRs in reproductive system and cancer 
development. To understand the broad role of steroid hormones in humans it is mandatory 
to study their action in genome-wide level. Recently, the development of large-scale 
genomic methods to analyse gene expression and factor binding to DNA enable us to study 
steroid hormone dependent gene expression changes and transcription regulation in the 
entire genome. As ERs and PRs are acting as TFs they have an ability to regulate the 
expression of proximal and distal genes by binding hormone responsive elements. 
Chromatin immunoprecipitation (ChIP) analysis has been broadly used for identification TF 
binding regions on DNA. ChIP assay can be followed by polymerase chain reaction (PCR), 
hybridization the probes on a microarray (ChIP-on-chip) or high throughput (HTP)-
sequencing (ChIP-Seq) to establish the genomic regions occupied by a specific TF. To 
understand whether TF binding has a positive or negative impact on gene expression 
microarrays, sequencing (RNA-Seq) and RT-qPCR are commonly used followed to mRNA 
extraction.  

4.1 Genome-wide identification of TF binding regions, ChIP-Seq 
ChIP is a technique for assaying protein-DNA interactions in vivo (Weinmann et al., 2002). 
This analysis allows identifying regions of the genome bound directly to ERs or PRs as well 
as regions bound indirectly via other TFs or co-regulators. During the procedure proteins 
are cross-linked to DNA and the chromatin is thereafter sonicated to small fragments 
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around 150-1000bp depending on which application is used below. After 
immunoprecipitation of protein-DNA complexes, the cross-links are reversed and the DNA 
fragments purified. Extracted DNA could be analyzed with either PCR, ChIP-on-chip or 
direct sequencing. Regions significantly overrepresented in the immunoprecipitated DNA 
relative to control DNA are regarded as epigenetically modified or protein-bound, 
depending on the antibody used (Bock et al., 2008). Computational algorithms are used to 
infer the information from the array data or sequencing output. ChIP has two main 
drawbacks. First and the main problem is the specificity of antibodies used. The second 
problem is aggregation of chromatin that contaminates the purified specific chromatin 
fraction and raises unspecific background of isolated DNA. In case of ChIP-on-chip ChIP-
enriched DNA is spotted on glass slide microarrays (chip) to study how regulatory proteins 
interact with the genome of living cells (Lin Z et al., 2007, Liu et al., 2008). ChIP-on-Chip has 
many modifications such as ChIP-linked target site cloning (Lin Z et al., 2007) and ChIP 
coupled with a DNA selection and ligation (ChIP-DSL) strategy for direct target genes, 
permitting analysis of fewer cells than required by the conventional ChIP-on-chip method 
(Kwon et al., 2007). The ChIP-DSL technology is distinct from the latter assay. Besides it 
being more specific and sensitive, the immunoprecipitated DNA is used to template 
oligonucleotide ligation, instead of being directly amplified for hybridization, which makes 
it possible to bypass incomplete decrosslinking. There is also the paired-end ditag (PET) 
approach, which directly links the 5' terminal tags of genomic sequences with their 
corresponding 3' terminal tags to form PET ditags and concatenates them for efficient 
sequencing (Bock et al., 2008). 
ChIP-Seq is emerging as the method of choice for genome-wide identification of TF binding 
sites. The ChIP-Seq involves immunoselecting an enriched population of transcription 
factor-bound chromatin fragments, which are purified and resolved via next-generation 
sequencing. Today, several DNA sequencing technologies are available - the ABI SOLiD 
platform utilizes oligonucleotide ligation and detection methodology (Dietz and Carroll, 
2008), the sequencing-by-synthesis methods of 454 Life Sciences and Solexa/Illumina 
technology utilize, an emulsion based PCR followed by HTP sequencing and reversible 
terminator sequencing respectively. Also it is possible to sequence on single-molecule 
sequencing platforms such as the HeliScope by Helicos where, fluorescent nucleotides 
incorporated into templates can be imaged at the level of single molecules (Figure 6). A 
typical dataset generated from the Illumina Genome Analyzer yields several million short 
sequence reads with typical length 36-75 bp. These are aligned to a reference genome, and 
the resulting trace read placements are used to infer the locations of transcription factor 
binding in a global fashion. ChIP-seq provides clearly interpretable binding information. 
Even more, compared to ChIP-on-chip data normalization is not an issue because the 
sequencing results in absolute read counts (Barski et al., 2007). Also, the repetitive portion of 
DNA is not a hindrance. One limitation is that the process of mapping tags to the reference 
genome can bias the analysis toward genomic regions with unique and complex sequence 
patterns. This is because short sequencing reads that overlap with low-complexity regions 
or with interspersed repeats stand a higher chance of being discarded for lack of unique 
genomic alignment (Bock et al., 2008). Even though ChIP-seq shares ChIP-on-chip’s 
dependence on high-quality antibodies, the unparalleled throughput makes ChIP-seq 
superior for whole genome mapping of DNAprotein interactions. The latest results show 
that ChIP-Seq method could detect more than 10 000 binding regions for ERα in MCF7 cells 
(Carroll et al., 2006; Hurtado et al., 2011). Nevertheless, linking the binding regions to the 
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Fig. 6. ChIP followed by highthroughput sequencing. The ChIP process enriches the 
crosslinked proteins or modified nucleosomes using an antibody specific to the protein or 
the histone modification of interest. Purified DNA can be sequenced using different next-
generation sequencing platforms. On the Illumina Solexa Genome Analyzer (bottom left) 
clusters of clonal sequences are generated by bridge PCR, and sequencing is performed by 
sequencing-by-synthesis. On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms 
(bottom middle), clonal sequencing features are generated by emulsion PCR and amplicons 
are captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing (for 
the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On single-
molecule sequencing platforms such as the HeliScope by Helicos (bottom right), fluorescent 
nucleotides incorporated into templates can be imaged at the level of single molecules, 
which makes clonal amplification unnecessary (adapted from Nature Reviews, Park 2009). 
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target genes has been an on-going struggle as majority of binding regions can be separated 
by hundreds of kilobases and in some cases megabases. In many cases the biological  
functionality of the TF binding is still unrevealed.  
Fullwood and colleagues have developed a technique called ChIA-PET (chromatin 
interaction analysis using paired-end tag sequencing) (Fullwood et al., 2009), which couples 
chromosome conformation capture (Dekker et al., 2002), a method for identifying interacting 
chromatin regions, with high-throughput sequencing. The authors found 689 ER-associated 
chromatin interaction complexes made up of duplexes and more complex interactions. 
These tend to involve stronger ER-binding events, which are biased toward specific histone 
marks and other transcriptional regulators more imperative for ER function. 
Endometrial cell lines seem to be less hormone responsive compared to MCF7. In our previous 
study we used ChIP-qPCR to identifying ER and PR targets in two endometrial cell lines. We 
found 137 target genes for ERs in HEC1A and 83 target genes for PRs in RL95-2 from 382 pre-
selected genes. The results confirmed the in vitro model of non-receptive (HEC1A) and 
receptive (RL95-2) endometrium in steroid hormone manner (Tamm et al., 2009).  

4.2 Expression analysis, RNA-Seq 
The transcriptome is the complete set of transcripts in a cell or tissue at a specific 
developmental stage or physiological condition. Expression microarrays are currently the 
most widely used methodology for transcriptome analysis. Breast cancer cell line MCF7 is 
most extensively used cell line in terms of studying E2 responsiveness and ERα localization. 
The number of genes which could be regulated by E2 has expanded extensively during the 
last decade from ~100 to ~1500  genes (Frasor et al., 2003, Carroll and Brown, 2006, Kininis 
et al., 2007, Levenson et al., 2002, Lin et al., 2004, Lin et al., 2007). It is likely that in the near 
future RNA-Seq, more sensitive technique, will introduce even more genes which show 
significant change in their activity after E2 or P4 treatment. Gene expression studies 
investigating endometrial receptivity using human biopsy samples have searched for genes 
differentially expressed in follicular and luteal phase (Kao et al., 2002; Carson et al., 2002; 
Riesewijk et al., 2003; Mirkin et al., 2005).  The highest number of regulatory genes was 
brought out in Carson´s study with 323 up-regulated and 370 down-regulated genes 
comparing follicular phase to the luteal phase. As mentioned before, the overlap of genes 
identified in different publications is relatively low. The difference could be due to 
variations is study design and limiting factors of microarray analysis. Microarray is 
hybridization-based approach, which involves incubating fluorescently labelled cDNA with 
custom made microarrays. Prominent limitations with this method include hybridization, 
cross-hybridization artefacts, different data analysis and low coverage of all possible genes 
in large genomes (Casneuf et al., 2007). Comparing expression levels across different 
experiments is often difficult and requite complicated normalization methods. The newer 
and potentially more comprehensive way to measure the whole active transcriptome is by 
direct ultra-high-throughput sequencing named RNA-Seq. The resulting sequence reads are 
individually mapped to the source genome and counted to obtain the number and density 
of reads corresponding to RNA from each known exon, splice event or new candidate gene 
(Mortazavi et al., 2008). RNA-Seq uses recently developed deep-sequencing technologies 
where RNA is converted to a library of cDNA fragments with adaptors attached to one or 
both ends. Each molecule is sequenced from single end or paired end. The reads are typically 
30-400bp, depending on the DNA-sequencing technology used. Similarly to ChIP extracted   
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Fig. 7. RNA-Seq method. a) Paired cDNA fragments are mapped to genome using TopHat 
software b) Each pair of fragment is treated as a single alignment and the abundances of the 
aasembled transcripts are estimated (b-e). First the fragments from distinct spliced mRNA 
isoforms are identified (b). Isoforms are then assembled from the overlap graph (c) and 
transcript abundance is estimated (d). Cufflinks estimates transcript abundances using a 
statistical model in which the probability of observing each fragment is a linear function of 
the abundances of the transcripts from which it could be originated. The program 
numerically maximizes a function that assigns a likelyhood to all possible sets of relative 
abundances of different isoforms (e), producing the abundances that best explain the 
observed fragments (adapted from Trapnell et al., 2010). 
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RNA can be used with Illumina, Applied Biosystems SOLIiD and Roche 454 Life Science 
platforms (Wang et al., 2009, Rev). RNA-Seq has very low, if any, background signal 
because cDNA sequences can be mapped to unique regions of the genome. It does not have 
any upper limit of quantification like DNA microarrays which lack sensitivity for genes 
expressed either at low or very high levels. Like other HTP Sequencing technologies, RNA-
seq faces several bioinformatics challenges in data processing. 
The analysis of RNA-Seq data starts from raw cDNA sequences, usually having lengths of 
40-70bp, depending on the platform. The general goal is to find which sites in human 
genome the RNA was transcribed from and determine the expression levels of these 
transcripts. Additionally, RNA-Seq data can be used to study expression levels of alternative 
splicing isoforms.  
The usual analysis consists of three main steps: 
1. Map each RNA sequence to the human genome. Mapping program has to enable 

spliced alignments because the sequences can come from separated exons. For this a 
fast and open source tool TopHat can be used (Trapnell et al., 2009) 

2. Count mappings to every site and measure the expression level of the sites. The 
expression level is usually measured in Fragments Per Kilobase of exon per Million 
fragments mapped (FPKM) which permits comparison of results across experiments. 
FPKM of a site shows how frequently the mapped fragments fall on that site. This 
analysis is possible using Cufflinks software, which can measure FPKM for whole genes 
and also for specific spliced isoforms (Trapnell et al., 2010) 

3. Compare experiments and find genes (or spliced isoforms) that have statistically 
significant different FPKM across experiments. This is also possible using commercial 
or open source software as Cufflinks. 

More detailed explanation of the analysis is depicted in the Figure 7.  

5. Conclusion  
This chapter summarised the current knowledge of E2 and P4 action in human 
endometrium and mammary gland. To understand both sides of steroid hormone action - in 
normal physiology and especially in pathology it is important to understand the molecular 
intracellular events of E2 and P4 in tissue-type manner. The same hormones could have 
different or even opposite effects in different tissues. Thus, attention should be applied to 
steroid hormones’ or their analogues’ possible side effects before using them in clinical 
treatments. Questions still remain about the aberrations of the endometrium leading to 
implantation failure, endometriosis and other dys-regulations. Even though studies of 
breast cancer development continuously unravel new information about the mechanisms 
leading from normal to malignant tissue proliferation, breast cancer is still the most fatal 
cancer type among women. The number of couples seeking for aid to achieve fertility is 
constantly increasing and thus a better understanding of factors needed for successful 
treatment and possible side effects is crucial. 
We would like to punctuate the importance of the next generation sequencing technologies 
which we believe are the key in understanding hormone dependent action in whole 
organism. With today´s knowledge of nearly entire human genome sequence and the 
development of new technologies based on HTP sequencing it has become possible to define 
all targets for the TF in vivo and establish entire transcriptome in a single experiment. Data 
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analysis is still complicated in a way and needs excellent computational skills but the data 
collected today will become the knowledge of tomorrow. 
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1. Introduction 
Discussions on receptors involved in estrogen action(Stanišić et al,2010) have so far focused 
on the two major forms of “classical” estrogen receptors, the estrogen receptor α (ER α) and 
estrogen receptor β (ER β). Both are DNA binding as well as hormone binding forms, with 
distinct, well-characterized functional domains. The differences between the two have 
mainly been in their respective molecular masses and shapes and in the target genes with 
which they interacted. 
I have been involved in research in estrogen action for 4 decades and more. Since the focus 
of my work was chiefly on non-conventional estrogen receptors and receptor associated 
proteins, often the progress made was felt by me as slow.Nevertheless,it is my sincere belief 
that what has been unveiled in this direction over the years have not gone unproductive. 
The two proteins that have been identified in this context, one a non DNA binding estrogen 
receptor and the other a transcription factor that dimerises with this receptor in the nucleus, 
have pointed towards the existence of a unique system of receptor in estrogen action. For 
the first time ever, it has become clear that there is a form of estrogen receptor whose 
primary functional role is in post transcriptional regulatory mechanisms that include 
splicing, nucleocytoplasmic transport of RNA and finally, the translation of mRNA. Also, 
deeper insights into the functional biology of the transcription factor have unfolded certain 
experimental data hitherto unknown in the literature on steroid hormone action. What is 
being discussed in this chapter deals exclusively with these two proteins, one a plasma 
membrane localized estrogen receptor which moves into the nucleus to involve itself in gene 
regulatory events and the other a transcription factor with a parallel functional role in 
mitochondrial steroidogenesis 

2. The concept of steroid hormone receptor activation 
The favorite theme of the 60’s and early 70’s in descriptions of steroid hormone action, 
particularly with reference to estrogen action, used to be that the receptor primarily existed 
in the cytosol. Upon hormone binding and the consequent “receptor activation” the receptor 
entered the nucleus and interacted with the genetic elements. This “two-step mechanism”, 
independently proposed by the research groups led by Jensen and Gorski (Jensen & 
DeSombre, 1973; Shyamala & Gorski, 1969; Mohla et al, 1972) formed the basis for all 
subsequent discussions on intracellular movements of the receptor –steroid hormone 
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complex. It was proposed that the cytosolic receptor existed as a high molecular weight 
form that sedimented at 8-9S in low salt linear sucrose gradients. Later studies have 
revealed that in this cytosolic form, the receptor with an average sedimentation value of 4S, 
remained in association with heat shock protein 90(hsp 90) when there was no hormone 
bound to it (Pratt, 1990; Pratt &Toft, 1997). Hormone binding to the receptor initiated 
dissociation of the receptor form Hsp-90, which formed a key event in steroid receptor 
activation (Pratt, 1990). One of the major structural changes noticed in the receptor during 
its activation was the transformation of the 4S receptor to a form that sedimented at 5S in 
sucrose gradients containing 0.3M KCl (Shyamala & Gorski, 1969). 
The 4S-5S conversion was the target of several hypotheses that attempted to explain the 
molecular event. In the Hsp-90 model, it was clear that association of the receptor with Hsp-
90 prevented the nuclear migration of the receptor the reason for which was not clear at that 
time. It was the first ever report on the sequencing of amino acids of the human estrogen 
receptor α (ER α) by Chambon’s group at Strasburgh that paved the way for a number of 
active studies in this direction (Green & Chambon, 1987 a, b). The identification of the 
nuclear localization signal (NLS) in ERα (Kumar et al., 1986; Kumar et al., 1987) was one 
such landmark observation. Thampan’s group subsequently extended the studies using ERα 
isolated from goat uterus and purified and characterized a 55kDa protein (p55) that 
apparently recognized the nuclear localization signal (NLS) on ERα and initiated the nuclear 
entry of the receptor (Nirmala & Thampan,1995 a,b). The studies reported by Thampan’s 
group gave additional validity to the role of p55 in the nuclear entry of ERα. 

3. The role of estradiol in the nuclear entry of ERα 
Sai Padma et al (2000)and Sai Padma & Thampan(2000) observed that there were three 
nuclear proteins that contributed to the regulated entry of ERα into the nuclei. (a) the p55 
that recognized the NLS on ERα(b)a 28kDa protein,p28 that bound to the NLS signal on ERα 
and thereby prevented the p55-ERα interaction;(c)a 73 kDa protein,p73 that bound to the 
hormone binding domain(HBD)on ERα.Under hormone free conditions,p28 remained 
bound to the ERα NLS,blocking the NLS recognition by p55.Estradiol binding to the HBD 
and the consequent conformational change in the HBD brought the HBD-bound p73 in close 
interaction with p28.This resulted in the dissociation of p28 from the NLS which was 
subsequently occupied by p55.The interaction culminated in the nuclear entry of ERα,also 
mediated by the cytoskeletal elements, actin and tubulin(14). 

4. Search for the “receptor-activator” protein and the discovery of E-RAF 
There was a line of thinking that originated from Notides’(Notides & Nielson,1974)and 
Yamamoto’s (Yamamoto,1974)laboratories that in estrogen action there was a possibility for 
the involvement of a DNA binding X-protein in converting the non-DNA binding estrogen 
receptor to a DNA binding form. Based on these observations and consideration of a 
potential possibility that a non-hormone binding transcription factor could be involved in 
the “activation” process, Thampan and Clark (1981,1983) presented the first ever 
experimental evidence for the existence of an estrogen receptor activation factor (E-RAF) in 
the rat uterus. A parallel thinking that contributed to the design of experiments was the 
already available information that many transcription factors were moderately basic 
proteins and also that such proteins failed to bind to DEAE cellulose. It was this information 
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that primarily led to the separation of E-RAF from the estrogen receptor that it dimerises 
with during DEAE-cellulose chromatography. Thampan and Clark (1981) reported that a 3S 
protein of the rat uterine cytosol, that appeared in the DEAE cellulose flow through fraction, 
promoted the DNA binding of a specific class of non-DNA binding estrogen receptor. 
Thampan (1987,1989) in his reports on the purification of E-RAF observed that E-RAF 
existed in two molecular forms, E-RAF II and I. 
While both forms displayed identical molecular weight of 66kDa, their molecular shapes 
appeared to be different as displayed by the results of gel filtration chromatography and 
also in their dissimilar sedimentation behavior in linear sucrose density gradients. 
Functional assays were carried out in which the proteins were incubated with labeled DNA, 
which was subsequently exposed to S1 nuclease in order to digest the single stranded 
regions. The results showed that while E-RAF II destabilized DNA double helix and 
enhanced strand separation, the reverse property (stabilization of double helical structure) 
was found associated with E-RAF I. In vitro transcription assays involving isolated nuclear 
RNA polymerases also highlighted this differential behavior of the two molecular forms. 
While E-RAF II enhanced transcription, in a system containing nuclear RNA polymerase 
purified from goat uterine nuclei, E-RAF I inhibited transcription in a dose-dependent 
manner. 

5. A vision into the molecular identity of the type I and type II nuclear 
estrogen binding sites 
The report in which functional characterization of E-RAF was described (Thampan,1989), 
also presented a method for the assay for E-RAF in association with the nuclear RNA 
polymerases. Nuclear RNA polymerases were extracted from isolated rat uterine nuclei and 
subjected to partial purification through chromatography on DEAE Sephadex A-25 and 
elution with linear (NH4)2SO4 gradient. Ovariectomized rats were used in this study. While 
control rats received injection of the vehicle alone, experimental animals were subjected to 
subcutaneous injections of 3μg estradiol-17β for a duration of one hour. The RNA 
polymerase fractions derived from both control and experimental nuclei and eluted from 
DEAE-Sephadex A-25 column were subjected to the nuclear exchange assay that was 
developed earlier by Clark and coworkers (Clark & Peck,1979;Clark et al.,1979). It was 
through this nuclear exchange assay that Clark’s group had demonstrated the existence of 
type I and type II estrogen binding sites in rat uterine nuclei (Eriksson et al.,1978). 
Following DEAE Sephadex-A25 chromatography of nuclear sonicates, the fractions collected 
were subjected to the estradiol exchange assay as well as RNA polymerase assay with calf 
thymus DNA as the template .RNA polymerase peaks representing I, II, IIIa and IIIb were 
clearly demonstrated in the DEAE-Sephadex A-25column fractions. Also demonstrated was 
the estrogen binding function associated with all four peaks of RNA polymerase activity. 
The ‘receptor’ activity associated with the RNA polymerase II was subjected to further 
analysis. Sucrose density gradient analysis displayed two peaks of activity, a small peak at 
5S and a large peak at 3S.While the 5S peak was distinctly DNA binding, the 3S peak which 
represented the major share of receptor activity, remained non DNA binding. Subsequent 
studies (Thampan,1989) have demonstrated that the DNA binding function of the 5S peak 
was due to the presence of E-RAF and an estrogen receptor that dimerised with E-RAF 
while the non DNA binding 3S fraction was represented by a receptor that did not dimerise 
with E-RAF.The same studies have concluded, subsequently that the receptor of the 5S peak 
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complex. It was proposed that the cytosolic receptor existed as a high molecular weight 
form that sedimented at 8-9S in low salt linear sucrose gradients. Later studies have 
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was the non activated estrogen receptor (naER),a glycoprotein and a tyrosine kinase 
sensitive to the presence of estradiol and primarily localized at the plasma 
membrane(Karthikeyan & Thampan,1994). The naER was the only estrogen receptor that 
could dimerise with E-RAF.The 3S peak on the other hand, represented the nuclear estrogen 
receptor II (nERII), a tyrosine kinase insensitive to the presence of estradiol. The nuclear 
estrogen receptor II failed to dimerise with E-RAF, the obvious reason being the changes 
induced in naER conformation during its transformation to nERII (Karthikeyan & 
Thampan,1995;Thampan et al.,1996). The naER to nERII transformation was accomplished 
by a 61kDa nuclear naER-transforming factor (naER-TF), originally reported by Jaya and 
Thampan (2000). 

6. Factors regulating nuclear entry of E-RAF 
Endoplasmic reticulum is the primary site of localization of intracellular E-RAF.A 55kDa 
anchor protein, ap55, that binds estradiol with high affinity retains E-RAF at the 
endoplasmic reticulum (Govind et al.,2003 a,b). Figure 1 displays the immunolocalisation of 
E-RAF in the endoplasmic reticulum of a goat uterine cell.  
E-RAF remains anchored to ap55, through the mediation of a 66kDa nuclear transport 
protein, tp66. The tp66 recognizes the NLS in E-RAF.Within the E-RAF-tp66 complex, tp66 is 
anchored by ap55 in an estrogen dependent manner. Presence of saturating levels of 
estradiol maintains a specific conformation of ap55 that keeps tp66-E-RAF complex 
anchored to it. Lowering of estradiol concentration results in altered ap55 conformation that 
facilitates the release of tp66-E-RAF complex from ap55. The complex moves to the nucleus 
during which tp66 gets docked to a 38kDa nuclear pore-complex protein, npcp38. E-RAF 
enters the nucleus. 
E-RAF is a high affinity progesterone and cholesterol binding protein (Thampan et al., 2000). 
Under both conditions E-RAF dissociates from the ap55-tp66 complex and migrates to the 
nucleus (possibly also to the mitochondria as cholesterol bound form). Premkumar et 
al(1999)presented information on the functional domains of E-RAF.Nuclear run on 
transcription studies were carried out in order to identify the genes influenced by E-RAF.For 
this, subtractive hybridization approach was attempted (Jacob,2006). Free E-RAF which can 
be transported to the nuclei by tp66, and progesterone bound E-RAF that gets transported to 
the nuclei on its own displayed totally distinct response patterns. It was a 55kDa nuclear 
pore complex protein (npcp55) that docked progesterone bound E-RAF at the pore complex. 
On the contrary, the free E-RAF-tp66 complex was docked to npcp-38. While free E-RAF 
was found to enhance the expression of splicing factor(s) genes, a major gene that was 
shown to be influenced by progesterone bound E-RAF was the collagenase(s) gene(s). The 
gene(s) if any, that are under the regulatory influence of cholesterol bound E-RAF remain to 
be known. Also the nuclear pore complex protein that docks cholesterol bound E-RAF is to 
be identified. 
It appears that cholesterol is a natural regulator of E-RAF mediated gene expression 
(Thampan et al,2000). The presence of an inhibitor that prevented the dimerisation between 
E-RAF and naER in goat uterus was recognized early in E-RAF studies. The inhibition in the 
formation of E-RAF –naER heterodimer and the subsequent decline in the nuclear binding 
of the receptor was the assay target employed for the identification of this inhibitor. GC-MS 
analysis of the purified molecule showed its identity as unmetabolised cholesterol 
(Thampan et al,2000). 
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(A)The cells were fixed, permeabilised and exposed to rabbit anti-goat E-RAF IgG, followed by Cy3 
labeled anti rabbit IgG. 
(B)The cells were also stained with DiOC6 (3) to highlight the endoplasmic reticulum. 
(C)The merged figures created by confocal microscopy clearly showed that endoplasmic reticulum is 
the primary site of localization of E-RAF. 

Fig. 1. Intracellular association of E-RAF with endoplasmic reticulum in goat endometrial 
cells in culture. A primary culture of goat endometrial cells was exposed to estradiol-free 
medium for 48 hours following which the cells were examined under a Leica confocal 
microscope. 

7. E-RAF in pregnant rat uterus: significance of the findings 
Premkumar and Thampan (1995) examined the level of E-RAF in the uteri of pregnant rats 
during a full term of pregnancy. It was noticed that from day 1 of pregnancy the E-RAF titer 
in the uterus registered a steady increase. It reached an all time peak towards mid-
pregnancy following which E-RAF level began to decline. The rate of decline was found to 
be very fast; two days before parturition the uterine E-RAF titer became virtually 
undetectable. It is known that progesterone is essential for maintaining the functional 
integrity of the pregnant uterus. The possibility, therefore, exists that the E-RAF titer is a 
reflection of the progesterone requirement of the pregnant uterus. The decline in E-RAF titer 
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during the second half is again indicative of the need for progesterone withdrawal prior to 
parturition. The hypothetical presentation given in figure 2 takes into account the E-RAF 
titer in rat uterus during pregnancy.  
 
 

 
 

Fig. 2. A generalized plan of E-RAF titer in rat uterus during pregnancy. Uterine tissue 
was collected from a group of rats everyday during the 21-day pregnancy term. The tissue 
samples were homogenized in the coating buffer (10mM carbonate and 40mM bicarbonate 
buffer, pH 9.6), and the homogenates were centrifuged at 10,000Xg for 15 minutes. To the 
supernatant an equal volume of a suspension of DEAE cellulose in coating buffer was 
added. After 30 minutes of incubation in ice, the DEAE cellulose flow through fraction was 
collected. An aliquot of this fraction was used for E-RAF estimation through ELISA. The 
data takes into account the potential existence of an intracellular threshold level of E-RAF. It 
is being postulated that, beyond this threshold E-RAF enters the blood and gets transported 
to the specified site that, under conditions where E-RAF titer is low releases the hypothetical 
factor which, upon binding to its receptor on the uterine cell membrane, initiates the signal 
transduction events leading to enhanced E-RAF gene expression. 
During the negative regulatory mechanism the enhanced level of E-RAF could inhibit the 
release of the stimulatory factor, thereby suppressing the signal transduction process 
leading to E-RAF gene activation. 

If one assumes that there is an upper limit (threshold) in the uterine level of E-RAF, beyond 
which the E-RAF enters the blood, it is possible to reconstruct a molecular event. E-RAF is 
probably transported by the blood to an anatomical site (brain?), which is responsible for 
enhancing uterine E-RAF gene expression through distinct signal transduction mechanisms 
mediated by a specific macromolecular agent. Possibly, the presence of E-RAF in circulation 
could inhibit the release of this mediator, the eventual result being the decline in E-RAF 
synthesis, leading to the final disappearance of the proteins prior to parturition. Figure 3 
illustrates the proposed mechanism of action of this hypothetical regulator of E-RAF gene 
expression in uterine cells.  
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(1) Blood plasma (2) Target cell(3)E-RAF-GRA(E-RAF gene regulatory agent)(4)receptor for E-RAF-
GRA(5)signal transduction events that succeed the receptor –GRA-interaction(6)E-RAF gene 
expression(7)synthesis of E-RAF in the cytoplasm. 

Fig. 3. A model that explains the role of an external factor, transported by the blood, on 
uterine E-RAF synthesis. The factor recognizes its receptor on the target cell plasma 
membrane and induces signal transduction events which eventually terminate in enhanced 
expression of E-RAF gene.  

The model indicates that the regulatory factor,E-RAF gene regulatory agent(E-RAF-GRA) 
transported by the blood, binds to its receptor on the plasma membrane of the uterine cell. 
This interaction initiates a cascade of signal transduction events, ultimately leading to the 
enhancement in E-RAF gene expression in the nucleus and synthesis in the cytoplasm. The 
decline in the circulating presence of the factor, as it may happen during the second half of 
pregnancy, will be reflected in the decline in uterine E-RAF gene expression. Preliminary 
report has already been made on the presence of E-RAF in the goat uterine mitochondria 
(Praseetha & Thampan,2009). Possibly one of the major functions of E-RAF is to transport 
cholesterol to the mitochondria where it will be converted enzymatically to pregnenolone 
and progesterone.  

8. E-RAF and mammary cancer 
E-RAF could play a role in the progression of mammary cancer. E-RAF II is a very active 
transcription factor and this molecular form of E-RAF represents more than 75%of total E-
RAF population representing both E-RAFI and E-RAF II. If one assumes that the benign to 
malignant transformation of the mammary cancer is associated with enhanced expression of 
E-RAFII, that should be reflected in immunofluorescent detection of E-RAF in frozen 
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biopsies of mammary tissue. Figure 4 presents the results of a recent study carried out in 
this direction where the tissue sections were exposed first to anti E-RAF IgG and 
subsequently to FITC labeled secondary antibody. There is a dominating presence of E-RAF 
in the cytoplasm and also in the nuclei (primarily stained with propidium iodide).  
 

 
A cryostat section of human breast cancer biopsy was fixed, permeabilised and exposed overnight to 
rabbit anti goat E-RAF IgG at 40C.Further exposure of the section to goat anti rabbit IgG labeled with 
FITC was conducted in the dark for 1 hr following which the nuclei were stained with propidium 
iodide. The sections were examined using a Leica fluorescence microscope. The green fluorescence 
indicates the cytoplasmic presence of E-RAF.The nuclei are stained red with propidium iodide. 
However the presence of E-RAF in the nuclei is marked by the transition of the red colour to light 
orange and even yellow. 

Fig. 4. Detection of E-RAF in human breast cancer biopsy. 

If what I discussed in the previous paragraph regarding the brain derived regulator of E-RAF 
gene expression is proven correct, it is possible to suggest that defects in this regulatory 
protein mechanism and its action could lead to uncontrolled expression of the E-RAF gene. 
How does this enhanced expression of E-RAF gene influence mammary cancer progression 
remains to be seen. One of the major molecular targets of progesterone bound E-RAF is the 
collagenase gene. Whether the progesterone bound E-RAF mediated enhancement in 
collagenase gene expression has any role in mammary cancer metastasis is yet to be examined. 

9. Multiple intracellular sites for E-RAF action 
Recent observation regarding the positive presence of E-RAF in goat uterine mitochondria is 
indicative of a possible functional role for E-RAF in the mitochondria. Confocal microscopic 
studies conducted on goat endometrial cells in culture with exposure to varying 
concentrations of estradiol or progesterone showed that while 3-5nM concentrations of 
estradiol helped in the nuclear entry of E-RAF, progesterone mediated nuclear entry was 
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found to be effective only in the presence of 15-16nM progesterone. The corresponding 
effects produced in the presence of different concentrations of cholesterol remains to be 
seen. The postulate that the enhancement in E-RAF titer in the pregnant uterus is an indirect 
reflection of the progesterone production in the uterus during the first half of pregnancy 
takes into account the possibility that mitochondrial steroidogenesis in the uterine cell is 
under E-RAF control. As mentioned earlier, E-RAF may function as a cholesterol transporter 
to the mitochondrial steroidogenic site, eventually facilitating the conversion of cholesterol 
to pregnenolone and progesterone. The nuclear genes influenced by cholesterol-bound E-
RAF could well be those the products of expression of which are constituents of the 
mitochondrial steroidogenic complex like cytochrome P450(Fig.5) 
 

 
(1) Nucleus (2) Genes (3) Endoplasmic reticulum (4) Mitochondria (5) (5A) and (5B) Nuclear pore 
complex proteins that bind free E-RAF, progesterone-bound E-RAF and cholesterol bound E-RAF 
respectively. (6) ap55 (6A) Estradiol-bound ap55 (7) tp66 (7A) tp66-E-RAF complex (8) Free E-RAF (9) 
Progesterone bound E-RAF (10) Cholesterol bound E-RAF. 

Fig. 5. Mode of action of E-RAF in the target cell. 

The primary site of intracellular location of E-RAF is the endoplasmic reticulum where it 
remains anchored to the anchor protein 55(ap55) through the mediation of tp66 (transport 
protein 66) in an estrogen dependent manner.tp66 transports E-RAF to the nucleus, after 
dissociation from ap55, when the intracellular level of estrogen declines. When bound 
by cholesterol or progesterone, E-RAF dissociates from tp66 and moves independently to 
the nucleus. The nuclear entry of E-RAF again is regulated by nuclear pore complex 
proteins (npcp). Apparently it is the conformation of E-RAF that determines the identity 
of npcp with which it should interact. There is a distinct possibility that within the 
nucleus free E-RAF, progesterone bound E-RAF and cholesterol bound E-RAF recognize 
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and regulate the expression of specific sets of genes, possibly influenced by specific 
acceptor proteins. 
Mitochondria appears to be the other target of cholesterol bound E-RAF.The possibility 
exists that E-RAF functions as a cholesterol transporter to mitochondria, favoring the 
conversion of cholesterol to pregnenolone and progesterone.This higher titer of E-RAF 
should be reflected in higher production of uterine progesterone that could eventually 
contribute to the maintenance of the pregnant uterus during the first half of pregnancy. 

10. Identification of the estrogen receptor that dimerizes with E-RAF 
The experimental observations on the goat uterine E-RAF signals a clear indication that a 
special class of estrogen receptor dimerised with E-RAF within the nucleus. A DNA 
cellulose binding assay was developed in which the non-DNA binding estrogen receptor 
was labeled with 3H-estradiol and the binding of the hormone-receptor complex to DNA 
cellulose in the presence of E-RAF was quantitated. Anuradha et al (1994) reported on the 
isolation and characterization of a 66kDa, high affinity estrogen binding protein from the 
goat uterus. The receptor displayed the same affinity to bind estradiol as that of the estrogen 
receptor α (ER α). In view of its inability to bind to DNA on its own, this new estrogen 
receptor was designated as non-activated estrogen receptor (naER). 
A method was developed for the isolation of the non-DNA binding estrogen receptor that 
dimerized with E-RAF.The method involved preparation of goat uterine cytosol, 
collection of the DNA-Sepharose unadsorbed fraction, successive ion exchange 
chromatography over DEAE cellulose and phosphocellulose and finally Hsp 90 Sepharose 
chromatography in the presence of sodium molybdate, achieving final elution with zero 
molybdate buffer (Anuradha et al.,1994). While showing its distinctiveness over ERα, as a 
non DNA binding protein, the naER further demonstrated its function as a glycoprotein 
and a tyrosine kinase (Karthikeyan & Thampan,1996). The tyrosine kinase property was 
sensitive to the presence of estradiol: the enzyme activity was totally inhibited in the 
presence of the hormone at concentrations which saturated its binding sites. The 
observation was a clear indication to the possibility that the naER tyrosine kinase activity 
can become functional only after naER undergoes a critical structural change within the 
cell. 
Direct biochemical analysis showed that plasma membrane is the primary site of 
localization of naER (Karthikeyan & Thampan,1996). The possibility of plasma membrane 
being a site of intracellular localization of estrogen receptor was first proposed by Pietras 
and Szego (1975,1977) several years ago. Sreeja and Thampan (2004 a,b) demonstrated that 
naER dissociated from the plasma membrane following exposure to estradiol. This was 
shown to be an estrogen-specific phenomenon since non-estrogenic steroids failed to bring 
about the dissociation while the non steroidal estrogen, diethylstilbestrol was as effective 
as estradiol-17β in inducing naER dissociation from the plasma membrane. What was 
unique in this observation was that the dissociation of naER appeared to be an energy 
dependent process. The involvement of a Ca++/Mg++dependent ATPase in the process was 
evident. Enhancement of the ATPase activity was dependent on exposure of the membrane 
to estradiol and the activity was inhibited by the flavanoid, quercetin(Sreeja & 
Thampan,2004 a). 
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11. Protein protein interactions during naER internalization following 
estradiol binding 
The studies reported from our laboratory (Sreeja & Thampan, 2004 b) have indicated that 
the internalization of naER from the plasma, following estradiol binding to the receptor was 
a clathrin-coated vesicle (CCV)-mediated mechanism. A 55 kDa protein of the CCV, 
apparently carrying the internalization signal (Trowbridge at al, 1993) is the target protein 
for naER in CCV. The internalized naER interacts with a 58kDa nuclear transport protein, 
the actin binding p58, that recognizes the nuclear localization signal (NLS) on the receptor. 
Prior to recognizing p58, the site involved on the naER is bound by Hsp-90.Estradiol 
binding to naER promotes dissociation of Hsp-90 from the receptor (Anilkumar at al., 2010). 
Confocal microscopic studies presented in this study showed that in goat endometrial cells 
in culture exposure of the cells to estradiol resulted in the intracellular movement of both 
naER and Hsp-90. It was observed that both naER and Hsp-90 entered the nuclei within a 
matter of 3 hours following the exposure of the cells to estradiol. The functional significance 
of Hsp-90 in the nuclei remains to be known.naER is transformed into nuclear estrogen 
receptor II (nERII) within the nucleus. It is evident that this change in identity is associated 
with a distinct structural change in the protein. Possibly, this transformation that takes place 
within the nucleus is chaperoned by Hsp-90. 

12. Nuclear estrogen receptor II (nERII) 
Long before naER discovery became a reality, a nuclear receptor that was distinctly different 
from the classical estrogen receptors had come to my notice. It was observed that when 
uterine nuclei from ovarectomized rats were exposed to 10nM 3H-estradiol,at 30-370C, the 
hormone-binding component moved out of the nuclei and reached the outer medium within 
a span of 5 minutes after hormonal exposure (Thampan,1985;1988). What became apparent 
in the subsequent studies was that the hormone was bound to a class of ribonucleoproteins 
(RNP) that moved out of the nuclei following exposure to estradiol. Invivo studies involving 
ovariectomized rats demonstrated that the RNP that moved out of the nuclei was found 
associated with cytoplasmic polysomes. The results gave a clear indication to the possibility 
that a new class of estrogen receptors existed whose primary functional role was in post-
transcriptional control mechanisms like splicing, nucleocytoplasmic transport of RNP and 
the translation. 
The subsequent studies reported by our group(Jacob et al.,2006) presented systematic 
observations on both naER and nERII and concluded that the latter was a transformed form 
of the former. The observed differences between the two proteins are being listed 
below(Table 1). The methods employed for purifying the two proteins were identical. 
Going back to the observations related to E-RAF function (Thampan,1989), it may be recalled 
that the estrogen receptor function detected in close proximity to rat uterine nuclear RNA 
polymerases displayed both naER and nERII characteristics with nERII representing the major 
share of this activity. The naER existed in dimerisation with E-RAF.Later reports by 
Karthikeyan and Thampan (1996) showed that nERII tyrosine phosphorylated three subunits 
of nuclear RNA polymerase II.A re-examination of the 1989 report(Thampan,1989) will reveal 
that the naER/nERII interaction was not restricted to RNA polymerase II alone. There was 
very clear evidence to support the hypothesis that the receptor interacted with all four classes 
of nuclear RNA polymerases. Therefore, it may be speculated that nERII –mediated tyrosine 
phosphorylation involved specified subunits of all 4 categories of the enzyme. 
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 naER nERII 

Sedimentation Value 4.6S 3.7S 

Stokes radius 36A0 23 A0 

Glycoprotein nature Yes No 

Tyrosine kinase activity Sensitive to exposure to 
estradiol 

Insensitive to estradiol 
exposure 

Dimerisation with E-RAF Yes  No 

Interaction with Hsp-90 in the 
presence of estradiol 

No Yes 

nM estradiol needed for 
saturation binding 

20 30 

The factor responsible for this transformation was subsequently found to be a 61kDa protein, the naER 
transforming factor (Jaya & Thampan,2000). 

Table 1. Comparison of molecular properties associated with naER and nER II of the goat 
uterus 

13. Does tyrosine phosphorylation of a RNA polymerase subunit favour its 
dissociation from the core enzyme? 
The two models presented here (figures 6 and 7) make an attempt to find an explanation for 
the observations mentioned above. 
 

 
(1) Gene (2) RNA polymerase (3) RNA polymerase subunit that is recognized by naER (4) naER (5) E-
RAF (6) estradiol-17β (7) spliceosome (8) nERII (9) RNA polymerase subunit phosphorylated by nERII 
(10) other subunits dissociated from the RNA polymerase (11) RNA (12) Nuclear pore complex (13) 
Nucleus (14) cytoplasm. 

Fig. 6. naER-nERII transformation during post transcriptional control of gene expression. 
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The figure on the left displays the interaction of naER-E-RAF heterodimer with genetic 
elements. While E-RAF recognizes the DNA, naER binds to nuclear RNA polymerase 
subunits. The figure on the right is a spliceosome -set -up in which the nERII –RNA complex 
is shown in association with subunits dissociated from RNA polymerase. 
nERII is a RNA binding estrogen receptor. Whether naER-E-RAF heterodimer has its 
binding site on the target gene different from those of the ERα/ERβ mediated gene 
regulation or whether the action of the heterodimer is independent of the classical estrogen 
receptor function remains to be clarified. The binding site on the estrogen responsive target 
gene for E-RAF-naER heterodimer has not yet been identified while there is every likelihood 
to suggest that it will be different from the estrogen responsive element(ERE).A candidate 
site could well be AP-1 site in view of an earlier observation that c-fos and E-RAF share 
immunological similarity.  While E-RAF binds to the gene, naER interacts with the nuclear 
RNA polymerases. Possibly, the naER to nERII transformation could be an event that takes 
place at the end of the transcription process initiated by the heterodimer. At this stage, nERII 
dissociates from E-RAF and binds to the RNA (rRNA/mRNA/5S rRNA/tRNA). I wish to 
propose here that the phosphorylated subunits of the RNA polymerases might dissociate 
from the core enzyme and move along with nERII during the succeeding stages of gene 
regulation that witness splicing, nucleocytoplasmic transport and translation. 
Sebastian and Thampan (2002 a,b)and Sebastian et al(2004) presented some fascinating 
observations in this context. Goat uterine nERII was found to be associated with 
ribonucleoproteins containing U-1 and U-2 snRNA’s. Within the snRNP framework nERII 
interacted with three proteins with molecular masses 32kDa, 55kDa and 60kDa.While p55 
and p60 were found to be RNA binding proteins, p32 was found to be involved only in 
protein-protein interactions with nERII. Whether this protein is the same as SC35 reported 
by Parnaik in the context of spliceosome assembly (Tripathi & Parnaik,2008) remains to be 
seen. It was interesting to observe that nERII in association with p32 and p55 formed an 
effective Ca++/Mg++ activated ATPase that appeared to be directly involved in the 
nucleocytoplasmic movement of RNP. 
 

 
(1) nERII (2) rRNA (3) RNA polymerase I subunit(4)40S ribosomal subunit(5)60S ribosomal subunit. 

Fig. 7. A hypothetical representation for the association of nERII with 40S ribosomal 
subunit. 
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The assumption is that nERII binding to subunits of RNA polymerase I, followed by nERII 
mediated tyrosine phosphorylation of those subunits results in the dissociation of the 
subunits from the enzyme along with the rRNA, remaining bound to nERII. The rRNA-
nERII-RNA polymerase I subunit complex is shown here as forming an integral part of the 
40S subunit of the ribosome.  
I wish to speculate here that the subunits dissociated form the RNA polymerases following 
phosphorylation by nERII could continue their association with nERII and find their 
involvement in splicing reactions, nucleocytoplasmic transport of RNA and eventually, in 
translation. If this assumption is correct, future studies on ribosomal subunits should be able 
to confirm the presence of RNA polymerase I and III subunits in 40S ribosomes. It should 
also be possible to confirm whether the RNA polymerase II subunits are present in 
spliceosomes. 

14. General conclusions and hypothetical possibilities 
1. Discussions exclusively on the classical estrogen receptors, ERα and ERβ will serve to 

uncover only limited information on the role of the receptors in regulating gene 
expression. 

2. There is a distinct possibility that naER-E-RAF heterodimer has a parallel role to play in 
regulating transcriptional events as has been proposed for ERα and ERβ. 

3. nERII is undoubtedly the estrogen receptor that mediates post transcriptional events in 
gene expression in estrogen target cells. 

4. The nERII-mediated events are related to gene expression protocols influenced by all 4 
forms of nuclear RNA polymerases. 

5. E-RAF targets both the nucleus and the mitochondria. Free E-RAF, progesterone-
bound E-RAF and cholesterol bound E-RAF encounter distinct genes that are under 
regulatory influence. It might function as cholesterol transporter to the mitochondria 
and facilitate mitochondrial steroidogenesis leading to the production of 
progesterone. This is, in all possibility, a mechanism projected to take place during 
pregnancy. 

6. The possibility exists that there is an “external”regulator of E-RAF gene expression and 
also that this regulatory agent is involved in the control of E-RAF gene expression in the 
pregnant uterus. 

7. The possibility for a role for E-RAF in the progression of mammary cancer cannot be 
ruled out. Studies to be held in the near future are bound to enlighten this possibility. 
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1. Introduction 
Two important functions of testis are production of spermatozoa and synthesis of steroids. 
These functions depend on anatomical, hormonal and constitutional homeostasis and begin 
during the first stage of gestation. Cryptorchidism can be defined as an abnormal 
localization of one or both testes. It’s the failure of one or both testes descent into the scrotal 
sac. The third trimester in humans is crucial for the testis descent. When the testis is not 
found in normal location it may be palpable or nonpalpable. The palpable testis may be 
cryptorchid, ectopic or retractile. Non-palpable testis may be cryptorchid, atrophic or  
absent. Cryptorchidism occurs when the testis fails to descend into its normal postnatal 
location and may be found in the abdomen, in the inguinal canal or just reaching the 
external ring (prescrotal) (Nguyen 1999). Before sex determination, both female and male 
embryonic gonads are located in the same high intra-abdominal position. During 
mammalian development, the cranial suspensory ligament (CLS) and the caudal ligament 
(or gubernaculum) is responsible for a sexual dimorphic position of the testis and ovary. In 
males, regression of the CLS, along with the outgrowth of the gubernaculum and its 
migration to the scrotum, results in the extraabdominal position of the testis (Agoulnik 2005). 
Androgens induce regression of the cranio-suspensory ligament to release the testis to 
descent. The inguinoscrotal descent of the normal testicle takes place between 26 and 35 
weeks of gestation. In preterm males with cryptorchidism the testes may descent postnatally 
(Berkowitz 1993, Cortez 2008). Cryptorchidism is one of the most common urogenital 
disorders in boys. Cryptorchidism can occur as an isolated disorder or may be associated 
with other congenital anomalies. The intraabdominal temperature is dangerous for germ 
cells and cryptorchidism may be a risk factor for male infertility and for testicular 
malignancy in adulthood. The decrement in intratesticular temperature in adult males is 2-
4ºC lower compared with body temperature (Thonneau 1998). This temperature difference 
is necessary to maintain spermatogenesis. The lower temperature in the scrotum is essential 
for normal spermatogenesis. Dangerous effects of increased temperature on 
spermatogenesis are well documented. For undescended testis abnormal spermatogenesis 
may be related with degenerative changes connected with high temperature (Mieussed 
1993). This condition affects both morphology and function of the Sertoli and Leydig cells of 
the testis (Farrer 1985) The association of cryptorchidism with testicular cancer is also well 
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documented (Giwercman 1989). The prevalence of cryptorchidism among boys is 2-4% in 
full - term male birth and 2-8.4% among boys with premature births. The incidence of 
cryptorchidism is significantly increased in premature males (Berkowitz 1993). Presently we 
observe an increased trend in the incidence of congenital cryptorchidism. Sometimes 
statistics includes testis in a high scrotal position (as normal descent) or cryptorchid testis 
may spontaneously descent in the first months after birth, therefore the incidence of 
cryptorchidism decreases from 1% to 0.5% by age of 1 year due to spontaneous descent 
(Barthold 2003). In earlier studies it has been speculated that the late spontaneous testicular 
descent occurs in more than half (Boisen 2004) or 70% of newborns with cryptorchidism. On 
the contrary the data obtained by Wenzler et al. (Wenzler 2004) showed that in patients with 
cryptorchidism spontaneous testicular descent occurs infrequently during the first year of 
life. They found that in patients with cryptorchidism before 12 months only 6.9% of the 
cryptorchid testicles reached the acceptable scrotal location at age of 1 year or later (Wenzler 
2004). There are large regional differences in incidence of cryptorchidism. The study on the 
prevalence of congenital cryptorchidism in Demmark and Finland was also performed and 
much higher incidence of congenital cryptorchidism in Denmark was found. In Denmark an 
increase in reproductive health problems is explained by environmental factors, including 
endocrine disrupters and a lifestyle (Boisen 2004). In the meantime the incidence of 
cryptorchidism has increased in many countries. In two comparable British studies the 
incidence of cryptorchidism delivered at term boys approximately doubled between the 
1950s and the 1980s. (Toppari 2001). However the report by Cortes (2008) has shown that the 
incidence of cryptorchidism in Denmark has not changed and is similar to the previous 
reports obtained in the 1950s. They have pointed out the general difficulties to compare the 
frequency of cryptorchidism as reported in different publications, since the definition of 
cryptorchidism is not yet uniform (Cortes 2008). The International Clearinghouse for Birth 
Defects Monitoring System has collected data on cryptorchidism, but they are unreliable, 
because of a discrepancy with the data from cohort studies (Toppari 2001). The present 
incidence may be even higher than reported one because of under-reporting tendency 
(Kaleva 2005).  
Cryptorchidism is a risk factor for male infertility in adulthood and for the male health 
(testicular cancer). Cryptorchidism uni- or bilateral is associated with degenerative changes 
in Sertoli cells and germ cells and is the most common etiologic factor of azoospermia 
(Hadziselmovic 2001). 89% of untreated cryptorchid patients with bilateral maldescent 
develop azoospermia and 32% treated medically or 46% boys treated surgically develop 
azoospermia (Hadziselimovic 2001). Hormonal treatment with human chorionic 
gonadotropin (HCG) or gonadotropin releasing hormone may be given initially for 
cryptorchidism. Very often a surgical intervention is needed to protect function of 
seminiferous tubules and to prevent degenerative changes in Sertoli and germ cells saving 
the man’s future fertility potential.  

2. Pathogenesis of cryptorchidism 
The etiology of cryptorchidism remains mostly unclear (Foresta 2008). The main risk factor 
is preterm birth, low birth weight, disrupted endocrine regulations, several gene defects and 
environmental factors (endocrine disruptors). Preterm birth and small size for gestational 
age are risk factors for cryptorchidism (Pierik 2004). Cryptorchidism is considered to be 
indirectly related to birth weight. The incidence of cryptorchidism is about 20-25% in infants 
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with birth weight less than 2.5 kg (Scorer 1964). Androgens play a crucial role in the 
development of male external genital organs and testicular descent. Hormonal 
dysregulation can be one out of many etiological factors of cryptorchidism (Suomi 2006). 
Testicular descent is at least partly dependent on fetal testicular testosterone, which in turn 
is initiated and maintained by human chorionic gonadotropin produced by the placenta 
(Biggs 2002). An increased risk of cryptorchidism in cases with placental abnormalities is 
noted (Biggs 2002). The increasing incidence of reproductive abnormalities in human males 
may be associated with increased estrogen exposure during gestation. The increased 
expression of estradiol in the syncytiotrophoblast may have impact on testicular descent 
(Hadziselmovic 2000). Industrial and agricultural chemicals acting as endocrine disrupters 
might have a deleterious effect on normal male sexual differentiation. These chemicals may 
occur in our close environments of work and life, drinking water, a food. Humans can also 
be exposed to natural phytoestrogens through consumption of food products derived from 
the plants (Toppari 1996, Sultan 2001). Various groups of chemicals, including pesticides 
and phthalate esters, have been identified as being weakly estrogenic or antiandrogenic 
(Sharpe 2003). Ferlin has proposed a distinction between intrinsic and extrinsic causes of 
cryptorchidism. In the first group frequenly displayed bilateral cryptorchidism is associated 
with progressive testicular damage and icreased risk of infertility or testicular damage. In 
these cases early orchidopexy may reduce the risk of these consequences but does not 
eliminate it definitely. Genetic alterations are more frequent in this group (Klinefelter 
syndrome, RXFP2 gene mutations) (Ferlin 2008). In the group with extrinsic causes of 
cryptorchidism (low birth weight, prematurity, maternal diabetes or preeclampsia during 
pregnancy) a spontaneous descent in the first months of age is noted. The early orchidpexy 
can reduce almost completely risk of testicular damage (Trisnar 2009). The possible genetic 
background of cryptorchidism still remains unresolved and genetics causes are rarely found 
(Ferlin 2008). 
The following genetic abnormalities may be associated with cryptorchidism: 
- - mutations in the gene coding for insulin-like factor 3, 
The mutation R102C was detected in a boy with unilateral persistent cryptorchidism (Ferlin 
2008). The other mutation (T86M) was detected in a boy with bilateral cryptorchidism and 
spontaneous descent in the first months of age (Ferlin 2008). 
- mutations in INSL3 receptor gene (RXFP2). 
- mutations in the gene coding for receptor for insulin-like factor 3, 
INSL3/LGR8, 
- mutations in the androgen receptor gene, 
- chromosomal alterations in Klinefelter syndrome. 
Familial occurrence – cryptorchidism is heritable susceptibility.  
Seasonal variation in the incidence of cryptorchidism suggest that environmental factors 
may have the importance in its etiology. Cryptorchidism can be often the consequence of 
testicular dysgenesis, a developmental disorder of the gonads due to disruption of 
embryonal programming and gonadal development during fetal life. Testicular dysgenesis 
syndrome (TSD) can result in maldescent, reduced fertility and an increased risk for 
malignant development, increased frequency of incomplete descent of a testis into the 
scrotum and hypospodias (Skakkebaek 2001). TSD can arise due to environmental factors 
including endocrine disrupters (potential endocrine disruptors in diet, in place of 
occupation; lifestyle, dietary phytoestrogens, present in food, water, air) or genetic defects. 
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The contalateral testis in men with unilateral testis cancer (Berthelsen 1983) or unilateral 
cryptorchidism (Kaki 1999) can be often damaged as well. There is also clear confirmation of 
testicular dysgenesis syndrome. Fetal exposure to endocrine disruptors (EDs) with estrogen-
like or antiandrogen-like activity has been suggested as a cause for TDS (Sharpe 1993). 
Environmental or genetic defects can influence Leydig cell function and result in androgen 
insufficiency which may cause testicular maldescent (Skakkebaek 2001).  
Uterine exposure to environmental endocrine disruptors can have also deleterious effects on 
male reproductive system development in embryos. Environmental endocrine disruptors 
(EEDs) are defined as exogenous substances witch can disrupt endocrine homeostasis and 
reproduction. EEDs include xenoestrogens, synthetic hormones, natural hormones or 
substances affecting endocrine signaling (Vidaeff 2005). 
Chemicals have been found to possess either weak estrogenic, anti-androgenic or other 
hormonal activities, which are often referred to as endocrine disrupters. Fetal or perinatal 
exposure to endocrine disrupters results in disturbed sexual differentiation, urogenital 
malformations and decreased reproductive health in adult life (Sharpe 1993).  
The significantly increased risk of bilateral cryptorchidism in boys whose mothers smoked 
heavily during pregnancy may indicate that heavy maternal smoking can be included in the 
pathogenesis of cryptorchidism (Throup 2005). Altered hormonal levels in smokers may 
have a casual role in cryptorchidism. Paternal pesticide exposure may be also associated 
with cryptorchidism. The investigation of circulating androgens bioactivity in 3-month-old 
boys suggests that infant boys are exposed to biological effects of androgens during the 
postnatal activation of the hypothalamic-pituitary-testicular axis, and the degree of the 
exposure may result in testis location superior to the scrotum (Raivio 2003) 

3. Hormonal regulation of testicular descent 
Testicular descent is hormonally regulated. Regulation of testicular descent is not yet 
completely understood. There are various forms of cryptorchidism (congenital with or 
without spontaneous descent, mild versus severe, acquired). These forms may reflect 
distinct hormonal patterns which differ in each situation (Suomi 2006). Apart from 
anatomical configuration and hormonal stimulation, genetic control of testis descent is very 
important. Major regulators of testicular descent are insulin-like factor 3 and testosterone. 
Testes migrate from initial intraabdominal position into the scrotal sac in two distinct 
hormonally regulated phases. During the first transabdominal phase (androgen 
independent) (10-23th week gestation) the CLS (cranial suspensory ligament) regresses while 
the gubernaculum shortens and develops caudal segment into the gubernaculum bulge. The 
second inguinoscrotal phase (depends on androgens) is normally completed by the 35th 
week – the gubernaculum extends caudally into the scrotum and involutes, following the 
passage of the testis through the inguinal canal. 
The first phase of testis descent (transabdominal) is regulated essentially by insulin-like 
factor 3 (INSL3), a peptide, product of the pre- and postnatal Leydig cells. INSL3 controls 
the passage through its receptor Lgr8 (leucine-rich-containing repeats G protein-coupled 
receptor). Genetic disruption of the Insl3 gene or its receptor (Lgr8) in mice has led to high 
intraabdominal cryptorchidism (Adham 2004). In the second phase (inguinoscrotal) 
androgens (testosterone) are the major mediators of testis descent (Foresta 2008). The 
inguinoscrotal phase is at least partly dependent on fetal testicular testosterone secretion, 
which in turn is initiated and maintained by human chorionic gonadotropin produced by 
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placenta. In mutation analysis of the human homologs of INSL3, LGR8 or HOXA10 genes in 
patients with cryptorchidism there were rarely found mutations or polymorphisms 
(Bogatcheva 2005, Bertini 2004). 
For a normal descent and testicular development of the testes, a normal hypothalamo-
pituitary-gonadal axis is essential. Certain androgens:estrogens ratio is required for 
physiological function of the testis. Steroid hormones act through specific receptors: ARs, 
ERα, ERβ.  
Insl-3 is under estrogenic control. Mutations in ins-3 gene showed a low incidence at 1.3% in 
patients with cryptorchidism. Estrogens may affect insl-3 expression and may have a role in 
regulation of testicular descent (Tomboc, 2000).  
Androgen receptors (ARs) mediate the biological effects of both T and 5α-
dihydrotestosterone. AR mutations are not a frequent cause of isolated cryptorchidism 
(Ashim 2004, Ferlin 2006, Ferlin 2008). AR mutations in men with history of cryptorchidism 
are connected rather with infertility. The AR is highly polymorphic due to a glutamine 
repeat (CAG) and a glycine repeat (GGN). Polymorphic CAG and GGN segments regulate 
AR function. A clear associations were observed between shorter CAG repeats and 
disorders dependent on enhanced androgen action. Longer CAG repeats have been 
associated with undescended testes, idiopathic hypospadias and decreased sperm counts. In 
result of combined analysis of CAG and GGC repeat lengths the stronger association with 
cryptorchidism was found (Ferlin 2005). The CAG repeat length has been also assessed in 
males with cryptorchidism, but no association between CAG repeat length and 
undescended testes was found in Japanese population (Sasagawa 2000) or Caucasian 
population (Aschim 2004). It was indicated rather association between GGN length and 
cryptorchidism or hypospadias (Aschim 2004). Median GGN lengths were significantly 
higher (24 vs. 23) among subjects with cryptorchidism, compared with controls and subjects 
with hypospadias. GGN length 23 is the most prevalent in males from general population. A 
majority of individuals with cryptorchidism demonstrated GGN numbers of 24 or more 
(Aschim 2004).  

4. Hypothalamic-pituitary-testicular axis 
Androgens regulate testicular descent, but androgen action alone is not sufficient for normal 
testicular descent. A proper hypothalamus-pituitary-testis axis function together with 
normal synthesis and action is a prerequisite for normal testicular descent. Various defects 
in this axis may result in cryptorchidism (Toppari 2007). Regulation of androgen production 
depends on hCG (placental human chorionic gonadotropin) and LH (pituitary luteinizing 
hormone) actions. INSL3 (insulin-like hormone-3) is the main regulator of gubernaculum 
development and testicular descent. Reduced levels of INSL3 may cause cryptorchidism 
(Toppari 2007). INSL3 production is also related to LH levels. Cryptorchid boys have 
normal testosterone and elevated LH levels (Toppari 2007). The first postnatal months of 
boys are characterized by activation of the hypothalamic-pituitary-testicular axis that results 
in the well depicted surge of reproductive hormones. Serum testosterone levels at that time 
are high, but infants do not display signs of virilization, and subsequently there is only 
indirect evidence that circulating androgens during the surge are biologically active. Three-
month-old boys are exposed to biological effects of androgens during the postnatal 
activation of the hypothalamic-pituitary-testicular axis, and this exposure may be reduced in 
boys with at least 1 testis located superior to the scrotum. Functional integrity of the HPG 
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axis is fundamental for testicular descent. Gonadotropin-releasing hormone (GnRH) 
regulates the production of pituitary gonadotropins FSH and LH. Gonadotropins FSH and 
LH are the main regulators of postnatal testicular activity. LH stimulates Leydig cells to 
produce testosterone while FSH regulates Sertoli cell functions (Toppari 2006). Human fetal 
testis binds hCG and physiological levels hCG stimulate testosterone production at least 
from 14 weeks of gestation (Huhtaniemi 1977). LH becomes more important regulator of 
fetal testosterone synthesis in the late pregnancy (Quinton 2001). The high percentage of 
cryptorchidism cases resolves spontaneously during the period of high serum gonadotropin 
and steroid hormone levels at the age of 1-3 months (Anderson 1998).  
Testosterone is one of the main regulators of testiculat descent. It is the main androgen in 
the circulation, mainly protein-bound, either strongly to sex hormone binding globulin 
(SHGB), or loosely to albumin. Only about 2% of this hormone is unbound; this is called free 
testosterone and is considered to be the most biologically active form of testosterone. In the 
target tissue testosterone can either bind directly to the androgen receptor (AR) or, if the 
tissue expresses the enzyme 5a-reductase, can be converted to dihydrotestosterone (DHT). 
Testosterone is produced by Leydig cells and low testosterone level is a consequence of a 
reduced ability of the Leydig cells to synthesize T.  
Impaired testosterone biosynthesis or distinct increase in testosterone metabolism is 
observed in cryptorchidism. Aromatase may convert androgens into estradiol. Testosterone 
is converted by aromatase CYP 19 to estradiol in many tissues of healthy men. The 
development of internal male genitalia is testosterone dependent, and 5α-
dihydrotestosterone (synthesized from T by the enzyme 5α-reductase 2) is essential for 
normal external masculinization. DHT is produced from circulating testosterone, which is 
manufactured by the fetal testis under stimulation of hCG.  
Estrogens Estrogens are necessary for maintaining functional integrity of the male 
reproductive tract. Estrogens and ERα are important for fertility. Excess of estrogens can 
affect function of the cells of male reproductive system. The excess of estrogens was 
reported to be associated with cryptorchidism, epididymal defects, impaired fertility. 
Estradiol however is an essential hormone for male reproduction. The maternal and 
placental estradiol is elevated in children with cryptorchidism. The increased expression of 
estradiol in the syncytiotrophoblast may have an impact on testicular descent 
(Hadziselmovic 2000). Low estrogen levels in mothers may mean that a placental defect 
increases the risk of cryptorchidism (Mc Glynn 2005). Estrogens are synthesized in the male 
reproductive system by at least four different cell types: Leydig cells, Sertoli cells, germ cells 
and epithelial cells of the epididymis. Estrogens are synthesized in a cortex of the adrenal 
gland, too. In the immature testis, the main source of estrogens are Sertoli cells. 
In horse and mouse in vivo cryptorchidism is associated with the increase in conversion of 
androgens to estrogens in the testis (Hejmej 2008), epididymal duct and the prostate. 
Increase in testosterone metabolism rather than an impairment of testosterone production is 
proposed to explain incidence of cryptorchidism. Testicular descent is significantly inhibited 
by estradiol. The estrogen effect might be mediated through suppression of fetal Leydig cell 
development, with resulting decrease of androgens and INSL3 production.  

5. Estrogen receptor α, ERs 
The association of cryptorchidism with a specific haplotype of the estrogen receptor 1 gene 
was reported (Yoshida 2005). The specific haplotype AGATA located within the 3’ end of 

 
Cryptorchidism and Steroid Hormones 

 

91 

human ESRI1 is associated with cryptorchidism in the Japanese population. The AGATA 
haplotype was frequently found to be significant in cryptorchid children. Homozygosity for 
the AGATA haplotype was found only among cryptorchid boys (Yoshida 2005). ERα and 
PR (progesterone receptor) expressed in paratesticular tissues are important for normal 
testicular descent. ERα was overexpressed in boys with undescended testis previously 
treated with human chronic gonadotropin (Przewratil 2004).  
The analysis of the whole AGATA haplotype is possible by testing only the SNP12 (the tag 
SNP for the AGATA haplotype). Results obtained by Galan indicated that SNP 12 is the tag 
SNP for the AGATA haplotype also in Caucasians, but is not connected with 
cryptorchodism and infertility. Surprisingly ESR1 SNP12 may have a protective effect on 
cryptorchidism in the Italian populations, since it was found more frequently among 
healthy populations (Galan 2007).  
Progesterone influences spermiogenesis, sperm capacitation/acrosome reaction and 
testosterone biosynthesis in the Leydig cells. The detection of progesterone receptor (PR) 
isoforms have a diagnostic value in prostate cancer (Oettel 2004). The position of the 
undescended testis did not appear to influence progesterone metabolism (Läckgren 2008). 
PRs density was higher in paratesticular tissues (cremaster muscle and processus vaginalis) 
obtained from boys with undescended testis compared to the control group (Przewratil 
2005) 

6. Steroid hormones, male immune system and reproductive system 
Steroid hormones especially testosterone, progesteron and estradiol can modulate the 
immune system. The relationship between the immune system and reproduction is very 
strict. The immune response may be involved in reproductive processes what may interfere 
with fertility. A role of estrogens and testosterone in (auto)antibody production was proved. 
Estrogens increase, while testosterone decreases antibody production. Immune disorders 
have been formulated to take part in etiology of cryptorchidism. 
The significant associations of cryptorchidism with HLA class I antigens were found. Some 
associations of HLA class I alleles (HLA-A11, A23, A29) with cryptorchidism were 
explained by their crossreactivity with receptors for LH and hCG present on fetal Leydig 
cells and/or interference with the hormone-binding sites through a mechanism of 
“molecular mimicry” (Martinetti 1992). Most likely the ”molecular mimicry” between 
hormonal receptors and HLA surface antigens may also play a role in etiopathogenesis of 
cryptorchidism. The human major histocompatibility complex class II HLA molecules, by 
presenting antigens to helper T cells, play a decisive role in induction of antibody 
production (Chen 2008). Antisperm antibodies (AsA) in serum samples from prepubertal 
boys with testicular failure were substantially reported (Lenzi 1991, Kurpisz 1996, Sinisi 
1998). We have investigated the frequency of HLA class II alleles to recognize possible 
genetic predisposition for antisperm antibodies development in prepubertal boys with 
diagnosed cryptorchidism. We have found, a strong correlation between the presence of 
some HLA-antigens in patients with unilateral and bilateral cryptorchidism, and a formation 
of antisperm antibodies. We have observed that boys suffering from bilateral cryptorchidism 
differed from controls in their HLA-DRB1*11 frequency. Associations of cryptorchidism with 
some HLA-DRB1 and HLA-DQB1 alleles, very rare in Caucasians, were described only for a 
Japanese population (Tsuji 2000). No correlation with HLA class II polymorphism, however, 
was observed in a study of Italian population. We have observed strong difference between 
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cryptorchidism with history of infertility within these families and healthy controls, showing a 
high risk for HLA-DRB1*11 bearers. This result may suggest that sporadic and familial 
cryptorchidism may have different genetic background. HLA-DRB1*11 was also, albeit 
weakly, associated with bilateral cryptorchidism. Predisposition to produce anti-sperm 
antibodies seems to be only weakly associated with HLA class II genes.  
Autoimmune reactions, particular directed to testicular elements and/or spermatozoa have 
been found to be often associated with cryptorchidism. Antisperm immunization has been 
proposed as possible additional factor associated with late surgery in prepubertal boys with 
cryptorchidism. Cryptorchidism in young boys can induce immune reactions against sperm-
specific antigens. Future fertility status thus may be endangered, because antisperm 
antibodies can impair fertility at different levels. The relationship between the presence of 
antisperm antibodies and male infertility has been documented in large number of earlier 
studies (Krause 2009). There are some reports on high frequency of antisperm antibodies 
(AsA) in infertility patients who have suffered in the past from cryptorchidism. In healthy 
men seminiferous epithelium is anatomically sequestered from the systemic immunity. 
There exist multiple elements of active tolerance. An increased ability for induction of 
antisperm antibodies in men has been observed in various testicular pathologies: varicocele, 
testicular torsion, vasectomy and genital tract infections. An induction of antisperm 
antibodies in adult males may take place because of a break in the anatomical “blood-testis” 
barrier or because of the failure of an immunosuppressive mechanism providing tolerance 
to sperm. Sometimes, such antibodies can arise without a known reason. Pathologic 
conditions within the urogenital tract may predispose to antisperm antibody formation. In 
prepubertal boys, testicular failures may cause an activation of destructive to testes humoral 
immune response, because the anatomical testicular barrier is then not completely formed 
and immunosupression not fully activated due to the absence of male germ cells. 
Diminished levels of testosterone observed in prepubertal boys may be an additional reason 
for inefficient immunosupresion at young age and may contribute to the rise of 
autoantibody development (Jones 1994). It is difficult to argue whether it is mainly 
anatomical sequestration or rather active immunosuppresion playing a dominant role in 
preserving intact spermatogenic differentiation. It was earlier reported that 20-60% of 
individuals with a history of maldescended testis have circulating antisperm antibodies and 
most of them demonstrates oligoasthenozoospermia (Urry 1994). Evaluating the immune 
status of prepubertal boys with testicular failures, we have previously found detectable 
levels of AsA predominantly in boys with pathology of both gonads (Kurpisz 1996). One 
possible explanation for the induction of immune response to spermatozoa (testis) may be 
an increase of testicular temperature in boys with cryptorchidism, which may initiate the 
degenerative changes in spermatogenesis and alter testicular functions. A unique exposure 
of membrane antigens on testicular cells can be thus noted. Changes in the Leydig cells 
function may provoke the disturbances in the levels of locally secreted hormones, e.g. 
diminished levels of testosterone. Altogether, this multifactorial machinery may create a 
“vicious circle” that will perpetuate intratesticular inflammation leading to the inhibition of 
spermatogenesis that was to be triggered at the onset of puberty. 

7. Final remarks 
Cryptorchidism is one of the most common urogenital disorders found in postnatal boys. 
Main predisposing factor are: preterm birth, dysfunctional endocrine regulations, gene 
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defects and environmental factors (endocrine disruptions). It is believed that testicular 
descent is hormonally regulated and although genetic, contribution is observed, the number 
of genes/mutations responsible for testis descent is relatively rare. Changed environment in 
testis located in abdomen may induce pathological reactions mainly resulted in immune 
response induction. This, however, seems to be a secondary phenomenon. Despite this, once 
triggered immune response may persist and underlie future infertility in adulthood. Early 
surgical intervention in cryptorchidism can be therefore recommended.  
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1. Introduction  
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease (CLD) in 
many developed countries and results in a serious public health problem worldwide. NAFLD 
includes a wide spectrum of liver diseases, ranging from simple fatty liver, which is usually a 
benign and nonprogressive condition, to nonalcoholic steatohepatitis (NASH) which may 
progress to liver cirrhosis (LC), hepatic failure and hepatocellular carcinoma (HCC) in the 
absence of significant alcohol consumption (Ludwig et al., 1980, Matteoni et al. 1999). About a 
third of people with NAFLD will develop NASH, and about 20% of people with NASH will go 
on to liver fibrosis and cirrhosis, with its accompanying risk of liver failure and even HCC 
(Yasui et al. 2011). In Japan, current best estimates make the prevalence of NAFLD 
approximately 20% and of NASH 2% to 3% in the general population. Pathophysiology of 
primary NASH still hasn’t been completely clarified. According to the “two-hits” model of 
NASH pathogenesis proposed by Day and James (Day & James. 1999), excessive triglyceride 
accumulation is the most likely first step. The second step may relate to an increase in 
oxidative stress (Sumida et al. 2011a), which, in turn, triggers liver cell necrosis and activation 
of hepatic stellate cells, both leading to fibrosis and ultimately to the development of LC. 
Although the number of NASH cases in women is known to be higher than in men over 50 
years of age, the mechanisms remain unknown (Hashimoto ＆ Tokushige, 2011). According to 
our study produced by Japan Study Group of NAFLD (JSG-NAFLD) including nine 
hepatology centers in Japan (Sumida et al., 2011b), NASH patients with significant or 
advanced fibrosis (Brunt stage 2-4) was more prevalent in females than in males (Fig.1). 
Although plausible mechanisms have been proposed, including estrogen deficiency after 
menopause, iron accumulation generating hydroxylradicals via Fenton reaction (Sumida et al., 
2009), and so on, precise mechanisms have not been clarified. Although several factors have 
been associated with more advanced NAFLD, the biological basis of the histological diversity 
of severity of NAFLD [i.e., why some patients develop simple fatty liver and others develop 
NASH with advanced fibrosis] remains unknown. More advanced NAFLD is characterized by 
insulin resistance, oxidative stress, and advanced fibrosis.  
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Fig. 1. The distribution of age and gender in patients with biopsy-proven NAFLD (n=619) 
according to fibrosis stage (stage 0-2 or stage 3-4) in Japan Study Group of NAFLD (JSG-
NAFLD), including nine hepatology centers throughout Japan. 

Endocrine hormones control cell metabolism and the distribution of body fat and, therefore, 
may contribute to the development of NAFLD/ NASH.  Dehydroepiandrosterone (DHEA), 
and its interchangeable sulfated form, DHEA sulfate (DHEA-S), is the most abundant 
circulating steroid hormone and is produced primarily by the zona reticularis of the adrenal 
cortex in response to adrenocorticotropic hormone. DHEA has been known to have a variety 
of functions, including anti-oxidative stress, decreasing insulin resistance, anti-
atherosclerosis, and anti-osteoporosis (Baulieu et al. 2000). DHEA-S concentration is 
independently and inversely related to death from any cause and death from cardiovascular 
disease in men over age 50. It has been postulated that DHEA and DHEA-S may be 
discriminators of life expectancy and aging (Phillips et al. 2010). In this chapter, we describe 
here the role of DHEA or DHEA-S in the pathogenesis or treatment of NAFLD.  

2. NAFLD and dehydroepiandrosterone 
2.1 What is dehydroepiandrosterone? 
DHEA, and its interchangeable sulfated form, DHEA-S (Fig 2.), are the most abundant 
circulating steroid hormone in healthy individuals. They are produced from cholesterol by 
the zona reticularis of the adrenal cortex. DHEA is produced from cholesterol through two 
cytochrome P450 enzymes. Cholesterol is converted to pregnenolone by the enzyme P450 
scc (side chain cleavage); then another enzyme, CYP17A1, converts pregnenolone to 17α-
Hydroxypregnenolone and then to DHEA. (Fig 3) (Arlt, 2004). DHEA is made primarily in 
the adrenal glands (which also produce about 150 other hormones) and released into the 
blood. In different organs it is converted into a variety of more commonly known steroid 
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hormones, including androstenedione, testosterone, and estrogen. DHEA and DHEA-S 
levels peak at approximately age 25 years and decrease progressively thereafter, falling to 
5% of peak levels by the ninth decade. DHEA is a potential mediator of ROS synthesis 
(Bednarek-Tupikowska et al., 2000) and has also been reported to augment insulin 
sensitivity (Lasco et al., 2001, Jakubowicz et al., 1995, Kawano, 2000, Dhatariya et al., 2005) 
and peroxisome proliferator activation. (Poynter & Daynes, 1998, Peters et al., 1996), a 
transcription factor that regulates lipid metabolism, and procollagen type I, collagen 
precursor that has been associated with hepatic fibrosis of NASH. Both cross-sectional and 
longitudinal data have clearly indicated that serum concentrations of DHES-S decrease with 
age. Advocates of DHEA recommend it to prevent the effects of aging. 
 

 
Fig. 2. DHEA and DHEA-S 

 

 
Fig. 3. Synthesis pathway of DHEA and DHEA-S 
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2.2 The significance of serum DHEA-S levels 
Whereas DHEA levels naturally reach their peak in the early morning hours, DHEAS levels 
show no diurnal variation. From a practical point of view, measurement of DHEAS is 
preferable to DHEA, as levels are more stable. The Baltimore Longitudinal Study of Aging 
(BLSA) is a multidisciplinary observational study of the physiological and psychological 
aspects of human aging and diseases and conditions that increase with age. In BLSA, men 
who had higher DHEAS levels had significantly greater longevity than men with lower 
levels. (Roth et al., 2002) In Japan, a 27-year study in a community-based cohort 
(Tanushimaru study) indicated that DHEAS level may be a predictor of longevity in men, 
independent of age, blood pressure, and plasma glucose (Enomoto et al, 2008). Low serum 
levels of DHEA(-S) predict death from all causes, cardiovascular disease, and ischemic heart 
disease in elderly Swedish men. (Ohlsson et al., 2010) On the basis of these results, serum 
DHEA level is known to be an indicator of longevity at least in men and is often determined 
in anti-aging checkups (Nishizaki et al., 2009) . Elevated levels of DHEA are found in 
patients with Cushing syndrome or congenital adrenal hyperplasia, while DHEA levels are 
reported to be low in some people with anorexia, end-stage kidney disease, type 2 diabetes, 
AIDS, adrenal insufficiency, and in the critically ill. Some studies suggested that low serum 
DHEA-S levels were associated with the metabolic syndrome (Muller et al., 2005, Chen et 
al., 2010). In contrast, several studies found that DHEA levels are not different between 
subjects with metabolic syndrome and without. (Fukui et al., 2007, Haring et al., 2009, Akishita 
et al., 2010) It is suggested that age per se is an important correlate of the associations between 
DHEA-S and metabolic variables. In this way, the previous studies regarding the association 
between endogenous DHEA-S level and metabolic syndrome are inconsistent. Previous 
studies have shown that diabetic patients with high serum levels of insulin have lower serum 
levels of DHEA and DHEA-S. (Yamaguchi et al., 1998). A negative correlation between DHEA 
and hyperinsulinemia has been repeatedly demonstrated. (Kauffman et al., 2006, Saygili et al., 
2005, Vasarhelyi et al., 2003). Fukui and colleagues reported that low levels of DHEA are 
associated with atherosclerosis and deterioration of urinary albumin excretion in male patients 
with type 2 diabetes (Fukui et al., 2004, 2005, 2006). Similarly, Serum DHEA-S level seem to be 
associated with atherosclerosis in diabetic postmenopausal women independent of age, body 
stature, diabetic status, and other atherosclerotic risk factors (Kanazawa et al., 2008). 

2.3 DHEA-S levels in NAFLD 
Recently, Charlton et al. observed that levels of DHEA are significantly lower in patients with 
histologically advanced NASH, as compared with patients with mild NASH or simple fatty 
liver. (Charlton M, 2009). DHEA levels exert a good sensitivity and specificity in 
discriminating patients with more advanced histological disease, as shown by the receiver 
operating characteristic (ROC) analysis. To validate their results, we also determined 
circulating DHEA levels in Japanese patients with 133 biopsy-proven NAFLD. Of 133 patients, 
90 patients were diagnosed as NASH: 73 patients had stage 0–2, and 17 had stage 3 or 4. In 
addition, 399 sex- and age-matched healthy people participating in health checkups who had 
normal levels of alanine aminotransferase (ALT) levels (≤ 30 IU/L) were also enrolled as the 
control group. Body mass index (BMI), aspartate aminotransferase (AST), ALT, γGT, 
triglyceride, and HOMA-IR were significantly higher in NAFLD patients than those in the 
control group, whereas serum DHEA-S levels were similar between both groups. Consistent 
with our result, in patients with polycystic ovary syndrome (PCOS), DHEA-S levels were 
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similar between those with NAFLD and without. (Kauffman et al., 2010). According to a cross-
sectional population-based study derived from data of 1912 men, however, the highest risk of 
hepatic steatosis was found in subjects with the highest serum DHEA-S levels (Völzke H et al., 
2010). DHEA and DHEAS levels of post menopausal women with fatty liver were greater than 
those of post menopausal women with normal histology. (Saruç et al., 2003) These results are 
contrast to our study. Discrepancies between these studies and ours might be explained by 
differences in the selection of subjects, sex, size of the study populations and ethnicity. 
Only in our NAFLD patients, NASH patients had lower levels of serum DHEA-S levels 
compared to non-NASH patients (Fig 4). Serum DHEA levels were negative correlated with 
age in males and females (Fig 5). A “ dose effect “ of lower DHEA-S and advanced fibrosis 
was observed, with a mean DHEA-S of 170.4±129.2, 137.6±110.5, 96.2±79.3, 61.2±46.3, and  
 

 
Fig. 4. Serum DHEA levels in biopsy-proven NAFLD. 
 

 
Fig. 5. The relationship between serum DHEA-S levels and age in NAFLD patients 
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30.0±32.0, for fibrosis stages 0, 1, 2, 3 and 4, respectively. The area under the ROC curve for 
DHEA in separating patients with and without advanced brosis was 0.788. The sensitivity 
of a DHEA-S-value of 66 mg/dL or less for the presence of more advanced NAFLD was 
76.5% and specicity was 73.3% (85/116) (Fig 6)(Sumida et al., 2010a). Our data suggest that 
patients with DHEA-S levels greater than 66 μg/dL are highly unlikely to have advanced 
NAFLD (4/89 patients, sensitivity 76% and specificity 73%). Multivariate logistic regression 
analyses found that serum level of DHEA-S below 66μg/ml was selected as an independent 
predictor for advanced fibrosis even after adjusting for age, gender and insulin resistance 
(Table 1)．We intended to support the concept that the association between low levels of 
DHEA and worsening histology is independent of age, sex and insulin resistance. Decreased 
levels of DHEA can have important roles in the progression hepatic fibrosis in NAFLD. It is 
expected that determinant of serum DHEA become a predictor of hepatic fibrosis in 
NAFLD. A 53-year female who had been pointed out her fatty liver without any 
medications was referred to our hospital because of thrombocytopenia (platelet count 
4.6×104/μl). Her BMI was 31.6kg/m2 and she had mildly elevated transaminase activities 
(AST 61IU/l, ALT 59IU/l) and prolonged prothrombin time (66%). Laparoscopic findings 
revealed nodular liver and her liver histology showed NASH (Brunt grade 3, stage 4) (Fig 7). 
Her DHEA-S levels was the lowest (5μg/dl) among our NAFLD patients. 
 

 
Fig. 6. ROC analysis for predicting severe fibrosis (stage 3-4). 

Free fatty acids (FFAs), which lead to oxidative stress in NASH, are the major source of 
DHEA (Fig 3). The inability to produce appropriate amounts of DHEA in response to FFAs 
may translate into a more rapid and worsening progression toward NASH (Manco et al., 
2008). Serum DHEA-S levels depend on adrenal DHEA production and its hepatic 
metabolism mediated by DHEA sulfotransferase (DHEA-ST) which catalyzes sulfonation of 
DHEA to form DHEA-S. It is hypothesized that a low level of DHEA-S was due to a defect 
in sulfurylation in patients with hepatic cirrhosis, since DHEA-ST is synthesized in the liver 
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Variables  Odds ratio  95% confidence interval P-value  
  DHEA-S ≦66 μg/dl  4.9549  1.1691-20.9996  0.0229  
  age≧65 yr  2.8962  0.7843-10.6948  0.1106  
  sex (female)  1.9494  0.3765-10.0935  0.4264  
  HOMA-IR≧5  2.3671  0.6276-8.9273  0.2033  
  BMI ≧28 kg/m2  1.0446  0.2619-4.1658  0.9508  
  Diabetes  1.6007  0.3904-6.5023  0.5107  
  Dyslipidemia  0.2500  0.0682-0.9162  0.0364  
  Hypertension  0.4184  0.1022-1.7126  0.2256  

HOMA-IR, homeostasis assessment model for insulin resistance; BMI, body mass index 

Table 1. Logistic regression models of the association of NAFLD (advanced versus mild) 
with dehydroepiandrosterone sulfate (DHEA-S) levels and other clinical variables  
 

 
Fig. 7. Laparoscopic findings and liver histology of a case of NASH-LC who was referred to 
Center for Digestive and Liver Diseases, Nara City Hospital. A: laparoscopy (lt lobe), B: 
laparoscopy (rt lobe), C: microscopy (HE stain), D: microscopy (Masson-trichrome stain). 

(Franz et al., 1979). It was also important to consider whether low levels of DHEA-S might 
occur as a result of CLD in general versus a specific phenomenon of histologically more 
advanced NAFLD.  
Nakajima T et al revealed that telomere shortening, a marker of senescence, could be 
associated with hepatic steatosis, insulin resistance, oxidative stress in the liver, and 
impaired regenerative response in NAFLD patients (Nakajima et al., 2006). The hepatic 
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expression of senescence marker protein-30 (SMP30), which was identified as an antioxidant 
and anti-apoptotic protein, decreased in the proportion of the hepatic fibrosis in NAFLD 
patients (Park et al., 2010). These results suggest that the association of aging with NASH 
pathogenesis is noteworthy.  

2.4 DHEA as a candidate for the treatment of NASH 
There is no specific established treatment for NASH. Management of NASH consists of 
lifestyle modification including a healthy diet and physical exercise. DHEA has been widely 
touted as an anti-aging supplement. For years DHEA was promoted as a miracle weight loss 
drug, based upon some rodent studies that indicated DHEA was effective in controlling 
obesity in rats and mice. Other rodent studies found similar promising results for DHEA in 
preventing cancer, arteriosclerosis and diabetes. A randomized, double-blind, placebo-
controlled trial showed that DHEA replacement therapy significantly decreases not only in 
visceral fat area and subcutaneous fat area, but also in insulin resistance. (Villareal & Holloszy, 
2004). In contrast, DHEA replacement has no detectable effect on body composition, physical 
performance, insulin action, or quality of life (Nair et al., 2006). Therapeutic benefits of 
hormone supplementation for the treatment of aging, insulin resistance and cardiovascular 
disease remain obscure and controversial. DHEA can cause higher than normal levels of 
androgens and estrogens in the body, and theoretically may increase the risk of prostate, 
breast, ovarian, and other hormone-sensitive cancers. A protective effect of DHEA was 
reported in an orotic acid-induced animal model of fatty liver disease (Goto et al., 1998). Since 
the clinical usefulness of DHEA for NAFLD patients has never been investigated, there is a 
great need for prospective, randomized, multicenter and well-designed trials.  

3. Conclusion  
Recent studies have demonstrated that more advanced NAFLD, as indicated by the 
presence of NASH with advanced fibrosis stage, is strongly associated with low circulating 
DHEA-S. Although NASH patients with severe fibrosis are frequently observed in aged-
female patients, the precise mechanisms of this phenomenon remain to be resolved. Lower 
levels of serum DHEA in females compared to in males may contribute to the fibrosis 
progression of NASH. There are thus several potential mechanisms for DHEA deficiency to 
promote histological progression in NAFLD. DHEA deficiency presents an appealing new 
therapeutic target for the treatment and prevention of NASH. Since the association of 
NAFLD with endocrine diseases such as hypothyroidism (Liangpunsakul & Chalasani, 
2003), adult growth hormone deficiency (Takahashi et al. 2007), and PCOS (Baranova et al. 
2011) has recently been suggested, the pathogenesis of NASH should be explored in the 
view of anti-aging medicine or endocrinology (Loria et al.,2010). 
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1. Introduction 
Dehydroepiandrosterone (DHEA) is either secreted directly from the adrenal cortex or is 
converted from DHEA sulfate (DHEA-S) in the peripheral organs. DHEA and DHEA-S are 
the most abundant adrenal androgens in blood, however their its physiological roles still 
remain unclear. Some recent studies have shown that DHEA and DHEA-S exert beneficial 
effects on conditions such as diabetes mellitus, atherosclerosis, obesity, tumors and 
osteoporosis (Coleman et al.,1982; Gorden et al.,1988; Cleary,1991). In this chapter, the 
relationships between DHEA or DHEA-S and diabetes mellitus (DM) or impaired glucose 
tolerance (IGT) are described.  

2. Clinical and basic study 
2.1 Clinical study 
Abnormalities of secretion and metabolism of many steroid hormones occur in DM. In 
poorly controlled type 1 DM, serum concentrations of DHEA and DHEA-S decrease 
(Couch,1992) while plasma ACTH and cortisol levels increase in type 2 DM (Hashimoto et 
al.,1993). Low levels of DHEA and DHEA-S in type 2 DM are associated with 
hyperinsulinemia(Hubert et al.,1991; Nesler et al.,1989; Schriock et al.,1988; Smith et 
al.,1987;). We analyzed serum DHEA and DHEA-S levels in poorly controlled type 2 DM. 

2.1.1 Subjects and methods 
The subjects were type 2 diabetic patients seen regularly at the outpatient clinic of Toho 
University Hospital. We chose 130 patients, whose blood glucose control had been poor 
(more than 10% in HbA1c). Their medication was managed by diet only or with 
sulfonylurea, and patients under insulin therapy were excluded. The patient group 
consisted of 74 men and 56 women between the ages of 40-69yr. Age-matched normal 
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1. Introduction 
Dehydroepiandrosterone (DHEA) is either secreted directly from the adrenal cortex or is 
converted from DHEA sulfate (DHEA-S) in the peripheral organs. DHEA and DHEA-S are 
the most abundant adrenal androgens in blood, however their its physiological roles still 
remain unclear. Some recent studies have shown that DHEA and DHEA-S exert beneficial 
effects on conditions such as diabetes mellitus, atherosclerosis, obesity, tumors and 
osteoporosis (Coleman et al.,1982; Gorden et al.,1988; Cleary,1991). In this chapter, the 
relationships between DHEA or DHEA-S and diabetes mellitus (DM) or impaired glucose 
tolerance (IGT) are described.  

2. Clinical and basic study 
2.1 Clinical study 
Abnormalities of secretion and metabolism of many steroid hormones occur in DM. In 
poorly controlled type 1 DM, serum concentrations of DHEA and DHEA-S decrease 
(Couch,1992) while plasma ACTH and cortisol levels increase in type 2 DM (Hashimoto et 
al.,1993). Low levels of DHEA and DHEA-S in type 2 DM are associated with 
hyperinsulinemia(Hubert et al.,1991; Nesler et al.,1989; Schriock et al.,1988; Smith et 
al.,1987;). We analyzed serum DHEA and DHEA-S levels in poorly controlled type 2 DM. 

2.1.1 Subjects and methods 
The subjects were type 2 diabetic patients seen regularly at the outpatient clinic of Toho 
University Hospital. We chose 130 patients, whose blood glucose control had been poor 
(more than 10% in HbA1c). Their medication was managed by diet only or with 
sulfonylurea, and patients under insulin therapy were excluded. The patient group 
consisted of 74 men and 56 women between the ages of 40-69yr. Age-matched normal 
subjects served as the control group. Informed consent was obtained from each subject 
before the study. 
Blood samples were obtained from patients with type 2 diabetes mellitus and normal 
subjects between 9 and 10 a.m. after an overnight fast. From patients with type 2 diabetes 
mellitus, blood samples were obtained before and 6 months after the treatment. Serum 
levels of DHEA, DHEA-S and immunoreactive insulin (IRI), fasting plasma glucose (FPG) 
and HbA1c were measured. Steroid hormones were determined by the previously reported 
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HPLC/RIA method(Ueshiba et al.,1991) except DHEA-S which was measured using RIA 
kit(Mitsubisi Chemical Co., Tokyo, Japan), FPG by glucose oxidase method, HbA1c by 
HPLC, IRI by commercial kits (Daiichi, Tokyo, Japan). Data are showed as mean ± SD. 
Variables were compared by Bonferroni's analysis and p-values less than 0.05 were 
considered to indicate statistical significance. 

2.1.2 Results 
Serum levels of DHEA and DHEA-S were low in both male and female patients with type 2 
DM across the entire age range studied, compared to the age-matched normal subjects 
(Fig.1). IRI was high in all groups before the treatment (Table1). Following a 6-month 
treatment, FPG and HbA1c improved and IRI decreased in most patients (Table1).  In 
parallel with the improvement of FPG and HbA1c, blood concentrations of DHEA and 
DHEA-S levels increased to within the normal range in all the groups (Fig.1). 
 
 Number FPG(mg/dl) HbA1c(%) IRI(μU/ml) 

Male 40 years 
 Before treatment 
 After treatment 
 Normal 

 
22 
22 
20 

 
183±16 
111±14 
93±7 

 
11.6±1.2 
7.2±0.6 
5.2±0.3 

 
11.8±3.9 
8.7±2.1 
5.9±2.3 

Male 50 years 
 Before treatment 
 After treatment 
 Normal 

 
29 
29 
25 

 
172±18 
106±14 
94±5 

 
11.7±1.2 
6.8±0.6 
5.1±0.3 

 
12.4±3.7 
8.4±1.5 
6.1±2.1 

Male 60 years 
 Before treatment 
 After treatment 
 Normal 

 
23 
23 
20 

 
176±19 
108±14 
90±7 

 
11.4±1.1 
6.7±0.6 
5.2±0.2 

 
13.3±4.1 
8.9±3.4 
5.8±1.8 

Female 40 years 
 Before treatment 
 After treatment 
 Normal 

 
17 
17 
15 

 
172±16 
108±12 
94±7 

 
12.0±1.1 
7.0±0.6 
5.1±0.2 

 
11.9±3.2 
9.3±2.8 
5.4±1.5 

Female 50 years 
 Before treatment 
 After treatment 
 Normal 

 
23 
23 
20 

 
166±16 
112±15 
92±7 

 
11.6±0.8 
7.1±0.4 
5.1±0.3 

 
12.3±3.8 
8.1±2.4 
4.8±1.6 

Female 60 years 
 Before treatment 
 After treatment 
 Normal 

 
16 
16 
15 

 
175±19 
107±9 
93±5 

 
11.9±1.2 
6.8±0.5 
5.3±0.3 

 
11.6±2.8 
7.9±2.7 
4.7±1.8 

Table 1. Clinical characteristics of type 2 diabetic patients before and after treatment and in 
age-matched normal subjects. 
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*P< 0.05 compared with values after treatment and with normal values 

Fig. 1. Serum DHEA and DHEA-S levels in male and female type 2 diabetic patients before 
(stippled bars) and after (hatched bars) treatment and in age-matched normal subjects 
(opena bars). 

2.1.3 Discussion 
In this study we demonstrated that serum DHEA and DHEA-S levels decreased markedly 
with poor control of type 2 DM and increased to age-matched normal values with the 
improvement of FPG and HbA1c after 6 months' treatment with diet and/or sulfonylurea. 
Barrett-Connor showed that DHEA and DHEA-S levels were also low in patients with non-
insulin-dependent diabetes mellitus (Barrett-Connor, 1992), but she did not measure the 
changes of these steroid hormones after treatment.  Markedly reduced levels of DHEA and 
DHEA-S in type 2 DM with poor therapeutic control with slightly increased plasma IRI are 
consistent with an association between DHEA synthesis and/or metabolism and insulin. 
Nestler et al. showed  that insulin reduces serum DHEA and DHEA-S by increasing the 
metabolic clearance rate of DHEA in men or inhibiting their productin (Nestler,1992). The 
metablic clearance rate of DHEA is reported to be increased two- to fivefold in obesity and 
insulin-resistant, hyperinsulinemic state (Nestler,1995). The infusion of a high dose of 
insulin reduces serum DHEA levels suggesting the involvement of the inhibition of adrenal 
17,20lyase activity. The administration of metformin which inhibits hepatic glucose 
production and enhances peripheral tissue sensitivity to insulin, to healthy normal weight 
men and to obese men with hypertension but without diabetes mellitus decreased serum 
insulin levels and increased serum DHEA-S levels in obese men with hypertension and in 
healthy controls (Nestler,1995). However, Yamauchi et al. reported that serum DHEA and 
DHEA-S are low even in patients with impaired glucose tolerance and low insulin response 
(Yamauchi,1996), and therefore the decrease in serum DHEA levels may not exclusively 
arise from the hyperinsulinemic state.  Hyperglycemia may reduce 17,20-lyase activity and 
consequently serum DHEA may decrease. The improvement of plasma glucose control 
parallels the recovery of 17,20-lyase activity.     
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In this study we demonstrated that serum DHEA and DHEA-S levels decreased markedly 
with poor control of type 2 DM and increased to age-matched normal values with the 
improvement of FPG and HbA1c after 6 months' treatment with diet and/or sulfonylurea. 
Barrett-Connor showed that DHEA and DHEA-S levels were also low in patients with non-
insulin-dependent diabetes mellitus (Barrett-Connor, 1992), but she did not measure the 
changes of these steroid hormones after treatment.  Markedly reduced levels of DHEA and 
DHEA-S in type 2 DM with poor therapeutic control with slightly increased plasma IRI are 
consistent with an association between DHEA synthesis and/or metabolism and insulin. 
Nestler et al. showed  that insulin reduces serum DHEA and DHEA-S by increasing the 
metabolic clearance rate of DHEA in men or inhibiting their productin (Nestler,1992). The 
metablic clearance rate of DHEA is reported to be increased two- to fivefold in obesity and 
insulin-resistant, hyperinsulinemic state (Nestler,1995). The infusion of a high dose of 
insulin reduces serum DHEA levels suggesting the involvement of the inhibition of adrenal 
17,20lyase activity. The administration of metformin which inhibits hepatic glucose 
production and enhances peripheral tissue sensitivity to insulin, to healthy normal weight 
men and to obese men with hypertension but without diabetes mellitus decreased serum 
insulin levels and increased serum DHEA-S levels in obese men with hypertension and in 
healthy controls (Nestler,1995). However, Yamauchi et al. reported that serum DHEA and 
DHEA-S are low even in patients with impaired glucose tolerance and low insulin response 
(Yamauchi,1996), and therefore the decrease in serum DHEA levels may not exclusively 
arise from the hyperinsulinemic state.  Hyperglycemia may reduce 17,20-lyase activity and 
consequently serum DHEA may decrease. The improvement of plasma glucose control 
parallels the recovery of 17,20-lyase activity.     



 
Steroids – Basic Science 

 

112 

2.2 Basic study 
The guinea pig utilizes a similar mechanism of adrenal steroidogenesis to that of humans. In 
a guinea pig model in which impaired glucose tolerance is induced by streptozotocin (STZ) 
treatment, we measured serum levels of DHEA, DHEA-S and c-peptide to determine if these 
were related to serum glucose levels. 

2.2.1 Materials and methods 
All experiments were performed using Hartley male guinea pigs with a body weight of 500-
600 g. Experimental protocols followed the Principals of Laboratory Animal Care and were 
approved by the Ethics Committee of Toho University School of Medicine. Until 
experiments began, guinea pigs were housed in groups of three in metabolism cages in a 
temperature-controlled room with a 12h light/dark cycle. They had free access to tap water 
and guinea pig chow.   
Under intra-abdominal anaesthesia (pentobarbital sodium 30mg/Kg), streptozotocin (STZ) 
was administrated to 12 guinea pigs intra-abdominally. After 4 weeks, a glucose tolerance 
test (50% glucose, 1g/Kg, intra-abdominal route) was performed. Impaired glucose 
tolerance (IGT) was defined as a blood glucose level of more than 300 mg/dl after 3 hrs. Six 
control guinea pigs had intra-abdominal saline only. 
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Fig. 2. Changes in Concentrations of Serum DHEA 
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Blood samples were taken from intra-orbital vessels after 12 hrs starvation. Serum DHEA, 
DHEA-S, fasting plasma glucose (FPG) and serum c-peptide were measured in each group 
at four time points: before STZ administration; after 4 weeks; after 8 weeks; and after 12 
weeks. Simultaneously glucose tolerance tests were performed. From 15 weeks of STZ 
administration DHEA-S(Mylis) (20mg/Kg) was administrated via the intra-abdominal route 
three times per week in three IGT group guinea pigs and three control group animals. After 
4 weeks, 8 weeks and 12 weeks of DHEA-S administration, blood samples were taken by the 
same method and glucose tolerance tests were also performed.  
Data are expressed as mean±SD. Statistical analysis was performed using ANOVA with 
Bonferroni’s correction. A value of p<0.05 was considered statistically significant. 

2.2.2 Results 
Concentrations of serum DHEA showed no significant change during observation in the 
control group, however there was a tendency towards decrease in the IGT group (Fig. 2). 
Concentrations of serum DHEA-S also had no significant change in the control group. 
However, in the IGT group, concentrations of serum DHEA-S decreased significantly from 
39.0±4.2 μg/dl (before STZ administration) to 27.5±5.0 μg/dl (after 8 weeks)(p<0.05)(Fig. 3). 
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Blood samples were taken from intra-orbital vessels after 12 hrs starvation. Serum DHEA, 
DHEA-S, fasting plasma glucose (FPG) and serum c-peptide were measured in each group 
at four time points: before STZ administration; after 4 weeks; after 8 weeks; and after 12 
weeks. Simultaneously glucose tolerance tests were performed. From 15 weeks of STZ 
administration DHEA-S(Mylis) (20mg/Kg) was administrated via the intra-abdominal route 
three times per week in three IGT group guinea pigs and three control group animals. After 
4 weeks, 8 weeks and 12 weeks of DHEA-S administration, blood samples were taken by the 
same method and glucose tolerance tests were also performed.  
Data are expressed as mean±SD. Statistical analysis was performed using ANOVA with 
Bonferroni’s correction. A value of p<0.05 was considered statistically significant. 

2.2.2 Results 
Concentrations of serum DHEA showed no significant change during observation in the 
control group, however there was a tendency towards decrease in the IGT group (Fig. 2). 
Concentrations of serum DHEA-S also had no significant change in the control group. 
However, in the IGT group, concentrations of serum DHEA-S decreased significantly from 
39.0±4.2 μg/dl (before STZ administration) to 27.5±5.0 μg/dl (after 8 weeks)(p<0.05)(Fig. 3). 
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Blood glucose levels three hours after DHEA-S administration showed no significant change 
between guinea pigs with DHEA-S and those without DHEA-S in the control group. In the 
IGT group, three hour blood glucose levels had improved from 333.7±24.5 mg/dl (before) to 
190.7±89.8 mg/dl (after 4 weeks) (Fig. 4). However FPG showed no significant change between 
the control group and the IGT group. The result was similar after DHEA-S administration. 
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Fig. 4. Changes in 3 hour blood glucose level 
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Serum c-peptide levels showed no significant change during observation in the control 
group. However in the IGT group, these levels decreased significantly from 1.280±0.144 
ng/ml (before) to 0.965±0.272 ng/ml (after 12 weeks)(Fig. 5 ). Serum c-peptide levels after 
DHEA-S administration were not significantly different between guinea pigs with DHEA-S 
and those without DHEA-S in both the control group and the IGT group. C-peptide levels 
continued to be significantly lower in the IGT group than in the control group (P<0.05) (Fig. 6). 
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2.2.3 Discussion 
Coleman et al.(1982). first reported that DHEA had an effect on lowering blood glucose in 
animal experiments. Since this report, there have been many reports that DHEA and DHEA-
S are related to insulin or blood glucose levels. However, their exact role has not been 
determined (Gansler et al.,1985; Farah et al.,1992; Barrett-Connor,1992; Yamaguchi et 
al.,1998). Some of these reports described the use of rats and mice in animal experiments, 
but few studies used guinea pigs which have a similar mechanism of adrenal 
steroidogenesis to that of humans (Strott et al.,1981; Hyatt et al.,1983) In our guinea pig 
models in which impaired glucose tolerance is induced by STZ treatment , serum levels of 
DHEA and DHEA-S were decreased. We measured serum c-peptide instead of serum 
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Blood glucose levels three hours after DHEA-S administration showed no significant change 
between guinea pigs with DHEA-S and those without DHEA-S in the control group. In the 
IGT group, three hour blood glucose levels had improved from 333.7±24.5 mg/dl (before) to 
190.7±89.8 mg/dl (after 4 weeks) (Fig. 4). However FPG showed no significant change between 
the control group and the IGT group. The result was similar after DHEA-S administration. 
 

450
(mg/dL)

400

350

300

250

200

150

100

50

0

18
0m

in
 p

la
sm

a 
gl

uc
os

e

0 4 8 12

Control DHEA-S+
Control DHEA-S-

IGT DHEA-S+

IGT DHEA-S-

* : p<0.05 vs 0W

(W)

*

*

*

 
Fig. 4. Changes in 3 hour blood glucose level 
 

2.00
(ng/mL)

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0

C
P

R

0 4 8 12

Control

IGT
* : p<0.05 vs 0W

(W)

*

 
Fig. 5. Changes in serum C-peptide after STZ administration 

 
DHEA and Impaired Glucose Tolerance Clinical and Basic Study 

 

115 

Serum c-peptide levels showed no significant change during observation in the control 
group. However in the IGT group, these levels decreased significantly from 1.280±0.144 
ng/ml (before) to 0.965±0.272 ng/ml (after 12 weeks)(Fig. 5 ). Serum c-peptide levels after 
DHEA-S administration were not significantly different between guinea pigs with DHEA-S 
and those without DHEA-S in both the control group and the IGT group. C-peptide levels 
continued to be significantly lower in the IGT group than in the control group (P<0.05) (Fig. 6). 
 

1.75
2.00

1.50
1.25

0

(ng/mL)

0 4 8 12
(W)

[Control]

C
P

R

0.75
1.00

0.50
0.25

Control DHEA-S +
Control DHEA-S -

1.75
2.00

1.50
1.25

0

(ng/mL)

0 4 8 12
(W)

[IGT]

C
P

R

0.75
1.00

0.50
0.25

IGT DHEA-S +
IGT DHEA-S -

* : p<0.05 vs control

* *
*

 
Fig. 6. Changes in serum c-peptide after DHEA-S administration 

2.2.3 Discussion 
Coleman et al.(1982). first reported that DHEA had an effect on lowering blood glucose in 
animal experiments. Since this report, there have been many reports that DHEA and DHEA-
S are related to insulin or blood glucose levels. However, their exact role has not been 
determined (Gansler et al.,1985; Farah et al.,1992; Barrett-Connor,1992; Yamaguchi et 
al.,1998). Some of these reports described the use of rats and mice in animal experiments, 
but few studies used guinea pigs which have a similar mechanism of adrenal 
steroidogenesis to that of humans (Strott et al.,1981; Hyatt et al.,1983) In our guinea pig 
models in which impaired glucose tolerance is induced by STZ treatment , serum levels of 
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insulin because there were no reports of serum insulin measurements in guinea pigs 
(Massey&Smyth,1975; Rosenzweig et al.,1980; Gracia-Webb et al.,1983; Schlosser et al.,1987). 
Guinea pigs in the IGT group showed a significant decrease in serum c-peptide levels and it 
was speculated that this was not hyper-insulinemia. In IGT group guinea pigs, blood 
glucose levels improved after DHEA-S administration, however serum c-peptide levels 
were still significantly decreased. There was no correlation between serum c-peptide levels 
and DHEA or DHEA-S levels. In the STZ-induced model of diabetes, adult rats ranged from 
mild type 2 diabetes to type 1 diabetes depending upon STZ dose (Ho RS et al.,1988).  In this 
experiment, fasting blood glucose levels in STZ-administered guinea pigs were not 
significantly different from those in control group. However, serum c-peptide levels were 
decreased and this state was thought to be approaching type 1 diabetes.  
Similar to clinical data, it was thought that hyperglycemia itself suppressed DHEA and 
DHEA-S after prolonged hyperglycemia independent of serum insulin levels in the absence 
of hyperinsulinemia. In IGT group guinea pigs, serum c-peptide was still decreased after 
DHEA-S administration, however blood glucose levels improved significantly. It was 
thought that DHEA-S itself was involved in this improvement of blood glucose levels. In the 
hyperglycemic state in humans, the mechanism of decrease of DHEA and DHEA-S levels is 
not still clear. It has been reported that DHEA levels are low in situations of life-threatening 
stress(Parker et al., 1985; Wade et al.,1988).  Long duration hyperglycemia in this experiment 
is a form of excessive stress. It was speculated that histological changes in the adrenal gland 
may occur. The zona fasciculata which secretes cortisol necessary to maintain life may 
become enlarged and the zona reticularis which secretes DHEA and DHEA-S may shrink. In 
addition to reports of the mechanism of the improvement of impaired glucose tolerance by 
DHEA and DHEA-S, further studies reported a number of other effects. These included 
acceleration of glucose uptake in cells, increasing sensitivity in insulin sensitive tissue and 
suppressing the activities of G6Pase and FBPase, the enzymes of glyconeogenesis in the 
liver(McIntosh & Berdanier,1991; Nakashima et al.,1995)  However, many points remained 
unclear. 

3. Conclusion 
These experiments suggest that the relationship between blood glucose levels and DHEA or 
DHEA-S is close. It is therefore possible that DHEA-S may become a therapeutic agent for 
diabetes mellitus in the future.   

4. References 
Barrett-Connor, E. (1992). Lower endogenous androben levels and dyslipidemia in men with 

non-insulin-dependent diabetes mellitus. Annals of Internal Medicine, 117, 807-811. 
Cleary, MP. (1991). The antiobesity effect of dehydroepiandrosterone in rats. Proc Soc Exp 

Biol Med, 196, 8-16. 
Coleman, DL. Leiter, EH. Schwizer, RW. (1982). Therapeutic effects of dehydroepiandrosterone 

(DHEA) in diabetic mice. Diabetes, 31, 830-833. 
Couch, RM. (1992). Dissociation of cortisol and adrenal androgen secretion in poorly 

controlled insulin-dependent diabetes mellitus. Acta Endocrinologica, 127, 115-117. 
Farah, MJ. Givens, JR. Kitabchi, AE. (1992). Bimodel correlation between the circulating 

insulin level and the production rate of dehydroepiandrosterone: Positive 

 
DHEA and Impaired Glucose Tolerance Clinical and Basic Study 

 

117 

correlation in controls and negative correlation in the polycystic ovary syndrome 
with acanthosis nigricans. Journal of Clinical Endocrinology and Metabolism, 70, 1075-
1081. 

Gansler, TS. Muller, S. Cleary, MP. (1985). Chronic administration of dehydroepiandrosterone 
reduces pancreatic β-cell hyperplasia and hyperinsulinemia in genetically obese Zucker 
rats. Proceedings of the Society for Experimental Biology and Medicine, 180, 155-162. 

Gordon, GB. Bush, DE. Weisman, HF. (1988). Reduction of atherosclerosis by administration 
of dehydroepiandrosterone: A study in the hypercholesterolemic New Zealand 
White rabbit with aortic intimal injury. H Clin Invest, 82, 712-720.  

Gracia-Webb, P. Bottomly, S. Bonser, AM. (1983). Instability of C-peptide reactivity in 
plasma and serum stored at -20℃. Clinica Chimica Acta, 129, 103-106. 

Hashimoto, K. Nishioka, T. Takao, T. Numata, Y. (1993). Low plasma corticotropin-releasing 
hormone(CRH) levels in patients with non-insulin dependent diabetes 
mellitus(NIDDM). Endocrine Journal, 40, 705-709. 

Ho RS et al.(1988). In-vIvo and in-vitro glucose metabolism in a low-dose streptozotocin rat 
model of noninsulin-dependent diabetes. In: Frontiers in Diabetes Research - 
Lessons from Animal Diabetes (ed by Shafrir E, Renold AE) p288-294, John Libbey, 
London, Paris. 

Hubert, GD. Schriock, ED. Givens, JR. Buster, JE. (1991). Supression of 
circulating4Androstenedione and dehydroepiandrosterone sulfate during oral 
glucose tolerance in normal females. J Clin Endocrinol Metab, 73, 781-784. 

Hyatt, PJ. Bhatt, K. Tait, JF. (1983). Steroid biosynthesis by zona fasciculata and zona 
reticularis cells purified from the mammalian adrenal cortex. Journal of steroid 
Biochemistry, 19, 953-959. 

Massey, DE. Smyth, DG. (1975). Guinea pig proinsulin. Journal of Biological Chemistry, 250, 
6288-6290. 

McIntosh, MK. Berdanier, CD. (1991). Antiobesity effects of dehydroepiandrosterone are 
mediated by futile substrate cycling in hepatocytes of BHE/cdb rats. American 
Institute of Nutrition, 121, 2037-2043. 

Nakashima, N. Haji, M. Sakai, Y et al. (1995). Effect of dehydroepiandrosterone on glucose 
uptake in cultured human fibroblasts. Metabolism, 44, 543-548. 

Nesler, JE. Usiskin, KS. Barlascini, CO. Welty, DF. Clore, JN. Blackard, WG. (1989). 
Supression of serum dehydroepiandrosterone sulfate levels by insulin: An 
evaluation of possible mechanisms. J Clin Endocrinol Metab, 69 , 1040-1046. 

Nestler, JE. McClanahan, MA. Clore, JN. Blackard, WG. (1992). Insulin inhibits adrenal 17, 
20-lyase activity in men. J Clin Endocrinol Metab, 74, 362-367. 

Nestler, JE. Beer, NA. Jakubowicz, DJ. Beer, RM. (1994). Effects of a reduction in circulating 
insulin by metformin on serum dehydroepiandrosterone sulfate in nondiabetic 
men. J Clin Endocrinol Metab, 78, 549-554. 

Nestler, JE. (1995). Regulation of human dehydroepiandrosterone metabolism by insulin. 
Ann N Y Acad Sci, 774, 73-81. 

Parker, LN. Levin, ER. Lifrak, ET. (1985). Evidence for adaptation to severe illness. Journal of 
Clinical Endocrinology and Metabolism, 60, 947-952. 

Rosenzweig, JL. Lesniak, MA. Samuels, BE et al. (1980). Insulin in the extrapancreatic tissues 
of guinea pigs differs markedly from the insulin in their pancreas and plasma. 
Trans Assoc Amer Physicians, 93. 263-278. 



 
Steroids – Basic Science 

 

116 

insulin because there were no reports of serum insulin measurements in guinea pigs 
(Massey&Smyth,1975; Rosenzweig et al.,1980; Gracia-Webb et al.,1983; Schlosser et al.,1987). 
Guinea pigs in the IGT group showed a significant decrease in serum c-peptide levels and it 
was speculated that this was not hyper-insulinemia. In IGT group guinea pigs, blood 
glucose levels improved after DHEA-S administration, however serum c-peptide levels 
were still significantly decreased. There was no correlation between serum c-peptide levels 
and DHEA or DHEA-S levels. In the STZ-induced model of diabetes, adult rats ranged from 
mild type 2 diabetes to type 1 diabetes depending upon STZ dose (Ho RS et al.,1988).  In this 
experiment, fasting blood glucose levels in STZ-administered guinea pigs were not 
significantly different from those in control group. However, serum c-peptide levels were 
decreased and this state was thought to be approaching type 1 diabetes.  
Similar to clinical data, it was thought that hyperglycemia itself suppressed DHEA and 
DHEA-S after prolonged hyperglycemia independent of serum insulin levels in the absence 
of hyperinsulinemia. In IGT group guinea pigs, serum c-peptide was still decreased after 
DHEA-S administration, however blood glucose levels improved significantly. It was 
thought that DHEA-S itself was involved in this improvement of blood glucose levels. In the 
hyperglycemic state in humans, the mechanism of decrease of DHEA and DHEA-S levels is 
not still clear. It has been reported that DHEA levels are low in situations of life-threatening 
stress(Parker et al., 1985; Wade et al.,1988).  Long duration hyperglycemia in this experiment 
is a form of excessive stress. It was speculated that histological changes in the adrenal gland 
may occur. The zona fasciculata which secretes cortisol necessary to maintain life may 
become enlarged and the zona reticularis which secretes DHEA and DHEA-S may shrink. In 
addition to reports of the mechanism of the improvement of impaired glucose tolerance by 
DHEA and DHEA-S, further studies reported a number of other effects. These included 
acceleration of glucose uptake in cells, increasing sensitivity in insulin sensitive tissue and 
suppressing the activities of G6Pase and FBPase, the enzymes of glyconeogenesis in the 
liver(McIntosh & Berdanier,1991; Nakashima et al.,1995)  However, many points remained 
unclear. 

3. Conclusion 
These experiments suggest that the relationship between blood glucose levels and DHEA or 
DHEA-S is close. It is therefore possible that DHEA-S may become a therapeutic agent for 
diabetes mellitus in the future.   

4. References 
Barrett-Connor, E. (1992). Lower endogenous androben levels and dyslipidemia in men with 

non-insulin-dependent diabetes mellitus. Annals of Internal Medicine, 117, 807-811. 
Cleary, MP. (1991). The antiobesity effect of dehydroepiandrosterone in rats. Proc Soc Exp 

Biol Med, 196, 8-16. 
Coleman, DL. Leiter, EH. Schwizer, RW. (1982). Therapeutic effects of dehydroepiandrosterone 

(DHEA) in diabetic mice. Diabetes, 31, 830-833. 
Couch, RM. (1992). Dissociation of cortisol and adrenal androgen secretion in poorly 

controlled insulin-dependent diabetes mellitus. Acta Endocrinologica, 127, 115-117. 
Farah, MJ. Givens, JR. Kitabchi, AE. (1992). Bimodel correlation between the circulating 

insulin level and the production rate of dehydroepiandrosterone: Positive 

 
DHEA and Impaired Glucose Tolerance Clinical and Basic Study 

 

117 

correlation in controls and negative correlation in the polycystic ovary syndrome 
with acanthosis nigricans. Journal of Clinical Endocrinology and Metabolism, 70, 1075-
1081. 

Gansler, TS. Muller, S. Cleary, MP. (1985). Chronic administration of dehydroepiandrosterone 
reduces pancreatic β-cell hyperplasia and hyperinsulinemia in genetically obese Zucker 
rats. Proceedings of the Society for Experimental Biology and Medicine, 180, 155-162. 

Gordon, GB. Bush, DE. Weisman, HF. (1988). Reduction of atherosclerosis by administration 
of dehydroepiandrosterone: A study in the hypercholesterolemic New Zealand 
White rabbit with aortic intimal injury. H Clin Invest, 82, 712-720.  

Gracia-Webb, P. Bottomly, S. Bonser, AM. (1983). Instability of C-peptide reactivity in 
plasma and serum stored at -20℃. Clinica Chimica Acta, 129, 103-106. 

Hashimoto, K. Nishioka, T. Takao, T. Numata, Y. (1993). Low plasma corticotropin-releasing 
hormone(CRH) levels in patients with non-insulin dependent diabetes 
mellitus(NIDDM). Endocrine Journal, 40, 705-709. 

Ho RS et al.(1988). In-vIvo and in-vitro glucose metabolism in a low-dose streptozotocin rat 
model of noninsulin-dependent diabetes. In: Frontiers in Diabetes Research - 
Lessons from Animal Diabetes (ed by Shafrir E, Renold AE) p288-294, John Libbey, 
London, Paris. 

Hubert, GD. Schriock, ED. Givens, JR. Buster, JE. (1991). Supression of 
circulating4Androstenedione and dehydroepiandrosterone sulfate during oral 
glucose tolerance in normal females. J Clin Endocrinol Metab, 73, 781-784. 

Hyatt, PJ. Bhatt, K. Tait, JF. (1983). Steroid biosynthesis by zona fasciculata and zona 
reticularis cells purified from the mammalian adrenal cortex. Journal of steroid 
Biochemistry, 19, 953-959. 

Massey, DE. Smyth, DG. (1975). Guinea pig proinsulin. Journal of Biological Chemistry, 250, 
6288-6290. 

McIntosh, MK. Berdanier, CD. (1991). Antiobesity effects of dehydroepiandrosterone are 
mediated by futile substrate cycling in hepatocytes of BHE/cdb rats. American 
Institute of Nutrition, 121, 2037-2043. 

Nakashima, N. Haji, M. Sakai, Y et al. (1995). Effect of dehydroepiandrosterone on glucose 
uptake in cultured human fibroblasts. Metabolism, 44, 543-548. 

Nesler, JE. Usiskin, KS. Barlascini, CO. Welty, DF. Clore, JN. Blackard, WG. (1989). 
Supression of serum dehydroepiandrosterone sulfate levels by insulin: An 
evaluation of possible mechanisms. J Clin Endocrinol Metab, 69 , 1040-1046. 

Nestler, JE. McClanahan, MA. Clore, JN. Blackard, WG. (1992). Insulin inhibits adrenal 17, 
20-lyase activity in men. J Clin Endocrinol Metab, 74, 362-367. 

Nestler, JE. Beer, NA. Jakubowicz, DJ. Beer, RM. (1994). Effects of a reduction in circulating 
insulin by metformin on serum dehydroepiandrosterone sulfate in nondiabetic 
men. J Clin Endocrinol Metab, 78, 549-554. 

Nestler, JE. (1995). Regulation of human dehydroepiandrosterone metabolism by insulin. 
Ann N Y Acad Sci, 774, 73-81. 

Parker, LN. Levin, ER. Lifrak, ET. (1985). Evidence for adaptation to severe illness. Journal of 
Clinical Endocrinology and Metabolism, 60, 947-952. 

Rosenzweig, JL. Lesniak, MA. Samuels, BE et al. (1980). Insulin in the extrapancreatic tissues 
of guinea pigs differs markedly from the insulin in their pancreas and plasma. 
Trans Assoc Amer Physicians, 93. 263-278. 



 
Steroids – Basic Science 

 

118 

Schlosser, MJ. Kapeghian, JC. Verlangieri, AJ. (1987). Selected physical and biochemical 
parameters in the streptozotocin-treated guinea pig: insights into the diabetic 
guinea pig model. Life Sciences, 41, 1345-1353. 

Schriock, ED. Buffington, CK. Hubert, GD. Kurtz, BR. Kitabchi, AE. Buster, JE et al. (1988). 
Divergent correlation of circulating dehydroepiandrosterone sulfate and 
testosterone with insulin levels and insulin receptor binding. J Clin Endocrinol 
Metab, 66, 1329-1331. 

Smith, S. Ravnikar, VA. Barbieri, RL. (1987). Androgen and insulin response to an oral 
glucose challenge in hyperandrogenic women. Fertil Sterril, 48, 72-77. 

Strott, CA. Goff, AK. Lyons, CD. (1981). Functional differences between the outer and 
inner zones of the guinea pig adrenal cortex. Endocrinology, 109, 2249- 2252. 

Ueshiba, H. Segawa, M. Hayashi, T. Miychi, Y. Irie, M. (1991). Serum steroid hormones in 
patients with Cushing's syndrome determined by a new HPLC/RIA method. Clin 
Chem, 37, 1329-1333. 

Wade, CE. Lindberg, JS. Cockrell, JL et al. (1988). Upon-admission adrenal steroidogenesis is 
adapted to the degree of illness in intensive care unit patients. Journal of Clinical 
Endocrinology and Metabolism, 67, 223-227. 

Yamaguchi, Y. Tanaka, S. Yamakawa T et al. (1998). Reduced serum dehydroepiandrosterone 
levels in diabetic patients with hyperinsulinaemia. Clinical Endocrinology, 49, 377-383. 

Yamauchi, A. Takei, I. Nakamoto, S. Ohashi, N. Kitamura, Y. Tokui, M et al. (1996). 
Hyperglycemia decreased dehydroepiandrosterone in Japanese male with 
impaired glucose tolerance and low insulin response. Endocrine Journal, 43, 285-290. 

7 

17β-Hydroxysteroid Dehydrogenase 
Type 3 Deficiency: Diagnosis, Phenotypic 

Variability and Molecular Findings 
Maria Felicia Faienza and Luciano Cavallo  

Department of Biomedicine of Developmental Age, University of Bari, 
Italy 

1.Introduction 
The steroid hormones are lipophilic compounds with low molecular weight, derived from 
cholesterol, which play a crucial role in differentiation, development and physiological 
functions of many tissues. They are synthesized primarily by endocrine glands, such as the 
gonads, the adrenal glands and the feto-placental unit during pregnancy. In addition, the 
central nervous system (CNS) seems to be able to synthesize a number of biologically active 
steroids, termed “neurosteroids”, with autocrine or paracrine functions (Baulieu, 1991). The 
circulating steroid hormones act both on peripheral target tissues and on the CNS, 
coordinating physiological and behavioral responses with specific biological purposes, e.g. 
reproduction. Thus, they influence the sexual differentiation of the genitalia and their 
functional state in adulthood, the development of secondary sexual characteristics, and 
sexual behavior. Unlike the lower mammals in which the ovaries and testes are the exclusive 
source of androgens and estrogens, in humans the adrenals cortex secretes large amount of 
inactive steroid precursors. These adrenal steroid precursors exert their functions in target 
tissues after conversion into active estrogens and/or androgens. This phenomenon which 
describes the conversion and action of steroid hormones within peripheral target tissues has 
been called “intracrinology” (Labrie, 1991, 2000).  
The rate of formation of each sex steroid hormone depends on the level of expression of the 
specific enzymes that synthesize androgens and estrogens in each cell of each tissue (Labrie 
et al., 1998; Stewart § Sheppard, 1992).  
The final step in the biosynthesis of active steroid hormones is catalyzed by members of the 
family of 17hydroxysteroid dehydrogenase (17HSD), which comprises different 
enzymes involved in steroidogenesis. 

2. 17hydroxysteroid dehydrogenases  
The 17-hydroxysteroid dehydrogenases (17-HSDs) belong to the short-chain 
dehydrogenase reductase (SDR) protein superfamily, which also includes the 3-
hydroxysteroid dehydrogenase (3HSD). These enzymes regulate the levels of bioactive 
steroid hormones in many tissues and they are expressed not only in genital tissues, which 
are the primary target, but also in peripheral blood. The 17-HSDs, along with other steroid 
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metabolizing enzymes such as aromatase, steroid sulfatase, 3-HSD and 5-reductase are 
able to produce their own hormones at the peripheral cells (intracrine activity). In 
steroidogenic tissues (the gonads and adrenal cortex) they catalyze the final step in 
androgens, estrogens and progesterone byosinthesis; in peripheral tissues, they convert 
active steroid hormones into their metabolites, and regulate hormone binding to their 
nuclear receptor. So far, 14 17HSDs have been characterized in mammals, which show 
little amino acid homology but that are all members of the SDR family, with the exception of 
17-HSD type 5 (17-HSD5) which is an aldo-keto reductase (Lukacik et al., 2006; Luu The, 
2001; Prehn et al., 2009). These isoenzymes differ as regards tissue-specific expression, 
catalytic activity, substrate and cofactors specificity (NAD/NADH vs NADP/NADPH), and 
subcellular localization (Payne § Hales, 2004). Although in vitro they act both as reductase or 
as oxidase enzymes, in vivo they work in a predominat one-way, or reductive or oxidative, 
converting inactive 17-ketosteroids in their active 17-hydroxy forms (Khan et al., 2004). 
Thus, they can be grouped into in vivo oxidative enzymes (17-HSD types 2, 4, 6, 8, 9, 10, 11 
and 14) and in vivo reductive enzymes (17-HSD types 1, 3, 5 and 7). 

2.1 Family members of 17-HSDs 
The main function of 17HSD type 1 (17HSD1), which has its highest concentration in 
the ovaries and placenta, is the catalytic reduction of estrone to estradiol (Luu The et al., 
1989). 17-HSD type 2 (17-HSD2) plays a major role in the inactivation of the sex steroid 
hormones by oxidizing estradiol and testosterone (T) to estrone and 4-Androstenedione 
(4-A), respectively (Wu et al., 1993), and has a broad tissue distribution (Casey et al., 1994). 
17-HSD type 3 (17-HSD3) plays a predominant role in male T production from 4-A 
(Geissler et al., 1994). Although this enzyme is found primarily in the testes, it is also present 
in adipose tissue, brain, sebaceous glands and bone. 17-HSD type 4 (17HSD4) is 
expressed in the liver (Adamski et al., 1996) and in the peroxisomes (Markus et al., 1995); 
this isoenzyme plays a major function in the metabolism of fatty acids, as has been described 
in murine models, while it has a minor role in the metabolism of steroids. In humans, 
mutations of the gene encoding for 17HSD4 isoenzyme lead to serious illness and death 
within the first year of life (Moller et al., 2001). 17-HSD type 5 (17HSD5), which is highly 
expressed in the testes, prostate, adrenals and liver, is believed to play a major role in the 
conversion of  4-A to T and therefore could explain the virilization obtained in patients 
affected with alterations of 17-HSD3. 17-HSD type 7 (17-HSD7) has been shown to play a 
role in metabolism of cholesterol (Marijanovic Z et al., 2003). 17HSD type 8 (17-HSD8) 
has been linked to a recessive form of polycystic kidney disease (Fomitcheva et al., 1998). 
Several of the 17HSD enzymes show overlap with enzymes involved in lipid metabolism 
(Tab.1).  
Since most of the 17-HSD enzymes are steroid metabolizing enzymes, they are possible 
drug targets in many cancers, such as breast and prostate cancer, as well as common 
diseases, such as obesity and metabolic syndrome. 

2.2 The role of 17-HSDs 
In a study conducted to observe the tissue-specificity of the transcriptional profiles of the 
17-HSDs, the expression of 17-HSDs type 1, 2, 3, 4, 5, 7 and 10 was observed both in the 
genital skin fibroblasts (both scrotal and foreskin) and in the peripheral blood, with the 
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Type of 17-HSD 
(Gene Name) 

Locations Functions Cofactor/ 
reactions 

Gene 
location 

17-HSD type 1 
(HSD17B1) 

liver, ovary, 
mammary glands 
and placenta 

catalyzes the 
interconversion of E1 to 
E2 

NADPH/ 
reduction 
 

17q21.2 

17-HSD type 2 
(HSD17B2) 

placenta, liver, 
intestine, 
endometrium, 
kidney, prostate, 
pancreas 

inactivates both E2 into 
E1 and T into 4-A 

NAD+/ 
oxidation 

16q23.3 

17-HSD type 3 
(HSD17B3) 

mainly testes, 
adipose tissue, 
brain, sebaceous 
glands and bone 

converts4-A to T NADPH/ 
reduction 

9q22.32 

17-HSD type 4 
(HSD17B4) 

liver, heart, 
prostate, testes, 
lung, skeletal 
muscle, kidney, 
pancreas, thymus, 
ovary,intestine, 
placenta and breast 
cancer lines 

inactivates both E2 into 
E1, and 5-diol into 
DHEA-; oxidation of 
FA 

NAD+/ 
oxidation 

5q23.1 

17-HSD type 5 
(AKR1C3) 

placenta, testes, 
prostate, adrenals 
and liver 

converts4-A to T in 
peripheral tissues; bile 
acid production and 
detoxification; 
eicosanoid synthesis 

NADPH/ 
reduction 

10p15.1 

17-HSD type 6 
(HSD17B6/RODH)

not determined only retinoid metabolism 
identified in humans 

NAD+/ 
oxidation 

12q13.3 

17-HSD type 7 
(HSD17B7) 

not determined cholesterol synthesis; 
catalyzes the 
interconversion of E1 to 
E2 

NADPH/ 
reduction 

10p11.2 
1q23 

17-HSD type 8 
(HSD17B8) 

widespread, liver, 
kidney, ovary, 
testes 

possible role in fatty acid 
metabolism; inactivates 
both E2 into E1 and 
androgens 

NAD+/ 
oxidation 

6p21.32 

17-HSD type 9 
(HSD17B8/RDH5) 

not determined only retinoid metabolism 
identified in humans 

not 
determine
d 

12q13.2 

17-HSD type 10 
(HSD17B10) 

widespread, liver, 
CNS, kidney, testes

oxidation of fatty acids; 
catalyzes the synthesis of 
DHT from 5-
androstane-3, 17diol; 
oxidation of the 21OH 
groups on C21 steroids 

NAD+/ 
oxidation 

Xp11.22 



 
Steroids – Basic Science 

 

120 

metabolizing enzymes such as aromatase, steroid sulfatase, 3-HSD and 5-reductase are 
able to produce their own hormones at the peripheral cells (intracrine activity). In 
steroidogenic tissues (the gonads and adrenal cortex) they catalyze the final step in 
androgens, estrogens and progesterone byosinthesis; in peripheral tissues, they convert 
active steroid hormones into their metabolites, and regulate hormone binding to their 
nuclear receptor. So far, 14 17HSDs have been characterized in mammals, which show 
little amino acid homology but that are all members of the SDR family, with the exception of 
17-HSD type 5 (17-HSD5) which is an aldo-keto reductase (Lukacik et al., 2006; Luu The, 
2001; Prehn et al., 2009). These isoenzymes differ as regards tissue-specific expression, 
catalytic activity, substrate and cofactors specificity (NAD/NADH vs NADP/NADPH), and 
subcellular localization (Payne § Hales, 2004). Although in vitro they act both as reductase or 
as oxidase enzymes, in vivo they work in a predominat one-way, or reductive or oxidative, 
converting inactive 17-ketosteroids in their active 17-hydroxy forms (Khan et al., 2004). 
Thus, they can be grouped into in vivo oxidative enzymes (17-HSD types 2, 4, 6, 8, 9, 10, 11 
and 14) and in vivo reductive enzymes (17-HSD types 1, 3, 5 and 7). 

2.1 Family members of 17-HSDs 
The main function of 17HSD type 1 (17HSD1), which has its highest concentration in 
the ovaries and placenta, is the catalytic reduction of estrone to estradiol (Luu The et al., 
1989). 17-HSD type 2 (17-HSD2) plays a major role in the inactivation of the sex steroid 
hormones by oxidizing estradiol and testosterone (T) to estrone and 4-Androstenedione 
(4-A), respectively (Wu et al., 1993), and has a broad tissue distribution (Casey et al., 1994). 
17-HSD type 3 (17-HSD3) plays a predominant role in male T production from 4-A 
(Geissler et al., 1994). Although this enzyme is found primarily in the testes, it is also present 
in adipose tissue, brain, sebaceous glands and bone. 17-HSD type 4 (17HSD4) is 
expressed in the liver (Adamski et al., 1996) and in the peroxisomes (Markus et al., 1995); 
this isoenzyme plays a major function in the metabolism of fatty acids, as has been described 
in murine models, while it has a minor role in the metabolism of steroids. In humans, 
mutations of the gene encoding for 17HSD4 isoenzyme lead to serious illness and death 
within the first year of life (Moller et al., 2001). 17-HSD type 5 (17HSD5), which is highly 
expressed in the testes, prostate, adrenals and liver, is believed to play a major role in the 
conversion of  4-A to T and therefore could explain the virilization obtained in patients 
affected with alterations of 17-HSD3. 17-HSD type 7 (17-HSD7) has been shown to play a 
role in metabolism of cholesterol (Marijanovic Z et al., 2003). 17HSD type 8 (17-HSD8) 
has been linked to a recessive form of polycystic kidney disease (Fomitcheva et al., 1998). 
Several of the 17HSD enzymes show overlap with enzymes involved in lipid metabolism 
(Tab.1).  
Since most of the 17-HSD enzymes are steroid metabolizing enzymes, they are possible 
drug targets in many cancers, such as breast and prostate cancer, as well as common 
diseases, such as obesity and metabolic syndrome. 

2.2 The role of 17-HSDs 
In a study conducted to observe the tissue-specificity of the transcriptional profiles of the 
17-HSDs, the expression of 17-HSDs type 1, 2, 3, 4, 5, 7 and 10 was observed both in the 
genital skin fibroblasts (both scrotal and foreskin) and in the peripheral blood, with the 
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Type of 17-HSD 
(Gene Name) 

Locations Functions Cofactor/ 
reactions 

Gene 
location 

17-HSD type 1 
(HSD17B1) 

liver, ovary, 
mammary glands 
and placenta 

catalyzes the 
interconversion of E1 to 
E2 

NADPH/ 
reduction 
 

17q21.2 

17-HSD type 2 
(HSD17B2) 

placenta, liver, 
intestine, 
endometrium, 
kidney, prostate, 
pancreas 

inactivates both E2 into 
E1 and T into 4-A 

NAD+/ 
oxidation 

16q23.3 

17-HSD type 3 
(HSD17B3) 

mainly testes, 
adipose tissue, 
brain, sebaceous 
glands and bone 

converts4-A to T NADPH/ 
reduction 

9q22.32 

17-HSD type 4 
(HSD17B4) 

liver, heart, 
prostate, testes, 
lung, skeletal 
muscle, kidney, 
pancreas, thymus, 
ovary,intestine, 
placenta and breast 
cancer lines 

inactivates both E2 into 
E1, and 5-diol into 
DHEA-; oxidation of 
FA 

NAD+/ 
oxidation 

5q23.1 

17-HSD type 5 
(AKR1C3) 

placenta, testes, 
prostate, adrenals 
and liver 

converts4-A to T in 
peripheral tissues; bile 
acid production and 
detoxification; 
eicosanoid synthesis 

NADPH/ 
reduction 

10p15.1 

17-HSD type 6 
(HSD17B6/RODH)

not determined only retinoid metabolism 
identified in humans 

NAD+/ 
oxidation 

12q13.3 

17-HSD type 7 
(HSD17B7) 

not determined cholesterol synthesis; 
catalyzes the 
interconversion of E1 to 
E2 

NADPH/ 
reduction 

10p11.2 
1q23 

17-HSD type 8 
(HSD17B8) 

widespread, liver, 
kidney, ovary, 
testes 

possible role in fatty acid 
metabolism; inactivates 
both E2 into E1 and 
androgens 

NAD+/ 
oxidation 

6p21.32 

17-HSD type 9 
(HSD17B8/RDH5) 

not determined only retinoid metabolism 
identified in humans 

not 
determine
d 

12q13.2 

17-HSD type 10 
(HSD17B10) 

widespread, liver, 
CNS, kidney, testes

oxidation of fatty acids; 
catalyzes the synthesis of 
DHT from 5-
androstane-3, 17diol; 
oxidation of the 21OH 
groups on C21 steroids 

NAD+/ 
oxidation 

Xp11.22 
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Type of 17-HSD 
(Gene Name) 

Locations Functions Cofactor/ 
reactions 

Gene 
location 

17-HSD type 11 
(HSD17B11) 

steroidogenic 
tissues, pancreas, 
liver, kidney, lung 
and heart 

converts 5-androstane-
3, 17diol to 
androsterone; lipid 
metabolism 

NAD+/ 
oxidation 

4q22.1 

17-HSD type 12 
(HSD17B12) 

not determined  fatty acid synthesis; 3-
ketoacyl-CoA reductase 

NADPH/ 
reduction 

11p11.2 

17-HSD type 13 
(HSD17B13) 

not determined enzymatically not 
characterized 

not 
determine
d 

4q22.1 

17-HSD type 14 
(HSD17B14) 

CNS, kidney inactivates both E2 into 
E1 and T into 4A; 
oxidation of FA 

NAD+/ 
oxidation 

19q13.33 

E 1 = Estrone; E2 = 17-estradiol; 5-diol = androst-5-ene 3 DHEA = dihydroepiandrosterone;  
NADPH/NADP+ = nicotinamide adenine di nucleotide phosphate;  
4-A = androstenedione; T = testosterone; 
FA = fatty acids 

Table 1. The different types of identified 17-HSD with corresponding locations and 
function  

exception of the 17-HSD-2 which was not seen in peripheral blood (Hoppe et al., 2006). All 
17-HSDs except 17HSD1 showed a significantly higher mRNA concentration in the 
foreskin compared to the scrotal tissue, demonstrating a tissue-specific local control of 
steroid hormone synthesis and action in addition to systemic effects (Hoppe et al., 2006). It 
has been demonstrated that the expression of 17-HSD5 increases with aging in scrotal skin 
fibroblasts and in peripheral blood mononuclear cells, while the 17-HSD3 mRNA 
expression is higher in the younger age subjects (Hammer et al., 2005; Hoppe et al., 2006). 
This implicates that 17-HSD3 has a more important role in childhood, which later is taken 
over by the 17-HSD5 after puberty.  
It was also demonstrated the existence of a large inter individual variability of the enzymatic 
transcription patterns (Hoppe et al., 2006). Microarray investigation of multiple blood 
samples taken on different days from the same individual showed time-dependent 
differences in gene clustering. The nature and extent of inter individual and temporal 
variation in gene expression patterns in specific cells and tissues is an important and 
relatively unexplored issue in human biology (Whitney et al., 2003). In light of such intra- 
and inter individual variability, basal and after stimulation levels of the steroid hormones 
can vary a within wide range in normal subjects. 

2.3 17-hydroxisteroid dehydrogenase type 3  
17-hydroxisteroid dehydrogenase type 3 (17-HSD3) isoenzyme catalyzes the reductive 
conversion of the inactive C-19 steroid, 4-A, into the biologically active androgen, T, in the 
Leydig cells of the testes (Payne § Hales, 2004). This protein shows a 23% sequence 
homology with the other 17-HSD isoenzymes, utilizes NAPDH as cofactor and it seems to 
be prevalently expressed in the fetal and adult testes. Extragonadal tissues such as bone, 
adipose tissue, sebaceous glands and brain have also been shown to express this enzyme 
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(Lukacik et al., 2006). It is encoded by HSD17B3 gene which maps to chromosome 9q22; it is 
60 kb in length and contains 11 exons. The cDNA encodes a protein of 310 amino-acids with 
a molecular mass of 34.5 kDa and no apparent membrane-spanning domain (Andersson et 
al., 1996).  
It has been demonstrated that HSD17B3 gene is constitutively suppressed and its 
transcription begins only upon removal of suppressors that act on the Alu repeat region 
located upstream of the translation site start of the gene promoter region (Xiaofei et al., 
2006).  
HSD17B3 gene alterations affecting the enzyme function have been associated with a rare 
form of 46,XY disorder of sexual development (DSD), termed 17-hydroxisteroid 
dehydrogenase deficiency (Geissler et al., 1994).  

3. Development of the male genitalia 
The development of the male internal and external genitalia in an XY fetus requires a 
complex interplay of many critical genes, enzymes and cofactors (Hannema § Hughes, 
2007). Wolffian ducts (mesonephric ducts) and mullerian ducts (paramesonephric ducts) are 
both present in early fetal life in the bipotential embryo. The wolffian ducts are the 
embryological structures that form the epididymis, vas deferens and seminal vesicles. T is 
produced by Leydig cells as early as 8 weeks of gestation and acts on the androgen receptor 
to stabilize the wolffian ducts (Tong et al., 1996). T and its 5-reduced end product, 
dihydrotestosterone (DHT), induce the formation of male external genitalia, including the 
urethra, prostate, penis and scrotum (Wilson, 1978). The mullerian ducts should regress in a 
male with the presence of the mullerian inhibiting substance produced by Sertoli cells in the 
testes. In addition, multiple other factors are necessary for the male phenotype to be 
congruent with a 46,XY genotype. The enzyme 17HSD3 is present almost exclusively in 
the testes and converts 4-A to T. The 5 -reductase type 2 enzyme is needed to convert T to 
DHT. In order for T and DHT to exert their androgenic role, there must be an intact 
androgen receptor. The lack of any one of these critical factors, including 17HSD3, can 
lead to a child with a DSD. 

3.1 Disorders of sexual development  
Disorders of sexual development (DSDs) are congenital conditions in which development of 
chromosomal, gonadal or anatomical sex is atypical (Houk et al., 2006; Hughes et al., 2006). 
These disorders are classified into three major categories: sex chromosome DSD, 46,XX DSD 
and 46,XY DSD. This designation was proposed to replace the former term of 
pseudohermaphroditism, according to the consensus statement on management of intersex 
disorders (Hughes et al., 2006). 46,XY DSD are a heterogeneous group of clinical conditions 
characterized by 46,XY karyotype, either normal or dysgenetic testes and female or 
ambiguous phenotype of external (and possibly internal) genitalia (Hughes et al., 2006). This 
disorder can have several etiologies, but more frequently is due to a disruption in androgen 
production and/or action. Defects in androgen action and metabolism include mutations in 
the androgen receptor gene (complete, partial or mild androgen insensivity syndrome-AIS 
and Kennedy syndrome), or in the steroid 5-reductase type 2 gene, encoding the enzyme 
which convert T into DHT in the uro-genital tract (Quigley et al., 1995; Wilson et al., 1993). 
Instead, disorders of androgens biosynthesis are rare and usually due to alteration of 
enzyme involved in the conversion of cholesterol to T, such as the steroidogenic acute 
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Type of 17-HSD 
(Gene Name) 

Locations Functions Cofactor/ 
reactions 

Gene 
location 

17-HSD type 11 
(HSD17B11) 

steroidogenic 
tissues, pancreas, 
liver, kidney, lung 
and heart 

converts 5-androstane-
3, 17diol to 
androsterone; lipid 
metabolism 

NAD+/ 
oxidation 

4q22.1 

17-HSD type 12 
(HSD17B12) 

not determined  fatty acid synthesis; 3-
ketoacyl-CoA reductase 

NADPH/ 
reduction 

11p11.2 

17-HSD type 13 
(HSD17B13) 

not determined enzymatically not 
characterized 

not 
determine
d 

4q22.1 

17-HSD type 14 
(HSD17B14) 

CNS, kidney inactivates both E2 into 
E1 and T into 4A; 
oxidation of FA 

NAD+/ 
oxidation 

19q13.33 

E 1 = Estrone; E2 = 17-estradiol; 5-diol = androst-5-ene 3 DHEA = dihydroepiandrosterone;  
NADPH/NADP+ = nicotinamide adenine di nucleotide phosphate;  
4-A = androstenedione; T = testosterone; 
FA = fatty acids 

Table 1. The different types of identified 17-HSD with corresponding locations and 
function  

exception of the 17-HSD-2 which was not seen in peripheral blood (Hoppe et al., 2006). All 
17-HSDs except 17HSD1 showed a significantly higher mRNA concentration in the 
foreskin compared to the scrotal tissue, demonstrating a tissue-specific local control of 
steroid hormone synthesis and action in addition to systemic effects (Hoppe et al., 2006). It 
has been demonstrated that the expression of 17-HSD5 increases with aging in scrotal skin 
fibroblasts and in peripheral blood mononuclear cells, while the 17-HSD3 mRNA 
expression is higher in the younger age subjects (Hammer et al., 2005; Hoppe et al., 2006). 
This implicates that 17-HSD3 has a more important role in childhood, which later is taken 
over by the 17-HSD5 after puberty.  
It was also demonstrated the existence of a large inter individual variability of the enzymatic 
transcription patterns (Hoppe et al., 2006). Microarray investigation of multiple blood 
samples taken on different days from the same individual showed time-dependent 
differences in gene clustering. The nature and extent of inter individual and temporal 
variation in gene expression patterns in specific cells and tissues is an important and 
relatively unexplored issue in human biology (Whitney et al., 2003). In light of such intra- 
and inter individual variability, basal and after stimulation levels of the steroid hormones 
can vary a within wide range in normal subjects. 

2.3 17-hydroxisteroid dehydrogenase type 3  
17-hydroxisteroid dehydrogenase type 3 (17-HSD3) isoenzyme catalyzes the reductive 
conversion of the inactive C-19 steroid, 4-A, into the biologically active androgen, T, in the 
Leydig cells of the testes (Payne § Hales, 2004). This protein shows a 23% sequence 
homology with the other 17-HSD isoenzymes, utilizes NAPDH as cofactor and it seems to 
be prevalently expressed in the fetal and adult testes. Extragonadal tissues such as bone, 
adipose tissue, sebaceous glands and brain have also been shown to express this enzyme 

17β-Hydroxysteroid Dehydrogenase Type 3 Deficiency: 
Diagnosis, Phenotypic Variability and Molecular Findings 

 

123 

(Lukacik et al., 2006). It is encoded by HSD17B3 gene which maps to chromosome 9q22; it is 
60 kb in length and contains 11 exons. The cDNA encodes a protein of 310 amino-acids with 
a molecular mass of 34.5 kDa and no apparent membrane-spanning domain (Andersson et 
al., 1996).  
It has been demonstrated that HSD17B3 gene is constitutively suppressed and its 
transcription begins only upon removal of suppressors that act on the Alu repeat region 
located upstream of the translation site start of the gene promoter region (Xiaofei et al., 
2006).  
HSD17B3 gene alterations affecting the enzyme function have been associated with a rare 
form of 46,XY disorder of sexual development (DSD), termed 17-hydroxisteroid 
dehydrogenase deficiency (Geissler et al., 1994).  

3. Development of the male genitalia 
The development of the male internal and external genitalia in an XY fetus requires a 
complex interplay of many critical genes, enzymes and cofactors (Hannema § Hughes, 
2007). Wolffian ducts (mesonephric ducts) and mullerian ducts (paramesonephric ducts) are 
both present in early fetal life in the bipotential embryo. The wolffian ducts are the 
embryological structures that form the epididymis, vas deferens and seminal vesicles. T is 
produced by Leydig cells as early as 8 weeks of gestation and acts on the androgen receptor 
to stabilize the wolffian ducts (Tong et al., 1996). T and its 5-reduced end product, 
dihydrotestosterone (DHT), induce the formation of male external genitalia, including the 
urethra, prostate, penis and scrotum (Wilson, 1978). The mullerian ducts should regress in a 
male with the presence of the mullerian inhibiting substance produced by Sertoli cells in the 
testes. In addition, multiple other factors are necessary for the male phenotype to be 
congruent with a 46,XY genotype. The enzyme 17HSD3 is present almost exclusively in 
the testes and converts 4-A to T. The 5 -reductase type 2 enzyme is needed to convert T to 
DHT. In order for T and DHT to exert their androgenic role, there must be an intact 
androgen receptor. The lack of any one of these critical factors, including 17HSD3, can 
lead to a child with a DSD. 

3.1 Disorders of sexual development  
Disorders of sexual development (DSDs) are congenital conditions in which development of 
chromosomal, gonadal or anatomical sex is atypical (Houk et al., 2006; Hughes et al., 2006). 
These disorders are classified into three major categories: sex chromosome DSD, 46,XX DSD 
and 46,XY DSD. This designation was proposed to replace the former term of 
pseudohermaphroditism, according to the consensus statement on management of intersex 
disorders (Hughes et al., 2006). 46,XY DSD are a heterogeneous group of clinical conditions 
characterized by 46,XY karyotype, either normal or dysgenetic testes and female or 
ambiguous phenotype of external (and possibly internal) genitalia (Hughes et al., 2006). This 
disorder can have several etiologies, but more frequently is due to a disruption in androgen 
production and/or action. Defects in androgen action and metabolism include mutations in 
the androgen receptor gene (complete, partial or mild androgen insensivity syndrome-AIS 
and Kennedy syndrome), or in the steroid 5-reductase type 2 gene, encoding the enzyme 
which convert T into DHT in the uro-genital tract (Quigley et al., 1995; Wilson et al., 1993). 
Instead, disorders of androgens biosynthesis are rare and usually due to alteration of 
enzyme involved in the conversion of cholesterol to T, such as the steroidogenic acute 
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regulatory (stAR) protein, the steroidogenic enzyme P450ssc, 3HDS type 2, 
17hydroxylase/17-20 lyase and 17β-hydroxysteroid dehydrogenase type 3 (17-HSD3) 
(Gobinet et al., 2002; Miller et al., 2005), (Fig.1)  
 

 

Fig. 1. Steroidogenic pathway and role of 17- HSD3 

4. 17β-hydroxysteroid dehydrogenase type 3 deficiency 

17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency (OMIM #264300), 
originally described as 17-ketosteroid reductase deficiency (Saez et al., 1971), is an 
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impaired conversion of Δ4-A into T in the testes (Bertelloni et al., 2009; Faienza et al., 2008). 
Deficiency in the 17-HSD3 enzyme can be caused by either homozygous or compound 
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HSD17B3 gene confer a spectrum of 46,XY disorders of sexual organ development ranging 
from completely undervirilized external female genitalia (Sinnecker type 5), predominantly 
female (Sinnecker type 4), ambiguous (Sinnecker type 3), to predominantly male with 
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4.1 Epidemiology and demographic 
The DSD affect 1 in 5,000 to 5,500 people (0.018%) (Parisi et al., 2007; Thyen et al., 2006). 
Although the precise incidence of 17β-HSD3 deficiency is unknown, a nation-wide survey in 
the Netherlands showed a minimal incidence of 17β-HSD3 deficiency of about 1:147.000 
newborns, with a frequency of heterozygotes of 1 in 135 (Boehmer et al., 1999). The 
frequency of complete androgen insensitivity syndrome (CAIS) from the same population 
was 1 in 99,000, which indicates that the frequency of 17-HSD3 deficiency is 0.65 times that 
of CAIS (Boehmer et al., 1999). 17-HSD3 deficiency is rare in Western countries, whereas in 
areas of high consanguinity, such as among the Gaza Strip Arab population, the incidence of 
17-HSD3 deficiency has been reported to be 1 in 100–300 people (Rosler et al., 1996, 2006). 
Of the known cases of 17-HSD3 deficiency, most of the patients have been reported in 
Europe, Asia, Australia and South America, whereas only 11 cases have been reported in the 
United States (Mains et al., 2008; Moeller § Adamski, 2009). In a recent study from a gender 
assessment team in the United States that looked at DSD over a 25-year period, no patient 
with 17-HSD3 deficiency was diagnosed (Paris et al., 2007). Moreover, in the United 
Kingdom DSD database, patients with 17β-HSD3 represent about the 4% of the total 46,XY 
DSD subjects (13/322) (Hughes, 2008). Probably the rate of 17-HSD3 deficiency in the 
United States is not so low, but many cases are misdiagnosed. In one study, patients who 
were later confirmed to have 17-HSD3 deficiency were initially misdiagnosed with AIS, 
and the rate of misdiagnosis was calculated to be 67% (Faisal et al., 2000). The risk of 
misdiagnosis is especially problematic because the clinical findings in 17-HSD3 deficiency 
may mimic AIS in childhood and 5-reductase deficiency in puberty (Lee et al., 2007). Thus, 
correct diagnosis should be made early so that treatment, management and genetic 
counseling can be specifically directed toward 17-HSD3 deficiency (Hiort et al., 2003; 
Johannsen et al., 2006). 

4.2 Clinical features 
The characteristic phenotype of 17-HSD3 deficiency is a 46,XY individual with testes and 
male wolffian-duct derived urogenital structure (e.g. epydidymus, vas deferens and 
seminals vesicles), but with undervirilization of the external genitalia. Patients show a 
phenotypic variability ranging from undervirilization of the external genitalia with or 
without clitoromegaly and/or labial fusion, to complete female external genitalia and a 
blind-ending vagina; testes may be situated in the abdomen or in the inguinal channels or in 
the labia majora (Grumbach et al., 1998). Gynecomastia, likely as consequence of high 4-A 
levels and its conversion to estrogens in peripheral tissues, is not usually present 
(Andersson et al, 1996; Balducci et al., 1985; Mendonca et al., 2000). Two late-onset variants 
of uncertain pathophysiology, one of which is characterized by gynecomastia in boys 
(Rogers et al., 1985; Castro-Magana et al., 1993) and the other by polycystic disease in 
woman have been described (Pang et al., 1987). 

4.2.1 Birth 
Patients with mutations in the HSD17B3 gene may go unnoticed at birth as they commonly 
have female external genitalia (Balducci et al., 1985; Lee et al., 2007; Rosler et al., 1996). These 
children are usually assigned the female gender and grow up as such, and the diagnosis 
may be missed until adolescence (Andersson et al., 1996; Balducci et al., 1985; Bohmer et al., 
1999; Faienza et al., 2007; Lee et al., 2007; Mendonca et al., 2000; Rosler et al., 2006).  



 
Steroids – Basic Science 

 

124 

regulatory (stAR) protein, the steroidogenic enzyme P450ssc, 3HDS type 2, 
17hydroxylase/17-20 lyase and 17β-hydroxysteroid dehydrogenase type 3 (17-HSD3) 
(Gobinet et al., 2002; Miller et al., 2005), (Fig.1)  
 

 

Fig. 1. Steroidogenic pathway and role of 17- HSD3 

4. 17β-hydroxysteroid dehydrogenase type 3 deficiency 

17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) deficiency (OMIM #264300), 
originally described as 17-ketosteroid reductase deficiency (Saez et al., 1971), is an 
autosomal recessive disorder which represents the most common defect of the biosynthesis 
of T in 46,XY DSD (Bertelloni et al., 2004; Mendonca et al., 2000). This disorder is due to an 
impaired conversion of Δ4-A into T in the testes (Bertelloni et al., 2009; Faienza et al., 2008). 
Deficiency in the 17-HSD3 enzyme can be caused by either homozygous or compound 
heterozygous mutations in the HSD17B3 gene (Geissler et al., 1994). Mutations in the 
HSD17B3 gene confer a spectrum of 46,XY disorders of sexual organ development ranging 
from completely undervirilized external female genitalia (Sinnecker type 5), predominantly 
female (Sinnecker type 4), ambiguous (Sinnecker type 3), to predominantly male with 
micropenis and hypospadias (Sinnecker type 2) (Boehmer et al., 1999; Sinnecker et al., 1996). 
The most frequent presentation of 17β-HSD3 deficiency is a 46,XY individual with female 
external genitalia, labial fusion and a blind ending vagina, with or without clitoromegaly 
(Sinnecker types 5 and 4).  

17β-Hydroxysteroid Dehydrogenase Type 3 Deficiency: 
Diagnosis, Phenotypic Variability and Molecular Findings 

 

125 

4.1 Epidemiology and demographic 
The DSD affect 1 in 5,000 to 5,500 people (0.018%) (Parisi et al., 2007; Thyen et al., 2006). 
Although the precise incidence of 17β-HSD3 deficiency is unknown, a nation-wide survey in 
the Netherlands showed a minimal incidence of 17β-HSD3 deficiency of about 1:147.000 
newborns, with a frequency of heterozygotes of 1 in 135 (Boehmer et al., 1999). The 
frequency of complete androgen insensitivity syndrome (CAIS) from the same population 
was 1 in 99,000, which indicates that the frequency of 17-HSD3 deficiency is 0.65 times that 
of CAIS (Boehmer et al., 1999). 17-HSD3 deficiency is rare in Western countries, whereas in 
areas of high consanguinity, such as among the Gaza Strip Arab population, the incidence of 
17-HSD3 deficiency has been reported to be 1 in 100–300 people (Rosler et al., 1996, 2006). 
Of the known cases of 17-HSD3 deficiency, most of the patients have been reported in 
Europe, Asia, Australia and South America, whereas only 11 cases have been reported in the 
United States (Mains et al., 2008; Moeller § Adamski, 2009). In a recent study from a gender 
assessment team in the United States that looked at DSD over a 25-year period, no patient 
with 17-HSD3 deficiency was diagnosed (Paris et al., 2007). Moreover, in the United 
Kingdom DSD database, patients with 17β-HSD3 represent about the 4% of the total 46,XY 
DSD subjects (13/322) (Hughes, 2008). Probably the rate of 17-HSD3 deficiency in the 
United States is not so low, but many cases are misdiagnosed. In one study, patients who 
were later confirmed to have 17-HSD3 deficiency were initially misdiagnosed with AIS, 
and the rate of misdiagnosis was calculated to be 67% (Faisal et al., 2000). The risk of 
misdiagnosis is especially problematic because the clinical findings in 17-HSD3 deficiency 
may mimic AIS in childhood and 5-reductase deficiency in puberty (Lee et al., 2007). Thus, 
correct diagnosis should be made early so that treatment, management and genetic 
counseling can be specifically directed toward 17-HSD3 deficiency (Hiort et al., 2003; 
Johannsen et al., 2006). 

4.2 Clinical features 
The characteristic phenotype of 17-HSD3 deficiency is a 46,XY individual with testes and 
male wolffian-duct derived urogenital structure (e.g. epydidymus, vas deferens and 
seminals vesicles), but with undervirilization of the external genitalia. Patients show a 
phenotypic variability ranging from undervirilization of the external genitalia with or 
without clitoromegaly and/or labial fusion, to complete female external genitalia and a 
blind-ending vagina; testes may be situated in the abdomen or in the inguinal channels or in 
the labia majora (Grumbach et al., 1998). Gynecomastia, likely as consequence of high 4-A 
levels and its conversion to estrogens in peripheral tissues, is not usually present 
(Andersson et al, 1996; Balducci et al., 1985; Mendonca et al., 2000). Two late-onset variants 
of uncertain pathophysiology, one of which is characterized by gynecomastia in boys 
(Rogers et al., 1985; Castro-Magana et al., 1993) and the other by polycystic disease in 
woman have been described (Pang et al., 1987). 

4.2.1 Birth 
Patients with mutations in the HSD17B3 gene may go unnoticed at birth as they commonly 
have female external genitalia (Balducci et al., 1985; Lee et al., 2007; Rosler et al., 1996). These 
children are usually assigned the female gender and grow up as such, and the diagnosis 
may be missed until adolescence (Andersson et al., 1996; Balducci et al., 1985; Bohmer et al., 
1999; Faienza et al., 2007; Lee et al., 2007; Mendonca et al., 2000; Rosler et al., 2006).  



 
Steroids – Basic Science 

 

126 

Those subjects who come to medical attention in childhood have some degree of virilization 
or inguinal hernia with testes present along the inguinal canals or labioscrotal folds 
(Andersson et al., 1996; Bohmer et al., 1999; Lee et al., 2007). Less often patients have 
ambiguous external genitalia (Can et al., 1998; Eckstein et al., 1989), male genitalia with a 
micropenis (Ulloa-Aguirre et al., 1985) or hypospadias (Andersson et al., 1996). In these 
patients, the male sex is assigned at birth and they are raised accordingly (Rosler et al., 
1996).  
The degree of virilization can vary from Sinnecker stage 5 to stage 2 as mentioned above. 
This is speculated to be due to the partial activity of 17-HSD3 in the testes and 
extratesticular T conversion by other members of the family, such as 17-HSD5 (Lee et al., 
2007; Qiu et al., 2004).  
On examination, a separate urethral and vaginal opening is noted in many subjects, 
although a short urogenital sinus is reported in some (Bertelloni et al., 2006; Lee et al, 2007). 
Blind ending vagina that have length ranging from 1 to 7 cm has been reported in this 
condition (Faienza et al., 2007; Mendonca et al., 2000).  
Although these findings are not specific for 17-HSD-3 deficiency and can be seen in other 
46,XY DSD, they should raise suspicion for 17 HSD3 deficiency. 

4.2.2 Pubertal 
At the time of puberty, patients initially reared as females who have not undergone 
gonadectomy  may have primary amenorrhea and varying degrees of virilization, including 
development of male body habitus, increased body hair and deepening of the voice (Faienza 
et al., 2007; Lee et al., 2007; Mains et al., 2008; Mendonca et al., 2000; Rosler et al., 1992; 
Rosler et al., 1996;). The clitoris can enlarge to as much as 5–8 cm in length due to peripheral 
conversion of T (Balducci et al., 1985; Mendonca et al., 2000;), but still remains smaller than a 
normal-sized penis and may be affected by chordee (Farkas § Rosler, 1993).  
The paradox of the failure of intrauterine virilization but virilization in puberty remains an 
enigma not fully explained.  A limited capacity of the extragonadal tissues to convert 4-A 
to T in embryonic life might explain the lack of virilization at birth (Ulloa-Aguirre et al., 
1985). This might then be overcome at puberty, when the levels of 4-A are more elevated 
and thus activate the peripheral conversion into T. It has been demonstrated that in these 
subjects more than 90% of circulating T derives from peripheral conversion of 4-A into T 
by other isoenzymes (Andersson et al., 1996; Goebelsmann et al.,1973). There is abundant 
evidence of the presence of 17-HSDs and other enzymes involved in androgen formation in 
a large series of human tissues, particularly liver, skin and adipose tissue (Martel et al., 
1992). 
This extragonadal activity is presumable under different genetic control (17-HSD type 1, 2 
or 5 encoding gene) which is apparently unimpaired in these patients (Andersson et al., 
1996; Luu-The et al., 1989).  
Moreover, there seems to be a correlation between the type of mutation and the percentage 
of enzyme inactivation. There are several  reports showing a residual enzymatic activity (15-
20%) in cultured mammalian cells carrying the R80Q mutation, after several hours of 
incubation with the substrate (androstenedione). On the contrary, most missense mutations 
seems to severely impair the enzyme activity (Andersson et al., 1996; Geissler et al., 1994;).  
A late onset form of 17-HSD3 deficiency causing breast development was reported in up 
to 6% of the patients with idiopathic pubertal gynecomastia (Castro-Magana et al., 1993). 
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It appeared to be related to the functional inactivity of 17-HSD3 during puberty and 
increased aromatization of 4-A to produce excessive estrogens; however, the HSD17B3 
gene was not studied for defects in this study (Balducci et al., 1985; Bertelloni et al., 
2009b).  

4.2.3 Prenatal 
Recently, the first case of prenatally identified 17-HSD3 deficiency was reported in a child 
with discordance between 46,XY karyotype and female external genitalia with phallic 
structure (Bertelloni et al., 2009b).  

4.3 Endocrine findings 
The phenotype of 17-HSD3 deficiency is clinically indistinguishable from that of AIS or 
5-reductase 2 deficiency. In fact, the majority of the subjects had a misdiagnosis of AIS or 
5α-reductase deficiency before adequate assessment, and these two latter DSD represent the 
principal differential diagnoses in infancy and adolescence, respectively (Balducci et al., 
1985; Bertelloni et al., 2009a; Lee et al., 2007) (Fig. 2).  17-HSD3 however, can be reliably 
diagnosed by systematic endocrine evaluation (Fig. 2) and the diagnosis confirmed by 
molecular genetics study.  
The characteristic hormonal profile of 17-HSD3 deficiency is of increased concentrations of 
4-A and reduced levels of T (Faisal et al., 2000). In particular, a diagnostic hallmark of 17-
HSD3 deficiency is a decreased serum T/4-A ratio (<0.8-0.9) after human corionic 
gonadotropin (hCG) stimulation in prepubertal subjects, while baseline values seems to be 
informative in early infancy and adolescence (Rosler et al., 1996). A normal ratio above 0.8 
after hCG stimulation raises the suspicion of other diagnoses such as androgen receptor 
mutation. An elevated T/DHT raises the suspicion of a 5-reductase type 2 deficiency. 
However, low basal T/4-A ratio is not specific for 17-HSD3 deficiency, being sometimes 
also found in patients with other defects in T synthesis or with Leydig cell hypoplasia. The 
clinical phenotype of Leydig cell hypoplasia may also resemble that of 17β-HSD3 deficiency 
before puberty, but the absence of all testicular androgens (baseline and after hCG 
stimulation) and the lack of pubertal development or isosexual pubertal arrest should allow 
to differentiate between them (Bertelloni et al., 2009a).  
A diagnostic tool could be represented by the urinary ketosteroid analysis performed by 
means gas chromatography tandem mass spectrometry, a high sensitive technique for the 
detection of anabolic steroid residues in urine (Van Poucke et al., 2005).  
The DHT levels in 17- HSD-3 deficiency can be decreased, normal or high, while the 
dehydroepiandrosterone (DHEA) levels are typically high (Mendonca et al., 2000).   
Elevated serum LH and FSH levels at baseline and after GnRH test administration, 
indicating the impairment of the pituitary regulatory control by gonadal hormones, have 
been found in these subjects (Mendonca et al., 2000). Increased serum LH causes elevated 
4-A levels, allowing the formation of some T either in extra glandular tissues or in the 
testes, when some residual enzyme activity is present (Andersson et al., 1996). Elevation of 
FSH  may also be due to a damage to the spermatogenic tubules as a result of long term 
cryptorchidism as documented in histological specimens from adult subjects. However, FSH 
levels have been reported to be normal in some subjects (Van Poucke et al., 2005; Rosler et 
al., 1992). 
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Fig. 2. A diagnostic algorithm to elucidate the various etiologies of 46,XY DSD. The diagram 
shows the importance of hCG stimulation in the diagnosis of 46,XY DSD. Upon hCG 
stimulation, if the T/4-A ratio is >0.8, the diagnosis of 17- HSD3 can be suspected; if the 
T/DHT ratio is >20, a diagnosis of 5-reductase deficiency can be suspected. If the response 
of T is >100 ng/dl, androgen insensivity syndrome (AIS) is possible. However, if the 
response is <100 ng/dl, causes of gonadal dysgenesis should be sought. Once a diagnosis is 
suspected, molecular genetic studies can be used for definitive diagnosis. 

4.4 Molecular diagnosis 
HSD17B3 gene alterations have been identified in patients showing clinical and biochemical 
characteristics of 17β-HSD3 deficiency. The disease is genetically heterogeneous and 
genotype-phenotype correlations have not been found.  
To date, 27 mutations in the HSD17B3 gene have been reported. These include intronic 
splice junction abnormalities, exonic deletions and missense mutations (Table 2) (Mains et 
al., 2008). The majority are missense mutations inherited as homozygous or compound 
heterozygous mutations, occurring most frequent in exons 3,9,10 of the gene; 4 are splice 
junction abnormalities (Andersson et al., 1996; Boehmer et al., 1999), 1 is a small deletion 
(777-783), and 1 is a thymidine deletion resulting in a frame shift mutation which alters the 
amino acid sequence from codon position 187 onward with a premature termination in 
codon 226 (Boehmer et al., 1999; Twesten et al., 2000).  
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Age of 
diagnosis 

Phenotype 
Clinical presentation 

Ethnicity Mutation Mutation 
type 
Effect 

Reference 

16 years  46,XY DSD;  
hirsutism, 
clitoromegaly, 
failure to menstruate 

Iranian p.Ser65Leu missense/ 
inactivates 
enzyme 

Andersson et al., 
1996 

6 months, 
11 years 

46,XY DSD;  
female prepubertal 
external genitalia, pubertal 
virilization, severe hair 
growth, voice changes and 
clitoral enlargement (6 
months, child diagnosed 
because of family history) 

South 
Asian 

p.Ala56Thr missense/ 
severe 
impairment 
of enzyme 

Lee et al., 2007 
Moghrabi et al., 1998 

4–16 years 46,XY DSD;  
ambiguous genitalia, 
pubertal virilization 

Dutch p.Asn74Thr missense Boehmer et al., 1999 

4–43 years 46,XY DSD;  
ambiguous genitalia at 
birth to mild 
clitoromegaly, pubertal 
virilization, male gender 
role, and many reassigned 
as males if raised as girls 

Arab, 
Dutch, 
Brazilian, 
Portuguese 

p.Arg80Gln missense/ 
impaired 
enzyme 
activity 
(NADPH 
binding site)

Mendonca et al., 
2000 Geissler et al., 
1994 Boehmer et al., 
1999 Roesler et al., 
1996  
Roesler et al., 1992  
Mendonca et al., 
1999 

Newborn– 
12 years 

46,XY DSD;  
female external genitalia, 
palpable gonads, clitoral 
enlargement and 
virilization at puberty 

Spanish, 
Italian, 
Lebanese 

p.Arg80Trp 
 

missense/ 
complete loss 
of enzyme 
activity 
(NADPH 
binding site) 

McKeever et al., 
2002 Faienza et al., 
2007 
Bilbao et al., 1998 

4 months– 
15 years 

46,XY DSD;  
pubertal virilization, mild 
clitoromegaly, voice 
changes 

English, 
German 

c.325+4,A-T splice 
junction/ 
disrupts 
splice 
acceptor site

Mendonca et al., 
2000 
Boehmer et al., 1999 
Andersson et al., 
1996 

8, 23, 34 
years 
15 years  
 

46,XY DSD;  
inguinal hernia, failure of 
breast development, facial 
and body hair growth, 
voice changes, clitoral 
enlargement 

Dutch, 
Brazilian 

c.326–1,G-C splice 
junction 
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Fig. 2. A diagnostic algorithm to elucidate the various etiologies of 46,XY DSD. The diagram 
shows the importance of hCG stimulation in the diagnosis of 46,XY DSD. Upon hCG 
stimulation, if the T/4-A ratio is >0.8, the diagnosis of 17- HSD3 can be suspected; if the 
T/DHT ratio is >20, a diagnosis of 5-reductase deficiency can be suspected. If the response 
of T is >100 ng/dl, androgen insensivity syndrome (AIS) is possible. However, if the 
response is <100 ng/dl, causes of gonadal dysgenesis should be sought. Once a diagnosis is 
suspected, molecular genetic studies can be used for definitive diagnosis. 

4.4 Molecular diagnosis 
HSD17B3 gene alterations have been identified in patients showing clinical and biochemical 
characteristics of 17β-HSD3 deficiency. The disease is genetically heterogeneous and 
genotype-phenotype correlations have not been found.  
To date, 27 mutations in the HSD17B3 gene have been reported. These include intronic 
splice junction abnormalities, exonic deletions and missense mutations (Table 2) (Mains et 
al., 2008). The majority are missense mutations inherited as homozygous or compound 
heterozygous mutations, occurring most frequent in exons 3,9,10 of the gene; 4 are splice 
junction abnormalities (Andersson et al., 1996; Boehmer et al., 1999), 1 is a small deletion 
(777-783), and 1 is a thymidine deletion resulting in a frame shift mutation which alters the 
amino acid sequence from codon position 187 onward with a premature termination in 
codon 226 (Boehmer et al., 1999; Twesten et al., 2000).  
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Age of 
diagnosis 

Phenotype 
Clinical presentation 

Ethnicity Mutation Mutation 
type 
Effect 

Reference 

16 years  46,XY DSD;  
hirsutism, 
clitoromegaly, 
failure to menstruate 

Iranian p.Ser65Leu missense/ 
inactivates 
enzyme 

Andersson et al., 
1996 

6 months, 
11 years 

46,XY DSD;  
female prepubertal 
external genitalia, pubertal 
virilization, severe hair 
growth, voice changes and 
clitoral enlargement (6 
months, child diagnosed 
because of family history) 

South 
Asian 

p.Ala56Thr missense/ 
severe 
impairment 
of enzyme 

Lee et al., 2007 
Moghrabi et al., 1998 

4–16 years 46,XY DSD;  
ambiguous genitalia, 
pubertal virilization 

Dutch p.Asn74Thr missense Boehmer et al., 1999 

4–43 years 46,XY DSD;  
ambiguous genitalia at 
birth to mild 
clitoromegaly, pubertal 
virilization, male gender 
role, and many reassigned 
as males if raised as girls 

Arab, 
Dutch, 
Brazilian, 
Portuguese 

p.Arg80Gln missense/ 
impaired 
enzyme 
activity 
(NADPH 
binding site)

Mendonca et al., 
2000 Geissler et al., 
1994 Boehmer et al., 
1999 Roesler et al., 
1996  
Roesler et al., 1992  
Mendonca et al., 
1999 

Newborn– 
12 years 

46,XY DSD;  
female external genitalia, 
palpable gonads, clitoral 
enlargement and 
virilization at puberty 

Spanish, 
Italian, 
Lebanese 

p.Arg80Trp 
 

missense/ 
complete loss 
of enzyme 
activity 
(NADPH 
binding site) 

McKeever et al., 
2002 Faienza et al., 
2007 
Bilbao et al., 1998 

4 months– 
15 years 

46,XY DSD;  
pubertal virilization, mild 
clitoromegaly, voice 
changes 

English, 
German 

c.325+4,A-T splice 
junction/ 
disrupts 
splice 
acceptor site

Mendonca et al., 
2000 
Boehmer et al., 1999 
Andersson et al., 
1996 

8, 23, 34 
years 
15 years  
 

46,XY DSD;  
inguinal hernia, failure of 
breast development, facial 
and body hair growth, 
voice changes, clitoral 
enlargement 

Dutch, 
Brazilian 

c.326–1,G-C splice 
junction 

Mendonca et al., 2000 
Geissler et al., 1994 
Boehmer et al., 1999 
Andersson et al., 
1996 
Mendonca et al., 
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1998 

14,15 years 46,XY DSD; pubertal 
virilization, mild 
clitoromegaly, voice 
changes 

English, 
German 

p.Asn130Ser missense/ 
severe 
impairment 
of enzyme 
activity 

Lee et al., 2007 
Bertelloni et al., 2009 
Moghrabi et al., 1998 
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Unknown 46,XY DSD  unknown c.538–1,G-A splice 
junction 

Mueller § Coovadia, 
2009 

13 years 46,XY DSD; 
clitoromegaly and 
coarsening of voice, 
scrotalization of labia 
majora and inguinal 
masses 

American 
(Italian, 
German, 
Irish) 

p.Gln176Pro missense Andersson et al., 
1996 
Moghrabi et al., 1998 

12 years 46,XY DSD;  
female prepubertal 
development, clitoral 
enlargement at 12 years of 
age, testes in inguinal 
canal 

German  c.608delT downstream 
premature 
stop codon 

Twesten et al., 2000 

10 years 46,XY DSD; 
prepubertal female 
external genitalia, inguinal 
mass 

Turkish p.Ala188Val missense/ 
inactivates 
enzyme 

Boehmer et al., 1999 

12 years 46,XY DSD;  
pubertal virilization, facial 
hair, 4–8 cm phallus and 
labioscrotal folds 

Afghan p.Met197Lys missense/ 
alters 
secondary 
protein 
structure 

Lee et al., 2007 

10,16,17 
years 

46,XY DSD;  
prepubertal female 
external genitalia, pubertal 
virilization, male gender 
rol 

Syrian, 
Turkish, 
Dutch, 
Greek-
American 

c.655–1,G-A splice 
junction/ 
disrupts 
splice 
acceptance 
site 

Geissler et al., 1994 
Boehmer et al., 1999 
Andersson et al., 
1996  
Moghrabi et al., 1998 
Ademola Akesode 
et al., 1977 

13, 18, 21, 
26 years 

46,XY DSD;  
absence of menses, failure 
of breast development, 
facial and chest hair and 
clitoral enlargement, male 
and female 
gender identity in siblings

African-
Brazilian, 
Italian 

p.Ala203Val missense/ 
inactivates 
enzyme 

Mendonca et al., 
2000 
Geissler et al., 1994 
Mendonca et al., 
1999 Moghrabi et al., 
1998  

Unknown 46,XY DSD;  
pubertal virilization  

Southern 
Italian 

p.Ala203Glu missense Mendonca et al., 
2000 
Bertelloni et al., 2009 

Newborn, 
20 years 

46,XY DSD;  
prepubertal female 
externalgenitalia to 
perineoscrotal 
hypospadias, primary 
amenorrhea, mild 
clitoromegaly 

White 
American,
English 

p.Val205Glu missense/ 
inactivates 
enzyme 

Lee et al., 2007 
Andersson et al., 
1996 
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Newborn 
 

46,XY DSD;  
ambiguous genitalia, 
clitoromegaly (1.5 cm) and 
posterior fusion and 
scrotalization of the labia 
majora which contained 
palpable masses 

German  p.Phe208Ile missense/ 
inactivates 
enzyme 

Andersson et al., 
1996 

2 years, 
3 months 

46,XY DSD;  
inguinal mass, mild 
clitoromegaly 

Italian  p.Leu212Gln missense/ 
inactivates 
enzyme 

Geissler et al., 1994 
Bertelloni et al., 2006 

14, 15, 21 
years 
 

46,XY DSD; 
female or ambiguous 
genitalia at birth, male 
behaviors in childhood, 
pubertal virilization, 
absence of menses, male 
gender role 

White 
Brazilian, 
English 

p.Glu215Asp missense/ 
inactivates 
enzyme 

Mendonca et al., 
2000 
Lee et al., 2007 
Andersson et 
al.,1996 

2 months, 2, 
6, 
17 years  

46,XY DSD; 
 clitoromegaly, primary 
amenorrhea, absent labia 
minora, severe 
hypospadias with 
undermasculinization–
raised as males and 
females 

African-
American, 
South 
Asian 

p.Ser232Leu missense/ 
inactivates 
enzyme 

Geissler et al.,1994 
Lee et al., 2007 
Moghrabi et al., 1998 
 

17 years  
 

46,XY DSD;  
clitoromegaly, primary 
amenorrhea, inguinal 
masses 

African-
American, 
Italian 

p.Met235Val missense/ 
inactivates 
enzyme 

Geissler et al.,1994 
Bertelloni et al., 2006 
Moghrabi et al., 1998 

15 years 46,XY DSD; 
testes in herniorrhaphy 
sac, failure to menstruate 

Polish  c.777-
783delGAT
AACC 

deletion/ 
frame shift 
truncates 
protein 

Andersson et 
al.,1996 
 

5, 18 
months, 
2–4 years 

46,XY DSD;  
prominent clitoris, 
palpable 
inguinal gonads 

Pakistani p.Cys268YT
yr 

missense/ 
inactivates 
enzyme 

Lee et al., 2007 
Lindqvist et al., 2001 

Unknown 46,XY DSD  French p.His271Arg missense/ 
inactivates 
enzyme 

Bachelot et al., 2006 

12, 14 years 46,XY DSD;  
clitoromegaly, failure of 
breast development and 
deepening of voice 

White 
American, 
Dutch 

p.Pro282Leu missense/ 
inactivates 
enzyme 

Boehmer et al., 1999 
Andersson et 
al.,1996 

6 months 46,XY DSD;  
normal female prepubertal 
genitalia, bilateral inguinal 
hernia at sonography 

Italian, 
West 
Indian  

p.Gly289Ser polymorphism
/ 
unknown 

Boehmer et al., 1999 
Bertelloni et al., 2009 

Table 2. Mutations reported to date in patients with 17-HSD3 deficiency phenotype 
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Table 2. Mutations reported to date in patients with 17-HSD3 deficiency phenotype 
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Two missense mutations, the 239 G to A resulting in an Arg to Gln (R80Q) substitution, 
which is the most frequent alteration described in the Arab population living in the Gaza 
Strip (Boehmer et al.,1999; Mains et al., 2008; Rosler et al., 1996), and the 238 C to T resulting 
in an Arg to Trp (R80W) substitution (Bilbao et al, 1998; Faienza et al., 2007) involve the 
same arginine residue in exon 3 at position 80. This site has been extensively studied by 
systematic replacement of the wild-type arginine at position 80 and has been shown to be 
extremely important for both forming the salt bridge with the terminal phosphate moiety of 
the NADPH, as well as providing for a hydrophobic pocket for the purine ring of the 
adenosine portion of the NADPH (McKeever et al., 2002). Thus, this arginin is critical for 
cofactor binding and the substitution by different amino acids results in alteration of 
cofactor preference, switching from NADPH to NADH (Payne § Hales, 2004).  
One polymorphic substitution (G289S) has been described in a heterozygous form in 
apparently normal individuals. This polymorphism does not impair the kinetic properties of 
the normal enzyme (Moghrabi et al., 1998). A possible role of the G289S variation has been 
demonstrate in prostate cancer (Margiotti et al., 2002).  
Most gene alterations severely compromise the enzyme activity, but the R80Q mutation 
results in a 17-HSD3 residual enzyme activity (20%), showing a significantly lower reaction 
velocity as compared to the normal enzyme (Geissler et al., 1994). 

4.5 Worldwide distribution of ancient and de novo mutations 
Haplotype analysis of genetic markers flanking the HSD17B3 gene has been performed to 
establish the ancient or de  novo occurrence of mutations described in European, North 
American, Latin American, Australian and Arab populations (Boehmer et al., 1999). Dutch, 
German, white Australian and white American patients carrying the 325+4,A –T mutation 
share the same genetic markers and seem to have a common European ancestor. A founder 
effect was also demonstrated for the R80Q mutation that is common in Dutch, Arab (in 
Gaza), white Brazilian, and white Portuguese patients. As this mutation is associated with a 
specific haplotype, a common ancestor introduced during the Phoenician migration has 
been hypothesized (Rosler et al., 2006). An additional founder effect has been suggested for 
655–1,G-T mutation found in Greeks, Turks and Syrians patients that may have spread to 
the Mediterranean area during Ottoman Empire (Boehmer et al., 1999). On the contrary, 
patients harboring the 326-1,G-C and the c.Pro282Leu mutations have a different marker 
genotype suggesting that these are the novo mutations (Boehmer et al., 1999). 

4.6 Genotype-phenotype correlation 
No phenotype-genotype correlation has been noted in 17-HSD3 deficiency, as exemplified 
by members of the same family who have different phenotypes despite the same genotype 
(Lee et al., 2007). A variable T/4-A ratio after human chorionic gonadotropin (hCG) 
stimulation was also seen despite the same homozygous mutation in different subjects of 
the same pedigree. This can be attributed to the extratesticular ability of some subjects to 
convert 4-A to T by other enzymes such as 17-HSD5 (Qiu et al., 2004). 

4.7 Imaging studies 
Imaging studies that reveal the absence of mullerian structures and persistent wolffian 
structures also point to the diagnosis of 17-HSD3 deficiency, but this is not pathognomonic 
as 5-reductase type 2 deficiency will also have similar findings. Histological evidence from 
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gonadal tissue may show normal testicular structures, which can help to exclude any 
structural abnormalities (testicular dysgenesis) as the cause for the 46,XY DSD. Despite an 
early orchidopexy, an absent spermatogenesis has been seen in patients affected with 17-
HSD3 deficiency raised as males (Dumic et al., 1985). So far, no patient with 17-HSD3 
deficiency was fertile although raised as male, thus infertility appears to be the rule in 
adulthood (Tab. 3) (Bertelloni et al., 2009a; Rosler et al., 1996). 
 
Patients Epididimus Testes 

mla   SDS 
Spematogonia
cells 

Sertoli 
cells 

Leydig Micro-
calcifications 

1 Yes 1.4   –1.0 Scarce Normal Normal No 

2 Yes 1.0   –0.5 Present  
(sub-normal) 

Normal Normal Yes 

3 Yes 2.0     2.0 Present Normal Normal No 

4 Yes 9.0     1.3 Absent/ 
very scarce 

Normal Hypertrophic No 

a mean of the two gonads; SDS: SD score.  
Normal values from Cassorla et al., 1981 for patients 1-3 and from Taranger et al., 1976  for patient 4. 

Table 3. Gonadal findings in 4 subjects with 17β-HSD3 deficiency  

4.8 Gender behavior 
In the absence of a correct diagnosis before puberty, most patients with 17-HSD deficiency 
are raised as females and undergo virilization during adolescence due to extratesticular 
conversion of 4-A to T, secondary to some residual function of the enzyme and increased 
substrate availability in 4-A at puberty (Andersson et al., 1996). In cases with partial 
virilization, early post-natal diagnosis and consequence successful androgen treatment may 
result in a male sex assignment and in a nearly normal male phenotype in adulthood.  
Gonadectomy is recommended before puberty for those individuals who have been raised 
as females and wish to remain so. In these subjects, female sex characteristics should be 
induced or maintained with appropriate hormone replacement therapy  (Hiort et al., 2003). 
Vaginal dilation using the modified Frank’s procedure or vaginal reconstruction surgery 
may be necessary to create a vaginal cavity with adequate capacity for sexual relations 
(Castro-Magana et al., 1993). The patient and family will need appropriate psychological 
counseling to accept the diagnosis and the infertility that accompanies it (Gooren, 2002). In 
patients with a male attitude, it is possible to achieve adequate male development without 
medical intervention, when corrective surgery has been judged to be warranted (Boehmer et 
al., 1999; Farkas § Rosler, 1993; Rosler et al., 1996). Exogenous T treatment does not seem to 
yield additional benefits in adulthood (Mendonca et al., 2000; Farkas § Rosler, 1993), while 
pre-operative T administration may result in a better cosmetic appearance of the external 
genitalia (Farkas § Rosler., 1993). Gender role changes have been reported in 39-60% of cases 
of 17-HSD3 deficiency who have been raised as girls (Wilson, 1999). Genetic and endocrine 
evidence indicates that androgens play an important role in male gender behavior and 
identity. However the fact that many individuals with mutations of the 5-reductase and 
17-HSD3 encoding genes do not change their gender role behavior implies that other 
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Patients Epididimus Testes 

mla   SDS 
Spematogonia
cells 

Sertoli 
cells 

Leydig Micro-
calcifications 

1 Yes 1.4   –1.0 Scarce Normal Normal No 

2 Yes 1.0   –0.5 Present  
(sub-normal) 

Normal Normal Yes 

3 Yes 2.0     2.0 Present Normal Normal No 

4 Yes 9.0     1.3 Absent/ 
very scarce 

Normal Hypertrophic No 

a mean of the two gonads; SDS: SD score.  
Normal values from Cassorla et al., 1981 for patients 1-3 and from Taranger et al., 1976  for patient 4. 

Table 3. Gonadal findings in 4 subjects with 17β-HSD3 deficiency  

4.8 Gender behavior 
In the absence of a correct diagnosis before puberty, most patients with 17-HSD deficiency 
are raised as females and undergo virilization during adolescence due to extratesticular 
conversion of 4-A to T, secondary to some residual function of the enzyme and increased 
substrate availability in 4-A at puberty (Andersson et al., 1996). In cases with partial 
virilization, early post-natal diagnosis and consequence successful androgen treatment may 
result in a male sex assignment and in a nearly normal male phenotype in adulthood.  
Gonadectomy is recommended before puberty for those individuals who have been raised 
as females and wish to remain so. In these subjects, female sex characteristics should be 
induced or maintained with appropriate hormone replacement therapy  (Hiort et al., 2003). 
Vaginal dilation using the modified Frank’s procedure or vaginal reconstruction surgery 
may be necessary to create a vaginal cavity with adequate capacity for sexual relations 
(Castro-Magana et al., 1993). The patient and family will need appropriate psychological 
counseling to accept the diagnosis and the infertility that accompanies it (Gooren, 2002). In 
patients with a male attitude, it is possible to achieve adequate male development without 
medical intervention, when corrective surgery has been judged to be warranted (Boehmer et 
al., 1999; Farkas § Rosler, 1993; Rosler et al., 1996). Exogenous T treatment does not seem to 
yield additional benefits in adulthood (Mendonca et al., 2000; Farkas § Rosler, 1993), while 
pre-operative T administration may result in a better cosmetic appearance of the external 
genitalia (Farkas § Rosler., 1993). Gender role changes have been reported in 39-60% of cases 
of 17-HSD3 deficiency who have been raised as girls (Wilson, 1999). Genetic and endocrine 
evidence indicates that androgens play an important role in male gender behavior and 
identity. However the fact that many individuals with mutations of the 5-reductase and 
17-HSD3 encoding genes do not change their gender role behavior implies that other 
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factors (social, psychological or biological) contribute to modulating human sexual behavior. 
Because gender-appropriate rearing, and not the chromosomal, gonadal or genital factors 
plays a crucial role in gender identity development, early diagnosis and treatment if patients 
with the 17-HSD3 deficiency is very important. 

4.9 Psychological aspects 
Sex assignment of children with DSD is a subject of intense debate. The early pioneers in this 
field coined the term ‘optimal gender policy’, which advocated for early corrective surgery 
to help the affected children and their parents to facilitate stable gender identity and 
appropriate gender role behavior (Money et al., 1955) . Opponents of early surgery argue for 
a ‘full consent policy’, in which surgery is not performed in non-emergency situations 
before full consent may be obtained from the child (Kipnis § Diamond, 1998). In 17-HSD3 
deficiency, as in all situations characterized by severe undervirilization (Sinnecker stage 5 or 
4), is not always feasible to wait the start of the virilization and/or the age for a reliable full 
consent for major intervention, because in this waiting period the patient could assume a 
female gender role and identity. According to the recent guidelines regarding ethical 
principles and recommendations for the medical management of DSD in children and 
adolescents, the parents take the first-line responsibility in defining what might be best for 
the child, and this might vary according to their individual experience and lifestyle, cultural 
expectations and religious beliefs (Wiesemann et al., 2010). The child, according to his or her 
developmental level, can express own preference. Each case must be weighed on its own 
merits. When there is a doubt, the psychological and social support of the child and the 
parent is to be ranked higher than the creation of biological normalcy.  

4.10 Malignancy risk 
The external genitalia are mostly female in 17-HSD3 deficiency, but the internal structures 
are derivatives of wolffian structures. The testes are usually positioned in the inguinal canal, 
sometimes at the labia majora and rarely in the abdominal cavity (Mendonca et al., 2000). 
The consensus statement for management of DSD puts the risk of germ cell malignancy at 
28% in 17-HSD3 deficiency (Houk et al., 2006; Hughes et al., 2006). This puts it in the 
intermediate risk group for malignancies and close monitoring is recommended for 
someone who is raised as a male rather than having gonadectomy at the time of diagnosis. 

5. Conclusions 
Diagnosis and consequently early treatment of the 17-HSD3 deficiency is frequently 
difficult because clinical signs are often mild or absent from birth until puberty. Moreover, 
the 17-HSD3 deficiency is clinically indistinguishable from other forms of 46,XY DSD such 
as AIS or 5-reductase 2 gene deficiency. The correct diagnosis can be arrived at by 
systematic endocrine evaluation and, most importantly, by the calculation of the T/4-A 
ratio. The diagnostic power of biochemical parameters is not always specific, because no 
normal reference range has yet been established in strictly age-matched controls and 
because of overlapping with other causes of 46,XY DSD due to impaired T biosynthesis. 
Molecular genetic testing confirms the diagnosis and provides the orientation for genetic 
counseling. A high index of suspicion should be present for any female who presents with 
inguinal hernias or mild clitoromegaly in infancy or early childhood. The virilization in the 
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adolescent girl should also arouse suspicion. Since there are unique clinical implications 
based on the diagnosis of this condition, it is important to be as prompt and accurate as 
possible. In conclusion, endocrine evaluation is an important tool for the selection of 
patients with a suspected 17-HSD3 deficiency. In these patients, mutational analysis of the 
HSD17B3 gene, supported by a knowledge of the ethnic distribution  of mutations, is 
irreplaceable in confirming the diagnosis. 
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factors (social, psychological or biological) contribute to modulating human sexual behavior. 
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with the 17-HSD3 deficiency is very important. 
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field coined the term ‘optimal gender policy’, which advocated for early corrective surgery 
to help the affected children and their parents to facilitate stable gender identity and 
appropriate gender role behavior (Money et al., 1955) . Opponents of early surgery argue for 
a ‘full consent policy’, in which surgery is not performed in non-emergency situations 
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deficiency, as in all situations characterized by severe undervirilization (Sinnecker stage 5 or 
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consent for major intervention, because in this waiting period the patient could assume a 
female gender role and identity. According to the recent guidelines regarding ethical 
principles and recommendations for the medical management of DSD in children and 
adolescents, the parents take the first-line responsibility in defining what might be best for 
the child, and this might vary according to their individual experience and lifestyle, cultural 
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developmental level, can express own preference. Each case must be weighed on its own 
merits. When there is a doubt, the psychological and social support of the child and the 
parent is to be ranked higher than the creation of biological normalcy.  

4.10 Malignancy risk 
The external genitalia are mostly female in 17-HSD3 deficiency, but the internal structures 
are derivatives of wolffian structures. The testes are usually positioned in the inguinal canal, 
sometimes at the labia majora and rarely in the abdominal cavity (Mendonca et al., 2000). 
The consensus statement for management of DSD puts the risk of germ cell malignancy at 
28% in 17-HSD3 deficiency (Houk et al., 2006; Hughes et al., 2006). This puts it in the 
intermediate risk group for malignancies and close monitoring is recommended for 
someone who is raised as a male rather than having gonadectomy at the time of diagnosis. 

5. Conclusions 
Diagnosis and consequently early treatment of the 17-HSD3 deficiency is frequently 
difficult because clinical signs are often mild or absent from birth until puberty. Moreover, 
the 17-HSD3 deficiency is clinically indistinguishable from other forms of 46,XY DSD such 
as AIS or 5-reductase 2 gene deficiency. The correct diagnosis can be arrived at by 
systematic endocrine evaluation and, most importantly, by the calculation of the T/4-A 
ratio. The diagnostic power of biochemical parameters is not always specific, because no 
normal reference range has yet been established in strictly age-matched controls and 
because of overlapping with other causes of 46,XY DSD due to impaired T biosynthesis. 
Molecular genetic testing confirms the diagnosis and provides the orientation for genetic 
counseling. A high index of suspicion should be present for any female who presents with 
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based on the diagnosis of this condition, it is important to be as prompt and accurate as 
possible. In conclusion, endocrine evaluation is an important tool for the selection of 
patients with a suspected 17-HSD3 deficiency. In these patients, mutational analysis of the 
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1. Introduction 
1.1 The ecdysone pathway directs Drosophila development  
Ecdysone is the major steroid hormone in all holometabolous insects responsible for driving 
the metamorphosis of larval tissues into adult structures. During metamorphosis, ecdysone 
is essential for upregulating the genes required to control apoptosis and differentiation, 
essential processes for removal of larval structures which have become obsolete and for 
tissue remodelling. In addition, ecdysone directs cell growth and division in many tissues 
throughout the larval to pupal transition. This chapter will discuss the many diverse 
mechanisms reported for connecting the ecdysone pulse to the developmentally regulated 
cell growth and cycle progression required for tissue growth and for insects to reach their 
target body size.  
Like all other holometabolous insects, the size of Drosophila adult flies is set by the size of the 
larvae prior to metamorphosis, at the time of pupariation when feeding has ceased and 
growth can no longer occur. The major developmental hormone in Drosophila, the steroid 
hormone 20-hydroxyecdysone (20E), commonly known as ecdysone, is required for all the 
developmental transitions needed for metamorphosis (Figure 1-3; (Thummel 1995, 1996, 
2001)). Ecdysone is produced in and released by the prothoracic gland (PG), a component of 
the ring gland, which also contains the corpora allata (CA) and corpora cardiaca (CC) 
(Figure 1; (Zitnan et al. 2007; McBrayer et al. 2007)). Ecdysone release is controlled by a 
complex combination of upstream factors, including peptide hormones and neuropeptide 
signals (see section 2.2). For example, Prothoracicotropic hormone (PTTH) from the central 
nervous system (CNS) is required to regulate the synthesis and release of ecdysone from the 
PG (McBrayer et al. 2007). 
Ecdysone pulses from the PG are required for all aspects of morphogenesis, starting with 
the formation of the body plan during late embryogenesis, hatching and development of the 
first larval instar, and for cuticle moulting at the end of the first and second instars. A large 
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1. Introduction 
1.1 The ecdysone pathway directs Drosophila development  
Ecdysone is the major steroid hormone in all holometabolous insects responsible for driving 
the metamorphosis of larval tissues into adult structures. During metamorphosis, ecdysone 
is essential for upregulating the genes required to control apoptosis and differentiation, 
essential processes for removal of larval structures which have become obsolete and for 
tissue remodelling. In addition, ecdysone directs cell growth and division in many tissues 
throughout the larval to pupal transition. This chapter will discuss the many diverse 
mechanisms reported for connecting the ecdysone pulse to the developmentally regulated 
cell growth and cycle progression required for tissue growth and for insects to reach their 
target body size.  
Like all other holometabolous insects, the size of Drosophila adult flies is set by the size of the 
larvae prior to metamorphosis, at the time of pupariation when feeding has ceased and 
growth can no longer occur. The major developmental hormone in Drosophila, the steroid 
hormone 20-hydroxyecdysone (20E), commonly known as ecdysone, is required for all the 
developmental transitions needed for metamorphosis (Figure 1-3; (Thummel 1995, 1996, 
2001)). Ecdysone is produced in and released by the prothoracic gland (PG), a component of 
the ring gland, which also contains the corpora allata (CA) and corpora cardiaca (CC) 
(Figure 1; (Zitnan et al. 2007; McBrayer et al. 2007)). Ecdysone release is controlled by a 
complex combination of upstream factors, including peptide hormones and neuropeptide 
signals (see section 2.2). For example, Prothoracicotropic hormone (PTTH) from the central 
nervous system (CNS) is required to regulate the synthesis and release of ecdysone from the 
PG (McBrayer et al. 2007). 
Ecdysone pulses from the PG are required for all aspects of morphogenesis, starting with 
the formation of the body plan during late embryogenesis, hatching and development of the 
first larval instar, and for cuticle moulting at the end of the first and second instars. A large 



 
Steroids – Basic Science 

 

142 

 
Fig. 1. The ring gland. An important organ in Drosophila is the ring gland, which is situated 
in between the two brain lobes in the larvae. (A) Diagram of the components of the ring 
gland: the prothoracic gland (PG), the corpora allata (CA) and corpora cardiaca (CC). 
Ecdysone is produced by the PG, whilst the CA is thought to synthesise the Juvenile 
hormone. (B) A confocal image of a 3rd instar prothoracic gland overexpressing GFP. 

titre of ecdysone is released at the end of the third instar, in the wandering larvae in 
preparation for pupation, which marks the beginning of adult tissue metamorphosis (Figure 
3; (Thummel 1995, 1996, 2001)). 
Insect metamorphosis is characterized by vast changes in tissue morphology, where larval 
tissues are replaced by adult structures. In Drosophila, the pulse of ecdysone at the end of the 
third larval instar initiates metamorphosis (Riddiford 1993). During metamorphosis, an 
extensive range of larval structures respond to the ecdysone pulse, which triggers the 
complex array of cellular responses required to achieve conversion from the larval tissue to 
give the adult (Bender et al. 1997). This begins with the secretion of glue proteins for the 
larvae to attach itself onto a surface for puparium development. Subsequently ecdysone 
drives the larval body to shorten, and promotes the subsequent cuticle darkening and 
hardening required to form the pupal case. During the late larval to early pupal stages the 
ecdysone pulse drives removal of obsolete larval tissues, such as the larval gut and salivary 
glands (Thummel 2001).  
The major morphological changes for metamorphosis involve development of adult 
structures from the imaginal discs, which are epithelial structures formed from 
invaginations of the ectoderm during embryogenesis (Gates and Thummel 2000). The 
imaginal discs include 2 pairs for the eye/antenna, wing, and halteres, 3 pairs for the legs and 
a single disc for the gonads, which evert, elongate, and differentiate during metamorphosis  
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Fig. 2. The ecdysone pathway. Abbreviations: Juvenile hormone (JH), prothoracicotropic 
hormone (PTTH), Target of Rapamycin (TOR), 20-hydroxyecdysone (20E), ecdysone 
receptor (EcR), Ultraspiracle (USP), prothoracic gland (PG). References are in blue. 

(Alberts 2002). Ecdysone triggers the imaginal disc eversion and elongation, which is 
accomplished through cell shape changes, rather than by additional cell division (Condic, 
Fristrom, and Fristrom 1991). As the new appendages emerge from the imaginal discs, the 
larval tissues undergo programmed cell death and are eventually replaced by the adult 
structures (Ward et al. 2003). About 12 hours after puparium formation, another major 
ecdysone pulse initiates the prepupal-pupal transition, and forms the basic body plan of the 
adult fly. This pulse causes the head to evert from the anterior end of the puparium, the final 
growth of leg and wings, as well as the removal of most of the remaining larval tissues (Ward 
et al. 2003). The following 4 days of pupal development involves terminal differentiation of the 
remaining tissues to form the adult fly (Figure 3; reviewed in (Thummel 2001)). 

1.2 Ecdysone, EcR and USP structure and function 
Insect metamorphosis is achieved by the cascade of gene transcription triggered by ecdysone, 
which activates the ecdysone receptor (EcR), a member of the nuclear receptor family, and its 
receptor binding partner Ultraspiricle (USP) (Thummel 1996, 1990, 1995; Koelle et al. 1991) 
(Figure 2). The EcR gene spans 77kb in length, and through the use of two promoters and as a 
result of alternate splicing, encodes three major protein isoforms EcR-A, EcR-B1, EcR-B2. All 
three isoforms have conserved DNA binding domains and ligand binding domains but differ 
in their N-terminal regions, with variable N terminal domains of 197, 226 and 17 amino acid 
residues, respectively (Koelle et al. 1991; Talbot, Swyryd, and Hogness 1993).  
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Fig. 3. Manipulation of growth pathways in the prothoracic gland alters body size. Light 
micrographs of female adult flies raised at 25°C bearing the genotypes: (A) control 
(AmnC651>+) (B) overexpressing activated Ras (AmnC651>RasV12) in the PG (C) overexpressing 
dominant negative PI3K (AmnC651>Dp110DN) in the PG. Red arrows indicate length of 
larval growth period. (D) Graph of ecdysone titres during Drosophila development (modified 
from (Thummel, 2001)). 

Although EcR can bind ecdysone alone, optimal binding to the ecdysone response elements 
(EcRE) and activation of transcriptional targets requires the addition of USP (Grad et al. 
2001; Grebe, Fauth, and Spindler-Barth 2004). USP exhibits a strong structural and 
functional similarity to the orthologous vertebrate retinoid X receptor (RXR) (Yao et al. 1992; 
Oro, McKeown, and Evans 1990). Like RXR, which forms heterodimers with non-steroid 
receptors for thyroid hormone, retinoic acid and vitamin D, and thereby activates them for 
DNA-binding (Mangelsdorf and Evans 1995), USP interacts with each of the EcR isoforms to 
form DNA-binding heterodimers (Yao et al. 1992; Bender et al. 1997). In this respect 
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Drosophila EcRs are, therefore, analogous to the vertebrate family of RXR heterodimeric 
receptors rather than the vertebrate family of steroid hormone receptors, which bind DNA 
as homodimers (Beato and Klug 2000).  
Therefore, similar to vertebrate nuclear receptors, the EcR/USP heterodimer functions as a 
ligand-dependent transcription factor. In the presence of the ecdysone ligand, the 
appropriate EcR nuclear receptor isoform dimerizes with USP, and the complex is stabilised 
by the active form of ecdysone, 20-hydroxyecdysone (20E) to allow efficient binding to the 
ecdysone response element (EcRE) (Hall and Thummel 1998; Yao et al. 1993) and 
transcriptional activation of ecdysone-responsive genes (D'Avino and Thummel 1998; 
Kozlova and Thummel 2002; Thummel 2002; Thummel, Burtis, and Hogness 1990; Urness 
and Thummel 1995). Genes that are directly activated by the 20E/EcR/USP complex include 
three “early” ecdysone pathway genes; E74, E75 and the Broad-Complex (BR-C), which all 
encode transcription factors. The E74, E75 and BR-C transcription factors control the late 
genes in order to elicit the biological changes associated with each ecdysone pulse. This 
hierarchy of gene activation is required for modulating expression of the many cell death, 
cell cycle and differentiation genes required for metamorphosis (Thummel 1996, 2001). E74 
encodes two proteins with an identical ETS DNA binding domain, designated E74A and 
E74B (Burtis et al. 1990; Thummel, Burtis, and Hogness 1990). E75 encodes three members of 
the nuclear receptor superfamily (designated E75A, E75B, and E75C), which are often 
referred to as orphan nuclear receptors due to their unidentified ligand (Segraves and 
Hogness 1990). The BR-C is a multigene locus, which encodes several zinc finger proteins 
(DiBello et al. 1991). To increase the output of the ecdysone pulse, EcR provides an 
autoregulatory loop to activate its own transcription and further increase receptor levels in 
response to the ecdysone ligand (Koelle et al. 1991).    

1.3 Ecdysone signalling coordinates proliferation, death and differentiation 
Metamorphosis of Drosophila requires co-ordination of proliferation (cell growth and 
division), differentiation and death in order to form an adult fly of the appropriate size and 
with correctly differentiated structures. An essential process driven by the ecdysone pulse is 
the removal of larval tissues no longer required in the adult (Baehrecke 2000). The process of 
steroid hormone driven apoptosis is an important part of tissue remodelling, whereby 
selective death removes unwanted cells towards generating the mature structure (Rusconi, 
Hays, and Cagan 2000; Thummel 2001). For example, the histolysis of the larval salivary 
gland and midgut at the end of metamorphosis is stage-specific, ecdysone triggered, 
programmed cell death, which results in the removal of the component of these larval 
structures no longer required in the adult fly. In line with an apoptotic mechanism, previous 
studies have shown that cell death activators are upregulated in the third instar larval 
tissues, including the salivary glands and midgut in response to ecdysone (reviewed in 
(Jiang, Baehrecke, and Thummel 1997; Baehrecke 2000; Yin and Thummel 2005)). 
The ecdysone pulse is also essential for differentiation and patterning of the larval imaginal 
tissues required for development of adult structures (Hall and Thummel 1998; D'Avino and 
Thummel 2000, 1998; Zheng et al. 2003). As cell division and patterning are tightly linked in 
Drosophila imaginal tissues, the process of metamorphosis controlled by ecdysone involves 
coordination of the developmental signals that regulate proliferation and differentiation. 
Although much work has focused on the downstream targets linking the ecdysone pathway 
to programmed cell death and cell differentiation (Baehrecke 2000; Jiang, Baehrecke, and 
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Thummel 1997; Yin and Thummel 2005), the relationship between ecdysone and cell cycle is 
a relatively unexplored field. Here we review the evidence that the ecdysone pulse is critical 
for controlling cell growth and division in Drosophila.  

1.4 Linking the Ecdysone pulse to cell cycle 
In Drosophila, cell growth and cell cycle progression are regulated by a number of key genes, 
which have been shown to control the cell cycle in an analogous manner in all multicellular 
organisms. These include the Drosophila orthologue of the mammalian c-myc transcription 
factor and oncogene, dMyc, which drives growth and progression through G1 to S-phase 
(Johnston et al. 1999), the essential G1 to S-phase Cyclin complex, Cyclin E (CycE) and its 
Cyclin-dependent-kinase (Cdk) partner Cdk2, which triggers S-phase by promoting DNA 
replication (Knoblich et al. 1994; Neufeld et al. 1998; Richardson et al. 1995), and the 
Drosophila orthologue of the Cdc25 phosphatase, String (Stg), which is required for G2/M 
progression and promotes mitotic entry by activating the Cdk1/Cyclin B complex (Edgar 
and Datar 1996). CycE and Stg are the rate limiting factors for S-phase and mitosis, 
respectively, and both are activated by the Drosophila orthologue of human E2F1 protein, 
dE2F1 (Neufeld et al. 1998). dE2F1 responds to the relevant Cdk-Cyclin complex 
(CycE/Cdk2 for S-phase and CycB/Cdk1 for mitosis) to coordinate cell cycle progression 
from G1 to S-phase and G2 into mitosis (Reis and Edgar 2004). 
During metamorphosis, following removal of the obsolete larval structures, proliferation of 
the remaining tissue occurs in an ecdysone-dependent manner to produce adult structures. 
For example, during pupal development the larval midgut is removed by apoptosis and is 
replaced through proliferation of the remaining tissue to form the adult midgut (Jiang, 
Baehrecke, and Thummel 1997). Microarray analysis has revealed that the ecdysone signal is 
associated with the activation of key cell cycle genes, including Cyclin B, Cdc2 and Cyclin D, 
during the initiation of midgut metamorphosis (Li and White 2003). Analysis of EcR null 
mutants also revealed that EcR function was necessary for the cell cycle and growth genes to 
be activated in the larval midgut, suggesting that the ecdysone pathway is required for cell 
division control. The body of this chapter will discuss how the ecdysone pulse achieves 
changes to cell growth and cell cycle progression. First we will describe how ecdysone levels 
dictate body size cell extrinsically by controlling developmental timing. Then we will 
discuss how ecdysone works with its receptors, in a tissue autonomous manner to control 
transcription of cell cycle genes, which most likely occurs indirectly by modifying the 
activity of developmental signalling pathways. 

2. Cell extrinsic effects of ecdysone on larval growth and body size 
The ecdysone pulse can act indirectly to affect larval growth as a consequence of the link 
between the ecdysone titre and developmental timing. Here we will discuss how cell 
extrinsic effects of the ecdysone pathway control Drosophila larval growth and final body 
size non-autonomously, at least in part, through interactions between the ecdysone and 
insulin pathways (King-Jones and Thummel 2005; Shingleton 2005; Mirth and Riddiford 
2007; Nijhout 2008).  

2.1 The prothoracic gland directs body size  
The prothoracic gland (PG) is tightly associated with the developmental timing of all 
holometabolous insects, including Drosophila, as it produces the ecdysone pulse that dictates 
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the timing of the larval-pupal transition and metamorphosis. As the adult fly size is 
determined by the size of the larvae at the pupal molt, the timing of ecdysone release plays a 
vital role in the growth of the fly (reviewed in (King-Jones and Thummel 2005)). Studies in 
2005 demonstrated the importance of the size of the PG and its effect on ecdysone 
production and, therefore, determination of the final adult fly size (Caldwell, Walkiewicz, 
and Stern 2005; Colombani et al. 2005; Mirth, Truman, and Riddiford 2005). Specifically, 
these groups reported a role for insulin signalling in the PG, and also characterised a size-
assessing feature of the PG (Figure 3). As a size-assessment tissue, inhibiting the growth of 
the PG causes an underestimation of body size and results in pupation at a larger size, 
whereas promoting this tissue’s growth results in smaller flies (Mirth, Truman, and 
Riddiford 2005). Consistent with this, overexpression of activated PI3K or Ras (RasV12), both 
key components of growth control pathways in flies and mammals, specifically in the PG 
resulted in a larger PG but reduced the pupal and adult size (Caldwell, Walkiewicz, and 
Stern 2005; Colombani et al. 2005; Mirth, Truman, and Riddiford 2005), which we have 
recapitulated as shown in Figure 3 (compare 3B with 3A). Conversely, overexpression of a 
dominant negative isoform of PI3K (Dp110DN) reduced the PG size but resulted in larger 
pupae and adults, due to an extended larval growth period (Figure 3, compare C with A). 
Furthermore, through measurements of the ecdysone target E74B or through an enzyme 
immunoassay for ecdysteroid titres, it was shown that the extended larval growth period was 
due to reduced ecdysone levels, which was most likely a result of a smaller PG (Caldwell, 
Walkiewicz, and Stern 2005; Colombani et al. 2005; Mirth, Truman, and Riddiford 2005).  

2.2 PTTH regulates of ecdysone levels 
In insects, the production and release of ecdysone is responsive to the prothoracicotropic 
hormone (PTTH), a small, secreted peptide. PTTH is thought to induce the transcription of 
ecdysone biosynthetic genes that encode enzymes driving the series of dehydrogenation 
and hydroxylation reactions required to synthesise the active metabolite 20E from the 
cholesterol precursor (Marchal et al. 2010). In Drosophila PTTH is produced by a pair of 
bilateral neurosecretory cells in the brain, which innervate the prothoracic gland (PG) 
((Figure 2; (McBrayer et al. 2007)). PTTH is expressed throughout 3rd instar in an 8 hour 
cyclic pattern, with upregulation noticed around 12 hours before pupariation (McBrayer et 
al. 2007). Ablation of the neurons that produce PTTH results in a 5-day developmental delay 
in the onset of pupariation, larger 3rd instar larvae and pupae, and adults with larger wings 
due to increased cell number. In line with the predicted role for PTTH in modulating 
ecdysone synthesis and release, larvae lacking PTTH producing neurons have reduced 
ecdysone titres. This suggests PTTH normally modulates ecdysone levels to coordinate 
larval growth with the onset of metamorphosis. However, as the ecdysone levels still 
eventually peak in larvae with ablated neurons, PTTH may not be the sole factor required 
for increasing ecdysone titres (McBrayer et al. 2007). Thus PTTH might be required in 
addition to the insulin-dependent growth pathways discussed above, to coordinate larval 
growth with ecdysone-induced moulting and metamorphosis (Figure 2-3). 

2.3 Juvenile hormone controls PTTH release and ecdysone production 
The signals required for metamorphosis have been extensively studied in the tobacco 
hornworm Manduca sexta. In this insect, the pulse of ecdysone in the last larval instar is 
inhibited by another hormone, the Juvenile Hormone (JH). In the case of JH, levels need to 
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Thummel 1997; Yin and Thummel 2005), the relationship between ecdysone and cell cycle is 
a relatively unexplored field. Here we review the evidence that the ecdysone pulse is critical 
for controlling cell growth and division in Drosophila.  

1.4 Linking the Ecdysone pulse to cell cycle 
In Drosophila, cell growth and cell cycle progression are regulated by a number of key genes, 
which have been shown to control the cell cycle in an analogous manner in all multicellular 
organisms. These include the Drosophila orthologue of the mammalian c-myc transcription 
factor and oncogene, dMyc, which drives growth and progression through G1 to S-phase 
(Johnston et al. 1999), the essential G1 to S-phase Cyclin complex, Cyclin E (CycE) and its 
Cyclin-dependent-kinase (Cdk) partner Cdk2, which triggers S-phase by promoting DNA 
replication (Knoblich et al. 1994; Neufeld et al. 1998; Richardson et al. 1995), and the 
Drosophila orthologue of the Cdc25 phosphatase, String (Stg), which is required for G2/M 
progression and promotes mitotic entry by activating the Cdk1/Cyclin B complex (Edgar 
and Datar 1996). CycE and Stg are the rate limiting factors for S-phase and mitosis, 
respectively, and both are activated by the Drosophila orthologue of human E2F1 protein, 
dE2F1 (Neufeld et al. 1998). dE2F1 responds to the relevant Cdk-Cyclin complex 
(CycE/Cdk2 for S-phase and CycB/Cdk1 for mitosis) to coordinate cell cycle progression 
from G1 to S-phase and G2 into mitosis (Reis and Edgar 2004). 
During metamorphosis, following removal of the obsolete larval structures, proliferation of 
the remaining tissue occurs in an ecdysone-dependent manner to produce adult structures. 
For example, during pupal development the larval midgut is removed by apoptosis and is 
replaced through proliferation of the remaining tissue to form the adult midgut (Jiang, 
Baehrecke, and Thummel 1997). Microarray analysis has revealed that the ecdysone signal is 
associated with the activation of key cell cycle genes, including Cyclin B, Cdc2 and Cyclin D, 
during the initiation of midgut metamorphosis (Li and White 2003). Analysis of EcR null 
mutants also revealed that EcR function was necessary for the cell cycle and growth genes to 
be activated in the larval midgut, suggesting that the ecdysone pathway is required for cell 
division control. The body of this chapter will discuss how the ecdysone pulse achieves 
changes to cell growth and cell cycle progression. First we will describe how ecdysone levels 
dictate body size cell extrinsically by controlling developmental timing. Then we will 
discuss how ecdysone works with its receptors, in a tissue autonomous manner to control 
transcription of cell cycle genes, which most likely occurs indirectly by modifying the 
activity of developmental signalling pathways. 

2. Cell extrinsic effects of ecdysone on larval growth and body size 
The ecdysone pulse can act indirectly to affect larval growth as a consequence of the link 
between the ecdysone titre and developmental timing. Here we will discuss how cell 
extrinsic effects of the ecdysone pathway control Drosophila larval growth and final body 
size non-autonomously, at least in part, through interactions between the ecdysone and 
insulin pathways (King-Jones and Thummel 2005; Shingleton 2005; Mirth and Riddiford 
2007; Nijhout 2008).  

2.1 The prothoracic gland directs body size  
The prothoracic gland (PG) is tightly associated with the developmental timing of all 
holometabolous insects, including Drosophila, as it produces the ecdysone pulse that dictates 
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the timing of the larval-pupal transition and metamorphosis. As the adult fly size is 
determined by the size of the larvae at the pupal molt, the timing of ecdysone release plays a 
vital role in the growth of the fly (reviewed in (King-Jones and Thummel 2005)). Studies in 
2005 demonstrated the importance of the size of the PG and its effect on ecdysone 
production and, therefore, determination of the final adult fly size (Caldwell, Walkiewicz, 
and Stern 2005; Colombani et al. 2005; Mirth, Truman, and Riddiford 2005). Specifically, 
these groups reported a role for insulin signalling in the PG, and also characterised a size-
assessing feature of the PG (Figure 3). As a size-assessment tissue, inhibiting the growth of 
the PG causes an underestimation of body size and results in pupation at a larger size, 
whereas promoting this tissue’s growth results in smaller flies (Mirth, Truman, and 
Riddiford 2005). Consistent with this, overexpression of activated PI3K or Ras (RasV12), both 
key components of growth control pathways in flies and mammals, specifically in the PG 
resulted in a larger PG but reduced the pupal and adult size (Caldwell, Walkiewicz, and 
Stern 2005; Colombani et al. 2005; Mirth, Truman, and Riddiford 2005), which we have 
recapitulated as shown in Figure 3 (compare 3B with 3A). Conversely, overexpression of a 
dominant negative isoform of PI3K (Dp110DN) reduced the PG size but resulted in larger 
pupae and adults, due to an extended larval growth period (Figure 3, compare C with A). 
Furthermore, through measurements of the ecdysone target E74B or through an enzyme 
immunoassay for ecdysteroid titres, it was shown that the extended larval growth period was 
due to reduced ecdysone levels, which was most likely a result of a smaller PG (Caldwell, 
Walkiewicz, and Stern 2005; Colombani et al. 2005; Mirth, Truman, and Riddiford 2005).  

2.2 PTTH regulates of ecdysone levels 
In insects, the production and release of ecdysone is responsive to the prothoracicotropic 
hormone (PTTH), a small, secreted peptide. PTTH is thought to induce the transcription of 
ecdysone biosynthetic genes that encode enzymes driving the series of dehydrogenation 
and hydroxylation reactions required to synthesise the active metabolite 20E from the 
cholesterol precursor (Marchal et al. 2010). In Drosophila PTTH is produced by a pair of 
bilateral neurosecretory cells in the brain, which innervate the prothoracic gland (PG) 
((Figure 2; (McBrayer et al. 2007)). PTTH is expressed throughout 3rd instar in an 8 hour 
cyclic pattern, with upregulation noticed around 12 hours before pupariation (McBrayer et 
al. 2007). Ablation of the neurons that produce PTTH results in a 5-day developmental delay 
in the onset of pupariation, larger 3rd instar larvae and pupae, and adults with larger wings 
due to increased cell number. In line with the predicted role for PTTH in modulating 
ecdysone synthesis and release, larvae lacking PTTH producing neurons have reduced 
ecdysone titres. This suggests PTTH normally modulates ecdysone levels to coordinate 
larval growth with the onset of metamorphosis. However, as the ecdysone levels still 
eventually peak in larvae with ablated neurons, PTTH may not be the sole factor required 
for increasing ecdysone titres (McBrayer et al. 2007). Thus PTTH might be required in 
addition to the insulin-dependent growth pathways discussed above, to coordinate larval 
growth with ecdysone-induced moulting and metamorphosis (Figure 2-3). 

2.3 Juvenile hormone controls PTTH release and ecdysone production 
The signals required for metamorphosis have been extensively studied in the tobacco 
hornworm Manduca sexta. In this insect, the pulse of ecdysone in the last larval instar is 
inhibited by another hormone, the Juvenile Hormone (JH). In the case of JH, levels need to 
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drop below a threshold for metamorphosis to begin (Nijhout and Williams 1974, 1974; 
Dominick and Truman 1985). Whether the drop in JH abundance signals the attainment of 
critical weight, which defines the larval size response to starvation (Davidowitz, D'Amico, 
and Nijhout 2003), or reaching critical weight initiates the drop in JH levels is unclear. 
However, at least in Manduca, a drop of JH levels below a critical threshold is required for 
PTTH to be released and activate the production of ecdysone to start metamorphosis. As 
pupae do not receive any additional nutrition, the transition into pupation marks the 
termination of larval growth and establishes the final adult size. 
For Drosophila, the role of JH in regulating PTTH is not as well defined. Studies suggests 
PTTH may operate upstream to set the critical weight as loss of PTTH results in an increase 
in critical weight and an extended developmental delay (Figure 3; (McBrayer et al. 2007)). 
Control of developmental timing is likely achieved by minor pulses of PTTH and 
subsequent ecdysone pulses, which occur prior to the major ecdysone peak. This is 
consistent with the observation that loss of PTTH impairs ecdysone release and leads to 
developmental delays and larger adult flies (McBrayer et al. 2007). As ecdysone levels 
determine the transition from each developmental stage the PG, therefore, plays a critical 
role in regulating Drosophila organ and tissue growth. 

2.4 Ecdysone controls animal growth rate via the fat body 
In holometabolous insects, growth is mainly restricted to the larval period and maturation 
occurs during metamorphosis or pupal development. In all multicellular animals, tissue 
growth relies on the insulin-signalling pathway, which couples nutrition with growth 
(Edgar 2006; Britton et al. 2002). A recent study suggests an ecdysone-dependent control 
mechanism for restricting growth to the juvenile period, where ecdysone controls growth 
rate via effects on the growth regulator Myc in the fat body (Delanoue, Slaidina, and 
Leopold 2010). The fat body, which is functionally homologous to the vertebrate liver, 
appears to act as a relay tissue for the control of larval growth by circulating ecdysone. Loss 
of Ecdysone receptor (EcR) function in fat body increases dMyc expression and its ability to 
upregulate growth by increasing ribosome biogenesis and protein translation. Together with 
RNA profiling of dissected fat bodies, this suggests that EcR signalling represses dMyc and 
its downstream targets. Importantly, manipulation of dMyc levels in the fat body is 
sufficient to affect animal growth-rate. In addition, the downregulation of dMyc in fat cells 
is required for growth inhibition by ecdysone as the growth increase induced by silencing 
EcR in the fat body is suppressed by cosilencing dMyc. This work suggests a model where 
the rise of ecdysone levels at the end of the juvenile period represses dMyc expression in the 
fat body. This steroid hormone-dependent inhibition restricts ribosome biosynthesis and 
translation efficiency in fat cells via dMyc and, therefore, induces a general pause in the 
growth program that precedes entry into metamorphosis.  
The ability of circulating ecdysone to control dMyc expression during the pupal stage was 
found to be specific to the fat body. For example, dmyc mRNA levels were elevated in fat 
body after reducing the level of circulating ecdysone via inhibition of PI3K pathway in the 
prothoracic gland, but at this stage dmyc levels are not altered in wing imaginal discs 
(Delanoue, Slaidina, and Leopold 2010). Interestingly, inhibition of ecdysone gene activation 
at the earlier 3rd larval instar stage revealed that EcR function is actually required for 
normal levels of dmyc transcription in some tissues. In these studies, blocking the ecdysone 
pathway in wing imaginal disc cells using EcR dominant negative (dN) transgenes results in 
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reduced levels of dmyc promoter activity (Cranna and Quinn 2009). Thus the effect of 
ecdysone on this key growth regulator appears to be both 1) developmental-stage specific; 
being required for dmyc activation in the wing at the earlier growth phase but not after 
pupariation and 2) tissue specific; resulting in downregulation of dmyc expression in the fat 
body, but not in the wing disc during pupariation. 
The lack of consensus binding sites for EcR/Usp (EcREs) in the dmyc promoter region 
suggests that dmyc is not a direct target of EcR-mediated gene repression in the fat body or 
activation in the wing, but rather that EcR signalling indirectly controls dmyc transcription. 
Although the fat-specific target of EcR leading to altered dmyc expression is unknown, in the 
wing imaginal disc EcR has been shown to modulate levels of the Wingless morphogen 
(Mitchell et al. 2008), which in turn can lead to downregulation of dmyc transcription 
(Herranz et al. 2008; Johnston et al. 1999). 

2.5 Interplay between insulin pathway and ecdysone determines final body size 
Taken together the above findings suggest that the insulin-signalling pathway acts in the 
prothoracic gland (PG) to regulate the release of ecdysone and determine the length of the 
larval growth period (Caldwell, Walkiewicz, and Stern 2005; Colombani et al. 2005; King-
Jones et al. 2005; Mirth, Truman, and Riddiford 2005; Shingleton 2005; Prober and Edgar 
2002). For instance, increased PG growth occurs when PI3-kinase (PI3K, a downstream 
regulator of the insulin pathway) is upregulated in the PG (Caldwell, Walkiewicz, and Stern 
2005; Mirth, Truman, and Riddiford 2005). The PG overgrowth causes accelerated 
metamorphosis, which results in reduced adult size due to the rapid progression through 
the larval growth stage. Precocious ecdysone release, as measured by premature increase in 
levels of the early response ecdysone genes, correlates with this disruption to larval growth. 
Conversely, reducing growth of the PG, using a dominant negative form of PI3K, results in 
longer larval growth periods and larger adults due to slower ecdysone release and delayed 
onset of pupariation. More recently it has been shown that Target of Rapamycin (TOR) may 
link the ecdysone-regulated development to the PI3K mediated growth pathways (Layalle, 
Arquier, and Leopold 2008; reviewed in (Nijhout 2008)).  
The levels of ecdysone release are therefore inversely proportional to larval growth and 
adult body size; with early onset of the ecdysone peak giving small flies and reduced 
ecdysone prolonging the growth period to give larger adults. Thus the time spent in the 
larval growth phase is a critical determinant of body size, with longer growth periods 
resulting in more cell division cycles and delayed onset of differentiation. In the next section 
we address the question of how the ecdysone pulse works to affect rates of cell growth and 
cell cycle progression within specific larval tissues. In particular we discuss the 
developmental signalling pathways implicated in linking cell cycle patterning of larval 
imaginal tissues to the ecdysone titre. 

3. Cell intrinsic roles for ecdysone, EcR and USP in cell growth and division 
The Drosophila imaginal discs (see also Introduction 1.1), which form the adult head 
structures (eyes and antenna), appendages (wings and legs) and genitalia, have provided an 
excellent model for studying developmental signals controlling cell proliferation. The 
imaginal disc precursor cells arise early in embryonic development from invaginations of 
the embryonic epithelium (Alberts 2002). By the early larval stage each disc consists of a ball 
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drop below a threshold for metamorphosis to begin (Nijhout and Williams 1974, 1974; 
Dominick and Truman 1985). Whether the drop in JH abundance signals the attainment of 
critical weight, which defines the larval size response to starvation (Davidowitz, D'Amico, 
and Nijhout 2003), or reaching critical weight initiates the drop in JH levels is unclear. 
However, at least in Manduca, a drop of JH levels below a critical threshold is required for 
PTTH to be released and activate the production of ecdysone to start metamorphosis. As 
pupae do not receive any additional nutrition, the transition into pupation marks the 
termination of larval growth and establishes the final adult size. 
For Drosophila, the role of JH in regulating PTTH is not as well defined. Studies suggests 
PTTH may operate upstream to set the critical weight as loss of PTTH results in an increase 
in critical weight and an extended developmental delay (Figure 3; (McBrayer et al. 2007)). 
Control of developmental timing is likely achieved by minor pulses of PTTH and 
subsequent ecdysone pulses, which occur prior to the major ecdysone peak. This is 
consistent with the observation that loss of PTTH impairs ecdysone release and leads to 
developmental delays and larger adult flies (McBrayer et al. 2007). As ecdysone levels 
determine the transition from each developmental stage the PG, therefore, plays a critical 
role in regulating Drosophila organ and tissue growth. 

2.4 Ecdysone controls animal growth rate via the fat body 
In holometabolous insects, growth is mainly restricted to the larval period and maturation 
occurs during metamorphosis or pupal development. In all multicellular animals, tissue 
growth relies on the insulin-signalling pathway, which couples nutrition with growth 
(Edgar 2006; Britton et al. 2002). A recent study suggests an ecdysone-dependent control 
mechanism for restricting growth to the juvenile period, where ecdysone controls growth 
rate via effects on the growth regulator Myc in the fat body (Delanoue, Slaidina, and 
Leopold 2010). The fat body, which is functionally homologous to the vertebrate liver, 
appears to act as a relay tissue for the control of larval growth by circulating ecdysone. Loss 
of Ecdysone receptor (EcR) function in fat body increases dMyc expression and its ability to 
upregulate growth by increasing ribosome biogenesis and protein translation. Together with 
RNA profiling of dissected fat bodies, this suggests that EcR signalling represses dMyc and 
its downstream targets. Importantly, manipulation of dMyc levels in the fat body is 
sufficient to affect animal growth-rate. In addition, the downregulation of dMyc in fat cells 
is required for growth inhibition by ecdysone as the growth increase induced by silencing 
EcR in the fat body is suppressed by cosilencing dMyc. This work suggests a model where 
the rise of ecdysone levels at the end of the juvenile period represses dMyc expression in the 
fat body. This steroid hormone-dependent inhibition restricts ribosome biosynthesis and 
translation efficiency in fat cells via dMyc and, therefore, induces a general pause in the 
growth program that precedes entry into metamorphosis.  
The ability of circulating ecdysone to control dMyc expression during the pupal stage was 
found to be specific to the fat body. For example, dmyc mRNA levels were elevated in fat 
body after reducing the level of circulating ecdysone via inhibition of PI3K pathway in the 
prothoracic gland, but at this stage dmyc levels are not altered in wing imaginal discs 
(Delanoue, Slaidina, and Leopold 2010). Interestingly, inhibition of ecdysone gene activation 
at the earlier 3rd larval instar stage revealed that EcR function is actually required for 
normal levels of dmyc transcription in some tissues. In these studies, blocking the ecdysone 
pathway in wing imaginal disc cells using EcR dominant negative (dN) transgenes results in 
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reduced levels of dmyc promoter activity (Cranna and Quinn 2009). Thus the effect of 
ecdysone on this key growth regulator appears to be both 1) developmental-stage specific; 
being required for dmyc activation in the wing at the earlier growth phase but not after 
pupariation and 2) tissue specific; resulting in downregulation of dmyc expression in the fat 
body, but not in the wing disc during pupariation. 
The lack of consensus binding sites for EcR/Usp (EcREs) in the dmyc promoter region 
suggests that dmyc is not a direct target of EcR-mediated gene repression in the fat body or 
activation in the wing, but rather that EcR signalling indirectly controls dmyc transcription. 
Although the fat-specific target of EcR leading to altered dmyc expression is unknown, in the 
wing imaginal disc EcR has been shown to modulate levels of the Wingless morphogen 
(Mitchell et al. 2008), which in turn can lead to downregulation of dmyc transcription 
(Herranz et al. 2008; Johnston et al. 1999). 

2.5 Interplay between insulin pathway and ecdysone determines final body size 
Taken together the above findings suggest that the insulin-signalling pathway acts in the 
prothoracic gland (PG) to regulate the release of ecdysone and determine the length of the 
larval growth period (Caldwell, Walkiewicz, and Stern 2005; Colombani et al. 2005; King-
Jones et al. 2005; Mirth, Truman, and Riddiford 2005; Shingleton 2005; Prober and Edgar 
2002). For instance, increased PG growth occurs when PI3-kinase (PI3K, a downstream 
regulator of the insulin pathway) is upregulated in the PG (Caldwell, Walkiewicz, and Stern 
2005; Mirth, Truman, and Riddiford 2005). The PG overgrowth causes accelerated 
metamorphosis, which results in reduced adult size due to the rapid progression through 
the larval growth stage. Precocious ecdysone release, as measured by premature increase in 
levels of the early response ecdysone genes, correlates with this disruption to larval growth. 
Conversely, reducing growth of the PG, using a dominant negative form of PI3K, results in 
longer larval growth periods and larger adults due to slower ecdysone release and delayed 
onset of pupariation. More recently it has been shown that Target of Rapamycin (TOR) may 
link the ecdysone-regulated development to the PI3K mediated growth pathways (Layalle, 
Arquier, and Leopold 2008; reviewed in (Nijhout 2008)).  
The levels of ecdysone release are therefore inversely proportional to larval growth and 
adult body size; with early onset of the ecdysone peak giving small flies and reduced 
ecdysone prolonging the growth period to give larger adults. Thus the time spent in the 
larval growth phase is a critical determinant of body size, with longer growth periods 
resulting in more cell division cycles and delayed onset of differentiation. In the next section 
we address the question of how the ecdysone pulse works to affect rates of cell growth and 
cell cycle progression within specific larval tissues. In particular we discuss the 
developmental signalling pathways implicated in linking cell cycle patterning of larval 
imaginal tissues to the ecdysone titre. 

3. Cell intrinsic roles for ecdysone, EcR and USP in cell growth and division 
The Drosophila imaginal discs (see also Introduction 1.1), which form the adult head 
structures (eyes and antenna), appendages (wings and legs) and genitalia, have provided an 
excellent model for studying developmental signals controlling cell proliferation. The 
imaginal disc precursor cells arise early in embryonic development from invaginations of 
the embryonic epithelium (Alberts 2002). By the early larval stage each disc consists of a ball 
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of around 10-50 undifferentiated stem cells, which undergo extensive growth and 
proliferation to comprise up to 100,000 cells by the end of the third larval instar. The 
imaginal discs start differentiation at the end of third instar and complete the process by the 
end of pupariation, when all adult structures such as the wings, legs and eyes have 
developed (Fristrom and Fristrom 1993). The third instar larval stage is a critical stage of 
Drosophila development, containing the major growth and proliferation of all tissues 
required to form the adult fly (Church and Robertson 1966). Indeed the size of the adult fly 
is determined at the time when the pupal case is formed, as after this the animal cannot feed 
again until eclosion. Here we will discuss the developmental signals (including Wingless, 
Dpp, Hedgehog, Notch) controlling growth of the eye and wing imaginal discs, and how 
ecdysone impacts on these signalling pathways to control cell division.  

3.1 Ecdysone mediates morphogenetic Furrow progression in the eye imaginal disc 
The Drosophila eye is composed of an ordered array of photoreceptor clusters or ommatidia, 
which develop from an epithelial monolayer known as the eye imaginal disc, via an 
organised pattern of proliferation and differentiation (Figure 4; (Ready, Hanson, and Benzer 
1976; Wolff and Ready 1991)). Differentiation of the ommatidia occurs in a wave that moves 
from the posterior toward the anterior (Thomas and Zipursky 1994). The margin between 
the asynchronously dividing anterior cells and the differentiated posterior cells is marked 
by the morphogenetic furrow (MF) (Ready, Hanson, and Benzer 1976). Mitotic division 
cycles become synchronized in the MF where cells are delayed in G1 and a subset of 
photoreceptor cells are specified. The remaining retinal cells synchronously re-enter the cell 
cycle in the "Second Mitotic Wave" (SMW), which is composed of a tight band of DNA 
synthesis and mitosis (Figure 4). These final cell divisions provide the cells required for 
differentiation of the ommatidial structures that form the adult eye (Ready, Hanson, and 
Benzer 1976; Wolff and Ready 1991).  
Studies in the eye primordium of the tobacco hornworm moth, Manduca sexta, suggest that 
progression of the MF, including proliferation and differentiation of ommatidial clusters, 
requires ecdysone. Eye primordia proliferation responds to a critical concentration of 
ecdysone and below this threshold cells arrest in the G2 phase of the cell cycle (Champlin 
and Truman 1998). Premature exposure to high levels of ecdysone will also result in MF 
arrest and precocious maturation of ommatida (Champlin and Truman 1998). These cell 
cycle responses to ecdysone are consistent with the moderate ecdysone pulse during the 
larval stage first stimulating eye proliferation and the high levels of ecdysone released after 
pupariation driving cell cycle exit and eye maturation. 
The ecdysone pathway has also been implicated in regulation of MF progression in the 
Drosophila larval eye imaginal disc. The ecdysoneless mutation (ecd-ts) is a hypomorphic 
temperature-sensitive allele, which reduces ecdysone secretion from the ring gland (Henrich 
et al. 1987). Homozygous ecd-ts flies show eye defects when shifted to the restrictive 
temperature during the third instar larval stage (Brennan, Ashburner, and Moses 1998). 
Consistent with the MF moving much more slowly than normal in the ecd-ts mutant, 
delayed eye differentiation was shown using the neuronal marker Elav.  
Microarray analysis has linked the ecdysone pulse during metamorphosis to transcriptional 
changes in mitogenic signalling molecules, which are essential for coordinating cell cycle 
and patterning of imaginal tissues. The observation that ecdysone signalling was essential 
for the activation of factors involved in regulatory signalling pathways such as Wg, Notch 
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Fig. 4. A - Eye imaginal disc differentiation occurs in a wave that moves from posterior (P) 
to anterior (A). The margin between the asynchronously dividing anterior cells and the 
differentiated posterior cells is marked by the morphogenetic furrow (MF), where cells are 
delayed in G1. Mitotic division cycles become synchronized in the "Second Mitotic Wave" 
(SMW), which is composed of a tight band of DNA synthesis (Marked by BrdU in red) and 
mitosis (marked by PH3 in green). B - The Hedgehog (Hh) and Dpp pathways control cell 
division in the larval eye. Drosophila eye development is dependent on hedgehog (hh) 
expression posterior to the MF and decapentaplegic (dpp) expression within the MF. Hh and 
Dpp regulate key cell cycle genes to coordinate cell cycle and differentiation. Dpp and Hh 
act redundantly to ensure G1 arrest, thus cells unable to respond to Dpp will arrest later in 
response to Hh. Dpp and Hh inhibit Cyclin E and dE2F1 in the cells comprising the MF. In 
the anterior of the MF, Hh acts to promote cell division in the SMW by upregulating Cyclin 
D to promote cell growth and Cyclin E to drive S-phase entry. 

and Dpp, suggests there might be many connections between ecdysone, developmental 
pathways and cell cycle regulation during metamorphosis in Drosophila (Li and White 2003).  
The first evidence for these connections in the Drosophila larval eye imaginal disc came from 
studies implicating the ecdysone pathway in regulation of MF progression via effects on Hh 
and Dpp (Brennan, Ashburner, and Moses 1998; Brennan et al. 2001). In Drosophila, eye 
development is dependent on hedgehog (hh) expression posterior to the MF (Heberlein, 
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of around 10-50 undifferentiated stem cells, which undergo extensive growth and 
proliferation to comprise up to 100,000 cells by the end of the third larval instar. The 
imaginal discs start differentiation at the end of third instar and complete the process by the 
end of pupariation, when all adult structures such as the wings, legs and eyes have 
developed (Fristrom and Fristrom 1993). The third instar larval stage is a critical stage of 
Drosophila development, containing the major growth and proliferation of all tissues 
required to form the adult fly (Church and Robertson 1966). Indeed the size of the adult fly 
is determined at the time when the pupal case is formed, as after this the animal cannot feed 
again until eclosion. Here we will discuss the developmental signals (including Wingless, 
Dpp, Hedgehog, Notch) controlling growth of the eye and wing imaginal discs, and how 
ecdysone impacts on these signalling pathways to control cell division.  

3.1 Ecdysone mediates morphogenetic Furrow progression in the eye imaginal disc 
The Drosophila eye is composed of an ordered array of photoreceptor clusters or ommatidia, 
which develop from an epithelial monolayer known as the eye imaginal disc, via an 
organised pattern of proliferation and differentiation (Figure 4; (Ready, Hanson, and Benzer 
1976; Wolff and Ready 1991)). Differentiation of the ommatidia occurs in a wave that moves 
from the posterior toward the anterior (Thomas and Zipursky 1994). The margin between 
the asynchronously dividing anterior cells and the differentiated posterior cells is marked 
by the morphogenetic furrow (MF) (Ready, Hanson, and Benzer 1976). Mitotic division 
cycles become synchronized in the MF where cells are delayed in G1 and a subset of 
photoreceptor cells are specified. The remaining retinal cells synchronously re-enter the cell 
cycle in the "Second Mitotic Wave" (SMW), which is composed of a tight band of DNA 
synthesis and mitosis (Figure 4). These final cell divisions provide the cells required for 
differentiation of the ommatidial structures that form the adult eye (Ready, Hanson, and 
Benzer 1976; Wolff and Ready 1991).  
Studies in the eye primordium of the tobacco hornworm moth, Manduca sexta, suggest that 
progression of the MF, including proliferation and differentiation of ommatidial clusters, 
requires ecdysone. Eye primordia proliferation responds to a critical concentration of 
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for the activation of factors involved in regulatory signalling pathways such as Wg, Notch 
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Fig. 4. A - Eye imaginal disc differentiation occurs in a wave that moves from posterior (P) 
to anterior (A). The margin between the asynchronously dividing anterior cells and the 
differentiated posterior cells is marked by the morphogenetic furrow (MF), where cells are 
delayed in G1. Mitotic division cycles become synchronized in the "Second Mitotic Wave" 
(SMW), which is composed of a tight band of DNA synthesis (Marked by BrdU in red) and 
mitosis (marked by PH3 in green). B - The Hedgehog (Hh) and Dpp pathways control cell 
division in the larval eye. Drosophila eye development is dependent on hedgehog (hh) 
expression posterior to the MF and decapentaplegic (dpp) expression within the MF. Hh and 
Dpp regulate key cell cycle genes to coordinate cell cycle and differentiation. Dpp and Hh 
act redundantly to ensure G1 arrest, thus cells unable to respond to Dpp will arrest later in 
response to Hh. Dpp and Hh inhibit Cyclin E and dE2F1 in the cells comprising the MF. In 
the anterior of the MF, Hh acts to promote cell division in the SMW by upregulating Cyclin 
D to promote cell growth and Cyclin E to drive S-phase entry. 

and Dpp, suggests there might be many connections between ecdysone, developmental 
pathways and cell cycle regulation during metamorphosis in Drosophila (Li and White 2003).  
The first evidence for these connections in the Drosophila larval eye imaginal disc came from 
studies implicating the ecdysone pathway in regulation of MF progression via effects on Hh 
and Dpp (Brennan, Ashburner, and Moses 1998; Brennan et al. 2001). In Drosophila, eye 
development is dependent on hedgehog (hh) expression posterior to the MF (Heberlein, 
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Wolff, and Rubin 1993; Heberlein et al. 1995) and decapentaplegic (dpp) expression within the 
MF (Figure 4; (Blackman et al. 1991)). Drosophila Dpp is a member of the mammalian 
transforming growth factor-beta (TGF-beta) family of secreted proteins. TGF-beta can 
behave as a tumour-suppressor or oncogene depending on the tissue microenvironment, 
thus pathway inhibition or activation can result in cancer progression (Serra and Moses 
1996; Derynck, Akhurst, and Balmain 2001; Wakefield and Roberts 2002; Bachman and Park 
2005; Elliott and Blobe 2005; Jakowlew 2006; Massague 2008). Aberrant Hh signalling has 
also been associated with human cancer, with much literature linking activation of the 
pathway with increased tumour progression (Toftgard 2000; Vestergaard, Bak, and Larsen 
2005; Evangelista, Tian, and de Sauvage 2006; Epstein 2008; Varjosalo and Taipale 2008). In 
the eye disc, Dpp and Hedgehog (Hh) act redundantly to ensure G1 arrest within the MF 
(Penton, Selleck, and Hoffmann 1997; Horsfield et al. 1998; Firth and Baker 2005) where both 
pathways can inhibit Cyclin E and dE2F1 (Escudero and Freeman 2007). In addition to this 
cell cycle inhibitory role of Hh in the MF, Hh promotes cell division in the SMW by 
upregulating Cyclin D to promote cell growth and Cyclin E to drive S-phase entry (Figure 4; 
(Duman-Scheel et al. 2002)).  
In line with ecdysone regulating eye development via Hh, the phenotype observed in 
ecdysoneless (ecd-ts) mutant is similar to phenotypes resulting from hh loss of function 
(Heberlein et al. 1995). In addition, the decreased levels of Hh protein posterior to the MF in 
ecd-ts larval eye discs are consistent with hh being a downstream target of the ecdysone 
signal (Brennan, Ashburner, and Moses 1998). The delayed MF progression may be, 
therefore, a consequence of the requirement for Hh in activation of the S-phase genes cyclin 
D and cyclin E and, therefore, cell cycle re-entry in the SMW (Duman-Scheel et al. 2002). 
Indeed, the failure of MF movement in ecd-ts mutants is likely a result of impaired cell cycle 
progression as S-phase numbers were dramatically decreased in the SMW (Brennan, 
Ashburner, and Moses 1998). Consistent with reduced cell division within the SMW, levels 
of the mitotic cyclin, Cyclin B, were also reduced posterior to the MF (Brennan, Ashburner, 
and Moses 1998). 
The USP receptor has also been implicated in regulation of cell cycle progression and 
differentiation in the developing eye imaginal disc. Loss-of-function usp clones spanning the 
morphogenetic furrow show an anterior shift in expression of the MF-specific marker Dpp, 
consistent with premature progression of the MF and a role for USP in repressing 
morphogenetic furrow movement (Zelhof et al. 1997). In addition, loss of USP results in 
ectopic activation of many genes involved in cell fate specification in the eye, including the 
differentiation markers Spalt and Atonal (Zelhof et al. 1997). Although expression of these 
differentiation markers occurs prematurely, specification of cells contributing to the 
ommatidia occurs normally. The cell cycle analysis of usp mutant clones suggested that 
although the MF was advanced, cell cycle progression was disrupted in the SMW. First 
staining for Cyclin A, as a marker for cells in either S or G2 phase, revealed fewer Cyclin A-
positive cells in usp- clones posterior to the morphogenetic furrow (Ghbeish et al. 2001). 
Similarly, although the Cyclin B band was not shifted in usp- clones posterior to the MF, the 
numbers of cells expressing Cyclin B were reduced (Ghbeish and McKeown 2002). The 
reduction in cell cycle markers posterior of the MF suggests that USP is required for cell 
cycle progression in the SMW. In support of cell cycle induction in the SMW depending on 
the presence of USP protein, usp overexpression using the GMR-promoter, which is only 
expressed posterior of the furrow, can rescue the loss of Cyclin B in the usp mutant clone. As 
progression through the SMW and differentiation are tightly coupled, the reduced cell 
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cycles in usp-/- clones may be the underlying cause of the premature differentiation 
observed (Zelhof et al. 1997).  
Together these data show that reduction in either ecdysone or USP results in reduced cell 
cycles. Paradoxically, however, usp mutations increase the rate of MF movement (Zelhof et 
al. 1997; Ghbeish et al. 2001; Ghbeish and McKeown 2002) while loss of ecdysone stops the 
MF (Brennan, Ashburner, and Moses 1998; Brennan et al. 2001). One explanation for these 
observations is that in the absence of ligand, the EcR/USP heterodimer normally acts as a 
repressor at certain EcREs. For these target genes ecdysone would be required to relieve the 
transcriptional repression caused by unliganded binding of the EcR/USP complex. This idea 
emerged from the finding that the Broad-complex (BR-C), which encodes the family of zinc-
finger transcription factors upregulated early in response to high ecdysone titres (Karim, 
Guild, and Thummel 1993), becomes ectopically expressed in loss-of-function wing imaginal 
disc cells for either usp (Schubiger and Truman 2000) or EcR (Schubiger et al. 2005). 
Although concrete evidence is lacking, the idea is that the early (pre-ecdysone pulse) 
repressive effect of the EcR/USP heterodimer at the BR-C promoter will be lost in either EcR 
or usp mutants. 
The apparently contradictory effects of USP and ecdysone in the eye might actually be a 
consequence of the differential effects of the pathway on BR-C transcription. The Z1 isoform 
of the BR-C (BrC-Z1) is normally expressed posterior to the MF but not anterior to the MF 
(Emery, Bedian, and Guild 1994; Bayer, Holley, and Fristrom 1996) and reduced induction of 
BrC-Z1 occurs in ecd-ts eye discs (Brennan, Ashburner, and Moses 1998). Loss of USP 
function has the opposite effect, leading to high level BrC-Z1 protein expression both 
anterior and posterior to the MF, which might occur as a consequence of de-repression of 
BR-C transcription (Brennan et al. 2001). This high level of BrC-Z1 protein in usp mutant 
clones may explain the MF advancement phenotypes, as ectopic BrC-Z1 protein has been 
shown to induce premature differentiation of photoreceptor cells (Zelhof et al. 1997; 
Ghbeish et al. 2001; Ghbeish and McKeown 2002).  
Yet even though BrC-Z1 expression is downregulated in ecd-ts mutants (Brennan, 
Ashburner, and Moses 1998), BrC-Z1 loss of function eye imaginal discs are phenotypically 
different (Ghbeish et al. 2001), suggesting that other downstream targets of ecdysone 
pathway transcription mediate the reported effects on eye development. Like ecd-ts, 
impaired BrC-Z1 function results in decreased levels of Hh, defective MF progression and 
photoreceptor recruitment. However, unlike the findings for ecd-ts, reduced levels of Cyclin 
B were not detected in BrC-Z1 loss of function clones (Ghbeish et al. 2001). Rather loss of 
BrC-Z1 function results in defects in ommatidial assembly, suggesting a role for BR-C in 
post-MF differentiation rather than cell cycle regulation in the SMW (Brennan et al. 2001). 
This suggests that some ecdysone regulation in the eye is mediated by BrC-Z1, but that an 
alternate target(s) of the ecdysone pathway regulates the cell cycle activity required for 
SMW cell cycles and MF progression. 
The ecd-ts and USP studies suggest a role for the ecdysone pathway and the USP receptor in 
furrow progression, however, analysis of EcR mutant clones led to the conclusion that EcR 
was not required for furrow progression (Brennan et al. 2001). This was surprising given the 
EcR isoforms are the major mediators of the ecdysone signal, combined with the Manduca 
Sexta (Champlin and Truman 1998, 1998) and Drosophila studies (Brennan, Ashburner, and 
Moses 1998) that have demonstrated a requirement for ecdysone in MF progression. This led 
the authors of this study to propose a novel hormone transduction pathway involving an 
uncharacterized receptor to explain USP functioning independent of EcR in the eye, which 
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Wolff, and Rubin 1993; Heberlein et al. 1995) and decapentaplegic (dpp) expression within the 
MF (Figure 4; (Blackman et al. 1991)). Drosophila Dpp is a member of the mammalian 
transforming growth factor-beta (TGF-beta) family of secreted proteins. TGF-beta can 
behave as a tumour-suppressor or oncogene depending on the tissue microenvironment, 
thus pathway inhibition or activation can result in cancer progression (Serra and Moses 
1996; Derynck, Akhurst, and Balmain 2001; Wakefield and Roberts 2002; Bachman and Park 
2005; Elliott and Blobe 2005; Jakowlew 2006; Massague 2008). Aberrant Hh signalling has 
also been associated with human cancer, with much literature linking activation of the 
pathway with increased tumour progression (Toftgard 2000; Vestergaard, Bak, and Larsen 
2005; Evangelista, Tian, and de Sauvage 2006; Epstein 2008; Varjosalo and Taipale 2008). In 
the eye disc, Dpp and Hedgehog (Hh) act redundantly to ensure G1 arrest within the MF 
(Penton, Selleck, and Hoffmann 1997; Horsfield et al. 1998; Firth and Baker 2005) where both 
pathways can inhibit Cyclin E and dE2F1 (Escudero and Freeman 2007). In addition to this 
cell cycle inhibitory role of Hh in the MF, Hh promotes cell division in the SMW by 
upregulating Cyclin D to promote cell growth and Cyclin E to drive S-phase entry (Figure 4; 
(Duman-Scheel et al. 2002)).  
In line with ecdysone regulating eye development via Hh, the phenotype observed in 
ecdysoneless (ecd-ts) mutant is similar to phenotypes resulting from hh loss of function 
(Heberlein et al. 1995). In addition, the decreased levels of Hh protein posterior to the MF in 
ecd-ts larval eye discs are consistent with hh being a downstream target of the ecdysone 
signal (Brennan, Ashburner, and Moses 1998). The delayed MF progression may be, 
therefore, a consequence of the requirement for Hh in activation of the S-phase genes cyclin 
D and cyclin E and, therefore, cell cycle re-entry in the SMW (Duman-Scheel et al. 2002). 
Indeed, the failure of MF movement in ecd-ts mutants is likely a result of impaired cell cycle 
progression as S-phase numbers were dramatically decreased in the SMW (Brennan, 
Ashburner, and Moses 1998). Consistent with reduced cell division within the SMW, levels 
of the mitotic cyclin, Cyclin B, were also reduced posterior to the MF (Brennan, Ashburner, 
and Moses 1998). 
The USP receptor has also been implicated in regulation of cell cycle progression and 
differentiation in the developing eye imaginal disc. Loss-of-function usp clones spanning the 
morphogenetic furrow show an anterior shift in expression of the MF-specific marker Dpp, 
consistent with premature progression of the MF and a role for USP in repressing 
morphogenetic furrow movement (Zelhof et al. 1997). In addition, loss of USP results in 
ectopic activation of many genes involved in cell fate specification in the eye, including the 
differentiation markers Spalt and Atonal (Zelhof et al. 1997). Although expression of these 
differentiation markers occurs prematurely, specification of cells contributing to the 
ommatidia occurs normally. The cell cycle analysis of usp mutant clones suggested that 
although the MF was advanced, cell cycle progression was disrupted in the SMW. First 
staining for Cyclin A, as a marker for cells in either S or G2 phase, revealed fewer Cyclin A-
positive cells in usp- clones posterior to the morphogenetic furrow (Ghbeish et al. 2001). 
Similarly, although the Cyclin B band was not shifted in usp- clones posterior to the MF, the 
numbers of cells expressing Cyclin B were reduced (Ghbeish and McKeown 2002). The 
reduction in cell cycle markers posterior of the MF suggests that USP is required for cell 
cycle progression in the SMW. In support of cell cycle induction in the SMW depending on 
the presence of USP protein, usp overexpression using the GMR-promoter, which is only 
expressed posterior of the furrow, can rescue the loss of Cyclin B in the usp mutant clone. As 
progression through the SMW and differentiation are tightly coupled, the reduced cell 
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cycles in usp-/- clones may be the underlying cause of the premature differentiation 
observed (Zelhof et al. 1997).  
Together these data show that reduction in either ecdysone or USP results in reduced cell 
cycles. Paradoxically, however, usp mutations increase the rate of MF movement (Zelhof et 
al. 1997; Ghbeish et al. 2001; Ghbeish and McKeown 2002) while loss of ecdysone stops the 
MF (Brennan, Ashburner, and Moses 1998; Brennan et al. 2001). One explanation for these 
observations is that in the absence of ligand, the EcR/USP heterodimer normally acts as a 
repressor at certain EcREs. For these target genes ecdysone would be required to relieve the 
transcriptional repression caused by unliganded binding of the EcR/USP complex. This idea 
emerged from the finding that the Broad-complex (BR-C), which encodes the family of zinc-
finger transcription factors upregulated early in response to high ecdysone titres (Karim, 
Guild, and Thummel 1993), becomes ectopically expressed in loss-of-function wing imaginal 
disc cells for either usp (Schubiger and Truman 2000) or EcR (Schubiger et al. 2005). 
Although concrete evidence is lacking, the idea is that the early (pre-ecdysone pulse) 
repressive effect of the EcR/USP heterodimer at the BR-C promoter will be lost in either EcR 
or usp mutants. 
The apparently contradictory effects of USP and ecdysone in the eye might actually be a 
consequence of the differential effects of the pathway on BR-C transcription. The Z1 isoform 
of the BR-C (BrC-Z1) is normally expressed posterior to the MF but not anterior to the MF 
(Emery, Bedian, and Guild 1994; Bayer, Holley, and Fristrom 1996) and reduced induction of 
BrC-Z1 occurs in ecd-ts eye discs (Brennan, Ashburner, and Moses 1998). Loss of USP 
function has the opposite effect, leading to high level BrC-Z1 protein expression both 
anterior and posterior to the MF, which might occur as a consequence of de-repression of 
BR-C transcription (Brennan et al. 2001). This high level of BrC-Z1 protein in usp mutant 
clones may explain the MF advancement phenotypes, as ectopic BrC-Z1 protein has been 
shown to induce premature differentiation of photoreceptor cells (Zelhof et al. 1997; 
Ghbeish et al. 2001; Ghbeish and McKeown 2002).  
Yet even though BrC-Z1 expression is downregulated in ecd-ts mutants (Brennan, 
Ashburner, and Moses 1998), BrC-Z1 loss of function eye imaginal discs are phenotypically 
different (Ghbeish et al. 2001), suggesting that other downstream targets of ecdysone 
pathway transcription mediate the reported effects on eye development. Like ecd-ts, 
impaired BrC-Z1 function results in decreased levels of Hh, defective MF progression and 
photoreceptor recruitment. However, unlike the findings for ecd-ts, reduced levels of Cyclin 
B were not detected in BrC-Z1 loss of function clones (Ghbeish et al. 2001). Rather loss of 
BrC-Z1 function results in defects in ommatidial assembly, suggesting a role for BR-C in 
post-MF differentiation rather than cell cycle regulation in the SMW (Brennan et al. 2001). 
This suggests that some ecdysone regulation in the eye is mediated by BrC-Z1, but that an 
alternate target(s) of the ecdysone pathway regulates the cell cycle activity required for 
SMW cell cycles and MF progression. 
The ecd-ts and USP studies suggest a role for the ecdysone pathway and the USP receptor in 
furrow progression, however, analysis of EcR mutant clones led to the conclusion that EcR 
was not required for furrow progression (Brennan et al. 2001). This was surprising given the 
EcR isoforms are the major mediators of the ecdysone signal, combined with the Manduca 
Sexta (Champlin and Truman 1998, 1998) and Drosophila studies (Brennan, Ashburner, and 
Moses 1998) that have demonstrated a requirement for ecdysone in MF progression. This led 
the authors of this study to propose a novel hormone transduction pathway involving an 
uncharacterized receptor to explain USP functioning independent of EcR in the eye, which 
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could occur via heterodimerisation of USP with one of the 16 orphan nuclear receptors 
identified in Drosophila (Sullivan and Thummel 2003). For example USP has been found to 
heterodimerize with the orphan nuclear receptor, DHR38, to regulate cuticle formation 
(Kozlova et al. 1998; Sutherland et al. 1995). The USP/DHR38 complex responds to a 
different class of ecdysteroids in larval fat body and epidermis in an EcR independent 
manner, which does not involve direct binding of the ecdysone ligand to either DHR38 or 
USP (Baker et al. 2003). However, as DHR38 expression does not appear to be induced by 
ecdysteroids in the larval eye (Baker et al. 2003), it is unlikely that DHR38 partners USP 
during eye development. We believe it is premature to rule out a function for EcR in MF 
progression as the absence of a furrow progression phenotype reported (Brennan et al. 2001) 
may be a consequence of perdurance of EcR protein after clone induction. As studies using 
dominant negative EcR transgenes have shown that EcR is required for normal signalling 
and cell cycle progression in the wing (discussed in section 3.2; (Mitchell et al. 2008; Cranna 
and Quinn 2009)), similar methods should be used to inhibit EcR activity before any 
definitive conclusions about whether EcR is required for eye proliferation can be made.  
Together the evidence suggests that larval ecdysone signalling is essential for cell cycle 
progression in the eye imaginal disc. The effect of ecdysone on cell division may, in part, be 
mediated by increasing Hedgehog (Hh) signalling (Brennan, Ashburner, and Moses 1998) 
posterior to the MF to drive S-phase gene activity and cell cycle progression in the second 
mitotic wave (SMW) (Duman-Scheel et al. 2002). In addition to this cell cycle promoting role 
of ecdysone via Hh activity in the SMW, the shift in the Dpp band of expression in usp- 
clones suggests the ecdysone pathway might also act on Dpp to coordinate G1 arrest in the 
furrow with division in the SMW (Escudero and Freeman 2007; Firth and Baker 2005). 
Further work is required to understand how ecdysone might coordinate these 
developmental signals with the G1 arrest/MF formation and stimulation of the SMW 
required for eye development (Figure 4).  

3.2 The ecdysone pathway regulates cell cycle progression in the larval wing disc 
Like the eye disc, the larval wing disc is also comprised of an epithelial sheet, which can be 
divided into distinct domains based on cell fate in the adult wing; the notum, hinge and 
pouch (Figure 5). The wing pouch, which ultimately forms the adult wing blade, has been a 
focus for studying signals impacting upon cell cycle, as wing morphogenesis involves 
patterned cell cycles that are tightly linked with developmental signalling (Johnson, Grenier, 
and Scott 1995; Johnston and Edgar 1998; Johnston et al. 1999; Johnston and Sanders 2003; 
Baker 2007).  
Early studies demonstrated that Crol, which is a zinc finger transcription factor, is activated 
in late larval imaginal discs by the steroid hormone ecdysone (D'Avino and Thummel 1998). 
Pupal lethal, hypomorphic crol mutants (crol4418) have defects in ecdysone-induced gene 
expression (D'Avino and Thummel 1998). Crol is both necessary and sufficient for cell cycle 
progression in the wing imaginal disc as crol mutant clones in the wing pouch fail to 
proliferate, whilst overexpression of crol results in ectopic proliferation (Mitchell et al. 2008). 
Crol is also required to downregulate the Wingless (Wg) pathway, which normally acts to 
drive cell cycle exit and differentiation (Figure 5). Therefore, by inhibiting the Wg pathway, 
crol drives wing disc cell division and potentially provides a link between the ecdysone 
pathway and the developmental signals that regulate cell cycle patterning (discussed in 
more detail section 3.3; Figure 6).  
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Fig. 5. (A) - Drosophila wing imaginal disc patterning. (A) The orange domain forms the 
notum, the blue region gives the hinge and the purple region (the pouch) forms the wing 
blade. The green line marks the anterior-posterior (A/P) boundary while the red line defines 
the dorsal-ventral (D/V) boundary. (B) Within D/V boundary of the pouch, Notch (N) 
expression activates Wingless (Wg) in the central domain. In the anterior compartment, Wg 
induces G2 arrest via string (stg) through Achaete (ac) and Scute (sc). In the posterior 
compartment, Wg induces G1 arrest via repression of dE2F. (B) - Wg protein, dmyc 
expression and cell cycle patterning in the Drosophila wing pouch. (A) Wg protein (red) is 
strongly expressed along the dorsal-ventral boundary of the wing pouch. (B) β-gal antibody 
staining (pink) of dmyc-lacZ discs shows a pattern consistent with dmyc transcription 
throughout the cycling cells of the pouch and downregulation of dmyc within the G1 
arrested cells of the zone of non-proliferating cells (ZNC). (C) The ZNC can be seen by the 
reduced BrdU staining (red) for S-phase.  
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could occur via heterodimerisation of USP with one of the 16 orphan nuclear receptors 
identified in Drosophila (Sullivan and Thummel 2003). For example USP has been found to 
heterodimerize with the orphan nuclear receptor, DHR38, to regulate cuticle formation 
(Kozlova et al. 1998; Sutherland et al. 1995). The USP/DHR38 complex responds to a 
different class of ecdysteroids in larval fat body and epidermis in an EcR independent 
manner, which does not involve direct binding of the ecdysone ligand to either DHR38 or 
USP (Baker et al. 2003). However, as DHR38 expression does not appear to be induced by 
ecdysteroids in the larval eye (Baker et al. 2003), it is unlikely that DHR38 partners USP 
during eye development. We believe it is premature to rule out a function for EcR in MF 
progression as the absence of a furrow progression phenotype reported (Brennan et al. 2001) 
may be a consequence of perdurance of EcR protein after clone induction. As studies using 
dominant negative EcR transgenes have shown that EcR is required for normal signalling 
and cell cycle progression in the wing (discussed in section 3.2; (Mitchell et al. 2008; Cranna 
and Quinn 2009)), similar methods should be used to inhibit EcR activity before any 
definitive conclusions about whether EcR is required for eye proliferation can be made.  
Together the evidence suggests that larval ecdysone signalling is essential for cell cycle 
progression in the eye imaginal disc. The effect of ecdysone on cell division may, in part, be 
mediated by increasing Hedgehog (Hh) signalling (Brennan, Ashburner, and Moses 1998) 
posterior to the MF to drive S-phase gene activity and cell cycle progression in the second 
mitotic wave (SMW) (Duman-Scheel et al. 2002). In addition to this cell cycle promoting role 
of ecdysone via Hh activity in the SMW, the shift in the Dpp band of expression in usp- 
clones suggests the ecdysone pathway might also act on Dpp to coordinate G1 arrest in the 
furrow with division in the SMW (Escudero and Freeman 2007; Firth and Baker 2005). 
Further work is required to understand how ecdysone might coordinate these 
developmental signals with the G1 arrest/MF formation and stimulation of the SMW 
required for eye development (Figure 4).  

3.2 The ecdysone pathway regulates cell cycle progression in the larval wing disc 
Like the eye disc, the larval wing disc is also comprised of an epithelial sheet, which can be 
divided into distinct domains based on cell fate in the adult wing; the notum, hinge and 
pouch (Figure 5). The wing pouch, which ultimately forms the adult wing blade, has been a 
focus for studying signals impacting upon cell cycle, as wing morphogenesis involves 
patterned cell cycles that are tightly linked with developmental signalling (Johnson, Grenier, 
and Scott 1995; Johnston and Edgar 1998; Johnston et al. 1999; Johnston and Sanders 2003; 
Baker 2007).  
Early studies demonstrated that Crol, which is a zinc finger transcription factor, is activated 
in late larval imaginal discs by the steroid hormone ecdysone (D'Avino and Thummel 1998). 
Pupal lethal, hypomorphic crol mutants (crol4418) have defects in ecdysone-induced gene 
expression (D'Avino and Thummel 1998). Crol is both necessary and sufficient for cell cycle 
progression in the wing imaginal disc as crol mutant clones in the wing pouch fail to 
proliferate, whilst overexpression of crol results in ectopic proliferation (Mitchell et al. 2008). 
Crol is also required to downregulate the Wingless (Wg) pathway, which normally acts to 
drive cell cycle exit and differentiation (Figure 5). Therefore, by inhibiting the Wg pathway, 
crol drives wing disc cell division and potentially provides a link between the ecdysone 
pathway and the developmental signals that regulate cell cycle patterning (discussed in 
more detail section 3.3; Figure 6).  
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Fig. 6. Working model connecting Crol to steroid hormone signalling and cell cycle 
progression in the wing pouch. Crol is up-regulated in response to ecdysone signalling and 
increased Crol results in decreased wg mRNA expression. Reduced Wg signalling leads to 
increased dmyc expression to drive S-phase and mitosis via increased Stg.  

In addition, EcR function is required for wing imaginal disc cell cycles as inactivation of 
signalling through the EcR/USP/ecdysone complex results in reduced cell division (Cranna 
and Quinn 2009; Mitchell et al. 2008). In this work the pathway was inhibited using either of 
2 dominant negative EcR isoforms; 1) the EcRA dominant negative (dN) receptor (EcRAdN), 
which still binds ecdysone, USP and the EcRE, but is defective in the activation of target-
gene transcription due to a mutation in the ligand binding domain (LBD) (Cherbas et al. 
2003); or 2) the EcR-B2 dominant negative receptor, which dimerizes with USP and binds 
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the EcRE, but cannot bind ecdysone, thus preventing optimal activation of ecdysone 
responsive genes (Cherbas et al. 2003; Hu, Cherbas, and Cherbas 2003). Blocking the EcR 
signal via overexpression of either EcRAdN or EcRB2dN in third instar wing imaginal disc 
flip-out clones (Pignoni and Zipursky 1997) results in a significant decrease in S-phase 
progression and mitosis, as measured by BrdU incorporation (Figure 7) and staining for 
anti-phosphohistone-H3, respectively (Cranna and Quinn 2009; Mitchell et al. 2008). 
Consistent with ecdysone signalling through EcR/USP normally being required for dmyc 
transcription, reduced dmyc promoter activity was observed in EcRAdN clones generated in 
the dmyc-lacZ enhancer trap background (Cranna and Quinn 2009). Thus ecdysone 
signalling through EcR/USP might normally control cell cycle progression in the wing 
imaginal disc by upregulating dMyc to drive growth by increasing ribosome biogenesis and 
protein translation (Johnston et al. 1999) and S phase via increased activity of the G1 cyclins 
(Duman-Scheel, Johnston, and Du 2004). Together this suggests EcR signalling might 
modulate cell growth and division of the wing imaginal disc by modulating dmyc levels 
(Cranna and Quinn 2009).  
In support of the reduced cell division in loss-of-function EcR cells being mediated by Crol, 
EcRAdN clones generated in the heterozygous crol mutant background show a further, 
significant reduction in cell cycle progression, when compared with either EcRdN cells 
alone or crol heterozygotes (Figure 7). This suggests that the reduction in cell cycle resulting 
from loss of EcR is sensitive to the level of Crol and that the ecdysone pathway normally 
regulates cell cycle in a Crol-dependent manner. 

3.3 EcR is required for Wingless repression 
A key signalling molecule in the morphogenesis of the wing is the Wingless (Wg) protein, a 
member of the Wnt family of secreted morphogens. Wg is secreted in a band across the 
dorsal-ventral (D/V) boundary in the wing pouch (Figure 5; (Williams, Paddock, and 
Carroll 1993)) and is essential for cell cycle arrest in a region of the wing disc called the 
"Zone of Non-Proliferating Cells", or ZNC, at the end of larval development. The Wg 
pathway acts to downregulate key cell cycle genes (eg. dmyc, cycE, dE2F1 and stg) to link the 
Wg patterning signal to the cell cycle delay preceding the onset of differentiation at the wing 
margin (Johnston and Edgar 1998; Johnston et al. 1999; Johnston and Sanders 2003; Duman-
Scheel, Johnston, and Du 2004). Indeed, the cell cycle arrest in the ZNC mediated by Wg is 
required for these cells to differentiate and develop into the adult wing blade (Figure 5; 
(Johnston and Edgar 1998; Johnston et al. 1999)).  
In the wing pouch EcR signalling is required for repression of wg transcription (Mitchell et 
al. 2008; Cranna and Quinn 2009), which together with the data above showing EcR is 
required for cell division, suggests the ecdysone signal might normally control cell cycle via 
Wg (Figure 6). Consistent with EcR normally being required to repress wg transcription, 
expansion of the wg expression domain occurs in UAS-EcRAdN (Mitchell et al. 2008) and 
UAS-EcRBdN (Cranna and Quinn 2009) "flip-out" clones generated in a wg-lacZ enhancer 
trap background (Kassis et al. 1992). These results suggest repression of wg transcription in 
the wing pouch is dependent on the ecdysone pathway. Given that increased Wg protein 
causes reduction of cell cycle regulators such as dmyc and stg, leading to decreased cells in S-
phase and mitosis in the pouch (Figure 5; (Johnston and Edgar 1998; Johnston et al. 1999)), 
this finding is consistent with the reduced cell cycles observed in EcR loss-of-function 
clones.  



 
Steroids – Basic Science 

 

156 

 
Fig. 6. Working model connecting Crol to steroid hormone signalling and cell cycle 
progression in the wing pouch. Crol is up-regulated in response to ecdysone signalling and 
increased Crol results in decreased wg mRNA expression. Reduced Wg signalling leads to 
increased dmyc expression to drive S-phase and mitosis via increased Stg.  

In addition, EcR function is required for wing imaginal disc cell cycles as inactivation of 
signalling through the EcR/USP/ecdysone complex results in reduced cell division (Cranna 
and Quinn 2009; Mitchell et al. 2008). In this work the pathway was inhibited using either of 
2 dominant negative EcR isoforms; 1) the EcRA dominant negative (dN) receptor (EcRAdN), 
which still binds ecdysone, USP and the EcRE, but is defective in the activation of target-
gene transcription due to a mutation in the ligand binding domain (LBD) (Cherbas et al. 
2003); or 2) the EcR-B2 dominant negative receptor, which dimerizes with USP and binds 

Steroid Hormones in Drosophila: 
How Ecdysone Coordinates Developmental Signalling with Cell Growth and Division 

 

157 

the EcRE, but cannot bind ecdysone, thus preventing optimal activation of ecdysone 
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signal via overexpression of either EcRAdN or EcRB2dN in third instar wing imaginal disc 
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progression and mitosis, as measured by BrdU incorporation (Figure 7) and staining for 
anti-phosphohistone-H3, respectively (Cranna and Quinn 2009; Mitchell et al. 2008). 
Consistent with ecdysone signalling through EcR/USP normally being required for dmyc 
transcription, reduced dmyc promoter activity was observed in EcRAdN clones generated in 
the dmyc-lacZ enhancer trap background (Cranna and Quinn 2009). Thus ecdysone 
signalling through EcR/USP might normally control cell cycle progression in the wing 
imaginal disc by upregulating dMyc to drive growth by increasing ribosome biogenesis and 
protein translation (Johnston et al. 1999) and S phase via increased activity of the G1 cyclins 
(Duman-Scheel, Johnston, and Du 2004). Together this suggests EcR signalling might 
modulate cell growth and division of the wing imaginal disc by modulating dmyc levels 
(Cranna and Quinn 2009).  
In support of the reduced cell division in loss-of-function EcR cells being mediated by Crol, 
EcRAdN clones generated in the heterozygous crol mutant background show a further, 
significant reduction in cell cycle progression, when compared with either EcRdN cells 
alone or crol heterozygotes (Figure 7). This suggests that the reduction in cell cycle resulting 
from loss of EcR is sensitive to the level of Crol and that the ecdysone pathway normally 
regulates cell cycle in a Crol-dependent manner. 

3.3 EcR is required for Wingless repression 
A key signalling molecule in the morphogenesis of the wing is the Wingless (Wg) protein, a 
member of the Wnt family of secreted morphogens. Wg is secreted in a band across the 
dorsal-ventral (D/V) boundary in the wing pouch (Figure 5; (Williams, Paddock, and 
Carroll 1993)) and is essential for cell cycle arrest in a region of the wing disc called the 
"Zone of Non-Proliferating Cells", or ZNC, at the end of larval development. The Wg 
pathway acts to downregulate key cell cycle genes (eg. dmyc, cycE, dE2F1 and stg) to link the 
Wg patterning signal to the cell cycle delay preceding the onset of differentiation at the wing 
margin (Johnston and Edgar 1998; Johnston et al. 1999; Johnston and Sanders 2003; Duman-
Scheel, Johnston, and Du 2004). Indeed, the cell cycle arrest in the ZNC mediated by Wg is 
required for these cells to differentiate and develop into the adult wing blade (Figure 5; 
(Johnston and Edgar 1998; Johnston et al. 1999)).  
In the wing pouch EcR signalling is required for repression of wg transcription (Mitchell et 
al. 2008; Cranna and Quinn 2009), which together with the data above showing EcR is 
required for cell division, suggests the ecdysone signal might normally control cell cycle via 
Wg (Figure 6). Consistent with EcR normally being required to repress wg transcription, 
expansion of the wg expression domain occurs in UAS-EcRAdN (Mitchell et al. 2008) and 
UAS-EcRBdN (Cranna and Quinn 2009) "flip-out" clones generated in a wg-lacZ enhancer 
trap background (Kassis et al. 1992). These results suggest repression of wg transcription in 
the wing pouch is dependent on the ecdysone pathway. Given that increased Wg protein 
causes reduction of cell cycle regulators such as dmyc and stg, leading to decreased cells in S-
phase and mitosis in the pouch (Figure 5; (Johnston and Edgar 1998; Johnston et al. 1999)), 
this finding is consistent with the reduced cell cycles observed in EcR loss-of-function 
clones.  
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Fig. 7. S phase progression in UAS-EcRAdN clones is sensitive to the dose of crol. (A,B) 
Representative images of the wing pouch with control clones in heterozygous crol mutant 
(crolk05205) background; (C,D) UAS-EcRdN-A clones and (E,F) UAS-EcRdN-A clones in 
heterozygous crol mutant background, (A, C, E) S-phase is shown using BrdU (red), (B, D, 
F) GFP (green) marks clonal tissue. Scale bars indicate 50μm. (G) Quantification of S-phases 
for each of the genotypes; heterozygous crol mutant, UAS-EcRAdN alone and EcRAdN in 
the heterozygous crol mutant background. A significant reduction in the number of S-phase 
cells was found for the UAS-EcRdN-A alone compared to the control (p=0.0055) and for the 
UAS-EcRdN-A in the crol mutant background compared to UAS-EcRdN-A alone (p=0.0011). 
(H) Mean number of BrdU (S-phase) cells + SEM in control (clones in tissue heterozygous 
for the crol mutant); UAS-EcRdN-A alone and UAS-EcRdN-A in the crol mutant 
background. n=sample size. 

Together this data suggests that EcR activity and the ecdysone-responsive transcription 
factor Crol are required for cell cycle progression in the wing imaginal disc (Mitchell et al. 
2008). First Crol affects the Wg pathway by downregulating wg transcription and driving 
cells through the Wg-mediated cell cycle arrest (Mitchell et al. 2008). In support of ecdysone 
acting upstream of Crol to regulate the Wg pathway, blocking EcR activity in the wing 
results in increased wg transcription and reduced cell cycle progression, which is further 
impaired by halving the dose of crol (Figure 7). As Wg is one of the key developmental 
signals required for inhibition of cell cycle progression in the wing pouch (Duman-Scheel, 
Johnston, and Du 2004; Johnston and Edgar 1998; Johnston et al. 1999; Johnston and Sanders 
2003; Milan 1998), this would be consistent with EcR regulating cell cycle by acting to 
increase levels of crol transcription, which will in turn decrease levels of Wg signalling. Thus 
we would predict that ecdysone/EcR/USP would normally act to upregulate Crol and drive 
cell cycle progression in the wing pouch via inhibition of Wg (Figure 6). 
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Cross-talk between the Wg pathway and other signalling pathways is required to coordinate 
proliferation and patterning of the wing imaginal disc. Dpp is expressed in a band of cells in 
the anterior compartment along the anterior-posterior boundary (Lecuit et al. 1996) and is 
required for cell cycle progression and tissue growth (Martin-Castellanos and Edgar 2002). 
Proliferation is dependent on careful regulation of the relative levels of the Dpp and Wg 
signalling pathways (Edgar and Lehner 1996). The Hedgehog (Hh) (Strigini and Cohen 
2000) and Notch (N) (de Celis, Garcia-Bellido, and Bray 1996) pathways are key upstream 
regulators of Wg in the wing disc. Notch activity also plays a role in cell cycle arrest during 
wing development (Herranz et al. 2008; Johnston and Edgar 1998). Notch is activated in cells 
along the dorso-ventral (D/V) boundary (ZNC) of the wing disc, where it is required for Wg 
expression (de Celis, Garcia-Bellido, and Bray 1996). The activation of Wg target genes 
achaete (ac) and scute (sc) specifically within the anterior compartment of the cells flanking 
the D/V boundary results in downregulation of the mitotic inducer, Cdc25c/Stg, to arrest 
these cells in G2 (Johnston and Edgar 1998). The expression of Notch within the D/V 
boundary prevents the G2 arrest, allowing Wg to mediate G1 arrest within the anterior cells 
comprising the D/V boundary and all cells comprising the posterior compartment ZNC 
(Figure 5); (Johnston and Edgar 1998; Johnston et al. 1999). More recent reports have 
demonstrated that Notch also acts downstream of Wg to control G1 to S phase progression 
in the ZNC (Herranz et al. 2008). Together these studies suggest that a Wg and N "double-
repression mechanism" controls cell cycle exit in the ZNC through controlling levels of dmyc 
expression, which drives growth and regulates the S phase transcription factor, E2F1 
(Johnston and Edgar 1998; Johnston et al. 1999; Herranz et al. 2008). Thus, interplay between 
these signalling pathways is essential for cell cycle patterning and differentiation of the 
wing pouch, which is required to form the adult wing. 
The Hh pathway is critical for regulating wg transcription during wing development 
(Murone, Rosenthal, and de Sauvage 1999), but as ectopic levels of the Hh pathway 
activator, Ci, were not detected in crol mutant clones, Crol is unlikely to affect wg 
transcription indirectly via the Hh pathway (Mitchell et al. 2008). Notch is required for Wg 
expression (de Celis, Garcia-Bellido, and Bray 1996) and plays a critical role in cell cycle 
arrest during wing development (Herranz et al. 2008; Johnston and Edgar 1998). The Notch 
target, En(spl)m7 was not however decreased in crol over-expressing cells, suggesting Notch 
signalling is not downregulated by Crol (Mitchell et al. 2008). The effects of Crol on cell 
cycle in the wing via downregulation of wg transcription are therefore unlikely to be due to 
indirect effects on either the Notch or Hh pathways. Future studies are therefore aimed to 
determine whether Crol mediates ecdysone signalling via repression of Wg by directly 
binding the wg promoter to down-regulate wg transcription.  

3.4 Ecdysone couples growth and division in larval histoblasts 
Another Drosophila tissue where ecdysone has been connected with control of growth 
and/or cell division is the developing histoblast, which gives rise to the abdominal 
epithelium (Ninov, Chiarelli, and Martin-Blanco 2007). In the canonical cell division cycles 
of the eye and wing imaginal discs DNA synthesis is coupled with cell division; cells grow 
in G1, initiate DNA replication and enter S phase, which is separated from mitosis by the G2 
phase. In these cells G1 progression is stimulated by growth factors, which trigger cell 
growth and activate the G1-S cell cycle machinery (see Introduction 1.4), including the 
cyclin/Cdk complexes and E2F activity. The progression from G2 to mitosis is coupled to S 
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Cross-talk between the Wg pathway and other signalling pathways is required to coordinate 
proliferation and patterning of the wing imaginal disc. Dpp is expressed in a band of cells in 
the anterior compartment along the anterior-posterior boundary (Lecuit et al. 1996) and is 
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activator, Ci, were not detected in crol mutant clones, Crol is unlikely to affect wg 
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3.4 Ecdysone couples growth and division in larval histoblasts 
Another Drosophila tissue where ecdysone has been connected with control of growth 
and/or cell division is the developing histoblast, which gives rise to the abdominal 
epithelium (Ninov, Chiarelli, and Martin-Blanco 2007). In the canonical cell division cycles 
of the eye and wing imaginal discs DNA synthesis is coupled with cell division; cells grow 
in G1, initiate DNA replication and enter S phase, which is separated from mitosis by the G2 
phase. In these cells G1 progression is stimulated by growth factors, which trigger cell 
growth and activate the G1-S cell cycle machinery (see Introduction 1.4), including the 
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phase and is controlled by mitotic cyclin/Cdk complexes, which are activated by removal of 
the inhibitory phosphates from Cdk1 by the Cdc25 phosphatases (eg. String in Drosophila) 
(Edgar and O'Farrell 1990). For cells to maintain their size, cell cycle progression must be 
accompanied by cell growth. However, during morphogenesis of the Drosophila abdominal 
epidermis from histoblasts, growth and division are uncoupled. The progenitor abdominal 
histoblasts are quiescent during the larval stages, but undergo rapid proliferation after 
pupation and eventually form the adult abdominal epidermis. Neither cell size nor division 
rate is constant for the developmentally regulated divisions that histoblast cells undergo 
during the larval and pupal stages. The onset of histoblast proliferation occurs 1–2 h after 
pupal formation (Ninov, Chiarelli, and Martin-Blanco 2007), which follows the ecdysone 
maximum at 0 h APF (Thummel 2001) and recent work has revealed that ecdysone is 
important for coupling growth and proliferation in abdominal histoblasts (Ninov, Manjon, 
and Martin-Blanco 2009).  
In contrast to the wing and eye epithelium, during larval stages histoblasts grow in a G2 
arrested state prior to entering a proliferative stage during pupal metamorphosis (Hayashi 
1996; Lawrence, Casal, and Struhl 1999, 1999). During larval stages the arrested histoblasts 
accumulate cellular mass in a process dependent on the insulin receptor/PI3K pathway and 
the transition to a proliferative state is initiated by ecdysone-dependent string/Cdc25 
phosphatase transcription (Ninov, Manjon, and Martin-Blanco 2009). The latter can occur 
because the larval histoblasts have preaccumulated stores of the G1 cyclin, Cyclin E, which 
is sufficient to trigger S phase after mitosis. These cells show a progressive reduction of cell 
size as a consequence of the lack of a growth phase. After depletion of the stored Cyclin E, 
histoblasts proliferate more slowly and G1 is restored and cell proliferation again depends 
on growth factor signalling, requiring epidermal growth factor receptor (EGFR) signalling 
during the G2/M transition and the insulin receptor/PI3K-pathway for growth.  
Initiation of histoblast division by ecdysone/EcR occurs via transcriptional control of the 
cell cycle regulator String (Ninov, Manjon, and Martin-Blanco 2009). Previous work has 
shown that string overexpression triggers cell-cycle progression in embryonic and imaginal 
cells previously arrested in G2 (Edgar and O'Farrell 1990; Edgar, Lehman, and O'Farrell 
1994; Milan, Campuzano, and Garcia-Bellido 1996), but not in G1-arrested cells (Kylsten and 
Saint 1997). Accordingly, the overexpression of String, but not Cyclin A, Cyclin B, or Cdk1, 
in histoblasts triggered their premature hyperproliferation in larval stages (Ninov, Manjon, 
and Martin-Blanco 2009). Although ecdysone is necessary to trigger histoblast proliferation 
(Ninov, Chiarelli, and Martin-Blanco 2007), upregulation of string transcription in larval 
stages bypasses the requirement for ecdysone pathway activity. As the block to histoblast 
proliferation following EcR knockdown with RNAi (Ninov, Chiarelli, and Martin-Blanco 
2007) can be overcome by overexpression of string, which can still promote ectopic histoblast 
proliferation in the EcR loss of function cells (Ninov, Manjon, and Martin-Blanco 2009). As 
an indirect measure of string transcription a string-enhancer trap element was used, which 
revealed that EcR knockdown reduces string promoter activity. The authors also 
demonstrated reduced string mRNA levels by in situ hybridization. Further experiments 
are, however, required to determine whether these changes in string transcription are due to 
direct effects of EcR or mediated by another transcriptional regulator. Together this work 
revealed that the ecdysone pulse at the larval–pupal transition is required for the string 
transcription triggering histoblast proliferation at the onset of abdomen metamorphosis. 
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4. Summary and conclusions 
At the level of the whole animal, ecdysone controls larval growth and final body size 
through interactions with the insulin pathway (King-Jones and Thummel 2005; Shingleton 
2005; Mirth and Riddiford 2007; Nijhout 2008). The insulin-signalling pathway acts in the 
prothoracic gland (PG) to regulate the release of ecdysone, therefore influencing the rate and 
duration of larval growth. For instance, PG overgrowth causes accelerated metamorphosis, 
which results in reduced adult size due to the rapid progression through the larval growth 
stage. Conversely, reducing growth of the PG results in longer larval growth periods and 
larger adults due to slower ecdysone release and delayed onset of pupariation. Correct 
timing of the critical peak in ecdysone is therefore essential for controlling larval growth and 
adult body size. 
In the imaginal tissues and larval histoblasts ecdysone most likely regulates cell cycle genes 
indirectly by modulating upstream developmental signalling pathways. The effect of 
ecdysone on promoting SMW division in the eye may, in part, be mediated by Hedgehog 
(Hh) signalling (Brennan, Ashburner, and Moses 1998), and might coordinate this division 
with the G1 arrest in the furrow via the Dpp signal (Escudero and Freeman 2007; Firth and 
Baker 2005). In the wing imaginal disc, cell cycle progression requires EcR activity, which is 
associated with changes to the levels of wingless transcription. These changes in Wg may be 
mediated by the ecdysone-responsive transcription factor Crol (Mitchell et al. 2008) since 
EcR regulates cell cycle progression in a Crol dependent manner (Figure 7). Thus, by 
regulating the Wg pathway, which is known to control cell cycle in the wing (Johnston and 
Edgar 1998; Johnston and Sanders 2003; Herranz et al. 2008), the Crol transcription factor 
may provide a link between the ecdysone pulse and developmental cell cycle regulation in 
the wing (Figure 6; (Mitchell et al. 2008)). At the larval–pupal transition ecdysone activates 
string transcription in the histoblasts, triggering exit from G2 phase and histoblast 
proliferation. It will be of interest to determine whether these changes in string transcription 
are due to direct effects of EcR or, like the cell cycle changes occurring in imaginal tissues, 
are mediated by changes to developmental signalling. 
Together the studies discussed here highlight the diverse mechanisms by which the 
ecdysone signal can impact on cell division in a range of tissues at different developmental 
time points. Further work is required to elucidate the molecular mechanisms underlying the 
ability of ecdysone to modify levels of the complex array of signals required for 
development.  
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phase and is controlled by mitotic cyclin/Cdk complexes, which are activated by removal of 
the inhibitory phosphates from Cdk1 by the Cdc25 phosphatases (eg. String in Drosophila) 
(Edgar and O'Farrell 1990). For cells to maintain their size, cell cycle progression must be 
accompanied by cell growth. However, during morphogenesis of the Drosophila abdominal 
epidermis from histoblasts, growth and division are uncoupled. The progenitor abdominal 
histoblasts are quiescent during the larval stages, but undergo rapid proliferation after 
pupation and eventually form the adult abdominal epidermis. Neither cell size nor division 
rate is constant for the developmentally regulated divisions that histoblast cells undergo 
during the larval and pupal stages. The onset of histoblast proliferation occurs 1–2 h after 
pupal formation (Ninov, Chiarelli, and Martin-Blanco 2007), which follows the ecdysone 
maximum at 0 h APF (Thummel 2001) and recent work has revealed that ecdysone is 
important for coupling growth and proliferation in abdominal histoblasts (Ninov, Manjon, 
and Martin-Blanco 2009).  
In contrast to the wing and eye epithelium, during larval stages histoblasts grow in a G2 
arrested state prior to entering a proliferative stage during pupal metamorphosis (Hayashi 
1996; Lawrence, Casal, and Struhl 1999, 1999). During larval stages the arrested histoblasts 
accumulate cellular mass in a process dependent on the insulin receptor/PI3K pathway and 
the transition to a proliferative state is initiated by ecdysone-dependent string/Cdc25 
phosphatase transcription (Ninov, Manjon, and Martin-Blanco 2009). The latter can occur 
because the larval histoblasts have preaccumulated stores of the G1 cyclin, Cyclin E, which 
is sufficient to trigger S phase after mitosis. These cells show a progressive reduction of cell 
size as a consequence of the lack of a growth phase. After depletion of the stored Cyclin E, 
histoblasts proliferate more slowly and G1 is restored and cell proliferation again depends 
on growth factor signalling, requiring epidermal growth factor receptor (EGFR) signalling 
during the G2/M transition and the insulin receptor/PI3K-pathway for growth.  
Initiation of histoblast division by ecdysone/EcR occurs via transcriptional control of the 
cell cycle regulator String (Ninov, Manjon, and Martin-Blanco 2009). Previous work has 
shown that string overexpression triggers cell-cycle progression in embryonic and imaginal 
cells previously arrested in G2 (Edgar and O'Farrell 1990; Edgar, Lehman, and O'Farrell 
1994; Milan, Campuzano, and Garcia-Bellido 1996), but not in G1-arrested cells (Kylsten and 
Saint 1997). Accordingly, the overexpression of String, but not Cyclin A, Cyclin B, or Cdk1, 
in histoblasts triggered their premature hyperproliferation in larval stages (Ninov, Manjon, 
and Martin-Blanco 2009). Although ecdysone is necessary to trigger histoblast proliferation 
(Ninov, Chiarelli, and Martin-Blanco 2007), upregulation of string transcription in larval 
stages bypasses the requirement for ecdysone pathway activity. As the block to histoblast 
proliferation following EcR knockdown with RNAi (Ninov, Chiarelli, and Martin-Blanco 
2007) can be overcome by overexpression of string, which can still promote ectopic histoblast 
proliferation in the EcR loss of function cells (Ninov, Manjon, and Martin-Blanco 2009). As 
an indirect measure of string transcription a string-enhancer trap element was used, which 
revealed that EcR knockdown reduces string promoter activity. The authors also 
demonstrated reduced string mRNA levels by in situ hybridization. Further experiments 
are, however, required to determine whether these changes in string transcription are due to 
direct effects of EcR or mediated by another transcriptional regulator. Together this work 
revealed that the ecdysone pulse at the larval–pupal transition is required for the string 
transcription triggering histoblast proliferation at the onset of abdomen metamorphosis. 
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4. Summary and conclusions 
At the level of the whole animal, ecdysone controls larval growth and final body size 
through interactions with the insulin pathway (King-Jones and Thummel 2005; Shingleton 
2005; Mirth and Riddiford 2007; Nijhout 2008). The insulin-signalling pathway acts in the 
prothoracic gland (PG) to regulate the release of ecdysone, therefore influencing the rate and 
duration of larval growth. For instance, PG overgrowth causes accelerated metamorphosis, 
which results in reduced adult size due to the rapid progression through the larval growth 
stage. Conversely, reducing growth of the PG results in longer larval growth periods and 
larger adults due to slower ecdysone release and delayed onset of pupariation. Correct 
timing of the critical peak in ecdysone is therefore essential for controlling larval growth and 
adult body size. 
In the imaginal tissues and larval histoblasts ecdysone most likely regulates cell cycle genes 
indirectly by modulating upstream developmental signalling pathways. The effect of 
ecdysone on promoting SMW division in the eye may, in part, be mediated by Hedgehog 
(Hh) signalling (Brennan, Ashburner, and Moses 1998), and might coordinate this division 
with the G1 arrest in the furrow via the Dpp signal (Escudero and Freeman 2007; Firth and 
Baker 2005). In the wing imaginal disc, cell cycle progression requires EcR activity, which is 
associated with changes to the levels of wingless transcription. These changes in Wg may be 
mediated by the ecdysone-responsive transcription factor Crol (Mitchell et al. 2008) since 
EcR regulates cell cycle progression in a Crol dependent manner (Figure 7). Thus, by 
regulating the Wg pathway, which is known to control cell cycle in the wing (Johnston and 
Edgar 1998; Johnston and Sanders 2003; Herranz et al. 2008), the Crol transcription factor 
may provide a link between the ecdysone pulse and developmental cell cycle regulation in 
the wing (Figure 6; (Mitchell et al. 2008)). At the larval–pupal transition ecdysone activates 
string transcription in the histoblasts, triggering exit from G2 phase and histoblast 
proliferation. It will be of interest to determine whether these changes in string transcription 
are due to direct effects of EcR or, like the cell cycle changes occurring in imaginal tissues, 
are mediated by changes to developmental signalling. 
Together the studies discussed here highlight the diverse mechanisms by which the 
ecdysone signal can impact on cell division in a range of tissues at different developmental 
time points. Further work is required to elucidate the molecular mechanisms underlying the 
ability of ecdysone to modify levels of the complex array of signals required for 
development.  
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1. Introduction  
Estrogens play a key role in multiple physiological functions in women. They have 
important actions on bone and lipid metabolism, cardiovascular function, and diffuse effects 
on other target organs. Estrogens have important roles in cognitive function and influence 
psychological well-being in women, in development and maintenance of the reproductive 
system in the female (Gustafsson, 2003). The most potent estrogens are 17β-estradiol 1, 
estrone 2 and estriol 3 may have tissue-specific roles (Gruber & Huber, 1999).  
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In female body estrogens are formed in ovaries, and as result the menopause is associated 
with an increased risk of the development of cardiovascular diseases, osteoporosis and 
many other diseases. In postmenopausal women, many of these functions (positive effect on 
prevention of osteoporosis and improved serum profile enhanced by the use of estrogen 
replacement therapy) are achievement. The positive action of estrogens on prophylactic and 
treatment of osteoporosis has been proved undoubtedly, however other clinical data are 
considered as contradictory (Davison & Davis, 2003). Moreover, during the use of estrogens 
for HRT the number of strokes is increasing (Bushnell, 2005). It was absolutely unexpected 
because the adverse effect has been observed in experiments on animals. It was also found 
that during long-term using of estrogens the risk of some oncological diseases is increasing 
(Beral, 2003; Beral et al., 2005).  Other side effects, which we discuss later, also indicate the 
necessity for the search of new safe estrogen analogues with the improved biological 
properties.   
Firstly we consider the results in these directions, and then we discuss the main advantages 
of the creation of agents with directed biological action, which are perspective for HRT, for 
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the treatment of oncological estrogen-sensitive diseases, cardio-vascular system, 
osteoporosis, neuroendocrinal diseases. The division of agents on such groups has relative 
character, because the activity of steroid estrogens has multifunctional character and one 
compound may be effectively used in various fields. This is a main reason why modified 
steroid estrogens have the advantage in comparison with huge number of heterocyclic 
compounds, having more selective action.  
Obviously that most perspective search of such compounds is done on the basis of 
knowledge about estrogen action mechanism, particularity of its structure and metabolism.  
 Several authors consider that main fast non genomic effects of estrogens are mediated by 
their membrane receptors (Levin, 2002; Sak & Evaraus, 2004). Experimental data about the 
identity of nuclear and membrane ERα in MCF7 cell are presented in the publication 
(Pedram et al., 2009). Obviously, ligand specificity may be significantly different. 
Mechanisms of membrane receptors action are still unclear, very often it is not proved that 
one or another effect is mediated by namely this group of receptors (Warner & Gustafsson, 
2006). The absence of data about ligand specificity to membrane receptors does not allow to 
plan the synthesis of modified steroids with selective action, especially taking into account 
that their activity is realizing on many ways. During the consideration of osteoprotective 
action of estrogens and its influence on processes of cardio-vascular system we restrict 
ourselves to state the facts, because the decision concerning the synthesis of potential agents 
is usually reached on the analogy with known compounds.  

2. Genomic actions of estrogens 
The genomic effects of steroid estrogens are mediated through two subtypes of nuclear - 
and β-receptors (ER and ERβ). In mid 1980s. studies on the cloning of DNA encoding the 
steroid estrogen receptors were initiated (Walter et al., 1986; Green, G.L. et al., 1986; Koike 
et al., 1987). These studies led to the determination of their primary structure. Later they 
were assigned to ERα. In 1996, a number researchers discovered new members of the 
superfamily of nuclear estrogen receptors in rat prostate and ovaries (Kuipper et al, 1996) in 
human and mouse (Mosselman et al., 1996; Tremblay et al., 1997) and named it ERβ. Very 
soon the complete amino acid sequence of human ERβ (hERβ) was determinated (Ogawa et 
al., 1998). It was established that ERβ is significantly shorter than ERα. The comparison of 
amino acid sequences of these receptors and the investigation of affinity of various ligands 
to mutant forms of receptors allowed to establish that these receptors have 6 domains.   
The N-terminal domains (A/B) have variable length and amino acid sequences. Usually, 
they exhibit a hormone-independent transactivation function (AF-1) that interacts with the 
elements of the transcription machinery and activate genes in target organs (Tzukerman et 
al., 1994). Domain C is responsible for the DNA recognition and receptor dimerization. This 
is a DNA-binding region, consisting approximately 50 amino acids. Domain E (HBD) 
contains approximately 250 amino acids and ensures the binding of hormones. This domain 
is the «hinge» - after the binding of ligand with receptors the following conformational 
rearrangement takes place with the participation of domain D. Clone 29 protein is highly 
homologous to rat ER, particularly in DNA-binding domain (95%) and ligand-binding 
domain (55%) (Kuipper et al., 1996). High degree of conservation of DNA-binding domain 
(96%) and ligand-binding domain (58%) was registered by other authors (Mosselman et al., 
1996).  
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Ligand-independent transactivational function AF1 is in zone А/В of both sub-types of 
receptors, zone E/F of -receptor of estrogens has additional ligand-independent activation 
function (Tora et al., 1989). ER has ligand-dependent trans-activation function AF-2.  
Without ligand estrogen receptors are in complexes with heat shock proteins (Hsp90, 
Hsp70, Hsp56, Hsp60, Hsp48, Hsp23), this binding takes place in domain С. Probably, being 
in complexes with heat shock proteins estrogens are protected against the action of 
proteases. After binding its ligand conformational rearrangement of LBD of nuclear receptor 
and dissociation of complexes ER – heat shock proteins takes place. Except of the potential 
possibility to activate transcription, this rearrangement causes the change of topography of 
receptor regions, sensitive to proteolysis (Ramsey & Klinge, 2001). Phosphorylation of 
estrogen receptors is observed after their binding with hormone (Kato et al., 1995) that 
enhances the binding.   
Transformed receptor forms dimers and in this form binds with DNA and may activate the 
transcription. Effective dimerization of ER requires a weak constitutive activity of 
sequences in domain C (Kumar & Chambon, 1988). It is necessary to note, that AF1 and AF2 
exhibit relatively weak activity, whereas the maximum of transcription induction is 
observed when they act together (Tora et al., 1989; Pham et al., 1992). From other side, in 
some cases the activation of AF-1 is enough to activate the transcription. Thus, 4-
hydroxytamoxifen 4 is unable to induce AF-2 activity, but it is a strong agonist in cellular 
and promoter context where AF-1 is effective transcriptional activator (Berry et al., 1990). 
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Transcriptional process is modulated by receptors’ ligands and various co-regulators 
(Cheskis et al., 1997; An et al., 1999; 2001; Tcherepanova et al., 2000; Wong et al., 2001; Liu, 
J. et al., 2003; Bai & Gugière, 2003; Xu & Li, 2003). Conformation of ER changes upon 
interaction with coactivator proteins (Tamrazi et al., 2005), as result the activity of one 
ligand may change in depending on cell nature. Thus, tamoxifen 5 and raloxifene 6 are 
agonists of estradiol in cardiovascular system, whereas they show antagonistic properties in 
breast and endometrium (Jordan, 2007). Many others SERMs have similar properties.  
Nowadays more 10 estrogen receptor-β isoforms are known, which have been identified 
starting from 2000 (Lu et al., 2000).  
To study the roles of each receptor in vivo, a series of the mice were generated lacking either 
a functional ER and ERβ or both (ERKO, βERKO, βERKO) (Emmel & Korach, 2001).  
ERβ may modulate the functions of ER, if these receptors are in the same cells (Matthews 
et al., 2006). It became crucial during the diagnostics and the treatment of oncological 
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diseases (Leygue et al., 1998; Pujol et al., 1998; Hall & McDonnel, 1999; Lazennec et al., 
2001; Monroe et al., 2005). Compounds having the preferential binding to ERβ have great 
perspectives to be used for the treatment of autoimmune diseases, prostate disease, 
depression and ovulation disorders (Gustafsson, 2005). The noted above is the evidence for 
actuality of the search for modulators with preferable affinity to ER or ERβ.  
Obviously, determination of complexes structure of estrogen receptors with various ligands 
with known biological properties was supposed to contribute to the development of models 
for mechanisms of estrogens action and understanding of the connection between structure 
and hormonal activity of ligands and thus to solve the abovementioned problem. 
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X-rays data of ligand-binding domain of ER with estradiol 1 and raloxifene 6 (Brzozowski 
et al., 1997), 4-hydroxytamoxifen 4 and diethylstilbestrole 7 (Shiau et al., 1998), and ligand-
binding domain of ER with raloxifene 6 and genistein 8 (Pike et al., 1999) have been 
obtained. Estradiol 1 and diethylstilbestrol 7 are full agonists to ER and ER, 4-
hydroxytamoxifen 4, raloxifene 6, and genistein 8 are agonists/antagonists. Interestingly, 
synthetic compounds of type 9 bind with ER as effectively as genistein 8 (Miller et al., 
2003). Removal of ligands 1, 4, 6, 7, 8 from its complexes in crystal with LBD of ER and 
ERβ, docking of other potential ligands and the following optimization of its position in 
complex and binding energy by molecular modeling methods allow to evaluate the 
properties of new compounds independently from their belonging to steroid series. Some 
vagueness of evaluation of affinity to receptors is connected with the fact that the X-Ray 
data for complexes with different ligands are obtained only with LBD, but not with full-
length receptors.  
The last of utmost importance, because during the realization of transcriptional action the 
formation of complexes between the DNA binding domain of estrogen receptors and 
estrogen response element (ERE) of duplex DNA is necessary, which requires the exact 
disposition of these elements of structure. Earlier structure of the DNA-binding domain of 
the ER has been investigated (Schwabe et al., 1990), however three-dimensional model of 
the DNA binding domain of ER was proposed significantly later (Deegan et al., 2010). On 
account of the above mentioned the differences in RBA values of model compounds to full-
length receptor and to its LBD could be significant. Thus, the affinity of (5S,11S)-5,11-
diethyl-5,6,11,12-tetrahydrochrisene-2,8-diol 9 to full-length ERβ is in 10 times higher, than 
to its LBD (Meyers et al., 1999).  
The results of quantum chemical calculations of ligand-receptor complexes allowed to 
synthesize a huge number of compounds having more then in 100-times higher effective 
binding to -ER in comparison to -ER (Manas et al., 2004). 
There are other ways for evaluation of properties of new compounds. For example some of 
them are traditional QSAR methods (Gantchev et al., 1994; Tong et. al., 1997; Wiese et. al, 
1997; Azzaoui et al., 1998; Gao et al., 1999; Wurtz et al., 1998; Sippl, 2002; Klopman & 
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Chakravarti, 2003; Wolohan & Reichert, 2004; Pasha et al., 2005). In spite of the fact that 
such approaches have moderate predicted force, they do not provide the deeper 
understanding of estrogen action mechanism. From our point of view, using the multimodal 
approach, based on the application of methods of comparative molecular field analysis and 
binding energy calculations is most perspective (Wolohan & Reichert, 2004).   
The knowledge about conformational mobility of different groups of potential ligands of 
ERs has great importance (Kym et al., 1993; Grese et al., 1998; Selivanov & Shavva, 2002). 
These data have interest in connection with data about modeling of conformations of ligand-
receptor complexes (Kraichely et al., 2000; Egner et al., 2001) and conformational dynamic 
of ERs (Celic et al., 2007).  
Let’s consider the examples of successful searching of modified estrogens which have 
selective binding affinity to hERα or hERβ (Hillisch et al, 2004).  
Structure analysis of LBD of these receptors shows that the nearest surrounding of bound 
estradiol in these receptors differs from each other on two amino acid residues: Leu384 and 
Met421 in ERα are substituted by Met336 and Ile373 in ERβ. Volumes of side chains of these 
amino acid residues are 85.9 Ǻ (Met), 82.6 Ǻ (Leu) and 82.3 Ǻ (Ile). It was predicted that the 
increased flexibility of the linear Met side chain would allow larger substituent to be 
accommodated. Met336 ERβ is situated closely to position 8β, and the introduction of small 
lipophilic substituent into this position must lead to the increasing of RBA of modified 
analogue to ERβ. Мet421 of ERα is at region of D-ring, and analogue with substituent at 
positions 16α and/or 17α will have the increased affinity to ERα.  
Experiments have proved the stated predictions. As reference compounds steroids 10 and 12 
have been used. First one has selectivity hERα/hERβ is 20, and for second one this value 
hERβ/hERα is 22.5. Modified analogues 11 and 13 have the mentioned ratios as 70 and 180 
correspondingly.  
Unfortunately, there is no correlation between RBA values for hERα and hERβ with values 
obtained in the experiments with the corresponding receptors of animals.  
In some cases the ratio between these values are opposite (Hillisch et al., 2004). 
The investigation of RBA for 71 compounds (mainly, metabolites of estrogens) to hERα and 
hERβ have shown that the differences in experimental values are not more then one order 
(Zhu et al., 2006).   
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Chakravarti, 2003; Wolohan & Reichert, 2004; Pasha et al., 2005). In spite of the fact that 
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Unfortunately, there is no correlation between RBA values for hERα and hERβ with values 
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The introduction of relatively small linear substituents (4-5 carbon atoms) at position 11 of 
steroid skeleton may lead to the appearance of antagonistic activity to ER at agonistic 
properties to ER (steroids 14 and 15), whereas analogue 16 is agonist to both receptors 
(Loosen, 1999).     
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Steroids with small substituents at position 11 without aromatic ring possess significantly 
higher affinity and transcriptional activity of ER (Loosen еt al., 2000), for example, 
analogues 17-19 have been found.  
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Finally, there are compounds, which fully block the binding of estradiol 1 with known ERs, 
for example steroids 20-23 (Jordan, 2003). A number of compounds with large substituents 
at С-7 () and С-11 () have been synthesized, such analogues are of great interest for the 
treatment of estrogen-dependent oncological diseases and hormones imbalance, caused by 
the increased formation of estrogens in the body.        
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3. Carcinogenicity causes of ER ligands 
The establishment of at least major reasons of carcinogenicity of estrogens, their 
agonists/antagonists has significant importance, since this understandings lies in the 
fundament of the creation of medications with the improved properties.  
At the present time two main types of carcinogenesis are known - promotive and genotoxic 
(mutagenic), action of them may add up. Existence of the fist one is confirmed by well-
known facts of tumor formation under the estrogen action (Russo et al., 2002) and 
promotion of tumor induction under the action of various agents, for example, nitroso-
butylurea (Sumi et al., 1984). The same results have been obtained in other models. For 
example, 17α-ethynylestradiol 24 enhances the tumor formation in rat males under the 
action of diethylnitrosamine (Yoshida & Fukunishi, 1981). Estradiol increased dysplasia of 
breast on androgenized rats, induced by 7,12-dimethylbenz[a]anthracene.  
The explanation of this negative influence of estrogens is quite clear – when in active state 
the cells are vulnerable to attacks by reactive compounds.   
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Lately using 2-fluoroestradiol 25 as an example it was shown that there is no correlation 
between carcinogenicity and hormonal action of estrogens (Liehr, 1983). It is important that 
17-ethynylestradiol 24 possesses high hormonal activity and lowered carcinogenicity (Li, 
J.J. et al., 1995). These investigations (and earlier ones) became the basis for searching of 
other mechanisms of estrogens’ carcinogenicity. 
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Specifically, it was established that estrogen metabolites may covalently bind with 
hamster microsomic proteins, and this process is inhibited by ascorbinic and cathehol-O-
methytransferase action (Haaf et al., 1987). Therefore authors proposed that «active» 
metabolites are о-quinones, which possess heightened reactivity. In next 20 years it was 
clarified that the hydroxylation of estrogens in the body leads to the formation of 2- or 4-
hydroxyestrogens of types 26 and 27, which then converted to о-quinones of type 28 and 
29 (Liehr et al., 1995; 1996; Bolton et al., 1998; Bolton, 2002; Bolton & Thatcher, 2008; 
Zhang, F. et al., 1999; Liu, X. et al., 2002; Zhang, Q. et al., 2008). Irreversible depurination 
of DNA that could not be regenerated by reparases may take place under the action of o-
quinones. Compounds of types 31 and 32 are possible depurination products. Quinones of 
type 28 do not cause the damage of DNA. It is assumed that the reason of this is their 
heightened reactivity; therefore they may be deactivated before their migration into cell 
nucleus.  
From our point of view one of possible variants for the decreasing of estrogens’ 
carcinogenicity is the introduction of a substituent in the position 1, which blocks the 
interaction with DNA and thus prevents its depurination. In the case when compounds with 
substituent at position 1 will lead to decreasing of estrogenic activity, such modification (in 
dependence from the task) will be very perspective.   
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It is also known that metabolites with hydroxyl group at C-6 of types 33 and 34 may have 
carcinogenic properties (Itoh et al., 1998). Thus, compounds which can not be hydroxylated 
at position 6 are perspective potential candidates for synthesis and further investigations.  
Another metabolite of estrogens - 16-hydroxyestrone 35 is also considered as inductor of 
tumors’ formation (Lewis et al., 2001; Seeger et al., 2006). Hydroxylation of estrone at 
position 16 is one of main directions of estrogen metabolism, which is elevated in women 
with high risk of breast cancer, as well with other oncological diseases. Estriol 3 content is 
informative as well: there is the correlation between breast tumors’ development in mice 
(Lewis et al., 2001).  
Products of hydroxylation of equilenin and equilin also possess carcinogenic properties 
(Zhang, F. et al., 1999; Shen et al., 1997). Corresponding quinones may damage DNA, and 
the investigation of this class of compounds with substituent at position 4 is of a great 
importance. Authors concluded that 4-fluoroequilenin derivatives 36 are promising 
alternatives to traditional estrogen replacement therapy due to their similar estrogenic 
properties with less overall toxicity (Liu, X. et al., 2003).  
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The hydroxylation of selective modulators of ERs and the following reaction products 
transformations may cause DNA depurination that leads to carcinogenicity of drugs. It was 
shown on the example of the formation of -hydroxytamoxifen 37 and its possible 
transformation into compounds of type 38  (Jordan, 2007).   
It is not surprising that during last years the efforts are directed to the methods of steroid 
estrogen level determination, because the exact value of their content in various tissues helps to 
diagnose differentially various hormone-sensitive diseases (Arai et al., 2010; Blair et al., 2010).  

4. Inhibition of estrone formation in the body  
It is known that about two thirds of all the breast cancers occur in postmenopausal women, 
when estrogen is no longer synthesized in ovaries. However the estradiol content in 
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estrogen-dependent tumors is significantly higher than in blood plasma and in normal 
tissues on bourdes with tumors. Partly it can be explained by the ability of tumor to accept 
estradiol from the blood (Pasqualini et al., 1996), because estrogen synthesis may be 
enhanced in extragonadal organs. Furthermore, local synthesis of estrogens in tumor may be 
on high level (Pasqualini et al., 1997). In view of the aforesaid it is necessary to consider the 
ways of synthesis of these hormones and understand the influence on the formation of 
reactive estrogens in tumor (scheme).  
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It is well-known, that estrogens are formed in the body from testosterone or androst-4-en-
3,17-dione 39. Aromatization is multistep process, proceeding under the action of enzymes 
of cytochrome Р-450 system. The main steps of aromatization, key stage in estrogen 
formation are considered in many publications (Jordan & Brodie, 2007 and citations herein). 
It is reasonable that the great attention is directed to the search of irreversible inhibitors of 
aromatase.  
Most often the initial investigations are carrying out on human placenta cells, the criterion 
for the evaluation of effectiveness of investigated compounds is value of IC50 

(concentration, at which the inhibition of enzyme activity is 50% from highest possible 
one under experimental conditions). Compounds having IC50 in the range of nanomolar 
concentrations have perspectives to be further investigated. Next step for the evaluation 
of inhibitory activity of perspective compounds is the investigation on animal models, 
and very often the preliminary evaluation of effectiveness is in contrast with data 
obtained in second series. 
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Steroid 41 and 42 properties investigation results could be used as an example (diSalle & 
Robinson, 1990). The IC50 values in the experiments on human placenta cells are 
approximately equal - 42.5±4.3 and 20.3±2.2 nM correspondingly. However, in the 
experiments on rats the values of ED50 (dose, at which the inhibition is 50% from highest 
possible one) are 3.7 and more 100 mg/kg under per os injection. Necessity of compounds 
investigation can be illustrated by huge number of examples in various animal models and 
by methods of steroids introduction into the body. In particular, compound 42 under 
subcutaneous introduction in doses 30 and 150 mg/kg blocks the growth of bearing DMBA-
induced mammary tumors in female rats (Nishino et al., 1989) and after numerous 
investigations is clinically used with the trade name atamestane.   
The main position for attack during demethylation of androst-4-en-3,17-dione is methyl 
group at С-19. Numerous derivatives at С-10 have been synthesized. Among them the most 
effective one is compound 43 with Ki 3 nМ to human placenta enzyme (Cole & Robinson, 
1990). It comes as no surprise, that this compound is clinically used (Numazava et al., 2005). 
Compounds 44 (Greway et al., 1990) and 45 (Peet et al., 1992) demonstrated good 
properties.  
Detailed search of aromatase inhibitors led to the creation of medications of steroid nature 
for the treatment of oncological diseases in clinic, from them, exemestane 41 and formestane 
46 are also widely known. However clinical application of aromatase inhibitors revealed the 
presence of a number of non-specific toxic side effects: asthenia, nausea, headache etc. 
Certain endocrinological side effects in postmenopausal women are notable, namely hot 
flashes and vaginal dryness (Goss, 1999). Therefore the search of aromatase inhibitors in 
steroid series must be done in series that is not belonging to androgens.   
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1990). It comes as no surprise, that this compound is clinically used (Numazava et al., 2005). 
Compounds 44 (Greway et al., 1990) and 45 (Peet et al., 1992) demonstrated good 
properties.  
Detailed search of aromatase inhibitors led to the creation of medications of steroid nature 
for the treatment of oncological diseases in clinic, from them, exemestane 41 and formestane 
46 are also widely known. However clinical application of aromatase inhibitors revealed the 
presence of a number of non-specific toxic side effects: asthenia, nausea, headache etc. 
Certain endocrinological side effects in postmenopausal women are notable, namely hot 
flashes and vaginal dryness (Goss, 1999). Therefore the search of aromatase inhibitors in 
steroid series must be done in series that is not belonging to androgens.   
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Because estrone 2 or estradiol 1 are formed as result of aromatization process it was possible 
to assume that these compounds will be reversible inhibitors of aromatase. Indeed, later it 
was found that even estradiol is anti-aromatase agent in human breast cancer cells 
(Pasqualini & Chetrite, 2006); the same was found for estrone sulfatase inhibition 
(Pasqualini & Chetrite, 2001). Simultaneously, reasoning from the same assumption, the 
synthesis of modified estrogens with substituents at С-2, С-4 or С-6 was carried out 
(Numazava et al., 2005).     
These analogues are competitive inhibitors of aromatase. 2-Substituted steroids 47 a,b,c, 
have the best properties, they are significantly active in comparison with estrone 2, Ki values 
are 0.130±0.017, 0.224±0.024, 0.360±0.019 and 2.50±0.22 μM correspondingly. Steroids 48 and 
49 have similar activity - Ki values are 0.10±0.006 and 0.21±0.009 μM, however their 
synthesis is more complicated. Inhibitory activity of estradiol derivatives is significantly 
lower. From our point of view, its worth to pay attention to 2-fluoroestradiol 25, in spite of 
the value of Ki 9.04±0.5 μМ being higher in comparison to other compounds and the fact, 
that its synthesis is more complicated. It is more important that this analogue does not 
possess carcinogenic properties in the experiments on rats (Liehr, 1983). In the series of 4-
substituted estrone derivatives – 4-fluoroanalogue 50 has the best properties (Кi = 1.28±0.07).  
All presented investigations had extensive character and it was impossible to take into 
account many details of biological properties. X-Rays analysis of complex of aromatase from 
human placenta with androst-4-en-3,17-dione 39 has been obtained (Ghosh et al., 2009), that 
opened the perspectives for the targeted search of aromatase inhibitors. Using the data 
obtained resulted in the docking of new reversible inhibitors in aromatase structure that 
allowed to explain their activity (Yadav et al., 2011).      
Aromatase inhibitors are widely used for the treatment of estrogen-dependent oncological 
diseases; however they have a number of side-effects. Thus, the decreasing of estrogen 
content in the body automatically results in the increasing of cholesterol level in blood, and 
hence to the increased risk of cardiovascular diseases. This is the main reason for the 
creation of inhibitors on the basis of steroids in comparison with non-steroid ones. For 
example, exemestane has minimal negative effects on bone and lipid metabolism in animal 
and clinical studies (Carpenter & Miller, 2005). There is an opinion that exemestane may 
improve lipid profile (Bundred, 2005).   
Molecular bases of interactions of various groups of ligands with aromatase have been 
considered relatively not long ago, that may lead to the creation of inhibitors with improved 
properties (Hong et. al., 2008). 
Aromatase inhibitors are important, but not sufficient for blocking of growth of hormone-
sensitive tumors. Point is that there is at least one more way for estrogens’ formation in 
tumors.  
It is known that estrone sulphate concentration in blood plasma of postmenopausal women 
is in 5-10 times higher in comparison with free hormone concentration. Assumption was 
made that estrogen sulphates may play a role of “source” of free estrogens in various 
organs, because its «half-life time» is longer than life-time of free estrogens (Reed & Potter, 
1999). Estrogen sulphates may migrate into hormone-depended tumor and then converted 
to free hormones under estrone sulfatase action. It was found that estrone sulfatase activity 
in tumors is in 130-200 times higher in comparison with aromatase activity (Chetrite et al., 
2000). This was the basis for initiation of investigations for the search for irreversible estrone 
sulfatase inhibitors.    

Approaches for Searching 
of Modified Steroid Estrogen Analogues with Improved Biological Properties 

 

183 

Estrone sulfatase from human placenta is suitable model object for searching for 
corresponding inhibitors. It is the transmembrane protein that consists of 583 amino acid 
residues (mainly it is hydrophobic amino acids).  
On the basis of data about primary structure of this enzyme and taking into account its 
homology with human arylsulfatase A and human arylsulfatase B (X-Ray data of 
arylsulfatase were known), the structure of catalytic centre of estrone sulfatase was 
proposed (Howard et al., 2002). X-Ray data of estrone sulfatase has been obtained a little bit 
later and it was shown that its tertiary structure is formed by two domains – globular polar 
domain, containing the active center and transmembrane domain, formed by two 
antiparallel α-helixes. Polar domain consists of two sub-domains, one of them has the active 
centre of enzyme. Transmembrane domain opens the entrance into the active center of 
enzyme, which is situated deep under the “mashrooms hat”, close to the membrane surface. 
Near the active center entrance a big amount of hydrophobic amino acids is concentrated, 
which are a part of TD (Phe178, 182, 187, 230, 233 and 237), and the polar domain (Phe104 
and 557, Leu554). Side chains of these amino acids form a tunnel, which leads to the active 
center (Hernandes-Guzman et al., 2003). Catalytic area of active center of estrone sulfatase 
is highly homologous to active centers of arylsulfatase A and В. Nine from ten catalytically 
important amino acids Asp35, Asp36, FG75, Arg79, Lys134, His136, His290, Asp342 and 
Lys368 are in analogous positions to all three sulfatases. It is in quite correlation with the 
experimental data about the importance of hydrophobic interactions during the binding of 
enzyme with inhibitors of steroid series (Ahmed S., 2001).  
Conceptions concerning estrogen sulfates hydrolysis mechanisms and ferment deactivation 
are presented in series of articles (Reed et al., 2005), where an important role is assigned to 
an unusual amino acid - formylglycine in 75 position. 
Investigation of kinetic parameters of hydrolysis of estrone sulphate and 
dehydroepiandrosterone sulphate have shown that values of Vmax for these compounds are 
correspondingly 9.95 and 1.89 μM/min, values of Km are 72.75 and 9.59 μM (Hernandez-
Guzman et al., 2001). These values could be used as standard for the evaluation of substrate 
specificity of estrone sulfatase of various natures.  
In several investigations it was established that for the effective inhibition of estrone 
sulfatase molecules must have sulphamate group at position 3. Firstly the necessity of this 
group was demonstrated on the example of steroid 51a, widely known as EMATE (Purohit 
et al., 1995). However this compound did not reach the clinical application as anti-tumor 
agent because its estrogenic activity under per os introduction is in 5 times higher in 
comparison with estrone (Elger et al., 1995).    
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The investigations of Professor M. Reed’ group are examples of the successful creation of 
estrone sulfatase inhibitors with lowered hormonal activity (Purohit et al., 1998), authors 
have synthesized compounds 51a-j. The selection of modifications in EMATE structure was 
done on the basis of experimental facts about significant fall of uterotropic activity of 
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the value of Ki 9.04±0.5 μМ being higher in comparison to other compounds and the fact, 
that its synthesis is more complicated. It is more important that this analogue does not 
possess carcinogenic properties in the experiments on rats (Liehr, 1983). In the series of 4-
substituted estrone derivatives – 4-fluoroanalogue 50 has the best properties (Кi = 1.28±0.07).  
All presented investigations had extensive character and it was impossible to take into 
account many details of biological properties. X-Rays analysis of complex of aromatase from 
human placenta with androst-4-en-3,17-dione 39 has been obtained (Ghosh et al., 2009), that 
opened the perspectives for the targeted search of aromatase inhibitors. Using the data 
obtained resulted in the docking of new reversible inhibitors in aromatase structure that 
allowed to explain their activity (Yadav et al., 2011).      
Aromatase inhibitors are widely used for the treatment of estrogen-dependent oncological 
diseases; however they have a number of side-effects. Thus, the decreasing of estrogen 
content in the body automatically results in the increasing of cholesterol level in blood, and 
hence to the increased risk of cardiovascular diseases. This is the main reason for the 
creation of inhibitors on the basis of steroids in comparison with non-steroid ones. For 
example, exemestane has minimal negative effects on bone and lipid metabolism in animal 
and clinical studies (Carpenter & Miller, 2005). There is an opinion that exemestane may 
improve lipid profile (Bundred, 2005).   
Molecular bases of interactions of various groups of ligands with aromatase have been 
considered relatively not long ago, that may lead to the creation of inhibitors with improved 
properties (Hong et. al., 2008). 
Aromatase inhibitors are important, but not sufficient for blocking of growth of hormone-
sensitive tumors. Point is that there is at least one more way for estrogens’ formation in 
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It is known that estrone sulphate concentration in blood plasma of postmenopausal women 
is in 5-10 times higher in comparison with free hormone concentration. Assumption was 
made that estrogen sulphates may play a role of “source” of free estrogens in various 
organs, because its «half-life time» is longer than life-time of free estrogens (Reed & Potter, 
1999). Estrogen sulphates may migrate into hormone-depended tumor and then converted 
to free hormones under estrone sulfatase action. It was found that estrone sulfatase activity 
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corresponding inhibitors. It is the transmembrane protein that consists of 583 amino acid 
residues (mainly it is hydrophobic amino acids).  
On the basis of data about primary structure of this enzyme and taking into account its 
homology with human arylsulfatase A and human arylsulfatase B (X-Ray data of 
arylsulfatase were known), the structure of catalytic centre of estrone sulfatase was 
proposed (Howard et al., 2002). X-Ray data of estrone sulfatase has been obtained a little bit 
later and it was shown that its tertiary structure is formed by two domains – globular polar 
domain, containing the active center and transmembrane domain, formed by two 
antiparallel α-helixes. Polar domain consists of two sub-domains, one of them has the active 
centre of enzyme. Transmembrane domain opens the entrance into the active center of 
enzyme, which is situated deep under the “mashrooms hat”, close to the membrane surface. 
Near the active center entrance a big amount of hydrophobic amino acids is concentrated, 
which are a part of TD (Phe178, 182, 187, 230, 233 and 237), and the polar domain (Phe104 
and 557, Leu554). Side chains of these amino acids form a tunnel, which leads to the active 
center (Hernandes-Guzman et al., 2003). Catalytic area of active center of estrone sulfatase 
is highly homologous to active centers of arylsulfatase A and В. Nine from ten catalytically 
important amino acids Asp35, Asp36, FG75, Arg79, Lys134, His136, His290, Asp342 and 
Lys368 are in analogous positions to all three sulfatases. It is in quite correlation with the 
experimental data about the importance of hydrophobic interactions during the binding of 
enzyme with inhibitors of steroid series (Ahmed S., 2001).  
Conceptions concerning estrogen sulfates hydrolysis mechanisms and ferment deactivation 
are presented in series of articles (Reed et al., 2005), where an important role is assigned to 
an unusual amino acid - formylglycine in 75 position. 
Investigation of kinetic parameters of hydrolysis of estrone sulphate and 
dehydroepiandrosterone sulphate have shown that values of Vmax for these compounds are 
correspondingly 9.95 and 1.89 μM/min, values of Km are 72.75 and 9.59 μM (Hernandez-
Guzman et al., 2001). These values could be used as standard for the evaluation of substrate 
specificity of estrone sulfatase of various natures.  
In several investigations it was established that for the effective inhibition of estrone 
sulfatase molecules must have sulphamate group at position 3. Firstly the necessity of this 
group was demonstrated on the example of steroid 51a, widely known as EMATE (Purohit 
et al., 1995). However this compound did not reach the clinical application as anti-tumor 
agent because its estrogenic activity under per os introduction is in 5 times higher in 
comparison with estrone (Elger et al., 1995).    
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done on the basis of experimental facts about significant fall of uterotropic activity of 



 
Steroids – Basic Science 

 

184 

estrone derivatives when substituents like alkyl-, allyl- or nitro- groups were introduced at 
positions 2 and (or) 4 (Purohit et al., 1999). Some results on human placenta microsomes 
enzyme are presented in the Table 1. 
 

Steroid R1 R2 IC50, μM Steroid R1 R2 IC50, μM 
a Н Н 0.004 f H CH3(CH2)2 > 100 
b OMe H 0.03 g CH3(CH2)2 CH3(CH2)2 > 100 
c NO2 H 0.07 h Allyl H 2.5 
d H NO2 0.0008 i H Allyl 9 
e CH3(CH2)2 H 29 j Allyl Allyl > 100 

Table 1.  

Irreversible E-ST inactivation has been observed in all cases. Most active inhibitor from this 
series is – 4-nitro derivative 51d – in 5 times stronger than ЕМАТЕ in vitro and had 
comparable activity with ЕМАТЕ activity in vivo. The investigation of uterotropic activity 
has shown that this steroid increases uterus weight of ovariectomized rats, although to 
lesser degree than ЕМАТЕ (158% in comparison with control, and 414% - ЕМАТЕ). 
Monoallylic analogues are weaker inhibitors estrone sulfatase, but they are more active in 
comparison with propyl- ones. The presence of large substituents at С-2 and/or С-4 leads to 
decreasing of inhibitory activity, which may be caused by shielding of oxygen atom at С-3. 
Estrone formiate 52 (Schreiner & Billich, 2004) and boronic acids 53 (Ahmed, V., 2006) have 
shown irreversible inhibitory activity, however these investigations had no further progress.     
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Compounds of type 54 were chosen as an example and authors used another analogue 
(oxatiazine ring, condensed with A ring) instead of sulphamate group at C-3 (Peters et al., 
2003). In the experiments in vitro in an intact MCF-7 human breast cancer cells model 
steroids have shown high inhibitory activity. In vivo, agent 54 showed moderate antitumor 
activity against MCF-7 breast cancer xenografts in BALB/c athimic nude mice. 3,4-
Oxathiazine analogues showed weak inhibitory activity.  
Compounds 55-57 effectively inhibit estrone sulfatase (Tanabe et al, 1999). It indicated 
specifically on the possibility for the creation of inhibitors in the series of D-homo analogues 
of estrogens that was confirmed using sulphamates 58 and 59 (Reed & Potter, 1999). 
The development of this direction led to the creation of strong inhibitors 60 and 61 with 
values of IC50 - 1 nM (Fischer et al., 2003). 
One more group of perspective inhibitors of estrone sulfatase was found – sulphamates of 
estrogens with methoxy- group at С-2 (Raobaikady et al., 2003). At the time of these 
investigations it was known that 2-methoxyestradiol 62 induces apoptosis in many various 
lines of tumor’ cells, including prostate cancer cells, exhibits antiproliferative activity and 
blocks angiogenesis processes, which became a basis for the selection of model compounds.  
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The fact that bis-sulphamates of 2-methoxyestradiol 63 and 2-ethylestradiol 66 inhibit the 
growth of breast cancer cells, which are resistant to the action of many medications, has a 
crucial importance (Suzuki et al., 2003).  
We have considered the ways for the search for modified estrogens for the inhibition of 
steroids metabolism enzymes which have been done in series of derivatives with natural 
rings junction. Obvious perspective direction is the investigation of analogues with 
unnatural rings junction since peculiarities of their structure have the number of important 
characteristics, comparable with ones in series of natural estrogens and comparable 
biological properties of both series.  
It is known that high effectiveness of binding of estradiol 1 with ER is a result of high 
hydrophobicity of steroid molecule and possibility to form hydrogen bonds of phenolic 
hydroxyl group at С-3 with Glu353, Arg394 and water molecule. Hydroxyl group at С-17 
forms hydrogen bond with His524 (Brzozowski et al, 1997). Modified 8-analogues of 
steroid estrogens have relative high affinity to ER, and model explaining the binding with 
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estrone derivatives when substituents like alkyl-, allyl- or nitro- groups were introduced at 
positions 2 and (or) 4 (Purohit et al., 1999). Some results on human placenta microsomes 
enzyme are presented in the Table 1. 
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d H NO2 0.0008 i H Allyl 9 
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Table 1.  

Irreversible E-ST inactivation has been observed in all cases. Most active inhibitor from this 
series is – 4-nitro derivative 51d – in 5 times stronger than ЕМАТЕ in vitro and had 
comparable activity with ЕМАТЕ activity in vivo. The investigation of uterotropic activity 
has shown that this steroid increases uterus weight of ovariectomized rats, although to 
lesser degree than ЕМАТЕ (158% in comparison with control, and 414% - ЕМАТЕ). 
Monoallylic analogues are weaker inhibitors estrone sulfatase, but they are more active in 
comparison with propyl- ones. The presence of large substituents at С-2 and/or С-4 leads to 
decreasing of inhibitory activity, which may be caused by shielding of oxygen atom at С-3. 
Estrone formiate 52 (Schreiner & Billich, 2004) and boronic acids 53 (Ahmed, V., 2006) have 
shown irreversible inhibitory activity, however these investigations had no further progress.     
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Compounds of type 54 were chosen as an example and authors used another analogue 
(oxatiazine ring, condensed with A ring) instead of sulphamate group at C-3 (Peters et al., 
2003). In the experiments in vitro in an intact MCF-7 human breast cancer cells model 
steroids have shown high inhibitory activity. In vivo, agent 54 showed moderate antitumor 
activity against MCF-7 breast cancer xenografts in BALB/c athimic nude mice. 3,4-
Oxathiazine analogues showed weak inhibitory activity.  
Compounds 55-57 effectively inhibit estrone sulfatase (Tanabe et al, 1999). It indicated 
specifically on the possibility for the creation of inhibitors in the series of D-homo analogues 
of estrogens that was confirmed using sulphamates 58 and 59 (Reed & Potter, 1999). 
The development of this direction led to the creation of strong inhibitors 60 and 61 with 
values of IC50 - 1 nM (Fischer et al., 2003). 
One more group of perspective inhibitors of estrone sulfatase was found – sulphamates of 
estrogens with methoxy- group at С-2 (Raobaikady et al., 2003). At the time of these 
investigations it was known that 2-methoxyestradiol 62 induces apoptosis in many various 
lines of tumor’ cells, including prostate cancer cells, exhibits antiproliferative activity and 
blocks angiogenesis processes, which became a basis for the selection of model compounds.  
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The fact that bis-sulphamates of 2-methoxyestradiol 63 and 2-ethylestradiol 66 inhibit the 
growth of breast cancer cells, which are resistant to the action of many medications, has a 
crucial importance (Suzuki et al., 2003).  
We have considered the ways for the search for modified estrogens for the inhibition of 
steroids metabolism enzymes which have been done in series of derivatives with natural 
rings junction. Obvious perspective direction is the investigation of analogues with 
unnatural rings junction since peculiarities of their structure have the number of important 
characteristics, comparable with ones in series of natural estrogens and comparable 
biological properties of both series.  
It is known that high effectiveness of binding of estradiol 1 with ER is a result of high 
hydrophobicity of steroid molecule and possibility to form hydrogen bonds of phenolic 
hydroxyl group at С-3 with Glu353, Arg394 and water molecule. Hydroxyl group at С-17 
forms hydrogen bond with His524 (Brzozowski et al, 1997). Modified 8-analogues of 
steroid estrogens have relative high affinity to ER, and model explaining the binding with 
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ER has been proposed (Shavva et al., 2002 and citation herein). Metabolism of steroids 
with unnatural rings junction may be quite different from metabolism of natural steroids, 
which will allow to find the alternative solutions of many medicinal-biological tasks.  
The perspectives for the creation of new inhibitors of steroid metabolism have been 
demonstrated using 6-oxa-D-homo-8-analogues of estrogens 67 as an example (Gluzdikov 
et al., 2007). Authors accomplished the docking of different compounds of this series into 
ligand-binding domain of ER. And after the analysis the assumption was made that this 
compound must have weak binding affinity to ER or must have none in total. Sulphamate 
67а has been synthesized and the analogue showed a quite good inhibitory activity to 
estrone sulfatase. Steroid 67b - potential product of hydrolysis has no uterotropic activity. It 
became the basis for the improvement of synthesis scheme of 7-methyl-D-homo-8-
analogues of steroid estrogens (Morozkina et al., 2009) and investigation of peculiarities of 
their spatial structure (Shavva et al., 2008). Steroids of such structure may be used for the 
solution of other tasks (for example, as vectors for the transport of other classes of 
compounds into estrogen target-tissues).  
Finally, 17-hydroxysteroid dehydrogenase type 1 plays the important role in the induction 
and development breast cancer (Vihko et al, 2002). In ER+ breast cancer cells under the 
action of this enzyme the dominate direction of the reaction is the transformation of estrone 
into more dangerous estradiol. In ER-positive breast cancer cells the reaction tends to 
proceed in the reverse direction. Another reason of tumor growth is inactivation of 
dehydroepiandrosterone 68, which blocks tumor growth (Aka et al., 2010). 
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Substrate specificity of available enzyme from human placenta was investigated and it was 
found that steroids of unnatural series are also substrates for this enzyme (Egorova et al., 
1973). High substrate specificity was observed only in the case of trans-junction of C and D 
rings. Values of Vmax of 8α-series steroids may be more than ones for compounds of natural 
series. For example, Vmax value of 8-estradiol 69а is 219% of Vmax value of estradiol. D-
homo-8-estradiol 70а has value of Km in 5 times less than estradiol value, whereas values 
of Vmax are approximately equal. Methylation of phenolic group (analogue 69b) leads to the 
decreasing of Km value in one order, steroid 70b has value of Km in 2.5 times less than 
compound 70а. It takes attention big values of Vmax of steroids 71 and 72, correspondingly 
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635 and133% in comparison with estradiol (Langer et al., 1959). Values of Km and Vmax of 2-
hydroxyestradiol 72 are comparable with these values for estradiol 1 (Chernyaeva et al., 
1972), and such modification may be important during the search of inhibitors of 17-
hydroxysteroid dehydrogenase. Hence, the presence of free hydroxyl group at С-3 is not 
necessary for significant substrate specificity of such steroids. Modified androgens are also 
substrates for this enzyme, although they are notably less specific (Chernyaeva et al., 1972). 
The abovementioned fact gives a persuasion that the search of inhibitors of investigated 
enzyme is most perspective in the series of steroids with unnatural rings junction. As far as 
we know such investigations have not yet been done.  
It is quite interesting, that 2F- and 4F-estradiols (correspondingly 25 and 50) are not 
substrates for 17-hydroxysteroid dehydrogenase (Langer et al., 1959), which may be 
important during the search of compounds with different spectrum of biological 
properties.     
Primary structure of this enzyme was determinated after the analysis of corresponding 
сDNA (Peltoketo et al., 1988), lately X-rays analysis was obtained (Ghosh et al., 1995). The 
comparison of spatial structures of 17-hydroxysteroid dehydrogenase and investigated 
earlier 3,20-hydroxysteroid dehydrogenase (Ghosh et al., 1994) led to the conclusion 
about participation of His in the binding of hydroxyl group at C-3 of steroid and structure of 
transition state with the participation of triad Tyr-Ser-Lys. Authors justly mention the 
importance of the data obtained for modeling of interactions of 17-hydroxysteroid 
dehydrogenase with various ligands for the creation of effective inhibitors of the enzyme. 
Interesting developing of these investigations was the modeling of spatial structures of the 
enzymes of humans and rats, which are significantly different in primary structure and 
substrate specificity. Rat enzyme structure was modeled by the replacement of 
corresponding amino acids in the structure of human enzyme crystal (Ghosh et al., 1995) 
and following minimization of energy was done (Putanen et al., 1997). Results of 
calculations of rat enzyme are in good correlation with obtained experimental data. 
Clarification of mechanism of action of both enzymes was done using chimeric enzyme and 
site-directed substitution.       
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X-rays data of the complexes of 17-hydroxysteroid dehydrogenase with estradiol 1 
(Azzi et al., 1996), 5-dihydrotestosterone 73 and 20-hydroxy-analogue of progesterone 
74 (Lin et al., 1999) have been obtained lately. Nevertheless the preliminary evaluation of 
characteristics for the searching the specific potential inhibitors is quite a difficult task 
because in human body types 1, 7 and 12 catalyze the transformation of estrone into 
estradiol (Blanchard & Luu-The, 2007). Substrate specificities of 17-hydroxysteroid 
dehydrogenases type 1 and 2 are similar, but in the case of second enzyme the 
transformation reaction estradiol – estrone is mainly directed to estrone formation 
(Miettinen et al., 1996), therefore the inhibition of this enzyme during the treatment of 
hormone-sensitive breast cancer is quite undesirable. The search of specific inhibitors of 
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ER has been proposed (Shavva et al., 2002 and citation herein). Metabolism of steroids 
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Substrate specificity of available enzyme from human placenta was investigated and it was 
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17-hydroxysteroid dehydrogenases type 1 is complicated task, the attempts to solve this 
task by replacement oxygen-containing groups at position 17 and introduction of 
fluorine atoms into the same position of steroid skeleton were unsuccessful (Deluca et 
al., 2006).   
Steroid 75 with big value of IC50 (530±7 nM) to this enzyme was synthesized, and this 
analogue has no hormonal activity (Fisher et al., 2005). Authors also obtained X-Ray data 
for the complex of compound 76 with 17-hydroxysteroid dehydrogenase type 1 that has 
importance for the solution of this task.  
Investigation of inhibitory activity of estrogen analogues with large substituents at С-16 in 
-position led to find steroids 77 and 78 with selective action (Lawrence et al., 2005). 
Analogue 77 has value of IC50 0.29 μM to 17-hydroxysteroid dehydrogenase type 1 
(Purohit et al., 2006).   
Parallel investigations of properties of modified estrogens with substituents in -position 
at С-16 led to obtain the compounds of type 79 (Laplante et al., 2008), this steroid has 
value of IC50 44±7 nM for the transformation estrone 2 into estradiol 1 in T-47D intact 
cells. Unfortunately, analogue 79 possesses estrogenic activity, although this activity is 
decreased. 
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Obviously, clinical application of specific inhibitors of all three discussed enzymes is an 
intermediate step in the search for medications for the treatment of estrogen-sensitive 
oncological diseases. The most perspective direction is the search for compounds with 
simultaneous/synchronous inhibition activity to aromatase, estrone sulfatase and 17β-
hydroxysteroid dehydrogenase. The basis for this approach is the possibility for 
overexpression of aromatase in tumors, which was shown in experiments on MCF-7 cell 
lines (Santen et al., 1999). Aromatase may stimulate the growth of tumors through both 
autocrine and paracrine pathways (Chen et al., 1999). Moreover, long-term estrogen 
deprivation increases sensitivity to estradiol and enhances aromatase activity in MCF-7 cells 
(Yue et al., 1999).  
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Both substrate specificity of enzymes and potential ways of inhibition metabolism must be 
taken into account during the search for steroid hormone synthesis inhibitors. The fine 
example of inhibitors which are able to inhibit the activity of aromatase and estrone 
sulfatase at the same time was demonstrated by Japanese authors (Numazava et al., 2005; 
2006). In earlier investigation it was demonstrated that steroids 25, 47a,b,c and 48-50 are 
good inhibitors of aromatase. Sulphamates 80a,b,c and 81-83 having higher activity in 
comparison with EMATE have been synthesized. Authors justly think that these results may 
be useful for the development a new class of drugs having a dual function for the treatment 
of breast cancer. Additional benefits of the modifications at positions 2-, 4-, and 6 of steroid 
skeleton are perspective in respect of the fact that they may decrease the potential 
carcinogenicity of hydrolysis products (if they have) since the decreased possibility of 
formation of danger о-quinones of type 29 (Liehr et al., 1995, 1996; Bolton et al., 1998; 
Bolton & Thatcher, 2008; Zhang, F. et al., 1999; Liu, X. et al, 2002; Zhang, Q. et al., 2008) or 
6-hydroxyestrogens (Itoh et al., 1998).   
Search for non-steroidal inhibitors of aromatase and sulfatase is of interest as well. Such 
properties belong to heterocyclic sulphamates (Reed & Potter, 2006), however the 
perspectives for its using in clinic is not clear at the moment.    
The attempts of synthesis of steroids with multifunctional action, in particular, inhibitors of 
ERs and 17-hydroxysteroid dehydrogenase type 1 were done (Tremblay & Poirier, 1996). 
Steroid 84 was selected as model compound by authors on the basis of previous data. Earlier 
it was established that in the series of 16-(bromoalkyl)estradiols for the realization of 
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oncological diseases. The most perspective direction is the search for compounds with 
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inhibitory action the presence of side chain (3-4 carbon atoms) at position 16 is optimal. 
Such substituents contribute to the appearance of antagonist activity to ER. It is desirable 
to have the tertiary amide group with substituents on the amide nitrogen. Authors assumed 
that primary bromide will inactivate 17-hydroxysteroid dehydrogenase. Thus, steroid was 
expected to be inhibitor of 17-hydroxysteroid dehydrogenase and agonist-antagonist to 
nuclear estrogen receptor. These suppositions have been confirmed: model steroid caused 
25% stimulation of cellular growth at concentration 0.1 μM, at the same concentration 
steroid inhibited by 45% the 0.1 nM estradiol-stimulated growth of ZR-75-1 cells. It means, 
that compound 84 is partial agonist of ER and inhibitor of 17-hydroxysteroid 
dehydrogenase with moderate activity.  
Sulphamates 85 and 86 are inhibitors of estrone sulfatase and 17-hydroxysteroid 
dehydrogenase (Potter & Reed, 2002; Messinger et al., 2006).   
The selection of ways for the treatment of oncological diseases mainly depends from 
individual peculiarities of patients, as result the methods of definition of aromatase, estrone 
sulphatase, 17-hydroxysteroid dehydrogenase or mRNA (which realizes their synthesis), 
content have a crucial importance (Irahara et al., 2006).  

5. Modified estrogens with antioxidant action as potential neuroprotective 
agents 
Estradiol and its analogues have been known to have pro- and antioxidant features. These 
properties of estrogens are still subject of debate and depend on many factors, including 
animals or tissues, administration routes, concentrations, peroxidative model and so on. 
Antioxidant action of estrogens has been widely studied in vivo and in vitro. Aside from its 
effects on LDL-oxidation (Badeau et al., 2005), it has reported that estrogens decreased lipid 
peroxidation in brain homogenates and neuronal cultures (Thibodeau et al., 2002), reduced 
the superoxide anion production in different cells (Florian et al., 2004),  
In vivo studies allow usage of different experimental models of neurological disease 
(Azcoitia et al., 2002). Among the steroid family, only estrogens have the capability to 
prevent neuronal cell death caused by oxidative stress. Estradiol has been reported to 
reduce mortality and cerebral damage in the models of brain ischemia including middle 
cerebral artery occlusion and common artery occlusion (Perez et al., 2005). The 
neuroprotective effect of estrogens have also been shown in animal model of Parkinson’s 
disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and in experimental 
models with various toxicities including serum deprivation, amyloid  peptide, glutamate-
induced excitotoxicity, kainic acid and so on (see reviews Green  Simpkins, 2000; 
Amantea et al., 2005). Estrogens may protect against injury via receptor-dependent and 
receptor-independent mechanisms and it has been suggested that antioxidant capacity is an 
important component of the complex neuroprotective effect (Green  Simpkins, 2000; 
Prokai  Simpkins, 2007).  
Antioxidant activity of estrogens as well as other known antioxidants in vivo is determined 
by a lot of factors: concentrations, distribution, localization, fate of antioxidant-derived 
radical, interaction with other antioxidants, metabolism (Niki  Noguchi, 2000). Natural 
fluctuation of ovarian hormones during estrous cycle may influence the effect of exogenous 
hormones; therefore ovariectomized animals are often used. Another problem with this 
approach is that estrogens can be transformed in tissues into metabolites, for example to 
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catecholestrogens, that have another antioxidant property and can produce prooxidants 
(Picazo et al., 2003). Most animal studied have utilized rodents (especially rats), that have a 
very high rate of estrogen degradation. Further, in case of brain the synthetic estrogens that 
are candidates for neuroprotective antioxidants in vivo should be able to cross the blood-
brain barrier after their systemic administration. In vivo estrogens probably do not exert 
their own antioxidant action but interact synergistically with other antioxidants or 
reductants (Hwang et al., 2000). They can also affect the redox state of the cell through 
alteration of glutathione concentration and enhance the production of high energy 
compounds, stimulate antioxidant enzymes, such as SOD, catalase or glutathione 
transferase (Perez et al., 2005; Akcay et al., 2006; Siow et al., 2007; Kumtepe et al., 2009). 
Using in vivo methodology we can not understand molecular mechanisms of certain 
hormone antioxidant action, but it allows studying the manifestation of complex action of 
hormone treatment.  
More than 12 different types of neuronal cells against the 14 different toxicities were used to 
investigate neuroprotective effect of estrogens, their analogues and derivatives (Green  
Simpkins, 2000; Wise et al., 2001). The concentrations of estrogens that have produced 
protective action in these models vary from physiological (0.1 nM) to pharmacological (50 
M) and it is suggested that different neuronal types may have different sensitivities to 
estrogen-mediated protection. For example physiological concentrations of 17-estradiol 
were neuroprotective in cultures that contain multiple cell types and maintain intact cellular 
architecture (Dhandapani  Brann, 2007). Several studies provide a positive correlation 
between in vitro neuroprotective potency and antioxidant activity of estrogens: they 
inhibited lipid peroxidation induced by glutamate, iodoacetic acid, amyloid  peptide 
(Perez et al., 2005; Prokai-Tatrai et al., 2008), reduced iron-induced lipid peroxidation 
(Vedder, et al., 1999), prevented intracellular peroxides accumulation induced by different 
toxicities (Behl et al., 1997). The neuroprotective antioxidant activity dependents on the 
presence of OH-group in the C-3 position on the A ring of the molecule. The formation of 
ether derivatives at C-2 position reduces effect because it abolishes the ability to donate a 
hydrogen atom (Prokai et al., 2001; Perez et al., 2005).  
However, adjoin electron-donating methoxy groups to the phenolic ring may enhance 
antioxidant potency by weakening the phenolic O-H bond and provide stability of the 
formed phenoxyl radical (Prokai  Simpkins, 2007). Nevertheless generally higher 
concentrations of the hormones were required for antioxidant action than were needed for 
neuroprotection. This observation indicates that antioxidant effect is not a significant 
mechanism involved in the neuroprotective activity of estrogens in vivo (Wise et al., 2001; 
Manthey  Behl, 2006).  
The simplest level of in vitro study of radical scavenging activity is investigation using cell-
free models. Oxidation is induced by different systems of free radical generation and 
different types of prooxidants in order to gain a more precise view of the mechanism of 
inhibition. This methodology allows to investigate basic chemical properties (antioxidant or 
prooxidant) of natural estrogen molecules or synthetic analogues and compare compounds 
in each other.  
There are multiple reactive oxygen and nitrogen species (ROS and NOS) and free radicals: 
superoxide radical (O2•-), hydroxyl radical (HO•), hydrogen peroxide (H2O2), nitric oxide 
(NO•), peroxynitrite (ONOO-), hypochlorous acid (HOCl), peroxyl radical (ROO•), 
lipoperoxy radical (LOO•). The reactivity toward various ROS or NOS can be measured by 
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hydrogen atom (Prokai et al., 2001; Perez et al., 2005).  
However, adjoin electron-donating methoxy groups to the phenolic ring may enhance 
antioxidant potency by weakening the phenolic O-H bond and provide stability of the 
formed phenoxyl radical (Prokai  Simpkins, 2007). Nevertheless generally higher 
concentrations of the hormones were required for antioxidant action than were needed for 
neuroprotection. This observation indicates that antioxidant effect is not a significant 
mechanism involved in the neuroprotective activity of estrogens in vivo (Wise et al., 2001; 
Manthey  Behl, 2006).  
The simplest level of in vitro study of radical scavenging activity is investigation using cell-
free models. Oxidation is induced by different systems of free radical generation and 
different types of prooxidants in order to gain a more precise view of the mechanism of 
inhibition. This methodology allows to investigate basic chemical properties (antioxidant or 
prooxidant) of natural estrogen molecules or synthetic analogues and compare compounds 
in each other.  
There are multiple reactive oxygen and nitrogen species (ROS and NOS) and free radicals: 
superoxide radical (O2•-), hydroxyl radical (HO•), hydrogen peroxide (H2O2), nitric oxide 
(NO•), peroxynitrite (ONOO-), hypochlorous acid (HOCl), peroxyl radical (ROO•), 
lipoperoxy radical (LOO•). The reactivity toward various ROS or NOS can be measured by 
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the inhibition methodology in which free radical species are generated in a special model 
system and the antioxidant effect is measured by inhibition of the reference reaction 
(Sanchez-Moreno C., 2002). For the superoxide anion radical generation a few model 
systems can be used: for example, hypoxanthine-xanthine oxidase system, autooxidation of 
riboflavine or non-enzymatic reaction of phenazine methosulphat in the presence of NADH 
and O2. Then O2•- reduces nitro-blu tetrazolium into formazan at 250C and pH=7.4.  
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It is important to note that antioxidant action of estrogens is not necessarily depends on 
their receptors (Xia et al., 2002; Perez et al., 2005). This allows to search for modified 
analogues with lowered or depleted hormonal activity. It appeared that, for example, ent-
estradiol 87 has antioxidant properties (Simpkins, 2004). The introduction of conjugated 
with aromatic ring double bond into steroid molecule leads to the increased antioxidant 
activity (steroids 88 and 89) (Römer, W.; Oettel, M.; Droescher, P.; Schwarz, S., 1997) and 
compound 90 (Römer et al., 1997) in comparison with estrogen without double bonds. 
Steroids of type 88 have significant hypothalamic action (Berliner, 1996), that allowed them 
to be recommended for the treatment of autoimmune diseases. 
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As we have noted earlier, presence of hydroxyl groups at C-3 and at C17 is important for 
effective binding of estrogens with estrogen receptors. As the first group is necessary for 
antioxidant activity of estrogen, synthesis of analogue with substituents at C-17 and/or 
aromatic ring, which would prevent receptor binding, would be an easy solution of the 
problem.  
Thus, 17-methylensteroid 91 in the experiments on 23-day-old Sprague-Dowley rats exhibits 
only 1/70 of the uterotropic activity of estradiol. Moreover, this compound blocks the action 
of 7,12-dimethylbenzanthracene (Jungblat et al., 1990). Although in this work the 
investigation of antioxidant activity of compounds is not mentioned, it must be present in 
analogy with 17-difluoromethylene derivative 92 (Bolhman & Rubanii, 1996). In spite of 
that steroid has positive action on cardiovascular system; such compounds may have only 
restricted application because this steroid possesses contraceptive activity. We have to note 
that biological properties of 8-analogue 93 are close to properties of steroid 92 (Bolhman & 
Rubanii, 1996). Analogues of type 93 decrease lipoprotein level.  
The synthesis of steroid ethers in position 17 also could have lead to compounds having 
antioxidant activity coupled with lowered uterotropic action, as it was shown with 
compounds such as 96 (Prokai et al., 2001; Prokai & Simpkins, 2007). Thus, the presence of 
large substituents in ring D does not result in lowered antioxidant properties, hence 
synthesis of new compounds which would possess double bond at position 8(9) and large 
substituents at D-ring can be considered as the next step in the creation of new drugs. It is 
desirable that these substituents had free phenol hydroxyl group, which would 
automatically increase its antioxidant properties. In fact, steroids 94 and 95 do have 
desirable properties (Römer et al, 1997).  
The introduction of large substituent at position 2 must lead to decrease of estrogenic 
properties of modifies analogue at the presence of antioxidant activity, that was 
demonstrated with compounds 97 (Miller et al., 1996) and 98 (Simpkins et al., 2004) as 
examples.  
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The high antioxidant activity of steroid 99 has been shown on different models (Klinger et 
al., 2003). Unfortunately this compound strongly inhibits monooxidaze activity of 
cytochrome Р450 that is undesirable.       
Hydroxyl group at С-17 in α-region of molecule does not prevent the appearance of 
antioxidant properties (compounds 100 and 101), which opens additional possibilities for 
the obtaining compounds with the selective action (W. Römer, M. Oettel, P. Droescher, S. 
Schwarz, 1997).  
Antioxidant properties of 6-oxa steroid estrogen analogues have undergone little 
investigation. Oxygen atom does obviously possess a big influence on electron density 
distribution in A ring, which can have an impact on antioxidant properties of such 
compounds. Difference in antioxidant action mechanisms between such compounds and 
those discussed earlier can be assumed (Prokai-Tatrai et al., 2008).   
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aromatic ring, which would prevent receptor binding, would be an easy solution of the 
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only 1/70 of the uterotropic activity of estradiol. Moreover, this compound blocks the action 
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investigation of antioxidant activity of compounds is not mentioned, it must be present in 
analogy with 17-difluoromethylene derivative 92 (Bolhman & Rubanii, 1996). In spite of 
that steroid has positive action on cardiovascular system; such compounds may have only 
restricted application because this steroid possesses contraceptive activity. We have to note 
that biological properties of 8-analogue 93 are close to properties of steroid 92 (Bolhman & 
Rubanii, 1996). Analogues of type 93 decrease lipoprotein level.  
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desirable that these substituents had free phenol hydroxyl group, which would 
automatically increase its antioxidant properties. In fact, steroids 94 and 95 do have 
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We carried out the search for modified steroid estrogen analogues in the series of steroids 
with unnatural rings junction having antioxidant properties and lowered/depressed 
uterotropic activity. Such properties belong to compounds 102 (Pison et al., 2009) and 103. 
Some results of investigations of antioxidant properties of steroid 102 are presented in the 
Table 2.  
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Experimental 
conditions 

Schiff bases, 
conventional 
units / mg of 
phospholipids

Conjugated 
diene, 

nmol/mg of 
phospholipids

Triene 
conjugates, 

conventional 
units / mg of 
phospholipids

Klein 
coefficient

Malonic 
dialdehyde, 
nmol/mg of 

phospholipids 

Control 12910 12.20.7 0.2090.022 0.700.01 1.650.14 
Steroid 102 966 

Р0.05 
9.51.0 
Р0.05 

0.1520.022 
Р  0.05 

0.710.05 
Р  0.05 

1.800.18 
Р  0.05 

P – Student’ coefficient.  

Table 2. Results of investigation of action of steroid 102 on lipid peroxidation in brain of rats 

Steroid was given per os in olive oil in dose 5 mg per 100 g of weight of rats, for the day 
before the slaughter. Solutions of the steroids contain 5 mg in 0.3 ml. Control group of 
animals were treated by olive oil in equal volume. 
Solely further investigations of such compounds may show the perspectives of this class of 
steroids. Depressed hormonal activity of investigated steroids may be a negative factor, 
inasmuch as during their using the capacity for the induction of the formation of enzymes 
with antioxidant properties will be decreased.  
The presence of antioxidant activity leads to expect neuroprotective action of such modified 
estrogens, in spite of the fact that exact mechanisms of these properties have not yet been 
established. A huge amount of patents in this area is a proof of it. We shall cite some of those 
works (Simpkins et al, 1994; Covey, 2002; Wuelfert et al, 2002; Peri et al., 2005; Pei, 2005). 
Unfortunately clinical trials did not confirm neuroprotective action. Most probably it is 
connected with multifunctional activity of estrogens, and as a result their positive properties 
are “compensated” by negative action, but how and which ones are unknown. Further 
progress in this area must be connected with success in detailed investigation of mechanism 
of neuroprotective properties and synthesis of analogues with restricted action.  

6. Osteoptotective action of estrogen receptors ligands 
Several animal modes are used to test new compounds with osteoprotective properties. 
Ovariectomized mice are the ones most commonly used. Although aging in rats does not 
trigger osteoporosis development, ovariectomy-driven low estrogen concentration leads to 
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changes in bone tissue, which mimic those occurring in aged women. At first phase of fast 
bone tissue loss triggered by accelerated bone remodeling occurs. Later on this process 
slows down. Trabecular tissue becomes depleted more so then cortical tissue. It should be 
noted that bone breaking is rarely observed in ovariectomized rats, thus is probably better to 
call this process osteopeny.  
There are known several models for testing steroids on animals. When investigating the action 
of compounds in mature rats at the age of 3 months intensive growth of bones in longitudinal 
direction should be taken into account. 75 Days old (Turner et al., 1994) rats are more suitable 
for the investigation; rats model (6-12 months), which has very few skeletal changes, are much 
harder to work with. To test bone state several parameters are used, such as «bone mineral 
density» (g/cm3) and «bone mineral content» (g/sm. length, g/sm2). Last parameter has linear 
correlation with bone mass (r=0.999) (Sato et al., 1995) and calcium contain in ash after bone 
burning (r=0.90) (Gaumet M., 1996). By measuring dry weight of the bone (after drying at high 
temperature until the constant mass is obtained), ash weight after burning (Bauss et al., 1996), 
and also by investigating the ratio of this two parameters (Broulik & Schreiber, 1994) changes 
in mineral bone content can be measured. Results of dual-energy X-rays absorptiometry BMD 
correlate with fracture incidence and useful in evaluation progression of osteoporosis (Sharp 
et al., 2000). Yet, the final conclusion about steroid activity can only be given after the 
investigation of their influence on mechanical durability of the bone (Turner et al., 1994; Sato 
et al., 1999). All the works in this part were investigating naturally occurring steroids.  
As we have already noted the significant structural similarity between natural steroids and 
their 8-analogues, the osteoprotective and uterotropic action of these compounds were 
investigated. In experiments with ovariectomized Wistar rats parallel change in those effects 
was observed. It was suggested that osteoprotective activity is dependent on nuclear -
receptor of estrogens (Morozkina et al., 2007). Hence analogues were chosen as model 
compounds, despite the fact that presence of methoxyl group at С-3 was expected to trigger 
the lowering of activity. However in this case carcinogenicity was also expected to be 
lowered. In the experiments with Sprague-Dowley rats compounds 104 and 105 were shown 
to possess the same osteoprotective activity as ethynylestradiol, although they were 
administered in higher doses (Morozkina et al., 2008). The presence of substituents in 
positions 2 and 4 cancels the osteoprotective effect. 
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changes in bone tissue, which mimic those occurring in aged women. At first phase of fast 
bone tissue loss triggered by accelerated bone remodeling occurs. Later on this process 
slows down. Trabecular tissue becomes depleted more so then cortical tissue. It should be 
noted that bone breaking is rarely observed in ovariectomized rats, thus is probably better to 
call this process osteopeny.  
There are known several models for testing steroids on animals. When investigating the action 
of compounds in mature rats at the age of 3 months intensive growth of bones in longitudinal 
direction should be taken into account. 75 Days old (Turner et al., 1994) rats are more suitable 
for the investigation; rats model (6-12 months), which has very few skeletal changes, are much 
harder to work with. To test bone state several parameters are used, such as «bone mineral 
density» (g/cm3) and «bone mineral content» (g/sm. length, g/sm2). Last parameter has linear 
correlation with bone mass (r=0.999) (Sato et al., 1995) and calcium contain in ash after bone 
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in mineral bone content can be measured. Results of dual-energy X-rays absorptiometry BMD 
correlate with fracture incidence and useful in evaluation progression of osteoporosis (Sharp 
et al., 2000). Yet, the final conclusion about steroid activity can only be given after the 
investigation of their influence on mechanical durability of the bone (Turner et al., 1994; Sato 
et al., 1999). All the works in this part were investigating naturally occurring steroids.  
As we have already noted the significant structural similarity between natural steroids and 
their 8-analogues, the osteoprotective and uterotropic action of these compounds were 
investigated. In experiments with ovariectomized Wistar rats parallel change in those effects 
was observed. It was suggested that osteoprotective activity is dependent on nuclear -
receptor of estrogens (Morozkina et al., 2007). Hence analogues were chosen as model 
compounds, despite the fact that presence of methoxyl group at С-3 was expected to trigger 
the lowering of activity. However in this case carcinogenicity was also expected to be 
lowered. In the experiments with Sprague-Dowley rats compounds 104 and 105 were shown 
to possess the same osteoprotective activity as ethynylestradiol, although they were 
administered in higher doses (Morozkina et al., 2008). The presence of substituents in 
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We assumed that steroid 106 may have osteoprotective action on the analogy with tibolone. 
It was confirmed experimentally; however compound 106 has embriotoxic action in 
experiments of contraceptive properties investigations which possibly decreases 
significantly the perspectives of such analogues. 
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        CP335156 (Lasoxifen)                     HMR3339                             Bazedoxifene 
                        111                                           112                                           113 
As ER modulators are capable of displaying antagonistic properties in uterus and mammary 
gland while retaining agonistic features in bone, perspectives of using such compounds as 
osteoprotectors was investigated. Raloxifene has very effective osteoprotective properties. 
Clinical studies have shown that, aside from osteoprotective effects, the risk of breast cancer 
was also lowered (Fontana & Delmas, 2001). Interestingly that osteoprotective effect of 
raloxifene is not always mediated by ERs (Miki et al., 2009), and as the result the properties 
of its analogues may be quite interesting. However it was established that raloxifene in this 
case has some negative properties, peculiar to typical estrogens (high risk of hot flashes, leg 
crumps and venous thrombosis (Deal & Draper, 2006). In view of the aforesaid it is worth to 
remember about earlier synthesized compound LY357489 (Grese et al., 1998), whose 
osteoprotective action is significantly higher in comparison with raloxifene. This compound 
is the conformationally restricted raloxifene’ analogue; its selective action was explained by 
specificity of interaction with ERs. Probably, it is necessary to investigate the mechanism of 
this compound’ action.       
Lately a huge number of SERMs with osteoprotective action have been synthesized, for 
example droloxifene 107 (Ke et al., 1995; Chen, H.K. et al., 1995), LY 353381 (arzoxifene 110) 
(Sato et al., 1998; Ma et al., 2002), lasofoxifen (CP-336,156) 111 (Ke et al., 1998; 2000, 2004), 
GW5638 109 (Wilsson et al, 1997) and many other compounds with interesting biological 
properties. For example, lasoxifen (CP-336,156) showed osteoprotective and cholesterol-
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lowering properties, decreased body weight in the experiments on ovariectomized rats. This 
compound had osteoprotective action in adult male orchideectomized rats, and has not 
influence on prostate (Ke et al., 2000). 
Droloxifene showed interesting biological properties in the experiments with animals, such 
as osteoprotective action in aged female rats (Chen, H.K. et al., 1995). However it was 
shown to be less effective then tamoxifen in breast cancer treatment clinical studies, so its 
investigation was stopped (Vogelvang et al., 2006).     
Lasoxifen showed osteoprotective and cholesterol-lowering action while lowering body 
weight of ovariectomized rats. This compound also displayed osteoprotective properties in 
adult male orchideectomized rats while having no effect on prostate (Ke et al., 2000). As far 
as we are aware, effectiveness of lasofoxifen have not undergone clinical studies.  
Idoxifene was used in clinical trials on patients, whose tumors were resistant to tamoxifen, 
however third-generation aromatase inhibitors took its place, clinical data about its 
osteoprotective properties are conflicting (Vogelvang et al., 2006).  
Preliminary studies of breast cancer treatment by HMR3339 and its osteoprotective 
properties provided results that may be considered positive (Vogelvang et al., 2006).    
Bazedoxifen possesses promising properties. As a result of 5 years long clinical study on 
4216 patients in postmenstrual period good osteoprotective properties were found 
(Silverman et al., 2010).  
We have already mentioned the possibility of agents’ synthesis in 8-analogues of steroid 
estrogens series with osteoprotective properties. Preliminary results are presented in Table 
3. 17-ethynylestradiol was used as standard.  
 
Group of experimental rats 
(number of animals in the 
group) 

Change of 
body weight,

Uterine weight, 
mg/100 g of 
body weight 

Ash femur 
weight/wet 

femur weight 

Bone mineral 
density, 
g/cm2 

Sham-operated (10) 29±3* 154 ± 4* 0.432±0.007* 0.258±0.005* 
Ovariectomized (15) 60±5 22.7 ± 0.5 0.398 ±0.005 0.231±0.003 
Ovariectomized, treated 
with EE (10)  12±4* 140± 6** 0.433±0.005* 0.255±0.006* 

Ovariectomized, treated 
with steroid 69a (10) 7 ± 4* 148± 6** 0.425±0.006* 0.258±0.007* 

Ovariectomized, treated 
with raloxifen (10) 33±5* 46.5 ± 2.6* 0.430±0.007 0.245±0.006* 

Ovariectomized, reated 
with raloxifen and steroid 
69a (15)  

38±5* 31.2 ± 1.2* 0.425±0.005* 0.248±0.006* 

Signs * and ** mean statistically significant difference between studied group and group of 
ovariectomized animals, р<0.05 and р<0.01 (Students t-criterion).  

Table 3.  

According to the data, this compound possesses osteoprotective properties. Also, in contrast 
to action of 17-ethynylestradiol and steroid, combination of compound and raloxifene did 
not trigger hypertriglyceridonemy, yet cholesterol-lowering effect remained. There is no 
doubt that investigations regarding properties of 8-series steroids are of great importance. 



 
Steroids – Basic Science 

 

196 

We assumed that steroid 106 may have osteoprotective action on the analogy with tibolone. 
It was confirmed experimentally; however compound 106 has embriotoxic action in 
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As ER modulators are capable of displaying antagonistic properties in uterus and mammary 
gland while retaining agonistic features in bone, perspectives of using such compounds as 
osteoprotectors was investigated. Raloxifene has very effective osteoprotective properties. 
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lowering properties, decreased body weight in the experiments on ovariectomized rats. This 
compound had osteoprotective action in adult male orchideectomized rats, and has not 
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as we are aware, effectiveness of lasofoxifen have not undergone clinical studies.  
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estrogens series with osteoprotective properties. Preliminary results are presented in Table 
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Group of experimental rats 
(number of animals in the 
group) 

Change of 
body weight,

Uterine weight, 
mg/100 g of 
body weight 

Ash femur 
weight/wet 

femur weight 

Bone mineral 
density, 
g/cm2 

Sham-operated (10) 29±3* 154 ± 4* 0.432±0.007* 0.258±0.005* 
Ovariectomized (15) 60±5 22.7 ± 0.5 0.398 ±0.005 0.231±0.003 
Ovariectomized, treated 
with EE (10)  12±4* 140± 6** 0.433±0.005* 0.255±0.006* 

Ovariectomized, treated 
with steroid 69a (10) 7 ± 4* 148± 6** 0.425±0.006* 0.258±0.007* 

Ovariectomized, treated 
with raloxifen (10) 33±5* 46.5 ± 2.6* 0.430±0.007 0.245±0.006* 

Ovariectomized, reated 
with raloxifen and steroid 
69a (15)  

38±5* 31.2 ± 1.2* 0.425±0.005* 0.248±0.006* 

Signs * and ** mean statistically significant difference between studied group and group of 
ovariectomized animals, р<0.05 and р<0.01 (Students t-criterion).  

Table 3.  

According to the data, this compound possesses osteoprotective properties. Also, in contrast 
to action of 17-ethynylestradiol and steroid, combination of compound and raloxifene did 
not trigger hypertriglyceridonemy, yet cholesterol-lowering effect remained. There is no 
doubt that investigations regarding properties of 8-series steroids are of great importance. 
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The new area in synthesis of compounds with osteoprotective properties should be noted – 
the creation of hybrid molecules having steroid and peptide fragments, for example 
compounds (Wang et al., 2003). Such compounds have stronger action in the experiments 
on rats in comparison with sum of action of these compounds.   
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Peptidylsteroid 114 has very interesting properties (Yokogawa et al., 2006). This hybrid 
compound during intranasal administration has a potent antiosteoporotic effect without 
side effects in experiments on female ddY mice.  
In the treatment of estrogen-sensitive conditions aromatase inhibitors are to be used 
sometimes, which triggers estrogen concentration to drop, increasing osteoporosis and 
cardiovascular disease risk (Ponzone et al., 2008; Reid, 2009; Gennari et al., 2011). In each 
case the decision in using a drug depends on individual features of the patient. Usage 
combined drugs, which have calcitriol as a part of them, might prove useful to lower 
osteoporosis (Krishnan et al., 2010).      

7. Steroid estrogens and cardiovascular system 
Coronary heart diseases (CHD) is rare, and the incidence of CHD complications is much 
lower in premenopausal women then in man or postmenopausal women of similar age. 
After menopause the gender difference is lost and the incidence of CHD complications in 
women gradually approach that the men. In addition, menopause adversely affects several 
risk factors for CHD. It allows to assume the important role of estrogens in the protection of 
body from coronary heart diseases and expediency of their use as HRT medications.  
Protective effect of estrogens has been shown in various animal models. 
Rats have been used as a model system to study estrogenic effects on plasma lipid levels 
(Lundeen et al., 1997). On the whole this model has a lot of restrictions, first of all the main 
one is the predominant plasma cholesterol is HDL, not LDL, as it is in human. There are 
known: mouse models of atherosclerosis (Hodgin & Maeda, 2002) on rabbits (Haarbo & 
Christiansen, 1996) and primates (Adams et al., 1990). In all cases the main is the evaluation 
of influence of estrogens on the development of atherosclerotic plaque or lesion. In most 
cases it was shown the inhibitory activity of estrogens on atherosclerosis development.   
Firstly it was postulated that main antiatherosclerotic action of estrogen is caused by the 
ability to decrease cholesterol level in serum; however in a number of investigations it was 
shown that this mechanism is not obligatory (Shavva et al., 1987; Holm et al., 1997). 
At the present time it is postulated that atheroprotective effects of estrogen may be mediated 
by their nuclear receptors. ERα was found in endothelial cells (Venkov et al., 1996), in 
smooth-muscle cells (Karas et al., 1994) and in myocardial cells. A number of authors 
maintain the opinion about the importance for protective functions both ERα (Gerard’es et 
al, 2006; Pare at al., 2002), and ERβ (Watanabe et al., 2003). It is impossible to note the 
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experimental data, showing the cardioprotective activity of estrogens, which is not mediated 
by nuclear receptors (Shavva et al., 1987; Karas et al., 2001). 
Estrogens increase vasodilatation and inhibit the response of blood vessels to injury and the 
development of atherosclerosis, this action is referred to non genomic, this develops 
maximum after 20 min after estrogen introduction (Mendelsohn & Karas, 1999). Fast 
vasodilatation is possible due to the influence on both calcium-activated potassium ion-
channel function (Ghanam et al., 2000), and on the synthesis of nitric oxide (the last relaxes 
vascular smooth muscle and inhibits platelet activation (Holm et al., 1997; Node et al., 
1997). More detailed ways of non-genomic effects have been considered by Mendelsohn & 
Karas (1999).   
Of crucial importance is the influence of agents on hemodynamic functions (Borissoff et al., 
2011). 
One more factor of risk of arising of atherosclerosis and thrombosis is higher content of 
oxidized lipoproteins, possible mechanism of these diseases have been considered 
(Steinberg et al., 1989; Holvoet & Collen, 1994). 
Antioxidant action of estrogens has been widely studied in vivo and in vitro. Besides its 
effects on LDL-oxidation (Maziere et al., 1991; Markides et al., 1998; Ruiz-Larrea et al., 
2000; Badeau et al., 2005), it has reported that estrogens decreased lipid peroxidation in 
brain homogenates and neuronal cultures (Vedder et al., 1999; Thibodeau P. et al., 2002), 
reduced the superoxide anion production of different cells (Bekesi et al., 2000; Florian et al., 
2004). All these effects may contribute to the beneficial consequences of estrogen 
replacement on the cardiac and vascular function, bone and mineral metabolism, brain 
function.      
In the experiments on rabbits with hypercholesterinemic diet it was shown that 17-
dihydroequilin sulphate and 17-ethynylestradiol significantly reduce atherosclerosis by 
35% in the aortic arch and 75-80% in the thoracic and abdominal aorta, in spite of high level 
of LDL cholesterol (Sulistiany at al., 1995). High ration between HDL and LDL level is 
important but is not absolute parameter in prognosis of cardio-heart diseases risk. Clinical 
trials of estrone sulphate (at the same time 17-ethynylestradiol has been investigated) in 
postmenopausal women have shown the significant improvement of this parameter. It is 
important that the action of estrone sulphate did not result in triglycerides level increasing 
in contrast to 17-ethynylestradiol (Colvin et al., 1990).   
Thus, numerous investigations on animal models (we described only few of them) give the 
evidence about the advisability of application of estrogens for HRT. First clinical trials for 
using of estrogens with this aim gave optimism, however wide-ranging investigations did 
not confirm the expectations. In older postmenopausal women with established coronary-
artery atherosclerosis, 17β-estradiol had no significant effect on the progression of 
atherosclerosis (Hodis et al., 2003). Moreover, the combination: estrogen plus progestin may 
increase the risk of CHD (Manson et al., 2003). This is very important effect, because the 
content of triglycerides in blood is the independent factor of risk of cardio-vascular diseases 
(Koren et al., 1996). 
This difference is very important because the increased level of triglycerides in blood is the 
independent factor of risk of cardiovascular diseases (Koren et al., 1996). 
From other side, main and side effects of any medication depend on/from methods of the 
introduction into the body. Therefore the positive results obtained during transdermal 
introduction of estradiol takes attention (Sumino et. al., 2006). Oral estrogens raised 
triglycerides whilst transdermal estradiol lowered those (Nerbrand et al., 2004). The 
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conclusion about propriety of such introduction of estrogens may be done only after wide-
ranging long-term investigations.  
The investigations of influence of estrogen receptors modulators, being already in clinical 
application, on coronary heart system have particular interest. First of them is raloxifen. 
Raloxifene blocks the sedimentation of redundant cholesterol in aorta in the experiments on 
rabbits (Bjarnason et al., 1997; 2001).    
One more new steroid has interesting properties (Pelzer et al., 2005), this analogue in the 
experiments in estrogen-deficient spontaneously hypertensive rats has positive influence on 
hemodynamic function and inhibits cardiac hypertrophy.  

8. Conclusion  
From the data presented it became obviously the strategy for the searching of new 
medications on the basis of estrogen receptors ligands with the improved properties in 
comparison with clinically used. As far as the synthesis of such ligand is very complicated 
task, on the first stage the group with known structure peculiarities in the solution 
(including conformational dynamics) and determinate the possibilities for theoretical 
calculations of their spatial structure. The following docking of new possible agents into 
structures of macromolecule compounds (receptors, enzymes and other proteins) is used for 
the selection of most perspective compounds. And it is quite necessary to take into account 
the metabolic ways of new analogues.  
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ERβ), Glucocorticoid Receptor (GR), Mineralocorticoid Receptor and Progesterone Receptor 
(PR), have been crucial targets for drug discovery even before their existence was known or 
understood. The drugs on the market for this sub-class of the nuclear hormone receptors 
constitute a significant pharmacopeia for the treatment of a vast array of conditions and 
ailments. Despite the breadth of drugs targeted toward this family, they remain an 
important target for the pharmaceutical industry. 
Key considerations when designing drugs for any family, beyond the on-target 
pharmaceutical action and safety, is to ensure specificity against related targets, exploration 
of the most appropriate routes of administration and desirable pharmacokinetic (PK) 
profiles. Developing non-steroidal modulators for the steroid receptor family has been a key 
strategy employed to achieve these goals, although there appears to be growing consensus 
that not being steroidal is insufficient to justify new drugs on its own (Hermkens et al, 2006). 
Unlike targeting many families, steroid hormone receptor drug discovery also has to 
balance the need to elicit either agonistic or antagonistic responses depending on the desired 
indication.  
The history of drug discovery for the steroid hormone receptors has tended to follow a 
common path, beginning with the application of purified endogenous hormone and 
followed by the application of the first synthetic analogs with improved PK properties or 
selectivity. For some of the receptors this period was followed by the design of antagonists, 
including non-steroidal structures. More recently, steroid hormone drug discovery has been 
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dominated by the search for ligands characterized by partial agonistic or partial antagonistic 
responses, the so called selective modulators. It is hoped and expected that partial agonists 
and antagonists for the various receptors will provide improved therapeutic profiles. For 
example, selective GR modulators (SGRMs) could provide their anti-inflammatory action 
without the undesirable side-effects, including osteoporosis and diabetes, currently 
associated with oral glucocorticoids (Hudson, Roach, and Higuchi, 2008). Selective ER 
modulators (SERMs) hold the promise of being active on bone but not breast or endometrial 
tissue (Shelly et al, 2008;Silverman, 2010), whereas a desirable profile for a selective AR 
modulator (SARM) would likely have a greater action in bone and muscle compared to the 
prostate (Gao and Dalton, 2007). 

2. Molecular basis for partial agonism 
The shared domain structure of steroid receptors includes a variable N-terminal domain, a 
highly conserved DNA-binding domain and a moderately conserved ligand-binding 
domain (LBD). The LBD domain tends to be the primary target for drug-design. The LBD 
combines a number of functions, including hormone binding, receptor dimerization and 
binding to other co-modulating proteins that play a role in the control of transcription. 
These functions have the ability to influence each other, with ligand-binding, as an example; 
influencing the pattern of co-modulator recruitment. Specifically, gene activation requires 
the recruitment of co-modulating proteins to a region of the surface of the LBD formed by 
helices 3/4, 5 and 12. The position of helix-12, as we will discuss, can be influenced by the 
nature of the ligand bound to the receptor allowing drugs to influence the binding of co-
modulators and consequently gene activation and the resulting biological effects (Bourguet, 
Germain, and Gronemeyer, 2000;Egea, Klaholz, and Moras, 2000;Kumar and Thompson, 
1999;Weatherman, Fletterick, and Scanlan, 1999).  
Understanding the molecular basis for partial agonism is hampered by the difficulty in 
solving the X-ray structures of steroid-receptors in general and specifically complexes 
including partial active ligands (Nettles et al, 2008). Full agonists stabilize the receptor, and 
specifically helix-12, in a conformation suited to binding co-activating proteins and full 
antagonists stabilize the receptor in a conformation suited to binding co-repressing proteins. 
The apparent reason for the difficulty in co-crystallizing partial agonists is that they do not 
fully stabilize the receptor in either conformation, adopting some degree of equilibrium 
between the two (Nettles et al, 2008;Raaijmakers, Versteegh, and Uitdehaag, 2009). This 
equilibrium allows partially active compounds to bind unique patterns of co-modulators 
compared to full agonists and antagonists, resulting in their potentially interesting 
biological effects. Unfortunately as a result it also renders them poorly suited to co-
crystallization studies. 
The degree of partial activity (how far from either a full agonist or antagonist response) will 
go some way to determining the profile of co-modulators which will bind. Additionally, the 
ratio of co-activators compared to co-repressors in each cell type will influence the biological 
effect of a partial compound. In cells with a high co-activator concentration we would expect 
partial compounds to show a greater degree of agonistic activity compared to the same 
ligand in a cell with a high co-repressor concentration. The limitless combination of ligand 
partiality and co-modulator distribution appears to be a major contributor to the tissue 
selective responses of partial compounds. 
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3. Mechanisms for ligand-induced partial agonist design 
In the absence of a complete record of X-ray structures of steroid receptors bound to 
agonists, antagonists and partially active compounds, we have to fill in the knowledge gaps 
with mutation studies and ligand-based structure-activity relationships (SAR). Even with 
this extra information, our understanding of the mechanisms underpinning the 
repositioning of helix-12 and the resulting spectrum of partial responses remains relatively 
naive, but there do appear to be a small number of approaches available to the drug 
designer who wishes to rationally influence the degree of agonism elicited by their 
compound series. 
1. Sterically impede the agonistic orientation of Helix-12 
2. Disrupt the function of other indirect stabilizing interactions. 
3. Influence the position of Helix-12 by modulating the end of Helix-11 and the loop 

between Helices 11 & 12. 
4. Reduce the stabilizing interactions between the ligand and Helix-12. 
5. Straighten Helix-3, and/or disrupt interactions between Helices 3 & 5. 
Incorporating these approaches into the optimization of steroid receptor ligands allows the 
drug-designer to modulate the degree of agonistic and antagonistic response their 
compounds induce. Pharmacologically it remains difficult to define a priori the precise 
agonistic or antagonistic efficacy (percentage effect or intrinsic activity) required for any 
desired indication, but it is now possible to generate a series of ligands with tuned efficacies 
to cover a broad range and then utilize molecular profiling approaches to select the most 
desirable. 
The five basic approaches for generating partially active compounds have been deduced by 
numerous studies from all members of the steroid receptors and nuclear receptor family in 
total. For the purposes of this review we present a single receptor case study to demonstrate 
each of the five mechanisms, but wish to stress that to a greater and lesser degree all 
mechanisms should be applicable to all steroid receptors. 

3.1 Sterically impede the agonistic orientation of helix-12 
3.1.1 Case study: the progesterone receptor 
Steroidal anti-progestins are typically differentiated structurally from progestins by the 
presence of a bulky attachment at their position 11 (Madauss, Stewart, and Williams, 
2007). Recent publications of the anti-progestin Mifepristone (Raaijmakers, Versteegh, and 
Uitdehaag, 2009) and the SPRM Asoprisnil (Madauss et al, 2007) clearly demonstrate that 
the role of this bulky attachment is to clash with helix-12 and preclude it from adopting its 
required agonistic position. Both studies also demonstrate an important role specifically 
for Met909 in the agonism/antagonism balance. Met909 sits within helix-12 at the C-
terminal end of the ligand binding domain (LBD), and in the classic agonist conformation 
of the receptor, is oriented toward the ligand binding pocket. Met909 is typically the only 
helix-12 residue directly in contact with ligands. The nature of the ligand-Met909 
interactions appears to be a key determinant of the receptors function (Petit-Topin et al, 
2009). Clashes between Met909 and ligands are likely to destabilize helix-12 (Raaijmakers, 
Versteegh, and Uitdehaag, 2009), which results in a reduced agonistic response. It has 
even been suggested that the degree of clash with Met909 might correspond directly to 
the reduction in agonism (Madauss, Stewart, and Williams, 2007), but this has yet to be 
shown categorically. 
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Introducing bulky groups onto PR modulating non-steroidal scaffolds has also been 
demonstrated to result in partial agonists on a number of occasions (Jones et al, 
2005;Kallander et al, 2010;Thompson et al, 2009;Washburn et al, 2009). 

3.1.2 Additional examples 
The existence of a clash between antagonists and helix-12 was first demonstrated for ER by 
studies comparing the X-ray structures of Estradiol to Raloxifene (Brzozowski et al, 1997) 
and Diethylstilbestrol to Tamoxifen (Shiau et al, 1998). Numerous reviews of these two 
studies have been published (Hubbard et al, 2000;Kong, Pike, and Hubbard, 2003;Mueller-
Fahrnow and Egner, 1999;Pike et al, 2000;Pike, Brzozowski, and Hubbard, 2000) as have 
many further studies on the X-ray structures of SERMs, full antagonists and full agonists 
bound to the ERs (Blizzard et al, 2005;Dykstra et al, 2007;Heldring et al, 2007;Kim et al, 
2004;Renaud et al, 2003;Renaud et al, 2005;Tan et al, 2005;Vajdos et al, 2007). 
 

 
Fig. 1. Binding of PR agonist Norethindrone (orange) from X-ray structure compared to PR 
antagonist Mifepristone (green) demonstrating clash between antagonists and Met909 in 
helix-12. 

The same helix-12 clash has also been demonstrated for AR (Cantin et al, 2007) and GR 
(Schoch et al, 2010) in recent X-ray structure determination studies. It was also suggested for 
GR by a mutagenesis study (Hillmann et al, 2002) that showed that mutating Leu753 
(equivalent to Met909 in PR) to a phenylalanine results in a receptor defective in 
transactivation. We can conclude that the reason for this loss of activation is that an increase 
in the size of the residue at this position prevents helix-12 from adopting its agonistic 
conformation due to a clash with the ligand. 
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3.2 Disrupt the function of direct stabilizing interactions 
3.2.1 Case study: the androgen receptor 
The binding of testosterone and dihydrotestosterone to AR demonstrate the existence of 
crucial receptor stabilizing interactions mediated by agonistic ligands. As we will discuss 
later, the loop between helix-11 and helix-12 is a key region for mediating partial agonism. 
As shown in figure 2, AR is stabilized by a ligand mediated hydrogen-bond network from 
Thr877 in helix-11 to the 17β-OH group in the endogenous steroidal agonists to Asn705 in 
helix-3 and finally to the backbone of Asp890 in the loop itself (Matias et al, 2000). 
Hydroxyflutamide is the active metabolite of the androgen receptor antagonist flutamide. Its 
antagonism appears to be a result of its inability to complete the entire network of 
stabilizing hydrogen-bonds (Bohl et al, 2005) also shown in figure 2. The result is that 
Thr877 is left buried in a predominately hydrophobic pocket, destabilizing the receptor and 
shifting the agonist-antagonist equilibrium. 
 

 
Fig. 2. Left shows the X-ray structure of DHT bound to AR including full hydrogen-bond 
network. Right shows a model of hydroxyflutamide bound to AR based on the X-ray 
structure of hydroxyflutamide bound to an AR-T877A mutant. 

3.2.2 Additional examples 
The residue equivalent to AR residue Asn705 in MR is Asn770. Extensive X-ray, SAR and 
mutation studies have been conducted on Asn770 which demonstrate clearly the existence 
of a ligand-mediated hydrogen bonding network which is critical for the activation of MR in 
a similar fashion to the one described for AR (Bledsoe et al, 2005;Hellal-Levy et al, 2000).  
Agonistic steroidal ligands for GR and MR are typified by 11β-hydroxyl groups which 
hydrogen bond to Asn564 in GR and Asn770 in MR respectively. Despite the similarity 
between MR and PR, the endogenous PR agonist progesterone behaves as an antagonist of 
PR. This appears to at least in part be due to a lack of an 11β-hydroxyl group on 
progesterone. It is interesting how the lack of the hydroxyl group doesn’t disturb the 
agonistic activity of PR but does MR. 
Another important example of disrupting the function of stabilizing interactions can be seen 
in the estrogen receptors. In addition to their role in sterically precluding helix-12, SERM 
side-chains also contain an important basic amine function which is almost ubiquitous 
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in the estrogen receptors. In addition to their role in sterically precluding helix-12, SERM 
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amongst this drug class. The role of this nitrogen is to form a salt-bridge to Asp351 in helix-3 
of ERα (Asp303 in ERβ). The importance of this salt-bridge is that it requires Asp351 to 
adopt a new conformation and prevents it from undertaking is usual function of stabilizing 
the agonistic position of helix-12 by hydrogen-bonding to backbone residues in the helix. It 
also appears that the exact nature of the interaction between the basic amine and Asp351, 
including angle, distance and perhaps pKa can influence the biological effect of the ligands. 

3.3 Modulate the end of helix-11 & the loop between helices-11 & 12 
3.3.1 Case study: the glucocorticoid receptor 
Due to the difficulty in crystallizing partial agonists in complex with steroid-receptors much 
of the evidence to support these mechanisms has to be inferred from other indirect sources. 
Some of the most valuable evidence comes from mutagenesis studies including those that 
indicate that the loop between helix-11 and helix-12 is a hotspot that is crucial to the 
agonism/antagonism balance in GR. 
Mutation of Ile747, which sits in the middle of the helix-11 to helix-12 loop, to methionine 
results in GR having a reduced transactivation potential without affecting the binding of 
classic glucocorticoids (Vottero et al, 2002). Presumably, the increased size of the residue 
prevents the correct packing of the loop and therefore destabilizes helix-12. 
Tyr735 at the end of helix-11 is a surface residue whose role is poorly understood, but it has 
been shown that various mutations (W735F, W735V and W735S) result in a receptor with 
significant reduction in transactivation activity without affecting ligand binding (Ray et al, 
1999;Stevens et al, 2003). 
Thr739 is the last residue in helix-11 whose mutation to alanine has no effect on the binding 
of triamcinolone acetonide, but does result in a 16-fold reduction in transactivation (Lind et 
al, 2000). 
In addition to these mutation studies, as discussed already, there is also overwhelming 
evidence across the family to support the hypothesis that Asn564 is crucial for the agonistic 
activity of GR and related receptors (Bledsoe et al, 2005;Bledsoe, Stewart, and Pearce, 
2004;Fagart et al, 1998;Hellal-Levy et al, 2000;Necela and Cidlowski, 2003;Rafestin-Oblin et 
al, 2002). The role of Asn564 (Asn705 in AR, Asn770 in MR) was previously discussed. 
Tyr735, Thr739 and Ile747, as shown in Fig 3, are all located at the end of helix-11 or in the 
following loop. Asn564 has an important role in stabilizing the loop. The studies associated 
with each of these residues indicate how sensitive this region to influencing the agonism/ 
antagonism balance and therefore the potential to modify its function by ligand design. 
The helix-11 to helix-12 loop in steroid-receptors is well suited to drug-design intervention 
as it forms around the 17β group of steroids and is therefore likely to be in close proximity 
to most ligands. 
Bledsoe and colleagues recognized the importance of this region when solving the first GR-
Dexamethasone structure (Bledsoe et al, 2002;Bledsoe, Stewart, and Pearce,2004) as did the 
group of Kauppi when solving GR complexed with Dexamethasone and RU486, including 
noting the flexibility of this loop (Kauppi et al, 2003). 

3.3.2 Additional examples 
The importance of the loop region between helix-11 and helix-12 has also been 
demonstrated by X-ray structure studies for ERα (Pike et al, 1999;Shiau et al, 1998), and 
mutagenesis studies on MR also support the conclusion that this region of the steroid-
receptors is crucial for the agonism/antagonism balance (Fagart et al, 2005). 
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Fig. 3. The loop between helix-11 and helix-12 illustrating key residues believed to influence 
GR function 

3.4 Reduce the stabilizing interactions between the ligand and helix-12 
3.4.1 Case study: the estrogen receptors alpha & beta 
Methods for antagonizing or reducing the agonism of steroid receptors that do not involve 
direct steric clashes with the receptor are often referred to as “passive antagonism”. This 
term was coined by the group of Geoffrey Greene to explain their observations when 
studying the binding of tetrahydrochyrsene (THC) and its interactions with ERα and ERβ 
(Shiau et al, 2002). 
THC is an ERα agonist and an ERβ antagonist. The group of Greene was able to conclude, 
after generating X-ray structures of both complexes that THC stabilizes ERα in its agonist 
conformation but ERβ is in an antagonist conformation. This difference on its own is of 
significant interest, but the study also demonstrated that the reason for ERβ not adopting an 
agonist conformation was due to missing stabilizing interactions between the receptor and 
the ligand. They observe that in ERβ residues Leu476 and Met479 are not positioned 
correctly by the ligand to form interactions with relevant residues in helix-12 to stabilize its 
agonist conformation. The result is a failure of THC to stabilize the agonist conformation of 
helix-12 and therefore a shift in the agonist-antagonist equilibrium. The fact that THC has 
such differing effects on two such similar receptors illustrates the challenge when following 
this or any of the five described approaches in drug-design. 

3.5 Straighten helix-3, and/or disrupt interactions between helices-3 & 5 
3.5.1 Case study: the mineralocorticoid receptor 
It is generally accepted that steroid-receptor activation is facilitated by interactions between 
helix-3 and helix-5. The correct positioning of the basic component of the charge clamp 
(Lys579 in GR and Lys785 in MR) and the formation of the hydrophobic pocket in which co-
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activators bind is dependent on a bend forming in the middle of helix-3. That bend in helix-3 
is induced by a ligand mediated hydrogen bond to helix-5 via the 3-keto group of steroidal 
ligands. It was initially believed that the importance of the classic interactions between the 
3-keto group of steroids and the Glutamine (Glutamate in ERα and ERβ) and Arginine 
residues in steroid hormones was purely to ensure potent binding of the steroids, but the 
work of Bledsoe (Bledsoe et al, 2005) and Huyet (Huyet et al, 2007) have demonstrated that 
is also has a role in the agonism-antagonism balance. Huyet et al demonstrated that 
mutation of either Gln776 or Arg817 in MR to alanine results in previously ligand-mediated 
agonistic responses being lost.  
Bledsoe et al have further demonstrated the importance of this bend in helix-3 by 
characterizing the S810L mutation in MR. This mutation has the effect of stabilizing the 
agonist conformation of MR, rendering some antagonistic ligands to have an increased 
agonistic response. Their analysis shows that the role of the S810L mutation is to increase 
the hydrophobic stabilization between helix-3 and helix-5. 

3.5.2 Additional example 
A recent X-ray structure publication from our group suggests that PR antagonism seen in a 
compound series can in part be explained by a loss of these same interactions (Lusher et al, 
2011). 

4. Pictorial summary of five drug design approaches 

 
Fig. 4. Binding of Dexamethasone (DEX) to GR 
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4.1 Binding mode of DEX to GR illustrates each of the five design approaches  
The binding of Dexamethasone to the Glucocorticoid Receptor (GR) is shown to illustrate 
the five major routes for reducing agonist efficacy in steroid receptors via the destabilisation 
of the binding of co-activating proteins. Co-activating proteins bind in a hydrophobic pocket 
on the surface of the ligand-binding domain (LBD) stabilised by a charge-clamp formed by 
residues Lys579 in helix-3 and Glu755 in helix-12. [1] Direct clashes between ligands and 
helix-12 prevent Glu755 from adopting its necessary position and thus prevent the 
formation of the charge clamp. It has been shown for some receptors that clashes with helix-
12 result in the helix adopting a new orientation actually precluding the binding of co-
activators by binding in the required hydrophobic pocket. [2] It is probably therefore not a 
surprise that the positioning of helix-12 can be influenced by the residues that directly 
precede it. The loop before helix-12 influences its position and is clearly a hotspot that can 
influence degree of agonism by modifying the ligand. [3] Other interactions also help 
stabilise helix-12 in its agonist position. For example, in GR, there is a hydrogen-bond 
network from the ligand to Asn564 in helix-3 to Glu748 in the loop before helix-12. 
Disruption of this network, by perhaps removing the hydrogen-bonding function in the 
ligand, can influence the stabilisation of helix-12. [4] In a number of nuclear receptors Helix-
12 also makes direct hydrophobic interactions to the ligand. Loss of these interactions, by 
changing the properties of the ligand, can decrease the stabilisation of helix-12 and 
therefore alter the agonistic capability of the complex. [5] Finally, the first four approaches 
are directly or indirectly related to ensuring Glu755, as half of the charge-clamp, is 
correctly positioned. The second residue in the charge-clamp, Lys579, should not be 
overlooked. Lys579 is part of helix-3 which itself bends midway along its length. This 
bend is crucial for ensuring that Lys579 is in the correct position to form the charge-
clamp. The bend in helix-3 is partly as a result of its interaction with helix-5. For GR this is 
largely mediated by a hydrogen-bond network between Gln570 in helix-3, the ligand and 
Arg611 in helix-5. Disrupting this network by modifying the ligand may influence the 
distortion in helix-3 and therefore the correct formation of the charge-clamp and therefore 
co-activator binding. 

5. Other structure-based design considerations 
In addition to exploring the development of partial agonists, structure-based approaches 
continue to play an important role in the identification of new ligands via virtual screening 
approaches and other compound optimization tasks. An important lesson in this regard has 
been our change in understanding the dynamic nature of the steroid-receptor binding 
pocket. We have seen examples of extensive induced fits for amongst others the 
glucocorticoid receptor which is able to bind ligands beyond the conventional confines of its 
binding pocket whilst remaining in an agonistic conformation (Biggadike et al, 
2009;Madauss et al, 2008;Suino-Powell et al, 2008). The pocket, behind the crucial helix-3 
and helix-5 binding residues, Gln570 and Arg611, is normally water filled. It has already 
been demonstrated to be a viable ligand-binding region with the potential to improve ligand 
potency. An interesting note regarding the exploration of the pocket is that GSK report 
difficulty in combining the use of this pocket with the maintenance of partial agonism 
(Biggadike et al, 2009). PR has been shown to adapt to steroids baring bulky 17α groups 
(Madauss et al, 2004) and Trp741 in AR adapts to different ligands, adopting a new position 
to open an additional channel in the receptor (Bohl et al, 2005). 



 
Steroids – Basic Science 

 

228 

activators bind is dependent on a bend forming in the middle of helix-3. That bend in helix-3 
is induced by a ligand mediated hydrogen bond to helix-5 via the 3-keto group of steroidal 
ligands. It was initially believed that the importance of the classic interactions between the 
3-keto group of steroids and the Glutamine (Glutamate in ERα and ERβ) and Arginine 
residues in steroid hormones was purely to ensure potent binding of the steroids, but the 
work of Bledsoe (Bledsoe et al, 2005) and Huyet (Huyet et al, 2007) have demonstrated that 
is also has a role in the agonism-antagonism balance. Huyet et al demonstrated that 
mutation of either Gln776 or Arg817 in MR to alanine results in previously ligand-mediated 
agonistic responses being lost.  
Bledsoe et al have further demonstrated the importance of this bend in helix-3 by 
characterizing the S810L mutation in MR. This mutation has the effect of stabilizing the 
agonist conformation of MR, rendering some antagonistic ligands to have an increased 
agonistic response. Their analysis shows that the role of the S810L mutation is to increase 
the hydrophobic stabilization between helix-3 and helix-5. 

3.5.2 Additional example 
A recent X-ray structure publication from our group suggests that PR antagonism seen in a 
compound series can in part be explained by a loss of these same interactions (Lusher et al, 
2011). 

4. Pictorial summary of five drug design approaches 

 
Fig. 4. Binding of Dexamethasone (DEX) to GR 

 
Drug Design Approaches to Manipulate the Agonist-Antagonist Equilibrium in Steroid Receptors 

 

229 

4.1 Binding mode of DEX to GR illustrates each of the five design approaches  
The binding of Dexamethasone to the Glucocorticoid Receptor (GR) is shown to illustrate 
the five major routes for reducing agonist efficacy in steroid receptors via the destabilisation 
of the binding of co-activating proteins. Co-activating proteins bind in a hydrophobic pocket 
on the surface of the ligand-binding domain (LBD) stabilised by a charge-clamp formed by 
residues Lys579 in helix-3 and Glu755 in helix-12. [1] Direct clashes between ligands and 
helix-12 prevent Glu755 from adopting its necessary position and thus prevent the 
formation of the charge clamp. It has been shown for some receptors that clashes with helix-
12 result in the helix adopting a new orientation actually precluding the binding of co-
activators by binding in the required hydrophobic pocket. [2] It is probably therefore not a 
surprise that the positioning of helix-12 can be influenced by the residues that directly 
precede it. The loop before helix-12 influences its position and is clearly a hotspot that can 
influence degree of agonism by modifying the ligand. [3] Other interactions also help 
stabilise helix-12 in its agonist position. For example, in GR, there is a hydrogen-bond 
network from the ligand to Asn564 in helix-3 to Glu748 in the loop before helix-12. 
Disruption of this network, by perhaps removing the hydrogen-bonding function in the 
ligand, can influence the stabilisation of helix-12. [4] In a number of nuclear receptors Helix-
12 also makes direct hydrophobic interactions to the ligand. Loss of these interactions, by 
changing the properties of the ligand, can decrease the stabilisation of helix-12 and 
therefore alter the agonistic capability of the complex. [5] Finally, the first four approaches 
are directly or indirectly related to ensuring Glu755, as half of the charge-clamp, is 
correctly positioned. The second residue in the charge-clamp, Lys579, should not be 
overlooked. Lys579 is part of helix-3 which itself bends midway along its length. This 
bend is crucial for ensuring that Lys579 is in the correct position to form the charge-
clamp. The bend in helix-3 is partly as a result of its interaction with helix-5. For GR this is 
largely mediated by a hydrogen-bond network between Gln570 in helix-3, the ligand and 
Arg611 in helix-5. Disrupting this network by modifying the ligand may influence the 
distortion in helix-3 and therefore the correct formation of the charge-clamp and therefore 
co-activator binding. 

5. Other structure-based design considerations 
In addition to exploring the development of partial agonists, structure-based approaches 
continue to play an important role in the identification of new ligands via virtual screening 
approaches and other compound optimization tasks. An important lesson in this regard has 
been our change in understanding the dynamic nature of the steroid-receptor binding 
pocket. We have seen examples of extensive induced fits for amongst others the 
glucocorticoid receptor which is able to bind ligands beyond the conventional confines of its 
binding pocket whilst remaining in an agonistic conformation (Biggadike et al, 
2009;Madauss et al, 2008;Suino-Powell et al, 2008). The pocket, behind the crucial helix-3 
and helix-5 binding residues, Gln570 and Arg611, is normally water filled. It has already 
been demonstrated to be a viable ligand-binding region with the potential to improve ligand 
potency. An interesting note regarding the exploration of the pocket is that GSK report 
difficulty in combining the use of this pocket with the maintenance of partial agonism 
(Biggadike et al, 2009). PR has been shown to adapt to steroids baring bulky 17α groups 
(Madauss et al, 2004) and Trp741 in AR adapts to different ligands, adopting a new position 
to open an additional channel in the receptor (Bohl et al, 2005). 



 
Steroids – Basic Science 

 

230 

6. Conclusion 
As we look to the future of rational and structure-based drug design for the steroid receptors 
there remain key areas and questions that will dominate research in the short to medium term: 
1. Is each of the five described methods for generating partial compounds equally 

applicable for each of the receptors? It is generally considered true that ERβ is easier to 
antagonize than ERα. This is most likely due to the agonist conformation of ERβ being 
less intrinsically stable than ERα and therefore ensuring that ERβ is more sensitive than 
ERα in this respect (Pike et al, 1999). 

2. Does the choice of the mechanism for instilling partiality affect the eventual biological 
activity? Does a compound with a 40% reduction in agonistic activity due to a clash 
with helix-12 have the same biological effect as a compound with a 40% reduction in 
agonism due to the loss of other stabilizing interactions? 

3. As described earlier, partial agonists and antagonists are often poor candidates for co-
crystallization Recently we have seen the first publications describing methods to 
circumvent this problem, either by introducing stabilizing mutations into the receptor 
(Bohl et al, 2007;Fagart et al, 2005;Nettles et al, 2008;Sack et al, 2001) or by generating 
stable crystals of the receptor using a receptor stabilizing ligand and then exchanging 
this compound with other compounds of interest via soaking (Raaijmakers, Versteegh, 
and Uitdehaag, 2009). Both approaches have the potential to dramatically increase our 
understanding of the biological mechanisms underpinning partial agonism. 
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3. As described earlier, partial agonists and antagonists are often poor candidates for co-
crystallization Recently we have seen the first publications describing methods to 
circumvent this problem, either by introducing stabilizing mutations into the receptor 
(Bohl et al, 2007;Fagart et al, 2005;Nettles et al, 2008;Sack et al, 2001) or by generating 
stable crystals of the receptor using a receptor stabilizing ligand and then exchanging 
this compound with other compounds of interest via soaking (Raaijmakers, Versteegh, 
and Uitdehaag, 2009). Both approaches have the potential to dramatically increase our 
understanding of the biological mechanisms underpinning partial agonism. 
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