
Molecular Docking and 
Molecular Dynamics

Edited by Amalia Stefaniu

Edited by Amalia Stefaniu

This book clearly explains the principles of in silico tools of molecular docking and 
molecular dynamics. It provides examples of algorithms and procedures proposed 

by different software programs for visualizing and identifying potential interactions 
in complexes of biochemical interest. The book is structured in six chapters, each of 

which discusses different molecular simulation methodologies and provides concrete 
examples of complexes interactions. In each chapter authors give an overview of the 

treated subject, a description of the methodologies used, and a discussion of the results. 
The authors describe computational ways to achieve a rational design of bioactive 
compounds with various therapeutic applications, including antitumoral agents, 

antitubercular drugs, nonsteroidal anti-inflammatory drugs, and radiopharmaceuticals.

Published in London, UK 

©  2019 IntechOpen 
©  Oksana Raievska / iStock

ISBN 978-1-78984-091-9

M
olecular D

ocking and M
olecular D

ynam
ics





Molecular Docking and 
Molecular Dynamics

Edited by Amalia Stefaniu

Published in London, United Kingdom





Supporting open minds since 2005



Molecular Docking and Molecular Dynamics
http://dx.doi.org/10.5772/intechopen.77898
Edited by Amalia Stefaniu

Contributors
Evren Gundogdu, Emre Ozgenc, Emine Selin Demir, Meliha Ekinci, Makbule Asikoglu, Derya Ozdemir, 
Lucia Pintilie, Amalia Stefaniu, Xiongwu Wu, Bernard Brooks, Sentot Joko Raharjo, Stefan Paula, Adam 
McCluskey, Jennifer R Baker, Xiao Zhu

© The Editor(s) and the Author(s) 2019
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce 
the material. More details and guidelines concerning content reuse and adaptation can be found at 
http://www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2019 by IntechOpen
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, 7th floor, 10 Lower Thames Street, London,  
EC3R 6AF, United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Molecular Docking and Molecular Dynamics
Edited by Amalia Stefaniu
p. cm.
Print ISBN 978-1-78984-091-9
Online ISBN 978-1-78984-092-6
eBook (PDF) ISBN 978-1-78985-262-2



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,500+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

118,000+
International  authors and editors

130M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Amalia Stefaniu has a background in chemical engineering, ac-
quiring her bachelor’s degree at Politehnica University of Bucha-
rest, Faculty of Engineering, in Foreign Languages. She followed 
up her postgraduate academic studies in Drugs and Cosmetics 
with a master’s degree in Biotechnologies and Food Safety. She 
completed her PHD in Exact Sciences, Chemistry Domain, in 
2011 at University Politehnica of Bucharest, Faculty of Applied 

Chemistry and Materials Science, Department of Inorganic Chemistry, Physical 
Chemistry and Electrochemistry. She joined the National Institute for Chemical 
Pharmaceutical Research and Development, Bucharest, in 2001, where she worked 
as Chemical Research Engineer in Pharmaceutical Biotechnologies. Her current 
position is senior research scientist. Her researche focuses on properties prediction, 
mathematical modeling, molecular docking, and therapeutic compounds design.



Contents

Preface III

Chapter 1 1
Introductory Chapter: Molecular Docking and Molecular Dynamics  
Techniques to Achieve Rational Drug Design
by Amalia Stefaniu

Chapter 2 7
Binding of Chlorinated Phenylacrylonitriles to the Aryl Hydrocarbon  
Receptor: Computational Docking and Molecular Dynamics Simulations
by Stefan Paula, Jennifer R. Baker, Xiao  Zhu and Adam McCluskey

Chapter 3 19
In Silico Drug Design and Molecular Docking Studies of Some  
Quinolone Compound
by Lucia Pintilie and Amalia Stefaniu

Chapter 4 41
Virtual Screening of Sesquiterpenoid Pogostemon herba as Predicted 
Cyclooxygenase Inhibitor
by Sentot Joko Raharjo

Chapter 5 63
Protein-Protein Docking Using Map Objects
by Xiongwu Wu and Bernard R. Brooks

Chapter 6 79
Computational Study of Radiopharmaceuticals
by Emine Selin Demir, Emre  Ozgenc, Meliha  Ekinci, Evren Atlihan Gundogdu,  
Derya İlem Özdemir and Makbule Asikoglu



XIII

1

7

19

41

63

79

Contents

Preface 

Chapter 1 
Introductory Chapter: Molecular Docking and Molecular Dynamics 
Techniques to Achieve Rational Drug Design
by Amalia Stefaniu

Chapter 2 
Binding of Chlorinated Phenylacrylonitriles to the Aryl Hydrocarbon  
Receptor: Computational Docking and Molecular Dynamics Simulations 
by Stefan Paula, Jennifer R. Baker, Xiao  Zhu and Adam McCluskey

Chapter 3 
In Silico Drug Design and Molecular Docking Studies of Some 
Quinolone Compound
by Lucia Pintilie and Amalia Stefaniu

Chapter 4 
Virtual Screening of Sesquiterpenoid Pogostemon herba as Predicted 
Cyclooxygenase Inhibitor
by Sentot Joko Raharjo

Chapter 5 
Protein-Protein Docking Using Map Objects
by Xiongwu Wu and Bernard R. Brooks

Chapter 6 
Computational Study of Radiopharmaceuticals
by Emine Selin Demir, Emre  Ozgenc, Meliha  Ekinci, Evren Atlihan Gundogdu, 
Derya İlem Özdemir and Makbule Asikoglu



Preface

The rise of chemical information and development of structure databases, as well as
the need for new therapeutic agents or improved specific materials with controlled 
properties, has led to the development of chemoinformatic tools. These tools can
be used to design new molecules and to model their chemical and/or biochemical 
environment and interactions. Molecular docking and dynamic simulations are
such approaches whose methodologies have evolved in terms of accuracy. Thus, 
today researchers benefit from important in silico studies and new opportunities to
identify and propose new hit molecules further to chemical synthesis or isolation
from vegetal materials, as first step in the introduction in therapeutic practice of
new agents.

This book clearly explains the principles of molecular docking and molecular
dynamics. It includes examples of algorithms and procedures proposed by different
software programs for visualizing and identifying potential interactions in com-
plexes of biochemical interest.

The book is organized into six chapters, each one discussing different molecular
simulation methodologies and providing concrete examples of complex interac-
tions. In each chapter, the authors provide an overview of the treated subject, a
description of the methodologies used, and a discussion of the results.

Chapter 1 is an introductory chapter, familiarizing the reader with basic principles
and terminology of docking and dynamic simulations.

Chapter 2 addresses one of the most common cancer diagnoses in women, breast
cancer. The authors use homology modeling, ligand docking, and molecular
dynamic simulations to explore aryl hydrocarbon receptor (AhR) structure and to
identify its suitable binding site for some aromatic acrylonitrile ligands, potential 
drug candidates in therapeutics of breast malignancies. The work highlights the
usefulness of homology modeling in cases when the protein domain of interest is
not yet described and characterized by X-ray crystallography. The employed meth-
odologies could serve to assess other compounds’ potency as anticancer agents, in
virtual screening, before chemical synthesis, evaluation, and pre-clinical trials.

In Chapter 3, the authors report results of docking simulations using quinolone
derivatives to evaluate their potential antitumoral and antimycobacterial activity, 
compared to the standard therapeutic compounds of topotecan and levofloxacin.

Chapter 4 gives a detailed overview of molecular recognition occurring in protein-
ligand complexes, based on various type of interactions and other factors (sur-
rounding solvent, ionization effects, conformational changes, entropy, desolvation, 
etc.) important for the understanding of biological functions and therapeutic
action. The authors underline the importance of proper selection of modeling pro-
tocols to obtain desired accuracy. A virtual screening of sesquiterpenoid alcohols
against cyclooxygenase isoenzymes is realized in an attempt to design and develop
new nonsteroidal anti-inflammatory drugs.
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In Chapter 5, the authors describe a new implemented methodology to perform 
protein-protein docking by introducing map objects. This approach should solve the 
problem of molecular description of very large biomolecular assemblies. Authors 
use as an example a T-cell receptor variable domain to illustrate the modeling pro-
cess with map objects and acetylcholine binding protein (ACHBP) to construct its 
pentamer using protein-protein docking methodology. Their molecular modeling 
results can be further extended to large biomolecular assemblies.

Chapter 6 refers to theoretical aspects of computational methodologies regarding 
the design and development of radiopharmaceuticals and their specific applica-
tions, especially in assessment of their structure details and parameters. The 
authors highlight the possible advantages of the use of such methods to increase the 
personalization of dosimetry in nuclear medicine administration.

These structure-based design approaches offer students and researchers a general 
idea of the current state-of-the-art docking and dynamic simulations tools and their 
capability to predict ligand binding modes in various complexes and assemblies. 
I hope readers will find these studies instructive and inspirational for further 
research ideas, contributing to the inter-disciplinary efforts in bio- and chemoin-
formatics, pharmacology, and medicine.

Amalia Stefaniu
National Institute for Chemical - Pharmaceutical

Research and Development – ICCF Bucharest,
Department of Pharmaceutical Biotechnologies, 

Laboratory of Molecular Design and Molecular Docking,
Bucharest, Romania
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Chapter 1

Introductory Chapter: Molecular
Docking and Molecular Dynamics
Techniques to Achieve Rational 
Drug Design
Amalia Stefaniu

Molecular docking and molecular mechanics simulations are important approaches
to achieve a rational drug design or a chemical process modeling. It goes to deep molecu-
lar insights as structures and mechanisms helping researchers to characterize various
conformations and molecular interactions in terms of energy and binding affinities,
giving the possibility to search among dozens, hundreds of real or imaginary com-
pounds, the most suitable for a precise, well-defined purpose. The biochemical purpose
derives from the chosen macromolecular target, protein, or enzyme. Starting from a
known substance with a known mechanism of action and biological activity, we can
imagine other related compounds as drug candidates with better efficacy and fewer side
effects. These in silico methods help us to identify and select among large compound
libraries the most suitable therapeutic agent before even starting its chemical synthesis.
That can be called virtual chemistry before reaction tube. It is very convenient, reducing
the consumption of chemical reagents, preclinical, clinical trials, and time.

The purpose of this book project is to clearly explain the principles of molecular
docking and molecular dynamics, with examples of algorithms and procedures pro-
posed by different software programs for small molecule-protein or protein-protein
complexes of medical or materials sciences interest.

Molecular docking studies provide us an overview of type of interactions occur-
ring in ligand (small molecule)-protein or protein-protein complexes and rank the
candidate poses by their affinity scoring function.

The concept of molecular recognition of ligand at the protein/enzyme active site,
classically named “lock and key,” has been extended at “hand and glove,” considering
the protein flexibility and reciprocal adaptability between the receptor and ligand [1].

Molecular dynamics simulations explore extrinsic surface and bulk properties of
various forms of pharmaceutically active molecules to aid the selection of a success-
ful candidate. It involves accurate evaluation of binding pathways, kinetics, and 
thermodynamics of ligands in different solvents.

Both these computer-aided drug design (CADD) methods lead to ligand 
identification and optimization, favoring rapid development of pharmaceutical 
compounds.

1. Molecular docking approaches and challenges

Different software algorithms use various approaches such as rigid protein or
flexible protein, rigid receptor, soft receptor, flexible side chains, induced fit, or
multiple structure algorithms [2].
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The steps for conducting molecular docking studies are:

• Ligand preparation consists in generation, optimization, and analysis of its 
3D structure. Among multiple conformers, the most stable, as lowest energy, 
can be used for docking simulations. An aspect to be considered is the fact 
that in physiological media, the ligand appears ionized. The effect of solvation 
due to the surrounded water molecules must be solved. The presence of active 
site water molecules influences the docking pose of the ligand and makes 
questionable the accuracy of the method [2]. Three-dimensional structures 
of small ligand molecules are available in virtual databases such as Cambridge 
Structural Database (CSD), Available Chemical Directory (ACD), MDL Drug 
Data Report (MDDR), or National Cancer Institute Database (NCI).

• Receptor preparation. The use of a rigid target protein will conduct a single 
conformation of the receptor. Flexible protein involves different conformations 
to bind the ligand. Often the site water molecules are removed before perform-
ing a docking simulation.

Protein Data Bank (https://www.rcsb.org/) provides various solved 3D structures 
of protein, protein fragments, nucleic acids, and protein-ligand complexes. The assem-
blies are characterized by X-ray crystallography, nuclear magnetic resonance (NMR), 
infrared spectroscopy, and or/electron density and are available as PDB files format. 
This online tool allows us to explore and analyze the structures or to compare any 
protein in the PDB archive, including support for rigid-body and flexible alignments.

Also, for simulation the optimized ligand structure must be imported and used 
in the docking software as *.pdb or compatible file.

• Identify the binding site: This step plays a key role in structure-based drug 
design. It can be determined experimentally or computationally. Some soft-
ware are created to identifying and analyzing binding sites and predicting 
receptor druggability [3].

• Dock ligands: Different algorithms are used, fragment-based algorithms, 
genetic algorithm, Monte Carlo algorithms, and molecular dynamics protocols.

• Docking validation and results analysis: For validation, the software must 
reproduce the real binding site that was founded and characterized by 
X-ray crystallography or NMR techniques. To dock ligand similar derivative 
structures, the same binding site is used, and different conformation dues 
to rotations around flexible bond are performed for each new structure. The 
results conduct to predicting preferential binding orientation and the strength 
of binding affinity, interactions (type, strength, bond length); the conforma-
tions are ranked by mean of scoring functions [or root-mean-score deviation 
(RMSD)]. Furthermore, the stability of receptor-ligand complexes is assessed, 
and ligand/pharmaceutical small compound druggability is evaluated.

Pharmaceutical applications

• Exploring DNA binding properties of some malignant tumor chemothera-
peutic agents [4–7] (to identify the DNA binding site, to predict interactions 
between potential therapeutic compound and DNA, to assess the stability 
of DNA-complexes, and to establish correlations between structure and 
cytotoxicity).
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• In silico modeling as attempts to find new efficient therapeutic compounds 
against pathogens, causative agents of infectious disorders, antitubercular 
drugs [8–11], antibiotics agents against Escherichia coli [12–14], Pseudomonas 
aeruginosa [14–16], Staphylococcus aureus [13, 14, 16–19], Bacillus cereus  
[13, 16], Klebsiella pneumoniae [13], or others.

The computational findings must be completed and confirmed by biological 
assays to determine in vitro activity, by measuring minimum inhibitory concentra-
tion against tested microorganisms.

Molecular dynamics (MD) simulations are useful approaches when analysis 
of thermodynamic and kinetic properties of ligand-binding events is required to 
consider. Besides, MD has become effective tools used to modeling chemical pro-
cesses and to evaluating different parameters of materials in different media (water 
or gas): velocity direction of removal of material electrical discharge machining 
(EDM) [20], indentation [21], wear and friction [22], nano-cutting [23], and laser 
machining [24].



Molecular Docking and Molecular Dynamics

2

The steps for conducting molecular docking studies are:

• Ligand preparation consists in generation, optimization, and analysis of its 
3D structure. Among multiple conformers, the most stable, as lowest energy, 
can be used for docking simulations. An aspect to be considered is the fact 
that in physiological media, the ligand appears ionized. The effect of solvation 
due to the surrounded water molecules must be solved. The presence of active 
site water molecules influences the docking pose of the ligand and makes 
questionable the accuracy of the method [2]. Three-dimensional structures 
of small ligand molecules are available in virtual databases such as Cambridge 
Structural Database (CSD), Available Chemical Directory (ACD), MDL Drug 
Data Report (MDDR), or National Cancer Institute Database (NCI).

• Receptor preparation. The use of a rigid target protein will conduct a single 
conformation of the receptor. Flexible protein involves different conformations 
to bind the ligand. Often the site water molecules are removed before perform-
ing a docking simulation.

Protein Data Bank (https://www.rcsb.org/) provides various solved 3D structures 
of protein, protein fragments, nucleic acids, and protein-ligand complexes. The assem-
blies are characterized by X-ray crystallography, nuclear magnetic resonance (NMR), 
infrared spectroscopy, and or/electron density and are available as PDB files format. 
This online tool allows us to explore and analyze the structures or to compare any 
protein in the PDB archive, including support for rigid-body and flexible alignments.

Also, for simulation the optimized ligand structure must be imported and used 
in the docking software as *.pdb or compatible file.

• Identify the binding site: This step plays a key role in structure-based drug 
design. It can be determined experimentally or computationally. Some soft-
ware are created to identifying and analyzing binding sites and predicting 
receptor druggability [3].

• Dock ligands: Different algorithms are used, fragment-based algorithms, 
genetic algorithm, Monte Carlo algorithms, and molecular dynamics protocols.

• Docking validation and results analysis: For validation, the software must 
reproduce the real binding site that was founded and characterized by 
X-ray crystallography or NMR techniques. To dock ligand similar derivative 
structures, the same binding site is used, and different conformation dues 
to rotations around flexible bond are performed for each new structure. The 
results conduct to predicting preferential binding orientation and the strength 
of binding affinity, interactions (type, strength, bond length); the conforma-
tions are ranked by mean of scoring functions [or root-mean-score deviation 
(RMSD)]. Furthermore, the stability of receptor-ligand complexes is assessed, 
and ligand/pharmaceutical small compound druggability is evaluated.

Pharmaceutical applications

• Exploring DNA binding properties of some malignant tumor chemothera-
peutic agents [4–7] (to identify the DNA binding site, to predict interactions 
between potential therapeutic compound and DNA, to assess the stability 
of DNA-complexes, and to establish correlations between structure and 
cytotoxicity).

3

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Introductory Chapter: Molecular Docking and Molecular Dynamics Techniques to Achieve…
DOI: http://dx.doi.org/10.5772/intechopen.84200

Author details

Amalia Stefaniu
National Institute for Chemical, Pharmaceutical Research and Development, 
Romania

*Address all correspondence to: astefaniu@gmail.com

• In silico modeling as attempts to find new efficient therapeutic compounds 
against pathogens, causative agents of infectious disorders, antitubercular 
drugs [8–11], antibiotics agents against Escherichia coli [12–14], Pseudomonas 
aeruginosa [14–16], Staphylococcus aureus [13, 14, 16–19], Bacillus cereus  
[13, 16], Klebsiella pneumoniae [13], or others.

The computational findings must be completed and confirmed by biological 
assays to determine in vitro activity, by measuring minimum inhibitory concentra-
tion against tested microorganisms.

Molecular dynamics (MD) simulations are useful approaches when analysis 
of thermodynamic and kinetic properties of ligand-binding events is required to 
consider. Besides, MD has become effective tools used to modeling chemical pro-
cesses and to evaluating different parameters of materials in different media (water 
or gas): velocity direction of removal of material electrical discharge machining 
(EDM) [20], indentation [21], wear and friction [22], nano-cutting [23], and laser 
machining [24].



4

Molecular Docking and Molecular Dynamics

References

[1] Sledz P, Caflisch A. Protein structure-
based drug design: From docking to 
molecular dyamics. Current Opinion in 
Structural Biology. 2018;48:93-102

[2] Elokely KM, Doerksen RJ. Docking 
challenge: Protein sampling and 
molecular docking performance. Journal 
of Chemical Information and Modeling. 
2013;53(8):1934-1945J. DOI: 10.1021/
ci400040d

[3] Halgren TA. Identifying and 
characterizing binding sites and 
assessing druggability. Journal of 
Chemical Information and Modeling. 
2009;49(2):377-389. DOI: 10.1021/
ci800324m

[4] Agarwal S, Chadha D, Mehrotra 
R. Molecular modeling and 
spectroscopic studies of semustine 
binding with DNA and its comparison 
with lomustine–DNA adduct formation. 
Journal of Biomolecular Structure & 
Dynamics. 2015;33(8):1653-1668

[5] Subhani S, Jamil K. Molecular 
docking of chemotherapeutic agents to 
CYP3A4 in non-small cell lung cancer. 
Biomedicine & Pharmacotherapy. 
2015;73:65-74. DOI: 10.1016/j.
biopha.2015.05.018

[6] Cathcart J, Pulkoski-Grossa A, Cao 
J. Targeting matrix metalloproteinases 
in cancer: Bringing new life to old ideas. 
Genes and Diseases. 2015;2(1):26-34

[7] Pirvu L, Stefaniu A, Neagu G, Albu 
B, Pintilie L. In vitro cytotoxic and 
antiproliferative activity of Cydonia 
oblonga flower petals, leaf and fruit 
pellet ethanolic extracts. Docking 
simulation of the active flavonoids on 
anti-apoptotic protein Bcl-2. Open 
Chemistry. 2018;16(1):591-604

[8] Nunn CM, Djordjevic S, Hillas PJ, 
Nishida C, Ortiz de Montellano PR. The 
crystal structure of Mycobacterium 

tuberculosis alkylhydroperoxidase 
Ahpd, a potential target for 
antitubercular drug design. The 
Journal of Biological Chemistry. 
2002;277:20033-20040. DOI: 10.1074/
jbc.M200864200

[9] Salunke SB, Azad AK, Kapuriya 
NP, Balada-Llasat JM, Pancholi P, 
Schlesinger LS, et al. Design and 
synthesis of novel anti-tuberculosis 
agents from the celecoxib 
pharmacophore. Bioorganic & 
Medicinal Chemistry. 2015;23(9):1935-
1943. DOI: 10.1016/j.bmc.2015.03.041

[10] Tiwari R, Möllmann U, Cho S, 
Franzblau SG, Miller PA, Miller MJ. Design 
and syntheses of anti-tuberculosis agents 
inspired by BTZ043 using a scaffold 
simplification strategy. ACS Medicinal 
Chemistry Letters. 2014;5(5):587-591. 
DOI: 10.1021/ml500039g

[11] Umesiri FE, Lick A, Fricke 
C, Nathaniel TI. Boronic-aurone 
derivatives as anti-tubercular 
agents: Design, synthesis and 
biological evaluation. Medicinal 
Chemistry. 2015;5:437-441. DOI: 
10.4172/2161-0444.1000297

[12] Cheng K, Zheng Q-Z, Qian Y, Shi L, 
Zhao J, Zhu H-L. Synthesis, antibacterial 
activities and molecular docking studies 
of peptide and Schiff bases as targeted 
antibiotics. Bioorganic & Medicinal 
Chemistry. 2009;17(23):7861-7871

[13] Gullapelli K, Brahmeshwari G, 
Ravichander M, Kusuma U. Synthesis, 
antibacterial and molecular docking 
studies of new benzimidazole 
derivative. EJBAS. 2017;4(4):303-309

[14] Pintilie L, Stefaniu A, Nicu AI, 
Maganu M, Caproiu MT. Design, 
synthesis and docking studies of some 
novel fluoroquinolone compounds with 
antibacterial activity. Revista de Chimie. 
2018;69(4):815-822

5

Introductory Chapter: Molecular Docking and Molecular Dynamics Techniques to Achieve…
DOI: http://dx.doi.org/10.5772/intechopen.84200

[15] El-Attar MAZ, Elbayaa RY, 
Shaaban OG, Habib NS, Wahab 
AEA, Abdelwahab IA, et al. Design, 
synthesis, antibacterial evaluation and 
molecular docking studies of some 
new quinoxaline derivatives targeting 
dihyropteroate synthase enzyme. 
Bioorganic Chemistry. 2018;76:437-448

[16] Srivastava R, Gupta SK, Naaz F, 
Singh A, Singh VK, Verma R, et al. 
Synthesis, antibacterial activity, 
synergistic effect, cytotoxicity, 
docking and molecular dynamics 
of benzimidazole analogues. 
Computational Biology and Chemistry. 
2018;76:1-16. DOI: 10.1016/j.
compbiolchem.2018.05.021

[17] Barakat A, Al-Majid AM, 
Al-Qahtany BM, Ali M, Teleb M, 
Al-Agamy MH, et al. Synthesis, 
antimicrobial activity, pharmacophore 
modeling and molecular docking 
studies of new pyrazole-dimedone 
hybrid architectures. Chemistry Central 
Journal. 2018;12(1):29-42. DOI: 10.1186/
s13065-018-0399-0

[18] Pintilie L, Stefaniu A, Nicu AI, 
Caproiu MT, Maganu M. Synthesis, 
antimicrobial activity and docking 
studies of novel 8-chloro-quinolones. 
Revista de Chimie. 2016;67(3):438-445

[19] Pintilie L, Stefaniu A, Nicu AI, 
Negut C, Tanase C, Caproiu MT. Design, 
synthesis and molecular docking of 
some oxazolidinone compounds. Revista 
de Chimie. 2018;69(11):2981-2986

[20] Yue X, Yang X. Study on the 
distribution of removal material of 
EDM in deionized water and gas with 
molecular dynamics simulation. 18th 
CIRP Conference on Electro Physical 
and Chemical Machining (ISEM XVIII) 
Procedia CIRP 42. 2016. 691-696

[21] Cheong WCD, Zhang LC. 
Molecular dynamics simulation of 
phase transformations in silicon 

monocrystals due to nano-indentation. 
Nanotechnology. 2000;11:173-180

[22] Maekawa K, Itoh A. Friction and 
tool wear in nano-scale machining-a 
molecular dynamics approach. Wear. 
1995;188(1-2):115-122

[23] Zhang L, Zhao HW, Dai YYH, Du 
XC, Tang PY, et al. Molecular dynamics 
simulation of deformation accumulation 
in repeated nanometric cutting on 
single-crystal copper. RSC Advances. 
2015;5:12678-12685

[24] Shih C-Y, Shugaev MV, Wu C, 
Zhigilei LV. Generation of subsurface 
voids, incubation effect, and formation 
of nanoparticles in short pulse laser 
interactions with bulk metal targets 
in liquid: Molecular dynamics study. 
Journal of Physical Chemistry C. 
2017;121(30):16549-16567. DOI: 
10.1021/acs.jpcc.7b02301



4

Molecular Docking and Molecular Dynamics

References

[1] Sledz P, Caflisch A. Protein structure-
based drug design: From docking to 
molecular dyamics. Current Opinion in 
Structural Biology. 2018;48:93-102

[2] Elokely KM, Doerksen RJ. Docking 
challenge: Protein sampling and 
molecular docking performance. Journal 
of Chemical Information and Modeling. 
2013;53(8):1934-1945J. DOI: 10.1021/
ci400040d

[3] Halgren TA. Identifying and 
characterizing binding sites and 
assessing druggability. Journal of 
Chemical Information and Modeling. 
2009;49(2):377-389. DOI: 10.1021/
ci800324m

[4] Agarwal S, Chadha D, Mehrotra 
R. Molecular modeling and 
spectroscopic studies of semustine 
binding with DNA and its comparison 
with lomustine–DNA adduct formation. 
Journal of Biomolecular Structure & 
Dynamics. 2015;33(8):1653-1668

[5] Subhani S, Jamil K. Molecular 
docking of chemotherapeutic agents to 
CYP3A4 in non-small cell lung cancer. 
Biomedicine & Pharmacotherapy. 
2015;73:65-74. DOI: 10.1016/j.
biopha.2015.05.018

[6] Cathcart J, Pulkoski-Grossa A, Cao 
J. Targeting matrix metalloproteinases 
in cancer: Bringing new life to old ideas. 
Genes and Diseases. 2015;2(1):26-34

[7] Pirvu L, Stefaniu A, Neagu G, Albu 
B, Pintilie L. In vitro cytotoxic and 
antiproliferative activity of Cydonia 
oblonga flower petals, leaf and fruit 
pellet ethanolic extracts. Docking 
simulation of the active flavonoids on 
anti-apoptotic protein Bcl-2. Open 
Chemistry. 2018;16(1):591-604

[8] Nunn CM, Djordjevic S, Hillas PJ, 
Nishida C, Ortiz de Montellano PR. The 
crystal structure of Mycobacterium 

tuberculosis alkylhydroperoxidase 
Ahpd, a potential target for 
antitubercular drug design. The 
Journal of Biological Chemistry. 
2002;277:20033-20040. DOI: 10.1074/
jbc.M200864200

[9] Salunke SB, Azad AK, Kapuriya 
NP, Balada-Llasat JM, Pancholi P, 
Schlesinger LS, et al. Design and 
synthesis of novel anti-tuberculosis 
agents from the celecoxib 
pharmacophore. Bioorganic & 
Medicinal Chemistry. 2015;23(9):1935-
1943. DOI: 10.1016/j.bmc.2015.03.041

[10] Tiwari R, Möllmann U, Cho S, 
Franzblau SG, Miller PA, Miller MJ. Design 
and syntheses of anti-tuberculosis agents 
inspired by BTZ043 using a scaffold 
simplification strategy. ACS Medicinal 
Chemistry Letters. 2014;5(5):587-591. 
DOI: 10.1021/ml500039g

[11] Umesiri FE, Lick A, Fricke 
C, Nathaniel TI. Boronic-aurone 
derivatives as anti-tubercular 
agents: Design, synthesis and 
biological evaluation. Medicinal 
Chemistry. 2015;5:437-441. DOI: 
10.4172/2161-0444.1000297

[12] Cheng K, Zheng Q-Z, Qian Y, Shi L, 
Zhao J, Zhu H-L. Synthesis, antibacterial 
activities and molecular docking studies 
of peptide and Schiff bases as targeted 
antibiotics. Bioorganic & Medicinal 
Chemistry. 2009;17(23):7861-7871

[13] Gullapelli K, Brahmeshwari G, 
Ravichander M, Kusuma U. Synthesis, 
antibacterial and molecular docking 
studies of new benzimidazole 
derivative. EJBAS. 2017;4(4):303-309

[14] Pintilie L, Stefaniu A, Nicu AI, 
Maganu M, Caproiu MT. Design, 
synthesis and docking studies of some 
novel fluoroquinolone compounds with 
antibacterial activity. Revista de Chimie. 
2018;69(4):815-822

5

Introductory Chapter: Molecular Docking and Molecular Dynamics Techniques to Achieve…
DOI: http://dx.doi.org/10.5772/intechopen.84200

[15] El-Attar MAZ, Elbayaa RY, 
Shaaban OG, Habib NS, Wahab 
AEA, Abdelwahab IA, et al. Design, 
synthesis, antibacterial evaluation and 
molecular docking studies of some 
new quinoxaline derivatives targeting 
dihyropteroate synthase enzyme. 
Bioorganic Chemistry. 2018;76:437-448

[16] Srivastava R, Gupta SK, Naaz F, 
Singh A, Singh VK, Verma R, et al. 
Synthesis, antibacterial activity, 
synergistic effect, cytotoxicity, 
docking and molecular dynamics 
of benzimidazole analogues. 
Computational Biology and Chemistry. 
2018;76:1-16. DOI: 10.1016/j.
compbiolchem.2018.05.021

[17] Barakat A, Al-Majid AM, 
Al-Qahtany BM, Ali M, Teleb M, 
Al-Agamy MH, et al. Synthesis, 
antimicrobial activity, pharmacophore 
modeling and molecular docking 
studies of new pyrazole-dimedone 
hybrid architectures. Chemistry Central 
Journal. 2018;12(1):29-42. DOI: 10.1186/
s13065-018-0399-0

[18] Pintilie L, Stefaniu A, Nicu AI, 
Caproiu MT, Maganu M. Synthesis, 
antimicrobial activity and docking 
studies of novel 8-chloro-quinolones. 
Revista de Chimie. 2016;67(3):438-445

[19] Pintilie L, Stefaniu A, Nicu AI, 
Negut C, Tanase C, Caproiu MT. Design, 
synthesis and molecular docking of 
some oxazolidinone compounds. Revista 
de Chimie. 2018;69(11):2981-2986

[20] Yue X, Yang X. Study on the 
distribution of removal material of 
EDM in deionized water and gas with 
molecular dynamics simulation. 18th 
CIRP Conference on Electro Physical 
and Chemical Machining (ISEM XVIII) 
Procedia CIRP 42. 2016. 691-696

[21] Cheong WCD, Zhang LC. 
Molecular dynamics simulation of 
phase transformations in silicon 

monocrystals due to nano-indentation. 
Nanotechnology. 2000;11:173-180

[22] Maekawa K, Itoh A. Friction and 
tool wear in nano-scale machining-a 
molecular dynamics approach. Wear. 
1995;188(1-2):115-122

[23] Zhang L, Zhao HW, Dai YYH, Du 
XC, Tang PY, et al. Molecular dynamics 
simulation of deformation accumulation 
in repeated nanometric cutting on 
single-crystal copper. RSC Advances. 
2015;5:12678-12685

[24] Shih C-Y, Shugaev MV, Wu C, 
Zhigilei LV. Generation of subsurface 
voids, incubation effect, and formation 
of nanoparticles in short pulse laser 
interactions with bulk metal targets 
in liquid: Molecular dynamics study. 
Journal of Physical Chemistry C. 
2017;121(30):16549-16567. DOI: 
10.1021/acs.jpcc.7b02301



7

Chapter 2

Binding of Chlorinated 
Phenylacrylonitriles to the 
Aryl Hydrocarbon Receptor: 
Computational Docking and 
Molecular Dynamics Simulations
Stefan Paula, Jennifer R. Baker, Xiao Zhu  
and Adam McCluskey

Abstract

The development of ligands capable of binding to the aryl hydrocarbon receptor 
(AhR) and hijacking its signaling pathway is of potential use for the design of novel 
agents against breast cancer. To guide the synthesis of new compounds and charac-
terize their binding to the AhR, we employed homology modeling, ligand docking, 
and molecular dynamics simulations. As there is currently no crystallographic 
information available for the structure of the AhR’s ligand-binding PAS-B domain, 
a homology model was developed. The location of the binding site was identified by 
scanning the model for concave areas and comparing them to known ligand-binding 
sites in proteins related to the AhR, such as the CLOCK:BMAL1 transcriptional 
activator complex and the hypoxia-inducible factor-2α (HIF-2α). Docking of several 
chlorinated phenylacrylonitriles was performed with the modeling suite MOE, 
identifying π-π stacking, hydrophobic, and van der Waals interactions as the driving 
forces for binding, an observation consistent with the hydrophobic nature of the site. 
Molecular dynamics simulations with one of the compounds for 100 ns verified the 
overall stability of a docking-predicted pose and revealed the presence of interact-
ing water molecules in the vicinity of the ligand. Given the buried location of the 
ligand in the core of the receptor, this observation was somewhat unexpected, but it 
explained a slight shift of the ligand pose seen during the simulation.

Keywords: homology model, molecular dynamics, MOE, ligand-binding interactions, 
docking, breast cancer, aryl hydrocarbon receptor

1. Introduction

The aryl hydrocarbon receptor (AhR) is a member of the basic helix-loop-helix/
Per-ARNT-SIM (bHLH/PAS) transcription factor family [1–4]. In its inactive state, 
the AhR resides in the cytosol of the cell as a complex with a number of other 
proteins. This complex ensures the stability of the AhR in a high-affinity ligand-
binding form and prevents the premature translocation of the receptor. Upon 
binding of a ligand, it dissociates from these proteins and travels to the cell nucleus, 
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where it binds to DNA xenobiotic response elements (XREs). This in turn induces 
the expression of several cytochrome P450 enzymes and a sulfotransferase (typi-
cally SULT1A1) that contain XREs in their promotor sequence. These enzymes then 
initiate the oxidative breakdown of the offending compound.

The AhR pathway has a number of roles, including as a modulator of viral 
immunity and the correct functioning of the female reproductive system. Its most 
well-known role is a mechanism by which cells defend themselves against the toxic 
effects of polycyclic and polyhalogenated aromatic hydrocarbons, such as the 
Seveso toxin dioxin (1) (Figure 1) [5, 6].

Hijacking of the pathway is based on the use of compounds capable of activating 
the pathway and then converting into highly reactive species such as nitrenes once 
being targeted by the metabolic enzymes. This process ultimately leads to DNA 
damage and the death of the affected cell (Figure 2) [7].

It has been noted that the AhR detoxification process involves the active transport 
of a ligand, e.g., 1–4, but not the inhibition of the AhR, which would result in a 
buildup of toxic materials within the cell. This hijacking of the AhR signaling path-
way has been proposed as a novel strategy for designing a new class of drugs against 
breast cancer [1, 8]. Several compound classes, such as the aromatic acrylonitriles, 
have shown promise in cell-based assays, displaying remarkable potency and selec-
tivity for breast cancer cells [9, 10]. Two reported AhR ligands, Aminoflavone (2) 
and Phortress (3) (Figure 3), have progressed to clinical trials, demonstrating the 
clinical applicability of this approach [11, 12]. Based on this, we have postulated that 
the AhR is a promising target in the development of breast cancer-specific drugs. In 
particular, our early studies have demonstrated activity against triple negative breast 
cancer cell lines [9, 10, 13]. This makes AhR ligands, including the aromatic acryloni-
triles, promising candidates for further development into novel agents against breast 
cancer, that act by a hitherto unexploited mechanism of action.

Here, we demonstrate the use of computational tools for the elucidation of the 
interactions between the AhR and a targeted selection of chlorinated phenylacrylo-
nitriles. The methods employed include homology modeling, molecular docking, and 
molecular dynamics (MD) simulations to model the structure of the ligand-binding 
domain of the AhR, identify its ligand-binding site, characterize critical ligand/

Figure 2. 
The AhR pathway showing ligand binding, nuclear translocation, CYP1 activation, metabolism, and cell death. 
AF = Aminoflavone (2), Phort = Phortress (3), and ANI-7 = (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)
acrylonitrile (4) (see Figure 3 for details).

Figure 1. 
The aryl hydrocarbon receptor ligand 2,2,6,6-tetrachlorodioxin (1).
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receptor interactions, and study the time-dependent behavior of a ligand bound 
to the AhR. The results illustrate the value of computational tools for revealing the 
potential binding mechanism of these compounds to their target and for guiding the 
synthesis of novel compounds with improved properties.

2. Homology model

The sequence of the human form of the AhR was downloaded from the NCBI 
website (access code: NP_001612.1). Since only the ligand-binding PAS-B domain 
was of interest to our study, the sequence was appropriately truncated before Pro275 
and after Lys397. A search in the modeling suite MOE’s structural database for suit-
able templates returned the structures of 4F3L [14], 3RTY [15], and 2KDK [16] as 
the best matches. Of these, only 4F3L, a murine transcriptional activator complex, 
provided complete coverage of the PAS-B domain with a sequence identity of 24.4% 
and a sequence similarity of 48.0% (Figure 4). Only three indels were noted in the 

Figure 3. 
The known AhR ligands, Aminoflavone (2) and Phortress (3), that have proceeded to clinical trials for the treatment 
of cancer and our recently reported lead AhR ligand, ANI-7 (4) [13].

Figure 4. 
Alignment of the target sequence of the human form of the AhR (NP_00161) with the sequence of a murine 
transcriptional activator complex, 4F3L.
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alignment—deletions of positions 361 and 362 in the target sequence and an inser-
tion in position 308. The absence of major gaps in the alignment is favorable for 
the development of homology models as it reduces the need for loop modeling and 
grafting, which can be challenging [17]. Model development based on the alignment 
in Figure 4 was performed using MOE’s default settings.

Figure 6. 
Ramachandran diagram for the homology model for the AhR. Green ( ) symbols represent torsion angles in 
favored regions, whereas yellow ( ) symbols represent angles in allowed regions. No entries are present in the 
“forbidden” areas.

Figure 5. 
(A) Homology model for the AhR colored by secondary structure. (B) Comparison of backbone traces of homology 
models obtained by using the MOE modeling suite (template 4F3L) and the automated SWISS-MODEL server 
(template 5SY7). Coloring is according to RMSD between the two structures (green—yellow—red, in order 
of increasing deviation), showing very good agreement between the two models. The model obtained from the 
SWISS-MODEL server had a somewhat longer sequence, resulting in the gray loops at the termini that have no 
counterpart in the MOE model.
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The resulting homology model of the AhR (Figure 5A) was subjected to a num-
ber of quality tests, such as an analysis of the Ramachandran diagram (Figure 6) 
and an inspection of observed bond lengths, bond energies, and torsion angles. No 
abnormalities that would have questioned the quality of the model were detected.

An additional check of the model’s reliability was carried out by submitting the 
PAS-B sequence to the automated server SWISS-MODEL [18]. The returned homol-
ogy model was superimposed to the model obtained from MOE. Even though the new 
model was derived using a different template (5SY7, an NPAS3-ARNT complex) [19], 
a very good agreement between the backbones of the two structures was observed 
(Figure 5B), which further instilled confidence in the accuracy of the model.

3. Computational ligand docking

Before ligands could be docked into the homology model of the AhR, the exact 
location of the binding site had to be identified. We subjected the homology model 
to a binding site search, a feature implemented in MOE that screens the surface 
of a protein for concave areas capable of binding small molecules. Two areas large 
enough to accommodate a typical AhR ligand were detected: one on the surface and 
another one in the core of the receptor. To decide which of these two sites was more 
realistic, the crystal structures of the ligand/receptor complexes 3F1O [20], 3H7W 
[21], and 3H82 [21], all of which are proteins related to the AhR, were superimposed 
onto the homology model. As shown in Figure 7, all three ligands were found in an 
area equivalent to the binding site located at the center of the protein (Figure 5). 
To facilitate a convenient designation of the binding site for the subsequent dock-
ing runs, the ligand of 3F1O—N-[2-nitro-4-(trifluoromethyl)phenyl]morpholin-
4-amine (5)—was copied into the file of the homology model as a point of reference.

Figure 7. 
(A) Superposition of protein/ligand complexes related to the AhR onto the homology model of the AhR. Spheres 
delineate the putative binding site predicted by MOE that coincides with the position of the ligands seen in the crystal 
structures. (B) A closeup view of the ligand 5, overlaid with the spheres depicting the binding site predicted by MOE. 
(C) The chemical structure of the ligand of 3F1O—N-[2-nitro-4-(trifluoromethyl)phenyl]morpholin-4-amine (5).
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ing runs, the ligand of 3F1O—N-[2-nitro-4-(trifluoromethyl)phenyl]morpholin-
4-amine (5)—was copied into the file of the homology model as a point of reference.

Figure 7. 
(A) Superposition of protein/ligand complexes related to the AhR onto the homology model of the AhR. Spheres 
delineate the putative binding site predicted by MOE that coincides with the position of the ligands seen in the crystal 
structures. (B) A closeup view of the ligand 5, overlaid with the spheres depicting the binding site predicted by MOE. 
(C) The chemical structure of the ligand of 3F1O—N-[2-nitro-4-(trifluoromethyl)phenyl]morpholin-4-amine (5).
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To analyze the utility of this model for further drug development, the struc-
tures of a representative ensemble of six dichlorophenylacrylonitriles with known 
bioactivities (Figure 8) were modeled in MOE. Their conformational energies were 
minimized by molecular mechanics in conjunction with the MMFF94x force field. 
Docking was performed with the default settings of MOE, utilizing a flexible ligand 
and a mostly static receptor structure and defining the binding site by a position 
equivalent to that of the ligand present in 3F1O. The top-scoring pose for each 
ligand was considered for further analysis.

As shown in Figure 9, the docked compounds occupied a narrow and mostly 
hydrophobic site in the core of the AhR. Almost all ligands in the pool engaged 
with the AhR in a similar fashion, binding in comparable binding poses and exhib-
iting similar ligand/receptor interactions. Key hydrophobic contacts were observed 
between nonpolar regions of the ligands and the side chains (Phe21, Leu34, 
Phe50, Met66, Leu79, Ala93, Ile105, and Val107). Moreover, the ligand phenyl ring 
engaged in π-π stacking interactions with the ring of His 17. In addition, the tight 
fit between the ligands and the site suggested the presence of extensive favorable 
van der Waals interactions.

Figure 9. 
(A) 3D representation of dichlorophenylacrylonitrile 7 docked into the binding site of the AhR, illustrating the 
central nature of the site. (B) Interaction diagram of the pyrrole ligand ANI-7 (4), showing π-π -interactions, 
hydrophobic contacts, and shape complementarity as the driving forces for ligand binding.

Figure 8. 
Structures of six dichlorophenylacrylonitriles (4, 6–10) used for docking.
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In an attempt to attain a quantitative measure of ligand-binding affinity, the dock-
ing scores of the compounds were graphed against observed potencies (Figure 10). 
Potencies had been obtained in cell viability assays and the underlying assumption 
was that ligand binding to the receptor constituted the critical step that would lead to 
cell toxicity and therefore would correlate with bioactivity. Figure 10 shows a reason-
able correlation between the two quantities with a squared correlation coefficient of 
0.79. This data is consistent with the proposed binding mode of AhR ligands, which 
relies predominately on hydrophobic but also on additional π-π interactions.

4. Molecular dynamics simulations

We complemented our docking-based analysis by MD simulations, whose purpose 
was twofold. First, we wanted to ensure the stability of a docked pose by monitoring 
its behavior in a time-resolved system. Second, MD simulations can reveal the role 
of explicit solvent molecules, something that cannot be accounted for by docking. 
We selected compound 7 as a representative and subjected it to a simulation time of 
100 ns, using the CHARMM36m force field for the protein [22] and the CHARMM 
general force field for the ligand [23]. The parameters for water were taken from the 
CHARMM-modified TIP3P water model [24–26] to match those used for the solute. 
The initial structure of the protein-ligand complex was obtained from docking 
experiments, and the simulation was performed with the software NAMD [27].

As shown in Figure 11, the differences between the poses before and after 100 ns 
of simulation time were minor. The overall position of the ligand did not change 
significantly and the only notable difference related to a slight rotation around the 
central axis of the molecule which placed the nitrile group in a somewhat different 
environment.

Interestingly, analysis of the MD simulation data revealed the presence of several 
water molecules in close proximity to the ligand. This observation was somewhat 
unexpected; while polar water molecules have been found in predominately hydro-
phobic cores of proteins, it is a rare occurrence [28, 29]. Residues exposed to water 
molecules included Leu315, Thr289, His 291, Gln383, Ser365, and His 337. In some 
cases, the solvent molecules formed bridged hydrogen bonds between the nitrile 
group and the ligand. The latter could explain the abovementioned slight twist of 
the nitrile group into a more favorable position.

Figure 10. 
Linear correlation between docking score and bioactivity (−log IC50). Docking was performed with the 
standard settings of MOE.
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5. Conclusions

Using the AhR and substituted phenylacrylonitriles as an example, we demon-
strated the usefulness of a number of computational tools for the study of ligand/
receptor interactions. Homology modeling gave access to the structure of a protein 
domain that has not yet been solved by X-ray crystallography. The most probable 
binding site was identified, allowing for the docking of ligands, along with a good 
estimate of their affinities. The identification of this docking site was consistent 
with subsequent compound design and biological data obtained [10]. MD simula-
tions validated the stability of docked poses and illustrated the role of solvent 
molecules in the binding pocket. The value of the described techniques lies in their 
ability to rapidly evaluate the potential of a new ligand in silico before spending 
precious time and resource on its synthesis and experimental evaluation.
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Chapter 3

In Silico Drug Design and
Molecular Docking Studies of
Some Quinolone Compound
Lucia Pintilie and Amalia Stefaniu

Abstract

Quinolones are an important class of heterocyclic compounds that possess inter-
esting biological activities like antimicrobial, antitubercular, and antitumor. The
objective of this study is to evaluate in silico the antitumoral and antimycobacterial
activity of some quinolone derivatives by using CLC Drug Discovery Workbench
Software. Docking studies were carried out for all ligands, and the docking scores
were compared with the scores of standard drugs, topotecan and levofloxacin. The
docking studies have been carried out to predict the most possible type of interac-
tion, the binding affinities, and the orientations of the docked ligands at the active
site of the target protein.

Keywords: molecular docking, quinolones, antimicrobial activity,
antitumoral activity, antimycobacterial activity

1. Introduction

In medical practice, many quinolone derivatives with antimicrobial activity are
used; some of these being considered by pharmacists as the primary drugs in human
and veterinary anti-infectious therapy. Quinolones have a broad spectrum and a
strong antibacterial activity [1, 2]. They are characterized by pharmacokinetics that
allows their use in all localized infections. Recently, pharmacological studies have
shown that quinolones also possess other biological activities: antitumor activity
[3–6], antimycobaterial activity [7], antiviral activity on herpes virus, inhibiting
neurovegetative diseases and ischemic infections, and food product storage (due to
bactericidal properties). First antitumoral quinolone is Voreloxin: (+)-1,4-dihydro-7-
(3S4S)-3-hydroxy-4-amino-1-pyrrolidinyl-4-oxo-1-(2-thiazolyl)-1.8-naphthyridine-
3-carboxylic acid (Figure 1) [3]. Some quinolone derivatives (e.g., Moxifloxacin:
1-cyclopropyl-6-fluoro-7-((4aS,7aS)-hexahydro-1H-pyrrolo[3,4-b]pyridin-6(2H)-
yl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid-Figure 2) show
activity againstMycobacterium tuberculosis, and these compounds are the first new
antimycobacterial drugs to be available since the discovery of rifampin [8].

Lascufloxacin (AM-1977) (Figure 3) [9, 10] is a new 8-methoxy fluoroquinolone
antibacterial agent with unique pharmacophores at the first and seventh positions
of the quinolone rings. The oral and parenteral formulations have been developed
for the treatment of community-acquired pneumonia and other respiratory tract
infections in Japan. Lascufloxacin shows in vitro activity against various respiratory
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pathogens, such as Staphylococcus aureus, Streptococcus pneumoniae, Moraxella
catarrhalis, Haemophilus influenzae, and Mycoplasma pneumoniae.

Quinolones, considered to be “privileged building blocks,” are obtained through
simple and flexible synthesis methods and allow design and development of large
libraries of bioactive molecules. A 2011 study on 21 antibiotics launched since 2000
has highlighted that the discovery and development of new antibiotics obtained
through chemical synthesis is still topical. Of the nine antibiotics obtained by
chemical synthesis, launched between 2000 and 2011, eight antibiotics belong to
the class of fluoroquinolones [11]. New drugs introduced into medical therapies
each year are privileged structures for specific biological targets. These new chem-
ical entities provide a perspective on molecular recognition, serving as a basis for
designing future new drugs. In 2016, 19 chemically synthesized drugs were
approved [12], with the two drugs having the quinolone structure: nemonoxacin
(Figure 4) and zabofloxacin (Figure 5).

Figure 1.
Voreloxin.

Figure 2.
Moxifloxacin.

Figure 3.
Lascufloxacin.
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The objective of this study is to evaluate “in silico” antitumoral and antimyco-
bacterial activities of some quinolone derivatives by using CLC Drug Discovery
Workbench Software [13]. Docking studies were conducted for all ligands, and the
docking scores were compared with the scores of standard drugs, topotecan and
levofloxacin.

2. Materials and methods

2.1 Structure and the synthesis pathway of the quinolone derivatives

In previous papers, we presented the synthesis of quinolone derivatives with
antimicrobial activity [1, 2]. The results have revealed that the compounds
represented in Figure 6 have showed weak antibacterial activities against the tested
strains. For this reason, we have initiated in silico drug design and molecular
docking studies to predict anticancer and antitubercular activities targeting DNA-
topoisomerase I and topoisomerase IV from Klebsiella pneumoniae, respectively.

We have performed molecular docking studies to see how the nature of sub-
stituents on the quinolone ring influences the anticancer and antitubercular activi-
ties targeting human DNA topoisomerase I and topoisomerase IV from Klebsiella
pneumoniae, respectively. The studies have been realized with CLC Drug Discovery
Workbench Software [13] in order to achieve accurate predictions on optimized
conformations for both the quinolones (as ligands) and their target receptor pro-
teins to form stable complexes.

The quinolone compounds have been synthesized by Gould-Jacobs cyclization
process (Figure 7). Appropriate unsubstituted aniline (1) is reacted with diethyl

Figure 4.
Nemonoxacin (Taigexyn).

Figure 5.
Zabofloxacin D-aspartate.
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ethoxymethylenemalonate (DEEMM) to produce the anilinomethylene malonate
derivatives (2). A subsequent thermal process induces Gould-Jacobs cyclization to
afford the corresponding 4-hydroxy-quinoline-3-carboxylate ethyl ester (3). The
following operation is the alkylation/arylation of the quinolone compound (4),
which is usually accomplished by reaction with allyl chloride, benzyl chloride, or
para fluoronitrobenzene to produce the qinolone-3-carboxylate ester (4) (R1 = allyl,
benzyl, para nitrophenyl) [14–16, 19, 20]. The qinolone-3-carboxylate ester (4)
(R1 = isopropyl) was obtained by the reaction of the corresponding monosubstituted
aniline (5) (R1 = isopropyl) (the aniline (5) was obtained by reductive amination of
acetone with sodium borohydride-acetic acid [14–16, 19] or triacetoxyborohydride
[17, 18]) with DEEMM. A strong acid (such as polyphosphoric acid) is often needed
to induce cyclization directly resulting in the formation of N-isopropyl-4-oxo-
quinolone-3-carboxylate ester (4) (R1 = isopropyl).

The final manipulation is the basic or acid hydrolysis that cleave the ester
generating the biologically active free carboxylic acid (7) (R1 = allyl, isopropyl,
benzyl, para nitrophenyl). The displacement of 7-chloro group from the biologically
active free carboxylic acid (7) with 4-methyl-piperidine yielded the compound (8)
(R1 = allyl, benzyl, isopropyl, para nitrophenyl) (Table 1). The quinolone com-
pounds (8) (R1 = para amino phenyl) (Table 1) have been synthesized by a com-
mon reduction of nitro group using sodium dithionite [20].

2.2 Ligand preparation

To achieve the docking studies, the quinolone derivatives (ligands) must be
prepared to be imported in the molecular docking project. The ligands (Table 1)

Figure 6.
General structure of the investigated quinolone compounds, where R1 = allyl, isopropyl, benzyl, p-nitro-phenyl,
p-amino-phenyl and R6 = F, Cl, H, CH3.

Figure 7.
The synthesis of the quinolone compound using Gould-Jacobs cyclization process.
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Quinolone derivatives 2D structures 3D optimized structures

PQ4:1-allyl-6-fluoro-7-(4-methyl-
piperidin-1-yl)-1,4-dihydro-4-oxo-
quinolin-3-carboxylic acid [14]
E: �1171.69431 au

6ClPQ4:1-allyl-6-chloro-7-(4-methyl-
piperidin-1-yl)-1,4-dihydro-4-oxo-
quinolin-3-carboxylic acid [19]
E: �1532.05076 au

HPQ4:1-allyl-7-(4-methyl-piperidin-1-
yl)-1,4-dihydro-4-oxo-quinolin-3-
carboxylic acid [15]
E: �1072.46696 au

6MePQ4:1-allyl-6-methyl-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid [16]
E: �1111.77842 au

PQ12:1-isopropyl-6-fluoro-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid [14]
E: �1172.93189 au

6ClPQ12:1-isopropyl-6-chloro-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid [19]
E: �1533.28880 au

HPQ12:1-isopropyl-7-(4-methyl-
piperidin-1-yl)-1,4-dihydro-4-oxo-
quinolin-3-carboxylic acid [15]
E: �1073.70428 au

6MePQ12:1-isopropyl-6-methyl-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid [16]
E: �1113.01581 au

PQ11:1-benzyl-6-fluoro-7-(4-methyl-
piperidin-1-yl)-1,4-dihydro-4-oxo-
quinolin-3-carboxylic acid [14]
E: �1325.35417 au
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Quinolone derivatives 2D structures 3D optimized structures

6ClPQ11:1-benzyl-6-chloro-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid [19]
E: �1685.71018 au

HPQ11:1-benzyl-7-(4-methyl-
piperidin-1-yl)-1,4-dihydro-4-oxo-
quinolin-3-carboxylic acid [15]
E: �1226.12649 au

6MePQ11:1-benzyl-6-methyl-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid [16]
E: �1265.46016 au

PQ13:1-(p-nitro-phenyl)-6-fluoro-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid [20]
E: �1490.53723 au

6ClPQ13:1-(p-nitro-phenyl)-6-chloro-
7-(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid [20]
E: �1850.89287 au

HPQ13:1-(p-nitro-phenyl)-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid
E: �1391.31010 au

6MePQ13:1-(p-nitro-phenyl)-6-
methyl-7-(4-methyl-piperidin-1-yl)-
1,4-dihydro-4-oxo-quinolin-3-
carboxylic acid [20]
E: �430.62213 au

APQ13:1-(p-amino-phenyl)-6-fluoro-
7-(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid [20]
E: �1341.39572 au
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have been prepared using SPARTAN’14 software package [21] according to the
protocol described in our previous work [22]. The DFT/B3LYP/6-31 G* level of basis
set has been used for the computation of molecular structure, vibrational frequen-
cies, and energies of optimized structures.

Some chemical properties, highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) energy values, HOMO and LUMO
orbital coefficient distribution, molecular dipole moment, polar surface area (PSA)
(a descriptor that has been shown to correlate well with passive molecular transport
through membranes, therefore, allows the prediction of transport properties of the
drugs), the ovality, polarizability (useful to predict the interactions between non-
polar atoms or groups and other electrically charged species, such as ions and polar
molecules having a strong dipole moment), and the octanol water partition coeffi-
cient (log P) have been calculated (Table 2).

2.3 Docking studies

The docking protocol was performed according to the CLC Drug Discovery
Workbench Software and was described in a previous paper [22]. The docking
scores and hydrogen bonds formed with the amino acids from group interaction
atoms were used to predict the binding modes, the binding affinities, and the
orientation of the docked quinolone derivatives in the active site of the target
proteins.

2.3.1 Docking evaluation against human DNA topoisomerase

Docking studies have been carried out in order to achieve accurate predictions
on the optimized conformations for both the quinolone derivatives (as ligands) and

Quinolone derivatives 2D structures 3D optimized structures

A6ClPQ13: 1-(p-amino-phenyl)-6-
chloro-7-(4-methyl-piperidin-1-yl)-
1,4-dihydro-4-oxo-quinolin-3-
carboxylic acid
E: �1701.75238 au

AHPQ13:1-(p-amino-phenyl)-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid
E: �1242.16807 au

A6MePQ13:1-(p-amino-phenyl)-6-
methyl-7-(4-methyl-piperidin-1-yl)-
1,4-dihydro-4-oxo-quinolin-3-
carboxylic acid [20]
E: �1281.47987 au

E = energy and au = atomic units.

Table 1.
The 2D and 3D structures of the quinolone compounds.
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cient (log P) have been calculated (Table 2).

2.3 Docking studies

The docking protocol was performed according to the CLC Drug Discovery
Workbench Software and was described in a previous paper [22]. The docking
scores and hydrogen bonds formed with the amino acids from group interaction
atoms were used to predict the binding modes, the binding affinities, and the
orientation of the docked quinolone derivatives in the active site of the target
proteins.

2.3.1 Docking evaluation against human DNA topoisomerase

Docking studies have been carried out in order to achieve accurate predictions
on the optimized conformations for both the quinolone derivatives (as ligands) and

Quinolone derivatives 2D structures 3D optimized structures

A6ClPQ13: 1-(p-amino-phenyl)-6-
chloro-7-(4-methyl-piperidin-1-yl)-
1,4-dihydro-4-oxo-quinolin-3-
carboxylic acid
E: �1701.75238 au

AHPQ13:1-(p-amino-phenyl)-7-
(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic
acid
E: �1242.16807 au

A6MePQ13:1-(p-amino-phenyl)-6-
methyl-7-(4-methyl-piperidin-1-yl)-
1,4-dihydro-4-oxo-quinolin-3-
carboxylic acid [20]
E: �1281.47987 au

E = energy and au = atomic units.

Table 1.
The 2D and 3D structures of the quinolone compounds.
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protein target to form a stable complex. All of the investigated compounds have
been docked on the crystal structure of human DNA topoisomerase I (PDB ID:
1K4T) [23]. Binding site and docking pose of the co-crystallized topotecan (TTC),
interacting with amino acid residues of the active site, are shown in Figure 8a. The
TTC was taken as reference ligand to compare the docking results of quinolone
derivatives. The docking score, the interacting group, and hydrogen bonds formed
with the group interaction atoms of the corresponding amino acids are shown in
Table 3. Interactions of quinolone derivatives PQ11 (score: �63.31 and RMSD:
0.12), 6ClPQ11 (score: �62.95 and RMSD: 0.08), HPQ11 (score: �62.77 and RMSD:
0.06), 6MePQ11(score: �62.48 and RMSD: 0.01), and 6MePQ13 (score: �61.22 and
RMSD: 0.04) showed better docking score than that of co-crystalized TTC (score:
�59.15 and RMSD: 0.14) as shown in Figures 8b–11a. The most active compound,
6ClPQ11, was predicted to have a significant docking score (�63.31) and forms one
hydrogen bond with GLU 418 (bond length � 2.961 Å) (Figure 9a). Docking poses
of all quinolone derivatives in the ligand binding site of human DNA topoisomerase
I are shown in Figure 11b.

2.3.2 Docking evaluation against topoisomerase IV from Klebsiella pneumoniae

Docking studies have been carried out in order to obtain optimized docking
conformations of the investigated quinolone derivatives on the crystal structure of
topoisomerase IV (PDB ID: 5EIX) from Klebsiella pneumoniae [24]. The binding site
and docking pose of the co-crystallized levofloxacin (LFX) ligand, interacting with
amino acid residues of the ligand binding site of topoisomerase IV from Klebsiella
pneumoniae, are shown in Figure 12a. The levofloxacin was taken as reference
ligand to compare the docking results of quinolone derivatives. The docking score,
the interacting group, and hydrogen bonds formed with the group interaction
atoms of the corresponding amino acids are shown in Table 4. Interactions of
quinolone derivatives PQ4 (score: �43.98 and RMSD: 0.05), 6ClPQ4 (score: �41.12
and RMSD: 0.25), PQ11 (score: �48.32 and RMSD: 0.10), HPQ11 (score: 49.57 and
RMSD: 0.11), PQ12 (score: �42.76 and RMSD: 0.18), and APQ13 (score: �42.96 and
RMSD: 0.32) showed better docking score than that of co-crystalized LFX (score:
37.26 and RMSD: 0.02) as shown in Figures 12b–15a. The most active compound,

Figure 8.
(a) Binding site and docking pose of the co-crystallized TTC ligand interacting with the amino acid residues of
the ligand binding site of human DNA topoisomerase I. (b) Docking pose of the PQ11 ligand interacting with
the amino acid residues of the ligand binding site of human DNA topoisomerase I.
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protein target to form a stable complex. All of the investigated compounds have
been docked on the crystal structure of human DNA topoisomerase I (PDB ID:
1K4T) [23]. Binding site and docking pose of the co-crystallized topotecan (TTC),
interacting with amino acid residues of the active site, are shown in Figure 8a. The
TTC was taken as reference ligand to compare the docking results of quinolone
derivatives. The docking score, the interacting group, and hydrogen bonds formed
with the group interaction atoms of the corresponding amino acids are shown in
Table 3. Interactions of quinolone derivatives PQ11 (score: �63.31 and RMSD:
0.12), 6ClPQ11 (score: �62.95 and RMSD: 0.08), HPQ11 (score: �62.77 and RMSD:
0.06), 6MePQ11(score: �62.48 and RMSD: 0.01), and 6MePQ13 (score: �61.22 and
RMSD: 0.04) showed better docking score than that of co-crystalized TTC (score:
�59.15 and RMSD: 0.14) as shown in Figures 8b–11a. The most active compound,
6ClPQ11, was predicted to have a significant docking score (�63.31) and forms one
hydrogen bond with GLU 418 (bond length � 2.961 Å) (Figure 9a). Docking poses
of all quinolone derivatives in the ligand binding site of human DNA topoisomerase
I are shown in Figure 11b.

2.3.2 Docking evaluation against topoisomerase IV from Klebsiella pneumoniae

Docking studies have been carried out in order to obtain optimized docking
conformations of the investigated quinolone derivatives on the crystal structure of
topoisomerase IV (PDB ID: 5EIX) from Klebsiella pneumoniae [24]. The binding site
and docking pose of the co-crystallized levofloxacin (LFX) ligand, interacting with
amino acid residues of the ligand binding site of topoisomerase IV from Klebsiella
pneumoniae, are shown in Figure 12a. The levofloxacin was taken as reference
ligand to compare the docking results of quinolone derivatives. The docking score,
the interacting group, and hydrogen bonds formed with the group interaction
atoms of the corresponding amino acids are shown in Table 4. Interactions of
quinolone derivatives PQ4 (score: �43.98 and RMSD: 0.05), 6ClPQ4 (score: �41.12
and RMSD: 0.25), PQ11 (score: �48.32 and RMSD: 0.10), HPQ11 (score: 49.57 and
RMSD: 0.11), PQ12 (score: �42.76 and RMSD: 0.18), and APQ13 (score: �42.96 and
RMSD: 0.32) showed better docking score than that of co-crystalized LFX (score:
37.26 and RMSD: 0.02) as shown in Figures 12b–15a. The most active compound,

Figure 8.
(a) Binding site and docking pose of the co-crystallized TTC ligand interacting with the amino acid residues of
the ligand binding site of human DNA topoisomerase I. (b) Docking pose of the PQ11 ligand interacting with
the amino acid residues of the ligand binding site of human DNA topoisomerase I.
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Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond
length (Å)

TTC D-
990

�59.15/
0.14

LYS 493, THR 501, LYS 532, GLY 531, ALA 499, THR 498, SER
534, ASP 533, GLY 365, ARG 364, HIS 367, GLY 363, ARG 362,

PHE 361, LYS 374, and LEU 360

O sp3 from TTC– N sp2 from ASP 533 3.065

O sp3 from TTC– O sp3 from THR 501 3.166

N sp2 from TTC– N sp2 from ARG 364 3.353

O sp3 from TTC– O sp2 from GLY 363 3.112

O sp3 from TTC– N sp2 from GLY 363 3.038

PQ4 �55.35/
0.07

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, GLY 363, HIS
367, ARG 364, ARG 362, GLY 365, SER 534, ASP 533, ALA 499,

GLY 531, THR 501, ASP 500, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.124

6ClPQ4 �55.81/
0.12

LYS 425, TRP 416, ARG 364, GLY 363, ILE 377, ARG 362, PHE
361, LYS 374, ARG 375, LEU 360, MET 263, ILE 420, ASN 419,

GLN 421, and GLU 418

O sp3 from CO2H(CO)-N sp2 from ARG 364 3.056

O sp3 from CO2H (OH)-O sp2 from GLY 363 2.808

O sp2 from CO-N sp2 from ARG 364 3.009

HPQ4 �56.08/
0.10

ARG 364, LYS 425, GLY 363, ARG 362, GLN 421, GLU 418,
PHE 361, ILE 420, ASN 118, LYS 374, ARG 375, ILE 377, LEU

360, and MET 263

O sp3 from CO2H(CO)-N sp2 from ARG 364 2.782

O sp2 from CO-N sp2 from ARG 364 2.887

6MePQ4 �55.52/
0.10

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, GLY 363, HIS
367, ARG 364, ARG 362, GLY 365, SER 534, ASP 533, ALA 499,

GLY 531, THR 501, and LYS 532

O sp3 from CO2H (OH)-N sp3 from LYS 374 3.040

PQ11 �62.95/
0.08

GLU 418, GLN 421, LYS 374, LEU 360, THR 498, PHE 361,
GLY 363, HIS 367, ARG 364, ARG 362, LYS 493, GLY 365, SER

534, ASP 533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H (OH)-N sp3 from LYS 374 3.214

6ClPQ11 �63.31/
0.12

SER 423, LYS 425, GLN 421, GLU 418, ILE 420, LYS 374, LYS
493, THR 498, LYS 532, GLY 531, THR 501, ASP 533, ALA 499,
SER 534, ARG 364, GLY 365, GLY 363, HIS 367, ARG 362, PHE

361, and LEU 360

O sp3 from CO2H(OH)-O sp2 from GLU 418 2.961

HPQ11 �62.77/
0.06

SER 423, LYS 425, GLN 421, GLU 418, ILE 420, LYS 374, LYS
493, THR 498, LYS 532, GLY 531, THR 501, ASP 533, ALA 499,
SER 534, ARG 364, GLY 365, GLY 363, HIS 367, ARG 362, PHE

361, and LEU 360

O sp2 from CO2H(OH)-O sp2 from ASP 533 3.144

O sp3 from CO2H(CO)-N sp2 from ARG 364 3.111

O sp3 from CO2H(CO)-N sp2 from ARG 364 2.748

6MePQ11 �62.48/
0.01

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, GLY 363, HIS
367, ARG 364, ARG 362, LYS 493, GLY 365, SER 534, ASP 533,

ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H (OH)-N sp3 from LYS 374 3.042
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Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond
length (Å)

PQ12 �52.44/
0.06

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, GLY 363, HIS
367, ARG 364, ARG 362, LYS 493, GLY 365, SER 534, ASP 533,

ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.155

6ClPQ12 �50.48/
0.29

GLU 418, GLN 421, GLU 356, LYS 374, THR 498, PHE 361,
GLY 363, HIS 367, ARG 364, ARG 362, LYS 493, GLY 365, SER

534, ASP 533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.059

O sp3 from CO2H(CO)-N sp3 from LYS 374 3.068

HPQ12 �51.36/
0.37

GLU 418, GLN 421, LYS 425, SER 423, LYS 374, THR 498, PHE
361, GLY 363, HIS 367, ARG 364, LYS 493, GLY 365, ILE 420,
SER 534, ASP 533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.112

6MePQ12 �52.57/
0.03

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, ARG 362,
GLY 363, HIS 367, ARG 364, LYS 493, GLY 365, SER 534, ASP

533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.046

PQ13 �57.18/
0.06

LYS 425, GLU 418, GLN 421, LYS 374, THR 498, PHE 361,
ARG 362, GLY 363, HIS 367, ARG 364, LYS 493, LEU 360,

GLY 365, SER 534, ASP 533, ALA 499, GLY 531, THR 501, and
LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.032

6ClPQ13 �58.51/
0.09

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, ARG 362,
GLY 363, HIS 367, ARG 364, LYS 493, GLY 365, SER 534, ASP

533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.099

HPQ13 �58.40/
0.05

ARG 364, LYS 425, GLY 363, ARG 362, TYR 268, GLN 421,
GLU 418, PHE 361, ILE 420, ASN 419, LYS 374, ARG 375, ILE

377, LEU 360, MET 263, SER 423, and TRP 416

2.989

O sp2 from CO2H(CO)-N sp3 from LYS 425

O sp3 from CO2H (CO-O sp3 from SER 423 3.059

O sp2 from NO2-N sp2 from ASN 419 2.969

6MePQ13 �61.22/
0.04

LYS 425, ARG 364, GLY 365, ASP 533, SER 531, THR 501, ARG
362, PHE 361, LYS 374, LYS 532, GLY 531, ALA 499, HIS 367,

THR 498, LYS 493, SER 423, GLN 421, and GLU 418

O sp3 from CO2H(OH)-O sp2 from GLU 418 2.978

APQ13 �60.00/
0.06

GLU 418, LYS 425, GLN 421, LYS 374, THR 498, PHE 361,
ARG 362, GLY 363, HIS 367, ARG 364, GLY 365, SER 534, ASP

533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.008

6ClAPQ13 �57.07/
0.64

LYS 425, ARG 364, GLU 356, GLY 365, ASP 533, GLY 531, THR
501, ARG 362, GLY 363, PHE 361, LYS 374, LYS 532, ALA 499,

HIS 367, LYS 493, SER 534, GLN 421, and GLU 41

O sp3 from CO2H(OH)-N sp3 from LYS 374 2.934

HAPQ13 �58.14/
0.07

SER 423, LYS 425, GLN 421, GLU 418, ILE 420, ASN 419, LYS
374, ARG 364, GLY 363, ARG 362, PHE 361, ILE 377, ARG 375,

LEU 360, and MET 263

O sp2 from CO2H(CO)-O sp3 from LYS 425 2.874
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Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond
length (Å)

TTC D-
990

�59.15/
0.14

LYS 493, THR 501, LYS 532, GLY 531, ALA 499, THR 498, SER
534, ASP 533, GLY 365, ARG 364, HIS 367, GLY 363, ARG 362,

PHE 361, LYS 374, and LEU 360

O sp3 from TTC– N sp2 from ASP 533 3.065

O sp3 from TTC– O sp3 from THR 501 3.166

N sp2 from TTC– N sp2 from ARG 364 3.353

O sp3 from TTC– O sp2 from GLY 363 3.112

O sp3 from TTC– N sp2 from GLY 363 3.038

PQ4 �55.35/
0.07

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, GLY 363, HIS
367, ARG 364, ARG 362, GLY 365, SER 534, ASP 533, ALA 499,

GLY 531, THR 501, ASP 500, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.124

6ClPQ4 �55.81/
0.12

LYS 425, TRP 416, ARG 364, GLY 363, ILE 377, ARG 362, PHE
361, LYS 374, ARG 375, LEU 360, MET 263, ILE 420, ASN 419,

GLN 421, and GLU 418

O sp3 from CO2H(CO)-N sp2 from ARG 364 3.056

O sp3 from CO2H (OH)-O sp2 from GLY 363 2.808

O sp2 from CO-N sp2 from ARG 364 3.009

HPQ4 �56.08/
0.10

ARG 364, LYS 425, GLY 363, ARG 362, GLN 421, GLU 418,
PHE 361, ILE 420, ASN 118, LYS 374, ARG 375, ILE 377, LEU

360, and MET 263

O sp3 from CO2H(CO)-N sp2 from ARG 364 2.782

O sp2 from CO-N sp2 from ARG 364 2.887

6MePQ4 �55.52/
0.10

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, GLY 363, HIS
367, ARG 364, ARG 362, GLY 365, SER 534, ASP 533, ALA 499,

GLY 531, THR 501, and LYS 532

O sp3 from CO2H (OH)-N sp3 from LYS 374 3.040

PQ11 �62.95/
0.08

GLU 418, GLN 421, LYS 374, LEU 360, THR 498, PHE 361,
GLY 363, HIS 367, ARG 364, ARG 362, LYS 493, GLY 365, SER

534, ASP 533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H (OH)-N sp3 from LYS 374 3.214

6ClPQ11 �63.31/
0.12

SER 423, LYS 425, GLN 421, GLU 418, ILE 420, LYS 374, LYS
493, THR 498, LYS 532, GLY 531, THR 501, ASP 533, ALA 499,
SER 534, ARG 364, GLY 365, GLY 363, HIS 367, ARG 362, PHE

361, and LEU 360

O sp3 from CO2H(OH)-O sp2 from GLU 418 2.961

HPQ11 �62.77/
0.06

SER 423, LYS 425, GLN 421, GLU 418, ILE 420, LYS 374, LYS
493, THR 498, LYS 532, GLY 531, THR 501, ASP 533, ALA 499,
SER 534, ARG 364, GLY 365, GLY 363, HIS 367, ARG 362, PHE

361, and LEU 360

O sp2 from CO2H(OH)-O sp2 from ASP 533 3.144

O sp3 from CO2H(CO)-N sp2 from ARG 364 3.111

O sp3 from CO2H(CO)-N sp2 from ARG 364 2.748

6MePQ11 �62.48/
0.01

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, GLY 363, HIS
367, ARG 364, ARG 362, LYS 493, GLY 365, SER 534, ASP 533,

ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H (OH)-N sp3 from LYS 374 3.042
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Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond
length (Å)

PQ12 �52.44/
0.06

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, GLY 363, HIS
367, ARG 364, ARG 362, LYS 493, GLY 365, SER 534, ASP 533,

ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.155

6ClPQ12 �50.48/
0.29

GLU 418, GLN 421, GLU 356, LYS 374, THR 498, PHE 361,
GLY 363, HIS 367, ARG 364, ARG 362, LYS 493, GLY 365, SER

534, ASP 533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.059

O sp3 from CO2H(CO)-N sp3 from LYS 374 3.068

HPQ12 �51.36/
0.37

GLU 418, GLN 421, LYS 425, SER 423, LYS 374, THR 498, PHE
361, GLY 363, HIS 367, ARG 364, LYS 493, GLY 365, ILE 420,
SER 534, ASP 533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.112

6MePQ12 �52.57/
0.03

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, ARG 362,
GLY 363, HIS 367, ARG 364, LYS 493, GLY 365, SER 534, ASP

533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.046

PQ13 �57.18/
0.06

LYS 425, GLU 418, GLN 421, LYS 374, THR 498, PHE 361,
ARG 362, GLY 363, HIS 367, ARG 364, LYS 493, LEU 360,

GLY 365, SER 534, ASP 533, ALA 499, GLY 531, THR 501, and
LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.032

6ClPQ13 �58.51/
0.09

GLU 418, GLN 421, LYS 374, THR 498, PHE 361, ARG 362,
GLY 363, HIS 367, ARG 364, LYS 493, GLY 365, SER 534, ASP

533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.099

HPQ13 �58.40/
0.05

ARG 364, LYS 425, GLY 363, ARG 362, TYR 268, GLN 421,
GLU 418, PHE 361, ILE 420, ASN 419, LYS 374, ARG 375, ILE

377, LEU 360, MET 263, SER 423, and TRP 416

2.989

O sp2 from CO2H(CO)-N sp3 from LYS 425

O sp3 from CO2H (CO-O sp3 from SER 423 3.059

O sp2 from NO2-N sp2 from ASN 419 2.969

6MePQ13 �61.22/
0.04

LYS 425, ARG 364, GLY 365, ASP 533, SER 531, THR 501, ARG
362, PHE 361, LYS 374, LYS 532, GLY 531, ALA 499, HIS 367,

THR 498, LYS 493, SER 423, GLN 421, and GLU 418

O sp3 from CO2H(OH)-O sp2 from GLU 418 2.978

APQ13 �60.00/
0.06

GLU 418, LYS 425, GLN 421, LYS 374, THR 498, PHE 361,
ARG 362, GLY 363, HIS 367, ARG 364, GLY 365, SER 534, ASP

533, ALA 499, GLY 531, THR 501, and LYS 532

O sp3 from CO2H(OH)-N sp3 from LYS 374 3.008

6ClAPQ13 �57.07/
0.64

LYS 425, ARG 364, GLU 356, GLY 365, ASP 533, GLY 531, THR
501, ARG 362, GLY 363, PHE 361, LYS 374, LYS 532, ALA 499,

HIS 367, LYS 493, SER 534, GLN 421, and GLU 41

O sp3 from CO2H(OH)-N sp3 from LYS 374 2.934

HAPQ13 �58.14/
0.07

SER 423, LYS 425, GLN 421, GLU 418, ILE 420, ASN 419, LYS
374, ARG 364, GLY 363, ARG 362, PHE 361, ILE 377, ARG 375,

LEU 360, and MET 263

O sp2 from CO2H(CO)-O sp3 from LYS 425 2.874
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HPQ11, was predicted to have a significant docking score (�49.57) and forms one
hydrogen bond with ASP95 (bond length � 3.081 Å) (Figure 14a). Docking poses
of all quinolone derivatives in the ligand binding site of topoisomerase IV from
Klebsiella pneumoniae are shown in Figure 15b.

Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond
length (Å)

O sp3 from CO2H(CO)-O sp3 from SER 423 2.994

6MeAPQ13 �56.87/
0.13

LYS 425, ARG 364, GLY 365, ASP 533, GLY 531, THR 501, ARG
362, GLY 363, THR 498, PHE 361, LYS 374, LYS 532, ALA 499,

HIS 367, LYS 493, SER 534, GLN 421, and GLU 418

O sp2 from CO2H(CO)-N sp3 from LYS 374 3.097

Table 3.
List of docking interactions between the ligand molecules and human DNA topoisomerase I using CLC Drug
Discovery Workbench Software.

Figure 9.
(a) Docking pose of 6ClPQ 11 ligand interacting with amino acid residues of the ligand binding site of human
DNA topoisomerase I. (b) Docking pose of HPQ11 ligand interacting with amino acid residues of the ligand
binding site of human DNA topoisomerase I.

Figure 10.
(a) Docking pose of 6MePQ11 ligand interacting with amino acid residues of the ligand binding site of human
DNA topoisomerase I. (b) Docking pose of 6MePQ13 ligand interacting with amino acid residues of the ligand
binding site of human DNA topoisomerase I.
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Molecular Docking and Molecular Dynamics

Important molecular properties of the investigated compounds, e.g., molecular
weight, flexible bonds, the number of hydrogen bond donors, the number of
hydrogen bond acceptors, and log P, have been calculated. These parameters can be
used to evaluate whether a molecule has properties that would make it a likely orally
active drug, according to the Lipinski’s rule of five [22]. The number of violations of
the Lipinski rules allows to evaluate drug likeness for a molecule (Table 5).

3. Results and discussions

All of the investigated compounds have been docked on human DNA topoisom-
erase (PDB ID: 1K4T) and topoisomerase IV (PDB ID: 5EIX) from Klebsiella

Figure 11.
(a) Docking pose of APQ13 ligand interacting with amino acid residues of the ligand binding site of human
DNA topoisomerase I. (b) Overlay of docking poses of all ligands interacting with amino acid residues of the
ligand binding site of human DNA topoisomerase I.

Figure 12.
(a) Binding site and docking pose of the co-crystallized LFX ligand interacting with the amino acid residues of
ligand binding site of the topoisomerase IV. (b) Docking pose of the PQ4 ligand interacting with the amino acid
residues of ligand binding site of the topoisomerase IV.

31

In Silico Drug Design and Molecular Docking Studies of Some Quinolone Compound
DOI: http://dx.doi.org/10.5772/intechopen.85970



HPQ11, was predicted to have a significant docking score (�49.57) and forms one
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of all quinolone derivatives in the ligand binding site of topoisomerase IV from
Klebsiella pneumoniae are shown in Figure 15b.

Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond
length (Å)

O sp3 from CO2H(CO)-O sp3 from SER 423 2.994

6MeAPQ13 �56.87/
0.13

LYS 425, ARG 364, GLY 365, ASP 533, GLY 531, THR 501, ARG
362, GLY 363, THR 498, PHE 361, LYS 374, LYS 532, ALA 499,

HIS 367, LYS 493, SER 534, GLN 421, and GLU 418

O sp2 from CO2H(CO)-N sp3 from LYS 374 3.097

Table 3.
List of docking interactions between the ligand molecules and human DNA topoisomerase I using CLC Drug
Discovery Workbench Software.

Figure 9.
(a) Docking pose of 6ClPQ 11 ligand interacting with amino acid residues of the ligand binding site of human
DNA topoisomerase I. (b) Docking pose of HPQ11 ligand interacting with amino acid residues of the ligand
binding site of human DNA topoisomerase I.

Figure 10.
(a) Docking pose of 6MePQ11 ligand interacting with amino acid residues of the ligand binding site of human
DNA topoisomerase I. (b) Docking pose of 6MePQ13 ligand interacting with amino acid residues of the ligand
binding site of human DNA topoisomerase I.
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hydrogen bond acceptors, and log P, have been calculated. These parameters can be
used to evaluate whether a molecule has properties that would make it a likely orally
active drug, according to the Lipinski’s rule of five [22]. The number of violations of
the Lipinski rules allows to evaluate drug likeness for a molecule (Table 5).

3. Results and discussions

All of the investigated compounds have been docked on human DNA topoisom-
erase (PDB ID: 1K4T) and topoisomerase IV (PDB ID: 5EIX) from Klebsiella

Figure 11.
(a) Docking pose of APQ13 ligand interacting with amino acid residues of the ligand binding site of human
DNA topoisomerase I. (b) Overlay of docking poses of all ligands interacting with amino acid residues of the
ligand binding site of human DNA topoisomerase I.

Figure 12.
(a) Binding site and docking pose of the co-crystallized LFX ligand interacting with the amino acid residues of
ligand binding site of the topoisomerase IV. (b) Docking pose of the PQ4 ligand interacting with the amino acid
residues of ligand binding site of the topoisomerase IV.
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Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond length
(Å)

LFX �37.26/0.02 SER 422, ALA 423, ASP 421, GLY 420, LYS 442, LEU 441, GLY 443, GLU
419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.590

O sp2 from CO-N sp2 from SER 422 2.856

O sp2 from CO-N sp2 from ASP 421 3.098

O sp3from LVF-N sp2 from GLY 443 3.344

PQ4 �43.98/0.05 SER 422, ASP 421, GLY 420, GLY 443, GLU 419, ASP 491, LYS 444, ILE
499, GLY 496, and ASP 495

O sp2 from CO2H(OH)-O sp3 from GLU 419 2.702

6ClPQ4 �41.12/0.25 SER 422, ALA 423, ASP 421, GLY 420, LYS 499, LEU 441, GLY 443, GLU
419, ASP 491, ASP 493, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.870

O sp2 from CO-N sp2 from SER 422 3.162

HPQ4 �40.60/0.20 SER 422, ASP 421, GLY 420, GLY 443, GLU 419, ASP 491, LYS 444, ILE
499, GLY 496, and ASP 495

O sp2 from CO2H(OH)-O sp3 from GLU 419 2.880

6MePQ4 �35.70/0.36 SER 422, ASP 421, GLY 420, GLY 443, GLU 419, ASP 491, LYS 444, ILE
499, GLY 496, and ASP 495

O sp2 from CO2 H(OH)-O sp3 from GLU 419 2.911

PQ11 �48.32/0.10 LYS 444, ILE 499, ASP 495, ASP 493, GLY 443, LEU 441, GLU 419, ASP
491, GLY 420, LYS 442, ASP 421, LEU 567, ALA, 423, SER 422, and GLY

568

O sp2 from CO2H(OH)-O sp2 from ASP 491 2.974

O sp2 from CO2H (OH)-O sp2 from GLU 419 2.606

O sp2 from CO-O sp3 from SER 422 2.650

6ClPQ11 �41.14/0.28 SER 422, ASP 421, GLY 420, LYS 442, LEU 441, GLY 443, GLU 419, LYS
444, ILE 499, GLY 496, and ASP 495

O sp2 from CO2H(CO)-N sp2 from ASP 421 3.062

HPQ11 �49.57/0.11 HIS 1077, ASP 421, GLY 420, ASP 493, LYS 442, LEU 441, GLU 419, GLY
443, LYS 444, ILE 499, ILE 445, ASP 495, and ARG 1029

O sp2 from CO2H(OH)-N sp2 from ASP 495 3.081

6MePQ11 �39.64/0.18 SER 422, HIS 1077 ASP 421, GLY 420, ASP 491, ASP 493, LYS 442, LEU
441, GLU 419, GLY 443, LYS 444, ILE 499, ASP 495, ARG 1029, and ILE

445

O sp2 from CO2H (OH)-N sp2 from ASP 495 3.088

PQ12 �42.76/0.18 HIS 1077, GLY 420, ASP 493, LYS 442, LEU 441, GLU 419, GLY 443, LYS
444, ILE 499, ILE 445, ASP 495, ASP 491, ARG 1029, and GLY 496

O sp2 from CO2H(OH)-O sp2 from ASP 493 2.571

O sp2 from CO2H (OH)-O sp2 from GLU 419 3.135

6ClPQ12 �35.34/0.07 SER 422, ALA 423, ASP 491, ASP 421, GLY 420, LYS 442, LEU 441, GLY
443, GLU 419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.942

O sp2 from CO-N sp2 from SER 422 3.185

HPQ12 �40.45/0.13 SER 422, ALA 423, ASP 421, GLY 420, LYS 442, LEU 441, GLY 443, GLU
419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.993

O sp2 from CO-N sp2 from SER 422 3.060

O sp2 from CO-N sp2 from ASP 421 3.159
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Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond length
(Å)

6MePQ12 �35.39/0.17 SER 422, ALA 423, ASP 421, ASP 491, GLY 420, LYS 442, LEU 441, GLY
443, GLU 419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.943

O sp2 from CO-N sp2 from SER 422 3.156

PQ13 �38.74/0.19 SER 422, ASP 421, ASP 4921, GLY 420, LYS 422, LEU 441, GLY 443, GLU
419, LYS 444, ILE 499, ASP 495, ARG 1029, HIS 1077, SER 1080, ASP

1079, GLY 1079, and HIS 1075

O sp2 from CO-N sp2 from ARG 1029 2.963

O sp2 from CO2H (OH)-N sp2 from ARG 1029 3.081

O sp2 from NO2-O sp2 from SER 1080 2.489

6ClPQ13 �37.47/0.32 SER 422, ALA 423, ASP 421, GLY 420, ASP 493, ASP 491, LEU 441, GLY
443, GLU 419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp3 from CO-O sp3 from SER 422 2.664

O sp2 from CO-N sp2 from SER 422 2.817

O sp2 from CO-N sp2 from ASP 421 3.253

HPQ13 �40.08/0.05 HIS 1075, ASP 1079, CYS 1082, VAL 1041, GLY 1078, HIS 1077, SER 1080,
ALA 1081, ARG 1029, LYS 444, ILE 499, ASP 495, ASP 493, GLU 419,

LEU, 441, GLY 496, LYS 442, and GLY 443

O sp2 from CO2H(OH)-N sp2 from CYS 1082 3.241

O sp2 from CO2H (OH)-O sp2 from GLY 1078 2.876

6MePQ13 �37.58/0.45 SER 422, ALA 423, ASP 421, ASP 493, ASP 491, GLY 420, LYS 442, LEU
441, GLY 443, GLU 419, LYS 444, ILE 499, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.797

O sp2 from CO-N sp2 from SER 422 2.926

O sp2 from CO-N sp2 from ASP 421 3.247

APQ13 �42.96/0.32 SER 422, ASP 421, ASP 493, GLY 420, LYS 442, LEU 441, GLY 443, GLU
419, ILE 499, ASP 495, ILE 445, ARG 1029, and HIS 1077

O sp2 from CO2H(OH)-N sp2 from ARG 1029 2.820

O sp2 from CO2H(OH)-O sp2 from ASP 495 3.113

O sp2 from CO2H (OH)-O sp2 from ASP 495 3.052

N sp3 from NH2-O sp2 from GLU 419 2.922

N sp3 from NH2-N sp2 from GLY 443 3.052

6ClAPQ13 �39.93/0.40 ASP 421, GLY 420, LYS 442, LEU 441, GLY 443, GLU 419, ILE 499, ILE
445, LYS 444, ASP 495, ARG 1029, and HIS 1077

O sp2 from COOH(CO)-N sp2 from ARG 1029 3.063

O sp2 from COOH(OH)-O sp2 from ASP 495 3.132

N sp3 from NH2-O sp2 from GLU 419 2.706

N sp3 from NH2-N sp2 from GLY 443 3.137

HAPQ13 �37.50/0.50 HIS 1077, ARG 1029, LYS 444, ILE 445, ILE 499, ASP 495, ASP 421, GLU
419, LEU, 441, GLY 420, LYS 442, and GLY 443

O sp2 from CO2H(OH)-N sp2 from ARG 1029 2.851

O sp2 from CO2H(OH)-O sp2 from ASP 495 3.199

N sp3 from NH2-O sp2 from GLU 419 2.707

N sp3 from NH2-N sp2 from GLY 443 3.150
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Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond length
(Å)

LFX �37.26/0.02 SER 422, ALA 423, ASP 421, GLY 420, LYS 442, LEU 441, GLY 443, GLU
419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.590

O sp2 from CO-N sp2 from SER 422 2.856

O sp2 from CO-N sp2 from ASP 421 3.098

O sp3from LVF-N sp2 from GLY 443 3.344

PQ4 �43.98/0.05 SER 422, ASP 421, GLY 420, GLY 443, GLU 419, ASP 491, LYS 444, ILE
499, GLY 496, and ASP 495

O sp2 from CO2H(OH)-O sp3 from GLU 419 2.702

6ClPQ4 �41.12/0.25 SER 422, ALA 423, ASP 421, GLY 420, LYS 499, LEU 441, GLY 443, GLU
419, ASP 491, ASP 493, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.870

O sp2 from CO-N sp2 from SER 422 3.162

HPQ4 �40.60/0.20 SER 422, ASP 421, GLY 420, GLY 443, GLU 419, ASP 491, LYS 444, ILE
499, GLY 496, and ASP 495

O sp2 from CO2H(OH)-O sp3 from GLU 419 2.880

6MePQ4 �35.70/0.36 SER 422, ASP 421, GLY 420, GLY 443, GLU 419, ASP 491, LYS 444, ILE
499, GLY 496, and ASP 495

O sp2 from CO2 H(OH)-O sp3 from GLU 419 2.911

PQ11 �48.32/0.10 LYS 444, ILE 499, ASP 495, ASP 493, GLY 443, LEU 441, GLU 419, ASP
491, GLY 420, LYS 442, ASP 421, LEU 567, ALA, 423, SER 422, and GLY

568

O sp2 from CO2H(OH)-O sp2 from ASP 491 2.974

O sp2 from CO2H (OH)-O sp2 from GLU 419 2.606

O sp2 from CO-O sp3 from SER 422 2.650

6ClPQ11 �41.14/0.28 SER 422, ASP 421, GLY 420, LYS 442, LEU 441, GLY 443, GLU 419, LYS
444, ILE 499, GLY 496, and ASP 495

O sp2 from CO2H(CO)-N sp2 from ASP 421 3.062

HPQ11 �49.57/0.11 HIS 1077, ASP 421, GLY 420, ASP 493, LYS 442, LEU 441, GLU 419, GLY
443, LYS 444, ILE 499, ILE 445, ASP 495, and ARG 1029

O sp2 from CO2H(OH)-N sp2 from ASP 495 3.081

6MePQ11 �39.64/0.18 SER 422, HIS 1077 ASP 421, GLY 420, ASP 491, ASP 493, LYS 442, LEU
441, GLU 419, GLY 443, LYS 444, ILE 499, ASP 495, ARG 1029, and ILE

445

O sp2 from CO2H (OH)-N sp2 from ASP 495 3.088

PQ12 �42.76/0.18 HIS 1077, GLY 420, ASP 493, LYS 442, LEU 441, GLU 419, GLY 443, LYS
444, ILE 499, ILE 445, ASP 495, ASP 491, ARG 1029, and GLY 496

O sp2 from CO2H(OH)-O sp2 from ASP 493 2.571

O sp2 from CO2H (OH)-O sp2 from GLU 419 3.135

6ClPQ12 �35.34/0.07 SER 422, ALA 423, ASP 491, ASP 421, GLY 420, LYS 442, LEU 441, GLY
443, GLU 419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.942

O sp2 from CO-N sp2 from SER 422 3.185

HPQ12 �40.45/0.13 SER 422, ALA 423, ASP 421, GLY 420, LYS 442, LEU 441, GLY 443, GLU
419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.993

O sp2 from CO-N sp2 from SER 422 3.060

O sp2 from CO-N sp2 from ASP 421 3.159
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Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond length
(Å)

6MePQ12 �35.39/0.17 SER 422, ALA 423, ASP 421, ASP 491, GLY 420, LYS 442, LEU 441, GLY
443, GLU 419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.943

O sp2 from CO-N sp2 from SER 422 3.156

PQ13 �38.74/0.19 SER 422, ASP 421, ASP 4921, GLY 420, LYS 422, LEU 441, GLY 443, GLU
419, LYS 444, ILE 499, ASP 495, ARG 1029, HIS 1077, SER 1080, ASP

1079, GLY 1079, and HIS 1075

O sp2 from CO-N sp2 from ARG 1029 2.963

O sp2 from CO2H (OH)-N sp2 from ARG 1029 3.081

O sp2 from NO2-O sp2 from SER 1080 2.489

6ClPQ13 �37.47/0.32 SER 422, ALA 423, ASP 421, GLY 420, ASP 493, ASP 491, LEU 441, GLY
443, GLU 419, LYS 444, ILE 499, GLY 496, and ASP 495

O sp3 from CO-O sp3 from SER 422 2.664

O sp2 from CO-N sp2 from SER 422 2.817

O sp2 from CO-N sp2 from ASP 421 3.253

HPQ13 �40.08/0.05 HIS 1075, ASP 1079, CYS 1082, VAL 1041, GLY 1078, HIS 1077, SER 1080,
ALA 1081, ARG 1029, LYS 444, ILE 499, ASP 495, ASP 493, GLU 419,

LEU, 441, GLY 496, LYS 442, and GLY 443

O sp2 from CO2H(OH)-N sp2 from CYS 1082 3.241

O sp2 from CO2H (OH)-O sp2 from GLY 1078 2.876

6MePQ13 �37.58/0.45 SER 422, ALA 423, ASP 421, ASP 493, ASP 491, GLY 420, LYS 442, LEU
441, GLY 443, GLU 419, LYS 444, ILE 499, and ASP 495

O sp2 from CO-O sp3 from SER 422 2.797

O sp2 from CO-N sp2 from SER 422 2.926

O sp2 from CO-N sp2 from ASP 421 3.247

APQ13 �42.96/0.32 SER 422, ASP 421, ASP 493, GLY 420, LYS 442, LEU 441, GLY 443, GLU
419, ILE 499, ASP 495, ILE 445, ARG 1029, and HIS 1077

O sp2 from CO2H(OH)-N sp2 from ARG 1029 2.820

O sp2 from CO2H(OH)-O sp2 from ASP 495 3.113

O sp2 from CO2H (OH)-O sp2 from ASP 495 3.052

N sp3 from NH2-O sp2 from GLU 419 2.922

N sp3 from NH2-N sp2 from GLY 443 3.052

6ClAPQ13 �39.93/0.40 ASP 421, GLY 420, LYS 442, LEU 441, GLY 443, GLU 419, ILE 499, ILE
445, LYS 444, ASP 495, ARG 1029, and HIS 1077

O sp2 from COOH(CO)-N sp2 from ARG 1029 3.063

O sp2 from COOH(OH)-O sp2 from ASP 495 3.132

N sp3 from NH2-O sp2 from GLU 419 2.706

N sp3 from NH2-N sp2 from GLY 443 3.137

HAPQ13 �37.50/0.50 HIS 1077, ARG 1029, LYS 444, ILE 445, ILE 499, ASP 495, ASP 421, GLU
419, LEU, 441, GLY 420, LYS 442, and GLY 443

O sp2 from CO2H(OH)-N sp2 from ARG 1029 2.851

O sp2 from CO2H(OH)-O sp2 from ASP 495 3.199

N sp3 from NH2-O sp2 from GLU 419 2.707

N sp3 from NH2-N sp2 from GLY 443 3.150
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Ligand Score/
RMSD (Å)

Group interaction/hydrogen bond Bond length
(Å)

6MeAPQ13 �39.85/0.20 ASP 421, GLY 420, LYS 442, LEU 441, GLU 419, GLY 443, ILE 499, ILE
445, LYS 444, ASP 495, ARG 1029, and HIS 1077

O sp2 from CO2H(CO)-N sp2 from ARG 1029 3.154

O sp2 from CO2H(OH)-O sp2 from ASP 495 3.115

O sp2 from CO2H(OH)-O sp2 from ASP 495 3.252

N sp3 from NH2-O sp2 from GLU 419 2.705

N sp3 from NH2-N sp2 from GLY 443 3.132

Table 4.
List of docking interactions between the ligand molecules and topoisomerase IV (PDB ID: 5EIX) from
Klebsiella pneumoniae using CLC Drug Discovery Workbench Software.

Figure 13.
(a) Docking pose of 6ClPQ4 ligand interacting with amino acid residues of ligand binding site of the
topoisomerase IV. (b) Docking pose of PQ11 ligand interacting with amino acid residues of ligand binding site
of the topoisomerase IV.

Figure 14.
(a) Docking pose of HPQ11 ligand interacting with amino acid residues of ligand binding site of the
topoisomerase IV. (b) Docking pose of PQ12 ligand interacting with amino acid residues of ligand binding site
of the topoisomerase IV.
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Figure 15.
(a) Docking pose of APQ13 ligand interacting with amino acid residues of ligand binding site of the
topoisomerase IV. (b) Overlay of docking poses of all ligands interacting with amino acid residues of ligand
binding site of the topoisomerase IV.

Ligands Atoms Weight
(Daltons)

Flexible
bonds

Lipinski
violations

Hydrogen
donors

Hydrogen
acceptors

Log P

(a) (b) (a) (b)

TTC 51 418.42 3 0 — 2 8 3.55 —

LFX 45 360.36 2 — 0 1 7 — 1.26

PQ4 46 344.38 4 1 1 1 5 5.34 5.67

6ClPQ4 46 360.83 4 1 1 1 5 5.87 6.20

HPQ4 46 326.39 4 1 1 1 5 5.24 5.57

6MePQ4 49 340.42 4 1 1 1 5 5.60 5.94

PQ11 52 394.44 4 1 1 1 5 5.99 6.52

6ClPQ11 52 410.89 4 1 1 1 5 6.52 7.05

HPQ11 52 376.45 4 1 1 1 5 5.89 6.42

6MePQ11 55 390.47 4 1 1 1 5 6.25 6.78

PQ12 48 346.40 3 1 1 1 5 5.10 5.63

6ClPQ12 48 362.85 3 1 1 1 5 5.63 6.16

HPQ12 48 328.41 3 0 1 1 5 5.00 5.53

6MePQ12 51 342.43 3 1 1 1 5 5.36 5.89

PQ13 51 425.41 4 1 1 1 8 6.08 6.42

6ClPQ13 51 441.86 4 1 1 1 8 6.61 6.94

HPQ13 51 407.42 4 1 1 1 8 5.98 6.31

6MePQ13 54 421.45 4 1 1 1 8 6.35 6.68

APQ13 51 395.43 3 1 1 3 6 5.37 5.90

6ClAPQ13 51 411.88 3 1 1 3 6 5.90 6.43

HAPQ13 51 377.44 3 1 1 3 6 5.27 5.80

6MeAPQ13 54 391.46 3 1 1 3 6 5.63 6.17

(a) For protein receptor PDB ID: 1K4T.
(b) For protein receptor PDB ID: 5EIX.

Table 5.
Ligands with various properties.
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RMSD (Å)

Group interaction/hydrogen bond Bond length
(Å)
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pneumoniae. In case of the molecular docking studies on the human DNA topo-
isomerase I, all the quinolone derivatives reveal docking scores greater than �50.
Only five compounds, e.g., PQ11 (�63.31), 6ClPQ11 (�62.95), HPQ11 (�62.77),
6MePQ11 (�62.48), and 6MePQ13 (�61.22), reveal better docking scores than that
of co-crystallized TTC (�59.15) (Figure 16). In case of the molecular docking
studies on topoisomerase IV from Klebsiella pneumoniae, only three quinolone
derivatives, e.g., 6MePQ4 (�35.7), 6ClPQ12 (�35.34), and 6MePQ12 (�35.39),
reveal docking scores less than that of levofloxacin (�37.26). The compounds that
show better docking scores than that of levofloxacin are HPQ11 (�49.57), PQ11
(�48.32), PQ4 (�43.98), PQ12 (�42.76), APQ13 (�42.96), and 6ClPQ4 (�41.12)
(Figure 17). It was observed that the presence of the benzyl substituent in N-1
position of the 7(4-methyl-piperidinyl)-quinolones core leads to increased docking
score against human DNA topoisomerase and topoisomerase IV from Klebsiella
pneumoniae. The compounds PQ11, 6ClPQ11, HPQ11, and 6MePQ11 reveal better
docking scores than that of the reference ligands, topotecan (TTC) and levofloxacin
(LFX), docked on human DNA topoisomerase (PDB ID:1K4T) and topoisomerase
IV (PDB ID: 5EIX) from Klebsiella pneumoniae, respectively.

Figure 16.
Docking scores of the investigated quinolone compounds targeting human DNA topoisomerase I (PDB ID:
1K4T).

Figure 17.
Docking scores of the investigated quinolone compounds targeting topoisomerase IV (PDB ID: 5EIX) from
Klebsiella pneumoniae.
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4. Conclusions

The virtual screening of the investigated compounds using docking has been
carried out with CLC Drug Discovery Workbench Software and has led to the
identification of quinolone derivatives for inhibiting the activities of topoisomerase
I and topoisomerase IV. It was observed that the presence of the benzyl substituent
in N1 position of the 7-(4-methyl-piperidinyl)-quinolones core leads to increased
docking score against human DNA topoisomerase and topoisomerase IV from
Klebsiella pneumoniae.

The compounds PQ11 (1-benzyl-6-fluoro-7-(4-methyl-piperidin-1-yl)-1,4-
dihydro-4-oxo-quinolin-3-carboxylic acid), 6ClPQ11 (1-benzyl-6-chloro-7-
(4-methyl-piperidin-1-yl)-1,4-dihydro-4-oxo-quinolin-3-carboxylic acid), HPQ11
(1-benzyl-7-(4-methyl-piperidin-1-yl)-1,4-dihydro-4-oxo-quinolin-3-carboxylic
acid), and 6MePQ11 (1-benzyl-6-methyl-7-(4-methyl-piperidin-1-yl)-1,4-dihydro-
4-oxo-quinolin-3-carboxylic acid) reveal better docking scores than that of the
reference ligands, topotecan (TTC) and levofloxacin (LFX), docked on human
DNA topoisomerase (PDB ID: 1K4T) and topoisomerase IV (PDB ID: 5EIX) from
Klebsiella pneumoniae, respectively.
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Chapter 4

Virtual Screening of
Sesquiterpenoid Pogostemon herba
as Predicted Cyclooxygenase
Inhibitor
Sentot Joko Raharjo

Abstract

To analyze the structural features that dictate the selectivity of the two isoforms
of the cyclooxygenase (COX), the three-dimensional structure of COX-1/COX-2
was assessed by means of binding energy calculation by way of virtual molecular
dynamic simulations using ligand sesquiterpenoid Pogostemon herba. This study
was conducted to investigate the molecular interaction between ligand alpha-
bulnesene (CID94275), alpha-guaiene (CID197152), seychellene (CID519743), and
alpha-patchouli alcohol isomers (CID442384, CID521903, CID6432585,
CID3080622, CID10955174, and CID56928117) to COX-1 and COX-2. Molecular
docking tools proposed by Hex 8.0 were employed in this research. Discovery
Studio Client 3.5 software tool and virtual molecular dynamic 1.9.1 software were
also used to visualize the molecular interactions identified in this research. In order
to calculate the binding energy of the molecular dynamic interaction, AMBER12
software was utilized. Results of the analysis on all sesquiterpenoid indicate that
those compounds were the inhibitors of COX-1 and COX-2. Overall, the binding
energy calculations (using PBSA Model Solvent) of alpha-patchouli alcohol
(CID521903) and seychellene (CID519743) have been identified as the candidates of
non-selective inhibitor; alpha-bulnesene (CID94275), alpha-guaiene (CID107152),
and alpha-patchouli alcohol isomers (CID6432585, CID3080622, CID10955174,
CID56928117) have been suggested as the candidates for a selective COX-1 inhibi-
tor; whereas alpha-patchouli alcohol (CID442384) was the candidate for a selective
COX-2 inhibitor.

Keywords: molecular dynamic, molecular docking, screening, sesquiterpenoid,
sesquiterpenoid alcohol, pogostemon herba, alpha-bulnesene, alpha-guaiene,
seychellene, alpha-patchouli alcohol isomers, cyclooxygenase,
protein COX-1/COX-2, binding energy, scoring

1. Introduction

The rapid development of high-performance computing intensifies the compe-
tition to invent faster supercomputers which invention is considered as a national
pride. High-performance computing machines are highly valued for having ade-
quate ability to solve complex problems related to national interests in several
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sectors including national defense, energy, financial sectors and science. Within the
global economic growth competition and the advancement in science and technol-
ogy including the advancement in biology, chemistry, pharmacy and medicine,
supercomputers play key roles. In-silico analysis has been developed as the compu-
tational approach [1, 2].

Molecular interactions including protein-nucleic acid, drug-protein, protein-
protein, enzyme-substrate, and drug-nucleic acid play important roles in many
essential biological processes, such as enzyme inhibition, signal transduction,
antibody-antigen recognition, transport, gene expression control, cell regulation, up
to multi-domain proteins assembly. Stable protein-protein or protein-ligand com-
plexes are often produced by the interaction which complexes are considered
essential in performing their biological functions. To determine the binding mode
and affinity between interacting molecules, tertiary structure of proteins should be
first identified. Unfortunately, conducting experiments to obtain complex struc-
tures has been considered challenging and expensive because the experiments
would require X-ray crystallography or NMR. Docking computation has been con-
sidered a feasible and important approach to comprehend the protein–protein or
protein-ligand interactions [3]. Experimental technique has been frequently used to
determine the three-dimensional protein structures—and structure of the databases
such as Protein Data Bank (PDB) and Worldwide Protein Data Bank. A total of
88,000 protein structures have been identified and most of them are significant in
critical metabolic pathways which might be regarded as potential therapeutic target.
Therefore, specific databases that contain binary complexes structures would be
available, along with information about binding affinities, such as in PDBBIND,
PLD, AffinDB and BindDB, molecular docking procedures improvement [3, 4].

In silico virtual screening is a popular identification technique used in in drug
discovery projects which distinguishes true actives from inactive or decoy mole-
cules effectively. To have better comprehension on the dynamic behavior of protein
drug targets, compound databases can be screened against an ensemble of protein
conformations through experiments or generated-computation [5]. Screening states
include ligand preparation, protein targets, molecular docking, visualization, bind-
ing energy calculation, and scoring [6]. A computer simulation procedure in the
form of molecular docking is commonly used to predict the conformation of certain
receptor-ligand complex, which receptor is usually a protein or a nucleic acid
molecule or the ligands in the form of a small molecule or other protein, or
sesquiterpenoid/sesquiterpenoid alcohol interaction to protein cyclooxygenase, as
shown Figure 1. In modern structure-based drug design, accurate prediction is
necessary to determine the binding modes between the ligand and protein. Virtual
screening is the most popular docking application that selects molecules from an
existing database for further research. As the demand on this computational
method keeps increasing, people expected a fast and reliable method. Another
application used in this study was molecular complexes investigation [3, 6–11].
Previous studies have shown that dynamic molecular-generated conformations play
considerable role in the identification of novel hit compounds because structural

Figure 1.
Molecular docking-Molecular dynamic ligand to protein.
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rearrangements obtained from molecular dynamic show novel-targetable areas.
However, predicting the priori is still considered difficult, especially when a molec-
ular dynamic conformation outperforms a virtual screening against the crystal
structure.

This study evaluated whether molecular dynamic conformations lead to better
virtual screening performance for nine ligand sesquiterpenoid/sesquiterpenoid
Pogostemon herba to protein cyclooxygenase (COX-1/COX-2). The results of in silico
analysis data will be completed with IC50 value determination and in-vitro and in-
vivo evaluation of the biological activity.

2. Theory of docking and virtual molecular dynamic

Within the process of living system, protein-ligand interactions have been
known to play central roles. It has been considered interesting to obtain more
comprehensive understanding of protein interactions with small molecules
because it leads to better understanding of various functions and therapeutic
intervention. As a matter of fact, molecular recognition is a complex interplay of
several factors including inter-molecular interactions of protein, ligand and the
surrounding solvent, conformational variations of binding partners and the ther-
modynamics of molecular association. The non-covalent reversible binding of
small-molecules to proteins also plays a central role in the field of biology. Several
processes are known crucial in living systems that involve specific recognition of
small molecule ligands by proteins. For instance, certain enzymes affect their sub-
strates and catalyze chemical reactions inside the cells, where transporters recog-
nize specific molecules based on the movement across membrane barriers,
receptors that are specifically bind to hormones or other chemical messengers for
inter- and intracellular communication. Finally, antibodies uniquely can bind to
other chemical agents to mount vital defense mechanisms against infections and
diseases. In general, protein-ligand binding in an aqueous environment is
described as follows.

Protein Pð Þ aqð Þ þ Ligand Lð Þ aqð Þ➔Protein� Ligand PLð Þ aqð Þ (1)

A change in the free energy (ΔG) is always followed by chemical reactions and
change in two other important quantities; enthalpy (ΔH)—the heat content and
entropy (ΔS) that showed disorder of temperature-independent degree. The rela-
tionship between these quantities is shown as follows:

ΔG° ¼ ΔH–TΔS (2)

Some factors including electrostatic and van der Waals interactions, ionization
effects, conformational changes and the role of solvent affect the changes in the
binding of free energy. Those factors are manifested as either favorable or unfavor-
able changes in entropy and enthalpy. In order to create a spontaneous reaction, the
free energy change should be negative at equilibrium, ΔG° which relates to the
equilibrium constant (K) in this following expression:

ΔG° ¼ �RTlnK (3)

where R is the gas constant and T is the absolute temperature. Using this relation-
ship, free energy changes can be derived from experimentally measurable quantity,
K. Biological K values exhibit a wide range from weak to very strong binding.
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Scoring function in ligand-protein docking is expected to identify the preferred
binding poses of ligands. However, considering the computational efficiency, approxi-
mations were usually introduced into the scoring functions, which unfortunately, often
impair the prediction accuracy [12]. The scoring functions of ligand–protein docking can
be roughly categorized into two classes: force field-based scoring functions and
knowledge-based scoring functions. A force field-based scoring consists of a few poten-
tial terms, such as van derWaals interactions, electrostatic interactions, hydrophobic
effects, desolvation energies, and entropic effects, and the total energy of a conformation
is calculated by summing up the contributions of all energy terms [13, 14].

Inter-atomic interactions mediate the non-covalent binding of small-molecule
ligand to proteins. The interactions usually include electrostatic and van der Waals
interactions (Figure 2). The affinity of receptor-ligand binding is strongly deter-
mined by other factors such as entropy, desolvation, flexibility of receptor structure
and the structural water molecules in the binding site [15, 16]. A brief literature
review of the importance of protein-ligand interactions and other factors contrib-
uting to binding affinity is described as follows.

Protein-ligand electrostatic complementarity and the ligand at the binding
interface are both vital for the formation of complex. The predominant types of
electrostatic interactions appear in the form of hydrogen bonding, salt bridges, and
metal interactions.

As the most important directional interaction in biological macromolecules,
hydrogen bonding is known for conferring stability to protein structure and selec-
tivity to protein-ligand interactions [17]. Hydrogen bonding normally occurs
between two electronegative atoms, which donor is covalently bound to hydrogen
atom, while the acceptor contains a lone pair of electrons. The attractive interaction
between partial positive charge in the hydrogen atom and partial negative charge on
the acceptor atom forms strong electrostatic attraction. Several theoretical and
experimental studies have successfully confirmed an additional covalent compo-
nent to hydrogen bonds based empty σ* anti- bonding orbital of the hydrogen atom
and highest occupied orbital of the acceptor interaction [17, 18]. In hydrophobic
interactions, non-polar parts of the molecule interact (Figure 2). The non-polar
parts of protein-ligand complexes at the interacting surfaces are covered by the
binding causing water molecules displacement which eventually increases the

Figure 2.
Major type of non-bonded interactions in protein-ligand complexes [17].
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entropy. Hydrophobic interactions are entropy-driven and they play crucial roles in
ligand binding [16, 18].

Finding an accurate modeling of protein-ligand binding is an extremely chal-
lenging task due to its complexity. Usually, thermodynamics and statistical
mechanical principles are employed to develop relatively accurate, but computa-
tionally demanding treatment of protein-ligand interactions. In this method, full-
scale molecular dynamic simulation using explicit solvent and flexible protein and
ligand molecules is employed [15, 17]. Both, absolute and relative binding energy
can be measured using free energy approach. The absolute binding free energy
method which has been considered an accurate method; it involves separate simu-
lation treatment for solvated protein, ligand and the complex. Prior information is
not quite necessary regarding the structure and binding affinity of the complex. A
well-known structure for the complex is used within the context of relative free
energy calculation as a reference, while the gaps in binding free energy are mea-
sured for the ligand of interest. Measurement can be carried out in the form of
alchemical transformation of reference ligand into target ligand. Molecular dynam-
ics is used in exhaustive sampling of the configuration space. The accuracy of these
methods is determined by the underlying atomic force field and proper selection of
protocol to address certain problem at hand [17, 18].

Scoring functions are based on knowledge focus on the optimization of specified
terms and they use other optimization methods to set the best weighing for each
scoring term regarding the training sets. Hence, these methods are often called as
informatics-driven methods including IFACE [19, 20], DARS [21], SPA-PP [22],
DrugScorePPI [23], TS [24], etc. In the past decades, free energy perturbation
(FEP) [25] as well as energy representation (ER) [21] that are more theoretically
rigorous free energy calculation methods, has emerged. Molecular Mechanics/
Poisson Boltzmann Surface Area (MM/PBSA) [26] and Molecular mechanics/gen-
eralized Born surface area (MM/GBSA) [27] are commonly employed to estimate
ligand-protein binding free energies. Unfortunately, these methods are rather time-
consuming compared to other scoring functions. Yet, rapid advancement of com-
puter hardware technology seems promising, and it is expected to allow these
methods to be used in protein-protein docking in the near future.

The MM/PBSA and MM/GBSA approaches are more computationally efficient
when they were compared to thermodynamic integration (TI) and free energy
perturbation (FEP) approaches. Besides, they allow decomposition into different
interaction terms to occur [13, 26, 28]. MM/PBSA and MM/GBSA are more efficient
in tem of computation. Another similar approach is the linear interaction energy
(LIE) method, which calculates the average energy interaction in MD simulations to
estimate the absolute binding free energy. Similarly, LIE restricts the simulations
only to two end points of ligand binding. Different from most molecular docking
empirical scoring functions, MM/PBSA and MM/GBSA do not demand a large
training set to fit different parameters for each energy term [25]. In addition, MM/
PBSA and MM/GBSA allow rigorous free energy decomposition into contributions
to occur, originating from different groups of atoms or types of interaction [29, 30].
The binding free energy (ΔGbind) between a ligand and a receptor protein offered in
these methods to form a complex Receptor protein - Ligand is calculated as follows.

ΔGbind ¼ Gcomplex Gprotein þGligand
� �

(4)

ΔGbind ¼ ΔH� TΔS˜ΔEMM þ ΔGsol–TΔS (5)

ΔEMM ¼ ΔEinternal þ ΔEelectrostatic þ ΔEvdW (6)

ΔGsol ¼ ΔGPB=GB þ ΔGSA (7)
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PBSA and MM/GBSA allow rigorous free energy decomposition into contributions
to occur, originating from different groups of atoms or types of interaction [29, 30].
The binding free energy (ΔGbind) between a ligand and a receptor protein offered in
these methods to form a complex Receptor protein - Ligand is calculated as follows.

ΔGbind ¼ Gcomplex Gprotein þGligand
� �

(4)

ΔGbind ¼ ΔH� TΔS˜ΔEMM þ ΔGsol–TΔS (5)

ΔEMM ¼ ΔEinternal þ ΔEelectrostatic þ ΔEvdW (6)

ΔGsol ¼ ΔGPB=GB þ ΔGSA (7)
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where ΔGbind shows the free energy of ligand-protein total binding; ΔEMM

reflects the total gas phase energy (sum of ΔEinternal, ΔEelectrostatic, and ΔEvdw);
ΔGsol is the sum of polar (ΔGPB/GB) and non-polar (ΔGSA) contributions to solva-
tion; and -TΔS refers to the conformational binding entropy (commonly calculated
by normal-mode analysis). ΔEinternal shows the internal energy that arises from
different bond, angle, and dihedral in molecular mechanics (MM) force field (in the
MM/PBSA and MM/GBSA, this always amounts to zero as shown in single trajec-
tory of a complex calculation). ΔEelectrostatic and ΔEvdw are the electrostatic and van
der Waals energies resulted from the calculation of MM, while ΔGPB/GB shows the
polar contribution to the solvation free energy (calculated using Poisson–Boltzmann
(PB) or generalized Born (GB) method). ΔGSA is the nonpolar solvation free energy
that is usually computed using a linear function of the solvent-accessible surface
area (SASA). EMM is molecular mechanical energy calculated from CHARMM force
field, Gelec and GNP are electrostatic polar components and non-solvation free
energy. TS term refers to the entropy of the solute which is assumed to be constant
between one set of poses for the same ligand on the active side. EMM is a gas phase
forcefield energy and consists of internal energy (Eint), electrostatic energy (Eelec)
and van der Waals energy components. Eint is further divided into Ebond, Eangle,
Etorsion and Eoop to calculate account energy related to bonds, angles, torque and
outside as shown in Figure 3.

MM/GBSA and MM/PBSA have been successfully applied to predict the binding
free energies for various ligand sesquiterpenoid/sesquiterpenoid alcohol to protein
COX-1/COX-2, but the previous studies mostly focused on certain specific systems
and the prediction results cannot afford the overall accuracy of MM/PBSA and MM/
GBSA for ligand-protein systems.

3. Ligand sesquiterpenoid

Ligand sequiterpenoid was obtained from pubchem.ncbi.nlm.nih.gov, such as
(alpha-bulnesene (CID94275), alpha-guaiene (CID107152), and seychellene
(CID519743). Also, sesquiterpenoid alcohols, including alpha-Patchouli alcohol iso-
mers (CID442384, CID521903, CID6432585, CID3080622, CID10955174, and
CID56928117) as 3D-SDF format. Then, its energy was minimized which files were
converted to 3D-PDB format by Open Babel 2.3.1 in Hex 8.0 as the ligands prepared
for virtual screening [6, 8, 11, 31]. The structures of studied ligands are shown in
Figure 4.

Figure 3.
Calculation of binding energy using the MM-GB/SA approach [36].
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Sesquiterpenoid, such as alpha-bulnesene (CID94275), alpha-guaiene
(CID107152), and seychellene (CID519743) has molecular weight 204.35 g/mol,
molecular formula C15H24, and XLogP3-AA: 4.60; 4.6; and 5.10 respectively
(Table 1). And alpha-patchouli alcohol isomers has molecular weight:
222.36634 g/mol; molecular formula:

C15H26O; XLogP3-AA: 4.1; H-Bond Donor: 1; and H-Bond Acceptor: 1.
The number of isomers of alpha-Patchouli alcohol is six. In Figure 4

Figure 4.
Structure of sequiterpenoid and sesquiterpenoid alcohols Pogostemon herba.

Description sequiterpenoid sesquiterpenoid alcohol

CID94275 CID107152 CID519743 CID442384, CID521903,
CID6432585, CID3080622,
CID1095517,CID56928117

Molecular Weight (g mol�1) 204.35 204.35 204.35 222.36

Kinase inhibitor �1.33 �1.33 �1.30 �0.88

Nuclear receptor inhibitor 0.19 0.19 0.27 0.55

Protease inhibitor �0.60 �0.60 �0.50 �0.32

Enzyme inhibitor 0.07 0.07 0.28 0.40

xlogP3-AA 4.6 4.60 5.10 4.10

H-Bond donor 0 0 0 1

H-Bond aseptor 0 0 0 1

Table 1.
Physical–chemical properties and predicted activity of sesquiterpenoids and sequiterpenoid alcohols
Pogostemon herba.
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Sesquiterpenoid, such as alpha-bulnesene (CID94275), alpha-guaiene
(CID107152), and seychellene (CID519743) has molecular weight 204.35 g/mol,
molecular formula C15H24, and XLogP3-AA: 4.60; 4.6; and 5.10 respectively
(Table 1). And alpha-patchouli alcohol isomers has molecular weight:
222.36634 g/mol; molecular formula:
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2D-sesquiterpernoid/sesquiterpenoid alcohol, such as alpha-bulnesene (CID94275),
alpha-guaiene, and seychellene (CID519743), and alpha-Patchouli isomers
(CID442384, CID521903, CID6432585, CID3080622, CID10955174, and
CID56928117) show the different position of hydroxyl group and hydrogen atom.
The 3D structure of sesquiterpenoid/sesquiterpenoid alcohol was retrieved in
3D-SDF format from http://pubchem.ncbi.nlm.nih.gov/. For the preparation of
docking, 3D-SDF format of isomers was converted to 3D-PDB using open babel
software. This program helps to search, convert, analyze, or store data which has a
wide range of applications in the different fields of molecular modeling, computa-
tional chemistry, and so forth. For a common user, it helps to apply chemistry
aspects without worrying about the low level details of chemical information. It also
converts crystallographic file formats (CIF, ShelX), reaction formats (MDLRXN),
molecular dynamics and docking (AutoDock, Amber), 3D viewers (Chem3D,
Molden), and chemical kinetics and thermodynamics (ChemKin, Termo) [6, 8].

4. Cyclooxygenase protein receptor (COX-1 and COX-2)

3D model from PDB ID: 1PTH was obtained from SWISS-MODEL repository for
cyclooxygenase-1 (COX-1) (http://www.rcsb.org/pdb/explore/explore.do?structure
Id=1pth) and 3D model from PDB ID: 6COX for cyclooxygenase-2 (COX-2) [6, 8].
We used Ramachandran plot analysis for validation protein receptor [32].

In Figure 5 shows the Ramachandran plot analysis of COX-1 and COX-2 protein
receptor before rigid docking. It showed that COX-1 protein receptor had 97.5%
favored regions, 2.4% allowed regions, and, 0.2% outlier regions. Whereas, COX-2
protein receptor had 81.9% favored regions, 15.4% allowed regions and 2.7% outlier
regions. Ramachandran plot displays the main chain torsion angles phi, psi (φ, Ψ)
(Ramachandran angles) in a protein of known structure. The model was verified to
guarantee the validity of programming and algorithms implemented. Results of the
validity test showed that amino acid residues were distributed at the most favorable
region in the Ramachandran plot. This is an indication of the stereochemical quality

Figure 5.
Ramachandran plot analysis of COX-1 and COX-2.
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of the model taken for the structural analysis and also validated the target-ligand
binding efficacy of the structure. The Ramachandran plot presents the angle of phi-
psi torsion of all residues in the structure (except those at the chain termini) which
were classified according to their regions in the quadrangle. The most favored
regions are colored yellow, additional allowed/generously allowed region, and
outlier regions are indicated as blue and pink fields, respectively [6, 8, 32].

5. Molecular docking ligand and binding energy interaction
sesquiterpenoid/sesquiterpenoid alcohols to protein COX-1 and
COX-2

We used Hex8.0 software (http://hex.loria.fr) for rigid docking to compute
possible interaction COX-1 and COX-2 with (alpha-bulnesene (CID94275), alpha-
guaiene (CID107152), seychellene (CID519743) and sesquiterpenoid alcohols such
as alpha-Patchouli alcohol isomers (CID442384, CID521903, CID6432585,
CID3080622, CID10955174, and CID56928117) on the interaction site. Output of the
docking was refined using Discovery Studio Client 3.5 software. We used Discovery
Studio Client 3.5 to perform interactions, ligand binds to COX-1/COX-2 and
Ramachandran plot analysis.

The repeat rigid docking used Hex 8.0 software to compute possible interaction
COX-1 and COX-2 with sesquiterpenoid/sesquiterpenoid alcohols such as alpha-
bulnesene (CID94275), alpha-guaiene, seychellene (CID519743), and alpha-
patchouli alcohol isomers (CID442384, CID521903, CID6432585, CID3080622,
CID10955174, and CID56928117) on its interaction site and the data are represented
by Discovery Studio 3.5 software in (Figure 5(a1–l1)). The interaction site position
of COX-1/COX-2-sesquiterpenoid/sesquiterpenoid alcohol complexes were ana-
lyzed using Discovery Studio-3.5 Client software to get the receptor-ligand interac-
tion and Ramachandran plot, as shown in Figure 5; some of them are alpha-
patchouli alcohol isomers-COX-1/COX-2 complexes.

In Table 2 and Figure 6, the interactions active site of ligand sesquiterpenoid/
sesquiterpenoid alcohol with COX-1 and COX-2 protein receptor showed the dif-
ferences in the position active site. The different positions were analyzed and
presented in the Ramachandran plot analysis and its amino acid residues in the
receptor active site of COX-1 and COX-2 in which hydrogen atoms and hydroxyl
groups on each of the 3D-isomers of alpha-patchouli alcohol structure were in
different position (Figure 4). The results of docking and analysis of the active site
also show that all ligands sesquiterpenoid/sesquiterpenoid alcohol are in the cata-
lytic domain. Thus, all the compounds have the capability of blocking oxygenated
reaction and reaction peroxides; currently substrate arachidonic acid becomes
PGH2.

Each ligand, CID521903, was seen interacting with HEM682B group in COX-2-
CID521903 complexes. This result proved that it would lead to inhibition of enzy-
matic reactions occurring COX-1 and COX-2. The analysis of active site showed that
there are any difference and similarities of the active site of all ligand alpha-
patchouli alcohol isomers which is interact with receptor proteins COX-1 and
COX-2. This difference is caused by different stereoisomers of hydrogen atoms
and hydroxyl group in alpha-patchouli alcohol isomers. The different position
active site the complexes have led to interaction types, such as hydrogen bond, van
der Waals, electrostatic and covalent bond. The different types of interactions in
this complex will certainly affect its binding free energy.
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of the model taken for the structural analysis and also validated the target-ligand
binding efficacy of the structure. The Ramachandran plot presents the angle of phi-
psi torsion of all residues in the structure (except those at the chain termini) which
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6. Molecular dynamic screening of sesquiterpenoid/sesquiterpenoid
alcohol Pogostemon herba as predicted cyclooxygenase inhibitor
selective

After the results of the rigid docking to compute possible interaction COX-1 and
COX-2 with (alpha-bulnesene (CID94275), alpha-guaiene (CID107152), and

No. Virtual
modeling

Amino acid residues in the active site (by Hex 8.0 software and then
Discovery Studio 3.5 software)

COX-1 COX-2

1. alpha-
Patchouli
alcohol
CID442384

TRP141A, GLU142A, SER145A, ASN146A,
LEU226B, GLY227B, ASP231B, GLN243B,
GLY237B, ASN239B, LEU240B, ASP238B,
ARG335B

TRP139A, GLU140A, SER143A,
ASN144A, LEU145A, GLY235B,
GLU236B, THR237B, LEU238B,
GLN241B, GLN330B

2. alpha-
Patchouli
alcohol
CID521903

SER123A, ASN124A, LEU125A, ILE126A,
PRO127A, SER128A, PRO129A, GLN372A,
PHE373A, GLN274A, LYS534A, PRO544B,
GLU545B

LYS211B, THR212B, ASP213B,
HIS214B, LYS215B, ARG222B,
ILE274B, GLN298B, GLU290B,
VAL291B, HEM682B

3. alpha-
Patchouli
alcohol
CID643285

TRP141A, GLU142A, SER145A, ASN146A,
LEU226B, ASP231B, GLY237B, ASP238B,
ASN239B, LEU240B, GLN243B, ARG335B

TRP139A, GLU140A, SER143A,
ASN144A, LEU145A, THR237B,
LEU238B, GLY235B, GLU236B,
GLN241B, GLN330B, LYS333B

4. alpha-
Patchouli
alcohol
CID3080622

SER123A, ASN124A, ILE126A, PRO127A,
SER128A, PRO129A, GLN372A, PHE373A,
GLN374A, LYS534A, PRO544B, GLU545B

TRP139A, SER143A, ASN144A,
LEU145A, GLY235B, GLU236B,
THR237B, LEU238B, GLN241B,
LYS333B

5. alpha-
Patchouli
alcohol
CID10955174

TRP141A, GLU142A, SER145A, ASN146A,
LEU226B, ASP231B, GLY237B, ASP238B,
ASN239B, LEU240B, GLN243B, ARG335B

TRP139A, GLU140A, SER143A,
ASN144A, LEU145A, GLY235B,
GLU236B, THR237B, LEU238B,
GLN241B, GLN330B, LYS33B

6. alpha-
Patchouli
alcohol
CID56928117

Electrostatic: ASN146B.
Van der Walls: LEU226A, GLY237A,
ASP238A, ASN239A, LEU240A, GLU241A,
GLN243A, ARG335A, TRP141B, GLU142B,
SER145B

Electrostatic: SER143B.
Van der Walls: GLY235A,
GLU236A, THR237A, LEU238A,
ASP239A, GLN241A, LYS333A,
TRP139B, GLU140B, ASN144B,
LEU145B

7. alpha-
bulnesene
CID94275

Van der Walls: VAL147A, LYS224A,
ALA225A, LEU226A, GLY227A, ASP231A,
GLY233A, GLY237A, ASP238A, ASN239A,
LEU240A, ARG335A, TRP141B, GLU142B,
SER145B, ASN146B, VAL147B

Van der Walls: GLY225A,
ASP229A, GLY235A, GLU236A,
LEU238A, GLN241A, GLN330A,
THR237A, LYS333A, SER143B,
TRP139B, GLU140B, ASN144B,
LEU145B

8. alpha-guaiene
CID107152

Van der Walls: TRP141A, GLU142A,
SER145A, ASN146A, LEU226B, GLY227B,
ASP231B, GLY237B, ASN239B, ASP238B,
LEU240B, GLU241B, GLN243B, ARG335B

Van der Walls: GLY225A,
ASP229A, ASN231A, GLY235A,
GLU236A, THR237A, GLN241A,
GLN330A, LYS333A, TRP139B,
GLU140B, SER143B, ASN144B,
LEU145B, LEU238A

9. Seychellene
CID519743

Van der Walls: PRO544A, GLU545A,
SER123B, ASN124B, LEU125B, ILE126B,
PRO127B, SER128B, PHE373B, GLN372B,
GLN374B, LYS534B

Van der Walls: ASP213A,
HIS214A, LYS215A,LYS211A,
THR212A, ARG222A, ILE274A,
GLN289A, GLU290A, VAL291A,
HEM682A

Table 2.
Analysis of virtual modeling of COX-1/COX-2-sesquiterpenoid/sesquiterpenoid alcohol complexes.
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Figure 6.
Modeling analysis alpha-patchouli alcohol isomer in complex with COX-1 and COX-2. (a1) – (l1) 3D active
site structure of COX-1/COX-2-alpha-patchouli alcohol isomers complexes; (a2) to (l2) Ramachandran plot
analysis of COX-1/COX-2-alpha-patchouli alcohol complexes using discovery studio 3.5 viewer Software.
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6. Molecular dynamic screening of sesquiterpenoid/sesquiterpenoid
alcohol Pogostemon herba as predicted cyclooxygenase inhibitor
selective

After the results of the rigid docking to compute possible interaction COX-1 and
COX-2 with (alpha-bulnesene (CID94275), alpha-guaiene (CID107152), and

No. Virtual
modeling

Amino acid residues in the active site (by Hex 8.0 software and then
Discovery Studio 3.5 software)

COX-1 COX-2
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Patchouli
alcohol
CID442384
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2. alpha-
Patchouli
alcohol
CID521903

SER123A, ASN124A, LEU125A, ILE126A,
PRO127A, SER128A, PRO129A, GLN372A,
PHE373A, GLN274A, LYS534A, PRO544B,
GLU545B

LYS211B, THR212B, ASP213B,
HIS214B, LYS215B, ARG222B,
ILE274B, GLN298B, GLU290B,
VAL291B, HEM682B

3. alpha-
Patchouli
alcohol
CID643285

TRP141A, GLU142A, SER145A, ASN146A,
LEU226B, ASP231B, GLY237B, ASP238B,
ASN239B, LEU240B, GLN243B, ARG335B

TRP139A, GLU140A, SER143A,
ASN144A, LEU145A, THR237B,
LEU238B, GLY235B, GLU236B,
GLN241B, GLN330B, LYS333B

4. alpha-
Patchouli
alcohol
CID3080622

SER123A, ASN124A, ILE126A, PRO127A,
SER128A, PRO129A, GLN372A, PHE373A,
GLN374A, LYS534A, PRO544B, GLU545B

TRP139A, SER143A, ASN144A,
LEU145A, GLY235B, GLU236B,
THR237B, LEU238B, GLN241B,
LYS333B

5. alpha-
Patchouli
alcohol
CID10955174

TRP141A, GLU142A, SER145A, ASN146A,
LEU226B, ASP231B, GLY237B, ASP238B,
ASN239B, LEU240B, GLN243B, ARG335B

TRP139A, GLU140A, SER143A,
ASN144A, LEU145A, GLY235B,
GLU236B, THR237B, LEU238B,
GLN241B, GLN330B, LYS33B

6. alpha-
Patchouli
alcohol
CID56928117

Electrostatic: ASN146B.
Van der Walls: LEU226A, GLY237A,
ASP238A, ASN239A, LEU240A, GLU241A,
GLN243A, ARG335A, TRP141B, GLU142B,
SER145B

Electrostatic: SER143B.
Van der Walls: GLY235A,
GLU236A, THR237A, LEU238A,
ASP239A, GLN241A, LYS333A,
TRP139B, GLU140B, ASN144B,
LEU145B

7. alpha-
bulnesene
CID94275

Van der Walls: VAL147A, LYS224A,
ALA225A, LEU226A, GLY227A, ASP231A,
GLY233A, GLY237A, ASP238A, ASN239A,
LEU240A, ARG335A, TRP141B, GLU142B,
SER145B, ASN146B, VAL147B

Van der Walls: GLY225A,
ASP229A, GLY235A, GLU236A,
LEU238A, GLN241A, GLN330A,
THR237A, LYS333A, SER143B,
TRP139B, GLU140B, ASN144B,
LEU145B

8. alpha-guaiene
CID107152

Van der Walls: TRP141A, GLU142A,
SER145A, ASN146A, LEU226B, GLY227B,
ASP231B, GLY237B, ASN239B, ASP238B,
LEU240B, GLU241B, GLN243B, ARG335B

Van der Walls: GLY225A,
ASP229A, ASN231A, GLY235A,
GLU236A, THR237A, GLN241A,
GLN330A, LYS333A, TRP139B,
GLU140B, SER143B, ASN144B,
LEU145B, LEU238A

9. Seychellene
CID519743

Van der Walls: PRO544A, GLU545A,
SER123B, ASN124B, LEU125B, ILE126B,
PRO127B, SER128B, PHE373B, GLN372B,
GLN374B, LYS534B

Van der Walls: ASP213A,
HIS214A, LYS215A,LYS211A,
THR212A, ARG222A, ILE274A,
GLN289A, GLU290A, VAL291A,
HEM682A

Table 2.
Analysis of virtual modeling of COX-1/COX-2-sesquiterpenoid/sesquiterpenoid alcohol complexes.
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Figure 6.
Modeling analysis alpha-patchouli alcohol isomer in complex with COX-1 and COX-2. (a1) – (l1) 3D active
site structure of COX-1/COX-2-alpha-patchouli alcohol isomers complexes; (a2) to (l2) Ramachandran plot
analysis of COX-1/COX-2-alpha-patchouli alcohol complexes using discovery studio 3.5 viewer Software.
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seychellene (CID519743). And also, sesquiterpenoid alcohol, such as alpha-
Patchouli alcohol isomers (CID442384, CID521903, CID6432585, CID3080622,
CID10955174, and CID56928117) to performed active visualization-interaction 2D
and 3D, and binding energy using Discovery Studio 3.5 software. The output of the
docking, visualization, and binding energy calculation using AMBER12 software
and Virtual Molecular Dynamics 1.9.1 obtained the most possible native complex
structure of sesquiterpenoid/sesquiterpenoid alcohol of CID94275, CID107152,
CID519743, CID442384, CID521903, CID6432585, CID3080622, CID10955174, and
CID56928117, respectively, that bind with COX-1 and COX-2 in molecular dynamic
with Model Solvent of MM-PBSA (Molecular Mechanics Poisson-Boltzmann Sur-
face Area), which included both backbone and side-chains movements. Therefore,
we used AMBER12 to refine the candidate models according to a binding energy
calculation for scoring of virtual screening sesquiterpenoid/sesquiterpenoid alcohol
compounds as selective inhibitor for COX-1 and/or COX-2. Molecular dynamics
(MD) were carried out using AMBER12 and the AMBER-99 force field. The initial
structure of the sesquiterpenoid/sesquiterpenoid alcohol inhibitor complex was
taken for each compound from the Hex 8.0 docking study. The ligand force fields
parameters were taken from the General Amber force Field (GAFF), whereas AM1
ESP atomic partial charges were assigned to the inhibitors. Prior to the free MD
simulations, two steps of relaxation were carried out; in the first step, we kept the
protein fixed with a constraint of 500 Kcal�mol�1 � °A�1. In the second step, the
inhibitor structures were relaxed for 0.5 pico second, during which the protein
atoms were restrained to the X-ray coordinates with a force constant of
500 Kcal�mol�1 � °A�1. In the final step, all restraints were removed and the com-
plexes were relaxed for 1 pico second. The temperature of the relaxed system was
then equilibrated at 300 Kelvin through 20 pico second of MD using 2 fs time steps.
A constant volume periodic boundary was set to equilibrate the temperature of the
system by the Langevin dynamics using a collision frequency of 10 ps�1 and a
velocity limit of five temperature units. During the temperature equilibration rou-
tine, the complex in the solvent box was restrained to the initial coordinates with a
weak force constant of 10 Kcal�mol�1 � °A�1. The final coordinates of the tempera-
ture equilibration routine (after 20 ps) were then used to complete a 1 ns molecular
dynamics routine using 2 fs time steps, during which the temperature was kept at
300 Kelvin. For the Langevin dynamics a collision frequency of 1 ps�1 and a
velocity limit of 20 temperature units were used. The pressure of the solvated
system was equilibrated at 1 bar at a certain density in a constant pressure periodic
boundary by an isotropic pressure scaling method employing a pressure relaxation
time of 2 ps. The time step of the free MD simulations was 2 fs with a cut-off of 9°A
for the non-bonded interaction, and SHAKE was employed to keep all bonds
involving hydrogen atoms rigid. Calculation of binding energy was administered
using this equation:

ΔGbind ¼ Gcomplex � Gprotein þ Gligand
� �

[6, 8, 33–37].
We were using AMBER12 software and Virtual Molecular Dynamics 1.9.1 to

simulate the most possible native complex structure of sesquiterpenoid/
sesquiterpenoid alcohol (CID94275, CID107152, CID519743, CID442384,
CID521903, CID6432585, CID3080622, CID10955174, and CID56928117), respec-
tively, that binds with COX-1 and COX-2 in molecular dynamic with MM-PBSA
Model Solvent. The MD simulations of the sesquiterpenoid/sesquiterpenoid alcohol-
inhibitor, some of them are alpha-patchouli alcohol-COX-1/COX-2 complexes. The
structure of the complexes is shown in Figure 7(a–f) and (j–o). We also acquire the
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results of the analysis of 200 poses: the complex energy, energy ligand protein, and
energy. The binding energy was calculated use the following equation:

ΔGbind ¼ Gcomplex � Gprotein þ Gligand
� �

as shown in Figure 7(g–i), (p–r) and (o).
Analysis of the active site and the binding energies COX-1/COX-2-

sesquiterpenoid/sesquiterpenoid alcohol are by Discovery Studio 3.5 and Amber 12,
summarized and presented in Figure 7 (s).

The different position active site the complexes have led to interaction types,
such as hydrogen bond, van der Waals, electrostatic and covalent bond. The differ-
ent types of interactions in this complex will certainly affect its binding free energy.
The use of Poisson-Boltzmann (PB) and Generalized Born (GB) characterized the
binding free energy calculation model solvent MMPB/SA and MM-GB/SA in com-
puting the electrostatic component of the solvation free energy. The following
equation was employed in binding free energy of the protein-ligand complex.

ΔG ¼ ΔH–TΔS (8)

T is the temperature of the system at 300 Kelvin. The free binding energy
(ΔGbinds) of the protein-ligand-complex were evaluated using MMPBSA (Molec-
ular Mechanics Poison Blotzmann Surface Area) method as implemented in Dis-
covery Studio 3.5 and AMBER12. MMPBSA has always been considered as a proper
method to compare binding energies of similar ligands. MMPBSA measures the
binding free energy based on thermodynamic cycle in which molecular
mechanical energy and the continuum solvent approaches are simultaneously
used [6, 8, 33, 38]. The calculation of binding free energy is computed as:

ΔGbind ¼ Gcomplex � Gprotein þ Gligand
� �

(9)

In (5.2), Gcomplex is the absolute free energy of the complex, Gprotein is the absolute
free energy of the protein, and Gligand is the absolute free energy of the ligand [6, 8,
33, 38]. The free energy of each termwas estimated as a sum of the three terms:

G½ � ¼ EMM½ � þ Gsol½ � � T � S½ � (10)

[GMM] is the molecular mechanics energy of the molecule expressed as the sum
of the internal energy (bond, angle, and dihedral) (Eint), electrostatic energy (Eele),
and van der Waals term (Evdw):

EMM½ � ¼ Eint½ � þ Eele½ � þ Evdw½ � (11)

[Eele] solvation energy can be categorized as polar and nonpolar part. Polar
part gives electrostatic contribution to solvation by solving the linear Poisson
Boltzmann equation within the solvent’s continuummodel [33]. The binding energy
calculation in AMBER12 includes preparation, minimization, heating, and energy
calculations (complex, protein, and ligand). We extracted 200 snapshots (at time
intervals of 2 ps) for each species (complex, protein, and ligand). Furthermore, the
visualization using virtual model dynamic (VMD 1.9.1 software) is shown in
Figure 7(a–f) and (j–o), and then the binding energy calculation can be obtained
from the data ligand energy, protein energy, and energy complex by AMBER12, 200
times/poses, respectively; next, the binding free energy calculation is calculated by
Eq. (7.2) and shown in Figure 7(g), (h), (i), (p), (q), and (r) and summarized in
Figure 5(s). Figure 5(s) shows that the binding energy calculation (PBSA Model
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Solvent) of COX-1 CID442384 complexes (�28.386 � 1.102 Kcal/mol) was smaller
than the COX-2 CID442384 complexes (�16.215 � 0.985 Kcal/mol) and also ligands
CID6432585, CID3080622, CID10955174, and CID56928117. The similar research,
docking studies ligand salicin compound from D. gangeticum to COX-1 and COX-2
protein receptor, showed high binding affinity COX-2 protein (�5 Kcal/mol) and
lesser interaction with COX-1 (�3.79 Kcal/mol). Therefore, salicin could predict as
COX-2 inhibitor selective and anti-cancerous compound [6].

Ebinds (ΔG) was determined on the basis of calculation of the Eq. (5.2). Gligand
value is influenced by the type of ligand. Gligand will affect the value Ebinds and
ratio of Ebinds COX-1 and Ebinds COX-2. Hence, in-silico analysis can be used as an
approach to determine the selectivity of the ligand as an inhibitor of COX-1/COX-2.
Ebinds (binding energy calculations) seychellene (CID519743) (Figure 7(s))
showed as candidate non-selective COX inhibitor and it’s similar to value of
selective IC50, as shown in Figure 8.
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Figure 7.
Binding energy calculation of alpha-patchouli alcohol isomers binds to COX-1/COX-2. (a) and (f) and
(j)–(o) virtual molecule dynamic complexes of COX-1/COX-2-alpha-patchouli alcohol isomers. (g), (h), (i),
(p),(q), and (r) comparison of binding energy calculation of alpha-patchouli alcohol isomer-COX-1 (blue)
and COX-2 (red) complexes. (s) Histogram of binding energy calculation of COX-1 (blue)/COX-2 (red)
sesquiterpenoid/sesquiterpenoid alcohol complexes by discovery studio 3.5 (s-1) and Amber 12 (s-2).

55

Virtual Screening of Sesquiterpenoid Pogostemon herba as Predicted Cyclooxygenase Inhibitor
DOI: http://dx.doi.org/10.5772/intechopen.85319



Solvent) of COX-1 CID442384 complexes (�28.386 � 1.102 Kcal/mol) was smaller
than the COX-2 CID442384 complexes (�16.215 � 0.985 Kcal/mol) and also ligands
CID6432585, CID3080622, CID10955174, and CID56928117. The similar research,
docking studies ligand salicin compound from D. gangeticum to COX-1 and COX-2
protein receptor, showed high binding affinity COX-2 protein (�5 Kcal/mol) and
lesser interaction with COX-1 (�3.79 Kcal/mol). Therefore, salicin could predict as
COX-2 inhibitor selective and anti-cancerous compound [6].

Ebinds (ΔG) was determined on the basis of calculation of the Eq. (5.2). Gligand
value is influenced by the type of ligand. Gligand will affect the value Ebinds and
ratio of Ebinds COX-1 and Ebinds COX-2. Hence, in-silico analysis can be used as an
approach to determine the selectivity of the ligand as an inhibitor of COX-1/COX-2.
Ebinds (binding energy calculations) seychellene (CID519743) (Figure 7(s))
showed as candidate non-selective COX inhibitor and it’s similar to value of
selective IC50, as shown in Figure 8.

54

Molecular Docking and Molecular Dynamics

Figure 7.
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The relationship binding energy, Ki and IC50 is defined by Eq. (5.5) and (5.6)
[39, 40].

ΔGbind ¼ 2:303 R � T log Ki (12)

For competitive inhibition : Ki ¼ IC50–E=2ð Þ= S=Kmþ 1ð Þ
For uncompetitive inhibition : Ki ¼ IC50–E=2ð Þ= Km=Sþ 1ð Þ

if S ¼ Km,Ki ¼ IC50=2;

if S>>Km,Ki << IC50;

if S<<Km Ki ≈ IC50:

For non-competitive inhibition: Ki = IC50 when S = Km or S << Km and for
tightly bound inhibitor:

Ki ¼ IC50–E=2 (13)

where: E = enzyme, S = Substrate, P=Product.
The latest development is more selective selective COX-2 drugs, such as

valdecoxib (Bextra™) and etoricoxib (Arcoxi™) and lumiracoxib (Prexige).
Several COX-2-selective drugs in NSAIDs are presented in Figure 9. The classifica-
tion of COX inhibition is based on the potential inhibition of COX isoforms and
specifically the IC50 ratio of COX-1 and COX-2 (or selectivity index) [20].

Eq. (5.5) can be used as the COX-1/COX-2 selectivity approach in in-silico
analysis, which without calculating for competitive, un-competitive and non-
competitive, shows that ΔGbind are directly proportional to IC50 values.

While the selectivity of COX-1/COX-2 is expressed in the equation:

IC50 selectivity,COX� 1=COX� 2 ¼ log IC50; ratio COX� 2=COX� 1ð Þð Þ
(14)

Therefore selectivity in in-silico analysis can be expressed as:

Ebind selectivity,COX� 1=COX� 2 ¼ log Ebind; ratio COX� 2=COX� 1ð Þð Þ
(15)

Figure 8.
Regression linier analyses of IC50 fraction-5 to COX-1 and COX-2 [39].
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According Eq. (5.5), selectivities Ebinds and selectivities IC50 some of them are
complexes of CID442384, CID519743, CID3060622, CID107152, and CID94275 with
COX-1/COX-2, as shown in Figure 10.

Collectively, our results suggest that alpha-Patchouli alcohol (CID442384)
as candidate COX-2 inhibitor selective, alpha-guaiene (CID107152), alpha
bulnesene (CID94275), alpha patchouli alcohol isomers (CID3060622, CID6432585,
CID10955174, and CID56928117) as candidate COX-1 inhibitor selective, and
alpha-patchouli alcohol CID521903, seychellene as candidate COX non
selective. These in silico analysis data will be completed with the biological activity
analysis.

Figure 9.
The relative selectivity of COX-1 and COX-2 inhibitors based on the IC80 ratio is declared logarithmic, so 0 is
the baseline, that is, the compound in the line is equiactive to COX-1 and COX-2. Compounds above the COX-
1-selective line and below are COX-2 selective [34].

Figure 10.
Selectivities of IC50 versus Ebinds sesquiterpenoid/sesquiterpenoid alcohol Pogostemon herba to COX-1/COX-2.
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According Eq. (5.5), selectivities Ebinds and selectivities IC50 some of them are
complexes of CID442384, CID519743, CID3060622, CID107152, and CID94275 with
COX-1/COX-2, as shown in Figure 10.

Collectively, our results suggest that alpha-Patchouli alcohol (CID442384)
as candidate COX-2 inhibitor selective, alpha-guaiene (CID107152), alpha
bulnesene (CID94275), alpha patchouli alcohol isomers (CID3060622, CID6432585,
CID10955174, and CID56928117) as candidate COX-1 inhibitor selective, and
alpha-patchouli alcohol CID521903, seychellene as candidate COX non
selective. These in silico analysis data will be completed with the biological activity
analysis.

Figure 9.
The relative selectivity of COX-1 and COX-2 inhibitors based on the IC80 ratio is declared logarithmic, so 0 is
the baseline, that is, the compound in the line is equiactive to COX-1 and COX-2. Compounds above the COX-
1-selective line and below are COX-2 selective [34].

Figure 10.
Selectivities of IC50 versus Ebinds sesquiterpenoid/sesquiterpenoid alcohol Pogostemon herba to COX-1/COX-2.
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7. Conclusion

Exploration of sesquiterpenoid/sesquiterpenoid alcohol compounds as inhibitors
of COX isoenzymes as development of group NSAIDs, was carried out by means of
in silico tools. The binding energy calculation (using PBSA Model Solvent) of
sesquiterpenoid/sesquiterpenoid alcohol compounds: alpha patchouli alcohol
(CID521903) and seychellene (CID519743) were identified as the candidates of
non-selective inhibitor; alpha bulnesene (CID94275), alpha guaiene (CID107152),
and alpha-patchouli alcohol isomers (CID6432585, CID3080622, CID10955174,
while CID56928117) had been suggested as the candidate for a selective COX-1
inhibitor. Whereas, alpha-patchouli alcohol (CID442384) was the candidate for a
selective COX-2 inhibitor.
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Chapter 5

Protein-Protein Docking Using
Map Objects
Xiongwu Wu and Bernard R. Brooks

Abstract

Protein-protein docking is a molecular modeling strategy to predict biomolecu-
lar complexes and assemblies. Traditional protein-protein docking is performed at
atomic resolution, which relies on X-ray and NMR experiments to provide struc-
tural information. When dealing with biomolecular assemblies of millions of atoms,
atomic description of molecular objects becomes very computational inefficient.
This article describes a development work that introduces map objects to molecular
modeling studies to efficiently derive complex structures through map-map con-
formational search. This method has been implemented into CHARMM as the
EMAP command and into AMBER in its SANDER program. This development
enables molecular modeling and simulation to manipulate map objects, including
map input, output, comparison, docking, etc. Through map objects, users can
efficiently construct complex structures through protein-protein docking as well as
from electron microscopy maps according to low map energies. Using a T-cell
receptor (TCR) variable domain and acetylcholine binding protein (AChBP) as
example systems, we showed the application to model an energetic optimized
complex structure according to a complex map. The map objects serve as a bridge
between high-resolution atomic structures and low-resolution image data.

Keywords: protein-protein docking, molecular modeling, electron microscopy,
molecular image, computational tool, protein complexes, biomolecular assembly

1. Introduction

Protein-protein docking has been a powerful approach to provide structural
insights into biological procedures at atomic level [1–4]. Based on the structural
information provided by X-ray and NMR, as well as constraints derived from
biological data such as mutagenesis observations, protein-protein docking can pro-
duce structures and interactions of protein complexes, which helps to illustrate
structural mechanism of many biological processes [5–7].

New development in experimental technologies, such as electron microscopy,
provides an approach to obtain low-resolution structure information of large
molecules and their assemblies [8]. Extracting structure information from these
low-resolution maps and obtaining atomic interpretation of the large biomolecular
assemblies become a central piece of modern structural biology [9]. This requires
molecular modeling to be conducted on these low-resolution maps, as well as
high-resolution atomic structures, to maximize the capability in structural biology
studies.
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Chapter 5

Protein-Protein Docking Using
Map Objects
Xiongwu Wu and Bernard R. Brooks

Abstract

Protein-protein docking is a molecular modeling strategy to predict biomolecu-
lar complexes and assemblies. Traditional protein-protein docking is performed at
atomic resolution, which relies on X-ray and NMR experiments to provide struc-
tural information. When dealing with biomolecular assemblies of millions of atoms,
atomic description of molecular objects becomes very computational inefficient.
This article describes a development work that introduces map objects to molecular
modeling studies to efficiently derive complex structures through map-map con-
formational search. This method has been implemented into CHARMM as the
EMAP command and into AMBER in its SANDER program. This development
enables molecular modeling and simulation to manipulate map objects, including
map input, output, comparison, docking, etc. Through map objects, users can
efficiently construct complex structures through protein-protein docking as well as
from electron microscopy maps according to low map energies. Using a T-cell
receptor (TCR) variable domain and acetylcholine binding protein (AChBP) as
example systems, we showed the application to model an energetic optimized
complex structure according to a complex map. The map objects serve as a bridge
between high-resolution atomic structures and low-resolution image data.

Keywords: protein-protein docking, molecular modeling, electron microscopy,
molecular image, computational tool, protein complexes, biomolecular assembly

1. Introduction

Protein-protein docking has been a powerful approach to provide structural
insights into biological procedures at atomic level [1–4]. Based on the structural
information provided by X-ray and NMR, as well as constraints derived from
biological data such as mutagenesis observations, protein-protein docking can pro-
duce structures and interactions of protein complexes, which helps to illustrate
structural mechanism of many biological processes [5–7].

New development in experimental technologies, such as electron microscopy,
provides an approach to obtain low-resolution structure information of large
molecules and their assemblies [8]. Extracting structure information from these
low-resolution maps and obtaining atomic interpretation of the large biomolecular
assemblies become a central piece of modern structural biology [9]. This requires
molecular modeling to be conducted on these low-resolution maps, as well as
high-resolution atomic structures, to maximize the capability in structural biology
studies.
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On the other hand, as the development of structural biology, molecular modeling
is applied to larger and larger biomolecular machineries. As the biology systems
become larger, atomic description of molecular system becomes very inefficient and
time-consuming. Millions of atoms and their chemical structural become redundant
in many of modeling studies. Therefore, it would be very efficient if large biomole-
cules are simplified to shape objects while ignoring their internal structures. Although
molecular flexibility plays important roles in biological activities, in many cases,
molecular geometric shapes plus surface properties are sufficient to describe many
cellular processes such as molecule assembling and protein-protein binding. In these
cases, it is satisfactory to describe large molecules as rigid domains. In some cases
certain internal flexibility can be simplified to the motion of several rigid fragments.
Therefore, molecular modeling of large biomolecular machinery can be achieved
efficiently by simplifying biomolecules with simplified shape objects.

In this work, we introduce map objects to represent molecules with fixed struc-
tures to achieve efficient molecular modeling of large molecular systems and to
efficiently derive structural information from low-resolution experimental maps.
Map objects are designed to work with high-resolution atomic structures so that
low-resolution maps are interchangeable with high-resolution atomic structures. A
map object represents a property distribution over certain space, while a molecular
structure is generally described by the coordinates of a set of atoms. This work
describes an efficient approach to handle and manipulate map objects so that effi-
cient molecular modeling of large systems can be performed.

2. Method and design

We introduce map objects to represent space occupation of molecular structures.
Unlike chemical description of molecules that contain atoms that are linked by

Figure 1.
A map object and its properties.
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chemical bonds, a map does not have internal chemical structures. Instead, a map
represents a spatial distribution of certain properties, typically electron density.
This distribution generally is described as scalar values at discrete grid points due to
irregularity of the distributions and limit in storage. Figure 1 shows a cartoon of a
map object. As can be seen, a map objects contains three components.

2.1 Grid definition

The grid of a map object is defined by its starting position, x0, y0, and z0; grid
intervals, dx, dy, and dz; and grid point numbers, nx, ny, and nz.

2.2 Molecular reference

Because we use map to represent a molecular structure, we use molecular refer-
ence to record which molecule this map is representing. Through reference mole-
cule, map object and molecule coordinates become interchangeable.

2.3 Distribution properties

The distribution property describes the distribution of given property over the
space covered by the grid points. This can be the electron density measured in
experiment or properties generated from reference molecules.

Here are several typical types of map objects used in molecular modeling:

1. Electron density maps

This is the most widely used map type, which describes the electron density over
the space. This type of map is often determined from electron microscopy. It can
also be derived from molecular structure based on atomic coordinates and type.

2. Electric charge maps

This type of map is solely derived from molecular structures based on a force
field. The partial charges of atoms are distributed to their nearest grid points.

3. Electric field maps

Because electrostatic interactions are long ranged, it is difficult to have a map to
cover a very large space. Instead, we propose to use transformed coordinates:

X ¼ x
xj j þ b

, (1)

x ¼ bX
1� Xj j , (2)

where x is the real space coordinate, X is the reduced coordinate, and b is a
constant controlling the reduction. X will take a range of (�1, 1) to represent a real
space of x over �∞;∞ð Þ.

4. VDW core maps

The VDW cores provide boundary to avoid overlapping between molecules. The
core map is constructed based on the accessibility of a molecular structure. The
surface has low core index, while the center has high index (the core indices are
shown as the number in each grid box in Figure 1).
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2.4 Rigid domains

Because a map object contains a large amount of data, it is inconvenient to
perform movement on a map itself. For example, a rotation of a map object will
result in the rectangular space not parallel to the coordinate axis anymore, and new
boundaries and distributions need be updated accordingly. In addition, a real sys-
tem often contains more than one copy of some molecular species, and it would be
very memory costing to have a map object for each copy of these species. Instead,
we define a rigid domain to represent a copy of the molecular species. A rigid
domain contains only the identity of the map object it represents and the position
and orientation vectors related to the map object, and can be manipulated easily. A
rigid domain can be understood as a mobile representation of a map object. Each
rigid domain has a unique identity, and many rigid domains can represent the same
map object. Figure 2 shows the map objects of the α-chain and β-chain of a TCR
variable domain and their manipulation through rigid domains.

Each rigid domain is defined by its map ID and its translation vector, T, and
rotational matrix, U:

T ¼
tx
ty
tz

0
B@

1
CA,U ¼

u11 u12 u13
u21 u22 u23
u31 u32 u33

0
B@

1
CA (3)

The operation, translation, and rotation are done by applying these vectors:

T iþ1ð Þ ¼ T ið Þ þ ΔT iþ1ð Þ ¼
t ið Þ
x

t ið Þ
y

t ið Þ
z

0
BB@

1
CCAþ

Δt iþ1ð Þ
x

Δt iþ1ð Þ
y

Δt iþ1ð Þ
z

0
BB@

1
CCA (4)

U iþ1ð Þ ¼ Ω iþ1ð Þ � U ið Þ ¼
ω iþ1ð Þ
11 ω iþ1ð Þ

11 ω iþ1ð Þ
13

ω iþ1ð Þ
21 ω iþ1ð Þ

22 ω iþ1ð Þ
23

ω iþ1ð Þ
31 ω iþ1ð Þ

32 ω iþ1ð Þ
33

0
BB@

1
CCA�

u ið Þ
11 u ið Þ

11 u ið Þ
13

u ið Þ
21 u ið Þ

22 u ið Þ
23

u ið Þ
31 u ið Þ

32 u ið Þ
33

0
BB@

1
CCA (5)

and many operations can be accumulated without losing accuracy:

Figure 2.
Rigid domains as a convenient way to manipulate map objects.
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T nð Þ ¼ T n�1ð Þ þ ΔT nð Þ ¼ T n�2ð Þ þ ΔT nð Þ þ ΔT n�1ð Þ ¼ T0Þ þ∑n
i¼1ΔT

ið Þ (6)

U nð Þ ¼ Ω nð Þ �U n�1ð Þ ¼ Ω nð Þ � Ω n�1ð Þ � U n�2ð Þ ¼
Yn
i¼1

Ω ið Þ �U 0ð Þ (7)

When a map object is created, a rigid domain at origin is created for it, with

T ¼
0

0

0

0
B@

1
CA,U ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA (8)

A rigid domain can also be created for a molecular structure by linking the
structure to a given map object according to the translation vector and rotation
matrix from the reference coordinates to the linked structure.

X ¼ T þ U �X refð Þ (9)

This equation also provides a way to update the structure coordinates according
to the position and orientation of a rigid domain.

2.5 Map comparison

Map comparison provides a target function for fitting one map into another
map. Four types of cross-correlation functions [10] are provided for comparison
between map objects, which are listed below.

1. Density correlation (DC)

DCmn ¼ ρmρn � ρmρn
δ ρmð Þδ ρnð Þ (10)

where

ρ ¼ 1
nxnynz

∑
nx

i
∑
ny

j
∑
nz

k
ρ i; j; kð Þ (11)

and

δ ρð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 � ρ2

q
(12)

represent the average and fluctuation of the density distribution. DCmn is the
density correlation of mapm to map n. Figure 3 shows two comparison maps in two
dimensions. DCmnis calculated according to map m’s dimension and grid properties.
The calculation runs over all grid points of map m, which are transformed and
interpolated into grid points of map n to get corresponding density properties.

2. Laplacian correlation (LC)

LCmn ¼ ∇2ρm∇2ρn � ∇2ρm∇2ρn
δ ∇2ρm
� �

δ ∇2ρn
� � (13)

where ∇2ρ is the Laplacian filtered density derived from density distribution by
the following finite difference approximation:
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∇2ρijk ¼ ρiþ1jk þ ρi�1jk þ ρijþ1k þ ρij�1k þ ρijkþ1 þ ρijk�1 � 6ρijk (14)

LCmn is the Laplacian correlation of map m to map n. Similar to DCmn, LCmn is
calculated according to map m’s dimension and grid properties.

3. Core-weighted density correlation (CWDC)

CWDCmn ¼ ρmρnð Þw � ρmð Þw ρnð Þw
δw ρmð Þδw ρnð Þ (15)

where Xð Þw represents a core-weighted average of distribution property X:

Xð Þw ¼
∑i, j,kwmn i; j; kð ÞX i; j; kð Þ

∑i, j,kwmn i; j; kð Þ (16)

and

δw Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2� �

w � Xð Þw
2

q
, (17)

wmn ¼ f am
f am þ kc f

a
n þ b

(18)

where wmm is core-weighting function of core m to core n. Three parameters,
a, b, and kc, control the dependence of the function to the core indices. We chose
a = 2 and kc = 1 in this work calculations, and b is set to a very small value, say 10–6,
to ensure wmn ¼ 0 when f m ¼ 0 and f n ¼ 0. Therefore, only the core region of map
m has contribution to the core-weighted density correlation, CWDCmn.

4. Core-weighted Laplacian correlation (CWLC)

CWLCmn ¼
∇2ρm∇2ρn
� �

w � ∇2ρm
� �

w ∇2ρn
� �

w

δw ∇2ρm
� �

δw ∇2ρn
� � (19)

Figure 3.
A cartoon to show the grid-threading Monte Carlo searching method.
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CWLCmn uses Laplacian filtered density, instead of the density in the calcula-
tion. Again, only the core region of map m has contribution to the core-weighted
Laplacian correlation, CWLCmn.

2.6 Molecular interactions between map objects

Energetics of molecular systems is the basis of molecular modeling. Calculation
of molecular interaction using map objects is the crucial step for a successful
modeling or simulation study. For atomic objects interaction calculation is pairwise
and is very time-consuming for large molecular assemblies. For map objects, we
propose to use field interactions that can be calculated much more efficiently. We
define four types of interactions to describe interaction between map objects: elec-
tric field interaction, surface charge-charge interaction, VDW interaction, and
desolvation interaction as described below.

1. Electric field interaction

The electric field around a molecule is described by the field map with scaled
coordinates. The interaction with the field is

E
ele

12
¼ ∑

m1

e1φ1 (20)

where e1 is the charge at the charge map 1 and φ2 is the electric field from
object 2, which depends on the dielectric constant, ε, and distances from each grid
points of object 2. The dielectric constant, ε = 80, is used for most cases.

2. VDW interaction

Surface interaction brings the surface together while avoiding core overlapping.
The surface can be identified by low core index. We propose to use the following
equation to make the surface contact favorable while overlapping unfavorable:

E
vdw

12
¼ 4υ

δ21
δ22

∑
m1

C1C2

3

� �2

� C1C2

3

 !
(21)

where C1 and C2 are the core indices of molecular 1 and 2 at each grid point and
δ1 and δ2 are the grid intervals of map. 1 and 2, respectively. υ is the VDW interac-
tion parameter.

3. Surface charge: charge interaction

Upon binding, the surface charge groups will contact with each other. The
surface charge–charge interaction is different from the charge-field interaction
which is screened by the solvent environment:

E
binding

12
¼ b

δ21ffiffiffiffiffiffiffiffiffi
δ31δ

3
2

q ∑
m1

e1e2 (22)

where b is the surface interaction parameter.

4. Desolvation interaction

Before and after binding, the surface charge groups change from the solvation state
to the buried state andwill create an energy gainwe termed as desolvation energy:
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equation to make the surface contact favorable while overlapping unfavorable:

E
vdw

12
¼ 4υ

δ21
δ22

∑
m1

C1C2

3

� �2

� C1C2

3

 !
(21)

where C1 and C2 are the core indices of molecular 1 and 2 at each grid point and
δ1 and δ2 are the grid intervals of map. 1 and 2, respectively. υ is the VDW interac-
tion parameter.

3. Surface charge: charge interaction

Upon binding, the surface charge groups will contact with each other. The
surface charge–charge interaction is different from the charge-field interaction
which is screened by the solvent environment:

E
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where b is the surface interaction parameter.

4. Desolvation interaction

Before and after binding, the surface charge groups change from the solvation state
to the buried state andwill create an energy gainwe termed as desolvation energy:
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where s is the desolvation parameter.
These interaction parameters used to define the interactions, Eqs. (20)–(23), can

be derived from atomic force field or from experimental data. By fitting into
energies calculated with the CHARMM force field [11], we obtained the parameters
υ = 0.14 kcalÅ, b = 330 kcal/(C2Å), and s = 70 kcal/(C2Å2).

2.7 Conformational search

We implemented the grid-threading Monte Carlo searching algorithm [10] for
robustly fitting rigid domains to a target map. The grid-threading Monte Carlo
(GTMC) search is a combination of the grid search and Monte Carlo sampling. As
shown in Figure 3, the conformational space is split into grid points, and short
Monte Carlo searches are performed to identify local maximums around the grid
points. The global maximum is identified among the local
minimums.

3. Results and discussions

3.1 Complex structures from EM maps

Deriving high-resolution molecular assembly structures from microscopy
maps are a major application of the map approach. This method has been success-
fully applied into several experimental studies [12, 13]. Figure 4 illustrates the
steps to perform a fitting of high-resolution molecular structure into electron

Figure 4.
Steps to derive molecular assembly structures by fitting molecular structures into electron microscopy maps.
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microscopy maps. We chose a T-cell receptor (TCR) variable domain (PDB code:
1a7n) as an example complex to illustrate the modeling process with map objects.
The TCR variable domain is a complex of two chains, α-chain and β-chain. The
two chains are first blurred into maps of the same resolution (here 15 Å) as the EM
map. Then each map is fitted into the EM map to get a complex map. The complex
map is projected back to atomic structures, which is the complex structure we are
looking for. The root mean square (rms) deviation of the fitting result from X-ray
complex is 3 Å.

The structure obtained from map fitting generally is not optimized in atomic
details. There are often atom overlaps or improper spacing between components.
This structural mismatch can be removed by many modeling methods available in
CHARMM [14, 15], such as energy minimization and simulated annealing, if the
fitting result is very close to the right structure. After the minimization, the rms
deviation is 0.97 Å.

3.2 Complex structures from energy optimization

The energy function is designed to have the minimum at the binding conforma-
tion. Therefore, it is possible to determine complex structures through minimizing
the map interaction energy in cases where the EM complex map is not available.
It should be noted that the map object assumes certain rigidity of a molecular object.
Certain flexibility of loop region can be accommodated by the low-resolution
characters, while large flexibilities like domain movement should be dealt with
multiple map objects. Recently, this method was successfully applied in modeling of
the peroxiredoxin (Prx) complex [16].

Figure 5 shows the steps to perform an energy-based conformational search to
determine complex structures. In this case, no EM map is used. The TCR chains are
transferred into property maps that allow interaction between map objects to be

Figure 5.
Derive complex structure base on map interactions.
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where s is the desolvation parameter.
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Figure 6.
(a) Electrostatic field maps of TCR two chains and complexes. (b) Core-index maps of TCR two chains and
complex. (c) Partial charge maps of TCR two chains and complexes.
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calculated. By searching the minimum interaction energy conformation, the com-
plex structure is determined. The final result is only 0.57 Å away from the X-ray
structure. It should be noted that this is an ideal case that the structure of the two
chains is taken from the complex and there is no conformational change in this
fitting process.

It is interesting to see that energy-based approach to derive complex structure
takes account of molecular structure and energetic information of molecules.
Figure 6a–c shows the electric field, shape, and charge maps of the two chains and
their complex. Obviously, the two chains are binding together to have the low
potential region matching the high potential one, to have shape complementary to
each other, and to have surface charge overlapped oppositely.

Figure 6a shows the electric field of TCR α-chain and β-chain and their complex.
Please notice the reduced coordinates are used for the map. The range of (�1, 1) for
the reduced coordinates covers the range of (�∞, ∞) for the regular coordinates.
The α-chain has negative field near its top-left and bottom-right areas and positive
field near its lower-right and upper-left areas. Correspondingly, the β-chain has
positive field at its top-right area and negative field at its bottom area, which are
complementary to the α-chain. As a result, the complex map has negative field at its
top and bottom areas and positive field at its left and right areas. The symmetric
distribution of the field of the complex indicates its stability.

Figure 6b shows the core indices of TCR α-chain and β-chain and their com-
plex. The high values in the core indices indicate the region further away from
surface and are difficult to access. The α-chain and β-chain that show comple-
mentary shape are the binding surface. Their complexes are the two maps
matching together.

Figure 6c shows the electric charge distribution of TCR α-chain and β-chain and
their complex. The α-chain map shows more negative charges at the right side,
while the β-chain shows more positive charges at its left side. The complex map
shows the two chains come together with negative patches contacting positive
patches. Overall, these map interactions provide energetic basis for protein-protein
docking as shown in Figure 5.

As a further example of protein-protein docking, we show the procedure to
build the pentamer of acetylcholine binding protein (AChBP). The monomers

Figure 7.
Protein-protein docking of acetylcholine binding protein (AChBP) to build its pentamer.
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are docked one by one to form dimer, trimer, tetramer, and pentamer
(Figure 7). The resulting pentamer is only 0.73 Å away from the X-ray struc-
ture, 1I9B. The electric field maps during the building process are shown in
Figure 8. From the field map of the monomer, we can see the most positive
field is at the top-right area and the most negative field is at the bottom-left
area. A dimer is formed by matching the positive area of the second monomer
with the negative area of the first one. The third monomer’s positive area fits
into the most negative area of the dimer to form the trimer. Similarly, the
fourth and fifth monomers are docked to form the tetramer and pentamer. The
map interaction limits the way of docking monomers and allows correct assem-
blies to be built.

Map objects cannot only be used to model rigid proteins [17], they can also be
used for targeted conformational search such as flexible fitting and restrained
molecular dynamics [18, 19]. Map objects provide an efficient bridge from molecu-
lar systems to large-scale bodies such as cells and organelles.

4. Conclusions

This work designed and developed a computational tool to manipulate map
information for molecular modeling studies. Protein–protein docking can be effi-
ciently performed with map objects. This tool is implemented into CHARMM, as a
module, EMAP, and into AMBER in its SANDER program. Our design and imple-
mentation make it very flexible and efficient to perform various manipulations of
map objects and to perform some routine task related to map data. This module
enables user to construct macromolecular assemblies by docking high-resolution
X-ray or NMR structures to low-resolution cryo-electron microscopy maps. And
when there is no EM map available, this module allows user to search for

Figure 8.
Electric field map at each docking stage to build the pentamer of acetylcholine binding protein (AChBP).
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low-energy complex structures, for example, in protein-protein docking. By
replacing high-resolution atomic structure with low-resolution map objects, this
work creates a convenient approach to extend the molecular modeling studies to
large biomolecular machinery. This map-based approach can extend modeling
and simulation objects from molecular systems to macroscopic systems like cells
and bacteria.
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Abstract

Radiopharmaceuticals contain radionuclides and pharmaceuticals. Research 
on radiopharmaceuticals has been increasing in recent years by increasing the 
importance of early diagnosis in diseases. It is generally accepted that investigation 
and development of new radiopharmaceuticals are time and resource consuming. 
Computational methods have provided exciting contributions to pharmaceutical 
research and development. The need for designing new radiopharmaceutical drugs 
enhances the importance of computational programs. At this point, the structure, 
chemical, physical and physicochemical properties of molecules should be pre-
dicted/evaluated by using computational methods. While these methods obtain 
useful estimates, they make it easier for researchers and clinicians to make the right 
choices. Also, by providing accurate and effective results, they contribute to reduce 
the cost of research and can be used to simulate complex biochemical situations 
before research helping us to avoid harmful effects of drugs. In this study, authors 
emphasis about radiopharmaceuticals and the computational tools related to the 
development of new radiopharmaceuticals.
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95% of radiopharmaceuticals are used in diagnosis and 5% of them in therapeutic 
usage [1, 2]. The pharmaceutical component directs radioactivity to the target 
site of the body (disease regions, organs). A radionuclide emits detectable signals 
from outside the organism for visualization or delivers therapeutic levels of radia-
tion dose to target sites. Radiopharmaceuticals are bound to accumulate in certain 
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the pharmaceutical part [1]. They are not chemically distinguishable from non-
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Organ functions can be visualized by the radiation emitted by radionuclides in their 
structure. A pathological change that can lead/leading to abnormal function can 
be diagnosed at the molecular level without going to the morphological level. So, 
diseases can be treated quickly after imaging [1].
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With the widespread use of radiopharmaceuticals, the need for specialized phar-
macists as known radiopharmacists has increased. Radiopharmaceuticals should 
be prepared by radiopharmacists and administered by clinicians to the patient. 
The doses of radiopharmaceuticals are defined either millicurie or microcurie. The 
pharmaceutical form of the radiopharmaceuticals may be solutions, kit, capsules 
and aerosols. The amount of active substance in the radiopharmaceutical is at a low 
dose that does not have a pharmacological effect. The shelf life of a radiopharma-
ceutical depends on half-life of radionuclide. Quality control of radiopharmaceuti-
cals should be done before administration to patients.

A radiopharmaceutical optimal performance should have some characteristics. 
While the radiopharmaceuticals used for diagnosis emit gamma ray, the radiophar-
maceuticals used for treatment emit beta ray. Alpha and beta radiation, which have 
particle radiation, are not desirable for diagnosis due to high linear energy transfers 
(LET). Because this energy is completely absorbed in the body, some particles that 
can escape to the body and cannot reach the crystal in the imaging system [3].

The ideal radionuclide energy for imaging should be around 100–300 kilo elec-
tron volts (keV). The quality of image falls when it is above or below these energy 
values. In radiopharmaceuticals used for treatment, the energy should be higher 
than above 1 MeV.

Ideally, the effective half-life of a radiopharmaceutical should be greater than 
about 1.5 times the imaging time. This pro vides a good image between the maxi-
mum dose and the minimum dose that can be injected into the patient, so that the 
counting statistics and image quality are optimal. On the other hand, the effective 
half-life of radiopharmaceuticals used in treatment is indicated by hours and days.

The localization of radiopharmaceuticals should be high in the desired organs or 
tissues. Low dose for both, patient and personnel, is necessary of ideal radiophar-
maceutical. When the radioactivity ratio in the target/non-target area is low and the 
radiation dose increases in non-target areas, treatment or diagnosis efficiency of 
radiopharmaceuticals decreases. They must be non-toxic, sterile and pyrogen-free 
for patient compliance. Finally, radiopharmaceuticals must maintain their chemi-
cal stability during usage, should be cheap and easy to find, easy to prepare and 
appropriate quality controls [4].

2. Classification of radiopharmaceuticals

In general, four types of radiopharmaceuticals are used in medical practice. 
The first of these is ready to use radiopharmaceuticals. These products have a 
shelf life. Administration to the patient is performed after the radioactive decay 
is calculated. Iodine (I-123) capsules, I-131 hippurane, Gallium (Ga-67) citrate, 
Tallium (Tl-201) chloride, Xsenone (Xe-133) aerosol, Technetium (Tc-99 m) 
pertechnetate are the examples of this group. The second type of radiopharma-
ceuticals is radiopharmaceuticals obtained from semi-manufactured products. 
They are prepared by combining the kits with radionuclides that obtained from 
the generator. The third type of radiopharmaceuticals is prepared directly before 
use. Products of this group should be prepared and used immediately. Examples 
of this group are the particle accelerator products. The fourth type of radio-
pharmaceuticals is based on preparation of samples taken from the patient. The 
patient’s cell or plasma proteins are radiolabeled with radionuclide and given to 
the same patient. An example of this group is Tc-99 m radiolabelled WBC. The 
laboratories have different regulations and rules because of this, radiolabelling 
efficiency and cell viability should be checked for this group after radiolabeling 
process [5].
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3. Computational models for drug development

Every patient and disease are different. The personalized treatment approach 
can be better for each patient requires. The development of individual mechanistic 
models of the disease process offers the possibility of attaining truly personalized 
drug-based therapy and diagnosis. At this point, computational methods have 
provided exciting contributions to pharmaceutical research and development. The 
need for individual drug design enhances the importance of computational models. 
Infrared (IR), ultraviolet (UV) and nuclear magnetic resonance (NMR) spectra 
of the molecule to be predicted, are important and generated by computational 
approaches in order to characterize molecular structure. The compatibility of the 
target protein active site with the small molecule (or ligand) is examined, so more 
effective molecules could be designed by this way [6].

Computer-aided drug design has been established as a valuable tool for the 
design of new molecules, with many success stories since the 1980s. Pharmaceutical 
companies have invested substantially in bioinformatics approaches, and it has been 
predicted that such methodologies will have an important role in pharmacogenom-
ics and personalized medicine. The American Food and Drug Administration 
(FDA) accepted and expressed the importance of new biomarkers and radiophar-
maceuticals for personalizing treatments [7].

Mathematical models of drug design are used to guide drug research and 
development. Computational models provide the identification of the factors 
involved in the absorption, distribution, metabolism, elimination and access to the 
target region of the chemical components. It also exposes the dynamics involved in 
the interaction of the compounds with the target (receptor, enzyme, etc.,). These 
models are effective in analyzing the fate of drugs that have undergone biotransfor-
mation. It helps us to comment on the undesirable effects or toxic effects of drugs 
and to help us explain drug-drug interactions. The concept of virtual clinical trials 
and the integrated use of in silico, in vitro and in vivo models in preclinical develop-
ment could lead to significant gains in efficiency and order of magnitude increases 
in the cost effectiveness of drug development and approval [8].

The targeting agent is used as a starting point for the design of computer-
assisted drug active substance. Examples of targeting agents include receptors, 
enzymes, nucleic acids etc. Natural endogenous substances or drugs may be effec-
tors that occupy the effective surface of the targeting agent and affect the target 
positively or negatively. Computer aided drug molecule design and development 
studies are examined in two groups:

1. Based on effector (ligand) structure

• Quantitative structure-activity relationships analysis (QSAR)

• Pharmacophore analysis

2. Based on target structure

• Molecular docking

• Based drug design

It is aimed to interpret the structure of receptors by using the structure of molecules 
and acting on ligand structure. In method based on the target structure, it is aimed to 
design molecules that can act on the basis of the known receptor structure [6].  
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In summary, computational models can be used to simulate complex situations prior 
to testing in reality, allowing us to make these inevitable mistakes and helping us to 
successfully avoid their deleterious impacts of new proposed drugs.

4. In silico models

It is generally recognized that drug discovery and development are time and 
resources consuming. There is an ever-growing effort to apply computational 
power to the combined, chemical and biological space? in order to streamline 
drug design, development and optimization. Computer-aided or in silico design 
is being utilized to expedite and facilitate identification, optimize the absorption, 
distribution, metabolism, excretion and toxicity (ADMET) profiles and avoid 
safety issues. In silico modeling significantly minimizes the time and resource 
requirements of synthesis and biological testing. The aim is to enrich the group 
of molecules with the desired properties (active, drug-like, lead-like) and to 
eliminate those exhibiting unwanted properties (inactive, reactive, toxic, weak 
ADMET/pharmacokinetic profile).

The result is a compounds library and, by virtual screening using in silico 
methods, the number of molecules to be tested forward by experimental means, 
is considerably reduced. Structure-based library design is prejudiced by structural 
requirements for specific activity on a particular target and needs prior informa-
tion of the target structure (e.g., X-ray or nuclear magnetic resonance). The goal 
is to select existing compound from libraries or to design compounds with three-
dimensional complementarity (i.e., shape, size and physicochemical properties) 
to the target-binding site. New approaches can directly guide the design of virtual 
combinatorial libraries, which are first screened in silico for targeting complemen-
tarity, thus reducing the number of compounds will have to be synthesized and 
tested in vitro.

The “leading” compound has the desired pharmacolological or biological activ-
ity and represents the starting point to design other molecules with improuved 
properties/chemical parameters in terms of efficacy and pharmcokinetic profile, 
better candidates for future chemical synthesis and trials. When leading molecules 
have been identified, they have to be optimized in terms of potency, selectivity, 
pharmacokinetics and toxicology before they can become candidates for drug 
development. The early analysis in this respect is becoming common practice 
because the high overall attrition rate in drug discovery is affected the identifica-
tion of compounds. Traditionally, therapeutics have been small molecules that 
fall within the Lipinski’s rule of five [9]. From this point of view, hydrogen bonds, 
log P value, penetration into the targeting side can be mentioned. If the hydrogen 
bond donors are <5, the hydrogen receptors are <10, the relative molecular weight 
is <500 g/mol and the lipophilicity (log P) is <5, the compound will probably 
be orally bioavailable. The concepts of virtual library and virtual browsing have 
become an integral part of pioneering discoveries. In silico approaches signifi-
cantly contribute to early pharmaceutical research and are especially important 
in target and lead discovery. The need has been clearly recognized and is expected 
to improve efficiency of drug design for timely adaptation and application of in 
silico models in pharmaceutical research [10]. European policy for the evaluation 
of chemicals (REACH: Registration, Evaluation, and Authorization of Chemicals) 
has been a strong advocate of alternative in silico methods of predictive evaluation 
of chemical toxicity in order to minimize animal testing and conserve time and 
resources [11].
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5. Factorial Design for Drug Delivery

Design of Experiments (DoE) is defined as a planning strategy that will be 
carried out to obtain the information from the collected data effectively. It is a 
structural method used to determine the relationship between different factors 
(independent variable, input, process parameter, formulation component, etc.,) 
and their responses (dependent variable, response variable, output, product quality 
feature, etc.,). Also, this model is a mathematical model that correlates all the 
relevant factors and the results obtained against these factors. The results can be 
interpreted, predicted and the design space can be determined by optimization with 
this mathematical model. Systematic DoE approaches have advantages such as less 
experimental study, easier problem identification and prevention, any active agent 
adjuvant interaction and product performance to guarantee an effective formula-
tion, and process optimization for good results in the scale up process.

An ideal drug form design should be depended on the understanding of the 
physicochemical and mechanical transformations of the materials that will eventu-
ally turn into the desired product. However, due to the diversity and complexity of 
the drug components, it is usually not fully understood. Factorial design with a sys-
tematic approach the product and production process can be understood in depth. 
In this way, a development approach can be provided which takes into account the 
variability of the inputs and other risks that may arise against product quality.

It is very important to obtain the basic knowledge of the study in order to 
produce as much information as possible with the right modeling. The statistical 
analysis is the first stage of experimental work before optimizing the formulation. 
Simple models are used in statistical screening. For example, linear models with 
only the main factor effects, or linear models, including binary interactions. In 
this way, the factors that have the most effect on the outputs are determined with 
the least number of tests possible. Factors with little or no significant effect can be 
displayed. In addition, by decreasing the number of factors, optimization design 
with a smaller number of attempts can be used.

The choice of DoE should be based on the number and type of factors to be 
investigated. For example, if the goal is only to reduce the number of factors and 
find a few factors that have the highest effect on the outputs, and if there are too 
many factors to be investigated, then the statistical elimination by construct-
ing linear models can be selected. The results consist in lowering the number of 
attempts and evaluate only the main factor effects. The most preferred statistical 
screening methods in drug formulations are two-level partial full factorial design 
and Plackett-Burman design [12].

After statistical screening, response surface modeling (RSM) designs are started. 
The number of factors should be reduced by the statistical elimination design before 
the RSM design, so that the number of trials is not high and the statistical signifi-
cance is important/relevant or other synonym and strong prediction models can be 
established. RSM is an approach where statistical and mathematical techniques are 
used together for the development and optimization of pharmaceutical processes. 
Includes modeling techniques used to determine the relationship between depen-
dent variables and the independent variables that affect them.

RSM designs for drug formulations allow us to understand the relationship 
between factors and response variables, as well as factor interactions (synergistic 
effect of two or more factors), quadratic effects, and cubic terms. In this way, 
the optimum value ranges of the factors are provided. Process problems can 
be solved. Robust processes that are less sensitive to process variability can be 
developed.
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Each additional experiments and sample analysis performed to product devel-
opment in the pharmaceutical industry means that spending a lot of money, time 
and labor loss. The selection, implementation and interpretation of the appropriate 
factorial design that serves to reach the result accurately and rapidly is very impor-
tant. Selecting the appropriate experimental design ensures that development 
studies are completed with a small number of trials. In order to optimize the process 
and formulation, mathematical models are described that best relationship between 
these critical factors and quality characteristics [13].

6. Computational models for radiopharmaceuticals

Computer models in the pharmaceutical industry is used to discover new 
drugs, to optimize of chemical processes and to design clinical trials. Accurate 
computational estimation of the responses to the treatments and clinical 
profiles of administration is of great importance for patients [14–19]. Also, 
it is very useful to help clinicians decide on the most effective and least toxic 
treatment available options, and is significant for researchers to selecte for in 
vitro and in vivo studies [20–22]. In addition, the computational prediction of 
drug responses can substantially contribute to preclinical studies, as in silico 
drug screening model. These tools can help researchers in the selection of 
candidate compounds in their research, and can be used to improve efficiency 
in experimental planning and to reduce costs [23–25]. Especially, computational 
estimation of drug responses in cancer disease involves significant research 
challenges. It is a biological challenge since cancer is a very heterogeneous and 
multifactorial disease. Furthermore, increasing the need for data integration, 
new technical questions arise from multiple sources such as the adjustment and 
normalization of data from multiple sources [14]. In the Oak Ridge National 
Laboratory, Snyder [26] the first mathematical model of radiopharmaceuticals 
was realized. In this design, the fractions of energies and amount of gamma and 
X-rays emitted from radiopharmaceuticals in the targeting tissue were used by 
Monte Carlo method [26]. Computational model supports the development of 
radiolabeled complex synthesis and coordination chemistry of radiopharmaceu-
ticals by providing a better understanding of the physicochemical properties of 
molecular imaging agents. Combining experimental studies with computational 
study helps to define structure-activity relationships of radiopharmaceuticals 
and facilitates the rational design of new generation radiopharmaceuticals with 
improved properties. Francisco et al. [27] used different computational simula-
tors to investigate the therapeutic potential of various radionuclides. These 
simulators are:

• Fast Monte Carlo damage formation simulator.

• Fast Monte Carlo excision repair simulator.

• Virtual Cell Radiobiology Simulator [27].

Fast Monte Carlo damage formation simulator can be used to estimate the 
types of DNA damage and post-irradiation efficiency. This method allows mul-
tiple data analyzes with multiple irradiation estimates to be collected as soon as 
possible [28, 29].

Fast Monte Carlo excision repair simulator can be used to estimate the occur-
rence, repair of DNA and correct repair results by mutation [27].
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Virtual cell radiobiology simulator is a radiobiological model used to describe 
dose response relationship, damage production process and key repair mechanisms. 
These models often relate the dose rate to the cell’s response to irradiation. Some 
of the current models include a repair-false-repair model, a fatal potentially fatal 
model, and two lesion kinetics [28].

In one study, the Monte Carlo method was used to assess the amount of radio-
nuclide in animal models for preclinical testing of radiopharmaceuticals. In another 
study, this model predicted 3D images simulated with SPECT or PET for patient-
specific radionuclide treatments [27, 28].

Computational methods allow quick and easy data collection. However, some 
models are based on available information and are evaluated according to this 
information and this imposes some restrictions. The used algorithms report an 
optimal ionization scenario to ionize the DNA in place of ineffective radionuclide 
biodistribution process that is obtained by in vitro and in vivo studies under difficult 
conditions. Thus, although the validation of the used simulators has been per-
formed in selected irradiation scenarios and specific cellular populations, specify-
ing these methods may be useful as a first step approach to large data sets to assist in 
the planning of in vitro and in vivo studies [29–33].

Kurniawan et al. [34] studied on radiopharmaceutical ligands and concrete 
examples of molecular docking. T3, 4BCPP is an imidazolylporphyrin derivative 
and has been used as a radioimaging agent for melanoma cancers. They designed 
new imidazolylporphyrin derivatives with better selectivity and higher affinity than 
T3, 4BCPP by using AutoDock 4.2. After that they develop a new radiopharmaceu-
tical by using a radionuclide such as Technetium (Tc) for diagnostic and Rhenium 
(Re) for therapeutic purposes. They concluded that radiolabelled imidazolylpor-
phyrin derivatives could be two potential candidate ligands for a melanoma radio-
pharmaceutical kit.

Chen et al. [35] assessed the effects of structural modification on the interaction 
of 125I-labeled iodo Hoechst ligands and DNA. Also, they designed new analogs 
with specified distances between the Auger-electron-emitting 125I atom and the 
DNA central axis by using computer-assisted molecular modeling software. This 
software program has been obtained the reactivity of newly designed radiolabelled 
molecules with their targeted DNA molecules by molecular modeling prior to their 
chemical synthesis.

El-Motaleb et al. [36] developed an easy method for radio iodination of pro-
pranolol with high percent labeling yield for the purpose of lung perfusion imaging. 
They used molecular modeling and docking studies to ensure the binding of the 
newly obtained radio iodination of propranolol to beta-2 adrenergic receptor and 
confirmed that radio iodination did not affect the binding of propranolol to beta-2 
receptor by using molecular modeling.

7. Conclusion

Computational methodology provides some advantages such as creating time-
dependent organ dose rate curves, making easier for researchers and clinicians to 
take the right choices. Also, these approaches give accurate and effective results 
and reduce the cost of research being useful to simulate complex situations before 
research, to avoid harmful/side effects. Furthermore, the radiopharmaceutical 
dosimetry estimates demonstrate large variation due to the patient’s anatomical 
characteristics and computational model can be useful for obtaining personalized 
data. We believe that using these methods could enhance the personalization of 
dosimetry in nuclear medicine administration.
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types of DNA damage and post-irradiation efficiency. This method allows mul-
tiple data analyzes with multiple irradiation estimates to be collected as soon as 
possible [28, 29].

Fast Monte Carlo excision repair simulator can be used to estimate the occur-
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