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Preface

Transcriptome analysis is the study of the transcriptome, of the complete set of
RNA transcripts that are produced under specific circumstances, using high-
throughput methods. Transcription profiling, which follows total changes in
the behavior of a cell, is used throughout diverse areas of biomedical research, 
including diagnosis of disease, biomarker discovery, risk assessment of new drugs
or environmental chemicals, etc. Transcription profiling can be applied to loss- 
and gain-of-function mutants to identify the changes associated with the mutant
phenotype. Transcriptomics also allows the identification of pathways that respond 
to or ameliorate environmental stresses. RNA sequencing (RNA-Seq) detects all 
transcripts in a sample, including mRNAs as well as the regulatory siRNA and 
lncRNA transcripts. RNA-Seq can also identify disease-associated gene fusions, 
single nucleotide polymorphisms, and even allele-specific expression.

Transcriptome analysis is most commonly used to compare specific pairs of
samples. The differences may be due to different external environmental conditions,
for example, hormonal effects or toxins. More commonly, healthy and disease states
are compared. In general, transcriptome analysis is a very powerful hypothesis-
generating tool rather than a theory-proving one. Transcriptome analyses have
become indispensable in basic research and translational and clinical studies.

In this volume, Dr. Pyo Hong discusses the role of long RNA sequences in
transcriptome analysis. It should be noted that early RNA-Seq methods generated 
rather short reads, 35 to a few hundred nucleotides, and relied on massive
redundancy to achieve required accuracy. Newer methods, which provide longer
reads, have significant advantages, for example, in the analysis of previously not
sequenced genomes. Such approaches need tailored software methods.

Dr. Shinichi describes next-generation single-cell sequencing technology developed 
by his team. It can be used for single-cell transcriptome analysis in tumor tissues. 
This is an extremely important area nowadays because it is clear that most tumors
are heterogeneous. Identifying the transcriptome of tumor stem cells may lead to
specific targeting of these cells. Alternatively, single-cell transcriptome analysis
can help in defining the tumor-infiltrating immune cells, a critical component of
immunotherapies. Dr. Shinichi and his team developed a microwell device that can
be easily transported and is relatively cheaper than most other RNA-Seq methods, 
which will be essential for the widespread use of transcription analysis, especially in
the developing world.

Dr. Prasanta presents transcriptome analysis applied to rice, one of world’s
most essential staple foods. Rice production and yield are critically affected 
by environmental factors, including drought, flooding, high salinity, extreme
temperatures, nutrient and mineral availability, toxins and pollutants, etc. Because
of the complexity of influences on crop yield, it is essential to define the intricate
regulatory gene networks and their signaling pathways involved in stress responses. 
High-throughput RNA-Seq data have provided an abundance of transcriptome
data on rice. RNA-Seq provides data regarding not only coding mRNAs but also
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noncoding RNAs, components of regulatory gene networks involved in the stress 
response. These results may enable more optimal cultivating conditions and help to 
develop new tolerant varieties of rice.

Dr. Xiangyuan focused his studies on the reproductive systems of flowering plants, 
specifically the gene regulatory networks in anthers, the parts of the stamen that 
produce and contain pollen.

Prof. Sadovsky analyzed the coding sequences of few conifers, comparing the usage 
of triplet codons in cold-adjusted plants.

We can anticipate a greatly expanded usage of transcriptome analysis, especially 
when translated to the bedside, to provide better understanding and more specific 
diagnoses, enabling physicians to establish diagnoses quickly and reliably.

Miroslav Blumenberg
NYU School of Medicine,

USA
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Chapter 1

Introductory Chapter: 
Transcriptome Analysis
Miroslav Blumenberg

The central dogma of molecular biology describes the flow of genetic informa-
tion from genes to functions of the cells and organisms. This comprises a two-step 
process: first, DNA, the permanent, heritable, genetic information repository, is 
transcribed by the RNA polymerase enzymes into RNA, a short-lasting information 
carrier; second, a subset of RNA, the messenger RNAs, mRNAs, are translated into 
protein. The transcriptome, then, is the complete set of all RNA molecules in a cell, 
a population of cells or in an organism.

Importantly, not all RNAs are translated into proteins, some serve a struc-
tural function, for example, rRNAs in the assembly of ribosomes, others are 
transporters, e.g., tRNAs, yet others serve regulatory functions, for example, the 
siRNAs, short interfering RNA, or lncRNAs, long non-coding RNAs; these are 
not translated into proteins [1]. However, these non-coding RNAs can and often 
do play roles in human diseases such as cancer, cardiovascular, and neurologi-
cal disorders. While transcriptomics is most commonly applied to the mRNAs, 
the coding transcripts, transcriptomics also provides important data regarding 
content of the cell noncoding RNAs, including rRNA, tRNA, lncRNA, siRNA, and 
others. Specific approaches address the analysis of splice variant of the same gene 
in different tissues.

1. Transcriptome analysis

Transcriptome Analysis is the study of the transcriptome, of the complete set of 
RNA transcripts that are produced by the genome, under specific circumstances or 
in a specific cell, using high-throughput methods. Transcription profiling, which 
follows changes in behavior of a cell in toto, not of a single gene or just a few genes, 
is used throughout diverse areas of biomedical research, including disease diagno-
sis, biomarker discovery, risk assessment of new drugs or environmental chemicals 
etc. Transcription profiling can be applied to loss- and gain-of-function mutants 
to identify the changes associated with the mutant phenotype. The transcriptomic 
techniques have been particularly useful in identifying the functions of genes. 
Transcriptomics also allows identification of pathways that respond to or ameliorate 
environmental stresses. RNA-Seq can also identify disease-associated gene fusions, 
single nucleotide polymorphisms and even allele-specific expression.

2. Uses of transcriptome analysis

Transcriptome Analysis is most commonly used to compare specific pairs of 
samples. The differences may be due to different external environmental condi-
tions, e.g., hormonal effects or toxins. More commonly, healthy and disease states 
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are compared. For example, in cancer, transcriptomics analyses address classifica-
tion, the mechanisms of pathogenesis and even outcome prediction. Transcriptome 
studies can classify cancer beyond anatomical location and histopathology. 
Outcome predictions can establish gene-based benchmarks to predict tumor prog-
nosis and therapy response. These approaches are already in use for personalized 
medicine, individualized cancer patient therapies.

Organisms and tissues at various stages of development can be molecularly char-
acterized. The transcriptomes of stem cells help to understand the processes of cel-
lular differentiation or embryonic development. Because of its very broad approach 
transcriptome analysis is a great source for identifying targets for treatment.

2.1 Methodologies

The early approach to study whole transcriptomes used microarrays, a set of 
defined sequences arranged on a solid substrate [2]. Microarrays almost exclusively 
represented mRNAs, that is, genes that are translated into proteins.

Nowadays the microarray approach is supplanted by high-throughput RNA 
sequencing, RNA-Seq, which detects all transcripts in a sample, including the 
regulatory siRNA and lncRNA transcripts [3]. In this methodology, the bulk RNA 
is extracted from the sample and copied into stable double-stranded copy DNA, 
ds-cDNA, which is then sequenced using various sequencing methods [4]. The 
sequences obtained are aligned to reference genome sequences, available in data 
banks, to identify which genes are transcribed. Quantitatively, the results provide 
the expression levels for the transcribed genes. Compared to microarrays, RNA-Seq 
can measure both the low-abundance and high-abundance RNAs over a five orders 
of magnitude range and, importantly, RNA-Seq requires much less starting mate-
rial (nanograms vs. micrograms and even as little as 50 pg) [5]. This made possible 
analyses of transcriptomes in a single cell, a great advance over bulk tissue RNA 
analyses [6]. RNA-seq can be used to identify alternative splicing, novel transcripts, 
and fusion genes (Table 1).

In principle, the assembly of RNA-Seq reads is not dependent on reference 
genomes and can be used for gene expression studies of poorly characterized 
species with limited genomic resources. It can also be used to identify novel protein 
coding regions in sequenced genomes. RNA-seq can be performed using many next-
generation sequencing platforms, however, each platform has its own requirements 
of sample preparation and the instrument design.

Table 1. 
Comparison of RNA-seq methodologies.
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2.2 Data analysis, repositories and presentation

Improved sequencing technologies necessitated improved data analysis methods 
to deal with the increased volume of data produced by each transcriptome experi-
ment. Importantly, the results are deposited into transcriptome databases, essential 
tools for transcriptome analysis. For example Gene Expression Omnibus, www.
ncbi.nml.nih.gov, contains millions of transcription profiling experiments. Such 
data have potential applications beyond the original aims of an experiment. Typical 
outputs include quantitative tables of the transcript levels. This requires specific 
analysis algorithms, often specific to the methodology used. There are software 
packages to bridge data from disparate methodologies, to identify groups of similar 
expressed genes, or differentially expressed functionally significant regulatory or 
metabolic pathways.

Figure 1. 
Graphic representations of transcriptome analysis data. (A) Heat map with clustering tree. (B) Venn diagrams 
of regulated genes.



Transcriptome Analysis

4

are compared. For example, in cancer, transcriptomics analyses address classifica-
tion, the mechanisms of pathogenesis and even outcome prediction. Transcriptome 
studies can classify cancer beyond anatomical location and histopathology. 
Outcome predictions can establish gene-based benchmarks to predict tumor prog-
nosis and therapy response. These approaches are already in use for personalized 
medicine, individualized cancer patient therapies.

Organisms and tissues at various stages of development can be molecularly char-
acterized. The transcriptomes of stem cells help to understand the processes of cel-
lular differentiation or embryonic development. Because of its very broad approach 
transcriptome analysis is a great source for identifying targets for treatment.

2.1 Methodologies

The early approach to study whole transcriptomes used microarrays, a set of 
defined sequences arranged on a solid substrate [2]. Microarrays almost exclusively 
represented mRNAs, that is, genes that are translated into proteins.

Nowadays the microarray approach is supplanted by high-throughput RNA 
sequencing, RNA-Seq, which detects all transcripts in a sample, including the 
regulatory siRNA and lncRNA transcripts [3]. In this methodology, the bulk RNA 
is extracted from the sample and copied into stable double-stranded copy DNA, 
ds-cDNA, which is then sequenced using various sequencing methods [4]. The 
sequences obtained are aligned to reference genome sequences, available in data 
banks, to identify which genes are transcribed. Quantitatively, the results provide 
the expression levels for the transcribed genes. Compared to microarrays, RNA-Seq 
can measure both the low-abundance and high-abundance RNAs over a five orders 
of magnitude range and, importantly, RNA-Seq requires much less starting mate-
rial (nanograms vs. micrograms and even as little as 50 pg) [5]. This made possible 
analyses of transcriptomes in a single cell, a great advance over bulk tissue RNA 
analyses [6]. RNA-seq can be used to identify alternative splicing, novel transcripts, 
and fusion genes (Table 1).

In principle, the assembly of RNA-Seq reads is not dependent on reference 
genomes and can be used for gene expression studies of poorly characterized 
species with limited genomic resources. It can also be used to identify novel protein 
coding regions in sequenced genomes. RNA-seq can be performed using many next-
generation sequencing platforms, however, each platform has its own requirements 
of sample preparation and the instrument design.

Table 1. 
Comparison of RNA-seq methodologies.

5

Introductory Chapter: Transcriptome Analysis
DOI: http://dx.doi.org/10.5772/intechopen.85980

2.2 Data analysis, repositories and presentation

Improved sequencing technologies necessitated improved data analysis methods 
to deal with the increased volume of data produced by each transcriptome experi-
ment. Importantly, the results are deposited into transcriptome databases, essential 
tools for transcriptome analysis. For example Gene Expression Omnibus, www.
ncbi.nml.nih.gov, contains millions of transcription profiling experiments. Such 
data have potential applications beyond the original aims of an experiment. Typical 
outputs include quantitative tables of the transcript levels. This requires specific 
analysis algorithms, often specific to the methodology used. There are software 
packages to bridge data from disparate methodologies, to identify groups of similar 
expressed genes, or differentially expressed functionally significant regulatory or 
metabolic pathways.

Figure 1. 
Graphic representations of transcriptome analysis data. (A) Heat map with clustering tree. (B) Venn diagrams 
of regulated genes.



Transcriptome Analysis

6

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

The results of transcriptomic analyses are graphically often presented as heat 
maps, a system of color-coding that represents different levels of expression of given 
genes in different samples (Figure 1A). Such presentations also frequently display 
a clustering of samples, this helps to identify samples with similar gene expression. 
Another common graphical presentation uses Venn diagrams, which count the 
transcripts which are equivalently regulated in multiple samples (Figure 1B).

Transcriptome analyses have become indispensable in basic research, transla-
tional, and clinical studies. In general, transcriptome analysis is a very powerful 
hypothesis-generating tool, more than a theory proving one.

3. Specific example: transcriptome analysis applied to human skin

Easily accessible, skin was among the first targets analyzed using ‘omics’ and 
dermatology embraced the approaches very early [7]. A classic example of coordi-
nated transcriptional regulation was observed in cultured fibroblasts after serum 
stimulation [2]. Serum addition causes not only rapid recommencement of the cell 
cycle but, characteristically a wound-healing response, a physiological role of fibro-
blasts in wound healing [8]. Transcriptional responses of epidermal keratinocytes 
to UV light, hormones, vitamins, infections, inflammatory and immunomodulating 
cytokines, toxins and allergens have been characterized, as were the changes associ-
ated with epidermal differentiation [9, 10].

The expression signatures that define the various cell types in human skin, were 
used to define 20 specific gene signatures, including those for keratinocytes, mela-
nocytes, endothelia, adipocytes, immune cells, hair follicles, sebaceous, sweat, 
and apocrine glands. This resource provided a resource named SkinSig, which was 
then used to analyze 18 skin conditions, providing in-context interpretation of, 
for example, influx in immune cells in inflammation or differentiation changes in 
disorders of cornification [11].

In the future we can anticipate a greatly expanded usage of transcriptome 
analysis. Translated to the bedside, it can provide better understanding and more 
specific diagnoses of diseases. This, of course, requires additional advances in the 
technology, both in the lab-bench components reducing the costs and guarantee-
ing reproducibility and accuracy, as well as in the computer-based components, 
algorithms that enable physicians to establish diagnosis quickly and reliably. In a 
generation, this approach will become routine.
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The results of transcriptomic analyses are graphically often presented as heat 
maps, a system of color-coding that represents different levels of expression of given 
genes in different samples (Figure 1A). Such presentations also frequently display 
a clustering of samples, this helps to identify samples with similar gene expression. 
Another common graphical presentation uses Venn diagrams, which count the 
transcripts which are equivalently regulated in multiple samples (Figure 1B).

Transcriptome analyses have become indispensable in basic research, transla-
tional, and clinical studies. In general, transcriptome analysis is a very powerful 
hypothesis-generating tool, more than a theory proving one.

3. Specific example: transcriptome analysis applied to human skin

Easily accessible, skin was among the first targets analyzed using ‘omics’ and 
dermatology embraced the approaches very early [7]. A classic example of coordi-
nated transcriptional regulation was observed in cultured fibroblasts after serum 
stimulation [2]. Serum addition causes not only rapid recommencement of the cell 
cycle but, characteristically a wound-healing response, a physiological role of fibro-
blasts in wound healing [8]. Transcriptional responses of epidermal keratinocytes 
to UV light, hormones, vitamins, infections, inflammatory and immunomodulating 
cytokines, toxins and allergens have been characterized, as were the changes associ-
ated with epidermal differentiation [9, 10].

The expression signatures that define the various cell types in human skin, were 
used to define 20 specific gene signatures, including those for keratinocytes, mela-
nocytes, endothelia, adipocytes, immune cells, hair follicles, sebaceous, sweat, 
and apocrine glands. This resource provided a resource named SkinSig, which was 
then used to analyze 18 skin conditions, providing in-context interpretation of, 
for example, influx in immune cells in inflammation or differentiation changes in 
disorders of cornification [11].

In the future we can anticipate a greatly expanded usage of transcriptome 
analysis. Translated to the bedside, it can provide better understanding and more 
specific diagnoses of diseases. This, of course, requires additional advances in the 
technology, both in the lab-bench components reducing the costs and guarantee-
ing reproducibility and accuracy, as well as in the computer-based components, 
algorithms that enable physicians to establish diagnosis quickly and reliably. In a 
generation, this approach will become routine.
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Chapter 2

Single-Cell Transcriptome 
Analysis in Tumor Tissues
Sadahiro Iwabuchi and Shinichi Hashimoto

Abstract

The tumor microenvironment is comprised of cancer cells and their surround-
ings, including various normal cells and non-cellular components, and each tumor 
tissue has a distinctive microenvironment. Cancer progression is affected by dif-
ferent microenvironmental states, such as the heterogeneity of infiltrating immune 
cells. Therefore, it is necessary to understand the complex cell-to-cell interactions 
associated with tumor developmental stages in different tissues. Recent revolution 
of single-cell RNA sequencing technology can uncover the tumor microenviron-
ment diversity. We have developed a novel strategy of single-cell transcriptome 
analysis: next generation 1-cell sequencing (Nx1-seq) technology, and it allows for 
profiling of thousands of single cells from tumor tissue. Our microwell with cell 
bar-code beads device can detect genes with high sensitivity, and it is easily trans-
ported anywhere without any other dedicated devices. Further, the developmental 
cost is relatively cheaper than other single-cell RNA sequencing methods. In this 
study, we introduce representative application of the single-cell RNA sequencing 
technique in gynecological cancers, and we show the result of Nx1-seq application 
in human endometrioid adenocarcinoma tissue.

Keywords: tumor microenvironment, single-cell transcriptome analysis, Nx1-seq

1. Introduction

Tumor tissues are aggregates of various cell populations, and each single cell 
or cell population plays an important role for cancer progression and regres-
sion. The representative cell populations of the tumor microenvironment are 
cancer cells, surrounding normal cells, and infiltrated immune cells of all types. 
Anticancer agents and immune checkpoint blockers, such as programmed death 
receptor-1 (PD-1) and its ligand, have been widely used in patients, and the cura-
tive effect is great. However, for many patients, these treatments are ineffective 
because the minor cell populations escape the immune system. Therefore, a deeper 
understanding of the tumor microenvironment immunology will be critical for 
immunotherapy to become a standard therapy. In addition, it is important to clarify 
patient and tumor-dependent cell phenotypes by gene expression analysis because 
the composition and functions of the tumor microenvironment are heterogeneous 
between cancers and patients.

Previous gene expression measurements have been performed on bulk samples. 
Conventional bulk-based RNA sequencing or microarrays alone or in combination 
with flow cytometry can provide a full view of all gene expression, and it is useful to 
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investigate the tumor microenvironment. However, a blended gene expression analy-
sis might mask the minor cell population, which may be the origin of tumor progres-
sion. To overcome this problem, RNA sequencing methods that can analyze mRNA 
expression at the single-cell level from thousands of individual cells are required. The 
fundamentally necessary approaches of single-cell RNA sequencing are: (1) single-
cell isolation with a high survival rate, (2) cell lysis to obtain mRNA, (3) conversion 
of mRNA into cDNA, (4) specific amplification of cDNA, (5) cDNA fragmentation 
process, and (6) creation of high-quality sequencing libraries. After single-cell isola-
tion, there are some innovate single-cell transcriptome analysis methods (e.g., CEL-
seq [1], Quartz-seq [2], Quartz-seq2 [3], Smart-seq [4], Drop-seq [5], iDrop RNA 
sequencing [6], Cyto-Seq [7], automated microwell-based RNA sequencing [8], and 
our next generation 1-cell sequencing; Nx1-seq [9]), and every method uses oligo-dT 
primers containing cell-specific bar-codes, which tag cDNA from single cells.

Although cell number, tissue volume analyzed, analysis sensitivity, and overall 
cost for creating libraries are completely different, any methods with an efficient 
data analysis procedure would be particularly useful to understand cellular 
heterogeneity and to identify rare cell populations. For example, six prominent 
single-cell RNA sequencing methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-seq, 
Smart-seq, and Smart-seq2 have been compared in mouse embryonic stem cells 
[10]. If single-cell transcriptome analysis were performed in a limited number of 
cells or small tissue volume, SCREB-seq and MARS-seq will have better sensitivity. 
Yet, Smart-seq2 may detect the highest number of genes per cell with amplification 
noise. Drop-seq is a preferable and more cost-effective method for large numbers of 
cells with low sequencing depth. In terms of the number of reads per cell and genes, 
we also compared our Nx1-seq and Drop-seq, and it revealed similar sensitivity [9]. 
Recently, another microwell-based RNA sequencing has been developed [11], and 
this is a simple, high-throughput, and low-cost device. The principle of their device 
is similar to Cyto-Seq and Nx1-seq, but the differences are the beads material and 
the loading order of single cells and beads to the microwell. They have attempted 
to construct a “mouse cell atlas” by using over 50 mouse tissues, organs, and cell 
cultures. One of the reasons they can analyze a large sample amount is the low-cost 
device without any expensive, exclusive apparatus and kits for capturing mRNA 
from a single cell. Previously, a detailed description of each method was thoroughly 
reviewed [12]; yet, innovate new technologies for single-cell RNA sequencing are 
still to be developed. We also continue improving our Nx1-seq device progressively.

2. Single-cell transcriptome analysis for cancer tissues

To find new molecular targets for a cancer prognosis prediction method, it 
requires an understanding of the single-cell level transcriptome heterogeneity in 
tumor tissues and their microenvironment. Bulk-based RNA sequencing may also 
contribute to development of new minimally invasive monitoring of circulating 
tumor cells or cancer gene-transferred macrophages and lymphoid cells. If the 
targeted cancer antigen and/or cell surface protein were held in small cell popula-
tions, the intensity signal of the gene expression would be weak. In this case, single 
cell transcriptome analysis is a useful tool to identify the small cell population 
and obtain all of the gene information in this population. In the next chapter, we 
describe our Nx1-seq methods in detail and show a representative Nx1-seq applica-
tion in human endometrioid adenocarcinoma tissue. At this time, there are no 
reports about single-cell transcriptome analysis for endometrioid adenocarcinoma, 
except our research [9]. Here, we briefly summarize recent applications of single-
cell RNA sequencing in one of the major gynecological cancers, breast cancer.
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Chung et al. conducted single-cell transcriptome analysis for 11 primary tumors 
and 2 metastatic lymph nodes from 11 patients, representing 4 breast cancer sub-
types [13]. It clearly displayed the carcinoma and tumor-infiltrating immune cells 
population using the 10–17 μm integrated fluidic circuit mRNA sequencing chip 
in the C1™ Single-Cell Auto Prep System of Fluidigm®. The C1™ integrate fluidic 
circuit is an integrated microfluidic system that can automatically isolate individual 
cells from suspended cells. Subsequently, cell lysis buffer is automatically applied to 
individual cells to capture mRNA. It takes 5 h to make sequence-ready libraries from 
isolated cells, and the operation is simple [14]. The authors demonstrated that many 
T cells with high cytokine and chemokine expression were observed in three triple 
negative breast cancers (TNBC), and their phenotypes were regulatory T cells (two 
out of three patients) and another one was exhaustion and cytotoxicity signatures 
[13]. This result indicates that immune checkpoint blockers may be effective in the 
patient.

Recently, single-cell transcriptome analysis using 10X Genomics Chromium 
was reported in breast cancer [15, 16]. Cazet et al. investigated the anti-tumor 
inhibitor effects in a mouse tumor model, in terms of changes in the gene expres-
sion profiles of each cell population [15]. Tumor development and progression 
were associated with stiffness of the extracellular matrix, and collagen density 
in the tumor-stromal interface was reduced by small molecule inhibitor of 
smoothened (SMO) treatment. They also showed that the chemotherapy signifi-
cantly slowed tumor growth and reduced the frequency of metastatic disease 
in xenograft models of human TNBC. In another article, an infiltrating T cell 
population in breast cancer was classified from 123 patients, and it demonstrated 
the importance of qualitative identification of CD8+ T cell subtypes [16]. CD8+ 
CD103+ T cells contained features of read tissue-resident memory, including high 
granzyme B, PD-1, and cytotoxic T lymphocyte (associated) antigen 4 (CTLA-4), 
rather than CD8+ CD103− T cells, meaning that these are target cells for immune 
checkpoint brokers.

The above representative reports using single-cell read transcriptome analysis 
were well analyzed, but we speculate that the cost for creating a sequence library 
per sample using commercially available device-dependent kits may be expensive. 
Many samples should be analyzed in a clinical study because the observed microen-
vironment heterogeneity is patient-, malignant-, or organ-dependent. In addition, 
if characterization of tumor gene expression profiling was recognized according 
to the individual’s region or country, it should be performed locally because fresh 
samples, not frozen ones, are better to analyze for RNA sequencing. From this 
standpoint, a device with low-cost, in high sensitivity, and easy performance is 
recommended.

3. Nx1-seq

The major component of Nx1-seq (next generation 1-cell sequencing) consists 
of bar-code beads and a specifically processed microwell. In this chapter, we 
describe these devices in further detail.

3.1 Bar-code beads

Oligonucleotides on beads have the following sequence: (1) “root array” is 
used as a priming site for subsequent PCR; (2) “cell bar-code” allocates 12 bp of 
oligonucleotide to identify cells, and the bar-code has 412 = 16,777,216 various 
patterns; (3) “UMI” (a unique molecular identifier) has 8 bp of oligonucleotide to 
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eliminate gene duplication bias and improve signal/noise ratio by PCR, meaning 
that 1-cell bar-code has 1 UMI; and (4) “poly-dT” array consists of 25 bp oligo dT 
sequences for capturing polyadenylated mRNA. The bar-code beads (“root”-“cell 
bar-code”-“UMI”-“poly-dT”) were made by following a modified instruction 
manual for the GS Junior Titanium emulsion PCR Kit (Lib-L) from Roche® 
Applied Science or synthesized by ChemGenes Corporation (Wilmington, MA, 
USA) with additional annealing and ligation of the poly-dT array in our labora-
tory. The detailed method for generating bar-code beads using the emulsion PCR 
kit is described in our previous report [9]. We could get randomly synthesized 
various “cell bar-code” inserted bar-code beads, and the beads were washed with 
Low TE buffer (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA pH 8.0) and stored at 
−20°C until use.

3.2 Microwell slide

The microwell plate was prepared using polydimethylsiloxane (PDMS) and 
was cut 2 × 2 × 2 cm using cutting dies (Noda Co. Ltd., Osaka, Japan) which con-
tained 1.3−1.6 × 105 microwells. The size of one microwell was 25 ± 3 μm diameter, 
40 ± 8 μm height, 20 ± 9 ρL capacity (column-shape), and the distance between 
microwells was 5 μm (YODAKA CO., Ltd., Kanagawa, Japan). If the size of the 
target cell was not between 15 and 25 μm, the diameter and height sizes were easily 
adjusted. The PDSM microwell plate was placed in an oxygen plasma chamber for 
hydrophilic processing because PDMS is a hydrophobic material. The microwell 
plate was quickly set into the Nunc™ Lab-Tek™ Chamber slide system (Thermo 
Fisher Scientific, Waltham, MA, USA), and bar-code beads were applied to the 
microwell plate. If the expected number of cells obtained from the tumor tissue 
was <1 × 105 cells, the PDMS microwell was cut ~1/4 or 1/2 of its size and set into 
the appropriate Nunc™ Lab-Tek™ Chamber slide system (Figure 1). The PDMS 
microwell plate was kept at 4°C, meaning that the Nx1-seq device can be stored 
until use.

Figure 1. 
Schematic drawings of Nx1-seq. Cell bar-code beads (see the structure of cell bar-code bead) were filled into 
microwells, and an adequate number of single cells was applied. Cells were dissolved in lysis buffer, and mRNA 
from the cell was captured by cell bar-code beads in each microwell. After cellular lysis, all beads were collected 
into a single tube. Images of the microwell plate show that our device had some variations for differences of the 
number of applied cells.
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3.3 Lysis of cells

After single cell isolation, ~1−2 × 105 cells mixed with 3.7 mL of cold PBS were 
applied to PDMS microwell plate (2 × 2 × 2 cm) and put the cover without enter-
ing a bubble. The microwell plate was put on ice for 10–15 min, which let the cells 
settle into the microwell by gravity. About 5% of whole microwells were filled 
with single cells according to Poisson distribution. The solution was removed from 
the microwell plate, and 1 mL of fresh cold PBS was gently applied. The washing 
process was repeated by 3–4 times. The reagent composition of 1 mL of cell lysis 
buffer was; 2 mg of N-Lauroylsarcosine sodium salt, 200 μL of 1 M Tris-HCl pH 7.5, 
40 μL of 0.5 M EDTA pH 8.0, 750 μL of deionized water, 50 μL of 1 M dithioth-
reitol solution. The microwell plate was put on a microscopy, and we found the 
microwell which contains only cell without bar-code bead, then PBS was removed 
and 1 mL of cell lysis buffer was gently applied from the corner of the microwell. 
Most cells were getting to dissolve within 1–3 min, but it kept for 8 min. The cell 
lysis buffer was removed carefully and washing buffer (200 mM Tris-HCl pH 7.5, 
20 mM EDTA, 50 mM DTT, 0.2% N-Lauroylsarcosine sodium salt, 2% Ficoll) was 
added. Conversion of mRNA into cDNA was done by SuperScript™ II or IV Reverse 
Transcriptase (Thermo Fisher Scientific).

4.  Nx1-seq application to human endometrioid adenocarcinoma  
tissues

Previously, we reported the application of Nx1-seq to human endometrioid 
adenocarcinoma (EA) tissues [9]. Here, we summarize the result shortly. EA tissues 
were removed from the myometrial infiltration side (M-side) and endometrial side 
(E-side). Myometrial invasion is an independent prognostic parameter of EA, and 
invasion is correlated with the risk of metastasis to the lymph nodes. Single-cell 
analysis in each side revealed that EA had six cancer (cluster #0, 1, 2, 3, 5, 6), two 
macrophage (#4, 8), and one T cell population (#7) (Figure 2A). To analyze the 
sequencing data, we used Seurat software (http://satijalab.org/seurat/), which is 
an open tool for analyzing single-cell genomics in R (http://www.R-project.org/). 
As shown in Figure 2B, the distribution of cancer cells on the E-side and M-side 
differed, and the majority of the macrophage cluster (#4) was on the M-side. The 
number of infiltrating macrophages was not different between sides (Figure 2C), 
but macrophage specificity was more cytotoxic T lymphocytes (CTL)-like on the 
M-side. Macrophages on the M-side had higher expression of inflammatory che-
mokines, C-X-C motif chemokine ligand 3 and 8 (CXCL3 and CXCL8) and NF-κ-B 
inhibitorα (NFKBIA) (Figure 2D). The proportion of macrophages expressing 
the inflammatory factors CCL5, IL10 and IL6 did not differ among the two sides 
(data not shown). It has been widely believed that many cells expressing some 
malignancy-related genes exist on the M-side; however, our previous result showed 
that cancer cells on the E-side were highly malignant when compared to those on 
the M-side.

In addition, a cancer stem-like cell population was also higher on the E-side 
(e.g., the ratio of SOX2+ cells on E-side vs. M-side was 17 vs. 6%, respectively) [9]. 
These data reveal that cells with high malignant potential (HMP) are present at the 
same site of cancer tissue (E-side) in EA. To confirm our hypothesis, we focused 
on the ubiquitin C-terminal hydrolase L1 (UCHL1) gene. Protein ubiquitination or 
de-ubiquitination regulates cell growth, differentiation, transcription, and tumor 
prognosis. The function of UCHL1 in neurodegenerative disorders, particularly 
in Alzheimer’s disease and Parkinson’s disease has been reported, and decreased 
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Figure 1. 
Schematic drawings of Nx1-seq. Cell bar-code beads (see the structure of cell bar-code bead) were filled into 
microwells, and an adequate number of single cells was applied. Cells were dissolved in lysis buffer, and mRNA 
from the cell was captured by cell bar-code beads in each microwell. After cellular lysis, all beads were collected 
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number of applied cells.
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hydrolase activity and UCHIL1 ligase activity may affect the neurodegeneration 
[17, 18]. In our EA tissue, the relative intensity of UCHL1 expression was higher on 
the E-side (Figure 2E). The functional role of UCHL1 in human tumor malignancy 
is still unresolved, but this gene has been reported to be cancer-related in endome-
trial cancer patients [19]. Goto et al. demonstrated that activation of UCHL1 via 
hypoxia inducible factor-1 (HIF-1) is the key regulator for underling mechanism of 
tumor metastasis, and they expected UCHL1 is as prognostic marker and treatment 
target for breast and lung cancers [20].

From the enormous single-cell RNA-sequencing data, the researcher must 
determine to manage and understand the functional meaning of the cell popula-
tion. In particular, understanding how the gene is related to overall survival of EA 
patients in the clinical site is useful. Hence, we used the “cBioPortal For CANCER 

Figure 2. 
Clustering of human endometrioid adenocarcinoma tissue. (A) Nine clusters were identified by t-SNE analysis. 
(B) Cluster analysis in each side; sky blue dots indicate the endometrial side (E-side) and red dots are the 
myometrial infiltration side (M-side). (C) The ratio (%) of macrophages in the E- or M-side of tissues is 
shown. (D) Relative intensity of CXCL3, CXCL8, and NFKBIA in both sides. *p < 0.001 for E-side vs. M-side 
by the Mann-Whitney U-test. (E) Summary of UCHL1 expression. Relative intensity of UCHL1 is shown, and 
*p < 0.001 for E-side vs. M-side by the Mann-Whitney U-test. (F) Overall survival of Kaplan-Meier estimate 
was obtained from cBioPortal for CANCER GENOMICS. Blue: control, Red: relatively higher expression 
group. *p < 0.001 for the control vs. high UCHL1 expression.

17

Single-Cell Transcriptome Analysis in Tumor Tissues
DOI: http://dx.doi.org/10.5772/intechopen.84558

GENOMICS” website and chose “Uterine Corpus Endometrial Carcinoma (EC) 
(TCGA, Provisional).” Subsequently, we set “Genomic profiles” as “mRNA 
Expression,” and chose “mRNA Expression z-Score (microarray),” then input 
the gene name “UCHL1” (http://www.cbioportal.org/). Overall Survival of 
Kaplan-Meier (K-M) Estimate showed that high UCHL1 expression in endometrial 
carcinoma patients significantly decreased survival time (Figure 2F). The median 
months survival in the UCHL1 high group was 48.75 months. The log-rank p value 
for K-M analysis for correlation between mRNA expression level and patient 
survival was 1.965 × 10−4. The Overall Survival of K-M Estimate was not calculated 
from the EA but EC dataset, however EA of the endometrium is the most common 
type of EC [21]. Therefore, the result indicates that higher expression of UCHL1 
on the E-side somehow affects EA progression, and it supports our hypothesis that 
cells with HMP are present on the E-side. Whether we chose other data set “Uterine 
Corpus Endometrial Carcinoma (TCGA, Nature 2013),” the result of Overall 
Survival of K-M Estimate was also significant (p = 1.06 × 10−3). The median months 
of disease-free in high UCHL1 patients was 12.94 months, and it was significantly 
earlier by the Disease/Progression-free Kaplan-Meier Estimate. However, the 
significant correlation was not observed if we chose “mRNA Expression z-Scores 
(RNA Seq V2 RSEM), z-score threshold ± 2.0” (p = 0.955). There was other use-
ful database to realize the overall survival of EC patients. We used the “THE 
HUMAN PROTEIN ATLAS” website and input the gene name “UCHL1,” then set 
“PATHOLOGY ATLAS” (http://www.proteinatlas.org/). The prognostic summary 
highlighted that UCHL1 was the candidate as the prognostic marker in EC. The 
5-year survival in the UCHL1 high or low group was 66 or 86% respectively, and the 
p score was 4.1 × 10−5 from the total of 541 female patients.

As shown in Figure 3, there was significant differences about UCHL1 expres-
sion between each side, and immunostaining of UCHL1 showed a similar staining 

Figure 3. 
Immunohistochemistry of UCHL1 in E-side and M-side. Macrophages identified by pathologist are also 
positively stained. Red allows shows macrophage. The scale bar indicates 30 μm.
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pattern in macrophages as well as cancer cells. Also, UCHL1 staining in E-side was 
relatively higher. These data indicate that microenvironment of tumor tissue might 
affect the gene properties of immune cells, and gene expression pattern might 
resemble closely to cancer cells.

The high expression of CXCL3 was not related to the prognosis of EA (p = 0.987) 
by the CANCER GENOMICS, but CXCL3 high group significantly improved 
5-year overall survival by the PROTEIN ATLAS. At this moment, there was only 
one patient whose expression of CXCL8 was high in the CANCER GENOMICS, 
but 5-year survival of CXCL8 high or low group in EC patients was 79 or 70% 
respectively, and there was no significant difference. In contrast, higher expression 
of NFKBIA significantly decreased survival time by “mRNA Expression z-Sore 
(microarray)” (p = 0.0246), but not “mRNA Expression z-Score (RNA Seq V2 
RSEM)” by the CANCER GENOMICS. In contrast, the 5-year overall survival in 
the PROTEIN ATLAS was not significant. These results indicate that the researcher 
must use some database to understand how the target genes are related to the 
prognosis of cancers. Further studies for other HMP-related genes are ongoing in 
our laboratory.

5. Conclusion

Single-cell sequencing is believed to be a powerful tool to answer unknown 
biological questions, and researchers may have many expectations to find new 
insights of their hypotheses. Indeed, bulk-based RNA sequencing is averaged across 
a cell population, but the method to obtain total RNA is relatively simple and easy. 
Most importantly, we can detect gene expression profiling of the whole tissue. Of 
course, as mentioned above, the existence of minor cell populations, such as cancer 
stem-like cells, may not be detected in bulk-based RNA sequencing data. If the 
researchers knew the biomarkers of targeted cells in small population, the gene can 
be detected from the bulk-based RNA sequencing data. But it is unknown which 
cell expresses and how many cells have the targeted gene because of the averaged 
data by bulk-based RNA sequencing. Thus, it is better to ponder over which method 
is aimed at the biological question before choosing more difficult and expensive 
single-cell RNA sequencing.

Current protocols of dispersing single cells in each tissue are not optimized 
worldwide; therefore, some cells or cell populations may disappear in the course 
of isolating single cells from tumor tissue. One of the most important procedures 
for single-cell RNA sequencing is isolation of single cells from tumor tissues. 
Mechanical and/or enzymatic cell distributed processes followed by fluorescence-
activated cell sorting (FACS), magnetic-activated cell sorting (MACS), or density-
gradient method are the current standard [22], but the softness or hardness of 
tissues differs depending on the tumor. Inappropriate single-cell isolation methods 
are biased; therefore, more detailed studies are needed to optimize isolation of 
single cells for each tissue.

Nonetheless, single-cell sequencing is a great tool for detecting heterogeneous 
subpopulations, cell-to-cell communication, and spatial interactions. Moreover, the 
many gene expression changes by carcinostatic agents can be monitored. To ana-
lyze extensively heterogeneous clinical samples, highly sensitive, low cost, quick, 
and simple technologies to capture mRNA from a single cell are required. Our 
newly developed single-cell transcriptome analysis, Nx1-seq, can be a useful tool 
to understand tumor microenvironments with high sensitivity and low cost. This 
new approach is a simple method, and it can be used to analyze several hundreds 
to tens of thousands of cells without specialized equipment. Further, it is easy to 
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change the size of the microwell for larger or smaller cells. Furthermore, microwells 
equipped with bar-code beads in the Nunc™ Lab-Tek™ Chamber slide system can 
be stored for several months before use. Nx1-seq is a powerful approach for char-
acterizing cellular diversity under physiological and pathological conditions. The 
combined analysis of t-SNE by Seurat and detailed gene profiling can discover new 
tumor biomarkers or new target genes for regression of tumor tissues. We continue 
to develop better Nx1-seq devices to satisfy requests from researchers. It is about 
continued learning on a daily basis.
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Chapter 3

Transcriptome Atlas by Long-Read 
RNA Sequencing: Contribution to 
a Reference Transcriptome
Dong Jin Lee and Chang Pyo Hong

Abstract

The recent emergence of long-read transcriptome sequencing has helped 
improve the overall accuracy of gene prediction compared with that by short-
read RNA-Seq. In addition, the technology can offer a more comprehensive view 
of functional genomics in uncharacterized species with an efficient full-length 
unigene build and high-precision gene annotation, thus being efficient in develop-
ing transcriptome data resources from useful genetic pools. Hence, I will review the 
applications of long-read RNA isoform sequencing, including the relative merits 
of the technology, the improvement of the accuracy in gene prediction and gene 
annotation, and the full-length unigene builds in a new genome; the limitations of 
the technology will be also discussed. The review will be valuable in collecting data 
resources for functional genomic studies.

Keywords: functional genomics, gene prediction, long-read RNA sequencing, 
transcriptome

1. Introduction

Transcriptomics is the study of transcript catalogs in a cell, tissue, or organ-
ism for a given developmental stage or physiological condition [1]. The transcrip-
tome indicates the complete set of transcripts that consists of protein-coding 
messenger RNA (mRNA) and non-coding RNA (ncRNA), including ribosomal 
RNA (rRNA), transfer RNA (tRNA), and other ncRNAs [2, 3]. In contrast 
with the relatively stable genome, various factors such as developmental stage, 
physiological condition, and external environment influence the changes in 
the transcriptome. The goals of transcriptomics include the annotation of the 
transcriptome, and the determination of the functional structure of each gene in 
the genome and the changes in the expression levels of each gene among differ-
ent transcriptome samples [1, 4, 5].

Transcriptome analysis depends heavily on the availability of high-throughput 
tools on account of the complexity of the transcriptome. Thus, RNA sequencing 
(RNA-Seq) has become an important tool for biological studies. RNA-Seq can 
quantify gene expression spatially and temporally. Although RNA-Seq has enabled 
the generation of massive amounts of sequence data due to their high-throughput 
characteristic, their application of short reads makes them poorly suited for genome 
and transcriptome assembly, and isoform detection. Single-molecule real-time 
(SMRT) sequencing, a new method to generate long-read sequences developed by 
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PacBio platform, provides an alternative approach to overcome these limitations in 
sequence length and accelerate improving our understanding of the complexity of 
the transcripts [6].

In general, the read length of Illumina HiSeq platform is about 100–150 bp, which 
is relatively short compared to that of PacBio platform (around 10 kb). However, 
Illumina HiSeq platform has the advantage of generating more accurate reads and 
high-throughput data. On the other hand, even though its accuracy is lower than 
that of Illumina HiSeq platform, single-molecule real-time (SMRT) sequencing of 
PacBio platform, a new method of sequence analysis, was developed and applied to 
elucidate the genomic structures of difficult to sequence organisms [7] because of 
its long-reads, which results in the improvement of assembly, gene prediction, and 
annotation. Using this technique, sequences are analyzed from a single strand of 
DNA without genomic amplification [9]. PCR-free long-read sequencing enables to 
help to carry out large complex whole-genomes (i.e., hexaploid wheat and maize).

PacBio sequencing captures sequences during the replication process of the 
target DNA in real-time. The template, also called a SMRTbell, contains a target 
double-stranded DNA (dsDNA) ligated with hairpin adaptors at both ends, result-
ing in a closed and single-stranded circular DNA [8]. When the SMRTbell is loaded 
into a chip called a SMRT cell, diffusion of the SMRTbell into a sequencing unit 
called a zero-mode wave guide (ZMW) is carried out [10]. In each ZMW, a single 
polymerase immobilized at the bottom can bind to adaptors of the SMRTbell [11]. 
Each of the four nucleotides is fluorescent-labeled. As a nucleotide associates with 
the template in the active site of the polymerase, a light pulse is produced for base 
detection. A single polymerase read can be generated up to 40 kb, depending on 
the library size and sequencing time. The closed-circle form of the SMRTbell can 
make the reaction repeat until the reaction is terminated after the replication of one 
strand of the target dsDNA or double-stranded complementary DNA by the poly-
merase. However, the mean length of full transcripts is 1–3 kb in most plant and 
animal genomes (e.g., 1.6 kb in Arabidopsis [12], 1.8 kb in rice [13], 2.3 kb in human 
[14], and 1.2 kb in mouse [15]); thus, the same transcript can be covered multiple 
times by the long polymerase read. In this scenario, a few reads (called subreads) 
can be generated from the polymerase read by trimming adaptor sequences. The 
consensus sequence of multiple subreads in a single ZMW generates a read of insert 
(ROI) or a circular consensus sequence (CCS) read with higher accuracy. Hence, a 
protocol of isoform sequencing (Iso-Seq) for long-read transcriptome sequencing 
that includes library construction, size selection, sequencing, and data processing 
was developed by PacBio. Iso-Seq allows the direct sequencing of transcripts up to 
10 kb, which is particularly useful for the genomes of uncharacterized species.

However, even though PacBio sequencing has an advantage in terms of read 
length over next-generation sequencing, the throughput of PacBio sequenc-
ing is relatively low. A single SMRT cell contains 150,000 ZMWs, each of which 
can produce one polymerase read with a mean length of 1o kb. Typically, only 
35,000–70,000 reads of the 150,000 ZMW wells on a SMRT cell can be produced 
successfully because of the failure of anchoring a polymerase and loading more 
than one DNA molecule in a ZMW. Consequently, the typical throughput of 
the PacBio RS II system is around 0.5–1 Gb per SMRT cell [16]. Recently, PacBio 
developed another system called Sequel that produces over seven times the reads, 
with 1,000,000 ZMWs, and yields around 3.5–7 Gb per SMRT cell [17]. Sequel is 
appropriate for projects such as de novo genome assembly and isoform sequencing 
of transcriptomes. Another notable problem of PacBio sequencing is the relatively 
high error rate (around 11–15%) of polymerase reads [18]. Many hybrid sequencing 
approaches have been attempted to develop a method that has the accuracy of short 
reads but with the length of PacBio reads [19].
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Long-read transcriptome sequencing generates longer and improved transcripts 
with a high level of assembly completeness and gene annotation. Moreover, it pre-
vents obtaining artifacts such as chimeras, structural errors, incomplete assembly, 
and base errors [20].

Here, we review the sample preparation, library construction, analytical pipe-
lines, and the result of isoform sequencing (Iso-Seq), as a long-read transcriptome 
sequencing, in gene prediction and annotation. Furthermore, we will also discuss 
the relative merits and the limitations of the Iso-Seq technology.

2. Merits of long-read transcriptome sequencing

Long-read transcriptome sequencing such as Iso-Seq generates longer and 
improved transcripts from a species with a high level of assembly completeness and 
gene annotation, enabling a comprehensive view of the transcriptome. Conventional 
methods, such as cDNA cloning and EST sequencing, have limitations with relatively 
low data coverage. Although deep short-read sequencing (i.e., RNA-Seq) provides 
good sequencing depth and coverage for genome-wide transcriptome analysis, their 
short-read length generates assembly incompleteness of transcripts, resulting in 
high error rate in assembly and unreliable gene annotation. Long-read transcriptome 
sequencing can also provide experimental verification of predicted gene models in a 
genome, enable the quality of gene structures predicted and also give the potential 
to reduce missing gene annotation. For example, missing gene annotation may lead 
to false interpretation such as gene loss and errors in gene expression profiles that 
map and quantify RNA-seq reads using predicted gene models. Thus, this technology 
can be helpful to find full-length (FL) transcripts harboring complete open read-
ing frames (ORFs) and uncover novel splice isoforms as well as novel genes. This 
can result in the improvement of accuracy of gene prediction with an experimental 
verification and annotations for aiding in studying gene regulation.

3. Sample preparation and library construction for isoform sequencing

Iso-Seq with the PacBio platform can generate FL cDNA sequences including the 
5′ and 3′-UTRs (untranslated regions), as well as the polyA tails of the transcripts. 
The whole workflow including the experimental protocol and analytical pipelines is 
illuminated in Figure 1 [10].

3.1 Isolation of total RNA

The samples can be collected from various tissues (i.e., blood, gill, skin, muscle, 
liver, spleen, intestine, ovary, testis, kidney, heart, and brain of an animal) [21], or 
from certain developmental stages (developing rabbit at 21, 49, and 84 days of age) [22].  
The high quality of RNA with enough purity and integrity is critical to reduce 
the amplification cycles required in large-scale PCR and improve the sequencing 
diversity. RNA extraction is usually done through an easy-spin RNA extraction kit, or 
RNAiso Pure RNA Isolation kit [20–22]. In general, 2–5 μg of total RNA with an RNA 
integrity number (RIN) greater than 7 is required.

3.2 cDNA synthesis and size partitioning

Isolation of polyA mRNA is required for analyzing the transcripts of protein-
coding genes. The Iso-Seq method is flexible and allows different types of RNA 
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The whole workflow including the experimental protocol and analytical pipelines is 
illuminated in Figure 1 [10].

3.1 Isolation of total RNA

The samples can be collected from various tissues (i.e., blood, gill, skin, muscle, 
liver, spleen, intestine, ovary, testis, kidney, heart, and brain of an animal) [21], or 
from certain developmental stages (developing rabbit at 21, 49, and 84 days of age) [22].  
The high quality of RNA with enough purity and integrity is critical to reduce 
the amplification cycles required in large-scale PCR and improve the sequencing 
diversity. RNA extraction is usually done through an easy-spin RNA extraction kit, or 
RNAiso Pure RNA Isolation kit [20–22]. In general, 2–5 μg of total RNA with an RNA 
integrity number (RIN) greater than 7 is required.

3.2 cDNA synthesis and size partitioning

Isolation of polyA mRNA is required for analyzing the transcripts of protein-
coding genes. The Iso-Seq method is flexible and allows different types of RNA 
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to be sequenced. Alternatively, mRNAs can be selected by polyA enrichment. The 
first-strand cDNA is amplified with oligo(dT) to enrich RNAs with a polyA tail, 
including mRNAs and long noncoding RNAs (lncRNAs) for further analysis.

For parallel analysis of RNA samples derived from various tissues, barcode for 
each sample with unique sequences is alternatively used. For instance, multiplex 
sequencing was performed to construct a maize transcriptome library from various 
tissues [23]. However, barcoding samples is not always desired because sequencing 
efficiency may be reduced by the barcode sequence.

3.3 Size partitioning

Size selection for size partitioning, which is the most commonly used method 
to avoid over-representation of smaller transcripts in sequencing data, allows for 
more even representation of cDNA of different size ranges, since smaller fragments 
may load preferentially on the sequencer. Furthermore, the process of second 
fractionation is recommended to remove any smaller fractions from the first size 
selection. To enhance PCR amplification, different sizes of the cDNA libraries 
including <1, 1–2, 2–3, and 3–6 kb are generally constructed to maximally recover 
transcript diversity and sequence. However, such size selection may bring about 
missing small size transcripts less than approximately 1 kb. This problem appears 
to result from technical limitation by size selection in the construction of mRNA 
sequencing libraries. This can get solved by combinatorial use with short-read RNA-
Seq data that are very effective for transcriptome coverage, especially small size of 
transcripts.

Figure 1. 
Schematic workflow of isoform sequencing.
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3.4 Library preparation and sequencing

Double-stranded cDNA is not enough for SMRTbell library construction follow-
ing size selection. PacBio suggests PCR amplification using the KAPA HiFi Enzyme [24]  
with about 10 cycles. Then, a circularized molecule called a SMRTbell template is 
transformed from the amplified cDNAs by the SMRTbell Template Prep kit. After 
the step is completed, the library is ready to be loaded into a SMRT cell and sub-
jected to sequencing on the PacBio platform. There is a compromise between SMRT 
cell numbers and the sequencing cost. In general, the Iso-Seq protocol recommends 
8–50 SMRT cells to retrieve diversity in a tissue.

4. Building full-length transcripts in a genome

Error correction of the raw reads is necessary to improve the assembly quality 
of the FL transcripts. PacBio provides the Iso-Seq analysis software to perform 
the procedure by iterative clustering for error correction (ICE) and the Quiver 
algorithm (https://www.pacb.com/applications/rna-sequencing). Then, various 
analysis approaches can be applied to overcome the limitation of Iso-Seq, improve 
assembly quality, and evaluate the quality assessment of the unigenes.

The Iso-Seq raw reads are usually called polymerase reads or continuous long reads 
(CLRs) and have an average length of 10 kb (Figure 1). Considering the average length 
of a transcript is 1–2 kb, the same copies of the inserts are contained in a single poly-
merase that could be split into several subreads by removing the adaptor sequences by 
PacBio SMRT link analysis [20]. The circular consensus sequences or ROIs are generated 
from several subreads. The full-length non-chimeric read (FLNC) is defined not only 
when the polyA tail signal preceding the 30-primer is present, but also when both 
50- and 30-cDNA primers are present. To enhance consensus accuracy and remove the 
redundancy of FLNC without any additional sequence data, ICE and Quiver can be 
applied [20]. The Iso-Seq classify tool is used for classifying the ROIs into full-length 
nonchimeric and non-full-length reads by identifying the 50 and 30 adapters used in 
library preparation. Then, the Iso-Seq cluster tool is used for clustering all the full-
length reads, and the consensus sequences produced by the cluster tool are polished 
using the non-full-length reads through the Quiver algorithm [25]. Additionally, the 
CD-HIT program [26] is likely to be helpful to cluster the high and low quiver consensus 
isoforms from ROIs with high sequence identity threshold (i.e. 0.98–0.99) [20, 21].

Iso-Seq reads present a disadvantage with the high frequency of errors of nucleo-
tide indels and mismatches. Thus, the procedure of correcting InDels and mismatches 
is performed via alignment with reference genomes [27]. To overcome this, a viable 
alternative approach is to integrate short reads with long reads via hybrid sequencing. 
For instance, RNA samples prepared from the same samples are sequenced by both 
PacBio and Illumina HiSeq. The short reads from the Illumina HiSeq are applied to cor-
rect the transcript isoforms using LoRDEC tool v0.6 [28]. Then, the corrected isoform 
sequences are aligned against a reference genome by GMAP aligner [29]. The follow-
ing analyses are recommended to exclude the sequences with multiple and chimeric 
alignments. To assess quality of the unigenes, some software such as CEGMA [30] and 
BUSCO [31] can be applied [20, 21, 32, 33]. The percentages of the transcripts that 
fully and partially aligned to the conserved proteins are calculated.

FL or longer transcriptome data have been mostly published from large complex 
or uncharacterized genomes of plant species (Table 1). Although deep short-read 
transcriptome sequencing (i.e., RNA-Seq) have accumulated over recent year, they 
are likely to generate low-quality transcripts with a small portion of FL transcripts, 
prohibiting accurate transcript reconstruction and leading incorrect annotation.
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3.4 Library preparation and sequencing

Double-stranded cDNA is not enough for SMRTbell library construction follow-
ing size selection. PacBio suggests PCR amplification using the KAPA HiFi Enzyme [24]  
with about 10 cycles. Then, a circularized molecule called a SMRTbell template is 
transformed from the amplified cDNAs by the SMRTbell Template Prep kit. After 
the step is completed, the library is ready to be loaded into a SMRT cell and sub-
jected to sequencing on the PacBio platform. There is a compromise between SMRT 
cell numbers and the sequencing cost. In general, the Iso-Seq protocol recommends 
8–50 SMRT cells to retrieve diversity in a tissue.

4. Building full-length transcripts in a genome

Error correction of the raw reads is necessary to improve the assembly quality 
of the FL transcripts. PacBio provides the Iso-Seq analysis software to perform 
the procedure by iterative clustering for error correction (ICE) and the Quiver 
algorithm (https://www.pacb.com/applications/rna-sequencing). Then, various 
analysis approaches can be applied to overcome the limitation of Iso-Seq, improve 
assembly quality, and evaluate the quality assessment of the unigenes.

The Iso-Seq raw reads are usually called polymerase reads or continuous long reads 
(CLRs) and have an average length of 10 kb (Figure 1). Considering the average length 
of a transcript is 1–2 kb, the same copies of the inserts are contained in a single poly-
merase that could be split into several subreads by removing the adaptor sequences by 
PacBio SMRT link analysis [20]. The circular consensus sequences or ROIs are generated 
from several subreads. The full-length non-chimeric read (FLNC) is defined not only 
when the polyA tail signal preceding the 30-primer is present, but also when both 
50- and 30-cDNA primers are present. To enhance consensus accuracy and remove the 
redundancy of FLNC without any additional sequence data, ICE and Quiver can be 
applied [20]. The Iso-Seq classify tool is used for classifying the ROIs into full-length 
nonchimeric and non-full-length reads by identifying the 50 and 30 adapters used in 
library preparation. Then, the Iso-Seq cluster tool is used for clustering all the full-
length reads, and the consensus sequences produced by the cluster tool are polished 
using the non-full-length reads through the Quiver algorithm [25]. Additionally, the 
CD-HIT program [26] is likely to be helpful to cluster the high and low quiver consensus 
isoforms from ROIs with high sequence identity threshold (i.e. 0.98–0.99) [20, 21].

Iso-Seq reads present a disadvantage with the high frequency of errors of nucleo-
tide indels and mismatches. Thus, the procedure of correcting InDels and mismatches 
is performed via alignment with reference genomes [27]. To overcome this, a viable 
alternative approach is to integrate short reads with long reads via hybrid sequencing. 
For instance, RNA samples prepared from the same samples are sequenced by both 
PacBio and Illumina HiSeq. The short reads from the Illumina HiSeq are applied to cor-
rect the transcript isoforms using LoRDEC tool v0.6 [28]. Then, the corrected isoform 
sequences are aligned against a reference genome by GMAP aligner [29]. The follow-
ing analyses are recommended to exclude the sequences with multiple and chimeric 
alignments. To assess quality of the unigenes, some software such as CEGMA [30] and 
BUSCO [31] can be applied [20, 21, 32, 33]. The percentages of the transcripts that 
fully and partially aligned to the conserved proteins are calculated.

FL or longer transcriptome data have been mostly published from large complex 
or uncharacterized genomes of plant species (Table 1). Although deep short-read 
transcriptome sequencing (i.e., RNA-Seq) have accumulated over recent year, they 
are likely to generate low-quality transcripts with a small portion of FL transcripts, 
prohibiting accurate transcript reconstruction and leading incorrect annotation.
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vUnlike RNA-Seq data, Iso-Seq data, which are derived from various tissues as 
many as possible, harbor a large portion of unique FL transcripts. For example, 
Wang et al. [23] reported that maize yielded 111,151 non-redundant FL transcript 
isoforms, corresponding to approximately 26,946 genes. In addition, genome cover-
age of Iso-Seq data is achieved near-saturation. Ultimately, cost-effective long-read 
transcriptome sequencing can be the gold standard for transcript completeness, 
characterization of transcriptome, and draft genome annotation. To identify 
trait-associated transcripts in species for which a reference genome is lacking (i.e., 
garlic), this approach was used as a reference sequence for scoring the variation in 
both SNP and expression level in the population [36], reporting the characteriza-
tion of transcripts (lncRNAs) associated with garlic clove shape traits.

5.  Improvement of the efficiency of functional gene prediction and 
annotation

Completeness of assembled transcripts is closely related to the efficiency of 
functional gene prediction or annotation, especially in the absence of reference 
genome information. Because of such advantage, Iso-Seq has been applied in a 
variety of species [20–22, 32, 33]. In addition, optimized training and prediction 
settings on the basis of short- and long-read transcriptome data in gene prediction 
results in increased their sensitivity and precision [39]. In particular, the method 
is helpful for obtaining comprehensive gene sets for newly sequenced genomes of 
non-model eukaryotes [39].

To identify the protein coding potential of transcripts, Transdecoder (https://
transdecoder.github.io) is generally applied [20, 21, 32, 40]. For example, even 
though the number of transcripts using Iso-Seq is much smaller than those de 
novo assembled in previous RNA-seq studies, the transcripts from Iso-Seq show 
high efficiency in recovering full-length transcripts. ESTScan [41], in addition to 
Transdecoder, is used to predict coding DNA sequences (CDSs) unless isoforms are 
annotated in the databases. For example, in the study of Halogeton glomeratus [42], 
the CDS prediction ratio of transcripts using Iso-Seq (95.09%) is much higher than 
that of transcripts using Illumina RNA-Seq data (66.86%).

For functional annotation, isoform sequences are used as queries for sequence 
homology searches in Blast, Blast2GO [43], and InterProScan5 [44] to identify 
functional annotation terms from the nonredundant protein (NR), non-redundant 
nucleotide (NT), Gene Ontology (GO), Clusters of Orthologous Groups (COG), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), SwissProt, and Interpro databases. 
For example, when the RNA-Seq data of H. glomeratus were re-annotated with Iso-Seq 
transcriptome data, the length distribution, functional annotation, and coding sequence 
quantity of the Iso-Seq transcripts were significantly improved [42]. In particular, with 
respect to the species distribution of the annotation from the NR database, 98.31% of 
the annotated isoforms showed the highest similarity to sequences from the three most 
prevalent species. In addition, Illumina RNA-Seq data were highly mapped to the Iso-Seq 
transcripts (unigenes). This suggests that long-read, full-length or partial-unigene data 
with high-quality assemblies are invaluable resources as transcriptomic references in a 
genome and can be used for comparative analyses in closely related medicinal plants.

6. Conclusion

Transcriptome data generated by Iso-Seq generate longer and improved unige-
nes with a high level of assembly completeness and gene annotation, enabling a 
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is helpful for obtaining comprehensive gene sets for newly sequenced genomes of 
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though the number of transcripts using Iso-Seq is much smaller than those de 
novo assembled in previous RNA-seq studies, the transcripts from Iso-Seq show 
high efficiency in recovering full-length transcripts. ESTScan [41], in addition to 
Transdecoder, is used to predict coding DNA sequences (CDSs) unless isoforms are 
annotated in the databases. For example, in the study of Halogeton glomeratus [42], 
the CDS prediction ratio of transcripts using Iso-Seq (95.09%) is much higher than 
that of transcripts using Illumina RNA-Seq data (66.86%).

For functional annotation, isoform sequences are used as queries for sequence 
homology searches in Blast, Blast2GO [43], and InterProScan5 [44] to identify 
functional annotation terms from the nonredundant protein (NR), non-redundant 
nucleotide (NT), Gene Ontology (GO), Clusters of Orthologous Groups (COG), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), SwissProt, and Interpro databases. 
For example, when the RNA-Seq data of H. glomeratus were re-annotated with Iso-Seq 
transcriptome data, the length distribution, functional annotation, and coding sequence 
quantity of the Iso-Seq transcripts were significantly improved [42]. In particular, with 
respect to the species distribution of the annotation from the NR database, 98.31% of 
the annotated isoforms showed the highest similarity to sequences from the three most 
prevalent species. In addition, Illumina RNA-Seq data were highly mapped to the Iso-Seq 
transcripts (unigenes). This suggests that long-read, full-length or partial-unigene data 
with high-quality assemblies are invaluable resources as transcriptomic references in a 
genome and can be used for comparative analyses in closely related medicinal plants.

6. Conclusion

Transcriptome data generated by Iso-Seq generate longer and improved unige-
nes with a high level of assembly completeness and gene annotation, enabling a 
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comprehensive view of the transcriptome. In particular, compared with conventional 
methods, long-read transcriptome sequencing seems to improve misassembly rate and 
unreliable gene annotation, thus enabling to elucidate the function of genes associated 
with traits of interest as well as novel transcripts. A hybrid approach that combines iso-
form sequencing with full-length transcripts and RNA-Seq capable of fixing sequence 
error and quantifying gene expression is the optimal solution to study transcriptomes 
for improving completeness of transcripts, data coverage, and gene annotation.

Acknowledgements

This work was supported by grants from the National Agricultural Genome Center 
(project No. PJ01349002), Rural Development Administration, Republic of Korea.

Conflict of interest

The author declares no conflict of interest to disclose.

Author details

Dong Jin Lee and Chang Pyo Hong*
Theragen Etex Bio Institute, Suwon, Republic of Korea

*Address all correspondence to: changpyo.hong@theragenetex.com

33

Transcriptome Atlas by Long-Read RNA Sequencing: Contribution to a Reference Transcriptome
DOI: http://dx.doi.org/10.5772/intechopen.84920

References

[1] Tang F et al. mRNA-Seq whole-
transcriptome analysis of a single cell. 
Nature Methods. 2009;6:377-382. DOI: 
10.1038/nmeth.1315

[2] Lindberg J, Lundeberg J. The 
plasticity of the mammalian 
transcriptome. Genomics. 2010;95:1-6. 
DOI: 10.1016/j.ygeno.2009.08.010

[3] Okazaki Y et al. Analysis of the 
mouse transcriptome based on 
functional annotation of 60,770 full-
length cDNAs. Nature. 2002;420:563-
573. DOI: 10.1038/nature01266

[4] Costa V, Angelini C, De Feis I,  
Ciccodicola A. Uncovering the 
complexity of transcriptomes with 
RNA-Seq. Journal of Biomedicine 
& Biotechnology. 2010:19. DOI: 
10.1155/2010/853916 Article ID 853916

[5] Ruan Y, Le Ber P, Ng HH, Liu ET.  
Interrogating the transcriptome. Trends 
in Biotechnology. 2004;22(1):23-30. 
DOI: 10.1016/j.tibtech.2003.11.002

[6] Rhoads A, Au KF. PacBio sequencing 
and its applications. Genomics, 
Proteomics & Bioinformatics. 
2015;13:278-289. DOI: 10.1016/j.
gpb.2015.08.002

[7] Sharon D, Tilgner H, Grubert F,  
Snyder M. A single-molecule 
long-read survey of the human 
transcriptome. Nature Biotechnology. 
2013;31:1009-1014

[8] Travers KJ et al. A flexible and 
efficient template format for circular 
consensus sequencing and SNP 
detection. Nucleic Acids Research. 
2010;38(15):e159. DOI: 10.1093/nar/
gkq543

[9] Roberts RJ, Carneiro MO, Schatz 
MC. The advantages of SMRT 
sequencing. Genome Biology. 
2013;14:405

[10] Gonzalez-Garay ML. Introduction 
to isoform sequencing using Pacific 
Biosciences technology (Iso-Seq). Vol. 9. 
Dordrecht, The Netherlands: Springer; 
2015. pp. 141-160

[11] Eid J, Fehr A, Gray J, Luong K, 
Lyle J, Otto G, et al. Real-time DNA 
sequencing from single polymerase 
molecules. Science. 2009;323:133-138. 
DOI: 10.1126/science.1162986

[12] Swarbreck D et al. The 
Arabidopsis Information Resource 
(TAIR): Gene structure and function 
annotation. Nucleic Acids Research. 
2008;36(Database issue):D1009-D1014. 
DOI: 10.1093/nar/gkm965

[13] Ouyang S et al. The TIGR Rice Genome 
Annotation Resource: Improvements and 
new features. Nucleic Acids Research. 
2007;35(Database issue):D883-D887. DOI: 
10.1093/nar/gkl976

[14] Ota T et al. Complete sequencing 
and characterization of 21,243 full-
length human cDNAs. Nature Genetics. 
2004;36(1):40-45. DOI: 10.1038/ng1285

[15] Kawai J et al. Functional annotation 
of a full-length mouse cDNA collection. 
Nature. 2001;409(6821):685-690. DOI: 
10.1038/35055500

[16] PacBio RS II System. Available online: 
http://dnatech.genomecenter.ucdavis.
edu/pacbio-library-prepsequencing 
[Accessed: 1 November 2017]

[17] PacBio Sequel System. Available 
online: http://www.pacb.com/products-
and-services/pacbio-systems/sequel 
[Accessed: 12 July 2017]

[18] Korlach J. Understanding 
accuracy in SMRT® Sequencing. 
Available online: https://www.pacb.
com/wp-content/uploads/2015/09/
Perspective_UnderstandingAccuracy 
SMRTSequencing.pdf



Transcriptome Analysis

32

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

comprehensive view of the transcriptome. In particular, compared with conventional 
methods, long-read transcriptome sequencing seems to improve misassembly rate and 
unreliable gene annotation, thus enabling to elucidate the function of genes associated 
with traits of interest as well as novel transcripts. A hybrid approach that combines iso-
form sequencing with full-length transcripts and RNA-Seq capable of fixing sequence 
error and quantifying gene expression is the optimal solution to study transcriptomes 
for improving completeness of transcripts, data coverage, and gene annotation.
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Chapter 4

Plant Comparative 
Transcriptomics Reveals 
Functional Mechanisms and Gene 
Regulatory Networks Involved in 
Anther Development and Male 
Sterility
Xiangyuan Wan and Ziwen Li

Abstract

Gene transcription and transcriptional regulation are crucial biological processes 
in all cellular life. Through the next-generation sequencing (NGS) technology, 
transcriptome data from different tissues and developmental stages can be easily 
obtained, which provides us a powerful tool to reveal the transcriptional landscape 
of investigated tissue(s) at special developmental stage(s). Anther development is an 
important process not only for sexual plant reproduction but also for genic male steril-
ity (GMS) used in agriculture production. Plant comparative transcriptomics has been 
widely used to uncover molecular mechanism of GMS. Here, we focused on researches 
of anther developmental process and plant GMS genes by using comparative tran-
scriptomics method. In detail, the contents include the following: (1) we described the 
commonly used flowchart in comparative transcriptomics; (2) we summarized the 
comparative strategies used to analyze transcriptome data; (3) we presented a case 
study on a maize GMS gene, ZmMs33; (4) we described the methods and results previ-
ously reported on gene co-expression and gene regulatory networks; (5) we presented 
the workflow of a case study on gene regulatory network reconstruction. The further 
development of comparative transcriptomics will provide us more powerful theo-
retical and application tools to investigate molecular mechanism underlying anther 
development and plant male sterility.

Keywords: plant comparative transcriptomics, gene regulatory network,  
anther development, genic male sterility, molecular mechanism

1. Introduction

Gene transcription is an important biological process by which genetic infor-
mation stored within DNA molecules is transmitted to RNA molecules according 
to the “genetic central dogma” in molecular biology [1]. After completion of 
the human genome project, the researchers began to reveal the transcriptional 
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landscape of all genes in a genome to further investigate the functional mecha-
nisms underlying phenotypic variations at a genome-wide transcriptional level. 
Therefore, biological studies on high-throughput omics data run from the genomic 
level into the transcriptomic level. Transcriptome data includes biological informa-
tion of gene transcriptional activities in a certain cell, a tissue, or an individual 
(a population of cells) and even in a pool of samples under a certain developmental 
stage, an environmental condition, or an experimental treatment. Compared 
with other omics data (e.g., data of genome, epigenome, proteome, metabolome, 
or phenome), the primary characteristic of transcriptome data is that it includes 
temporal–spatial bioinformation affected by diverse developmental stages, tissue 
types, and internal/external environment events. Therefore, transcriptome data is 
more complex than genome data.

Transcriptomic studies usually focus on the transcriptional content and gene 
regulations in a genome. Gene expression microarray (GEM) is an early developed 
but still-utilized biotechnology by which the genome-wide transcription infor-
mation can be obtained for genome-sequenced or transcriptional loci available 
species. In 1995, Schena et al. monitored expression levels of 48 genes by GEM in 
Arabidopsis thaliana [2], and then GEM was gradually and widely used for the esti-
mation of gene expression levels. Until 2013, the amount of transcripts monitored 
by one microarray had been reached to more than 285,000 in human transcrip-
tomics studies (the human transcriptome array). GEM is a hybrid-based method, 
while the sequencing-based method has been developed much faster and became 
one of the most commonly used biotechnologies in scientific studies and applica-
tions related to disease diagnosis [3]. Serial analysis of gene expression (SAGE) 
proposed by Velculescu et al. [4] and massively parallel signature sequencing 
(MPSS) reported by Brenner et al. [5] are two earlier developed sequencing-based 
methods to estimate the transcription information at a genome level. Nowadays, 
the majority of transcriptome data are generated by the NGS-based RNA sequenc-
ing (RNA-seq). RNA-seq technology combining with the following developed 
comparative transcriptomics analysis flowchart that is mainly based on digital gene 
expression profile (DGEP) is a commonly used research strategy in biological stud-
ies at molecular and genomic levels.

Anther is an important organ in sexual plant reproduction. Anther development 
is a dynamic process from the identity of the stamen to the production of mature 
pollen grains. During this period, two-thirds of protein-coding genes are tran-
scribed, and more than 6% of them are anther specific (a reanalyzed result based 
on [6]). Thus, the anther transcriptome is specific and complex compared with 
transcriptomes of other plant organs. Plant comparative transcriptomics is an effec-
tive strategy used to investigate the molecular mechanism underlying anther devel-
opmental process. The comparative method based on anther transcriptomes can be 
performed between different genotypes, different developmental stages, different 
types of anther cells, and different biotic or abiotic treatments and even between 
different plant species. Consequently, differentially expressed genes (DEGs) are 
identified from above comparisons. Based on the comparison results, functionally 
important coding genes and noncoding transcripts including long noncoding RNAs 
(lncRNAs), microRNAs (miRNAs), and other small RNAs could be uncovered. 
However, the goal of plant comparative transcriptomics is not only to identify DEGs 
but also to reconstruct gene regulatory relationships of the upstream regulators and 
the downstream regulated targets of the investigated genes. In this review, based on 
anther transcriptomes, we first summarized the research workflow commonly used 
in the experimental design and data analyses in plant transcriptomics studies, and 
then we described several types of comparison strategies in comparative transcrip-
tomics using anther transcriptome data as the analyzed example. In the following 
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section, we generally discussed gene regulatory and co-expression networks used 
to investigate the molecular foundation of developing anther in a network-based 
perspective. Additionally, we described two case studies in our laboratory to explain 
the detailed analysis processes and applications of comparative transcriptomics in 
plant GMS gene studies.

2. Comparative analysis using transcriptome data

In comparative transcriptomics, the commonly used pipeline to identify poten-
tial functional genes and to reveal the gene functions, as well as to investigate the 
regulatory relationships between these genes, includes five aspects. They are data 
preparation, DGEP analysis, DEG analysis, gene set enrichment (GSE) analysis, 
and gene regulatory network (GRN) analysis, respectively (Figure 1). These five 
aspects are closely connected in the whole pipeline, and the corresponding analyses 
mainly depend on data management skills in bioinformatics.

The basic application of comparative transcriptomics is to obtain a transcrip-
tional landscape of the investigated biological sample. It is composed of not only  
the estimated transcription levels of annotated transcribed loci along the genomes 
(the known genomic loci with reported or predicted transcription abilities) but 
also the identification of novel transcribed loci (the stably transcribed loci not 
annotated or identified in previous studies). More importantly, in current biological 
studies, transcribed loci identified by researchers include not only the protein-
coding genes but also lncRNAs and other noncoding RNAs. Both GEM and RNA-seq 
technologies can be used to uncover the genome-wide profiles of transcription lev-
els of annotated genes. However, the identification of novel transcribed loci can be 
only effectively performed by RNA-seq method and the following DGEP analysis. 
This is one reason why RNA-seq is more commonly used in transcriptomics studies. 
Moreover, GEM method depends on hybridization probes that are designed based 
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landscape of all genes in a genome to further investigate the functional mecha-
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(e.g., expressed sequence tags) of the investigated species, which restrict its appli-
cation on some species without whole genome information or sequence resource. 
On the contrary, the sequencing-based method of RNA-seq can be applicable for 
species without sequenced genomes. This is another reason for the popularity of 
RNA-seq. In genome available species, RNA-seq data should be firstly mapped to 
the reference genome (Figure 1).

A gene with its transcription levels significantly different between two groups of 
samples is defined as a DEG under a certain comparison condition (Figure 1). It is 
notable that the concept of DEG specially represents the expression changes of pro-
tein-coding genes at the earlier stages of expression data analysis. However, along 
with the rapid development of molecular biology and the deeper understanding on 
the functional element on the genome, the concept of DEG has been expanded to 
noncoding transcripts, for example, the differentially expressed (DE) miRNA and 
the DE lncRNA. Furthermore, if both coding and noncoding transcripts are consid-
ered in the comparative analysis of transcriptome data, transcriptional alterations 
between control and treated samples should be defined as DE transcribed loci or 
DE loci. Thus, DE loci is a broad concept used to describe transcriptional altera-
tions of genetic element. There are several strategies for comparing transcriptomes 
from different research subjects to identify DE loci (described in Section 3, “Plant 
comparative transcriptomics in anther”).

Identified DEG set or DE loci should be appropriately annotated with functional 
descriptions to determine which biological process or pathway these DEGs are 
involved in. In comparative transcriptomics, this step is a critical bridge linking 
transcriptional changes to gene functions and even gene regulation networks. Two 
commonly utilized methods to annotate DEGs consist of the Gene Ontology (GO) 
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway gene enrich-
ment analyses. Both of them belong to GSE analysis (Figure 1). The GO database 
includes tens of thousands of GO terms, and each GO term contains several genes 
with the same biological function. Each gene has three functional aspects, including 
molecular function (the molecular activities of gene products), cellular component 
(the cellular locations of functional gene products), and biological process (the 
gene products’ molecular functions with biological process). GSE analysis based on 
GO database provides some basic functional descriptions for the investigated DEG 
set. KEGG analysis is a pathway-based enrichment method. The KEGG database has 
accumulated hundreds of metabolism pathways in plants, animals, and other spe-
cies. Thus, KEGG analysis can reveal significant pathways the DEGs participated in. 
GO-based methods can annotate more genes than KEGG-based method, as the GO 
terms are more flexible and include a larger number of genes. On the other hand, 
because most metabolic pathways are conserved across species and more significant 
in biological processes, annotated results obtained from KEGG-based method may 
be more conserved and stable. In comparative transcriptomics, GO- and KEGG-
based analyses are together utilized in gene function studies.

The locations of transcribed loci on the genome, their transcription levels, and 
the changed expression can be identified through comparative transcriptomics 
analysis. The detected DEG set represents a functional gene set related to the func-
tion of investigated gene, the phenotype variation, the stress resistance ability, or 
the development process. Furthermore, gene regulation relationships are the under-
lining molecular mechanism of altered transcriptomes, and novel gene regulatory 
networks could be uncovered by comparative transcriptomics analysis (Figure 1). 
Several types of gene regulatory relationships and the reconstructions of gene 
regulatory networks based on plant comparative transcriptomics are described and 
discussed in Section 5 (“Gene co-expression and regulatory networks reconstructed 
by comparative transcriptomics method”).
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3. Plant comparative transcriptomics in anther

One of the major subjects of modern molecular biology is to uncover the func-
tions of genes in the genome and reveal the molecular mechanism of phenotypic 
variation. Gene transcription levels and their changes in different conditions are 
important information that can reflect the functions and transcriptional regulation 
relationships of investigated genes. How to estimate the transcription levels of genes 
and how to obtain the transcriptional landscape of a genome are two major subjects 
in biological studies on gene expression. DGEP and DEG analyses are powerful tools 
to solve these questions. In DEG analysis, according to the scientific or application 
questions, the comparison strategies between investigated biological samples are 
classified into six types including (1) different genotypes, (2) different developmen-
tal stages, (3) different tissues, (4) different cell types, (5) different treatments, and 
(6) different species (Figure 2). Here, as we mainly focus on comparative transcrip-
tomics analysis on the developmental anther tissues and the interspecies analysis on 
anther transcriptome data being rare, the third and sixth types will not be discussed.

3.1 Different genotypes

There are two types of genotype-based transcriptome data between wild type 
(WT) and mutant lines in GMS studies, which are based on whether the causal 
mutation is known or not (Table 1). For transcriptomes of male sterility (MS) lines 
with known causal mutations, the comparison of transcriptomes between WT and 
MS lines will identify many DEGs associated with the function loss or expression 
change of the investigated mutation locus. If the causal mutation has not been 
identified from the MS line, comparative transcriptomics analyses will provide the 
researchers important results related to the unsettled genetic difference, such as 
how many genes are changed in expression levels in the MS lines and what the func-
tions of these genes are, even though the causal mutation candidates can be inferred 
from these genes if the researchers have primary mapping results.

3.2 Different developmental stages

The phenotypic differences among tissues and organs (e.g., root, leaf, and 
flower in plant) due to their differences of transcriptome landscape are well known. 

Figure 2. 
Comparative transcriptomics strategies.
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cies. Thus, KEGG analysis can reveal significant pathways the DEGs participated in. 
GO-based methods can annotate more genes than KEGG-based method, as the GO 
terms are more flexible and include a larger number of genes. On the other hand, 
because most metabolic pathways are conserved across species and more significant 
in biological processes, annotated results obtained from KEGG-based method may 
be more conserved and stable. In comparative transcriptomics, GO- and KEGG-
based analyses are together utilized in gene function studies.

The locations of transcribed loci on the genome, their transcription levels, and 
the changed expression can be identified through comparative transcriptomics 
analysis. The detected DEG set represents a functional gene set related to the func-
tion of investigated gene, the phenotype variation, the stress resistance ability, or 
the development process. Furthermore, gene regulation relationships are the under-
lining molecular mechanism of altered transcriptomes, and novel gene regulatory 
networks could be uncovered by comparative transcriptomics analysis (Figure 1). 
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regulatory networks based on plant comparative transcriptomics are described and 
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Plants MS gene or 
MS line

Method Tissue Data sourcea Reference

Arabidopsis 
thaliana

ROXY1 and 
ROXY2

Microarray Young 
inflorescences

SD [7]

AMS Microarray Anthers GSE18225 [8]

AMS Microarray Anthers SD [9]

AMS Microarray Floral buds SD [10]

EMS1 Microarray Anthers SD [9]

EMS1 Microarray Anthers SD [11]

Ms1 Microarray Young closed 
buds

SD [12]

Ms1 Microarray Floral buds GSE8864 [13]

ICE1 RNA-seq Anthers GSE107260 [14]

DYT1 Microarray Anthers GSE18225 [8]

CDM1 Microarray Young floral 
buds

GSE55799 [15]

TEK Microarray Closed floral 
buds

GSE56497 [16]

bHLH010, 
bHLH08, 
bHLH091

RNA-seq Anthers SRS838170, 
SRS838173

[17]

Oryza sativa PTC1 Microarray Anthers SD [18]

UDT1 Microarray Anthers GSE2619 [19]

OsGAMYB Microarray Anthers SD [20]

TDR Microarray Spikelets SD [21]

MADS3 Microarray Anthers SD [22]

Zea mays Ms23 RNA-seq Anthers GSE90849 [23]

Ms32 Microarray Anthers GSE90968 [23]

MAC1 Microarray Anthers SD [24]

Triticum 
aestivum

TaMs1 RNA-seq Anthers SRP113349 [25]

TaMs2 RNA-seq Anthers SRP092366 [26]

Solanum 
lycopersicum

ms1035 RNA-seq Floral buds SD [27]

MS line 7B-1 RNA-seq Anthers GSE85859 [28]

Brassica 
napus

MS line 
WSLA

RNA-seq Young flower 
buds

SRR2192464, 
SRR2192489

[29]

MS line SP2S RNA-seq Young flower 
buds

GSE69638 [30]

MS line TE5A RNA-seq Young flower 
buds

SRP068170 [31]

Citrullus 
lanatus

MS line 
DAH3615-MS

RNA-seq Floral buds and 
flowers

GSE69073 [32]

a“SD” indicates the raw data is unavailable, while the up- and downregulated genes are listed in the supplemental 
data (SD) in references cited.

Table 1. 
Published studies on anther transcriptome data between WT and MS lines.
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Furthermore, it is a developmental process for most types of plant organs from 
the organ identity (e.g., meristematic cells) to the final mature organ. Thus, how 
to reveal the dynamic changes of gene transcription levels and how to explain the 
morphological alterations regulated by gene expression changes are important tasks 
in plant comparative transcriptomics studies.

Meiosis is an important step in gametophyte generation process and sexual 
plant reproduction. Morphologic changes during cell meiosis process have been 
well described by cellular level investigations, while the molecular level alterations 
and their corresponding gene regulatory networks are not well understood. Plant 
transcriptomes are a powerful dataset to estimate the gene expression changes and 
infer the regulatory roles of key genes. Based on GEM technology, Ma et al. inves-
tigated maize anther transcriptomes during seven developmental stages and found 
that transcriptomes during meiosis stages exhibited the lowest complexity [33]. 
Hollender et al. surveyed the gene transcription profiles of anther of woodland 
strawberry (Fragaria vesca) from developmental stages 7–12 and identified numer-
ous F-Box genes induced in transcription levels at meiosis stage [34]. Besides, 
tapetum is the inner cell layer of anther with important functions in anther develop-
ment and gametocyte maturation. The generation, development, and degradation 
of tapetum are fine regulated during the anther development, while the regulatory 
framework and the details are far from complete. Yue et al. identified 243 DEG 
and 108 stage-specific genes during four anther developmental stages in Hamelia 
patens [35]. Chen et al. investigated the expression of genes involving in tapetum 
development of male floral bud during eight developmental stages in Populus tomen-
tosa [36]. Thus, anther transcriptome data during different developmental stages 
provide valuable data sources for anther development studies. By the combination 
of comparative transcriptomics and bioinformatics analyses, more key functional 
genes and the underlying regulatory mechanisms for anther development will be 
further revealed.

3.3 Different types of anther cells

The cytological structure of anther consists of four cell layers, including the 
epidermis, endothecium, middle layer, and tapetum, and the archesporial cells 
are directly surrounded by the tapetum. Thus, the transcriptome data of a whole 
anther tissue is a mixed gene expression data from diverse cell types with different 
functions in the anther development process. It is necessary to obtain transcrip-
tional dynamics from different cell layers separately to investigate anther develop-
ment and the underlying molecular mechanism at a cell type-specific level. Several 
studies have identified cell layer-specifically expressed genes (e.g., tapetum cells 
or microgametes). Ma et al. identified 104 MS-related and non-pollen expressed 
genes most specifically expressed in tapetum by comparative transcriptomics 
analysis on four diverse MS lines in Brassica oleracea [37]. The other way to obtain 
cell layer-specific transcriptome in anther is firstly separating the investigated cell 
layer by laser capture microdissection (LCM) technology and then performing 
RNA-seq or GEM experiment on the separated samples. This strategy has been suc-
cessfully used in rice, maize, and woodland strawberry to identify the tapetum- or 
microgamete-specifically expressed genes and their expression dynamics [34, 38, 
39]. A recent published research has investigated maize male meiosis using single-
cell RNA sequencing (scRNA-seq) technology on pre-meiotic and meiotic cells 
from maize anthers, which greatly promoted studies on plant anther scRNA-seq 
[40]. The comparative studies on transcriptomic dynamics between different types 
of cells facilitate the deeper understanding of functions of specific cell layers on 
anther development.
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Furthermore, it is a developmental process for most types of plant organs from 
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to reveal the dynamic changes of gene transcription levels and how to explain the 
morphological alterations regulated by gene expression changes are important tasks 
in plant comparative transcriptomics studies.

Meiosis is an important step in gametophyte generation process and sexual 
plant reproduction. Morphologic changes during cell meiosis process have been 
well described by cellular level investigations, while the molecular level alterations 
and their corresponding gene regulatory networks are not well understood. Plant 
transcriptomes are a powerful dataset to estimate the gene expression changes and 
infer the regulatory roles of key genes. Based on GEM technology, Ma et al. inves-
tigated maize anther transcriptomes during seven developmental stages and found 
that transcriptomes during meiosis stages exhibited the lowest complexity [33]. 
Hollender et al. surveyed the gene transcription profiles of anther of woodland 
strawberry (Fragaria vesca) from developmental stages 7–12 and identified numer-
ous F-Box genes induced in transcription levels at meiosis stage [34]. Besides, 
tapetum is the inner cell layer of anther with important functions in anther develop-
ment and gametocyte maturation. The generation, development, and degradation 
of tapetum are fine regulated during the anther development, while the regulatory 
framework and the details are far from complete. Yue et al. identified 243 DEG 
and 108 stage-specific genes during four anther developmental stages in Hamelia 
patens [35]. Chen et al. investigated the expression of genes involving in tapetum 
development of male floral bud during eight developmental stages in Populus tomen-
tosa [36]. Thus, anther transcriptome data during different developmental stages 
provide valuable data sources for anther development studies. By the combination 
of comparative transcriptomics and bioinformatics analyses, more key functional 
genes and the underlying regulatory mechanisms for anther development will be 
further revealed.

3.3 Different types of anther cells

The cytological structure of anther consists of four cell layers, including the 
epidermis, endothecium, middle layer, and tapetum, and the archesporial cells 
are directly surrounded by the tapetum. Thus, the transcriptome data of a whole 
anther tissue is a mixed gene expression data from diverse cell types with different 
functions in the anther development process. It is necessary to obtain transcrip-
tional dynamics from different cell layers separately to investigate anther develop-
ment and the underlying molecular mechanism at a cell type-specific level. Several 
studies have identified cell layer-specifically expressed genes (e.g., tapetum cells 
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genes most specifically expressed in tapetum by comparative transcriptomics 
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RNA-seq or GEM experiment on the separated samples. This strategy has been suc-
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39]. A recent published research has investigated maize male meiosis using single-
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from maize anthers, which greatly promoted studies on plant anther scRNA-seq 
[40]. The comparative studies on transcriptomic dynamics between different types 
of cells facilitate the deeper understanding of functions of specific cell layers on 
anther development.
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3.4 Different treatments

At the reproductive stage, plant is more sensitive to external environment 
conditions. The abiotic stresses, such as high temperature, drought, and cold 
and freezing stresses, will critically affect the developmental process of anther 
and pollen in flowing plants. Though there have been numerous studies on stress 
resistance and response in plant, the regulatory pathways of stress response and 
their cross talk at molecular level should be further investigated for anther develop-
ment. Additionally, more effective stress-resistant genes should be identified for the 
purpose of crop improvement. Plant comparative transcriptomics between normal 
and stress-treated plants provide a wide insight into the stress response mechanisms 
of plant during sexual reproductive stage. Zhang et al. investigated the genome-
wide transcriptional changes of rice panicle under heat treatment (40°C) and found 
thousands of DEGs participating in transcriptional regulation, transport, cellular 
homeostasis, and stress response [41]. Studies on photosensitive or thermosensitive 
GMS lines can also reveal a lot of genes responding to environmental changes.

4.  A case study: revealing the molecular functions of a MS gene, 
ZmMs33, by comparative transcriptomics

The discoveries of genes that play key roles in the development of maize anther 
provide important genetic resources for the utilization of heterosis in maize. 
Analysis of functional mechanism of GMS genes can effectively promote researches 
on anther development biology and deepen our understanding of molecular 
mechanism controlling sexual plant reproduction [42]. There are several published 
case studies containing comparative transcriptomics analysis on maize GMS genes 
in our laboratory, including ZmMs7 [43], ZmMs20 [44], ZmMs30 [45], and ZmMs33 
[46, 47]. We used comparative transcriptomics analysis based on developmental 
anthers of ZmMs33 wild type and ms33–6038 mutant to analyze the transcription 
changes corresponding to male sterility phenotype and to further investigate the 
underlying molecular mechanisms of GMS regulated by ZmMs33 gene.

This ms33–6038 mutant is complete male sterility and displays small and pale-
yellow anthers (Figure 3A). Transmission electron microscope (TEM) observation 
and dynamic scanning electron microscopy (SEM) analysis were performed to 
analyze the phenotypic alteration of anther wall layers, microspores, Ubisch bodies, 
and exine between wild type and ms33–6038 mutant during anther developmental 
stages (Figure 3A–C).

Maize Zm00001d007714 was identified as ZmMs33 via a map-based cloning 
approach (Figure 3D). ZmMs33 encodes an esterase that belongs to gene family of 
glycerol-3-phosphate acyltransferase (GPAT) in maize. To further confirm gene 
function of Zm00001d007714, a CRISPR/Cas9 system was used to generate targeted 
knockout lines. Three types of T0-generation maize plants homozygous for null 
alleles of Zm00001d007714 were observed to be complete male sterility (Figure 3E), 
suggesting that function loss of Zm00001d007714 is the causal mutation for male 
sterile phenotype of the ms33 mutant.

Subsequently, RNA-seq was performed using anther tissues during develop-
mental stages 5–9 to obtain a comprehensive transcriptional profile of WT and 
ms33-6038. Three biological samples were collected at each developmental stage for 
sequencing. After data preparation and transcription level estimation, we com-
pared similarities of transcriptional profiles of protein-coding genes by principal 
component analysis (PCA) (Figure 3F) and found good repeatability among three 
biological repeats.
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Finally, we identified DEGs between WT and mutant and between adjacent 
developmental stages, separately. We found that the amount of DEGs between 
WT and mutant at stages 5–7 was significantly smaller in magnitude than that at 

Figure 3. 
Reveal ZmMs33 gene functions for anther development by comparative transcriptomics analysis. (A) Phenotype 
of whole plants (A1), anthers (A2), pollen grains (A3), and outer surface of anther wall (A4) of WT and 
ms33–6038 mutant. (B) TEM analysis of anther wall layers, microspores, Ubisch bodies, and exine in WT 
and ms33–6038 mutant. (C) SEM analysis of microspores and pollen grains in WT and ms33–6038 mutant. 
(D) Map-based cloning of ZmMs33 gene. (E) Phenotypes of tassels, anthers, and pollen grains in three ms33 
knockout lines generated by a CRISPR/Cas9 system. (F) PCA analysis of RNA-seq data from WT and 
ms33–6038 mutant. (G) Venn plot of DEGs at each developmental stage. Figure 3A–C was cited from [46]. 
Figure 3D and E was cited from [47].
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stages 8a–9 (Figure 3G), indicating that ms33 mutant transcriptomes are signifi-
cantly divergent from WT starting from stage 8a. The transcriptome landscapes 
of WT were similar to those of ms33 mutant at stages 5–7. Besides, DEG amounts 
were various between adjacent developmental stages. It is worth noting that the 
DEG amount between WT and mutant exceeded that between adjacent stages 
from stage 8a–9. This result implied that the transcriptomes were significantly 
changed at the later three stages. Therefore, we compared the transcriptomes 
between genotypes at the former three and the later three stages, separately. In 
contrast to a limited number of DEGs (only two genes) shared by the former 
three stages, there were thousands of shared DEGs at the later three stages. GSE 
analysis based on KEGG database suggested that the upregulated gene set was 
firstly enriched in the function of biosynthesis of secondary metabolites, while 
the downregulated genes were significantly related to the photosynthesis process. 
This pathway enrichment analysis partly represents the alterations in metabo-
lisms and physiological activities closely associated with the transcriptional 
changes caused by function defect of ms33.

5.  Gene co-expression and regulatory networks reconstructed by 
comparative transcriptomics method

Though DEGs are mainly identified by pairwise comparisons between tran-
scriptomes of tissues, stages, or treatment conditions and can reflect most of the 
transcriptional changes between two sets of samples, these transcriptional altera-
tions are not sufficient to explain the detailed molecular mechanism underlying 
tissue-specific development processes and stress-resistant pathways. Moreover, 
the molecular functions of genes act under GRNs. All the biological processes of 
growth, development, stress response, and reproduction are regulated by GRNs. 
The prediction of gene regulatory relationships and the reconstruction of the GRNs 
by using the transcriptome data are also the major aims in transcriptomics studies, 
except for the DGEP and DEG analyses.

5.1 Gene co-expression analysis

Function-related genes tend to co-express in a cell, either to form a complex or 
to involve in the same biological pathway. Thus, the similar pattern of gene expres-
sions can be used as an indicator to predict gene functions. Gene co-expression 
(GCE) analysis is a powerful tool to discover important functional genes in 
biological processes including anther development. A relatively early study identi-
fied two functional GMS genes, POLYKETIDE SYNTHASE A (PKSA) and PKSB, 
through detecting co-expressed genes with ACOS5, a GMS gene belonging to fatty 
acyl-CoA synthetase gene family, based on microarray data in A. thaliana [48]. 
Similarly, ABORTED MICROSPORES (AMS) gene was reported participating in 
the pollen wall formation in rice by the analyses of 98 co-expressed genes with 
AMS in flower development [49]. GCE analysis can be also used to investigate 
the biological functions and the regulatory targets of a gene. This genome-wide 
analysis on GCE networks has been performed based on microarray data from A. 
thaliana anther tissues, and 254 complete GCE groups containing 10,513 anther-
transcribed genes were revealed [50]. Another microarray-based GCE network 
was reconstructed in A. thaliana anther by using 10,797 genes expressed in anther/
flora, and transcriptional landscape of GMS mutant was included in the stable 
examination of this newly constructed network [51]. In rice, microarrays from WT 
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anther tissue across stages 2–14 and nine GMS lines were integrated to reconstruct 
a big GCE network containing more than 9000 genes and 0.4 million pairs of co-
expression relationships [52].

RNA-seq data-based GCE network analysis was performed in anther when 
high-throughput sequencing technology was developed. In woodland strawberry, 
stages 1–12 floral samples dissected by LCM or hand, including stages 6–12 anther 
tissues, were sequenced by RNA-seq. Gene co-expression network analysis was used 
to reconstruct GCE networks in strawberry’s flower development, and 23 modules 
were discovered from the GCE networks including 4584 pollen-specific genes [34]. 
These genome-wide GCE networks are useful for characterization of genes associ-
ated with anther development and floral reproduction.

5.2 TF-encoding gene regulatory network

Genes with their products forming one protein complex, genes encoding 
transcription factor (TF) and TF target genes, and genes functioning in the same 
metabolic pathway or stress-resistant process often tend to be co-expressed in a cell. 
Therefore, the expression-associated genes in GCE network may be not directly 
functionally linked. A more accurate and robust gene regulatory network is needed 
for both the biological function and network researches at molecular and genome 
levels. One way to improve the gene regulatory network is to introduce gene regula-
tory types into the network. Several TF gene regulatory networks (TF-GRN), also 
called as transcriptional regulatory network (TRN), were reconstructed based 
on expression patterns of TF-encoding genes and TF target genes from transcrip-
tome data. One TF-GRN comprised 19 TFs and their 101 target genes involving in 
A. thaliana pollen development [53]. Another GRN of early anther development 
was constructed by interactively analyzing transcriptome data from three GMS 
lines of TF-encoding gene knockout mutants [9]. In the maize genome, there are 
2298 TF-encoding genes identified which belonged to 56 diverse families [54]. 
A total of 3078 TF-encoding genes belonging to 59 families are predicted in silico 
analysis in rice genome [55]. These TF databases, combining with increased amount 
of transcriptome data from mutants of TF-encoding genes and other omics data 
(e.g., Chip-seq, DAP-seq), provide abundant data for the reconstruction of TF-GRN 
with increased credibility, applicability, and completeness.

5.3 miRNA target gene regulatory network

Both transcriptional and posttranscriptional regulations are crucial in con-
trolling the normal development and stress-resistant process in cellular life. The 
miRNA-mediated regulation model on target genes is a well-studied posttranscrip-
tional gene regulation pathway that plays important roles in floral identification 
and the following development of flower organs [56–58] as well as male fertility 
[59, 60]. Beyond numerous case studies on functional miRNAs in anther develop-
ment and GMS genes [61–64], the expression profile of miRNAs and the regulatory 
networks were investigated to elevate our understanding on the transcriptional 
regulatory mechanism of miRNAs. GRNs between miRNA and their target genes 
have been constructed via flower/anther transcriptomics in the model plant species, 
A.  thaliana, and some other plants [65–68]. Furthermore, comparative transcrip-
tomics analysis on small miRNAs has been commonly used as a research method to 
reveal the transcriptional alterations between fertility and sterility lines in economic 
and food plant species, such as maize [45], tomato [69], cotton [70, 71], wheat [72, 
73], pine [74], lycium [75], watermelon [32], and Brassica campestris [76].
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5.4 ceRNA-miRNA regulatory network

It is well known that miRNAs are crucial regulators on gene expressions that 
control key biological functions including anther development, since miRNA was 
firstly found in nematodes in 1993 [77]. It is noteworthy that a novel type of gene 
regulatory model, the competing endogenous RNA (ceRNA) hypothesis, was 
recently proposed [78]. According to the ceRNA hypothesis, some endogenous 
transcripts have abilities to adsorb miRNA molecules; subsequently, the expression 
levels of miRNA target genes can be derepressed [78, 79]. A typical ceRNA in plant, 
a long noncoding RNA, IPSI, was found in A. thaliana. It could completely sponge 
miRNA ath-miR399 and indirectly increase the transcription levels of an important 
gene involved in phosphate homeostasis [80]. The following studies revealed that 
transcripts of protein-coding genes, pseudogene, transposable elements, simple 
sequence repeat, and circular RNAs have molecular functions as ceRNAs [79, 81, 
82], indicating that the ceRNA-miRNA relationship is an essential gene regulatory 
mechanism in the growth and development of plants and animals. Consequently, it 
is necessary to introduce ceRNA regulators into GRN construction. Here, we present 
our recent study on reconstructing ceRNA regulatory network mainly based on 
RNA-seq and small RNA-seq transcriptomes from developmental maize anther.

6.  A case study: reconstructing ceRNA-miRNA target gene regulatory 
networks using transcriptome data of maize anther

Here we summarized the research progress of one recently completed research 
related to the ceRNA-mediated GRN in our laboratory. Generally speaking, this is 
the first study introducing ceRNA regulation into miRNA target gene regulatory 
pathway for deeply dissecting the mechanism of anther development and sexual 
plant reproduction at a network level. This provides a fresh example for GRN 
research by plant comparative transcriptomics and has dual significance in both 
theoretical and practical senses. It may also provide new thoughts and strategies for 
further transcriptome-based GRN studies.

It is well known that gene expressions are controlled by the GRN in cellular life. 
Newly found regulatory patterns (e.g., miRNA pathway and epigenetic modifica-
tion) have enhanced our understanding on the GRN. Recently, “ceRNA hypothesis” 
was proposed as a novel type of gene regulatory relationship and was found to 
participate in different development and stress response processes of organisms 
by a number of case studies. However, the network level study on ceRNA regula-
tory functions is still rare, which limited our deep understanding on the GRN. In 
addition, studies on the GRN of sexual plant reproduction and male sterility are 
crucial for both fundamental biological significance and applications in plant 
hybrid breeding and seed production. We investigated ceRNA-miRNA target gene 
regulatory network in maize anther developmental process by plant comparative 
transcriptomics method. Six steps were performed from raw sequencing data prep-
aration to the finally constructed GRN (Figure 4). Firstly, we performed RNA- and 
small RNA-seq using anther tissues at three developmental stages from two maize 
lines to obtain a relative broad transcriptional landscape in anther development and 
transcribed loci that are stably expressed in maize species. Secondly, we identified 
stably transcribed loci based on the maize reference genome and estimated their 
transcription levels. In this step, we only used shared transcription loci identified 
from RNA-seq data between two maize lines (Figure 4A). Notably, these tran-
scribed loci were divided into five groups such as protein-coding genes, lncRNAs, 
transposable elements, and unassigned loci. Thirdly, we identified known miRNAs 
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and predicted potential novel miRNAs that may be involved in maize anther devel-
opment. Sequenced small RNA data were obtained from the same samples that were 
used in RNA-seq. A matched dataset (e.g., matched RNA and small RNA sequenced 
dataset here) is important in experimental design and more powerful to reveal the 
investigated biological questions. Though the analysis workflow of small RNA-seq 
data is similar to that of RNA-seq data in general (Figure 1), there are some dif-
ferences between them. In our analysis, we reanalyzed two sets of published small 
RNA data to compare with their results from our own sequenced data for credible 
known and potential novel miRNAs involved in maize anther development [23, 83] 
(Figure 4B). This is an important check method to confirm the stability of research 

Figure 4. 
A flowchart of reconstructing the ceRNA-miRNA target gene regulatory network in developmental maize anther. 
(A) Identification and classification of stably transcribed loci in maize anther. (B) Identification of known miRNA 
in maize anther. (C) Prediction of ceRNA-miRNA and miRNA target gene interaction pairs. (D) Reconstruction 
of ceRNA-miRNA target gene regulatory networks. (E) GSE analysis of target genes in the networks.
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results and conclusions. Fourthly, we predicted ceRNA-miRNA interaction pairs 
and miRNA target gene regulatory pairs by computational approach (Figure 4C). 
Bioinformatics analysis in this step is mainly based on genome sequence but not the 
transcriptomes. Fifthly, we reconstructed ceRNA-miRNA target gene regulatory 
networks by predicted interaction pairs and transcription correlation patterns from 
transcriptomics data (Figure 4D). It is well known that miRNAs could repress the 
transcription levels of their target genes. Additionally, ceRNA was demonstrated 
to negatively regulate the transcription levels of matched miRNAs. The negatively 
associated gene pairs in transcription levels may be more credible in mutual inter-
actions. By integrating ceRNA-miRNA and miRNA target gene interactions, we 
reconstructed ceRNA-miRNA target gene regulatory networks in maize anther. 
Finally, we generally investigated the functional significance of genes in the regula-
tory network by GO enrichment analysis. In these networks, we found a number of 
well-studied genes and miRNA target gene pairs involved in maize anther develop-
ment and male sterility, suggesting that the ceRNA-miRNA target gene regulatory 
networks contribute to anther development in maize. Besides, GO analysis of target 
genes in the network revealed that they are functionally enriched in flower develop-
ment process (Figure 4E) [84].

7. Conclusions

Here, we summarized major points in comparative transcriptomics analysis from 
the commonly utilized workflow to the closely related research cases and from the 
single gene-based function analysis to GRN-based gene function investigation. In 
GMS gene studies, the research experiments using comparative transcriptomics 
method to investigate key functional genes and the genome-wide GRNs in develop-
mental anther will facilitate our systematical understanding on the biological pro-
cesses and molecular regulatory networks for anther development and sexual plant 
reproduction. More importantly, case studies illustrated here have a general mean-
ing on technologies and methodologies for functional researches of other biological 
pathways and processes. With the fast advancement of sequencing technology, plant 
comparative transcriptomics has achieved considerable development. However, our 
understanding on the transcriptional dynamics and gene regulatory relationships 
of biological processes are far from being completed. Consequently, more efforts 
are needed for the further improvement of comparative transcriptomics in plant 
biological studies.
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Chapter 5

Transcriptome Analysis for 
Abiotic Stresses in Rice  
(Oryza sativa L.)
Ashutosh Kumar and Prasanta K. Dash

Abstract

Rice, a model monocot system, belongs to the family Poaceae and genus Oryza. 
Rice is the second largest produced cereal and staple food crop fulfilling the demand 
of half the world’s population. Though rice demand is growing exponentially, its 
production is severely affected by variable environmental changes. The various abiotic 
factors drastically reduce the rice plant growth and yield by affecting its different 
growth stages. To fulfill the growing demand of rice, it is imperative to understand 
its molecular responses during stresses and to develop new varieties to overcome the 
stresses. Earlier, the microarray experiments have been used for the identification 
of coexpressive gene networks during various conditions in crop plants. Though the 
microarray experiments provided very useful information, the unviability of genome-
wide information did not provide complete information about the regulatory gene 
networks involved in the stress response. The advancement of molecular techniques 
provided breakthrough to understanding the complex regulatory gene networks and 
their signaling pathways during stresses. The high-throughput RNA sequencing data 
have opened the floodgate of transcriptome data in rice. Here we have summarized 
some of the transcriptome data for abiotic molecular responses in rice, which further 
help to understand their complex regulatory mechanism.

Keywords: abiotic stresses, cold stress, drought, micronutrients, rice,  
RNA-Seq, salt stress, submergence, trace element stress, transcriptome

1. Introduction

Rice is the most important staple food crop across the globe and is a model 
monocot system [1]. It is the second largest produced cereal fulfilling the demand of 
half world’s population. Rice belongs to family Poaceae and genus Oryza. Two spe-
cies Oryza sativa (Asian rice) and Oryza glaberrima (African rice) out of 23 species 
have been cultivated worldwide [2]. The O. sativa is native to tropical and subtropi-
cal southern and southeastern Asia, while O. glaberrima is grown only in South 
Africa. A third species, O. rufipogon, has also been grown in South Asian, Chinese, 
New Guinean, Australian, and American farms. In Asia, O. sativa is separated into 
three subspecies according to its geographical environment: indica, japonica, and 
javanica. The variety indica refers to the tropical and subtropical varieties grown 
throughout South and Southeast Asia and Southern China. The variety japonica is 
grown in temperate areas of Japan, China, and Korea, while javanica varieties are 
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grown alongside of indica in Indonesia (http://agropedia.iitk.ac.in/?q=content/
botanical-classification-rice).

Rice is an annual plant, even though in tropical areas, it is cultivated perennially. 
It is self-pollinated (wind pollination) tropical C3 grass that evolved in a semi-
aquatic, low-radiation habitat having arenchymatic tissues [3]. Rice is cultivated in 
more than 100 countries, with a total harvested area till 2017 is of approximately 165 
million hectares, and produced ~700 million tons (503.9 million tons of milled rice) 
(http://www.fao.org/3/I9243EN/i9243en.pdf). About 91% of the rice in the world is 
grown in Asia (nearly 640 million tons) where 60% of the world’s population lives. 
Rice is also cultivated in Sub-Saharan Africa and Latin Americas, and evenly poised 
in the Eastern and Western Asia. China and India, which account for more than one-
third of global population, supply over half of the world’s rice. The China produces 
~30% of total world rice production followed by India (21%), Indonesia (9%), and 
Bangladesh (6%). On the other hand, rest of Asia, Americas, and Africa produce 37, 5,  
and 3%, respectively, of the total world rice production [4]. However, demand of the 
rice is still growing day by day, as the world population is mounting exponentially. 
To fulfill the demand of growing population, yield needs to be increased by the 
application of agricultural as well as biotechnological approaches.

Rice production is severely affected by changing environment including extreme 
variability in temperature and rainfall pattern along with other factors [5]. The abiotic 
stresses including drought, high salinity, high or low temperatures, flooding, high 
light, ozone, low nutrient availability, mineral deficiency, heavy metals, pollutants, 
wind and mechanical injury, drastically reduce the rice plant growth and yield by 
affecting it during different growth stages [6]. However, rice has very antagonistic 
character about tolerances and susceptibilities to abiotic stresses, as compared to other 
crops. It is very well known that rice paddy grows in standing water containing soil 
and can tolerate submergence at levels that would kill other crops. However, it is mod-
erately tolerant to salinity and soil acidity but highly susceptible to drought and cold. 
Drought influences all physiological processes involved in plant growth and develop-
ment [5]. Drought at vegetative stage can moderately reduce yield, but entire yield is 
lost if it occurs during pollen meiosis or fertilization [7]. The high salt concentration 
disrupts the ability of roots for efficient water uptake, leading to perturbation of 
crucial metabolic reactions inside the cell restricting plant growth and yield potential 
[8]. Low temperature reduces germination, causes poor establishment, delays phe-
nological development, and increases spikelet sterility [9], and other physiological 
and metabolite changes causing low yield [10]. Furthermore, rice can tolerate partial 
submergence as paddy rice or deepwater rice because it is very well adapted to water-
logged conditions as it has well-developed aerenchyma that facilitates oxygen diffu-
sion and prevents anoxia in roots [11–13]. However, it was damaged when submerged 
partially or completely for a relatively longer period [14] due to the shortage of oxygen 
during submergence. The response of plants to low oxygen stress comprises complex 
biochemical and genetic programs that include the differential expressions of a large 
number of genes. Importantly, abiotic stress conditions not only harm the crop but 
also influence the manifestation and extent the pathogen infection, attack of insects, 
and growth of weeds [6]. Though rice has superior response to abiotic stresses, devel-
opment of their improved tolerant germplasm is indispensable [11]. Besides abiotic 
stress, the deficiency of micronutrients also affects the crop production.

The crop plants are very sensitive and respond to environmental stimuli through 
signal perception. The plant responds accordingly for a specific environmental stimulus 
instigating specific physiochemical changes. These physiochemical changes or adapta-
tions are administered by complex molecular regulatory mechanism of involving 
various sensors regulated by transcriptional factors/regulators. Various studies have 
been carried out for understanding the regulatory mechanism of plants during stress 
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conditions. Earlier, CIPK genes (OsCIPK01–OsCIPK30) in the rice genome were studied 
for their transcriptional responses to various abiotic stresses [15]. The results showed 
that 20 OsCIPK genes were differentially induced by at least one of the stresses, includ-
ing drought, salinity, cold, polyethylene glycol, and abscisic acid treatment. Most of the 
genes induced by drought or salt stress were also induced by abscisic acid treatment but 
not by cold. A few CIPK genes containing none of the reported stress-responsive cis-
elements in their promoter regions were also induced by multiple stresses [15]. The pro-
teins possessing A20/AN1 zinc-finger, named SAP gene family in rice and Arabidopsis, 
were inducible by one or the other abiotic stresses indicating that the OsSAP gene 
family is an important component of stress response in rice [16]. In addition, the role 
of SAP gene family in abiotic stress conditions was established by expression profiling 
under abiotic stress conditions. Seven Expansin A (ExpA) mRNAs were accumulated 
in leaves of deepwater rice, and their abundance was upregulated by submergence [17]. 
Similarly, the drought response in rice incites a signaling cascade through osmolyte 
synthesis that involves perception and translation of drought signal [18, 19].

Earlier, microarray experiments have been used for expression analysis of 
multiple genes during various conditions in different tissues for crop plants. The 
microarray experiments helped to identify the coexpressive genes during a stress 
condition [20–23]. Though the microarray experiments provided very useful 
information, the unviability of genome-wide information about the transcripts did 
not provide the complete information about the regulatory gene networks involved 
in the stress response. Nowadays, the availability of high-throughput techniques, 
achieved through advancement of molecular techniques, provided breakthrough 
in the understanding of complex regulatory gene networks and their signaling 
pathways involved in stress responses [24]. The techniques are comprised of whole 
genome transcriptome analyses, small RNA sequencing analysis (RNA-Seq), 
proteomic analyses, epigenetic sequencing analysis, and metabolomic analyses 
[25]. These high-throughput techniques use sequence-based approaches instead of 
hybridization-based approaches (like microarray), which require known genomic 
sequences, rather able to determine the transcript sequences directly from new 
genomes, able to map and quantify them [26, 27]. The RNA-Seq has superiority 
among these techniques due to its in-depth coverage of genome, global expression of 
transcripts, and also providing detailed information about alternative splicing and 
allele-specific expressions [27]. The inception of RNA-Seq technique has reformed 
the perception of complex and dynamic nature of the genomes, further helps to 
comprehensively elucidate the complex regulatory gene networks pertaining to dif-
ferent physiological and developmental stages of plants [28]. Currently, the various 
transcriptome analyses of rice genome, accomplished through RNA-Seq, during 
various abiotic stresses have generated enormous data. Further, these data have been 
able to decipher the complex regulatory gene networks in rice during various abiotic 
stresses which helped to understand the adaptive physiological measures taken by 
rice at cellular level and ascertain the development of tolerant rice varieties. Here, 
we are describing some of the different transcriptome studies carried out to under-
stand the molecular responses in rice genome during various abiotic stresses.

2. Transcriptome data for submergence/flooding

Flooding is considered as a major threat to the rice crops, as irregular flash floods 
are very common in the Southeast Asia (major rice producing region), severely 
affecting the rice productivity [29]. Rice produces high yields, when it is grown 
in water-logged rice paddies. It can tolerate partial submergence as paddy rice or 
deepwater rice. However, it is damaged when submerged for a relatively longer 
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grown alongside of indica in Indonesia (http://agropedia.iitk.ac.in/?q=content/
botanical-classification-rice).
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submergence as paddy rice or deepwater rice because it is very well adapted to water-
logged conditions as it has well-developed aerenchyma that facilitates oxygen diffu-
sion and prevents anoxia in roots [11–13]. However, it was damaged when submerged 
partially or completely for a relatively longer period [14] due to the shortage of oxygen 
during submergence. The response of plants to low oxygen stress comprises complex 
biochemical and genetic programs that include the differential expressions of a large 
number of genes. Importantly, abiotic stress conditions not only harm the crop but 
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and growth of weeds [6]. Though rice has superior response to abiotic stresses, devel-
opment of their improved tolerant germplasm is indispensable [11]. Besides abiotic 
stress, the deficiency of micronutrients also affects the crop production.

The crop plants are very sensitive and respond to environmental stimuli through 
signal perception. The plant responds accordingly for a specific environmental stimulus 
instigating specific physiochemical changes. These physiochemical changes or adapta-
tions are administered by complex molecular regulatory mechanism of involving 
various sensors regulated by transcriptional factors/regulators. Various studies have 
been carried out for understanding the regulatory mechanism of plants during stress 

63

Transcriptome Analysis for Abiotic Stresses in Rice (Oryza sativa L.)
DOI: http://dx.doi.org/10.5772/intechopen.84955

conditions. Earlier, CIPK genes (OsCIPK01–OsCIPK30) in the rice genome were studied 
for their transcriptional responses to various abiotic stresses [15]. The results showed 
that 20 OsCIPK genes were differentially induced by at least one of the stresses, includ-
ing drought, salinity, cold, polyethylene glycol, and abscisic acid treatment. Most of the 
genes induced by drought or salt stress were also induced by abscisic acid treatment but 
not by cold. A few CIPK genes containing none of the reported stress-responsive cis-
elements in their promoter regions were also induced by multiple stresses [15]. The pro-
teins possessing A20/AN1 zinc-finger, named SAP gene family in rice and Arabidopsis, 
were inducible by one or the other abiotic stresses indicating that the OsSAP gene 
family is an important component of stress response in rice [16]. In addition, the role 
of SAP gene family in abiotic stress conditions was established by expression profiling 
under abiotic stress conditions. Seven Expansin A (ExpA) mRNAs were accumulated 
in leaves of deepwater rice, and their abundance was upregulated by submergence [17]. 
Similarly, the drought response in rice incites a signaling cascade through osmolyte 
synthesis that involves perception and translation of drought signal [18, 19].

Earlier, microarray experiments have been used for expression analysis of 
multiple genes during various conditions in different tissues for crop plants. The 
microarray experiments helped to identify the coexpressive genes during a stress 
condition [20–23]. Though the microarray experiments provided very useful 
information, the unviability of genome-wide information about the transcripts did 
not provide the complete information about the regulatory gene networks involved 
in the stress response. Nowadays, the availability of high-throughput techniques, 
achieved through advancement of molecular techniques, provided breakthrough 
in the understanding of complex regulatory gene networks and their signaling 
pathways involved in stress responses [24]. The techniques are comprised of whole 
genome transcriptome analyses, small RNA sequencing analysis (RNA-Seq), 
proteomic analyses, epigenetic sequencing analysis, and metabolomic analyses 
[25]. These high-throughput techniques use sequence-based approaches instead of 
hybridization-based approaches (like microarray), which require known genomic 
sequences, rather able to determine the transcript sequences directly from new 
genomes, able to map and quantify them [26, 27]. The RNA-Seq has superiority 
among these techniques due to its in-depth coverage of genome, global expression of 
transcripts, and also providing detailed information about alternative splicing and 
allele-specific expressions [27]. The inception of RNA-Seq technique has reformed 
the perception of complex and dynamic nature of the genomes, further helps to 
comprehensively elucidate the complex regulatory gene networks pertaining to dif-
ferent physiological and developmental stages of plants [28]. Currently, the various 
transcriptome analyses of rice genome, accomplished through RNA-Seq, during 
various abiotic stresses have generated enormous data. Further, these data have been 
able to decipher the complex regulatory gene networks in rice during various abiotic 
stresses which helped to understand the adaptive physiological measures taken by 
rice at cellular level and ascertain the development of tolerant rice varieties. Here, 
we are describing some of the different transcriptome studies carried out to under-
stand the molecular responses in rice genome during various abiotic stresses.

2. Transcriptome data for submergence/flooding

Flooding is considered as a major threat to the rice crops, as irregular flash floods 
are very common in the Southeast Asia (major rice producing region), severely 
affecting the rice productivity [29]. Rice produces high yields, when it is grown 
in water-logged rice paddies. It can tolerate partial submergence as paddy rice or 
deepwater rice. However, it is damaged when submerged for a relatively longer 
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period [14] due to the slow diffusion of oxygen in water fails to match the demands 
of respiration [30] resulting an anaerobic metabolism and energy crisis [12]. Also, 
in deepwater rice, energy generation through fermentative metabolism, aeren-
chyma development in parenchymal tissues that improves access to O2, activation 
of ethylene promoted gibberellic acid (GA)-mediated internode elongation cause 
foliage to shoot up above the water surface for gas exchange and restricting growth 
and conserving available energy until floodwater recedes [12, 13]. Similarly, flood-
tolerant rice varieties have developed the capacity to generate ATP without the pres-
ence of oxygen and/or to develop specific morphologies that improve the entrance 
of oxygen [31]. Moreover, the phytohormonal regulation revealed that gibberellin 
(GA) has negative effects on submergence tolerance, whereas paclobutrazol (PB), 
chemical inhibitor of GA, acted contrary to GA [32]. The transcriptome analysis 
between GA- and PB-treated samples and control identified 3936 differentially 
expressed genes largely associated with the stress response, phytohormone bio-
synthesis and signaling, photosynthesis, and nutrient metabolism. It was observed 
that the PB improved the rice survival during submergence through sustaining the 
photosynthesis capacity and by dropping nutrient metabolism [32].

Despite knowledge of adaptive mechanisms and regulation at the gene and 
protein level, our understanding of the mechanisms behind plant responses to 
submergence is still limited. Even in flood-intolerant species, such as Arabidopsis 
thaliana, many genes are triggered in response to flooding stress [33, 34]. The 
response of plants to low oxygen stress comprises complex biochemical and genetic 
programs that include the differential expressions of a large number of genes 
(Table 1). Gene expression is altered under low oxygen stress, and the existence of 
anaerobic response elements (AREs) along with their binding factors has already been 
reported [35]. Eventually, a SUB1 locus and three ethylene response factors (ERFs) 
were identified within the locus in tolerant rice varieties (e.g., FR13A), whereas 
SUB1 is a major determinant of tolerance [36]. Introduction of the SUB1A gene 
into submergence-intolerant rice variety significantly increased its flooding toler-
ance, thus demonstrating the importance of the SUB1 locus for flooding tolerance 
[36]. Two different types of molecular mechanisms are adapted by rice ecotypes to 
survive under stress, SUB1A-mediated “quiescence strategy” [37, 38] and “escape 
strategy” induced by SNORKEL1/2 [13]. The submergence response in rice consists 
of the differential expression of genes related to gibberellin biosynthesis, trehalose 
biosynthesis, anaerobic fermentation, cell wall modification, and transcription 
factors that include ethylene-responsive factor genes [39]. Though the regula-
tory mechanism in rice during submergence response has been comprehensively 
studied, the genome-wide gene expression as well as allelic variation among the 
cultivars for specific quantitative traits remained elusive. One of the studies was 
conducted in six rice genotypes to estimate the coleoptile elongation rates dur-
ing submergence [39]. The result postulated that the coleoptile elongation was 
augmented by transcriptional regulation. Further, the reason for the variation in 
anaerobic germination was due to the allelic variation caused by the small-to-large 
deletions in the coding region of susceptible varieties [39].

Recently, a study on SUB1A-1 genotypes is carried to understand the molecular 
mechanism pertaining to the physiological function upon desubmergence through 
transcriptomic analysis [29]. The results enumerated around 1400 genes that were 
differentially expressed to recover from the stress to preserve the plastid integrity, 
and the genes regulating the cell division, chromatin structure, and signaling 
associated with starch catabolism [29]. They also found that the rice plants recover 
shoot transcriptome significantly to the control state and return to homeostasis dur-
ing the 24-h recovery period. It also regulated the GA-responsive starch metabolism 
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Abiotic stress 
condition

Gene/s responsible for 
tolerance

Downstream key gene/s Physiological functions

Submergence SUB1A ERFs regulating genes 
of GA-responsive starch 
metabolism, anaerobic 
fermentation, cell wall 
modification, JA-mediated 
internode elongation, and biotic 
responsive

Quiescence strategy to stop all 
physiological functions

SNORKEL1/2 Escape strategy to supersede 
water level

Drought DREBs (DREB1A-D/
CBF1–4 and DREB2)

ABA-responsive genes, LEA, 
NAC, DBP, α-linolenic acid 
metabolic pathway genes, 
osmolyte biosynthesis genes, 
phospholipid metabolism genes; 
water channel protein, sugar 
and proline transporters, and 
detoxification enzyme-encoding 
genes; and signaling molecule-
encoding genes

Stomatal closure, repression of 
cell growth, photosynthesis and 
activation of respiration and 
production of phytohormone 
ABA

Salt SOS1, NHX, HKT2, 
CAX1, AKT1, KCO1, 
TPC1, CLC1, NRT1, 
CDPK7, MAPK5, 
CaMBP, GST, LEA, 
V-ATPase, OSAP1, and 
HBP1B

Genes related to antioxidants, 
transcription factors, signaling, 
ion and metabolic homeostasis 
and transporters

Imbalance in ion homeostasis 
of cells at plasma membrane 
and sequestration of vacuolar 
ion, and stomatal closure which 
causes higher leaf temperature 
and reserve shoot elongation

Cold CBF1, DREB1A, and 
DREB1B

ABA-responsive genes, ABF, 
NAC, NACRS containing 
genes, ERF922, WRKY25, and 
WRKY74, gene related to signal 
transduction, phytohormones, 
antioxidant system and biotic 
stress

Altered chlorophyll content 
and fluorescence causing 
reduction in photosynthesis, 
increases content of ROS and 
malondialdehyde causing 
oxidative damage to cells

Cadmium (Cd) Cd-responsive transporters, 
ROS-scavenging enzymes, 
chelators, and metal transporter-
encoding genes and many 
drought stress-related genes

Fatal damage to rice seedlings 
during their development

Phosphorus (P) RNA transport and mRNA 
monitoring path genes

Important for energy 
transfer, signal transduction, 
photosynthesis, and respiration

Manganese (Mn) TFs, transporters, transferase 
protein genes, catalytic protein 
encoding genes, WRKY, and 
potassium transporter-related 
genes, Aux/IAA family, and 
sodium transporter-related 
genes

Important for catalyzing the 
water-splitting reaction of 
oxygen-evolving complex in 
photosystem II (PSII), acts 
as cofactor that activates 
different enzymes, such as 
Mn-superoxide dismutase 
and others, to protect against 
oxidative stresses

Alkaline stress Alkali-responsive genes Alkaline resistant genes, TFs 
related to hormone signal 
transduction and secondary 
metabolite biosynthesis 
pathways

Table 1. 
Regulatory role of different abiotic stress-responsive genes based on RNA-Seq analysis.
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into submergence-intolerant rice variety significantly increased its flooding toler-
ance, thus demonstrating the importance of the SUB1 locus for flooding tolerance 
[36]. Two different types of molecular mechanisms are adapted by rice ecotypes to 
survive under stress, SUB1A-mediated “quiescence strategy” [37, 38] and “escape 
strategy” induced by SNORKEL1/2 [13]. The submergence response in rice consists 
of the differential expression of genes related to gibberellin biosynthesis, trehalose 
biosynthesis, anaerobic fermentation, cell wall modification, and transcription 
factors that include ethylene-responsive factor genes [39]. Though the regula-
tory mechanism in rice during submergence response has been comprehensively 
studied, the genome-wide gene expression as well as allelic variation among the 
cultivars for specific quantitative traits remained elusive. One of the studies was 
conducted in six rice genotypes to estimate the coleoptile elongation rates dur-
ing submergence [39]. The result postulated that the coleoptile elongation was 
augmented by transcriptional regulation. Further, the reason for the variation in 
anaerobic germination was due to the allelic variation caused by the small-to-large 
deletions in the coding region of susceptible varieties [39].

Recently, a study on SUB1A-1 genotypes is carried to understand the molecular 
mechanism pertaining to the physiological function upon desubmergence through 
transcriptomic analysis [29]. The results enumerated around 1400 genes that were 
differentially expressed to recover from the stress to preserve the plastid integrity, 
and the genes regulating the cell division, chromatin structure, and signaling 
associated with starch catabolism [29]. They also found that the rice plants recover 
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indirectly through SUB1A and downstream regulatory network to resume the 
photosynthesis [29]. Similar studies have also been carried between two contrasting 
deepwater growth rice cultivars [40]. The RNA-Seq analysis was conducted from 
different tissues, shoot base region, including basal nodes, internodes, and shoot 
apices of seedlings at two developmental stages. The study elucidated the possible 
role of jasmonic acid-mediated internode elongation and expression of biotic stress-
related genes during submergence response [40].

3. Transcriptome data for drought stress

One of the major abiotic stresses that severely affect the rice production is 
drought stress. Drought stress causes a series of physiological and biochemical 
changes which included stomatal closure, repression of cell growth, photosyn-
thesis, and activation of respiration along with production of the phytohormone 
abscisic acid (ABA) [41]. In response to the drought stress, ABA triggers stomatal 
closure and induces expression of stress-related genes (Table 1) [41]. However, 
some of drought-related genes were not expressed by the external ABA treat-
ment. Therefore, the drought response is either of ABA-independent or of 
ABA-dependent or both inducible gene regulatory system networks [42]. These 
regulatory networks are the amalgamation of interaction between transcription fac-
tors and their respective promoter cis-elements. It was observed that the promoters 
of ABA-dependent genes have ABA-responsive element (ABRE) and, dehydration- 
and cold-responsive element (C-repeat/DRE) [42]. The transcription factors, which 
specifically bind to ABRE are known as DREBs, trigger the expression of ABA-
responsive genes [43], which further encode AP2 domain-containing transcription 
factors regulating the stress-related genes in an ABA-independent manner [44]. The 
DREB gene family has two groups DREB1/CBF and DREB2, whereas DREB1/CBF 
consists of DREB1A (CBF3), DREB1B (CBF1), DREB1C (CBF2), and DREB1D 
(CBF4). However, five DREB homologs were identified in rice, OsDREB1A, 
OsDREB1B, OsDREB1C, OsDREB1D, and OsDREB2A [45, 46]. These gene-encoded 
proteins are classified into two: the first group belongs to the functional proteins 
included chaperones, late embryogenesis abundant (LEA) proteins, osmotin, anti-
freeze proteins, mRNA-binding proteins, enzymes for osmolyte biosynthesis, water 
channel proteins, sugar and proline transporters, and detoxification enzymes; the 
second group is of regulatory proteins (signal transduction and stress-responsive) 
including various transcription factors, protein kinases, protein phosphatases, 
enzymes involved in phospholipid metabolism, and other signaling molecules such 
as calmodulin-binding protein [22, 41]. Interestingly, it was found that many of 
these proteins, especially DREBs, are also involved in transcriptional regulation of 
stress-response mechanism during cold and salt stresses [46, 47].

The rice is the only crop which is grown in the waterlogged fields and it has very 
low water-use efficiency [48]. Therefore, it is imperative to decipher the molecular 
regulatory mechanism to increase the water usage efficiency of rice or the drought 
tolerance. Nowadays, the drought stress is continuously affecting the rice produc-
tivity due to the harsh environmental condition. The transcriptome studies proved 
to be the boom for researchers due to its global genomes depth and all at once allele 
mining among different rice genotypes. Earlier, a transcriptome analysis between 
drought-tolerant and drought-sensitive cultivars was carried out for the identifica-
tion of novel genetic regulatory mechanisms [48]. This study suggested that the 
upregulation of genes related to carbon fixation, glycolysis/gluconeogenesis, and 
flavonoid biosynthesis, whereas the downregulation of genes associated with starch 
and sucrose metabolism during drought. Further, they also found the upregulation 
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of genes associated with α-linolenic acid metabolic pathway in tolerant genotype 
during the stress which supported the previous findings. Consecutively, the analy-
sis of consensus cis-motif among the coexpressed drought-induced genes led to 
the identification of novel cis-motifs [48]. Similar comparative studies have been 
carried out between tolerant and susceptible rice cultivars and in other crops to 
understand the regulatory mechanisms during drought [49–51]. Their result sug-
gested that 801 transcripts differentially expressed in tolerant cultivar including the 
TFs NAC and DBP, and thioredoxin involved in phenylpropanoid metabolism [49].

To sustain the drought condition, the roots have a very important role. To 
understand the molecular regulation in rice seedling roots (4-weeks old) during 
drought condition, comparative RNA-Seq analysis has been carried out between wet 
and dry soil conditions [52]. This analysis suggested that 68% of identified genes 
were novel, and also found that the one of the enzymes RING box E3 ligases from 
ubiquitin-proteasome pathway was induced by drought. Interestingly, it was found 
that the OsPhyB represses the activity of ascorbate peroxidase and catalase-medi-
ating reactive oxygen species (ROS) processing machinery required for drought 
tolerance of roots in soil condition, contrary to the previous results [52].

4. Transcriptome data for salt stress

Some of the abiotic stresses are complementary to each other such as the drought 
and salt, drought and cold stresses, etc., affecting the rice productivity. It is evident 
that excessive loss of water from the soil evaporation due to drought causes salt 
accumulation in soil. The salinity is defined as deposition of sodium chloride from 
natural accumulation or irrigation in soil. It causes imbalance in ion homeostasis of 
cells regulated by ion influx and efflux at the plasma membrane and sequestration 
of vacuolar ion [8]. The salt stress affects stomatal closure causing increased leaf 
temperature and reserved shoot elongation [53]. Studies on the salinity tolerant in 
rice have shown the regulation of genes related to antioxidants, transcription fac-
tors, signaling, ion and metabolic homeostasis, and transporters (Table 1) [54]. The 
identified important class of genes regulated during a salt stress in rice are OsSOS1, 
OsNHX1 (Na+/H+ antiporters), OsHKT2;1 (Na+/K+ symporter), OsCAX1 (H+/
Ca+ antiporter), OsAKT1 (K+ inward-rectifying channel), OsKCO1 (K+ outward-
rectifying channel), OsTPC1 (Ca2+ permeable channel), OsCLC1 (Cl− channel), 
OsNRT1;2 (nitrate transporter), OsCDPK7, OsMAPK5, CaMBP (calmodulin motif 
binding protein), GST (glutathione-S-transferase II), LEA (late embryogenesis abun-
dant protein), V-ATPase (vacuolar ATP synthase 16KD proteolipid subunit), OSAP1 
(zinc finger protein), and HBP1B (histone binding protein, TF) [55–63]. The salt 
stress response mechanism is moreover of complex physiological process pertaining 
to metabolic and morphological changes, which is comprehensively studied, but in 
rice, the molecular regulatory mechanism to salt tolerance is elusive [64]. Some of 
the transcriptome analyses have been completed in conjugation with the drought 
stress to understand the salt tolerance in rice [46, 49, 59]. Earlier, a comparative 
study has been carried out between salt tolerant and susceptible rice cultivars to 
understand the regulatory mechanisms [49]. The result suggested higher expres-
sion of bHLH and C2H2 TF family members, which might be regulating the genes 
associated with wax and terpenoid metabolism pathways [49]. Similarly, to under-
stand the salinity stress, a comparative leaf transcriptome analysis at three time 
points on rice seedlings has been completed [65]. They identified 1375 novel genes, 
whereas 286 differentially expressed genes exclusively found in tolerant cultivar. 
They validated two genes: disease resistance response protein 206 and TIFY10A to 
understand the molecular response to salinity stress [65].
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5. Transcriptome data for cold stress

The cold stress is defined according to the temperature affecting the plant 
growth and development which ranges 0–15°C (chilling stress) and <0°C (freezing 
stress) [66]. The tropical origin of rice makes it more susceptible to cold, critically 
affecting reproductive stages and grain quality leading to yield reductions [67]. 
The cold stress affects chlorophyll content and fluorescence causing reduction 
in photosynthesis, increases content of reactive oxygen species (ROS) and malo-
ndialdehyde (MDA) causing oxidative damage to cells in rice [68]. The molecular 
regulation of cold stress is identified in conjugation of drought stress (Table 1) 
[45]. Many stress-inducible genes are regulated via ABA-independent pathway, 
characteristically having a cis element responsible for dehydration (DRE) as well 
as low-temperature-induced expression. The low-temperature-inducible genes 
possess C-repeat (CRT) and low-temperature-responsive element (LTRE). The 
DRE-binding proteins encoding genes CBF1, DREB1A, and DREB1B were induced 
by cold stress [46]. During cold stress, ABA also accumulates and initiates the ABA 
signaling cascade, which regulates the ABA-responsive genes through ABRE and 
the ABRE-binding bZIP transcription factor ABF [69]. The OsNAC gene transduces 
the ABA signal through an ABRE in its promoter and regulates the expression of 
NACRS-containing genes to control cold tolerance in rice [67]. Further, to under-
stand comprehensively the regulation of genes during cold stress, a transcriptome 
study is carried out between weedy and cultivated rice [70]. The analysis suggested 
that some typical cold stress-related genes were of basic helix-loop-helix (bHLH) 
gene and leucine-rich repeat (LRR) domain genes, and several genes associated 
with phytohormones like abscisic acid (ABA), gibberellic acid (GA), auxin, and 
ethylene [70]. Similarly, the wild rice, O. longistaminata, tolerates nonfreezing cold 
temperatures, is used for the identification of molecular mechanisms in response 
to low temperature in its shoots and rhizomes at seedling and reproductive stages 
using transcriptome analysis [71]. They found photosynthesis pathway-related 
genes were prevalent in shoots, whereas metabolic pathways and the programmed 
cell death process-related genes were expressed only in rhizomes. Further, they 
found that the TFs CBF/DREB1, AP2/EREBPs, MYBs, and WRKYs were synergisti-
cally expressed in shoots, whereas OsERF922, OsNAC9, OsWRKY25, OsWRKY74, 
and eight antioxidant enzymes encoding genes were expressed in rhizomes during 
cold stress. The cis-regulatory element analysis suggested the enrichment of ICE1-
binding site, GATA element, and W-box in both tissues. And the highly expressed 
genes in shoots were associated with photosynthesis, whereas signal transduction-
related genes were highly expressed in rhizomes [71].

Furthermore, a transcriptome analysis is performed in germination phase for 
contrasting cultivars of rice in cold stress [72], suggesting the higher expression of 
gene related to signal transduction, phytohormones, antioxidant system, and biotic 
stress during germination in cold stress [72].

6. Transcriptome data for trace element stress

The rice is the staple food fulfilling the dietary needs of a large population 
around the world. Besides dietary energy and proteins, it also contains trace ele-
ments (Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr., Mo, Cd, Ba, Pb, and Bi) 
in low amounts [73]. Some of these trace elements Se, Mo, Cr, Mn, Fe, Co, Cu, Zn 
are micronutrients that help in proper functioning of human biological systems, 
while nonessential heavy elements such as Pb, As, Cd, Hg are referred as toxins for 
consumption [73, 74]. However, the trace elements in rice are invariably increasing 
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either due to the use of agrochemicals or irrigation with contaminated water. The 
deficiency or accumulation of these trace elements in soil hampers plant growth 
and development. On the other hand, their biofortification helps to add nutrition 
supplement. Henceforth, the detailed study about the effects of these trace ele-
ments on the rice is indispensable. There are many reports about trace element 
stresses on rice achieved through transcriptome studies (Table 1).

The higher concentration of heavy metal cadmium (Cd) severely hampers the 
rice growth. Therefore, to understand the molecular mechanism during Cd stress, 
transcriptome analysis has been completed by exposing rice to higher concentra-
tions of Cd [75]. They found constitutively expressed genes were less affected by 
low Cd concentrations, whereas high Cd concentration causes fatal damage to rice 
seedlings during their development. They also found some novel Cd-responsive 
transporters encoding genes [75]. Previously, they found the upregulation of many 
genes related to ROS-scavenging enzymes, chelators, and metal transporters during 
Cd exposure along with upregulation of many drought stress-related genes [76].

Phosphorus (P) is an essential trace element required for proper plant growth 
and development where it plays an important role in energy transfer, signal trans-
duction, photosynthesis, and respiration [77]. A comparative transcriptome study 
has been carried out in leaf and root tissues during phosphorus stress to elucidate 
their molecular mechanisms [78]. The transcriptome analysis suggested that many 
differentially expressed TFs and functional genes were uniquely involved in mul-
tiple regulatory pathways (including RNA transport and mRNA monitoring path) 
during phosphorus deficiency tolerance [78].

Manganese (Mn) is an essential trace element which plays an important role 
in catalyzing the water-splitting reaction of oxygen-evolving complex in photo-
system II (PSII). It also acts as a cofactor that activates different enzymes, such as 
Mn-superoxide dismutase and others, to protect against oxidative stresses in plants 
[79]. However, higher Mn affects the physiological and biochemical pathways asso-
ciated with plant growth and development. Therefore, to decipher the molecular 
mechanisms in leaves of Mn-sensitive rice exposed to high Mn stress, transcriptome 
analysis has been done [79]. The analysis suggested that a large number of TFs, 
transporters, transferase proteins, catalytic proteins encoding genes were dif-
ferentially expressed having a major role in primary and secondary metabolisms. 
Further, it was found that the WRKY family and potassium transporter-related 
genes were significantly upregulated, whereas Aux/IAA family and sodium trans-
porter-related genes were strongly downregulated [79].

7. Transcriptome data for other stresses

Besides common abiotic stresses, some other stresses are also studied with the help 
of transcriptome analysis. A transcriptome study has been carried out for alkaline 
stress caused by alkaline NaHCO3 and Na2CO [80]. The study reported the identifica-
tion of 926 differentially expressed important alkali-responsive genes including 28 
alkaline-resistant genes and 74 transcription factor genes. These genes were related to 
hormone signal transduction and secondary metabolite biosynthesis pathways [80].

The RNA-Seq or transcriptome analysis has tremendous potential to divulge the 
complex molecular machinery of plant regulatory response during stress condi-
tions. However, this large number of transcriptome data of abiotic stresses in rice 
has contributed significantly to rice researchers. It helped to understand complete 
molecular mechanism pertaining to their physiological and biochemical changes. 
Such data mining could be a high impact methodical source for identification of 
candidate gene through integration of functional genomics approach. This will also 
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Chapter 6

Revealing the Symmetry of
Conifer Transcriptomes through
Triplet Statistics
Sadovsky Michael, Putintseva Yulia, Biryukov Vladislav
and Senashova Maria

Abstract

The novel powerful technique is used for a study of combinatorial and statistical
properties of transcriptome sequences. The main approach stands on the study of
distribution of nucleotide triplet frequency dictionaries obtained from the conver-
sion of transcriptome sequences. The distribution is revealed through PCA
presentation and elastic map technique. The transcriptomic data of Siberian larch
(Larix sibirica Ledeb.) and Siberian pine (Pinus sibirica Du Tour) were studied. The
transcriptomes exhibit unusual symmetries. The octahedral structure exhibiting
rotational symmetry in transcriptome contig distribution was found for L. sibirica,
while mirror symmetry was found for P. sibirica. The octahedron structure seems to
be universal for plants.

Keywords: Chargaff’s parity, order, structuredness, mirror symmetry,
rotational symmetry

1. Introduction

A discovery of an order and new structures in genetic entities is an up-to-date
scientific problem. Indeed, the amount of primary genomic data shows the daily
growth for billions of megabases. The symbol sequences from four-letter alphabet
ℵ ¼ A,C,G,Tf g (with few variations in some nucleotide sequences; say, U substi-
tutes T in RNAs).

We studied an order and structuredness over a set of sequences representing the
transcriptome of Siberian larch (Larix sibirica Ledeb.) and Siberian pine (Pinus
sibirica Du Tour), also known as Siberian cedar. Transcriptome represents
sequences of expressed genes and corresponds to the mRNA molecule isolated from
biological cells or tissues. Obviously, whether a transcriptome exhibits
structuredness or not heavily depends on the concept of a structuredness to be
revealed and analyzed. One may face a huge number of patterns claimed to be
structural units; a number of papers report on newly discovered structures in
genomes [1].

There are two approaches to discuss structuredness in a set of symbol sequences
(transcriptome nucleotide sequences, in our case). The first implies that one seeks
for inhomogeneities in the mutual distribution of the sequences form the ensemble
under consideration. Of course, to do it, one must introduce a metrics to measure
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the difference between any two sequences; there are various ways to do it [2–4]. An
alignment might be such a measure [5, 6] (see also much more prominent approach
presented in [7, 8]). Alternatively, the second approach implies the search for
inhomogeneities within a sequence, e.g., through the comparison of the formally
identified fragments of a sequence.

Regardless the specific approach to seek for structuredness, one must introduce
a way to measure the difference between the objects to be analyzed. Alignment
[9–11] is the most widespread approach here. An alternative idea to search a struc-
ture and order in symbol sequences is to transform them into frequency dictionary
[12–15]. A frequency dictionary could be defined in various ways, but basically it is
a list of all the strings of a given length accompanied with a frequency of each string
(a detailed description is given below). A transformation of a symbol sequence into
a frequency dictionary provides a mapping of a set of sequences into a metric space.
Hence, one may apply all the tools for analysis.

As soon, as a structure in ensemble of sequences, or over a sequence is defined,
the question arises toward the properties of those structures. Probably, symmetry of
such structures is the most fundamental and basic one. Again, there could be
various notions of the symmetry. The first concept of the symmetry aims to figure
out structures that seem to remain similar, when some simple transformations in a
proper space are provided. First of all, a rotational symmetry of a cluster structure
[3, 4] or mirror symmetry [16, 17] must be mentioned here.

Few words should be said toward the symmetry. Here we shall consider two
notions of that issue. The first is a well-known rotational, mirror, or similar sym-
metry observed in the distribution of the contigs converted into triplet frequency
dictionary as they are distributed in the relevant Euclidean space (where the triplets
are the coordinates). The second issue is measured through the proximity (or
deviation) to Chargaff’s parity rules, to be observed for various entities, both natu-
ral (these are contigs) and artificial (kernels or arithmetic means of the frequency of
identical triplets counted over an ensemble of contigs).

2. Material and methods

2.1 Transcriptome nucleotide sequence data

The transcriptomes of Siberian larch and Siberian pine were originally
sequenced under the project on the whole genome sequencing of Siberian larch
[18, 19]. The sequence data of L. sibirica and P. sibiricawere obtained using Illumina
MiSeq sequencer at the Laboratory of Forest Genomics of the Siberian Federal
University. The RNA was isolated from buds [19].

2.1.1 L. sibirica bud transcriptome

For the purposes of our study, we have selected the bud transcriptome of L.
sibirica; we have taken into consideration the transcripts longer than 600 bp. The
longest one in the transcriptome is as long as 10,795 bp, with average length 〈L〉 ¼
1243:4 bp and standard deviation σ〈L〉 ¼ 717:9 bp.

The total number of sequences in the transcriptome is 12,353 transcripts. The
histograms of the distribution of the transcriptome sequence entries over their
length are presented in Figure 1. Evidently, the distribution resembles Poisson
distribution quite strongly. There are 7573 transcripts in the transcriptome bearing a
single CDS (maybe in various directions). Four thousand thirty-eight transcripts
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have two or more CDS in them; the distribution of number of CDS in transcripts is
shown in Table 1. Finally, in 742 transcripts no CDS have been found.

2.1.2 P. sibirica bud transcriptome

We used bud transcriptome from Pinus sibirica obtained from witch’s broom
(i.e., morphologically different part of a tree). It might be considered as a disease.
Again, we have selected the transcripts longer that 600 bp that yields 4675 entries in
the transcriptome, 3003 among them have a single CDS.

There are as many as 426 transcripts with no CDS detected in them. Surpris-
ingly, there are no transcripts in the transcriptome with CDS belonging to both
strands, simultaneously. The distribution of number of CDS found in a transcript is
shown in Table 1. On the contrary to L. sibirica transcriptome, P. sibirica
transcriptome contains no transcript without CDS

2.2 Triplet frequency dictionary

Triplet frequency dictionary W 3, tð Þ is the list of all 64 triplets found within a
sequence under consideration, where each entry (triplet) ω is assigned with the
frequency fω of the triplet ω. The reading frame move t could be chosen arbitrary
and depends on the specific problem to be solved. Everywhere further we use t ¼ 1
or t ¼ 3; for t ¼ 1 we use the notation of W3, unless it makes a confusion.

A frequency dictionary W 3, tð Þ unambiguously maps a sequence into a point in
64-dimensional metric space. Strongly speaking, W 3, tð Þ with t>1 maps a subse-
quence into the point of the metric space, not the sequence entirely; further we shall
discuss this point in more detail. Next, the dimension of the space is 63, not 64; this
fact follows from the linear constraint:

XTTT
ω¼AAA

fω ¼ 1: (1)

Figure 1.
Distribution of L. sibirica contigs over the length (left) and P. sibirica (right).

# 2 3 4 5 6 7 8 20

L. sibirica 3049 738 175 61 8 2 2 1

P. sibirica 962 226 41 14 3 — — —

#—number of CDS in a transcript.

Table 1.
Distribution of number of CDS per transcript.
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This constraint allows to exclude any triplet from the analysis, thus changing
64-dimensional space for 63-dimensional, where all variables are linearly
independent [20].

Formally speaking, any triplet could be excluded. Practically, one must eliminate
the triplet with the least standard deviation figure determined over the set of fre-
quencies under consideration. Indeed, suppose a triplet ω ∗ yields the standard devi-
ation equal to zero, as determined over a set of dictionaries, it means, all dictionaries
in the set have the same frequency, for this triplet: f jω ∗ ¼ const, ∀j (here j enlists the
dictionaries in the set). Such invariance makes the dictionaries (and the sequences
standing behind) indistinguishable, from the point of view of the triplet. The choice
of a triplet with minimal standard deviation for the exclusion provides the elimina-
tion of the variable contributing least of all in distinguishability of the entities.

2.2.1 Metric choice

The list of triplets accompanied with the frequency of each entry makes fre-
quency dictionary W 3, tð Þ; let t ¼ 1, at the moment. Hence, a dictionary is a point in
metric space; obviously, one may define metrics in a number of ways, in such space.
For the purposes of further analysis, we use the Euclidean metrics:

ρ W i½ �
3 ,W

j½ �
3

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTTT

ω¼AAA

f j½ �
ω � f i½ �

ω

� �2

vuut : (2)

Some other metrics might be used, as well. Here i and j index two different
dictionaries (sequences, respectively).

2.3 Chargaff’s imparity index

To begin with, we bring to mind the well-known complementarity pattern
established by E. Chargaff in 1952 [21, 22]; it consists in a strong equality of A’s and
T’s numbers (C’s and G’s numbers, respectively) counted over DNA molecule. Of
course, some minor violations may take place due to mutations; meanwhile the
accuracy of this equality is very high. This fact is also known as the first Chargaff’s
parity rule.

The second Chargaff’s parity rule stipulates that

nA ≈ nT and nC ≈ nG, (3)

if counted within a single strand. The accuracy of (3) is rather high but varies for
different taxa.

Surprisingly, similar to (3) relations are observed for oligonucleotides counted
over a single stand. Let us now introduce some rigorous definitions and notions.

Definition 1. Consider a string ω ¼ ν1ν2…νq�1νq be an oligonucleotide of the
length q, where νj is nucleotide occupying the j-th position. Palindrome is the word
ω ∗ ¼ ν ∗

1 ν
∗
2 …ν ∗

q�1ν
∗
q read equally in the opposite direction: νj ¼ ν ∗

q�j.
Definition 2. Two strings ω and ω make the complementary palindrome, if they

are read equally in the opposite directions, with respect to Chargaff’s complemen-
tarity rule:

A⇔T C⇔G:
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Hence, ∀j, 1≤ j≤ q νj↦ν ∗
q�jþ1. Here are some examples of complementary palin-

dromes:

ACT⇔AGT, ACTGG⇔CCAGT, ACGT⇔ACGT:

So, the generalized second Chargaff’s rule stipulates equality (or proximity, to be
exact) of frequencies of two strings comprising complementary palindrome [23–33].
Surely, one hardly could expect to get the absolute equality of the frequencies of any two
strings comprising complementary palindrome. There is a number of reasons standing
behind the violation of such absolute equality; they range from purely combinatorial
[25–27, 34] and/or finite sampling effect to biological peculiarities [24, 28, 30, 33].

To reveal the difference between genetic entities or biological objects, one must
introduce a measure of the violation of the generalized second Chargaff’s rule; one
may do it in various ways; we use the discrepancy index:

μ W i½ �
q ,W

j½ �
q

� �
¼ 4�q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ω∈Ω

fω � fω
� �2s

: (4)

Here Ω is the set of strings of the length q observed in two sequences (i and j,
respectively), ω enlists all the strings, and ω is the string complementary palin-
dromic to ω. Normalization factor 4�q is introduced to equalize the figures (4)
observed for various q.

The index (4) measures the discrepancy between two dictionaries (W i½ �
q and

W j½ �
q ). Meanwhile, this index could be applied for a single frequency dictionary Wq:

μ⋆ Wq
� � ¼ 2 � 4�q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ω∈Ω⋆

fω � fω⋆

� �2s
: (5)

Here the complementary palindromic couples are combined from the strings
belonging to the same frequency dictionary Wq.

The discrepancy measure (4) looks like Euclidean distance, while it is not. More
exactly, it could be considered as a metrics in Euclidean space. To do it, one must
reconsider a point in a couple, changing it for the dual one that is a complementary
palindrome.

The inner discrepancy measure (5) definitely is not a distance, since it charac-
terizes a single object, not a couple.

2.4 W 3, 3ð Þ and W3 dictionaries

This is a very common fact that a genome comprises coding and noncoding
regions. Basically, they differ in the statistical properties manifested in triplet fre-
quency dictionaries. One might detect some minor difference in W3 composition
developed for coding vs. noncoding regions. Significantly greater difference
between these two types of genome parts is observed for W 3, 3ð Þ dictionaries [2–4].

Dictionary W3 is uniformly defined, for any sequence. The situation differs for
W 3, 3ð Þ dictionaries. Consider a sequence L of the length N. Starting to cover the
sequence with the frames of the length 3 moving along the sequence with the step 3,
one may get three different dictionaries, in dependence to the location of the start
point. The starts may be located at the first nucleotide of a sequence, at the second
nucleotide, and at the third nucleotide; thus, three different triplet frequency
dictionaries W 3, 3ð Þ could be obtained.
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This constraint allows to exclude any triplet from the analysis, thus changing
64-dimensional space for 63-dimensional, where all variables are linearly
independent [20].
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ρ W i½ �
3 ,W

j½ �
3

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTTT

ω¼AAA

f j½ �
ω � f i½ �

ω

� �2

vuut : (2)

Some other metrics might be used, as well. Here i and j index two different
dictionaries (sequences, respectively).

2.3 Chargaff’s imparity index
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established by E. Chargaff in 1952 [21, 22]; it consists in a strong equality of A’s and
T’s numbers (C’s and G’s numbers, respectively) counted over DNA molecule. Of
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The second Chargaff’s parity rule stipulates that

nA ≈ nT and nC ≈ nG, (3)

if counted within a single strand. The accuracy of (3) is rather high but varies for
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Surprisingly, similar to (3) relations are observed for oligonucleotides counted
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Definition 1. Consider a string ω ¼ ν1ν2…νq�1νq be an oligonucleotide of the
length q, where νj is nucleotide occupying the j-th position. Palindrome is the word
ω ∗ ¼ ν ∗

1 ν
∗
2 …ν ∗

q�1ν
∗
q read equally in the opposite direction: νj ¼ ν ∗

q�j.
Definition 2. Two strings ω and ω make the complementary palindrome, if they

are read equally in the opposite directions, with respect to Chargaff’s complemen-
tarity rule:

A⇔T C⇔G:
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Hence, ∀j, 1≤ j≤ q νj↦ν ∗
q�jþ1. Here are some examples of complementary palin-

dromes:
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reconsider a point in a couple, changing it for the dual one that is a complementary
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The inner discrepancy measure (5) definitely is not a distance, since it charac-
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This is a very common fact that a genome comprises coding and noncoding
regions. Basically, they differ in the statistical properties manifested in triplet fre-
quency dictionaries. One might detect some minor difference in W3 composition
developed for coding vs. noncoding regions. Significantly greater difference
between these two types of genome parts is observed for W 3, 3ð Þ dictionaries [2–4].

Dictionary W3 is uniformly defined, for any sequence. The situation differs for
W 3, 3ð Þ dictionaries. Consider a sequence L of the length N. Starting to cover the
sequence with the frames of the length 3 moving along the sequence with the step 3,
one may get three different dictionaries, in dependence to the location of the start
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dictionaries W 3, 3ð Þ could be obtained.
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The key difference between coding and noncoding regions consists in the devi-
ations between these three dictionaries. In other words, let the sequence L falls
entirely into a noncoding region of a genome. One may develop three triplet fre-

quency dictionaries W j½ �
3, 3ð Þ, 0≤ j≤ 2 corresponding to three positions of the reading

frame shift (these are 0, 1, and 2). The key issue is that these three dictionaries:

1.Differ significantly if developed for coding and noncoding regions.

2.Differ each other, if developed for a coding region.

3.Differ between them negligibly, if developed for a noncoding region.

In other words, consider a set Ŵ
j½ �
3, 3ð Þ, 0≤ j≤ 2 developed over a noncoding

region and a set ~W
j½ �
3, 3ð Þ, 0≤ j≤ 2 developed over a coding region. Then, ∀j the

difference between Ŵ
j½ �
3, 3ð Þ is rather small, when expressed in any way (as Euclidean

distance, entropy, mutual entropy, etc.; see also [7, 8]), but the difference between
~W

j½ �
3, 3ð Þ is significantly greater. Besides, ∀i, j the difference between ~W

i½ �
3, 3ð Þ and

Ŵ
j½ �
3, 3ð Þ manifests apparently. These deviations in statistical properties of such triplet

frequency stand behind the Hidden Markov Model methodology [35, 36].
We shall explore structuredness in transcriptomes through the analysis of those

triplet dictionaries developed over the individual transcripts.

2.5 Relative phase

To reveal the inner structuredness of a (bacterial) genome, Gorban and coau-
thors have introduced special construction that might be called tiling [2–4]. The idea
was to cover a genome (considered as a symbol sequence from ℵ) with a set of
overlapping and ordered windows called tiles. All tiles are of the same length L
(L ¼ 603 in [2–4, 16, 17]); the tiles are located along a sequence with the permanent
step P. In the papers mentioned above, P ¼ 11, and the choice of the specific figures
of L and P is determined by the specific task of a research.

A subsequence identified by a specific tile is then converted into frequency
dictionary W 3, 3ð Þ, and the inner structuredness of a genome is represented through
the distribution of the points corresponding to tiles, in 64-dimensional (or 63-
dimensional) metric space.

This structuredness is basically determined by the so-called relative phase of a
tile. It may:

1.Fall completely into a coding region.

2.Fall completely outside a coding region.

3.Contain a border between coding and noncoding regions.

In any chance, the relative phase indicates whether the start of a tile coincides
with a start of a coding region or not. There are following combinations determining
the relative phase index:

1.Start of a coding region coincides to the start of a tile. In this case relative phase
δ ¼ 0.
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2.Start of a coding region does not coincide to the start of a tile, and the reminder
of the division of the distance (expressed in number of nucleotides) from the
start of the tile, and the start of coding region is 1. Then δ ¼ 1 in this case.

3.Finally, the start of a coding region falling inside the tile does not coincide to
the start of a tile, and the remainder is 2. Then δ ¼ 2 in this case.

For any tile covering a noncoding region, δ ¼ 4, by definition.
It should be stressed that genes (or coding regions) may take place in opposite

strands; in such capacity, the relative phase index must be defined for leading strand
and lagging one, separately, where the remainder of the division must be determined
for the difference between the last symbol of a tile and the last nucleotide of a gene
annotated in a sequence as located in the lagging strand. Thus, seven figures of the
relative phase index δ are possible: F0, F1, and F2 for the tiles containing coding regions
from the leading strand; B0, B1, and B2 for the tiles containing coding regions from the
lagging strand; and, finally, J labeling the tiles covering noncoding regions, only.

For genome tiling (see [2–4, 16, 17]), the labeling of tiles with the relative phase
index is based on genome annotation.

2.5.1 Transcriptome relative phase

The situation is slightly different for transcriptome (and the transcriptomes of L.
sibirica Ledeb. and P. sibirica Du Tour, specifically). First of all, we did not develop
any tiling, for transcripts; reciprocally, the transcripts themselves have been con-
sidered as tiles. It means that each transcript was converted into W 3, 3ð Þ frequency
dictionary as a whole, with no dissection into tiles.

Each frequency dictionary corresponding to a specific transcript was labeled
with relative phase index; the labeling procedure was pretty close to that one
described above, with few exceptions. We used TransDecoder™ software to find
the start of a coding region within a transcript, as well as the strand location of CDS.

The relative phase index for transcripts containing a single CDS was determined
in completely the same way, as described above. The transcripts bearing no CDS, if
any, have been labeled with index J. Finally, the problem arose from the transcripts
bearing several CDS: obviously, a relative phase index is defined ambiguously for
such transcripts. In such capacity, we labeled the transcripts with multiple CDS
with special figure M of the relative phase index.

Finally, we have calculated the standard deviation for each triplet, over the
entire set of transcripts; that is CGT with σCGT ¼ 0:005586, so we excluded this
triplet from the set of variables to cluster the transcripts. Reciprocally, the triplet
with σTGA ¼ 0:014924 yields the maximal figure of the standard deviation.

Similar figures determined for P. sibirica are σGCG ¼ 0:005658 and
σTGA ¼ 0:014936, correspondingly; the former stands for the minimal standard
deviation figure, and the latter stands for the maximal one. Hence, in cedar
transcriptome, we have excluded GCG triplet. Remarkably, the triplets with the
largest standard deviation figures coincide, for these two genetic entities.

3. Results

Previously, seven cluster symmetric patterns have been reported [2–4], in bac-
terial genomes. Later, similar (but not equivalent) structures were found in chloro-
plast genomes [16, 17]. First of all, the tiles corresponding to specific relative phase
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3, 3ð Þ, 0≤ j≤ 2 corresponding to three positions of the reading
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frequency stand behind the Hidden Markov Model methodology [35, 36].
We shall explore structuredness in transcriptomes through the analysis of those

triplet dictionaries developed over the individual transcripts.

2.5 Relative phase

To reveal the inner structuredness of a (bacterial) genome, Gorban and coau-
thors have introduced special construction that might be called tiling [2–4]. The idea
was to cover a genome (considered as a symbol sequence from ℵ) with a set of
overlapping and ordered windows called tiles. All tiles are of the same length L
(L ¼ 603 in [2–4, 16, 17]); the tiles are located along a sequence with the permanent
step P. In the papers mentioned above, P ¼ 11, and the choice of the specific figures
of L and P is determined by the specific task of a research.

A subsequence identified by a specific tile is then converted into frequency
dictionary W 3, 3ð Þ, and the inner structuredness of a genome is represented through
the distribution of the points corresponding to tiles, in 64-dimensional (or 63-
dimensional) metric space.

This structuredness is basically determined by the so-called relative phase of a
tile. It may:

1.Fall completely into a coding region.

2.Fall completely outside a coding region.

3.Contain a border between coding and noncoding regions.

In any chance, the relative phase indicates whether the start of a tile coincides
with a start of a coding region or not. There are following combinations determining
the relative phase index:

1.Start of a coding region coincides to the start of a tile. In this case relative phase
δ ¼ 0.
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2.Start of a coding region does not coincide to the start of a tile, and the reminder
of the division of the distance (expressed in number of nucleotides) from the
start of the tile, and the start of coding region is 1. Then δ ¼ 1 in this case.

3.Finally, the start of a coding region falling inside the tile does not coincide to
the start of a tile, and the remainder is 2. Then δ ¼ 2 in this case.

For any tile covering a noncoding region, δ ¼ 4, by definition.
It should be stressed that genes (or coding regions) may take place in opposite

strands; in such capacity, the relative phase index must be defined for leading strand
and lagging one, separately, where the remainder of the division must be determined
for the difference between the last symbol of a tile and the last nucleotide of a gene
annotated in a sequence as located in the lagging strand. Thus, seven figures of the
relative phase index δ are possible: F0, F1, and F2 for the tiles containing coding regions
from the leading strand; B0, B1, and B2 for the tiles containing coding regions from the
lagging strand; and, finally, J labeling the tiles covering noncoding regions, only.

For genome tiling (see [2–4, 16, 17]), the labeling of tiles with the relative phase
index is based on genome annotation.

2.5.1 Transcriptome relative phase

The situation is slightly different for transcriptome (and the transcriptomes of L.
sibirica Ledeb. and P. sibirica Du Tour, specifically). First of all, we did not develop
any tiling, for transcripts; reciprocally, the transcripts themselves have been con-
sidered as tiles. It means that each transcript was converted into W 3, 3ð Þ frequency
dictionary as a whole, with no dissection into tiles.

Each frequency dictionary corresponding to a specific transcript was labeled
with relative phase index; the labeling procedure was pretty close to that one
described above, with few exceptions. We used TransDecoder™ software to find
the start of a coding region within a transcript, as well as the strand location of CDS.

The relative phase index for transcripts containing a single CDS was determined
in completely the same way, as described above. The transcripts bearing no CDS, if
any, have been labeled with index J. Finally, the problem arose from the transcripts
bearing several CDS: obviously, a relative phase index is defined ambiguously for
such transcripts. In such capacity, we labeled the transcripts with multiple CDS
with special figure M of the relative phase index.

Finally, we have calculated the standard deviation for each triplet, over the
entire set of transcripts; that is CGT with σCGT ¼ 0:005586, so we excluded this
triplet from the set of variables to cluster the transcripts. Reciprocally, the triplet
with σTGA ¼ 0:014924 yields the maximal figure of the standard deviation.

Similar figures determined for P. sibirica are σGCG ¼ 0:005658 and
σTGA ¼ 0:014936, correspondingly; the former stands for the minimal standard
deviation figure, and the latter stands for the maximal one. Hence, in cedar
transcriptome, we have excluded GCG triplet. Remarkably, the triplets with the
largest standard deviation figures coincide, for these two genetic entities.

3. Results

Previously, seven cluster symmetric patterns have been reported [2–4], in bac-
terial genomes. Later, similar (but not equivalent) structures were found in chloro-
plast genomes [16, 17]. First of all, the tiles corresponding to specific relative phase
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tend to aggregate into clusters apparently seen in the projection into three principal
components with the largest eigenvalues. The points corresponding to specific
strand (either leading or a lagging one) perform a triangle, in the frequency space;
the points corresponding to noncoding regions tend to gather into a ball-like struc-
ture located in the central part of the pattern.

The patterns described in [2–4, 16, 17] are provided by the interplay of two
triangles and the central ball. The triangles comprise the points corresponding to
specific strand. There are two basic symmetries found in these triangles: the former
is a shift (rotational) symmetry peculiar for bacterial genomes [2–4], and the latter
is mirror symmetry peculiar for chloroplasts [16, 17]. The ball comprise the points
corresponding to the tiles with noncoding regions inside (chloroplast genomes have
one more cluster called tail; meanwhile, it is not important at the moment).

Whether a pattern would have four or seven clusters depends on GC content of a
genome, for bacteria [2–4]. This figure almost completely determines the mutual
location of the planes comprising the triangles formed by the clusters belonging to
the same strand. There are some exclusions from this rule, for cyanobacteria. Chlo-
roplasts exhibit mirror symmetry in the strand-specific triangles, so they always
have a four-beam structure, where the triangles occupy the same plane with oblig-
atory coincidence of F2 and B2 phases [16, 17].

3.1 Phase index coloring agreement

To make the presentation of results clearer, let us fix the color and label mark
usage for transcripts to be shown in figures everywhere further. Indeed, we should
distinguish eight different phases in the figures: F0, B0, F1, B1, F2, B2, mult, and
noCDS.

To do that, we shall use the following labels: all phases of F0 through F2 of
transcripts from the leading strand are marked with triangles; all phases of B0

through B2 of transcripts from the lagging strand are marked with diamonds; mult
transcripts are marked with teal squares; finally, the transcripts where no CDS have
been found are labeled with brown circles.

Besides, the relative phases of single CDS transcripts are colored in the following
manner: F0 is purple triangle, F1 is lime triangle, and F2 is yellow triangle; recipro-
cally, B0 is magenta diamond, B1 is azure diamond, and B2 is sand diamond.

We should say few words concerning the distribution of the transcripts with
several CDS detected in them. For both transcriptomes, the distribution of such
transcripts in the 63-dimensional space seems to be very homogeneous; in other
words, these transcripts do not form any specific cluster, neither they are attracted
to any other given one provided by the transcripts with specific (and unambiguous)
relative phase index. The same is true for both studied transcriptomes. Later we
discuss this point in more detail, while here we fix that the points representing such
multi-CDS transcripts are erased from the pictures illustrating the results.

Thus, the clusters formed by transcripts of the same relative phase index are
located in two parallel planes (in the space of three principal components with the
largest eigenvalues). This observation holds true for L. sibirica transcriptome, while
P. sibirica transcriptome exhibits some deviations from this pattern. We should
discuss it later in more detail.

3.2 L. sibirica transcriptome octahedron

Unlike the tiles developed for a genome, the transcripts of a transcriptome
exhibit an ultimate pattern, that is, octahedron. The rectangular triangles, ΔABC
and Δαβγ, in Figure 2 occupy the position in two orthogonal planes. Note, these
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triangles do not comprise the clusters from the same strand; on the contrary, phases
over the octahedron are distributed in the manner shown in Figure 2 (right).

Figure 3 shows the distribution of L. sibirica transcripts with relative phase
values ranging from F0 to B2; they are colored as described above. This is the
distribution in 63-dimensional space (see Section 2.5.1) shown as the projection into
two-dimensional plane determined by the first and the second principal compo-
nents (Figure 3, left) and by the second and the third principal components
(Figure 3, right); this right image is rotated for π=4 angle clockwise.

The transcriptome shown in this figure exhibits clear and unambiguous octahe-
dral pattern in cluster location. It is evident that F0 to F2 phases lay out in a plane
and vice versa: the phases from the lagging strand are also laid out in a plane, and
these two planes are parallel. It should be stressed that this pattern is observed in the
metric space defined by the eigenvectors of the covariation matrix; in other words,
the clear and apparent octahedron pattern is observed in affinely transformed
space, not in the original one determined by triplet frequency.

Let us now consider the distribution of the points corresponding to noCDS and
mult indexes. These two types of sequences differ drastically, in terms of their
dispersion over the pattern. The transcripts bearing several CDS (see Table 1) are
rather long. The distribution of W 3, 3ð Þ of such transcripts is shown in Figure 4; it
should be stressed that this is the mutual distribution of all the points, with the

Figure 2.
Typical distribution of L. sibirica transcripts in 63-dimensional space.

Figure 3.
The distribution of L. sibirica transcripts; phases noCDS and mult are erased.
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tend to aggregate into clusters apparently seen in the projection into three principal
components with the largest eigenvalues. The points corresponding to specific
strand (either leading or a lagging one) perform a triangle, in the frequency space;
the points corresponding to noncoding regions tend to gather into a ball-like struc-
ture located in the central part of the pattern.

The patterns described in [2–4, 16, 17] are provided by the interplay of two
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Whether a pattern would have four or seven clusters depends on GC content of a
genome, for bacteria [2–4]. This figure almost completely determines the mutual
location of the planes comprising the triangles formed by the clusters belonging to
the same strand. There are some exclusions from this rule, for cyanobacteria. Chlo-
roplasts exhibit mirror symmetry in the strand-specific triangles, so they always
have a four-beam structure, where the triangles occupy the same plane with oblig-
atory coincidence of F2 and B2 phases [16, 17].
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To make the presentation of results clearer, let us fix the color and label mark
usage for transcripts to be shown in figures everywhere further. Indeed, we should
distinguish eight different phases in the figures: F0, B0, F1, B1, F2, B2, mult, and
noCDS.

To do that, we shall use the following labels: all phases of F0 through F2 of
transcripts from the leading strand are marked with triangles; all phases of B0

through B2 of transcripts from the lagging strand are marked with diamonds; mult
transcripts are marked with teal squares; finally, the transcripts where no CDS have
been found are labeled with brown circles.

Besides, the relative phases of single CDS transcripts are colored in the following
manner: F0 is purple triangle, F1 is lime triangle, and F2 is yellow triangle; recipro-
cally, B0 is magenta diamond, B1 is azure diamond, and B2 is sand diamond.

We should say few words concerning the distribution of the transcripts with
several CDS detected in them. For both transcriptomes, the distribution of such
transcripts in the 63-dimensional space seems to be very homogeneous; in other
words, these transcripts do not form any specific cluster, neither they are attracted
to any other given one provided by the transcripts with specific (and unambiguous)
relative phase index. The same is true for both studied transcriptomes. Later we
discuss this point in more detail, while here we fix that the points representing such
multi-CDS transcripts are erased from the pictures illustrating the results.

Thus, the clusters formed by transcripts of the same relative phase index are
located in two parallel planes (in the space of three principal components with the
largest eigenvalues). This observation holds true for L. sibirica transcriptome, while
P. sibirica transcriptome exhibits some deviations from this pattern. We should
discuss it later in more detail.

3.2 L. sibirica transcriptome octahedron

Unlike the tiles developed for a genome, the transcripts of a transcriptome
exhibit an ultimate pattern, that is, octahedron. The rectangular triangles, ΔABC
and Δαβγ, in Figure 2 occupy the position in two orthogonal planes. Note, these
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triangles do not comprise the clusters from the same strand; on the contrary, phases
over the octahedron are distributed in the manner shown in Figure 2 (right).

Figure 3 shows the distribution of L. sibirica transcripts with relative phase
values ranging from F0 to B2; they are colored as described above. This is the
distribution in 63-dimensional space (see Section 2.5.1) shown as the projection into
two-dimensional plane determined by the first and the second principal compo-
nents (Figure 3, left) and by the second and the third principal components
(Figure 3, right); this right image is rotated for π=4 angle clockwise.

The transcriptome shown in this figure exhibits clear and unambiguous octahe-
dral pattern in cluster location. It is evident that F0 to F2 phases lay out in a plane
and vice versa: the phases from the lagging strand are also laid out in a plane, and
these two planes are parallel. It should be stressed that this pattern is observed in the
metric space defined by the eigenvectors of the covariation matrix; in other words,
the clear and apparent octahedron pattern is observed in affinely transformed
space, not in the original one determined by triplet frequency.

Let us now consider the distribution of the points corresponding to noCDS and
mult indexes. These two types of sequences differ drastically, in terms of their
dispersion over the pattern. The transcripts bearing several CDS (see Table 1) are
rather long. The distribution of W 3, 3ð Þ of such transcripts is shown in Figure 4; it
should be stressed that this is the mutual distribution of all the points, with the

Figure 2.
Typical distribution of L. sibirica transcripts in 63-dimensional space.

Figure 3.
The distribution of L. sibirica transcripts; phases noCDS and mult are erased.
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complete set of phase indexes; the only point in this Figure is that the points
corresponding to phases F0 through B2 are erased.

Also, this figure shows the distribution of the transcripts where no CDS have
been found (brown circles). The cluster comprising these transcripts is rather
remarkable: the transcripts where no CDS have been found behave themselves (in
terms of clustering in 63-dimensional triplet frequency space) pretty close to the
fragments falling completely into noncoding regions of a genome, when a complete
genome is sliced into a set of tiles [2–4, 16, 17]. This observation indirectly (while
rather hard) proves the total lack of any CDS in such sequences; otherwise, the
corresponding frequency dictionaries never could be gathered in a ball centered at
the pattern.

The transcripts with several CDS inside are distributed over the pattern almost
homogeneously, including the central spot where the transcripts without CDS are
concentrated. Apparently, this fact follows from the multiplicity of CDS in these
transcripts: an interplay of different CDS located within a transcript may yield an
effective value of its phase index ranging from F0 to B2, and the impact of those CDS
is expected to be rather random.

3.3 P. sibirica transcriptome octahedron

Let us now focus on the peculiarities of the transcriptome of P. sibirica. First of
all, this transcriptome (at least, the part taken into analysis) is less abundant, in
comparison to L. sibirica transcriptome. This fact may impact the pattern of the
triplet frequency dictionary distribution, while one may expect the effect to be
negligible, since the length distribution of the transcripts of P. sibirica is similar to
that one observed for L. sibirica (see Figure 1) and the portion of multi-CDS
transcripts in these two transcriptomes are quite similar (see Table 1).

To begin with, Figure 5 shows the clustering pattern observed for this
transcriptome; the technology of the development of the pattern is absolutely the
same, as in Figures 3 and 4. The strongest difference between this transcriptome
and the L. sibirica one consists in the significant deformation of the octahedron
observed over P. sibirica transcriptome; Figure 6 illustrates this point.

At the first glance, the pattern shown in Figure 5 looks like a tetrahedron, while
it is not. In proper projection, the pattern looks like a hexagon; adding the subset of
multi-CDS transcripts, one gets the same pattern almost homogeneously covered by
the point corresponding to the subset.

Figure 4.
The distribution of L. sibirica transcripts with noCDS (brown diamonds) and mult sequences (teal circles). The
axes are directed in the same way, as in Figure 3.
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4. Discussion

The patterns provided by the distribution of considerably short fragments of a
genome may tell a lot to a researcher [2–4, 16, 17]. For bacteria, GC content seems
to be the key factor determining the details of the pattern [2–4]. That is not so for
chloroplasts, mitochondria, and cyanobacteria [16, 17]. The results presented above
show that GC content has nothing to do with a pattern observed over a
transcriptome. Hence, a question arises toward the key factor determining the
specific type of a pattern. Yet, there is no simple and brief answer, while Chargaff’s
parity rule discrepancy may be quite informative here.

We have determined Chargaff’s rule discrepancy measure (5) figure μ⋆ for all six
clusters observed in L. sibirica and P. sibirica transcriptomes; Table 2 shows them.
The variation of these figures μ⋆ is very smooth, and the clusters are pretty close to
each other, in terms of the discrepancy μ (see Eq. (5)). This fact opposes to similar
observations carried out over bacterial, chloroplast, and mitochondrial genomes
[16, 17]: these later exhibit significant (more than 10 times) difference in the
discrepancy figures calculated for the clusters. It should be said that, unlike
transcriptomes, chloroplast genomes exhibit three-beam patterns, where a beam
(i.e., a cluster) comprises the fragments from forward and backward strands,
simultaneously. There is no such combination, for transcriptomes.

Let us now focus on a few more details on Chargaff’s imparity index, itself. The
index value differs for different length q of words. Thus, a question arises toward
the reference figures for this index. Suppose, the index is determined over the
frequency dictionaries derived from both strands; in such capacity, it must be equal
to zero.

Figure 5.
The distribution of P. sibirica transcripts; the phase mult is erased.

Figure 6.
The deformation of P. sibirica transcriptome. Balls are the clusters of F-strand, and boxes are the clusters of
B-strand; coloring follows the layout described above (see Section 3.1).
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Calculating the index (4) over a single strand, one may clearly understand to
what extend a strand looks like the opposite one, in terms of the word frequency

[23–25]. For random non-correlated sequence with fA ¼ fT and fC ¼ fG µq ¼ 0
� �

.

Hence, ∀q:µq figures remain the same, if the discrepancy μ1 is fixed [23].
Unlike μ⋆ figures, the radii of these six clusters exhibit quite diverse behavior.

The radius of a cluster is an average distance from the center (that is arithmetic
mean) determined over the cluster to each point from the cluster. Lower part of
Table 1 shows the radii figures. The radii figures are apparently different, for the
transcriptomes under consideration. F0 and F1 phases for L. sibirica show extremely
high values. These figures may not be explained by the excess of the cluster abun-
dance of L. sibirica in comparison to P. sibirica. Again, the variation of the radii for
L. sibirica is evidently greater than for P. sibirica, and this fact correlates to the
mirror symmetry of P. sibirica transcriptome, since it is typical for simpler and less
diverse genetic system.

Inter-cluster discrepancy measure μ is of great interest, for both cases; Table 3
shows these indexes. Careful examination of Table 3 allows to identify three cou-
ples of relative phase indexes with distinctively lower figure of (4), namely, the
couples:

F0 ⇔B2 F1 ⇔B0 F2 ⇔B1: (6)

Relative phases

Transcriptome F0 F1 F2 B0 B1 B2

L. sibirica 0.00129 0.00169 0.00144 0.00160 0.00133 0.00123

P. sibirica 0.00122 0.00154 0.00144 0.00150 0.00135 0.00131

L. sibirica 0.12904 0.22707 0.06629 0.06774 0.09674 0.06201

P. sibirica 0.06944 0.07185 0.07023 0.07163 0.07559 0.07712

Table 2.
Discrepancy measure (5) figures μ⋆ for two transcriptomes (upper part) and cluster radii, for the same phases
(lower part).

L. sibirica

Phase index F1 F2 B0 B1 B2

F0 0.00095 0.00111 0.00098 0.00101 0.00007

F1 0.00094 0.00008 0.00109 0.00102

F2 0.00111 0.00009 0.00105

B0 0.00090 0.00090

B1 0.00105

P. sibirica

F0 0.00091 0.00105 0.00096 0.00028 0.00099

F1 0.00094 0.00008 0.00107 0.00105

F2 0.00112 0.00110 0.00016

B0 0.00098 0.00087

B1 0.00105

Table 3.
Discrepancy measure (4) figures μ determined within each of the two transcriptomes.
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Evidently, the phases in these couples yield two different types of symmetry: the
first one is shift, and the second symmetry is mirror. The situation is opposite for P.
sibirica transcriptome: the couples with the least Chargaff’s discrepancy measure (4)
are the following:

F0 ⇔B1 F1 ⇔B0 F2 ⇔B2: (7)

To make the situation with symmetries clear, we show the clusters over the
elastic map shown in the so-called inner coordinates; Figure 7 presents the
transcriptomes.

Such mirror symmetry has been previously reported for chloroplast genomes
[16, 17] (see also [23, 37, 38]); yet, there were no other but the chloroplast genomes
exhibiting such mirror symmetry, and L. sibirica transcriptome is the next one in
this point.

Definitely, the coincidence of these two symmetrical patterns does not mean
that L. sibirica transcriptome is identical to a chloroplast genome in all other prop-
erties. Probably, plants differ from other eukaryotic organisms and bacteria in the
symmetry type; currently, no eukaryotic genome is found with mirror symmetry.
Shift symmetry observed for P. sibirica transcriptome poses a question toward the
origin of the symmetry type change: whether it results from some essential biolog-
ical difference between these two pine species or it is a manifestation of the genomic
transformation in witch’s broom cells. To answer the question, more studies are
necessary.

The most amazing thing in transcriptome statistical properties is that it yields an
octahedral pattern, unlike bacteria, organelle, and other genetic entities (say, yeast
genomes). Another point is that the pattern does not depend on the length of
transcripts taken into consideration: we have examined separately the subsets of
transcripts as long as 200≤N ≤ 600 bp, 600≤N ≤ 2500 bp, and those longer
3000 bp. All these subsets yield similar pattern, with very minor variation mainly
manifesting in cluster density.

One can easily see two major peculiarities differing a transcriptome from the sets
of tiles described above (see [2–4, 16, 17] for details). These are:

• Total absence of the (rather extended) noncoding regions.

• Elimination of introns from the statistical analysis of sequences.

Figure 7.
Mirror (left) symmetry in L. sibirica transcriptome vs. shift symmetry (right) in P. sibirica transcriptome. Solid
circles and solid arrows correspond to F phases, while dashed ones correspond to B phases.
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Of course, the first item from this list is quite arguable: a number of transcripts
where no CDS has been detected bring a direct and unambiguous disproof of it.
Thus, the question arises, whether these transcripts are similar, in some sense, to
the fragments of genome comprising purely noncoding regions of the latter.

We have examined the first hypothesis through the simulation of noncoding
regions. To do that, we have added a number of W 3, 3ð Þ frequency dictionaries
obtained from the tiles covering the noncoding parts of genomes of several other
organisms. All the tiles were as long as 603 bp and contained noncoding regions,
exclusively. The number of dictionaries (the points, in other words) varied from
one third to one half of the total number of transcripts in the set. By assumption,
this addition simulated a genome.

Upon addition, we expected to see a pattern similar to that one observed in
bacteria, organelle, or other eukaryotic organisms; the octahedron pattern appeared
to be stronger. Figure 8 obviously disproves this hypothesis: it shows the same
transcriptome (L. sibirica) with eliminated transcripts bearing no CDS, where a set
of W 3, 3ð Þ dictionaries borrowed from three different genomes is added,

Figure 8.
Three noncoding data points added to L. sibirica transcriptome; nothing happened.
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consequently. Obviously, such simulation of a genome does not break down the
observed pattern of transcript distribution. Yet, one more option should be exam-
ined: what happens if the natural noncoding regions are used to simulate a genome?
In other words, the pattern might be sensitive to the noncoding regions from the
original genome, only, This point still awaits for examination.

The impact of introns on the alteration of the observed pattern is less evident.
Moreover, one faces greater difficulties in revealing it. One might want to compare
the distributions developed over W 3, 3ð Þ and W3 dictionaries, in this case; yet, this
problem needs careful investigation and falls beyond the scope of this paper.

5. Conclusions

Systematic comparison of (rather short) fragments of permanent length for-
mally identified within a genome reveals a symmetry in the distribution of the
triplet frequency dictionaries obtained over those fragments; originally this effect
has been found on bacterial genomes. Later similar (while rather different in a
number of essential details) behavior has been found for chloroplasts and mito-
chondria genomes. The general pattern of the distribution looks like a superposition
of two triangles where the vertices correspond to the fragments of the same relative
phase. In simple words, it corresponds to a reading frame shift, in case of a
translation-like processing of DNA sequence.

A transcriptome itself might be considered as a set of those fragments, with few
exclusions. Firstly, the lengths of transcripts are different and may affect the
expected pattern. Secondly, there are no fragments in a transcriptome
corresponding to those obtained from noncoding (intergenic) regions of a genome.
This fact results in ultimate possible configuration of the clusters corresponding to
the transcripts with the same relative phase index, that is, octahedron. All these
patterns could be seen in the space of three principal components with the largest
eigenvalues. The L. sibirica transcriptome yields almost perfect octahedral pattern,
while the P. sibirica transcriptome differs rather significantly, with planes compris-
ing the clusters from the same strand to be located almost in parallel. This defor-
mation might result from the biology: we studied the P. sibirica transcriptome
obtained not from a normal tree, but from a witch’s broom bud; the latter is known
for extremely deviated morphology that may not avoid serious genetic alteration in
its genome.
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