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Preface 
 

Retinoblastoma is the first ever discovered  tumor suppressor gene that opened a new 
avenue in the field of oncology leading to the identification of 35 tumor suppressor 
genes, till date in our genome. It is four decades since we know the two-hit hypotheses 
of Dr Alfred G Knudson  and presently there is a huge amount of data available for us 
to completely comprehend the retinoblastoma gene and protein. However this reveals 
that there is more to learn and understand about its character and characteristics.  

This book is an excellent compilation of both clinical and basic science information that  
meets the needs of a young clinician and a researcher at the same time. It also has 
abundant information on recent advances and cutting-edge knowledge in intracellular 
molecular cross-talking of retinoblastoma protein with various cellular viral-like proteins. 

Looking into the details of this book, you will find that there is an excellent clinical 
description of the disease with adequate illustrations. The dreadful problem of second 
malignancies both ocular and non-ocular is dealt with elegantly. The ototoxic hearing 
loss in retinoblastoma patients provides greater insight into the disease, which would 
be a useful tool for practicing clinicians. For all levels of clinicians, whether entry, mid 
or senior, there is information on the genetic counseling and molecular diagnostics 
which are very useful. The epidemiology of retinoblastoma is a revelation for those 
both in clinics and research.  

In understanding the molecular tumor biology of the disease, the role of RB protein in 
cell growth and tumor progression is extensively described. Interestingly a little 
known role of RB protein in the survival and differentiation of cerebellar neurons is 
discussed in great detail. The role of viral oncogenes and retinoblastoma family 
proteins is an exciting area that is teased out. The genetics of retinoblastoma is 
described  quite elaborately as well. 

Dr. Govindasamy Kumaramanickavel 
Research Director, Narayana Nethralaya, Bangalore, 

Advisor - Research, Academics and Management, Aditya Jyot Eye Hospital, Mumbai 
India 

Visiting Associate, Ophthalmic Genetics and Clinical Services Branch,  
National Eye Institute, NIH 

USA 
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Review of Clinical Presentations  
of Retinoblastoma 

Onyekonwu Chijioke Godson 
MBBS, FICS 

Nigeria 

1. Introduction 
A retinoblastoma is a neuroblastoma. It is a rare eye tumor of childhood that arises in the 
retina and represents the most common intraocular malignancy of infancy and childhood -1. 
It may occur at any age-2, but most often it occurs in younger children, usually before the 
age of two years. Most affected children are diagnosed before the age of five years-1,3. 
Intraocular tumours may exhibit a variety of growth patterns and is commonly seen in 
advanced countries. Extraocular retinoblastoma is common in developing countries because 
of delay in diagnosis.-4,5. 

In 60% of cases, the disease is unilateral (non hereditary) and the median age at diagnosis is 
two years. Retinoblastoma is bilateral (hereditary) in about 40% of cases with a median age 
at diagnosis of one year-1. Trilateral retinoblastoma is rare and refers to bilateral or 
unilateral retinoblastoma associated with an intracranial primitive neuroectodermal tumor 
in the pineal or suprasellar region-6. The median time interval from diagnosis of 
retinoblastoma to the development of a pineal region tumor was 24 months whereas the 
median time interval for the development of a suprasellar region tumor was 1 month-6. 
Untreated, retinoblastoma is fatal. In the developing countries, retinoblastoma presents with 
advanced disease with resultant 5 year survival of less than 50%-7 whereas patients present 
with intraocular disease in the developed countries due to availability of resources for early 
detection and treatment. The survival rate in these nations has improved from 
approximately 30% in the 1930s to over 90% in the 1990s -8,9. In the middle income 
countries, the survival rate is about 70% -10. Retinoblastoma occurs equally in males and 
females and there is no predilection for any race or any particular eye-11.  

2. What are the common symptoms of retinoblastoma 
a. Leucocoria (white papillary reflex or cat’s eye) is the most common accounting for 

about 60%- 80% of cases.-1,4,5. This is the most common type of presentation where 
there is high level of awareness such as in high income countries 

b. Strabismus occurs in about 20% of cases-1,4  
c. Orbital inflammation is seen in cases of tumour necrosis-4 
d. Proptosis follows orbital invasion. Secondary microbial infections are often present. 

This is a common type of presentation in most developing nations-12 due mainly to 
socioeconomic and cultural limitations resulting in delayed presentation -10 
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Fig. 1. Left leucocoria in a child with retinoblastoma. Courtesy. Wikipedia 

 
Fig. 2. Crossed eye in a child with retinoblastoma. Courtesy. Wikipedia 

 
Fig. 3. Courtesy. www.arquivosdamorte.com 

 
Fig. 4. Courtesy. projectmedishare.wordpress 

Advanced extra ocular retinoblastoma in African and South American children above 

e. Metastatic spread involves the brain/central nervous system, bones (especially skull 
bones and long bones), liver, spleen, Lymph nodes etc. This is worse in undeveloped 
economies due to late presentation and paucity of means of diagnosis -(-1,4,5,12) 
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f. Decrease in visual acuity-12 

  
Fig. 5. Courtesy. inctr.ctisinc.com. 

 
Fig. 6. Courtesy. www.jornallivre.com.br 

3. What are the common signs of retinoblastoma 
The clinical signs-5,12 vary with the stage of the tumour at the time of presentation. 

a. Early intraretinal tumour is a flat lesion which appears transparent or translucent. This 
type is commonly seen in high income countries where increase in awareness and early 
presentation are the norms 

b. Endophytic tumour projects from retinal surface toward the vitreous as a friable mass, 
frequently associated with fine blood vessels on its surface-4. The tumour resembles 
cottage cheese if calcified. Vitreous seeding may be present 

 
Fig. 7. Endophytic tumour. Courtesy. www.retinoblastomainfo.com  
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c. Exophytic tumour. This grows from the retina outward into the subretinal space with 
progressive retinal detachment. It may become a multilobulated mass with overlying 
retinal detachment. As the orbital structures are invaded, proptosis increases. 
Sometimes the grossly detached retina may be visible just behind the clear lens. 
Presence of vitreous hemorrhage may make the fundus hazy. Clinically, they may 
resemble coats disease 

 
Fig. 8. Fundus pictures of Retinoblastoma. Courtesy. journals.cambridge.org 

 
Fig. 9. Large exophytic retinoblastoma with calcification producing exudative retinal 
detachment. Courtesy. Wikimedia commons 

d. Occasionally, a retinoblastoma can assume a diffuse infiltrating feature characterized by 
a relatively flat infiltration of the retina by tumour cells without an obvious mass. In 
such cases, diagnosis may be more difficult and this pattern can simulate uveitis or 
endophthalmitis 

4. Less frequent signs of clinical presentations 
a. Secondary glaucoma with or without buphthalmos-4,13. This is rare. Pain may be a 

feature 
b. Anterior segment invasion-4, 13. Multifocal iris invasion may be associated with 

hyphema and iris neovascularization; painful red eye with pseudohypopyon due to 
tumour seeding into the anterior chamber. This is mostly unilateral involvement with 
no family history.-4 

c. Associated conditions. 13q deletion syndrome has retinoblastoma, dysmorphic features, 
mental retardation which may be associated in some patients-1 
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5. Differential diagnosis of retinoblastoma 
Some patients diagnosed initially with possible retinoblastoma prove, on referral to ocular 
oncologists and radiologists, to have pseudoretinoblastoma-4,5,13 and not retinoblastoma 
The more frequently encountered being 

Persistent hyperplastic primary vitreous  
Coats disease 
Ocular toxocariasis 
Others include: 
Preseptal or orbital cellulitis in extraocular spread 
Cataract 
Retinopathy of prematurity 
Uveitis 
Myelinated nerve fibre, optic nerve glioma, medulloepithelioma 
Organizing vitreous hemorrhage 
High myopia 
High anisometropia 
Retinal detachment 

6. Classifications of retinoblastoma (Rb) 
Several classifications of retinoblastoma have been developed to assist in prediction of globe 
salvage with preservation of useful vision where possible. There are two classifications for 
intraocular retinoblastoma currently in use. 

1. Reese-Ellsworth classification. Originally used to predict visual prognosis of affected 
eyes and globe salvage after external beam radiotherapy. It is still useful to compare 
newer treatment modalities with older ones-5 

Reese-Ellsworth classification of Retinoblastoma 

Group i. Favorable 

a. Solitary tumour less than 4 disc diameter in size at or behind the equator 
b. Multiple tumours, all less than 4 disc diameters in size all at or behind the equator. 

Group ii. Favorable 

a. Solitary tumour, 4 to 10 disc diameters in size at or behind the equator 
b. Multiple tumours , 4 to 10 disc diameters in size behind the equator 

Group iii. Doubtful 

a. Any lesion anterior to the equator 
b. Solitary tumours larger than 10 disc diameters behind the equator 

Group iv. Unfavorable 

a. Multiple tumours, some larger than 10 disc diameters 
b. Any lesion extending to the anterior ora serrata 

Group v. Very Unfavorable 
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a. Massive seeding involving over half of retina 
b. Vitreous seeding 

2. ABC classification of retinoblstoma-5 

To predict the preservation of the eye using all modern therapeutic methods 

Group A. Small tumours <3mm (about 0.1 inch) confined to the retina 
Group B. Larger tumours confined to the retina 
Group C. Localized seeding of the vitreous or under the retina <6.00mm (0.2inch) from the 
original tumour 
Group D. Widespread vitreous or sub retinal seeding which may have total retinal 
detachment 
Group E. No visual potential, eye cannot recover  

Others 

3. Philadelphia Practical Grouping System of Retinoblastoma Based on Clinical Features.-
14 

To quantify retinoblastoma and its associated features without need to refer to complex 
qualification criteria. Proceeding from the lowest to the highest grouping is meant to 
imply worse ocular prognosis. This is a simpler and newer classification to Reese-
Ellsworth. 
 

Group Abbreviations Features success* 
1. T Tumour only# 100% 
2. T+SRF Tumour + subretinal fluid 91% 
3. T + FS  Tumour +focal seeds 

SRS ≤ 3mm from tumor 
VS ≤ 3mm from tumor 

59% 

4. T +DS Tumour +diffuse seeds 
SRS >3mm from tumor 
VS > 3mm from tumor 

12% 

5. High Risk Tumor plus(any one) 
a. Neovascular glaucoma 
b. Opaque media from hemorrhage 
c. Invasion of post laminar optic nerve, choroid 

(<2mm), sclera, orbit or anterior chamber. 

NA 

*success after treatment with systemic chemotherapy with or without local consolidation is defined as 
avoidance of enucleation or need for external beam radiotherapy. 
# Regardless of tumour number, size or location 
DS=Diffuse seeds, FS=Focal seeds, SRF=Sub retinal fluid, SRS=Sub retinal seeds, T= Tumour, 
VS=Vitreous seeds, NA= Not applicable because these patients had primary enucleation. 

4. International retinoblastoma classification 

It is useful in guiding the selection of the most appropriate treatment methods and 
predicting chemo reduction success.-15,16 
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Group Features
A Small tumour ≤3mm

Large tumour >3mm
B Macular ≤3mm to foveola

Juxtapappilary: ≤3mm to disc
Subretinal fluid: ≤3mm from the margin
Focal seeds

C Subretinal seeds ≤3mm
Vitreous seeds ≤3mm
Both subretinal or vitreous seeds ≤3mm
Diffuse seeds.

D Subretinal seeds > 3mm
Vitreous seeds: > 3mm
Both subretinal and vitreous seeds > 3mm

E Extensive retinoblastoma occupying more than 50% or
Neovascular glaucoma or opaque media from hemorrhage to anterior chamber, 
vitreous or subretinal space 

5. Classification encompassing entire spectrum of retinoblastoma disease stages-17.  

This is an internationally proposed work to adopt a uniform staging system in which 
patients are classified according to the extent of the disease and the presence of overt extra 
ocular extension. 

Stage 0. Confined to the retina. Eye treated conservatively. 

Stage 1. Confined to the retina. Eye enucleated, resected histologically. 

Stage 2. Confined to the globe. Eye enucleated, microscopic residual tumour. 

Stage 3. Regional extra ocular spread. a. Overt orbital disease. b. preauricular or cervical 
lymph node extension 

Stage 4. Distant metastasis. 1. Hematogenous metastasis: a. Single lesion. b. Multiple lesions. 
2. Central nervous system (CNS) extension: a. prechiasmatic lesion. b. CNS mass. c. 
Leptomeningeal disease.  

6. Extra-ocular retinoblastoma have 4 major types-4,5.  

a. Optic nerve involvement 
b. Orbital invasion 
c. CNS involvement 
d. Distance metastasis. 

These are rare in developed countries such as the United States of America but 
unfortunately are still common in the developing nations due to delayed presentation and 
lack of access to proper health facility-4.  
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predicting chemo reduction success.-15,16 
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Group Features
A Small tumour ≤3mm

Large tumour >3mm
B Macular ≤3mm to foveola

Juxtapappilary: ≤3mm to disc
Subretinal fluid: ≤3mm from the margin
Focal seeds

C Subretinal seeds ≤3mm
Vitreous seeds ≤3mm
Both subretinal or vitreous seeds ≤3mm
Diffuse seeds.

D Subretinal seeds > 3mm
Vitreous seeds: > 3mm
Both subretinal and vitreous seeds > 3mm

E Extensive retinoblastoma occupying more than 50% or
Neovascular glaucoma or opaque media from hemorrhage to anterior chamber, 
vitreous or subretinal space 

5. Classification encompassing entire spectrum of retinoblastoma disease stages-17.  

This is an internationally proposed work to adopt a uniform staging system in which 
patients are classified according to the extent of the disease and the presence of overt extra 
ocular extension. 

Stage 0. Confined to the retina. Eye treated conservatively. 

Stage 1. Confined to the retina. Eye enucleated, resected histologically. 

Stage 2. Confined to the globe. Eye enucleated, microscopic residual tumour. 

Stage 3. Regional extra ocular spread. a. Overt orbital disease. b. preauricular or cervical 
lymph node extension 

Stage 4. Distant metastasis. 1. Hematogenous metastasis: a. Single lesion. b. Multiple lesions. 
2. Central nervous system (CNS) extension: a. prechiasmatic lesion. b. CNS mass. c. 
Leptomeningeal disease.  

6. Extra-ocular retinoblastoma have 4 major types-4,5.  

a. Optic nerve involvement 
b. Orbital invasion 
c. CNS involvement 
d. Distance metastasis. 

These are rare in developed countries such as the United States of America but 
unfortunately are still common in the developing nations due to delayed presentation and 
lack of access to proper health facility-4.  
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7. Racial differences in the time of presentations of retinoblastoma patients 
An African series recorded a substantial delay before first presentation compared to what 
obtained in Europe-11,18. Essentially, many that delayed in African setting would have 
sought alternative treatments from spiritualists, traditional healers or quacks. Financial 
difficulties in funding treatment also caused delays-18. The series found a mean lag time 
value of 10 months in the study while the study done in London and Argentina showed lag 
time of 8 weeks-19 and 6 months-20 respectively. It was concluded that prolonged lag time 
is associated with higher risk of extra-ocular spread-19, 20. Also, in the same study, disease 
staging at presentation was found to be more advanced in the African series and in India-21 
compared to what obtains in Europe and America. In Argentina, over 60% of the cases 
recorded had intraocular disease-20 when compared with African series-7 where majority 
presented with large extraocular, sometimes fungating disease(Figures 3 ). In developing 
countries, retinoblastoma is unfortunately accompanied by a high mortality rate due to a 
significantly delayed diagnosis made at advanced stages of the disease-18,21,22 

8. Are there differences in presentation in children and adults? 
Anterior segment invasion by diffuse retinoblastoma is seen in older children with average 
age of 6 years as compared to 18 months in typical cases-4,5. This is unilateral and 
nonhereditary. Retinoblastoma in adults is very rare. Age at presentation was from 20 years 
and above among the 23 recorded cases in literature.-3 Clinical presentations were 
essentially different compared to those in children- 3. 

9. Laterality 
Bilaterally affected children would carry one germinal mutation from conception and 
thereafter acquire the second mutation necessary for the expression of Rb. Unilaterally 
affected children would have to acquire two somatic mutations and this would explain why 
they would present at a later age than bilateral patients. The bilateral retinoblastoma patient 
present earlier in time than does unilateral retinoblastoma patients -23. Within early or 
advanced intraocular disease categories, the unilateral retinoblastoma patient will present 
later than does the bilateral. A series found that bilaterally affected children were diagnosed 
at an average age of 13months compared to the average of 24months for unilateral Rb 
patients-23. This average age for diagnosis of unilateral retinoblastoma is higher in 
developing nations-18,21 because of late presentation.  

Trilateral retinoblastoma patients manifest either as unilateral or bilateral diseases and are 
characterized by early onset and predisposition to developing secondary non-ocular, 
intracranial malignancies -24, 25. Most cases of trilateral retinoblastoma, which occur in 
about 8% of heritable retinoblastoma-25 are found in the midline pineal region, but they can 
also occur in the suprasellar and parasellar regions. These tumors usually occur several 
years after successful management of ocular retinoblastomas without evidence of direct 
extension or distant metastasis. -26. The nonocular tumors frequently present include 
intracranial primitive neuroectodermal tumors and sarcomas -27.  

It is possible that many cases of pineoblastoma were previously misinterpreted as metastatic 
retinoblastoma to the brain. Unlike other second tumors, the pineoblastoma usually occurs 
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during the first 5 years of life-25 whereas second tumors often take many decades to 
develop, the incidence increasing with time, with a median age of17years (10- 32years)-28. 
The mean interval from the time of diagnosis of retinoblastoma to discovery of the 
intracranial tumor was 21.5 months-29. Unfortunately, pineoblastoma is usually fatal. 
Hence, patients with bilateral or familial retinoblastoma are advised to have screening for 
pineoblastoma using computed tomography or magnetic resonance imaging of the brain 
twice yearly for the first 5 years of life. In some cases the intracranial tumor preceded the 
diagnosis of retinoblastoma.-25,30. 

Unilateral intraocular retinoblastoma associated with intracranial tumor was more likely to 
occur in patients with suprasellar region tumors than pineal region tumors (P < 0.015). The 
median survival after the diagnosis of an intracranial tumor was 6 months regardless of the 
location of the intracranial tumor. For patients who received no treatment for the 
intracranial tumor the median survival was 1 month whereas it was 8 months for those who 
received treatment. Children who were asymptomatic at the time of diagnosis of the 
intracranial tumor had a better overall survival than those who were symptomatic (P = 
0.002).-6. Tumors of the suprasellar region present earlier than tumors of the pineal region 
after the diagnosis of intraocular tumors. The intracranial tumour represents ectopic foci of 
retinoblastoma rather than metastatic spread-31 

 
Fig. 10. Aspect of trilateral retinoblastoma on MRI. Courtesy. Wikimedia commons 

10. A short mechanistic explanation for the clinical manifestations 
Leucocoria is caused by massive replacement of vitreous by tumor and altered red pupillary 
reflex.  

Strabismus is due to loss of central vision following retinal detachment, vitreous 
hemorrhage, glaucoma or optic nerve involvement singly or in combination. 

Proptosis is as a result of tumour growth with displacement of normal tissues or seeding 
into the tissues and consequent enlargement of the tissues. 

Orbital inflammation follows release of toxins from tissue necrosis. 

Mucopurulent or fungating ocular mass results from mixed microbial infections due to 
neglect or mismanagement. 

Convulsions and neurological deficits arise from spinal cord or brain metastasis. 

Palor is due to anemia following bone marrow metastasis, oncogenic drug administration 
and radiotherapy 
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Easy brusability/ bleeding diasthesis are due to low platelet count following bone marrow 
involvement, oncogenic drug use or radiotherapy 

Bone masses following metastasis may produce aches and discomfort 

Headache results from raised intracranial pressure. 

Blindness results from optic nerve involvement, retinal detachment, vitreous hemorrhage  

11. Clinical diagnosis of retinoblastoma 
Diagnosis is made from history, physical, histological and radiological examinations; blood 
chemistry, cerebrospinal fluid and marrow aspiration analysis. 

1. Intraocular tumours 
a. Well dilated fundoscopy is mandatory to visualize tumours and classify the 

condition. It is done under general anesthesia 
b. Indirect ophthalmoscopy with scleral indentation after full dilatation of both eyes is 

a must. Tumours anterior to the equator are visualized 22. This method determines: 
 The unilateral or bilateral nature of the lesions 
 The number of tumors 
 Their position in the retina (posterior pole and anterior retina) 
 The tumor size (diameter and thickness) 
 The subretinal fluid and tumor seeds 
 The vitreous seeding: localized or diffuse 
 The anatomical relations with the optic disc and macula. 

All these parameters should be taken into account for grouping the retinoblastoma and for 
making therapeutic decisions - 22. 

c. Ocular ultrasound detects size, location and extent of tumour22 

 
Fig. 11. Ocular ultrasound of large exophytic retinoblastoma. Courtesy. www.retinaatlas.com  

d. Cranial/ orbital computed tomography (CT) scan can detect intraocular 
calcifications and extent of the tumour-22. 

e. Magnetic resonance imaging (MRI) of the brain and orbits is the most sensitive 
means of evaluating for extraocular extension. It gives better delineation of the 
optic nerve and also the pineal area-22,32 
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f. Ultrasound biomicroscopy: provides adequate resolution of retinoblastoma 
anterior to the ora serrata in the ciliary region. Failure to detect anterior tumors 
early can compromise the chances of saving the eye and increase the risk of 
extraocular disease-33 

2. Extraocular tumours 
a. Optic nerve involvement- MRI and histology 

 
Fig. 12. MRI pattern of retinoblastoma with optic nerve involvement (sagittal enhanced T1-
weighted sequence). Courtesy. Wikipedia  

b. Orbital invasion causing proptosis/lid swelling - orbital ultrasound and CT scan.  
c. Central nervous system (CNS) involvement causing brain and spinal cord lesions- 

MRI, CT scan and intracranial pressure.  
d. Metastatic disease-. Abdominal ultrasound detects pathology of the involved 

abdominal organs. During physical examination, Liver, spleen and bone masses 
and enlargements could be palpated. 
Skeletal survey 
Bone marrow assay 
Blood chemistry  
Cerebrospinal fluid analysis and cytology 

e. Non ocular tumours: MRI is the choice in detecting pinealoblastomas especially if a 
contrast material is added 22. 

12. Metastatic retinoblastoma 
Significant differences were found in the occurrence of metastasis: in Low income countries 
(LICs), 32% (range, 12-45%); in lower Middle income countries (MICs), 12% (range, 3-31%) 
and in upper MICs, 9.5% (range, 3-24%; p = 0.04).-34 

An average of 12 months elapsed between initial diagnosis of eye disease and the first signs 
and symptoms of metastasis-35 Those at greatest risk for metastasis show features of 
retinoblastoma invasion beyond the lamina cribrosa in the optic nerve, in the choroid (>2 
mm dimension), sclera, orbit, or anterior chamber-35. Optic nerve invasion was the 
commonest extraocular site of spread-18. Advanced extraocular retinoblastoma correlates 
with longer lag times from the onset of symptoms to the diagnosis-20. A study showed that 
at presentation, the mean patient age was 45 months (range, 13-86 months) and all patients 
with metastatic retinoblastoma had histopathologic or MRI evidence of unilateral 
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extraocular disease characterized by optic nerve involvement, extrascleral extension, or 
both.-36  

When retinoblastoma extends outside the eye, it is difficult to cure, even with sophisticated 
and intense treatments-35,37. The prognosis for survival is very poor in developing nations 
where these treatment modalities are scarce. 

Of the 71 orbital recurrence cases followed up over a period of 3–208 months (mean 34.8 
months) in a study, 60 patients developed metastatic disease (85%), and 53 of the 71 patients 
died from metastatic retinoblastoma (75%).-38. In developing countries, the diagnosis of 
retinoblastoma is frequently made at later stages of the disease when extraocular 
dissemination has already occurred; therefore, ocular and patient survival rates are lower in 
these countries than in developed countries-34. Metastatic spread is uncommon in 
developed countries because of early detection and proper therapy-8. 

Presenting symptoms of metastasis -38,39 

Eye: eye lid swelling, visible mass in the orbit, ill fitting prosthesis, Ocular deviation, 
bleeding socket. 

Constitutional signs: lethargy, somnolence, fever, irritability, headache, anorexia, vomiting. 

Bone: Pains in the back or limbs 

Presenting signs of metastasis-38 ,39 

Focal neurologic deficit/seizure/nystagmus 

Mass on the bone, body, eye or orbit (proptosis) 

Pallor, Easy bruisability eyelid ecchymosis, eyelid swelling involving contra lateral eye. 

Nose bleed 

Hepatosplenomegaly 

 

 

 
 

Fig. 13. Metastatic retinoblastoma in an African child. Courtesy. righthealth.com 
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Fig. 14. Retinoblastoma with extension into choroid. Courtesy. www.thirdeyehealth.com 

13. Useful tests to determine the extent of metastatic disease[40] 
MRI of brain and orbit 

Computed tomography scan of the brain and spine cord 

Lumber puncture for CSF analysis 

Electoencephalogram 

Bone marrow aspiration 

Bone scans 

Automated blood chemistry analysis 

Histopathology of enucleated/ exenterated eye, orbital biopsy, optic nerve and extrascleral 
extension. 

14. Are some patients at particular risk? 
1. Children with the heritable form of retinoblastoma are at high risk for developing 

subsequent malignancies, most commonly sarcomas. This risk is greater for those 
children with the heritable form of the disease who were exposed to ionizing 
radiation at age <1 year-41. The most frequent non ocular tumors encountered are 
osteogenic sarcomas of the skull and long bones, soft tissue sarcomas, cutaneous 
melanomas, brain tumors, and lung and breast cancer. Patients who survive a second 
tumor are at risk for a third, fourth and even fifth non ocular tumor-42. Subsequent 
malignant neoplasms are a major cause of premature death in survivors of hereditary 
retinoblastoma-43 
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2. Patients presenting with high-risk pathology features, such as microscopic tumor 
invasion of the postlaminar optic nerve (i.e. beyond the lamina cribrosa), choroid, or 
sclera, are at higher risk of extraocular retinoblastoma relapse. However, the relapse 
rate is different among the different groups. Such cases are more frequent in developing 
countries, occurring in more than 50% of children in some middle income countries 
compared to developed countries-10 

3. Patients presenting with glaucoma and or buphthalmia have a significantly higher risk 
for the occurrence of pathology risk factors (PRF) including those resulting in 
microscopically residual disease. Major choroidal invasion and postlaminar optic nerve, 
scleral extension and possibly anterior segment invasion were considered PRFs-44,45 

15. Recurrence of retinoblastoma tumours 
a. Intraocular tumors may regrow after aggressive local and systemic therapy. Following 

chemoreduction and focal consolidation, tumor recurrence was found in 18% of tumors 

at 7 years and the most important factor predictive of recurrence was increasing tumor 
thickness-14. 

b. The diagnosis of orbital tumor recurrence was made between 1 and 24 months after 
enucleation in a study (mean 6 months), with 69 of the 71 patients (97%) being 
diagnosed within the first 12 months-38. 

c. Relapse. When analyzing patterns of failure in the 19 eyes that relapsed following 
external beam radiotherapy, a total of 28 failure sites were identified and consisted of 
progression to vitreous seeds in 7(25% of failure sites), recurrences from previously 
existing tumours in 10cases (36% of failure sites) and development of new tumours in 
previously uninvolved retina in 11 instances (39% of failure sites)-40.  

 

 

 
 

 

Fig. 15. Recurrent right retinoblastoma after enucleation in a 2 year old child with advanced 
bilateral retinoblastoma. Courtesy. Jacky Adura 
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16. Regression of retinoblastoma tumours 
Retinoblastoma shows a variety of regression patterns. 

a. Spontaneous regression of retinoblastoma is possible and may be asymptomatic 
resulting in the development of a benign retinocytoma or it can be associated with 
inflammation and ultimately phthisis bulbi-5 

b. In evaluating retinoblastoma regression patterns following chemoreduction and 
adjuvant therapy, regression patterns included type 0 (no remnant), type 1 (calcified 
remnant), type 2 (noncalcified remnant), type 3 (partially calcified remnant), and type 4 
(flat atrophic scar). The retinoblastoma assumes a smaller size with stable margins and 
frequently, some degree of calcification-46. Some tumors become completely calcified 
whereas others have minimal or no calcification. Following chemoreduction, most small 
retinoblastomas (3mm or less) result in a flat scar, intermediate tumors (3- 8mm) in a 
flat or partially calcified remnant and large tumors (8mm or more) in a more completely 
calcified remnant-46.  

17. Retinoblastoma mortality – Prognosis 
Mortality from retinoblastoma is increased in metastasis-35, trilateral cases -25 and second 
malignant neoplasms-47, the last two are seen mostly in association with bilateral 
retinoblastoma-48 and in sporadic unilateral cases that are hereditary-49 

If left untreated, the mortality rate of retinoblastoma is about 99%. The major factor in 
mortality rates for patients with retinoblastoma is whether or not the tumor is confined to 
the eye. Extraocular spread increases mortality rates markedly. If there are tumor cells at the 
cut end of the optic nerve (with an enucleation), the mortality rate is much higher. Even if 
tumor is in the lamina cribrosa but the cut end of the optic nerve is free of tumor, mortality 
rates are elevated. However, when tumor is confined to the globe when enucleated, survival 
rates are greater than 92%-48  

In evaluating long-term visual outcome following chemoreduction, the clinical factors that 
predicted visual acuity of 20/40 or better were a tumor margin at least 3 mm from the 
foveola and optic disc and an absence of subretinal fluid-22,50. Retaining visual function 
depends on the tumor size and location-48. 

Over 95% of children with retinoblastoma in the United States and other medically 
developed nations survive their malignancy, whereas approximately 50% survive 
worldwide-22. This discrepancy is largely due to earlier detection in the United States and 
developed nations when the tumor is confined to the eye, whereas in underdeveloped 
regions, retinoblastoma is often detected after it has invaded the orbit or brain-51. The 
survival rate of patients with retinoblastoma is low in Nigerian, an underdeveloped 
nation, due to high mortality associated with late presentation and poor facility for 
detection and treatment-52 unlike in developed countries. Again, in some African or 
Asian countries, the survival rate is virtually zero, because most patients do not complete 
therapy or are lost to follow-up-53. The mean interval from diagnosis of the ocular tumor 
to death was 46 months and from diagnosis of the intracranial tumor to death was 17 
months-29 
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compared to developed countries-10 

3. Patients presenting with glaucoma and or buphthalmia have a significantly higher risk 
for the occurrence of pathology risk factors (PRF) including those resulting in 
microscopically residual disease. Major choroidal invasion and postlaminar optic nerve, 
scleral extension and possibly anterior segment invasion were considered PRFs-44,45 

15. Recurrence of retinoblastoma tumours 
a. Intraocular tumors may regrow after aggressive local and systemic therapy. Following 

chemoreduction and focal consolidation, tumor recurrence was found in 18% of tumors 

at 7 years and the most important factor predictive of recurrence was increasing tumor 
thickness-14. 

b. The diagnosis of orbital tumor recurrence was made between 1 and 24 months after 
enucleation in a study (mean 6 months), with 69 of the 71 patients (97%) being 
diagnosed within the first 12 months-38. 

c. Relapse. When analyzing patterns of failure in the 19 eyes that relapsed following 
external beam radiotherapy, a total of 28 failure sites were identified and consisted of 
progression to vitreous seeds in 7(25% of failure sites), recurrences from previously 
existing tumours in 10cases (36% of failure sites) and development of new tumours in 
previously uninvolved retina in 11 instances (39% of failure sites)-40.  

 

 

 
 

 

Fig. 15. Recurrent right retinoblastoma after enucleation in a 2 year old child with advanced 
bilateral retinoblastoma. Courtesy. Jacky Adura 
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16. Regression of retinoblastoma tumours 
Retinoblastoma shows a variety of regression patterns. 

a. Spontaneous regression of retinoblastoma is possible and may be asymptomatic 
resulting in the development of a benign retinocytoma or it can be associated with 
inflammation and ultimately phthisis bulbi-5 

b. In evaluating retinoblastoma regression patterns following chemoreduction and 
adjuvant therapy, regression patterns included type 0 (no remnant), type 1 (calcified 
remnant), type 2 (noncalcified remnant), type 3 (partially calcified remnant), and type 4 
(flat atrophic scar). The retinoblastoma assumes a smaller size with stable margins and 
frequently, some degree of calcification-46. Some tumors become completely calcified 
whereas others have minimal or no calcification. Following chemoreduction, most small 
retinoblastomas (3mm or less) result in a flat scar, intermediate tumors (3- 8mm) in a 
flat or partially calcified remnant and large tumors (8mm or more) in a more completely 
calcified remnant-46.  

17. Retinoblastoma mortality – Prognosis 
Mortality from retinoblastoma is increased in metastasis-35, trilateral cases -25 and second 
malignant neoplasms-47, the last two are seen mostly in association with bilateral 
retinoblastoma-48 and in sporadic unilateral cases that are hereditary-49 

If left untreated, the mortality rate of retinoblastoma is about 99%. The major factor in 
mortality rates for patients with retinoblastoma is whether or not the tumor is confined to 
the eye. Extraocular spread increases mortality rates markedly. If there are tumor cells at the 
cut end of the optic nerve (with an enucleation), the mortality rate is much higher. Even if 
tumor is in the lamina cribrosa but the cut end of the optic nerve is free of tumor, mortality 
rates are elevated. However, when tumor is confined to the globe when enucleated, survival 
rates are greater than 92%-48  

In evaluating long-term visual outcome following chemoreduction, the clinical factors that 
predicted visual acuity of 20/40 or better were a tumor margin at least 3 mm from the 
foveola and optic disc and an absence of subretinal fluid-22,50. Retaining visual function 
depends on the tumor size and location-48. 

Over 95% of children with retinoblastoma in the United States and other medically 
developed nations survive their malignancy, whereas approximately 50% survive 
worldwide-22. This discrepancy is largely due to earlier detection in the United States and 
developed nations when the tumor is confined to the eye, whereas in underdeveloped 
regions, retinoblastoma is often detected after it has invaded the orbit or brain-51. The 
survival rate of patients with retinoblastoma is low in Nigerian, an underdeveloped 
nation, due to high mortality associated with late presentation and poor facility for 
detection and treatment-52 unlike in developed countries. Again, in some African or 
Asian countries, the survival rate is virtually zero, because most patients do not complete 
therapy or are lost to follow-up-53. The mean interval from diagnosis of the ocular tumor 
to death was 46 months and from diagnosis of the intracranial tumor to death was 17 
months-29 
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18. Late adverse effects of therapy for retinoblastoma[54,55] 
1. Patients who received external beam irradiation are at risk for the development of 

secondary tumors within and outside the field of treatment. Radiation optic neuropathy 
and retinopathy can occur. Patients can experience ocular surface abnormalities, severe 
dry eye and cataracts. Radiation can also affect growing orbital bones, producing facial 
hypoplasia and contracted socket. Pituitary dysfunction may occur. 

2. Chemotherapeutic agents are known to produce numerous potential side-effects. These 
include lowered immune status, increased incidence of secondary leukemia, infertility; 
auditory, cardiac, gonadal and renal dysfunction.  

3. Cryotherapy can cause retinal thinning and retinal holes. This can be followed by 
retinal detachment, vitreous hemorrhages, tumor seeding and cataract. 

4. Laser treatments can be associated with iris burns, vitreous hemorrhage, and tumor 
break with vitreous seeding. 

5. Intra arterial chemotherapy: Risks associated with general anaesthesia, bleeding from 
arterial puncture, hematoma or arterial thrombus; drop in vision or total loss of vision 
in the affected eye, 3rd nerve palsy and sometimes risk of cerebrovascular accident 

6. Psychological/Visual effects. The child may be blind from enucleation or from the 
disease itself. The child may present with low self esteem, limited social function and 
limited educational attainment.  
Another study showed that vitreoretinal complications occurred in 6.8% of patients 
undergoing therapy for retinoblastoma. These included retinal tears, rhegmatogenous 
and tractional retinal detachment, subretinal fibrosis, vitreous traction bands, preretinal 
fibrosis and pseudo-vitreous seeding. They were more often seen when systemic 
chemotherapy was combined with external beam radiation, cryotherapy and local 
chemotherapy-56. 

19. Complication of retinoblastoma 
Metastasis to the orbit, the optic nerve and then to the central nervous system. Other distant 
spread may involve the abdominal organs, bones and lymph nodes.  

Loss of eye in enucleation 

Blindness 

Cosmetic deformity from enucleation, prosthesis and potential orbital hypoplasia secondary 
to external beam radiation therapy. 

Second malignancy. This is mainly seen in patients with bilateral retinoblastoma who 
receive external beam radiation therapy-55. 

Life threatening especially in advanced cases. 
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18. Late adverse effects of therapy for retinoblastoma[54,55] 
1. Patients who received external beam irradiation are at risk for the development of 

secondary tumors within and outside the field of treatment. Radiation optic neuropathy 
and retinopathy can occur. Patients can experience ocular surface abnormalities, severe 
dry eye and cataracts. Radiation can also affect growing orbital bones, producing facial 
hypoplasia and contracted socket. Pituitary dysfunction may occur. 

2. Chemotherapeutic agents are known to produce numerous potential side-effects. These 
include lowered immune status, increased incidence of secondary leukemia, infertility; 
auditory, cardiac, gonadal and renal dysfunction.  

3. Cryotherapy can cause retinal thinning and retinal holes. This can be followed by 
retinal detachment, vitreous hemorrhages, tumor seeding and cataract. 

4. Laser treatments can be associated with iris burns, vitreous hemorrhage, and tumor 
break with vitreous seeding. 

5. Intra arterial chemotherapy: Risks associated with general anaesthesia, bleeding from 
arterial puncture, hematoma or arterial thrombus; drop in vision or total loss of vision 
in the affected eye, 3rd nerve palsy and sometimes risk of cerebrovascular accident 

6. Psychological/Visual effects. The child may be blind from enucleation or from the 
disease itself. The child may present with low self esteem, limited social function and 
limited educational attainment.  
Another study showed that vitreoretinal complications occurred in 6.8% of patients 
undergoing therapy for retinoblastoma. These included retinal tears, rhegmatogenous 
and tractional retinal detachment, subretinal fibrosis, vitreous traction bands, preretinal 
fibrosis and pseudo-vitreous seeding. They were more often seen when systemic 
chemotherapy was combined with external beam radiation, cryotherapy and local 
chemotherapy-56. 

19. Complication of retinoblastoma 
Metastasis to the orbit, the optic nerve and then to the central nervous system. Other distant 
spread may involve the abdominal organs, bones and lymph nodes.  

Loss of eye in enucleation 

Blindness 

Cosmetic deformity from enucleation, prosthesis and potential orbital hypoplasia secondary 
to external beam radiation therapy. 

Second malignancy. This is mainly seen in patients with bilateral retinoblastoma who 
receive external beam radiation therapy-55. 

Life threatening especially in advanced cases. 
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1. Introduction 
Retinoblastoma accounts for 6% of pediatric malignancies under the age of 5 years in the 
United States, (Broaddus et al., 2008) and epidemiological data suggest that the incidence is 
standard across populations (Kivelä, 2009). Despite its rarity, observations about the 
pathogenesis of this disease have enhanced our understanding of genetic cancer syndromes. 
Germinal or hereditary cases comprise approximately 40% of retinoblastoma cases, and all 
patients with the germinal RB1 mutation are at risk for secondary malignancies. According 
to recent reports, some retinoblastoma patients exhibit varying degrees of mosaicism for the 
RB1 mutation, allowing them to develop second primary malignancies in addition to those 
with standard hereditary retinoblastoma. These cancers occur in various anatomic locations 
such as the skull and long bones, soft tissues, skin, nasal cavity, brain, lung, and breast. The 
pattern of development and risk for these tumors are heavily influenced by the methods of 
treatment for retinoblastoma, which have shifted from enucleation to external-beam 
radiation to systemic chemotherapy with focal treatments. Investigations of the benefits of 
intra-arterial chemotherapy are ongoing with the hopes of reducing the morbidities 
associated with systemic therapy. Due to these improving treatment techniques, 10-year 
survival rates of primary retinoblastoma have been among the highest of all childhood 
cancers at greater than 92% in the United States and other developed countries since 1975 
(Kaatsch, 2010; Linabery & Ross, 2008). Secondary malignancies have thus become an 
increasingly significant topic of interest as they are the leading cause of death of germinal 
retinoblastoma survivors in the United States. 

2. History 
The number of retinoblastoma survivors and their offspring increased during the mid-
twentieth century as methods of detection and treatment regimens improved. This increased 
survival greatly enhanced insight into the pathology of retinoblastoma, including the 
identification of the somatic and germ-line mutation variants of sporadic retinoblastoma 
(Albert, 1987). Examination of the differences between unilateral and bilateral disease 
prompted the two-hit model of retinoblastoma by Knudson in 1971 (Knudson, 1971). This 
proposal led to the realization that hereditary patients carry a germinally inactivated RB1 
allele in all cells of the body before somatically suffering inactivation of the normal allele in 



Retinoblastoma – An Update on Clinical,  
Genetic Counseling, Epidemiology and Molecular Tumor Biology 

 

22

[54] Jenkinson H. Chemotherapy for retinoblastoma. Workshop: Retinoblastoma- 2011 and 
beyond. AAPOS2011. San Diego 

[55] Tawansy KA, Samuel MA, Shammas M, Murphree AL. Vitreoretinal complications of 
retinoblastoma treatment. Retina. 2006 Sep; 26(7 Suppl):S47-52. 

2 

Second Malignancies in Retinoblastoma:  
The Real Problem 

Basil K. Williams Jr. and Amy C. Schefler 
Bascom Palmer Eye Institute, Department of Ophthalmology,  

University of Miami Miller School of Medicine 
USA 

1. Introduction 
Retinoblastoma accounts for 6% of pediatric malignancies under the age of 5 years in the 
United States, (Broaddus et al., 2008) and epidemiological data suggest that the incidence is 
standard across populations (Kivelä, 2009). Despite its rarity, observations about the 
pathogenesis of this disease have enhanced our understanding of genetic cancer syndromes. 
Germinal or hereditary cases comprise approximately 40% of retinoblastoma cases, and all 
patients with the germinal RB1 mutation are at risk for secondary malignancies. According 
to recent reports, some retinoblastoma patients exhibit varying degrees of mosaicism for the 
RB1 mutation, allowing them to develop second primary malignancies in addition to those 
with standard hereditary retinoblastoma. These cancers occur in various anatomic locations 
such as the skull and long bones, soft tissues, skin, nasal cavity, brain, lung, and breast. The 
pattern of development and risk for these tumors are heavily influenced by the methods of 
treatment for retinoblastoma, which have shifted from enucleation to external-beam 
radiation to systemic chemotherapy with focal treatments. Investigations of the benefits of 
intra-arterial chemotherapy are ongoing with the hopes of reducing the morbidities 
associated with systemic therapy. Due to these improving treatment techniques, 10-year 
survival rates of primary retinoblastoma have been among the highest of all childhood 
cancers at greater than 92% in the United States and other developed countries since 1975 
(Kaatsch, 2010; Linabery & Ross, 2008). Secondary malignancies have thus become an 
increasingly significant topic of interest as they are the leading cause of death of germinal 
retinoblastoma survivors in the United States. 

2. History 
The number of retinoblastoma survivors and their offspring increased during the mid-
twentieth century as methods of detection and treatment regimens improved. This increased 
survival greatly enhanced insight into the pathology of retinoblastoma, including the 
identification of the somatic and germ-line mutation variants of sporadic retinoblastoma 
(Albert, 1987). Examination of the differences between unilateral and bilateral disease 
prompted the two-hit model of retinoblastoma by Knudson in 1971 (Knudson, 1971). This 
proposal led to the realization that hereditary patients carry a germinally inactivated RB1 
allele in all cells of the body before somatically suffering inactivation of the normal allele in 



Retinoblastoma – An Update on Clinical,  
Genetic Counseling, Epidemiology and Molecular Tumor Biology 24

a retinal cell or cells. Without the tumor suppressive activity of a functional pRB, these 
patients become susceptible to developing second nonocular cancers. Before the 1970s, the 
majority of new malignancies in survivors of retinoblastoma arose in the prior radiation 
fields, and could be labeled as radiation-induced neoplasias (Zimmerman, 1985). Secondary 
tumors arising from non-irradiated areas were initially reported by Jensen and Miller 
(Jensen & Miller, 1971) in 1971. In 1976 Abramson et al (Abramson, 1976) demonstrated the 
association of the risk of nonocular cancers with heritable retinoblastoma. Jakobiec et al. 
(Jakobiec et al., 1977) and Bader et al. (Bader et al., 1980) are responsible for the initial 
identification of trilateral retinoblastoma, the occurrence of a tumor in the pineal gland or 
parasellar region in addition to having hereditary retinoblastoma. Subsequently, the types of 
second cancers, risk factors for development of second cancers, and survival after 
development of second cancers have been extensively reviewed. 

3. Epidemiology 
Survivors of retinoblastoma who carry the RB1 mutation are not at an increased risk of dying 
from any cause when compared to those who have not had retinoblastoma, with the exception 
of second non-ocular cancers. The incidence of secondary malignancies in germinal 
retinoblastoma survivors has been the topic of study in many reports, (Abramson et al., 2001; 
Eng et al., 1993; Fletcher et al., 2004; Kleinerman et al., 2005; MacCarthy et al., 2009; Marees et 
al., 2008; Moll et al., 1997; Wong et al., 1997; & Yu et al., 2009) but the variance of sample size 
and study design in these reports has made interpretation of the cumulative incidence 
difficult. Using reported cumulative risk rates from sizeable studies with appreciable long-
term follow-up, incidence rates are approximately 0.5% to 1% per year. These are gross 
estimates used for comparison across studies (Fletcher et al., 2004). Long-term follow-up of a 
large cohort of 1,601 retinoblastoma survivors in the United States revealed a cumulative risk 
of a second cancer among hereditary patients of 36% at 50 years compared to only 5.7% in 
patients with sporadic retinoblastoma (Kleinerman et al., 2005). Similar results were observed 
in a large cohort of 1927 retinoblastoma survivors in Britain with a cumulative overall 
incidence of second cancer among hereditary patients of 43% at 50 years compared to only 
4.9% in nonhereditary retinoblastoma survivors (MacCarthy et al., 2009). 

Epidemiologic evidence has indicated that incidence rates may vary based on the treatment 
received by the patient and the age at which it is received. It has been well documented that 
patients who were irradiated for retinoblastoma have a higher incidence of secondary 
malignancies than those who were not irradiated. Furthermore, 50% of patients who 
developed retinoblastoma within the first month of life and were treated with radiotherapy 
developed second cancers by 24 years of age (Abramson et al., 2002a). The incidence of 
retinoblastoma has remained stable over the last 30 years in the United States, (Broaddus et 
al., 2008) but the cumulative incidence of new cancers has declined as the dosage and use of 
radiotherapy continues to decrease (Kleinerman et al., 2005). As new and better therapies 
are developed this trend is likely to continue. 

4. Types of second tumors 
4.1 Benign 

In a survey of 898 retinoblastoma survivors, Li et al. (Li et al., 1997) reported a surprising 
number of lipomas in patients with this hereditary disease. Rieder et al. (Rieder et al., 1998) 
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futher promoted the idea that a predisposing RB1 gene mutation may play a role in the 
development of lipomas in retinoblastoma patients, by demonstrating the recurrent loss of 
the same RB1 allele in two different lipomas in the same patient. Others have reported a 
genetic linkage between a specific RB1 mutation and the development of multiple lipomas, 
postulating that there is a linked polymorphic allele which acts as a modifying factor by 
affecting expression of the RB1 gene mutation (Genuardi et al., 2001). These lipomas, when 
found in hereditary retinoblastoma patients, are preferentially located on the face, neck, 
shoulders, and upper chest (Genuardi et al., 2001). Li et al. (Li et al., 1997) additionally, 
found twice as many patients with hereditary retinoblastoma and lipomas developed 
secondary malignancies when compared to those without lipomas. These results suggest 
that the presence of lipomas may indicate an elevated second cancer risk and that certain 
germline mutations in the RB1 gene may predispose the patient to both lipomas and 
secondary tumors. This finding may have future implications on follow up and screening of 
retinoblastoma survivors for second malignancies. 

4.2 Malignant 

The most common second malignancies appear to be closely related to the initial method of 
treatment for retinoblastoma. In the United States and the Netherlands, where external 
beam radiation was commonly used as primary therapy, osteosarcomas of the skull and 
long bones, soft tissue sarcomas, cutaneous melanomas, brain tumors including trilateral 
retinoblastoma, tumors of the nasal cavity, Hodgkin’s disease, lung cancer, and breast 
cancer predominate (Kleinerman et al., 2005; MacCarthy et al., 2009; Marees et al., 2008; 
Wong et al., 1997). In Britain, where the majority of retinoblastoma survivors did not 
undergo external beam radiation, epithelial cancers were more common, especially as 
follow-up extended into the seventh decade (Fletcher et al., 2004). As trends in treatment 
continue to change and the length of follow-up continues to increase, the rate of bone and 
soft tissue cancer development may decline while the rate of epithelial cancers are likely to 
increase. 

Studies on the development of additional tumors (third, fourth and fifth) in survivors of 
retinoblastoma and second malignancies have been performed, although without 
consistent results (Abramson et al., 2001, Marees et al., 2010). Epidemiologically, 
Abramson et al. (Abramson et al., 2001) demonstrated an incidence rate of approximately 
2% per year from the time of diagnosis of the second malignancy. Marees et al. (Marees et 
al., 2010) reported an 8-fold increase in the risk for a third primary neoplasm compared to 
the general population. The latency period decreases as each additional cancer is 
diagnosed. Historically, male retinoblastoma survivors were reported to have a higher 
incidence of third malignancies, primarily because females had an increased overall 
mortality rate from second malignancies (Abramson et al., 2001; Eng et al., 1993). More 
recent studies, however, have no longer identified an increase in female mortality from 
second malignancies (Marees et al., 2009; Yu et al., 2009). Abramson et al. (Abramson et 
al., 2001) reported a predictable pattern for third, fourth, and fifth malignancy 
development based on location of the second tumor. In that study, patients with second 
malignancies of the skin or skull were more likely to develop an additional tumor in the 
skin and skull, respectively. Marees et al. (Marees et al., 2010) did not find this predictable 
pattern in a Dutch cohort.  
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4.3 Trilateral retinoblastoma 

Trilateral retinoblastoma is a well-recognized syndrome that consists of unilateral or 
bilateral retinoblastoma associated with an intracranial primitive neuroectodermal tumor. 
The intracranial mass is often located in the pineal region, but may also be a suprasellar or 
parasellar tumor. A specific subset of patients are more likely to develop these lesions 
including those with a family history of retinoblastoma, bilateral disease, diagnosis within 
the first 6 months of life, and prior treatment with external beam radiation. Reviews of 
published cases of trilateral retinoblastoma from 1966 through 1998 and 1977 through 1997 
demonstrated a poor prognosis with a median survival of 6 to 9 months (Kivelä, 1999, 
Paulino, 1999). More recently, a small series from Brazil corroborated the dismal prognosis 
by reporting a median survival of 10 months (Antoneli et al., 2007). As such, these tumors 
are the most frequent cause of death in retinoblastoma survivors between the ages of 5 to 10 
years (Blach et al., 1994). However, promising new studies indicate that treatment of 
trilateral retinoblastoma with intensive chemotherapy may offer an improved prognosis 
(Dimaras et al., 2011; Dunkel et al., 2009). 

The incidence of trilateral retinoblastoma has decreased recently, but the underlying cause 
for this shift remains controversial. Shields et al. (Shields et al., 2001) suggested that 
chemoreduction therapy may reduce the incidence of pineoblastoma. Of the 99 at risk 
patients treated with chemoreduction in that study, none developed pineoblastoma. 
However, 1 of 18 (5.5%) at risk patients not treated with chemoreduction developed 
trilateral retinoblastoma, which is consistent with the rate of development in other 
published series. None of the patients in the chemoreduction group were treated with 
radiotherapy, prompting some to suggest that the declining incidence of pineoblastomas 
may be due to the declining use of external-beam radiation therapy (Moll et al., 2002). An 
analysis of the published literature by Woo et al. in 2010 reported an approximately equal 
number of pinealomas in irradiated patients and those who were not irradiated, suggesting 
that radiation therapy may not play as significant a role in trilateral retinoblastoma as 
previously suspected (Woo & Harbour, 2010). Additional studies are needed to elucidate the 
relationship between chemoreduction and trilateral retinoblastoma.  

It is important to note that the classification of these tumors as a second malignancy as 
opposed to a variant of the primary tumor is controversial. They often cannot be 
differentiated from retinoblastoma histologically and have occasionally been documented to 
occur prior to the development of ocular manifestations in some patients (Jurkiewicz et al., 
2009; Moll et al., 2001) For these reasons, some studies have not included trilateral 
retinoblastoma as a second malignancy, but the classification has varied over the years 
causing some discrepancy in the literature.  

4.4 Independent second non-ocular retinoblastoma 

Soh et al. (Soh et al., 2011) reported a case of an independent retinoblastoma located in the 
ovary of a bilateral ophthalmic retinoblastoma survivor. Eighteen years after radiation of the 
right eye and enucleation of the left eye, the patient was found to have a large left ovarian 
tumor involving the fallopian tube, mesentery, and lymph nodes. Histologically, the 
concurrent presence of Homer Wright and Flexner-Wintersteiner rosettes confirmed the 
identification as retinoblastoma. Additionally, molecular analysis demonstrated mutations 
of both RB1 alleles, but a different pattern of post-RB1 mutational events from the tumors in 
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the eye in this patient. This difference suggests that the ovarian tumor was of a separate 
clonal origin from the original eye tumor. While the reasons for retinoblastoma arising 
ectopically in ovarian tissue are unclear, primitive neuroectodermal tumors (trilateral 
retinoblastoma) have been documented as second malignancies in survivors of 
retinoblastoma. 

5. Risk factors for the development of second malignancies 
5.1 Rb1 mutation 

Studies have indicated that all retinoblastoma survivors who develop second malignancies 
carry the germinal RB1 mutation, which inactivates the tumor suppressor gene that is 
expressed in all adult tissues. The protein encoded by RB1 functions in multiple cellular 
processes including proliferation, DNA replication, DNA repair, and cell-cycle checkpoint 
control. The timing of initiation of the expression of pRB varies in each cell type, rendering 
patients who carry the RB1 mutation at risk of developing malignancies in nonocular 
tissues. 

Patients who carry the germ-line RB1 mutation (approximately 40% of total retinoblastoma 
patients) have bilateral disease in up to 85% of cases. The remaining 15%, with unilateral 
disease, are also at increased risk for developing second cancers (Abramson et al., 2001). 
Patients with unilateral disease who are at high risk for carrying the germinal mutation, and 
therefore at increased risk for developing a second malignancy, have been identified by 
clinical observation. They consist of patients with a family history of retinoblastoma, 
patients diagnosed within the first 6 months of life, and patients with multifocal disease. 
Advances in mutation analysis have shown that mosaic RB1 mutations are more common 
than previously thought, accounting for at least 5.5 and 3.8% of bilateral and unilateral 
cases, respectively (Rushlow et al., 2009). This has implications for genetic counseling 
conversations, as many patients likely fall on a spectrum of risk for the development of 
second cancers. 

Long-term studies of retinoblastoma survivors in the Netherlands demonstrated a 20.4-fold 
increase in second malignancy compared with the general population (Marees et al. 2008). 
There was not a significant difference in risk of second malignancies between nonhereditary 
survivors and the general population. 

5.2 Retinoma 

Retinoma or retinocytoma is a rare intraocular malignancy that appears to be a benign 
variant of retinoblastoma. These lesions display inactivations of both RB1 allelles and 
represent a step towards retinoblastoma development (Dimaras et al., 2008; Sampieri et al., 
2008). At least 6 cases of patients with a retinoma and a second primary tumor have been 
published in the literature, indicating there is likely an increased risk of second malignancies 
in this population (Korswagen et al., 2004).  

5.3 External beam radiation therapy 

As the primary treatment method for retinoblastoma through much of the latter half of the 
20th century, external beam radiation and its effects on second primary malignancies have 
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ovary of a bilateral ophthalmic retinoblastoma survivor. Eighteen years after radiation of the 
right eye and enucleation of the left eye, the patient was found to have a large left ovarian 
tumor involving the fallopian tube, mesentery, and lymph nodes. Histologically, the 
concurrent presence of Homer Wright and Flexner-Wintersteiner rosettes confirmed the 
identification as retinoblastoma. Additionally, molecular analysis demonstrated mutations 
of both RB1 alleles, but a different pattern of post-RB1 mutational events from the tumors in 
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the eye in this patient. This difference suggests that the ovarian tumor was of a separate 
clonal origin from the original eye tumor. While the reasons for retinoblastoma arising 
ectopically in ovarian tissue are unclear, primitive neuroectodermal tumors (trilateral 
retinoblastoma) have been documented as second malignancies in survivors of 
retinoblastoma. 

5. Risk factors for the development of second malignancies 
5.1 Rb1 mutation 

Studies have indicated that all retinoblastoma survivors who develop second malignancies 
carry the germinal RB1 mutation, which inactivates the tumor suppressor gene that is 
expressed in all adult tissues. The protein encoded by RB1 functions in multiple cellular 
processes including proliferation, DNA replication, DNA repair, and cell-cycle checkpoint 
control. The timing of initiation of the expression of pRB varies in each cell type, rendering 
patients who carry the RB1 mutation at risk of developing malignancies in nonocular 
tissues. 

Patients who carry the germ-line RB1 mutation (approximately 40% of total retinoblastoma 
patients) have bilateral disease in up to 85% of cases. The remaining 15%, with unilateral 
disease, are also at increased risk for developing second cancers (Abramson et al., 2001). 
Patients with unilateral disease who are at high risk for carrying the germinal mutation, and 
therefore at increased risk for developing a second malignancy, have been identified by 
clinical observation. They consist of patients with a family history of retinoblastoma, 
patients diagnosed within the first 6 months of life, and patients with multifocal disease. 
Advances in mutation analysis have shown that mosaic RB1 mutations are more common 
than previously thought, accounting for at least 5.5 and 3.8% of bilateral and unilateral 
cases, respectively (Rushlow et al., 2009). This has implications for genetic counseling 
conversations, as many patients likely fall on a spectrum of risk for the development of 
second cancers. 

Long-term studies of retinoblastoma survivors in the Netherlands demonstrated a 20.4-fold 
increase in second malignancy compared with the general population (Marees et al. 2008). 
There was not a significant difference in risk of second malignancies between nonhereditary 
survivors and the general population. 

5.2 Retinoma 

Retinoma or retinocytoma is a rare intraocular malignancy that appears to be a benign 
variant of retinoblastoma. These lesions display inactivations of both RB1 allelles and 
represent a step towards retinoblastoma development (Dimaras et al., 2008; Sampieri et al., 
2008). At least 6 cases of patients with a retinoma and a second primary tumor have been 
published in the literature, indicating there is likely an increased risk of second malignancies 
in this population (Korswagen et al., 2004).  

5.3 External beam radiation therapy 

As the primary treatment method for retinoblastoma through much of the latter half of the 
20th century, external beam radiation and its effects on second primary malignancies have 
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been extensively studied. Numerous studies of varying designs have reported a clear 
increase in second nonocular malignancies in patients who have undergone external beam 
radiation (Aerts et al., 2004; Marees et al., 2008; Moll et al., 2001, Wong et al., 1997). 
Kleinerman et al. (Kleinerman et al., 2005) reported that the cumulative risk of a second 
cancer among irradiated hereditary patients was 38% at 50 years compared to 21% among 
non-irradiated hereditary patients. Due to the proximity to the radiation field and 
consequent radiation exposure, there is an increase in head and neck tumors and brain 
tumors in retinoblastoma patients who have been previously irradiated (Abramson, 2005; 
Aerts et al., 2004; Kleinerman et al., 2005; Marees et al., 2009). More recent studies with 
longer follow-up have also demonstrated an increased risk of epithelial neoplasms in this 
population, but these may not be attributed to the effects of radiation (Marees et al., 2008). In 
addition to affecting the location of subsequent tumor development, radiation exposure 
appears to cause an earlier onset of second malignancies (Abramson, 2005; Chauveinc et al., 
2001). Mortality has also been reported to occur earlier as irradiated hereditary 
retinoblastoma patients died sooner than their non-irradiated counterparts with a median 
age of death of 20.5 years and 40 years, respectively (Yu et al., 2009). The dose-dependent 
relationship of radiation administration and the development of second malignancies was 
established over 40 years ago, (Sagerman et al., 1969) and more recent studies have 
confirmed this analysis (Kleinerman et al., 2005; Wong et al., 1997). The age at which 
radiation therapy is administered seems to influence the incidence of second tumor 
development, as patients treated under the age of 1 year were twice as likely to develop a 
second malignancy than those radiated after the age of 1 year (Abramson & Frank, 1998). In 
fact, patients treated with radiation therapy after the first year of life do not seem to have an 
increased risk of second tumor development when compared to those who were never 
irradiated. Because of these effects and advancements in the use of chemotherapy, use of 
external beam radiation therapy has decreased significantly over the last decade. Moreover, 
when it is used, there is a focus on minimizing the radiation dose and limiting the field of 
radiation as much as possible (Chan et al., 2009; Munier et al., 2008). 

5.4 Preventable risk factors 

5.4.1 Sun exposure 

The degree of sunlight exposure has not been directly correlated to the development of 
cutaneous melanoma specifically in survivors of retinoblastoma. However, the known 
association between ultraviolet radiation and cutaneous melanoma in the general 
population combined with the increased incidence of cutaneous melanomas in 
retinoblastoma survivors is sufficient evidence to recommend avoidance of sunlight 
(Trappey et al., 2010). 

5.4.2 Smoking 

Retinoblastoma survivors should be aggressively counseled to refrain from smoking as 
multiple studies have indicated an excess incidence of lung cancer and risk of death from 
lung cancer in relatives of retinoblastoma patients who are carriers of the RB1 gene mutation 
(Sanders et al., 1989; Strong et al., 1984). The elevated risk of lung cancer and the greater risk 
of death from lung cancer were also demonstrated in survivors of hereditary retinoblastoma 
(Fletcher et al., 2004; Kleinerman et al., 2000; Marees et al., 2008; Yu et al., 2009). Moreover, 
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the risk of death in the hereditary survivor population was sevenfold greater than in the 
general population (Fletcher et al., 2004). In 2000, Kleinerman et al. (Kleinerman et al., 2000) 
demonstrated similar smoking rates between the general population and survivors of both 
hereditary and nonhereditary retinoblastoma. However more recently, Foster et al. (Foster et 
al., 2006) reported that hereditary survivors actually smoked significantly less than 
nonhereditary survivors and less than the general United States population. While smoking 
rates in retinoblastoma survivors appear to be improving, it is imperative that physicians 
encourage survivors to quit or abstain from smoking. Counseling on abstinence for smoking 
may also have an effect on the development of bladder cancer in this population, as an 
increased risk for bladder cancer in retinoblastoma survivors has been demonstrated when 
compared with the general population (Frobisher et al., 2010; Kleinerman et al., 2005; 
Marees et al., 2008). While smoking was not specifically associated with bladder cancers in 
this cohort, it has been shown to be the most important environmental risk factor in the 
general population (Hirao et al., 2009). 

5.4.3 CT scans 

The risk of carcinogenesis secondary to radiation exposure from computed tomography 
(CT) has become the focus of increased investigation over the last few decades. 
Epidemiological data suggests that there is a larger attributable lifetime cancer mortality risk 
for children undergoing radiation when compared to adults (Brenner et al., 2001; Mills et al., 
2006). In fact, radiation doses above 50 millisieverts (mSv) in children and 100 mSv in adults, 
which can be attained with repeated imaging, increases the risk for cancer (Pauwels & 
Bourguignon, 2011). The effective dose of CT scans vary from approximately 2 mSv for a 
head CT scan to approximately 20mSv for a CT-based coronary angiography study 
(Pauwels & Bourguignon, 2011). With the amount of scans required for appropriate cancer 
surveillance, retinoblastoma survivors will likely reach doses that increase the risk of cancer. 
Considering the increased risk of developing radiation-induced cancers in patients with a 
germinal RB1 mutation and the increased sensitivity to the carcinogenic effects of radiation 
in children, this cohort should avoid all forms of unnecessary radiation. For these reasons, 
some radiologists are recommending the avoidance of ionizing radiation altogether in 
retinoblastoma survivors and other populations at risk for secondary cancers (Vazquez et 
al., 2003).  

5.5 Controversial risk factors 

5.5.1 Chemotherapy 

Chemotherapy has been part of the treatment regimen for retinoblastoma since the 1950s 
(Reese et al., 1954). Triethylene melamine was the chemotherapeutic agent of choice, often in 
conjunction with radiotherapy, throughout the 1950s and 1960s and was shown to increase 
the development of second tumors outside the field of radiation (Schlienger et al., 2004). In 
the 1990s, many centers began to shift from radiation towards systemic chemotherapy with 
an increasing focus on intra-arterial chemotherapy over the last 5 years. Because of the 
recent shift in management, there are not many long-term studies examining the effects on 
second primary neoplasms. As a result, the role of chemotherapy in the development of 
second cancers remains controversial. Most often current chemotherapy regimens consist of 
vincristine, carboplatin, and an epipodophyllotoxin, either etoposide or tenoposide. 
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been extensively studied. Numerous studies of varying designs have reported a clear 
increase in second nonocular malignancies in patients who have undergone external beam 
radiation (Aerts et al., 2004; Marees et al., 2008; Moll et al., 2001, Wong et al., 1997). 
Kleinerman et al. (Kleinerman et al., 2005) reported that the cumulative risk of a second 
cancer among irradiated hereditary patients was 38% at 50 years compared to 21% among 
non-irradiated hereditary patients. Due to the proximity to the radiation field and 
consequent radiation exposure, there is an increase in head and neck tumors and brain 
tumors in retinoblastoma patients who have been previously irradiated (Abramson, 2005; 
Aerts et al., 2004; Kleinerman et al., 2005; Marees et al., 2009). More recent studies with 
longer follow-up have also demonstrated an increased risk of epithelial neoplasms in this 
population, but these may not be attributed to the effects of radiation (Marees et al., 2008). In 
addition to affecting the location of subsequent tumor development, radiation exposure 
appears to cause an earlier onset of second malignancies (Abramson, 2005; Chauveinc et al., 
2001). Mortality has also been reported to occur earlier as irradiated hereditary 
retinoblastoma patients died sooner than their non-irradiated counterparts with a median 
age of death of 20.5 years and 40 years, respectively (Yu et al., 2009). The dose-dependent 
relationship of radiation administration and the development of second malignancies was 
established over 40 years ago, (Sagerman et al., 1969) and more recent studies have 
confirmed this analysis (Kleinerman et al., 2005; Wong et al., 1997). The age at which 
radiation therapy is administered seems to influence the incidence of second tumor 
development, as patients treated under the age of 1 year were twice as likely to develop a 
second malignancy than those radiated after the age of 1 year (Abramson & Frank, 1998). In 
fact, patients treated with radiation therapy after the first year of life do not seem to have an 
increased risk of second tumor development when compared to those who were never 
irradiated. Because of these effects and advancements in the use of chemotherapy, use of 
external beam radiation therapy has decreased significantly over the last decade. Moreover, 
when it is used, there is a focus on minimizing the radiation dose and limiting the field of 
radiation as much as possible (Chan et al., 2009; Munier et al., 2008). 

5.4 Preventable risk factors 

5.4.1 Sun exposure 

The degree of sunlight exposure has not been directly correlated to the development of 
cutaneous melanoma specifically in survivors of retinoblastoma. However, the known 
association between ultraviolet radiation and cutaneous melanoma in the general 
population combined with the increased incidence of cutaneous melanomas in 
retinoblastoma survivors is sufficient evidence to recommend avoidance of sunlight 
(Trappey et al., 2010). 

5.4.2 Smoking 

Retinoblastoma survivors should be aggressively counseled to refrain from smoking as 
multiple studies have indicated an excess incidence of lung cancer and risk of death from 
lung cancer in relatives of retinoblastoma patients who are carriers of the RB1 gene mutation 
(Sanders et al., 1989; Strong et al., 1984). The elevated risk of lung cancer and the greater risk 
of death from lung cancer were also demonstrated in survivors of hereditary retinoblastoma 
(Fletcher et al., 2004; Kleinerman et al., 2000; Marees et al., 2008; Yu et al., 2009). Moreover, 
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the risk of death in the hereditary survivor population was sevenfold greater than in the 
general population (Fletcher et al., 2004). In 2000, Kleinerman et al. (Kleinerman et al., 2000) 
demonstrated similar smoking rates between the general population and survivors of both 
hereditary and nonhereditary retinoblastoma. However more recently, Foster et al. (Foster et 
al., 2006) reported that hereditary survivors actually smoked significantly less than 
nonhereditary survivors and less than the general United States population. While smoking 
rates in retinoblastoma survivors appear to be improving, it is imperative that physicians 
encourage survivors to quit or abstain from smoking. Counseling on abstinence for smoking 
may also have an effect on the development of bladder cancer in this population, as an 
increased risk for bladder cancer in retinoblastoma survivors has been demonstrated when 
compared with the general population (Frobisher et al., 2010; Kleinerman et al., 2005; 
Marees et al., 2008). While smoking was not specifically associated with bladder cancers in 
this cohort, it has been shown to be the most important environmental risk factor in the 
general population (Hirao et al., 2009). 

5.4.3 CT scans 

The risk of carcinogenesis secondary to radiation exposure from computed tomography 
(CT) has become the focus of increased investigation over the last few decades. 
Epidemiological data suggests that there is a larger attributable lifetime cancer mortality risk 
for children undergoing radiation when compared to adults (Brenner et al., 2001; Mills et al., 
2006). In fact, radiation doses above 50 millisieverts (mSv) in children and 100 mSv in adults, 
which can be attained with repeated imaging, increases the risk for cancer (Pauwels & 
Bourguignon, 2011). The effective dose of CT scans vary from approximately 2 mSv for a 
head CT scan to approximately 20mSv for a CT-based coronary angiography study 
(Pauwels & Bourguignon, 2011). With the amount of scans required for appropriate cancer 
surveillance, retinoblastoma survivors will likely reach doses that increase the risk of cancer. 
Considering the increased risk of developing radiation-induced cancers in patients with a 
germinal RB1 mutation and the increased sensitivity to the carcinogenic effects of radiation 
in children, this cohort should avoid all forms of unnecessary radiation. For these reasons, 
some radiologists are recommending the avoidance of ionizing radiation altogether in 
retinoblastoma survivors and other populations at risk for secondary cancers (Vazquez et 
al., 2003).  

5.5 Controversial risk factors 

5.5.1 Chemotherapy 

Chemotherapy has been part of the treatment regimen for retinoblastoma since the 1950s 
(Reese et al., 1954). Triethylene melamine was the chemotherapeutic agent of choice, often in 
conjunction with radiotherapy, throughout the 1950s and 1960s and was shown to increase 
the development of second tumors outside the field of radiation (Schlienger et al., 2004). In 
the 1990s, many centers began to shift from radiation towards systemic chemotherapy with 
an increasing focus on intra-arterial chemotherapy over the last 5 years. Because of the 
recent shift in management, there are not many long-term studies examining the effects on 
second primary neoplasms. As a result, the role of chemotherapy in the development of 
second cancers remains controversial. Most often current chemotherapy regimens consist of 
vincristine, carboplatin, and an epipodophyllotoxin, either etoposide or tenoposide. 
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Cyclosporine has been used in addition to this combination to decrease the development of 
multidrug resistance. Both platinum-based drugs and topoisomerase inhibitors have been 
reported to increase the risk of second tumors in other primary malignancies ( Hijiya et al., 
2009; Klein et al., 2003; Travis et al., 1999). Some studies have reported the development of 
acute myelogenous leukemia and secondary leukemia in retinoblastoma survivors treated 
with epipodophyllotoxins and alkylating agents, respectively (Gallegos-Castorena et al., 
2002; Gombos et al., 2007; Nishimura et al., 2001; Weintraub et al., 2007). In a study of 187 
patients with hereditary retinoblastoma treated with carboplatin, vincristine +/- etoposide, 
6 patients developed second malignancies (Turaka et al., 2011). Only 1 of these 6 developed 
acute myelogenous leukemia, and that patient was also treated with external beam 
radiation. While this study had a relatively short follow-up, the patients were followed for 
longer than the average latency for development of chemotherapy-related acute 
myelogenous leukemia. Considering this, the authors suggest that the low incidence of 
therapy-based leukemia in this study is reassuring. With the increased use of intra-arterial 
chemotherapy, direct administration via the ophthalmic artery, over the last 5 to 6 years, the 
systemic exposure to chemotherapy is significantly reduced. This may reduce the 
carcinogenic risk of chemotherapy in this population. Further studies are needed to 
elucidate the relationship between both intra-arterial and systemic chemotherapy and 
second malignant neoplasms.  

5.5.2 Growth hormone 

Growth hormone (GH), a treatment often administered to pediatric oncology survivors, has 
mitogenic and proliferogenic properties that may theoretically lead to disease recurrence or 
increased development of secondary neoplasms. Sklar et al. (Sklar et al., 2002) reported that 
treatment with GH for pediatric cancer patients may increase the risk of a secondary solid 
tumor, although the overall increased risk was driven largely by a small subgroup of acute 
leukemia survivors. A follow-up study by Ergun-Longmire et al. (Ergun-Longmire et al., 
2006) concurred with the increased risk of secondary neoplasms but suggested that the risk 
appears to diminish with increasing length of follow-up. In 2002, Abramson et al. 
(Abramson et al., 2002b) reported a case of a metastatic germinal retinoblastoma survivor 
treated with GH who subsequently developed an osteogenic sarcoma. A more recent study 
by Bell et al. (Bell et al., 2009) reported 4.6 second tumor cases per 1000 patient-years of GH 
exposure. Leukemia was the most common primary malignancy associated with secondary 
tumors after growth hormone, but proportionately, retinoblastoma had a higher frequency 
of neoplasms. Five of the sixteen patients with retinoblastoma as the primary neoplasm 
developed secondary cancers. Of these, 4 were previously treated with radiation therapy, 
and only 3 occurred in patients with bilateral retinoblastoma. While these findings are of 
some concern, larger studies examining the risk of secondary cancers in retinoblastoma 
survivors need to be performed to derive conclusive results. 

6. Survival 
Although the survival rates of primary retinoblastoma are continually improving, the 
outcome of second malignancies does not appear to be improving with time. Reulen et al. 
(Reulen et al., 2010) examined the long-term cause-specific mortality among 18,000 
survivors of childhood cancer in Britain, and reported a standardized mortality ratio of 24.7  
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only. ° Included pineoblastoma as a secondary malignancy. *Adjusted for competing risk of death. 
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Cyclosporine has been used in addition to this combination to decrease the development of 
multidrug resistance. Both platinum-based drugs and topoisomerase inhibitors have been 
reported to increase the risk of second tumors in other primary malignancies ( Hijiya et al., 
2009; Klein et al., 2003; Travis et al., 1999). Some studies have reported the development of 
acute myelogenous leukemia and secondary leukemia in retinoblastoma survivors treated 
with epipodophyllotoxins and alkylating agents, respectively (Gallegos-Castorena et al., 
2002; Gombos et al., 2007; Nishimura et al., 2001; Weintraub et al., 2007). In a study of 187 
patients with hereditary retinoblastoma treated with carboplatin, vincristine +/- etoposide, 
6 patients developed second malignancies (Turaka et al., 2011). Only 1 of these 6 developed 
acute myelogenous leukemia, and that patient was also treated with external beam 
radiation. While this study had a relatively short follow-up, the patients were followed for 
longer than the average latency for development of chemotherapy-related acute 
myelogenous leukemia. Considering this, the authors suggest that the low incidence of 
therapy-based leukemia in this study is reassuring. With the increased use of intra-arterial 
chemotherapy, direct administration via the ophthalmic artery, over the last 5 to 6 years, the 
systemic exposure to chemotherapy is significantly reduced. This may reduce the 
carcinogenic risk of chemotherapy in this population. Further studies are needed to 
elucidate the relationship between both intra-arterial and systemic chemotherapy and 
second malignant neoplasms.  

5.5.2 Growth hormone 

Growth hormone (GH), a treatment often administered to pediatric oncology survivors, has 
mitogenic and proliferogenic properties that may theoretically lead to disease recurrence or 
increased development of secondary neoplasms. Sklar et al. (Sklar et al., 2002) reported that 
treatment with GH for pediatric cancer patients may increase the risk of a secondary solid 
tumor, although the overall increased risk was driven largely by a small subgroup of acute 
leukemia survivors. A follow-up study by Ergun-Longmire et al. (Ergun-Longmire et al., 
2006) concurred with the increased risk of secondary neoplasms but suggested that the risk 
appears to diminish with increasing length of follow-up. In 2002, Abramson et al. 
(Abramson et al., 2002b) reported a case of a metastatic germinal retinoblastoma survivor 
treated with GH who subsequently developed an osteogenic sarcoma. A more recent study 
by Bell et al. (Bell et al., 2009) reported 4.6 second tumor cases per 1000 patient-years of GH 
exposure. Leukemia was the most common primary malignancy associated with secondary 
tumors after growth hormone, but proportionately, retinoblastoma had a higher frequency 
of neoplasms. Five of the sixteen patients with retinoblastoma as the primary neoplasm 
developed secondary cancers. Of these, 4 were previously treated with radiation therapy, 
and only 3 occurred in patients with bilateral retinoblastoma. While these findings are of 
some concern, larger studies examining the risk of secondary cancers in retinoblastoma 
survivors need to be performed to derive conclusive results. 

6. Survival 
Although the survival rates of primary retinoblastoma are continually improving, the 
outcome of second malignancies does not appear to be improving with time. Reulen et al. 
(Reulen et al., 2010) examined the long-term cause-specific mortality among 18,000 
survivors of childhood cancer in Britain, and reported a standardized mortality ratio of 24.7  
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*Radiation included external beam radiation and brachytherapy in all studies except Marees et al., 2008, 
which did not include brachytherapy as radiation. 

Fig. 1. Pie chart demonstrating the histologic type of reported second malignant neoplasms 
in patients treated with radiation (Acquaviva et al., 2006; Aerts et al., 2004; Kleinerman et al., 
2005; Marees et al., 2008; & Turaka et al., 2011).  Some of these patients may have been 
treated with chemotherapy, but this information was not identified in all of the studies. 

due to second cancer deaths for hereditary retinoblastoma. In the Netherlands, Marees et al. 
(Marees et al., 2009) reported an almost 13-fold increase of second malignancy death 
comparing hereditary retinoblastoma survivors to the general population. As previously 
stated, outcome is particularly grim in patients with trilateral retinoblastoma who have a 
median survival of less than 12 months. A recent long-term study of 1854 retinoblastoma 
survivors from the United States reported a cause-specific cumulative mortality from 
subsequent malignant neoplasms of 26% in hereditary survivors and 1% for nonhereditary 
survivors 50 years after retinoblastoma diagnosis (Yu et al., 2009). An excess in overall 
cancer mortality has also been reported in unilateral sporadic retinoblastoma survivors, 
likely because some of these patients are unilaterally affected RB1 mutation carriers 
(Acquaviva et al., 2006; Yu et al., 2009). While earlier studies reported a higher mortality 
from second tumors in females, more recent studies have indicated an equivalent mortality 
in males and females. 

7. Screening 
Screening practices for secondary tumors in retinoblastoma survivors have not been 
extensively studied and no universal protocol has been determined to date. Sheen et al. 
(Sheen et al., 2008) examined the cancer screening behavior in 875 retinoblastoma survivors. 
The rates of patients ≥40 years who underwent a mammogram within the past 2 years and 
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≥18 years who underwent a Papanicolau smear within the past 3 years were comparable 
between retinoblastoma survivors, other childhood cancer survivors who had received chest 
or mantle irradiation, and the general US population. Hereditary survivors were 3 times 
more likely to undergo an MRI or CT scan as a screening tool for second cancers. 
Neuroimaging with MRI has been recommended as the primary imaging modality, 
particularly in young retinoblastoma survivors, because of the increased risk for second 
malignancies with repeated exposure to ionizing radiation (ie. CT scans). However, a 
prospective study of routine screening with MRI performed in 226 retinoblastoma patients 
did not yield improved outcomes in patients who developed trilateral retinoblastoma 
(Duncan et al., 2001). 

8. Conclusion 
As treatment methods for retinoblastoma continue to evolve, the type and distribution of 
second non-ocular malignancies will continue to change. External beam radiation, once the 
mainstay of primary retinoblastoma management, increases the incidence of and mortality 
from second neoplasms, especially in the head and neck area. With an increased use of 
chemotherapy and longer duration of follow-up, malignancies of epithelial origin may 
become more common in this cohort. The potential for an increase in therapy-related 
leukemia is present with the use of chemotherapy, but additional long-term studies are 
required to assess the validity of this relationship. Survivors of retinoblastoma, particularly 
patients carrying a germinal RB1 mutation or who have a retinoma, should undergo lifelong 
surveillance for second primary tumors. They should also avoid smoking, damaging 
exposure to sunlight, and ionizing radiation when possible. 
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stated, outcome is particularly grim in patients with trilateral retinoblastoma who have a 
median survival of less than 12 months. A recent long-term study of 1854 retinoblastoma 
survivors from the United States reported a cause-specific cumulative mortality from 
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survivors 50 years after retinoblastoma diagnosis (Yu et al., 2009). An excess in overall 
cancer mortality has also been reported in unilateral sporadic retinoblastoma survivors, 
likely because some of these patients are unilaterally affected RB1 mutation carriers 
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from second tumors in females, more recent studies have indicated an equivalent mortality 
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≥18 years who underwent a Papanicolau smear within the past 3 years were comparable 
between retinoblastoma survivors, other childhood cancer survivors who had received chest 
or mantle irradiation, and the general US population. Hereditary survivors were 3 times 
more likely to undergo an MRI or CT scan as a screening tool for second cancers. 
Neuroimaging with MRI has been recommended as the primary imaging modality, 
particularly in young retinoblastoma survivors, because of the increased risk for second 
malignancies with repeated exposure to ionizing radiation (ie. CT scans). However, a 
prospective study of routine screening with MRI performed in 226 retinoblastoma patients 
did not yield improved outcomes in patients who developed trilateral retinoblastoma 
(Duncan et al., 2001). 

8. Conclusion 
As treatment methods for retinoblastoma continue to evolve, the type and distribution of 
second non-ocular malignancies will continue to change. External beam radiation, once the 
mainstay of primary retinoblastoma management, increases the incidence of and mortality 
from second neoplasms, especially in the head and neck area. With an increased use of 
chemotherapy and longer duration of follow-up, malignancies of epithelial origin may 
become more common in this cohort. The potential for an increase in therapy-related 
leukemia is present with the use of chemotherapy, but additional long-term studies are 
required to assess the validity of this relationship. Survivors of retinoblastoma, particularly 
patients carrying a germinal RB1 mutation or who have a retinoma, should undergo lifelong 
surveillance for second primary tumors. They should also avoid smoking, damaging 
exposure to sunlight, and ionizing radiation when possible. 
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1. Introduction 
Chemotherapy is often used in the conservative management of retinoblastoma. 
Chemotherapy drugs, while ameliorative, can produce long-lasting side effects that 
potentially can affect survivor quality of life.  Carboplatin is a common chemotherapy agent 
with known ototoxic side effects that is used in the treatment of retinoblastoma (Rodriguez-
Galindo et al., 2003). The potential for carboplatin-induced hearing loss is of concern to the 
medical professional, given that retinoblastoma is often diagnosed in early childhood and 
children with retinoblastoma have visual impairments. This chapter will outline the 
mechanisms underlying carboplatin ototoxicity. The extent of knowledge concerning the 
pathophysiology of carboplatin-induced hearing loss will be explained, and descriptions of 
the progression of hearing loss on the audiogram will be provided. The types of hearing 
tests administered to patients receiving carboplatin chemotherapy and monitoring regimens 
will be reviewed in the chapter. Physiological hearing tests, including the auditory 
brainstem response (ABR) and otoacoustic emissions (OAE) will be described. Knowledge 
of these tests will assist the medical professional in understanding if a particular 
chemotherapy regimen is potentially causing a hearing loss.  

The impact of high-frequency hearing loss on the development of speech and language in 
young children will be discussed, which is of particular relevance in children with an 
existing visual loss. In the context of this discussion, the academic and social development of 
children with hearing loss will be addressed. Future directions, including the potential use 
of otoprotective agents that can be given concurrently with chemotherapy treatment, will be 
highlighted at the end of the chapter.  

2. Pathophysiology of carboplatin-induced hearing loss 
Carboplatin (cis-diammine [1,1-cyclobutanedicarboxylate]-platinum [II]) is a second-
generation platinum compound that initially was reported to have less nephrotoxic and 
ototoxic side effects than its analog, cisplatin (Bacha et al., 1986). It is a common 
chemotherapy agent used in the treatment of a wide range of pediatric malignancies.  More 
recently, higher incidences of carboplatin ototoxicity have been reported compared with 
what was previously described in the literature. The pathophysiology of carboplatin 
ototoxicity is not completely understood, but evidence from experimental animal models 
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suggests dose-dependent and species-specific effects of carboplatin. Chinchillas are rodents 
that are commonly used as animal models in experimental studies. In chinchillas, 
administration of low doses of carboplatin results in the progressive loss of inner hair cells 
and spiral ganglion neurons from the apex to the base of the cochlea, and outer hair cells are 
largely unaffected (Takeno et al., 1994; Hofstetter et al., 1997a; Wang et al., 2003; Bauer & 
Brozoski, 2005). At higher doses of carboplatin, extensive loss of inner hair cells is exhibited 
across all cochlear turns, and loss of outer hair cells is exhibited most prominently in the 
basal turn (Hofstetter et al., 1997a; Bauer & Brozoski, 2005). Studies of high-dose carboplatin 
administration in guinea pigs revealed that primarily outer hair cells were destroyed (Saito 
et al., 1989), and both outer and inner hair cells were affected in rats (Husain et al., 2001). 

3. Methods of hearing assessment in young children 
Retinoblastoma is one of the most common intraocular malignancies in young children 
and it is usually diagnosed before children reach three years of age (Broaddus et al., 2009). 
Until recently, suspicion of childhood hearing loss was primarily based on behavioral 
observations by physicians or anecdotes provided by concerned parents. However, 
reliance on behavioral observations is often confounded by the fact that hearing-impaired 
infants often seemingly respond to environmental sounds and can babble in a manner 
similar to normal-hearing infants (Marschark, 1997). These factors often resulted in delays 
in identifying children with hearing loss. In the past, the typical age of identification of 
hearing loss in the United States was 11-19 months for children with risk factors for 
hearing loss and 15-19 months for children with no known risk factors (Mauk et al., 1991; 
Parving ,1993; Stein, 1995; Harrison & Roush, 1996). In the United Kingdom, the average 
age of suspicion of hearing loss was 18.8 months and hearing loss was confirmed at an 
average age of 26 months (Davis et al., 1997). It is crucial that young children with 
retinoblastoma experiencing vision loss be monitored appropriately while they undergo 
chemotherapy, as undetected ototoxic hearing loss can impact the development of speech 
and language.  

Hearing is a complex psychological process involving the detection, identification, and 
comprehension of sound. Assessment of hearing in infants and young children has evolved 
from reliance primarily on behavioral observations alone to combining behavioral 
observations with computer-based measurements of auditory physiology. As infants and 
young children often cannot respond reliably during behavioral hearing assessments, 
modification of the testing protocol often includes physiological tests of auditory function.  
While physiological measurements do not test the psychological aspects of hearing directly, 
they provide information on the status of anatomical structures believed to be crucial for 
hearing. The major advantage of these physiological tests is that they do not require a 
behavioral response from the infant, and can be completed rapidly. Most importantly for 
screening purposes, physiological test results are highly informative in distinguishing 
between normal-hearing infants and infants with hearing loss. The Joint Committee on 
Infant Hearing recommended inclusion of ABR and/or OAE tests in screening programs 
designed to detect hearing loss in infants (Joint Committee on Infant Hearing, 2000). 
Although these tests are not true tests of hearing, they may provide evidence of a change in 
cochlear function during the administration of potentially ototoxic medications including 
carboplatin.  
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Study Behavioral 
Audiometry ABR OAE # of patients 

studied 
Smits et al. (2006) Yes Yes Yes 25 
Lambert et al. 
(2008) Yes Yes No 164 

Jehanne et al. 
(2009) Yes No No 175 

Bhagat et al. 
(2010) No No Yes 10 

Pecora Liberman 
et al. (2011) Yes No Yes 15 

Table 1. Recent studies investigating carboplatin ototoxicity in children with 
retinoblastoma,the monitoring methods used, and the number of patients examined. Yes 
indicates the test (behavioral audiometry, ABR, OAE) was evaluated in the study and No 
indicates the test was not evaluated.  

3.1 Behavioral assessment of hearing 

Assessment of infant hearing involves presentation of sounds through loudspeakers and 
observing the infant’s behavior. If a change in behavior (i.e. the infant is startled) occurs 
following presentation of a sound, a positive response is noted. The sound level is lowered 
and the procedure is repeated until no change in behavior is observed. Many infants can 
respond reliably at sufficiently low levels of sound, and this is suggestive of normal hearing. 
However, the response of other infants for similar sound levels may be ambiguous. This 
procedure requires a subjective judgment on whether or not a response has occurred. In 
addition, many infants cease to respond behaviorally after repeated trials, even though they 
may be aware of sound in their environment. For these reasons, response detection levels for 
many infants only provide a gross estimate of hearing sensitivity. However, behavioral 
observation of infant hearing is useful in corroborating the results of physiological screening 
tests. For example, if an infant fails an OAE and/or ABR screening, and does not exhibit a 
behavioral response at sound levels indicative of normal hearing, a hearing loss can be 
confirmed. In addition, observation of developmental auditory behavior in infants can 
provide a guideline for comparative purposes. At three months of age, most normal-hearing 
infants are able to follow the direction a sound is coming from with their eyes. By six 
months of age, they can turn their heads to determine the source of sounds. If an infant 
exhibits delays in development of auditory behavior, a hearing loss may be indicated.  For 
older children, hearing may be assessed by visual reinforcement audiometry (VRA) or 
conditioned play audiometry(CPA). In VRA, a sound is presented through loudspeakers 
and the child is directed to turn their head in the direction of where the sound came from. 
Following a correct response, the child is rewarded by seeing an animated toy. This form of 
reinforcement serves to help the clinician to orient the child to participate in the task and to 
determine the child’s hearing sensitivity. By lowering the sound level until no response is 
provided by the child, the clinician can obtain an estimate of the hearing threshold on a 
frequency-by-frequency basis. In CPA, sounds may be presented through loudspeakers or 
through headphones, and a child is conditioned to drop a block in a bucket (or similar task) 
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retinoblastoma,the monitoring methods used, and the number of patients examined. Yes 
indicates the test (behavioral audiometry, ABR, OAE) was evaluated in the study and No 
indicates the test was not evaluated.  

3.1 Behavioral assessment of hearing 
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observing the infant’s behavior. If a change in behavior (i.e. the infant is startled) occurs 
following presentation of a sound, a positive response is noted. The sound level is lowered 
and the procedure is repeated until no change in behavior is observed. Many infants can 
respond reliably at sufficiently low levels of sound, and this is suggestive of normal hearing. 
However, the response of other infants for similar sound levels may be ambiguous. This 
procedure requires a subjective judgment on whether or not a response has occurred. In 
addition, many infants cease to respond behaviorally after repeated trials, even though they 
may be aware of sound in their environment. For these reasons, response detection levels for 
many infants only provide a gross estimate of hearing sensitivity. However, behavioral 
observation of infant hearing is useful in corroborating the results of physiological screening 
tests. For example, if an infant fails an OAE and/or ABR screening, and does not exhibit a 
behavioral response at sound levels indicative of normal hearing, a hearing loss can be 
confirmed. In addition, observation of developmental auditory behavior in infants can 
provide a guideline for comparative purposes. At three months of age, most normal-hearing 
infants are able to follow the direction a sound is coming from with their eyes. By six 
months of age, they can turn their heads to determine the source of sounds. If an infant 
exhibits delays in development of auditory behavior, a hearing loss may be indicated.  For 
older children, hearing may be assessed by visual reinforcement audiometry (VRA) or 
conditioned play audiometry(CPA). In VRA, a sound is presented through loudspeakers 
and the child is directed to turn their head in the direction of where the sound came from. 
Following a correct response, the child is rewarded by seeing an animated toy. This form of 
reinforcement serves to help the clinician to orient the child to participate in the task and to 
determine the child’s hearing sensitivity. By lowering the sound level until no response is 
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frequency-by-frequency basis. In CPA, sounds may be presented through loudspeakers or 
through headphones, and a child is conditioned to drop a block in a bucket (or similar task) 
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every time a sound is heard. Hearing thresholds can be tracked by noting the transitions 
between sound levels where the child performs or does not perform the task. For both VRA 
and CPA, the clinician makes a subjective decision to determine whether or not a response 
occurred, and these methods typically are reserved for children up to 4 years of age. Most 
older children can participate in a conventional hearing test, whereby they raise their hand 
or push a button every time they hear a sound, and their responses are noted on a 
conventional audiogram. 

Platinum-compound ototoxicity typically causes hearing loss at audiometric frequencies 
above 2000 Hz (Macdonald et al., 1994). There are guidelines in place that help to 
characterize shifts in behavioral hearing thresholds on the audiogram due to the 
administration of ototoxic medications. Common guidelines in use to characterize 
ototoxicity in the United States are shown in Table 2. In monitoring ototoxicity, it is vitally 
important to obtain baseline measurements of hearing before the patient undergoes  
 

Brock NCI CTCAE CCG Chang 
Grade 0: 
 < 40 dB at all  
frequencies 

 Grade 0: 
No hearing loss 

Grade 0: 
≤ 20 dB at 1, 2, and 4 
kHz 

Grade 1: 
≥ 40 dB at 
 8 kHz only 

Grade 1: Threshold shift 
or loss of 15-25 dB 
averaged at two 
contiguous frequencies in 
one ear  

Grade 1: 
≥ 40 dB HL loss at  
6 kHz and/or 8 kHz 

Grade 1a: 
≥ 40 dB at any 
frequency from 6-12 
kHz 
Grade 1b: 
>20dB and <40 dB at 4 
kHz 

Grade 2: 
≥ 40 dB at 
 4 kHz and above 

Grade 2: 
Threshold shift or loss 
>25-90 dB averaged at 
two contiguous 
frequencies in one ear 

Grade 2:  
>25 dB HL loss at   
3 kHz and/or 4 kHz
 

Grade 2a: 
≥ 40 dB at 
 4 kHz and above  
Grade 2b: 
>20dB and <40 dB at 
any frequency below 4 
kHz 

Grade 3: 
≥ 40 dB at 
 2 kHz and above 

Grade 3: 
Hearing loss 
sufficient to indicate 
therapeutic intervention, 
including hearing aids 
(e.g. > 20 dB bilateral loss 
in the speech frequencies)

Grade 3:  
>25 dB HL loss at   
2 kHz  

Grade 3: 
≥ 40 dB at 
 2 or 3 kHz and above 

Grade 4: 
≥ 40 dB at 
 1 kHz and above 

Grade 4: 
Indication for cochlear 
implant  

Grade 4:  
 ≥ 40 dB HL loss at  
2 kHz 

Grade 4:  
≥ 40 dB at 
 1 kHz and above 

Table 2. Common grading scales used in the United States for characterizing ototoxic 
hearing loss. dB= decibels, dB HL= decibels hearing level, kHz= kiloHertz.  
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chemotherapy, and then to monitor their hearing at prescribed time points once treatment 
commences. This allows for comparisons to be made between pre-treatment hearing and 
peri- or post-treatment hearing in the patient. The Brock grading scale (Brock et al., 1991) 
assigns a grade based on degree of bilateral hearing loss. The NCI CTCAE (National Cancer 
Institute Common Terminology Criteria for Adverse Events) uses threshold shifts to assign 
its grades based on comparisons between baseline and current hearing thresholds. The CCG 
(Children’s Cancer Group) criteria are based on a loss as defined as a change from baseline 
at any one frequency. The Chang grading scale (Chang & Chinosornvatana, 2010) is the 
most recent of the grading scales that has been developed. 

Clinical studies of carboplatin ototoxicity conducted in children with pediatric cancers other 
than retinoblastoma have revealed equivocal results. Macdonald et al. (1994) found that 50 
% of children in their study had a sensorineural hearing loss in the 4,000-12,000 Hz range 
following treatment with carboplatin. They found that hearing losses could occur after the 
first dose of carboplatin, and that hearing losses could progress with subsequent doses. 
Similarly, Simon et al. (2002) reported that 40% of children treated with high-dose 
carboplatin developed a hearing impairment and Knight et al. (2005) found that 38% of 
children treated with carboplatin developed sensorineural hearing loss. In contrast, Stern 
and Bunin (2002) found that ototoxic complications from carboplatin chemotherapy were 
rare and mild in severity and other studies have found similar results (Bertolini et al., 2004; 
Dean et al., 2008). The variability of carboplatin ototoxicity seen across past studies may be 
related to insufficient control of confounding factors. Factors that may potentiate the 
severity of carboplatin ototoxicity include prior exposure to cisplatin or other ototoxic 
medications and high dosage of carboplatin associated with autologous stem cell reinfusion 
(Knight et al., 2005; Parsons et al., 1998). Another factor that may increase the severity of 
platinum-compound ototoxicity is patient age, with younger children being more  

 
Fig. 1. An audiogram depicting a sensorineural hearing loss in both ears, often seen in 
ototoxicity. The x-axis is frequency in Hertz and the y-axis is level in decibels. The shaded 
region represents the normal-hearing range.  The hearing loss depicted indicates a greater 
loss of sensitivity in the high frequencies compared to the low frequencies.  
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chemotherapy, and then to monitor their hearing at prescribed time points once treatment 
commences. This allows for comparisons to be made between pre-treatment hearing and 
peri- or post-treatment hearing in the patient. The Brock grading scale (Brock et al., 1991) 
assigns a grade based on degree of bilateral hearing loss. The NCI CTCAE (National Cancer 
Institute Common Terminology Criteria for Adverse Events) uses threshold shifts to assign 
its grades based on comparisons between baseline and current hearing thresholds. The CCG 
(Children’s Cancer Group) criteria are based on a loss as defined as a change from baseline 
at any one frequency. The Chang grading scale (Chang & Chinosornvatana, 2010) is the 
most recent of the grading scales that has been developed. 

Clinical studies of carboplatin ototoxicity conducted in children with pediatric cancers other 
than retinoblastoma have revealed equivocal results. Macdonald et al. (1994) found that 50 
% of children in their study had a sensorineural hearing loss in the 4,000-12,000 Hz range 
following treatment with carboplatin. They found that hearing losses could occur after the 
first dose of carboplatin, and that hearing losses could progress with subsequent doses. 
Similarly, Simon et al. (2002) reported that 40% of children treated with high-dose 
carboplatin developed a hearing impairment and Knight et al. (2005) found that 38% of 
children treated with carboplatin developed sensorineural hearing loss. In contrast, Stern 
and Bunin (2002) found that ototoxic complications from carboplatin chemotherapy were 
rare and mild in severity and other studies have found similar results (Bertolini et al., 2004; 
Dean et al., 2008). The variability of carboplatin ototoxicity seen across past studies may be 
related to insufficient control of confounding factors. Factors that may potentiate the 
severity of carboplatin ototoxicity include prior exposure to cisplatin or other ototoxic 
medications and high dosage of carboplatin associated with autologous stem cell reinfusion 
(Knight et al., 2005; Parsons et al., 1998). Another factor that may increase the severity of 
platinum-compound ototoxicity is patient age, with younger children being more  
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susceptible than older children (Li et al., 2004; Coradini et al., 2007). Studies examining 
carboplatin ototoxicity in children with retinoblastoma are less prevalent. Smits et al. (2006) 
studied 25 children diagnosed with retinoblastoma ranging in age from 1-41 months at the 
start of carboplatin chemotherapy and found no signs of ototoxicity. Lambert et al. (2008) 
reviewed audiometric data from 116 children (aged 1-87 months) treated for retinoblastoma 
with a multi-drug regimen including carboplatin. Most of these children were monitored 
with behavioral audiometry and 48 received ABR evaluations. Only one of the children was 
suspected of incurring progressive hearing loss due to carboplatin chemotherapy, but this 
child was diagnosed at less than 1 month of age. Other studies have also indicated a low 
incidence of carboplatin ototoxicity (4.5-6.6%) in children with retinoblastoma of various 
ages, although some children were found to have late-onset hearing loss (Jehanne et al., 
2009; Pecora Liberman, 2011).  

3.2 Auditory brainstem response 

Behavioral hearing tests in children less than 12 months old can be unreliable and difficult to 
interpret. A common alternative method used to monitor auditory function in children 
receiving platinum-compound chemotherapy is the ABR test. During the ABR test, surface 
electrodes are attached to locations on the scalp and forehead, and these electrodes record 
electrical activity generated by the auditory nerve and neural centers in the brain responsive 
to auditory stimuli. Clicks or brief tones are stimuli presented to an ear while the ABR 
response is being recorded. The ABR test is a passive test in that the patient does not 
respond behaviorally to the sounds that are heard. The electrode leads connect to an 
amplifier box, and the ABR response is filtered and averaged by a computer. The resulting 
ABR waveform consists of a series of positive and negative voltages displayed on a 
computer monitor.  Peak amplitudes and latencies of the ABR waveform are analyzed and 
compared to normative data. The lowest level of sound that can evoke a replicable ABR 
waveform is known as the ABR threshold. Previous research has established that the ABR 
threshold provides a reliable estimation of infant hearing sensitivity. Children with hearing 
loss typically have elevated ABR thresholds compared to children with normal hearing. 
When used as a screening test, a criterion stimulus level is selected and if an ABR waveform 
is successfully recorded at this level, the infant passes the screening test. If an ABR 
waveform is not recorded at the criterion level, a hearing loss may be suspected and the 
infant is referred for further diagnostic testing.  

The ABR screening test is a well-established physiological measurement procedure that has 
been validated through years of clinical research. It is relatively easy to administer and is 
typically completed in a short period of time. However, as with any screening instrument it 
is not infallible. The ABR screening test will produce both false positive (incorrectly failing 
children with normal hearing) and false negative (incorrectly passing children with hearing 
loss) results. Confirmation of hearing loss is often enhanced when test results from OAE 
and/or ABR screenings are combined with reliable behavioral observations of infant 
hearing. In children less than 12 months old, the ABR test may be the only reliable means of 
examining if auditory function is being compromised by carboplatin, given that younger 
children receiving platinum compounds may be more susceptible to drug-induced hearing 
loss as estimated by ABR thresholds (Coupland et al., 1991). Previous research has shown 
that click-evoked ABR test results can accurately track permanent changes in cochlear 
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function due to administration of ototoxic medications in adults (DeLauretis et al.,1999). 
However, some studies have questioned the sensitivity of ABR test results in monitoring 
platinum-compound ototoxicity in children (Weatherly et al., 1991). It is known that 
carboplatin can cause a substantial amount of damage to inner hair cells and spiral ganglion 
neurons prior to a change being registered on an electrophysiological assessment, such as 
the compound action potential (El-Badry & McFadden, 2007). Because the ABR is a far-field 
potential that relies upon compound activity from an ensemble of neurons, it may not 
provide the best indication of early change in cochlear function. In addition, if a change is 
detected on the ABR test, it may reflect a permanent loss of auditory sensitivity. 

3.3 Otoacoustic emissions 

An alternative method of monitoring platinum-compound ototoxicity is the OAE test. 
Believed to be linked to the functional status of outer hair cells (Brownell, 1990), OAEs have 
been effectively used to monitor platinum-compound ototoxicity in children ( Dhooge et al., 
2006; Knight et al., 2007). OAEs are usually inaudible sounds produced by the healthy inner 
ear, and these sounds escape into the ear canal and are measured with an ear-canal probe 
containing a miniature microphone. The probe assembly interfaces with a computer, and a 
software program analyzes data being recorded by the probe microphone. Typically, OAEs 
are evoked by stimulating the ear with clicks or tones, and the recorded response is then 
measured and compared to normative data collected in children with normal hearing. No 
overt behavioral response from the child is required, and the test can be done while the 
child is asleep. This physiological test provides information on the functional status of 
middle and inner ear (outer hair cells) structures. Children with hearing loss have reduced 
or absent OAEs compared to normal-hearing children. A criterion OAE response is required 
in order to pass the test, and children who fail are typically referred for further testing to 
confirm potential hearing loss. The OAE test is a simple screening test to administer and can 
be completed rapidly, typically within 1-2 minutes per ear. However, a relatively quiet 
environment is required to complete a valid OAE test, as extraneous noise recorded by the 
probe microphone can interfere with testing. In addition, the degree of hearing loss cannot 
be determined by OAE testing alone, as both hard-of-hearing and deaf children typically 
exhibit absent OAE responses. The information provided by OAE testing is quite useful in 
determining if a child is a potential candidate for intervention programs.  

In children, OAEs were found to be reduced prior to the onset of hearing loss on the 
audiogram in the conventional frequency range following cisplatin chemotherapy (Knight et 
al., 2007). DPOAE levels also exhibit high correlations with behavioral hearing thresholds in 
children suffering hearing loss due to platinum compound ototoxicity (Dhooge et al., 2006). 
High doses of carboplatin are known to damage outer hair cells and reduce the amplitude of 
OAEs in animal model (Hofstetter et al., 1997b). Based on these findings, the OAE test 
potentially is more sensitive at detecting early changes in cochlear function due to 
carboplatin ototoxicity than is the ABR test. Previous research has not compared the abilities 
of ABRs and OAEs to register changes in cochlear function throughout the entire course of 
carboplatin chemotherapy in young children with retinoblastoma. In fact, few studies have 
examined OAE tests in children with retinoblastoma.  Smits et al. (2006) examined OAEs in 
evaluating children with retinoblastoma receiving carboplatin. They concluded that there 
were no signs of ototoxicity in the sample of children they examined, although no details 
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concerning what constituted a change in OAE level were provided. Bhagat et al. (2010) 
found different results in studying 10 children with retinoblastoma receiving carboplatin. 
They reported that when a criterion change in OAE level was utilized, four of the ten 
children studied had reductions in OAE level that met the criterion. These findings suggest 
that OAE tests are useful in identifying the deleterious effects of carboplatin chemotherapy 
on cochlear function in some children with retinoblastoma.  

 
Fig. 2. Mean OAE levels in children with retinoblastoma before (open triangles) and after 
(filled triangles) carboplatin chemotherapy. Post-therapy OAE levels at the highest test 
frequency were reduced compared to pre-therapy OAE levels. Reprinted from the 
International Journal of Pediatric Otorhinolaryngology, Vol. 74/Issue 10, Bhagat, S.P., Bass, 
J.K., White, S.T., Qaddoumi, I., Wu. J. & Rodriguez-Galindo, C., “Monitoring carboplatin 
ototoxicity with distortion-product otoacoustic emissions in children with retinoblastoma”, 
pp.1156-1163, 2010, with permission from Elsevier. 

4. Impact of hearing loss on academic and social development 
The degree of hearing loss associated with carboplatin ototoxicity can vary, but the initial 
onset of hearing loss typically begins in the high frequencies. High-frequency sensorineural 
hearing loss can be problematic for the development of speech and language in young 
children (Stelmachowicz et al., 2004). High frequency speech phonemes contribute to speech 
intelligibility, and high frequency sensorineural hearing loss reduces the audibility of 
important speech cues, limits speech understanding in noise, and increases the risk for 
academic failure (Stelmachowicz et al., 2001; Horwitz et al., 2002; Bess et al., 1998). With 
more courses or higher dosages of carboplatin, hearing may deteriorate further, and the 
hearing loss may involve a loss of sensitivity at lower frequencies on the audiogram 
(Parsons et al., 1998). In rare cases, the use of platinum compounds may result in deafness 
(Chu et al., 1993).  
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In most educational settings, the dominant mode of information transfer from teacher to 
student is oral instruction. Most normal-hearing children have little difficulty understanding 
oral instruction and have developed a sufficient language base to successfully progress 
academically. However, children with permanent sensorineural hearing loss are at a 
disadvantage compared to their normal-hearing peers. Oral instruction may be inaudible to 
hearing-impaired students, depending upon the degree of hearing loss. In addition, hearing-
impaired students often lack language skills that are requisite for achievement in the 
classroom. While advancements in technology have increased the audibility of classroom 
instruction for many hearing-impaired students, their expressive and receptive language 
skills are often below those of children with normal hearing. These language skills form the 
foundation for word knowledge and verbal reading, which account for 90% of the 
variability in reading skills found in normal hearing children (Davis, 1972). The lack of an 
adequate language base in both hard-of-hearing and deaf children impacts their academic 
performance. Average reading ability for hard-of-hearing high school graduates has been 
measured at the fifth-grade level, while average reading ability for deaf high school 
graduates was at the fourth-grade level. Reading ability for both groups was below that of 
their normal-hearing peers (Allen, 1986). The overall academic performance of hearing-
impaired students is negatively influenced by their reading ability (Quigley, 1979). 

Once suspected, hearing loss in infants is confirmed through diagnostic tests. The degree of 
hearing loss can be determined with diagnostic physiological tests such as the ABR 
combined with behavioral auditory assessments. This information is important, as the type 
of intervention planned often depends on whether the infant is hard-of-hearing or deaf. 
Traditional amplification systems, including hearing aids, usually can benefit hard-of-
hearing children (Gravel & O’Gara, 2003). When their residual hearing is aided and they are 
able to hear the acoustic cues of conversational speech, the language acquisition of hard-of-
hearing children can be similar to that of normal-hearing children (Moeller, 2000). Factors 
which influence the language skills of hard-of-hearing children include the age at which 
their hearing loss was identified, when they received intervention and the amount of 
parental involvement in the intervention plan (Yoshinaga-Itano et al.,1998; Yoshinaga-Itano 
& Apuzzo, 1998). 

For many deaf children, traditional amplification systems may not be a viable option. These 
children often do not have enough residual hearing to benefit from hearing aids. Alternative 
intervention in the form of cochlear implants designed to facilitate development of spoken 
language, or adoption of manual communication as the child’s first language may be more 
appropriate options. The choice of which communication style to adopt for a deaf child can 
be a controversial one for many families. This choice can be influenced by the opinions of 
intervention professionals, who often view deafness as a condition to fix. However, 
individuals in the Deaf community have argued that deafness is indicative of a cultural 
difference, and that all deaf children should learn American Sign Language as their primary 
means of communication (Samson-Fang et al., 2000). The choice of communication style will 
certainly affect the future educational placement of the deaf child. Deaf children who receive 
cochlear implants are more likely to be mainstreamed with normal-hearing children in 
classrooms, while alternative educational placements may be required for children who 
communicate manually. Regardless of the communication style, evidence indicates that 
early intervention benefits linguistic outcomes. Children who receive cochlear implants 
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certainly affect the future educational placement of the deaf child. Deaf children who receive 
cochlear implants are more likely to be mainstreamed with normal-hearing children in 
classrooms, while alternative educational placements may be required for children who 
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within the age range of 2-6 years perform well on speech reception and production tasks, 
with better performance seen in children implanted earlier rather than later in life (Brackett 
& Zara, 1998). Deaf children with early exposure to manual communication developed 
linguistic skills in a manner similar to normal-hearing children who received early exposure 
to spoken language (Bandurski & Galkowski, 2004). These findings underscore the 
importance of early intervention on the development of hearing-impaired children. 

Substantial evidence concerning the effects of early identification of hearing loss and early 
intervention on the language development of hearing-impaired children has been provided 
by Yoshinaga-Itano and her colleagues. In a series of studies published in peer-reviewed 
journals, they examined the language skills of children between 13-40 months of age who 
were identified with hearing loss either before or after the age of six months. The expressive 
and receptive language development of children enrolled in intervention services before six 
months of age was significantly better than those of the children identified later in life. Both 
hard-of-hearing and deaf children benefited from early intervention. Most importantly, the 
language skills of the early-identified children approached those seen in age-matched 
normal-hearing children (Yoshinaga-Itano et al., 1998; Yoshinaga-Itano & Apuzzo, 1998). 
Moeller (2000) extended these results, finding that the benefits of early intervention on 
language development were maintained in children at five years of age. In addition, 
personal-social development and self concept are more advanced in children who were 
identified and enrolled in intervention early in life (Yoshinaga-Itano, 2003).  

Another contributing factor to the development of language in hearing-impaired children is 
the degree of family involvement in the intervention plan (Moeller, 2000). The diagnosis of 
hearing loss in an infant can be a catastrophic event in the emotional lives of new parents. 
Parental reaction to this event can contribute significantly to the developmental outcomes 
for the child (Kurtzer-White & Luterman ,2003). Once they are informed about their child’s 
hearing loss, many parents go through a series of emotions including anger, resentment, and 
guilt before acceptance of the hearing loss occurs. Recognition of these coping mechanisms 
by professionals including physicians and educators will enhance parental involvement in 
the intervention process. There is evidence that well-adjusted families contribute to 
academic achievement in hearing-impaired children (Feher-Prout, 1996). Educators of the 
deaf have received training in psychosocial issues of hearing-impaired children and their 
families, and this expertise can improve the quality of early intervention services. 

5. Otoprotection and carboplatin-induced hearing loss 
The ability to prevent ototoxicity in patients undergoing carboplatin chemotherapy with 
pharmaceutical agents is currently being investigated by several teams of researchers. The 
molecular mechanisms of cell death in the cochlea induced by ototoxic agents are currently 
being elucidated. Armed with this knowledge, researchers are developing substances that 
can interrupt the chain of events that lead to hearing loss. These substances are generally 
known as “otoprotectants”. Sodium thiosulfate (STS) is an otoprotectant used to prevent 
carboplatin ototoxicity that has been evaluated in animal models and in human patients. In 
guinea pigs, STS was found to reduce the toxicity of carboplatin when it was given up to 8 
hours after the ototoxic drug was administered (Neuwelt et al., 1996). Further, the ability of 
STS to lessen the cochlear toxicity of carboplatin did not interfere with the anti-tumor 
effectiveness of carboplatin in rats (Muldoon et al., 2000). In a study involving human 
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patients receiving carboplatin, Neuwelt et al. (1998) found that patients given STS 2 hours 
after carboplatin administration incurred a significantly lower average hearing loss 
compared with a control group of patients that did not receive STS. The benefits of delayed 
administration of STS were further revealed when it was shown that when STS is given 4 
hours after carboplatin, it reduces ototoxicity rates (Doolittle et al., 2001). The beneficial 
effects of STS in adults were also seen in a study involving children, where trends indicated 
that STS provided protection against carboplatin ototoxicity while sparing the anti-tumor 
activity of the drug (Neuwelt, 2006). Another otoprotectant against carboplatin ototoxicity 
that has been evaluated in animal models is D-Methionine (D-Met). Lockwood et al. (2000) 
found that carboplatin-induced cell loss was reduced in chinchillas treated with D-met 
compared to untreated controls.  

In the future, it is conceivable that otoprotectants such as STS or D-Met would be 
administered during carboplatin chemotherapy in order to reduce the cochlear toxicity of 
the drug. The use of these pharmaceutical agents to prevent hearing loss would be 
invaluable in children with retinoblastoma, as these children have existing visual 
impairments in one or both eyes.  

6. Conclusions 
Carboplatin is a chemotherapy agent with known ototoxic side effects that is widely used in 
the conservative management of retinoblastoma. Children with retinoblastoma have visual 
impairments that may impact their development. There is a risk of incurring additional 
sensory deficits (loss of hearing) when carboplatin is included in the treatment regimen. 
Although research to date has indicated a low incidence of carboplatin-induced hearing loss 
in children with retinoblastoma, additional study of this topic is required before definitive 
conclusions can be drawn. Factors such as exposure to other ototoxic agents including 
cisplatin and poor renal function may potentiate carboplatin-induced hearing loss. It is 
important that medical professionals remain vigilant about monitoring hearing during 
carboplatin chemotherapy, as conservation of hearing is a priority in children with 
retinoblastoma. If a change in hearing is noted during the monitoring regimen, it may be 
possible to alter the dosage of the drug to prevent further deterioration in hearing from 
occurring. If the carboplatin dose cannot be modified, monitoring hearing status during the 
treatment regimen can serve as an entry point into intervention programs, including the 
provision of hearing aids and family counseling. It is also important to note that late-onset 
hearing loss can occur years after completion of carboplatin chemotherapy. Therefore, long-
term hearing assessments may be required in these cases. Recognition of the impact of 
ototoxic hearing loss on the lives of retinoblastoma survivors will lead to appropriate 
planning in cases when hearing loss is detected.  
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1. Introduction 
Retinoblastoma is a malignant embryonal tumour of childhood arising at the expense of 
retinal cones. It has an incidence of 1 per 15,000 to 20,000 births. In 90% of cases, it is 
diagnosed before the age of 3 years. The possibility of conservative management depends 
on early diagnosis (Moll et al., 1996). However, although treatment strategies have advanced 
considerably, the visual prognosis is still a major source of concern, especially central vision 
when the tumour is situated at or close to the macula. In two-thirds of cases, the lesion is 
unilateral and the median age of diagnosis is 2 years. In the other third, the lesion is bilateral 
and the disease is diagnosed earlier, possibly even during the neonatal period, with a 
median age of diagnosis of 1 year. Most cases of unilateral and bilateral retinoblastoma are 
sporadic, with no family history. However, 10 to 15% of all cases of retinoblastoma present a 
family history. The distribution of cases within the family is compatible with the existence of 
a tumour susceptibility gene transmitted according to an autosomal dominant mode with 
high penetrance. In this case, the lesion is usually bilateral and diagnosed at an early age. 

1.1 Diagnosis 

The most frequent presenting signs are leukocoria (white pupillary reflex) and strabismus. 
Retinoblastoma may also be discovered on routine ocular fundus examination performed in 
a child from a high-risk family. 

The diagnosis is essentially based on the ocular fundus examination under general 
anaesthesia, completed by ultrasound and CT. Tumour growth may be endophytic with 
invasion of the vitreous cavity or, more rarely, exophytic with retinal detachment. A precise 
description of the lesions based on fundoscopy findings allows the lesion to be classified 
according to the 5 stages of the Reese-Ellsworth classification, associated with an 
increasingly severe prognosis. Ultrasound and orbital CT demonstrate tumour calcifications 



Retinoblastoma – An Update on Clinical,  
Genetic Counseling, Epidemiology and Molecular Tumor Biology 

 

54

Weatherly, R.A.; Owens, J.J.; Caitlin, F.I. & Mahoney, D.H. (1991). Cis-platin ototoxicity in 
children. Laryngoscope , Vol. 101, No. 9 (September 1991), pp.917-924.  

Yoshinaga-Itano, C. (2003). From screening to early identification and intervention: 
discovering predictors to successful outcomes for children with significant hearing 
loss. Journal of Deaf Studies and Deaf Education, Vol. 8, pp. 11-30. 

Yoshinaga-Itano C. & Apuzzo, M. (1998). Identification of hearing loss after age 18 months is 
not early enough. American Annals of the Deaf , Vol.143, pp. 380-387. 

Yoshinaga-Itano, C.; Sedey, A.L.; Coulter, D.K. & Mehl, AL. (1998). Language of early- and 
later-identified children with hearing loss. Pediatrics, Vol. 102, No. 5 (November 
1998), pp. 1161-1171. 

4 

Retinoblastoma – Genetic Counseling  
and Molecular Diagnosis 

Claude Houdayer1,4, Marion Gauthier-Villars1, Laurent Castéra1,  
Laurence Desjardins2, François Doz3,4 and Dominique Stoppa-Lyonnet1,4,5 

1Genetics Department, Institut Curie, Paris 
2Ophtalmology Department, Institut Curie, Paris 

3Pediatrics Department, Institut Curie, Paris 
4Université Paris Descartes, Paris 

5INSERM U830, Pathologie Moléculaire des Cancers,  
Institut Curie, Paris 

France 

1. Introduction 
Retinoblastoma is a malignant embryonal tumour of childhood arising at the expense of 
retinal cones. It has an incidence of 1 per 15,000 to 20,000 births. In 90% of cases, it is 
diagnosed before the age of 3 years. The possibility of conservative management depends 
on early diagnosis (Moll et al., 1996). However, although treatment strategies have advanced 
considerably, the visual prognosis is still a major source of concern, especially central vision 
when the tumour is situated at or close to the macula. In two-thirds of cases, the lesion is 
unilateral and the median age of diagnosis is 2 years. In the other third, the lesion is bilateral 
and the disease is diagnosed earlier, possibly even during the neonatal period, with a 
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family history. The distribution of cases within the family is compatible with the existence of 
a tumour susceptibility gene transmitted according to an autosomal dominant mode with 
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highly suggestive of retinoblastoma and CT contributes to staging in advanced forms. In the 
case of enucleation, the diagnosis and staging are confirmed by histological criteria. 

Conservative treatment must be attempted whenever possible: chemotherapy, radiotherapy, 
photocoagulation, and cryotherapy. Very advanced forms unsuitable for conservative 
treatment will require enucleation. This treatment is still unfortunately often required for 
sporadic retinoblastomas whose diagnosis is made late. 

1.2 Predisposition to retinoblastoma 

In 1971, Knudson proposed a model designed to explain why most familial retinoblastomas 
were bilateral and occurred at an early age and, inversely, why unilateral cases were usually 
isolated and diagnosed later (Knudson, 1971). He proposed the hypothesis that two 
mutations of key genes in the control of cell division occurring in a retinal neuroectodermal 
cell were necessary, but possibly not sufficient, for development of retinoblastoma. In 
bilateral forms, the first mutation is a germline mutation, present in all cells of the body and 
especially in all retinal neuroectodermal embryonal cells, while the second mutation is 
somatic, acquired during foetal life or the first months of neonatal life. Although the 
probability of two somatic mutations in two key genes in the same retinal cell is extremely 
low, development of a single mutation is not a rare event and induces development of a 
retinoblastoma when another mutation is already present. This explains why children with a 
germline mutation have a high risk of developing not just one, but two or more tumours. 
Comings completed Knudson’s hypothesis in 1973 by postulating that the two mutations 
necessary for the development of retinoblastoma corresponded to inactivation of the two 
alleles of the same gene, that had not yet been identified at that time (Comings, 1973). The 
hypothesis of the existence of tumour suppressor genes, already suspected, became very 
likely. 

In familial cases, the germline mutation is transmitted by one of the parents. In sporadic, 
bilateral and sometimes multifocal unilateral cases, the germline mutation usually 
corresponds to a de novo mutation arising in the gametes of one of the two parents (pre-
zygotic) or at an early stage after fertilization (post-zygotic). Pre-zygotic de novo mutations 
are associated with advanced paternal age. In some cases, the apparently sporadic nature of 
retinoblastoma is related to incomplete penetrance in one carrier parent. As the risk of 
tumour is high, but incomplete, a parent with a germline mutation may fail to develop 
retinoblastoma during childhood or may have developed a spontaneously regressive 
retinoblastoma, which may leave a retinal scar or retinoma. It is therefore very important to 
perform an ocular fundus examination in each parent looking for retinoma, which would 
reveal a previously unknown family history that would consequently modify genetic 
counseling. This point is discussed in more detail in the “Notes” section of the chapter on 
“Genetic counseling”. 

Most unilateral cases are due to two mutations occurring only at the somatic level. 
However, it is estimated that almost 10% of patients with unilateral retinoblastoma have a 
germline mutation. 

A risk of cancer different of retinoblastoma exists within retinoblastoma predisposition. 
Rare patients develop pineal region tumour but is considered like an ectopic intracranial 
retinoblastoma and so-called trilateral retinoblastoma. An increased risk of second cancers 
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for RB1 mutation carriers, after retinoblastoma, is well documented. In childhood and early 
adulthood, these patients have a high incidence of osteosarcomas and soft tissue sarcomas. 
The incidence of these cancers can often be attributed to external beam radiation therapy, 
but many cases have been reported occurring outside of the field of radiation treatment and 
even for patients who received no radiation. A cumulative rate of second cancers is reported 
18 years after the diagnosis of genetic retinoblastoma at 8.4% (and 6% for osteosarcomas 
alone) (Draper et al., 1986). Otherwise, RB1 mutation carriers have also a high lifetime risk 
of developing a late onset epithelial cancer (lung, bladder, breast) and melanoma. In a 
historic series of 144 survivors of hereditary retinoblastomas, the cumulative cancer 
incidence to 85 years of age has been estimated to be 68.8% (CI= 48.0% to 87.4%) (Fletcher et 
al., 2004). 

1.3 The RB1 gene 

The identification, in 1963, of germline deletions of chromosome 13 (then considered to be a 
group D chromosome) in rare patients with bilateral retinoblastoma and presenting mental 
retardation and a dysmorphic syndrome suggested that the retinoblastoma susceptibility 
gene was localized in this chromosomal region (Baud et al., 1999, Lele et al., 1963). 
Comparative analysis of highly polymorphic germline and tumour genetic markers 
localized in 13q14 subsequently demonstrated loss of heterozygosity in about 65% of 
tumours. In other words, in more than one half of tumours, the susceptibility gene is altered 
in somatic cells by complete loss of the chromosomal region in which it is localized. It has 
also been demonstrated that, in familial forms of retinoblastoma, the remaining allele in the 
tumour was always the allele common to all affected members of the family, i.e. the allele 
carrying the predisposition to retinoblastoma. Analysis of a large number of retinoblastomas 
identified the smallest common region of deletion in 13q14, which allowed research to be 
focussed on this region. In 1986, identification of a gene localized in the region of interest 
and constituting a site of inactivating germline mutations in children with bilateral 
retinoblastoma confirmed that this gene corresponded to the retinoblastoma susceptibility 
gene; it was called RB1(Friend et al., 1986). Identification of RB1 confirmed the 
complementary hypotheses of Knudson and Comings, opened the way to cancer 
susceptibility gene testing and allowed definition of the risk of retinoblastoma within 
particular families. 

The RB1 gene codes for a 110 kD nuclear protein with an ubiquitous expression, which, 
together with proteins p107 and p130, belongs to the pocket protein family. These proteins 
share in common a domain corresponding to a highly conserved region, the pocket domain, 
which allows sequestration of transcription factors, such as those of the E2F family. During 
the G1/S transition of the cell cycle, the pRB protein binds to E2F factors and suppresses 
their activity, consequently blocking progression to S phase. Inversely, phosphorylation of 
pRB releases E2F factors, allowing completion of the cell cycle. The pRB protein is involved 
not only in regulation of the cell cycle, but also in control of termination of cellular 
differentiation and in exit of the cell from the cell cycle during development. It appears to 
interact with more than 100 different proteins (Zhu, 2005, Classon&Harlow, 2002, 
Chau&Wang, 2003, Bremner et al., 2004). It is probably this role in differentiation which 
explains the spatiotemporal specificity of the tumour risk associated with RB1 gene 
mutations and consequently damage to retinal neuroectodermal cells during early 
childhood. 
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2. Genetic counseling protocols 
2.1 Overview 

Whenever unilateral or bilateral retinoblastoma is diagnosed in a child, it is important to 
consider the possibility of a genetic predisposition and therefore the risk of development of 
the disease in young children related to the patient. 

Analysis of the family history and the tumour history of a patient treated for retinoblastoma 
is essential to evaluate the possibility of a genetic predisposition and the risk of 
development of the disease in other members of the child’s family and to guide the 
ophthalmological surveillance of family members (siblings, cousins or offspring). It is 
therefore possible to calculate the probability of relatives of a child with retinoblastoma to 
present a genetic predisposition to this disease. These calculations are based on the 
following elements: (1) 100% of patients with bilateral retinoblastoma and 10% of patients 
with unilateral retinoblastoma are considered to present a genetic predisposition, (2) the 
mode of transmission is dominant; a carrier parent therefore has once chance in two of 
transmitting the susceptibility gene to each child, (3) the penetrance is 90% at birth, which 
means that an adult who did not develop retinoblastoma in childhood has a tenfold lower 
probability of being a carrier compared to the probability at birth (Figure 1). 

Based on comparative analysis of the various approaches to ophthalmological surveillance 
in different countries and our multidisciplinary experience at Institut Curie, we can propose 
guidelines for the surveillance of relatives of patients followed for retinoblastoma (Figure 1) 
(Abramson et al., 1998, Moll et al., 2000, Musarella&Gallie, 1987). The modalities of this 
surveillance depend on the probability of predisposition of the child to be followed, which 
depends on the child’s age and degree of kinship with the affected child, and on the age 
distribution at diagnosis in predisposed children followed since birth. In a series of 50 
predisposed children followed since birth, the diagnosis of retinoblastoma was established 
before the age of 6 months in 80% of cases, before the age of 18 months in 92% of cases and 
at the age of 4 years in one case. Finally, even for the lowest levels of risk for which 
ophthalmological surveillance is recommended, ocular fundus examination must be 
performed at least every 3 months until the age of 24 months in order to ensure effective 
prevention. These surveillance guidelines are very rigorous: ocular fundus examination at 
the first month of life, or even the first week, in a specialized unit, with frequent follow-up 
examinations requiring general anaesthesia from the second or third examination. For 
example, in the case of a 50% risk of being a carrier (a child born to a patient with bilateral 
retinoblastoma), surveillance starts at the first week of life, and then once a month until the 
age of 18 months (Figure 1). 

These guidelines must be maintained in the absence of genetic testing or while waiting for 
the results, as genetic testing in all patients with unilateral or bilateral retinoblastoma, 
followed by testing of the relatives, can eliminate the need for surveillance of a certain 
number of children, depending on the results. 

2.2 Counseling 

Molecular genetic studies of the RB1 gene can now be proposed to all patients with familial 
or sporadic unilateral or bilateral retinoblastoma. Genetic testing must be performed in the 
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context of a genetics consultation in collaboration with the ophthalmology, paediatric 
oncology and radiotherapy teams managing the child. During this consultation, the patient’s 
pedigree is built looking for other tumour cases in the family and especially other 
retinoblastoma cases. Patient or parents of young patients are informed about 
retinoblastoma predisposition. Ocular fundus examination of parents is required to search 
for retinoma which would reveal a previously unknown family history. Follow up of young 
patient’s relatives by ocular fundus is recommended. Blood sampling for RB1 molecular 
analysis is proposed to search for germline mutation. Finally, an informed consent has to be 
signed by the patients or their legal guardians if RB1 screening is accepted. Following RB1 
screening, results are delivered during another genetic consultation. The printed test results 
are given to the parents and are also kept by the genetics department for at least thirty years, 
so that they can be consulted by the child during early adulthood. Today, a first-line 
screening for the two inactivating somatic mutations in the tumor DNA (when available) is 
performed and represents an attractive alternative: identification of these mutations only in 
the tumour and not in the leukocytes of the patient eliminates the risk of recurrence in 
siblings and cousins (see below). 

The assessment usually starts with molecular genetic testing but cytogenetic analysis is 
performed as first-line procedure in the case of associated mental retardation or 
characteristic dysmorphic syndrome. 

2.3 Clinical management/surveillance (Figure 2) 

When a mutation has been demonstrated in an affected child, genetic testing based on 
screening for this mutation, is recommended for the siblings. Ophthalmological surveillance 
can be stopped in a relative when genetic testing fails to reveal the mutation identified in the 
family. Genetic testing is also proposed to the parents. If one of the two parents carries the 
mutation, antenatal diagnosis may be proposed for a subsequent pregnancy. If the parents 
do not carry the mutation, their respective families can be reassured, eliminating the need 
for ophthalmological surveillance of the patient’s cousins. In contrast, it is impossible to 
assess the level of representation of the mutation identified in the affected child in the 
gametes of the parent in which a de novo mutation has occurred (quantification of the 
germline mosaic), or, in other words, it is impossible to eliminate the risk of recurrence in 
the siblings of the affected child. In this case, for each new birth in the immediate family, a 
genetic test must be proposed during the neonatal period. Antenatal diagnosis can be 
proposed case by case. 

When no RB1 gene mutation is demonstrated in the affected child: 

1. In the case of bilateral retinoblastoma, genetic screening techniques have certain 
limitations and may fail to demonstrate a mutation, in which case surveillance of the 
patient’s relatives must be continued (Figure 1). Somatic mosaics may also be 
observed, as an alteration of the RB1 gene can occur in the patient during embryonic 
development and may not be present in leukocyte DNA. If the mutation is present in 
the germline, this patient may transmit the mutation to his/her offspring. It is 
currently proposed to repeat RB1 gene testing at the birth of each child of a patient 
with a history of bilateral retinoblastoma in childhood in whom molecular RB1 gene 
testing was negative. 
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Fig. 2. Clinical management/surveillance 

2. In the case of unilateral sporadic retinoblastoma, the genetic counsellor can be more 
reassuring, as the risk of a genetic predisposition is very low (1% instead of 10%, taking 
into account a 90% screening sensitivity, see below). However, once again, certain 
limitations of the techniques used and the risk of somatic mosaic must be kept in mind. 
It is therefore recommended to continue ophthalmological surveillance in the patient’s 
offspring (Figure 1). However, if the probability of predisposition of a child with 
unilateral retinoblastoma is only 1%, the risk for his nephews is around 0,00125% or 
1/80 000 i.e. lower than in the general population. As a result their ophtalmologic 
follow-up should be stopped. 

3. In familial forms comprising two accessible cases, indirect genetic testing rapidly 
demonstrates the mutant allele of the RB1 gene. This method can then be used to 
detect relatives with the cancer-predisposing allele and allows the possibility of 
antenatal diagnosis. Indirect molecular genetic testing can also be proposed for 
families with only one case of retinoblastoma, while waiting for the results of RB1 
screening or when no mutation is detected. The objective in this setting is to suspend 
surveillance of a child not sharing any RB1 allele in common with its brother or sister 
with retinoblastoma, i.e. in one case in four, or even one case in two when loss of 
heterozygosity is demonstrated in the patient’s tumour, designating the remaining 
allele as the putative predisposing allele. It should be stressed that even when a child 
shares an allele in common with the patient, the probability that he or she has an RB1 
gene mutation remains very low (Figure 1). However, as a precaution, 
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ophthalmological surveillance should be continued. Antenatal diagnosis cannot be 
considered in this particular setting. 

2.4 Notes 

For a long time, it was considered that all patients with a deleterious RB1 gene mutation 
developed retinoblastoma regardless of the type of molecular lesion. However, the risk 
within a given family has now been clearly established to be heterogeneous, as some 
members do not develop retinoblastoma, while others develop bilateral retinoblastoma, or 
even a secondary tumour. The severity of the risk can be evaluated by the disease-eye-ratio 
(DER), which is a good marker of penetrance and level of expression (Lohmann et al., 1994). 
The DER is the ratio of the number of eyes affected over the number of carriers within the 
family. One of the problems of genetic counseling for retinoblastoma is therefore to evaluate 
the tumour risk for an unborn child with a germline RB1 gene mutation, hence the 
importance of developing our knowledge of genotype-phenotype relationships. 

In general, subjects with a mutation in the first generation may have an attenuated 
phenotype due to a possible mosaic. The type of lesion then varies according to the type of 
mutation (Lohmann&Gallie, 2004, Harbour, 2001, Taylor et al., 2007). 

Subjects with a mutation leading to a truncated protein (stop, frameshift) have a high risk, 
greater than 90%, of bilateral retinoblastoma (mean DER = 1.85). Of note, some truncating 
mutations in exon 1 may lead to low-penetrance retinoblastoma trough alternative 
translation initiation (Sanchez-Sanchez et al., 2007). The situation is more complex for the 
other types of mutations, as discussed below. 

Splicing mutations are associated with a lower mean DER (1.5) and, in some cases, with high 
intrafamily variability with the presence of tumour-free and bilateral cases in the same 
family. The variability of the DER is mainly due to maintenance of the frame and/or the 
respect of functional domains. The case of IVS06+1G>T splicing mutation is quite 
remarkable, as this mutation is supposed to result in a skip of exon 6 out of phase and 
therefore in the absence of protein, as the truncated messenger is eliminated by Non sense 
Mediated Decay (NMD) (Holbrook et al., 2004). This mutation is actually associated with an 
extraordinary variability of intrafamily and interfamily penetrance. The mechanisms 
proposed to account for this phenomenon are maintenance and therefore translation of the 
truncated messenger, possibly related to a parental effect (Klutz et al., 2002) or 
overexpression of the wild-type allele, resulting in a normal level of RB1 expression (Taylor 
et al., 2007). 

Anomalies of the promoter region are classically associated with variations of the level of 
expression of the messenger and result in variable but generally low DER. 

Missense mutations are very rare. When they do not alter splicing (see above), they can be 
responsible for a partially functional protein (e.g. R661W), which results in a very low mean 
DER (0.3), but the possibility of bilateral cases cannot be excluded (Onadim et al., 1992). 

Chromosomal rearrangements (deletion or duplication of one or several exons, or even the 
whole gene) are associated with a variable DER (mean: 1.4), particularly and surprisingly, 
deletions comprising all of RB1, for which the phenotype can vary from no lesion to bilateral 
retinoblastoma (Albrecht et al., 2005). 
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The type of mutation therefore affects the type of lesion, but modifying factors influencing 
splicing, the level of expression and/or cell survival also appear to be involved. As an 
example, the existence of these genetic modifiers in retinoblastoma have been suspected and 
searched in the pRB or p53 pathways in which MDM2 is a key regulator of both p53 and 
pRB catabolism. We have recently demonstrated that the minor allele of MDM2 that 
includes a 309T>G transversion (SNP rs2279744) in the MDM2 promoter is strongly 
associated under a recessive model with incidence of bilateral or unilateral retinoblastoma 
among members of retinoblastoma families (Castéra et al., 2010). 

In the context of genetic counseling, the possibility of antenatal or even pre-implantation 
diagnosis can be proposed to couples with a 50% risk of transmitting an RB1 gene mutation. 
The situation is obviously more delicate in families presenting an intrafamily heterogeneous 
risk, which makes genetic counseling more difficult. Although it appears impossible to 
reassure a parent with no history of retinoblastoma, but carrying an RB1 mutation about the 
tumour risk for his/her offspring, it is very difficult to inform this subject about techniques 
allowing the birth of a mutation-free infant. It is therefore very important to continue the study 
of these families in order to improve genetic counseling in the context of retinoblastoma. 

3. Molecular methods in genetic testing 
3.1 Overview 

The molecular pathology of RB1 is very diverse and about 500 distinct germline mutations 
have been described to date, some of which are listed in two databases managed by  
Dr Lohmann (http://RB1-lsdb.d-lohmann.de) and Dr Pestaña (http://www.es.embnet.org/ 
Services/MolBio/rbgmdb). These mutations occur throughout the coding sequence and in 
the promoter region with the notable exception of the last 2 exons (figure 3). Most of these  

 
RB1 coding sequence is drawn to scale, and exons shown in grey are part of pocket domains A or B. 
Large deletions are represented as black lines. 

Fig. 3. Pattern of mutations found in a series of  192 retinoblastoma patients (adapted from 
Houdayer et al., 2004) 
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mutations are de novo mutations. The spectrum of germline mutations mainly comprises 
nonsense mutations (about 40%), frameshift insertions or deletions of several bases (about 
25%), altered splicing (about 20%) and chromosomal rearrangements, i.e. 
deletions/duplications of one or several exons, or even the entire gene (about 10%). The 
remaining mutations correspond to rare missense mutations and mutations of the 
promoter region. Variations of the relative proportions of these mutations have been 
reported, which can be explained by differences of the population studied, and 
environmental or stochastic factors, related to the high rate of de novo mutations 
(Dehainault et al., 2004, Alonso et al., 2001). Finally, constitutional inactivation of RB1 can 
be due to exceptional cases of chromosomal rearrangements only visible on cytogenetics 
(e.g. translocations, inversions). These same types of alterations are also found in the 
tumour, as well as hypermethylation of the promoter region and large chromosomal 
losses comprising all of RB1 and flanking regions (Richter et al., 2003).Tumoral events are 
now systematically searched when the tumor is available. 

3.2 Materials 

Analysis of the index case, which requires a larger amount of material, must be 
distinguished from that of relatives, in whom the search for a previously identified mutation 
requires less material. 

3.2.1 Study of the index case 

Testing for germline RB1 gene mutations is classically performed on DNA extracted from 
whole blood collected on EDTA. Two to 3 µg of genomic DNA are required for screening for 
point mutations and large mutations on the entire gene. Extraction can be performed with 
commercial kits or by phenol/chloroform or perchlorate/chloroform or salting out 
techniques (Johns&Paulus-Thomas, 1989, Miller et al., 1988). 

When DNA is used for screening, RNA must also be available due to the frequency of 
splicing alterations. RNA analysis may be essential to demonstrate the impact of the 
presumptive mutation identified on genomic DNA. RNA is obtained from a blood sample 
collected on heparin, Acid Citrate Dextrose (ACD), or EDTA. Lymphoblastoid cell culture is 
an interesting option, as it provides an infinite source of nucleic acids, but it is expensive 
and requires cell culture facilities. 

Finally, tumour DNA analysis is important for the molecular diagnosis of retinoblastoma. 
Samples fixed in Bouin’s solution cannot be used, as this fixative degrades DNA, and frozen 
blocks are preferable to paraffin-embedded blocks. When the first-line analysis is performed 
on the tumour (see below), a sufficient amount of material must be available (2 to 3 µg). A 
small quantity is sufficient when looking for a known mutation and it is even possible to 
obtain genetic material by scratching a slide. Tumour DNA can be extracted with 
commercial kits or phenol/chloroform. 

3.2.2 Study of relatives 

In this setting, genetic testing is designed to detect a previously identified mutation, and a 
small quantity of DNA is sufficient (about 50 ng) and can be extracted from buccal cells 
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collected by swabbing, a simple, noninvasive technique. FTA technology (Gaytmenn et al., 
2002, Seah et al., 2003) is then the preferred method: swabs are applied onto FTA cards, 
buccal cells are then lysed and nucleic acids are immobilized and stabilized in the FTA 
matrix. The paper support is then punched out and the punch is washed and placed in the 
PCR reaction tube. Alternatively, buccal cells can be extracted from the swab by using 
standard commercial kits. 

3.3 Methods 

There are two types of diagnostic genetic molecular testing: direct testing and indirect 
testing. 

3.3.1 Direct testing 

Direct testing consists of looking for a germline alteration of the RB1 gene indicative of a 
predisposition to retinoblastoma. The first study performed in a family is time-consuming 
and generally takes several months. In contrast, when testing is performed to detect a 
mutation already identified in the family, targeted screening of the previously identified 
mutation takes only a few days. Direct testing is essentially performed on blood samples. It 
is good practice to verify the presence of a mutation on two DNA samples obtained 
independently: two blood samples taken at two different times, or a blood test and a buccal 
swab. 

Direct testing can also be performed on the tumour. This screening can be very useful in 
bilateral cases in which no mutation is detected on leukocytes, but also for unilateral forms, 
as identification of a mutation only in the tumour would be very useful for genetic 
counselling, eliminating the risk of recurrence in siblings and cousins (but not in the 
offspring). Testing of tumour DNA is obviously subject to availability of material, i.e. 
enucleation. 

The complexity of the mutational spectrum of the RB1 gene requires analysis of the entire 
coding sequence and promoter region by several complementary techniques (see DNA 
methylation analysis). 

3.3.1.1 Detection of point mutations 

Point mutations are usually investigated by Denaturing High Performance Liquid 
Chromatography (Xiao&Oefner, 2001, Dehainault et al., 2004) and/or direct DNA 
sequencing (Richter et al., 2003), or even Denaturing Gradient Gel Electrophoresis (which is 
more complicated to perform) (Fodde&Losekoot, 1994) or Single Strand Conformational 
Polymorphism (low sensitivity) (Orita et al., 1989). Recently, we have adapted a novel HDA 
method (Houdayer et al., 2010) called Enhanced Mismatch Mutation Analysis (EMMA). 

Regardless of the technique used, the gene is cut into amplicons corresponding to the exon 
sequence and intron/exon junctions in order to detect any abnormalities of splicing 
consensus sequences which can have major functional consequences. 

DHPLC is an adaptation of high performance liquid chromatography for DNA applications, 
used for the detection of point mutations. It is based on the principle of physical separation, 
under denaturing conditions, of various DNA fragments in a mobile phase by differential 
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retention on a solid phase composed of a DNA column. DHPLC has a high sensitivity, 
making it a very useful tool in retinoblastoma for the study of tumours or mosaics, which 
are not uncommon. DHPLC is able to detect less than 20% of the minority allelic species, 
which corresponds to the accepted limit for sequencing. The limitations of DHPLC depend 
on the base composition of the DNA fragment studied (see “Notes” section). 

EMMA is based on the use of innovative matrices increasing the electrophoretic mobility 
differences between homoduplex and heteroduplex. DNA Sensitivity is further improved by 
using nucleosides as additives to enhance single-base substitution detection. Nucleosides 
are expected to interact with mismatched bases of heteroduplexes, thereby increasing 
mobility differences with homoduplexes. Moreover, this method, in combination with 
adapted semiquantitative PCR conditions, can be used to simultaneously detect point 
mutations and large-scale rearrangement in a single run (Weber et al., 2006, Weber et al., 
2007). This feature, combined with the use of a single set of separation conditions for all 
fragments and with the multiplexing capability of the method, leads to a considerable 
simplification and cost reduction compared to previous methods (Caux-Moncoutier et al., 
2010). 

Direct sequencing is the second option and is considered to be the reference technique. 
However, its performances are highly dependent on the apparatus, chemistry, polymers and 
software used. A study comparing DHPLC and direct sequencing for BRCA1 analysis 
concluded on a similar detection rate for the two techniques (Alonso et al., 2001). 

Direct testing is also performed on RNA to characterize any abnormal splicing. Classically, 
after extraction of RNA and RT PCR, the cDNA region surrounding the putative anomaly is 
amplified to demonstrate abnormal transcripts. The instability of messenger RNA carrying a 
premature stop codon, or NMD (Holbrook et al., 2004), constitutes a real problem in 
diagnostic molecular genetics and is discussed in the “Notes” section. 

3.3.1.2 Detection of chromosomal rearrangements 

Chromosomal rearrangements, i.e. deletion/duplication of one or several exons, cannot be 
detected by the techniques used to detect point mutations because the mutant allele is 
masked by the wild-type allele, as the retinoblastoma susceptibility gene segregates 
according to an autosomal dominant mode. 

Specific gene assay techniques must be used in order to distinguish 2 copies of the target 
(wild-type status), one copy (deletion) or 3 copies (duplication). Semiquantitative 
techniques, such as Quantitative Multiplex PCR of Short fluorescent Fragments (QMPSF), 
Multiplex PCR/liquid chromatography assay (MP/LC) (Duponchel et al., 2001, Dehainault 
et al., 2004),  and Multiplex Ligation Probe Amplification (MLPA) (Schouten et al., 2002) or 
quantitative techniques, i.e. real-time PCR, are used. QMPSF is a technique allowing 
simultaneous, semiquantitative amplification of several exons; the intensity of the signal 
obtained therefore depends on the number of copies of the gene of interest in the matrix 
DNA. After amplification of the exons followed by separation of the PCR products obtained 
by electrophoresis, the patient electrophoretograms are compared to those of normal and 
mutant controls. The signal intensity in the various samples is then evaluated and deletions 
of one or several amplicons are revealed by a 50% reduction of the corresponding peak(s). 
Data can be exported to an Excel spreadsheet and analysed by a macro. The advantage of 
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QMPSF and other semiquantitative multiplex PCR approaches is their high throughput and 
the small number of analytical steps, which is always appreciated in the diagnostic setting. 

Another widely used semiquantitative technique, MLPA, is based on a step of hybridization 
of specific probes, fitted with a universal tail, and corresponding to the exons to be 
examined. The quantity of probe hybridized is therefore proportional to the quantity of 
target. After hybridization and ligation, probes are then amplified by PCR with a set of 
universal primers and PCR products are separated be capillary electrophoresis. Once again, 
the signal intensity, compared to that of normal and mutant controls, is used to detect 
chromosomal rearrangements. Despite a much higher multiplexing capacity, the throughput 
of MLPA is lower than that of semiquantitative multiplex PCR approaches due to an 
additional analytical step (ligation), but the advantage of this technique is that it is available 
in the form of ready-for-use kits for many genes including RB1. 

These two approaches have similar performances and the choice between the two therefore 
depends on the user’s priorities. 

Real-time PCR techniques are particularly suitable for gene assays. They are based on either 
i) incorporation of a free fluorophore (typically SYBR Green) into the forming strands, 
which generates an increase in the intensity of fluorescence with the number of copies 
produced. The sensitivity of these techniques is enhanced by the use of fluorophore-labelled 
specific probes. Unfortunately, they have a low throughput, limited by the number of 
fluorophores available and are therefore not widely used for screening, especially as this 
low throughput is not justified by the gain in sensitivity. 

An approach combining the search for point mutations and chromosomal rearrangements 
achieves a germline RB1 gene mutation detection rate of about 90% among patients with 
bilateral retinoblastoma (Richter et al., 2003). The mutations that are not detected are 
probably deep intronic anomalies, responsible for alternative splicing defects that are not 
detected because they are situated outside of the zones usually studied (Dehainault et al., 
2007). They can also correspond to mosaics, which cannot be detected on circulating 
leukocytes (see “Notes” section). 

3.3.1.3 DNA methylation analysis 

Hypermethylation of the promoter region is a common mutational event found in tumor 
(Richter et al., 2003). Hypermethylation of the promoter are investigated by bisulfite analysis 
followed either by sequencing, by methylation-specific PCR or by a quantitative analysis of 
methylated allele using specific Taqman® probes (De La Rosa-Velazquez et al., 2007, Richter 
et al., 2003, Zeschnigk et al., 2004). Alternatively, tumor DNA can be digested using 
methylation sensitive enzyme (CfoI as an example), followed by PCR amplification of the 
promoter and agarose gel electrophoresis or followed by a semiquantitative technique such 
as QMPSF (Taylor et al., 2007).  

3.3.2 Indirect testing 

Indirect testing is based on amplification of polymorphic markers of the RB1 locus. Analysis 
of polymorphic genetic markers localized in and around the RB1 gene in an affected child 
and his parents is designed to identify the RB1 allele carrying or putatively carrying a 
predisposition to retinoblastoma. Indirect tests are very useful in familial cases, when 
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QMPSF and other semiquantitative multiplex PCR approaches is their high throughput and 
the small number of analytical steps, which is always appreciated in the diagnostic setting. 

Another widely used semiquantitative technique, MLPA, is based on a step of hybridization 
of specific probes, fitted with a universal tail, and corresponding to the exons to be 
examined. The quantity of probe hybridized is therefore proportional to the quantity of 
target. After hybridization and ligation, probes are then amplified by PCR with a set of 
universal primers and PCR products are separated be capillary electrophoresis. Once again, 
the signal intensity, compared to that of normal and mutant controls, is used to detect 
chromosomal rearrangements. Despite a much higher multiplexing capacity, the throughput 
of MLPA is lower than that of semiquantitative multiplex PCR approaches due to an 
additional analytical step (ligation), but the advantage of this technique is that it is available 
in the form of ready-for-use kits for many genes including RB1. 

These two approaches have similar performances and the choice between the two therefore 
depends on the user’s priorities. 

Real-time PCR techniques are particularly suitable for gene assays. They are based on either 
i) incorporation of a free fluorophore (typically SYBR Green) into the forming strands, 
which generates an increase in the intensity of fluorescence with the number of copies 
produced. The sensitivity of these techniques is enhanced by the use of fluorophore-labelled 
specific probes. Unfortunately, they have a low throughput, limited by the number of 
fluorophores available and are therefore not widely used for screening, especially as this 
low throughput is not justified by the gain in sensitivity. 

An approach combining the search for point mutations and chromosomal rearrangements 
achieves a germline RB1 gene mutation detection rate of about 90% among patients with 
bilateral retinoblastoma (Richter et al., 2003). The mutations that are not detected are 
probably deep intronic anomalies, responsible for alternative splicing defects that are not 
detected because they are situated outside of the zones usually studied (Dehainault et al., 
2007). They can also correspond to mosaics, which cannot be detected on circulating 
leukocytes (see “Notes” section). 

3.3.1.3 DNA methylation analysis 

Hypermethylation of the promoter region is a common mutational event found in tumor 
(Richter et al., 2003). Hypermethylation of the promoter are investigated by bisulfite analysis 
followed either by sequencing, by methylation-specific PCR or by a quantitative analysis of 
methylated allele using specific Taqman® probes (De La Rosa-Velazquez et al., 2007, Richter 
et al., 2003, Zeschnigk et al., 2004). Alternatively, tumor DNA can be digested using 
methylation sensitive enzyme (CfoI as an example), followed by PCR amplification of the 
promoter and agarose gel electrophoresis or followed by a semiquantitative technique such 
as QMPSF (Taylor et al., 2007).  

3.3.2 Indirect testing 

Indirect testing is based on amplification of polymorphic markers of the RB1 locus. Analysis 
of polymorphic genetic markers localized in and around the RB1 gene in an affected child 
and his parents is designed to identify the RB1 allele carrying or putatively carrying a 
predisposition to retinoblastoma. Indirect tests are very useful in familial cases, when 
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samples are available for at least two cases of retinoblastoma, to identify the allele of the RB1 
gene common to affected cases, i.e. to determine the allele that carries the mutation, even 
when the mutation has not been demonstrated directly. In non-familial forms, reconstitution 
of the affected child’s alleles reveals the two alleles putatively associated with an alteration 
of the RB1 gene. Tumour DNA studies (when available) reveal loss of an allele in 65% of 
cases and consequently allow identification of the remaining allele, i.e. potentially carrying a 
germline mutation. The indirect approach is technically simple and rapid, but nevertheless 
requires testing of the affected child, the parents, and possibly other relatives. 

3.3.3 Cytogenetic analysis 

Cytogenetic analysis comprises a standard karyotype and analysis of the RB1 gene by FISH 
or CGH-array. The development of molecular genetic studies has considerably limited the 
applications of cytogenetics and its only first-line indication is for karyotyping in a child 
with mental retardation or a malformative syndrome associated with retinoblastoma. 
However, it remains useful for the detection of translocations and mosaic deletions and can 
help to estimate the size of very large deletions. It therefore reveals certain rare situations.  

High density CGH array may be useful for fine mapping of deletion breakpoints in a context 
of a contiguous gene syndrome (Mitter et al., 2011) 

3.4 Notes 

3.4.1 General problems 

3.4.1.1 GC-rich regions 

The 5’ part of the RB1 gene (promoter and exon 1) is particularly rich in GC, which can 
make it difficult to analyse, for the detection of both point mutations and rearrangements. 
Due to the high degree of similarity of the amplified region, nonspecific intrastrand base 
pairing tends to occur during PCR, resulting in nonspecific PCR. Consequently, some teams 
do not analyse this region, which makes the analysis incomplete, as mutations of the 
promoter region and exon 1 have been well documented. We have resolved these problems 
by the addition of dimethylsulfoxyde (DMSO) to the reaction medium. 

3.4.1.2 Mosaics 

The existence of somatic mosaics in retinoblastoma raises a major problem for molecular 
diagnosis, as the mutant clone may be below the limit of detection of the technique used, or 
may even be absent from the cells studied. We have identified a deleterious RB1 mutation 
from a blood sample of an affected child in whom tumour material was not available. 
Surprisingly, this mutation was detected in a very small percentage (estimated at 10%) of 
buccal cells. DHPLC is particularly useful in this context because of its high sensitivity, but 
characterization of the anomaly by sequencing remains problematical and requires specific 
techniques (fraction collector, specific primers, cloning, etc.). 

3.4.1.3 Abnormalities of splicing 

Splicing abnormalities represent 20% of the mutational spectrum of RB1 and are therefore 
important to characterize. Unfortunately, the instability of messenger RNA carrying a 
premature stop codon means that the truncated messenger RNA is below the limit of 
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detection and only the wild-type transcript will be visible, wrongly suggesting the absence 
of an anomaly. This problem can sometimes be resolved by using translation inhibitors, 
such as puromycin, which eliminate NMD and therefore improve detection of the truncated 
messenger RNA (Andreutti-Zaugg et al., 1997). 

Some deep intronic anomalies, responsible for alternative splicing, are probably not detected 
because they are situated outside the zones routinely studied. Systematic RNA analysis 
would be required to demonstrate these anomalies. This approach, unsuitable for routine 
testing, is nevertheless used in the case of failure of other techniques in situations of highly 
probable predisposition, such as cases of bilateral and/or familial retinoblastoma with no 
identified mutation (Dehainault et al., 2007). 

3.4.2 Detection of point mutations by DHPLC 

DHPLC is a sensitive and reliable technique for the detection of point mutations. However, 
its efficacy is subject to the availability of specific, high-yield PCR and rigorous system 
quality control, as the gradient drift can impair the quality of testing by modifying retention 
times and, much more insidiously, loss of calibration, even minimal, of the oven can be 
responsible for a drastic reduction of resolution for certain amplicons, generating false-
negative results. It is therefore essential to ensure the integrity of the system each day by 
using control samples. Control samples should generate slight modifications of the profile, 
which can therefore only be detected with an optimally functioning system. The limitations 
of this method, which depend on the base composition of the DNA fragment studied, must 
be kept in mind. For example, despite all of our efforts, we have not been able to obtain 
reliable results for exon 8 of RB1, which must be sequenced as first-line procedure 
(Dehainault et al., 2004). This point has also been emphasized by P. Oefner, the inventor of 
DHPLC (Sivakumaran et al., 2005). 

3.4.3 Detection of chromosomal rearrangements by semiquantitative techniques 

MLPA or semiquantitative multiplex PCR techniques (such as QMPSF) are robust 
techniques, but highly dependent on the quality of the DNA studied. Degraded DNA will 
be responsible for loss of proportionality between signal intensity and copy number, 
particularly for large fragments, making the analysis uninterpretable. Contamination of 
DNA by phenol will have an even greater effect, because it generates a random fluctuation 
of signal intensity. Phenol-free extraction techniques should therefore be preferred 
(perchlorate/chloroform or column-based commercial kits) or a system ensuring the 
absence of contamination by phenol such as the gel lock extraction system, which uses a gel-
barrier system (Eppendorf®). 

It is also essential to adjust all DNA samples studied to a suitable working concentration, 
classically 50 ng/µl. If the DNA concentration is too high, for example, the proportionality 
between signal intensity and copy number will be lost, particularly for small fragments. 
DNA calibration can be performed with: i) a tube spectrophotometer (unsuitable for large 
series); ii) the NanoDrop from NanoDrop technologies (which has the advantage of tracing 
the spectrum of the sample); or iii) a plate reader (rapid, but reading at only one wavelength 
at a time). In our experience, the use of fluorescent dyes for the assay, such as PicoGreen 
(Molecular Probes), is unnecessary for these applications. 
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of the RB1 gene. Tumour DNA studies (when available) reveal loss of an allele in 65% of 
cases and consequently allow identification of the remaining allele, i.e. potentially carrying a 
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requires testing of the affected child, the parents, and possibly other relatives. 
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with mental retardation or a malformative syndrome associated with retinoblastoma. 
However, it remains useful for the detection of translocations and mosaic deletions and can 
help to estimate the size of very large deletions. It therefore reveals certain rare situations.  

High density CGH array may be useful for fine mapping of deletion breakpoints in a context 
of a contiguous gene syndrome (Mitter et al., 2011) 

3.4 Notes 
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The 5’ part of the RB1 gene (promoter and exon 1) is particularly rich in GC, which can 
make it difficult to analyse, for the detection of both point mutations and rearrangements. 
Due to the high degree of similarity of the amplified region, nonspecific intrastrand base 
pairing tends to occur during PCR, resulting in nonspecific PCR. Consequently, some teams 
do not analyse this region, which makes the analysis incomplete, as mutations of the 
promoter region and exon 1 have been well documented. We have resolved these problems 
by the addition of dimethylsulfoxyde (DMSO) to the reaction medium. 

3.4.1.2 Mosaics 

The existence of somatic mosaics in retinoblastoma raises a major problem for molecular 
diagnosis, as the mutant clone may be below the limit of detection of the technique used, or 
may even be absent from the cells studied. We have identified a deleterious RB1 mutation 
from a blood sample of an affected child in whom tumour material was not available. 
Surprisingly, this mutation was detected in a very small percentage (estimated at 10%) of 
buccal cells. DHPLC is particularly useful in this context because of its high sensitivity, but 
characterization of the anomaly by sequencing remains problematical and requires specific 
techniques (fraction collector, specific primers, cloning, etc.). 

3.4.1.3 Abnormalities of splicing 

Splicing abnormalities represent 20% of the mutational spectrum of RB1 and are therefore 
important to characterize. Unfortunately, the instability of messenger RNA carrying a 
premature stop codon means that the truncated messenger RNA is below the limit of 
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detection and only the wild-type transcript will be visible, wrongly suggesting the absence 
of an anomaly. This problem can sometimes be resolved by using translation inhibitors, 
such as puromycin, which eliminate NMD and therefore improve detection of the truncated 
messenger RNA (Andreutti-Zaugg et al., 1997). 

Some deep intronic anomalies, responsible for alternative splicing, are probably not detected 
because they are situated outside the zones routinely studied. Systematic RNA analysis 
would be required to demonstrate these anomalies. This approach, unsuitable for routine 
testing, is nevertheless used in the case of failure of other techniques in situations of highly 
probable predisposition, such as cases of bilateral and/or familial retinoblastoma with no 
identified mutation (Dehainault et al., 2007). 

3.4.2 Detection of point mutations by DHPLC 

DHPLC is a sensitive and reliable technique for the detection of point mutations. However, 
its efficacy is subject to the availability of specific, high-yield PCR and rigorous system 
quality control, as the gradient drift can impair the quality of testing by modifying retention 
times and, much more insidiously, loss of calibration, even minimal, of the oven can be 
responsible for a drastic reduction of resolution for certain amplicons, generating false-
negative results. It is therefore essential to ensure the integrity of the system each day by 
using control samples. Control samples should generate slight modifications of the profile, 
which can therefore only be detected with an optimally functioning system. The limitations 
of this method, which depend on the base composition of the DNA fragment studied, must 
be kept in mind. For example, despite all of our efforts, we have not been able to obtain 
reliable results for exon 8 of RB1, which must be sequenced as first-line procedure 
(Dehainault et al., 2004). This point has also been emphasized by P. Oefner, the inventor of 
DHPLC (Sivakumaran et al., 2005). 

3.4.3 Detection of chromosomal rearrangements by semiquantitative techniques 

MLPA or semiquantitative multiplex PCR techniques (such as QMPSF) are robust 
techniques, but highly dependent on the quality of the DNA studied. Degraded DNA will 
be responsible for loss of proportionality between signal intensity and copy number, 
particularly for large fragments, making the analysis uninterpretable. Contamination of 
DNA by phenol will have an even greater effect, because it generates a random fluctuation 
of signal intensity. Phenol-free extraction techniques should therefore be preferred 
(perchlorate/chloroform or column-based commercial kits) or a system ensuring the 
absence of contamination by phenol such as the gel lock extraction system, which uses a gel-
barrier system (Eppendorf®). 

It is also essential to adjust all DNA samples studied to a suitable working concentration, 
classically 50 ng/µl. If the DNA concentration is too high, for example, the proportionality 
between signal intensity and copy number will be lost, particularly for small fragments. 
DNA calibration can be performed with: i) a tube spectrophotometer (unsuitable for large 
series); ii) the NanoDrop from NanoDrop technologies (which has the advantage of tracing 
the spectrum of the sample); or iii) a plate reader (rapid, but reading at only one wavelength 
at a time). In our experience, the use of fluorescent dyes for the assay, such as PicoGreen 
(Molecular Probes), is unnecessary for these applications. 
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Finally, buccal swabs are poorly adapted to these analyses, including for the search of a 
mutation already identified in a relative, as DNA is often present in a low concentration and 
difficult to calibrate for FTA samples. 

Due to the importance of quality/quantity/calibration of DNA solutions, laboratories often 
prefer to extract DNA locally and therefore ask to receive whole blood. 

A classical trap in the interpretation of these techniques concerns the false-positive results 
generated by a PCR primer mismatch. Each deletion of a single exon must therefore be 
systematically checked by another technique and/or by shifting the primers (long range 
PCR, RNA studies, real-time PCR, for example). Finally, duplication of an isolated exon is 
the most difficult case to characterize. The ideal situation is therefore to have a duplicated 
control of the entire RB1, for example DNA from a case of trisomy 13. 

4. Conclusion 
Finally, we recommend a systematic RB1 molecular screening to all retinoblastoma patients as 
part of routine clinical care. Emphasis is placed on close collaboration between laboratory staff 
and clinicians to ensure effective communication and therefore adequate genetic counseling. 
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1. Introduction 
It is widely acknowledged that cancers are disorders of cell growth and behavior and that 
its cause has to be defined at cellular levels. However, studies have shown that the cause 
of cancer can be deduced from a study of its epidemiology. Sir Percival Pott is credited 
with linking chemicals to causing cancer when he observed astutely that Chimney 
sweeps, because of their chronic exposure to sooth, were prone to scrotal cancers. 
Subsequently, the Danish Chimney sweeps guild ruled that its members must have their 
bath daily and this prevented the problem.1 Prior to this, John Hill had linked nasal 
polyps to “immoderate use of snuff”. Epidemiology has also contributed in linking 
cervical cancer to human papilloma viruses and radiation to different cancers1. It is also 
important for the purposes of health planning and allocation of resources to know the 
distribution of any particular disease. 

Retinoblastoma, an embryonal tumour originating from retinal cells, is reputed to be the 
commonest intraocular malignancy in children.  Currently, retinoblastoma is the most 
common solid tumour in children after brain/nervous system tumours and lymphomas in 
the United Kingdom.2 Kramarova and Stiller also reported a similar pattern among 
American children.3 In Nigeria, retinoblastoma is second only to lymphoma in most 
studies4,5,6  and third in some series.7 Report from other African countries shows that this 
tumour is the second most common childhood solid tumour.8  

2. Age distribution 
Age has an important influence on the likelihood of beings afflicted with cancer. The 
incidence of cancer rises with advancing age and most cases occur in people aged 55years 
and above. The age related rising incidence may be explained by the accumulation of 
mutations associated with the emergence of cancers. Most cases of retinoblastoma, however, 
occur in childhood with over 90% being diagnosed before five years of age; only 24 cases 
have been reported in adults aged between 20years and 74 years.9 The worldwide incidence 
rate of retinoblastoma for children aged 0-4years varies from 3.4% per million in Bulgaria10 
to a very high 42.5 per million in Mali.11 Incidence rates vary greatly in some regions while it 
varies only slightly in some other regions (table 1).  
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Region Incidence 
Australia 1.4 
Belgium 1 
Canada 2 
Croatia 0.7 

Czech Republic 0.7 
Denmark 1.3 
Estonia 1.5 
Finland 1.1 
France 1.6 

Germany 2.3 
1celand 1.1 
Ireland 1.0 

Italy 1.4 
Latvia 0.2 

Lithuania 1.4 
Malta 1.9 

New Zealand 2.2 
Norway 0.7 
Poland 0.6 

Portugal 3.6 
Russia 1.3 

Slovakia 1.5 
Slovenia 1.0 
Sweden 3.5 

Switzerland 1.7 
The Netherlands 1.2 
United Kingdom 1.3 

United States White 1.4 
United States Hispanic 1.4 

Yugoslavia o.2 

Table 1. Average incidence for whites in the United States and Nations with greater than 
85% White population (adapted from J Pediatr Ophthalmol Strabismus 2009 ;46: 288-293) 

A large study in the USA12 covering a 30year period from1975 – 2004 using the 
Surveillance Epidemiology and End Results (SEER) programme database of the National 
Cancer Institute found 658 of retinoblastoma cases over the period. The overall mean 
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adjusted incidence was 11.3 for males and 12.4 for females. Seventy two per cent (72%) 
were unilateral while 27% were bilateral. In 1% of cases the laterality was unknown. With 
increasing age at diagnosis, the bilateral tumours decreased significantly.  However, the 
percentage of unilateral tumours increased with increasing age at diagnosis. The overall 
incidence of retinoblastoma also reduced with increasing age (Figure 1). Bilateral new 
cases are not seen after the age of 3years. The peak age of presentation for both bilateral 
and unilateral retinoblastoma in the USA is before one year of age. Thereafter, the 
incidence reduced steeply with age. Only 4.3% of new cases of retinoblastoma were seen 
between the ages of 5-9years in this study.  

 
Fig. 1. Distribution of retinoblastoma by age at diagnosis (Adapted from Br J Ophthalmol 2009; 
93: 21-23)  

Another work in the USA13 from 1993 to 1997 using data from the international agency for 
cancer found a rate incidence of 4.4 per million for white children with most of the other 
findings similar to the findings by Broaddus et al.12  

In Great Britain,14 retinoblastoma affects approximately 1 in 20000 children. The bilateral 
cases make up 36% of the total cases. In this study in the UK, using the National Registry for 
Childhood Tumours (NRCT), the peak incidence was in children below one year, similar to 
findings in USA studies. After the age of one year, the incidence reduced steadily. Children 
older than four years made up less than 5% of new cases. The peak age for unilateral cases is 
in the two year age group while that of bilateral cases is before the first birthday. British 
studies have shown that unilaterality does not rule out heredity. In this series reported by 
MacCarthy et al, almost 11% of the unilateral retinoblastoma was heritable cases. All the 
bilateral cases are usually heritable.  

A Swedish and Finish15 study covering 1958 to 1998 using data from cancer registries and 
corresponding national referral centers for retinoblastoma found 0-13 and 0-10 new cases 
per year in Sweden and Finland respectively. The incidence rates per million children under 
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5years in Sweden and Finland was 11.8 and 11.2 respectively. In this study 90-96% of all 
retinoblastomas were diagnosed in children less than 5 years.  

In Pakistani studies,16 between 1999 and 2002 found 70 retinoblastoma cases, with 93% of 
them in children below 5years; 67% of the cases were bilateral. Bilateral cases became less 
prevalent with increasing age while the unilateral cases peaked in the 2-3year age group 
with a gradual decline thereafter. The mean at presentation is 28.17 months, unilateral cases 
having a mean age of 31.81 months. In China,17 a study covering 1957 to 2006 found that 
1234 eyes were enucleated due to retinoblastoma in a specialist eye hospital.  The mean age 
was 2.8years with a range of 1 month to 14years. Bilateral tumours accounted 2.4% of cases, 
an interesting finding. This was attributed to the nature of their study.  

In South Africa,18 a study by Freedman and Goldberg in 1976 covering a 20-year period in a 
specialist eye Hospital found 71 cases out of which 82% were unilateral and the other 18% 
bilateral. The average of the unilateral cases was 3½ years while while for the bilateral, it 
was 3years, much higher than the findings in western industrialized countries; 80% of cases 
were diagnosed before the age of 4years. 

In a Congolese19 study carried out in a teaching Hospital on Congolese blacks over a 
58month period found 21% bilateral cases. The mean age for all cases was 2.94years with a 
4months to 6years. The mean age for the bilateral cases was 1.12years. The mean age in 
other African studies ranged from 24months to 44months.20,21,22,23 The relatively advanced 
age of presentation in African series has been attributed very late presentation. The 
African patients may seek alternative means of healing before coming to hospital. 
Incidence studies in Africa put the incidence estimates at 20 cases per million in Malawi24 
and 9.3 per million in Guinea Conakry.25 These are much higher than rates in USA. This 
has been attributed to some unknown environmental influences and the higher birth rates 
in Africa.  

In Nigeria, retinoblastoma is the commonest childhood intraocular malignancy with a mean 
age at presentation of 29 months. For bilateral retinoblastoma which accounted for 13% of 
cases, the mean age at presentation was younger at 15 months.26 

3. Sex distribution 
Most studies from different parts of the world suggest no sex discrepancy in the incidence of 
retinoblastoma. In the USA, studies by different workers12,13 have found an age adjusted 
incidence of 11.3 for males and 12.4 for females suggesting a mild female predominance. 
This difference however was not significant.  

In Mexico,27 a study carried out in sixteen centers over a 5-year period showed a non 
significant mild male predominance of 1.1: 1.0 for all the cases seen. These studies do not 
show any breakdown of the sex distribution between the age groups and between the 
unilateral, bilateral and other types of retinoblastoma.  

In Great Britain, the study by MacCarthy et al14 showed that overall, males and females had 
no difference in the distribution of retinoblastoma for all ages. However, for the 0-1year age 
group in bilateral retinoblastoma category, there is a 1.1: 1.0 male predominance. For the 1-2 
year age group, the male: female predominance for the bilateral tumours is 1.3: 1.0 while for 
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the 2-3year age group, it is 2.2: 1.0. All other age groups showed no significant M:F 
difference in the incidence of bilateral retinoblastoma. For bilateral tumours for all ages, the 
M:F ratio 1.3: 1.0. 

In Pakistan, Arif Mohamed et al16 found an equal sex distribution for retinoblastomas in 
childhood. There was also no gender difference between the unilateral and the bilateral 
cases. 

In China,17 between the years 1977 to 1996, there was a marked male predominance of 3: 2 
and an insignificant overall male predominance of 2.6: 2.0. As in many other studies, the sex 
distribution between the unilateral and bilateral tumours is not stated.  

In Southern Africa studies,18 there is a marked male predominance over females (3:1) in the 
bilateral cases. However, for the unilateral cases, the ratio of males to females is 1.2: 1.0. For 
the1-2year age group, the M: F ratio is about 2: 1. Overall however the M: F ratio is 4:3.  

Studies from Congo19 show a M: F predominance for all cases of retinoblastoma seen over a 
6year period to be 2:1. Some other African studies show a male: female ratio of 1.120,21  

In Ilorin, Nigeria,26 there was a mild female predominance of 1.2: 1 overall. The mean age for 
females and males was also not significant at 31 months and 27 months respectively. 
However, Akang et al20 from Ibadan, Nigeria reported a female predominance of 3:2. 

4. Geographical/racial distribution 
Retinoblastoma has a worldwide distribution. It has been reported from different parts of 
the world. Because the pathogenesis of retinoblastoma is linked with genetic alterations in 
the tumour suppressor Rb gene on chromosome 13q14, one would expect a racial 
variation.  

A study by Krishna et al28 covering a 7year period between 1993 and 1997 and using data 
from International agency for Research on Cancer, a comparison of the racial and 
geographic incidence patterns of retinoblastoma in North America, South America, Oceania 
and Eroupe was carried out. This, to our knowledge, is the most comprehensive that 
attempts to find a racial and geographic pattern in the incidence of retinoblastomas. This 
work found a higher incidence of retinoblastoma in Hispanics in the USA than in white 
children in 3 areas- Los Angeles, San Francisco and New Mexico. However, when 
adjustments were made and comparison with White population was made, there was no 
significant difference. This was interpreted to mean that retinoblastoma was similar in 
White and Hispanic populations in the United States. However, Pendergrass and Davis12 
and Howe et al29 had found higher rates in Hispanic population over the White population. 
The consensus, however, is that the perceived difference can be attributed to confounding 
factors such as cancer registration practices or number of cases. In this study, the rate of 
retinoblastoma in whites in Europe was found to be the same as in Whites in USA. There 
was also no significant difference in the incidence in White populations in Oceania and 
USA. It was only the rates in Portugal and Sweden that were significantly higher than rates 
in the US Whites. This was attributed to cancer reporting practices30. The rates in Canada 
were similar to that in USA. The Broaddus et al study12 in USA also showed no significant 
difference between Whites and Blacks in the USA.  



Retinoblastoma – An Update on Clinical,  
Genetic Counseling, Epidemiology and Molecular Tumor Biology 78

5years in Sweden and Finland was 11.8 and 11.2 respectively. In this study 90-96% of all 
retinoblastomas were diagnosed in children less than 5 years.  

In Pakistani studies,16 between 1999 and 2002 found 70 retinoblastoma cases, with 93% of 
them in children below 5years; 67% of the cases were bilateral. Bilateral cases became less 
prevalent with increasing age while the unilateral cases peaked in the 2-3year age group 
with a gradual decline thereafter. The mean at presentation is 28.17 months, unilateral cases 
having a mean age of 31.81 months. In China,17 a study covering 1957 to 2006 found that 
1234 eyes were enucleated due to retinoblastoma in a specialist eye hospital.  The mean age 
was 2.8years with a range of 1 month to 14years. Bilateral tumours accounted 2.4% of cases, 
an interesting finding. This was attributed to the nature of their study.  

In South Africa,18 a study by Freedman and Goldberg in 1976 covering a 20-year period in a 
specialist eye Hospital found 71 cases out of which 82% were unilateral and the other 18% 
bilateral. The average of the unilateral cases was 3½ years while while for the bilateral, it 
was 3years, much higher than the findings in western industrialized countries; 80% of cases 
were diagnosed before the age of 4years. 

In a Congolese19 study carried out in a teaching Hospital on Congolese blacks over a 
58month period found 21% bilateral cases. The mean age for all cases was 2.94years with a 
4months to 6years. The mean age for the bilateral cases was 1.12years. The mean age in 
other African studies ranged from 24months to 44months.20,21,22,23 The relatively advanced 
age of presentation in African series has been attributed very late presentation. The 
African patients may seek alternative means of healing before coming to hospital. 
Incidence studies in Africa put the incidence estimates at 20 cases per million in Malawi24 
and 9.3 per million in Guinea Conakry.25 These are much higher than rates in USA. This 
has been attributed to some unknown environmental influences and the higher birth rates 
in Africa.  

In Nigeria, retinoblastoma is the commonest childhood intraocular malignancy with a mean 
age at presentation of 29 months. For bilateral retinoblastoma which accounted for 13% of 
cases, the mean age at presentation was younger at 15 months.26 

3. Sex distribution 
Most studies from different parts of the world suggest no sex discrepancy in the incidence of 
retinoblastoma. In the USA, studies by different workers12,13 have found an age adjusted 
incidence of 11.3 for males and 12.4 for females suggesting a mild female predominance. 
This difference however was not significant.  

In Mexico,27 a study carried out in sixteen centers over a 5-year period showed a non 
significant mild male predominance of 1.1: 1.0 for all the cases seen. These studies do not 
show any breakdown of the sex distribution between the age groups and between the 
unilateral, bilateral and other types of retinoblastoma.  

In Great Britain, the study by MacCarthy et al14 showed that overall, males and females had 
no difference in the distribution of retinoblastoma for all ages. However, for the 0-1year age 
group in bilateral retinoblastoma category, there is a 1.1: 1.0 male predominance. For the 1-2 
year age group, the male: female predominance for the bilateral tumours is 1.3: 1.0 while for 

 
Epidemiology of Retinoblastoma 79 

the 2-3year age group, it is 2.2: 1.0. All other age groups showed no significant M:F 
difference in the incidence of bilateral retinoblastoma. For bilateral tumours for all ages, the 
M:F ratio 1.3: 1.0. 

In Pakistan, Arif Mohamed et al16 found an equal sex distribution for retinoblastomas in 
childhood. There was also no gender difference between the unilateral and the bilateral 
cases. 

In China,17 between the years 1977 to 1996, there was a marked male predominance of 3: 2 
and an insignificant overall male predominance of 2.6: 2.0. As in many other studies, the sex 
distribution between the unilateral and bilateral tumours is not stated.  

In Southern Africa studies,18 there is a marked male predominance over females (3:1) in the 
bilateral cases. However, for the unilateral cases, the ratio of males to females is 1.2: 1.0. For 
the1-2year age group, the M: F ratio is about 2: 1. Overall however the M: F ratio is 4:3.  

Studies from Congo19 show a M: F predominance for all cases of retinoblastoma seen over a 
6year period to be 2:1. Some other African studies show a male: female ratio of 1.120,21  

In Ilorin, Nigeria,26 there was a mild female predominance of 1.2: 1 overall. The mean age for 
females and males was also not significant at 31 months and 27 months respectively. 
However, Akang et al20 from Ibadan, Nigeria reported a female predominance of 3:2. 

4. Geographical/racial distribution 
Retinoblastoma has a worldwide distribution. It has been reported from different parts of 
the world. Because the pathogenesis of retinoblastoma is linked with genetic alterations in 
the tumour suppressor Rb gene on chromosome 13q14, one would expect a racial 
variation.  

A study by Krishna et al28 covering a 7year period between 1993 and 1997 and using data 
from International agency for Research on Cancer, a comparison of the racial and 
geographic incidence patterns of retinoblastoma in North America, South America, Oceania 
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significant difference. This was interpreted to mean that retinoblastoma was similar in 
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The consensus, however, is that the perceived difference can be attributed to confounding 
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retinoblastoma in whites in Europe was found to be the same as in Whites in USA. There 
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Comparing the incidence of retinoblastoma in Africans with that of other advanced 
countries is difficult because calculating rates in Africans countries is fraught with problems. 
However, rates of up to 20 per million children under five24 9.3 per million age standardized 
in Guinea Conakry25 have been noted. These would suggest that the rates are much higher 
in Africa than the rest of the world. This has been attributed to ignorance, poor health 
facilities and high birth rates. What, however, is certain is that African retinoblastomas are 
diagnosed at a significantly later age than in the advanced world. 

5. Summary 
Retinoblastoma is a childhood cancer with 90% diagnosed before the age five years. Only 24 
cases have been reported in adults between 20-74 years worldwide. Unilateral cases are 
commoner than bilateral cases in a ratio of 2.7: 1. With increasing age at diagnosis, unilateral 
cases increased significantly while the bilateral cases decreased significantly. However, the 
overall incidence of retinoblastoma decreases with advancing age. The peak age of 
presentation is before the age of one year in advanced countries but between the ages of two 
and three years in Africa due to late presentation. Although many studies show a mild 
female predominance, this is not significant. However, some European studies note a 
significant male predominance for bilateral tumours and retinoblastoma diagnosed in the 
two to three year age group.  

The incidence rate varies worldwide with higher levels in Africa and much lower levels in 
Europe. However, in multiracial countries like the USA, no significant difference between 
races was found 
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1. Introduction 
In the last years, the large amount of genomic sequences obtained after the decodification of 
the human genome, has made clearer the differences in the patterns of gene expression 
among the distinct tumor types and the equivalent normal tissues. The identification of a 
considerable number of differentially expressed gene products has shortened, in some 
measure, the bridge between correlative and causative data. Correlative genes are genes 
simply altered as a result of the process of transformation, and they are not responsible of 
critical effects upon tumor formation. In contrast, causative genes represent the basis of the 
malignant transformation. They play a decisive role to origin and maintain the transformed 
state and could be exploited for therapeutic strategies. Oncogenes and tumor suppressor 
genes are the most important causative genes and for this reason represent critical targets 
for new anticancer drug development. 

Tumorigenesis proceeds through the accumulation of genetic mutations and epigenetic 
alterations consenting cells to break free from the tight network of controls set to regulate 
the homeostatic balance between cell proliferation and cell death (Baylin and Herman, 2000; 
Hanahan and Weinberg, 2000; Knudson, 2001; Herceg and Hainaut, 2007). The elucidation 
of the human genome sequence, together with the development of novel experimental 
techniques, has allowed the identification of genetic alterations in tumors in unprecedented 
details. The genetic events can be associated with the gain and loss of entire chromosomes, 
specific chromosomal translocations, gene amplifications, deletions or point mutations 
(Knudson, 1997). In addition to genetic changes, the important results obtained recently on 
how chromatin-remodeling enzymes controls gene transcription have underscored the 
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crucial role of epigenetic mechanisms in the initiation and the development of cancer. 
Epigenetic events, such as modifications of DNA methylation patterns, and changes of 
chromatin structure have emerged as key mechanisms in malignant transformation (Fearon, 
1997; Jones & Baylin, 2002; Baylin, 2005; Boehm & Hahn, 2011). Genetic and epigenetic 
events can conduct to the gain of oncogenes functions or to the loss of tumor suppressor 
genes (TSGs) functions, contributing to the acquired features of transformed phenotype. 
They represent two complementary mechanisms that are implicated in every step of 
carcinogenesis, from the responses to carcinogen exposures to the progression into 
malignancy. Autonomous cellular proliferation, immortalization, deficiencies in 
differentiation, induction of angiogenesis, propensity for invasion, resistance to apoptosis, 
induction and increased genomic instability are common characteristics of cancer cells. It 
has become increasingly evident that cancer is fundamentally a disease of failure of 
regulation of tissue growth; generally, changes in many genes are required to transform a 
normal cell into a cancer cell. TSGs are a family of genes that promote negative regulation 
on cancer cell growth inhibiting cell division and survival. Proto-oncogenes are normal 
genes that could become oncogenes due to mutations or to increased expression and they 
are able to stimulate cell proliferation and exert positive regulation of cell growth. Therefore, 
alterations of tumor suppressors and proto-oncogenes that may occur if the genomic 
integrity is compromised by intrinsic factors or exogenous agents, represent a crucial step in 
the transformation of a normal cell into a cancer cell (Knudson, 1985; Levine & Puzio-Kuter, 
2010; Croce, 2008; Heeg, et al., 2006). 

The RB1 gene represents a typical TSG, first identified in a malignant tumor of the retina 
known as retinoblastoma. When both the alleles of this gene are mutated, the protein (pRB) 
is inactivated causing the development of retinoblastoma (Knudson, 1971; Murphree & 
Benedict, 1984; Friend et al., 1986; Fung, et al., 1987; Lee et al., 1987a, 1987b). Retinoblastoma 
develops in early childhood, typically before the age of 5, and it has one of the highest cure 
rates of all childhood cancers, with more than 95% of patients surviving into adulthood. 
Retinoblastoma is a rare type of eye cancerous tumor that develops in the retina’s cells. 
There are two forms of the disease: a heritable and a non-heritable form. In most children 
with retinoblastoma, the disease affects only one eye (unilateral retinoblastoma), however, 
one out of three children with retinoblastoma develops cancer in both eyes (bilateral 
retinoblastoma). Unilateral retinoblastoma represents a sporadic disease, as there is no 
family history for this cancer, whereas bilateral retinoblastoma represents the hereditary 
form and it is an autosomal dominant disease. The most common first symptom of 
retinoblastoma is an abnormal appearance of the pupil called “leukocoria” or "cat’s eye 
reflex", which is a white reflection in the pupil. Other symptoms of retinoblastoma include 
red and irritated eyes, crossed eyes or strabismus.  

In the early 1970s, Knudson postulated a model, referred to as the ‘Two-hit hypothesis’, 
with the main goal of clarifying the distinction between the two forms of retinoblastoma. A 
patient with inherited retinoblastoma, has a first insult already inherited in his/her own 
DNA, any second insult would lead to cancer, whereas a patient with non-inherited 
retinoblastoma, must undergo two "hits" before a tumor could develop. The identification of 
the retinoblastoma gene occurred in 1987 and fully confirmed Knudson's interpretation 
(Knudson, 1971; Lee et al., 1987a, 1987b). Indirectly, Knudson's work led to the identification 
of cancer-related genes and so far represents a milestone in carcinogenesis. As discussed 
previously, the development of cancer depends on multiple "hits" to the DNA, leading to 
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both the activation of proto-oncogenes and the deactivation of TSGs. The 
activation/inactivation mechanisms of TSGs and proto-oncogenes are distinctive. Genetic 
changes can occur at different levels and by different mechanisms. TSGs are inactivated by 
“loss of function mutations” on the contrary, proto-oncogenes are activated through “gain 
of function mutations”. In cancer cells, tumor suppressors are not functionally working and 
they lose the ability to control over cell proliferation. Oncogenes, instead, are constitutively 
activated, leading to continuous signaling which acts positively on cell growth. Unlike 
oncogenes, TSGs generally follow the 'two-hit hypothesis', which indicates that, before a 
particular outcome is manifested, both alleles of a specific gene must be affected because if 
only one is damaged the second can still produce the correct protein. The characteristic 
mechanism of this activation/inactivation phenomena means that when the cancer is 
promoted by the inactivation of a TSG, both the alleles of this TSG are usually inactivated 
whereas, when the cancer is mediated by oncogenes, the mutation of a single copy of the 
proto-oncogene is sufficient to activate itself, leading to cell transformation. In other words, 
mutant tumor suppressor’s alleles are usually recessive, whereas mutant oncogene alleles 
are typically dominant.  

pRB and the related proteins, p107 and p130, are TSGs and form the retinoblastoma (Rb) 
gene family. The three members of the Rb gene family have been the focus of great interest, 
because of their pivotal role as negative regulators of cell cycle progression. Together these 
proteins are also known as “pocket proteins”. The term pocket protein derives from their 
highly conserved region, the pocket domain, which mediates interaction with viral 
oncoproteins as well as cellular proteins to exert the biological functions of these proteins 
(Graña, 1998; Cobrinik, 2005). Several examples of these interactions involving transcription 
factors as well as enzymes are listed in Table 1. p107 and p130 share homologies throughout 
the entire length of the protein, whereas their homology with pRB is limited to the 
conserved A and B domains. The genes are located on different chromosomes and the 
expression of the proteins is differently regulated throughout the cell cycle (Lee et al., 1987a; 
Hong et al., 1989; Yeung et al., 1993; Mayol et al., 1993; Paggi et al., 1996; Ichimura et al., 
2000). They interact with different E2F proteins, thereby blocking different subsets of gene 
promoters, but have in common that this interaction is regulated through phosphorylation 
by cyclin-dependent kinases (cdks) (Hurford et al., 1997; Classon et al., 2000; Stiegler & 
Giordano, 2001; Sun, 2007). In fact, all the Rb family members exert their function interfering, 
between the others, with the coordinated regulation of the enzymatic activity of cdks, which 
are key regulatory factors of the cell cycle progression (Graña & Reddy, 1995; Morgan, 1995 
& 1997). The cdks and their heterodimeric cyclin partners represents prime targets for the 
development of new inhibitors and anticancer therapeutic strategies. During the last 
decades, several chemical compounds with remarkable cdk inhibitory activity have been 
described. These molecules are starting to become a significant therapeutic asset in the 
treatment of cancer. Among the small molecules, peptides, with a comparable cdk inhibitory 
activity, are emerging as a novel class of drugs for cancer therapy. Cdk2 is considered the 
prototypic cell cycle kinase. It represents an excellent runner in the development of 
anticancer therapeutics not only because of its crucial role to pass through the G1 restriction 
checkpoint and to drive cells into DNA replication but also because its alteration is a 
pathogenic hallmark of tumorigenesis (McDonald & El-Deiry, 2000; Fischer, 2004; Whittaker 
et al., 2004; Dai & Grant, 2004; Shapiro, 2006; de Cárcer et al., 2007; Malumbres & Barbacid, 
2009; Cirillo, et al., 2011). p130 together with p107 has the ability to inhibit the kinase activity  
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both the activation of proto-oncogenes and the deactivation of TSGs. The 
activation/inactivation mechanisms of TSGs and proto-oncogenes are distinctive. Genetic 
changes can occur at different levels and by different mechanisms. TSGs are inactivated by 
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proto-oncogene is sufficient to activate itself, leading to cell transformation. In other words, 
mutant tumor suppressor’s alleles are usually recessive, whereas mutant oncogene alleles 
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Rb family 
protein 

Protein
 partner 

Biological function of the 
protein partner 

Biological role of the Rb 
family protein 

  Cyclin D CDK subunit Cell cycle
  E2Fs Transcription factors Cell cycle
  c-Jun Transcription factor Cell cycle
  c-Myc Transcription factor Cell cycle
  Spl Transcription factor Cell cycle
  Abl Nuclear tyrosine kinase Cell cycle
  Che-1 Transcription factor Cell cycle
  Id-2 Transcription factor-corepressor Cell cycle

pRB MCM7 DNA replication licensing factor Inhibition of DNA 
replication 

  RBAp48 Histone deacetylase complex 
factor Growth inhibition 

  TAFII250/TFII
D Transcription factor Transcription 

  HDAC1 Histone deacetylase Transcription
  BRG1 Transcription factor Transcription
  MyoD Transcription factor Muscle differentiation 
  HBP1 Transcription factor Muscle differentiation 
  p202 Transcription factor Muscle differentiation 
  NF-IL6 Transcription factor Adipocyte differentiation 
  Cyclins A and E CDK subunits Cell cycle
  E2Fs Transcription factors Cell cycle

p130 MCM7 DNA replication licensing factor Inhibition of DNA 
replication

  HDAC1 Histone deacetylase Transcription
  HBP1 Transcription factor Muscle differentiation 
  Cyclins A and E CDK subunits Cell cycle
  E2Fs Transcription factors Cell cycle
  c-Myc Transcription factor Cell cycle
p107 Spl Transcription factor Cell cycle

  MCM7 DNA replication licensing factor Inhibition of DNA 
replication 

  HDAC1 Histone deacetylase Transcription
  MyoD Transcription factor Muscle differentiation 

Table 1. The biological roles of the Rb family proteins are mainly dependent on their ability 
to interact and modulate the activities of cellular proteins 
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of the cdk2/cyclins A and cdk2/cyclins E complexes (Adams, 1996; Woo, 1997; Lacy, 1997; 
De Luca, 1997). Specifically, p107 is able to inhibit their kinase activity recruiting or 
mimicking a cyclin-dependent kinase inhibitor (CKI) p21 (Zhu et al., 1995; Adams, 1996). 
Whereas, p130 is able to physically bind to the Cdk2/Cyclins A and Cdk2/Cyclin E 
complexes suggesting that part of its growth suppressor function could be mediated by the 
inhibition of this essential cell cycle kinase. The inhibitory activity of p130 has been 
attributed to the spacer region (De Luca, 1997). Recently, a 39 amino acid long p130 spacer-
derived peptide termed “Spa310” has been identified as responsible of the cdk2-dependent 
kinase inhibitory activity proving to be an excellent candidate in a mechanism-based 
approach in cancer therapy (Bagella, 2007; Giordano, 2007a, 2007b). 

2. p130, Rb family proteins and LXCXE-like motif 
The p130 protein, together with p105 and p107, is a member of the Rb family of tumor 
suppressors. The three members of this family share high degree of homology and 
biological functions (Lee et al., 1987a; Ewen et al., 1991; Mayol et al., 1993; Li et al., 1993; 
Paggi et al., 1996; Mayol & Graña, 1997; Nevins, 1998). All of them are characterized by two 
highly conserved functional domains termed A and B, which are separated by a spacer 
region, which differs between all the three Rb family members. They are also called “pocket 
proteins” because the two domains, A and B, are assembled into a pocket-like structure for 
the presence of the spacer region (figure 1) (Graña, 1998; Cobrinik, 2005; Du & Pogoriler, 
2006; Macaluso et al., 2006; Sun et al., 2007). The pocket domain sequence of all the three 
pocket members is well known for its ability to interact with proteins containing LXCXE 
motifs (Lee et al., 1998; Dahiya et al., 2000). The LXCXE domain is composed by a small 
block of highly conserved amino-acid residues counting the sequence leucine-X-cysteine-X-
glutamate, where the letter ‘X’ indicates any amino acids. A large selection of proteins 
containing an LXCXE-like sequence is able to interact with the Rb family proteins.  

 
Fig. 1. Schematic diagram of the amino acid sequences of the retinoblastoma family proteins 
highlighting the relative locations of functional domains within each member (N-terminus 
to the right, C-terminus to the left). The retinoblastoma family consists of pRb, p107 and 
p130. P indicates the pocket domain, responsible for most protein–protein interactions, 
composed by two conserved domains A and B, separated by the spacer region S. The green 
box specifies the conserved sequence motif, between p107 and p130, responsible for binding 
the Cdk/Cyclin complexes.  
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The DNA virus oncoprotein, E1A (the early-region 1A of the human adenovirus type 5), was 
identified by coimmunoprecipitation with pRB. E1A contains an LXCXE motif that is 
responsible for this interaction (Whyte, et al. 1989; Nielsch et al., 1991; Rumpf et al., 1999). 
The pRB pocket domain has been co-crystallized with an LXCXE peptide, allowing 
localization of the LXCXE binding site on the inside of its B domain sequence (Lee et al., 
1998). Also, the other members of the Rb family, p107 and p130, are able to bind E1A 
through a similar mechanism (Herrmann et al., 1991; Putzer et al., 1997; Lee et al., 2002; Xiao 
et al., 2003). Together with adenovirus E1A, other DNA virus oncoproteins such as human 
papillomavirus (HPV) E7 and Simian virus 40 large T antigen, contain LXCXE-like 
sequences which are used to bind to the Rb family proteins inhibiting their functions and 
promoting cell transformation and consequently cancer development (Hu et al., 1990; 
Ciccolini et al., 1994; Jones et al. 1997; Dahiya et al., 2000; Caldeira et al. 2000; Münger et al., 
2001; Helt & Galloway, 2003; Caracciolo et al., 2006; Felsani et al., 2006). Moreover, an 
LXCXE-like motif was also found in several cellular proteins such as, histone deacetylases 
1 and 2 (HDAC1 and HDAC2), protein phosphatase 1 (PP1), breast cancer type 1 (BRCA1), 
and Brahma-Related Gene 1 (BRG1), interacting with Rb family proteins, are involved in 
their pathways and play important roles for their functions. (Dunaief et al., 1994; Fan et al., 
2001; Rayman et al., 2002; Dunaief et al., 2002). The Rb family proteins are essential 
regulators of the cell cycle. They play a crucial role during the cell cycle, primarily through 
their ability to bind members of the E2F family and to block the activation of genes involved 
in cell cycle progression (Moberg et al., 1996; Sidle et al., 1996; Stiegler & Giordano, 1999; 
Macaluso et al., 2006; Sun et al., 2007). The E2F family members play a major role during the 
G1/S cell cycle transition. Based on their functions they can be divided in two distinctive 
groups: transcription activators and repressors (figure 2). The E2F(1-3a) members are 
activators and promote and help carry out the cell cycle, while the E2F(3b-8) factors are 
repressors and inhibit the cell cycle. The E2F(1-6) proteins bind to DNA as heterodimers, in 
association with the dimerization partner DP1 or DP2, increasing the E2F binding stability 
(Johnson et al., 1993; Zheng et al., 1999; Gaubatz et al., 2000; Cobrinik, 2005; Chen et al., 
2009). Although the E2F factors are able to bind the Rb family proteins, they do not possess 
any LXCXE domains, suggesting that most of them should have a different pocket protein-
binding domain. This observation was confirmed in studies focused on mutational analysis. 
In these studies, the mutation of the LXCXE binding site did not prevent pRB from binding 
and inactivating the E2F factors, whereas, these mutations inhibited the interactions with 
HDAC1 and HDAC2. Indeed, as described previously, both HDAC1 and HDAC2 contain an 
LXCXE-like sequence, and deletions of regions of the proteins containing this sequence 
preclude their binding to pocket proteins (Dunaief et al., 1994; Magnaghi-Jaulin et al., 1998; 
Ferreira et al., 1998; Fan et al., 2001). Thus, the LXCXE binding site mutations consent to 
distinct the ability to bind the E2F factors from the ability to efficiently recruit HDAC1 and 
HDAC2, suggesting that inhibition of the E2F activity alone is not sufficient to sustain 
actively repress transcription and consequently cell growth arrest (Dahiya et al., 2000). 
Therefore, it would seem that effective growth suppression by pocket proteins requires not 
only the interaction with the E2F factors, but also the recruitment of HDAC1 and HDAC2, 
providing evidence that the LXCXE binding site is important for their efficient function. 
Further studies underscored that other chromatin remodeling enzymes such as BRG1 and 
Brahma (BRM), that are components of the human SWI–SNF nucleosome-remodeling 
complex, are able to cooperate with the pocket protein-related cell growth suppression 
(Dunaief et al., 1994; Ferreira et al., 1998; Brehm et al. 1998; Ross et al., 1999; Zhang et al.,  
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Fig. 2. Structural organization of E2F transcription factors and their interactions with Rb 
family proteins. E2Fs can be subdivided into activator factors: E2F1, E2F2, E2F3a and 
repressor factors: E2F3b, E2F4, E2F5, E2F6, E2F7a, E2F7b and E2F8. They can also be divided 
in Classical and Atypical E2Fs. The most peculiar differences between Classical E2Fs, and 
Atypical E2Fs are shown: Classical E2Fs (E2F1-6), bind to DNA only after coupling with a 
second protein, called dimerization partner protein (DP). Through their dimerization 
domain, they form heterodimers with DP1 and DP2 proteins to allow the binding to DNA. 
Atypical E2Fs, E2F(7-8), show a duplicated DNA binding domain (DBD) that allow to bind 
to DNA in a DP-independent manner (as a homodimer). For a review about this class of E2F 
proteins see: Lammens et al., 2009. The classical E2Fs have also a transactivation domain 
that contains the Rb family proteins binding motif (Rb). pRB preferentially binds to the 
activator factors E2F1, E2F2, and E2F3a and the repressor factor E2F3b. p107 and p130 
preferentially bind to the repressor factors E2F4 and E2F5. E2F(6-8) do not bind to pocket 
proteins. NLS and CycA indicate the nuclear localization signal and the Cyclin A binding 
motif respectively. 

2000; Kadam & Emerson, 2003). Several reports showed that active repression mediated by 
p130 and pRB could involve a molecular mechanism by which condensed chromatin 
structure is enhanced not only through histone deacetylation but also through methylation. 
Macaluso and colleagues proposed multimolecular complexes bound to the estrogen 
receptor- (ER-) in breast cancer containing the histone methyl transferase (SUV39H1) and 
the DNA-(cytosine-5) methyltransferase 1 (DNMT1) together with p130-E2F4(5) and 
HDAC1 suggesting a novel link between p130 and chromatin-modifying enzymes in the 
transcriptional regulation of the ER- gene. 

In addition, other studies demonstrated that Polycomb group (PcG) proteins, another class 
of remodel chromatin proteins, interact with Rb family proteins and that these associations 
are important links between the transcriptional repression activities related to the pocket 
proteins and polycomb pathways (Dahiya et al. 2001; Bracken et al. 2003; Kotake et al., 2007; 
Tonini et al., 2004 & 2008). Although the large number of observations underline how the 
transcriptional repression’s mechanisms of the Rb family members have been extensively 
investigated, so far the contribution of the chromatin remodeling enzymes and pocket 
proteins to physically repress responsive promoters in G0 and early G1 is still debated, and 
represents an important unresolved piece of this issue. 
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3. p130, hypho/hyperphoshorilation and regulation of E2F-responsive genes 
One key mechanism controlling the G0/G1 checkpoint is the phosphorylation of the Rb 
family proteins by the cdk/cyclin complexes. The cdks are serine and threonine kinases and 
encompass a family divided into two groups based on their roles in cell cycle progression 
and transcriptional regulation (Lees, 1995; Morgan, 1995 & 1997; Napolitano et al., 2002; 
Shapiro, 2006). By definition, the cdks are dependent on associations with their activating 
subunits, termed cyclins for their cyclical expression and degradation. All the Rb family 
proteins contain several serine or threonine residues that can be recognized and 
phosphorylated by the cdk/cyclin complexes (Sidle et al., 1996; Mayol & Grana, 1998). In the 
hypophosphorylated state, the Rb family proteins are active and carry out their role as 
tumor suppressors binding and inhibiting, as previously described, transcription factors of 
the E2F family during the G0/G1 phase of the cell cycle. When it is time for a cell to enter 
the S phase, the cdk/cyclin complexes phosphorylate the pocket proteins, inhibiting their 
activity. For instance, increased phosphorylation of pRB decreases the affinity to E2F1 that 
dissociate from the pocket protein and becomes active allowing the progression of the cell 
cycle. The phosphorylation state of p130 occurs in all the mechanisms of growth regulation 
associated with this protein, this event is obviously cell cycle regulated as p130 has been 
shown to be a substrate for the cdk/cyclin complexes (Baldi et al., 1995; Canhoto et al., 2000; 
Hansen et al., 2001). In comparison to the other Rb family members, the p130 expression 
levels change during the cell cycle; in fact p130 is the most abundant in the G0 phase (Kiess 
et al., 1995) and differs from the others also in its phosphorylated status. Indeed, it has been 
described that p130 undergoes phosphorylation at distinctive sites during the G0 phase in a 
way that characterizes p130 from the other members of the Rb family proteins (Kiess et al., 
1995; Canhoto et al., 2000). p130 is phosphorylated by the Cdk4/Cyclin D or Cdk6/Cyclin D 
and Cdk2/Cyclin E or Cdk2/Cyclin A complexes and its expression levels fall when the 
cells enter into the S phase (Baldi et al., 1995; Mayol et al., 1995; Claudio et al., 1996; Dong et 
al., 1998; Tedesco et al., 2002). In vivo phosphorylation mapping of human p130 identified 22 
serine and threonine residues, targeted by the kinases Cdk2, Cdk4 and Cdk6 (Hansen et al., 
2001). These residues can be divided into four groups. The first group is positioned between 
the end of the N-terminal region and the beginning of the A domain. It consists of three 
residues; one is common to all the three Rb family members, one is shared with p107, and 
the last one is unique to p130. The second group contains six residues that are located in the 
spacer region; three out of six are unique to p130, the rest are common to p107. The third 
group is located within the B domain and contains seven residues; six out of seven are 
unique to p130, one is shared with p107. Finally, the last group is situated in the C-terminal 
region and contains six residues; two are common to all the three proteins, two are shared 
with p107 and the remaining two are unique to p130. In total, three out of 22 residues share 
homology with all the three Rb family members; ten are common to p107, while, twelve are 
apparently unique to p130 (figure 3). The carboxy-terminal region of p130 is important in 
coordinating the function of the whole protein. The C-terminus differs in length and 
similarity to the one of pRB, while it is very comparable to the p107’s, considering that, as 
already extensively mentioned, they are more strictly related to each other. Indeed, the C-
terminus of p130 and p107 contains in addition to HADC-1 (Stiegler et al., 1998) and 
cdk/cyclin complex binding domain (Hansen et al., 2001), independent nuclear localization 
signals (NLS) that could target reporter proteins to the nucleus (Chestukhin et al., 2002). 
Hypophosphorylated p130 interacts with the E2F4, and E2F5 transcriptional factors, forming  
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Fig. 3. Schematic summary of the 22 serine or threonine amino acids, identified by in vivo 
phosphorylation assays of p130, which are targets for Cdk2/Cyclin A(B) and 
Cdk4(6)/Cyclin D. A, B and S refer to p130 domains. The red square and the yellow triangle 
indicate the serine and the threonine residues respectively. 

the p130/E2F4(5) repressor complexes. E2F4 and E2F5 are considered poor transcriptional 
activators due, in part, to their lack of a NLS. The dependence of cellular localization of 
these E2F transcription factors suggests that p130 may be involved in nucleocytoplasmic 
trafficking. An accumulation of the p130/E2F4(5) complexes have been shown when cells 
are quiescent or differentiating, whereas the ability of p130 to bind E2F4(5) is inhibited when 
cells are entering late G1/S phase of the cell cycle suggesting that the involvement of these 
complexes is critical during the G0/G1 phase (Dimova and Dyson, 2005). Indeed, E2F4 and 
E2F5 are expressed throughout the cell cycle, but they are more present in G0/G1 phase, 
when they can be associated and recruited to the nucleus by p130 in order to form 
transcriptional repressor complexes (Chestukhin et al., 2002). The p130/E2F4(5) complexes 
exert their repressive action recruiting to their promoters binding site, the chromatin 
modulating factors HDAC1, resulting in the removal of acetyl groups from the histones H3 
and H4 and generating a compacted chromatin structure that is refractory to the 
transcription initiation (Smith et al., 1996; Iavarone & Massague, 1999; Takahashi et al., 2000; 
Ferreira et al., 1998 & 2001; Rayman et al., 2002). A schematic representation of the 
repressive action of the p130/E2F4(5) complexes is illustrated in figure 4. As showed by 
several scientific publications, the largest part of the E2F-responsive promoters bound E2F-4 
and p130 or in alternative p107, whereas only a limited set of promoters show evidently, an 
interaction of the pRB/E2F(1–3) complexes (Liu et al., 2005). 

In addition, it has been demonstrated that these interactions occur at very low concentration 
levels (Wells et al., 2000; Takahashi et al., 2000; Morrison et al., 2002; Rayman et al., 2002). 
Among these, the binding of pRB/E2F(1–3) to the E2F-responsive promoter of Cyclin E 
represent an important example (Hurford et al., 1997; Le Cam et al., 1999; Polanowska et al., 
2001). 

As previously indicated, the Cdk4(6)/Cyclin D and Cdk2/cyclin E(A) complexes have been 
involved in the phosphorylation of all the Rb family proteins (Weinberg, 1995). Although 
phosphorylation of the Rb family members is very often overturned by dephosphorylation, 
in particular circumstances, phosphorylation leads to a non-reversible inactivation. 
Phosphorylation of p130 starts most probably through its C-terminus and leads to the 
release of HDAC1 binding to the protein (Stiegler et al., 1998; Harbour et al., 1999). The 
following hyperphosphorylation displaces E2F4(5) from the p130 repressor complexes, 
leading to the release of the E2F4(5) transcription factors from p130. Unbound E2F4(5) can 
now migrate to the cytoplasm, while the E2F(1–3) factors are able to bind and activate their 
responsive promoters. It has been shown that in certain conditions, the E2F(1–3) factors bind 
to different promoter regions from those made vacant by E2F4(5) (Araki et al., 2003; Zhu et 
al., 2004). For many promoters, the binding of E2F(1–3) restore histone acetylation by the 
recruitment of histone acetyltransferases (HATs), which produce a more relaxed chromatin  
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3. p130, hypho/hyperphoshorilation and regulation of E2F-responsive genes 
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Fig. 4. A simplified view of p130/E2F4(5) complexes at E2F-responsive promoters. For 
simplicity several cofactors of the complexes (DP proteins or chromatin modifying enzyme) 
have been ignored. During G0 and early G1, p130 in complex with E2F4(5) is located at E2F-
responsive promoters and exert its repressive action recruiting the chromatin modulating 
factors HDAC1. Phosphorylation of p130 leads to the disruption of the complexes, and E2F-
responsive promoters can be activated by E2F(1-3)/HA. Hyperphosphorylated p130 can be 
degraded through the ubiquitin proteasomal pathway. For more detailed explanations 
return to text. 

state that makes it accessible directly to the transcription factors and allows the cells to 
proliferate (Ferreira et al., 1998; Takahashi et al., 2000; Taubert et al., 2004). The 
hyperphosphorylation of p130 leads to its degradation through the ubiquitin proteasomal 
pathway (Ludlow et al., 1993; Mayol & Grana, 1997 & 1998; Smith et al., 1998; Vuocolo et al., 
2003). The ubiquitination of p130 is followed by proteasomal degradation in late G1, which 
rapidly decreases the expression level of the protein when cells enter in S phase (Tedesco et 
al., 2002). Thus, p130 is removed when the cells are stimulated to enter a proliferative status 
confirming that its main relevant function is to arrest cells to G0 phase and to sustain them 
in this phase when the cells are in a quiescent status or begin to differentiate. 

4. p130, cell growth arrest and tumor suppression 
One of the most important key factors involved in the origin of a malignant cellular 
phenotype is the TSGs inactivation. As previously discussed, pRB, p107 and p130, in 
addition to their similar structural characteristics, share parallel biological functions. The 
abilities of inhibiting E2F-responsive promoters, recruiting chromatin-remodeling enzymes 
and actively repressing transcription (Classon & Dyson, 2001; Burkhart & Sage, 2008) 
confirms that these proteins show extensive overlapping functions and compensatory effects  
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at cell cycle level. Indeed, fibroblasts lacking one of the three pocket proteins are still able to 
sustain growth arrest in G0/G1 phase, but, on the other hand, fibroblasts lacking all of the 
three Rb family proteins lose this biological function (Sage et al., 2000; Dannenberg et al., 
2000). Notwithstanding all the Rb family proteins show redundant actions in vitro, they 
clearly have distinct functions in a number of cell types in vivo. pRB-deficient mice die 
during the period of middle gestation showing a large number of anomalies in neural and 
hematopoietic development, however, p107−/− and p130−/− mice show neonatal lethality 
with reduced limb and defective chondrocyte growth and endochondral ossification (Clarke 
et al., 1992; Cobrinik et al., 1996). Given that p107/p130-deficient mice have a normal 
development during gestation in comparison to RB−/− mice, is reasonable to believe that 
pocket protein functions cannot be considered completely compensatory (Zhu et al., 1993; 
Claudio et al., 1994). In addition, other studies highlight elevated proliferation, apoptosis 
and defective differentiation in liver, brain, muscle, eye, skin, and placenta of pRB-deficient 
mouse embryos (Liu et al., 2004), whereas p130-/p107-deficient mouse embryos display 
defects in a different and limited set of tissues (Ruiz et al., 2003; Vanderluit et al., 2004). 
Although it is possible to speculate with all the statements considered so far, the main 
reason why the three pocket proteins show redundant effect in some cases whereas, in other 
cases they lose these compensatory functions is poorly understood. Certainly, given the 
large spectrum of cells and tissue that have been analyzed, it cannot be excluded that these 
compensatory effects are more often cell type dependent, but, on the other hand, since p130 
owns strict similarity with p107 both in structure and biological functions, it is reasonable to 
consider that p130 shows a major compensatory effect with p107 in comparison to pRB. For 
instance, p130-deficient T lymphocytes exhibit normal proliferation in vitro and normal cell-
mediated immune function in vivo, but they show high levels of p107, which is able to 
replace p130 interacting with E2F4(5) and to form p107/E2F4(5) repressor complexes 
(Mulligan et al., 1998). Instead, a recent finding demonstrates that p107 and p130 have 
distinct biological functions to regulate pulmonary epithelial proliferation and survival. In 
murine models with conditional pocket proteins-deficient lung epithelium, p107 cooperates 
with pRB to suppress proliferation, however, p130, not being involved in cell growth arrest, 
exerts a pro-apoptotic function (Simpson et al., 2009). These clinical investigations confirm, 
as just described above, that although the three proteins share many structural features and 
are able to work as negative regulators of cell proliferation, they are not temporally and 
functionally redundant. The inactivation of p130 function can be owed by genetic or 
epigenetic mechanisms or by the interaction with viral oncoproteins. Numerous melanomas 
for instance, contain deletion in the chromosomal region (16q12.2) where p130 gene is 
encoded (Yeung et al., 1993). It has been demonstrated by numerous studies that ectopic 
expression of human p130 in many human cancer cell lines led to a cell cycle arrest in G1 
phase of the cell cycle. For instance, the overexpression of p130 is able to arrest in G1 phase 
the human T98G glioblastoma cell line, whereas the same cell line does not respond with a 
G1 arrest after overexpression of the other two members of the Rb family (Claudio et al., 
1994). This result is further evidence that the biological functions of the three Rb family 
proteins are not totally compensatory. The nasopharyngeal HONE-1, cell line displays a 
strong reduction in the expression level of p130, suggesting a possible involvement of this 
protein in nasopharyngeal carcinogenesis. Constitutive expression of p130 causes a 
considerable reduction in HONE-1 cell proliferation and significant changes in cellular 
morphology (Claudio et al., 1994; Claudio et al., 2000a).  
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mediated immune function in vivo, but they show high levels of p107, which is able to 
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as just described above, that although the three proteins share many structural features and 
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the human T98G glioblastoma cell line, whereas the same cell line does not respond with a 
G1 arrest after overexpression of the other two members of the Rb family (Claudio et al., 
1994). This result is further evidence that the biological functions of the three Rb family 
proteins are not totally compensatory. The nasopharyngeal HONE-1, cell line displays a 
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Furthermore, retrovirus-mediated delivery of wild-type p130 shows growth arrest and 
tumor progression reduction in a lung tumor cell line, H23, and in xeno-transplanted nude 
mice respectively (Claudio et al., 2000b). The p130 tumor suppressor gene is functionally 
inactivated in a broad range of cancers. Inactivation of its biological function has been 
described in different gynecological malignancies. Frequent loss of heterozygosity (LOH) to 
chromosome 16q12.2, where p130 maps, have been described in ovarian cancer. A large 
study on ovarian carcinomas displays a drop of the expression level of p130 by 40% and this 
result correlates inversely with tumor grade (D'Andrilli et al., 2004). In breast cancer, a 
similar study highlights a reduction of p130 expression level, more recurrent in lobular than 
in ductal carcinomas, which significantly correlates with estrogen receptor and progesterone 
receptor-B (Milde-Langosch et al., 2001). Furthermore, p130, in a complex with chromatin-
modifying enzymes, takes part in the transcriptional regulation of the ER- modifying 
histone acetylation and DNA methylation pattern (Macaluso et al., 2003). A p130 
involvement has been also suggested in lung tumor. Low expression level of p130 has been 
reported in small cell lung cancer (SCLC) and this result inversely correlates with histologic 
grade, proliferation, and patient survival (Baldi et al., 1996; Helin et al., 1997; Caputi et al., 
2002; Cinti et al., 2005). An explanation of p130 deregulation in lung cancer has been 
recently proposed. CTCF, a chromatin insulator CCCTC-binding factor, is involved in the 
transcriptional activity of p130 in lung fibroblasts, whereas, in lung cancer cells, a paralog of 
CTCF, BORIS, impairs the activity of CTCF to control p130 gene transcription (Fiorentino et 
al., 2011). Furthermore, a conditional triple-knockout murine model able to remove p130, 
pRB, and p53 in lung epithelial cells, pointed out that loss of p130 leads to a significant 
increment of cell proliferation and small cell lung cancer (SCLC) development (Schaffer et 
al., 2010). A deregulation of the p130 biological function has been shown in numerous 
hematological malignancies. For instance, in AIDS-related non-Hodgkin's lymphomas, an 
unusual high expression level of p130 has been detected, and, it was found interacting with 
the HIV-1 Tat protein resulting in deregulation of its tumor suppressor function (Lazzi et al., 
2002). Mutations of p130 gene, involving the putative NLS, have been detected in Burkitt's 
lymphoma cell lines and primary tumors (Cinti et al., 2000). Interestingly, ectopic expression 
of p130 in the same cell lines recovers growth control (De Falco et al., 2007). Inactivation of 
the biological function of p130 has also been described in other malignant transformation, 
such as mesothelioma (Mutti et al., 1998), and nasopharyngeal carcinomas (NPC) (Claudio 
et al., 1994; Claudio et al., 2000a). Furthermore, an involvement of p130 has been also 
suggested in retinoblastoma (Bellan et al., 2002). 

5. p130, Cdk2 inhibition and Spa310 
As extensively previously described the mammalian cell cycle requires the coordinated 
expression of a family of serine/threonine protein kinases (cdks) that are activated at 
specific points of the cell cycle by the interaction with their regulatory subunits, cyclins 
(Graña & Reddy, 1995; Morgan, 1995 & 1997). The active cdk/cyclin complexes 
phosphorylate target proteins on cdk consensus sites, resulting in changes of their structure 
that are physiologically crucial for cell cycle progression. Alongside the cdk/cyclin 
complexes, a family of proteins that exerts cdk inhibitory activity is vital for cell cycle 
regulation. These proteins called cyclin-dependent kinases inhibitors (CKI) bind to the cdk 
alone or to the cdk/cyclin complex and regulate the cdk activity. This class of proteins 
consists of two groups: the INK4 and Cip/Kip proteins. The INK4 members include p15, 
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p16, p18, p19, which specifically inactivate Cdk4 and Cdk6. They form stable complexes 
with the two kinases alone before their association with cyclin D (Cánepa, et al., 2007). The 
second class of inhibitors, the Cip/Kip proteins, includes p21, p27 and p57. Their inhibitory 
actions occur through the interaction and inactivation of all the G1-cdk/cyclin complexes 
(Besson et al., 2008). In summary, these CKIs can indirectly inhibit the E2F-mediated 
transcription through the interaction and inhibition of cdk/cyclin complexes that, 
maintaining the Rb family proteins in a hypophosphorylated state, allow them to sequester 
the E2F transcription factors (figure 5). Notwithstanding the wide variety of functions of the 
pocket proteins is E2F-responsive genes dependent, p130, as well as p107, is able to suppress 
cell growth through its interaction with two significant cell cycle complexes mentioned 

 
Fig. 5. A schematic representation of the main cdk/cyclin complexes involved in cell cycle 
control. The passage through the four phases of the cell cycle is regulated by the activities of 
cdks controlled by the synthesis of the appropriate cyclins during a specific phase of the cell 
cycle. Cell cycle inhibitory proteins, called cyclin-dependent kinase Inhibitors (CKI), can 
counteract cdk activity. P15, p16, p21 and p27 represent the main CKIs that specifically 
prevent accumulated G1-Cdk/Cyclins from acting. The G1-Cdk/Cyclin complexes 
[(Cdk4(6)/Cyclin D and Cdk2/Cyclin E(A)] control the G1/S checkpoint by the 
phosphorylation of a variety of proteins. The Rb family proteins represent one key target. 
Their phosphorylation prevents the binding and inactivation of the E2F transcription 
factors. The activation of E2Fs allows the transcription of various gene products that are 
indispensable to trigger S phase.  
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above, Cdk2/Cyclin A and Cdk2/Cyclin E (Zhu et al., 1995; Lacy & Whyte, 1997). To date, 
only p130 and p107 are able to bind and inhibit Cdk2/Cyclin A and Cdk2/Cyclin E through 
independent E2F mechanisms. Certainty, Cyclin E expression is essentially regulated by 
pRB, as results in pRB deficient cells where Cyclin E levels increase with the parallel 
disappearance of this protein, but, as mentioned previously, the role of pRB in the 
regulation of cyclin E occurs through crucial E2F-responsive genes (Le Cam et al., 1999; 
Polanowska et al., 2001). Inhibition of Cdk2/Cyclin A(E) activity by p130 underlines the 
fundamental role of p130 during the cell cycle, which is not only the maintenance of a G0 
arrest in quiescent or differentiated cells, but also the fact that this protein can exert a control 
during the transition from G1- to S-phase. This inhibition halts the cells in G1 phase 
preventing their passing beyond the restriction point G1/S. In order for the cells to progress 
through G1 phase, p130 as well as all the other related proteins p107 and pRB must be 
phosphorylated and therefore inactivated by Cdk2/Cyclin A(E) (also by Cdk4(6)/Cyclin D). 
In this regard, repression of this enzymatic kinase activity by p130 might represent a 
decisive step to inhibit progression into S-phase. This inhibition can be considered similar to 
the one performed by the CKI family, and, in certain situations, can work redundantly in 
support of these proteins. It has been also shown that in p27-/- fibroblasts, an inhibition of 
Cck2 activity occurs after interaction with p130, which prevents S phase entry. This result 
confirms that p130, although is not related to the CKI p27, takes its place for the cyclin-
dependent kinase inhibition, restoring physiologically cdk regulation (Coats et al., 1999). 
Moreover, it is hypothesized that the inhibition of the Cdk2 activity by p130 is the result of a 
direct interaction between specific sequences in the structural domains of this protein and of 
the kinase. Previously, it has been described that the cdk2-dependent kinase inhibitory 
activity shown by the pRb2/p130 is specifically confined to the p130 spacer region (De Luca 
et al., 1997). A recent study identified a polypeptide termed Spa310, which is mainly based 
on the p130 spacer region. Spa310 consist of 39 amino acids, spanning the p130 spacer 
region between the 641 and 679 residues (Bagella, 2007; Giordano, 2007a, 2007b). In vitro 
studies confirmed that Spa310 is able to significantly inhibit cdk2-dependent histone 
phosphorylation. In addition, its ectopic expression in mouse fibroblast shows a significant 
arrest of proliferation in the G0/G1 phase of the cell cycle. Interestingly, the small peptide 
Spa310 completely maintains the ability, typical of the full-length spacer region of p130, to 
inhibit cdk2 kinase activity and equally, when introduced into cells, induces growth arrest 
and inhibits the endogenous cdk2 activity, in an analogous manner to the spacer domain. In 
addition, Spa310 is also able to reduce human lung tumor growth in xeno-transplanted 
nude mice suggesting its potential role as a promising new type of mechanism-based drug 
for the treatment of malignant disorders. This therapeutic approach is focus of great interest 
in cancer therapy and consequently, pharmacological compounds, like small molecules, or 
peptides such as Spa310, targeting certain cdks, are potential points of intervention for drug 
discovery, since they could create rationally designed inhibitors of particular pathways that 
lead to malignant transformation. Over the last decade, a variety of pharmacological 
compounds with potent cdk inhibitory and strong anti-tumor activities have been identified 
and, for some of them, their potential anticancer function has been confirmed in preclinical 
studies (Dai & Grant, 2004; Shapiro, 2006; de Cárcer et al., 2007; Malumbres & Barbacid, 
2009). The development of biological molecules, rather than chemical compounds, represent 
a larger line of research, since combines the efficacy of arresting cellular proliferation by 
interacting specifically with peculiar regulators of the cell cycle. The specificity of these 
compounds, compared to the non-specificity of chemical compounds, would allow the 
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development of new molecules with better pharmacodynamics, higher patient tolerability 
and fewer side effects. 

6. Conclusions 
As broadly discussed in this chapter, a breakdown of the cell cycle caused by an unbalanced 
perturbation that pushes a cell to stimulate its own growth, resisting to inhibitory signals 
that might otherwise stop its growth, represents a common hallmark of the malignant 
transformation and tumor development. The assortment of all the observations here 
described, taken together with the further evidences available in the large body of literature, 
supports the scientific relevance of the p130 biological functions in cell cycle control, in cell 
transformation, and tumor formation.  

The development of small molecules with cdk inhibitory activity, as well as the small 
peptides mimicking, as discussed here, the functional motifs of p130 and the preservation of 
its cyclin-dependent kinase inhibition, represent key tools to clarify the connections among 
cdks and TSGs with cell cycle progression and malignant transformation. Meanwhile, 
additional studies that might elucidate how the loss of function of p130, and the related 
pocket proteins pRB and p107, merges with the activation or the inactivation of other gene 
products to develop retinoblastoma or other proliferative disorders, will open up novel 
horizons for the biology of cancer, which will hopefully lead to the development of 
innovative pharmacological approaches and efficient therapies. 
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1. Introduction 
During development of the nervous system an excess number of neural progenitor cells are 
generated and approximately half of these cells are eliminated by programmed cell death 
(PCD) or apoptosis (Farinelli and Greene, 1996; Jacobson et al., 1997; Oppenheim, 1991; Raff, 
1992; Raff et al., 1993). The apoptosis and elimination of the excess number of precursor cells 
enable the proper synaptic integration of the surviving cells and development of the central 
nervous system (CNS). Survival of the neurons in the CNS requires trophic support and 
electrical activity and upon withdrawal or depletion of these factors the neurons undergo 
apoptosis (Barde et al., 1987; Biffo et al., 1994; D'Mello et al., 1997; D'Mello et al., 1993; 
D'Mello et al., 2000; Galli et al., 1995; Levi-Montalcini, 1987; Miller and Johnson, 1996). 
Among the growth factors that support neuronal survival and differentiation are 
neurotrophic growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 
3 and 4 (NT3 and NT4), insulin and insulin like growth factors (IGF), glial derived 
neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), and ciliary neurotrophic 
factor (CNTF) (Ardelt et al., 1994; Barde, 1994; de Pablo et al., 1990a; de Pablo et al., 1990b; 
Ferrari et al., 1989; Ferrer et al., 1998; Hynes et al., 1994; Kalcheim et al., 1987; Knusel et al., 
1990; Levi-Montalcini, 1987; Lindholm et al., 1993; Magal et al., 1993; Rabacchi et al., 1999; 
Rakowicz et al., 2002; Serrano et al., 1990; Tuttle et al., 1994; Zhang et al., 1997).  

Many neurological diseases such as Alzheimer’s, tauopathies, Parkinson’s etc., show 
neuronal loss in specific areas of the brain (Burke, 1998; Cotman and Anderson, 1995; 
Cotman and Su, 1996; Forloni, 1993; Gorman et al., 1996; Hajimohamadreza and Treherne, 
1997; Hartmann and Hirsch, 2001; Honig and Rosenberg, 2000; Jellinger, 2001; Johnson, 
1994; Savitz and Rosenbaum, 1998; Yanagisawa, 2000; Yuan and Yankner, 2000). Although a 
number of signaling pathways have been implicated in the apoptosis observed in the brains 
it is difficult to determine whether inhibition of these pathways has any effect on neuronal 
survival in vivo. Therefore, in order to understand the in vivo mechanisms involved in 
neuronal apoptosis, researchers mainly use either transgenic mouse models or in vitro 
cultures of dissociated primary neurons or organotypic slice cultures from different brain 
regions from rodents. The mechanisms by which the different types of neurons undergo 
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apoptosis vary, and it depends on the type of insult as well as the type of neurons involved. 
For example, studies in sympathetic ganglia have shown that growth factor withdrawal and 
oxidative stress-induced apoptosis is associated with caspase activation and cyclin D1 
expression (Freeman et al., 1994; Stefanis et al., 1998; Troy et al., 1997; Troy et al., 1996). 
Inhibitors of caspases such as z-DEVD-FMK and z-VAD-FMK protected these neurons from 
undergoing apoptosis thereby confirming that indeed caspase activation is involved in cell 
death. Similarly insults such as Aβ treatment, growth factor deprivation and treatment with 
DNA damaging agents induce apoptosis in cortical neurons, which is associated with 
activation of caspases as well as cell cycle regulatory proteins (Park et al., 1997a; Park et al., 
1997b; Park et al., 1998a; Park et al., 1998b; Stefanis et al., 1999; Troy et al., 2000; Troy et al., 
2001). Activation of cell cycle regulatory mechanisms have also been implicated in cerebellar 
granule neurons (CGNs) undergoing activity withdrawal-induced apoptosis (Konishi and 
Bonni, 2003b; Konishi et al., 2002; O'Hare et al., 2000; Padmanabhan et al., 1999). 

It is now established that in neurons subjected to apoptotic insults, retinoblastoma protein 
(Rb) undergoes cdk-mediated phosphorylation which leads to its inactivation and 
dissociation from E2F (Boutillier et al., 1999; O'Hare et al., 2000; Padmanabhan et al., 1999; 
Park et al., 1997a; Park et al., 1997b; Park et al., 1998a; Sakai et al., 1999). Dissociated E2Fs 
induce transactivation of specific proapoptotic genes and apoptosis in different types of cells 
including neurons. In addition to transcriptional activation, derepression of proapoptotic 
genes is also implicated in neurons undergoing apoptosis. For example, studies have shown 
that the transcription factors B-Myb and C-myb are induced in cortical neurons subjected to 
growth factor withdrawal and DNA damage mediated apoptosis (Liu et al., 2004; Liu and 
Greene, 2001). It was found that the antisense RNA-mediated down regulation of B-myb 
and C-myb protected neurons from undergoing apoptosis and overexpression of these 
transcription factors was sufficient to induce apoptosis. This suggests that cell cycle 
activation in neurons induce dissociation of Rb/E2F complex leading to derepression and 
transactivation of proapoptotic genes.  

This chapter mainly focuses on the mechanisms involved in neuronal apoptosis in 
cerebellum. Within the developing brain, cerebellar cortex has been extensively used for 
studying neuronal survival and apoptosis. The cerebellum plays a major role in movement, 
motor coordination, learning and cognitive function (Wechsler-Reya and Scott, 2001). It 
contains different types of neurons, of which Purkinje neuron is the most elaborate with a 
large cell body and vast dendritic tree. Due to the abundance of cerebellar granule neurons 
(CGNs) they have been used widely to study molecular mechanisms of neurodegeneration. 
The granule neurons differentiate into mature neurons when cultured in the presence of 
appropriate growth factors or when supported by depolarizing concentrations of KCl 
(D'Mello et al., 1997; D'Mello et al., 1993; Miller and Johnson, 1996). Growth factors that 
usually support survival of CGN are serum and IGF-1. Treatment of CGNs with high 
concentrations of KCl (25 to 30 mM) induces electrical activity and membrane 
depolarization, which allows Ca2+ entry through voltage sensitive calcium channels 
(Catterall, 2000; Konishi and Bonni, 2003b). Growth factor removal and KCl withdrawal 
induce neuronal apoptosis in CGNs, which involves different types of signaling pathways. 
This chapter mainly focuses on the involvement of cell cycle regulatory proteins in 
cerebellar granule and Purkinje neuron apoptosis and highlights the importance of 
functional retinoblastoma protein in survival and maintenance of differentiated neurons. 
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2. Retinoblastoma protein 
Retinoblastoma protein (Rb) is a negative regulator of cell cycle progression and is known as 
the master regulator of cell cycle, differentiation, senescence and apoptosis (Chen et al., 
1995; Dasgupta et al., 2006; Herwig and Strauss, 1997; Knudsen et al., 2000; Lee et al., 1995; 
Riley et al., 1994; Wang, 1997; Wang et al., 1994; Weinberg, 1989a, b, 1990, 1991, 1995). It 
belongs to a family of proteins known as pocket proteins, which include p107 and p130. 
These proteins bind to the early transcription factors (E2Fs) and control the G1/S transition 
of cells. Rb associates with several members of the E2F family and inhibits transactivation of 
E2F-responsive genes. Among the E2F family members (E2Fs 1 through 8) E2Fs 1, 2, and 3 
are transcriptional activators and have been shown to associate with Rb. The binding of Rb 
to E2F depends on the phosphorylation state of Rb (Angus et al., 2002; Chellappan et al., 
1991; Hiebert et al., 1992; Nevins et al., 1991). A cell, upon receipt of growth factor or 
different proliferative signals, induce expression of cyclin D in the early G1 phase and cyclin 
E in the later G1 phase. These cyclins associate with the respective cyclin-dependent kinases 
(cdk). Cdk4 and cdk6 associate with cyclin D1 while cdk2 interacts with cyclin E. The cyclin-
cdk complex induces phosphorylation of Rb leading to its inactivation and dissociation from 
E2F which results in G1/S checkpoint release and E2F-dependent transcriptional activation 
(Figure 1). Thus, functional retinoblastoma protein plays a major role in control of cell 
division and loss of its function by mutation, phosphorylation or degradation leads to 
uncontrolled cell division and tumorigenesis. After G1/S checkpoint release, further 
progression of cells through S and G2/M phases are brought about by cyclin A/cdk2 (S-
phase) and cyclin B/cdc2 (cdk1) complexes, respectively. In addition to the cdks, the in vivo 
inhibitors of cdks (CKIs) such as p16, p21, p27 and p57 also play a role in cell cycle control 
(Besson et al., 2008). Thus, cell cycle is tightly regulated by the combined efforts of cyclins, 
cdks, cyclin-dependent kinase inhibitors (CKIs) and Rb.  

In addition to its anti-proliferative role, retinoblastoma protein can also function as an anti-
apoptotic factor. Rb exerts its growth-inhibitory effects mainly by binding and inhibiting 
transactivation of E2F family of transcription factors (Chellappan et al., 1991; Dasgupta et 
al., 2004; Nevins et al., 1991; Stevaux and Dyson, 2002). Among these transcription factors, 
E2F1 has been implicated in not only S-phase entry but also apoptosis induction through the 
p53 and p73 pathways (Irwin et al., 2000; Lissy et al., 2000; Zaika et al., 2001). 
Overexpression of Rb inhibits E2F1-mediated apoptosis. It has been suggested that the 
increased apoptosis observed in Rb null mice is brought about mainly by increased E2F1 
activity. Studies by Chellappan and colleagues have shown that in addition to the cyclins 
and cdks, non-cyclin dependent kinases can also phosphorylate and inactivate Rb (Dasgupta 
et al., 2004; Nath et al., 2003; Wang et al., 1999a; Wang et al., 1999b). For example, during 
mitogenic signaling, Raf1 directly interacts with and phosphorylates Rb. Analysis of Rb-
associated mechanisms in cells undergoing apoptosis showed an interaction of Rb with 
kinases such as p38 MAP kinase and apoptosis signal regulating kinase 1 (ASK1) (Dasgupta 
et al., 2004). This suggests that in addition to the cdks Rb can be phosphorylated and 
inactivated by non-cyclin-dependent kinases as well.  

Several viral oncoproteins such as the SV-40 large T-antigen (T-Ag), E1A of the adenovirus 
and E7 of the human papilloma virus type 16 have been shown to bind Rb through an 
LXCXE motif. Interaction of Rb with viral oncoproteins lead to dissociation of Rb from E2F 
and induction of E2F-dependent gene expression (Chellappan et al., 1992; Chellappan et al., 
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2. Retinoblastoma protein 
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Several viral oncoproteins such as the SV-40 large T-antigen (T-Ag), E1A of the adenovirus 
and E7 of the human papilloma virus type 16 have been shown to bind Rb through an 
LXCXE motif. Interaction of Rb with viral oncoproteins lead to dissociation of Rb from E2F 
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1991; Hiebert et al., 1992; Nevins et al., 1991). Loss of Rb function leads to an increase in p53 
activity via an E2F-dependent induction of ARF family of proteins. ARF induces 
degradation of MDM2 and stabilization of p53 (Kamijo et al., 1998; Pomerantz et al., 1998; 
Tao and Levine, 1999; Weber et al., 2000; Zhang et al., 1998). This is one of the mechanisms 
by which Rb induces p53-dependent apoptosis in non-transformed cells. Similarly, human 
cytomegalovirus (HCMV) has been shown to inhibit the Rb-E2F association. The HCMV-
mediated Rb inactivation was not inhibited by the cdk inhibitors roscovitine, olomoucine or 
flavopiridol. In vitro and in vivo studies have shown that HCMV-mediated Rb 
phosphorylation is brought about by UL97, an HCMV protein kinase, and inhibition or 
inactivation of this kinase can prevent Rb phosphorylation (Hume et al., 2008).  

 
Fig. 1. Retinoblastoma (Rb) protein and cell cycle: In resting cells Rb associates with E2F 
and prevents ( ) transition of cells through the G1S checkpoint. Upon receipt of growth 
factors or proliferative signals, cyclins and cdks are activated leading to phosphorylation 
of Rb (Rb-P) and release of Rb from E2F. In the early G1 phase cyclin D associates with 
cdk4 or cdk6 and in the late G1 phase cyclin E associates with cdk2 to induce 
phosphorylation and inactivation of Rb. The activities of the cdks are regulated by cyclin-
dependent kinase inhibitors (CKI). These CKIs, such as p16, p21 and p27, inhibit cdks 
from phosphorylating and inactivating Rb. In addition to phosphorylation, binding of 
viral oncoproteins such as SV-40 large T-antigen (T-Ag), E1A of adenovirus and E7 of 
papilloma virus can also inactivate Rb. Binding of these oncoproteins to Rb (example, Rb-
T-Ag) releases Rb from E2F resulting in transactivation of E2F-dependent genes needed 
for cell proliferation. Once the cells pass through the G1/S checkpoint, further 
progression through cell cycle is made possible by cyclin A/cdk2 in S phase and Cylin 
B/cdc2 (cdk1) in the G2-M phase. Fully developed mature neurons are differentiated cells 
and are retained in the G0 phase of the cell cycle. Unlike proliferating cells which undergo 
transformation and uncontrolled proliferation upon Rb inactivation, neurons undergo 
neurodegeneration and apoptosis demonstrating the importance of Rb in maintenance of 
healthy differentiated neurons.  
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3. Retinoblastoma protein and neuronal survival 
In addition to its function in control of cell cycle, Rb has been shown to be important in 
development and survival of neurons (Athanasiou et al., 1998; Feddersen et al., 1995; 
Feddersen et al., 1997; Hoglinger et al., 2007; Padmanabhan et al., 2007). Although it is 
known that precursor cells can divide and the newly formed daughter cells can migrate and 
differentiate into mature neurons, the ability of mature neurons to divide is debatable. 
Mature neurons are usually maintained in the G0 or the resting phase of the cell cycle and 
respond to cell cycle activation by undergoing apoptosis rather than transformation. This is 
further supported by the fact that there are rarely any cases of tumors that originate from 
mature neurons. Several lines of evidence indicate that neuronal development and survival 
requires the presence of functional Rb in the nervous system. Mice lacking Rb show defects 
in neurogenesis and die embryonically at day 16 (Clarke et al., 1992; Jacks et al., 1992; Lee et 
al., 1992). This shows that Rb is important for proper exit of immature precursor cells from 
cell cycle and generation of mature differentiated neurons, and in the absence of Rb they 
attempt to reenter cell cycle but undergo neurodegeneration and apoptosis.  

4. Degeneration of cerebellar neurons 
4.1 Cerebellar granule neurons 

Cerebellar granule neurons (CGN) when cultured in the presence of serum and depolarizing 
concentrations of KCl (25 mM) acquire characteristics of fully differentiated mature neurons 
similar to those present in vivo (Galli et al., 1995). Upon lowering the concentration of KCl to 
5 mM these neurons undergo apoptosis. Apoptosis in CGN is prevented by treatment with 
IGF-1, cyclic AMP, forskolin and inhibitors of transcription and translation (D'Mello et al., 
1997; D'Mello et al., 1993; Miller and Johnson, 1996; Padmanabhan et al., 1999). The 
protection of cells by transcriptional inhibitors point to the fact that under apoptotic 
conditions the transcriptional machinery is activated. Since cell cycle dependent 
mechanisms are under transcriptional regulation it was hypothesized that neuronal 
apoptosis may be associated with deregulation of cell cycle.  

Although neuronal apoptosis has been shown to be associated with activation of caspases, 
no significant protection was observed by caspase inhibitors upon activity withdrawal-
induced apoptosis in CGNs. This led to the analysis of the role of cell cycle regulatory 
proteins in this apoptosis paradigm (Padmanabhan et al., 2007). Neurons were deprived of 
KCl in the presence of inhibitors of cdks and their survival was examined at different time 
points. It was found that the cdk inhibitors could provide significant protection of rat CGN 
from KCl deprivation induced apoptosis even when the caspase acitivity was high 
(Padmanabhan et al., 1999). The discrepancy in the results from different laboratories could 
be explained by the age of the culture, origin of the cells (mouse vs rats), or the culture 
conditions. It is possible that lowering the KCl concentrations to 5 mM without withdrawal 
of serum may use a different mechanism to induce apoptosis compared to that induced by 
withdrawal of both serum and KCl. It is known that KCl withdrawal is associated with 
induction in caspase activity and treatment of the neurons with a general caspase inhibitor 
can significantly prevent the increase in activity. This suggests that irrespective of the status 
of caspases in the cells, transcriptional activation clearly leads to KCl withdrawal-induced 
cell death in CGN. Analysis of cyclin D1 and cyclin E showed that these cylcins are normally 
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present in the CGNs. Upon KCl withdrawal, the cells begin to undergo a time-dependent 
apoptosis and the expression of these cyclins is induced. Immunostaining analysis revealed 
that neurons undergoing apoptosis accumulate cyclin D1 in their nucleus which is 
indicative of its role in activation of cell cycle (Padmanabhan et al., 1999). This result is 
different from what has been observed in sympathetic neurons wherein the expression of 
cyclin D1 is non-detectable under non-apoptotic conditions and is detectable only upon 
growth factor deprivation-induced apoptosis. This shows that the gene expression patterns 
vary between neurons from different regions and therefore may respond differently to 
diverse external cues.  

Immunoprecipitation and kinase activity assays showed that apoptosis in CGN is associated 
with an induction in cyclin D1 and cyclin E-associated kinase activities (Padmanabhan et al., 
1999). In vivo inhibitors of cdks such as p16, p21, p27 and p57 (CKIs) regulate the activities of 
cdks. It was found that the neurons undergoing apoptosis show a time-dependent decrease 
in p27 levels (Martin-Romero et al., 2000; Padmanabhan et al., 1999). Decreased p27 levels in 
turn, enhance the cdk activity further and enable cdks to phosphorylate and inactivate Rb 
resulting in dissociation of Rb from E2F. This leads to enhanced E2F-dependent 
transactivation or derepression of proapoptotic genes. Analysis of the neurons showed that 
Rb phosphorylation and degradation are enhanced in cells undergoing apoptosis 
(Padmanabhan et al., 1999). Since Rb is the major regulator of G1S phase transition, this 
observation indicates that the neurons are forced to exit the G0 phase and re-enter the cell 
cycle. Although the neurons exit the resting phase of the cell cycle they do not undergo cell 
division or transformation but instead undergo apoptosis. 

Treatment of the neurons with inhibitors of cdks protected CGNs from KCl withdrawal-
induced apoptosis (Padmanabhan et al., 1999). Flavopiridol, a flavonoid that is specific to 
cdk 1, 2 and 4, at a concentration of 1 M and olomoucine and roscovitine, purine 
derivatives with specificity towards cdk 1, 2 and 5, at concentrations of 200 M and 50 M, 
respectively, protected CGNs from KCl withdrawal-induced apoptosis. This was associated 
with inhibition of the cdk activities, inhibition of translocation of cyclin D1, prevention of 
degradation of p27, and inhibition of Rb phosphorylation and degradation. Cdk4 and cyclin 
D as well as cdk2 and cyclin E activities are essential for Rb phosphorylation and transition 
of cells through G1/S checkpoint. Thus, this study suggests that upon activity withdrawal 
CGNs attempt to enter the cell cycle but due to the lack of an active cell cycle program this 
attempt is aborted and the cells take the alternative approach and undergo apoptosis. 
Studies in mouse neurons have also shown induction of cyclin D1 and associated kinase 
activity upon KCl withdrawal-induced apoptosis. This was associated with Rb 
hyperphosphorylation and degradation which could be inhibited by treatment with caspase 
inhibitors (Boutillier et al., 1999; Boutillier et al., 2000). Expression of a caspase cleavage 
mutant of Rb protected the cells from undergoing apoptosis thereby suggesting that 
physiological levels of functional Rb is necessary for survival of CGNs. This again suggests 
that upon lowering KCl concentrations, the neurons attempt to re-enter cell cycle but due to 
the absence of an active cell division cycle, they undergo apoptosis.  

Since E2F1 has been implicated in apoptosis it is rational to think that E2F1 overexpression 
may lead to cell death. Analysis of CGNs undergoing apoptosis showed that E2F1 mRNA 
and protein levels were induced upon KCl withdrawal (O'Hare et al., 2000). This study also 
showed that adenovirus mediated overexpression of E2F1 in CGNs can induce apoptosis. 
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This apoptosis was p53-independent as overexpression of E2F1 in neurons from both 
p53+/+ and p53-/- mice showed similar levels of apoptosis. The E2F1-mediated apoptosis 
was found to be Bax-dependent and was associated with increased caspase 3-like activity. 
Studies conducted on cells from E2F1 deficient mice showed significantly higher number of 
surviving neurons upon withdrawal of KCl confirming that E2F1 expression is associated 
with enhanced apoptosis in postmitotic neurons.  

Studies conducted on neurons treated with kainic acid have shown that it is associated with 
a transient increase in Rb phosphorylation suggesting a role for aberrant cell cycle activation 
(Giardina et al., 1998). When the effect of kainate treatment was compared in neurons from 
E2F1 deficient and E2F1 WT neurons, it was found that the neurons from E2F1 -/- mice 
were more resistant to KA-induced apoptosis. Thus, this study shows that excitotoxicity-
induced apoptosis in neurons is also mediated through cell cycle activation, inactivation of 
Rb and E2F1-dependent transactivation of genes. 

The above studies clearly show that activation of the components of G1 phase of cell cycle is 
associated with activity winthdrawal-induced apoptosis in CGNs . None of them show any 
evidence for entry of cells in to the S phase or expression of any of the late phase markers of 
cell cycle upon induction of apoptosis. It was hypothesized that the cells undergoing apoptosis 
acquire morphology similar to those undergoing mitosis and therefore mechanisms similar to 
that seen in mitotic phase of cell cycle may be activated in the apoptotic process (King and 
Cidlowski, 1995). This hypothesis was supported by the studies in fibroblasts where cdc2 has 
been shown to induce apoptosis (Yu et al., 1998). In order to determine whether cdc2 
expression is associated with apoptosis in neurons, Konishi and colleagues examined CGNs 
undergoing activity winthdrawal-induced apoptosis (Konishi et al., 2002). Their studies 
showed that activity withdrawal-induced, but not growth factor withdrawal-induced, cell 
death in CGN is associated with induction in the G2/M kinase cdc2 (cdk1) and cdc2-mediated 
BAD phosphorylation. Cdc2 associates with cyclin B in the G2/M phase of cell cycle and 
regulates the onset of M-phase. Experiments in CGN deprived of depolarizing concentrations 
of KCl showed that cdc2 kinase enhanced the phosphorylation of the proapoptotic protein 
BAD at Ser128 residue upon apoptosis. Under normal conditions growth factor-induced 
phosphorylation of BAD at Ser136 leads to its sequestration by 14-3-3 proteins thus preventing 
it from inducing apoptosis. Under apoptotic conditions, the additional phosphorylation of 
BAD at Ser128 by the cdc2 kinase prevents it from getting sequestered by 14-3-3 resulting in 
BAD-induced apoptosis in neurons.  

Cdc2 is an E2F responsive gene and induction in E2F transcriptional activity may therefore 
upregulate the expression of cdc2. Chromatin immunoprecipitation (ChIP) assays using 
E2F1 antibody and analysis of the promoter of cdc2 kinase has shown that E2F forms a 
complex with the promoter endogenously thereby suggesting that E2F1 can induce 
transactivation of cdc2 (Konishi and Bonni, 2003a). It was also shown that the expression of 
a dominant negative E2F1 inhibits and WT E2F1 induces cdc2 expression and apoptosis of 
CGN. These observations clearly show that activity withdrawal-induced apoptosis in 
neurons is associated with cell cycle activation, Rb phosphorylation and inactivation, and 
G1S transition in CGN. It appears that the neurons may even enter the G2/M phase of cell 
cycle before succumbing to apoptosis. Further, the phosphorylation of BAD by cdc2 kinase 
reveals how cell cycle mechanisms link to the cell death machinery to bring about the 
apoptosis in neurons. 
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The cdks mentioned above are mainly exerting their effects by association with specific 
cyclins. For example cyclin D associates with cdks 4 and 6, cyclin E with cdk2, and cyclin A 
and cyclin B with cdc2. One cdk that does not depend on a cyclin to exert its activity and is 
mainly active in the nervous system is the cyclin dependent kinase 5 (cdk5) (Tsai et al., 
1994). The regulatory subunits that activate this cdk are the p35 and p39 which are found in 
the neuronal tissue. P35-cdk5 complex is expressed at high levels in the adult brain and is 
involved in neuronal migration and axonal growth (Nikolic et al., 1996; Ohshima et al., 
1999). P35 is proteolytically cleaved by calcium-dependent proteases to generate p25, which 
is more stable and active. The p25-cdk5 complex is hyperactive and has been shown to 
induce neurotoxicity (Lee et al., 2000; Patrick et al., 1999). Studies conducted using 
embryonic mouse brain extracts as well as bacterially expressed Rb and cdk5/p25 have 
shown that p25 can directly bind to Rb and induce its phosphorylation (Lee et al., 1997). In 
addition, studies in SY5Y cells overexpressing inducible p25 showed that it enhances 
phosphorylation of Rb which is blocked by roscovitine, a kinase inhibitor that inhibits cdks 
1, 2 and 5 but not the cyclin D kinases cdks 4 or 6 (Hamdane et al., 2005). These findings that 
cdk5 can phosphorylate and inactivate Rb suggest that even in the absence of alterations in 
cyclins and the associated cdks, this neuronal cdk5 may induce transcriptional activation 
and neurodegeneration by causing inactivation of Rb.  

4.2 Purkinje neurons 

Extensive studies by Herrup and colleagues have shown that the different types of neurons 
in the cerebellum depend on each other, especially on the Purkinje neurons for trophic 
support and survival (Wetts and Herrup, 1982, 1983). This is termed as ‘developmental 
dependency’. A considerably high number of cerebellar granule neuron precursor cells are 
generated during brain development. Studies have shown that numerical matching of the 
granule cells to Purkinje cells is important for normal cerebellar development and the excess 
number of cells that do not reach the target or that do not connect with the Purkinje cells are 
eliminated by apoptosis (Herrup and Sunter, 1987; Vogel et al., 1989). In the case of Purkinje 
neurons only a limited number of immature cells are generated which develop into the 
mature Purkinje cells in a cell autonomous way. Studies done in Staggerer and Lurcher 
mutant mice have shown that loss of Purkinje neurons is associated with loss of CGNs and 
inferior olive neurons (Herrup and Mullen, 1979; Rabacchi et al., 1992; Sonmez and Herrup, 
1984; Vogel et al., 1991). These mutant mice show defects in the development of Purkinje 
neurons. In the Staggerer mice the Purkinje neurons never develop fully resulting in 
deficiency in the targets required for CGN to establish contacts. This leads to loss of neurons 
and these mutant mice show 100% loss of CGNs. On the other hand in the Lurcher mice a 
small percent (10%) of the CGNs survive even when 100% of the Purkinje neurons die 
between postnatal day 9 and 30. Analysis of CGNs and inferior olive neurons in these mice 
revealed that the death is associated with enhanced expression of cyclin D1, PCNA and 
increased DNA synthesis, as evident by BrdU incorporation (Herrup and Busser, 1995). This 
suggests that lack of trophic factor support induces cell cycle reentry and cell death in these 
neurons in vivo. PCNA is an S phase specific marker and this along with the induction of 
DNA synthesis in neurons undergoing apoptosis suggests that their death may be 
associated with inactivation of Rb and induction of E2F-dependent transactivation of genes. 
The degenerating Purkinje cells do not show any incorporation of BrdU which is indicative 
of a different mechanism involved in the death of these neurons in these mutant mice.  
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The absence of cell cycle activation in degenerating Purkinje neurons in Staggerer and 
Lurcher mutant mice does not mean that these cells do not re-enter cell cycle. Studies 
conducted in mice overexpressing the viral oncoprotein SV40 large T-antigen (T-Ag) have 
shown that Purkinje cell specific overexpression of T-Ag is associated with cell cycle 
activation and neurodegeneration (Feddersen et al., 1995; Feddersen et al., 1997). T-Ag 
overexpressing mice show DNA synthesis and nuclear fragmentation indicative of 
programmed cell death. Further, analysis of the Purkinje neurons using mutated T-Ag 
showed that overexpression of the Rb binding domain of this oncoprotein is sufficient to 
induce neurodegeneration of Purkinje neurons indicating that functional Rb is essential for 
the survival of these neurons. 

Depending on the levels of T-Ag expression in the Purkinje cells, the mice showed variation 
in development of neurodegeneration and ataxia (Feddersen et al., 1997). Mice that express 
greater than 30 copies of the T-Ag transgene showed ataxia at 2 weeks of age. This was 
associated with immature Purkinje cell death and defects in cerebellar development. This 
suggests that normal development of Purkinje cells is essential for the proliferation, 
differentiation and migration of cerebellar granule cells from external to internal granule 
layer. Mouse with 10 copies of transgene showed ataxia at 10 weeks and those with 2 copies 
at 15 weeks. This study clearly shows the importance of functional Rb in terminal 
differentiation and protection of neurons and explains the reason for detection of high levels 
of Rb in the adult brain (Bernards et al., 1989; Okano et al., 1993). It has been shown that the 
final mitosis in Purkinje cells occurs at day 13. In mice expressing T-Ag the loss of Purkinje 
neurons due to cell cycle activation occurred at day 14 (2 weeks) suggesting that developing 
Purkinje neurons are incapable of initiating cell division.  

Since E2F1 overexpression has been implicated in apoptosis, Feddersen and colleagues 
examined whether the levels of E2F1 is enhanced in degenerating Purkinje cells (Athanasiou 
et al., 1998). They found that both E2F1 and the E2F-responsive cdc2 gene were induced in 
the same neurons indicating the E2F-dependent transactivation of genes upon apoptosis 
induction. This prompted them to look at the effect of overexpression of E2F1 in Purkinje 
neurons. Their studies showed that overexpression of E2F1 by itself did not have any 
profound effect on Purkinje cell morphology or survival. But, the E2F1 overexpressing 
Purkinje cells showed accelerated neurodegeneration upon T-Ag overexpression suggesting 
that either a posttranslational modification or an association of E2F with other regulators 
such as dimerization partner 1 or 2 (DP1 and DP2) is necessary for induction of 
transactivation of genes (Athanasiou et al., 1998).  

Normally, T-Ag overexpression leads to tumorigenesis in mouse tissues, including neurons 
of retina and CNS (al-Ubaidi et al., 1992a; al-Ubaidi et al., 1992b; Hammang et al., 1990), but 
in the case of Purkinje neurons it was associated with neurodegeneration, apoptois and 
ataxia (Feddersen et al., 1995). This suggests that T-Ag induces differential effects in 
different types of cells in a context specific manner, and indicates the significance of 
functional Rb in normal development and differentiation of the Purkinje neurons. In this 
context, studies in photoreceptor cells of the retina showed that if oncogene overexpression 
is induced prior to cessation of mitosis, it leads to tumorigenesis whereas overexpression in 
postmitotic cells leads to degeneration and apoptosis (al-Ubaidi et al., 1992a; al-Ubaidi et al., 
1992b; Feddersen et al., 1995; Howes et al., 1994).  
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In vitro studies further confirmed the significance of functional Rb in survival and normal 
development and protection of Purkinje neurons (Padmanabhan et al., 2007). Examination 
of organotypic slice cultures of cerebellum taken from Sprague Dawley rats at postnatal day 
4 (P4) and 9 (P9) showed a time-dependent decrease in survival of Purkinje neurons 
(Padmanabhan et al., 2007). It has been shown that the Purkinje neurons in slice cultures 
prepared from postnatal day P1 through P7 die by apoptosis (Dusart et al., 1997; Ghoumari 
et al., 2000). Treatment of the cultures with pharmacological inhibitors of cdks such as 
roscovitine, olomoucine and flavopiridol protected the neurons from undergoing apoptosis, 
with roscovitine showing the maximum effect (Figure 2).  

 
Fig. 2. Protection of Purkinje neurons by roscovitine in organotypic slice cultures: Cerebellar 
slice cultures from P4 rats were treated with or without 50 M roscovitine for 1 week. 
Sections were fixed and stained using polyclonal calbindin (top row) and monoclonal -
internexin (middle row) antibodies. Alexa 594 fluorophore was used for detection of 
calbindin (red) and Alexa 488 for -internexin (green). Hoechst was used to detect the nuclei 
which allowed us to view the integrity of the section. Bottom row show the composite image 
showing all the three staining. Sections were analyzed using a Nikon Eclipse E1000 
fluorescent microscope and using Genus 2.81 software. Roscovitine protected the cell body 
of the neruons but not the dendrites. 

Although the cdk inhibitor-treated slices showed significantly higher number of calbindin 
positive Purkinje neurons (Figure 2), the morphology of the cells was quite different. The 
elaborate dendritic arborization of the Purkinje neurons was not protected by the 
inhibitors; the dendritic tree showed a stunted appearance and the axons appeared to be 
shorter. The Purkinje neurons in the untreated sections, that survived the axotomy-
induced apoptosis, showed normal dendritic arborization. This may suggest that the 
mechanism involved in the maintenance or protection of cell body is different from that 
involved in the protection of neurites. Another possibility is that the supporting cells 
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required for normal development of Purkinje neurons are not protected by the cdk 
inhibitor treatment and therefore the morphology of the neurons are not maintained. 
Granule cells have been shown to provide the trophical support and electrical activity 
required for the normal development of Purkinje neurons, and Bergmann glia is necessary 
for the directed growth and polarity of the Purkinje dendrites. Both Purkinje cells and 
granule cells have been shown to express BDNF and knockout mice for BDNF show 
stunted growth of Purkinje neurons and loss of granule neurons (Schwartz et al., 1997). In 
addition, growth factors such as GDNF, NGF, NT-3, CNTF, and IGF-1 have been 
implicated in survival of these neurons (Segal et al., 1997). Although we tried to rescue the 
morphology and cell death by providing trophic support, NT3 and BDNF, we did not 
observe any significant protection suggesting the involvement of a more complex 
mechanism in the maintenance and protection of Purkinje neurons.  

Analysis of the sections with the -internexin antibody, which stains the parallel fibers of 
CGNs showed loss of these neurons in the slices. As discussed earlier survival of these 
neurons depends on the development and support from the Purkinje neurons. The fact that 
the cdk inhibitors were unable to protect the dendrites and axons of the Purkinje neurons 
suggests that this may have a profound impact on the survival of CGNs and inferior olive 
neurons. Normally Purkinje neurons in slices taken from rats between postnatal days P1 and 
P5 die within 1 week after culturing (Dusart et al., 1997). Studies with the inhibitors showed 
that cerebellar sections taken from P4 rats show significant protection of Purkinje neurons 
after 1 week in culture (Padmanabhan et al., 2007). These results clearly indicate that the 
Purkinje neurons in the explants undergo apoptosis through a cell cycle dependent 
mechanism.  

Since Rb has been implicated in the survival and maintenance of differentiated state of 
neurons, experiments were done to determine whether Rb can protect the Purkine neurons 
in the organotypic slice cultures. Overexpression of a WT and phosphorylation site mutant 
of Rb in cerebellar sections was achieved by adenovirus-mediated method (Padmanabhan et 
al., 2007). Rb overexpression showed significant protection of Purkinje neurons in the slice 
cultures. In addition, the neurons retained their normal dendritic arbors and axons further 
establishing the importance of functional Rb in protection and development of normal 
Purkinje neurons.  

5. Relevance to diseases 
5.1 Cerebellar tumors 

Rb plays an essential role in cell proliferation, differentiation and migration of granule cell 
precursors in the cerebellum. Lack of Rb during cerebellar development results in prolonged 
proliferation, delayed differentiation, and altered migration of precursor cells. Improper 
differentiation of cerebellar neurons can initiate tumors of the cerebellum (Fults, 2005). For 
example, one of the most common malignant tumors of the childhood is the 
medulloblastomas. This is a tumor of the cerebellum and it originates from transformed 
granule cell precursors. Sonic Hedgehog (Shh), Wingless (Wnt) and Notch signaling 
pathways have been implicated in proliferation, differentiation and migration of granule 
cells (Katoh and Katoh, 2009; Oliver et al., 2003; Wechsler-Reya and Scott, 1999). Activating 
mutations in Shh have been implicated in granule precursor cell proliferation and 
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development of basal cell carcinoma and medulloblastoma. Shh-dependent cell proliferation 
in granule neuron precursor cells has been shown to be associated with expression of cyclins 
D1, D2 and E thereby promoting the cyclin-Rb pathway (Kenney and Rowitch, 2000). 
Granule cells in the cerebellum are generated in the external layer of cerebellum and migrate 
to the internal layer upon maturation. Studies in mouse models of medulloblastoma showed 
that granule cells in external granule layer (EGL) are involved in the development of 
medulloblastoma. These granule cells are immature and mitotic and when they become 
postmitotic, they migrate to the internal granule layer (IGL). Overexpression of Rb induced 
apoptosis in the cells derived from medulloblastomas implying that functional Rb is 
essential for the proper development, differentiation and migration of granule precursor 
cells. In the absence of Rb the precursor cells may continue to proliferate in the EGL layer 
and develop into malignant tumors. 

Similar to Shh signaling, Wnt signaling has also been implicated in the development of 
medulloblastoma. Wnt functions through its association with the receptor Frizzled and by 
modulating the levels of -catenin in the cells (Morin, 1999). When Wnt signaling is absent 
GSK3 phosphorylates -catenin leading to its ubiquitination and degradation. Activation of 
Wnt signaling inactivates GSK3 leading to the stabilization of -catenin. -catenin 
translocates into the nucleus and transactivates LCT/TCF family of transcription factors 
inducing expression of genes such as c-Myc and cyclin D1 leading to aberrant cell cycle 
activation and cell proliferation. This also suggests that altered Wnt signaling in cerebellum 
can lead to activation of cyclin D-Rb axis and induction in transactivation of genes. 

5.2 Ataxias 

Another pathological condition that originates from defects in cerebellum is ataxia. 
Cerebellum plays a major role in motor coordination and movements as well as cognitive 
functions and damages to the cerebellum leads to loss of these functions. Studies conducted 
in transgenic mice with Purkinje specific expression of T-Ag showed that the oncogene 
expression is associated with degeneration of Purkinje neurons and developmental defects 
in the cerebellum (Feddersen et al., 1997). These mice developed ataxia that is characteristic 
of cerebellar dysfunction. T-Ag, as discussed before, associates with Rb, inhibits its binding 
to E2F1, and induces transactivation of genes. This suggests that cell cycle activation may 
play a critical role in different types of ataxia where cerebellar degeneration is a major 
contributor. These include Friedreich’s ataxia, Ataxia Telangiectasia, congenital cerebellar 
ataxia etc. Loss of neuronal cell cycle control has been implicated in Ataxia-Telangiectasia, 
where Ataxia Telangiectasia gene is mutated (ATM), which is a neurological condition 
where progressive degeneration of neurons leads to major neuropathological disability 
(Kuljis et al., 1997; Yang and Herrup, 2005). This disease is associated with severe atrophy of 
the cerebellar cortical layers with extensive Purkinje and granule cell loss, dentate olivary 
nuclei atrophy, neuronal loss in the substantia nigra and oculomotor nuclei, spinal cord 
atrophy, and degenerative changes in spinal motor neurons (Crawford, 1998). The 
molecular mechanisms involved in the occurrence of this disease are unclear. Studies in 
ATM -/- mouse models have shown that vulnerable neurons in the cerebellum show ectopic 
expression of cell cycle proteins, which may indicate involvement of Rb and E2F (Yang and 
Herrup, 2005). Further studies are necessary to understand the exact molecular mechanisms 
involved in this and other ataxias.  
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6. Conclusion 
In summary, in vivo studies conducted in mouse cerebellum from transgenic mice 
expressing viral oncoproteins (T-Ag), and mouse expressing neurological mutations such as 
Staggerer and Lurcher show that defects in development of Purkinje neurons and cerebellar 
granule neurons lead to abnormal development of the cerebellum and the development of 
ataxia. Studies with the T-Ag clearly show that the degeneration in Purkinje neurons leads 
to migratory defects in granule neurons and developmental defects in cerebellum. This is 
mainly caused by the loss of functional Rb leading to untimely cell cycle reentry of 
postmitotic neurons. This attempt by the postmitotic neurons to re-enter the cell cycle leads 
to catastrophic effects, and cells undergo apoptosis, suggesting that differentiated neurons 
need to be kept under tight control from re-entering the cell cycle. Once the cell cycle 
paradigm is activated, there is no return to the healthy state and the cells activate the 
apoptotic machinery to eliminate themselves. Prevention of this re-entry and maintenance of 
the neurons in the postmitotic state is critical for normal functioning of the brain. The in vitro 
studies in dissociated cerebellar granule neurons and organotypic slice cultures of 
cerebellum clearly show that both granule neurons and Purkinje neurons undergo cell cycle-
mediated neurodegeneration and apoptosis (schematic, Figure 3). Although cdk inhibitors 
protected the neurons from undergoing apoptosis, the morphology of Purkinje neurons in 
the inhibitor treated cells looked abnormal. When protected by overexpression of Rb the 
Purkinje neurons showed very close to or normal dendritic and axonal development. This 
clearly suggests that the anti-apoptotic and anti-proliferative properties of Rb are essential 

 
Fig. 3. Schematic showing the Rb-E2F pathway in neuronal apoptosis: Deprivation of 
activity or trophic facor support induces cyclins and cdks which phosphorylate Rb, release 
Rb from E2F and induce transactivation/derepression of E2F-dependent proapoptotic 
genes. Cdk inhibitors prevent activation of the kinases and protect neurons from 
undergoing apoptosis. 
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development of basal cell carcinoma and medulloblastoma. Shh-dependent cell proliferation 
in granule neuron precursor cells has been shown to be associated with expression of cyclins 
D1, D2 and E thereby promoting the cyclin-Rb pathway (Kenney and Rowitch, 2000). 
Granule cells in the cerebellum are generated in the external layer of cerebellum and migrate 
to the internal layer upon maturation. Studies in mouse models of medulloblastoma showed 
that granule cells in external granule layer (EGL) are involved in the development of 
medulloblastoma. These granule cells are immature and mitotic and when they become 
postmitotic, they migrate to the internal granule layer (IGL). Overexpression of Rb induced 
apoptosis in the cells derived from medulloblastomas implying that functional Rb is 
essential for the proper development, differentiation and migration of granule precursor 
cells. In the absence of Rb the precursor cells may continue to proliferate in the EGL layer 
and develop into malignant tumors. 

Similar to Shh signaling, Wnt signaling has also been implicated in the development of 
medulloblastoma. Wnt functions through its association with the receptor Frizzled and by 
modulating the levels of -catenin in the cells (Morin, 1999). When Wnt signaling is absent 
GSK3 phosphorylates -catenin leading to its ubiquitination and degradation. Activation of 
Wnt signaling inactivates GSK3 leading to the stabilization of -catenin. -catenin 
translocates into the nucleus and transactivates LCT/TCF family of transcription factors 
inducing expression of genes such as c-Myc and cyclin D1 leading to aberrant cell cycle 
activation and cell proliferation. This also suggests that altered Wnt signaling in cerebellum 
can lead to activation of cyclin D-Rb axis and induction in transactivation of genes. 

5.2 Ataxias 

Another pathological condition that originates from defects in cerebellum is ataxia. 
Cerebellum plays a major role in motor coordination and movements as well as cognitive 
functions and damages to the cerebellum leads to loss of these functions. Studies conducted 
in transgenic mice with Purkinje specific expression of T-Ag showed that the oncogene 
expression is associated with degeneration of Purkinje neurons and developmental defects 
in the cerebellum (Feddersen et al., 1997). These mice developed ataxia that is characteristic 
of cerebellar dysfunction. T-Ag, as discussed before, associates with Rb, inhibits its binding 
to E2F1, and induces transactivation of genes. This suggests that cell cycle activation may 
play a critical role in different types of ataxia where cerebellar degeneration is a major 
contributor. These include Friedreich’s ataxia, Ataxia Telangiectasia, congenital cerebellar 
ataxia etc. Loss of neuronal cell cycle control has been implicated in Ataxia-Telangiectasia, 
where Ataxia Telangiectasia gene is mutated (ATM), which is a neurological condition 
where progressive degeneration of neurons leads to major neuropathological disability 
(Kuljis et al., 1997; Yang and Herrup, 2005). This disease is associated with severe atrophy of 
the cerebellar cortical layers with extensive Purkinje and granule cell loss, dentate olivary 
nuclei atrophy, neuronal loss in the substantia nigra and oculomotor nuclei, spinal cord 
atrophy, and degenerative changes in spinal motor neurons (Crawford, 1998). The 
molecular mechanisms involved in the occurrence of this disease are unclear. Studies in 
ATM -/- mouse models have shown that vulnerable neurons in the cerebellum show ectopic 
expression of cell cycle proteins, which may indicate involvement of Rb and E2F (Yang and 
Herrup, 2005). Further studies are necessary to understand the exact molecular mechanisms 
involved in this and other ataxias.  
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6. Conclusion 
In summary, in vivo studies conducted in mouse cerebellum from transgenic mice 
expressing viral oncoproteins (T-Ag), and mouse expressing neurological mutations such as 
Staggerer and Lurcher show that defects in development of Purkinje neurons and cerebellar 
granule neurons lead to abnormal development of the cerebellum and the development of 
ataxia. Studies with the T-Ag clearly show that the degeneration in Purkinje neurons leads 
to migratory defects in granule neurons and developmental defects in cerebellum. This is 
mainly caused by the loss of functional Rb leading to untimely cell cycle reentry of 
postmitotic neurons. This attempt by the postmitotic neurons to re-enter the cell cycle leads 
to catastrophic effects, and cells undergo apoptosis, suggesting that differentiated neurons 
need to be kept under tight control from re-entering the cell cycle. Once the cell cycle 
paradigm is activated, there is no return to the healthy state and the cells activate the 
apoptotic machinery to eliminate themselves. Prevention of this re-entry and maintenance of 
the neurons in the postmitotic state is critical for normal functioning of the brain. The in vitro 
studies in dissociated cerebellar granule neurons and organotypic slice cultures of 
cerebellum clearly show that both granule neurons and Purkinje neurons undergo cell cycle-
mediated neurodegeneration and apoptosis (schematic, Figure 3). Although cdk inhibitors 
protected the neurons from undergoing apoptosis, the morphology of Purkinje neurons in 
the inhibitor treated cells looked abnormal. When protected by overexpression of Rb the 
Purkinje neurons showed very close to or normal dendritic and axonal development. This 
clearly suggests that the anti-apoptotic and anti-proliferative properties of Rb are essential 

 
Fig. 3. Schematic showing the Rb-E2F pathway in neuronal apoptosis: Deprivation of 
activity or trophic facor support induces cyclins and cdks which phosphorylate Rb, release 
Rb from E2F and induce transactivation/derepression of E2F-dependent proapoptotic 
genes. Cdk inhibitors prevent activation of the kinases and protect neurons from 
undergoing apoptosis. 
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for the normal development and survival of terminally differentiated neurons. Studies using 
the inhibitors of cdks and overexpression of Rb suggest that maintaining functional Rb in 
the cerebellum is important for its normal development and functioning. These studies 
therefore suggest that gene therapy using Rb should be considered for therapeutic 
intervention of diseases of the cerebellum, such as the ataxias and medulloblastomas, where 
Rb inactivation and cell cycle activation are closely associated. 
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1. Introduction 
Cell cycle progression is dependent on a series of molecular regulation after cells are 
stimulated by growth factors. Growth factors bind to corresponding surface receptors and 
relay the signals through protein phosphorylation to trigger gene expression. 
Phosphorylation of retinoblastoma protein (Rb) is to release E2F family of transcription 
factors for DNA replication. In adherent cells, the actin filament plays an important role for 
anchorage, locomotion, morphological maintenance, and cell division (1). These mechanical 
characteristics influence cell cycle progression, and mediate cells responding to extracellular 
stimulations. The cyclin-dependent kinases (CDKs) are responsible for cell cycle transition 
through different phases. For G1 phase progression, the G1 cyclins associated CDKs can 
phosphorylate and inactivate Rb. Because the phosphorylation sites of Rb are multiple, they 
become a family of checkpoint to prevent release of E2F transcription factor under a stress 
condition, such as DNA damage. In addition, the CDKs activity and Rb phosphorylation are 
ablated by the family of CDK inhibitors (CKIs), including INK4 and CIP/KIP family 
proteins (2). The underlying mechanisms by which the intact actin filaments regulated cell 
cycle progression have been reviewed in literatures, although the pathways are diverse from 
different research results. However, it appears that Rb activity is commonly affected by 
destabilizing the actin cytoskeleton. Therefore, it is believed that growth factor stimulated 
actin cytoskeletal organization can regulate Rb activity for G1 phase progression and DNA 
replication.  

Although actin cytoskeletal organization affects Rb activity, the cell cycle regulatory 
components have been recently reported to influence actin organization and cell motility (3). 
It is largely associated with CIP/KIP family proteins when they relocate to cytoplasm from 
nucleus. They inhibit Rho small GTPase family protein for actin architectures formation. 
Interestingly, Rb may regulate CIP/KIP protein expression through E2F transcriptional 
activity (4), and this observation implies that an autoregulatory mechanism may exist 
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1. Introduction 
Cell cycle progression is dependent on a series of molecular regulation after cells are 
stimulated by growth factors. Growth factors bind to corresponding surface receptors and 
relay the signals through protein phosphorylation to trigger gene expression. 
Phosphorylation of retinoblastoma protein (Rb) is to release E2F family of transcription 
factors for DNA replication. In adherent cells, the actin filament plays an important role for 
anchorage, locomotion, morphological maintenance, and cell division (1). These mechanical 
characteristics influence cell cycle progression, and mediate cells responding to extracellular 
stimulations. The cyclin-dependent kinases (CDKs) are responsible for cell cycle transition 
through different phases. For G1 phase progression, the G1 cyclins associated CDKs can 
phosphorylate and inactivate Rb. Because the phosphorylation sites of Rb are multiple, they 
become a family of checkpoint to prevent release of E2F transcription factor under a stress 
condition, such as DNA damage. In addition, the CDKs activity and Rb phosphorylation are 
ablated by the family of CDK inhibitors (CKIs), including INK4 and CIP/KIP family 
proteins (2). The underlying mechanisms by which the intact actin filaments regulated cell 
cycle progression have been reviewed in literatures, although the pathways are diverse from 
different research results. However, it appears that Rb activity is commonly affected by 
destabilizing the actin cytoskeleton. Therefore, it is believed that growth factor stimulated 
actin cytoskeletal organization can regulate Rb activity for G1 phase progression and DNA 
replication.  

Although actin cytoskeletal organization affects Rb activity, the cell cycle regulatory 
components have been recently reported to influence actin organization and cell motility (3). 
It is largely associated with CIP/KIP family proteins when they relocate to cytoplasm from 
nucleus. They inhibit Rho small GTPase family protein for actin architectures formation. 
Interestingly, Rb may regulate CIP/KIP protein expression through E2F transcriptional 
activity (4), and this observation implies that an autoregulatory mechanism may exist 
                                                 
* Corresponding Author 



Retinoblastoma – An Update on Clinical,  
Genetic Counseling, Epidemiology and Molecular Tumor Biology 

 

132 

between actin cytoskeletal organization and Rb for regulating cell growth and cell cycle 
progression. Investigation of these biological events would contribute to cancer research and 
therapeutic design for cancer treatment or prevention.  

2. Actin cytoskeletal reorganization during cell cycle progression 
The cytoskeleton consists of three different types of cytosolic fibers that include actin 
filaments (also named microfilaments), intermediate filaments, and microtubule. Of the 
three types of fibers, actin filaments are primarily responsible for cell mobility, anchorage, 
and shape maintenance. Actin filaments are formed by polymerizing the ATP-bound actin 
subunits, so called G-actin, through a energy-required dynamic process. Actin filaments can 
be organized into different types of actin cytoskeletons including stress fibers, lamellipodia, 
and filapodia distributed in different regions of cells for specific functions. It is well-known 
that Rho small GTPase family proteins are responsible for actin organization. Organization 
of actin filaments is associated with cell growth depending on cell adhesion and mitogenic 
stimulation (5).  

Accumulated evidences have supported the essence of actin cytoskeleton for cell division 
and proliferation. In fibroblasts, addition of growth factors or other mitogenic stimulation 
can promote the generation and reorganization of actin cytoskeleton through the small G 
proteins, including Rac, Cdc42, and Rho (6). Rac and Cdc42 are important for formation of 
lamellipodia and filapodia at the leading edges of cells, while Rho is responsible for 
formation of stress fibers. Actin filaments are organized into different types of actin 
structures to support cell growth after mitogenic stimulation. Moreover, actin filaments are 
organized at the focal contacts, in which integrins and other cytoskeletal proteins are 
present for cell attachment (7). Formation of focal contacts is important for activating a 
series of signaling pathways such as phosphatidylinositol 3-kinase (PI3-kinase) and 
mitogen-activated protein kinase (MAPK) pathways (8, 9). Actin filaments are important for 
transducing signals from extracellular matrix into cells for growth. Inhibition of actin 
filaments after cell attachment leads to blockage of signaling pathways and subsequent 
growth arrest (10-12). Actin filaments and cell adhesion are also important for cell cycle 
progression (13). It has been reported that cells with disorganized actin architecture are 
unable to initiate DNA synthesis (14). Therefore, it appears that actin filaments are 
important for cell growth and normal cell cycle progression.  

Actin filaments are also important for cell division at the telophase during mitosis. Myosin 
II, one of the actin-binding proteins that moves on actin filaments, binds to actin filaments to 
form the contractile ring at the middle part of the dividing cell and to pull the plasma 
membrane inward to form a cleavage furrow (15). Disruption of actin filaments at 
cytokinesis can lead to failure of division and growth arrest. Collectively, organization of 
actin filaments is associated with cell growth in both cell signaling and structural aspects.  

The distribution of actin cytoskeleton in different phase of the cell cycle has been studied 
more than two decades. Mitotic phase is the most obvious dynamic stage that microtubule 
and actin cytoskeletal reorganization can be detected. It is broadly accepted that 
microtubule formed spindles are critical for chromosomal segregation during mitosis. These 
fine-tune mitotic spindles are then required for driving the cytokinesis, a cell dividing step 
ablated by the actin filaments and myosin II sliding machine, for separation of the daughter 
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cells (16-18). On the other hand, the role of actin filaments on spindle assembly and 
positioning are less studied. In fact, the theories of actin cytoskeletal formation in mitotic 
phase are debated. Investigation of actin cytoskeletal organization in higher plant cells such 
as meristematic root-tip cells of Allium and staminal hairs have shown that the cytoplasmic 
actin filaments cannot be detected until the entry of cytokinesis (19-21). The last moment for 
visualizing the actin filaments right before cells entering the mitosis is likely to be the 
preprophase (22). Reorganization of actin filaments is found at the contractile ring 
accompanied by the formation of cleavage furrow, while disruption of actin reorganization 
using cytochalasin leads to mitotic arrest and aneuploid formation (23-25). However, 
accumulated literatures also demonstrate that actin filaments dramatically influence the 
mitotic spindle positioning and assembly not only in plant cells but also in fruitflies, C. 
elegans zygotes, Xenopus embryos and mouse oocytes during syncytial divisions (26-33). 
The role of actin filaments is to regulate astral microtubule growth and spindle migration by 
reorganizing in the cortical region (34). Disruption of cortical actin filaments leads to 
misorientation of spindles and cell cycle arrest (35). Also, myosin-10 and actin filaments play 
cooperative but distinct functions on the mitotic spindle formation, proper spindle 
anchoring, spindle pole integrity, spindle length control, and mitotic progression. We 
looked into the different stages of anaphase and showed that actin cytoskeletal organization 
also changed and orchestrated with microtubule for cell division (Figure 1). Taken together, 
it has become clear that the actin cytoskeleton can interact with microtubule organized 
spindle fibers for mitotic progression and cell divisions.  

Although actin cytoskeletal organization has been well-studied in the mitotic phase, the 
shape variations of actin cytoskeleton in the interphase remain unclear. The interphase of 
cell cycle includes G1, S and G2 phase. However, the actin organization in each phase is not 
well described in the literature. Yu et al. investigated the actin dynamics during the cell 
cycle in suspension-cultured tobacco BY-2 (Nicotiana tabacum L. cv Bright Yellow) cells using 
a green fluorescent protein (GFP) fused mouse Talin (mTalin) gene, which can indicate the 
positions of actin cytoskeleton in the plant cells. Their results clearly indicate the positions of 
cortical actin cytoskeletal networks in the interphase, and they are altered organized and 
even disappeared before cells enter mitosis and pre-prophase. Instead, the actin 
cytoskeletons relocalize to the future equatorial plane and centrally located nucleus and 
vesicles. Therefore, it is believed that actin cytoskeletal organization should vary in different 
stages of interphase. We have synchronized human non-small lung cancer H1299 cells at 
G1/S phase boundary using the double thymidine block protocol, and collected cells at 
different time intervals for staining of actin cytoskeletal organization using the fluorescine-
conjugated phalloidin. As shown in figure 2, the actin networks concentrated around 
nucleus during S phase and pre-prophase (Figure 2). The cortical actin cytoskeleton formed 
in mitotic phase are consistent with the results reported previously (36), while the actin 
assemblies are also visualized between segregating chromosomes from the early anaphase 
to telophase. Actins are organized to visible stress fibers in the G1 phase and mediate 
morphological maintenance and spreading. The actin architectures are also continuously 
changed in the G1 phase progression. Although the underlying mechanisms remain to be 
studied for the association between cell cycle and actin cytoskeletal organization, we have 
found that the level of actin depolymerizing factor cofilin-1, a protein required for actin 
dynamics and reorganization, is also changed in G1 to S phase progression (unpublished 
data). The activity of cofilin-1 has been reported to be essential for G2/M phase progression  
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between actin cytoskeletal organization and Rb for regulating cell growth and cell cycle 
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Fig. 1. Coordination of actin filaments and microtubules for mitotic cells passing from 
anaphase to telophase and cytokinesis in human non-small lung cancer H1299 cells. The 
conventional fiber-like structures were not visualized, while the cortical actin cytoskeletons 
are formed. F-actin was stained by fluorescine-conjugated phalloidin; microtubule was 
stained by anti-tubulin antibody; DAPI (4',6-diamidino-2-phenylindole) was used for 
nuclear staining. 

(37, 38). We have also found that over-expression of cofilin-1 can inhibit G1 phase 
progression (39, 40). Thus, cofilin-1 may regulate actin cytoskeleton not only in the G2/M 
phase but also in G1 and S phase progression.  
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Fig. 2. The change of actin architectures during cell cycle progression. H1299 cells were 
synchronized in S phase using double thymidine block. (A) The cell cycle progression from 
S phase to next G1/S boundary was demonstrated by DNA histogram and the expression of 
cyclin B; (B) cells were collected at different stage of the cell cycle and stained for actin 
cytoskeleton using fluorescine-conjugated phalloidin.  

3. Molecular events for cell cycle progression in mammalian cells 
In eucaryotes, cell proliferation is partially dependent on cell cycle progression. Cyclin and 
cyclin-dependent kinases (CDK) are required for progression through gap phases (G1 and 
G2), DNA replication (S), and chromosome segregation (M) phases of the cell cycle. Protein 
complexes of cyclin and cyclin-dependent kinase (CDK) can phosphorylate specific 
downstream substrates, including retinoblastoma tumor suppressor protein (Rb) or 
anaphase-promoting complex (APC), for G1/S or M phase transition, respectively (41, 42). 
The activity of cyclin/CDK for G1 phase progression is regulated by CDK inhibitors, which 
can bind to cyclin/CDK and inhibit its activity. On the other hand, the CDK inhibitors 
p21CIP1 and p27KIP1 are indispensible for cyclin/CDK activity, suggesting that a 
stoichiometric balance is existed among cyclins, CDKs and CDK inhibitors (2, 43). Also, cell 
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cycle progression can be inhibited by genotoxic stresses, such as ionizing radiation and 
some chemotherapeutic agents. In normal cells, activation of tumor suppressor gene p53 is 
usually involved in this type of response. 

Different types of cyclins (A, B, C, D, and E) and CDKs (1, 2, 3, 4, and 6) are responsible for 
the progression of cells into different stages of cell cycle. Cyclin A binds to CDK2 for S-G2 
phase progression, while cyclin B binds to CDK1 for entry into M phase. The cyclin 
C/CDK3 complex can promote Rb-dependent G0 phase exit (44). Cyclin D binds to CDK4/6 
and cyclin E binds to CDK2 for G1 phase progression, although the latter is primarily 
responsible for late G1 phase or G1-S phase transition. Cyclin D consists of three closely 
related D-type cyclins, named Cyclin D1, D2, and D3. Expression of different types of cyclin 
D for G1 phase progression is likely to be tissue-specific (45). For G1 to S phase progression, 
Rb is phosphorylated by cyclin D-CDK4/6 and cyclin E-CDK2 to release E2F1, an important 
transcription factor belonging to the E2F protein family for entry into S phase (46-49). The 
gene targets of E2F1 are versatile and involved in DNA synthesis and G1/S progression, 
including DNA polymerase alpha, cyclin E, and E2F1 itself (50, 51).  

Rb is a phosphoprotein containing sixteen serine/theronine sites that can be recognized by 
cyclin/CDKs. Mutations of nine of these consensus phosphorylation sites, including seven 
sites at the C-terminal and two sites at the insert region of Rb, are sufficient to constitutively 
active Rb and block DNA replication (52-54). Also, mutations of this phosphorylation site 
can cause different cell cycle and apoptotic effects in Rat-16 cells exposed to various stimuli, 
such as tumor necrosis factor, doxorubicin or staurosporine (55). In addition, Rb may 
mediate DNA damage response (DDR). It has been reported that Rb-deficient cells are 
incapable of cell cycle arrest and are hypersensitive to apoptosis following DNA damage 
(56). This result suggests that Rb may protect cells from DNA damage-induced apoptosis. 
However, phosphorylation of Rb via p38 kinase or ASK1 can inactivate Rb and promote 
apoptosis (57-60). These apoptosis-associated phosphorylation sites are independent of 
those targeted by cyclin/CDKs on Rb (60).  

Although Rb phosphorylation is mainly mediated by D cyclin-CDK4/6 and E cyclin-CDK2 
in the G1 phase, high dose of ionizing radiation induced DNA damage can permanently 
cause G2 phase arrest accompanied by a gradual accumulated hypophosphorylated Rb (61). 
Because cyclin B-CDK1 is responsible for G2 phase progression, reduced CDK1 activity is 
likely to be the cause of hypophosphorylated Rb in G2 phase. Interestingly, CDK1 has been 
reported to be the only essential cell cycle CDK because it can bind to all cyclins and control 
the Rb phosphorylation (62). Although it is difficult to demonstrate that cyclin B-CDK1 can 
mediate Rb phosphorylation in the G1 phase, it is plausible that Rb phosphorylation is 
ablated by CDK1 in the G2 phase. Actually, Rb phosphorylation is accompanied by the 
expression of cyclin B during mitosis. That is, Rb phosphorylation and cyclin B are 
concomitantly decreased from the prophase to telophase of mitosis (63). Besides, it has been 
reported that phosphorylation of amino terminus of Rb protein is mediated by a G2/M 
phase specific cell cycle-regulated Rb/histone H1 kinase (RbK), a kinase exhibits different 
enzymatic activity compared to CDK1 and CDK2 (64, 65). RbK may play a role in G2 
checkpoint by controlling the Rb activity. Taken together, phosphorylation of Rb protein is 
important for cell cycle checkpoint at different phases. 

Rb was the first identified tumor suppressor gene. Rb protein family members include Rb, 
p130, and p107 genes (66). However, Rb is the only most frequent mutated or deleted gene 
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in different types of human cancers (48, 67). The functions of Rb are to sequester E2F family 
of transcription factors and other proteins associated with apoptosis, DNA damage 
response, differentiation, protein kinases, hormone regulation, and so on (68-72). 
Inactivation of Rb can be approached by optimal phosphorylation on the Rb protein, or by 
viral oncoproteins such as E7 protein of human papilloma virus, adenovirus E1A and SV40 
large T-antigen that can occupy the pocket domain of Rb (48, 60, 73). The extracellular 
growth factors can bind to the surface receptors and activate ras/raf/mitogenic activated 
protein kinase (MAPK) cascade, which promote G1 phase progression by activate cyclin D-
CDK4/6 and cyclinE/A-CDK2 activity. Phosphorylation of Rb by these CDKs not only 
releases E2F transcription factor but also remodels the chromatin structures by escaping 
from the repressive functions mediated by histone deacetylation complex (HDAC) and 
BRG1/BRM ATPase, the human homolog of yeast SWI2/SNF2 chromatin remodeling 
factors (60, 74-76). Mutation or over-expression of surface receptors may over-activate 
intracellular Ras or myc pathway that constitutively inactivates Rb for accelerating the G1/S 
phase progression and leads to tumorigenesis (77). Alternatively, mutation or inactivation of 
CDK inhibitors may also lead to excessive inactivation of Rb even the mitogenic signaling 
pathway is normally regulated. The role of CDK inhibitors on regulation of cell cycle and Rb 
activity is discussed next.  

4. Regulation of cyclin/CDK on Rb inactivation by CDK inhibitors 
The kinase activities of cyclin D-CDK4/6 and cyclin E-CDK2 are required for cells to 
progress through the G1 phase. Regulation of CDK activity is dependent on the amount of 
CDK inhibitors (CKIs) in cells. While the basal level of CKI is required for the formation of 
cyclin/CDK complex and the maintenance of its activity, a high level of CKI tends to inhibit 
cyclin/CDK activity (78-81). The physical interactions between CKI and cyclin/CDK is 
required to stabilize or inhibit the activities of CDKs.  

Two families of CKIs have been discovered for controlling the activity of cyclin/CDK. One 
of the families is INK4, which is named for its ability of an inhibition of CDK4 activity. 
Members of this family are p16INK4a, p15INK4b, p18INK4c, and p19INK4d and they specifically 
bind to CDK4,or CDK6, but not other CDKs. Members of CIP/KIP family containing 
broader spectrum inhibition of CDK2 and CDK4/6. This family includes p21CIP1, p27KIP1, 
and p57kip2, and they can bind to both cyclins and CDKs (2). Although each member of the 
CKI families can inhibit CDK activity individually, they may also work cooperatively to 
regulate the G1/S phase progression. For instance, recent reports have suggested that 
CIP/KIP protein bound on CDK4 are released and re-bound to CDK2 by introducing INK4, 
which replaces the CIP/KIP and binds to CDK4 to cause G1 phase arrest (82-84).  

Given that both classes of CDK inhibitors are essential for controlling the cell growth and 
DNA replication, deregulation of these molecules usually leads to malignancy. Loss of INK4 
gene functions has been detected in a variety of human cancers via deletion, mutation or 
silencing of the chromosomal 9p21 locus (85). An INK4-CDK4/6-Rb regulatory pathway is 
considered essential for promoting apoptosis and senescence in cells insulted by oncogenic 
stimuli such as ras (86). INK4 can activate Rb and sequester E2F transcriptional factor for 
DNA replication, so loss of INK4 leads to Rb inactivation and carcinogenesis caused by ras 
over-expression. On the other hand, the CIP/KIP family members are rarely mutated or 
deleted in human cancers. Instead, their expressions in various cancer cells are reduced 
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in different types of human cancers (48, 67). The functions of Rb are to sequester E2F family 
of transcription factors and other proteins associated with apoptosis, DNA damage 
response, differentiation, protein kinases, hormone regulation, and so on (68-72). 
Inactivation of Rb can be approached by optimal phosphorylation on the Rb protein, or by 
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phase progression and leads to tumorigenesis (77). Alternatively, mutation or inactivation of 
CDK inhibitors may also lead to excessive inactivation of Rb even the mitogenic signaling 
pathway is normally regulated. The role of CDK inhibitors on regulation of cell cycle and Rb 
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bind to CDK4,or CDK6, but not other CDKs. Members of CIP/KIP family containing 
broader spectrum inhibition of CDK2 and CDK4/6. This family includes p21CIP1, p27KIP1, 
and p57kip2, and they can bind to both cyclins and CDKs (2). Although each member of the 
CKI families can inhibit CDK activity individually, they may also work cooperatively to 
regulate the G1/S phase progression. For instance, recent reports have suggested that 
CIP/KIP protein bound on CDK4 are released and re-bound to CDK2 by introducing INK4, 
which replaces the CIP/KIP and binds to CDK4 to cause G1 phase arrest (82-84).  

Given that both classes of CDK inhibitors are essential for controlling the cell growth and 
DNA replication, deregulation of these molecules usually leads to malignancy. Loss of INK4 
gene functions has been detected in a variety of human cancers via deletion, mutation or 
silencing of the chromosomal 9p21 locus (85). An INK4-CDK4/6-Rb regulatory pathway is 
considered essential for promoting apoptosis and senescence in cells insulted by oncogenic 
stimuli such as ras (86). INK4 can activate Rb and sequester E2F transcriptional factor for 
DNA replication, so loss of INK4 leads to Rb inactivation and carcinogenesis caused by ras 
over-expression. On the other hand, the CIP/KIP family members are rarely mutated or 
deleted in human cancers. Instead, their expressions in various cancer cells are reduced 



Retinoblastoma – An Update on Clinical,  
Genetic Counseling, Epidemiology and Molecular Tumor Biology 

 

138 

through mis-regulated post-translational stability, reduced transcription, or even microRNA 
(3). Although CIP/KIP family proteins are regarded as tumor suppressors because of their 
cell cycle regulatory role, the subcellular localizations of these proteins may alter their tumor 
preventive role to completely opposite functions. For example, increased cytoplasmic 
p27KIP1 level has been found in tumors with higher grade, strong metastatic capacity and 
poor prognosis, such as breast, cervical, esophagus, uterus cancers, and 
leukemia/lymphoma (87-90). Also, over-expressed or mislocalized p21CIP1 in cytoplasm is 
found in advanced and poor prognostic cancers including glioblastoma, carcinomas of 
prostate, pancreas, breast, cervix, and ovary (3, 91, 92). The underlying mechanisms are not 
understood, however, it has been reported that the tumor-promoting functions of CIP/KIP 
family proteins is likely to be associated with actin cytoskeletal organization and cancer 
motility (90). The RhoA signaling pathway is influenced by the cytoplasmic CIP/KIP family 
proteins to reorganize actin networks in cell motility. The detailed mechanisms will be 
described below. In addition, relocalization of CIP/KIP family proteins from the nucleus to 
cytoplasm may inactivate Rb by over-activated CDKs, further explain the tumor-prone 
manner of such a misregulation (90, 93).  

Up-regulation of CIP/KIP proteins is usually detected in cells that are insulted by 
extracellular stimulation, such as inhibition of cell adhesion, addition or removal of 
mitogens, and ionizing radiation. However, the molecular mechanisms responsible for 
accumulation of p21CIP1 and p27KIP1 are not identical. Gene transactivation is the primary 
pathway for up-regulation of p21CIP1. Many transcriptional responsive elements on the 
p21CIP1 promoter are capable of regulating gene expression in response to different 
stimulations (94). For example, Sp1 sites on the p21CIP1 gene promoter can respond to 
phorbol ester (PMA), histone deacetylase inhibitors (TSA), or TGF-for gene 
transcription. Also, cytokines IL-6 and IFN-can transactivate the p21CIP1 gene through 
STAT1 binding sites. In addition, ionizing radiation is able to activate wild-type p53 to 
transactivate the p21CIP1 gene through the p53 consensus binding sites on the p21CIP1 
promoter (95). In response to ionizing radiation, cells with wild-type p53 up-regulates 
p21CIP1 to induce G1 phase arrest (96-98). In contrast to p21CIP1, regulation of p27KIP1 level 
is dependent on posttranslational control (99). Phosphorylation of p27KIP1 on Thr-187 is 
dependent on cyclin E/CDK2 and is essential for protein degradation through the 
ubiquitin-proteasomal mechanism (100, 101). It has been reported that SCFSkp2 ubiquitin 
ligase complex, which is composed of four major subunits (Skp1, Cul1, Rbx1/Roc1, and F-
box protein Skp2), is responsible for degradation of phosphorylated p27KIP1 (102). 
Inhibition of Thr-187 phosphorylation or Skp2 results in an inhibition of the entry into S 
phase. Also, another phosphorylation site on p27KIP1 (Ser-10) was reported. In contrast to 
Thr-187, Ser-10 phosphorylation can increase the stability of p27KIP1 protein in quiescent 
cells by promoting nuclear export of p27KIP1 through CRM1/exportin1 (103-106). It can 
mediate the cytoplasmic relocalization of p27KIP1 and promote cellular migration induced 
by hepatocyte growth factor (107). In addition to ser-10 phosphorylation, cytoplasmic 
localization of p27KIP1 can be induced by phosphorylation of Thr-157 and Thr-198 
mediated by Akt/PKB or p90 ribosomal S6-kinase (p90RSK) for certain biological functions 
that require further investigations (89, 108, 109). Collectively, it appears that regulation of 
p27KIP1 and p21CIP1 is mediated by different pathways. Regulation of CDK activity for Rb 
function in different phases of cell cycle by cyclins, CKIs and other proteins is 
summarized in Table 1 (Table 1).  
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Phase Cell cycle regulators Molecular functions b Rb activation/ 
inactivation 

G0 INK4 (p15INK4a, p16 INK4b, 
p18 INK4c,p19 INK4d) Bind to and inactivate CDK4/6  activation 

 p27kip1 Binds to and inactivates cyclinD-CDK4 
complex activation 

 cyclin C Binds to and activates CDK3  inactivation 
 cyclin D1 Binds to and activates CDK4/6  inactivation 

G1 cyclin D2 Binds to and activates CDK4 inactivation 

 cyclin E Binds to and activates CDK2, can degrade 
p27 inactivation 

 
CIP/KIP (p21cip1, p27kip1, 
p57kip2) a 

Bind to and inactivate cyclin D-CDK4 or 
cyclin E-CDK2 complex activation 

S cyclin A Binds to and activates CDK2 inactivation 
 cyclin D3 Binds to and activates CDK4 inactivation 

G2 cyclin A Binds to and activates CDK2 inactivation 
 cyclin B1 Binds to and activates CDK1 inactivation 
 p21cip1 Inhibits CDK1 activity when DNA damage activation 
 Rb/histone H1 kinase Phosphorylates the N-terminal of Rb undetermined 

Prophase MPF Promotes cyclin B1 synthesis inactivation 
 cyclin B1 Binds to and activates CDK1 inactivation 
 MAPK Phosphorylates Rb in Xenopus oocytes inactivation 
 cdc25 Activates CDK1 by dephosphorylation inactivation 

Metaphase MAD2 Inhibits cyclin B1 degradation inactivation 

 BubR1 Mad2-interacting proteins for cyclin B1 
degradation activation 

Anaphase APC Promotes cyclin B1 degradation activation 

Telophase cdc14 Activates APC-cdh2 to promote cyclin B1 
degradation activation 

a. Functions on CDK inhibition may only occur when CIP/KIP binds to cyclin/CDK with more than 1:1 
stoichiometry  
b. These functions are primarily included but may not be limited.  

Table 1. Molecules involved in regulating CDK mediated Rb activation or inactivation 

The cell cycle checkpoint is required to ensure the integrity of the genome during cell cycle 
progression. The function of the checkpoint is to prevent aberrant DNA from replication or 
chromosomal segregation. One of the most important regulators for the G1/S checkpoint is 
p53 (110, 111). Under normal physiological conditions, the protein level of p53 is controlled 
by a specific negative regulator called MDM2, which binds and promotes the degradation of 
the p53 protein. The activity of MDM2 can be inhibited by p19ARF tumor suppressor, which 
is a target gene transactivated by E2F transcriptional factor (112, 113). Because release of E2F 
is controlled by Rb inactivation, the orchestration among the tumor suppressors and potent 
proto-oncogenes is important for preserving the functions of checkpoint. In response to 
DNA damage, p53 is phosphorylated and dissociated from MDM2. The p53 protein is 
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through mis-regulated post-translational stability, reduced transcription, or even microRNA 
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motility (90). The RhoA signaling pathway is influenced by the cytoplasmic CIP/KIP family 
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cytoplasm may inactivate Rb by over-activated CDKs, further explain the tumor-prone 
manner of such a misregulation (90, 93).  
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mitogens, and ionizing radiation. However, the molecular mechanisms responsible for 
accumulation of p21CIP1 and p27KIP1 are not identical. Gene transactivation is the primary 
pathway for up-regulation of p21CIP1. Many transcriptional responsive elements on the 
p21CIP1 promoter are capable of regulating gene expression in response to different 
stimulations (94). For example, Sp1 sites on the p21CIP1 gene promoter can respond to 
phorbol ester (PMA), histone deacetylase inhibitors (TSA), or TGF-for gene 
transcription. Also, cytokines IL-6 and IFN-can transactivate the p21CIP1 gene through 
STAT1 binding sites. In addition, ionizing radiation is able to activate wild-type p53 to 
transactivate the p21CIP1 gene through the p53 consensus binding sites on the p21CIP1 
promoter (95). In response to ionizing radiation, cells with wild-type p53 up-regulates 
p21CIP1 to induce G1 phase arrest (96-98). In contrast to p21CIP1, regulation of p27KIP1 level 
is dependent on posttranslational control (99). Phosphorylation of p27KIP1 on Thr-187 is 
dependent on cyclin E/CDK2 and is essential for protein degradation through the 
ubiquitin-proteasomal mechanism (100, 101). It has been reported that SCFSkp2 ubiquitin 
ligase complex, which is composed of four major subunits (Skp1, Cul1, Rbx1/Roc1, and F-
box protein Skp2), is responsible for degradation of phosphorylated p27KIP1 (102). 
Inhibition of Thr-187 phosphorylation or Skp2 results in an inhibition of the entry into S 
phase. Also, another phosphorylation site on p27KIP1 (Ser-10) was reported. In contrast to 
Thr-187, Ser-10 phosphorylation can increase the stability of p27KIP1 protein in quiescent 
cells by promoting nuclear export of p27KIP1 through CRM1/exportin1 (103-106). It can 
mediate the cytoplasmic relocalization of p27KIP1 and promote cellular migration induced 
by hepatocyte growth factor (107). In addition to ser-10 phosphorylation, cytoplasmic 
localization of p27KIP1 can be induced by phosphorylation of Thr-157 and Thr-198 
mediated by Akt/PKB or p90 ribosomal S6-kinase (p90RSK) for certain biological functions 
that require further investigations (89, 108, 109). Collectively, it appears that regulation of 
p27KIP1 and p21CIP1 is mediated by different pathways. Regulation of CDK activity for Rb 
function in different phases of cell cycle by cyclins, CKIs and other proteins is 
summarized in Table 1 (Table 1).  
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progression. The function of the checkpoint is to prevent aberrant DNA from replication or 
chromosomal segregation. One of the most important regulators for the G1/S checkpoint is 
p53 (110, 111). Under normal physiological conditions, the protein level of p53 is controlled 
by a specific negative regulator called MDM2, which binds and promotes the degradation of 
the p53 protein. The activity of MDM2 can be inhibited by p19ARF tumor suppressor, which 
is a target gene transactivated by E2F transcriptional factor (112, 113). Because release of E2F 
is controlled by Rb inactivation, the orchestration among the tumor suppressors and potent 
proto-oncogenes is important for preserving the functions of checkpoint. In response to 
DNA damage, p53 is phosphorylated and dissociated from MDM2. The p53 protein is 
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subsequently resistant to degradation and accumulated in the cells (114). Accumulated p53 
enters the nuclei and transactivates the downstream gene p21CIP1 for G1 phase arrest. In the 
absence of p53, p21CIP1 is not up-regulated and G1 phase arrest is abrogated after DNA 
damage. The molecular regulation of G1/S phase progression, including a variety of CDKs, 
CKIs, Rb, and p53, is illustrated in Figure 3. 

 
Lee YJ et al. 

Fig. 3. Molecular regulation of cell cycle progression from G1 to S phase. CDK 
phosphorylates Rb to release E2F transcription factor for S phase entry and progression. The 
activity of cyclin/CDK is stimulated by growth factors and is regulated by CDK inhibitors, 
including p21cip1/p27kip1 and INK4 family. p53 mediates the expression of p21CIP1 to induce 
G1 phase arrest, but not p27KIP1 or INK4 family. INK4 may cooperate with p27KIP1 to induce 
efficient G1 phase arrest under specific stimulation. 

In adhesive cultures, cell attachment is required for entry into the cell cycle. Cells can only 
be stimulated by growth factor or mitogenic signals after they are anchored onto 
substratum. Given that actin cytoskeleton is involved in cell attachment and spreading, 
organization of actin structures may be important for cell cycle progression. The detailed 
molecular regulation through actin cytoskeletal organization and related biological events 
are discussed in next section.  

5. Actin cytoskeleton in regulation of G1 phase progression and Rb activity 
Following cytokinesis, cells enter G1 phase by the presence of growth factors that stimulate 
a series of signal transduction in cytosol through the surface receptors. The growth factor (or 
serum)-dependent cell growth includes several events: attachment onto extracellular matrix, 
spreading, and locomotion. These anchorage-dependent and morphology-dependent effects 
are important for G1 phase progression and S phase transition. Actin cytoskeletal 
organization is stimulated by growth factors and is involved in the mechanical and 
structural mediated cell cycle progression and growth (13, 115, 116). Also, the time interval 
of G1 phase is usually long and can be divided into early, mid, and late G1 phase in 
proliferating cells. The essence of actin cytoskeleton for G1 phase progression, however, is 
dependent on the stage of G1 phase. For instance, accumulated literatures have shown that 
intact actin cytoskeleton was required for mid to late G1 phase progression (116-120). Also, 
serum stimulation and cell anchorage may also be involved in the G1 phase progression 
(121). Essentially, the actin cytoskeletal organization affects Rb activity in G1 phase 
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progression via different signaling pathways. We will elucidate the association between 
actin networks and Rb mediated G1 phase progression according to the literatures reviewed 
so far.  

The organization of actin filaments is believed to be important for initiation of cell growth 
after cell attachment. Actin inhibitors are routinely adopted for disrupting the actin 
cytoskeleton in vitro and in vivo. The perturbation of cell cycle was subsequently analyzed 
by different approaches. The levels of G1 phase arrest were determined from DNA content 
measured by Feulgen or propidium iodide (PI) staining, or by 5-bromo-2´-deoxyuridine 
(BrdU) labeling for S phase entry after drug treatment. The significance of actin filaments is 
to convey the extracellular signals and form an appropriate shape for G1 phase progression 
(13). It is reasonable that disruption of actin filaments would lead to a G1 phase arrest. 
Indeed, exposure of cultured cells to sublethal concentration of actin inhibitors, such as 
cytochalasin or latrunculin, cause actin cytoskeletal destabilization and G1 phase arrest (117-
119, 122). In some cases, cells were synchronized to G1 phase using lovastatin (118) or 
serum-starvation (117) before cytochalasin treatment to avoid the interference of results 
from cells in other phases of cell cycle. Progression of G1 cells into subsequent phases of the 
cell cycle was monitored after adding back mevalonate, serum or epidermal growth factor 
(EGF). Based on these studies, it is concluded that intact actin cytoskeleton is required for 
responding to extracellular stimuli after the mid-G1 phase (118). Disruption of actin 
cytoskeleton affects cells in passing the "restriction (R)" point for S phase entry (117, 120). 
Also, once cells enter S phase, the phosphorylation of Rb and CKI p27KIP1 are not influenced 
by cytochalasin D treatment (118). Therefore, preservation of sufficient mechanical force for 
attachment and spreading by actin cytoskeleton on the solid substratum, is critical for G1 to 
S phase transition in anchorage-dependent cells.  

The cytoskeleton formed by actin filaments is an important component for cellular 
adherence and cell shapes. Actin filaments are primarily concentrated beneath the plasma 
membrane for the formation of cortical actin cytoskeleton and actin bundles. Cell anchorage 
and shape formation are associated with cytoskeletal tension, and they are able to induce 
cyclin D1 gene transcription for inactivating Rb and promoting G1 phase progression (13, 
120, 123, 124). The cyclin E/CDK2 activity in late G1 phase and S phase entry is also 
influenced by cell adhesion. In contrast to cyclin D1, the cyclin E and CDK2 levels do not 
change significantly following cell adhesion and actin cytoskeletal formation. It is likely due 
to reduced expression of p21CIP1 and p27KIP1 that can bind to and inhibit cyclinE/CDK2 
complex, although other mechanisms are also involved (5, 123, 125, 126). Both cyclin D1 and 
cyclin E associated CDKs activity can inactivate Rb and p107 for S phase entry upon cell 
adhesion. Cyclin A, another important molecule responsible for S phase progression, can 
bind to CDK2 and replace the position occupied by cyclin E. Cell adhesion also promote 
cyclin A expression through E2F4-dependent or -independent mechanisms (115, 127). E2F4 
is another member of E2F transcriptional factor family, and it is important for cyclin A gene 
transactivation (128). The E2F4-independent transactivation of cyclin A gene for S phase 
progression is possibly due to c-myc and CAATT binding proteins after cells attach and 
spread on the substratum (129, 130). Molecular regulations of cell adhesion and cell shape 
changes in G1 phase progression can be blocked by actin inhibitors that induce 
destabilization of actin cytoskeleton. The effects of actin cytoskeletal destabilization on cell 
cycle progression are usually consistent with the results of cells cultured in suspension or 
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subsequently resistant to degradation and accumulated in the cells (114). Accumulated p53 
enters the nuclei and transactivates the downstream gene p21CIP1 for G1 phase arrest. In the 
absence of p53, p21CIP1 is not up-regulated and G1 phase arrest is abrogated after DNA 
damage. The molecular regulation of G1/S phase progression, including a variety of CDKs, 
CKIs, Rb, and p53, is illustrated in Figure 3. 
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Fig. 3. Molecular regulation of cell cycle progression from G1 to S phase. CDK 
phosphorylates Rb to release E2F transcription factor for S phase entry and progression. The 
activity of cyclin/CDK is stimulated by growth factors and is regulated by CDK inhibitors, 
including p21cip1/p27kip1 and INK4 family. p53 mediates the expression of p21CIP1 to induce 
G1 phase arrest, but not p27KIP1 or INK4 family. INK4 may cooperate with p27KIP1 to induce 
efficient G1 phase arrest under specific stimulation. 

In adhesive cultures, cell attachment is required for entry into the cell cycle. Cells can only 
be stimulated by growth factor or mitogenic signals after they are anchored onto 
substratum. Given that actin cytoskeleton is involved in cell attachment and spreading, 
organization of actin structures may be important for cell cycle progression. The detailed 
molecular regulation through actin cytoskeletal organization and related biological events 
are discussed in next section.  

5. Actin cytoskeleton in regulation of G1 phase progression and Rb activity 
Following cytokinesis, cells enter G1 phase by the presence of growth factors that stimulate 
a series of signal transduction in cytosol through the surface receptors. The growth factor (or 
serum)-dependent cell growth includes several events: attachment onto extracellular matrix, 
spreading, and locomotion. These anchorage-dependent and morphology-dependent effects 
are important for G1 phase progression and S phase transition. Actin cytoskeletal 
organization is stimulated by growth factors and is involved in the mechanical and 
structural mediated cell cycle progression and growth (13, 115, 116). Also, the time interval 
of G1 phase is usually long and can be divided into early, mid, and late G1 phase in 
proliferating cells. The essence of actin cytoskeleton for G1 phase progression, however, is 
dependent on the stage of G1 phase. For instance, accumulated literatures have shown that 
intact actin cytoskeleton was required for mid to late G1 phase progression (116-120). Also, 
serum stimulation and cell anchorage may also be involved in the G1 phase progression 
(121). Essentially, the actin cytoskeletal organization affects Rb activity in G1 phase 
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progression via different signaling pathways. We will elucidate the association between 
actin networks and Rb mediated G1 phase progression according to the literatures reviewed 
so far.  

The organization of actin filaments is believed to be important for initiation of cell growth 
after cell attachment. Actin inhibitors are routinely adopted for disrupting the actin 
cytoskeleton in vitro and in vivo. The perturbation of cell cycle was subsequently analyzed 
by different approaches. The levels of G1 phase arrest were determined from DNA content 
measured by Feulgen or propidium iodide (PI) staining, or by 5-bromo-2´-deoxyuridine 
(BrdU) labeling for S phase entry after drug treatment. The significance of actin filaments is 
to convey the extracellular signals and form an appropriate shape for G1 phase progression 
(13). It is reasonable that disruption of actin filaments would lead to a G1 phase arrest. 
Indeed, exposure of cultured cells to sublethal concentration of actin inhibitors, such as 
cytochalasin or latrunculin, cause actin cytoskeletal destabilization and G1 phase arrest (117-
119, 122). In some cases, cells were synchronized to G1 phase using lovastatin (118) or 
serum-starvation (117) before cytochalasin treatment to avoid the interference of results 
from cells in other phases of cell cycle. Progression of G1 cells into subsequent phases of the 
cell cycle was monitored after adding back mevalonate, serum or epidermal growth factor 
(EGF). Based on these studies, it is concluded that intact actin cytoskeleton is required for 
responding to extracellular stimuli after the mid-G1 phase (118). Disruption of actin 
cytoskeleton affects cells in passing the "restriction (R)" point for S phase entry (117, 120). 
Also, once cells enter S phase, the phosphorylation of Rb and CKI p27KIP1 are not influenced 
by cytochalasin D treatment (118). Therefore, preservation of sufficient mechanical force for 
attachment and spreading by actin cytoskeleton on the solid substratum, is critical for G1 to 
S phase transition in anchorage-dependent cells.  

The cytoskeleton formed by actin filaments is an important component for cellular 
adherence and cell shapes. Actin filaments are primarily concentrated beneath the plasma 
membrane for the formation of cortical actin cytoskeleton and actin bundles. Cell anchorage 
and shape formation are associated with cytoskeletal tension, and they are able to induce 
cyclin D1 gene transcription for inactivating Rb and promoting G1 phase progression (13, 
120, 123, 124). The cyclin E/CDK2 activity in late G1 phase and S phase entry is also 
influenced by cell adhesion. In contrast to cyclin D1, the cyclin E and CDK2 levels do not 
change significantly following cell adhesion and actin cytoskeletal formation. It is likely due 
to reduced expression of p21CIP1 and p27KIP1 that can bind to and inhibit cyclinE/CDK2 
complex, although other mechanisms are also involved (5, 123, 125, 126). Both cyclin D1 and 
cyclin E associated CDKs activity can inactivate Rb and p107 for S phase entry upon cell 
adhesion. Cyclin A, another important molecule responsible for S phase progression, can 
bind to CDK2 and replace the position occupied by cyclin E. Cell adhesion also promote 
cyclin A expression through E2F4-dependent or -independent mechanisms (115, 127). E2F4 
is another member of E2F transcriptional factor family, and it is important for cyclin A gene 
transactivation (128). The E2F4-independent transactivation of cyclin A gene for S phase 
progression is possibly due to c-myc and CAATT binding proteins after cells attach and 
spread on the substratum (129, 130). Molecular regulations of cell adhesion and cell shape 
changes in G1 phase progression can be blocked by actin inhibitors that induce 
destabilization of actin cytoskeleton. The effects of actin cytoskeletal destabilization on cell 
cycle progression are usually consistent with the results of cells cultured in suspension or 
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cell spreading is limited by microfabricated substrates containing fibronectin-coated 
adhesive islands (116, 121, 124). 

Intact actin cytoskeleton is important for Rb inactivation by releasing the E2F transcriptional 
factor for promoting DNA replication. However, the pathways that mediate actin inhibitors 
induced actin cytoskeletal destabilization are diverse. For instance, Huang and Ingber 
proposed that cytochalasin D causes down-regulation of cyclin D1 and up-regulation of 
p27KIP1 (118). Reshetnikova et al. found that dihydrocytochalasin B inhibited the expression 
of cyclin E but not cyclin D1 in Swiss 3T3 cells (117). However, the levels of p21CIP1 and 
p27KIP1 were not affected under the same treatment. Fasshauer et al. suggested that 
disorganization of actin filaments using latrunculin A, latrunculin B, or cytochalasin D leads 
to reduction of c-jun and cyclin (D1, E, A) expression and inhibition of entry into S phase 
(131). Interestingly, Rb and p107 double-null mouse embryo fibroblasts (MEFs) are able to 
reach mid-G1 phase without serum stimulation, whereas they can not transit to the S phase 
without anchorage (121). This observation is based on a comparison of the expression of 
cyclin E in Rb-/-p107-/- cells between normal attachment and suspension cultured 
conditions. Growth factor stimulation, cytoskeletal organization and cell anchorage are 
essential for cyclin D1 induction and Rb phosphorylation until mid-G1 phase (121, 132, 133). 
Disruption of actin cytoskeleton leads to dephosphorylation and activation of Rb in wild-
type cells but not in RB pocket proteins-null cells. In agreement, a TKO MEF with deletions 
of all Rb pocket proteins exhibits impaired G1 phase arrest and aneuploidy following 
disruption of actin cytoskeleton (134). In addition, Rho small GTPase protein mediated 
signaling pathway is involved in actin stress fiber formation, p27KIP1 degradation and cyclin 
D1 expression, which promotes Rb inactivation as well as cyclin E/CDK2 activation for 
entry of the G1 phase (132, 133, 135). Together, although the molecular events for actin 
cytoskeletal regulated G1 phase progression may be different among cell types, Rb family 
protein can be regarded as a common checkpoint molecule that allows cells with intact actin 
cytoskeleton passing through the G1 to S phase (Figure 4). 

Several lines of evidence have shown that actin cytoskeleton may be important for 
cytoplasmic localization of tumor suppressor p53 during the cell cycle progression (136-138). 
Sequestration of p53 in the cytoplasmic portion is important for prevention of cell cycle 
arrest and apoptosis under normal cell growth (139). Activation of p53 by cytochalasin D 
was also reported, while this effect is associated with drug induced apoptosis (140). In 
addition, cytochalasin B can induce DNA fragmentation in specific cell types (141). On the 
other hand, disruption of actin cytoskeleton induced G1 phase arrest has been reported to be 
associated with Rb pocket protein rather than p53 activation (134). We also demonstrated 
that actin inhibitors induced a p53-independent up-regulation of p21CIP1 in various 
mammalian p53-null cancer cell lines (142). Up-regulated p21CIP1 is dependent on a post-
translational pathway to increase the protein stability and activate Rb for the G1 phase 
arrest. The response of p27KIP1 is relatively weak under the same condition of treatment. 
Taken together, it appears that different drugs used for disruption of actin filaments can 
activate different pathways to cause G1 phase arrest. Induction of p53-independent G1 
phase arrest by actin inhibitors is especially interesting because p53 tumor suppressor is 
frequently inactivated or mutated in human cancers. The Rb tumor suppressor may play an 
important role in mediating the actin cytoskeletal destabilization that causes G1 phase 
arrest. It is also of interest to further investigate the crosstalk between p21CIP1 and Rb 
regarding toxins-induced actin cytoskeletal destabilization.  
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Fig. 4. Growth factor stimulated Rb inactivation is mediated by the actin cytoskeletal 
integrity. Intact actin cytoskeleton organized by the Rho signaling pathway leads to a 
repression of CIP/KIP family proteins and increase of G1 phase associated cyclin/CDKs 
activity, which can inactivate Rb by serine/threonine phosphorylation (P). Activated Rb 
may increase p27KIP1 stability through a down-regulation of Skp2 gene (see text). Whether 
inactivated Rb can oppositely inhibit CIP/KIP proteins remains an opening question.  
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To avoid unexpected side-effects raised by actin toxins, use of actin regulatory proteins for 
molecular-based destabilization of actin cytoskeleton should be an interesting approach to 
investigate the cell cycle effect. Since the formation of actin filaments is regulated by actin-
binding proteins, forced expression of the related proteins may be able to destabilize actin 
filaments and influence the cell cycle distribution. Indeed, over-expression of gelsolin, an 
actin-regulatory protein, has been reported to activate the G2 checkpoint in human cancer 
cells by gene transfection (143). Over-expression of G-actin sequestrating protein thymosin 
4 also caused S and G2/M phase arrest in human colon cancers (144). Moreover, over-
expression of profilin-1, an actin polymerizing molecule, induces G1 phase arrest in MDA-
MB-231 breast cancer cell line through p27KIP1 stabilization (145). In our lab, we focused on 
actin dynamic regulator cofilin-1 and showed that induction of cofilin-1 expression in 
human lung cancer cells led to a G1 phase arrest via p27KIP1 regulatory pathways (39, 40). 
Also, Rb phosphorylation is apparently reduced by forced expression of cofilin-1. Although 
destabilization of actin cytoskeleton by different actin regulatory proteins may inhibit cell 
cycle progression through distinct routes, it is obvious that actin cytoskeleton is important 
for cancer cells and would be an important target for therapeutic design.  

6. Rb, actin cytoskeleton, and cancer 
Rb is a tumor suppressor gene, which is usually loss-of-function in a broad spectrum of 
human cancers (146, 147). The actin cytoskeletal organization induced cyclin D1 expression 
and CDK activity is essential for Rb phosphorylation. Destabilization of actin cytoskeleton 
activates Rb by dephosphorylation of the protein, whereas loss of Rb may abrogate G1 
phase arrest and lead to aneuploidy for rapid cell death (134). Therefore, it seems plausible 
that actin inhibitors are ideal for the treatment of Rb-deficient cancers. Several different 
classes of actin inhibitors, such as cytochalasin and latrunculin, have been subjected to the 
clinical chemotherapy trial (148, 149). Because Rb is not mutated in normal tissues, these 
actin inhibitors may exhibit selective activities between the cancer mass and surrounding 
tissues. Moreover, we have recently found that latrunculin can increase the radiosensitivity 
in human lung cancer cell lines (unpublished data). Although the underlying mechanisms 
remain to be addressed, we expect that latrunculin can be used as a radiosensitizer for 
cancer treatment. In fact, we have shown that over-expression of cofilin-1 can destabilize 
actin architectures and increase the cellular radiosensitivity by suppressing the DNA repair 
capacity (150). Up-regulation of cofilin-1 was also found in cells exposed to latrunculin 
(unpublished data), suggesting that actin inhibitor can suppress cytoskeletal dynamics and 
DNA damage responses consequently.  

Phosphorylation of Rb is mainly dependent on G1 cyclin associated CDKs, which is also 
controlled by CKIs. The CIP/KIP family proteins are found to be up-regulated by actin 
inhibitors. The stabilities rather than mRNA levels of these proteins are usually increased 
after destabilization of actin cytoskeleton or by limiting the cell anchorage and spreading. It 
has been reported that p27KIP1 coordinates with CDK and Rb to control the proliferation and 
migration in vascular smooth muscle cells and fibroblasts (151). Interestingly, recent studies 
propose that Rb can reversely influence the p27KIP1 expression through inhibition of Skp2, a 
pivotal molecule required for p27KIP1 degradation (4, 152). Analysis of the promoter of Skp2 
gene showed that an E2F binding site was essential for gene transcription (4). Therefore, it 
becomes clear that p27KIP1 level should be ablated by Rb-E2F during G1/S phase transition 

 
Cytoskeletal Organization and Rb Tumor Suppressor Gene 

 

145 

depending on the cyclin E/CDK2 activity. Activation of Rb is sufficient to suppress Skp2 
expression and increase p27KIP1 stability. Therefore, it is speculated that disruption of actin 
cytoskeleton can also trigger the Rb-Skp2-p27KIP1 auto-regulatory circuit and inhibit G1/S 
phase transition. Skp2 has been found to be over-expressed in several cancers (153, 154). 
Targeting on Skp2 has been reported to suppress the tumorigenesis (155). Whether use of 
actin inhibitors can also repress Skp2 expression would be an interesting direction for 
investigation. In Rb-deficiency cancer cells, disruption of actin cytoskeleton may overlook 
the checkpoint by excessive suppression of p27KIP1 expression for apoptosis (134). Over-
expressed Skp2, although it may promote tumorigenesis, may become a reversed knife to 
induce death of cancer lacking Rb expression following disruption of actin architectures.  

Metastasis is the primary cause of cancer mortality, and Rho-mediated actin reorganization 
is believed to be essential for enhanced cancer cell motility. The CIP/KIP family proteins 
have been reported to regulate molecules of Rho signaling pathway when they are 
relocalized to the cytoplasm from the nucleus (3). For instance, p27KIP1 can bind to Rho small 
GTPase (93), p21CIP1 binds to Rho kinase (ROCK) (156) and p57kip2 binds to LIMK for actin 
reorganization (157). All of these events may increase cell motility by activating cofilin-1 for 
promoting the actin dynamics at the leading edges. Also, lack of nuclear CIP/KIP proteins 
may concomitantly inactivate Rb and enhance cell cycle progression. Whether disruption of 
actin cytoskeleton can affect cytoplasmic CIP/KIP and subsequently reactivate Rb is of 
interest to be further investigated. It is speculated that reactivation of Rb by nuclear 
relocalization of CIP/KIP proteins in cancer cells can be achieved by treatment with actin 
inhibitors.  

7. Conclusion and perspectives 
More than five thousand of research publications have been dedicated to Rb and 
tumorigenesis in the passed two decades. As the first identified tumor suppressor gene, it is 
no doubt that Rb is an important target for designing new cancer therapeutic agents. Studies 
of actin cytoskeletal organization in cell anchorage and spreading have greatly improved the 
understanding of the relationship between growth factors mediated cell cycle progression 
and Rb inactivation. Since disruption of actin cytoskeleton is known to activate Rb and block 
G1 phase progression, the actin inhibitors may prevent cancer growth. Especially, activated 
Rb can repress Skp2 oncogene and increase the stability of p27KIP1, which is a consequence of 
actin cytoskeletal disruption. Also, actin inhibitors may promote aneuploidy and death in 
Rb-deficient cancer cells. Although targeting on actin cytoskeleton and consequent Rb-
related pathways provides a promising future in cancer treatment, several critical problems 
remain to be noticed and addressed: (1) It is not clear whether actin inhibitors can efficiently 
distinguish the malignancy from normal tissues? What is the optimal dose for cancer 
prevention with minimum damage to normal tissues? (2) Will actin inhibitors induce 
genomic instability and mutation in malignancy, especially for those that lack Rb 
expression? (3) Since actin inhibitors not only block G1 phase progression but also G2/M 
and cytokinesis, it is unclear whether Rb is also involved in the checkpoints of different 
phases of the cell cycle after actin inhibitor treatment? (4) It is of interest to know whether 
actin inhibitors can affect the expression or activity of actin-binding proteins on the cell cycle 
perturbation. Do actin inhibitors affect Rb activity through signaling pathways that 
regulates specific actin-binding proteins? (5) Does altered expression of actin-binding 
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proteins influence Rb activity? If yes, what are the potential molecular mechanisms? These 
questions are involved but not limited to the further exploration of the interactions between 
actin cytoskeletal organization and Rb biology. It is believed that a comprehensive study of 
actin skeleton and Rb, and related pathways and mechanisms will broaden the view of Rb 
biology on cancer treatment.  
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Greece, medicine was freed from the bonds of religion; Hippocrates (460-370 BCE) tried to 
use logical thinking to propose the humoral theory of cancer and his ideas influenced 
philosophers and scientists for the next ~1,800 years. During this time, knowledge of 
Mathematics and Physics was remarkably advanced; the acoustics of amphitheaters, built in 
the 5th century BC are as good as the best of today’s structures. Still, these amazing minds 
believed in spontaneous generation of life, a theory that lasted till Louis Pasteur (1822-1895) 
who demonstrated that living things cannot be generated automatically (Javier and Butel, 
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virus in 1911. Since that time, virus research and cancer research have been closely 
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life are highly conserved, since they cannot change radically once solved by evolution. As 
viruses need to use the molecular machinery of the host to replicate, they have provided us 
with valuable tools to study the host, including mechanisms of cellular replication, ie cancer. 
Historically, two classes of viruses, the retroviruses and DNA tumor viruses have been 
involved in landmark discoveries in cancer, and have played a fundamental role as models 
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Early work by Sarah Stewart and Bernice Eddy demonstrated that the mouse polyoma virus 
produced in cell culture could cause tumors upon injection in newborn hamsters (Eddy et 
al., 1958). Soon thereafter, Vogt and Dulbecco developed tissue culture methods and it was 
shown that it could transform normal, cultured cells to acquire properties of cells derived 
from polyoma virus-induced tumors, such as growth to many layers, growth in the absence 
of anchorage to a solid support and tumorigenicity in syngeneic animals (Vogt and 
Dulbecco, 1960). At the same time, Simian Virus 40 (SV40) gained notoriety because it was 
found by Eddy to be a contaminant of poliomyelitis and adenovirus vaccines, which had 
been administered to millions of healthy individuals worldwide. The public health 
implications of this revelation provided the initial impetus for an in depth study of SV40 
biology. Later work showed that SV40 DNA sequences as well as infectious virus are in fact 
found in human tumors and may have contributed to oncogenesis. The fact that SV40 uses 
mostly cellular machinery to carry out important steps in viral infection, made it into a 
powerful probe to examine many fundamental questions in eukaryotic molecular biology.  

In addition to their importance in cell biology, due to their potent transforming ability, DNA 
tumor viruses have been studied extensively. In fact, work on the mechanism of neoplasia 
caused by these viruses has yielded a plethora of information on cell growth controls and 
led to the discovery of two families of antioncogenes, p53 and the retinoblastoma 
susceptibility (Rb) gene products. 

2. Replication of DNA tumor viruses 
The DNA tumor viruses belong in the papova (the name is derived from papilloma, 
polyoma, Simian vacuolating viruses) or adenovirus families. They all have non-enveloped 
particles and both groups are highly tumorigenic in experimental animals.  

Polyoma viruses cause disease in a variety of species, with a very limited host range. The 
prototype of this group is the mouse polyoma virus, but three polyomaviruses have also 
been described in humans: JCV, the etiologic agent of progressive, multifocal 
leucoencephalopathy, a fatal demyelinating disease, BKV, causing nephropathy in 
immunocompromised individuals, (Hirsch, 2005) and SV40, the contaminant of polio 
vaccines, whose prevalence in humans is not clear (Garcea and Imperiale, 2003).  

The response of cultured cells to DNA tumor virus infection depends upon the species being 
infected. In the case of SV40, monkey cells support the production of infectious virus, which 
leads to their death (lytic cycle), whereas rodent cells produce only the early proteins, ie the 
proteins expressed before viral DNA replication has commenced in a lytic infection, and 
acquire a neoplastically transformed phenotype. Similarly, polyoma virus grows lytically in 
mouse cells but transforms rat or hamster cells in culture.  

Viruses of the polyoma family have circular dsDNA genomes of approximately 5,000bp, 
contained in icosahedral capsids. Their genome contains two coding regions, the early 
genes, expressed before viral DNA replication in a lytic infection, and the late genes which 
are expressed after viral DNA replication is underway. Both transcription units are 
regulated by a common non-coding control region that contains the transcription start sites, 
binding sites for the transcription factors and the origin of DNA replication. The early 
region encodes the alternatively spliced transforming proteins large T (or Tumor)-antigen 
and small t-antigen, while the mouse polyoma virus also expresses a 56kDa middle tumor 
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antigen, which is its main transforming protein. The late genes encode mostly structural coat 
proteins (VP1, VP2, VP3, Figure 1). 

 
Fig. 1. Genomic organisation of the 5297 bp mouse polyoma virus. The early region is at the 
right and the late region at the left. The transcriptional enhancer and origin of DNA 
replication are also shown. Soon after infection, the differentially spliced, early genes (T 
antigens) are expressed (right side), followed by replication of viral DNA. After DNA 
replication, the late genes are expressed (left), coding mostly for the structural proteins, VP1, 
VP2, VP3. Squiggly lines indicate the introns (Cole, 1995).  

In the host species, polyomaviruses spread by lytic infection of permissive cells. Lytic 
infection requires the large T-antigen, a ~100 kDa nuclear phosphoprotein which binds the 
origin and is essential for viral DNA replication [reviewed in (Cole, 1995)]. Polyomaviruses 
rely on cellular enzymes for the replication of their DNA, since their genome does not code 
for replication proteins. These proteins are confined to the S phase of the cell cycle, and the 
large T-antigens modulate cellular signaling pathways by interacting with a plethora of 
cellular proteins that promote cell cycle progression into S phase. Due to this property, the 
large T-antigens are also important players in the transformation of virus-infected cells. The 
most well-known interaction is the ability of the T-antigens to associate with, and interfere 
with the functions of the two tumor suppressor proteins, pRb and p53. 

In non-permissive, cultured cells infection is abortive and neoplastic transformation of the 
cell may occur. Transformation requires expression of the early region, in particular the 



Retinoblastoma – An Update on Clinical,  
Genetic Counseling, Epidemiology and Molecular Tumor Biology 

 

156 

Early work by Sarah Stewart and Bernice Eddy demonstrated that the mouse polyoma virus 
produced in cell culture could cause tumors upon injection in newborn hamsters (Eddy et 
al., 1958). Soon thereafter, Vogt and Dulbecco developed tissue culture methods and it was 
shown that it could transform normal, cultured cells to acquire properties of cells derived 
from polyoma virus-induced tumors, such as growth to many layers, growth in the absence 
of anchorage to a solid support and tumorigenicity in syngeneic animals (Vogt and 
Dulbecco, 1960). At the same time, Simian Virus 40 (SV40) gained notoriety because it was 
found by Eddy to be a contaminant of poliomyelitis and adenovirus vaccines, which had 
been administered to millions of healthy individuals worldwide. The public health 
implications of this revelation provided the initial impetus for an in depth study of SV40 
biology. Later work showed that SV40 DNA sequences as well as infectious virus are in fact 
found in human tumors and may have contributed to oncogenesis. The fact that SV40 uses 
mostly cellular machinery to carry out important steps in viral infection, made it into a 
powerful probe to examine many fundamental questions in eukaryotic molecular biology.  

In addition to their importance in cell biology, due to their potent transforming ability, DNA 
tumor viruses have been studied extensively. In fact, work on the mechanism of neoplasia 
caused by these viruses has yielded a plethora of information on cell growth controls and 
led to the discovery of two families of antioncogenes, p53 and the retinoblastoma 
susceptibility (Rb) gene products. 

2. Replication of DNA tumor viruses 
The DNA tumor viruses belong in the papova (the name is derived from papilloma, 
polyoma, Simian vacuolating viruses) or adenovirus families. They all have non-enveloped 
particles and both groups are highly tumorigenic in experimental animals.  

Polyoma viruses cause disease in a variety of species, with a very limited host range. The 
prototype of this group is the mouse polyoma virus, but three polyomaviruses have also 
been described in humans: JCV, the etiologic agent of progressive, multifocal 
leucoencephalopathy, a fatal demyelinating disease, BKV, causing nephropathy in 
immunocompromised individuals, (Hirsch, 2005) and SV40, the contaminant of polio 
vaccines, whose prevalence in humans is not clear (Garcea and Imperiale, 2003).  

The response of cultured cells to DNA tumor virus infection depends upon the species being 
infected. In the case of SV40, monkey cells support the production of infectious virus, which 
leads to their death (lytic cycle), whereas rodent cells produce only the early proteins, ie the 
proteins expressed before viral DNA replication has commenced in a lytic infection, and 
acquire a neoplastically transformed phenotype. Similarly, polyoma virus grows lytically in 
mouse cells but transforms rat or hamster cells in culture.  

Viruses of the polyoma family have circular dsDNA genomes of approximately 5,000bp, 
contained in icosahedral capsids. Their genome contains two coding regions, the early 
genes, expressed before viral DNA replication in a lytic infection, and the late genes which 
are expressed after viral DNA replication is underway. Both transcription units are 
regulated by a common non-coding control region that contains the transcription start sites, 
binding sites for the transcription factors and the origin of DNA replication. The early 
region encodes the alternatively spliced transforming proteins large T (or Tumor)-antigen 
and small t-antigen, while the mouse polyoma virus also expresses a 56kDa middle tumor 

 
DNA Tumor Viruses and the Rb Family 

 

157 

antigen, which is its main transforming protein. The late genes encode mostly structural coat 
proteins (VP1, VP2, VP3, Figure 1). 

 
Fig. 1. Genomic organisation of the 5297 bp mouse polyoma virus. The early region is at the 
right and the late region at the left. The transcriptional enhancer and origin of DNA 
replication are also shown. Soon after infection, the differentially spliced, early genes (T 
antigens) are expressed (right side), followed by replication of viral DNA. After DNA 
replication, the late genes are expressed (left), coding mostly for the structural proteins, VP1, 
VP2, VP3. Squiggly lines indicate the introns (Cole, 1995).  

In the host species, polyomaviruses spread by lytic infection of permissive cells. Lytic 
infection requires the large T-antigen, a ~100 kDa nuclear phosphoprotein which binds the 
origin and is essential for viral DNA replication [reviewed in (Cole, 1995)]. Polyomaviruses 
rely on cellular enzymes for the replication of their DNA, since their genome does not code 
for replication proteins. These proteins are confined to the S phase of the cell cycle, and the 
large T-antigens modulate cellular signaling pathways by interacting with a plethora of 
cellular proteins that promote cell cycle progression into S phase. Due to this property, the 
large T-antigens are also important players in the transformation of virus-infected cells. The 
most well-known interaction is the ability of the T-antigens to associate with, and interfere 
with the functions of the two tumor suppressor proteins, pRb and p53. 

In non-permissive, cultured cells infection is abortive and neoplastic transformation of the 
cell may occur. Transformation requires expression of the early region, in particular the 



Retinoblastoma – An Update on Clinical,  
Genetic Counseling, Epidemiology and Molecular Tumor Biology 

 

158 

large T-antigen in the case of the human polyoma viruses (Fig. 1). The mouse polyoma 
middle-tumor antigen associates with and activates the cellular Src protein, but its large T 
antigen is also important in viral DNA replication, as well as transformation in certain 
systems. The tumor antigens are also key players in the highly efficient oncogenesis in vivo 
by these viruses, ie when virus is inocculated into animals or when the early region is 
introduced into transgenic mice. 

Adenoviruses have linear dsDNA’s of approximately 35,000bp enclosed in icosahedral 
particles with spikes on the vertices.The human adenoviruses infect and can grow lytically 
in human cells but can cause tumors in rodents and transform a variety of rodent cells in 
culture. Their genome is linear, double-stranded DNA of ~35,000 bp with a number of 
transcription units. Early after infection at least four promotors are activated (E1, E2, E3, E4), 
while at late times there is activation of the major late promotor, coding mostly for a number 
of coat proteins (Fig. 2). The adenovirus early region E1A and E1B genes are important in 
transformation of cultured cells and tumorigenicity, but E1A is also required in a lytic 
infection, for the transactivation of all other Adenoviral genes. E1A proteins bind the Rb 
family, while E1B associates with and inactivates p53. The adenoviruses display extensive 
RNA splicing, therefore it is not surprising that splicing was discovered for the first time in 
adenoviruses [(Broker, 1984), reviewed in (Shenk, 1995)].  

 
Fig. 2. Transcription and translation map of adenovirus type 2. The early mRNAs are 
designated E, late mRNAs are designated L. The main genes involved in transformation are 
the E1A and E1B at the left of the genome, giving rise to several proteins with differential 
splicing (not shown). (From Broker, 1984).  

r-strand: rightwards transcribed, l-strand, leftwards transcribed.  
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The papillomaviruses comprise a group of nonenveloped DNA viruses that induce mostly 
benign lesions of the skin (warts) and mucous membranes (condylomas) in humans and 
animals. However, some members such as human papilloma viruses 16 and 18 have been 
implicated in the development of epithelial malignancies, especially cancer of the uterine 
cervix and other tumors of the urogenital tract. The papillomaviruses are small, 
nonenveloped, icosahedral DNA viruses that replicate in the nucleus of squamous epithelial 
cells. The virion has a single molecule of double-stranded, circular DNA of approximately 
8,000 base pairs. The E6 and E7 are the main oncogenes of the high-risk HPVs. E7 binds with 
and inactivates Rb, while E6 binds p53 and leads to its degradation (Howley and Lowy, 
2007) 

3. Interaction of the DNA tumor virus oncogenes with the retinoblastoma 
family 
The demonstration that DNA tumor viruses can cause tumors in animals led to an intensive 
investigation into the mechanism of tumor induction. The type of tumor that developed in 
an animal following viral inocculation often depended upon the site of injection; early 
findings demonstrated that injection of adenovirus-12 directly into the vitreous body of 
newborn rats, mice or baboons induced retinoblastoma-like tumors that expressed 
adenovirus gene products (Kobayashi and Mukai, 1973; Mukai et al., 1977; Mukai et al., 
1980; Kobayashi et al., 1982). However, no adenovirus or JC polyoma virus was ever found 
in human retinoblastomas. Still, adenovirus research and the development of monoclonal 
antibodies against the tumor antigens of these viruses greatly facilitated the identification of 
cellular proteins specifically binding to the viral oncogenes. One of them was the Rb gene 
product, whose inactivation was independently demonstrated to lead to retinoblastoma 
formation in humans.  

Seminal studies on retinoblastoma by Knudson et al (Knudson, Jr., 1971) laid the foundation 
for the tumor suppressor hypothesis. Statistical analysis of age and family history made him 
conclude that two independent mutation events are required for retinoblastoma 
development. It was later proposed that the two mutations occurred in the two alleles of the 
same gene, Rb1 that is, retinoblastoma is a recessive cancer where one abnormal 
chromosome was inherited, while the corresponding, wild-type chromosomal segment was 
lost in the tumor cells (Godbout et al., 1983; Benedict et al., 1983). Genetic linkage studies 
demonstrated anomalies on chromosome 13q14, close to the esterase D locus (Sparkes et al., 
1983). Cloning of the retinoblastoma cDNA followed and it was shown that it encodes a 110 
kDa nuclear phosphoprotein (Lee et al., 1987). Additional studies showed that the Rb1 gene 
from retinoblastoma tumors had deletions and mutations, consistent with a model where 
gene inactivation ie loss of function leads to tumor formation [reviewed in (Burkhart and 
Sage, 2008)].  

Several groups tried to identify cellular proteins that bind to the E1A gene products. 
Branton et al developed a series of anti-peptide antisera and identified several co-
immunoprecipitated proteins, including a doublet of approximately 105 kDa (Yee and 
Branton, 1985). Most importantly, these proteins could be affinity-purified from uninfected 
cells using E1A expressed in bacteria. This observation indicated that the 105 kDa protein(s) 
was of cellular, rather than viral, origin. Moreover, their expression did not depend upon 
adenovirus infection, or expression of any viral proteins (Egan et al., 1988). It was further 
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shown that residues 111-127 and 30-60 of E1A were required for binding to the 105 kDa 
protein (Egan et al., 1988). A breakthrough finding followed: A monoclonal antibody was 
raised using as an immunogen E1A that had been immunoprecipitated from E1A-
expressing, 293 cells, therefore potentially containing cellular proteins bound to E1A. As it 
turned out, this antibody recognised the 105kDa, Rb protein. These data demonstrated that 
the Rb was, in fact, the 105 kDa, cellular protein associated with E1A. This observation 
offered the first demonstration of a physical association between an oncogene and an 
antioncogene (Whyte et al., 1988; Lee et al., 1987). Similar findings emerged on the SV40 
system (DeCaprio et al., 1988). Most importantly, it was soon demonstrated that TAg 
mutants that were unable to transform, were unable to bind Rb (e.g. E107K). These mutants 
disrupted the sequence LxCxE, the site of Rb binding which is present in the large TAg’s of 
both SV40 and polyoma, adenovirus E1A, the human papillomavirus E7 proteins, as well as 
the TAg’s of several other human polyoma viruses (Munger et al., 1989; Dyson et al., 1989). 
Taken together, these findings demonstrated the cardinal importance of Rb binding in 
transformation by these oncogenes [reviewed in (DeCaprio, 2009)].  

Examination of Rb’s function demonstrated that Rb is unphosphorylated in quiescent (G0) 
cells, but its phosphorylation increases as cells progress in the cell cycle (Buchkovich et al., 
1989). It was later found that it is the cyclin D/Cdk4, cyclin E/Cdk2, cyclin A/Cdk2 and 
cyclin B/cdc2 kinases, shown to be required for entry into the cell cycle, that phosphorylate, 
and thereby inactivate Rb (DeCaprio et al., 1992). It was also demonstrated that the SV40-
TAg binds the under- or unphosphorylated form of Rb exclusively (Ludlow et al., 1990), 
which suggested that the G0 form of Rb served a growth-suppressive function, which was 
overcome by TAg. In addition, overexpression of Rb inhibits cell cycle progression from G1 
to S (Goodrich et al., 1991). Finally, transgenic expression of SV40-TAg under control of 
luteinizing hormone-β induces retinoblastomas and TAg co-precipitated Rb in lysates from 
tumor cells, supporting the hypothesis that retinoblastoma can develop by the inactivation 
of Rb function by TAg (Windle et al., 1990).  

Thus, the loss of the Rb growth suppressive function can be achieved by: 1. mutation 
(retinoblastomas), 2. phosphorylation (cell cycle), or 3. binding to viral oncogenes. It was 
later shown that two Rb-related proteins that also exhibit features of cell-cycle regulators, 
p107 and p130, can also bind the LxCxE sequence of E1A and TAg (Ewen et al., 1992; 
Dumont and Branton, 1992).  

Several laboratories have mapped the Rb sequences required for binding the LxCxE 
sequence. In fact, the two thirds, C-terminal region of Rb can bind E1A and TAg, and it is 
referred to as the large-pocket, while the central part of Rb (379-792) constitutes the small 
pocket (Kaelin, Jr. et al., 1990; Hu et al., 1990) (Fig. 3). The central part of Rb was the site of 
mutations in retinoblastomas, and these forms also failed to bind E1A and TAg. This 
observation offers a strong correlation between loss of binding to the oncogene to loss of 
function (Kaelin, Jr. et al., 1990; Pietenpol et al., 1990). That is, the viral oncogenes were 
found to disrupt a normal function of Rb, that was necessary for tumor suppression.  

Further studies on the mechanism of tumor suppression by Rb and transformation by these 
oncogenes led to the search for cellular proteins that could compete with TAg and E1A for 
Rb binding. One of these protein families is the E2F transcription factors. In fact, the 
hypophosphorylated form of Rb binds E2F and using Rb affinity columns it became clear  
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Fig. 3. A) The human pRb consists of 928 aminoacids. Deletion mutagenesis, as well as 
structural studies have uncovered regions that mediate its binding to individual partners. Most 
of them bind the pocket region. The Rb C-terminus binds specifically to E2F1 and this inhibits 
apoptosis. Rb can also be phosphorylated by CDK kinases as well as CHk2 (checkpoint 
homologue 2) and Raf 1 and this inhibits binding of most partners (Burkhart and Sage, 2008). 

SKP2: S-phase kinase-associated protein-2; SUV39H1: methyltransferase, methylates lysine 9 of the 
amino terminus of histone H3; DNMT1: DNA methyltransferase-1; HDAC: histone deacetylase;  
CDH1: cadherin-1 

 
Fig. 3. B) Three-dimensional structure of the Rb/E2F complex. The helices of the A domain 
are shown in red and the B domain in blue. The main-chain trace of E2F is shown as a 
yellow worm (upper panel), while the main-chain trace of the papillomavirus E7 is shown 
as a green worm (lower panel) (Xiao et al., 2003).  
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that the viral oncogenes (E1A, TAg, E7) dissociate Rb from E2F (Chellappan et al., 1992; 
Chellappan et al., 1991). Rb binding correlated with repression of E2F transcriptional 
activity (Hiebert et al., 1992), and overexpression of E2F1 could promote entry into S phase 
in a manner similar to adenovirus E1A (Johnson et al., 1993). Therefore, the prevailing 
model is that E1A could serve to dissociate Rb from E2F, while the conserved LxCxE motif 
plays an important role in the high affinity binding of the viral oncoproteins to Rb. In fact, a 
minimal peptide of 9 residues corresponding to the LxCxE motif of HPV16-E7 could 
compete with Rb binding to E2F and to DNA (Jones et al., 1992). There is also evidence that 
TAg and E1A recruit the CBP/p300 histone acetyltransferase to remodel chromatin and 
actively start transcription (reviewed in (DeCaprio, 2009), Fig. 4). 

 
Fig. 4. Effect of TAg or adenovirus E1A upon Rb.  
A. Active Rb binds the E2F/DP complex to repress transcription. B. Rb phosphorylation reduces 
binding to E2F/DP, permitting E2F activation. C. TAg or E1A binding removes Rb and permits E2F 
action. D-E: TAg or E1A can also bind the CBP/p300 histone acetyltransferase to increase gene 
expression. F. E1A can also bring Rb to CBP/p300 bound to transcription factors to repress promotors.  

The crystal structure of Rb demonstrated that the A and B domains of the small pocket are 
bound to each other and are linked with a large area of highly conserved residues located in 
the fold between them. The LxCxE motif of HPV-E7 is bound to an exposed cleft within the 
B domain. The side chains of L,C and E make direct contact to Rb, which explains their high 
degree of conservation (Fig. 3B) (Xiao et al., 2003). Still, E1A and large TAg employ a 
different activity to displace E2F from Rb. The 100, N-terminal residues of LT form a J-
domain, found in the family of DnaJ-Hsp40 molecular chaperones (Stubdal et al., 1997). The 
J domain recruits Hsc70 and activates its ATPase activity to promote chaperone activity. The 
J domain of large TAg cooperates with the LxCxE motif to dissociate Rb family members 
from E2F4 (Kim et al., 2001).  

It was also found that E2F acts in a complex with another protein, the differentiation-
regulated transcription factor-polypeptide 1 (DP1), which forms a heterotrimeric complex 
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with E2F1 and cooperates with E2F for promotor binding (Simonson and Herman, 1993). 
Since the original cloning, a large number of E2F and DP molecules have been identified 
that play a variety of roles [reviewed in (van den Heuvel and Dyson, 2008)].  

4. Other viral gene products interacting with the retinoblastoma family 
In addition to the DNA tumor viruses, viruses from other families, both DNA and RNA are 
known to interact with Rb directly. Following are some examples: 

The Hepatitis C virus is a positive-strand RNA virus, which causes persistent infections that 
can lead to hepatocellular carcinoma (HCC). The viral RNA-dependent, RNA polymerase 
NS5B forms a complex with Rb, targeting it for degradation and this increases E2F activity 
in E2F activity. NS5B contains a LxC/AxE motif which overlaps with the active site of the 
polymerase, and its interaction with and inactivation of Rb may be part of the mechanism 
whereby HCV infection leads to carcinoma (Munakata et al., 2005). 

The Hepatitis B virus (HBV) also causes hepatitis and chronic infections that can lead to 
HCC. It codes for the non-structural, HBx protein which transcriptionally represses p21 and 
p27, and binds directly to cyclin E and cyclin A, leading to cell cycle progression (Dayaram 
and Marriott, 2008). 

The Rubella virus (RV) causes developmental abnormalities and birth defects. RV is a 
positive-strand RNA virus encoding NSP90, a non-structural protein with replicase activity, 
which binds to Rb through an Rb binding motif (LPCAE). This association plays a positive 
role in the replication of the virus and it has been postulated that this contributes to RV's 
teratogenicity (Forng and Atreya, 1999). 

The human cytomegalovirus (HCMV) belongs in the Herpes family and it can cause 
developmental abnormalities. HCMV codes for UL97, a protein kinase which can 
phosphorylate and inactivate Rb in a manner similar to the cyclin-dependent kinases. 
Moreover, UL97 is not inhibited by the CDK inhibitor p21 and lacks amino-acid residues 
conserved in cdk's that permit the attenuation of kinase activity. That is, UL97 is a functional 
ortholog of the cyclin-dependent kinases that is immune from the normal cdk control 
mechanisms (Hume et al., 2008).  

The Human T-cell leukemia virus (HTLV) is the only human retrovirus shown to be the 
cause of a human cancer, adult T-cell leukemia. The Tax protein of HTLV (40kDa) is 
sufficient to transform cultured cells, and it achieves this at least in part through inhibition 
of a number of cyclin-dependent kinase inhibitors. Tax binds directly and inhibits p15 and 
p16, and it represses transcription of p18 and p19. In addition, Tax interacts with cdk4 and 
facilitates its binding to cyclin D2, leading to enhanced kinase activity, enhanced 
phosphorylation and proteasomal degradation of Rb, hence E2F activation. Tax also 
interacts with hypophosphorylated Rb directly, and this results in premature proteasomal 
degradation (Dayaram and Marriott, 2008). 

A number of plant viruses were also shown to bind to and require Rb function for 
replication. Geminiviruses are small, single-stranded DNA viruses infecting a wide range of 
plants. The viral genome is encapsidated into two joined icosahedral capsids. The beet curly 
top virus (BSCTV) codes for the C4 protein which, upon transgenic expression in Arabidopsis 
plants can increase the levels of most cyclins and CDK’s, CAK’s and the proliferating cell 
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nuclear antigen-1 (PCNA1). In addition, the Rb-related protein rbr1 and the CDK inhibitor 
ick1 are suppressed. Similarly, a protein of the Tomato golden mosaic virus, Rep, and the 
RepA protein of the Wheat dwarf virus are both able to bind the maize Rb-like proteins (Xie 
et al., 1995; Collin et al., 1996). Although the role of Rb in plants has not been firmly 
established, the fact that BSCTVcan induce cell division, points to the possibility that the 
effect of the C4 and Rep proteins upon Rb may be part of the mechanism of pathogenicity 
by these viruses (Park et al., 2010).  

5. Consequences of E2F activation 
Besides DNA tumor virus oncogenes, a large number of tyrosine kinases such as vSrc 
activate the E2F transcription factor indirectly, through activation of the CDK kinases. As a 
result, E2F is found to be hyperactive in many cancers. Transcriptional activation of E2F 
targets is achieved either through active transactivation or derepression of genes having 
E2F-binding sites on their promoters. A detailed Microarray analysis for E2F-activated genes 
yielded many targets, among which is a number of membrane receptor tyrosine kinases, 
such as PDGFRα, IGF1R, VEGF, and others (Young et al., 2003). In fact, it has long been 
demonstrated that transformed cells secrete autocrine factors, able to induce anchorage-
independent growth to normal cells (Raptis, 1991; Ciardiello et al., 1990). These growth 
factors activate the membrane signalling apparatus, including the ras and phosphatidyl-
inositol-3 kinase (PI3k) cascades, as well as the signal-transducer and activator of 
transcription-3 (Stat3) pathway. Following ligand binding, Stat3 binds to receptors of 
growth factors or cytokines and is phosphorylated on tyrosine-705 by the receptor itself or 
by the associated Jak or Src kinases. Two Stat3 molecules subsequently dimerize through 
reciprocal phosphotyrosine-SH2 domain interactions, the dimer migrates to the nucleus and 
initiates transcription of a number of genes (Yu et al., 2009; Raptis et al., 2009). Both the PI3 
kinase and Stat3 constitute potent survival signals.  

As a result of E2F activation, the SV40-TAg and adenovirus E1A have both been shown to 
activate and require ras (Raptis et al., 1997) and Stat3 (Vultur et al., 2005) for neoplastic 
transformation, as well as for the block of adipocytic differentiation (Cao et al., 2007b; Cao et 
al., 2007a). However, it is particularly remarkable that at the same time E2F is a potent 
apoptosis inducer, hence the high demand of transformed cells for survival signals, normally 
offered by Stat3, activated by the growth factor receptors. Therefore, direct Stat3 inhibition 
induces apoptosis of E1A or Tag-transformed cells preferentially, due to their higher E2F 
activity levels which promotes programmed cell death through p53-dependent or 
independent mechanisms. These findings underscore the importance of Stat3 the survival of 
tumor cells, and could have significant therapeutic implications (Fig. 5).  

6. The Rb pathway in breast cancer 
Although inherited, germline mutations in the Rb gene were identified mostly in 
retinoblastomas, Rb somatic mutations, mimicking Rb inactivation by the DNA tumor viruses 
have also been noted in a number of cancers, including breast cancer, so that, despite the fact 
that no DNA tumor viruses have ever been found in breast cancer, E2F is frequently activated.  

Unlike the majority of cancers, the prognosis and treatment of breast cancer is significantly 
informed by a number of biomarkers, and the Rb pathway plays a prominent role [reviewed  
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Fig. 5. E2F, activated through Rb inactivation by viral oncogenes,  is known to be a potent 
activator of genes leading to cell division and neoplasia. Paradoxically however, E2F also 
induces apoptosis (through both p53-dependent and  -independent mechanisms), but 
apoptosis inhibition would allow cell division to occur.  In fact, E2F also activates a number of 
kinases such as IGF1-R and Src, which activate Stat3, a potent apoptosis inhibitor.  As a result, 
Stat3 inhibition in cells with high E2F levels results in apoptosis (Sears and Nevins, 2002). 

in (Musgrove and Sutherland, 2009)]. In particular, the status of the Estrogen receptor-α 
(ER) is an important determinant in treatment: ER-positive breast cancer has a more 
favorable prognosis and can be treated with selective ER antagonists (e.g. Tamoxifen) or 
aromatase inhibitors (e.g. Anastrozole), while ER-negative breast cancer is generally more 
aggressive, and with fewer treatment options. Still, a significant number of ER-positive 
cancers fail hormonal therapy and a great deal of effort has been expended in identifying 
pathways leading to Tamoxifen or aromatase inhibitor resistance.  

In ER-positive breast cancer treatment, ER antagonists are effective at stopping cell division, 
indicating that such tumors are dependent upon estrogen for proliferation and survival 
(Musgrove and Sutherland, 2009). It was further shown that estrogen inhibition results in 
cell cycle arrest in the G0/ G1 phase of the cell cycle through attenuation of CDK/cyclin 
complexes at multiple levels (Foster et al., 2001). In particular, cyclin D1 is a direct 
transcriptional target of ER signalling (Eeckhoute et al., 2006). On the other hand, functional 
analyses have suggested that a multitude of cascades can contribute to acquired resistance 
to endocrine therapy, such as aberant ErbB2, Grb10 or Akt signalling (Miller et al., 2009), 
while p27kip1 and Rb inactivation can compromise the efficacy of ER inhibition (Cariou et 
al., 2000; Bosco et al., 2007). Specifically, a gene expression signature of Rb-dysfunction is 
associated with luminal B breast cancer, which exhibits a relatively poor response to 
endocrine therapy. Most importantly, recent reports demonstrated that a selective CDK4/6 
inhibitor, PD-0332991 suppressed cell proliferation of a number of tamoxifen-resistant, 
cultured breast cancer cell lines. While ER antagonists in sensitive lines induce cell cycle 
arrest, CDK4/6 inhibition in tamoxifen-resistant lines induced a state having certain 
molecular characteristics of senescence in hormone therapy resistant cell populations. 
Therefore, PD-0332991 is an effective cell cycle inhibitor that could be especially valuable in 
ER+ breast cancers that are resistant to endocrine therapy, and is now being tested in phase 
II clinical trials (Thangavel et al., 2011).  
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kinase and Stat3 constitute potent survival signals.  

As a result of E2F activation, the SV40-TAg and adenovirus E1A have both been shown to 
activate and require ras (Raptis et al., 1997) and Stat3 (Vultur et al., 2005) for neoplastic 
transformation, as well as for the block of adipocytic differentiation (Cao et al., 2007b; Cao et 
al., 2007a). However, it is particularly remarkable that at the same time E2F is a potent 
apoptosis inducer, hence the high demand of transformed cells for survival signals, normally 
offered by Stat3, activated by the growth factor receptors. Therefore, direct Stat3 inhibition 
induces apoptosis of E1A or Tag-transformed cells preferentially, due to their higher E2F 
activity levels which promotes programmed cell death through p53-dependent or 
independent mechanisms. These findings underscore the importance of Stat3 the survival of 
tumor cells, and could have significant therapeutic implications (Fig. 5).  

6. The Rb pathway in breast cancer 
Although inherited, germline mutations in the Rb gene were identified mostly in 
retinoblastomas, Rb somatic mutations, mimicking Rb inactivation by the DNA tumor viruses 
have also been noted in a number of cancers, including breast cancer, so that, despite the fact 
that no DNA tumor viruses have ever been found in breast cancer, E2F is frequently activated.  

Unlike the majority of cancers, the prognosis and treatment of breast cancer is significantly 
informed by a number of biomarkers, and the Rb pathway plays a prominent role [reviewed  
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Fig. 5. E2F, activated through Rb inactivation by viral oncogenes,  is known to be a potent 
activator of genes leading to cell division and neoplasia. Paradoxically however, E2F also 
induces apoptosis (through both p53-dependent and  -independent mechanisms), but 
apoptosis inhibition would allow cell division to occur.  In fact, E2F also activates a number of 
kinases such as IGF1-R and Src, which activate Stat3, a potent apoptosis inhibitor.  As a result, 
Stat3 inhibition in cells with high E2F levels results in apoptosis (Sears and Nevins, 2002). 

in (Musgrove and Sutherland, 2009)]. In particular, the status of the Estrogen receptor-α 
(ER) is an important determinant in treatment: ER-positive breast cancer has a more 
favorable prognosis and can be treated with selective ER antagonists (e.g. Tamoxifen) or 
aromatase inhibitors (e.g. Anastrozole), while ER-negative breast cancer is generally more 
aggressive, and with fewer treatment options. Still, a significant number of ER-positive 
cancers fail hormonal therapy and a great deal of effort has been expended in identifying 
pathways leading to Tamoxifen or aromatase inhibitor resistance.  

In ER-positive breast cancer treatment, ER antagonists are effective at stopping cell division, 
indicating that such tumors are dependent upon estrogen for proliferation and survival 
(Musgrove and Sutherland, 2009). It was further shown that estrogen inhibition results in 
cell cycle arrest in the G0/ G1 phase of the cell cycle through attenuation of CDK/cyclin 
complexes at multiple levels (Foster et al., 2001). In particular, cyclin D1 is a direct 
transcriptional target of ER signalling (Eeckhoute et al., 2006). On the other hand, functional 
analyses have suggested that a multitude of cascades can contribute to acquired resistance 
to endocrine therapy, such as aberant ErbB2, Grb10 or Akt signalling (Miller et al., 2009), 
while p27kip1 and Rb inactivation can compromise the efficacy of ER inhibition (Cariou et 
al., 2000; Bosco et al., 2007). Specifically, a gene expression signature of Rb-dysfunction is 
associated with luminal B breast cancer, which exhibits a relatively poor response to 
endocrine therapy. Most importantly, recent reports demonstrated that a selective CDK4/6 
inhibitor, PD-0332991 suppressed cell proliferation of a number of tamoxifen-resistant, 
cultured breast cancer cell lines. While ER antagonists in sensitive lines induce cell cycle 
arrest, CDK4/6 inhibition in tamoxifen-resistant lines induced a state having certain 
molecular characteristics of senescence in hormone therapy resistant cell populations. 
Therefore, PD-0332991 is an effective cell cycle inhibitor that could be especially valuable in 
ER+ breast cancers that are resistant to endocrine therapy, and is now being tested in phase 
II clinical trials (Thangavel et al., 2011).  
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7. Conclusions 
Results on the mechanism of transformation by DNA tumor viruses have given valuable 
insights on the role of the Rb family in cell division. Evidence is now emerging that these 
conclusions are applicable to human cancers such as cancer of the breast, hence the Rb 
pathway may offer important targets for chemotherapy. It is reasonable to assume that the 
study of the viral oncogenes will offer additional insights into the role of Rb in cancer.  
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