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Chapter 1

Introductory Chapter: Trends in
Therapeutic Strategies after Spinal
Cord Injury
Tamara D. Frydman and Antonio Ibarra

1. Epidemiology

Spinal cord injury (SCI) continues to be a diagnosis without a straightforward
treatment plan, even in today’s advanced medical-technological time. This is a
problematic pathology not only for the patient but also for the health system since,
aside from causing individual disability, it also originates an important economic
cost. This is due—in great part—to the age group most affected by this type of
injury, which regularly involves an average age of injury of 37.1 years old [1].

Spinal cord injury can lead to fatal consequences when autonomic processes such
as respiratory or cardiovascular function are altered by injury. Otherwise, the most
common repercussions are those affecting motor and sensitivity skills. This gener-
ates a scenario where the patient’s clinical prognosis may vary from complete
paralysis to an optimum case of injury where the patient could only need physical
therapy for rehabilitation [2].

The reported prevalence as of 2017 is between 440 and 526 cases per million
population, with a mortality rate as high as 22% in both developed and non-
developed countries [3]. Regarding its incidence, there are 130,000 new cases
reported every year [4]. And even though it may not seem like a large group of
patients, it accounts for more than approximately a million dollars’ worth of treat-
ment for every case reported, thus becoming an important target for research
toward finding an effective treatment that can limit symptomatology as well as
complications due to SCI [3].

SCI pathophysiology encompasses an important number of phenomena that
mainly contribute to SC-tissue destruction and/or regeneration inhibition.

2. Pathophysiology

The understanding of the pathophysiology of acute and chronic SCI is essential
to the development of new therapeutic techniques that can effectively stop damag-
ing mechanisms and promote beneficial effects.

Primary lesion is caused by the physical consequences of injury: contusion,
compression, or laceration [5]. This leads to demyelization and hemorrhage, which
by itself causes ischemia and necrosis affecting nearby cells in the central nervous
system. With this process comes edema which develops hours after the insult and
continues to expand for several days afterward. Finally in this stage, inflammatory
response, cells such as neutrophils and macrophages approach the affected area to
phagocytize the apoptotic and necrotic waste [6].
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After this immediate response to the injury, there is a second phase with further
effects on neural degeneration and tissue restoration:

• Vascular changes. These are due—in great part—to the ischemia that takes
place, especially in the gray matter structures, and are aggravated by the
hypotensive state of hypovolemia. This could be followed by a
reperfusion phase that contributes to a secondary injury and the release of free
radicals [7, 8].

• Oxidative stress. Free radicals have important effects on DNA and proteins by
damaging the cell membrane through lipid peroxidation, as well as promoting
apoptosis, resulting in a strong inhibition of Na-K ATPase [9, 10]. These are
important consequences to keep in mind being that several treatment options
available today such as methylprednisolone are related directly to this
damaging mechanism [6, 11].

• Excitotoxicity. Glutamate, an important neurotransmitter in the central nervous
system, also plays a role in the pathophysiology of SCI, as the extensive release
of this molecule allows calcium entrance and the accumulation of intracellular
Na and Cl (using its NMDA receptor), which in turn results in cytotoxic edema
[12]. Therefore, NMDA receptor blockade becomes a therapeutic option to
further explore.

• Immune response. As an immune-privileged site, the central nervous system is
not known for having a large immune cell presence. Nonetheless, after a SCI,
microglia suffers activation, and cytokines are rapidly released. There is an
increase in the amount of TNF-α and arachidonic acid metabolites that can be
found in cerebral spinal fluid. This, however, is a positive effect since TNF-α
has been shown to increase levels of interleukin-10 which counteracts free
radicals and stimulates axonal regeneration, making it a target for stimulation
as a treatment option [13, 14].

• Activation of Rho pathway. SCI activates Rho pathway, which in turn inhibits
the re-growth of axons and causes apoptosis. By inhibiting this activation,
recovery improves substantially; however, there is no therapy for this purpose
that has been approved yet [15].

• Depletion of cAMP. After injury an important reduction of cAMP in neurons
occurs; this alteration inhibits neuron regeneration [16].

• Glial scar and astrocyte activation. The formation of a glial scar after
injury represents a barrier to growing axons [17–20]. Additionally, activated
astrocytes—the main cells conforming glial scar—express chondroitin
sulfate proteoglycans (CSPGs) and extracellular matrix molecules like
phosphocan and neurocan that, when downregulated, have shown to improve
axonal regeneration, thereby proving their role in regeneration inhibition
[17, 21].

At the moment, there is enough evidence about the deleterious effects exerted
by each one of the abovementioned phenomena. That is why, several investigation
groups are working on developing therapeutic strategies to induce neuroprotection
and subsequently promote SC regeneration.

4
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3. Neuroprotective therapies

As secondary lesion mechanisms are so abundant and have such a long-term
effect on the patient’s outcome; they have become the main target for SCI therapy.
All of these potential treatment options are involved in various research proposals
as to find suitable possibilities and improve recovery:

• Cyclooxygenase inhibitors. COX is a pro-inflammatory enzyme that leads to the
production of prostanoids and therefore increased inflammation. This is the
basis for the neuroprotective role of cox-inhibitors such as indomethacin
(inhibits COX-1/COX-2 and the activity of select leucocytes, thereby
preventing inflammation aggravation and edema) [22].

• Immunophilin ligands. These proteins are abundantly found in neural tissue and
bind immunosuppressants like cyclosporine A and their analogs which are
known as ligands [23]. When these ligands bind to immunophilins, they inhibit
rotamase and calcineurin activity. These effects decrease immune responses
such as cytokine production and neutrophil motility [24]. Ultimately,
cyclosporine A binding to immunophilin slows down the demyelination
process and stops the spreading of inflammation [25].

• Antioxidants. One of the most damaging pathophysiological mechanisms of SCI
is perhaps the increased release of free radicals [26]. Methylprednisolone,
currently the primary treatment for acute SCI, is aimed toward inhibiting lipid
peroxidation and lactate accumulation. However, there are still concerns about
it being a risk factor for pneumonia development [27].

• Calpain inhibitors. Calpain is a calcium-dependent cysteine protease that
promotes apoptosis through enzyme degradation of cytoskeletal and membrane
proteins. Researchers have found this to be associated with the increased
concentration of intracellular calcium following SCI [28]. The two main classes
include aldehyde-calpain and oxirane inhibitors, of this last one the primary
example is E-64-d. This therapeutic option has demonstrated its neuroprotective
effects in SCI models. By blocking calpains, apoptosis could be reduced [29].

• Apoptosis inhibitors. Caspase-3 and caspase-9 are key mediators for apoptosis
after acute SCI; by inhibiting these molecules, there has been a proven clinical
improvement in previous studies using minocycline. Minocycline is a second-
generation tetracycline that has demonstrated to have anti-inflammatory and
neuroprotective qualities in experimental studies in SCI, stroke, and
neurodegenerative diseases. Talking about its antiapoptotic effects,
minocycline decreases caspase 1 and caspase 3 availability, cytochrome c
release, mitochondrial calcium uptake, and the release of apoptotic factors. By
downsizing apoptosis in SCI, this drug reduces microglial activation [30].

• Hormones. Steroid hormones such as progesterone and estrogen have proven to
be neuroprotective in SCI by showing decreased excitotoxicity, increased
myelination, and enhanced antioxidant properties [31].

• Na channel blockers. Tetrodotoxin is the most investigated compound of this
category; it has proven effects of better recovery by inhibiting fast Na channels
and thereby lessening the continuous depolarized state of injured neurons [32].
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4. Regenerative therapies

• Pharmacological treatments

◦ Rho pathway antagonists. The Rho family has been associated with several
pathways concerning cell proliferation, regeneration, and gene expression
[33]. When activated, it leads to neurite growth blockade, especially when
implicating Rho kinase (ROCK) [34]. This is why Rho-ROCK inhibitors
are now under research as treatment options. These include C3
transferase, which modifies the Rho family thus minimizing its effect, and
Y27632 which competes with ROCK for ATP receptors [35].

◦ Cyclic AMP enhancers. The elevation of cyclic AMP levels is directly
associated with a better neuronal response to myelin inhibitors. This has
led to research for strategies that elevate cyclic AMP, for instance, the
administration of dibutyryl cAMP (activating cAMP-dependent protein
kinase) [36] or the inhibition of phosphodiesterase (PDE) using rolipram
(a PDE-4 inhibitor that targets SNC tissue more specifically) has shown
relevant effects on axonal regeneration [37].

◦ Glial scar inhibitors. Being that the scar itself is an inhibiting factor for
regeneration, several studies have tried to find a strategy to counteract this
effect. Decorin is a proteoglycan molecule that has been linked to a
reduction in the expression of inhibitory molecules such as brevican and
neurocan as well as to the increased capability for axonal growth across
myelin-rich environments [38].

◦ Hydrogels. This type of material allows for healthy tissue to reconnect and
therefore enable axonal growth across the injury. Hydrogels are usually
made of hyaluronic acid or poly(2-hydroxyethyl methacrylate-co-methyl
methacrylate); however, other options are being studied for their
additional benefits. Some of these new prospects include poly(2-
hydroxyethyl methacrylate-co-methyl methacrylate) which has shown
improvement in locomotor function [39] and poly[N-(2-hydroxypropyl)
methacrylamide] with evidence that it has axonogenic and angiogenic
properties [40].

• Scar removal. Numerous research projects have proven that during chronic
stages of injury (>2 weeks), there is a clear benefit when removing the glial scar
given that it portrays a barrier both physically and chemically for axonal
regeneration [21, 41].

• Biocompatible matrices. Tissucol (fibrin glue) is a fibrinogen and thrombin
compound that’s biocompatible and can therefore be used for cell transplant, as
well as promoting growth [42]. Another alternative in this area is alginate, a
biocompatible material obtained from bacteria and algae that promotes cell
migration and axonal growth [43]. Other options in this category include
Matrigel, polyethylene glycol, and hyaluronic acid [44].

• Cell therapies. In chronic stages of SCI, studies have shown that transplanting
different cell types has improved recovery. Mesenchymal stem cells (MSCs)
are the most promising ones so far, with the capacity to modulate the
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microenvironment generated after SCI by secreting anti-inflammatory
molecules and switching from M1 to M2 macrophage phenotype (protective
and restorer phenotype) [45]. They also release neurotrophic factors that
stimulate myelination and reduce apoptosis [46].

• Combination therapies. As there is a large amount of experimental therapies that
target different physiopathological pathways, researchers have found it to be
more effective to combine some of these options when it comes to tackling
acute and chronic injuries [47]. Some examples of this are the combination of
several growth factors and cell transplants, combining chondroitinase ABC and
physical rehabilitation and the surgical removal of scar tissue along with
immune modulatory therapy [48, 49].

So far, there is no definite treatment course for patients with SCI. This fact
remains, although research over the years has developed several options that target
the immunologic response that is triggered after an injury and that have both
beneficial and damaging consequences as well as other mechanisms such as
lipoperoxidation and cytotoxicity. Hence, there are several circumstances that need
to be neutralized before a second strategy can intervene that can initiate remodeling
and restoring the damaged tissue. So far, the understanding of pathophysiological
mechanisms has been our most powerful tool into deciphering the best therapeutic
plan. Neuroprotection is the current target for pharmacological as well as non-
pharmacological therapies such as rolipram, MSCs, methylprednisolone, indometh-
acin, dibutyryl cAMP, and scar removal. The endpoint for all these treatment
options is to encourage and enable neuroregeneration, and although as mentioned
previously, there have been incredible advancements in this area, the search con-
tinues for new alternatives that offer better outcomes.
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4. Regenerative therapies
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Abstract

Spinal cord injuries have a multifactorial process with diverse evolution over 
time. An acute injury produces severe pathological and physiological changes in the 
organism, homeostasis is recovered, and both adverse and favorable reactions occur 
for the individual. In this chapter, we describe the pathophysiological follow-up to 
spinal cord injuries, from their acute to chronic presentations. The importance of 
this knowledge lies in finding solutions to the multiple disorders generated from a 
spinal cord injury. These will depend on the specific needs of each stage, consider-
ing the intensity of the injury, and the time elapsed from the beginning of the 
process until years later.

Keywords: spinal cord injury, anatomy, physiology, pathophysiology

1. Introduction

Spinal cord injury represents a devastating impairment in the patient’s life 
that it is also known to include the patient’s family. Adapting to the new condi-
tion is a challenge for all who are involved, as it is especially expensive from the 
economic point of view, not only for the patient and his family but also for health 
services, as it involves expenses of a diverse nature to offer the best quality of 
life for the patient. In addition, the majority of patients who suffer from it are 
of a productive age, which implies the need to abandon their sources of income, 
depending totally on their family, both financially and on their basic survival 
needs, such as eating, getting dressed, bathing, etc., even needing in-home 
specialized health care. According to various epidemiological studies, spinal cord 
injuries affect between 236 and 1298 patients per million inhabitants in different 
countries [1].

Spinal cord injury is caused by three experimental mechanisms, contusion, 
compression, and hemisection, all of these representing clinical lesions for study 
[2]. All three have different degrees of primary tissue damage; however, the 
three trigger severe secondary mechanisms that amplify tissue damage, hinder-
ing and even preventing the regeneration of damaged tissue. In this review, an 
approach is made to these destructive mechanisms after a spinal cord injury, 
with the aim of providing the bases of the pathophysiology of spinal cord injury 
to aid in decision-making for implementation of clinical and/or experimental 
treatments.
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2. Methodology

A systematic search was conducted in PubMed and Embase with the follow-
ing MeSH terms and keywords: “spinal cord injury and hemorrhagic,” “spinal 
cord injury and secondary damage,” “spinal cord injury and pathophysiology,” 
“spinal cord injury and ischemic effects,” “spinal cord injury and ionic dys-
regulation,” “spinal cord injury and free radicals (FR),” “spinal cord injury and 
excitotoxicity,” and “spinal cord injury and electrolyte imbalances.” The search 
results were refined, selecting published articles from renowned journals in the 
medical and scientific areas that are less than 10 years old. Twenty-six studies 
were selected.

3. Pathophysiology of traumatic injury in the spinal cord

After a mechanical spinal cord injury (primary lesion), a series of self-destruc-
tive mechanisms (secondary lesion) is triggered that cause greater destruction of 
the spinal cord parenchyma with long-term sequela. Spinal cord injury is associated 
with mechanical damage, biochemical disorders, and hemodynamic changes [3]. 
The anatomic point where the primary lesion is exerted is known as the “epicenter,” 
and the secondary mechanisms develop in a centrifugal form around the epicenter, 
expanding the injured area (Figure 1).

Figure 1. 
Schematic summary of spinal cord injury. The primary lesion is the result of trauma directly on the neural 
tissue, anatomically called the epicenter of the injury to the point where the spinal cord is affected by the 
primary lesion; this injury triggers a series of destructive events known as a secondary injury, which will 
increase the area of injury in a centrifugal way, magnifying the systemic effects; these events can be observed 
years after the primary lesion.
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3.1 Loss of ion regulation

Some of the histological changes that are observed after a TSC are the formation 
of edema and softening of the tissue, increase in the concentration of water, change 
in the caliber of the blood vessels, and rupture of the myelin surrounding the axons, 
in addition to a decrease in axoplasmic flow [4], with loss of ion regulation, in 
which an intense movement of ions is observed through an electrochemical gradi-
ent in which the concentrations of sodium (Na+) and calcium (Ca2+) increase and 
potassium (K+) and magnesium (Mg+) decrease at the intracellular level. When the 
gradient is altered, the electrical conduction ceases immediately, and the forma-
tion of edema is stimulated [5]. In addition, the increase in free intracellular Ca2+ 
triggers cell death by inhibiting mitochondrial function. It decreases the activation 
of ATP by activation of ATPase, protease, and phospholipases, with the resulting 
catabolism of proteins and structural lipids and inhibition of axoplasmic transport, 
because the increase of Ca2+ in the axoplasm triggers the action of neutral proteases 
activated by this ion and massive proteolysis of neurofilaments, which can lead to 
progressive collapse and fragmentation of the axon, causing tissue necrosis [6].

3.2 Necrosis and apoptosis

Activation of calpains and caspases represents other activation mechanism 
processes of necrosis and apoptosis by increasing intracellular Ca2+ [7]. The calpains 
constitute a superfamily of non-lysosomal proteases dependent on Ca2+ with a 
cysteine in its catalytic site. They are encoded by around 14 independent genes and 
have been attributed to various functions as the anchor of membrane proteins, 
signaling cascades, cytoskeleton remodeling, and apoptosis. The importance of 
caspases is the activation to start the process of programmed cell death; this has 
been demonstrated in deficient caspase-3 and caspase-9 mice [8].

3.3 Loss of axoplasmic flow

The axonal flow is modified because of axonal breakage. The axoplasmic flow 
can be retrograde or anterograde, both of which are fundamental for neuronal 
function. Although the cytoskeleton is composed of microtubules, actin filaments, 
and intermediate filaments, only microtubules are involved in the transport of 
materials through axons [9]. The anterograde transport is carried out through 
proteins associated with the cytoskeleton called kinesins, and it happens at a speed 
between 50 and 400 mm/day, while retrograde transport is through proteins known 
as dyneins [10]. The main molecules that are transported through the axons are 
synaptic precursor vesicles and dense core vesicles, signaling endosomes, BDNF 
vesicles, endosomes, late lysosomes, autophagosomes, APP, mRNA, neurofilament, 
and tubulin assembly and cytosolic proteins, in addition to organelles such as mito-
chondria [9]. Axonal fragmentation resulting from the traumatic spinal cord injury 
makes it impossible for the neuron to send these in both directions, which generates 
growth abortion and no axonal regeneration, conjointly with the formation of a 
fibroglial scar in the area of injury [11].

3.4 Vascular events

As mentioned earlier, the ischemic process is another mechanism through which 
secondary damage occurs. One of the achievements of modern vascular neurology 
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is the description of the vascular, cellular, and biochemical changes that constitute 
this process [12]. The primary spinal cord injury generates a spinal cord shock, 
with the consequent neurogenic shock. According to Popa [13], a systemic vascular 
response is generated when the following are observed: coronary heart disease, 
arterial hypotension, and deep vein thrombosis, which may be perpetuated to 
become chronic processes.

Ischemic damage is constituted by the dynamic interaction between neurons, 
astrocytes, fibroblasts, smooth muscle, and endothelial cells that interact with the 
formed elements of the blood leading to cell death [12]. The main biochemical events 
that occur in this ischemic process are inhibition of protein synthesis, depression of 
intracellular energy reserves, depolarization of the cell membrane, release of intra-
cellular K+ followed by the release of neurotransmitters, Ca2+ influx to the cell, and 
cellular metabolic commitment, which leads to lipidic peroxidation that ultimately 
results in neuronal nuclear destruction and death. At the molecular level, an increase 
in oxygen extraction increases glucose demand, and lactic acidosis is expressed [14].

3.5 Neurotoxicity by free radicals

Another mechanism that contributes in a very important way to the increase in 
damage in the area of injury is the neurotoxicity caused by free radicals. These reac-
tive molecules are powerful oxidizing agents that are in balance with antioxidant 
systems. They have one or more unpaired electrons due to their loss or gain, which 
makes them very unstable, and they are responsible for damage to cell structures 
of biological importance [13, 15]. The free radical species that can be found include 
superoxide anion (O2

−), hydrogen peroxide (H2O2), hydroxyl radical (OH−), ozone 
(Oz), nitric oxide (ON), hypochlorous acid (HOCl), and different metal ions. These 
ions are generated in the mitochondria during oxidative phosphorylation which is a 
process whereby ATP is formed as a result of the transfer of electrons from NADH 
or FADH2 to oxygen through a series of electron transporters [16].

The free radical-mediated tissue injury is the result of abnormal and uncon-
trolled reactions of these molecules in several cellular compartments. The activity is 
divided into three stages: initiation, propagation, and termination [17].

The initiation of lipoperoxidation is by extraction of a hydrogen atom from the 
allylic carbons (〓C▬) of the unsaturated fatty acids of the cell membranes as 
well as the purine bases and pyrimidine bases of the nucleic acids, resulting in free 
radical alkyl (R.). Free radicals alkyl rearrange molecularly forming a conjugated 
diene that will react with molecular oxygen generating peroxyl radicals (ROO˙) 
[18] which by extraction of one hydrogen atom from another allylic carbon, from 
another unsaturated fatty acid from the bilayer lipidic biological membranes 
reacting to hydroperoxides forms (ROOH) involving the process called propaga-
tion. Finally, the termination phase occurs by the formation of aldehydes, hydro-
carbonaceous gases, and various chemical residues, including malondialdehyde 
(COH▬CH2▬CHO) which will react with lipids and proteins to form conjugated 
Schiff bases, insoluble products that accumulate inside the lysosomes and form the 
pigment known as lipofuscin [19].

As will be seen below, the immune response after spinal cord injury recruits a 
large number of inflammatory cells, including neutrophils and macrophages, which 
are producers of nitric oxide. Nitric oxide is a free radical that is very important 
for vascular physiology since it participates in numerous regulatory events, which 
include vascular tone and blood pressure. This radical is formed by the reaction of 
L-arginine and oxygen and cofactors such as NADPH, and this reaction is catalyzed 
by nitric oxide synthase (NOS). Nitric oxide synthase has three isoforms: nNOS 
(present in brain neurons), eNOS (in endothelial cells), and iNOS (inducible in the 

17

Physiopathology of Spinal Cord Injury
DOI: http://dx.doi.org/10.5772/intechopen.86234

macrophage); the first two are dependent on high concentrations of Ca2+ and have 
a physiological function, while the latter is independent of Ca2+ and is important in 
inflammatory processes [20].

Among other consequences, the alteration in the basal levels of NO produces cell 
death, and, although the mechanisms are not totally clear, it is known that apoptosis 
can occur from the inhibition of glycolysis, the Krebs cycle, and the synthesis of 
the DNA; also, when combined with superoxide radical, peroxynitrite is formed 
(O2

− + NO → ONOO−), which is a highly reactive species and cytotoxic, as it reacts 
with proteins, fatty acids of membranes, and nucleic acids and decomposes into 
products with toxic substances that may include nitronium ion (NO2

+), nitrogen 
dioxide (NO2), and hydroxyl ion (OH−) [16].

In this regard there are protective systems that prevent the excessive increase 
of oxidizing species. Among them there are three enzymes that are the most 
important system of this protection: superoxide dismutase (SOD), which converts 
the superoxide radical into hydrogen peroxide; the glutathione peroxidase, which 
using two molecules of glutathione in the reaction converts hydrogen peroxide 
into two water molecules, while the lipid peroxides are reduced in the presence of 
glutathione; and finally catalase, which also destroys hydrogen peroxide. However, 
the activity of these antioxidant enzymes is particularly low in the CNS compared 
to other tissues [21]. This makes this system particularly sensitive to free radicals. 
In addition, the CNS is rich in iron, which is the main inducer of the production 
of free radicals after an injury to the CNS itself. On the other hand, the cellular 
membrane of tissues is rich in cholesterol and polyunsaturated fatty acids which 
are targets of oxygen free radicals. Likewise, the CNS has few antioxidant defenses, 
which causes it to be even more vulnerable; in addition, studies in patients have 
shown that during the first year after injury, oxidative stress increases and the 
ability of the antioxidant defense decreases [22].

3.6 Excitotoxicity

Another mechanism of cell damage after spinal cord injury is known as excito-
toxicity, caused by excessive release of neurotransmitters. A continuous increase in 
glutamate concentrations is observed, due to the self-amplification of glutamatergic 
circuits. These circuits function due to the recycling of glutamate, exocytosis of 
calcium-dependent synaptic vesicles, and discharge of intracellular glutamate as a 
result of cell lysis [23]. This abundance of glutamate, especially in a hypoxic envi-
ronment, overstimulates its ionotropic receptors, N-methyl-D-aspartate (NMDA), 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA), and kainate, trigger-
ing cell death by excitotoxicity [24].

Initially, glutamate binds to its receptors and causes depolarization. This acti-
vates voltage-dependent sodium channels, causing extensive depolarization and 
a marked increase in intracellular sodium concentration. The chronicity of this 
response will lead to the release of NMDA receptors from their blockade by magne-
sium, leaving them available for activation by glutamate and increasing intracellular 
sodium. This intracellular imbalance of ions, caused by the flow of sodium, is cor-
rected by a flow of chloride ions. In addition, this attempt to restore the osmotic bal-
ance of the cell leads to a flow of water into the intracellular space causing lysis [24]. 
Alternatively, excitotoxicity can kill neuronal cells by calcium-dependent mecha-
nisms. This means that chronic depolarization leads to an intracellular calcium flux 
via calcium-dependent channels and the opening of channels of NMDA receptors; 
this flow is increased by the mobilization of calcium from its intracellular reservoirs 
and the reverse sodium-calcium exchange operation of the membrane, and activa-
tion of calcium-dependent self-destructive enzymes begins as a result [22].
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and the reverse sodium-calcium exchange operation of the membrane, and activa-
tion of calcium-dependent self-destructive enzymes begins as a result [22].
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Cell death by excitotoxicity is also observed in the glia [24], oligodendrocytes 
being the most susceptible cells [25]; as these cells do not have NMDA receptors, 
excitotoxicity is via AMPA, and kainite receptors in oligodendrocytes are more 
permeable to calcium in neurons, resulting in a more accelerated destabilization 
of their organelles; in addition, these cells have less efficient calcium buffering 
systems, which generate cell death in a more hasty manner [25].

3.7 Inflammation and immune response

After a TSC an intense inflammatory response is triggered that involves the 
action of chemical mediators, the cytokines IL-2, IL-6, and tumor necrosis factor 
alpha (TNF-α), and the participation of inflammatory cells such as neutrophils and 
mast cells. In addition to a large invasion of macrophages to the site of injury, both 
activated neutrophils and macrophages produce superoxide anion and nitric oxide; 
the latter can also be produced by platelets, endothelial cells, and microglia (CNS 
macrophages). Activated macrophages/microglia are important producers of cyto-
toxic substances, such as the proinflammatory cytokines mentioned above, causing 
neural damage and preventing tissue regeneration [26]. According to David [2], a 
flow of monocytes to the spinal cord of mice occurs at 12 hours and again at 4 days 
after injury. This flow is dependent on MYD88 and IL-4; however, it is not well 
determined whether it is from proinflammatory monocytes. In rats, researchers 
have been able to track dendritic cells to the area of injury by immunofluorescence, 
though it has not been seen in mice.

4. Discussion

The pathophysiology of spinal cord injury is not sufficiently described, and fur-
ther research is needed to gain a better understanding of all the processes involved.

However, the mechanisms known so far show us a multifactorial syndrome that 
requires detailed study of destruction phenomena that are triggered as secondary 
injury. The understanding of these phenomena will lead to the rational search for 
solutions for patients with this condition. It is important to emphasize finding 
therapies that help the patient in both moments of the evolution of the lesion, as 
well as to provide neuroprotection, so as to favor the regeneration of injured tissue. 
In this chapter a brief description of the pathophysiology of the spinal cord lesion is 
offered in order to help the researcher find the best solutions.

There are a large number of studies with different approaches. However, a solu-
tion to all the consequences that a spinal cord injury causes has yet to be found, and 
so the need to find alternative treatments remains.

5. Conclusions

All the alterations and phenomena that occur at a cellular and molecular level 
are related to gradual degeneration of both vascular and neural tissue, destroying 
the anatomical substrate necessary for neurological recovery. These neurode-
generative processes cause the need to use different therapeutic strategies that 
reduce the damage caused by secondary injury, always looking for alternatives 
based on an understanding of the pathophysiology of spinal cord injury, which 
helps generate comprehensive and multivariable treatments that favor the 
recovery of function, preventing secondary damage and favoring regeneration of 
the neural tissue.
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Abstract

The astrocytic cell responses to injury have been extensively studied in a 
variety of experimental models, and the term “astrogliosis” is often used to 
describe the astrocyte reactions to injury. Cells responding in these ways to injury 
are often referred to as “reactive astrocytes.” Glial scarring appears to be a critical 
feature of wound healing in the central nervous system (CNS), since elimination 
of the mitotically active contingent of reactive astrocytes leads to increase in the 
size of the wound. Reactive astrogliosis is a term coined for the morphological 
and functional events seen in astrocytes responding to CNS injury. The concept 
of reactive astrogliosis and its molecular and cellular definition in spinal cord 
injury (SCI) is still incomplete. Producing several inhibitory molecules discour-
ages regeneration of axons in the injured spinal cord. This inhibition is com-
pounded by the poor regenerative ability of most CNS axons. This is probably 
a more achievable therapeutic target than axon regeneration, and an effective 
treatment would be of assistance to the majority of patients with partial cord 
injuries. Of course, understanding about astrogliosis and producing mediators 
and inhibitory molecules such as signaling pathways help us to develop new 
treatment strategies for SCI.

Keywords: astrogliosis, reactive astrocyte, inhibitory molecule

1. Introduction

Astrocytes are the most numerous glial cells in the CNS, which are pivotal for 
various structural and physiological functions [1]. SCI triggers astrocytes to become 
reactive and initiate astrogliosis. Reactive astrogliosis is characterized by the pro-
liferation and hypertrophy of astrocytes, which eventually leads to scar formation 
via the activation of signaling pathways such as Gp-130/activator of transcription 3 
(STAT3) and transforming growth factors-beta (TGF-β/Smad) [2]. With the onset 
of injury, changes occur in the phenotype and morphology of astrocytes. These 
changes include increasing in their expression of intermediate filaments such as 
nestin, glial fibrillary acidic proteins (GFAP), and vimentin. Reactive astrocytes 
also related to the release of pro-inflammatory and anti-inflammatory cytokines 
such as tumor necrosis factor-alpha (TNF-α), TGF-β, interferon-gamma (IFN-γ), 
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and interleukins (IL-1 and IL-6). It is well established that these cytokines can 
modulate inflammation and also secondary injury [3].

When astrocytes are activated, they change the composition of extracellular 
matrix (ECM) dramatically. Several ECM components including chondroitin sul-
fate proteoglycans (CSPGs) and tenascins are markedly upregulated in astrocytes. 
In addition to these phenotypic changes, astrocytes increase in number and migrate 
to the site of injury [4].

Therefore, astrocyte reactivity is considered as a part of endogenous mecha-
nisms to restrict the initial tissue injury to the spinal cord and prevent extension of 
damage into adjacent segments. The pivotal role of reactive astrocytes particularly 
at first stages of SCI is indicated by recent findings. Ablation of reactive astrocytes 
or altering with their activation at the time of SCI injury can intensify the damage 
by elevating tissue degeneration and disrupt to reconstruct blood-spinal barrier 
(BSB) [5]. However, over time after injury, inhibitory features of reactive astrocytes 
overcome their constructive properties. This is mostly contributed to the upregula-
tion of inhibitory molecules such as CSPGs that extremely prevent neuroregenera-
tion and neural repair [6].

Astrogliosis may be heterogeneous. Not all astrocytes with the morphological 
characteristics of reactive astrocytes (i.e., increased GFAP) are present in areas with 
increased levels of ECM. Perhaps not all astrocytes that react to injury play a role 
in the failure of CNS regeneration, and that only those astrocytes associated with 
inhibitory molecules are detrimental to axon growth while those further away from 
the lesion may be more conducive to neurite sprouting, functional plasticity, and 
long-distance regeneration [7].

2. Functions of astrocytes in a healthy brain

Based on previous studies, astrocytes were for decades considered to be assist-
ing and nurturing neurons. Regarding several studies, the protoplasmic astrocytes 
divide the whole gray matter of the brain and spinal cord into distinct domains, 
with blood vessels, neurons, and synapses contained within these domains [8], 
and the fibrous astrocytes are in the white matter and are in physical contact with 
oligodendrocytes and have an important role in myelinization; however, astrocyte 
functions go far beyond assistance and support [9, 10].

During development, they are considered in key developmental and postnatal 
traces in the CNS. Astrocytes release neurotrophic factors that regulate neuronal 
development, cell migration, and differentiation [11]. Developing astrocytes 
guide postmitotic neurons from the ventricular zone to their target destination in 
developing CNS. Radial glial cells, a subtype of astrocytes, guide new neurons for 
accurate migration [12]. Astrocytes secrete vascular endothelial growth factor that 
is necessary for the generation of new blood vessels in rostral migratory stream 
(RMS) [13]. Besides, astrocytes have connection with blood vessels through their 
end-feet. They can produce important mediators which contributed to vasocon-
striction or vasodilation such as arachidonic acid, nitric oxide (NO), or prostaglan-
dins [14]. Astrocytes play a critical role in the coupling of neuronal organization 
to signaling circuits. They are involved in hemodynamic responses with neurons 
through blood flow.

Astrocytes significantly contribute to the establishment and maintenance 
of blood-brain barrier (BBB) and BSB in the CNS [15]. Astrocytes also clear 
neurotransmitters such as gamma-aminobutyric acid (GABA), glycine, and glu-
tamate from the synaptic clefts and facilitate normal synaptic transmission [16]. 
Astrocytes have an important function in regulation of pH in CNS. They set up 
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proton shuttling through different proteins such as Na+/H+ exchanger, bicarbonate 
transporters acting in a sodium-dependent/independent mode, monocarboxylic 
acid transporters, carbonic anhydrase in both intra-and extracellular spaces, and 
the vacuolar-type proton ATPase [17].

Astrocytes are actively involved in the synthesis and maintenance of the ECM in 
the CNS. They produce a number of ECM components with both growth-promot-
ing and inhibitory properties [18]. Astrocytes also express tenascin-C and different 
CSPGs with growth inhibitory properties [19]. When neuronal maturation begins 
in the normal CNS, CSPGs are concentrated strongly in the perineuronal nets where 
they are critical for stabilizing synapses and limiting undesirable plasticity [20].

3. Reactive astrogliosis in SCI

After SCI, astrocytes undergo significant cellular, molecular, and functional 
changes along with profound alterations in their gene expression. The reactions of 
astrocytes to the injury include hypertrophy of processes and soma and increasing 
in proliferation and upregulation of intermediate filaments such as GFAP, vimentin, 
and nestin. These alterations are the important markers of a phenomenon known as 
reactive astrogliosis [7].

Reactive astrogliosis is also indicated by high production of CSPGs, several 
cytokines, and chemokines such as IL-1β, IL-6, TGF-β, ciliary neurotrophic factor 
(CNTF), adhesion molecules, and proteins such as cyclooxygenase2, inducible NO 
synthase (iNOS), and calcium-binding protein S100β. These factors are considered 
as the functional markers of astrocyte reactivity whose levels are upregulated fol-
lowing CNS injuries [21].

Astrogliosis can be categorized from moderate changes in astrocytes to high 
reactivity related to scar formation [22]. In initial stages, there is aberrant hyper-
trophy of astrocytes and low upregulation of GFAP levels; however, no important 
proliferative activities usually occur in mild astrogliosis [23]. Mild astrogliosis 
or “isomorphic gliosis” is seen in the cases of axotomy, chemical lesions, or mild 
injury where astrocytes are distal to the site of lesion [24]. These alterations can be 
turned by reducing the triggering effects of upstream signaling molecules. Over 
time, reactive astrocytes express GFAP highly and show substantial hypertrophy, 
and some degree of proliferation. These remarkable expansions lead to disruption 
of particular regions of astrocytes and cause tissue distortion [3]. In intensive 
injuries, astrocytic processes overlap and become densely packed. At this stage, 
a glial scar encircles the epicenter of spinal cord lesion. Glial scar that is formed 
after local disruption of spine parenchyma is invariable and is nominated as 
“anisomorphic gliosis” [25].

Although astrogliosis is an early important marker of SCI in rodents, in human 
SCI, astrocyte reactivity is not a prominent property at acute or subacute phases, 
and astrogliosis seems to evolve over the time and become more evident at interme-
diate and chronic phases of SCI [26]. The presence of dense astrogliosis at 11 days 
after SCI that was still evident after 1 year post-SCI has been reported in some 
evidences [27]. Further investigations for astrogliosis in human SCI are necessary 
to examine the impact and timing. This is particularly important when translating 
therapeutic strategies that target astrogliosis from rodent models to human SCI.

Meningeal fibroblasts also contribute to scar formation. In fact, the glial scar 
formation is adjusted by a cell-cell contact mechanism between reactive astrocytes 
and meningeal fibroblasts at the spinal cord lesion. Signaling between ephrin-B2 on 
reactive astrocytes and EphB2 receptors on meningeal fibroblasts appears to carry 
on this process [28].
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and interleukins (IL-1 and IL-6). It is well established that these cytokines can 
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divide the whole gray matter of the brain and spinal cord into distinct domains, 
with blood vessels, neurons, and synapses contained within these domains [8], 
and the fibrous astrocytes are in the white matter and are in physical contact with 
oligodendrocytes and have an important role in myelinization; however, astrocyte 
functions go far beyond assistance and support [9, 10].

During development, they are considered in key developmental and postnatal 
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Astrocytes significantly contribute to the establishment and maintenance 
of blood-brain barrier (BBB) and BSB in the CNS [15]. Astrocytes also clear 
neurotransmitters such as gamma-aminobutyric acid (GABA), glycine, and glu-
tamate from the synaptic clefts and facilitate normal synaptic transmission [16]. 
Astrocytes have an important function in regulation of pH in CNS. They set up 
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as the functional markers of astrocyte reactivity whose levels are upregulated fol-
lowing CNS injuries [21].

Astrogliosis can be categorized from moderate changes in astrocytes to high 
reactivity related to scar formation [22]. In initial stages, there is aberrant hyper-
trophy of astrocytes and low upregulation of GFAP levels; however, no important 
proliferative activities usually occur in mild astrogliosis [23]. Mild astrogliosis 
or “isomorphic gliosis” is seen in the cases of axotomy, chemical lesions, or mild 
injury where astrocytes are distal to the site of lesion [24]. These alterations can be 
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formation is adjusted by a cell-cell contact mechanism between reactive astrocytes 
and meningeal fibroblasts at the spinal cord lesion. Signaling between ephrin-B2 on 
reactive astrocytes and EphB2 receptors on meningeal fibroblasts appears to carry 
on this process [28].
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Reactive astrogliosis can be triggered through several signaling pathways such 
as signal transducers and activators of transcription (STAT) and TGF-β/Smad 
(Figure 1) [29]. Both beneficial and detrimental effects of SCI can be dependent 
to which signaling pathways and timing after SCI are involved. Understanding the 
beneficial and detrimental role of reactive astrocytes will allow us to plan thera-
peutic approaches.

4. Beneficial effects of reactive astrogliosis in SCI

Previously, astrocytes were known to be solely harmful in SCI, and their 
inhibition or ablation was considered as a therapeutic strategy. Recent studies have 
provided strong evidence that reactive astrocytes play pivotal roles in SCI repair 
with protective features [30, 31]. Repair responding by reconstructing the dam-
aged BSB and limiting the infiltration of peripheral leukocytes and activation of 
resident microglia [32], modulating blood flow by the release of vasoconstrictors 
and regulating blood vessels diameter [33], uptaking excess glutamate, protect-
ing neurons and oligodendrocytes from glutamate excitotoxicity, and producing 
antioxidants such as glutathione and defending against oxidative stress [34] 
are inconsiderable parts of beneficial roles of astrocytes. Reactive astrocytes 
upregulate the expression of intermediate filaments, GFAP, vimentin, and nestin. 
Interestingly, in hemisection model of SCI, double GFAP and vimentin knockout 
mice showed beneficial outcomes [35].

Besides, astrocytes are known to become reactive through STAT3 and sup-
pressor of cytokine signaling 3 (SOCS3) pathways. Some evidences indicated that 
knockout of SOCS3 or STAT3 in GFAP-Cre or nestin-Cre transgenic models caused 
limited migration of astrocytes to the site of lesion and interfered with the forma-
tion of glial scar. Failure of scar formation in these animals resulted in widespread 
lesion [36]. Also, astrocytes can promote tissue repair and regeneration as they 
upregulate their expression of fibroblast growth factor-2 (FGF-2) and S100β in the 
injured spinal cord [37]. Furthermore, astrocyte polarity and directional migra-
tion play an important role in astrocyte ability to react to injury. Recent findings 

Figure 1. 
Reactive astrogliosis is a response of activated astrocytes seen in spinal cord injury and can be triggered through 
various signaling pathways such as signal transducers and activators of transcription (STAT) and TGF-β/
Smad. In most situations, it can be viewed as a defensive reaction counteracting acute stress, restoring the CNS 
homeostasis, and limiting the tissue damage; however, persisting reactive astrogliosis can be lead to inhibition of 
neural plasticity and other regenerative responses.
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demonstrated that astrocytes depleted of the small RhoGTPase Cdc42, which is a 
key regulator of cell polarization, display impaired recruitment to the stab wound 
lesion, despite their upregulation of GFAP and hypertrophic response [38].

5. Detrimental roles of reactive astrocytes after SCI

Glial scar is a major detriment to regeneration of severed axons by upregulating 
a great number of molecules around the lesion and preventing regrowth of injured 
axons at the lesion area, including CSPGs, tenascin, semaphorin 3A, keratan sulfate 
proteoglycans (KSPGs), myelin-associated inhibitors, and ephrins/Eph receptors 
[6]. Reactive astrocytes and the ECM components generate a dense glial scar around 
the SCI lesion and create physical and chemical barriers on axonal regeneration. In 
fact, as axons come in close contact with the glial scar, they form dystrophic end-
bulbs and retract without any regeneration [39]. ECM components such as CSPGs 
[40], tenascins [41], and collagen [42] can be act as main inhibitory factors in 
axonal regeneration. They could upregulate in the glial scar after SCI and obstruct 
axonal elongation and sprouting [43].

6. Molecular mediators of reactive astrogliosis

6.1 STAT3

STAT3 is a member of the Janus kinase STAT family and a transducer of signals 
for many cytokines and growth factors, such as IL-6, leukemia inhibitory factor 
(LIF), and CNTF [44]. The effect on astrocyte activation may be mediated via the 
STAT3 signaling pathway, phosphorylation, and nuclear translocation of STAT3 in 
astrocytes as well as indirectly through the effects of these molecules on other cell 
types such as microglia, neurons, or endothelial cells [45]. One of the key media-
tors of astrocytic scar formation after SCI is STAT3 signaling. STAT3 conditional 
knockout mice failed to create a glial scar that led to a widespread lesion and poor 
recovery of function after SCI. Lack of STAT3 activation especially led to the inabil-
ity of astrocytes to move and migrate to the lesion site. This resulted in exacerbated 
infiltration of inflammatory cells at the site of SCI. This finding emphasized the 
importance of STAT3 activation in astrocytes and the impact of reactive astrogliosis 
in restraining leukocyte infiltration and reducing the initial insult after SCI [36].

6.2 Ephrins/Eph receptors

Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin 
ligands have attracted considerable attention since their discovery, due to their 
extensive distribution and unique bidirectional signaling between astrocytes 
and neurons [46]. Eph/ephrin signaling is involved in the glial scar formation 
in CNS disorders. It has been demonstrated in a model of spinal cord injury that 
the development of glial scars and the exclusion of meningeal fibroblasts from 
the site of damage are a result of cell contact-mediated bidirectional signaling 
cascades, which is stimulated by the interaction of ephrin-B2 and EphB2 with 
reactive astrocytes and meningeal fibroblasts, respectively [28]. Another previous 
study demonstrated that ephrin B2 (−/−) mice exhibited a reduction in astroglio-
sis and an accelerated regeneration of injured corticospinal axons, which resulted 
in the recovery of murine motor function following spinal cord injury (SCI) [47].
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demonstrated that astrocytes depleted of the small RhoGTPase Cdc42, which is a 
key regulator of cell polarization, display impaired recruitment to the stab wound 
lesion, despite their upregulation of GFAP and hypertrophic response [38].

5. Detrimental roles of reactive astrocytes after SCI
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a great number of molecules around the lesion and preventing regrowth of injured 
axons at the lesion area, including CSPGs, tenascin, semaphorin 3A, keratan sulfate 
proteoglycans (KSPGs), myelin-associated inhibitors, and ephrins/Eph receptors 
[6]. Reactive astrocytes and the ECM components generate a dense glial scar around 
the SCI lesion and create physical and chemical barriers on axonal regeneration. In 
fact, as axons come in close contact with the glial scar, they form dystrophic end-
bulbs and retract without any regeneration [39]. ECM components such as CSPGs 
[40], tenascins [41], and collagen [42] can be act as main inhibitory factors in 
axonal regeneration. They could upregulate in the glial scar after SCI and obstruct 
axonal elongation and sprouting [43].

6. Molecular mediators of reactive astrogliosis

6.1 STAT3

STAT3 is a member of the Janus kinase STAT family and a transducer of signals 
for many cytokines and growth factors, such as IL-6, leukemia inhibitory factor 
(LIF), and CNTF [44]. The effect on astrocyte activation may be mediated via the 
STAT3 signaling pathway, phosphorylation, and nuclear translocation of STAT3 in 
astrocytes as well as indirectly through the effects of these molecules on other cell 
types such as microglia, neurons, or endothelial cells [45]. One of the key media-
tors of astrocytic scar formation after SCI is STAT3 signaling. STAT3 conditional 
knockout mice failed to create a glial scar that led to a widespread lesion and poor 
recovery of function after SCI. Lack of STAT3 activation especially led to the inabil-
ity of astrocytes to move and migrate to the lesion site. This resulted in exacerbated 
infiltration of inflammatory cells at the site of SCI. This finding emphasized the 
importance of STAT3 activation in astrocytes and the impact of reactive astrogliosis 
in restraining leukocyte infiltration and reducing the initial insult after SCI [36].

6.2 Ephrins/Eph receptors

Erythropoietin-producing human hepatocellular (Eph) receptors and ephrin 
ligands have attracted considerable attention since their discovery, due to their 
extensive distribution and unique bidirectional signaling between astrocytes 
and neurons [46]. Eph/ephrin signaling is involved in the glial scar formation 
in CNS disorders. It has been demonstrated in a model of spinal cord injury that 
the development of glial scars and the exclusion of meningeal fibroblasts from 
the site of damage are a result of cell contact-mediated bidirectional signaling 
cascades, which is stimulated by the interaction of ephrin-B2 and EphB2 with 
reactive astrocytes and meningeal fibroblasts, respectively [28]. Another previous 
study demonstrated that ephrin B2 (−/−) mice exhibited a reduction in astroglio-
sis and an accelerated regeneration of injured corticospinal axons, which resulted 
in the recovery of murine motor function following spinal cord injury (SCI) [47].
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6.3 TGF-β

TGF-β signaling is one of the mediators of reactive astrogliosis in SCI. TGF-β 
has been identified as a key trigger of CSPGs formation in the glial scar [48]. In 
experimental models of SCI, blockade of TGF-β signaling is shown to attenuate 
scar formation [49]. Interestingly, blood fibrinogen is a factor that activates TGF-β 
signaling after CNS injury. After vascular disruption and hemorrhage, blood 
fibrinogen is released into the CNS tissue, and reactive astrogliosis and CSPGs 
formation through the activation of TGF-β Smad2 pathway can be activated [50].

6.4 Nuclear factor-κB (NF-κB)

Activation of NF-κB transcription factor has been implicated in astrogliosis, 
although with some sophisticated evidence. In SCI, one study indicated that increased 
level of NF-κB was found in microglia/macrophages and endothelial cells but not 
in astrocytes [51]. However, in another study, reactive astrocytes were displayed to 
express NF-κB. Notably, studies in transgenic mice expressing IkBα, an inhibitor of 
NF-κB, under hGFAP promoter demonstrated that inactivation of astroglial NF-κB 
reduced the expression of TGF-β2 and CSPGs as well as other chemokines involved 
in glial scar formation such as C-X-C motif chemokine 10 (CXCL10) and C-C motif 
chemokine ligand 2 (CCL2). Moreover, blockade of NF-κB activation in astrocytes has 
resulted in white matter sparing and improved functional recovery after SCI [52].

6.5 Endothelins (ET)

ETs are peptides with vasoactive property. They can modulate reactive astro-
gliosis in various CNS diseases. ET-1 and its receptors are particularly increased 
in astrocytes after damage and seem to be one fundamental cause of astrogliosis 
[53]. In a stab wound injury, ET-1 receptor antagonist BQ788 decreased the activa-
tion and proliferation of astrocytes. ET-1 stimulates astrocyte proliferation via the 
activation of JNK/c-Jun signaling pathway in vitro [54].

6.6 Mitogen-activated protein kinase (MAPK)

MAPK and its downstream cascades mediate astrogliosis. It is indicated that 
c-mos proto-oncogene, which triggers the activation of MAPK signaling, stimulates 
astrogliosis. Several studies implicated the phosphorylation of extracellular signal-
regulated kinase/MAPK in reactive astrocytes in mice and humans [55].

6.7 Semaphorin 3A

Semaphorin 3A (Sema3A) is an important secreted repulsive guidance factor for 
many developing neurons [56]. Sema3A may be secreted from non-neuronal cells 
such as astrocytes. Sema3A continues to be expressed in adulthood, and expression 
of its receptor, neuropilin-1 (Nrp-1), can be altered by nerve injury [57]. Sema3As 
are regarded as one of the major classes of axon repulsive molecules that lead to 
the failure of axons to regenerate through the neural scar. Thus, interfering with 
Sema3A signaling can be beneficial for axonal regrowth [58].

6.8 Aquaporins

Aquaporins may play a role in the activities of astrocytes after SCI. In particular, 
recent studies showed that Aquaporin-4 is critical in glial scar formation [59].  
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In a cortical brain injury, Aquaporin-4 null mice displayed decreased migration of 
astroglia as a contribution to the injury site and less glial scarring. However, find-
ings from rat SCI indicated biphasic changes in astrocytic Aquaporin-4 levels with 
preliminary downregulation after SCI and a following long-lasting upregulation in 
subacute and chronic stages of damage. Further elucidation is needed to understand 
the impact of Aquaporin-4 in scar formation after SCI [60].

6.9 Components of ECM

The ECM comprises the molecules that form the structure of the matrix. There 
is a huge range of molecules that have been shed from the cell surface or secreted by 
neurons and glia [22]. Most of these shed or secreted molecules bind to the matrix 
to some extent, mainly to the negatively charged glycosaminoglycan (GAG) chains 
of the CSPGs and heparan sulfate proteoglycans (HSPGs). There are two families 
of cell surface-attached HSPGs, the transmembrane syndecans and the GPI-linked 
glypicans. Various matrix components, particularly tenascin-C and CSPGs, are 
upregulated in regions of CNS damage.

Tenascins are abundant in the ECM of developing vertebrate embryos. There 
are four members of the tenascin gene family: tenascin-C, tenascin-R, tenascin-X, 
and tenascin-W. Tenascin-C is the most intensely studied member of the family 
[61]. Tenascin-C is anti-adhesive to many forms of neuron in vitro and inhibits 
axon growth from many neurons, although it promotes axon growth from some 
embryonic neuronal types [62]. These dual properties have been assigned to 
different splice variants of tenascin-C and molecular epitopes within those splice 
variants [63].

The levels of CSPGs increase dramatically following various CNS injuries, 
including lesions in the spinal cord, cortex, fornix, and nigrostriatal area [20]. 
CSPGs are primarily generated by reactive astrocytes and to a lesser extent by 
oligodendrocytes and monocytes. CSPGs are a family of molecules characterized by 
a core protein to which the large and highly sulfated GAG chains are attached. The 
major CSPGs found in the CNS include lecticans (neurocan, versican, aggrecan, 
and brevican), phosphacan (6B4 proteoglycan), and NG2 [64].

KSPGs are another class of inhibitory ECM molecule, which are associated with 
spinal cord lesions [65]. Mice lacking GlcNAc6ST-1, an enzyme critical for keratan 
sulfate (KS) biosynthesis, have enhanced plasticity and functional recovery after 
SCI [66]. Recent findings show that using KS-specific degradative enzyme, kera-
tanase II (K-II), degrade KSPGs and allow substantial motor recovery in acute phase 
of SCI [67].

7. Conclusion

Beneficial and detrimental effects of astrogliosis have been reported by various 
researches. It depends on mediators and inhibitory molecules and also signaling 
pathways involved in SCI. Of course, more studies about astrogliosis as a complex 
and multifactorial phenomenon in SCI are essential. New strategies are required to 
minimize the detrimental effects of reactive astrocytes for increasing their benefi-
cial effects and improve repair and regeneration.

Limiting the amount of secondary damage done by inflammation to reduce 
cavitation, encouraging the production of molecules supportive of regeneration, 
and decreasing factors inhibiting axon growth will tip the delicate balance of 
growth-promoting and growth-inhibiting factors to a net environment that sup-
ports functional regrowth after CNS injury.
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In a cortical brain injury, Aquaporin-4 null mice displayed decreased migration of 
astroglia as a contribution to the injury site and less glial scarring. However, find-
ings from rat SCI indicated biphasic changes in astrocytic Aquaporin-4 levels with 
preliminary downregulation after SCI and a following long-lasting upregulation in 
subacute and chronic stages of damage. Further elucidation is needed to understand 
the impact of Aquaporin-4 in scar formation after SCI [60].

6.9 Components of ECM

The ECM comprises the molecules that form the structure of the matrix. There 
is a huge range of molecules that have been shed from the cell surface or secreted by 
neurons and glia [22]. Most of these shed or secreted molecules bind to the matrix 
to some extent, mainly to the negatively charged glycosaminoglycan (GAG) chains 
of the CSPGs and heparan sulfate proteoglycans (HSPGs). There are two families 
of cell surface-attached HSPGs, the transmembrane syndecans and the GPI-linked 
glypicans. Various matrix components, particularly tenascin-C and CSPGs, are 
upregulated in regions of CNS damage.

Tenascins are abundant in the ECM of developing vertebrate embryos. There 
are four members of the tenascin gene family: tenascin-C, tenascin-R, tenascin-X, 
and tenascin-W. Tenascin-C is the most intensely studied member of the family 
[61]. Tenascin-C is anti-adhesive to many forms of neuron in vitro and inhibits 
axon growth from many neurons, although it promotes axon growth from some 
embryonic neuronal types [62]. These dual properties have been assigned to 
different splice variants of tenascin-C and molecular epitopes within those splice 
variants [63].

The levels of CSPGs increase dramatically following various CNS injuries, 
including lesions in the spinal cord, cortex, fornix, and nigrostriatal area [20]. 
CSPGs are primarily generated by reactive astrocytes and to a lesser extent by 
oligodendrocytes and monocytes. CSPGs are a family of molecules characterized by 
a core protein to which the large and highly sulfated GAG chains are attached. The 
major CSPGs found in the CNS include lecticans (neurocan, versican, aggrecan, 
and brevican), phosphacan (6B4 proteoglycan), and NG2 [64].

KSPGs are another class of inhibitory ECM molecule, which are associated with 
spinal cord lesions [65]. Mice lacking GlcNAc6ST-1, an enzyme critical for keratan 
sulfate (KS) biosynthesis, have enhanced plasticity and functional recovery after 
SCI [66]. Recent findings show that using KS-specific degradative enzyme, kera-
tanase II (K-II), degrade KSPGs and allow substantial motor recovery in acute phase 
of SCI [67].

7. Conclusion

Beneficial and detrimental effects of astrogliosis have been reported by various 
researches. It depends on mediators and inhibitory molecules and also signaling 
pathways involved in SCI. Of course, more studies about astrogliosis as a complex 
and multifactorial phenomenon in SCI are essential. New strategies are required to 
minimize the detrimental effects of reactive astrocytes for increasing their benefi-
cial effects and improve repair and regeneration.

Limiting the amount of secondary damage done by inflammation to reduce 
cavitation, encouraging the production of molecules supportive of regeneration, 
and decreasing factors inhibiting axon growth will tip the delicate balance of 
growth-promoting and growth-inhibiting factors to a net environment that sup-
ports functional regrowth after CNS injury.
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Abstract

When spinal cord injury (SCI) occurs, numerous sources of reactive oxygen 
species and nitrogen species may be active within first minutes or hours and even 
reactivate few days later. Free radical formation and lipid peroxidation (LP) have 
been described as an important mechanism in the beginning and accelerated 
progress in the development of diverse pathologies, importantly in those related 
to central nervous system. The compromise of molecules and cellular structures 
due to the oxidative state of microenvironment in SCI may determinate survival or 
apoptosis of resident and infiltrating cells and polarization toward an inflammatory 
response, which lead to an extension of damaged tissue and loss of neuronal func-
tion, or a regulatory/regenerative response. The investigation of new antioxidant 
agents and their action at a molecular level begins to reveal mechanisms that, if cor-
rectly modulated, promise an improvement in recovery of functions with respect to 
conventional pharmacological therapies. In this chapter, we will review the general 
mechanisms of oxidative stress and lipid peroxidation, those antioxidant treatments 
in experimental development and clinical phase, as well as their achievements and 
limitations.

Keywords: antioxidant therapy, lipid peroxidation, free radicals, spinal cord injury, 
nitric oxide

1. Introduction

Among the different pharmacological strategies for treating spinal cord injury 
(SCI), it has been observed that the quick intervention after the injury results in 
a better outcome for the patients [1]. This can be explained by the biochemical 
processes occurring at a cellular level that develop immediately after the mechanical 
damage, which define the subsequent physiological chain of events determining the 
evolution of pathophysiology of the SCI and, therefore, the degree of functional 
loss or recovery. One of the most important processes participating in the bal-
ance between the prevalence of damage or protection of tissue structure and the 
function in the central nervous system (CNS) is the generation of diverse reactive 
molecules by oxidative stress that target mainly lipids. This process is known as lipid 
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peroxidation (LP), and its end products could modify proteins and DNA present 
in cellular structures, causing cell death and a lower probability of regeneration 
[2]. SCI is a highly disabling and irreversible condition that causes physiological 
complications (bowel, cardiac, urinary, respiratory) and it has a social-economic 
impact in patients. The research of new agents targeting degenerative processes 
such as oxidative stress and LP is important especially due to the lack of efficacy and 
safety of conventional therapies on patients with SCI [1]. Here, we review the efforts 
to discover new compounds aimed to offer an option in antioxidant treatments and 
the use of some in combination or in an innovative way, both in experimental and 
in clinical trials. We would like to mention that there is a wide range of antioxidant 
therapies in study, and we are only briefly mentioning some of them at this time.

2. Acute spinal cord injury mechanisms

The pathophysiology of the SCI has been divided in primary and secondary 
injury, the latter generally described in acute and chronic phases. The mechanisms 
involved in the secondary injury include biochemical degenerative processes that 
exacerbates damage, such as the loss of blood-spinal cord barrier (BSCB) integrity, 
ischemia/reperfusion, hypoxia, loss of ionic homeostasis, Ca2+ overload, glutama-
tergic excitotoxicity, immune cell invasion, inflammation, release of cytokines, 
free radical (FR) production, LP, and excessive production of nitric oxide (NO•). 
All these events occur in the acute SCI and may be clinically targeted due to their 
times of action, different from the unexpected primary injury [3] (Figure 1). It has 
also been demonstrated that these mechanisms are related in a way that exacerbates 
when the levels of oxidative stress and LP molecules are increased and that attenu-
ates its effects when the antioxidant treatment is immediately given after SCI [4].

2.1 Mechanism of oxidative stress and free radical’s generation

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are mol-
ecules that participate in oxidative stress. They are endogenously produced under 
physiological conditions, and in low amounts, they are essential for biological 
and immune process [4]. Oxidative stress could be defined as a disturbance in the 
pro-/antioxidant equilibrium, for the presence of high levels of ROS and RNS that 
exceeds the endogenous antioxidative defense mechanisms, and they are associ-
ated with damage to a wide range of molecular species, such as lipids, proteins, and 
nucleic acids, contributing to the pathophysiology of SCI [3].

ROS are oxygen-derived compounds that include radicals (unstable molecules 
with a single unpaired electron), such as superoxide (O2

•−), hydroxyl (HO•) and 
peroxyl (RO2

•/HO2
•) radicals, and non-radicals such as hydrogen peroxide (H2O2). 

Within the first minutes and hours post-injury, different sources of O2
•− such as 

arachidonic acid cascade, mitochondrial leak, and enzymes systems [nicotin-
amide-adenine dinucleotide phosphate (NADPH) oxidase, myeloperoxidases, 
cyclooxygenase (COX), and xanthine oxidase], present in activated microglia 
and infiltrating cells (macrophages and neutrophils), may act providing O2

•− [5], 
derived from the reduction of oxygen molecules (O2) with a single electron (e−). 
Although O2

•− itself is reactive, its direct oxidative reactivity toward biological 
substrates in aqueous environments is relatively weak, but it distinguishes itself as 
an active nucleophile and oxidizing agent that can react with hydrogen donors  
(e.g., ascorbate and tocopherol) [4–6]. On one hand, superoxide dis-
mutase (SOD) rapidly catalyzes the dismutation of O2

•− into H2O2 and O2 
(2O2

•− + 2H+ → H2O2 + O2), and at low pH, O2
•− can dismutate spontaneously.  
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In oxidative stress, this H2O2 can react with transition metal cations to form oxidiz-
ing species such as HO• and hydroxyl anion (HO−), and this occurs mainly in the 
presence of iron (Fe) and cooper (Cu) ions. The central nervous system (CNS) is 
rich in ferric iron (Fe3+), contained in transferrin in plasma, and ferritin intracel-
lularly. This iron can be released from its transporters at pH values of 6 or less, like 
the one reached in hypoxia and accumulation of lactic acid in SCI, and become 

Figure 1. 
Progression of the inflammatory response in spinal cord parenchyma. The condition produced by the 
mechanical injury induces the activation of the damage targeting mechanisms, initially propitiated by  
the resident microglia, which secretes pro-inflammaory cytokines. Astrocytes and endothelial cells allow the 
permeabilization of BSCB and express chemoattractants to facilitate the admission of immune cells from 
the periphery, increasing the response at site. Collateral injuries can occur, largely due to the low antioxidant 
capacity of neural tissue to counteract the ROS produced by inflammatory cells, spreading the damage to 
other uninvolved cells. The extent of the initial damage is proportional to the final capacity of the organism to 
recover its motor and sensory functions [155].
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catalytic; a second source for Fe comes from the hemoglobin released after mechan-
ical-induced hemorrhage. O2

•− acts donating an electron to Fe3+, and the ferrous iron 
(Fe2+) catalyzes the conversion of H2O2 to HO• and HO−. Therefore, O2

•− and H2O2 
react in the presence of Fe3+/Fe2+ and promote the formation of HO• and HO− [2].

On the other hand, O2
•− can interact with NO•, a hydrophobic and mildly reactive 

radical generated enzymatically from L-arginine by nitric oxide synthase (NOS) 
isoforms, and give rise to one of the most important RNS, peroxynitrite ONOO− 
(NO• + O2

•− → ONOO−), a potent oxidizing and nitrating agent in vivo, either for 
direct oxidation reactions, in which it reacts with targets of low molecular weight 
and proteins (with thiols and metal centers), and carbon dioxide, or by derived 
radicals from homolytic cleavage, secondary to the reaction with carbon dioxide or 
protonation, included in RNS [2, 7]. Under biological conditions, ONOO− exists in 
equilibrium with its acidic form, the peroxynitrous acid (ONOOH), which decays 
rapidly by homolysis to give place to highly reactive nitrogen dioxide radical (NO2

•−) 
and HO• favored by the low pH in SCI [8]. Among the different direct reactions of 
ONOO−, one of the most relevant is this with CO2 (from bicarbonate buffer system), 
to form nitrosoperoxocarbonate (ONOOCO2), forming by cleavage strong oxidant 
agents, such as nitrogen dioxide (NO2

•−) and carbonate (CO3•−) radicals [7, 8].

2.2 Lipid peroxidation (LP)

Lipids are the most susceptible class of biomolecules to undergo oxidation; 
polyunsaturated fatty acids (PUFAs) are long-chain fatty acids with two or more 
double bonds in cis configuration, each separated by a methylene bridge (–CH2–) at 
their carbon backbone, and the hydrogen attached to the methylene bridge is very 
easy to remove. The LP is defined as an oxidative degradation and decomposition of 
lipids in an uncontrolled manner by nonenzymatic pathway and occurs when ROS 
react with PUFAs, leading to the modification of its physicochemical properties, 
disrupting the cellular membrane integrity. The enzymatic pathway produces lipid 
mediators such as prostanoids, leukotrienes, lipoxins, resolvins, and maresins by 
the action of COX or lipoxygenases (LOX), among others, causing dysregulation 
of blood flow, BSCB damage, inflammatory response, and programmed cell death 
pathway [9]. The CNS is particularly vulnerable to LP by various factors: it has high 
oxidative metabolic activity, PUFA content, and transition metal cations. In con-
trast, it has low antioxidant defenses and neuron-glia replication [8, 10].

The LP is a chain process that involves the participation of ROS, RNS, PUFAs, 
and oxidative systems, among others, where therapeutic intervention has been 
proposed with molecules that can both prevent FR formation and prevent those 
already formed from reacting with biomolecules. Because the peak of ROS produc-
tion occurs within the first 24 h after the injury, or during ischemia-reperfusion, 
the drugs that can be used for this “first FR production” are limited by their time 
of intervention. However, the phases in which LP develops may persist as long 
as there are oxidizable substrates, so knowing the reactions involved allows the 
design of strategies and drugs with a greater therapeutic window [11, 12]. The 
nonenzymatic peroxidation of PUFAs is the principal pathway of oxidative stress; 
HO• participates as one of the starts of LP due to its solubility and the lack of an 
enzymatic system to eliminate it. This and other radicals remove an H• radical inside 
a lipid (LH), which provides a lipid radical (L•) [11, 12] (Figure 2). The resonance 
stabilization of L• produces a conjugated diene that reacts with O2 to form a lipid 
peroxyl radical (LOO•) and generates a lipid hydroperoxide (LOOH) when it 
withdraws hydrogen from an adjacent PUFA, producing a second L• [2, 12]. The 
LOOH are regarded as the initial product of LP, but these compounds are unstable 
and can be discomposed with the participation of Fe3+ or Fe2+ again in LOO• or 
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alkoxyl (LO•) radicals, respectively. Both, the reduction of the LOO• to an LO• by 
Fe2+ (LOOH + Fe2+ → LO• + HO• + Fe3+) and its conversion back to LOO• (LOOH 
+ Fe3+ → LOO• + Fe2+) reactions, have acidic pH optimal conditions and are more 
likely to occur in SCI tissue environment [5]. The LO• can initiate chain reactions 
too, such as the LOO• reactions describe above. Thus, one HO• can generate a high 
number of LOOH through a series of chain reactions. Finally, termination of chain 
reactions occurs by the stabilization of the radicals reacting between themselves, 

Figure 2. 
The three steps of nonenzymatic lipid peroxidation of PUFAs. In the initiation step, a hydrogen atom at a 
bis allylic position is removed using either a radical or a redox active metal to generate a resonance-stabilized 
alkyl radical. The radical isomerizes to form the more stable conjugated diene, prior to reacting with molecular 
oxygen. In the propagation step, radicals are able to react with new substrates, forming lipid hydroperoxides 
(LOOH), which can react with iron creating new radicals. This step repeats until the termination step, 
where radicals are “quenched” by antioxidants or react with another radical. The decomposition of LOOH 
generates species such as MDA, HNE, etc. LH, lipid; L•, alkyl/lipid radical; LOO•, peroxyl radical; LOOH, 
lipid hydroperoxide; LO•, lipid alkoxyl radical; HNE: 4-hydroxy-2-nonenal; MDA: malondialdehyde; HHE: 
4-hydroxy-2-hexenal. Modified from Gaschler and Stockwell [12].
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catalytic; a second source for Fe comes from the hemoglobin released after mechan-
ical-induced hemorrhage. O2

•− acts donating an electron to Fe3+, and the ferrous iron 
(Fe2+) catalyzes the conversion of H2O2 to HO• and HO−. Therefore, O2

•− and H2O2 
react in the presence of Fe3+/Fe2+ and promote the formation of HO• and HO− [2].

On the other hand, O2
•− can interact with NO•, a hydrophobic and mildly reactive 

radical generated enzymatically from L-arginine by nitric oxide synthase (NOS) 
isoforms, and give rise to one of the most important RNS, peroxynitrite ONOO− 
(NO• + O2

•− → ONOO−), a potent oxidizing and nitrating agent in vivo, either for 
direct oxidation reactions, in which it reacts with targets of low molecular weight 
and proteins (with thiols and metal centers), and carbon dioxide, or by derived 
radicals from homolytic cleavage, secondary to the reaction with carbon dioxide or 
protonation, included in RNS [2, 7]. Under biological conditions, ONOO− exists in 
equilibrium with its acidic form, the peroxynitrous acid (ONOOH), which decays 
rapidly by homolysis to give place to highly reactive nitrogen dioxide radical (NO2

•−) 
and HO• favored by the low pH in SCI [8]. Among the different direct reactions of 
ONOO−, one of the most relevant is this with CO2 (from bicarbonate buffer system), 
to form nitrosoperoxocarbonate (ONOOCO2), forming by cleavage strong oxidant 
agents, such as nitrogen dioxide (NO2

•−) and carbonate (CO3•−) radicals [7, 8].

2.2 Lipid peroxidation (LP)

Lipids are the most susceptible class of biomolecules to undergo oxidation; 
polyunsaturated fatty acids (PUFAs) are long-chain fatty acids with two or more 
double bonds in cis configuration, each separated by a methylene bridge (–CH2–) at 
their carbon backbone, and the hydrogen attached to the methylene bridge is very 
easy to remove. The LP is defined as an oxidative degradation and decomposition of 
lipids in an uncontrolled manner by nonenzymatic pathway and occurs when ROS 
react with PUFAs, leading to the modification of its physicochemical properties, 
disrupting the cellular membrane integrity. The enzymatic pathway produces lipid 
mediators such as prostanoids, leukotrienes, lipoxins, resolvins, and maresins by 
the action of COX or lipoxygenases (LOX), among others, causing dysregulation 
of blood flow, BSCB damage, inflammatory response, and programmed cell death 
pathway [9]. The CNS is particularly vulnerable to LP by various factors: it has high 
oxidative metabolic activity, PUFA content, and transition metal cations. In con-
trast, it has low antioxidant defenses and neuron-glia replication [8, 10].

The LP is a chain process that involves the participation of ROS, RNS, PUFAs, 
and oxidative systems, among others, where therapeutic intervention has been 
proposed with molecules that can both prevent FR formation and prevent those 
already formed from reacting with biomolecules. Because the peak of ROS produc-
tion occurs within the first 24 h after the injury, or during ischemia-reperfusion, 
the drugs that can be used for this “first FR production” are limited by their time 
of intervention. However, the phases in which LP develops may persist as long 
as there are oxidizable substrates, so knowing the reactions involved allows the 
design of strategies and drugs with a greater therapeutic window [11, 12]. The 
nonenzymatic peroxidation of PUFAs is the principal pathway of oxidative stress; 
HO• participates as one of the starts of LP due to its solubility and the lack of an 
enzymatic system to eliminate it. This and other radicals remove an H• radical inside 
a lipid (LH), which provides a lipid radical (L•) [11, 12] (Figure 2). The resonance 
stabilization of L• produces a conjugated diene that reacts with O2 to form a lipid 
peroxyl radical (LOO•) and generates a lipid hydroperoxide (LOOH) when it 
withdraws hydrogen from an adjacent PUFA, producing a second L• [2, 12]. The 
LOOH are regarded as the initial product of LP, but these compounds are unstable 
and can be discomposed with the participation of Fe3+ or Fe2+ again in LOO• or 
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alkoxyl (LO•) radicals, respectively. Both, the reduction of the LOO• to an LO• by 
Fe2+ (LOOH + Fe2+ → LO• + HO• + Fe3+) and its conversion back to LOO• (LOOH 
+ Fe3+ → LOO• + Fe2+) reactions, have acidic pH optimal conditions and are more 
likely to occur in SCI tissue environment [5]. The LO• can initiate chain reactions 
too, such as the LOO• reactions describe above. Thus, one HO• can generate a high 
number of LOOH through a series of chain reactions. Finally, termination of chain 
reactions occurs by the stabilization of the radicals reacting between themselves, 

Figure 2. 
The three steps of nonenzymatic lipid peroxidation of PUFAs. In the initiation step, a hydrogen atom at a 
bis allylic position is removed using either a radical or a redox active metal to generate a resonance-stabilized 
alkyl radical. The radical isomerizes to form the more stable conjugated diene, prior to reacting with molecular 
oxygen. In the propagation step, radicals are able to react with new substrates, forming lipid hydroperoxides 
(LOOH), which can react with iron creating new radicals. This step repeats until the termination step, 
where radicals are “quenched” by antioxidants or react with another radical. The decomposition of LOOH 
generates species such as MDA, HNE, etc. LH, lipid; L•, alkyl/lipid radical; LOO•, peroxyl radical; LOOH, 
lipid hydroperoxide; LO•, lipid alkoxyl radical; HNE: 4-hydroxy-2-nonenal; MDA: malondialdehyde; HHE: 
4-hydroxy-2-hexenal. Modified from Gaschler and Stockwell [12].
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forming a new bond and eliminating the radical, or by donating electrons (gener-
ally H•) to the radicals by compounds, without turning into radicals. In the case 
of LOOH provided in the previous LP reactions, these undergo fragmentation 
in which oxidized PUFAs give rise to short-chain secondary products, such as 
hydroxy-alkenals (neurotoxic aldehydes) relatively stable like malondialdehyde 
(MDA), 4-hydroxy-2-nonenal (HNE), 4-hydroxy-2-hexenal (HHE), and 2-pro-
penal (acrolein), that can diffuse within or even escape from the cell and attack 
targets far from the site of the original event [13] (Figure 2). In general, the LOOH 
can react in different ways that lead to a cleavage of the C-C bond and formation of 
hydroxy-alkenals by means of different mechanisms [13].

While the LP compromises the integrity of the cell membrane, the highly 
reactive secondary products can be covalently bound to proteins and DNA, com-
promising their structure and function. Regarding the HNE as the most studied 
product of LP, it must be mentioned that the HNE physiological concentration 
inside the cell ranges from 0.1 to 3 μM. Moreover, under oxidative stress conditions, 
HNE can accumulate at concentrations that range from 5 μM to 10 mM [14]. It has 
been demonstrated that HNE can play an important role as a signaling molecule, 
enhancing cellular antioxidant capacity and adaptive response at low concentra-
tions; can promote protein and DNA damage in organelles, leading to the induction 
of autophagy, senescence, or cell cycle arrest; and finally can induce apoptosis or 
necrosis programmed cell death at a high or very high level [13, 15, 16].

2.3 Proteins as target of oxidation

The oxidation of proteins for ROS can lead to the hydroxylation of aromatic 
groups and aliphatic amino acid (aa) side chains, nitration of aromatic aa residues, 
reversible nitrosylation of sulfhydryl groups, sulfoxidation of Met residues, conver-
sion of some aa residues to carbonyl derivatives, cleavage of the polypeptide chain, 
and formation of cross-linked protein aggregates. Furthermore, functional groups 
of proteins can react with products of LP and carbohydrate derivatives (glycation/
glycoxidation) to produce inactive derivatives [17], where the irreversible protein 
oxidation is described by four pathways: peptide bond rupture, carbonylation, 
formation of protein-protein bonds, and nitration [18]. The initial oxidation can 
form a carbon-centered radical, which can react with O2 to form a ROO•, to cleave 
protein backbone by either α-amidation or diamide pathways.

The cleavage of side chains (glutamyl, aspartyl, and probably prolyl side chains) 
may occur directly or by metal-catalyzed oxidation (proline [Pro], arginine [Arg], 
lysine [Lys], and threonine [Thr] residues), yielding carbonyl derivatives [17, 18]. 
One of the most important of irreversible oxidation processes is by protein carbon-
ylation. It involves the previous protein and aa carbonyl derivatives ,CO3

•− oxidation 
(reacting preferentially on tryptophan [Trp], Thr, cysteine [Cys], methionine 
[Met], and histidine [His] residues), ketones and aldehyde reactions over Cys, Lys, 
His, and by glycation/glycoxidation of Lys amino groups, etc. [2, 8, 17, 18].

The modification of the protein structure after oxidation can also give rise to 
intra- or inter-protein cross-linked derivatives by several different mechanisms. For 
example, the protein-protein bond may be due to the interaction of two carbon-
centered radicals or two aromatic aa residues radicals, formed by direct attack of 
ROS [17]. Final products of LP, such as HNE and MDA, can cause cross-linked 
proteins, as reactions of both MDA aldehyde groups with two different residues 
in the same protein or two different proteins [17]. Another protein-protein bond 
is disulfide bridge (RSSR) that results from the oxidation of thiols (RSH) form-
ing sulfenic acid (RSOH) as the last intermediate and reacting with another thiol, 
forming RSSR. This can be promoted in the presence of OONO− or driven by ROS 
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and RNS, with the possibility of chain reactions [8]. Regarding this, some enzymes 
containing Cys, in its catalytic site, can act as scavengers, by direct interaction or 
consuming glutathione (GSH), due to the reversible modification of the RSSR 
bond [8]. HNE possess three functional groups in its structure (Figure 2), mak-
ing this electrophilic molecule highly reactive toward nucleophilic groups such as 
thiol (–SH) and amino (–NH2). Thus, aa such as Cys, Lys, His, and Arg are HNE 
targets, whose modification inhibits the functions of a variety of enzymatic and 
structural cellular proteins [19]. MDA with enhanced reactivity in low pH and 
existing as β-hydroxyacrolein is strongly reactive to nucleophiles such as Lys, His, 
or Arg residues [20]. Protein modifications by RNS act over aromatic, Cys, and Met 
residues; OONO− reacts directly with thiol groups present in a variety of proteins 
such as GSH, albumin, and metalloproteins (heme, myeloperoxidase, cytochrome 
P450, SOD isoforms, etc.) forming nitrite (NO2

−), nitrate (NO3
−), or NO2

•− [8]. 
Finally, irreversible protein tyrosine nitration by NO2

•−, with substitution of a 
hydrogen in the position 3 of the phenolic ring, produces 3-nitrotyrosine (NT-3) 
as a specific footprint of induced cellular damage by OONO− [2, 8]. From all these 
modifications, diverse molecules can be identified both in cerebrospinal fluid and 
blood, both in humans and in animals, and they have been proposed as biomarkers 
to diagnose the severity of SCI. Some of those biomarkers derived from proteins are 
neurofilament proteins, glial fibrillary acidic protein (GFAP), tau, neuron-specific 
enolase, and S100 calcium-binding protein β (S100β), being part of the components 
of neurons, oligodendrocytes, and reactive astrocytes. A more detailed list can be 
found in the works of Lubieniecka et al. and the Hulme et al. review [21, 22].

2.4 DNA damage

The ROS/RNS produced in oxidative stress and LP can damage the nucleic acids 
of DNA; cause DNA-protein cross-links, strand breaks, and modification of purine 
and pyridine bases; and lead to DNA mutations. More than 20 DNA adducts have 
been identified, such as 8-hydroxy-2′-guanosine (8-OHdG), increased in patients 
in whom the antioxidant systems are suspected to be deficient [23]. MDA is an 
important contributor to DNA damage and mutations that can react with several 
nucleosides (deoxyguanosine and cytidine) to form adducts, and the major result-
ing product is a pyrimido-purinone called M1dG [24]. HNE can also react with 
deoxyguanosine to form two pairs of diastereomer adducts (4-HNE-dG 1,2 and 3,4) 
or etheno-DNA adducts in the presence of peroxides that could further induce DNA 
cross-link or DNA-protein conjugates [25, 26]. Other markers of oxidative damage 
in DNA, among other biomolecules, were reviewed in [23].

2.5 Enzymatic and nonenzymatic antioxidant systems

The cellular antioxidant systems are composed by antioxidant enzymes and 
nonenzymatic molecules able to donate electrons to different radical chemi-
cal structures. In the CNS, they are present in lower concentrations than the 
oxidizable substrate and are responsible of maintaining the pro-/antioxidant 
equilibrium, relieving oxidative stress, and reducing or interrupting uncontrolled 
LP, DNA mutations, protein oxidation/degradation, as well as other cell damage 
features. The essential endogenous components of the enzymatic antioxidant 
defense are SOD, catalase (CAT), glutathione peroxidases (GPx), glutathione 
reductases (GR), and glutathione S-transferases (GST), while the nonenzymatic 
antioxidants include GSH, proteins (ferritin, transferrin, ceruloplasmin, metallo-
thionein, thioredoxin (Trx), albumin), vitamins C and E (tocopherol), trace 
elements, and low molecular weight scavengers, such as uric acid, coenzyme Q , 
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forming a new bond and eliminating the radical, or by donating electrons (gener-
ally H•) to the radicals by compounds, without turning into radicals. In the case 
of LOOH provided in the previous LP reactions, these undergo fragmentation 
in which oxidized PUFAs give rise to short-chain secondary products, such as 
hydroxy-alkenals (neurotoxic aldehydes) relatively stable like malondialdehyde 
(MDA), 4-hydroxy-2-nonenal (HNE), 4-hydroxy-2-hexenal (HHE), and 2-pro-
penal (acrolein), that can diffuse within or even escape from the cell and attack 
targets far from the site of the original event [13] (Figure 2). In general, the LOOH 
can react in different ways that lead to a cleavage of the C-C bond and formation of 
hydroxy-alkenals by means of different mechanisms [13].

While the LP compromises the integrity of the cell membrane, the highly 
reactive secondary products can be covalently bound to proteins and DNA, com-
promising their structure and function. Regarding the HNE as the most studied 
product of LP, it must be mentioned that the HNE physiological concentration 
inside the cell ranges from 0.1 to 3 μM. Moreover, under oxidative stress conditions, 
HNE can accumulate at concentrations that range from 5 μM to 10 mM [14]. It has 
been demonstrated that HNE can play an important role as a signaling molecule, 
enhancing cellular antioxidant capacity and adaptive response at low concentra-
tions; can promote protein and DNA damage in organelles, leading to the induction 
of autophagy, senescence, or cell cycle arrest; and finally can induce apoptosis or 
necrosis programmed cell death at a high or very high level [13, 15, 16].

2.3 Proteins as target of oxidation

The oxidation of proteins for ROS can lead to the hydroxylation of aromatic 
groups and aliphatic amino acid (aa) side chains, nitration of aromatic aa residues, 
reversible nitrosylation of sulfhydryl groups, sulfoxidation of Met residues, conver-
sion of some aa residues to carbonyl derivatives, cleavage of the polypeptide chain, 
and formation of cross-linked protein aggregates. Furthermore, functional groups 
of proteins can react with products of LP and carbohydrate derivatives (glycation/
glycoxidation) to produce inactive derivatives [17], where the irreversible protein 
oxidation is described by four pathways: peptide bond rupture, carbonylation, 
formation of protein-protein bonds, and nitration [18]. The initial oxidation can 
form a carbon-centered radical, which can react with O2 to form a ROO•, to cleave 
protein backbone by either α-amidation or diamide pathways.

The cleavage of side chains (glutamyl, aspartyl, and probably prolyl side chains) 
may occur directly or by metal-catalyzed oxidation (proline [Pro], arginine [Arg], 
lysine [Lys], and threonine [Thr] residues), yielding carbonyl derivatives [17, 18]. 
One of the most important of irreversible oxidation processes is by protein carbon-
ylation. It involves the previous protein and aa carbonyl derivatives ,CO3

•− oxidation 
(reacting preferentially on tryptophan [Trp], Thr, cysteine [Cys], methionine 
[Met], and histidine [His] residues), ketones and aldehyde reactions over Cys, Lys, 
His, and by glycation/glycoxidation of Lys amino groups, etc. [2, 8, 17, 18].

The modification of the protein structure after oxidation can also give rise to 
intra- or inter-protein cross-linked derivatives by several different mechanisms. For 
example, the protein-protein bond may be due to the interaction of two carbon-
centered radicals or two aromatic aa residues radicals, formed by direct attack of 
ROS [17]. Final products of LP, such as HNE and MDA, can cause cross-linked 
proteins, as reactions of both MDA aldehyde groups with two different residues 
in the same protein or two different proteins [17]. Another protein-protein bond 
is disulfide bridge (RSSR) that results from the oxidation of thiols (RSH) form-
ing sulfenic acid (RSOH) as the last intermediate and reacting with another thiol, 
forming RSSR. This can be promoted in the presence of OONO− or driven by ROS 
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and RNS, with the possibility of chain reactions [8]. Regarding this, some enzymes 
containing Cys, in its catalytic site, can act as scavengers, by direct interaction or 
consuming glutathione (GSH), due to the reversible modification of the RSSR 
bond [8]. HNE possess three functional groups in its structure (Figure 2), mak-
ing this electrophilic molecule highly reactive toward nucleophilic groups such as 
thiol (–SH) and amino (–NH2). Thus, aa such as Cys, Lys, His, and Arg are HNE 
targets, whose modification inhibits the functions of a variety of enzymatic and 
structural cellular proteins [19]. MDA with enhanced reactivity in low pH and 
existing as β-hydroxyacrolein is strongly reactive to nucleophiles such as Lys, His, 
or Arg residues [20]. Protein modifications by RNS act over aromatic, Cys, and Met 
residues; OONO− reacts directly with thiol groups present in a variety of proteins 
such as GSH, albumin, and metalloproteins (heme, myeloperoxidase, cytochrome 
P450, SOD isoforms, etc.) forming nitrite (NO2

−), nitrate (NO3
−), or NO2

•− [8]. 
Finally, irreversible protein tyrosine nitration by NO2

•−, with substitution of a 
hydrogen in the position 3 of the phenolic ring, produces 3-nitrotyrosine (NT-3) 
as a specific footprint of induced cellular damage by OONO− [2, 8]. From all these 
modifications, diverse molecules can be identified both in cerebrospinal fluid and 
blood, both in humans and in animals, and they have been proposed as biomarkers 
to diagnose the severity of SCI. Some of those biomarkers derived from proteins are 
neurofilament proteins, glial fibrillary acidic protein (GFAP), tau, neuron-specific 
enolase, and S100 calcium-binding protein β (S100β), being part of the components 
of neurons, oligodendrocytes, and reactive astrocytes. A more detailed list can be 
found in the works of Lubieniecka et al. and the Hulme et al. review [21, 22].

2.4 DNA damage

The ROS/RNS produced in oxidative stress and LP can damage the nucleic acids 
of DNA; cause DNA-protein cross-links, strand breaks, and modification of purine 
and pyridine bases; and lead to DNA mutations. More than 20 DNA adducts have 
been identified, such as 8-hydroxy-2′-guanosine (8-OHdG), increased in patients 
in whom the antioxidant systems are suspected to be deficient [23]. MDA is an 
important contributor to DNA damage and mutations that can react with several 
nucleosides (deoxyguanosine and cytidine) to form adducts, and the major result-
ing product is a pyrimido-purinone called M1dG [24]. HNE can also react with 
deoxyguanosine to form two pairs of diastereomer adducts (4-HNE-dG 1,2 and 3,4) 
or etheno-DNA adducts in the presence of peroxides that could further induce DNA 
cross-link or DNA-protein conjugates [25, 26]. Other markers of oxidative damage 
in DNA, among other biomolecules, were reviewed in [23].

2.5 Enzymatic and nonenzymatic antioxidant systems

The cellular antioxidant systems are composed by antioxidant enzymes and 
nonenzymatic molecules able to donate electrons to different radical chemi-
cal structures. In the CNS, they are present in lower concentrations than the 
oxidizable substrate and are responsible of maintaining the pro-/antioxidant 
equilibrium, relieving oxidative stress, and reducing or interrupting uncontrolled 
LP, DNA mutations, protein oxidation/degradation, as well as other cell damage 
features. The essential endogenous components of the enzymatic antioxidant 
defense are SOD, catalase (CAT), glutathione peroxidases (GPx), glutathione 
reductases (GR), and glutathione S-transferases (GST), while the nonenzymatic 
antioxidants include GSH, proteins (ferritin, transferrin, ceruloplasmin, metallo-
thionein, thioredoxin (Trx), albumin), vitamins C and E (tocopherol), trace 
elements, and low molecular weight scavengers, such as uric acid, coenzyme Q , 
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and lipoic acid [4, 6, 23], which act by depleting molecular O2 or decreasing its 
local concentration; removing pro-oxidative metal ions; trapping aggressive ROS, 
such as O2

•− or H2O2; scavenging chain-initiating radicals like HO•, RO2
•/HO2

•, 
or LO•; or breaking the chain of a radical sequence [4]. There are also important 
exogenous nonenzymatic antioxidants (vitamins A, C, E, flavonoids, carotenoids, 
phenolics, acetylcysteine, exogenous selenium, zinc), acquired through diet, 
which are being studied. A table of these enzymatic and nonenzymatic anti-
oxidants important in the CNS was reviewed in [23]. Preventing the formation 
of ROS, or at least its accumulation, and blocking or capturing those radicals 
already formed is the first defense against oxidative stress. The O2

•− generated by 
various sources can be converted to H2O2 by SODs [4]. The O2

•− intracellularly 
produced in the mitochondria can be converted into H2O2 by MnSOD (SOD3) 
[18]. Once generated, H2O2 (but not other peroxides) is decomposed to water 
and oxygen O2 (2H2O2 + 2GHS → H2O + O2) by the action of CAT, a ferriheme-
containing enzyme. However, small amounts of ROS escape from the antioxidant 
defense and can be converted to HO•, which may be scavenged by low molecular 
mass nonenzymatic antioxidants, such as ascorbate, tocopherol, GSH, etc. 
[27]. H2O2 is also reduced by the action of different peroxidases, such as GPx 
(H2O2 + 2GHS → H2O + GSSG), which, additionally, can reduce lipid hydroperox-
ides (LOOH + 2GSH → LOH + GSSG) [11, 12]. Other enzymes that catalyze this 
reaction include peroxiredoxin and thioredoxin reductase [4]. Some enzymes that 
participate in the detoxification of LP products by oxidation, reduction, and glu-
tathione conjugation, the latter being a mechanism also used to reverse the effects 
of RNS, are aldehyde dehydrogenases (ALDH), alcohol dehydrogenase (ADH), 
aldo-keto reductase (AKR), and the aforementioned GST, GPx, and GR [28].

In SCI, the primary injury causes disruption of blood flow and vascular insult, 
such as ischemia-reperfusion, which conducts to the loss of metabolic function of 
cells in gray matter with decrease of ATP, causing depolarization of membranes 
due to the inhibition of Na+/K+ and Ca2+ ATPases function. Ca2+ overload and 
glutamate excitotoxicity compromise the function and integrity of mitochondria 
through the activation of proteases and inactivation of important enzymes. Due 
to the low ratio of antioxidant systems’ oxidizable substrate in acute SCI, the 
mitochondrial antioxidant reserves decrease and are incapable of restoring the 
redox equilibrium, giving place to an increase of mitochondrial concentration 
of O2

•− and an increase and leak of free radicals formed downstream including 
ONOO−, initiating LP. The damage produced by this excess of radicals or end 
products of LP over proteins and membranes of the mitochondria and endoplas-
mic reticulum potentiates the processes of secondary injury mentioned here to the 
local and adjacent cells to SCI [4].

3. Antioxidant therapy strategies

The early therapeutic intervention for SCI is crucial to improve the chances of 
maximum possible recovery. This was observed in clinical trials where the cur-
rent treatment of choice, methylprednisolone sodium succinate (MP or MPSS), 
was effective only when administered within the first 8 h after injury, at high 
doses (5.4 mg/kg/h). In 48-h regimens, however, it increases the incidence of 
complications from infections (severe sepsis and pneumonia), while the 24-h safe 
regimen is not effective in the long term, at least after 3 h [1]. Being an ineffec-
tive treatment, there are no alternative therapeutic treatments that offer safety 
and certainty regarding the recovery of the motor function. The research of new 
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pharmacological agents for the treatment of SCI focuses on the processes of sec-
ondary injury, being antioxidant therapies the most important. The main goals of 
drug therapies for SCI can be classified in neuroprotection and neuroregeneration; 
antioxidant therapies are cataloged within the first. Here we present some of the 
agents that are in experimental phase and others when mentioned, in clinical trials, 
either because their efficacy has been demonstrated in animal models or because of 
their use already approved in other pathologies. Regarding the diverse SCI models, 
they have been used to simulate SCI with high relevance and validity to preclini-
cal evaluation due to the replication of human traumatic injuries. The rational 
use of animals is strongly controlled, and the possibility of pain and distress must 
be considered and minimized by veterinary staff through the appropriate use of 
analgesics and animal care.

3.1 Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic compound that 
works mainly in the regulation of circadian rhythms and sleep. When reacting with 
ROS, such as HO−, H2O•, and LOO•, it is converted to cyclic 3-hydroxymelatonin. 
It stimulates the expression and activity of SOD, GPx, CAT, and GR and inhibits 
or decreases the expression of pro-oxidative NOs, different signaling pathways, 
transcription factors, and pro-inflammatory cytokines [29–31]. Decreased melato-
nin production has been linked to various CNS disorders, and the neuroprotective 
activity was detected in rat models of traumatic brain injury ischemic stroke and 
SCI [29, 30]. To cite only some SCI examples, in a study in Sprague-Dawley rats of 
250 g with moderate lesion, 10 mg/kg of melatonin was applied subcutaneously 
twice a day for 4 weeks, and an increase in motor recovery and decrease in inducible 
nitric oxide synthase (iNOS) expression were observed. Intravenously, it decreased 
the synthesis of MDA and increased the synthesis of GSH and angiopoietin 1, and 
in mice with severe lesion, it decreased the expression of interleukin 1 beta (IL-1β) 
and NG-2 (neuron/glial antigen 2) [30, 32, 33]. In a model with lesion with vascular 
clips, the administration of 30 mg/kg alleviated post-traumatic injury associated 
with SCI by binding the PPARα-receptor; the administration of 50 mg/kg in moder-
ate lesion decreased the BSCB permeability modulating the expression of brain-
derived neurotrophic factor (BDNF), growth-associated protein 43 (GAP-43), and 
caspase-3 [33–35]. In combination therapy with dexamethasone (10–0.025 mg/kg), 
it showed significant anti-inflammatory effects, attenuating the synthesis of tumor 
necrosis factor alpha (TNF-α) and iNOS and the nitration of tyrosine residues, 
increasing tissue recovery and motor capacity in an experimental SCI model of 
mouse [36], while the combination with methylprednisolone favored neurologi-
cal recovery and decreased LP; its administration with zinc activated the internal 
antioxidant system and also decreased the LP [37–39].

3.2 Minocycline

Minocycline hydrochloride is an available semisynthetic tetracycline antibiotic 
with potent anti-inflammatory (regulation of phospholipase A2 and MAPK/PIK3 
pathways) and neuroprotective (protecting against glutamate-induced inflam-
mation) activities; it also inhibits matrix metalloproteinases and mitochondrial 
Ca2+ influx. Minocycline has antioxidant and antiapoptotic properties, probably 
acting at high doses as a direct radical scavenger, like vitamin E, due to its phenolic 
ring structure [40]. In rats with SCI, minocycline given at oral doses of 3, 30, and 
90 mg/kg 1 and 24 h after the lesion reduced MDA concentration and increased 
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and lipoic acid [4, 6, 23], which act by depleting molecular O2 or decreasing its 
local concentration; removing pro-oxidative metal ions; trapping aggressive ROS, 
such as O2

•− or H2O2; scavenging chain-initiating radicals like HO•, RO2
•/HO2

•, 
or LO•; or breaking the chain of a radical sequence [4]. There are also important 
exogenous nonenzymatic antioxidants (vitamins A, C, E, flavonoids, carotenoids, 
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which are being studied. A table of these enzymatic and nonenzymatic anti-
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•− generated by 
various sources can be converted to H2O2 by SODs [4]. The O2

•− intracellularly 
produced in the mitochondria can be converted into H2O2 by MnSOD (SOD3) 
[18]. Once generated, H2O2 (but not other peroxides) is decomposed to water 
and oxygen O2 (2H2O2 + 2GHS → H2O + O2) by the action of CAT, a ferriheme-
containing enzyme. However, small amounts of ROS escape from the antioxidant 
defense and can be converted to HO•, which may be scavenged by low molecular 
mass nonenzymatic antioxidants, such as ascorbate, tocopherol, GSH, etc. 
[27]. H2O2 is also reduced by the action of different peroxidases, such as GPx 
(H2O2 + 2GHS → H2O + GSSG), which, additionally, can reduce lipid hydroperox-
ides (LOOH + 2GSH → LOH + GSSG) [11, 12]. Other enzymes that catalyze this 
reaction include peroxiredoxin and thioredoxin reductase [4]. Some enzymes that 
participate in the detoxification of LP products by oxidation, reduction, and glu-
tathione conjugation, the latter being a mechanism also used to reverse the effects 
of RNS, are aldehyde dehydrogenases (ALDH), alcohol dehydrogenase (ADH), 
aldo-keto reductase (AKR), and the aforementioned GST, GPx, and GR [28].

In SCI, the primary injury causes disruption of blood flow and vascular insult, 
such as ischemia-reperfusion, which conducts to the loss of metabolic function of 
cells in gray matter with decrease of ATP, causing depolarization of membranes 
due to the inhibition of Na+/K+ and Ca2+ ATPases function. Ca2+ overload and 
glutamate excitotoxicity compromise the function and integrity of mitochondria 
through the activation of proteases and inactivation of important enzymes. Due 
to the low ratio of antioxidant systems’ oxidizable substrate in acute SCI, the 
mitochondrial antioxidant reserves decrease and are incapable of restoring the 
redox equilibrium, giving place to an increase of mitochondrial concentration 
of O2

•− and an increase and leak of free radicals formed downstream including 
ONOO−, initiating LP. The damage produced by this excess of radicals or end 
products of LP over proteins and membranes of the mitochondria and endoplas-
mic reticulum potentiates the processes of secondary injury mentioned here to the 
local and adjacent cells to SCI [4].

3. Antioxidant therapy strategies

The early therapeutic intervention for SCI is crucial to improve the chances of 
maximum possible recovery. This was observed in clinical trials where the cur-
rent treatment of choice, methylprednisolone sodium succinate (MP or MPSS), 
was effective only when administered within the first 8 h after injury, at high 
doses (5.4 mg/kg/h). In 48-h regimens, however, it increases the incidence of 
complications from infections (severe sepsis and pneumonia), while the 24-h safe 
regimen is not effective in the long term, at least after 3 h [1]. Being an ineffec-
tive treatment, there are no alternative therapeutic treatments that offer safety 
and certainty regarding the recovery of the motor function. The research of new 
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pharmacological agents for the treatment of SCI focuses on the processes of sec-
ondary injury, being antioxidant therapies the most important. The main goals of 
drug therapies for SCI can be classified in neuroprotection and neuroregeneration; 
antioxidant therapies are cataloged within the first. Here we present some of the 
agents that are in experimental phase and others when mentioned, in clinical trials, 
either because their efficacy has been demonstrated in animal models or because of 
their use already approved in other pathologies. Regarding the diverse SCI models, 
they have been used to simulate SCI with high relevance and validity to preclini-
cal evaluation due to the replication of human traumatic injuries. The rational 
use of animals is strongly controlled, and the possibility of pain and distress must 
be considered and minimized by veterinary staff through the appropriate use of 
analgesics and animal care.

3.1 Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic compound that 
works mainly in the regulation of circadian rhythms and sleep. When reacting with 
ROS, such as HO−, H2O•, and LOO•, it is converted to cyclic 3-hydroxymelatonin. 
It stimulates the expression and activity of SOD, GPx, CAT, and GR and inhibits 
or decreases the expression of pro-oxidative NOs, different signaling pathways, 
transcription factors, and pro-inflammatory cytokines [29–31]. Decreased melato-
nin production has been linked to various CNS disorders, and the neuroprotective 
activity was detected in rat models of traumatic brain injury ischemic stroke and 
SCI [29, 30]. To cite only some SCI examples, in a study in Sprague-Dawley rats of 
250 g with moderate lesion, 10 mg/kg of melatonin was applied subcutaneously 
twice a day for 4 weeks, and an increase in motor recovery and decrease in inducible 
nitric oxide synthase (iNOS) expression were observed. Intravenously, it decreased 
the synthesis of MDA and increased the synthesis of GSH and angiopoietin 1, and 
in mice with severe lesion, it decreased the expression of interleukin 1 beta (IL-1β) 
and NG-2 (neuron/glial antigen 2) [30, 32, 33]. In a model with lesion with vascular 
clips, the administration of 30 mg/kg alleviated post-traumatic injury associated 
with SCI by binding the PPARα-receptor; the administration of 50 mg/kg in moder-
ate lesion decreased the BSCB permeability modulating the expression of brain-
derived neurotrophic factor (BDNF), growth-associated protein 43 (GAP-43), and 
caspase-3 [33–35]. In combination therapy with dexamethasone (10–0.025 mg/kg), 
it showed significant anti-inflammatory effects, attenuating the synthesis of tumor 
necrosis factor alpha (TNF-α) and iNOS and the nitration of tyrosine residues, 
increasing tissue recovery and motor capacity in an experimental SCI model of 
mouse [36], while the combination with methylprednisolone favored neurologi-
cal recovery and decreased LP; its administration with zinc activated the internal 
antioxidant system and also decreased the LP [37–39].

3.2 Minocycline

Minocycline hydrochloride is an available semisynthetic tetracycline antibiotic 
with potent anti-inflammatory (regulation of phospholipase A2 and MAPK/PIK3 
pathways) and neuroprotective (protecting against glutamate-induced inflam-
mation) activities; it also inhibits matrix metalloproteinases and mitochondrial 
Ca2+ influx. Minocycline has antioxidant and antiapoptotic properties, probably 
acting at high doses as a direct radical scavenger, like vitamin E, due to its phenolic 
ring structure [40]. In rats with SCI, minocycline given at oral doses of 3, 30, and 
90 mg/kg 1 and 24 h after the lesion reduced MDA concentration and increased 
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GPx and SOD activity in a dose-dependent manner [41]. Minocycline decreased 
pro-inflammatory cytokines and the chemokines release from microglia and their 
activation, including their levels of enzymes that regulate LP and NO production 
[42]. A recovery difference between treatment and placebo, approaching to statisti-
cal significance in patients with cervical injury, was shown in a phase II clinical 
trial. The trail determined safety and dose optimization, within 12 h of SCI and for 
7 days, with steady-state concentrations of 12.7 µg/mL in serum and 2.3 µg/mL in in 
cerebrospinal fluid (ClinicalTrials.gov number NCT00559494) [43].

3.3 Estrogen

Treatment with gonadal steroid hormones (estradiol, testosterone, estrogen) 
has resulted in motor recovery with a reduction of the lesion volume in animal 
models. Through its receptors (ERα and ERβ), estrogen exerts neuroprotection at 
physiological concentrations, and it exerts better neuroprotection as an anti-
oxidant at high concentrations. Estrogen modulates gene expression; promotes 
angiogenesis; inhibits inflammation, blocking microglia from releasing inflam-
matory molecules such as TNF-α, ROS, prostaglandin E2, etc.; regulates the 
expression of antioxidant enzymes; and induces mitochondrial GSH production 
[44]. Different low doses and times of administration (between 10 and 100 μg/
kg/day/7 days to 4 mg/kg/15 min and 24 h, i.v.) appear to be effective, suggesting 
that pre-treatment or immediate posttreatment at either physiological or supra-
physiological dose could minimize secondary injury in SCI and promote func-
tional recovery, reflected in both acute and chronic stages [44, 45]. Additionally, 
the development of selective agonists of ER with higher affinity for ERα, ERβ, 
or both, such as tamoxifen, looks promising in SCI treatment, when applied in 
subdermal implants 7 days before, immediately, or 24 h post-injury; with an 
immediate release of 0.71 mg/day for 21 days, it provided motor recovery and 
preservation of white matter, dorsal and ventral horn neurons, with a decrease of 
O2

•− production [46].

3.4 Omega-3 fatty acids

The omega-3 fatty acids: α-linolenic acid, eicosapentaenoic acid (EPA, with five 
unsaturated bonds), and docosahexaenoic acid (DHA, with six unsaturated bonds) 
are part of the triacylglycerols that are consumed in the diet. DHA is a primary 
structural component of human brain, cerebral cortex, and retina. The lack of DHA 
may affect the fluidity and integrity of the membrane in synaptosomes; addition-
ally, it affects the architecture of proteins that act as receptors and channels. Several 
studies have studied the effects of DHA in SCI, with treatments that include intra-
venous bolus, nutritional supplementation, and the use of transgenic [47]. In SCI in 
rats, a single application of DHA (250 nmol/kg, i.v., 30 min after injury) showed an 
improvement in motor recovery, smaller lesion size, greater survival of neurons and 
oligodendrocytes, and lower oxidation of DNA/RNA in comparison to rats without 
treatment [48]. More details of the application of DHA in SCI are mentioned in the 
chapter on Samaddar [47], as well as interesting effects on molecules involved in the 
repair and conservation of axonal integrity.

3.5 Endogenous antioxidants (vitamins C, D, and E and ubiquinol)

Several molecules that already act as endogenous antioxidants have been studied 
as candidates for application in antioxidant therapies for SCI. Vitamin C, or ascor-
bic acid, is a small water-soluble molecule that has a double bond and participates in 
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various metabolic processes as a reducing agent. It is considered nontoxic because it 
does not accumulate and its concentration declines during SCI. In rats, it decreases 
tissue inflammation and necrosis and only at high doses (200 mg/kg i.p. 1-h post-
injury, daily, until they were sacrificed, 4th week) showed improvements in motor 
evaluations [49]. Vitamin D (1,25-dihydroxyvitamin D3, VDH, active form) is a 
molecule with cholesterol skeleton and acts similarly to hormones and steroids on 
several systems. Its receptor (VDR) is widely distributed in the CNS, and it appar-
ently acts on the same targets as progesterone through similar pathways. Its use in 
CNS damage models in vivo and in vitro has shown promising results on several 
aspects. The prolongation or exacerbation of inflammation also gives way to greater 
damage by oxidative stress; therefore, the effect of VDH in vivo on the inhibition 
of iNOS and increase of IL-4 and TGF-β and in vitro modulating the production 
of molecules involved in oxidative stress, neurotoxic damage, and axonal growth 
on various cells are of interest for being use in SCI [50]. Tocopherols are a group of 
four fat-soluble phenolic compounds designated α, β, γ, and δ, which are found in 
vegetable oils, being alpha (α-T, considered the classic vitamin E) the one with the 
highest proportion in blood and tissues. All tocopherols are strong chain breaking 
antioxidants by effectively scavenging ROS and RNS. α-T significantly reduces the 
activity of iNOS and COX-2 [51]; in addition, the effect of extracts or synthetic 
derivatives has been evaluated, decreasing cell death due to excitotoxicity and oxi-
dative stress in astrocytes [52] and accelerating remyelination of focal demyelinated 
lesions chemically induced [53]. In rats with SCI, the use of α-T (600 mg/kg i.m., 
twice weekly, for 6 weeks) decreased the damage caused by ischemia-reperfusion, 
improving the levels of motor and sensory recovery and the level of oxidative stress 
[54]. Ubiquinol (reduced form) or coenzyme Q10 is among the antioxidants that 
decrease their concentration after SCI. It is a fat-soluble cofactor present in the 
inner mitochondrial membrane acting as an antioxidant in the respiratory chain. 
Previously, the effect on ischemia-reperfusion damage in the CNS has been proven, 
preventing LP and reducing the size of the lesions [55].

3.6 Immunotherapy

The use of antibodies in the treatment of SCI is diverse and is directed to 
the functions of immune cells involved in inflammation and the pathological 
process. The initial invasion of leukocytes depends on the interaction of CD11d/
CD18 (cluster of differentiation; CD) integrin with vascular cell adhesion mol-
ecule-1 (VCAM-1). In the case of the use of  anti-CD11d monoclonal antibody 
administered in rats to determinate the therapeutic window with 1 mg/kg doses 
i.v. on groups at different times of application (2, 6, 12, 24, or 48 h post-lesion), 
it was shown that the treatment beginning even up to 6 h after the lesion resulted 
in an attenuation of infiltrating leukocytes (neutrophils and macrophages, 
sources of ROS and RNS), lowered the expression of COX-2 and iNOS, and 
lowered the amounts of HNE, NT-3, and dinitrophenyl (DNP) (used for the 
detection of protein carbonylation) therefore acting as an indirect antioxidant. 
This treatment also showed improvement in motor recovery vs. a control anti-
body [56]. Another important integrin is the dimer α4β1 also known as very late 
antigen 4 (VLA-4), and treatments with anti-α4 blocking monoclonal antibodies 
(2.5 mg/kg/2 and 24 h/i.v.) or small molecule blocker BIO5192 (10 mg/kg/2 h/
continuous i.v. infusion for assessment of oxidative damage) showed a decreased 
influx of neutrophils/macrophages, reduced oxidant activity (COX-2, NO or 
iNOS, MDA), preserved white and gray matter, improved motor function in 
different evaluations, and decreased mechanical allodynia after SCI, when 
compared with the controls [57, 58].
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3.7 Antioxidant peptides

3.7.1 A91 peptide

Modified neural peptides are peptide analogs of the myelin basic protein (MBP) 
epitopes that possess one or more aa substitutions and that have a partial agonist or 
antagonist action when in contact with the T lymphocyte (TL) receptor [59, 60].

Schwartz and Hauben tested the administration of non-encephalitogenic peptides 
of different aa sequences associated with MBP, which are named according to the posi-
tion of the aa substitution that is performed: A96, G91, and A91, among others. A91 
showed the best results after a traumatic injury, both in the optic nerve and in spinal 
cord, without showing clinical signs of autoimmune disease, hypersensitivity, immu-
nosuppression, and controlling the destructive action of autoreactive TL [61, 62].

A91 is a peptide belonging to the aa 87–99 sequence of MBP with the sub-
stitution of an aa at position 91 of a lysine (VHFFKNIVTPRTP) by an alanine 
(VHFFANIVTPRTP), functioning as a partial agonist peptide and promoting 
a change of the profile of cytokines produced by TL reactive against the 87–99 
sequence of the MBP of a Th1 phenotype (interferon gamma [IFN-γ], TNF, IL-2) to 
a Th2 (IL-4, IL-10) and decreasing the action and synthesis of the FR, among other 
effects [63]. A91 allows activating the microglia with a phenotype producing neu-
rotrophic factors, which together with the release of factors produced by other cells 
such as monocytes (MN) and TL reduce secondary neuronal degeneration [64–66].

The beneficial effect of subcutaneous immunization at the base of the tail has 
been demonstrated with A91 at a single dose (150–200 μg/kg) after SCI due to mod-
erate contusion. This immunization, among various factors and effects, promotes 
neuroprotection and motor recovery by decreasing the expression of iNOS and pro-
duction of NO•, LP, caspase 3, and pro-inflammatory cytokines and increasing the 
release of neurotrophic factors such as BDNF and NT-3. The effect of the immuniza-
tion is preserved in the chronic stage of the lesion and as a prophylactic treatment or 
up to 72 h after the SCI; however, it diminishes when applied to lesions due to severe 
contusion or complete medullar cut and is eliminated with a double immunization. 
It has also been determined that the severity of the lesion determines the profile of 
genetic expression in the lesion after immunization and that immunization plus 
the removal of the fibroglial scar and/or the implant of a scaffold as support for 
mesenchymal stem cells favors a permissive microenvironment for motor recovery 
and improves the electrophysiological activity in the chronic stage after a complete 
section of the spinal cord [67–73]. The protective response of A91 is between 4 and 6 
days, indicating that it acts on subsequent mechanisms to the acute stage. During this 
time, the oxidative processes are not completely modulated. Regarding this, it has 
been shown that the therapeutic combination of A91 peptide with peptides acting 
at shorter times, such as glutathione monoethyl ester (GSH-MEE) or the monocyte 
locomotion inhibitory factor (MLIF), reduces FR and LP and induces better motor 
recovery, neural survival, presence of myelinated axons, and tissue protection. In the 
same way, it was demonstrated that the combination of A91 with GSH-MEE retains 
the effect if applied until 72 hrs after the lesion [68, 74, 75].

3.7.2 Monocyte locomotion inhibitory factor (MLIF) peptide

MLIF is a pentapeptide (Met-Gln-Cys-Asn-Ser). In vitro studies showed that 
MLIF decreases MN locomotion, the production of ROS (H2O2, O2

•-, HO•), NO•, and 
cGMP, and it induces an increase of microtubules associated to the centriole and the 
concentration of cAMP [76–78]. The pharmacophore group of the MLIF is integrated 
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by the Cys-Asn-Ser tripeptide, which retains the same biological activities of the 
factor [79, 80].

The MLIF favors the Th2 response; modulates the synthesis of pro-/anti-inflam-
matory cytokines and the expression of genes involved in inflammation, prolifera-
tion, angiogenesis, synthesis/degradation of extracellular matrix, angiogenesis, and 
axonal guidance, among others; and acts mainly through the signaling pathways: 
NF-kB, MAPKinases, and eEF1A1/endothelial nitric oxide synthase [81–84].

In vivo, the factor retards the arrival of MN in Rebuck windows and inhibits 
cutaneous delayed hypersensitivity to dinitrochlorobenzene, while in guinea pigs, it 
lobs down the expression of VLA-4 and VCAM-1 adhesion molecules in postcapil-
lary vascular endothelium and decreases the formation of pericardial adhesions in 
rats when applied directly to the site of injury after surgery [85].

Studies in cerebral ischemia showed that the penetrating, antioxidant, anti-
inflammatory, and neuroprotective capacity of the pharmacophore group is favored 
in analogs when the N-terminal end is modified by adding one of the following 
aa: Asp, His, Try, or Arg. In the same way, cardioprotective effects have been seen 
in myocardial ischemia [86, 87]. On the other hand, pharmacokinetic studies are 
underway to determine the concentration of MLIF in plasma [88].

In base studies of our group, rats were subjected to a moderate SCI, and a dose 
of 200 μg of MLIF was applied directly to the site of the lesion. The animals treated 
with the factor presented a greater motor recovery than the non-treated, and a 
decrease in the LP, the concentration of NO•, and the expression of the iNOS. An 
increase in the expression of the IL-10 and TGF-β (Transforming Growth Factor 
beta) genes was observed at 3 h and 7 days post-injury, favoring the survival of the 
ventral horn neurons [75]. Subsequent studies showed that four doses of the MLIF 
at the same concentration immediately initiating direct administration at the site 
of injury and subsequently one dose every 24 h for 3 days by i.p. administration 
are sufficient to improve motor recovery in rats subjected to SCI. In the same way, 
therapeutic combinations of MLIF, at different times and doses, have favored the 
effect of the MLIF in the experimental model of SCI modulating the synthesis of 
the FR and ROS.

3.7.3 Glutathione (GSH) peptide

GSH (Figure 3) is a tripeptide (L-γ-glutamyl-L-cysteinyl-glycine), nonprotein 
thiol. It is synthesized in the cellular cytoplasm by the consecutive action of two 
enzymes. The first, γ-glutamylcysteinyl ligase, is regulated by the nuclear factor 
(erythroid-derived 2)-like 2 (NFE2L2 or Nrf2), which is sensitive to oxidative 
stress. This enzyme uses glutamic acid (Glu) and Cys aa, glutamic acid (Glu) and 
Cys aa, as a substrate to form the γ-glutamylcysteine dipeptide (γ-GluCys), which 

Figure 3. 
Condensed structural chemical formula of glutathione (IUPAC name: (2S)-2-amino-4-{[(1R)-1-
[(carboxymethyl) carbomoyl]-2-sulfanylethyl] carbomyl1} butanoic acid). Modified from Gaucher et al. [89].
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such as monocytes (MN) and TL reduce secondary neuronal degeneration [64–66].

The beneficial effect of subcutaneous immunization at the base of the tail has 
been demonstrated with A91 at a single dose (150–200 μg/kg) after SCI due to mod-
erate contusion. This immunization, among various factors and effects, promotes 
neuroprotection and motor recovery by decreasing the expression of iNOS and pro-
duction of NO•, LP, caspase 3, and pro-inflammatory cytokines and increasing the 
release of neurotrophic factors such as BDNF and NT-3. The effect of the immuniza-
tion is preserved in the chronic stage of the lesion and as a prophylactic treatment or 
up to 72 h after the SCI; however, it diminishes when applied to lesions due to severe 
contusion or complete medullar cut and is eliminated with a double immunization. 
It has also been determined that the severity of the lesion determines the profile of 
genetic expression in the lesion after immunization and that immunization plus 
the removal of the fibroglial scar and/or the implant of a scaffold as support for 
mesenchymal stem cells favors a permissive microenvironment for motor recovery 
and improves the electrophysiological activity in the chronic stage after a complete 
section of the spinal cord [67–73]. The protective response of A91 is between 4 and 6 
days, indicating that it acts on subsequent mechanisms to the acute stage. During this 
time, the oxidative processes are not completely modulated. Regarding this, it has 
been shown that the therapeutic combination of A91 peptide with peptides acting 
at shorter times, such as glutathione monoethyl ester (GSH-MEE) or the monocyte 
locomotion inhibitory factor (MLIF), reduces FR and LP and induces better motor 
recovery, neural survival, presence of myelinated axons, and tissue protection. In the 
same way, it was demonstrated that the combination of A91 with GSH-MEE retains 
the effect if applied until 72 hrs after the lesion [68, 74, 75].

3.7.2 Monocyte locomotion inhibitory factor (MLIF) peptide

MLIF is a pentapeptide (Met-Gln-Cys-Asn-Ser). In vitro studies showed that 
MLIF decreases MN locomotion, the production of ROS (H2O2, O2

•-, HO•), NO•, and 
cGMP, and it induces an increase of microtubules associated to the centriole and the 
concentration of cAMP [76–78]. The pharmacophore group of the MLIF is integrated 
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by the Cys-Asn-Ser tripeptide, which retains the same biological activities of the 
factor [79, 80].

The MLIF favors the Th2 response; modulates the synthesis of pro-/anti-inflam-
matory cytokines and the expression of genes involved in inflammation, prolifera-
tion, angiogenesis, synthesis/degradation of extracellular matrix, angiogenesis, and 
axonal guidance, among others; and acts mainly through the signaling pathways: 
NF-kB, MAPKinases, and eEF1A1/endothelial nitric oxide synthase [81–84].

In vivo, the factor retards the arrival of MN in Rebuck windows and inhibits 
cutaneous delayed hypersensitivity to dinitrochlorobenzene, while in guinea pigs, it 
lobs down the expression of VLA-4 and VCAM-1 adhesion molecules in postcapil-
lary vascular endothelium and decreases the formation of pericardial adhesions in 
rats when applied directly to the site of injury after surgery [85].

Studies in cerebral ischemia showed that the penetrating, antioxidant, anti-
inflammatory, and neuroprotective capacity of the pharmacophore group is favored 
in analogs when the N-terminal end is modified by adding one of the following 
aa: Asp, His, Try, or Arg. In the same way, cardioprotective effects have been seen 
in myocardial ischemia [86, 87]. On the other hand, pharmacokinetic studies are 
underway to determine the concentration of MLIF in plasma [88].

In base studies of our group, rats were subjected to a moderate SCI, and a dose 
of 200 μg of MLIF was applied directly to the site of the lesion. The animals treated 
with the factor presented a greater motor recovery than the non-treated, and a 
decrease in the LP, the concentration of NO•, and the expression of the iNOS. An 
increase in the expression of the IL-10 and TGF-β (Transforming Growth Factor 
beta) genes was observed at 3 h and 7 days post-injury, favoring the survival of the 
ventral horn neurons [75]. Subsequent studies showed that four doses of the MLIF 
at the same concentration immediately initiating direct administration at the site 
of injury and subsequently one dose every 24 h for 3 days by i.p. administration 
are sufficient to improve motor recovery in rats subjected to SCI. In the same way, 
therapeutic combinations of MLIF, at different times and doses, have favored the 
effect of the MLIF in the experimental model of SCI modulating the synthesis of 
the FR and ROS.

3.7.3 Glutathione (GSH) peptide

GSH (Figure 3) is a tripeptide (L-γ-glutamyl-L-cysteinyl-glycine), nonprotein 
thiol. It is synthesized in the cellular cytoplasm by the consecutive action of two 
enzymes. The first, γ-glutamylcysteinyl ligase, is regulated by the nuclear factor 
(erythroid-derived 2)-like 2 (NFE2L2 or Nrf2), which is sensitive to oxidative 
stress. This enzyme uses glutamic acid (Glu) and Cys aa, glutamic acid (Glu) and 
Cys aa, as a substrate to form the γ-glutamylcysteine dipeptide (γ-GluCys), which 

Figure 3. 
Condensed structural chemical formula of glutathione (IUPAC name: (2S)-2-amino-4-{[(1R)-1-
[(carboxymethyl) carbomoyl]-2-sulfanylethyl] carbomyl1} butanoic acid). Modified from Gaucher et al. [89].
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is combined with glycine (Gly) in a reaction catalyzed by the second enzyme 
(glutathione synthase) to form GSH, whose concentration is regulated by the 
nhibition of γ-GluCys ligase, the cellular content of L-cysteine, and the final 
concentration of GSH. Thus, the intracellular and extracellular concentrations of 
GSH are determined by the balance among its synthesis, catabolism, and trans-
port between cytosol and the different organelles [89].

GSH, by itself, is not transported effectively into the cells, and under normal 
physiological conditions, it is in a reduced form. During its oxidation (where the thiol 
group of Cys is responsible for the redox reactions) by ROS and RNS, it involves two 
types of reactions, a nonenzymatic reaction with the NO•, HO−, and O2

•− radicals and 
an enzymatic one providing an electron for the reduction of peroxides in the reac-
tion, catalyzed by GPx to form the oxidized glutathione GSSG (two GSH molecules 
bound by the disulfide bridge), which is regenerated by Gr, an enzyme that transfers 
electrons from NADPH to GSSG by reducing it [90, 91]. Thus, the redox state of GSH 
activates the activator protein 1 (AP-1) responsible for the expression of cytokine 
genes, TGF-β, and collagenase and AP-2 responsible for the activation of c-Jun-N-ter-
minal kinases (JNK), stress-activated protein kinases (SAPK), protein kinase c (PK-
C), and tyrosine kinase, while the decrease in the GSH level stimulates the activation 
of NF-κB, protein kinase B, c-Jun N-terminal Kinase, and mitogen-activated protein 
kinase with the subsequent increase in synthesis of pro-inflammatory cytokines and 
caspases. In suitable concentrations, GSH increases the activation, proliferation, and 
cellular differentiation and regulates the Ca2+ homeostasis [91], granting a fundamen-
tal role in cellular homeostasis and pathologies related to patient’s age and oxidative 
stress states, such as neurodegenerative, neuroinflammatory, cardiovascular diseases, 
and cerebral ischemia, among others [92, 93]. To increase the intracellular GSH con-
centration levels, GSH precursors have been used, without modifying the Cys that is 
critical for the functioning of the peptide. GSH precursor molecules such as N-acetyl 
cysteine (NAC) stimulate the biosynthesis of GSH that acts directly on ROS, RNS [89, 
93, 94], and glutathione esters, mainly mono- and dimethyl esters such as glutathione 
monoethyl ester [γ- Glu-Cys-Gly-OEt (GSH-MEE)], where the carboxyl group of Gly 
is esterified and, due to its high hydrophobicity, increases its permeability to the cell 
membrane and facilitates its transport in brain-spinal fluid [95–97]. Once GSH-MEE 
is located in the cellular cytoplasm, it is hydrolyzed by the intracellular esterases to 
release and cause the intracellular increase in the GSH concentration and react with 
the FR without enzymatic intervention or it reduces the peroxides by means of GPx 
through its oxidation to GSSG [89, 91, 98, 99].

GSH-MEE has been used effectively to protect cells from oxidizing agents and 
various toxic compounds in various cell lines and animal models with neurodegen-
erative and inflammatory processes [92, 99, 100]. Studies of our group and collabo-
rators have shown that the i.p. administration of 12 mg/kg of GSH-MEE divided 
into four doses in the first 24 h post-lesion in rats subjected to a moderate SCI 
contributes to the reduction of oxidative stress, significantly improves motor func-
tion and survival of red core neurons, and stabilizes spinal cord blood flow [100], 
while a therapeutic combination of GSH-MEE (at the same dose and under the same 
scheme) with intradermal application (i.d.) of the A91 peptide at the base of the tail 
at a dose of 600 μg/kg immediately after the injury promotes a better neurological 
recovery and morphological preservation. This combination is able to maintain its 
neuroprotective action even if it starts 72 h after the injury [68, 74]. In the same 
way, our group has demonstrated that the therapeutic combination of GSH-MEE 
and MLIF promotes greater motor recovery and maintains several morphological 
aspects on the site of lesion in rats subjected to moderate SCI.
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3.8 Natural extracts as antioxidants

A variety of ingredients and active ingredients derived from herbal extracts, 
known for their antioxidant and anti-inflammatory activity, have also called 
the attention to complement SCI treatments. Among all these, ingredients such 
as curcumin, resveratrol, epigallocatechin gallate, ligustrazine, quercitrin, and 
puerarin and herbs such as Dashen, Ginkgo biloba, Ginseng, Notoginseng, and 
Astragali Radix are outlined as candidates for various experimental studies. In the 
review by Zhang et al. [101], the molecular structures, application, and dose are 
listed, as well as the results found at a molecular level on SCI. In particular, the 
compound curcumin is a polyphenol substance isolated from the yellow extract 
from rhizome of Curcuma longa, and it has been widely used for medicinal purposes 
due to its potent effect in inhibiting acute and chronic inflammation. Regarding its 
antioxidant action, its application in SCI (300 mg/kg in DMSO, single dose i.p. after 
injury) has shown a decrease in MDA and an increase in SOD at 24 h [102], and at a 
lower dose, it has also increased the concentration and induction of GSH, GPx, and 
Nrf2 and decreased the expression of NF-κB, TNF-α, and IL-1β [101].

3.9 Spin trappings

A highly studied antioxidant strategy consists of scavengers of FR that include, 
among others, thiols (lipoic acid), GSH precursors, NAC, polyphenolic compounds, 
hydroxyl stilbenes, nitrones, and spin trappings (noncyclic and cyclic nitrones); we 
will only review the latter. Most spin trappings have a nitronate or nitroxide nucleus 
and are chemical agents that react with FR, forming stable products (adducts), and 
were originally developed as a tool to detect and stabilize the FR in chemistry and 
later in biological oxidation processes [103–105]. The first spin trappings had short 
half-lives and generated toxic HO•. By designing the spin trappings with the inclu-
sion of heterocyclic rings (pyrrolines or phenol, generating Imidazolyl-nitrones, 
Furil-nitrones, Arylnitrons, and others) toxicity was reduced, improving its neu-
roprotective, anti-inflammatory, functionality, stability, bioavailability, and trap-
ping different types of FR centered on O2, carbon, and sulfur derivatives. In turn, 
this increases their solubility in high concentrations in a large number of solvents 
(~0.1M), producing a positive effect when administered in a varied-dose scheme 
before or after a traumatic event [103, 106]. A basic example of the nitrones is phenyl 
N-tert-butylnitrone (PBN), an arylnitrone with general formula X-CN = NO-Y, 
which acts by reacting with O2

•− and/or HO− to produce adducts. Once the adduct 
is formed, the radical is inactivated and unable to damage the cell tissue [104, 107]. 
The general reaction is that of the formation of adduct, schematized in Figure 4. In 
general, it is indicated that PBN is not toxic and the suitable concentration to form 
adducts is 10–15 mg/100 g of weight, while the estimated lethal dose is 10 times 
higher (100–150 mg/100 g of weight) [108]. The first neuroprotective evidence 
was in neurodegenerative models administered at low doses after injury and in the 

Figure 4. 
Basic reaction of a nitrone with FR to produce a stable spin product (adduct). Modified from Refs. [105, 106].



Spinal Cord Injury Therapy

52

is combined with glycine (Gly) in a reaction catalyzed by the second enzyme 
(glutathione synthase) to form GSH, whose concentration is regulated by the 
nhibition of γ-GluCys ligase, the cellular content of L-cysteine, and the final 
concentration of GSH. Thus, the intracellular and extracellular concentrations of 
GSH are determined by the balance among its synthesis, catabolism, and trans-
port between cytosol and the different organelles [89].

GSH, by itself, is not transported effectively into the cells, and under normal 
physiological conditions, it is in a reduced form. During its oxidation (where the thiol 
group of Cys is responsible for the redox reactions) by ROS and RNS, it involves two 
types of reactions, a nonenzymatic reaction with the NO•, HO−, and O2

•− radicals and 
an enzymatic one providing an electron for the reduction of peroxides in the reac-
tion, catalyzed by GPx to form the oxidized glutathione GSSG (two GSH molecules 
bound by the disulfide bridge), which is regenerated by Gr, an enzyme that transfers 
electrons from NADPH to GSSG by reducing it [90, 91]. Thus, the redox state of GSH 
activates the activator protein 1 (AP-1) responsible for the expression of cytokine 
genes, TGF-β, and collagenase and AP-2 responsible for the activation of c-Jun-N-ter-
minal kinases (JNK), stress-activated protein kinases (SAPK), protein kinase c (PK-
C), and tyrosine kinase, while the decrease in the GSH level stimulates the activation 
of NF-κB, protein kinase B, c-Jun N-terminal Kinase, and mitogen-activated protein 
kinase with the subsequent increase in synthesis of pro-inflammatory cytokines and 
caspases. In suitable concentrations, GSH increases the activation, proliferation, and 
cellular differentiation and regulates the Ca2+ homeostasis [91], granting a fundamen-
tal role in cellular homeostasis and pathologies related to patient’s age and oxidative 
stress states, such as neurodegenerative, neuroinflammatory, cardiovascular diseases, 
and cerebral ischemia, among others [92, 93]. To increase the intracellular GSH con-
centration levels, GSH precursors have been used, without modifying the Cys that is 
critical for the functioning of the peptide. GSH precursor molecules such as N-acetyl 
cysteine (NAC) stimulate the biosynthesis of GSH that acts directly on ROS, RNS [89, 
93, 94], and glutathione esters, mainly mono- and dimethyl esters such as glutathione 
monoethyl ester [γ- Glu-Cys-Gly-OEt (GSH-MEE)], where the carboxyl group of Gly 
is esterified and, due to its high hydrophobicity, increases its permeability to the cell 
membrane and facilitates its transport in brain-spinal fluid [95–97]. Once GSH-MEE 
is located in the cellular cytoplasm, it is hydrolyzed by the intracellular esterases to 
release and cause the intracellular increase in the GSH concentration and react with 
the FR without enzymatic intervention or it reduces the peroxides by means of GPx 
through its oxidation to GSSG [89, 91, 98, 99].

GSH-MEE has been used effectively to protect cells from oxidizing agents and 
various toxic compounds in various cell lines and animal models with neurodegen-
erative and inflammatory processes [92, 99, 100]. Studies of our group and collabo-
rators have shown that the i.p. administration of 12 mg/kg of GSH-MEE divided 
into four doses in the first 24 h post-lesion in rats subjected to a moderate SCI 
contributes to the reduction of oxidative stress, significantly improves motor func-
tion and survival of red core neurons, and stabilizes spinal cord blood flow [100], 
while a therapeutic combination of GSH-MEE (at the same dose and under the same 
scheme) with intradermal application (i.d.) of the A91 peptide at the base of the tail 
at a dose of 600 μg/kg immediately after the injury promotes a better neurological 
recovery and morphological preservation. This combination is able to maintain its 
neuroprotective action even if it starts 72 h after the injury [68, 74]. In the same 
way, our group has demonstrated that the therapeutic combination of GSH-MEE 
and MLIF promotes greater motor recovery and maintains several morphological 
aspects on the site of lesion in rats subjected to moderate SCI.
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3.8 Natural extracts as antioxidants

A variety of ingredients and active ingredients derived from herbal extracts, 
known for their antioxidant and anti-inflammatory activity, have also called 
the attention to complement SCI treatments. Among all these, ingredients such 
as curcumin, resveratrol, epigallocatechin gallate, ligustrazine, quercitrin, and 
puerarin and herbs such as Dashen, Ginkgo biloba, Ginseng, Notoginseng, and 
Astragali Radix are outlined as candidates for various experimental studies. In the 
review by Zhang et al. [101], the molecular structures, application, and dose are 
listed, as well as the results found at a molecular level on SCI. In particular, the 
compound curcumin is a polyphenol substance isolated from the yellow extract 
from rhizome of Curcuma longa, and it has been widely used for medicinal purposes 
due to its potent effect in inhibiting acute and chronic inflammation. Regarding its 
antioxidant action, its application in SCI (300 mg/kg in DMSO, single dose i.p. after 
injury) has shown a decrease in MDA and an increase in SOD at 24 h [102], and at a 
lower dose, it has also increased the concentration and induction of GSH, GPx, and 
Nrf2 and decreased the expression of NF-κB, TNF-α, and IL-1β [101].

3.9 Spin trappings

A highly studied antioxidant strategy consists of scavengers of FR that include, 
among others, thiols (lipoic acid), GSH precursors, NAC, polyphenolic compounds, 
hydroxyl stilbenes, nitrones, and spin trappings (noncyclic and cyclic nitrones); we 
will only review the latter. Most spin trappings have a nitronate or nitroxide nucleus 
and are chemical agents that react with FR, forming stable products (adducts), and 
were originally developed as a tool to detect and stabilize the FR in chemistry and 
later in biological oxidation processes [103–105]. The first spin trappings had short 
half-lives and generated toxic HO•. By designing the spin trappings with the inclu-
sion of heterocyclic rings (pyrrolines or phenol, generating Imidazolyl-nitrones, 
Furil-nitrones, Arylnitrons, and others) toxicity was reduced, improving its neu-
roprotective, anti-inflammatory, functionality, stability, bioavailability, and trap-
ping different types of FR centered on O2, carbon, and sulfur derivatives. In turn, 
this increases their solubility in high concentrations in a large number of solvents 
(~0.1M), producing a positive effect when administered in a varied-dose scheme 
before or after a traumatic event [103, 106]. A basic example of the nitrones is phenyl 
N-tert-butylnitrone (PBN), an arylnitrone with general formula X-CN = NO-Y, 
which acts by reacting with O2

•− and/or HO− to produce adducts. Once the adduct 
is formed, the radical is inactivated and unable to damage the cell tissue [104, 107]. 
The general reaction is that of the formation of adduct, schematized in Figure 4. In 
general, it is indicated that PBN is not toxic and the suitable concentration to form 
adducts is 10–15 mg/100 g of weight, while the estimated lethal dose is 10 times 
higher (100–150 mg/100 g of weight) [108]. The first neuroprotective evidence 
was in neurodegenerative models administered at low doses after injury and in the 

Figure 4. 
Basic reaction of a nitrone with FR to produce a stable spin product (adduct). Modified from Refs. [105, 106].
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prevention of stroke-induced mortality in models of ischemia in gerbils [103, 104, 
109–113]. The pharmacological effects of PBN in animal models are extensive, 
protecting against death after endotoxic shock, bacterial meningitis, teratogenicity 
induced by thalidomide, diabetogenesis, hepatocarcinogenesis, etc. Many stud-
ies have reported a neuroprotective effect in SCI and the brain (the most studied) 
decreasing the expression of genes associated with apoptosis, inflammation, and 
iNOS by decreasing the activation of MAP p-38 NF-κB nitrogen kinase and syn-
thesis of NO• [114]. In a process of ischemia or perfusion, PBN reduces the size of 
the infarct by increasing ischemic reperfusion and decreasing neurodegeneration, 
excitotoxicity, and the activation of microglia; it also induces neurite growth through 
indirect activation of the Ras-ERK pathway, increasing animal survival [106, 
115–117]. The neuroprotective effect of PBN is attributed to its ability to quickly 
and easily penetrate the membranes and the blood-brain barrier with a half-life of 
3 h in plasma; decrease the levels of oxidized proteins, 8-isoprostane, HNE, IL-1β, 
TNF-α, IFN-γ, c-fos, IL-3, IL-4, IL-5, and H2O2; and favor an increase of GHS and 
IL-10, among others [106, 117–119]. In a model of cortical contusion in rats, it was 
demonstrated that pre-treatment with PBN with a single intravenous dose of 30 mg/
kg 30 min before the injury reduces the cognitive deficit and its volume; it has shown 
to have a wide therapeutic window in focal ischemia rodent models, reducing the 
infarct volume when administered up to 12 h after the beginning of the stroke and 
reducing the loss of tissue when administered by fluid percussion 30 min. After 
injury in rats [120]. Currently, the nitrones derived from PBN [102] are being widely 
studied as neuroprotective in different CNS pathologies and in traumatic lesions. 
For example, 2,4-disulfophenyl-N-tert-butylnitrone (NXY-059) has neuroprotective 
effects when applied 4–5 hr post-occlusion at equimolar doses to PBN and reduced 
infarct volume from 37.2 to 12.5% when 30 mg/kg was administered i.v. 1 h after 
reperfusion in Wistar rats [121–124]. Meanwhile, stilbazulenyl nitrone (STAZN) 
exerts similar effects at lower doses than the one used for NXY-059; in fact, the toler-
ability and safety of NXY-059 were studied in patients with acute stroke in clinical 
trials [103, 124]. Although not all compounds have demonstrated their neuroprotec-
tive effect when administered 24 h after the traumatic event, some of them have 
allowed favoring the therapeutic window at repeated doses [103].

Other derivatives are 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and diesteri-
fied nitrone (EMEPO), which have shown similarities to the action of PBN but 
with some other advantages, such as being less toxic and increasing the levels of 
antiapoptotic proteins such as Bcl2 and p-Bad and decreasing the synthesis of 
pro-apoptotic ones such as caspase 3, p53, and Bax [125–127]. In addition, (2, 2, 6, 
6-tetramethylpiperidin-1-yl)oxyl (Tempo) and (4-hydroxy-2,2,6,6-tetramethylpi-
peridin-1-yl)oxyl (Tempol) have shown antioxidant properties in radiation damage 
and injury [128, 129]. In a traumatic brain injury mouse model, Tempol reduced 
post-traumatic LP and oxidative damage induced by protein nitration, decreasing 
mitochondrial damage, cytoskeletal damage, and neurodegeneration and improv-
ing motor function [128, 130, 131].

Despite the results observed with the nitrones and the wide range of studies per-
formed for therapeutic uses at different doses and times, their action is attributed 
to their ability to form adducts, but not before indicating the possible participation 
of other mechanisms that favor their neuroprotective activity, thus expanding the 
information on antioxidant therapy strategies in the clinical area.

3.10 Polyethylene glycol (PEG)-superoxide dismutase (SOD)

Polyethylene glycol (PEG) is a surfactant that due to its hydrophilic nature 
allows the fusion and fluidity of the cell membrane that reduces the oxidative 
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effects of the secondary stage and that during the acute phase of SCI, it may 
inhibit nerve fiber degeneration and create a favorable microenvironment for the 
regeneration of nerve filaments that can stimulate angiogenesis and reduce glial 
scar, promoting the regeneration of axonal guidance and motor recovery. PEG has 
been widely used as a scaffold for a large variety of molecules in treatment for SCI 
[132–136], while the SOD enzyme has antioxidant properties, as mentioned previ-
ously. The combination of SOD with PEG (PEG-SOD) allows an increase of the 
enzyme intracellularly and its antioxidant activity, and it may have an important 
role in vascular relaxation by reducing the concentration of O2•− and limiting the LP 
[132]. It has been used in myocardial ischemia and in lung injury models, proposed 
as a treatment vs. oxidative stress [132].

In a controlled phase II study in patients in a coma who suffered a stroke and 
received a single i.v. dose of 2000, 5000, or 10,000 IU/kg 4 h after the injury, its 
recovery was better in comparison to the group that received placebo (44% were 
in a vegetative state or died); no side effects were observed in this study due to the 
administration of the drug [137].

In a study in a cerebral ischemia model performed in rats, 10,000 IU/kg of PSG-
SOD were i.v. administered, and the group presented a significant reduction in infarct 
size in comparison to the control group [138]. In other study with Sprague-Dawley 
male rats (300-350g of weight), an occlusion of the hepatic artery was performed and 
reperfusion was performed after 90 min to generate liver damage. A group of animals 
received i.v. 5000 U/kg of PEG-SOD before vascular occlusion and immediately after 
reperfusion, while the control group only received a saline solution following the same 
scheme. In the group treated with PEG-SOD, hepatic ischemia and LP were attenuated. 
Meanwhile, another study examined the effect of PEG-SOD on focal cerebral ischemia/
reperfusion in rats; the results showed that the effect is variable, depending on the 
dosage [132, 139]. In a dog experiment, thoracic aortic cross-clamping was performed; 
a dose of 5000 U/kg of PEG-SOD was i.v. administered to one group 15–20 min before 
clamping, and the other group only received a saline solution. Delayed paraplegia was 
avoided in the group of dogs that received the conjugate, unlike the groups that did not 
receive it [140]. Edward et al. conducted an important review of the use of PEG-SOD in 
phase II and III studies in traumatic brain injury [141].

3.11 Mannitol

When mannitol is used for medical purposes, it is administered intravenously. 
Mannitol can be found in varying concentrations, dissolved in 100 mL of fluid (5, 20, 
and 25% mannitol). A common solution is 20% mannitol. Cruz and colleagues described 
the dose-response effect of preoperative mannitol on acute subdural hematomas in 
traumatic brain injury in which mannitol therapy has been classically directed, establish-
ing and maintaining an osmotic gradient between the blood and brain [142, 143].

Maintaining an adequate spinal cord perfusion pressure is crucial after 
SCI. Intramedullary edema within the spinal cord and consecutively raised intra-
thecal pressure at the injury are important secondary injury mechanisms in the 
pathobiology after traumatic SCI. Increased intraspinal pressure reduces spinal cord 
perfusion pressure, which leads to worsen post-traumatic ischemia [144].

Mannitol allows the control of blood flow patterns in the spinal cord; it has been 
used experimentally in some studies in rats that have suffered a controlled SCI and 
in dogs/cats that suffer an SCI within the clinical area. Mannitol is recommended to 
reduce the effect of inflammation and edema, an effect that has been corroborated 
with microangiographic and electrophysiological studies. One hour after the appli-
cation of a 3 g/kg dose, an improved intramedullary vascular pattern was detected 
among the animals treated with mannitol compared to those that were not treated, 
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prevention of stroke-induced mortality in models of ischemia in gerbils [103, 104, 
109–113]. The pharmacological effects of PBN in animal models are extensive, 
protecting against death after endotoxic shock, bacterial meningitis, teratogenicity 
induced by thalidomide, diabetogenesis, hepatocarcinogenesis, etc. Many stud-
ies have reported a neuroprotective effect in SCI and the brain (the most studied) 
decreasing the expression of genes associated with apoptosis, inflammation, and 
iNOS by decreasing the activation of MAP p-38 NF-κB nitrogen kinase and syn-
thesis of NO• [114]. In a process of ischemia or perfusion, PBN reduces the size of 
the infarct by increasing ischemic reperfusion and decreasing neurodegeneration, 
excitotoxicity, and the activation of microglia; it also induces neurite growth through 
indirect activation of the Ras-ERK pathway, increasing animal survival [106, 
115–117]. The neuroprotective effect of PBN is attributed to its ability to quickly 
and easily penetrate the membranes and the blood-brain barrier with a half-life of 
3 h in plasma; decrease the levels of oxidized proteins, 8-isoprostane, HNE, IL-1β, 
TNF-α, IFN-γ, c-fos, IL-3, IL-4, IL-5, and H2O2; and favor an increase of GHS and 
IL-10, among others [106, 117–119]. In a model of cortical contusion in rats, it was 
demonstrated that pre-treatment with PBN with a single intravenous dose of 30 mg/
kg 30 min before the injury reduces the cognitive deficit and its volume; it has shown 
to have a wide therapeutic window in focal ischemia rodent models, reducing the 
infarct volume when administered up to 12 h after the beginning of the stroke and 
reducing the loss of tissue when administered by fluid percussion 30 min. After 
injury in rats [120]. Currently, the nitrones derived from PBN [102] are being widely 
studied as neuroprotective in different CNS pathologies and in traumatic lesions. 
For example, 2,4-disulfophenyl-N-tert-butylnitrone (NXY-059) has neuroprotective 
effects when applied 4–5 hr post-occlusion at equimolar doses to PBN and reduced 
infarct volume from 37.2 to 12.5% when 30 mg/kg was administered i.v. 1 h after 
reperfusion in Wistar rats [121–124]. Meanwhile, stilbazulenyl nitrone (STAZN) 
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information on antioxidant therapy strategies in the clinical area.

3.10 Polyethylene glycol (PEG)-superoxide dismutase (SOD)

Polyethylene glycol (PEG) is a surfactant that due to its hydrophilic nature 
allows the fusion and fluidity of the cell membrane that reduces the oxidative 
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effects of the secondary stage and that during the acute phase of SCI, it may 
inhibit nerve fiber degeneration and create a favorable microenvironment for the 
regeneration of nerve filaments that can stimulate angiogenesis and reduce glial 
scar, promoting the regeneration of axonal guidance and motor recovery. PEG has 
been widely used as a scaffold for a large variety of molecules in treatment for SCI 
[132–136], while the SOD enzyme has antioxidant properties, as mentioned previ-
ously. The combination of SOD with PEG (PEG-SOD) allows an increase of the 
enzyme intracellularly and its antioxidant activity, and it may have an important 
role in vascular relaxation by reducing the concentration of O2•− and limiting the LP 
[132]. It has been used in myocardial ischemia and in lung injury models, proposed 
as a treatment vs. oxidative stress [132].

In a controlled phase II study in patients in a coma who suffered a stroke and 
received a single i.v. dose of 2000, 5000, or 10,000 IU/kg 4 h after the injury, its 
recovery was better in comparison to the group that received placebo (44% were 
in a vegetative state or died); no side effects were observed in this study due to the 
administration of the drug [137].

In a study in a cerebral ischemia model performed in rats, 10,000 IU/kg of PSG-
SOD were i.v. administered, and the group presented a significant reduction in infarct 
size in comparison to the control group [138]. In other study with Sprague-Dawley 
male rats (300-350g of weight), an occlusion of the hepatic artery was performed and 
reperfusion was performed after 90 min to generate liver damage. A group of animals 
received i.v. 5000 U/kg of PEG-SOD before vascular occlusion and immediately after 
reperfusion, while the control group only received a saline solution following the same 
scheme. In the group treated with PEG-SOD, hepatic ischemia and LP were attenuated. 
Meanwhile, another study examined the effect of PEG-SOD on focal cerebral ischemia/
reperfusion in rats; the results showed that the effect is variable, depending on the 
dosage [132, 139]. In a dog experiment, thoracic aortic cross-clamping was performed; 
a dose of 5000 U/kg of PEG-SOD was i.v. administered to one group 15–20 min before 
clamping, and the other group only received a saline solution. Delayed paraplegia was 
avoided in the group of dogs that received the conjugate, unlike the groups that did not 
receive it [140]. Edward et al. conducted an important review of the use of PEG-SOD in 
phase II and III studies in traumatic brain injury [141].

3.11 Mannitol

When mannitol is used for medical purposes, it is administered intravenously. 
Mannitol can be found in varying concentrations, dissolved in 100 mL of fluid (5, 20, 
and 25% mannitol). A common solution is 20% mannitol. Cruz and colleagues described 
the dose-response effect of preoperative mannitol on acute subdural hematomas in 
traumatic brain injury in which mannitol therapy has been classically directed, establish-
ing and maintaining an osmotic gradient between the blood and brain [142, 143].

Maintaining an adequate spinal cord perfusion pressure is crucial after 
SCI. Intramedullary edema within the spinal cord and consecutively raised intra-
thecal pressure at the injury are important secondary injury mechanisms in the 
pathobiology after traumatic SCI. Increased intraspinal pressure reduces spinal cord 
perfusion pressure, which leads to worsen post-traumatic ischemia [144].

Mannitol allows the control of blood flow patterns in the spinal cord; it has been 
used experimentally in some studies in rats that have suffered a controlled SCI and 
in dogs/cats that suffer an SCI within the clinical area. Mannitol is recommended to 
reduce the effect of inflammation and edema, an effect that has been corroborated 
with microangiographic and electrophysiological studies. One hour after the appli-
cation of a 3 g/kg dose, an improved intramedullary vascular pattern was detected 
among the animals treated with mannitol compared to those that were not treated, 



Spinal Cord Injury Therapy

56

and 4 h after the perfusion, many areas of the lateral white matter of the spinal cord 
were almost normal [145]. In a study in dogs, an SCI was experimentally induced, 
and it was reported that mannitol alone did not help to reverse the paralysis of these 
animals [146]; however, another study stated that the i.v. administration of man-
nitol at a dose of 2 g/kg had a good effect on the white matter of the spinal cord and 
areas of the brain [147]. In a retrospective study with Sprague-Dawley rats, a group 
with SCI by compression by means of a clamp, 2 g/kg mannitol were administered 
immediately after the injury, while the control group was given 0.9% saline solu-
tion; all groups underwent structural and electrophysiological studies. The group 
treated with mannitol obtained excellent results, finding significant improvement 
in neural structures and protection of the spinal cord after SCI [148]. In a study in 
dogs to which an edema was induced by severe external spinal cord trauma, 3 g/kg 
of mannitol was i.v. administered, and they were neurologically evaluated, and a 
myelography study was performed after 2 h of the treatment, to identify the edema, 
showing that there was reduction of it [149].

3.12 Combinatory therapies and results in symptoms of SCI

In addition to its independent use, several studies have evaluated the use of 
one or more antioxidants together by themselves or in addition to other existing 
therapies for SCI, such as rehabilitation exercise or cell transplantation, expect-
ing a synergism to enhance the recovery. Moreover, some therapies not only aim 
to improve the immediate treatment of SCI but also improve the effects it has on 
relieving the most common complications in patients. To mention some, the com-
bination of vitamin C as antioxidant (100 mg/kg/1 h and daily/28d, i.p.) together 
with the transplantation of bone marrow mesenchymal stem cells (BMMSC) (3 × 
106 cells) induced improvements in motor recovery in rats when compared with 
methylprednisolone (MP), vitamin C, or BMMSC alone in SCI [150]; simultaneous 
administration of vitamin D (5 μg/kg/twice daily) and progesterone (0.5 mg/kg/
twice daily i.m.) for 5 days demonstrated a higher efficacy in reducing neuroin-
flammation in comparison to when they were administered separately, and when 
they were administrated early (first 4 h) in SCI patients receiving MP, there was 
improvement in the motor and sensory functions 6 months after starting therapy 
[151]. Applying once a day a combination of low-dose fluoxetine (1 mg/kg/i.p.) 
and vitamin C (100 mg/kg/i.p.) immediately after the event and for 14 days had a 
protective effect on the BSCB integrity, improving the functional recovery, showing 
inhibition of the expression and activation of the matrix metalloproteinase, and 
decreasing the infiltration of leukocytes and the expression of inflammatory and 
oxidizing molecules, but not when they were applied separately in rats [152]. In 
SCI patients, dietary supplementation for 3 months, which included three 750 mg 
per day of omega-3 fatty acids and antioxidants (400 mg of mixed tocopherols, 
coenzyme Q10, curcumin, etc.), caused a decrease of inflammatory cytokines with 
reduction in neuropathic pain [153]; 2 months vitamin E dietary supplementation 
765–1020 IU/day in rats before SCI showed accelerated bladder recovery, significant 
motor improvement, and a high number of oligodendrocytes compared to the 
controls [154].

4. Conclusion

After a primary injury occurs on the spinal cord, destructive biochemical 
mechanisms are initiated (secondary injury) that play a fundamental role in the 
pathophysiology of spinal cord injury. Within these, oxidative stress and lipid 

57

Current Developments in Antioxidant Therapies for Spinal Cord Injury
DOI: http://dx.doi.org/10.5772/intechopen.85424

peroxidation exacerbate the biochemical mechanisms once initiated and propagate 
neurodegenerative damage, so the degree of loss of long-term motor and sensory 
functions depends largely on their intensity. This damage suffered during the acute 
phase and that may be irreversible requires a timely intervention. To guarantee 
the antioxidant effect that will render better results, it is important to consider the 
new agents and therapies in the SCI treatment at the appropriate times. There is no 
fully restorative therapy for SCI, but strategies for the modulation of this damage 
contribute to neuroprotection and, although partially, to functional recovery.
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Abstract

Spinal cord injury (SCI) results into an immediate primary injury (physical 
damages) followed by secondary damages (prolonged posttraumatic inflammatory 
disorder) resulting into severe motor dysfunction including paralysis. The present 
chapter discusses and investigates the neuroprotective effects of cyclosporin-A 
(CsA), minocycline, and tacrolimus (FK506) and their therapeutic effectiveness 
in recovery from the animal model of SCI. Based on the available recent literature 
on these three drugs, as well as in perspective of the results obtained on some 
experimental behavioral, biochemical, and oxidative stress parameters in the 
present study, the therapeutical potential of these three drugs has been discussed. 
Furthermore, the animal model of SCI used herein has been reviewed and com-
pared with other reported animal models for understanding the utility, suitability, 
and reproducibility of the methodology of the present model for screening purposes 
in quest of searching ideal therapeutic compounds for maximum recovery from SCI.

Keywords: cyclosporin-A, minocycline, tacrolimus (FK506), rats,  
spinal cord injury, behavior, oxidative stress

1. Introduction

Spinal cord injury (SCI) is prevalent worldwide [1, 2] and often incapacitates the 
victims for life resulting in disability. Injury to the spinal cord results in processes 
that occur in three phases: the first phase is immediate physical phase also known as 
acute phase comprising affected spinal shock and initial trauma (primary injury) 
followed by the second phase known as secondary phase which is a prolonged 
cascade of damaging processes over a time period of minutes to weeks after the 
injury (secondary injury). Such damages include ischemia, vascular alterations, 
biochemical alterations, and cellular responses that lead to peripheral posttraumatic 
inflammatory cell infiltration and cell death (secondary injury) [1, 3–5]. The third 
phase that sustains between days and years after SCI trauma is characterized by 
proapoptotic degeneration and scarring that establishes permanent functional 
impairment [6, 7]. Secondary injury leads to the key pathophysiological response 
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to SCI causing severe and permanent functional deficits. Most of the clinical trials 
and experimental studies are conducted for intense research to unfold the underly-
ing pathophysiological processes and for searching ideal and potential therapy for 
recovery from secondary SCI injuries [8]. Besides motor dysfunction, some of the 
other important SCI-related biochemical and immunological impairments that get 
involved are serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interleu-
kin-6, nuclear factor (NF)-κB p65, p38 mitogen-activated protein kinase (MAPK), 
inducible nitric oxide synthase (iNOS), caspase-3, superoxide dismutase (SOD), 
catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) 
[9]. SCI trauma causes a devastating effect not only to the individual patient, but 
it also incurs heavy expensive burden to the society in general and to the family 
members, due to substantial long-term healthcare expenditures [10].

Despite considerable therapeutic studies, no proven drugs or techniques are 
available for satisfactory treatment of SCI. Much of these therapeutic studies have 
been reported from animal models, and it needs to be understood that a success-
ful clinical trial in humans can only be initiated based on previously available 
preclinical data reported from animal model studies that closely mimic the losses 
as in human SCI functions [11]. Although rats are the animal model of choice for 
SCI studies, the major anatomical differences in axonal tracts and sensory motor 
pathways between quadrupeds and bipeds need to be taken into careful account to 
improve the targets of human SCI treatments [12].

Currently, methylprednisolone is the only recognized treatment for human 
SCI; however, it has significant adverse effects, including respiratory complica-
tions, sepsis, and gastrointestinal hemorrhage [13]. Furthermore, other important 
evidence-based therapies that have potential neuroprotective and neural reparative 
therapeutic properties and are undergoing clinical trials for human SCI include sur-
gical decompression, blood pressure augmentation, riluzole, granulocyte colony-
stimulating factor, minocycline, glibenclamide, cerebrospinal fluid drainage, 
magnesium, therapeutic hypothermia, Cethrin (VX-210), anti-NOGO antibody, 
cell-based approaches, and bioengineered biomaterials [5, 14, 15].

Some other experimental drugs that have been studied for therapeutical use in 
animal SCI are recombinant human erythropoietin [10], tetrodotoxin [16], BCL-2 
[17], cyclosporin-A [18], edaravone [19], atorvastatin [20], calpain inhibitors [21] 
FK506, and minocycline [22]. Also, some natural products like eugenol oil [9], 
curcumin [23], and melatonin [24] have shown promising effects in animal SCI 
functional recovery. It sounds reasonable that instead of using a highly selective 
treatment that targets a specific molecule or pathway, a compound with multifunc-
tional properties that targets several mediators involved in spinal cord pathology 
may be more effective for recovery from SCI [25]. In our earlier study [22], the 
promising potential of FK506 and minocycline has been reported for their effec-
tiveness in rat SCI model. Thus, in the present study, besides these two multifacto-
rial effective compounds minocycline and FK506, a third compound cyclosporin-A 
(CsA) was also included, and all the three compounds minocycline, FK506 (tacro-
limus), and cyclosporine-A were chosen to evaluate in a comparative manner for 
their therapeutical potential using some important and reliable parameters that are 
most commonly used in rat SCI model [22]. Before discussing the outcome of our 
present results, we review the multifactorial effects of these three compounds that 
have been reported in literature using rat SCI model.

1.1 Minocycline

Minocycline, a semisynthetic second-generation tetracycline, has robust neuro-
protective effects in rodent models of neurodegenerative diseases [26] and provides 
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neuroprotection in experimental models of neurological diseases, including SCI 
[27]. In a broad range of secondary injury mechanisms via its anti-inflammatory, 
antioxidant, and antiapoptotic properties, minocycline is effective in reducing sec-
ondary injury and promoting locomotor functional recovery [28–31]. Minocycline 
prevents N-methyl-d-aspartate (NMDA)-induced excitotoxicity by diminishing 
NMDA-induced Ca2+ influx and mitochondrial Ca2+ uptake [32] and protects gray 
and white matter from SCI [33]. Minocycline also inhibits p38 mitogen-activated 
protein kinase (p38 MAPK) activation and microglial pro-nerve growth factor 
(proNGF) expression resulting from inflammatory reactions due to SCI and 
improves oligodendrocyte survival [34]. Inflammation due to SCI also upregulates 
and activates a class of enzymes like phospholipase A2s (PLA2s), and minocy-
cline reduces cPLA2s [35]. It also inhibits monocyte and microglial expression of 
cyclooxygenase 2 (COX2) and production of proinflammatory prostaglandins E2 
[36] and suppresses 5-lipoxygenase (5-LOX) action in SCI tissue [37]. Minocycline 
also eliminates free radicals in the post-SCI microenvironment and protects from 
oxidative stress [38]. It inhibits malondialdehyde, a by-product of lipid peroxida-
tion [39, 40], and increases glutathione (GSH) [39], superoxide dismutase, and 
glutathione peroxidase [40], suggesting the powerful antioxidative mechanisms 
of minocycline to recover from secondary injury in SCI. Minocycline is reported to 
inhibit matrix metalloproteinases (MMPs) that are upregulated following SCI and 
are involved in injury and recovery processes [41, 42]. Furthermore, minocycline 
improves functional outcome, reduces lesion size and cell death, and alters cytokine 
expression after SCI [43–45]. Minocycline reduces the lesion area, increases the 
number of descending sympathoexcitatory axons traversing the injury site, and 
ultimately reduces the severity of autonomic dysreflexia [46]. In a murine model 
of SCI, minocycline treatment was superior to methylprednisolone in promoting 
functional improvement [44] and had neuroprotective effects on the SCI epicenter 
[47], motor neuron recovery, and neuropathic pain [48]. Minocycline has recently 
been reported to be effective in reducing secondary injury and promoting locomo-
tor functional recovery in experimental SCI [28].

It has also been reported to attenuate reactive astrocytosis in SCI which directly 
damages cell bodies and triggers endogenous processes including neuroinflamma-
tion and reactive astrocytosis [49, 50]. In combination studies also, minocycline has 
been reported for better recovery from SCI when used in combination with other 
drugs like FK506 [22] and bone marrow mesenchymal cells (BMSCs) [51] showing 
a very significant recovery in behavioral function, oxidative stress, and reduction in 
lesion size from SCI in rats warranting further research on this drug.

1.2 Cyclosporin-A

Cyclosporin-A is an immunosuppressive cyclic undecapeptide that inhibits T 
cells and depresses both cellular and humoral immune responses to prevent graft 
rejection and reduces the inflammatory responses [52]. CsA significantly decreases 
the expression levels of interleukin-10, tumor necrosis factor-α, cyclophilin-D 
(Cyp-D), and apoptosis-inducing factor (AIF) [53]. CsA does not readily cross the 
blood-spinal cord barrier (BSCB), which restricts the clinical application of CsA 
for SCI treatment. Thus, polyethylene glycol (PEG)-transactivating-transduction 
protein (TAT)-modified CsA-loaded cationic multifunctional polymeric liposome-
poly (lactic-co-glycolic acid) (PLGA) core/shell nanoparticles (PLGA/CsA NPs) to 
transport and deliver CsA across the BSCB have a new potential to treat SCI [54]. 
CsA inhibits primarily the inflammatory reaction and the synthesis of constitutive 
nitric oxide (NO) and inducible nitric oxide synthases (NOS), well-known neuro-
toxic agents for SCI diminishing overproduction of free radicals, and secondarily 
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lipid peroxidation (LP) observed after SCI [55, 56]. CsA may also induce other 
non-immunological effects that could be beneficial for treatment of neurologi-
cal disorders [57]. CsA has been widely used in the treatment of various diseases 
including aplastic anemia, nephritic syndrome, rheumatoid arthritis, psoriasis, and 
cerebral ischemic injuries [53]. CsA promotes neuroprotection by diminishing both 
demyelination and neuronal cell death, resulting in a better motor outcome after 
SCI [52, 58, 59]. CsA in combination with FK506 had a neuroprotective treatment 
against SCI hypoxia-induced damage mediated via their antioxidant actions on 
mitochondrial ATP, tissue-reduced glutathione, tissue LPO level, and myeloper-
oxidase (MPO) activity [60]. Administration of CsA in combination with olfactory 
ensheathing cell (OEC) transplantation results in augmented functional improve-
ments and promotes axon regeneration after SCI [61].

1.3 FK506

FK506 (tacrolimus), a macrolide lactane antibiotic, was introduced as an 
immunosuppressive agent [62] with virtually no side effects [63]. FK506, a potent 
calcineurin inhibitor, exhibits neuroprotective actions in several experimental mod-
els of central nervous system trauma, including stroke, and improved neurological 
recovery following peripheral and spinal cord injuries [47, 63–67]. It is reported that 
FK506 has beneficial effects in SCI recovery involving various mechanisms such as 
neuroregeneration and neuroprotection [67], promotion of axonal outgrowth [68], 
and suppression of oxidative stress [60]. FK506 improves the functional outcome of 
SCI [67–69] and has an in vivo neurotrophic action, whereby it enhances the rate of 
axon regeneration, leading to more rapid neurological recovery [70–73]. Significant 
functional recovery from SCI due to FK506 treatment has been reported in rat 
models [22, 67, 74]. Activation of NF-κB and proinflammatory cytokines (TNF-a, 
IL-1b, and IL-6) expression levels in SCI animals is reversed by FK506 treatment 
involving microglial activation after SCI [7]. FK506 upregulates epidermal growth 
factor (EGF)-level expression of astrocytes that have an important role as mediators 
for SCI functional recovery promoting axonal regeneration [74]. FK506 in combi-
nation as a cocktail with other drugs like minocycline [22], CSA [60], RhoA inhibi-
tors [75], nerve growth factor (NFG) [76], and methylprednisolone (MP) [77] has 
shown significant therapeutic recovery from SCI in rats.

Considering the above-discussed multifactorial effects of CsA, minocycline, and 
FK506, the present study was undertaken to investigate the neuroprotective effects 
of these three compounds in a comparative manner on recovery from experimental 
SCI, as these three drugs target multiple processes involved in mediating cell death 
and the development of secondary injury in SCI. Furthermore, our earlier findings 
on FK506 and minocycline [22] prompted us to include CsA (another promising 
drug for SCI recovery) and compare their effectiveness in rat model of SCI, using 
the behavioral and biochemical parameters as in earlier [22].

2. Utility of experimental animal models for SCI studies

For SCI studies, animal models are used because of their easy accessibility, 
convenience, and capability of the researchers to explore them at several levels 
(simulated to human clinical SCI levels) for motor functional, biochemical, and 
oxidative stress and genetic, therapeutic, and pathophysiological evaluations [78]. 
Over the last decade, a variety of animal models have been used for experimental 
SCI studies, including rats, mice, gerbils, guinea pigs, hamsters, rabbits, dogs, 
goats, pigs, and nonhuman primates [79]. Among these animals, rodents in general 
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and rats in particular are the most widely and commonly studied SCI models [80]. 
In the present study also, we have used young adult male Sprague-Dawley rats with 
all similar specifications of breeding, housing facilities, and experimental han-
dlings, as described in our earlier study [22].

To establish an ideal SCI animal model for research purposes, various models have 
been tried and reported till to date in quest of searching methodology to obtain maxi-
mum recovery from SCI. These experimental animal models include spinal cord trau-
matic injury model [81], photochemical-induced SCI model [82], spinal cord transection 
model [83], bidirectional distraction SCI model [84], and the spinal cord ischemia-
reperfusion injury model [85]. For traumatic injury model, the contusive SCI model is 
used by inducing contusion on the dorsal spinal cord by dropping a desired weight either 
from a computer-controlled impact device [86] or from a customized impact device [87]. 
Another traumatic injury model known as compressive SCI model is also very com-
monly used where instead of dropping the weight, it is placed on the exposed spinal cord 
segment in the dorsoventral direction to induce a compressive SCI [88, 89]. However, 
since SCI caused by impact and compression is more common in clinical patients [79], 
in the present study also, we have used the compressed SCI model induced in the rats as 
described in our earlier study [22]. Briefly, the SCI was induced in the rats following the 
modified method of Nystrom and Berglund [89]. Laminectomy was performed at the T 
7–8 level, and spinal cord compression injury was produced by placing a load with a total 
weight of 35 g, for 5 min over the exposed extradural area.

All experimental rats were randomly divided into the following six groups with 
eight animals in each as described earlier [22]:

Group I: The normal control group without laminectomy or compression injury
Group II: Sham group with laminectomy alone but no spinal compression injury
Group III: SCI control group with laminectomy and spinal compression injury
SCI-treated groups were the same as the SCI control group (Group III) and 

consisted of three groups in which the effect on the recovery from SCI using the 
same parameters is mentioned in our earlier study [22]. Doses of the three drugs 
CSA, minocycline, and FK506 were selected on the basis of our pilot screening of 
these drugs at low, medium, and high doses, and the best effective dose in each was 
used in the present study as follows:

Group IV: Cyclosporin-A 5 mg/kg
Group V: Minocycline 50 mg/kg
Group VI: FK506 (tacrolimus) 1 mg/kg
All protocols for the drug administration, follow-ups, care, and experimental 

handlings of the animals for various evaluation parameters were the same as 
described earlier [22].

3. Behavioral evaluations in SCI animals

To analyze the therapeutic recovery from induced SCI in animal models, several 
behavioral outcome measures have been developed and widely used, such as the 
catwalk [90], the Basso-Beattie-Bresnahan (BBB) locomotor scale [91], the horizontal 
ladder test, and the cylinder rearing test [92]. From the literature review of the recent 
years, it is found that BBB locomotor scale has been most widely used in SCI rat  
models to evaluate motor functional recovery from SCI [9, 12, 22–24, 53, 58, 74, 77, 93].  
However, in the present study, besides BBB locomotor scale [94], a battery of some 
more behavioral motor functions was included like Tarlov scoring [95], inclined plane 
test [96], and some functional deficit scorings like toe spread, platform hang, wire 
mesh descent, and hind foot bar grab [97, 98]. Our pilot study showed that a naive 
control group of animals treated with CsA, minocycline, and FK506 without SCI 
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2. Utility of experimental animal models for SCI studies

For SCI studies, animal models are used because of their easy accessibility, 
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(simulated to human clinical SCI levels) for motor functional, biochemical, and 
oxidative stress and genetic, therapeutic, and pathophysiological evaluations [78]. 
Over the last decade, a variety of animal models have been used for experimental 
SCI studies, including rats, mice, gerbils, guinea pigs, hamsters, rabbits, dogs, 
goats, pigs, and nonhuman primates [79]. Among these animals, rodents in general 
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and rats in particular are the most widely and commonly studied SCI models [80]. 
In the present study also, we have used young adult male Sprague-Dawley rats with 
all similar specifications of breeding, housing facilities, and experimental han-
dlings, as described in our earlier study [22].

To establish an ideal SCI animal model for research purposes, various models have 
been tried and reported till to date in quest of searching methodology to obtain maxi-
mum recovery from SCI. These experimental animal models include spinal cord trau-
matic injury model [81], photochemical-induced SCI model [82], spinal cord transection 
model [83], bidirectional distraction SCI model [84], and the spinal cord ischemia-
reperfusion injury model [85]. For traumatic injury model, the contusive SCI model is 
used by inducing contusion on the dorsal spinal cord by dropping a desired weight either 
from a computer-controlled impact device [86] or from a customized impact device [87]. 
Another traumatic injury model known as compressive SCI model is also very com-
monly used where instead of dropping the weight, it is placed on the exposed spinal cord 
segment in the dorsoventral direction to induce a compressive SCI [88, 89]. However, 
since SCI caused by impact and compression is more common in clinical patients [79], 
in the present study also, we have used the compressed SCI model induced in the rats as 
described in our earlier study [22]. Briefly, the SCI was induced in the rats following the 
modified method of Nystrom and Berglund [89]. Laminectomy was performed at the T 
7–8 level, and spinal cord compression injury was produced by placing a load with a total 
weight of 35 g, for 5 min over the exposed extradural area.

All experimental rats were randomly divided into the following six groups with 
eight animals in each as described earlier [22]:

Group I: The normal control group without laminectomy or compression injury
Group II: Sham group with laminectomy alone but no spinal compression injury
Group III: SCI control group with laminectomy and spinal compression injury
SCI-treated groups were the same as the SCI control group (Group III) and 

consisted of three groups in which the effect on the recovery from SCI using the 
same parameters is mentioned in our earlier study [22]. Doses of the three drugs 
CSA, minocycline, and FK506 were selected on the basis of our pilot screening of 
these drugs at low, medium, and high doses, and the best effective dose in each was 
used in the present study as follows:

Group IV: Cyclosporin-A 5 mg/kg
Group V: Minocycline 50 mg/kg
Group VI: FK506 (tacrolimus) 1 mg/kg
All protocols for the drug administration, follow-ups, care, and experimental 

handlings of the animals for various evaluation parameters were the same as 
described earlier [22].

3. Behavioral evaluations in SCI animals

To analyze the therapeutic recovery from induced SCI in animal models, several 
behavioral outcome measures have been developed and widely used, such as the 
catwalk [90], the Basso-Beattie-Bresnahan (BBB) locomotor scale [91], the horizontal 
ladder test, and the cylinder rearing test [92]. From the literature review of the recent 
years, it is found that BBB locomotor scale has been most widely used in SCI rat  
models to evaluate motor functional recovery from SCI [9, 12, 22–24, 53, 58, 74, 77, 93].  
However, in the present study, besides BBB locomotor scale [94], a battery of some 
more behavioral motor functions was included like Tarlov scoring [95], inclined plane 
test [96], and some functional deficit scorings like toe spread, platform hang, wire 
mesh descent, and hind foot bar grab [97, 98]. Our pilot study showed that a naive 
control group of animals treated with CsA, minocycline, and FK506 without SCI 
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showed no different behaviors than the naïve control untreated groups (data not shown 
in behavioral results) for all the observed behavioral parameters. Thus, the results of 
the drug treatments alone were not included in all behavioral results (Figures 1–4). 

Figure 2. 
The effect of cyclosporin-A, FK506, and minocycline on the behavioral motor performance activity (Tarlov’s 
Score) of hind limbs of rats subjected to SCI. The graph shows the comparative functional recovery from SCI 
over a period of 29 days. Animals were treated with drugs daily after SCI for 3 weeks. Abbreviations, drugs 
used and their doses, and all statistical significances are the same as in Figure 1.

Figure 3. 
The effect of cyclosporin-A, FK506, and minocycline on the behavioral motor performance activity (Inclined 
Plane Test) of hind limbs (HL) of rats subjected to SCI. The graph shows the comparative functional recovery 
from SCI over a period of 29 days. Animals were treated with drugs daily after SCI for 3 weeks. Abbreviations, 
drugs used and their doses, and all statistical significances are the same as in Figure 1.

Figure 1. 
Effect of CSA, FK506, and minocycline on gait performance tunnel (GPT) behavioral motor performance 
activities (BBB Score) of hind limbs of rats subjected to SCI. The graph shows the comparative functional 
recovery from SCI over a period of 29 days. Animals were treated with the drugs daily after SCI for 3 weeks. 
Abbreviations: CSA, cyclosporin-A; FK506, tacrolimus; SCI, spinal cord injury; BBB, Basso, Beattie, and 
Bresnahan. Drug doses used are cyclosporin (5 mg/kg), FK506 (1 mg/kg), and minocycline (50 mg/kg); the 
drugs are effective in the order FK506 > minocycline > cyclosporin-A. # shows the SCI group is significantly 
(p < 0.001) different from the SCI uninjured control group. *, **, and *** represent the SCI-treated groups are 
significantly different at p < 0.05, p < 0.01, and p < 0.001, respectively, compared to the SCI group by ANOVA 
with post hoc testing using Tukey-Kramer or Student-Newman-Keuls Multiple Comparison Tests.
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The present results of behavioral observations indicated that treatment with all the 
three drugs in this study induced significant recovery from SCI with respect to time in 
all behavioral activities compared to the SCI control group, and the drugs were effec-
tive in the order of FK506 > minocycline > CsA (F = 13.49, F = 5.82, and F = 3.14; df = 3; 
p < 0.001, p < 0.01, and p < 0.05, respectively) throughout (Figures 1–4).

4. Biochemical evaluations in SCI animal models

Biochemical evaluations have a vast list of parameters that exist as biomarkers 
for assessing recovery from SCI in animal models. Some of the most important 
biochemical parameters include oxidative stress indices like lipid peroxidation 
and total glutathione, nitric oxide synthase, myeloperoxidase, mitochondrial 
permeability, inflammatory responses, autonomic dysreflexia, cerebrospinal fluid 
biomarkers, immune responses, astrocyte modulations, etc., and all of these have 
been reviewed in detail earlier in this chapter, especially for the three drugs, CsA, 
minocycline, and FK506, that have been evaluated in the present study.

The biochemical parameters evaluated in this study included determination of 
monoamines 5-hydroxy-indoleacetic acid (5-HIAA) and serotonin or 5-hydroxy 

Figure 4. 
(A–D) The effect of cyclosporin-A, FK506, and minocycline on the behavioral motor functional scoring of 
toe spread (A), platform hanging (B), hind foot bar grab (C), and wire mesh decent (D) of rats subjected to 
SCI. The graph shows the comparative functional recovery from SCI over a period of 29 days. Animals were 
treated with drugs daily after SCI for 3 weeks. Abbreviations, drugs used and their doses, and all statistical 
significances are the same as in Figure 1.
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(p < 0.001) different from the SCI uninjured control group. *, **, and *** represent the SCI-treated groups are 
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biochemical parameters include oxidative stress indices like lipid peroxidation 
and total glutathione, nitric oxide synthase, myeloperoxidase, mitochondrial 
permeability, inflammatory responses, autonomic dysreflexia, cerebrospinal fluid 
biomarkers, immune responses, astrocyte modulations, etc., and all of these have 
been reviewed in detail earlier in this chapter, especially for the three drugs, CsA, 
minocycline, and FK506, that have been evaluated in the present study.

The biochemical parameters evaluated in this study included determination of 
monoamines 5-hydroxy-indoleacetic acid (5-HIAA) and serotonin or 5-hydroxy 
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tryptamine (5-HT) [99], lipid peroxides determined as thiobarbituric acid-reactive 
substances (TBARS) [100, 101], total glutathione [102, 103], and myeloperoxidase 
[104] and have been described for their methods in our earlier study [22].

The present biochemical results showed significant ameliorating effect of all three 
drugs on the levels of 5-HT (Figure 5A, 5-HIAA; Figure 5B, on the ratio of 5-HIAA; 
and Figure 5C, 5-HT). TBARS was significantly stimulated (Figure 6A), whereas 
GSH was significantly inhibited (Figure 6B), and MPO level was significantly 
diminished toward the normal level (Figure 6C). Overall, the entire biochemical 
parameters evaluated in the present study were significantly affected by the three 
drugs effectively in the order FK506 > minocycline > CsA throughout.

Figure 5. 
(A–C) Levels of (A) 5-HT (5-hydroxytryptamine), (B) 5-HIAA (5-hydroxy-indoleacetic acid), and (C) the ratio 
of 5-HIAA and 5-HT activities in the spinal cord tissue of rats 29 days post-SCI and the effects of treatment with 
various drugs. Abbreviations, drugs used and their doses, and all statistical significances are the same as in Figure 1.
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5. Discussion

SCI leads to persistent pain and motor dysfunction, both of which lack effective 
therapeutics [105]. Therapeutic approaches that promote both neuroprotection and 
neuroregeneration are valuable for SCI therapies [52]. From the present discussed 
literature, the potential agents that have generated interest in SCI studies in the 
recent past include the multifactorial drugs minocycline, FK506, and CsA  
[18, 22, 52, 106].

In the present chapter also, the treated rats showed recovery in their hind limb 
reflexes rapidly regaining responses comparable with those of uninjured control rats 
(Figure 1). Although all drug-treated groups showed improved recovery in BBB and 
all behavioral activities, the best and the most significant recovery was observed 
with FK506 treatment. The drugs were effective in the order FK506 > minocycline > 
CsA throughout. Earlier studies have also used BBB scoring along with other behav-
ioral parameters and have shown significant behavioral functional outcome in the 

Figure 6. 
Levels of (A) thiobarbituric acid, (B) glutathione, and (C) myeloperoxidase activities in the injured spinal 
cord tissue of rats 29 days post-SCI and the effects of treatment with various drugs. Abbreviations, drugs used 
and their doses, and all statistical significances are the same as in Figure 1.
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SCI animals treated with FK506 [7, 22, 60, 67, 69, 70, 74, 76], minocycline  
[22, 28, 43–45], and CsA [18, 52, 53, 58, 61]. In addition to the therapeutic effects of 
the three drugs, it has been also suggested that the daily routine behavioral assess-
ment procedures may also assist the animals as equivalent to their exercises that help 
them to recover from SCI [107]. However, more studies are required to confirm this 
presumption. Additionally, no notable side effects were noted at the dosing regimen 
of the drugs (selected from the pilot studies) used in the present chapter. However, it 
has been suggested particularly for FK506 [63] that the therapeutic dosing regimen 
is a key factor that can affect efficacy as a neuroprotectant for CNS injuries.

FK506 has been reported by others also for being a potential therapy for SCI 
recovery through various mechanisms [7, 60, 63, 68, 108]. It is evidently proven 
that FK506 prevents the activation of NF-κB in microglia which reduces production 
of proinflammatory cytokines like TNF-a, IL-1b, and IL-6 in the SCI responses for 
effective recovery [7, 109]. Furthermore, it is suggested that inhibition of inflam-
matory reaction in SCI by FK506 could be due to its inhibitory action on decreasing 
the free radical formation and lipid peroxidation preventing calcineurin-mediated 
dephosphorylation of NOS activity in a Ca2+-dependent manner [77]. FK506 also 
enhances neurite outgrowth and improves functional recovery from SCI by stimu-
lating astrocytes to secrete epidermal growth factor (EGF) for neural repair [74].

CsA has also been reviewed and reported as a potent neuroprotectant for func-
tional recovery from SCI [5, 55]. The significant protective role of CsA has been 
reported for recovery from SCI through inhibiting the apoptosis of spinal cord 
cells [53], improving locomotor function [58], increasing mean arterial pressure 
[110], inhibiting NOS [56], diminishing demyelination and neuronal cell  
death [60], attenuating reactive astrocytosis due to injury improved neurologic 
outcome [50], and reducing pain [111].

Minocycline has also been reviewed recently for its effectiveness through 
multiple mechanisms for functional recovery from SCI [38]. The multiple targets 
that minocycline works for SCI functional recovery include upregulation of the 
protein VEGF and BDNF expressions; downregulation of protein p-38MAPK, 
proNGF, p75NTR, and RhoA expressions and suppressed caspase-3 activity [51]; 
and improved antioxidant activity through amelioration in oxidative stress in the 
SCI tissue [40].

Monoamines such as norepinephrine (NE), dopamine (DA), and serotonin 
(5-HT) can activate the spinal neurons involved in walking [112–114]. Thus, the 
decrease in the level of 5-HT and 5-HIAA in the SCI animals in the present chapter 
clearly indicates that SCI inevitably affects the normal functioning of these spinal 
neurotransmitters involved in locomotor function. SCI-injured animals treated 
with the drugs herein improved levels of 5-HT and 5-HIAA (Figure 5A–C, respec-
tively). Our present behavioral findings also showed an overall correlation and 
significant improvement in the functional deficits of the hind limbs after treatment 
with these drugs, indicating the presence of potential mechanisms of serotonergic 
agents in these drugs, as present in indorenate (5-methoxytryptamine, beta-methyl 
carboxylate hydrochloride), a 5-HT1A agonist that improved motor function in rats 
with chronic SCI [115].

The oxidant/antioxidant balance was clearly reflected by the increased level of 
TBARS (Figure 6A) and decreased level of GSH (Figure 6B) in the contused tissue 
of SCI control animals. However, treatment of SCI animals with the drugs inter-
fered with the formation of free radicals following traumatic SCI. The comparative 
behavioral restorative effects of these drugs in the formation of free radicals in 
injured SC were in the order of FK506 > minocycline > CsA.

Spinal cord injury in mice results in severe trauma characterized by edema and 
neutrophil infiltration (measured as an increase in myeloperoxidase activity), and 
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these neutrophils are thought to be involved in tissue injury through the release of 
various inflammatory mediators [116, 117]. The MPO levels in the present SCI ani-
mals were also significantly increased in the injured spinal cord tissue (Figure 6C). 
However, administration of minocycline, FK506, and CsA interfered significantly 
with the formation of MPO following traumatic SCI. The comparative restorative 
effects of these drugs in the formation of MPO in injured SC were in the order of 
FK506 > minocycline > CsA.

The pathophysiological events resulting from SCI are reported to involve free 
radical production; lipid peroxidation; excitotoxic molecules such as glutamate, 
eicosanoid, and prostaglandin production; protease activity; and intracellular 
increases in Ca2+ [118]. Furthermore, the primary auto-destructive event is initiated 
by the hydrolysis of fatty acids from membrane phospholipids, leading to cellular 
damage [119], and microglia becomes activated [120], which in turn may release 
neurotoxic molecules that further damage nearby neurons [121].

The hind limb functional deficits in the model of SCI (like the one as in the present 
chapter) are largely due to the loss of white matter axonal tracts [16, 122]. The white 
matter degeneration is caused by the primary injury (i.e., mechanical lesion), and 
there is also evidence that post-SCI demyelination caused by oligodendrocyte death/
malfunction contributes significantly to chronic SCI functional deficits [123, 124].

The secondary injury is reported to result from several proposed auto-destruc-
tive events, including reactive oxygen species-induced lipid peroxidation [125], 
activation of non-NMDA ionotropic glutamate receptors [126], and caspase-3 
activation [127, 128]. Secondary injury events include Na+ influx-mediated intra-
axonal Ca+ accumulation leading to proteinase activation, which destroys the 
cytoskeleton [16, 129], as well as the induction of oligodendroglial apoptosis with 
subsequent demyelination of the surviving axons [79, 130]. Lipid peroxidation is 
one of the main pathological mechanisms involved in secondary damage after SCI 
[79]. Another key factor in the secondary injury mechanism is Ca2+ ions. Following 
trauma or ischemia, Ca2+ influx plays an important role in the pathogenesis of 
neural injury [130, 131]. Many drugs, including steroids, gangliosides, ion chan-
nel blockers, antioxidants, and free radical scavengers, have mild therapeutic 
effectiveness in experimental spinal cord injury [74, 119]. Another mechanism to 
promote functional recovery after spinal cord injury is enhancing axonal regenera-
tion. Several strategies, including blocking myelin or glial scar inhibitors, delivery 
of neurotrophic factors, and cell transplantation, induce axonal outgrowth after 
experimental spinal cord injury. Among them, olfactory ensheathing cell grafts 
promote neuroprotection, axonal regeneration, and functional recovery after 
incomplete spinal cord injury [132, 133]. Furthermore, a regular enforced move-
ment activity may additionally help provide faster functional restoration and 
recovery after SCI [134].

Studies on combinatorial effects of CsA, minocycline, and FK506 in various 
combinations with each other or with other compounds may prove to be more 
effective in recovery from SCI. Earlier combined treatments like FK506 and NGF 
[76], FK506 and minocycline [22], FK506 and methylprednisolone [77], FK506 and 
RhoA inhibitor [76, 77], minocycline and bone marrow mesenchymal stem cells 
[51], and CsA with PEG-TAT [54] have all shown significant functional recovery 
from SCI as compared to these compounds individually.

6. Conclusions

From the overall literature review on the multifactorial effects of CsA, mino-
cycline, and FK506 and from the discussion of the present findings, it can be 
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these neutrophils are thought to be involved in tissue injury through the release of 
various inflammatory mediators [116, 117]. The MPO levels in the present SCI ani-
mals were also significantly increased in the injured spinal cord tissue (Figure 6C). 
However, administration of minocycline, FK506, and CsA interfered significantly 
with the formation of MPO following traumatic SCI. The comparative restorative 
effects of these drugs in the formation of MPO in injured SC were in the order of 
FK506 > minocycline > CsA.

The pathophysiological events resulting from SCI are reported to involve free 
radical production; lipid peroxidation; excitotoxic molecules such as glutamate, 
eicosanoid, and prostaglandin production; protease activity; and intracellular 
increases in Ca2+ [118]. Furthermore, the primary auto-destructive event is initiated 
by the hydrolysis of fatty acids from membrane phospholipids, leading to cellular 
damage [119], and microglia becomes activated [120], which in turn may release 
neurotoxic molecules that further damage nearby neurons [121].

The hind limb functional deficits in the model of SCI (like the one as in the present 
chapter) are largely due to the loss of white matter axonal tracts [16, 122]. The white 
matter degeneration is caused by the primary injury (i.e., mechanical lesion), and 
there is also evidence that post-SCI demyelination caused by oligodendrocyte death/
malfunction contributes significantly to chronic SCI functional deficits [123, 124].

The secondary injury is reported to result from several proposed auto-destruc-
tive events, including reactive oxygen species-induced lipid peroxidation [125], 
activation of non-NMDA ionotropic glutamate receptors [126], and caspase-3 
activation [127, 128]. Secondary injury events include Na+ influx-mediated intra-
axonal Ca+ accumulation leading to proteinase activation, which destroys the 
cytoskeleton [16, 129], as well as the induction of oligodendroglial apoptosis with 
subsequent demyelination of the surviving axons [79, 130]. Lipid peroxidation is 
one of the main pathological mechanisms involved in secondary damage after SCI 
[79]. Another key factor in the secondary injury mechanism is Ca2+ ions. Following 
trauma or ischemia, Ca2+ influx plays an important role in the pathogenesis of 
neural injury [130, 131]. Many drugs, including steroids, gangliosides, ion chan-
nel blockers, antioxidants, and free radical scavengers, have mild therapeutic 
effectiveness in experimental spinal cord injury [74, 119]. Another mechanism to 
promote functional recovery after spinal cord injury is enhancing axonal regenera-
tion. Several strategies, including blocking myelin or glial scar inhibitors, delivery 
of neurotrophic factors, and cell transplantation, induce axonal outgrowth after 
experimental spinal cord injury. Among them, olfactory ensheathing cell grafts 
promote neuroprotection, axonal regeneration, and functional recovery after 
incomplete spinal cord injury [132, 133]. Furthermore, a regular enforced move-
ment activity may additionally help provide faster functional restoration and 
recovery after SCI [134].

Studies on combinatorial effects of CsA, minocycline, and FK506 in various 
combinations with each other or with other compounds may prove to be more 
effective in recovery from SCI. Earlier combined treatments like FK506 and NGF 
[76], FK506 and minocycline [22], FK506 and methylprednisolone [77], FK506 and 
RhoA inhibitor [76, 77], minocycline and bone marrow mesenchymal stem cells 
[51], and CsA with PEG-TAT [54] have all shown significant functional recovery 
from SCI as compared to these compounds individually.

6. Conclusions

From the overall literature review on the multifactorial effects of CsA, mino-
cycline, and FK506 and from the discussion of the present findings, it can be 
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concluded that the drugs CsA, minocycline, and FK506 induce good recovery from 
experimentally induced SCI in rats. However, these drugs significantly improve 
functional restoration, replenish 5-HT and 5-HIAA levels, and restore the oxidant/
antioxidant balance in the contused tissue after moderate SCI in rats in the order 
FK506 < minocycline < CsA. Furthermore, it is suggested that the present compres-
sive SCI model of rats could still serve as the most convenient model for therapeutic 
screenings of various drugs in search of ideal therapy for SCI. CsA, minocycline, 
and FK506 appear to have gained support in a multifactorial effective manner 
through ample research work and should be considered as ideal therapeutical agents 
for the treatment of acute SCI. These drugs should be supported for clinical trials 
with further studies and tests. Although FK506 appears to be the most promising 
among the three drugs, more work is needed to screen all three compounds as 
cocktails in various combinations with better expected outcomes in SCI recovery 
possibly due to their cumulative multifactorial beneficial effects.
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Abstract

In the past three decades, research on plasticity after spinal cord injury (SCI) 
has led to a gradual shift in SCI rehabilitation: the former focus on learning 
compensatory strategies changed to functional neurorecovery, that is, promot-
ing restoration of function through the use of affected limbs. This paradigm 
shift contributed to the development of technology-based interventions aiming 
to promote neurorecovery through repetitive training. This chapter presents 
an overview of a range of noninvasive modalities that have been used in reha-
bilitation after SCI. Among others, we present repetitive transcranial magnetic 
stimulation (rTMS), transcranial direct current stimulation (tDCS), surface 
electrical stimulation tools such as transcutaneous electrical spinal cord stimula-
tion (tcSCS), transcutaneous electrical nerve stimulation (TENS), and functional 
electrical stimulation (FES), as well as its integration with cycling training and 
assistive robotic devices. The most recent results attained and the potential 
relevance of these new techniques to strengthen the efficacy of the residual neu-
ronal pathways and improve spasticity are also presented. Future efforts toward 
the widespread clinical application of these modalities include more advances in 
the technology, together with the knowledge obtained from basic research and 
clinical trials. This can ultimately lead to novel customized interventions that 
meet specific needs of SCI patients.

Keywords: spinal cord injury, rehabilitation, noninvasive modalities, functional 
electrical stimulation, transcranial magnetic stimulation, exoskeletons

1. Introduction

Spinal cord injury (SCI) is an event that affects the quality of life of patients as 
a consequence of affected sexual function, impaired sensory and motor function, 
including bowel and bladder control, walking, eating, grasping, pain, and spas-
ticity [1–3]. For many years, SCI has been considered irreversible [4]. However, 
research on plasticity after SCI has opened new paths and generated a shift in 
rehabilitation of SCI patients in the past three decades: its former focus on learning 
compensatory movements to regain function gradually changed to restoration of 
function through repetitive movement training combined with the stimulation of 
the nervous system [5].



95

Chapter 6

Noninvasive Modalities Used in 
Spinal Cord Injury Rehabilitation
Filipe O. Barroso, Alejandro Pascual-Valdunciel, 
Diego Torricelli, Juan C. Moreno, Antonio Del Ama-Espinosa, 
Jozsef Laczko and José L. Pons

Abstract

In the past three decades, research on plasticity after spinal cord injury (SCI) 
has led to a gradual shift in SCI rehabilitation: the former focus on learning 
compensatory strategies changed to functional neurorecovery, that is, promot-
ing restoration of function through the use of affected limbs. This paradigm 
shift contributed to the development of technology-based interventions aiming 
to promote neurorecovery through repetitive training. This chapter presents 
an overview of a range of noninvasive modalities that have been used in reha-
bilitation after SCI. Among others, we present repetitive transcranial magnetic 
stimulation (rTMS), transcranial direct current stimulation (tDCS), surface 
electrical stimulation tools such as transcutaneous electrical spinal cord stimula-
tion (tcSCS), transcutaneous electrical nerve stimulation (TENS), and functional 
electrical stimulation (FES), as well as its integration with cycling training and 
assistive robotic devices. The most recent results attained and the potential 
relevance of these new techniques to strengthen the efficacy of the residual neu-
ronal pathways and improve spasticity are also presented. Future efforts toward 
the widespread clinical application of these modalities include more advances in 
the technology, together with the knowledge obtained from basic research and 
clinical trials. This can ultimately lead to novel customized interventions that 
meet specific needs of SCI patients.

Keywords: spinal cord injury, rehabilitation, noninvasive modalities, functional 
electrical stimulation, transcranial magnetic stimulation, exoskeletons

1. Introduction

Spinal cord injury (SCI) is an event that affects the quality of life of patients as 
a consequence of affected sexual function, impaired sensory and motor function, 
including bowel and bladder control, walking, eating, grasping, pain, and spas-
ticity [1–3]. For many years, SCI has been considered irreversible [4]. However, 
research on plasticity after SCI has opened new paths and generated a shift in 
rehabilitation of SCI patients in the past three decades: its former focus on learning 
compensatory movements to regain function gradually changed to restoration of 
function through repetitive movement training combined with the stimulation of 
the nervous system [5].



Spinal Cord Injury Therapy

96

The term neural plasticity describes the ability of the nervous system to adapt 
a new functional or structural state in response to intrinsic or extrinsic factors [6]. 
Thus, plasticity encompasses the underlying mechanisms that lead to a spontaneous 
return or recover of motor, sensory and autonomic functions to different degrees. 
The concept of plasticity at the cellular level can be tracked back to Ramon y Cajal’s 
work, who suggested that modification of synaptic connections could play a very 
important role in memory [7]. After that, the work of Donald Hebb was very 
important to the concept of long-term potentiation (LTP), namely by suggesting 
that two neurons that fire together and are close enough may grow some connections 
or undergo metabolic changes that increase their ability to communicate [8]. This 
happens because chemical synapses have the ability to change their strength [9].

Sensory information from Ia afferent fibers (transmitting information about 
muscle activity and movement) play an essential role in inducing functional and 
morphological changes that lead to the maturation of the brain and the spinal cord 
[9], independently of the SCI level and whether it is complete or incomplete [10]. 
Thus, activity-dependent plasticity refers to the changes in the central nervous 
system (CNS) associated with movement [9] and reflects one of the basic forms of 
learning in humans [11]. These neural changes happen throughout the life span at 
both the brain and spinal cord level. However, not all plasticity is beneficial: adverse 
changes may also appear [12]. This is known as maladaptive plasticity and encom-
passes events such as excessive plasticity associated with some disease symptoms 
like focal dystonia, spasticity, and chronic pain. Current SCI rehabilitation is based 
on task-specific programs aiming at promoting neurorecovery through beneficial 
activity-dependent plasticity and avoiding maladaptive plasticity [6].

This chapter summarizes the main effects on motor and functional recovery, 
as well as spasticity and pain, when using noninvasive modalities in the rehabilita-
tion of SCI patients, either in the research or the clinical setting. Some of these 
techniques aim at stimulating different levels of the central (brain or spinal cord) 
and peripheral nervous system, while others combine some sort of stimulation with 
devices that may assist and allow for repetitive motor training (e.g., hybrid exoskel-
etons and FES driven cycling).

2. Brain stimulation

Recent research has shown that even complete SCI patients may preserve some 
residual pathways connecting supraspinal and spinal circuits [13]. Given that these 
patients may preserve muscle activity below the level of injury, target rehabilitation 
for SCI also includes modalities that stimulate the brain. This might strengthen the 
efficacy of the residual neural pathways and, therefore, improve volitional control 
after SCI [14]. This section describes two different types of noninvasive brain 
stimulation (NIBS): repetitive transcranial magnetic stimulation (rTMS) and tran-
scranial direct current stimulation (tDCS). Both techniques have been used in the 
research and clinical setting aiming at improving motor and functional recovery, as 
well as spasticity and pain after SCI [4].

2.1 Repetitive transcranial magnetic stimulation (rTMS)

Transcranial magnetic stimulation (TMS) is a form of noninvasive brain 
stimulation in which short magnetic fields are generated by a coil in order to 
induce electric current pulses in the brain, which can then elicit depolarization 
and action potentials in cortical neurons (see Figure 1). Since its first application 
in humans in 1985, TMS has become a standard electrophysiological technique to 
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assess the excitability of the corticospinal circuitry, due to its usability and ability 
to directly activate brain structures without causing harm to the subject. The 
most extended protocol applies single TMS pulses to activate motor cortex at a 
specific area where topographic projections of a group of muscles are represented. 
This cortical activation elicits action potentials that propagate until reaching the 
muscles, inducing a motor evoked potential (MEP), which can be measured by 
electromyography (EMG) [2].

Repetitive transcranial magnetic stimulation (rTMS) is a form of TMS where 
several TMS pulses are applied sequentially in order to induce long-term changes 
in the targeted neural pathways. The underlying physiological mechanism of 
rTMS lies in the repeated activation of a network of synapses that may lead to 
long-term potentiation (LTP) or long-term depression (LTD) of those synapses [4]. 
The induction of long-term changes in neural circuits using rTMS can be applied 
to revert the effects of neurological disorders. For instance, rTMS received FDA 
approval and has become a promising treatment for major depression.

Due to its ability to induce long-term changes in neural systems, rTMS has been 
also applied in patients with motor disorders as a modality to modulate the activity 
of residual (cortical, subcortical, and corticospinal) pathways and thus promote 
functional recovery [2]. Moreover, rTMS has been applied in a wide range of proto-
cols, with varying frequencies and intensities of stimulation, or even the number of 
pulses and sessions, among others. The main stimulation protocols explored so far 
may be encompassed in the following:

• Theta burst stimulation (TBS) consists of three 50 Hz pulses delivered in 
blocks at 200-ms interval (5 Hz). Intermittent TBS (iTBS) involves the delivery 
of TBS for 2 s, followed by a resting period of 8 seconds, for a total of 3 min; 
this is hypothesized to facilitate LTP [15]. On the other hand, continuous TBS 
(cTBS) applied in 40 s blocks promote LTD.

• QuadroPulse (qQPS) applies four high-frequency pulses repeated every 5 s. The 
facilitator or inhibitory excitability effects depend on the inter-pulse intervals.

Figure 1. 
The magnetic field generated by the TMS coil will induce electric current pulses in the brain, which can  
elicit depolarization and action potentials in cortical neurons.
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• I-wave protocol involves the repetitive stimulation of the motor cortex at 
1.5 ms rate, seeking to mimic the indirect waves (I-waves) of corticospinal 
neurons and to increase their excitability [4].

• Paired associative stimulation (PAS) relies on the Hebb’s theory, which states 
that a synaptic connection is enhanced when two stimuli converge in time 
repeatedly. PAS protocol combines a peripheral nerve stimulus with a TMS 
pulse over the motor cortex, aiming to pair both stimuli in time at the cortex, 
which will promote corticospinal excitability. PAS can present different vari-
ants, in which the TMS pulse can be replaced by physiological activation of the 
motor cortex (e.g., imaginary movement), or the pairing site targets of TMS 
and peripheral stimulus are the motoneurons at the spinal cord.

Regardless of its incipient stage and current limitations, rTMS has become a 
promising approach for SCI rehabilitation, not only to improve motor function but 
also to decrease spasticity and neuropathic pain. This technique enables targeting 
and promoting long-term changes in neural pathways, by exploiting the plastic 
properties that may facilitate function recovery. Improvements seem to be present 
when higher rTMS stimulus intensities are used [2]. On the other hand, the few 
studies that investigated the effects of rTMS on spasticity in iSCI patients reported 
some reduction in the clinical symptoms of spasticity [2]. Moreover, the few studies 
that tested the effect of rTMS on neuropathic pain reported some reductions in the 
clinical symptoms of pain [2].

Notwithstanding, these results hold a great variability, are not reproducible in 
all patients, and are limited to certain clinical assessment scales or neurophysi-
ological measurements. Several constraints can explain current limitations of the 
rTMS application in SCI patients. First, there is a shortage of studies providing 
evidences of sustained benefits of rTMS therapy beyond conventional treat-
ments. Besides the different stimulation protocols and parameters applied, type 
of lesion and nonuniform assessment methodologies hamper the development of 
consistent evidences. Although evidences so far do not suggest any harm to the 
subjects, safety issues should be also considered when using rTMS in SCI patients, 
especially because of the high threshold needed to evoke motor responses in the 
impaired pathways [16].

More research is needed to provide robust evidence that can support the use of 
rTMS as an alternative to standard therapies. In addition to bigger sample sizes used 
in each study, researchers should also test the same (or very similar) stimulation 
parameters and protocols to provide reproducible results. Finally, it is critical to bet-
ter understand the pathophysiology of neural structures affected by rTMS to design 
optimal and customized protocols that might boost beneficial neural changes 
coupled with functional recovery after SCI [2].

2.2 Transcranial direct current stimulation (tDCS)

Transcranial direct current stimulation (tDCS) is a technology that deliv-
ers continuous low current stimulation (1–2 mA) via paired anode and cathode 
electrodes over the scalp [4, 14, 17] (see Figure 2). This modality is usually com-
bined with motor training to promote activity-dependent plasticity [14]. tDCS 
may change brain function by causing neurons resting potential to depolarize 
or hyperpolarize. Depolarization happens when positive stimulation (anodal 
tDCS) is delivered, which increases neural excitability and, therefore, neural 
firing. Cathodal tDCS (negative stimulation) causes hyperpolarization and, thus, 
decreases neural firing [4].

99

Noninvasive Modalities Used in Spinal Cord Injury Rehabilitation
DOI: http://dx.doi.org/10.5772/intechopen.83654

This technique is still in the early stage. To our knowledge, just seven studies 
have examined improvements in motor function after SCI related to the use of 
tDCS: four studies evaluated its effect on upper limb function [18–21] and three 
studies evaluated the tDCS effect on lower limb function and gait [22–24]. All these 
studies used anodal stimulation and showed improvements in upper and lower limb 
motor function.

The use of tDCS has led to improvements in pinch force, manual dexterity, 
and force modulation when combined with repetitive practice [18]. Other study 
reported that stimulation intensity affects functional outcomes when tDCS was 
delivered at rest: increased corticospinal excitability to affected muscles was 
obtained when using 2 mA stimulation, but not 1 mA, in nine chronic SCI patients 
[19]. Another study also reported gains in hand motor function after a single session 
of 2 mA tDCS, though no improvements were described in clinical scales [20]. 
When combining tDCS with robot-assisted arm training, SCI patients improved 
arm and hand function post-treatment and at the 2-month follow-up [21].

The three studies that evaluated the tDCS effect on lower limb function and gait 
showed improved motor function [22–24]. However, one of these studies combined 
tDCS with robotic gait training and also showed no significant differences between 
these improvements and those verified in the group who received sham stimulation 
combined with robotic gait training [22].

tDCS is an attractive noninvasive modality option for the treatment after SCI: it is 
affordable and does not present substantial adverse events (when present, they included 
redness of the skin, sleepiness, headache, and neck pain [4]). However, further research 
is still needed to provide robust evidence that support the use of tDCS to improve motor 
function and to be used in the clinical setting as a long-term strategy after SCI.

3. Transcutaneous spinal cord stimulation (tcSCS)

In the recent years, spinal cord electrical stimulation (SCS) has arisen as a prom-
ising tool to modulate corticospinal excitability and modify the motor output in 

Figure 2. 
Transcranial direct current stimulation delivers continuous low current stimulation by applying a positive 
(anodal) or negative (cathodal) current via paired electrodes over the scalp.
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SCI individuals. The most extended form of SCS is epidural SCS, which consists on 
delivering electrical currents through arrays of electrodes implanted in the epidural 
space of the spinal cord, in order to modify the excitatory output of the spinal cord. 
It has been widely studied as an application for chronic pain relief [14]. Promising 
results from a recent research showed its potential to improve neurological recovery 
and support the activities of daily living (including walking) after SCI [25].

Transcutaneous spinal cord stimulation (tcSCS) is a novel form of SCS that 
delivers superficial stimulation, usually over the skin that overlies the lower 
thoracic and/or lumbosacral vertebrae [26]. The principles underlying tcSCS 
rely on the physiology of the corticospinal pathways in the spinal cord that can 
produce excitability changes in the different neural populations of the spinal 
circuitry [27, 28]. Central pattern generators (CPGs) are pools of neurons able 
to elicit rhythmic and coordinated movements without the contribution of 
supraspinal centers. CPGs use proprioceptive information to provide real-time 
and coordinated control of motor output. The propriospinal system serves as an 
integratory interface between supraspinal and spinal centers, modulating motor 
activity. tcSCS is able to modulate the excitability properties of these systems by 
means of different stimulation protocols, in which the surface array placement 
along the spinal cord, direction of the current, intensity, frequency, and timing 
of stimulation result in different modulation outcomes. tcSCS was able to activate 
GPGs in healthy volunteers, eliciting coordinated and synchronized nonvoluntary 
movements of the lower limb [28]. These findings have been reproduced in SCI 
individuals, namely by reactivating damaged spinal circuitries that were previ-
ously considered as nonfunctional. When tcSCS was applied over several training 
sessions in SCI patients, there was improved voluntary modulation of movement 
of the lower limbs [29]. Moreover, combining tcSCS training with pharmacology 
therapy and exoskeletons increased motor control enhancement [26].

tcSCS overcomes the invasiveness and costs of epidural SCS with the trade-off 
of poor spatial stimulation resolution. Although the number of studies using this 
technique is considerably low, and the exact physiological mechanisms behind the 
improvements shown are still yet to be fully understood, tcSCS is already a promis-
ing tool to be considered in future SCI rehabilitation. Multi-approach therapies 
including tcSCS, pharmacological, active movement, and robotic-assisted training 
should be considered to exploit the combination of different physiological effects 
produced by each modality and maximize motor recovery [26].

4. Peripheral stimulation and assistive devices

Motor control and the execution of voluntary movements require the interaction 
between afferent feedback and supraspinal input to accurately plan and execute 
movements. This interplay induces activity-dependent plasticity at both the brain 
and spinal cord level [30, 31]. After SCI, afferent feedback is impaired and becomes 
essential to reorganize spinal circuits below the lesion area [30]. Therefore, non-
invasive modalities that apply surface electrical stimulation at the peripheral level 
(either alone or combined with assisted training) to augment or modify neural 
function are very appealing and have been applied in SCI rehabilitation.

This section overviews two forms of surface stimulation that are user friendly 
and can be easily administered by a therapist during SCI rehabilitation: transcu-
taneous electrical nerve stimulation (TENS) and functional electrical stimulation 
(FES). The second part of this section reports the main results attained when using 
cycling driven by electrical stimulation and the combination of electrical stimula-
tion with external robotic devices.
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4.1 Transcutaneous electrical nerve stimulation (TENS)

TENS is the most common noninvasive modality used in physical therapy [32]. 
This type of stimulation delivers high-frequency (50–150 Hz) and low-intensity 
(below motor threshold) surface electrical current [33].

Though TENS has been commonly used in pain control and to reduce muscle 
stiffness/tone, there are also some reports on decreased spasticity due to the use of 
this modality. For instance, TENS has recently reduced spasticity in SCI patients 
and the effects outlasted up to several hours after treatment [34]. This is because 
TENS activates sensory nerves that in turn may activate inhibitory interneurons 
that will inhibit the spastic muscle activity [34]. More specifically, these anti-spastic 
effects are due to the release of gamma-aminobutyric acid (GABA) that acts as 
inhibitory neurotransmitters, achieving similar anti-spastic effects to those of 
baclofen [32], which is a first-line treatment for spasticity, especially in adults who 
suffered a SCI [35]. Results of spasticity treatment using TENS seem to improve 
when combined with physical therapy [36].

Given its low cost, lack of adverse event effects, and ease to use, TENS seems to 
be a very good solution to treat spasticity after SCI. Moreover, since TENS allevi-
ates pain and fatigue and can be used for periods of several hours, it seems to be 
appropriate for the beginning of the rehabilitation after SCI, when training is not 
very intensive.

4.2  Functional electrical stimulation (FES) and brain-machine interfaces 
(BMIs)

FES is another modality of electrical stimulation that has become very 
popular in the clinical setting. FES is similar to TENS in the sense that the two 
modalities use electrodes on the skin to provide electrical stimulation to a desired 
location of the body; but they differ in the settings and especially in the purpose 
of their use. Unlike TENS, FES delivers trains of electrical stimulation above 
motor threshold to stimulate a muscle or the efferent nerve supplying a muscle 
in order to attain a muscle contraction [14]. The higher the amplitude of this 
stimulation, the bigger is the number of recruited efferent fibers and, therefore, 
the higher the muscle contraction.

FES has been used to restore bladder and bowel control, as well as sexual func-
tion, which are ranked among the most important functions to regain among SCI 
patients [37]. FES has also been widely used for the treatment of muscle weakness, 
gait training, and muscle reeducation [34]. In the case of SCI, it is well known 
that artificially induced contraction of weak or paralyzed muscles brings several 
therapeutic benefits, such as prevention of lower limb muscle atrophy, increased 
muscle strength, endurance, and cardiovascular fitness [38, 39]. In addition to 
these benefits, the coordinated stimulation of efferent nerves (usually to stimulate 
agonist-antagonist muscles of a joint) can be paired with a functional activity to 
produce a given biomechanical task and, thus, restore motor function [34].

On the other hand, there is evidence that peripheral stimulation, if synchro-
nized with patients’ voluntary effort, can further promote recovery [14]. In fact, 
improved modulation together with volitional control seems to be key factors to 
reinforce connectivity during rehabilitation of SCI patients, presumably through 
synaptic enhancement [14]. In this sense, brain-machine interfaces (BMIs) are 
currently the most sophisticated neuromodulation tools to restore voluntary limb 
movements after SCI. In the context of the noninvasive modalities described in 
this chapter, BMIs can be used to stimulate the peripheral nervous system by use of 
decoded brain signals recorded with electroencephalography (EEG) [14].
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SCI individuals. The most extended form of SCS is epidural SCS, which consists on 
delivering electrical currents through arrays of electrodes implanted in the epidural 
space of the spinal cord, in order to modify the excitatory output of the spinal cord. 
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Finally, FES has also been used to reduce spasticity in SCI patients, usually by 
stimulating the spastic muscle. This is hypothesized to modulate recurrent inhibi-
tion via Renshaw cells [34]. These inhibitory interneurons are excited by collaterals 
of the axons of motoneurons and make inhibitory synaptic connections with several 
populations of motoneurons, including those that excite them [40]. This reciprocal 
inhibition is important to prevent overshooting muscle contraction induced by FES.

Despite all the benefits here described, FES presents several challenges for tasks 
that are executed for long periods of time. Limited muscle force generation, rapid 
onset of muscle fatigue, and nonlinear, time-dependent mechanical responses, as 
well as the redundancy of the musculoskeletal system are the main challenges of 
this technology that traditionally hamper generalized use for rehabilitation and/or 
motor compensation of walking. However, multi-electrode techniques are showing 
promising results [41] and should be explored.

4.3 FES driven cycling

Physical activity of SCI people whose limbs are paralyzed is very important to 
maintain their physiological well-being. A promising approach is the application of 
FES during cycling movements. This technique, called FES cycling, is a noninvasive 
training protocol used in medical rehabilitation, mostly addressed to individual 
affected by SCI. This method can be applied continuously for tens of minutes, with 
direct benefits on muscle strength. Besides muscle strengthening, FES cycling is 
beneficial for cardiovascular and respiratory functions [42].

FES training for lower limb muscles can be performed on stationary cycle 
ergometers or mobile tricycles. As shown in Figure 3, FES is managed by a control-
ler, which receives signals from a crank angle sensor and, depending on the actual 
crank position, transfers sequences of electrical impulses to surface electrodes to 
stimulate muscles and generate active muscle force. The power output produced by 
the application of FES depends on three main aspects. The first is the number of 
muscle groups stimulated. The second is the parameters of the stimulating cur-
rent, that is, amplitude, pulse width, and frequency. The third is the timing of the 
stimulating signal sent to the individual muscles.

FES cycling is usually applied on several lower limb muscles simultaneously 
[43]. The main muscle groups considered are the hamstrings and quadriceps and, in 

Figure 3. 
FES driven cycling: a controller sends electrical signals (stimulation current) to selected muscles. The actual 
muscle forces depend on the actual crank angle value transferred to the controller and on the parameters and 
timing of the stimulation signals sent to individual muscles.
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some cases, the gluteus maximus. The quadriceps are stimulated either as a whole, 
that is, using only one pair of electrodes, or more selectively, in which three muscles 
composing them—that is, the vastus medialis, vastus lateralis, and rectus femo-
ris—are stimulated individually. This more selective stimulation has demonstrated, 
in a recent pilot study, to improve up to 27% the power output in one patient with 
spastic muscles [44]. In this case, while the total stimulation current (the sum of 
the amplitude of currents applied in all of the channels) was higher, lower stimula-
tion current amplitudes per muscle groups were sufficient to generate the required 
movement. The average current amplitude applied in FES cycling in SCI individuals 
is around 50–70 mA per muscles and it varies in a wide range. In some protocols, 
the current amplitude is increased until 120–140 mA to achieve power output 
around 10 W [45] and in extreme cases 20 W [46]. Others stimulated muscles with 
a frequency of 30 Hz, current amplitude of 70–90 mA, and pulse width of 500 μs, 
reaching a power output around 30 W [47]. The timing of stimulation is usually 
set according to recorded and processed muscle activities of able-bodied persons 
and/or on physiological, biomechanical parameters of the muscles and limbs of the 
participants. Nevertheless, these approaches are either not adaptive to the patient-
specific musculoskeletal conditions, or very difficult to calibrate. For instance, 
when applying selective stimulation of the three quadriceps muscles separately 
[44], we found that the participant, even reaching higher power output, preferred 
to cycle for a shorter time, possibly due to a nonphysiological stimulation strategy. 
In our opinion, more studies are needed to explore these control combinations, in 
particular considering the case of selective stimulation. This will likely lead to new 
more efficient, natural, and adaptable stimulation protocols.

Cadence is another important variable in FES-cycling rehabilitation. In the case 
of ergometer-based training, cadence is on average set to 45–50 rpm, in most of the 
stimulating conditions. To adapt the treatment to patient residual motor ability, 
cadence can be changed in combination with various crank resistances during the 
rehabilitation process. Tricycles have been proposed as an alternative to stationary 
cycle ergometers [48]. A recent study reported that the series of FES trainings on 
a tricycle resulted in increased speed of cycling of paraplegics with denervated 
muscles [49], which is normally not observed in similar ergometer-based protocols. 
FES-driven tricycling is gaining relevance, as testified by several competitions orga-
nized during the last couple of years [50–53]. However, these competitions are only 
targeting people with SCI. We expect that wider range of participants, for example, 
stroke, will also be addressed in the near future, as supported by recent promising 
research works in this direction [54, 55].

4.4 Exoskeletons and hybrid exoskeletons

Repetitive and intensive task-specific training drives beneficial neuroplasticity, 
thus enhancing functional recovery [56]. Therefore, exoskeletons for motor reha-
bilitation purposes have emerged in the last decade as a convenient technology that 
allow multiple, intensive, and more effective sessions of gait training, allowing 
SCI patients to ameliorate their performance in daily life [56]. Moreover, a study 
reported that spasticity and pain intensity of SCI patients decreased after one single 
session of walking assisted by a powered robotic exoskeleton [56].

A paradigmatic development of a stationary rehabilitation robot for gait training 
is the Lokomat system, which combines body-weight supported treadmill-training 
(BWSTT) with the assistance of a robotic gait orthosis. These robotic systems are 
able to provide guidance forces to the lower limb segments to induce a consisting 
stepping pattern with adjustable guidance. It has been shown that although the 
mechanical coupling and added guidance may change the task constraints and in 
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affected by SCI. This method can be applied continuously for tens of minutes, with 
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beneficial for cardiovascular and respiratory functions [42].

FES training for lower limb muscles can be performed on stationary cycle 
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ler, which receives signals from a crank angle sensor and, depending on the actual 
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timing of the stimulation signals sent to individual muscles.
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some cases, the gluteus maximus. The quadriceps are stimulated either as a whole, 
that is, using only one pair of electrodes, or more selectively, in which three muscles 
composing them—that is, the vastus medialis, vastus lateralis, and rectus femo-
ris—are stimulated individually. This more selective stimulation has demonstrated, 
in a recent pilot study, to improve up to 27% the power output in one patient with 
spastic muscles [44]. In this case, while the total stimulation current (the sum of 
the amplitude of currents applied in all of the channels) was higher, lower stimula-
tion current amplitudes per muscle groups were sufficient to generate the required 
movement. The average current amplitude applied in FES cycling in SCI individuals 
is around 50–70 mA per muscles and it varies in a wide range. In some protocols, 
the current amplitude is increased until 120–140 mA to achieve power output 
around 10 W [45] and in extreme cases 20 W [46]. Others stimulated muscles with 
a frequency of 30 Hz, current amplitude of 70–90 mA, and pulse width of 500 μs, 
reaching a power output around 30 W [47]. The timing of stimulation is usually 
set according to recorded and processed muscle activities of able-bodied persons 
and/or on physiological, biomechanical parameters of the muscles and limbs of the 
participants. Nevertheless, these approaches are either not adaptive to the patient-
specific musculoskeletal conditions, or very difficult to calibrate. For instance, 
when applying selective stimulation of the three quadriceps muscles separately 
[44], we found that the participant, even reaching higher power output, preferred 
to cycle for a shorter time, possibly due to a nonphysiological stimulation strategy. 
In our opinion, more studies are needed to explore these control combinations, in 
particular considering the case of selective stimulation. This will likely lead to new 
more efficient, natural, and adaptable stimulation protocols.

Cadence is another important variable in FES-cycling rehabilitation. In the case 
of ergometer-based training, cadence is on average set to 45–50 rpm, in most of the 
stimulating conditions. To adapt the treatment to patient residual motor ability, 
cadence can be changed in combination with various crank resistances during the 
rehabilitation process. Tricycles have been proposed as an alternative to stationary 
cycle ergometers [48]. A recent study reported that the series of FES trainings on 
a tricycle resulted in increased speed of cycling of paraplegics with denervated 
muscles [49], which is normally not observed in similar ergometer-based protocols. 
FES-driven tricycling is gaining relevance, as testified by several competitions orga-
nized during the last couple of years [50–53]. However, these competitions are only 
targeting people with SCI. We expect that wider range of participants, for example, 
stroke, will also be addressed in the near future, as supported by recent promising 
research works in this direction [54, 55].

4.4 Exoskeletons and hybrid exoskeletons

Repetitive and intensive task-specific training drives beneficial neuroplasticity, 
thus enhancing functional recovery [56]. Therefore, exoskeletons for motor reha-
bilitation purposes have emerged in the last decade as a convenient technology that 
allow multiple, intensive, and more effective sessions of gait training, allowing 
SCI patients to ameliorate their performance in daily life [56]. Moreover, a study 
reported that spasticity and pain intensity of SCI patients decreased after one single 
session of walking assisted by a powered robotic exoskeleton [56].

A paradigmatic development of a stationary rehabilitation robot for gait training 
is the Lokomat system, which combines body-weight supported treadmill-training 
(BWSTT) with the assistance of a robotic gait orthosis. These robotic systems are 
able to provide guidance forces to the lower limb segments to induce a consisting 
stepping pattern with adjustable guidance. It has been shown that although the 
mechanical coupling and added guidance may change the task constraints and in 
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turn alter voluntary leg movements, the basic neuromuscular pattern is preserved 
when intact humans walk assisted by this robot [57]. Robot-assisted gait training 
with the Lokomat after SCI has been shown in some studies to improve outcomes 
related to mobility when compared to conventional overground training [58, 59]. 
For example, it was shown improved gait distance, strength, and functional level 
of mobility and independence of acute SCI patients receiving robotic-assisted gait 
training than the group of patients receiving conventional overground training [60]. 
Also, it has been demonstrated that robot-assisted gait training combined with con-
ventional physiotherapy could yield more improvement in ambulatory function of 
SCI patients than conventional therapy alone. However, the impact of such comple-
mentary tools to provide neuromuscular education is still not well established for a 
convincing penetration of these systems in the clinical rehabilitation environments. 
Some limitations of such stationary robotic tools are that robotic-assisted training 
can be limited in the range of gait speed at which the exoskeleton robot can provide 
a comfortable gait pattern. Also, the stationary machine imposes restrictions to the 
user movements to the sagittal plane, significantly preventing motion in the frontal 
and transversal plane that are required for overground walking.

Wearable robots (WR) for overground untethered assisted walking are emerg-
ing devices that have the potential to overcome some of the above-mentioned 
constraints and opening a range of clinical application scenarios. Through wearable 
mechanical actuation and sensing, WRs are proliferating for their use as assis-
tive and rehabilitation technologies due to their ability to replicate the complex 
motions involved in human movement. As a result, the past few decades have seen 
an increasing amount of research focused on developing robotic systems intended 
to interact with the neurologically impaired human body. This interaction (of the 
human body) with WRs has been established in foundational literature [61] as 
dual, bidirectional physical (pHRi), and cognitive (cHRi) interactions. While these 
systems have been proven to be useful for specific applications, such as in-clinic 
rehabilitation, current research in the area of pHRi for WRs is focusing more on 
developing lightweight and flexible force interactions with hardware solutions that 
might be more suitable to a broader range of applications (by adding compliance to 
rigid exoskeletons [62, 63] or developing “soft exosuits” [64]). However, these soft 
exoskeletons are in early stage and the majority of clinical evidence of their efficacy 
for treatment of SCI is in studies with motorized powered exoskeletons. A system-
atic review of the literature on powered WRs for overground gait rehabilitation 
pointed out that, although current technology is still under development, and hence 
its ultimate impact remains still unclear, a number of revised studies report positive 
changes in outcome variables and suggest that training time and improvements in 
gait speed using powered WRs are correlated in SCI population [65].

On the cHRi side, efforts are focused on developing means for interpretation of 
mechanical and neural signals to establish adequate control methods that inte-
grate WRs as parts of human functioning. In this regard, a scheme for “symbiotic 
interaction” between humans and WRs has been recently developed in the FET 
Project BioMot (FP7-ICT-2013-10-611695), yielding new technologies to interface 
human neuromechanics with robot-control algorithms to guide assistance; the 
point of increasing their proficiency is to make them more capable of sophisticated 
interdependent joint activity with the human wearer. Under this approach, a tacit 
adaptability is provided to modulate the compliance in the robot torque controller, 
to automatically modulate in turn the difficulty of the task [66].

There is currently no agreement on the optimal robot-mediated treatment 
programs to induce plasticity and promote recovery of motor function following 
SCI, and the understanding of recovery mechanisms is still an open matter [67]. 
Whatever the robot hardware and patient’s functional status, a WR-mediated 
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neurorehabilitation model could pave the way for effective restoration of mobil-
ity after major neurological conditions. In the last few years, the development 
of computational neurorehabilitation models is becoming a relevant topic in the 
domain of neural repair, as these computational models can be expected to provide 
the basis for future clinical robot software that suggests timing, dosage, and content 
of therapy. For example, an analytical modeling approach has been applied to 
robot-mediated rehabilitation data of a group of SCI subjects, providing insights 
with regard to patient grouping and gait recovery prognosis and also providing 
predictive quantitative measures to consider before starting the treatment [68]. 
This, together with the fact that in the past years we are witnessing an unprec-
edented number of wearable interactive robotics products that will populate even 
more the clinic environments, a reasonable long-term vision is to gather multicenter 
clinical data to equip rehabilitation WRs with computational neurorehabilitation 
modeling tools that will in turn provide enriched data to establish scientific bases of 
exoskeleton-guided recovery.

On the other hand, the combination of FES with external orthotic devices 
that provide joint support and mechanical constraint to undesired movements 
was early proposed [69], but the challenges associated with the rapid onset of 
muscle fatigue and movement control still remained. In an attempt to further 
diminish the energy demand from the muscle while providing better joint 
control, FES systems were combined with lower limb exoskeletons, also called 
hybrid exoskeletons [70]. The combination of the lower limb robotic exoskel-
eton and the FES system can be shaped in different ways, depending on the 
configuration of the FES system and/or the exoskeleton. Regarding the former, 
the FES can be implanted [71] or superficial [72] and can be found either under 
open [71, 73] or closed-loop [72, 74] control of stimulation. With regards to the 
exoskeleton joints, it can provide means of dissipating energy, via the use of 
clutches or brakes [75, 76], or can feature active joints, which can also provide 
energy to the joints.

The hybrid configuration presents some advantages with respect to the FES 
or exoskeleton applications alone. First, the exoskeleton structure provides pas-
sive control to the joints, constraining undesirable movements. The actuators can 
provide support to the joints, diminishing or eliminating the need for stimulation 
of certain muscles (e.g., quadriceps muscles during the stance phases of walking). 
In the case of active actuators, the movement produced by the FES is supported by 
the actuator, improving the control of the joint trajectory while delaying muscle 
fatigue [77]. On the other hand, the sensors of the exoskeleton provide information 
for closing the control loop of the FES system, which may further help on optimiz-
ing the performance of the muscle in terms of either force production or muscle 
fatigue [72].

Despite hybrid exoskeletons show several advantages, the field is not mature. 
There is a markedly low activity in this field, and most of the groups working on 
this technology have discontinued their research on this topic. The rationale for this 
may come from the bottlenecks of each technology. First, hybrid exoskeletons share 
drawbacks with lower limb robotic exoskeletons, in which the combination with a 
FES system add complexity on the control and wearing aspects. Besides, although 
alleviated by the exoskeleton, the nonlinear muscle response of the stimulated 
muscles and the muscle fatigue is not adequately solved yet, and eventually all 
hybrid exoskeletons still have to be designed to function as conventional robotic 
exoskeletons once muscle fatigue appears.

Lastly, there is a need of conducting clinical studies that can demonstrate the 
benefits of using hybrid exoskeleton with respect to exoskeleton alone that actually 
justify the extra complexity, cost, and cumbersomeness of the FES system.
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an increasing amount of research focused on developing robotic systems intended 
to interact with the neurologically impaired human body. This interaction (of the 
human body) with WRs has been established in foundational literature [61] as 
dual, bidirectional physical (pHRi), and cognitive (cHRi) interactions. While these 
systems have been proven to be useful for specific applications, such as in-clinic 
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The hybrid configuration presents some advantages with respect to the FES 
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for closing the control loop of the FES system, which may further help on optimiz-
ing the performance of the muscle in terms of either force production or muscle 
fatigue [72].
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this technology have discontinued their research on this topic. The rationale for this 
may come from the bottlenecks of each technology. First, hybrid exoskeletons share 
drawbacks with lower limb robotic exoskeletons, in which the combination with a 
FES system add complexity on the control and wearing aspects. Besides, although 
alleviated by the exoskeleton, the nonlinear muscle response of the stimulated 
muscles and the muscle fatigue is not adequately solved yet, and eventually all 
hybrid exoskeletons still have to be designed to function as conventional robotic 
exoskeletons once muscle fatigue appears.

Lastly, there is a need of conducting clinical studies that can demonstrate the 
benefits of using hybrid exoskeleton with respect to exoskeleton alone that actually 
justify the extra complexity, cost, and cumbersomeness of the FES system.
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5. Conclusions and future directions

This chapter presents an overview of the main effects on motor and functional 
recovery, as well as spasticity and pain, when using a wide range of noninvasive 
modalities in the rehabilitation of SCI patients, either in the research or the clinical 
setting. According to the level of stimulation, these modalities were divided into 
three different sections: brain, spinal cord, and peripheral stimulation. Regarding 
the last one, stimulation of the peripheral nervous system can also be combined 
with external devices that assist and allow repetitive motor training (e.g., hybrid 
exoskeletons and FES driven cycling).

Noninvasive brain stimulation (NIBS) techniques such as rTMS and tDCS have 
the potential to improve motor function recovery and spasticity after SCI. Moreover, 
NIBS techniques are safe and relatively easy to administer, presenting infrequent 
mild effects. Very few studies have investigated motor function after delivery of 
rTMS on SCI patients. Improvements seem to be present when higher rTMS fre-
quencies are used. On the other hand, the few studies that investigated the effects 
of rTMS on spasticity in iSCI reported some reduction in the clinical symptoms of 
spasticity [2]. There are less studies of the application of tDCS in motor function or 
spasticity than those of rTMS [4], though they all showed improvements in upper 
or lower limb motor function. Thus, more research is needed to address the full 
potential and incorporate NIBS techniques into SCI rehabilitation [4].

At the spinal level stimulation, tcSCS has irrupted in the last years as a neuro-
rehabilitation tool in SCI. It overcomes the limitation of invasiveness and costs of 
epidural stimulation at the expense of poor spatial stimulation resolution. The few 
evidences suggest that tsSCS alone improves voluntary modulation of lower limb 
movement [29] and increases motor control enhancement when combined with 
pharmacology therapy and exoskeletons [26].

Noninvasive modalities that deliver different types of surface stimulation at 
the peripheral level (either alone or combined with cycling or robotic-assisted 
training, for example) are very appealing and have been applied in SCI rehabilita-
tion. Surface electrical stimulation can modulate afferent and efferent pathways in 
order to induce corticospinal plasticity. For instance, TENS and FES have reduced 
spasticity in SCI patients and the effects outlasted up to several hours after treat-
ment, though the two techniques target different nerve groups in order to reduce 
spasticity: TENS activates afferents that in turn activate inhibitory interneurons 
that will inhibit the spastic muscle activity; FES induces muscle contraction and 
is oriented to the spastic muscle [34]. The development of fatigue and discomfort 
produced by the intensity of stimulation of FES is a drawback for long sessions. 
Thus, TENS may be appropriate for the beginning of the rehabilitation, while FES 
may have better effects on those SCI patients presenting spasmodic behavior [34]. 
On the other hand, BMIs may enhance brain and spinal cord neurorecovery through 
activity dependent plasticity. Future advances in wireless devices may potentiate the 
widespread use of BMIs in the clinical setting.

FES cycling is another modality that presents direct benefits on muscle strength, 
as well as cardiovascular and respiratory functions of SCI patients. However, more 
research on this technique is needed in order to design more efficient, natural, and 
adaptable stimulation protocols, which will likely improve motor function out-
comes during SCI rehabilitation.

Robotic devices, such as exoskeletons, are other solutions that have been used for 
rehabilitation purposed after SCI. These devices can provide intensive, long lasting 
repetitive task specific training to SCI patients, which is the principle behind motor 
rehabilitation and beneficial neuroplasticity [78]. These devices have allowed SCI 
patients to ameliorate their performance in daily life [56]. The hybrid configuration 
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(exoskeleton combined with FES) presents some advantages with respect to the 
FES or exoskeleton applications alone: actuators can provide support to the joints, 
diminishing or eliminating the need for stimulation of certain muscles; the sen-
sors of the exoskeleton provide information for closing the control loop of the FES 
system, which may further help on optimizing the performance of the muscle in 
terms of either force production or muscle fatigue. However, the field is not mature 
and there is a need of conducting clinical studies that can demonstrate the benefits 
of using hybrid exoskeleton with respect to exoskeleton alone that actually justify 
the extra complexity, cost, and cumbersomeness of the FES system.

Part of the current SCI rehabilitation research uses the modalities described in 
this chapter and has presented promising results including neurorecovery.

Some of these modalities are already being widely introduced into the clini-
cal rehabilitation of SCI, such as TENS and FES. However, the actual uptake of 
technology in the clinical setting, especially for SCI rehabilitation, has been very 
low [5]. There are still some barriers to the clinical implementation of these tech-
niques. Three of those barriers are the feasibility, appropriateness, and the cost. 
While the research here described is practical for SCI rehabilitation, some of these 
techniques are less practicable: they require specialized equipment and knowledge, 
which make them less feasible [5]. Despite the scientific evidence in favor of these 
technologies, the expertise required to operate and repair emerging technology is 
usually not found in the clinical setting, which makes it less appropriate. A third 
barrier that deserves attention is the economic cost, given the fact that most of the 
clinical centers cannot afford the maintenance of these technologies. To overcome 
these barriers, it is essential to develop a proactive dialog between researchers and 
clinicians in order to properly examine each of the emerging modalities that can 
maximize the outcomes for each individual that suffered a SCI.
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the extra complexity, cost, and cumbersomeness of the FES system.

Part of the current SCI rehabilitation research uses the modalities described in 
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cal rehabilitation of SCI, such as TENS and FES. However, the actual uptake of 
technology in the clinical setting, especially for SCI rehabilitation, has been very 
low [5]. There are still some barriers to the clinical implementation of these tech-
niques. Three of those barriers are the feasibility, appropriateness, and the cost. 
While the research here described is practical for SCI rehabilitation, some of these 
techniques are less practicable: they require specialized equipment and knowledge, 
which make them less feasible [5]. Despite the scientific evidence in favor of these 
technologies, the expertise required to operate and repair emerging technology is 
usually not found in the clinical setting, which makes it less appropriate. A third 
barrier that deserves attention is the economic cost, given the fact that most of the 
clinical centers cannot afford the maintenance of these technologies. To overcome 
these barriers, it is essential to develop a proactive dialog between researchers and 
clinicians in order to properly examine each of the emerging modalities that can 
maximize the outcomes for each individual that suffered a SCI.
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Abstract

Spinal cord injury (SCI) involves damage to the spinal cord causing both 
structural and functional changes, which can lead to temporary or permanent 
alterations. Even though there have been many advances in its treatment, the results 
of clinical trials suggest that the current therapies are not sufficiently effective. 
Recently, there has been a lot of interest in regulating this harmful environment 
by transplanting cultured cells and boosting their antiinflammatory cytokines and 
growth factors production. Several types of cells have been studied for SCI therapy 
including, Schwann cells (SC’s), olfactory ensheathing cells (OECs), choroid plexus 
epithelial cells (CPECs), and immune cells (ICs) (lymphocytes, dendritic cells and 
alternative macrophage and microglia phenotypes). These treatments have shown 
to be promising and in this chapter, we will review the general aspects of trans-
planting these cells for SCI therapy as well as the neuroprotective and regenerative 
responses that different types of cells have reached in different SCI models. The 
mesenchymal stem cells (MSC) are one of the most well studied cell types; how-
ever, they were not included in this section because they will be reviewed in another 
chapter of this book.

Keywords: spinal cord injury, cultured cells, therapy

1. Introduction

SCI is a catastrophic condition that goes through two successive stages, which 
involves disturbances on ionic homeostasis, local edema, ischemia, focal hemor-
rhage, free radicals stress and inflammatory response [1]. SCI also causes partial or 
complete loss of sensory, motor and autonomic functions below the injury level, 
due to the interruption of the neural pathways. Nevertheless, cultured cells have 
successfully proved to achieve neuroprotective effects, by replacing or repairing 
damaged tissue, by neuronal survival, axonal growth, regulation of cytokine 
profiles and inflammation and motor recovery in animal models [2]. Cultured cells 
are promising strategies due to high variety of autologous cells that can be isolated 
and transplanted to patients; neural cells can up-regulate neurotrophic, growth 
and vascular factors to enhance the repair process in the spinal cord (SC). Also, 
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and transplanted to patients; neural cells can up-regulate neurotrophic, growth 
and vascular factors to enhance the repair process in the spinal cord (SC). Also, 
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non-neural cells can be polarized in vitro to evoke antiinflamatory responses in 
order to modulate SCI microenvironment. This still requires intensive investiga-
tion because cells from neural tissues such as OECs could only be retrieved by 
craniotomy with general anesthesia, which needs, optimized chirurgical practices 
and excellent preclinical and clinical cares [3]. However, mononuclear cells such as 
macrophages or lymphocytes isolated from peripheral blood, become a less invasive 
strategy [4, 5]. Although the current treatments for SCI have proven to have certain 
improvement effects, there is no actual cure for SCI [6]. That is why in recent years 
cell transplantation has become one of the most investigated approaches to treat 
this kind of disorder [7, 8].

2. Cultured cells

In this section, we will review each cell type separately because there are many 
differences and similarities among them which are worth mentioning.

2.1 Schwann cells

Numerous cell types have been studied and proposed for transplantation, 
however, SC’s have always been considered as one of the best candidates for this 
treatment [9–11].

SC’s are the principal glia of the peripheral nervous system (PNS) [12]. SC’s 
wrap around long segments of peripheral nerves and produce myelin, forming a 
multilayered membranous sheath that allows axons to propagate action potentials at 
a high speed [12, 13]. The myelination of the axons by glial cells (oligodendrocytes 
in the central nervous system (CNS) and SC’s in the PNS) is believed to be the last 
evolutionary step in the vertebrae nervous system and it’s key in understanding 
neurophysiology [12, 14]. There are two types of SC’s, the myelinating and non-
myelinating both come from the neural crest cells in early development stages [15]. 
SC’s precursors migrate along with growing axons in peripheral nerves where they 
receive specific signaling such as Neuregulin 1 (NRG 1) in order to survive and later 
on differentiate into myelinating SC’s [15, 16].

SC’s are essential for normal motor and cognitive functions, long-time 
integrity of the axons and they play a crucial role in axonal regeneration in the 
PNS after injury [6, 14, 17]. SC’s regeneration role is more evident when you 
compare the outcome of a blunt injury in the SC with a similar injury in a periph-
eral nerve in rodents [18]. In several studies, it was seen that after sciatic nerve 
crush, the axons were able to rapidly grow back to their targets, also redundant 
myelin was removed and replaced with new myelin surrounding the regenerated 
axons, resulting in a generally normal tissue at an impressive speed (3–4 weeks) 
[14, 19]. On the other hand, crushing the SC results in the formation of a lesion 
filled with fluid or matrix leading to axonal retraction, permanency of myelin 
debris and absence of axonal regeneration [20]. In the PNS, the injury triggers 
a broad set of changes in the differentiation of both injured neurons and SC’s, 
causing neurons to switch their function from cell to cell signaling to axonal 
growth and SC’s change their function from axonal maintenance to support 
axonal regeneration [18, 21, 22]. This means that the glia in CNS does not suffer 
the same remarkable transformation as the PNS to repair the nervous tissue after 
the injury [19].

Those are some characteristic that have led them to become one of the biggest 
proposed treatments in cell transplants seeking to recover motor functions after SCI 
[9, 11].
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2.1.1 Schwann cell response to injury

Even though axonal degeneration in the distal stump takes about 2–4 days, SC’s 
response to axonal damage can be detected within hours of the injury, suggesting 
there is some communication between injured axons and SC’s which needs further 
investigation [23]. As said before, right after de injury, SC’s and undergo a large 
series of changes in gene expression to dedifferentiate into a non-myelinating 
immature type of SC’s and proliferate extensively [24]. In this process myelin 
associated molecules such as the key myelin transcription factor Egr2 (Krox20), 
cholesterol synthesis enzymes, structural proteins, including P0, myelin basic pro-
tein (MBP), and membrane-associated proteins like myelin-associated glycoprotein 
(MAG) and periaxin are down-regulated, whereas molecules that characterize SC’s 
in their immature stage (before myelination) are up-regulated [25]. These include 
L1, Neural cell adhesion molecule (NCAM), neurotrophin receptor p75NTR, and 
glial fibrillary acidic protein (GFAP) [24].

Another process in this response is the presence of phenotypes which are not 
associated neither with immature SCs nor with the SCs of an undamaged nerve. 
The appearance of these cells is critical, and since their main function is repair-
ing, we refer to them as repair SC’s or Bungner cells (BC’s) [24]. The repair process 
includes, first, the up-regulation of neurotrophic factors such as, Glial cell-derived 
neurotrophic factor (GDNF), artemin, Brain-derived neurotrophic factor (BDNF), 
Neurotrophin-3 (NT3), Nerve growth factor (NGF), Vascular endothelial growth 
factor (VEGF), and pleiotrophin which promotes the survival of injured neurons 
and axonal regeneration [26]. Second, the BC’s up-regulates the expression of 
inflammatory cytokines including tumor necrosis factor (TNF)-a, interleukin 
(IL)-1a,IL-1b, Leukemia inhibitory factor (LIF), and Monocyte chemoattractant 
protein-1 (MCP-1), in order to recruit macrophages that will eliminate redundant 
myelin that inhibit axonal growth [27].

2.1.2 Schwann cell transplantation in spinal cord injury

One of the first clues implicating that SC’s transplantation could serve as a 
treatment for SCI was found in a set of experiments held by David and Aguayo in 
1981. The experiments demonstrated that peripheral neurons (PN) lose their ability 
to regenerate over long distances in the PNS when they are submitted within the 
environment of a CNS graft and contrariwise the limited ability of CNS neurons to 
regenerate after an injury was enhanced within the environment of a PNS graft  
[19, 28]. Thanks to those landmark studies and decades of research, we now know 
that the introduction of SC’s after a SCI can promote axonal regeneration, reduce 
tissue loss, and facilitate myelination of axons in order to improve sensory motor 
function [11, 29, 30].

One of the best-known mechanisms by which SC’s promotes axonal regeneration 
is by the formation of bridges across the lesion site. The bridge is a multicellular 
structure that crosses the lesion rostrally to caudally, providing an environment in 
which axons can grow and also covering the glial scar which limits axonal regenera-
tion [31]. Furthermore, the transplantation of SCs provides a neuroprotective effect 
preventing neuronal death from the continuous inflammatory reaction involved in 
the SCI [10, 11].

The PN-auto graft was one of the first techniques to promote axonal regenera-
tion in the CNS after SCI. The nerve graft, besides providing supportive SCs it also 
endorses the survival of axotomized SC neurons by upregulating the expression 
of neuronal nitric oxide synthase (eNOS), furtherly activating the NO- dependent 
cyclic-GMP pathway, which enhances survival in these neurons [32, 33].  
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(IL)-1a,IL-1b, Leukemia inhibitory factor (LIF), and Monocyte chemoattractant 
protein-1 (MCP-1), in order to recruit macrophages that will eliminate redundant 
myelin that inhibit axonal growth [27].
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to regenerate over long distances in the PNS when they are submitted within the 
environment of a CNS graft and contrariwise the limited ability of CNS neurons to 
regenerate after an injury was enhanced within the environment of a PNS graft  
[19, 28]. Thanks to those landmark studies and decades of research, we now know 
that the introduction of SC’s after a SCI can promote axonal regeneration, reduce 
tissue loss, and facilitate myelination of axons in order to improve sensory motor 
function [11, 29, 30].

One of the best-known mechanisms by which SC’s promotes axonal regeneration 
is by the formation of bridges across the lesion site. The bridge is a multicellular 
structure that crosses the lesion rostrally to caudally, providing an environment in 
which axons can grow and also covering the glial scar which limits axonal regenera-
tion [31]. Furthermore, the transplantation of SCs provides a neuroprotective effect 
preventing neuronal death from the continuous inflammatory reaction involved in 
the SCI [10, 11].

The PN-auto graft was one of the first techniques to promote axonal regenera-
tion in the CNS after SCI. The nerve graft, besides providing supportive SCs it also 
endorses the survival of axotomized SC neurons by upregulating the expression 
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In addition, the PN-grafts promote the expression of growth factors in the host SC 
such as NGF and BDNF, delaying the formation of the glial scar, which is key for 
successful regeneration [34]. Another studied strategy is transplanting dissociated 
SCs alone into the injury. After transplantation, dissociated SCs are able to elicit 
axonal in-growth and align to secrete substrates, serving as guidance for axonal 
regeneration [35]. Moreover, when it comes to transplanting, the SCs alone have an 
advantage over the PN-graft, which is that purified SCs have the potential of being 
engineered to overexpress growth-promoting factors and/or adhesion molecules to 
enhance axon growth [36]. Even though several studies indicate that they cannot 
migrate into the host tissue, therefore regeneration outside the injury/graft site was 
limited [37].

However, their repair effect is not enough to induce an axonal response that 
leads to a full recovery of the locomotor function [38]. This could be due to the fact 
that a high percentage of SCs are lost in apoptotic or necrotic processes in the first 
3 weeks after transplant [39]. This low survival rate post transplantation may be 
attributed to the prejudicial environment of the SCI in which low oxygen levels, 
inflammatory cytokines, reactive oxygen species (ROS) and cell-mediated immune 
reactions predominate [10, 39]. Also, after the injury reactive astrocytes, meningeal 
cells, and microglia form the glial scar which becomes a physical and chemical 
barrier for axons to grow. The glial scar induces the secretion of axonal growth and 
myelin-associated inhibitors such as chondroitin sulfate proteoglycans (CSPGs), 
semaphorins, and myelin-associated proteins which limits the regenerative capacity 
of SCs when transplanted alone [37]. This suggests that SC transplantation needs 
to be combined with additional interventions in order to ensure successful axonal 
regeneration and sufficient functional recovery after SCI [29].

Because of the multiple mechanisms and complex pathophysiology involved in 
SCI, a significant therapeutic effect on functional recovery may not occur with the 
transplantation of SCs alone, meaning that a combinational therapy strategy is most 
likely to be the best option [9]. There are many different strategies that have been 
studied and have shown to have beneficial results. First, the suspension of SCs in 
bioactive matrices promotes their survival and enhances their capacity for support-
ing axonal regeneration. Second, the complementary administration of neuropro-
tective agents, growth factors and other molecules improves the effects of SCs at the 
lesion site. Third, the inhibition of the glial scar formation and/or the reduction of 
its inhibitory cues to obtain axonal growth from grafts into the adjacent SC. Fourth, 
the co-transplantation of SCs with other cell types such as OECs, neural stem cells 
(NSCs), MSC and others. The different types of combinations as well as their 
characteristics and outcomes are described in Table 1.

The use of another cell population like OECs in the combinatory cell therapy had 
demonstrated to boost the SCs effects.

2.2 Olfactory ensheathing cells

OECs are a population of glia cells that are residents in the PNS and CNS, which 
are commonly located in the central olfactory bulb (OB) and the nasal olfactory 
mucosa (OM) [56]. They are accompanied by the envelope of olfactory nerve 
fibroblasts (ONFs), so they can embrace the bundles of olfactory nerve fibers from 
the nasal mucosa to allow the synapsis in the OB [57]. Recent studies have demon-
strated that OB transplants could be differentiated to create relationships with the 
periphery and brain [56].

OECs express a lot of neurotrophic factors, including BDNF, GDNF, and NGF 
which are relevant for the propagations and guidance of axons, sharing properties 
with astrocytes and SC’s [2]. Neurotrophic factors secreted by them is capable 
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of protecting neurons, due to its faculty to inhibit scar formation and promote 
regeneration of axons (see Table 2) [58]. They also have an important ability in 
neural regeneration that consists in their proliferation and migration from PNS 
and CNS.

This attribute explains that enhancement of axonal extension after injury is pos-
sible and it can help neural regeneration, as a result of the expression of molecules 
implicated in that process (Table 2) [2, 59].

OECs phenotypes are different depending on their location in CNS or PNS. It has 
been shown that they express different types of molecules implicated in neurore-
generation, such as adhesion molecules, neurotrophic factors, proteases, cytokines 
and inhibitory factors.

Outcome Reference

Suspension matrices

Matrigel (BD) Significantly enhances long-term cell survival as well as graft 
vascularization and the amount of axonal ingrowth

[40]

PuraMatrix (BD) Promotes their survival in the injured SC and reduces 
astrogliosis and locomotor impairment.

[41]

Alginic acid hydrogel Reduces SC apoptosis and enhances recovery of locomotor 
function.

[42]

Growth factors and other molecules

GDNF Reduces astrogliosis and promotes axon regeneration, synapse 
formation, and locomotor recovery after SCI

[43, 44]

NRG1 + MSC Reduce the size of cystic cavities, promotes axonal regeneration 
and locomotor recovery.

[45]

Rolipram + SCs grafts/
analog of cyclic AMP/
D15A

Promote significant supraspinal and proprioceptive axon 
sparing/regeneration and myelination.
Promotes growth of serotonergic fibers into and beyond grafts, 
and significantly improves locomotion.
Increases the size of SC grafts, the number of serotonergic 
fibers in the grafts, and the number of axons from the reticular 
formation below the lesion/implant.

[6]
[6]
[46]

Inhibition of the glial scar formation

ChABC Compared grafts treatment, it also improves forelimb and 
hindlimb movements as well as open-field locomotion.
Decreases CSPGs both outside and within the SC transplant.

[47]
[5, 48],

Polysialic acid This leads to improved SC migration, axon regeneration, and 
locomotion.

[49, 50]

Combination cells

MSC Reduction of the size the size of cystic cavities, promotes axonal 
regeneration and locomotor recovery compared with SCs or 
MSC transplantation alone.

[45]

NSC Promotes neuronal differentiation and functional recovery in 
after SCI in rats.
Improves locomotion, increases axonal regeneration/
myelination, and reduces neuronal loss.

[51]
[52, 53]

OECs Regeneration of both proprio- and supra-spinal axons beyond 
the SC bridge.
Significantly promotes axonal regeneration and improves 
locomotion.

[54]
[55]

Table 1. 
Combination of SCs transplantation with novel molecules/materials.
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the co-transplantation of SCs with other cell types such as OECs, neural stem cells 
(NSCs), MSC and others. The different types of combinations as well as their 
characteristics and outcomes are described in Table 1.

The use of another cell population like OECs in the combinatory cell therapy had 
demonstrated to boost the SCs effects.
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OECs are a population of glia cells that are residents in the PNS and CNS, which 
are commonly located in the central olfactory bulb (OB) and the nasal olfactory 
mucosa (OM) [56]. They are accompanied by the envelope of olfactory nerve 
fibroblasts (ONFs), so they can embrace the bundles of olfactory nerve fibers from 
the nasal mucosa to allow the synapsis in the OB [57]. Recent studies have demon-
strated that OB transplants could be differentiated to create relationships with the 
periphery and brain [56].

OECs express a lot of neurotrophic factors, including BDNF, GDNF, and NGF 
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of protecting neurons, due to its faculty to inhibit scar formation and promote 
regeneration of axons (see Table 2) [58]. They also have an important ability in 
neural regeneration that consists in their proliferation and migration from PNS 
and CNS.

This attribute explains that enhancement of axonal extension after injury is pos-
sible and it can help neural regeneration, as a result of the expression of molecules 
implicated in that process (Table 2) [2, 59].

OECs phenotypes are different depending on their location in CNS or PNS. It has 
been shown that they express different types of molecules implicated in neurore-
generation, such as adhesion molecules, neurotrophic factors, proteases, cytokines 
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[40]
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[41]
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[43, 44]
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[45]
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analog of cyclic AMP/
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Promote significant supraspinal and proprioceptive axon 
sparing/regeneration and myelination.
Promotes growth of serotonergic fibers into and beyond grafts, 
and significantly improves locomotion.
Increases the size of SC grafts, the number of serotonergic 
fibers in the grafts, and the number of axons from the reticular 
formation below the lesion/implant.

[6]
[6]
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Inhibition of the glial scar formation

ChABC Compared grafts treatment, it also improves forelimb and 
hindlimb movements as well as open-field locomotion.
Decreases CSPGs both outside and within the SC transplant.

[47]
[5, 48],

Polysialic acid This leads to improved SC migration, axon regeneration, and 
locomotion.

[49, 50]

Combination cells

MSC Reduction of the size the size of cystic cavities, promotes axonal 
regeneration and locomotor recovery compared with SCs or 
MSC transplantation alone.

[45]

NSC Promotes neuronal differentiation and functional recovery in 
after SCI in rats.
Improves locomotion, increases axonal regeneration/
myelination, and reduces neuronal loss.
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Otherwise, many studies have proved that OECs are capable of replacing apop-
totic or necrotic neural cells, secreting numerous neurotrophins, and contributing 
to remyelination. Although they do not do the last function in the individual olfac-
tory sensory axons, they enwrap abundant bundles of them, to assemble the nerve 
fascicles [60]. Recent findings have shown that neuroblasts recently generated in 
the subventricular zone, migrate into the OB [56].

2.2.1 Olfactory ensheating cells in response to injury

Studies showed that OECs have a significant therapeutic importance because 
they [47] interact with astrocytes from the CNS and establish connections with 
the second neurons. They have the aptitude to guide transected axons of the 
corticospinal tract throughout the focus of injury that causes the restoration of paw 
movements, supraspinal control of breathing and improvements in climbing after 
transplantation into high cervical SC injuries [47, 60].

It is well known that the SC enclose the long motor tracts descending from the 
brain and the long sensory tracts ascending to the brain. Therefore, it is essential to 
reconstruct them, and if it is not possible, it is necessary to at least establish a new 
circuitry with the ability to provide access to the information which was cut off by 
the injury [61].

2.2.2 Olfactory ensheating cells transplantation in spinal cord injury

Studies showed that OECs have a significant therapeutic importance because 
they interact with astrocytes from the CNS and establish connections with the 
second neurons. The implantation of these cells into the injured SC can intensify 
neurite growths into the distal part, promoting functional recovery. They have the 
aptitude to guide transected axons of the corticospinal tract throughout the focus 
of injury which causes the restoration of paw movements, supraspinal control of 
breathing, bladder and improvements in climbing after transplantation into high 
cervical SC injuries [55, 60, 62, 63]. Likewise, OECs transplanted from rats, dogs, 
pigs and humans into the lesion site in the SC of the rat, promote remyelination of 
injured axons and restore impulse conduction [48].

In normal conditions, OECs do not form myelin, but when are transplanted into 
the demyelinated SC, they have the capacity to form a peripheral pattern of myelin 
reminiscent of SC’s myelin [40] There is also evidence that they reduce proteogly-
cans expression in reactive astrocytes after the injury [63]. Otherwise, microenvi-
ronment and culture conditions have an important influence on OECs behaviors 
in vitro and in vivo [41].

It has been demonstrated that OECs transplants can reduce posttraumatic cav-
ity size, increase the sprouting of neurofilaments and serotonin axons, improve 

Adhesion molecules L1, E-NCAM, Laminin, Fibronectin, Type-V collagen

Neurotrophic (diffusible) factors/
receptors

NGF/p75, BDNF/TrkB, GDNF/GFRα-1, NTN/GFRα-2, NRG-1/
ErbB

Proteases (digest CSPG and PNN) MMP2, MMP9, Serpine-1

Cytokines IL-6/IL-6R, CX3CL1/Fractalkine, TGF-β3

Inhibitory factors/receptors Nogo/NgR, Sema3A, EphrinA

Table 2. 
OECs molecules implicated in neuroregeneration.
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functionality and have neuroprotective effects [42, 64]. Due to these facts, several 
studies have ranked these cells as the second most commonly used cell type after SCI.

Recent studies have investigated the effect of co-transplantation of OECs and 
SCs at the injured site 7 days after contusion, demonstrating they significantly 
reduce the number of astrocytes, microglia/macrophage infiltration, and expres-
sion of chemokines (CCL2 and CCL3) at the injured site. These results suggest that 
OECs and SC’s co-transplantation can promote the change of the macrophage phe-
notype from M1 secreting IFN-γ, to M2 secreting IL-4. The induction to M2 reduces 
ICs infiltration in the damaged site, regulates inflammatory factors and chemokine 
expression, which provide ICs environment for SCI repair [65].

2.3 Choroid plexus epithelial cells

The Choroid Plexus (CP) has a relatively simple structure. They consist of 
single layer of cuboidal to low cylindrical epithelial cells that reside on a base-
ment membrane [43]. The main function is to form the cerebrospinal fluid (CSF). 
Approximately two thirds of this CSF is produced and secreted by the CP, the 
remainder produced by other areas such as the ependymal cells (ECs) of the ven-
tricular surface and those cells lining the subarachnoid space. This fluid circulates 
in the ventricular system, subarachnoid spaces and spinal canal [44]. The CP, is not 
only implicate in CSF production also is a physical barrier to impede entrance of 
toxic metabolites to the brain [45]. Besides maintaining CNS homeostasis, CP and 
CSF have proven to be present in repairing processes after disease or damage [44].

The CP is located in the ventricular system of the brain. The ventricles consists 
of epithelial tissue which is highly vascularized by fenestrated blood vessels  
[46, 66]. Within the lateral ventricles, it propels from the choroidal fissure and 
extends from the interventricular foramen to the end of the temporal horn. It proj-
ects into the third and fourth ventricles from the ventricular roof. Grossly, the CP is 
lobulated with a single continuous layer of cells derived from the ependymal lining 
of the ventricles. Despite it, these cells possess epithelial cell characteristics and are 
often referred to as CP epithelial cells (CPECs) [66].

CPECs are the prolongation of ECs of the ventricular wall, and the underlying 
connective tissue corresponds to the pia mater covering the brain surface. CPECs 
and ECs are of ectodermal origin and develop from the neuroepithelium in the roof 
plate [49]. However, unlike ECs, CPECs are directly attached via basal laminae to 
the connective tissue, a feature characteristic of general epithelial cells pertain to a 
small group of polarized cells, where the Na-K-ATPase is expressed in the luminal 
membrane [50]. Ultrastructurally, the CPECs contain numerous mitochondria 
needed to maintain their metabolic work capability for both secretory activities 
and maintaining ionic gradients across blood-CSF barriers [54]. Underlying the 
epithelial cells and basal lamina is a dense vascular bed that provides a blood flow 
four to seven times greater than the rest of the brain [54]. Elsewhere, the cells have 
tight junctions closest to the luminal membrane to separate the ventricle lumen 
from the lateral intercellular and basal spaces. Adherence junctions are situated 
below the tight junctions, and desmosomes appear further below the adherence 
junctions [67]. The luminal surface is characterized by microvilli, both primary cilia 
and motile cilia [43]. The capillaries are large with thin fenestrated endothelial walls 
and bridging diaphragms overlying the fenestrations. An extensive array of adren-
ergic, cholinergic, peptidergic and serotoninergic nerve fibers innervate the blood 
vessels and the epithelium [67]. In addition, CP secrete many trophic factors such as 
Hepatocyte Growth Factor (HGF), Basic fibroblast growth factor (bFGF), insulin-
like growth factor-II (IGF-II), NGF, and Transforming growth factor (TGF) [68].
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functionality and have neuroprotective effects [42, 64]. Due to these facts, several 
studies have ranked these cells as the second most commonly used cell type after SCI.

Recent studies have investigated the effect of co-transplantation of OECs and 
SCs at the injured site 7 days after contusion, demonstrating they significantly 
reduce the number of astrocytes, microglia/macrophage infiltration, and expres-
sion of chemokines (CCL2 and CCL3) at the injured site. These results suggest that 
OECs and SC’s co-transplantation can promote the change of the macrophage phe-
notype from M1 secreting IFN-γ, to M2 secreting IL-4. The induction to M2 reduces 
ICs infiltration in the damaged site, regulates inflammatory factors and chemokine 
expression, which provide ICs environment for SCI repair [65].
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remainder produced by other areas such as the ependymal cells (ECs) of the ven-
tricular surface and those cells lining the subarachnoid space. This fluid circulates 
in the ventricular system, subarachnoid spaces and spinal canal [44]. The CP, is not 
only implicate in CSF production also is a physical barrier to impede entrance of 
toxic metabolites to the brain [45]. Besides maintaining CNS homeostasis, CP and 
CSF have proven to be present in repairing processes after disease or damage [44].

The CP is located in the ventricular system of the brain. The ventricles consists 
of epithelial tissue which is highly vascularized by fenestrated blood vessels  
[46, 66]. Within the lateral ventricles, it propels from the choroidal fissure and 
extends from the interventricular foramen to the end of the temporal horn. It proj-
ects into the third and fourth ventricles from the ventricular roof. Grossly, the CP is 
lobulated with a single continuous layer of cells derived from the ependymal lining 
of the ventricles. Despite it, these cells possess epithelial cell characteristics and are 
often referred to as CP epithelial cells (CPECs) [66].

CPECs are the prolongation of ECs of the ventricular wall, and the underlying 
connective tissue corresponds to the pia mater covering the brain surface. CPECs 
and ECs are of ectodermal origin and develop from the neuroepithelium in the roof 
plate [49]. However, unlike ECs, CPECs are directly attached via basal laminae to 
the connective tissue, a feature characteristic of general epithelial cells pertain to a 
small group of polarized cells, where the Na-K-ATPase is expressed in the luminal 
membrane [50]. Ultrastructurally, the CPECs contain numerous mitochondria 
needed to maintain their metabolic work capability for both secretory activities 
and maintaining ionic gradients across blood-CSF barriers [54]. Underlying the 
epithelial cells and basal lamina is a dense vascular bed that provides a blood flow 
four to seven times greater than the rest of the brain [54]. Elsewhere, the cells have 
tight junctions closest to the luminal membrane to separate the ventricle lumen 
from the lateral intercellular and basal spaces. Adherence junctions are situated 
below the tight junctions, and desmosomes appear further below the adherence 
junctions [67]. The luminal surface is characterized by microvilli, both primary cilia 
and motile cilia [43]. The capillaries are large with thin fenestrated endothelial walls 
and bridging diaphragms overlying the fenestrations. An extensive array of adren-
ergic, cholinergic, peptidergic and serotoninergic nerve fibers innervate the blood 
vessels and the epithelium [67]. In addition, CP secrete many trophic factors such as 
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CP recently have been recognized as an important immunological compartment 
in maintaining and restoring brain homeostasis. It has been reported that the CP 
is the primary gate for trafficking ICs from the vascular system to the CSF in CNS 
impairment [69]. In the healthy brain, T lymphocytes are mainly found at the CSF 
or at the “borders” of the CNS: the CP at the brain’s ventricles, and the meningeal 
membranes that cover the brain [69].

2.3.1 Choroid plexus epithelial cells in response to injury

The evidence that the CP can instantly respond to signals coming from either 
the CNS itself or circulating immunity, suggests the possibility of controlling brain 
plasticity by affecting CP function [69], and identifies the cultured cells like CPECs 
as a novel target for neuroinflammatory conditions may involve a common underly-
ing mechanism of CP immunomodulation.

CSF recirculation within the CNS happens through numerous various pathways. 
Recent revelations about a previously unappreciated meningeal lymphatic system 
of the CNS [51, 52]. Although ICs (excluding microglia) have no access to the brain 
parenchyma under homeostatic conditions, the meninges around the brain are 
populated by a lot of immune-cell types, which not only provide immune surveil-
lance but also affect brain function [53].

T lymphocytes and their cytokines not only do harm but may also display 
homeostasis-restoring functions in the CNS [70]. ICs are also found within the CP 
epithelium, and during inflammatory events their numbers increase [71, 72], giving 
rise to the hypothesis that the CP is one of the points of immune-cell entry into the 
CSF [73].

2.3.2 Choroid plexus epithelial cells transplantation in spinal cord injury

When was examined the role of the CPCEs on inflammation after acute SCI: 
IL-1β, TNF-α, and hsp70 proved that the CPCEs may serve as an important source 
of these inflammatory mediators after SCI. There was also an inverse correlation 
between IL-1β and hsp70 staining and duration of clinical signs in acute SCI, sug-
gesting that the expression increasing of these proteins by the CPECs could be of 
particular importance in the immediate-early inflammatory response after acute 
SCI [52].

Certain studies with CPECs showed that they are capable of promoting neurite 
extension as well as neuronal survival in vitro: in coculture with CPECs, neurons 
derived from the dorsal root ganglia or hippocampus presented extensions of long 
numerous neurites with elaborated branches on the surface of CPECs [74, 75].

Researcher indicating that CPCEs can promote nerve regeneration when grafted 
into SC lesions, the outcomes indicate by electron microscopy and immunofluores-
cence that CPECs labelling with green fluorescent protein (GFP) before transplan-
tation closely interacted with growing axons, serving to support the massive growth 
of regenerating axons. Also, in this study Horseradish peroxidase (HRP) injection 
at the sciatic nerve showed that many HRP-labeled regenerating fibers from the 
fasciculus gracilis (FG) elongated into the graft 7 days after grafting. Furthermore, 
these regenerating axons from the FC were preserved for at least 10 months, with 
some axons elongating rostrally into the dorsal funiculus [76]. Recently, a study on 
CPECs transplantation, in which cultured CPECs were directly injected into the SC 
lesion, engrafted CPECs were located in the astrocyte devoid areas of the SCI; these 
data suggest that in rat, during the process of cavitation, reactive astrocytes may be 
reducted. In adittion, GAP-43-positive axons were found at the border of the lesion 
2 days after transplantation [50] . Other study demonstrated that transplantation of 
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CPECs and MSC promotes axonal regeneration and enhances locomotor improve-
ments. Overall this evidence suggests that they do not survive long term after 
transplantation into the SC. These date propose that some neurotrophic factors 
are released from those transplants to accelerate axonal regeneration through the 
astrocyte-devoid area formed in the epicenter of the lesion [77].

2.4 Lymphocytes and dendritic cells

Lymphocytes and dendritic cells (DCs) are ICs that are found in many different 
tissues within the body and work together achieved immunosurveillance and host 
defense against infection and injury. DCs are professional antigen presenting cells 
(APC) that capture, process antigens to initiate immune responses and express 
lymphocyte co-stimulatory molecules not only for activating lymphocytes, but, 
tolerizing T lymphocytes to antigens [78]. Indeed, lymphocytes are the mediators 
of the adaptative response by focus release growth factors and cytokine to the target 
cell, but only an efficient host defense is achieved through coordination of complex 
signals between innate and adaptative ICs: interaction between APC such as DCs 
with antigen and T lymphocytes [79].

Lymphocytes and DCs are derived from a hematopoietic stem cell in the bone 
marrow (BM); however, after certain cytokine secretion and transcription factors 
(TFs) expression, a common myeloid progenitor and common lymphoid progenitor 
are developed [80]. The first one differentiates into monocytes and DCs phenotype 
(CD8α+) [81, 82], while the second one give rise to different lymphocytes subsets, 
and a small population of CD8α− DCs. DCs can be classified into myeloid or con-
ventional DCs and plasmacytoid DCs. On the on hand, conventional can be divided 
into nonlymphoid tissue resident and lymphoid tissue residents and are well known 
for having a superior antigen processing, presentation machinery and ability to 
prime naive T lymphocytes responses; while plasmacytoid DCs express low levels 
of major histocompatibility complex class II (MHC-II) and costimulatory molecules 
[83]. In the case of lymphocytes, the bone marrow is where B lymphocytes matura-
tion take place, while T lymphocytes development is generated in the thymus, by 
positive and negative selection to prevent potentially autoimmune reactions; only 
lymphocytes whose receptors interact weakly with self-antigens, and express a large 
repertoire of receptors capable of responding to a unlimited variety of non-self 
structures receive survival signals and are capable of migrating into peripheral 
lymphoid tissues as αβ naïve T helper (Th), thymic regulatory T (Treg), (CD4+), 
cytotoxic (CD8+) T lymphocytes [84]. Also, a distinct lineage of T lymphocytes: 
natural killer and γδ T lymphocytes, which play role in initial host response and 
exhibit limited plasticity [79, 85].

2.4.1 T lymphocytes in response to injury

When traumatic insult is carried out, an immune response is triggered in order 
to contain the damaged tissue but avoiding a negative impact in the host. That is 
why a cellular response most be properly balance by regulatory T lymphocytes [86]. 
CD8+ T lymphocytes can differentiate principally in to regulatory and cytotoxic 
subsets, like the one that takes out Tc1 through the IL-12 influence, Tc2 differentia-
tion from IL-4 and IL-6 plus TGFB can develop Tc17 with low cytotoxic activity 
[87]. CD4+ T lymphocytes can differentiate into many classified subsets accord-
ing to their cytokine pattern TFs, except for Th1 and Th2 subsets discovered by 
Mosmann and Coffman in the 1980s; who found that clonal population from Th1 
principally secret IFNy and IL-4 in the Th2 subset [88]. Since that, CD4+ T lym-
phocytes have diversified into a great number: Th9, Th17, T follicular helper (Thf) 
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CP recently have been recognized as an important immunological compartment 
in maintaining and restoring brain homeostasis. It has been reported that the CP 
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of the adaptative response by focus release growth factors and cytokine to the target 
cell, but only an efficient host defense is achieved through coordination of complex 
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to contain the damaged tissue but avoiding a negative impact in the host. That is 
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subsets, like the one that takes out Tc1 through the IL-12 influence, Tc2 differentia-
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lymphocytes, induced regulatory T (iTreg) lymphocytes and Th22. Each CD4+ T 
lymphocytes subset can be defined by their capacity to sense specific cytokines and 
function to control pathogens, prevent immune pathologies and contain damage in 
trauma such as SCI [89].

2.4.1.1 Lymphocytes as double-edged sword in spinal cord injury

T lymphocytes the arrival of T lymphocytes is crucial for the development of 
an autoreactive response and parenchyma destruction, due to unique anatomo-
physiology of CNS through the release of proinflammatory cytokine entailing to 
more axon and cell bodies demyelination [90–92]. During acute phase, SC expresses 
high amounts of Th1 phenotype which is mainly regulated by IL-2, IL-12 and IFNy. 
Moreover, in subacute phases IL-4, IL-13, IL-10, IL-17 and IL-23 cytokines are 
found in plasma and spleen, indicating the presence of Th2, Treg and Th17 profiles 
as an inefficient compensatory mechanism [93, 94]. Accordingly to this, for the last 
10 years experimental findings have shown that T lymphocytes are not just patho-
genic but beneficial. Schwartz and coworkers suggested that T lymphocytes play an 
important role in plasticity and in injured CNS by a still debated mechanism termed 
“protective autoimmunity” which it established that under certain physiological 
circumstances, autoimmune T lymphocytes specific to myelin basic protein (MBP), 
mostly CD4+ can exert positive effect by protecting injured neurons [95].

2.4.1.2 Lymphocyte transferring after SCI

Lymphocytes that play complex role in SCI after antigen priming; the epitopes 
from neural proteins, can be considered beneficial, and Tregs can secret growth fac-
tors, shown neurotrophic factor receptors and promote progenitor differentiation 
and remyelination in damaged CNS [36, 96], authors have proposed T lymphocytes 
against MBP transfer as a therapeutic approach after SCI [97]. However, the only 
limiting factors are that in order to have a positive response, a genetic background 
and permissive microenvironment must be needed; susceptible individuals or 
strains don’t possess control mechanism such as appropriate antigen presentation, 
ability to evoke regulatory T lymphocytes and neuroendocrine effect on ICs regula-
tion [4, 98, 99]. Yoles and cols proved that T lymphocytes evoke a neuroprotective 
response after injury when animals that received T lymphocytes against MBP from 
injured animals improves hindlimbs locomotor activity, recovery from optic nerve 
injury, and mostly evoke an anti-inflammatory cytokine profile in the SC, suggest-
ing that a physiological and beneficial response is developed after trauma [100]. 
In addition, it has been corroborated in different studies; IL-4-deficient animals 
enhance neuronal survival and increase functional after trauma when CD4+ T lym-
phocytes from wild-type mice are transferred, but not from IL-4-deficient mice.

Inclusive, adoptive transfer of producing- IL-4, IL-10 and IL-3 CNS activated 
lymphocytes balance local inflammatory microenvironment by increasing protec-
tive cell populations like CD4+/Foxp3+ and CD68+/Arg1+ cells and in situ, proving 
that an increment of Th2 subset is beneficial to CNS repair [97, 101, 102]. But, 
increasing Treg population most be taking in consideration, due to injection of 
Treg can increase suppressive functions and limit effector T lymphocytes, which is 
negative to injured tissue in an optic nerve injury model [103]. Also, other studies 
proposed that Th1 profile is necessary for neuroprotection in SCI model [104], but 
not Th2 neither Th17. Only mice with Th1-conditioned cell transfer show motor 
recovery and present axon arbors extending from the main corticoespinal tract into 
the gray matter rostral to the lesion site; however, T lymphocytes were never primed 
with an specific antigen, or isolated from immunized animals [105].
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In addition, to boost the restorative response, and reduce the risk of develop-
ing an autoimmune disease neural modified peptide (NMP) has been tasted by 
active and passive immunization. A91 is a peptide derived from an encephalito-
genic epitope, amino acids 87–99 of MBP, by replacing the lysine residue 91 with 
alanine, which has evidence neural tissue preservation and paralysis reduction 
in rat model [106–109]. Also, passive p472 (Nogo-A derived peptide) immuniza-
tion, promotes a T lymphocytes neuroprotective response, and no significant IgM 
antibody response, revealing that the design of this therapeutic cell strategies does 
not depend on humoral response and reduce the possibility of promoting clinical 
changes in CNS, like myelin oligodendrocyte glycoprotein in resistant and non-
resistant strains [107, 110, 111].

2.4.2 Pulsed dendritic cells in spinal cord injury

Other studies support the idea that T lymphocytes response can be controlled 
from APCs transplantation into the traumatized mice and in non-human primates. 
Perhaps, APC must be primed first with NMP or SC homogenate (SHC), because, 
even mature DCs can evoke antigen-specific T lymphocyte response, it is not 
efficient enough to promote motor recovery [112]. Studies support the idea that 
only pulsed DCs can influence the secretion of neurotrophic factors like BDNF and 
neurotrophin-3 (NT3) in culture supernatants and at the SC lesion site via CD4+T 
lymphocyte, motoneuron survival, NSCs proliferation and functional recovery 
[113–115]. Also, A91 has been used to pulse DCs, proving that motor recovery 
increase since the eleven days in comparison with control rats and an autoimmune 
response is not developed when Lewis strain is used but apparently a T lymphocyte 
response is involved, because when neonatally thymectomized rats are injected DCs 
treatment has no effect on recovery [116]. Furthermore, to promote regeneration, 
genetically modified fibroblasts to express BDNF have been tasted too. Cell therapy 
avoids secondary damage such as bleeding or infection that can be caused by growth 
factors or cytokine delivery in the site of injury [117].

2.4.2.1 Macrophage vs. microglia

In the early 1990s, macrophages and microglia were thought to arise from the 
same myeloid progenitor cell [118], however multiple sophisticated methods have 
discarded the bone marrow origin hypothesis, and it is proposed that microglia 
derives from primitive myeloid precursors that arise in the yolk sac early during 
embryonic development, maintaining it apart from the rest myeloid lineage [119]. 
Moreover, it was proved that Tgfb is needed for its differentiation in comparison 
with other myeloid cells [120], implicating, ontogenically, that microglia are not 
resident macrophages but, the authentic sentinels of CNS. In healthy CNS and 
during early post-natal period, microglia possess a resting phenotype with round 
and ameboid characteristics [121] however, lately, microglia develops into a rami-
fied phenotype, which is equipped to keep CNS homeostasis in the developing 
and adulthood brain by phagocytic properties, trophic factors release for develop-
ing neurons and guidance of new vasculature [122]. Also, to keep a steady state, 
microglia maintains interaction between neurons by fraktalkine (CXCL1) and 
CD200 receptors to control inflammatory response and cell death [123, 124].

In respect of macrophage participation in CNS, it seems to be from monocytes 
which migrate from different sites during embryogenesis and in the adulthood 
[125]. Nevertheless, mostly are present in normal CSF [118], which contains about 
5 × 105 ICs in blood ratio of 1:2000 for monocytes (23%) [119]. Then, macrophages 
reside in the perivascular space, meninges and within the stromal matrix of CP, but 
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not in neural parenchyma [126]. So, their principal function is the CNS immuno-
surveillance, that means, macrophages are one of the first APCs in interacting with 
antigens and T lymphocytes located in CFS, meninges and subarachnoid space, and 
thus, quickly phagocyte it or also optimize T lymphocytes reactivation and evoke a 
deleterious response such as autoimmune disease [127].

2.5 Alternative macrophage and microglia

Macrophages and microglia are both APCs that can be found in CNS under 
different functional phenotypes depending on the microenvironmental signals 
they received. In inflammation, microglia and macrophages express morphologi-
cal changes, upregulate different cell markers and transcription factors. Microglia 
acquires a shape with shorter and thicker processes, increases CD45 expression and 
molecules for antigen presentation like MHCII, CD80 and CD86; also some miRNAs 
are related [128]. However, it is well known that activated macrophages and microg-
lia can encompass two different functions. The first one is the classically activated 
M1 phenotype that is induced by IFNy or TNFa and secretes 1 l-12 and reactive 
oxygen intermediates. And the second one is an alternative subtype triggered by 
IL-4 and IL-13 cytokines and secretes TGFb and express arginase 1 [129]. To date, is 
not well stablished the appropriate cell markers to differentiate activated microglia 
from macrophages in CNS, but some populations have been proposed to differenti-
ate the alternative phenotypes in monocytes: C3XCR1lo CCR2hi LY6Chi correspond 
to an inflammatory phenotype, while CX3CR1hi CCR2lo LY6Clo is found in the 
tissue remodeling phenotype [130, 131] and it has been corroborated in SCI stud-
ies; Shechter and cols. Proved that alternative M2 macrophages (Ly6cloCX3CR1hi) 
derived from monocytes traffic through CSF to provide an inflammatory response 
in SC [132].

Due to the important role that macrophages can play, several immunomodu-
latory therapies have been developed to control CNS response to pathological 
insults [123].

2.5.1 Macrophage and microglia in response to injury

Typically, damage stimulus triggers the activation of the microglia provoking 
the secretion of several cytokines like interferon gamma-induced protein 10, 
C-C motif chemokine ligand 1 (CCL1), C-C motif chemokine ligand 2 (CCL2) 
and C-C motif chemokine ligand 5 (CCL5) which recruit peripheral cells like 
macrophages. Microglia also participates in the adaptive immune response 
through the precise chemoattraction of T lymphocytes demonstrated in studies 
where the inhibition or stimulation of the resident microglia population resulted 
in abnormal recruitment [133].

These cells are considered essential screening damage monitoring constantly the 
microenvironment. Another important cell subgroup is the perivascular microglia 
which is replaced during 3 month period from bone marrow; its function is safe-
guarding the blood-brain barrier (BBB) through the recruitment of activated cell to 
BBB and parenchyma [134, 135].

2.5.2 Macrophage and microglia trafficking in response to injury

After a SCI take place an uncontrolled immune response that depends on the 
severity, level and mechanism of injury [136]. This cascade processes are character-
ized by pro-inflammatory and antiinflammatory alternatively activated cells [135]. 
The activation of phenotype M1 provokes neurotoxicity while type M2 promotes 
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axon growth and remyelination [137]. This lead the efforts to develop immuno-
modulatory therapies to modify phenotypic and functional properties.

The activation of the glia occurs the first 24 hours after trauma [138]; while the 
peripheral monocytes migrate into the injury within the following 2 or 3 days post-
injury, then they differentiate into macrophages that become phenotypically and 
morphologically indistinguishable [139].

The proinflammatory M1 macrophages vary along early stages releasing high 
levels of ROS to increase phagocytosis and cell recruitment removing foreign 
microbes and wound debris [140]; meanwhile M2 macrophages have some tissue 
repair properties through the release of immunosuppressive cytokines like IL-10 
and C-C motif chemokines ligand 17, 18 and 22 to attract antiinflammatory leuco-
cytes that increase the phagocytic receptors and upregulate growth factors [141].

There are three important chronological stages in the inflammatory response: 
the inflammatory, proliferative and remodeling phase and each one is character-
ized by certain cytokines and events. In the first one are present both M1 and M2a 
phenotypes, M1 secrete IL-1β, IL-12, TNF- α and IL-6 and M2a express high levels 
of IL-4, arginase-1 and Ym1 [142]. Comparative analysis of lesion development 
and intraspinal inflammation in four strains of mice following spinal contusion 
injury); during the second stage, keep going secreting proinflammatory cytokines 
but transition toward the expression of IL-10 and other antiinflammatory markers 
distinguished by the M2b macrophages followed by the M2c; in the third stage, the 

Therapy Treatment outcome Reference

Adoptive transfer of M2 in rats M2 phenotype reduces inflammation by increasing 
the number of CD4+ GATA3+ Th2 cells in the 
injured SC.

[144]

Incubated autologous macrophages 
in complete SCI: Phase I study

The study provides a preliminary evidence of 
safety and electrophysiological results. Also some 
patients present beneficial effects showing the 
efficacy of cell therapy.

[145]

Autologous macrophages delivery in 
patients with SCI

The clinical trial can be implemented in patients, 
however many factors contribute to a funnel effect 
in the study.

[5]

Azithromycin
(AZM)

Increase M2 activation. Decrease M1 macrophage 
gene expression and potentiate M2 macrophage 
gene expression. Also, potentiate microglia vs. 
monocyte derived M2 macrophage activation.
AZM improved locomotor function and 
coordination of mice recovering.

[146]

Anti- IL6-receptor (MR16–1 Ab) Increased the area of spared myelin.
Promoted functional recovery by promoting 
the formation of alternatively activated M2 
macrophages.

[143]

Activated cultured microglia Reduce the size of liquefaction necrosis area.
Activated antiinflammatory mechanisms. Promote 
the hind limb motor function recovery.

[147]

Microglia/Macrophages activated 
with IL-1

Decrease of IL-1 participates in both the classical 
and alternative activation of microglia.

[148]

Recruitment of M2 macrophages CP provide a route of macrophages derived 
monocyte (Ly6cloCX3CR1hi) to entry into the 
CNS to evoke an inflammatory response.

[132]

Table 3. 
Immunomodulatory strategies for the microglia/macrophages response.
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not in neural parenchyma [126]. So, their principal function is the CNS immuno-
surveillance, that means, macrophages are one of the first APCs in interacting with 
antigens and T lymphocytes located in CFS, meninges and subarachnoid space, and 
thus, quickly phagocyte it or also optimize T lymphocytes reactivation and evoke a 
deleterious response such as autoimmune disease [127].
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they received. In inflammation, microglia and macrophages express morphologi-
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molecules for antigen presentation like MHCII, CD80 and CD86; also some miRNAs 
are related [128]. However, it is well known that activated macrophages and microg-
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IL-4 and IL-13 cytokines and secretes TGFb and express arginase 1 [129]. To date, is 
not well stablished the appropriate cell markers to differentiate activated microglia 
from macrophages in CNS, but some populations have been proposed to differenti-
ate the alternative phenotypes in monocytes: C3XCR1lo CCR2hi LY6Chi correspond 
to an inflammatory phenotype, while CX3CR1hi CCR2lo LY6Clo is found in the 
tissue remodeling phenotype [130, 131] and it has been corroborated in SCI stud-
ies; Shechter and cols. Proved that alternative M2 macrophages (Ly6cloCX3CR1hi) 
derived from monocytes traffic through CSF to provide an inflammatory response 
in SC [132].

Due to the important role that macrophages can play, several immunomodu-
latory therapies have been developed to control CNS response to pathological 
insults [123].

2.5.1 Macrophage and microglia in response to injury
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the secretion of several cytokines like interferon gamma-induced protein 10, 
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and C-C motif chemokine ligand 5 (CCL5) which recruit peripheral cells like 
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in abnormal recruitment [133].
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guarding the blood-brain barrier (BBB) through the recruitment of activated cell to 
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After a SCI take place an uncontrolled immune response that depends on the 
severity, level and mechanism of injury [136]. This cascade processes are character-
ized by pro-inflammatory and antiinflammatory alternatively activated cells [135]. 
The activation of phenotype M1 provokes neurotoxicity while type M2 promotes 
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ized by certain cytokines and events. In the first one are present both M1 and M2a 
phenotypes, M1 secrete IL-1β, IL-12, TNF- α and IL-6 and M2a express high levels 
of IL-4, arginase-1 and Ym1 [142]. Comparative analysis of lesion development 
and intraspinal inflammation in four strains of mice following spinal contusion 
injury); during the second stage, keep going secreting proinflammatory cytokines 
but transition toward the expression of IL-10 and other antiinflammatory markers 
distinguished by the M2b macrophages followed by the M2c; in the third stage, the 
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the number of CD4+ GATA3+ Th2 cells in the 
injured SC.

[144]

Incubated autologous macrophages 
in complete SCI: Phase I study

The study provides a preliminary evidence of 
safety and electrophysiological results. Also some 
patients present beneficial effects showing the 
efficacy of cell therapy.

[145]

Autologous macrophages delivery in 
patients with SCI

The clinical trial can be implemented in patients, 
however many factors contribute to a funnel effect 
in the study.

[5]

Azithromycin
(AZM)

Increase M2 activation. Decrease M1 macrophage 
gene expression and potentiate M2 macrophage 
gene expression. Also, potentiate microglia vs. 
monocyte derived M2 macrophage activation.
AZM improved locomotor function and 
coordination of mice recovering.

[146]

Anti- IL6-receptor (MR16–1 Ab) Increased the area of spared myelin.
Promoted functional recovery by promoting 
the formation of alternatively activated M2 
macrophages.

[143]

Activated cultured microglia Reduce the size of liquefaction necrosis area.
Activated antiinflammatory mechanisms. Promote 
the hind limb motor function recovery.

[147]

Microglia/Macrophages activated 
with IL-1

Decrease of IL-1 participates in both the classical 
and alternative activation of microglia.

[148]

Recruitment of M2 macrophages CP provide a route of macrophages derived 
monocyte (Ly6cloCX3CR1hi) to entry into the 
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M2c release high concentrations of IL-10, IGF1 [138]. Macrophage activation and its 
role in repair and pathology after SCI. TGF-β and a mannose receptor (CD206) with 
the decrease of arginase-1 and IL-12. At the end, the macrophages are deactivated 
and the inflammation resolves, this process can last several months. In brief, this 
sequence will provoke the axon dieback (classical macrophages) and remyelination, 
axon regeneration and the reduction of the dieback [143].

2.5.3 Macrophage and microglia in spinal cord injury

The manipulating macrophages facilitate maturation events typical of normal 
healing, for this reason it has been studied several methods to activate alternative 
macrophages and another strategy is better to improve the normal healing response 
by blocking certain pro-inflammatory mechanisms (Table 3).

3. Conclusions

The beneficial effects of cultured cells transplantation or transference in SCI 
have been demonstrated by numerous investigators and they are one of the main 
hopes for developing an effective treatment for SCI. This may be due to their 
great potential to amplify and genetically manipulate them in vitro, as well as all 
the complicated functions in axonal regeneration they possess. Furthermore, the 
development of cell transplantation derived from precursors show a higher ability 
to survive, integrate well with host tissue and support brainstem axon growth into 
and beyond the graft. However, the optimal source needs further investigation.

Recently, several clinical studies suggest their safety and feasibility, meaning 
that the transplantation of cultured cells have a significant therapeutic potential in 
persons with SCI. Nowadays, they are currently at an early stage of clinical testing 
following preclinical development.
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and the inflammation resolves, this process can last several months. In brief, this 
sequence will provoke the axon dieback (classical macrophages) and remyelination, 
axon regeneration and the reduction of the dieback [143].

2.5.3 Macrophage and microglia in spinal cord injury

The manipulating macrophages facilitate maturation events typical of normal 
healing, for this reason it has been studied several methods to activate alternative 
macrophages and another strategy is better to improve the normal healing response 
by blocking certain pro-inflammatory mechanisms (Table 3).

3. Conclusions

The beneficial effects of cultured cells transplantation or transference in SCI 
have been demonstrated by numerous investigators and they are one of the main 
hopes for developing an effective treatment for SCI. This may be due to their 
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the complicated functions in axonal regeneration they possess. Furthermore, the 
development of cell transplantation derived from precursors show a higher ability 
to survive, integrate well with host tissue and support brainstem axon growth into 
and beyond the graft. However, the optimal source needs further investigation.

Recently, several clinical studies suggest their safety and feasibility, meaning 
that the transplantation of cultured cells have a significant therapeutic potential in 
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Abstract

Spinal cord injury is one of the leading causes of disability worldwide. Current 
mainstay treatment strategies consist of surgical and medical management in acute 
and subacute stage. Rehabilitative management in the chronic stage. None of the 
existing strategies can repair the damage to the spinal cord and recover neurological 
functioning. Stem cells have promising results in pre-clinical and clinical studies. 
Various pre-clinical studies have evidenced neuro-regenerative capabilities of stem 
cells and shown neural recovery. Clinical studies have also shown improvements 
in neurological functions and quality of life. This chapter discusses about different 
types of cells available, routes of administration available to transplant these cells, 
dosages of cell and optimum time after injury at which cells should be transplanted 
based on world-wide literature. We have also discussed results following our pro-
tocol of intrathecal transplantation of autologous bone marrow mononuclear cells. 
Although, not a cure, stem cell therapy further improves quality of life, functional 
independence and reduces secondary complications when combined with existing 
treatment strategies; neuroregenerative rehabilitative therapy.
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1. Introduction

Spinal cord injury (SCI) is a disabling neurologic disorder that can lead to motor 
and sensory impairment causing, paraplegia or tetraplegia. It can also exhibit blad-
der and bowel impairment, respiratory impairment and autonomic dysfunction [1].

The incidence of the disease is estimated to be 223–755 per million worldwide [2, 3]. 
The healing and recovery process during different phases since the time of injury differ 
significantly [4].

Current treatment options consist of surgical management complimented by 
administration of methylprednisolone in the acute stage; prevention of secondary 
injury in the sub-acute stage and multidisciplinary rehabilitation management in 
the chronic stage. Due to insufficient neuroregenerative capabilities of these treat-
ments, they fail to reverse the damage to neurons and symptoms of neurological 
deficit [5–8]. Therefore, there is an unmet medical need which warrants exploring 
novel neurorestorative strategies.
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Stem cell therapy has emerged as a promising regimen to bring about neuro-
regeneration and neural functional benefits, hence can be termed as neuroregen-
erative therapy. Various cell types being explored for their effectiveness are bone 
mesenchymal stem cells (BMSCs), bone marrow mononuclear cells (BMMNCs), 
umbilical cord-derived mesenchymal stem cells (UCMSCs), adipose-derived stem 
cells (ADSCs), olfactory ensheathing cells (OECs), and fetal brain-derived neural 
stem/progenitor cell (FB-DNS/PCs), induced pluripotent stem cells (iPSCs) and 
others [9–12].

The earliest attempt in translational research were by Geron Corporation who 
had announced a clinical trial using human embryonic stem cell (ESC)-derived 
oligodendrocyte progenitor cells (OPCs) in patients with spinal cord injury at 
the site of the lesion [13]. Due to ethical and safety risks involved in ESC they 
were not widely accepted for clinical use. Advent of knowledge of the role of 
adult stem cells in natural repair processes of the body lead to clinical explora-
tion of these cells. Some of the earliest published work was by Geffner et al. 
in 2008, by transplantation of adult bone marrow stem cells through multiple 
routes, that is, intraspinal, intrathecal and intravenous in patients with SCI [14]. 
The study demonstrated that these cells and routes were safe and feasible. Many 
adult stem cell types, routes and clinical protocols have since been tested clini-
cally [14–33].

Clinical outcome and effectiveness of cell transplantation remains variable 
due to the heterogenicity of cell types, dosages, route of transplantation, level of 
manipulation and treatment regimens followed thereafter. This chapter pro-
vides a detail review about different stem cell therapies available for the man-
agement of spinal cord injury and their clinical outcomes as seen in published 
literature.

2. What are stem cells?

Stem cell is an undifferentiated cell, which can self-renew to replicate itself as 
well as give rise to the specialized cells under appropriate conditions [34].

Stem cells are the undifferentiated cells that can give rise to progeny identical 
to themselves (de-differentiation) or specialized cells different from them (trans-
differentiation). All regenerative processes in the human body during developmen-
tal pre-natal stages as well as post-natal and adult stages follow these two routes. 
Recently, the technological advances have given rise to another route, reprogram-
ming cells to acquire properties of trans-differentiation [35].

Depending upon their ability to de-differentiate or transdifferentiate, the source 
of cells, processing required to harvest the cells and host in which cells are trans-
planted; the cells can be categorized into various types which are described in detail 
in the next section.

3. Types of stem cells

3.1 Based on the potency of cells

Depending upon their differentiation potential, cells are classified as unipotent, 
multipotent, pluripotent and totipotent (Figure 1).

Totipotent cells can differentiate into embryonic as well as extraembryonic and 
placental cells [36]. Pluripotent cells can differentiate into embryonic cells only. 
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These possess the property of de-differentiation as well as trans-differentiation 
into cell types of all three germ layers [36]. Cells that can be harvested after 
birth are called ‘adult stem cells’. Most of the adult stem cells are multipotent or 
unipotent. Multipotent cells possess the property of trans-differentiation into 
cells of different tissues whereas unipotent cells can only de-differentiate to create 
progeny identical to themselves or a differentiated cell type of only one specific 
tissue [37].

3.2 Based on the host in whom cells are transplanted

If the cells are harvested from and transplanted to the same person, these are 
called autologous cells; but if the cells are harvested from a host different from that 
of the recipient these are called allogenic cells.

4. Mechanism of action of stem cells in spinal cord injury

4.1 Remyelination

The immediate impact of injury to spinal cord is on the ascending and descend-
ing pathways and blood vessels in the spinal cord. Disrupted circulation leads to 
infarction of the local tissue due to hypoxia and ischemia causing neuronal loss and 
demyelination. This is clinically presented as spinal shock, systemic hypotension, 
vasospasm, ischemia, ionic imbalance and neurotransmitter accumulation [38]. 
Transplantation of cells can remyelinate damaged tissue and aid in symptom recov-
ery. Human ESC-derived OPCs transplanted into the rats with spinal cord injury 
showed enhanced remyelination and locomotor ability when transplanted in the 
sub-acute phase as opposed to chronic phase after spinal cord injury [39]. Neural 
precursor cells also showed differentiation into oligodendrocytes ensheathing the 

Figure 1. 
Different types of cells based on their potency.
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axons, these cells expressed myelin suggesting the remyelination potential of these 
cells. Rat models, both in sub-acute and chronic phase of spinal cord injury showed 
improved functional outcome. Remyelination was better in sub-acute as compared 
with chronic phase [40]. Human UCB cells transplanted 7 days after spinal cord 
injury in the rats also showed remyelination of axons improving functional out-
come [41]. Similar results were observed using adult bone marrow mononuclear 
cells [42].

4.2 Anti-inflammatory effect

Inflammation in response to the injury is both protective and damaging to the 
tissue. Secondary injury is perpetrated by uncontrolled inflammatory response pro-
inflammatory cytokine release [43–46]. Various studies have explored anti-inflam-
matory effect of MSCs, NPCs, BMMNCs, ESCs and UCB cells. Cell transplantation 
reduces the expression of pro-inflammatory cytokines TNFα, IL-4, IL-1β, IL-2, 
IL-6, IL-7, IL-12 and interferon gamma [47–50].

4.3 Neoangiogenesis

Transplanted cells have been shown to secrete various growth factors and 
stimulate the resident cells to secret these factors through their paracrine effect. 
One of the growth factors secreted is vascular endothelial growth factor (VEGF) 
which stimulates neoangiogenesis. This proangiogenic effect has been evidenced 
by increased vascularization of the lesion area in various preclinical studies 
[51–54].

4.4 Neuro-regeneration

Transplanted cells of various cells possess neurogenic potential. Cells have 
been shown to differentiate into neuronal as well as non-neuronal tissues. Axon 
sprouting is noticed in the transplanted regions. Endogenous neurogenetic 
processes are also catalyzed by the growth factors like brain-derived neurotrophic 
factor (BDNF) secreted by these cells. Synaptic pruning is also observed. These 
changes are further reinforced by the functional locomotor recovery seen post 
transplantation [55, 56].

4.5 Neurotrophic and antiapoptotic effect

Cells secret and facilitate endogenous secretion of various growth factors like 
fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), neural 
growth factor (NGF), glial cell line-derived neurotrophic factor and brain-derived 
neurotrophic factor (BDNF). These wield neurotrophic effect protecting the 
neurons from secondary injury and apoptosis (Figure 2) [54, 57].

Figure 2. 
Bone marrow aspiration.
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5. Literature review of published evidence for efficacy of stem cells

5.1 Pre-clinical

5.1.1 Human embryonic stem cells (hESCs)

These cells can be harvested from preimplantation blastocyst after immuno-
surgical removal of trophectoderm to access the inner cells mass [58]. hESCs are 
pluripotent and can differentiate into cells of ectodermal origin, that is, neuronal 
and glial cells. hESCs derived oligodendrocyte progenitor cells (OPCs) have shown 
neuronal recovery more effectively in the acute phase as compared to chronic phase 
of spinal cord injury [39, 59, 60]. Neural stem cells (NSCs) have the potential to dif-
ferentiate into neural and non-neural tissue. Neuroregenerative potential of these 
exhibited as remyelination of damaged axons and secretion of neurotrophic factors 
enhancing neuronal survival post SCI in mice [61–63].

Despite promising results in pre-clinical studies, clinical translation of these is 
limited due to ethical concerns, risk of immune rejection and tumorigenicity [64].

5.1.2 Multipotent stem cells

Adult stem cells like bone marrow stromal cells (BMSCs), mesenchymal stem 
cells (MSCs), umbilical cord stromal cells (UCSCs), umbilical cord mesenchymal 
cells (UC-MSCs), adipose-derived stem cells and dental pulp-derived stem cells are 
examples of multipotent stem cells [51]. MSCs and BMSCs are easy to harvest as 
they are available in the bone marrow. However, MSCs are available in a small num-
ber and therefore need to be expanded in-vitro before transplantation. These cells 
can migrate and home onto the site of injury therefore can be administered through 
a less invasive route distant from the site of injury. Unlike pluripotent cells, these 
cells show better functional recovery in chronic SCI [41, 42, 65]. Transplantation 
of these cells has shown functional and motor recovery in rats after SCI in several 
studies. These benefits are postulated to be due to neurotrophic, immunomodula-
tory and neoangiogenic effect of these cells in addition to their ability to differenti-
ate neural cells [66].

5.1.3 Induced pluripotent stem cells (iPSCs)

Last decade has seen rise in efforts to develop technologies to improve quality 
and efficiency of reprogramming of cells to induce pluripotency. iPSCs are also plu-
ripotent and give rise to neuronal as well as non-neuronal tissue. Transplantation of 
progenitors derived from iPSCs have shown ability for remyelination of damaged 
neurons and improved nerve conduction. These cells can migrate long distances 
and therefore can be administered at a remote site which is less invasive. Apart from 
neuroregeneration, the cells are also capable of immunomodulation and synaptic 
reconstruction [67–72].

The technology is still in its nascent stage, although promising, successful clini-
cal translation has barriers.

5.2 Clinical

5.2.1 Embryonic stem cells (ESCs)

One of the earliest studies used cells from the fetal nervous and hemopoietic 
tissues in 15 SCI patients with no side effects [73]. However, due to various ethical 
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and medical concerns the use of these cells in clinical trials and application is 
restricted worldwide.

5.2.2 Multipotent stem cells

Various studies have explored and demonstrated safety and feasibility of multi-
potent stem cells [15, 17, 74–83].

5.2.2.1 Bone marrow mononuclear cells

In a comparison between transplantation of autologous bone marrow cells 
directly into the SCI sites administered with subcutaneous injections of granu-
locyte macrophage colony stimulating factor (GM-CSF) {n = 5} and only admin-
istration of GM-CSF {n = 1}, combination group showed better improvements. 
Improvements were noted during 3–7 months post procedure, 1 patient from the 
combination group showed change in the AIS grade as well. There were mild side 
effects associated with GM-CSF administration like Fever, myalgia and leuko-
cytosis; however, there were no irreversible adverse events noted, neither was 
there any neurological deterioration [16]. Kumar et al. studied the effect of bone 
marrow mononuclear cells and noted that there was perceptible improvement 
in 32.6% of the patients with no major irreversible adverse effects. Outcome did 
not vary with the time taken from the injury till intervention [35]. Al-Zoubi et al. 
demonstrated the positive effect of purified autologous leukapheresis-derived 
CD34+ and CD133+ stem cells in 19 cases of chronic SCI [29]. Our published 
results with mononuclear cells are discussed in detail in the later part of the 
chapter [84, 85].

5.2.2.2 Mesenchymal cells

In a novel method, using combination of bone marrow mesenchymal stem 
cells (BM-MSC) and patient’s autoimmune T cells, Moviglia et al. demonstrated 
the neuro-regeneration phenomenon-based changes in the inflammatory pro-
cesses at the site of injury. Both the patients showed motor and sensory recovery 
with no adverse effects [17]. Peripheral stem cells and macrophages have also 
been reported to show improvements of motor and sensory functions without 
any adverse effects [18, 19]. Cheng et al. in a controlled study including 34 cases 
of thoracolumbar spinal cord injury, stated that umbilical cord mesenchymal 
stem cells effectively improve neurological functional recovery after spinal cord 
injury, and its efficacy is superior to that of rehabilitation therapy and self-
healing [30].

5.2.2.3 Others

Other sources such as cord blood, olfactory ensheathing cells and adipose 
tissue derived stem cells also showed improvement in sensory-motor functional 
improvements [20–24]. Saberi et al. studied the safety of intramedullary Schwann 
cell transplantation in 33 patients over the period of 2 years, there were no tumor 
formation or other adverse events recorded [25].

5.2.2.4 Co-transplantation of multiple cell types

Co-transplantation of cells has also been explored. Combined use of olfactory 
ensheathing cells and Schwann cells enhanced functional recovery [27]. Similarly, 
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Chen et al. in their study of 28 cases showed beneficial effects of OECs, SCs, or a 
combination of them in SCI [28].

Multipotent adult stem cells are safe to use clinically and have demonstrated 
improved neurological outcome.

5.2.3 Routes of transplantation

Several comparative studies have been carried out to determine the optimum 
route of administration. Geffner et al. reported administration of BMSCs intra-
venous, into the spinal canal and into the spinal cord to be safe and feasible. They 
also demonstrated improved ASIA, Barthel Index. Ashworth and Frenkel scores 
suggesting improved quality of life in most patients [14]. While intra-arterial 
transplantation of autologous bone marrow stem cells showed more improve-
ments as compared with that of intravenous route, intravenous transplantation 
showed better neurological outcome as compared to the site of injury [31–33]. 
Systemic routes show considerable dilution of cells at various cells like kidneys, 
liver, spleen and lungs. Several intraspinal approaches like intraparenchymal, 
intralesional and intramedullary approaches have been explored. Although 
no serious adverse events were noted; some patients complained of transient 
increase in paresthesia and muscle cramps. Intraspinal approaches are associated 
with increased risk of procedure related adverse effect due to invasive nature 
of the procedure [86–88]. Saito et al. [89], Pal et al. [90] and Kumar et al. [91] 
reported intrathecal administration to be the optimum route of administration. 
Although in this approach cells are transplanted away from the lesion area, MRI 
studies of radiolabeled cells have shown successful homing of cells at the site of 
injury [92].

6. Published clinical results of NeuroGen Brain and Spine Institute

6.1 Our protocol

6.1.1 Pre-intervention protocol

All the patients are thoroughly assessed clinically to rule out presence of active 
infections, HIV or HBsAg positive status and malignancies. Routine serological 
tests and chest X-ray are performed to ensure medical fitness. Neuroimaging using 
functional MRI brain and MRI of spine is performed. Various clinical outcome 
measures are marked before procedure assessing muscle tone, strength, ambula-
tion and sensations. Granulocyte colony stimulating factor injections are given 48 
and 24 h prior to the transplantation to enhance proliferation of cells in the bone 
marrow.

6.1.2 Intervention protocol

Our protocol has been designed after careful review of available literature. The 
protocol for harvesting and transplanting the cells is minimally invasive with no 
major adverse effects. It consists of three steps.

6.1.2.1 Aspiration of bone marrow

80–120 ml of bone marrow is aspirated from anterior superior iliac spine 
(Figure 3).
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6.1.2.2 Separation of BMMNCs

Density gradient method is used to separate the bone marrow mononuclear cell 
fraction which is then analyzed under microscope using Trypan blue to check for 
viability of the mononuclear cells. FACS analysis is used to identify CD34+ cells and 
viability, cell count and percentage of CD34+ cells are calculated (Figure 4).

6.1.2.3 Injection

Separated cell fraction is transplanted intrathecally in the space between L4 and 
L5 lumbar vertebrae by lumbar puncture. This is performed under local anesthesia 
and sterile conditions in the operation theatre (Figure 5).

Figure 4. 
Injection of BMMNCs.

Figure 3. 
Separation of BMMNCs.

Figure 5. 
Mechanism of action of stem cells for the treatment of spinal cord injury.
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6.1.3 Post intervention protocol

After the cell transplantation a home program of rigorous rehabilitation is 
prescribed Many of the patients show deficiencies due to prolonged immobility 
and poor nutrition, therefore nutritional supplements are prescribed as and when 
required. Patients are regularly followed up every 3 months.

6.1.4 Rationale for the protocol

Autologous cells are used to reduce the risk of immune rejection. Bone marrow 
mononuclear cells (BMMNCs) fraction consists of various cells types including 
mesenchymal cells, hematopoietic progenitor cells, side population cells, stromal 
cells and very small embryonic like cells. BMMNCs have demonstrated neurogenic 
potential and exhibit various paracrine effects like angiogenesis, upregulation of 
anti-inflammatory cytokines, secreting neurotrophic factors and growth factors, 
bring about immune modulation and stimulate resident stem cells. While the less 
invasive systemic routes, lead to dilution of the cells reaching the target organ, due 
to filtration of cells in various organs like liver, spleen, kidneys and lungs; more 
invasive routes like intra-spinal routes pose risk of procedure related adverse effect. 
Intra-thecal delivery therefore ensures delivery of maximum cells at the site of the 
injury with relatively reduced risk of procedure related adverse effects.

6.1.4.1 Role of rehabilitation

It is important that regenerative therapies are complimented with rehabilitative 
therapies like physiotherapy, occupational therapy, aquatic therapy, speech therapy, 
psychological intervention and nutritional advice. Regular goal-oriented rehabili-
tation provides neuroprotective, my protective, anti-inflammatory, antioxidant 
and neoangiogenic effects on a systemic level which resonate with the paracrine 
effects of cell therapy and compliment the effect of cell therapy. It is also believed 
that exercise can contribute to sub-granular and sub-ventricular neurogenesis. 
Neurogenesis consists of various processes. While differentiation, migration and 
axonal guidance are independent of physical activity synaptic pruning and plastic-
ity is dependent of physical activity and therefore rehabilitation plays a pivotal role 
in enhancing this. Therefore, we prescribe a regime of multidisciplinary rehabilita-
tion to be followed at home after the cell transplantation (Figure 2).

6.1.5 Adverse effects

This protocol is safe without any major adverse effects. We have so far treated 
more than 800 patients with spinal cord injury and none of the patients have 
exhibited any major irreversible adverse effects. A small percentage of patients have 
shown some minor procedure related adverse effects in SCI which are headache, 
pain at the site of injection, nausea and vomiting. These are usually self-limiting or 
can be completely relieved with minor medical intervention.

6.2 Published results

6.2.1 Thoracolumbar spinal cord injury

A detailed analysis of chronic thoracolumbar SCI patients who underwent 
intrathecal administration of autologous bone marrow mononuclear cells fol-
lowed by neurorehabilitation was conducted [84]. The study sample included 110 
thoracolumbar SCI patients. The outcome was recorded at a mean follow up of 
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2 years ± 1 month. The outcome measures were functional independence mea-
sure (FIM) score, American Spinal Injury Association scale (ASIA) and detailed 
neurological assessment. Data were statistically analyzed using McNemar’s Test to 
establish significance between the change in symptoms and the intervention.

A total of 100 out of 110 (91%) patients showed improvements. Improvement 
in trunk control was observed in 95.6% cases, bladder management in 33% with 
respect to shift from indwelling and condom catheter to self-intermittent catheter-
ization, partial sensory recovery in 27% and reduction of spasticity in 26%. All the 
patients showed improvement in postural hypotension. 38% wheelchair bound 
patients started walking with assistance. Functionally, 27% showed improved 
activities of daily living (ADLs) and 53.6% showed a positive change in FIM score. 
About 10% cases showed a shift in ASIA scale. A statistically significant association 
of these symptomatic improvements with the cell therapy intervention was estab-
lished using McNemar’s Test. On electrophysiological studies, 2 showed improve-
ment and 1 showed change in functional MRI [79] (Figure 6, Tables 1 and 2).

Table 1. 
Statistical significance for each symptomatic/functional change using McNemar’s test.

Figure 6. 
Symptomatic improvements in patients with spinal cord injury after stem cell therapy. The X-axis denotes 
symptoms presented in the patient population and the Y-axis denotes the number of patients. (ADLs—
activities of daily living) (Tables 1 and 2).
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6.2.2 Cervical SCI

A detailed analysis of chronic cervical SCI patients who underwent intrathecal 
administration of autologous bone marrow mononuclear cells followed by neurore-
habilitation was conducted [85]. This study includes 50 patients of chronic cervical 
SCI. The outcome was recorded at a mean follow up of 2 years ± 1 month. The 
outcome measures were functional independence measure (FIM) score, American 
Spinal Injury Association scale (ASIA) and detailed neurological assessment. Data 
were  statistically analyzed using McNemar’s Test to establish significance between the 
change in symptoms and the intervention. 37 out of 50 (74%) showed improvements. 
Sensation recovery was observed in 26% cases, improved trunk control in 22.4%, 
spasticity reduction in 20% and bladder sensation recovery in 14.2%. All the 50 cases 
had improvement in postural hypotension. 12.24% wheelchair bound patients started 
walking with assistance. Functionally, 20.4% patients showed improved ADLs and 
48% showed a positive change in FIM score. 6% cases showed a shift in ASIA scale. A 
statistical analysis using McNemar’s test established a significant association of these 
symptoms with the intervention [89]. No major side effects were noted in the dura-
tion of 2 years in both the studies. A better outcome was observed in thoracolumbar 
injury as compared to the cervical injury suggesting that the level of SCI greatly influ-
ences the recovery of the patient (Tables 3–5). Both studies demonstrated statistically 
significant clinical and functional outcome (Figure 7).

Table 2. 
Objective improvements evident on electromyography (A) and functional magnetic resonance imaging  
(B) after stem cell therapy in selected patients.

Table 3. 
McNemar’s test: table demonstrating the statistical analysis for each symptomatic improvement in cervical SCI 
using McNemar’s test.
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Table 5. 
Comparison between cervical SCI and thoracolumbar SCI: table comparing the outcome of cell transplantation 
in cervical SCI and thoracolumbar SCI.

Figure 7. 
Graph demonstrating symptomatic improvements in chronic cervical SCI patients after cell therapy.

Table 4. 
Percentage analysis of improvements: table demonstrating a detailed analysis of various factors and the 
improvements.
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6.2.3 Objective assessment using neuroimaging

A case study of a 32-year-old man with chronic thoracic complete spinal cord 
injury treated with intrathecal administration of autologous bone marrow mono-
nuclear cells with standard rigorous neurorehabilitation showed improved clinical 
outcome without any adverse effect [93]. Follow up assessment conducted at 3- and 
7-months post treatment showed improvements in motor activities, ambulation, 
bed mobilities, transfers and bladder management. Spinal cord independence 
measure (SCIM) improved from 27 to 64/100 and functional improvement measure 
(FIM) improved from 64 to 83 suggesting significant functional gain.

Brain functional magnetic resonance imaging (fMRI) shows patterns of cortical 
activation in response to attempted motor task. In chronic spinal cord injury cortico-
spinal tract neurons undergo retrograde degeneration. Therefore, the activation of 
the cortical areas is reduced in response to injury. Brain fMRI can thus be used to 
assess the outcome of the therapy. Post treatment fMRI in these patients showed 
activation of multiple regions in the sensory and associated areas, which was absent 
pre-treatment providing evidence for improved neural activation (Figure 8).

6.3 Unpublished data

We analyzed 300 patients with chronic thoracic and cervical spinal cord 
injury and noted that 96.2% of the patients showed clinical improvements. The 
improvements were classified as mild, moderate or significant based on how many 

Figure 8. 
fMRI images showing improved activation of sensorimotor and associated areas post transplantation.

Figure 9. 
Clinical outcome in patients with SCI post cell treatment.
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symptoms showed improvements (3 symptoms—mild improvement, 4–6 symp-
toms—moderate improvement and more than 6 symptoms—significant improve-
ment) majority of the patients showed moderate improvements (Figure 9).

Symptomatic analysis of these patients showed reduction in spasticity, 
sensory motor recovery, recovery of bladder sensation, increased functional 
independence while performing ADLS, improved balance and ambulation 
(Figure 10).

7. Limitations and future directions

Currently little objective evidence is available to show the regeneration of spinal 
cord and increased connectivity of spinal tracts. Enhanced radio imaging tools are 
required for better visualization of the outcome.

Although various cells and routes of administration have been explored an 
optimum cell type and route of administration remain elusive due to heterogeneity 
of research protocols, sample size, treatment regimen and lack of multi-centric 
high-quality studies. Comparison between different protocols is required to be car-
ried out using rigorous methodology to identify an optimum clinical protocol that 
yields maximum recovery.

It takes about 6 months to generate iPSCs from autologous somatic cells and 
almost a year to test the safety of cells for transplantation, this combines with risks 
associated with iPSCs including genetic and epigenetic abnormalities, tumorigenic-
ity and immunogenicity related to cell trans-plantation has prevented their clinical 
translation so far [94–96]. Advent in iPSC technology and its clinical translation is 
the future direction for medical sciences.

8. Conclusion

Spinal cord injury is a devastating and disabling neurological disorder with no 
definite cure. Several treatment strategies are being explored for improved clinical 

Figure 10. 
Symptomatic improvements in patients with SCI post cell therapy.
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outcome especially for chronic injuries. Stem cell therapy is a promising treat-
ment modality. Use of stem cells for the treatment of spinal cord injury is safe and 
improves neurological as well as functional outcome. With the available evidence 
autologous multipotent stem cells like bone marrow derived mononuclear cells 
show positive clinical outcomes with no adverse effects. Factors like level of injury, 
time since injury, concomitant disorders and rigor of neurorehabilitation can influ-
ence the outcome of the cell treatment.

Lot of evidence has been generated over the last decade demonstrating the 
benefits of using stem cells to improve sensory-motor function, functional inde-
pendence of the patients and quality of life. Stem cell therapy helps to reduce the 
complications post spinal cord injury due to their positive effect. Although it does 
not provide a complete cure at the moment, it certainly holds the potential to 
improve functional independence and quality of life. It is important to supplement 
stem cell therapy with current treatments and rehabilitation for optimum clinical 
improvement.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



Spinal Cord Injury Therapy

152

symptoms showed improvements (3 symptoms—mild improvement, 4–6 symp-
toms—moderate improvement and more than 6 symptoms—significant improve-
ment) majority of the patients showed moderate improvements (Figure 9).

Symptomatic analysis of these patients showed reduction in spasticity, 
sensory motor recovery, recovery of bladder sensation, increased functional 
independence while performing ADLS, improved balance and ambulation 
(Figure 10).

7. Limitations and future directions

Currently little objective evidence is available to show the regeneration of spinal 
cord and increased connectivity of spinal tracts. Enhanced radio imaging tools are 
required for better visualization of the outcome.

Although various cells and routes of administration have been explored an 
optimum cell type and route of administration remain elusive due to heterogeneity 
of research protocols, sample size, treatment regimen and lack of multi-centric 
high-quality studies. Comparison between different protocols is required to be car-
ried out using rigorous methodology to identify an optimum clinical protocol that 
yields maximum recovery.

It takes about 6 months to generate iPSCs from autologous somatic cells and 
almost a year to test the safety of cells for transplantation, this combines with risks 
associated with iPSCs including genetic and epigenetic abnormalities, tumorigenic-
ity and immunogenicity related to cell trans-plantation has prevented their clinical 
translation so far [94–96]. Advent in iPSC technology and its clinical translation is 
the future direction for medical sciences.

8. Conclusion

Spinal cord injury is a devastating and disabling neurological disorder with no 
definite cure. Several treatment strategies are being explored for improved clinical 

Figure 10. 
Symptomatic improvements in patients with SCI post cell therapy.

153

Neuroregenerative-Rehabilitative Therapy for Spinal Cord Injury
DOI: http://dx.doi.org/10.5772/intechopen.88808

Author details

Alok Sharma, Hemangi Sane, Nandini Gokulchandran, Prerna Badhe, 
Amruta Paranjape*, Pooja Kulkarni and Vivek Nair
NeuroGen Brain and Spine Institute, Navi Mumbai, India

*Address all correspondence to: amrutap.neurogen@gmail.com

outcome especially for chronic injuries. Stem cell therapy is a promising treat-
ment modality. Use of stem cells for the treatment of spinal cord injury is safe and 
improves neurological as well as functional outcome. With the available evidence 
autologous multipotent stem cells like bone marrow derived mononuclear cells 
show positive clinical outcomes with no adverse effects. Factors like level of injury, 
time since injury, concomitant disorders and rigor of neurorehabilitation can influ-
ence the outcome of the cell treatment.

Lot of evidence has been generated over the last decade demonstrating the 
benefits of using stem cells to improve sensory-motor function, functional inde-
pendence of the patients and quality of life. Stem cell therapy helps to reduce the 
complications post spinal cord injury due to their positive effect. Although it does 
not provide a complete cure at the moment, it certainly holds the potential to 
improve functional independence and quality of life. It is important to supplement 
stem cell therapy with current treatments and rehabilitation for optimum clinical 
improvement.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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