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Nevertheless, the majority of deaths globally are attributed to heart disease, stroke, 
pulmonary disease, lower respiratory infections, Alzheimer’s, cancer, diabetes, 
and tuberculosis. One common aspect of these disease conditions is that they are
preventable to some extent and a comparatively better quality of life can be pro-
vided to the patients with proper and timely treatment. To surmount this challenge, 
the drug discovery programs have advanced significantly in the past decade. This
book, “Drug Discovery and Development – New Advances”, brings together some
of the recent progress in the field through the complex process, starting with
computational modeling right through launching a drug in the market. The book
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selected disease conditions will showcase the challenges and burdens faced by the
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with pediatric drug discovery and development. Overall, the book represents a view
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Chapter 1

Introductory Chapter: The 
Modern-Day Drug Discovery
Partha Karmakar, Ashit Trivedi and Vishwanath Gaitonde

1. Drug discovery: a brief outline of 5000 years of history

The history of drug discovery and development is as old as some of the oldest 
human civilizations. The practice of Ayurveda in India and traditional Chinese 
medicines in China are over 5000-year-old therapeutic traditions that are still 
in practice at large. Papyrus Ebers is evidence of medicinal practice in Egypt 
about 3000 years ago [1–6]. The Greek and Roman medicines became popular 
in Europe and western Asia between ~700 BC and 200 BC [7]. The ancient Arab 
medicines were in practice to a great extent until 1500 AD and are still in use in the 
Mediterranean gulf [8, 9]. The beginning of modern era medicine can be consid-
ered from the time when Edward Jenner discovered immunization for smallpox. 
The development in the field was gradual until Sir Alexander Fleming discovered 
Penicillin in 1928; since then, the field of medicinal chemistry and drug discovery 
has flourished, and by the end of the twentieth century, it became a complex inter-
disciplinary platform primarily based on synthetic organic chemistry expanding 
into various biological specificities [10–13]. As a result, the global pharmaceutical 
market strengthened to nearly 400 billion US dollars by the year 2001 [14, 15].

2. Modern-day fabric of pharmaceutical industry

At the beginning of the twenty-first century, drug discovery research faced 
new challenges transforming the classical concept of drug development that was in 
practice for half a century. With advances in science and technology, the pharma-
ceutical, health care, and IT industry, accompanied by high-pace shifts in the global 
economy, bolstered the process of modern-day drug discovery and development to 
a large significance. Novel interdisciplinary research involving metal and polymer 
nanoparticles, liposomes, antibodies, and neo-antibiotics in both academia and 
industries have opened venues for precision diagnosis, targeted drug delivery, 
and innovative immunotherapy [16–24]. Although the classical steps in drug 
discovery (involving target validation, lead molecule design, chemical synthesis, 
pre-clinical evaluation, ADME, clinical trials and development for market of the 
pharmaceutical agents) are followed to date, the distribution of funding at each 
stage have changed due to the changing global market and healthcare policies [25]. 
Even though pharmaceutical companies relatively survived the recession phase 
of the early twenty-first century, a significant amount of budget cuts in R&D and 
new drug development pipeline was evident [26]. Post-recession, in the course 
of recovery, the collaborative efforts of the pharmaceutical and IT industry have 
brought state-of-the-art analytical tools that can pull multifaceted data in large 
quantities and predict the patients’ needs and market trends [27]. This has enabled 
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the pharmaceutical companies to reorganize the drug discovery and development 
programs in a more efficient and cost-effective way. Furthermore, market research 
has contributed to global pharmaceutical growth that is projected to reach 1.18 
trillion US dollars by 2024 [28].

The main reason of this success is the data-driven integration of every major 
component of pharmaceutical industries with the healthcare industries that 
includes hospitals, doctors, patients, and insurance companies along with the 
regular drug discovery units. This has transformed the classical linear drug discov-
ery road (Figure 1) into a complex multidimensional map (Figure 2), where the 
whole industry is revolving around the power of the market analysis in a symbiotic 
fashion. Though the specific needs of different companies are different depending 
on their size, resources, and target market, the cumulative fabric of symbiosis is 
common [29]. The existing market data has accelerated the process of “new target 
identification.” It has also helped in repurposing existing and abandoned therapeu-
tics from different phases of drug development in an unprecedented way [30, 31]. 
Proper analysis of healthcare data and labor market research have shown positive 
impact on government policies in allotting and redistributing funds for healthcare 
industries and basic academic research that are closely associated to drug discovery 
research, which consequently helps the pharmaceutical market to grow [32, 33]. 
The huge success in genomics research, high-throughput screening (HTS) robotics, 
and gene sequencing technologies resulted a pull of publication that have reported 
synthesis or extraction of a cumulative of over 90 million drug-like compounds 
[34]. Moreover, advances in large-scale cell and tissue imaging have enabled precise 
location determination of the drugs and measured variety of phenotypes in cells 
and whole organism [35]. These advances in hardware instruments, research 
methodologies, and data processing synergistically contribute at various stages 
of drug development. The application of deep learning in leveraging these large-
scale heterogeneous database is now an integral part of industrial pharmaceutical 
research [36]. Although machine learning (ML) is at its infant stage, it has already 

Figure 1. 
Classical components of drug discovery.
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reduced the library sizes for HTS and helped to understand complex multiomic data 
[37, 38]. The rapid progress of different ML methods will have considerable impact 
on future therapies [39].

3. Importance of PK/PD in modern-day drug discovery

The historical prototype for clinical drug development was to conduct a few 
Phase 1 studies followed by a couple of Phase 2 studies consequently leading to 
multiple expensive Phase 3 trials to demonstrate the efficacy of the drug candidate. 
With the changing landscape and regulatory requirements, the number of  clinical 
studies to elucidate multiple questions related to drug properties such as the 
mechanism of actions, pharmacokinetics (PK), pharmacodynamics (PD), and drug 
metabolism increased overwhelmingly prior to Phase 3 studies. The increase in the 
number of clinical trials has made drug development more lengthy and exorbitant. 
To overcome this limitation and reach patients promptly, it is imperative to utilize 
advanced technologies and approaches. One such approach is the PK/PD guided 
drug development. PK/PD modeling has been extensively employed to generate 
first-in-human dose predictions and selecting optimal doses for Phase 2 and Phase 
3 trials. PK/PD modeling also plays an instrumental role in identifying if any dose 
adjustments are needed in special populations such as pediatrics and geriatrics and 
patients with hepatic or renal impairments [40, 41]. Additionally, PK/PD model-
informed drug development (MIDD) has gained increasing momentum in recent 
years and is extensively used across pharmaceutical industries globally.

MIDD has become a crucial tool after receiving formal recognition in 
Prescription Drug User Fee Act (PDUFA) VI, thus paving a path forward to opti-
mize drug dosing prior to approval and post-marketing and in special populations 

Figure 2. 
Modern-day symbiotic fabric of drug discovery.
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in the absence of dedicated clinical trials. Dose optimization and clinical trial design 
have been most established domains of MIDD; new technologies such as artificial 
intelligence, ML, and real-world data (RWD), wearables along data science, have 
the potential to transform MIDD.

ML approaches provide a set of tools that can improve decision-making for 
well-specified questions with abundant, high-quality data. While using ML in the 
early stages of drug design, target selection, and high-throughput screening is 
almost standard today, the potential of ML during drug development has not been 
recognized. The observed data/evidence obtained during the developmental phase 
does not necessarily answer all the questions; thus the scope of MIDD is largely 
expanded with analysis of RWD to generate real-world evidence (RWE) to resolve 
these unanswered questions. Although RWD is obtained under less-controlled 
settings requiring proper interpretation of the findings, it should be considered as 
an attractive tool appealing for MIDD [42].

The emerging new techniques, such as portable devices, wearables, and applica-
tions (apps), may improve the dosing accuracy for patients and the quality of the 
collected medical information in real-world medical practice. These tools may 
improve the quality of electronic health records, making real-world data a reliable 
source for drug development and dose optimization or individualization. All these 
tools will make real-world data/real-world evidence a more appealing source for 
MIDD [43].

Along with the power of data analytics, advances in computational chemis-
try, and new diagnostic techniques, PK/PD modeling tools have also influenced 
the drug discovery research and development. These advances assist to build a 
comprehensive protein-receptor database, thereby enabling a defined library size 
for designing and optimization of a lead molecule. Along with the classical small 
molecule drug discovery and development, many protein and antibody-based 
pharmaceuticals have appeared as blockbuster drugs.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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in the absence of dedicated clinical trials. Dose optimization and clinical trial design 
have been most established domains of MIDD; new technologies such as artificial 
intelligence, ML, and real-world data (RWD), wearables along data science, have 
the potential to transform MIDD.

ML approaches provide a set of tools that can improve decision-making for 
well-specified questions with abundant, high-quality data. While using ML in the 
early stages of drug design, target selection, and high-throughput screening is 
almost standard today, the potential of ML during drug development has not been 
recognized. The observed data/evidence obtained during the developmental phase 
does not necessarily answer all the questions; thus the scope of MIDD is largely 
expanded with analysis of RWD to generate real-world evidence (RWE) to resolve 
these unanswered questions. Although RWD is obtained under less-controlled 
settings requiring proper interpretation of the findings, it should be considered as 
an attractive tool appealing for MIDD [42].

The emerging new techniques, such as portable devices, wearables, and applica-
tions (apps), may improve the dosing accuracy for patients and the quality of the 
collected medical information in real-world medical practice. These tools may 
improve the quality of electronic health records, making real-world data a reliable 
source for drug development and dose optimization or individualization. All these 
tools will make real-world data/real-world evidence a more appealing source for 
MIDD [43].

Along with the power of data analytics, advances in computational chemis-
try, and new diagnostic techniques, PK/PD modeling tools have also influenced 
the drug discovery research and development. These advances assist to build a 
comprehensive protein-receptor database, thereby enabling a defined library size 
for designing and optimization of a lead molecule. Along with the classical small 
molecule drug discovery and development, many protein and antibody-based 
pharmaceuticals have appeared as blockbuster drugs.
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by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
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Abstract

The interface of any given ligand and protein—normally considered a macro-
molecule—of a known or predicted/modeled structure can be computed by deter-
mining each potential ligand position, resulting in an array of possibilities which 
are finally expressed in numerical energy values based on their thermodynamic 
affinity. Over the past few decades, this premier approach technique has proved to 
be crucial as an automated method in drug design and discovery, as well as in other 
fields. Data are retrieved from contour surface calculations for each ligand probe 
and can be analyzed to delineate regions of attraction on the basis of energy levels. 
Negative energy levels from contours are used to infer protein-ligand affinity clefts 
and are therefore relevant to drug design. Accordingly, molecular docking, framed 
as the “new microscope,” is part of a group of in silico computational techniques 
that enable the behavior of molecular chemistry to be analyzed and predicted 
in an inexpensive manner. From the starting point of framing the key terms in 
the binomial macromolecule-ligand docking approach, this chapter presents an 
introductory description of the progress made in this field of research over the past 
several years, in addition to present and future perspectives. This chapter presents a 
broad plethora of possibilities arising from the old docking alternatives to the cur-
rent software technology and critically dissects and discusses the emerging trends. 
Despite the emergence of more degrees of freedom, a number of flexible conglom-
erates have not been well developed, and there are still computational limitations 
to solve, including several features in the focused technique. The present goals, 
such as molecular flexibility, binding entropy, and the presence of ions and solute 
conditions, are revisited with the purpose of anticipating the challenges, goals, and 
achievements in this field over the next few years or decades.

Keywords: molecules, modeling, structure, proteins

1. Introduction

In biology, dissimilar molecules dock and interact to enable the perpetuation of 
the primordial logistics of living organisms. Molecular docking methodologies can 
be used to identify the interaction between a small ligand and a target molecule and 
to determine whether they could behave in combination as the binding site of two or 
more constituent molecules with a given structure. The comparison of docking mol-
ecules for proteins, other drug-like molecules, or even fragments from the original 
molecule enables a pool of prominent candidates to be calculated with listed values. 
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Interestingly, a wide spectrum of molecular binding interactions can be explored 
with this technique, including lipid-protein, lipid-lipid, enzyme-substrate, drug-
enzyme, drug-nucleic acid, protein-nucleic acid, nucleic acid-nucleic acid, protein-
drug, and protein-protein potential affinities, with key functions in every molecular 
biological or biochemical stage, as well as structural coupling [1–2].

The analysis of the binding scores between the constituent molecules in molecu-
lar recognition is essential to explain the constitutive processes and subsequently 
suggest a possible therapy in the context of a particular disease. The molecular 
docking in silico approach seeks the optimization of this process, not only in terms 
of techniques but also in relation to time and economic resources. For instance, 
there is no microscope with a sufficient power of resolution to capture an image at 
the dynamic (real-time) molecular level, and accordingly, theoretical and com-
putational approaches can be used to predict the best binding and most probable 
trajectories. Faster techniques and reduced resources are related to efficiency, in 
contrast to in vitro approaches, in which the examination of every synthesized and 
purified protein can have higher time and material costs. On average, traditional 
in vitro research can take about a decade to complete and can cost around 800 
million USD; in silico method importantly diminishes these costs [3]. As such, due 
to the difficulties in determining the structures of complexes, in silico approaches, 
including molecular docking, are suitable for predicting binding modes by investi-
gating thousands of ligand positions using the lowest energy score analyzed.

Since 1975, the development of high-throughput protein purification X-ray 
crystallography and nuclear magnetic resonance spectroscopy has continued to 
advance, predominantly contributing to a better understanding of the structural 
details of macromolecules and complexes with ligands [4]. Molecular docking, as 
with many other in silico tools, has become more common and easier to apply to the 
field of drug discovery; however, it is not entirely dependent on molecular structure 
databases. It is not impossible to work with molecules that are absent from the data-
bases, as they can be modeled by using one or multiple similar structures to build a 
novel chimeric output that can mimic the original molecule. In the docking process, 
the parameters can be further adjusted to test the function of the drug molecule 
versus a particular target molecule.

After the molecular docking has been performed, the software executes a 
systematic search on the algorithm, in which the ligand conformation is recurrently 
approached until the minimum energy conformation is identified. The final result 
will have a negative value of ΔG (U total in kcal/mol), in which a number of electro-
static and van der Waals energy variables will have been synthesized. These energies 
are related through the interaction between two molecules. This association allows a 
final scoring function to classify the candidate positions through the driving forces 
of the specific interactions to be obtained. The structural shape and electrostatic 
forces of both the ligand and the target molecule at specific binding-site surfaces 
are key aspects in biological complementarity systems. In the drug discovery field, 
several key aspects must be considered when predicting whether the molecule 
will bind with the receptor target, such as the structural shape and electrostatic 
interactions of the protein-ligand, ligand-ligand, or protein-protein. In this sense, 
several physicochemical parameters, including the van der Waals forces, Coulombic 
interactions, and the formation of hydrogen bonds, play relevant roles. The com-
bination of all these values and potential binding is predicted by a docking score. 
Essentially, for drug design, it is possible to use a rigid system in which a rotational 
and translational space in six dimensions is explored to fit the ligand into a specific 
binding structure site [5].

The constantly growing number of biological targets for the design of rational 
structure-based ligands in public databases has gained interest in the research 
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community. In the drug discovery field, the essential processes in computational 
docking are the design of the ligand and the search for targets of the existing can-
didate ligands. The latter are used to predict a reliable binding affinity, in which the 
best possible physicochemical prediction of how the target and ligand will interact 
is made. A strategy to enhance the selection of drug candidate ligands is based on 
the scores obtained from in silico approaches. These scores not only significantly 
reduce the amount of inefficient compounds synthesized but also decrease the 
amount of unnecessary biological tests by taking into account valuable information 
about crucial binding elements in a given ligand-receptor conglomerate. Molecular 
docking approaches are used to calculate the scores of ligand-binding types and 
linking affinities. The estimation of reliable ligand-binding associations and modes 
is a difficult challenge. During the last few decades, the scientific community has 
gradually shown an increasing interest in molecular docking methods, illustrated 
by the increase in references and the number of publications in the field [6]. 
Nevertheless, there is currently no standard consensus regarding the criteria that 
should be used to classify a docking mode as correct or incorrect. Most docking 
methods are based on the use of general scoring functions to predict molecular 
suitability for a wide range of applications. In order to accomplish what is needed, a 
reliable scoring function, reasonable protein flexibility, and a treatment for ligand 
conformational changes are required.

In the context of molecular biology, the interactions between molecules are key 
to understanding the mechanisms that underlie a particular biomedical event. The 
latest achievements have been the improvement of computational methods essential 
to the process of drug discovery, modeling in the prelaminar stage, and the actual 
analysis of putative binding interactions. It is possible to conduct exploratory work 
by examining the best score function values or by using a large set of multivariate 
experimental data. In both cases, it is possible to analyze how changes in ligands or 
macromolecules can have an effect on their interactions by validating the associated 
biological processes, with the aim of gaining a better understanding of the interplay 
between the biomolecular functions of the bioactive candidates through the char-
acterization of the kinetics and binding score values imperative to their molecular 
recognition. In order to better understand the historical and conceptual implications 
of the development of this interesting and well-established technique, past and 
present achievements must be considered, as well as the current limitations with the 
potential to change the course of the technological methods developed in the future. 
In comparison to “wet lab” experimental procedures such as, e.g., microarray tech-
nology or even sequencing, virtual screening is inexpensive and efficient. However, 
several considerations need to be taken into account [7]. Overall, computational 
methods have been a recurrent option due to the focus approximation of the analysis.

2. The development of molecular docking techniques

As one of the most commonly used approaches since the 1980s, the experimen-
tal data obtained through molecular docking techniques have grown at an increas-
ing rate since the approach was first established. Programs configured through 
different algorithms for molecular docking analysis have been developed on an 
almost yearly basis, significantly improving pharmaceutical research [6]. The first 
algorithms were designed for protein-protein interactions. Along with the scoring 
function, which is used to determine the best binding poses, algorithms designed to 
calculate the best geometrically complementary shapes as rigid bodies are necessary 
to identify the most favorable orientations and conformational bindings with the 
potential to confer a putative drug candidate.
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about crucial binding elements in a given ligand-receptor conglomerate. Molecular 
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linking affinities. The estimation of reliable ligand-binding associations and modes 
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methods are based on the use of general scoring functions to predict molecular 
suitability for a wide range of applications. In order to accomplish what is needed, a 
reliable scoring function, reasonable protein flexibility, and a treatment for ligand 
conformational changes are required.
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to the process of drug discovery, modeling in the prelaminar stage, and the actual 
analysis of putative binding interactions. It is possible to conduct exploratory work 
by examining the best score function values or by using a large set of multivariate 
experimental data. In both cases, it is possible to analyze how changes in ligands or 
macromolecules can have an effect on their interactions by validating the associated 
biological processes, with the aim of gaining a better understanding of the interplay 
between the biomolecular functions of the bioactive candidates through the char-
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potential to change the course of the technological methods developed in the future. 
In comparison to “wet lab” experimental procedures such as, e.g., microarray tech-
nology or even sequencing, virtual screening is inexpensive and efficient. However, 
several considerations need to be taken into account [7]. Overall, computational 
methods have been a recurrent option due to the focus approximation of the analysis.

2. The development of molecular docking techniques

As one of the most commonly used approaches since the 1980s, the experimen-
tal data obtained through molecular docking techniques have grown at an increas-
ing rate since the approach was first established. Programs configured through 
different algorithms for molecular docking analysis have been developed on an 
almost yearly basis, significantly improving pharmaceutical research [6]. The first 
algorithms were designed for protein-protein interactions. Along with the scoring 
function, which is used to determine the best binding poses, algorithms designed to 
calculate the best geometrically complementary shapes as rigid bodies are necessary 
to identify the most favorable orientations and conformational bindings with the 
potential to confer a putative drug candidate.
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The gradual achievement of more powerful and complex algorithms with the 
addition of further parameters has paralleled computational technological advances 
over the last few decades. In order to achieve optimum flexibility, in silico methods 
use different tools with different approaches. Docking software depends on the 
algorithms employed, which comprise three different kinds: systematic, stochastic, 
or deterministic.

In the beginning, calculation algorithms that consider docking complexes to 
be rigid structures were used. In rigid docking, the objective is to match the ligand 
to the protein receptor, with the main aim being the generation of as many poses 
as possible in order to achieve the optimum of all poses. Through this process, all 
possibilities are considered heuristically to identify a group of complementary 
matches that present the most favorable van der Waals forces between the ligand 
and the macromolecule receptor. Intermolecular interaction calculations avoid 
any flexibility but nevertheless have a level of freedom dependent on a 3x3 matrix 
plus the vector rotation. This means that three rotational and three translational 
degrees of freedom cover all possible moves in three-dimensional space within the 
active site. However, no binding is permitted, as the macromolecular structures are 
simplistically represented as solid structures located under a center of mass and 
longitude [8].

The earliest work was performed using structural shape contacts, in which the 
fitting of outlines enables the best possible complementary configuration between 
two proteins to be identified [9]. A little later, a shape matching strategy algorithm 
was used by Kuntz and collaborators in UCSF8 to continue searching for possible 
configurations using the geometric distance between the ligand atoms and the 
macromolecule or receptor spheres (Figure 1).

In this method, the ideal intersection or match between the ligand and recep-
tor is viewed as a “negative image” that represents the active site. The image is 
produced by covering the receptor surface region and overlapping spheres with a 
solvent, in which a part of the overlapping spheres comprises the actual binding 
site. This constitutes the fundamentals of the DOCK search algorithm [10]. A few 
years later, Kuntz also developed a more advanced approach by conferring flex-
ibility to the ligand; however, this variant is still categorized as “flexible docking.” 

Figure 1. 
Top left, binding site; top right, ligand. Down below conjugate with geometrical fitness functional group related 
proposed by the earliest docking algorithm model.
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Subsequently, the investigation of HIV-1 protease using this approach was notable 
for leading to the technique’s exponential use in drug discovery [11].

Following the pioneering work from Kuntz, a different approach was taken a 
decade later in order to develop an improved new geometric recognition method, 
which was developed through an algorithm called Fourier transformation [12]. For 
the first time, the molecules could be described by a digital model, allowing their 
interior and exterior parts to be distinguished. This novel method allows faster 
calculation by determining the surface of contact, overlap, and approximation 
using the six degrees of freedom. In this method, molecules are considered rigid 
bodies, and the changes in structure have the degrees of freedom. This technique 
makes it possible to process atomic coordinates, and Zdock represents an example 
of this approach. Nevertheless, rigid-body algorithms are very erratic and ineffec-
tive in terms of any structural and conformational change arising due to the inter-
face between the ligand and the receptor. In this context, new alternatives to enable 
torsions and angle movement became a matter of interest. In the same period, a new 
semiflexible docking innovation was achieved using the HADDOCK protocol [13], 
which involves rigid-body docking complemented by semiflexible optimization 
in order to describe possible torsion angles in the main backbone and side chains. 
Unlike the previous Fourier transformation method [12], which uses a grid, this 
method adopts a Cartesian approach with particular coordinates, in which one of 
the two molecules is flexible and the solvent can be selected. One of the two mole-
cules therefore needs to be small in order to be computationally possible in terms of 
the number of conformational variations. Other methods also attempt to describe 
flexible bodies undergoing rotational conformational, rotational, and translational 
changes, mimicking the nature of biological molecules. In this category, both the 
ligand and the receptor that are modeled by simulating protocols are flexible. 
However, the flexibility needs to be lowered to make computational configuration 
possible. In the end, flexible docking approaches offer a more precise technique 
capable of imitating in vivo behavior of the possible structural conformations.

In flexible docking, there are two different logarithmic approaches, determinis-
tic incremental construction and stochastic. Systematic incremental construction 
algorithms are most commonly used, which gradually develop binding predictions 
on the basis of all possible ligand-binding poses covering all specified areas, e.g., 
DOCK [14], Glide [15], LUDI [16] FlexX [17], Hammerhead [18], and Surflex 
[19], in which on-the-fly incremental ligand construction is implemented. In this 
method, the number of analyses grows in line with increases in the degrees of 
freedom as part of anchor-and-grow methods. In a different example, in eHiTS, the 
ligand is fragmented, and each piece is tested for rigid docking, commonly based 
on library screening for the best conformations to religate the fragments and test 
their flexibility.

A different approach randomizes probabilistic or stochastic algorithms to 
selectively reject or accept configurations through the criteria spectrum, in which 
computational efforts are optimized, e.g., AutoDock [20], DARWIN [21], Monte 
Carlo [22], and GOLD [23]. By the middle of the 1990s, this technique was the point 
of origin of a diverse set of methods that are most commonly present in the genetic 
algorithm, named after Darwin’s theory of evolution, in which the ligand is inter-
preted as a chromosome and its fragments are considered genes [24]. Every gene 
exhibits conformational behavior due to its torsional/translational nature. During 
computational analyses, the information is transmitted and altered through sto-
chastic crossover and mutational events evolving through specific parameters. The 
changes improve the conformational binding pose from the ligand and the receptor, 
e.g., Lamarckian (AutoDock). In the case of the Monte Carlo stochastic variant that 
produces randomized translational conformations, the most thermodynamically 
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ligand and the receptor that are modeled by simulating protocols are flexible. 
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capable of imitating in vivo behavior of the possible structural conformations.
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on the basis of all possible ligand-binding poses covering all specified areas, e.g., 
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stable potential bindings are explored by focusing on the local minimum energy 
using a decision criteria parameter that is based on a temperature reaction, called 
Metropolis. The flexibility also alternates with rigid rotation, displaying several 
parameters at once. A more recent development is the deterministic method, which 
has been used for Newton equation simulations and also employs Monte Carlo 
methods that can measure trajectories, using Amber, Charm, and GROMACS; 
however, this scope forms the focus of the present work, and wide reviews have 
been provided by other researchers [25–27].

3. Molecular docking at present: a diverse and common approach

The drug discovery informatics market had an estimated value of 713.4 million 
USD in 2016 [28]. The presence of in silico tools that can allow the computation 
of data flowing from diverse methodology pathways in parsimony with medical 
chemistry can be synergistic in terms of upgrading the market and are well-known 
in the scientific literature. In this manner, molecular docking has been consolidated 
as a useful technique among sequence analysis platforms, molecular modeling, and 
clinical training management. The use of molecular docking in each of these fields 
is enhancing drug discovery in the pharmaceutical and biotechnology sector. As 
it comprises several stages and workflows, the discovery of new drugs relies on in 
silico tools and molecular docking in particular to simplify the overall process.

A crucial factor is the steadily rising number of structures stored in the Protein 
Data Bank (PDB). The PDB is the most robust, currently storing over 151,000 
structures and counting. The 3D structure information bank includes a large set 
of proteins, lipids, carbohydrates, and nucleic acids, in both single structures and 
complexes [29]. On the other hand, nearly a hundred different forms of molecular 
docking software are available, which offer analogous implementations with vari-
ous implementation options. There has been rapid progress in developing faster 
architecture based on graphics processing unit clusters, more adequate algorithms 
for optimized computational analysis, and the tracking of ligand-receptor binding 
expressed in scoring functions.

Although there is a need to maintain computational equipment, the associated 
expenses are certainly lower than the costs of “wet lab” experiments, and molecular 
docking is therefore an affordable technique. One of the most challenging tasks 
in bioinformatics sciences is undoubtedly the development of new and effective 
drugs, which is currently an almost mandatory step before wet lab experiments. In 
structure-based drug modeling, obtaining the most accurate and efficient model of 
ligand-receptor binding is a crucial step and is a suitable starting point for further 
evaluation to test new compounds or drug candidates, but also and no less impor-
tantly, to discard the improbable candidates. Molecular-ligand docking is a signifi-
cant tool in pharmacology at present and an important area of drug discovery that 
has comprised a central node of important achievements over the current century. 
As an interdisciplinary process of multiple joint efforts mainly from the pharma-
ceutical sector, biotechnological companies, and academic researchers, as well as 
many other fields, the process is highly complex and requires the most accurate and 
precise tools and methodologies. This has been enhanced by an increasing number 
of protein coordinates and the high number of available software programs that are 
constantly evolving with more sophisticated levels and a wider field of applications, 
in combination with more numerous candidates. In order to discover new drugs, as 
well as improve the existing ones, it is necessary to understand the targets as well 
as the nature of the possible drug candidates. In silico bioinformatics approaches 
have attracted increased interest due to the results of post-genomic era sequencing. 
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Due to the limited set of protein-coding genes, the complexity is much higher due 
to posttranscriptional modifications, prosthetic groups, multimeric complexes, 
and other various phenomena, clearly demonstrating the need to better understand 
their nature to fulfill biomedical objectives. Interestingly this year’s (2019) publica-
tions account for the first time a pause in the upper trend of docking publication 
number (Figure 2). This may be symptomatic on how the future holds already 
crucial challenges.

4. Future challenges, endeavors, and perspectives

The drug discovery informatics market is estimated to grow from 1.5 billion 
in 2016 to 2.84 billion by 2022 and may continue expanding. Accordingly, there is 
currently a rising demand for the discovery and implementation of novel infor-
matics solutions. The major factors driving the expansion of the global market 
include the transition from pure research to clinical treatment. More skilled 
professionals, interdisciplinary backgrounds, and the high pricing of informatics 
software may have a crucial impact on the growing market. At present, a number of 
 well-established applications have been made available for free or as paid software 
or services. However, many challenges remain to be addressed to enable the full 
potential of this powerful technique to be realized.

Nevertheless, in the case of pharmacology, the synergistic aspect is an important 
chemical phenomenon in which two different biomolecules with different origins 
can have an exponential effect in combination that is greater than their separate 
effects. If it is determined that a particular structure is more favorable [30] in terms 
of the docking score and it may be correlated with synergism, this can be second-
ary, due to the fact that a molecular docking procedure has not been developed to 
examine it in a particular scoring function. A linear/quadratic formula could be 
developed to measure synergy by discriminating between synergistic, additive, or 
antagonistic effects, which can be expressed both qualitatively and quantitatively. 
In this sense, further work is needed to investigate how the chemosensitivity 
between a macromolecule and ligand could be detected once more than one ligand 

Figure 2. 
Chart bar displaying paper publications per year (1982–2020) (NCBI, accessed on January 12, 2019).
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drugs, which is currently an almost mandatory step before wet lab experiments. In 
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Due to the limited set of protein-coding genes, the complexity is much higher due 
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tions account for the first time a pause in the upper trend of docking publication 
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effects. If it is determined that a particular structure is more favorable [30] in terms 
of the docking score and it may be correlated with synergism, this can be second-
ary, due to the fact that a molecular docking procedure has not been developed to 
examine it in a particular scoring function. A linear/quadratic formula could be 
developed to measure synergy by discriminating between synergistic, additive, or 
antagonistic effects, which can be expressed both qualitatively and quantitatively. 
In this sense, further work is needed to investigate how the chemosensitivity 
between a macromolecule and ligand could be detected once more than one ligand 

Figure 2. 
Chart bar displaying paper publications per year (1982–2020) (NCBI, accessed on January 12, 2019).
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is included. Although unmanageable amounts of data make this process difficult, 
it is possible to analyze the small targets that are the most restricted to the binding 
site being examined, especially in drug-protein analysis. System biology models that 
depend on a drug synergy test need to be developed in a more comprehensive man-
ner, perhaps by including qualitative features in combination with the quantitative. 
In this sense, a novel input could be developed in computational docking analysis to 
enable, e.g., the measurement of molecular signaling that has been established to be 
part of several components, ligands, or targets. These systematic synergy model-
ing methods could support drug synergy research with the aim of improving the 
accuracy of experimental results.

An improvement of the molecular structure databases is necessary for further 
development. Filters are needed to ensure the structural models they contain are 
of a better quality, as this will influence the reliability of the results. The PDB 
was established in 1971 as a pioneer crystal structure database, and today it is 
the most common source for molecular in silico modeling, harboring more than 
150,000 experimentally proven 3D models. However, there is no guarantee that the 
chosen structures are error-free, including even those with excellent geometrical 
parameters, and this must be taken into account. High-quality statistics are not an 
indication that the structure is perfect. Therefore, an improvement of their quality, 
protocols, and validation would allow the construction of better models that could 
be valuable in the inevitable task of structure refinement. However, a better model 
will not be more informative in terms of more detailed biological information, 
which means that the interpretation of a scientist will be necessary. However, the 
confirmation of outcomes and the precision of the docking tool in a certain interac-
tion can be tested. Although docking strategies have become more complex, false 
positives are a recurrent issue with this technique, and as such, refining the struc-
tures stored in the PDB will undoubtedly lead to an improvement and better results 
from pharmacodynamics studies [31].

Those who devote their time to molecular docking are well aware of the large 
number of docking techniques. In the years to come, docking experiments will need 
to be more consistent in terms of the outputs generated by different docking meth-
ods. Using meta-experimental databases, including a large-scale and diverse variety 
of targets and ligands, comparisons of scoring functions have shown that accuracy 
and reportability are far from being reached. A standardized common workflow 
that follows the same procedures and is associated with the same advantages and 
issues is therefore necessary. A streamlined validation process to define standard 
test protocols needs to be agreed for every aspect of the docking method; otherwise 
there will be a lack of reproducibility in the output process used by each research 
group and for each given software [32].

The interaction model of the ligand and the active site must achieve the most 
optimum site of recognition. Docking ensembles using rigid proteins can be 
slightly inaccurate. Through the ensemble, the protein can fluctuate according to 
the relative energy, with more time spent in the lowered energy structure. On the 
other hand, the conformations of ligands fluctuate partially, making the whole 
ensemble more stable. This can be misleading for dockings that are not flexible, 
due to the fact that a given conformation may not be the most stable choice in the 
structure. Up-to-date docking scores have been oriented for machine learning 
scoring and mainly consist of four building blocks: descriptors, a model, a training 
set, and a test set. Currently, SFCscore, NNscore, or RFscore represents promi-
nent examples of nonlinear and nontrivial correlations of data in order to avoid 
obstacles to interpretation [33]. Techniques that provide free access to the scoring 
function are still a minority and more options are needed, particularly those with 
open access. The number of poses needs to be exhaustive; however, this has not 
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been well-established. In this sense, we can state that the sensitivity of the original 
conformation of the ligands remains unanswered. Furthermore, in the case of mul-
tidomain proteins, proteins are frequently composed of more than a single effector 
domain, and this should be taken into consideration.

With regard to a different aspect, how water is placed around the binding site 
is not a straightforward problem to solve, although recent studies have proposed 
the use of this parameter as functionally valid in specific contexts [34] within and 
around the conglomerate binding site. X-ray crystallography is the most extensively 
used tool for predicting 3D conformational structure; however, the actual output is 
only partially informative, due to the fact that the density limits are out of resolu-
tion and, on occasion, the electron density can be of insufficient quality. Future 
efforts need to endorse novel alternatives to increase the capacity and parameters 
that can be used in every aspect of a given analysis, not only in terms of water but 
also the physiological solutes found in nature and even protonation, in addition to 
the pH potency spectra.

An understanding of the biological functions and roles of a protein in a particu-
lar cell or tissue is highly relevant in determining the role of a protein’s structure, 
including all of its functional domains. Genome-wide studies have demonstrated 
that multidomains are present in over 70% of eukaryotic proteins. Nevertheless, 
protein-folding studies usually consider only single domains and are therefore not 
focused on the mechanisms in multidomains that can even influence the folding 
structure [34]. Very crucial obstacles are involved in multidomain docking analyses. 
In some examples, the understanding of intermolecular movement can be restricted 
by rigid docking methodologies that lack the ability to consider the effect of mul-
tiple domains in a single macromolecule. A given protein is not always present in a 
static and simplistic single conformational shape but can be present in a collection 
of scaffolds, stages, and intersections of conformational shapes. As a consequence, 
the free energy landscape can be profoundly affected, distinctively changing the 
scoring function’s output. This continues to present a major issue [35].

To improve modeling, the role played by multiple molecules in the context of 
a certain reaction is an indispensable step that must be considered. At the current 
stage of technology, this does not fall under the current scope of molecular docking, 
due to the fact that the processes are far too complex and it is difficult to manage 
all of the interactions that occur during a molecular binding and reaction. In order 
to mimic how chemistry works in nature, the inclusion of more than two factors 
(ligand/macromolecule) where methodologically possible would be a priority to 
enable the possible interactions in a molecular group to be predicted. Although a 
few software packages use this approach, in the future, it needs to become more 
common in other methods to address the binding modes of ligands in assessments 
with higher stoichiometry using multiple ligand complexes against the molecular 
target. Additionally, as stated earlier in this work, it would be of great interest to 
evaluate the synergy of ligand combination conjugates.

5. Conclusion

Over the last four decades, molecular docking has improved quite remarkably, 
contributing to the enhancement and improvement of pharmacology in addition 
to many different areas of applied and molecular biology. After the first complete 
draft of the Human Genome Project was announced in 2003, the scientific com-
munity concluded that there are far fewer protein-coding genes than expected and 
it has therefore been swift to study how molecules interact by investigating more 
possible target bindings of a given molecule. The increasing demand for molecular 
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docking has paralleled the revolutionary advancement of its technological back-
ground. Nevertheless, several biochemical and physical properties of proteins, 
particularly at the surface of contact, need to be included in docking algorithms in 
conjunction with those already present. On the other hand, the question of how 
to diminish unnecessary calculations and outputs from undesirable rotations and 
therefore translations is a big challenge to be considered in the near future, espe-
cially in virtual screening. The right implementation needs to be standardized, and 
closer multi- and interdisciplinary teams must overcome this challenge in order to 
fine-tune this already widely explored technique.
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Abstract

The process of hunt of a lead molecule is a long and a tedious process and one is
often demoralized by the endless possibilities one has to search through. Fortu-
nately, computational tools have come to the rescue and have undoubtedly played a
pivotal role in rationalizing the path to drug discovery. Of all techniques, molecular
docking has played a crucial role in computer aided drug design and has swiftly
gained ranks to secure a valuable position in the modern scenario of structure-based
drug design. In this chapter, the principle, sampling algorithms, scoring functions
and diverse available software’s for molecular docking have been summarized. We
demonstrate the interplay of docking, classical techniques of structure-based design
and X-ray crystallography in the process of drug discovery. In addition, we dwell
upon some of the limitations faced in docking studies. Finally, several success
stories of molecular docking approaches in drug discovery have been highlighted,
concluding with remarks on molecular docking for the future.

Keywords: molecular docking, virtual screening, drug discovery, computer aided
drug design, conformational sampling, scoring functions

1. Introduction

The path to drug discovery is a long, challenging & arduous task not to mention
the overburdening finances it demands. As of 2014, the average cost of developing a
new drug from scratch was found to be an estimated $2.5 billion, an increase of
145% from the previous study done by the same organization in 2003. The major
reasons for this drastic increase in the cost is mainly attributed to high failure rate of
drugs among others [1]. Understanding of the drug discovery process is important
to handle the challenges faced by the pharma companies in terms of cost and
innovation.

The process of identifying a target, synthesizing an active compound with
suitable characteristics like minimal toxicity, high bioavailability, cost-effective
synthesis, etc., and finally developing it to introduce in the market is a time-
consuming, extremely complex and risky endeavor [2]. Initially, a target is identi-
fied which plays a key role in progress of the disease. Once a link between the target
and the disease has been established, the next step is to identify potential candidates
which can stop or reverse the progress of the disease [3]. This process starts with the
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discovery of molecules that show efficacy in a simple screen, called “hits.” Screen-
ing is a process in which normally a large number of compounds from natural
products and online databases are examined for biological activity in high-
throughput assays. This step in the drug discovery process is very crucial and
demands maintaining huge molecular libraries and carrying out thousands or mil-
lions of assays, which leaves the academicians and small pharmaceutical companies
at a disadvantage and also shoots up the cost for larger industries. Next, the “hits”
found are chemically modified to give improved pharmaceutical properties, such
compounds are often called “leads.” But, it is quite apparent that the method stated
above for discovery of a drug has a number of pitfalls. From an academic point of
view, carrying out high throughput screens (HTS) is costly, time-consuming and
not feasible; while, from an industrial perspective, it does nothing to improve the
eminent danger of market saturation.

Truly innovative and blockbuster drugs are what drive the pharmaceutical
industry forward but, over the past few years introduction of new molecular enti-
ties (NMEs) has vastly reduced. For example, in 2007 only 19 NMEs were approved
by the US Food and Drug Administration (FDA), the least since 1983 [4]. Cur-
rently, and even in the future it is expected that only slight modifications of the
existing blockbuster drugs would be carried out which would further aggravate this
problem [5]. HTS would not help in either curbing the rising costs of discovering
hits or the problem of finding truly innovative and blockbuster NMEs, the two
major hurdles that the pharmaceutical industry faces now-a-days.

To overcome these challenges, molecular docking is an exemplary tool. During
the first step to find hits from existing chemicals for a drug discovery and develop-
ment project, virtual screening (VS) is a perfectly viable and an alternative or
complementary approach to HTS for fulfilling the screening of thousands or mil-
lions of compounds within a few days. In addition, the speed of VS helps in kick-
starting projects for newer targets for which no leads are available [6]. Molecular
docking is one of the most applied virtual screening methods and has become
increasingly useful overtime on account of immense growth in 3D X-ray and NMR
structures and their improved resolution (physics and knowledge based docking
algorithms depend on it) reported in the Protein Data Bank (PDB). As an example,
in total 46,541 X-ray structures were reported at the end of 2008 in PDB, but by the
end of 2018 it had grown to a staggering figure of 131,993 [7]. In addition, it is a
resource saving technique which provides accessibility of screening to academia and
small industries which were earlier limited to large pharmaceutical giants.

In this chapter, we will discuss a particular class of molecular design, i.e.,
“Docking” along with the various algorithms, techniques, success stories and limi-
tations related to it. In the end, we will conclude with its scope in the near future.

2. Molecular docking

Two molecules can interact in a number of ways let alone the interaction of a
protein and protein or a protein and small molecule. Molecular docking helps us in
predicting the intermolecular framework formed between a protein and a small
molecule or a protein and protein and suggest the binding modes responsible for
inhibition of the protein. To accurately carry out docking studies one requires the
high-resolution X-ray, NMR or homology-modeled structure with known/predicted
binding site in the biomolecule. To date, 148,827 are available in the database (PDB)
[3]. Docking methods fit a ligand into a binding site by combining and optimizing
variables like steric, hydrophobic and electrostatic complementarity and also
estimating the free energy of binding (scoring) [8].
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There are two basic components which distinguish the variety of docking soft-
wares available to choose from—One is sampling algorithm and the other is scoring
function, these are discussed in detail.

2.1 Sampling algorithm

As pointed out earlier, there are a huge number of modes of binding between
two molecules and even with advances in parallel computing and higher clock
speeds of modern computers it would be expensive and time-consuming to generate
all the possible modes. Therefore, algorithms were needed which could fish out
valuable conformations from the fruitless ones.

Various algorithms were developed in this regard and can be classified by the
number of degrees of freedom they ignore. The simplest of the algorithms intro-
duced treated the molecules as two rigid bodies thereby reducing the degree of
freedom to just six (three translational and three rotational). A very well cited
example of a program using this algorithm is DOCK [9]. This program was designed
to find molecules which had a huge extent of shape similarity to the pockets/
grooves or binding sites. It derives an image of suspected binding sites present on
the surface of the protein. This image consists of several overlapping spheres of
varying radii which touch the molecular surface of the macromolecule at just two
points. The ligand molecule is also considered as a set of spheres which approxi-
mately fill the space occupied by the ligand. Once the respective representations of
the protein surface and the ligand in terms of sphere are complete, the pairing rule
is applied. The pairing rule is based on the principle that ligand sphere can be paired
with a protein sphere if the internal distances of all the spheres in the ligand set
match all the internal distances within the protein set, allowing some user specified
tolerance. Thus, it allows the program to identify geometrically similar cluster of
spheres on the protein site and the ligand. Many other programs were developed
later which make use of such matching algorithm (MA) which include LibDock [8],
LIDAEUS [10], PhDOCK [11], Ph4DOCK [12], Q-fit [13], SANDOCK [14], etc.
All these programs based on MA have the advantage of speed but have several
limitations such as prior need for detailed receptor geometry and lack of molecular
flexibility which does not accurately define many aspects of ligand-protein
interactions.

The second algorithm is that of incremental construction (IC), wherein the
ligand is fragmented from rotatable bonds into various segments. One of the seg-
ments is anchored to the receptor surface. The anchor is generally considered to be
the fragment which shows maximum interactions with the receptor surface, has
minimum number of alternate conformations and fairly rigid such as the ring
system. Once the base/anchor has been established, the next step is to add each of
the fragments step by step. Ideally, those fragments are added first which have a
greater chance of showing interactions like hydrogen bonding since they are direc-
tional in nature and are responsible for specificity of the ligand. In addition, hydro-
gen bonds lead to more accurate prediction of geometry. Once a particular fragment
is added, the poses with the least energies are considered for the next iteration,
making the algorithm extremely fast and robust [15]. IC has been used in programs
like DOCK 4.0 [16], FlexX [15], Hammerhead [17], SLIDE [18] and eHiTS [19],
SKELGEN [20], ProPose [21], PatchDock [22], MacDock [23], FLOG [24], etc. One
major limitation of this program is that it is restricted to medium sized ligands and
is not feasible for large size ligands where the number of fragments generated pose a
problem.

Another useful algorithm is the Monte Carlo (MC) technique. In this approach, a
ligand is modified gradually using bond rotation and translation or rotation of the
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entire ligand. More than one parameter can also be changed at a time to get a
particular conformation. That conformation is then evaluated at the binding site
based on energy calculation using molecular mechanics and is then rejected or
accepted for the next iteration based on Boltzmann’s probability constant. Accep-
tance or rejection of the conformation is a function of the change in energy with
respect to a parameter T, which can be physically interpreted as temperature (sim-
ulated annealing). This criterion of acceptance or rejection makes this method
strikingly different than the others. Whereas the other algorithm favor decrease in
energy, in MC method increases are also possible. For higher values of T increases
are likely. If one starts at a high value of T, then small energy barriers can be jumped
and the configuration can move beyond local minima and is therefore particularly
useful in situations where a global minimum is sought among many local minima
[25]. An interesting spin-off of the MC approach is the Tabu search, which main-
tains a record of the search space of the binding site which has already been visited
and thus ensures that the binding site is explored to the maximum [26]. MC
approach has been made use of in programs like DockVision 1.0.3 [25], FDS [27],
GlamDock [28], ICM [29], MCDOCK [30], PRODOCK [31], QXP [32],
ROSETTALIGAND [33], RiboDock [34], Yucca [35], AutoDock [36], etc. One of
the major concerns with MC approach is the uncertainty of convergence, which can
be improved by performing multiple independent runs.

Genetic algorithm (GA) is quite similar to MC method and is basically used to
find the global minima [37]. These are much inspired by the Darwin’s Theory of
Evolution [38]. GA maintains a population of ligands with an associated fitness
determined by the scoring function. Each ligand represents a potential hit. The GA
alters the ligands of the population by mutation or crossover. In the first stage, a
new population is created by accessing and then selecting the more fit ligands from
the previous step. The members of the populations are then transformed in the
alteration step. The mutation operator creates new ligands from a single ligand by
randomly changing a fragment in its representation while the crossover operator
exchanges information between two (occasionally more) members of the popula-
tion [39–41]. GA has been incorporated in programs like Autodock 4.0 [42], DAR-
WIN [43], DIVALI [39], FITTED [44], FLIPDock [45], GAMBLER [46], GAsDock
[47], GOLD 3.1 [48], PSI-DOCK [49]. GA has a similar limitation like that of MC
method wherein the uncertainty of convergence is a major drawback.

Another approach is the hierarchical method. In this approach, the low energy
conformations of the ligand are pre-computed and aligned. The populations of the
pre-generated ligand conformations are merged into a hierarchy such that similar
conformations are positioned adjacent to each other within the hierarchy. After-
wards, on carrying out rotation or translation of the ligand, the docking program
will make use of this hierarchical data structure and thus minimize the outcomes.
Let us understand with a simple example—if an atom near the rigid center of the
ligand is found to clash with the protein in a given rotation/translation, then this
approach can reject all of the conformations lying below in the hierarchy to that of
the conformation under scrutiny, because the descendants must contain the same
clash as well [50]. GLIDE software makes use of the hierarchical method [51, 52].

2.2 Scoring functions

Sampling changes among varying degrees of freedom must be performed with
sufficient accuracy to identify a conformation that best matches the receptor struc-
ture, and also must be fast enough to permit the evaluation of millions of com-
pounds in a set computational time. This is taken care by the variety of algorithms
discussed above. Algorithms are further complemented by scoring functions.
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The evaluation and ranking of predicted ligand conformations is a crucial aspect
of VS. When we are interested in only how a single ligand binds to a biomolecule,
then the scoring function needs to predict the docked orientation which most accu-
rately represents the “true” structure of the intermolecular complex. On the other
hand, if we are interested to evaluate multiple ligands, in that scenario the scoring
function should not only identify the “true” docking pose but also be able to rank one
ligand relative to another. Therefore, the design of reliable scoring functions and
schemes which can rank different poses is of fundamental importance [53].

The scoring functions usually estimate binding energy of complex using many
assumptions and simplifications to arrive as close as possible to actual binding
energy in minimum time. Popular scoring functions have an adequate balance
between accurate estimation of binding energy and computational cost in terms of
time. There have been a number of scoring functions developed over the past many
years and can be classified into three main categories—force field, empirical and
knowledge based [54].

Force field functions: force field (FF) scoring functions are developed based on
physical atomic interactions like van der Waals interactions, electrostatic interac-
tions and bond lengths, bond angles and torsions [55]. Force field functions and
parameters are usually derived from both experimental data and ab initio quantum
mechanical calculations according to the principles of physics.

E ¼ ∑
i
∑
j

Aij

r12ij
� Bij

r6ij
þ

qiqj
ε rij
� �

rij

 !
(1)

Here, rij stands for the distance between protein atom i and ligand atom j, Aij and
Bij are the van der Waal parameters, qi and qj are the atomic charges and ε(rij) is the
distance dependent dielectric constant.

One common example of a FF scoring function is that of the program DOCK
[56] represented in Eq. (1), where, the effect of solvent is indirectly considered by
the distance dependent dielectric constant e(rij) seen in the Coulombic potential.
One major drawback of this function is that it does not consider an important
solvent effect that charged groups favor aqueous environments whereas non-polar
groups tend to stay in non-aqueous environments, commonly referred to as the
desolvation effect [57]. Ignorance could lead to biased results as the function would
now be totally dependent on the coulombic interactions and would thus favor
highly charged ligands. In other words, it only takes into account the interaction of
protein and ligand, which is inadequate. To build a more robust function one needs
to also evaluate how both interact with water before the formation of the complex
and how water mediates this process.

Later the Shoichet group [58] improved upon the existing function by adding the
effects of the solvent on protein-ligand interactions using implicit solvent models.
They employed the Poisson-Boltzmann approach to model the electrostatic potential
of the protein. The van der Waals interactions were calculated using the Lennard-
Jones potential; the electrostatic interaction between the ligand and the protein was
estimated using a precomputed receptor potential determined with DelPhi [59].
Ligand desolvation penalties were calculated with HYDREN [60]. The solvent-
corrected scores were found to be closer to experimental binding free energies than
the DOCK program scores, but were still too favorable. The overestimation of
complex stability could be due to the neglect of solute entropic terms [58].

There a few scoring functions which be classified in this category such
as DockScore [56], GoldScore [61], HADDOCK Score [62], ICM SF [29],
QXP SF [32], etc.
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entire ligand. More than one parameter can also be changed at a time to get a
particular conformation. That conformation is then evaluated at the binding site
based on energy calculation using molecular mechanics and is then rejected or
accepted for the next iteration based on Boltzmann’s probability constant. Accep-
tance or rejection of the conformation is a function of the change in energy with
respect to a parameter T, which can be physically interpreted as temperature (sim-
ulated annealing). This criterion of acceptance or rejection makes this method
strikingly different than the others. Whereas the other algorithm favor decrease in
energy, in MC method increases are also possible. For higher values of T increases
are likely. If one starts at a high value of T, then small energy barriers can be jumped
and the configuration can move beyond local minima and is therefore particularly
useful in situations where a global minimum is sought among many local minima
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WIN [43], DIVALI [39], FITTED [44], FLIPDock [45], GAMBLER [46], GAsDock
[47], GOLD 3.1 [48], PSI-DOCK [49]. GA has a similar limitation like that of MC
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Another approach is the hierarchical method. In this approach, the low energy
conformations of the ligand are pre-computed and aligned. The populations of the
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clash as well [50]. GLIDE software makes use of the hierarchical method [51, 52].

2.2 Scoring functions

Sampling changes among varying degrees of freedom must be performed with
sufficient accuracy to identify a conformation that best matches the receptor struc-
ture, and also must be fast enough to permit the evaluation of millions of com-
pounds in a set computational time. This is taken care by the variety of algorithms
discussed above. Algorithms are further complemented by scoring functions.
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The evaluation and ranking of predicted ligand conformations is a crucial aspect
of VS. When we are interested in only how a single ligand binds to a biomolecule,
then the scoring function needs to predict the docked orientation which most accu-
rately represents the “true” structure of the intermolecular complex. On the other
hand, if we are interested to evaluate multiple ligands, in that scenario the scoring
function should not only identify the “true” docking pose but also be able to rank one
ligand relative to another. Therefore, the design of reliable scoring functions and
schemes which can rank different poses is of fundamental importance [53].

The scoring functions usually estimate binding energy of complex using many
assumptions and simplifications to arrive as close as possible to actual binding
energy in minimum time. Popular scoring functions have an adequate balance
between accurate estimation of binding energy and computational cost in terms of
time. There have been a number of scoring functions developed over the past many
years and can be classified into three main categories—force field, empirical and
knowledge based [54].

Force field functions: force field (FF) scoring functions are developed based on
physical atomic interactions like van der Waals interactions, electrostatic interac-
tions and bond lengths, bond angles and torsions [55]. Force field functions and
parameters are usually derived from both experimental data and ab initio quantum
mechanical calculations according to the principles of physics.
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Here, rij stands for the distance between protein atom i and ligand atom j, Aij and
Bij are the van der Waal parameters, qi and qj are the atomic charges and ε(rij) is the
distance dependent dielectric constant.

One common example of a FF scoring function is that of the program DOCK
[56] represented in Eq. (1), where, the effect of solvent is indirectly considered by
the distance dependent dielectric constant e(rij) seen in the Coulombic potential.
One major drawback of this function is that it does not consider an important
solvent effect that charged groups favor aqueous environments whereas non-polar
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desolvation effect [57]. Ignorance could lead to biased results as the function would
now be totally dependent on the coulombic interactions and would thus favor
highly charged ligands. In other words, it only takes into account the interaction of
protein and ligand, which is inadequate. To build a more robust function one needs
to also evaluate how both interact with water before the formation of the complex
and how water mediates this process.

Later the Shoichet group [58] improved upon the existing function by adding the
effects of the solvent on protein-ligand interactions using implicit solvent models.
They employed the Poisson-Boltzmann approach to model the electrostatic potential
of the protein. The van der Waals interactions were calculated using the Lennard-
Jones potential; the electrostatic interaction between the ligand and the protein was
estimated using a precomputed receptor potential determined with DelPhi [59].
Ligand desolvation penalties were calculated with HYDREN [60]. The solvent-
corrected scores were found to be closer to experimental binding free energies than
the DOCK program scores, but were still too favorable. The overestimation of
complex stability could be due to the neglect of solute entropic terms [58].

There a few scoring functions which be classified in this category such
as DockScore [56], GoldScore [61], HADDOCK Score [62], ICM SF [29],
QXP SF [32], etc.
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Empirical scoring functions: the basis of this scoring function is that the binding
energies of a complex can be approximated by a sum of individual uncorrelated
terms. The coefficients of the various terms involved in calculation of binding
energy are obtained from regression analysis using experimentally determined
binding energies or potentially from X-ray structural information. Empirical func-
tions have simpler energy terms to evaluate when compared to force field scoring
functions and thus are much faster in binding score calculations.

The first empirical scoring function developed to predict binding free energies
was implemented in LUDI, credited to the pioneering work of Bohm [63]. The
energy was derived using experimental binding free energies and protein-ligand
crystal structures for 45 complexes.

ΔGbind ¼ ΔGO þ ΔGhb ∑
h�bonds

f ΔR;Δαð Þ þ ΔGionic ∑
ionic int:

f ΔR;Δαð Þ þ ΔGlipo Alipo
�� ��

þ ΔGrotNROT:

(2)

Here, ΔGo is the binding energy independent of protein interactions, ΔGhb

describes contribution to binding energy from hydrogen bonds, ΔGionic denotes con-
tribution to binding energy from unperturbed ionic interactions, ΔGlipo considers
contribution to binding energy through lipophilic interactions while Alipo is the lipo-
philic contact surface between the protein and the ligand, ΔGrot describes the loss of
binding energy due to freezing of internal degrees of freedom in the ligand while
NROT represents number of rotatable bonds and f(ΔR, Δα) is a penalty function that
accounts for large deviations from ideal hydrogen bond and salt bridge geometry.

As shown in Eq. (2), the binding free energy is modeled using hydrogen bonds,
salt bridges, the hydrophobic effect, and solute entropy terms. The hydrogen bond
and salt bridge terms are modified by a penalty function which accounts for devia-
tion from ideal geometry. Entropy loss of the ligand upon complex formation is
based on the Number of ROTatable bonds (NROT) in the ligand [64, 65]. Eldridge
et al. presented an empirical scoring function referred to as ChemScore by taking
into account different energetic parameters like hydrogen bonds, the lipophilic
effects of atoms, the effective number of rotatable bonds in the ligand among
others. The scoring function was calibrated using 82 ligand-receptor complexes
with known binding affinities [66].

By including different empirical energy terms, many different empirical scoring
functions have been developed such as SCORE2 [67], ChemScore [66], RankScore
[68], LigScore [69], GlideScore [51], HINT [70], etc. The empirical scoring func-
tions take into account many different energy terms and thus the problem of
unknowingly double-counting of certain energy terms difficult issue to tackle.

Knowledge based scoring functions: these are derived from the structural infor-
mation embedded in experimentally determined atomic structures. The functions
use statistical analysis on crystal structures of complexes to obtain the interatomic
contact frequencies between the protein and the ligand based on the presumption
that stronger an interaction is, the greater the frequency of its occurrence will be.
The overall score is calculated with the help of Eq. (3) by accounting for favorable
contacts and repulsive interactions between each atom in the ligand and protein
lying within a sphere with a specified cutoff [71–78].

w rð Þ ¼ �kBTln g rð Þ½ �, g rð Þ ¼ rð Þρ rð Þ=ρ ∗ rð Þ (3)

Here, kB is the Boltzmann constant, T is the absolute temperature of the system,
ρ(r) is the number density of the protein-ligand atom at distance r, ρ*(r) is the pair
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density in the reference state where interatomic interactions are zero and g(r) is
pair distribution function.

Popular knowledge based functions include DrugScore [79], PMF [72, 80],
MScore [81], SMoG [71], BLEEP [74], ITScore/SE [75], etc. The computational
simplicity of such functions is a major advantage especially when one has large
databases at hand however, the accuracy of predicting the reference state and
underrepresentation of interactions with halogens and metals are the major hurdles.

Each of the above classified have their inherent drawbacks, in this regard,
combination of more than one scoring functions has given improved results. This
approach has been widely regarded as “Consensus Scoring” [46].

Another set of scoring functions which have recently started to attract attention
are based on machine learning. One of the programs based on functions incorpo-
rating machine learning was able to achieve an astounding hit rate of 88.6% [82].
The nexus of machine learning and scoring functions is promising but the develop-
ment of such a tool is slow owing to its complexity.

In order to compare the variety of scoring functions that have been developed
up until now, comparative assessment of scoring functions (CASF) is an incredible
platform to begin with [83].

There is another set of classification proposed for the scoring functions namely
physics-based methods, empirical scoring functions, knowledge-based potentials,
and descriptor-based scoring functions but there is still no clear consensus on which
classification of scoring functions would be appropriate [84].

3. Applications

Molecular docking has been developed and improving for many years, but its
ability to generate a viable drug is still generally questioned. In the section below,
you will find examples where docking approach lead to recognition of active hits for
a variety of different receptors/targets.

HIV 1 Integrase—a new binding site for drugs treating AIDS was discovered
by Schames et al. using docking while considering the flexibility of the receptor
through molecular dynamics. The group used AutoDock in conjunction with
the relaxed-complex method to discover novel mode of inhibition of HIV
integrase [85].

α1A Adrenergic receptor—Evers et al. generated a model of the receptor using
homology modeling based on the X-ray crystallographic structure of bovine rho-
dopsin. Hierarchical virtual screening method was performed by them on the
Aventis in-house compound repository in a stepwise manner. 22,950 filtered com-
pounds were then docked into the α1A receptor homology model with the program
GOLD and scored with PMF. The top scoring compounds were finally clustered
according to their unity fingerprint similarity, and a diverse set of 80 compounds
was tested in a radio ligand displacement assay. Thirty-seven compounds displayed
a Ki < 10 μM with the most active having Ki = 1.4 nM [86].

Type I TGF-beta receptor kinase—A striking example and a proof of the benefit
of in silico approach over classical high-throughput screening involves the discov-
ery of novel Type I TGF-beta receptor kinase inhibitor. The same molecule (HTS-
466284); Figure 1, a 27 nM inhibitor, was discovered independently using virtual
screening [87] and also by traditional enzyme and cell-based high-throughput
screening in the same year [88]. The compound discovered experimentally required
in vitro screening of a large library of compounds in a TGF-β-dependent cell-based
assay which required more time, proved to be costlier and required usage of a
variety of chemicals when compared to its computational counterpart.
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The first empirical scoring function developed to predict binding free energies
was implemented in LUDI, credited to the pioneering work of Bohm [63]. The
energy was derived using experimental binding free energies and protein-ligand
crystal structures for 45 complexes.

ΔGbind ¼ ΔGO þ ΔGhb ∑
h�bonds

f ΔR;Δαð Þ þ ΔGionic ∑
ionic int:

f ΔR;Δαð Þ þ ΔGlipo Alipo
�� ��

þ ΔGrotNROT:

(2)

Here, ΔGo is the binding energy independent of protein interactions, ΔGhb

describes contribution to binding energy from hydrogen bonds, ΔGionic denotes con-
tribution to binding energy from unperturbed ionic interactions, ΔGlipo considers
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NROT represents number of rotatable bonds and f(ΔR, Δα) is a penalty function that
accounts for large deviations from ideal hydrogen bond and salt bridge geometry.

As shown in Eq. (2), the binding free energy is modeled using hydrogen bonds,
salt bridges, the hydrophobic effect, and solute entropy terms. The hydrogen bond
and salt bridge terms are modified by a penalty function which accounts for devia-
tion from ideal geometry. Entropy loss of the ligand upon complex formation is
based on the Number of ROTatable bonds (NROT) in the ligand [64, 65]. Eldridge
et al. presented an empirical scoring function referred to as ChemScore by taking
into account different energetic parameters like hydrogen bonds, the lipophilic
effects of atoms, the effective number of rotatable bonds in the ligand among
others. The scoring function was calibrated using 82 ligand-receptor complexes
with known binding affinities [66].

By including different empirical energy terms, many different empirical scoring
functions have been developed such as SCORE2 [67], ChemScore [66], RankScore
[68], LigScore [69], GlideScore [51], HINT [70], etc. The empirical scoring func-
tions take into account many different energy terms and thus the problem of
unknowingly double-counting of certain energy terms difficult issue to tackle.

Knowledge based scoring functions: these are derived from the structural infor-
mation embedded in experimentally determined atomic structures. The functions
use statistical analysis on crystal structures of complexes to obtain the interatomic
contact frequencies between the protein and the ligand based on the presumption
that stronger an interaction is, the greater the frequency of its occurrence will be.
The overall score is calculated with the help of Eq. (3) by accounting for favorable
contacts and repulsive interactions between each atom in the ligand and protein
lying within a sphere with a specified cutoff [71–78].
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density in the reference state where interatomic interactions are zero and g(r) is
pair distribution function.

Popular knowledge based functions include DrugScore [79], PMF [72, 80],
MScore [81], SMoG [71], BLEEP [74], ITScore/SE [75], etc. The computational
simplicity of such functions is a major advantage especially when one has large
databases at hand however, the accuracy of predicting the reference state and
underrepresentation of interactions with halogens and metals are the major hurdles.

Each of the above classified have their inherent drawbacks, in this regard,
combination of more than one scoring functions has given improved results. This
approach has been widely regarded as “Consensus Scoring” [46].

Another set of scoring functions which have recently started to attract attention
are based on machine learning. One of the programs based on functions incorpo-
rating machine learning was able to achieve an astounding hit rate of 88.6% [82].
The nexus of machine learning and scoring functions is promising but the develop-
ment of such a tool is slow owing to its complexity.

In order to compare the variety of scoring functions that have been developed
up until now, comparative assessment of scoring functions (CASF) is an incredible
platform to begin with [83].

There is another set of classification proposed for the scoring functions namely
physics-based methods, empirical scoring functions, knowledge-based potentials,
and descriptor-based scoring functions but there is still no clear consensus on which
classification of scoring functions would be appropriate [84].

3. Applications

Molecular docking has been developed and improving for many years, but its
ability to generate a viable drug is still generally questioned. In the section below,
you will find examples where docking approach lead to recognition of active hits for
a variety of different receptors/targets.

HIV 1 Integrase—a new binding site for drugs treating AIDS was discovered
by Schames et al. using docking while considering the flexibility of the receptor
through molecular dynamics. The group used AutoDock in conjunction with
the relaxed-complex method to discover novel mode of inhibition of HIV
integrase [85].

α1A Adrenergic receptor—Evers et al. generated a model of the receptor using
homology modeling based on the X-ray crystallographic structure of bovine rho-
dopsin. Hierarchical virtual screening method was performed by them on the
Aventis in-house compound repository in a stepwise manner. 22,950 filtered com-
pounds were then docked into the α1A receptor homology model with the program
GOLD and scored with PMF. The top scoring compounds were finally clustered
according to their unity fingerprint similarity, and a diverse set of 80 compounds
was tested in a radio ligand displacement assay. Thirty-seven compounds displayed
a Ki < 10 μM with the most active having Ki = 1.4 nM [86].

Type I TGF-beta receptor kinase—A striking example and a proof of the benefit
of in silico approach over classical high-throughput screening involves the discov-
ery of novel Type I TGF-beta receptor kinase inhibitor. The same molecule (HTS-
466284); Figure 1, a 27 nM inhibitor, was discovered independently using virtual
screening [87] and also by traditional enzyme and cell-based high-throughput
screening in the same year [88]. The compound discovered experimentally required
in vitro screening of a large library of compounds in a TGF-β-dependent cell-based
assay which required more time, proved to be costlier and required usage of a
variety of chemicals when compared to its computational counterpart.
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Aurora Kinase A—A major improvement was seen in the inhibitory activity of
Aurora Kinase A inhibitors which were designed using in silico techniques by Park
et al. [89]. This research group made use of a genetic algorithm to carry out the
sampling while the scoring function involved the energy terms from the AutoDock
program with a slight modification of the dehydration energy term. The design
strategy and tools used to carry out the study proved to be immensely successful
with some inhibitors revealing exceptionally high potency at low picomolar levels;
Figure 2 [89].

Dopamine D3 receptor—The 3D structure of the Dopamine 3 (D3) subtype
receptor was modeled by Varady et al. from the X-ray crystallographic structure of
rhodopsin and validated using experimental data. A D3 pharmacophore model was
devised by them from 10 selective and potent known D3 receptor ligands. Using
their model, 250,251 compound were screened from the National Cancer Institute
(NCI) 3D database. The hit list of 2478 potential ligands was then filtered for known
chemotypes. After removal of all compounds that were structurally similar to
known D3 receptor ligands, 1314 candidates remained. At the end, 20 compounds
supplied by NCI to the group were tested, out of which eight had Ki values below
500 nM, among which one of the compounds had Ki = 11 nM; Figure 3 [90].

Serotonin receptor (5HT1A)—Due to lack of structural information available for
the receptor, Becker et al. made use of PREDICT, to develop a unique non-
homology model for building a virtual 3D structure of the receptor. Using the
model, 40,000 compounds from Predix’s compound library were screened for
molecular docking and 78 virtual hits were discovered and then purchased by them
from respective vendors. The in vitro 5-HT1A binding assays elucidated that 16 of
the 78 compounds tested by the group were found to be hits with Ki < 5 μM,
reflecting a 21% hit rate, 9 of which had a Ki < 1 μM. The most potent molecule had
Ki = 1 nM (Figure 4) and was selected as a lead molecule for further optimization.
One significant feature of the study which highlights the utility of docking was that

Figure 1.
Structure of HTS-46628, type I TGF-beta receptor kinase inhibitor.

Figure 2.
Structures for Aurora Kinase A inhibitor with IC50 12 and 43 pM respectively.
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the complete discovery process, i.e., from in silico screening through lead optimi-
zation, preclinical, and into clinical studies, was very rapid, requiring less than a
couple of years from program initiation to Phase I clinical trial [91].

Crystal structure prediction challenge—The International Blind Test is a chal-
lenge organized by the Cambridge Crystallographic Data Center wherein a previ-
ously determined crystal structure is only revealed once all the participants submit
their respective structures. In the Fifth International Blind Test, the challenge was
toughened by including flexible molecules with 50–60 atoms. The successful pre-
diction by two participants of the crystal structure of molecule XX in the blind test
indicated that search methods and models for lattice energy are capable of provid-
ing worthwhile results, both in terms of the range of structures considered in the
search and relative energies of the structures and thus can act as efficient ranking
systems [92].

Muscarinic M3 receptor—A pharmacophore model was constructed by Marriot
et al. from the known molecules showing significant M3 potency [93]. The research
group utilized the program DISCO, which generated five models. Three models
were rejected based on structural overlay. 3D screening was performed by Unity 3D
of the Astra compound database. The first model developed by them gave 176 hits
while the second model gave 173 hits; 172 compounds were common to the two sets
and were tested for their M3-antagonistic potency. Several compounds with

Figure 3.
Structure of dopamine D3 receptor inhibitor with Ki = 11 nM.

Figure 4.
Structure of serotonin receptor inhibitor with Ki = 1 nM.
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the complete discovery process, i.e., from in silico screening through lead optimi-
zation, preclinical, and into clinical studies, was very rapid, requiring less than a
couple of years from program initiation to Phase I clinical trial [91].

Crystal structure prediction challenge—The International Blind Test is a chal-
lenge organized by the Cambridge Crystallographic Data Center wherein a previ-
ously determined crystal structure is only revealed once all the participants submit
their respective structures. In the Fifth International Blind Test, the challenge was
toughened by including flexible molecules with 50–60 atoms. The successful pre-
diction by two participants of the crystal structure of molecule XX in the blind test
indicated that search methods and models for lattice energy are capable of provid-
ing worthwhile results, both in terms of the range of structures considered in the
search and relative energies of the structures and thus can act as efficient ranking
systems [92].

Muscarinic M3 receptor—A pharmacophore model was constructed by Marriot
et al. from the known molecules showing significant M3 potency [93]. The research
group utilized the program DISCO, which generated five models. Three models
were rejected based on structural overlay. 3D screening was performed by Unity 3D
of the Astra compound database. The first model developed by them gave 176 hits
while the second model gave 173 hits; 172 compounds were common to the two sets
and were tested for their M3-antagonistic potency. Several compounds with
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micromolar and even submicromolar activities resulted, for example, compound
below had A50 M3 antagonism ≈ 0.2 μM; pA2 = 6.67; Figure 5 [93].

Checkpoint Kinase 1—Lyne et al. utilized virtual screening to discover Check-
point Kinase 1 (Chk-1) inhibitors [94]. Compounds with molecular weight > 600 or
with more than 10 rotatable bonds were excluded from the database. Then 3D
structures of the ligands were generated using Corina and a maximum of 8 stereo-
isomers were generated for each molecule. A 3D pharmacophore search was
performed with their in-house program Plurality to eliminate compounds that do
not have the typical binding motif for the kinase region. The remainder of the
compounds were docked into the ATP binding site of Chk-1, using the program
FlexX-Pharm, which considers full flexibility of the ligand but treats the protein as a
rigid structure. The research group then utilized consensus scoring to identify
molecules which were consistently giving good score with different scoring func-
tions. Finally, visual inspection by the group of the 250 highest scoring hits for
unfavorable interactions with the binding site or compounds with unrealistic con-
formations resulted in a list of 103 compounds for biological testing. Thirty-six hits
were identified with IC50 ranging from 110 nM to 68 μM; Figure 6 [94].

Human Cathepsin K—Schröder et al. presented the implementation of a
docking-based virtual screening workflow for the retrieval of covalent binders,
human cathepsin K was utilized as a test case [95]. By using the filter of electrophilic
war heads, a database with two million structurally diverse compounds with a

Figure 5.
Structure of muscarinic M3 receptor antagonist.

Figure 6.
Structures of checkpoint kinase 1 inhibitor with IC50 450 nM and 4 μM respectively.
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variety of functional groups was reduced to a data set of just 343 test compounds.
Molecular docking was performed by them and the top scoring poses of the
GoldScore ranking list were taken into account for the manual selection of the
virtual hits based on visual inspection of the appropriate fit of the molecule in the
active site. A data set of 44 compounds including the five low scoring compounds
were finally selected for experimental evaluation. The activity of 21 out of the
selected 39 in silico hits was experimentally confirmed and four out of the five
structures predicted as inactive showed no activity on cathepsin K. This study
demonstrated to a huge extent the ability of docking to generate positive outcomes
(Figure 7) [95].

Human aldose reductase (ALR2)—ALR2 catalyzes a key reaction in the polyol
pathway of glucose metabolism, a process implicated in the long-term complica-
tions of diabetes. Its inhibitors were designed by Wang et al. using molecular
dynamic (MD) simulations and virtual screening [96]. A major challenge encoun-
tered by them in the in silico studies was that the binding site of the enzyme
underwent large conformational changes and adopted distinct configurations upon
binding different classes of ligands. To address this issue, the group sampled poten-
tially accessible binding site conformations by MD simulations based on the avail-
able crystallographic structures of ALR2. After this procedure, three average
conformations were selected for the docking. FlexX was utilized to carry out
docking of 7200 compounds of which 128 compounds were selected by them for
further screening. Out of these 72 molecules were selected which had RMSD < 3.00
A for experimental assay, of which 15 novel ALR2 inhibitors hits were discovered.
The most potent inhibitor had an IC50 = 0.24 μM; Figure 8 [96].

Cyclooxygenase-2 (COX-2) and β-amyloid aggregation inhibitors—Dadashpour
et al. made use of AutoDock4.2 to carry out docking studies of designed molecules

Figure 7.
Respective structures for active and inactive covalent binders of human cathepsin K.

Figure 8.
Structure of human aldose reductase inhibitor with IC50 = 0.24 μM.
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Figure 5.
Structure of muscarinic M3 receptor antagonist.

Figure 6.
Structures of checkpoint kinase 1 inhibitor with IC50 450 nM and 4 μM respectively.
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selected 39 in silico hits was experimentally confirmed and four out of the five
structures predicted as inactive showed no activity on cathepsin K. This study
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tially accessible binding site conformations by MD simulations based on the avail-
able crystallographic structures of ALR2. After this procedure, three average
conformations were selected for the docking. FlexX was utilized to carry out
docking of 7200 compounds of which 128 compounds were selected by them for
further screening. Out of these 72 molecules were selected which had RMSD < 3.00
A for experimental assay, of which 15 novel ALR2 inhibitors hits were discovered.
The most potent inhibitor had an IC50 = 0.24 μM; Figure 8 [96].
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based on diaryltriazine as lead. To validate the enzyme-inhibitor complex, the key
molecular interactions and calculated binding energy were considered by them.
Among the designed molecules, one of the compounds (Figure 9) showed an IC50
of 10.1 μM in experimental COX-2 assay. In addition, it showed potent anti-
aggregation activity on β peptides [97].

4. Limitations

The major limitation of molecular docking is due to the lack of confidence on the
ability of scoring functions to give accurate binding energies. This stems from the
fact that some intermolecular interaction terms are hardly predicted accurately,
such as solvation effect and entropy change [98]. In addition, some intermolecular
interactions are rarely considered in scoring functions which have been proven to
be of significance. For instance, halogen bonding is verified to make a contribution
to protein-ligand binding affinity [99] and so do guanidine-arginine interactions
[100], but are not considered.

Transthyretin-thyroxine complex—One critical example wherein energy func-
tions failed is that of transthyretin-thyroxine complex. The docking simulations
with energy functions resulted in generation of two binding modes, one similar to
the native binding mode of thyroxine and the other belonging to an alternate
binding domain with a root mean square deviation (RMSD) of 8.97 Å from native
binding state. The energy simulation was carried out and the lower energy solution
picked by the docking program was the one with higher RMSD. Thus, in this case
molecular docking failed to make the correct prediction of binding mode. Thereby,
it would be fair to conclude that we might get many false negatives during the
process of VS. [101].

It is still an unsolved problem to accurately deal with the water molecules in
binding pocket during docking process, which is tough task and needs a lot of
attention in the near future due to two reasons. Firstly, the x-ray crystal structures
lack the coordinate information of hydrogen, due to inefficient scattering by
smaller atoms. Not knowing the exact position of hydrogen leads to inaccuracies in
identifying water molecules which might be acting as a bridging molecule between
the ligand and the receptor. Secondly, no reliable theoretical approach is available
to accurately predict how water molecules are affected by ligands and how strong
the effect is. On top of that, it impossible with our current knowledge to predict
how many water molecules in the binding pocket would be replaced by potential
ligands and how the hydrogen bonding network would be disturbed by ligand
binding [102].

Figure 9.
Structure of cyclooxygenase-2 inhibitor with IC50 = 10.1 μM.
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One of the major challenges faced in the field of docking is that of rigid receptor.
A protein can adopt many different conformations depending upon the ligand to
which it binds. As a result, docking performed using a rigid receptor will corre-
spond to a single receptor conformation, which leads to false negatives in many
cases where later the ligand was found to be active. This happens because a protein
can exist in constant motion between different conformational states having similar
energies, which is usually neglected in docking [58].

Finally, the spectrum of activity against off-target proteins is something rarely
seen even in computational screens and is only dealt by animal and human trials.

5. Conclusion

Thus, it is quite evident from the case studies highlighted above and many more
success stories that one can find in literature related to computer aided drug design,
that in silico approaches in combination with biophysical data, experimental high
throughput screening and biology/toxicology/clinical studies are an indispensable
tool in the process of drug discovery. It assists in decision making, conceptualizing
new ideas and exploring them in a rapid manner to test a hypothesis, bringing
solutions to problems that cannot be assessed experimentally either because the
experiments is too difficult to design or because it would cost too much.

Undoubtedly, many challenges still remain to be addressed such as role of water
molecules, solvent effects, entropic effects, and receptor flexibility.

There is more than sufficient information now that proves the utility of compu-
tational tools in drug design and there is no scope for any debate regarding the
effectiveness and advantage of computational tools in the process of drug discovery.
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Among the designed molecules, one of the compounds (Figure 9) showed an IC50
of 10.1 μM in experimental COX-2 assay. In addition, it showed potent anti-
aggregation activity on β peptides [97].
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The major limitation of molecular docking is due to the lack of confidence on the
ability of scoring functions to give accurate binding energies. This stems from the
fact that some intermolecular interaction terms are hardly predicted accurately,
such as solvation effect and entropy change [98]. In addition, some intermolecular
interactions are rarely considered in scoring functions which have been proven to
be of significance. For instance, halogen bonding is verified to make a contribution
to protein-ligand binding affinity [99] and so do guanidine-arginine interactions
[100], but are not considered.

Transthyretin-thyroxine complex—One critical example wherein energy func-
tions failed is that of transthyretin-thyroxine complex. The docking simulations
with energy functions resulted in generation of two binding modes, one similar to
the native binding mode of thyroxine and the other belonging to an alternate
binding domain with a root mean square deviation (RMSD) of 8.97 Å from native
binding state. The energy simulation was carried out and the lower energy solution
picked by the docking program was the one with higher RMSD. Thus, in this case
molecular docking failed to make the correct prediction of binding mode. Thereby,
it would be fair to conclude that we might get many false negatives during the
process of VS. [101].

It is still an unsolved problem to accurately deal with the water molecules in
binding pocket during docking process, which is tough task and needs a lot of
attention in the near future due to two reasons. Firstly, the x-ray crystal structures
lack the coordinate information of hydrogen, due to inefficient scattering by
smaller atoms. Not knowing the exact position of hydrogen leads to inaccuracies in
identifying water molecules which might be acting as a bridging molecule between
the ligand and the receptor. Secondly, no reliable theoretical approach is available
to accurately predict how water molecules are affected by ligands and how strong
the effect is. On top of that, it impossible with our current knowledge to predict
how many water molecules in the binding pocket would be replaced by potential
ligands and how the hydrogen bonding network would be disturbed by ligand
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One of the major challenges faced in the field of docking is that of rigid receptor.
A protein can adopt many different conformations depending upon the ligand to
which it binds. As a result, docking performed using a rigid receptor will corre-
spond to a single receptor conformation, which leads to false negatives in many
cases where later the ligand was found to be active. This happens because a protein
can exist in constant motion between different conformational states having similar
energies, which is usually neglected in docking [58].

Finally, the spectrum of activity against off-target proteins is something rarely
seen even in computational screens and is only dealt by animal and human trials.

5. Conclusion

Thus, it is quite evident from the case studies highlighted above and many more
success stories that one can find in literature related to computer aided drug design,
that in silico approaches in combination with biophysical data, experimental high
throughput screening and biology/toxicology/clinical studies are an indispensable
tool in the process of drug discovery. It assists in decision making, conceptualizing
new ideas and exploring them in a rapid manner to test a hypothesis, bringing
solutions to problems that cannot be assessed experimentally either because the
experiments is too difficult to design or because it would cost too much.

Undoubtedly, many challenges still remain to be addressed such as role of water
molecules, solvent effects, entropic effects, and receptor flexibility.

There is more than sufficient information now that proves the utility of compu-
tational tools in drug design and there is no scope for any debate regarding the
effectiveness and advantage of computational tools in the process of drug discovery.
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Chapter 4

Computational Deorphaning of 
Mycobacterium tuberculosis Targets
Lorraine Yamurai Bishi, Sundeep Chaitanya Vedithi,  
Tom L. Blundell and Grace Chitima Mugumbate

Abstract

Tuberculosis (TB) continues to be a major health hazard worldwide due to 
the resurgence of drug discovery strains of Mycobacterium tuberculosis (Mtb) and 
co-infection. For decades drug discovery has concentrated on identifying ligands 
for ~10 Mtb targets, hence most of the identified essential proteins are not utilised 
in TB chemotherapy. Here computational techniques were used to identify ligands 
for the orphan Mtb proteins. These range from ligand-based and structure-based 
virtual screening modelling the proteome of the bacterium. Identification of 
ligands for most of the Mtb proteins will provide novel TB drugs and targets and 
hence address drug resistance, toxicity and the duration of TB treatment.

Keywords: Mycobacterium tuberculosis, target deorphaning, target deconvolution, 
proteome modelling, virtual screening

1. Introduction

Tuberculosis (TB) continues to be a major public health concern with over 
2 billion people currently infected, 8.6 million new cases per year, and more than 
1.3 million deaths annually [1]. The current drug-regimen combination for drug 
sensitive TB consists of isoniazid, rifampicin, ethambutol and pyrazinamide, 
administered over 6 months [2]. If this treatment fails, second-line drugs are used, 
such as para-aminosalicylate (PAS) and fluoroquinolones, which are usually either 
less effective or more toxic with serious side effects. Although this regimen has a 
high success rate, it is marred by compliance issues, which have resulted in the rise 
of multidrug resistant (MDR), extensively drug resistant (XDR) and totally drug 
resistant (TDR) strains of the causative agent, Mycobacterium tuberculosis (Mtb) 
[3, 4], in both immunocompetent and immunocompromised patients worldwide 
[5]. However, it took about 40 years for a new TB drug to be discovered and most 
of the current TB drugs target a total of only ~10 proteins, even though the com-
plete genome of Mtb was published nearly 20 years ago [6]. Consequently, most 
of the essential proteins are orphans since their ligands are still to be identified. In 
our context, target deorphaning or deconvolution encompasses identification of 
ligands for Mtb proteins not currently exploited in TB chemotherapy and those of 
old TB targets. Targeting further essential proteins should allow the fight against 
drug resistance to be enhanced, and possibly lead to a reduction in the duration of 
TB treatment.
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The conventional target deorphaning process involves experimental work, 
which characteristically includes genetic, proteomics and transcriptional profiling 
and then identification of the ligands for the proteins using many more chemical-
proteomic approaches [7]. This approach is usually long, expensive and time 
consuming. However, developments in bioinformatics and chemoinformatics, 
together with advances in computer tools and resources, have fortunately revolu-
tionised target deorphaning. Bioinformatics describes the target space in Mtb from 
the genome to the proteome, whilst chemoinformatics provides information about 
the available chemical space and tools for navigation of the space. Together these 
developments have led to a mushrooming of computer-based target deorphaning 
methods ranging from modelling proteomes, virtual screening, machine and deep 
learning, and chemogenomics [8–10]. When used effectively in conjunction with 
experimental work, computational methods can facilitate identification of new TB 
targets and drugs [11–13].

Therefore, in this chapter we present an overview of the genome of Mtb, giving a 
detailed account on how the computational techniques have been used to de-orphan 
Mtb targets including case studies, the current and proposed future impacts of these 
techniques on the number of de-orphaned Mtb targets and their impacts in boosting 
the biomedical efficacy of TB drugs. The collated data will provide researchers in 
academia and industry with knowledge of target-ligand pairs and interactions, infor-
mation crucial for the design of novel drugs with known targets that are less prone to 
resistance, with minimal side effects and interactions with e.g. anti-HIV drugs.

2. Method

An extensive literature search was performed to give an overview of the genome of 
the Mtb and status of the currently used tuberculosis drugs and their targets. An analy-
sis of the essential proteins in Mtb and the number of proteins targeted by the current 
TB drugs was performed. To boost this data Mtb target-ligand data was extracted from 
the ChEMBL database version 24 (https://www.ebi.ac.uk/chembl/beta/g/#browse/
targets), which was used to determine the number of the proposed new targets. 
An overview of computational deorphaning of Mtb targets is provided, using data 
extracted from literature and a description of the efforts made from our laboratory. 
To sum this up, a detailed account of modelling the proteome for Mycobacteria, and 
identification of the hotspots and druggability of the proteins is given.

3. Genome sequence of Mycobacterium tuberculosis

Cole and co-workers [14] in 1998 reported the complete sequence of Mtb, which 
comprises of 4,411,529 base pairs. The genome has an evenly distributed guanine-
cysteine content of 65.6% and represents the second-largest bacterial genome 
sequence currently available. Additionally, the genome is rich in repetitive DNA, 
particularly insertion sequences, and in new multi-gene families and duplicated 
housekeeping genes, providing evidence for horizontally-transferred pathogenicity 
islands of a particular base composition [14].

The genome of Mtb has some exceptional features, for example there are over 
200 genes that encode enzymes for the metabolism of fatty acids, comprising 6% of 
the total (Table 1). Among these, about 100 are predicted to function in the oxida-
tion of fatty acids. This large number of Mtb enzymes that putatively have fatty 
acids as substrates may be linked to the ability of this pathogen to grow in the tissues 
of the infected host, where fatty acids maybe the major carbon source. Another 
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unusual feature of the Mtb genome is the presence of the unrelated Pro-Glu (PE) 
and Pro-Pro-Glu (PPE) families of proteins that have conserved N-terminal 
domains of 100 and 180 amino acids respectively. The antigenicity of these proteins 
has led to the assumption that at least some of these proteins may be involved in 
antigenic variation of Mtb during infection [15].

3.1 Current status of tuberculosis drugs and targets

3.1.1 Tuberculosis drugs

The success of TB chemotherapy derives from an “intensive” phase involving 
a cocktail of four first-line drugs, comprising, rifampicin (RIF), isoniazid (INH), 
pyrazinamide (PZA), and ethambutol (EMB). A threatening global issue of this 
epidemic is the emergence of drug-resistant bacteria, a trend that is on the rise, as 
such strains are easily spread with low fitness costs associated with transmission 
[16]. The World Health Organisation (WHO) reported that globally 3.5% of naive 
infections already expressed resistance to the two most efficacious frontline agents 
used to treat the disease, RIF and INH, thereby classifying the infection as multi-
drug resistant tuberculosis (MDR-TB) [17]. Treatment of drug-resistant Mtb is dif-
ficult already, requiring 6–9 months of combination therapy of second-line drugs, 
such as PAS, fluoroquinolones e.g. levofloxacin, and aminoglycosides e.g. kanamy-
cin, capreomycin, ethionamide and cycloserine. Complicating the issue is the fact 
that TB is endemic to the developing world; thus, access to adequate healthcare 
facilities and drugs can be limited for those patients. This leads to non-compliance 
by most patients, relapse of the disease and severe side-effects especially of second-
line drugs [18]. Treatment for MDR-TB can extend upwards of 2 years and relies on 
more toxic, less efficacious second-line drugs, many of which are even more scarce 
than frontline drugs in affected areas [16].

In addition, comorbidity with HIV causes massive diagnostic and therapeutic 
challenges and results in adverse drug interactions [19]. This is because RIF is 
a potent inducer of drug-metabolising enzymes, including cytochrome P450 
(CYP) 3A4. This induction dramatically reduces plasma levels of several highly 
active antiretroviral therapy drugs; thus, patients are often forced to complete 

Function No. of 
genes

% of total 
genes

% of total coding 
capacity

Lipid metabolism 225 5.7 9.3

Information pathways 207 5.2 6.1

Cell wall and cell processes 517 13.0 13.5

Stable RNAs 50 1.3 0.2

IS elements and bacteriophages 137 3.4 2.5

PE and PPE Proteins 167 4.2 7.1

Intermediary metabolism and respiration 877 22.0 24.6

Regulatory proteins 188 4.7 4.0

Virulence, detoxification and adaptation 91 2.3 2.4

Conserved hypothetical function 911 22.9 18.4

Proteins of unknown function 607 15.3 9.9

Table 1. 
General classification of Mtb genes. Adopted from [15].
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ficult already, requiring 6–9 months of combination therapy of second-line drugs, 
such as PAS, fluoroquinolones e.g. levofloxacin, and aminoglycosides e.g. kanamy-
cin, capreomycin, ethionamide and cycloserine. Complicating the issue is the fact 
that TB is endemic to the developing world; thus, access to adequate healthcare 
facilities and drugs can be limited for those patients. This leads to non-compliance 
by most patients, relapse of the disease and severe side-effects especially of second-
line drugs [18]. Treatment for MDR-TB can extend upwards of 2 years and relies on 
more toxic, less efficacious second-line drugs, many of which are even more scarce 
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Function No. of 
genes

% of total 
genes

% of total coding 
capacity

Lipid metabolism 225 5.7 9.3

Information pathways 207 5.2 6.1

Cell wall and cell processes 517 13.0 13.5

Stable RNAs 50 1.3 0.2

IS elements and bacteriophages 137 3.4 2.5

PE and PPE Proteins 167 4.2 7.1

Intermediary metabolism and respiration 877 22.0 24.6

Regulatory proteins 188 4.7 4.0

Virulence, detoxification and adaptation 91 2.3 2.4

Conserved hypothetical function 911 22.9 18.4

Proteins of unknown function 607 15.3 9.9

Table 1. 
General classification of Mtb genes. Adopted from [15].
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their TB treatment before beginning HIV treatment [20]. Patients who contract 
MDR-TB with HIV have a very poor prognosis due to the duration of treatment; 
these individuals frequently succumb within a few months. Therefore, there is an 
urgent need to develop continually new active agents to combat MDR-TB which has 
been compounded by the emergence of XDR-TB. Furthermore, cases of TDR-TB 
have been noted in China, India, Africa, and Eastern Europe. In TDR-TB, the 
Mycobacterium are resistant to all available therapeutics [19]. To address this, in 
2012 the U.S. Food and Drug Agency (FDA) approved bedaquiline for MDR-TB [21] 
and later delamanid was approved as a compassionate care option for XDR-TB and 
TDR-TB infections, nonetheless the EMA approved both agents for MDR-TB [22]. 
The biggest challenge is that these drugs have reported human ether-a-go-go related 
gene (hERG) toxicity, as well as multiple absorption, distribution, metabolism and 
excretion (ADME) issues due to their high lipophilicity [21]. This leads to an urgent 
need for development of new agents that have successful therapeutic effects.

3.1.2 Mycobacterium tuberculosis drug targets

To date the number of essential Mtb proteins encoded by approximately 4000 
genes is just over 500 (Figure 1), and this provides a rich source for novel targets 
for new and current TB drugs. However, Lamichhane et al. [23] reported that TB 
chemotherapy exploited only 10 of these proteins; Table 2, gives a summary of 
the targets, and their current and/or new drug ligands. The most popular target is 
enoyl[acyl-carrier protein] reductase, important for the biosynthesis of mycolic acid. 
Efforts to identify genes that code for new potential drugs are underway, as evidenced 
by 76 TB data points recorded in the ChEMBL database version 24 (https://www.ebi.
ac.uk/chembl/beta/g/#browse/targets), consisting of small bioactive compounds, 
their targets and bioassay data. There are 73 single proteins, including the 10 proteins 
already targeted by both first-line and second-line drugs during TB chemotherapy. 
Thus, 63 new drug targets are being explored in a plethora of bioassays.

This is of paramount importance because Mtb secreted proteins play a vital 
role in host-pathogen interactions and facilitate nutrient acquisition, pilot the host 
immune response and interfere with therapeutic intervention. Therefore, the Mtb 
secretome consists of proteins essential for successful invasion and in vivo growth 
during host infection. The essential proteins are the most suitable drug targets for 
the development of diagnostic tools and new drugs, because of their key role in in 
vivo bacterial survival and growth. Identifying ligands for these proteins required 
for growth and survival in the infected host could lead to the discovery of poten-
tially useful biomarkers to add on the above mentioned drug targets [27].

Figure 1. 
Circular diagram of the genome of Mtb genes, essential proteins and the number of proteins that are drug 
targets.
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Targets Function Conventional 
drugs

New ligands

Enoyl-(acyl-carrier-
protein) reductase (InhA), 
Fatty acid synthase

Biosynthesis of mycolic 
acids, that is essential 
for growth and 
virulence

Isoniazid
Ethambutol
Pyrazinamide
Delamanid

Tetrahydropyrans 
(PT070)
Methylthiazoles
Diazaborines
Pyrrolidine-carboxamide
Piperazine 
indoleformamides
Aminoproline
Arylamides
Imidazopiperidines

DNA gyrase An ATP-dependent 
enzyme that acts by 
creating a transient 
double-stranded DNA 
break

Fluoroquinolones Clinafloxacin

Ubiquinol-cytochrome 
C-reductase (QCrB)

Electron carriers of the 
respiratory chain

Pyrrolo[3,4-c]pyridine-
1,3(2H)diones
Lansoprazole

Transmembrane transport 
protein large (MmpL3)

Responsible for heme 
uptake into the cell.
Responsible for the 
transport of ions, 
drugs, fatty acids and 
bile salts

SQ109
Adamantyl ureas
Phenylpyrroles
Benzimidazoles
Tetrahydropyrazolo 
[1,5-a]pyrimidine-3-
carboxamide
Spiropiperidines

Decaprenylphospo-β-D-
ribofuranose-2-oxidase 
(DprE1)

Cell wall synthesis Benzothiazinones 
(BTZ043)
Benzothiazole (TCA1)
4-aminoquinolone 
piperidine amides
2-carboxyquinoxalines
Oxadiazoles
Benzo [b]thiophenes
Pyrazolopyridones

RNA polymerase Responsible for 
transcription

Rifampicin
Rifapentine
Rifabutin

Protein synthase Protein synthesis Linezolid 
(https://www.
drugbank.ca/
drugs/DB00601)

PNU100480
AZD5847

ATP Synthase ATP synthesis Bedaquiline D-Dethiobiotin

Cytidine triphosphate 
(CTP) synthetase

Catalysis of amination 
of uridine triphosphate 
(UTP) into CTP

Thiophenecarboxamide
4-(pyridine 2-yl) thiazole

Transcription factor 
(IdeR)

Regulating the 
intracellular levels of 
iron

Benzo-thiazol benzene 
sulfonic acid

Lysine-ε-amino 
transferase (LAT)

Catalysing reversibly 
the transamination 
of lysine into 
α-ketoglutaric acid

Benzothiazole

Table 2. 
Mtb drug targets and the current used drugs [24–26].
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4. Computer resources and tools for tuberculosis drug targets

The development in genomics, coupled with advances in high performance 
computing and validation of molecular targets, has introduced new approaches 
to drug discovery that provide a shift from the historical pipeline that focuses on 
target identification and in most cases involves single targets. In this era of extensive 
discovery of new chemical entities for treatment of TB and other infectious diseases 
like HIV/AIDs, a number of research institutes as well as pharmaceutical companies 
are eagerly developing computational tools and protocols to facilitate drug discovery 
and development [28]. Genomics provide DNA, RNA, transcriptomic and proteomic 
data that is housed in a variety of databases and provide resources e.g. from the 
European Bioinformatics Institute (EBI) https://www.ebi.ac.uk/, and the National 
Centre for Biotechnology Information (NCBI) https://www.ncbi.nlm.nih.gov/, 
which can be easily retrieved and analysed, thereby shifting the drug discovery focus 
from a single to a multi-protein target approach. In this approach Mtb genomic data 
are analysed for network, structure and function of a number of essential proteins 
that are druggable and validated as potential targets for a number of bactericidal or 
bacteriostatic chemical compounds. In this section, different databases, resources 
and tools for target deorphaning are discussed with a particular focus on Mtb targets.

The revolution in genomics led to the availability of a number of mycobacterial 
genomes and the development of a variety of databases consisting of Mtb genomic 
and transcriptomic data. The genomic databases provide information about the 
structure, function and evolution of Mtb genes, whilst the transcriptomics provide 
information crucial for analysis of gene expression using large scale RNA sequences 
[29]. On the other hand proteomics provides information about the function, 
networks and structure of proteins. In their paper, Machado et al. [29] give a detailed 
summary of most computational resources for TB and we encourage readers to con-
sult the article for more information. Similarly a number of chemogenomic resources 
and database containing data for Mtb ligand annotated targets have been developed. 
Examples of such databases include the ChEMBL database [30], a database of small 
bioactive molecules and their targets, TIBLE [31] a database containing MIC and tar-
get data for mycobacterial species and TDR targets containing target-ligand informa-
tion for neglected tropical diseases including TB. The databases are freely available 
and provide easy access to target-ligand data for Mtb. In these databases each target is 
associated to ligand(s) obtained from bioassays and vice versa.

5. Computational target deorphaning techniques

A number of computational methods are being explored in order to identify 
ligands for both host and pathogen targets and for targets from other organ-
isms like Plasmodium falciparum [32]. In most cases two or more complementary 
ligand-based and structure-based deorphaning approaches are used; statistical 
methods involving machine learning [8] and deep learning strategies are applied in 
conjunction with biological and/or biophysical methods to validate the computa-
tional results or the computational methods are used to provide the protein-ligand 
binding information in the absence of X-ray co-crystallised structures of the ligand 
[12, 13]. In their work, Mendes and Blundell [13] applied cheminformatics to 
complement current efforts for target identification of fragment-sized molecules 
that target e.g. the PanC that synthesises pantothenate important for generation of 
the Mtb co-enzyme A. This has led to the identification of ‘hotspots’ in the binding 
pockets of a number of proteins, which highlight the most favoured binding spots 
for the protein. Hotspots and druggability will be discussed in detail in Section 6.
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5.1 Ligand-based and structure-based virtual screening methods

Structure-based virtual screening is an approach used in drug discovery to com-
putationally screen small molecule databases for compounds that target proteins of 
known 3D structure that are experimentally validated. Brain Shoichet [33] has pointed 
out that this approach was first published in the 1970s, however most new ligands and 
their targets were not identified until the early 2000. The method offers the opportu-
nity to access a large number of potential new chemical ligands for old and new targets. 
In the presence of available ligands for named biological targets, ligand-based virtual 
screening may be used using a variety of techniques ranging from molecular similarity, 
pharmacophoric search, to machine learning and most recently deep learning.

5.1.1 Structure-based techniques

Structure-based virtual screening plays a significant role in drug discovery in 
that it is used to identify ligands for biological targets when the 3D structures of 
the Mtb targets from X-ray crystallography, nuclear magnetic resonance (NMR) 
or cryoelectron microscopy are available in the Protein Data Bank, or homol-
ogy models available in the CHOPIN database and/or generated in house. This 
method applies structural data of proteins/receptors to provide small molecules 
with specific structural attributes for good binding affinity [34]. Generally, the 
process involves three crucial steps, namely preparation of 3D crystal structures 
of proteins obtained from the Protein Data Bank (PDB) and the ligand structures, 
docking calculation and data analysis. Protein structure preparation involves adding 
hydrogen atoms that are normally missing in the coordinate files, adding missing 
residues, optimising hydrogen bonds, removing atomic clashes, as well as sampling 
the degrees of freedom such as flip that are not clear in standard resolution crystal 
structures, for example the 180o flips of chain terminal rotatable side-chain groups 
e.g. in shape-symmetric amino acids Asn and Gln, tautomer and/or ionisation state 
and relaxation of the target and ligand structure [35]. Most docking software is 
associated with protein and ligand preparation tools, for example Autodock4 or 
VINA require structures prepared using AutoDockTools (ADT) and the protein 
preparation script to generate Autodock-type atoms containing Gasteiger charges, 
and produce the pdbqt files that are compatible with the tool [36]. Similarly, the 
Primex and Ligprep tools are used to prepare the protein and ligand structures 
respectively before docking with GLIDE [37]. The quality of input structure files 
contribute to the quality of the docking results, and the importance of protein and 
ligand preparation have been highlighted by Sastry [35].

5.1.1.1 Molecular docking

Molecular docking calculations are capable of predicting the binding conforma-
tion of ligands inside the binding pocket of a target, as such they are used to map 
small molecules onto targets and hence provide essential binding information for 
structure-based drug design. To achieve this, a number of docking algorithms like 
Autodock [36], perform a stochastic conformational search or e.g. in GLIDE, a [37] 
that perform a systematic search [34]. In a stochastic search structural parameters, 
such as torsional, translational and rotational degrees of freedom of the ligand, 
are randomly modified to generate an ensemble of molecular conformations and 
increase the chances of finding the energy global minimum, whilst in a systematic 
conformational search structural features are gradually changed until a local or 
global minimum is reached [34]. During the search, conformations of a number of 
potential binding compounds are explored and evaluated using a specific scoring 
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function. In addition, the conformations are ranked based on their calculated bind-
ing energy. Highly ranked compounds are selected as ligands for the target. On the 
other hand, reverse or inverse docking is used for identifying targets of drug pheno-
typic hits from a sea of targets. In this way, structure-based screening helps to iden-
tify and explain polypharmacology, molecular mechanism of action of substances, 
facilitate drug repurposing, detect adverse drug reactions and hence toxicity.

5.1.1.2 Deorphaning the HTH transcription regulator, EthR

In an effort to de-orphan the HTH transcription regulator, EthR, and identify 
the binding mode of the ligand, we docked 200 fragment-like compounds from the 
Maybridge database to the highest quality crystal structure of the 23 PDB entries 
using the GOLD algorithm (unpublished work). We used Arpeggio [38], an online 
tool that identifies non-covalent interactions in protein-structures, to assess the role 
of each EthR binding site residue and each small-molecule ligand moiety in con-
tributing to protein-ligand interactions. Visual assessment of interactions involved 
calculating interactions using the Arpeggio web server (http://structure.bioc.cam.
ac.uk/arpeggio) and downloading the results as PyMOL session files, to analyse the 
non-covalent interactions of each residue. We found that in addition to using polar 
contacts, most ligands are stabilised by a cascade of pi-interactions starting from 
Tyr103 close to the entrance of the allosteric pocket to Phe114 located close to the 
HTH-domain and beyond (Figure 2). Furthermore, potential ligands for the protein 
were identified. Information obtained from these results is vital identify ligands with 
a higher probability of binding to EthR, and so improve the potency and safety of 
ethionamide (ETH).

Figure 2. 
(A) Binding modes of two fragment-like molecules inside the long cylindrical allosteric binding pocket of 
EthR defined by five helices. Yellow sticks depict the molecule occupying the upper binding site close to the 
entrance of the pocket and cyan sticks represent a molecule occupying the inner binding site close to the HTH 
domain. (B) EthR-ligand interactions involving Trp103 (yellow) at the entrance of the binding pocket of the 
protein. Ligand atoms and bonds are in pink, grey rings are hydrophobic interactions, red rings show hydrogen 
bonds. (C) EthR-ligand (pink) interactions involving Phe110 located at the center of the binding pocket of 
EthR.
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Similarly, docking calculations were used to assess binding of ligands identified 
from for a novel TB drug target, inosine monophosphate dehydrogenase (IMPDH) 
protein Guab2 that is responsible for the synthesis of xanthosine monophosphate 
(XMP) from IMP, identified from high throughput screening [12]. Hit compounds 
were identified in a single shot high-throughput screen, validated by dose response 
and subjected to further biochemical analysis. The compounds were also assessed 
using molecular docking experiments, providing a platform for their further opti-
misation using medicinal chemistry. From the results, it was observed that occupa-
tion of the nicotinamide sub-site was correlated with interactions of the ligands 
with the purine ring of IMP.

5.1.1.3 Applying concerted computational and experimental approaches

Likewise, we used a combination of ligand-based and structure-based chemoge-
nomic approaches, followed by biophysical and biochemical methods, to identify 
targets for Mtb phenotypic hits deposited in the ChEMBL database [11]. In this 
work, EthR and InhA emerged as potential targets for many of the hits, and some of 
them displayed activity through both targets. From the 35 predicted EthR inhibitors 
25 displayed an inhibition of better than 50%, of which eight showed an IC50 better 
than 50 μM against Mtb EthR and three were confirmed to be also active against 
InhA. Further the EthR-ligand complexes were validated using X-ray crystallogra-
phy in the Blundell laboratory to give new crystal structures which were deposited 
in the Protein Data Bank. These results provide new lead compounds that could be 
further developed into highly active ligands of EthR and InhA and enhance treat-
ment of drug-resistant TB.

6. Modelling proteomes for mycobacteria, hotspots and druggability

A comprehensive understanding of the structural proteomes of mycobacteria 
is essential for novel drug discovery and elucidating the roles of mutations in drug 
resistance. Most researchers begin by defining the 3D-structure using X-ray crystal-
lography, NMR or increasingly cryo-EM. For phenotypic screening and under-
standing off-target hits, where the target is not identified, prior knowledge of the 
structures of all gene products in the target organism is helpful. This has stimulated 
the establishment of several consortia in what is usually known as structural 
genomics, but might more appropriately termed “structural proteomics”.

6.1 Evolution of structural genomics consortia

The Structural Genomics Consortium (SGC) [39] which has focused on proteins 
of interest to medicine, has impressive achievements, in 2011 defining ~40% of 
the structures of proteins from human parasites deposited in the PDB [40]. The 
Tuberculosis Structural Genomics Consortium (TBSGC), an international col-
laboration involving 53 countries, has focused on 3D structures of Mtb [40]. This 
activity and others working on Mtb proteomes have deposited 2274 structures in 
the PDB, but still representing less than 583 gene products, only 13.97% of genome. 
Although this is a small percentage, it compares impressively with knowledge 
of protein structures of two other mycobacterial pathogens where there is great 
clinical interest: for M. leprae causing leprosy there are experimentally-defined 3D 
structures for 15 gene products and for M. abscessus, a free living Mycobacterium, 
which is a growing challenge for cystic fibrosis patients, there are 53 experimen-
tally-defined 3D structures in the PDB.
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function. In addition, the conformations are ranked based on their calculated bind-
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Figure 2. 
(A) Binding modes of two fragment-like molecules inside the long cylindrical allosteric binding pocket of 
EthR defined by five helices. Yellow sticks depict the molecule occupying the upper binding site close to the 
entrance of the pocket and cyan sticks represent a molecule occupying the inner binding site close to the HTH 
domain. (B) EthR-ligand interactions involving Trp103 (yellow) at the entrance of the binding pocket of the 
protein. Ligand atoms and bonds are in pink, grey rings are hydrophobic interactions, red rings show hydrogen 
bonds. (C) EthR-ligand (pink) interactions involving Phe110 located at the center of the binding pocket of 
EthR.
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6.2 Comparative 3D modelling of proteins

Comparative modelling proteins, based on the fold recognition and structural 
alignment with the closest homologues that have experimentally solved structures, 
began using interactive graphics in the 1970s [41–43]. The development of auto-
mated modelling software began in the 1980s, initially with Composer [44] and 
later developed with Comparer [45] and Modeller [46], based on satisfaction of 3D 
restraints derived from structurally aligned homologues. Modeller has now been 
cited ~10,500 times in the literature!

6.2.1 Computational modelling pipelines and structural proteome databases

Rapid progress in this and other related software coupled with increasing com-
puting power has enabled genome scale prediction of protein structures, as a viable 
alternative to experimental determination. In order to construct computational models 
of all gene products, which we here refer to as the structural proteome, we identify 
templates by a sequence-structure homology search using Fugue [47], which uses 
local-structural-environment-specific substitution tables to predict the likelihood of a 
common 3D structure. We have incorporated Fugue into a pipeline (Vivace), in which 
templates are selected from TOCCATA (Ochoa Montaño and Blundell, unpublished), 
a database of consensus profiles built from CATH 3.5 [48] and SCOP 1.75A [49] based 
classification of proteins structures (PDB files). PDBs within each profile are clustered 
based on sequence similarity using CD-HIT [50] and structures are aligned using 
BATON, a modified version of COMPARER [45]. After further optimization of the 
clusters by discarding templates with more than 20% difference in sequence identity to 
the maximum hit, remaining templates are classified into states based on ligand binding 
and oligomerization. Five different states, known as “liganded-monomeric,” “liganded-
complexed,” “apo-monomeric,” “apo-complexed” and “any,” are generated in each 
profile hit. Models are built in each of these states using Modeller 9.10 [46] and refined. 
Later NDOPE, GA341 [51] Molprobity [52] and SSAG [53] are used to determine the 
quality of the models.

6.2.2 Mycobacterial proteome databases

The first application of this approach was to construct the Chopin Database  
(http://mordred.bioc.cam.ac.uk/chopin/about), a database of protein structures for 
H37Rv strain of Mtb. This has provided structures that are reasonably certain for around 
65% of gene products. These have proved reliable indicators of the overall structures but 
may have some uncertainties especially in loop regions and domain-domain relation-
ships. A further ~19% probably have correct folds while the remaining would unlikely 
to be correct. Nevertheless, compared to those structures defined experimentally by 
X-ray analysis, this represents a 6-fold increase of structural information available that 
might be useful in assessing druggability and the impacts of mutations.

Similar models of the structural proteome for M. abscessus (Skwark et al., 
unpublished) and M. leprae (Vedithi et al., unpublished) have been developed in 
the group. In M. leprae, of the 1615 gene products, templates were identified for 
1429 gene products and we were able to model 1161 proteins with high confidence. 
A total of 36,408 models were built in different ligand bound and oligomeric states 
for the 1161 proteins. The distribution of Fugue Z score across models indicates 
that only 4% of the proteome has no hits and 15% has poor scores. ~80% of the 
proteome has acceptable and good hits, and the corresponding Z scores. Around 
47% of the protein queries identified templates with identity and coverage greater 
than 40 and 67% of the models in the proteome are of best quality as estimated by 
NDOPE, GA341, Molprobity and Secondary Structure Agreement (SSAG).
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6.2.3 Oligomeric protein models

Current work on structural proteomes includes efforts to extend the modelling 
pipeline to homo-oligomeric (and eventually hetero-oligomeric) structures using com-
parative approaches (Malhotra et al., unpublished), extending models and improving 
models of small molecule complexes, and linking individual protein structures into 
the metabolic networks and interactions in the cell (Bannerman et al., unpublished). 
An example of an oligomeric structure is CTP-synthase, encoded by PyrG, which is 
an essential gene in Mtb identified by transposon saturation mutagenesis [54] and 
catalyses ATP-dependent amination of UTP to CTP with either L-glutamine or ammo-
nia. The allosteric effector GTP functions by stabilising the protein conformation that 
binds to the tetrahedral intermediates formed during glutamine hydrolysis. Its closest 
homologue in M. leprae ML1363 is a target of choice and was modelled using Vivace 
during the proteome modelling exercise. We modelled the apomeric and ligand bound 
states of the model and oligomerized the protomer using our inhouse oligomerization 
pipeline. The protomeric and oligomeric states are depicted in Figure 3A and B.

The models were built by using templates PDB-IDs: 4zdI and 4zdK for PyrG 
of Mtb [55]. Both the templates are 89% identical and 100% coverage to the query 
sequence. The superposition of the models with the templates indicated a root mean 
square deviation (RMSD) of 0.758.

6.3 Structural implications of mutations

We have also spent time over 2 decades analysing the impacts of mutations 
evident in the increasing wealth of available genome sequences for pathogenic myco-
bacteria and cancers. We originally developed SDM [56] in 1997, a method depend-
ing on statistical analysis of environment-dependent amino-acid substitution tables 
[57, 58]. In 2013 machine learning was introduced with the arrival of Douglas Pires in 
Cambridge, developing first mCSM for stability [59] followed by several “flavours” 
including mCSM-PPI for impacts on protein-protein interactions, mCSM-NA [60] 
for nucleic acid interactions and mCSM-lig for impacts on small-molecule ligand 
interactions useful for understanding drug resistance [61]. A critical part of using 
machine learning is to have an extensive database of experimentally-defined impacts 
of mutations on stability and interactions, such as Platinum by David Ascher when 
in Cambridge [62], a database of experimentally measured effects of mutations on 
structurally defined protein-ligand complexes that was developed for mCSM-lig. 
These two structural approaches to predicting the impacts of mutations (SDM & 
mCSM) have proved complementary and more reliable than most sequence-only 

Figure 3. 
(A) Protomeric model of PyrG (CTP-Synthase) of M. leprae modelled with a quality of 4.25 (best).  
(B) Homo-8-mer of PyrG of M. leprae modelled with a quality of 4.25 (best).
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65% of gene products. These have proved reliable indicators of the overall structures but 
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ships. A further ~19% probably have correct folds while the remaining would unlikely 
to be correct. Nevertheless, compared to those structures defined experimentally by 
X-ray analysis, this represents a 6-fold increase of structural information available that 
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the group. In M. leprae, of the 1615 gene products, templates were identified for 
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for the 1161 proteins. The distribution of Fugue Z score across models indicates 
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Figure 4. 
Indicates the maximum destabilising effect a mutation can induce on the stability of RNA-polymerase 
β-subunit of M. leprae (target for rifampin) measured by mCSM-stability.

methods. They also allow the application of saturation mutagenesis, facilitating  
in silico systematic analysis of mutations [63], an approach now being adopted to 
whole proteomes where every residue in each of the proteins in the proteome is 
mutated to all the other 19 amino acids and the effects of the mutations are measured 
using various methods mentioned above. In structure-guided fragment-based drug 
discovery, this provides comprehensive information on the regions of the protein 
that are less likely to lead to drug resistance and therefore can be probed by elabora-
tion of fragments/small molecules. We performed saturation mutagenesis on the 
drug targets in M. leprae for leprosy and the average or highest impact a mutation 
can induce in each residue position is depicted on the structure (Figure 4).

6.4 Active sites, cavities and fragment hotspot maps

Although comparative modelling of homologues in complex with ligands can 
often give clues about active sites, cofactor binding and substrate or other ligand 
binding sites, this is not always possible. In order to indicate putative binding 
sites in the absence of appropriate experimental data, we have exploited cavity-
defining software such as VolSite [64] for novel binding site description together 
with an alignment and comparison tool (Shaper) [65]. We have used FuzCav, a 
novel alignment-free high-throughput algorithm to compute pairwise similarities 
between protein-ligand binding sites [66] and GHECOM [67], to study the small 
pockets that often characterise protein-protein and protein-peptide interactions.

Further to the identification of cavities and pockets, it is also useful to be able to 
identify hotspots, region(s) of the binding site defined as a major contributor to the 
binding free energy, and often characterised by their ability to bind fragment-sized 
organic molecules in well-defined orientations. The usual understanding is that the 
fragment, with a mixed polar and hydrophobic character, can displace an “unhappy 
water.” We have tried to mimic this in silico by using SuperStar [68] to generate atomic 
interaction propensities on a grid. We then carry out a search with three fragments, 
each having a six-membered carbon ring, but having a donor, acceptor or a non-polar 
substituent. The resulting map is convoluted with an estimate of the depth below the 
surface, which generally appears to correlate with favourable entropic gain on water 
release on binding of a ligand [69]. The hotspot maps, computed in this way and 
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indicating donor, acceptor and lipophilic interactions correlate well with experimental 
binding sites of fragments that can be elaborated in fragment-based discovery. For the 
ligand bound structures, lower contouring can provide “warm spots” for the binding 
sites, indicating possibilities for elaborating the fragment in the binding pocket.

The models of individual molecules of the modelled proteome can be individually 
decorated with the hotspot maps. They give a good indication of the known func-
tional sites on experimentally defined structures of proteins, often demonstrating 
that a functional site comprises several hotspots involved in binding substrates and 
cofactors. They also provide a good indication of the location of allosteric sites [70].

7. Conclusion

In summary we can move from the study of individual targets to an understanding 
of the majority of targets coded by the genome. Indeed, we can build 3D structures 
for a majority of the genes, so providing a model of the “structural proteome”. 
Hotspots and cavities provide a basis for identification of the ligandability of putative 
binding sites and have been used in our group to predict pharmacophores that can be 
used in docking and virtual screening and so deorphaning of mycobacterial proteins.

To identify druggable proteins from the structural proteome, we have adopted 
a hierarchal selection process wherein chokepoint analysis is initially performed to 
identify metabolic reactions that are critical to cell survival. Gene products identi-
fied in this screen are later subjected to essentiality analysis using either flux balance 
analysis (FBA) based models or by data from the transposon saturation mutagenesis 
experiments in the literature. Genes that are essential are chosen at this stage and 
understanding of the gene expression profiles in different growth conditions is anal-
ysed. Genes whose expression is condition specific are excluded. Later for the selected 
genes, the structural information of the corresponding proteins is analysed in the 
context of prior knowledge and attempts in drug discovery, druggable pockets and 
fragment hotspots maps, small molecule bound states, non-human homologue, non-
homologous to human microbiome, cellular localization and biochemical properties 
of the proteins. Structure-guided virtual screening is performed on the selected drug 
targets with a choice of fragment and compound libraries using CCDC Gold (The 
Cambridge Crystallographic Data Centre) [71]. Best poses with good scores lead the 
experimental process of structure-guided fragment-based drug discovery.

The challenge now is to test the computational methods outlined here for 
identifying ligands and understanding the druggability of the proteome—several 
thousand gene products from the whole genome of Mtb. We can then begin to assess 
the degree to which we can de-orphan the many Mtb proteins that have until now 
not featured as targets in the worldwide efforts to combat the global challenge of TB 
to the health and well-being of human kind.
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ligand bound structures, lower contouring can provide “warm spots” for the binding 
sites, indicating possibilities for elaborating the fragment in the binding pocket.
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fragment hotspots maps, small molecule bound states, non-human homologue, non-
homologous to human microbiome, cellular localization and biochemical properties 
of the proteins. Structure-guided virtual screening is performed on the selected drug 
targets with a choice of fragment and compound libraries using CCDC Gold (The 
Cambridge Crystallographic Data Centre) [71]. Best poses with good scores lead the 
experimental process of structure-guided fragment-based drug discovery.

The challenge now is to test the computational methods outlined here for 
identifying ligands and understanding the druggability of the proteome—several 
thousand gene products from the whole genome of Mtb. We can then begin to assess 
the degree to which we can de-orphan the many Mtb proteins that have until now 
not featured as targets in the worldwide efforts to combat the global challenge of TB 
to the health and well-being of human kind.
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Chapter 5

Revisiting Pharmacokinetics and 
Pharmacogenetics of Methadone 
in Healthy Volunteers
Natalia Guevara, Marianela Lorier, Marta Vázquez, 
Pietro Fagiolino, Iris Feria-Romero and Sandra Orozco-Suarez

Abstract

Methadone acts as a μ opioid agonist, a serotonin and norepinephrine reuptake 
inhibitor, and a noncompetitive N-methyl-D-aspartate receptor antagonist. These 
actions altogether are responsible for its efficacy in the management of chronic 
pain. It is available as a racemic mixture of (R)- and (S)-methadone, both being 
stereoisomers responsible for its analgesic effect. Methadone elimination occurs 
mainly through metabolism in the liver by CYP3A4, CYP2B6, and CY2C19 and to 
a lesser extent by CYP2D6 and in the intestine by CYP3A4. The relative intestinal 
content of CYP2B6 and CY2C19 is unknown but it seems that CYP2B6 is not pres-
ent at the intestine. CYP3A4, CYP2B6, and CYP2C19 convert methadone mainly 
into 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine(EDDP). CYP2B6 and 
CYP2C19 are stereoselective to S- and R-enantiomer, respectively. The pharmacoki-
netic study carried out in healthy volunteers by our research group confirmed that 
MTD undergoes recirculation via gastric secretion and intestinal reabsorption and 
revealed that the drug is extensively metabolized in the liver but intestinal metabo-
lism is not only relevant but also stereoselective. Polymorphisms of the CYP2B6 and 
CYP2C19 isoenzymes and their relationship with the pharmacokinetics of MTD 
were also assessed.

Keywords: methadone stereoisomers, EDDP stereoisomers, pharmacokinetics, 
pharmacogenetics, stereoselectivity

1. Introduction

Methadone (MTD) is a synthetic opioid with primarily a μ and δ opioid agonist 
action, but some other novel mechanisms implied in pain relief such as antagonism 
of the N-methyl-D-aspartate (NMDA) receptor, and inhibition of serotonin and 
norepinephrine reuptake are also reported in the literature [1–5]. These multiple 
receptor activities make it an attractive choice for analgesia. It is increasingly used 
to manage cancer and chronic nonmalignant pain [6, 7] and although some authors 
stated its use in neuropathic pain as well, [3, 8, 9] good evidence for this use is still 
lacking [10]. NMDA antagonism has an important role in attenuating tolerance [11].

In comparison to oral morphine and other opioids, MTD has a higher bioavail-
ability and initial rapid and extensive distribution and a slower elimination rate. 
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Unfortunately, it is the unique pharmacokinetics and pharmacodynamics of MTD 
that render its somewhat unpredictable effects.

This chapter focuses on revising plasma-gastrointestinal-plasma recirculation 
of MTD, evaluating the relative importance of CYP3A4, CYP2B6, and CYP2C19 
isozymes in the metabolism of the drug, and assessing the possibility of attenuating 
the metabolism mediated by localized isoenzymes, mainly in the liver to favor the 
recirculation of the drug. Polymorphisms of the CYP2B6 and CYP2C19 isoenzymes 
and their relationship with the pharmacokinetics of MTD in healthy volunteers are 
also dealt with.

2. Pharmacokinetic study

MTD is a racemic mixture of two enantiomers: (S)-methadone and 
(R)-methadone. (R)-methadone accounts for its opioid effect with a minor antago-
nism on NMDA-receptors, whereas (S)-methadone is responsible for serotonin and 
norepinephrine reuptake inhibition and NMDA-receptor antagonism [4, 5, 12–14].

The mean bioavailability of MTD is around 75% (range 36–100%). MTD 
undergoes first-pass metabolism and is detected in plasma 30 minutes after intake. 
The time needed to reach peak concentration in plasma (Tmax) in patients is 
4.4–6 hours and 2.8 hours in healthy volunteers [15, 16]. It is also an efflux trans-
porter (P-glycoprotein) substrate [17]. MTD is a highly lipophilic drug with basic 
properties (pKa = 8.3) [18]. Following absorption, it is distributed to the brain, 
liver, kidneys, lungs, and muscles. It binds to alpha-1-acid glycoprotein (60–90%) 
[19]. The fluctuation in the levels of this protein with physiological and pathological 
changes and with age and sex explains the variability in plasma protein binding of 
basic drugs both between individuals and within individuals [20]. (R)-MTD has 
lower plasma protein binding in comparison with the (S)-enantiomer [21].

The metabolism of MTD is thought to occur mainly in the liver by the cyto-
chrome P450 (CYP450) enzyme system, primarily by CYP3A4 also located in the 
intestine, but human drug-drug interaction studies are not consistent with this and 
other enzymes are thought to be more involved in its hepatic metabolism such as 
CYP2B6 and CYP2C19. Excretion through the kidneys and feces is not negligible 
and since MTD is a basic drug, if urinary pH increases, MTD clearance in urine 
decreases [22]. Its principal metabolite is N-demethyl MTD which rapidly converts 
into 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP). The hierarchy 
of transforming MTD into EDDP is CYP2B6 > CYP2C19 ≥ CYP3A4. CYP2B6 is 
responsible mainly for metabolizing the (S)-enantiomer, while CYP2C19 shows 
preference for the (R)- enantiomer. CYP3A4 shows no enantioselectivity [23–25]. 
The isoenzyme CYP2D6 is also implicated in metabolizing MTD but through a dif-
ferent pathway and to a lesser extent [26]. The unbound MTD clearance is stereose-
lective, being the S-enantiomer cleared faster [21].

The elimination half-life after the first dose is longer than at steady state due to 
induction of CYP3A4 and P-glycoprotein by MTD [15, 16, 27]. Our research group 
found a nonlinear relationship between steady-state MTD plasma concentrations 
and daily dose [28].

Due to its basic properties, MTD can be recovered in gastric juice [29] and 
subsequently reabsorbed after the gastric content is emptied into the duodenum 
completing a blood-gastrointestinal-blood recycling.

Although venous plasma drug concentrations are the ones used in pharmaco-
kinetics studies, vein and artery drug concentrations are not the same throughout 
time. Arterial drug concentrations are higher than the respective venous concen-
trations during drug input. For highly lipophilic drugs rapidly distributed from 

73

Revisiting Pharmacokinetics and Pharmacogenetics of Methadone in Healthy Volunteers
DOI: http://dx.doi.org/10.5772/intechopen.82426

arterial blood to tissues such as MTD, such increased tissue/venous plasma ratio 
would explain the toxicity of MTD in certain tissues and the lack of correlation 
between venous MTD concentrations and adverse effects [15]. When elimination 
predominates, the opposite is observed [30]. However, if MTD recycling is operat-
ing at the monoexponential decay of levels, increased arterial/venous plasma drug 
concentration ratios will also be observed due to drug reabsorptions.

So its storage in body tissues and the slow release to plasma as well as its 
recycling process could be responsible for its prolonged elimination half-life. 
This last fact is exploited in preventing withdrawal symptoms. However, the long 
half-life does not seem to correlate with the observed shorter duration of analgesia 
(6–12 hours) after steady state is reached [31].

As measuring drug levels in arteries is an uncommon practice, our group has 
been working for a long time [32–35] using saliva in order to surrogate arterial free 
plasma drug concentrations as this biological fluid highly correlates with arte-
rial plasma due to the fact that it is produced by ultrafiltration of the latter [36]. 
Salivary peaks during the elimination phase would be indicating reentry processes 
as it was observed in a study carried out with patients [35].

It is important to study the stereoselectivity of MTD metabolism once the blood-
gastrointestinal tract cycling is operating, and to investigate whether the intestinal 
metabolism of MTD could be assessed as relevant in relation with the hepatic one. 
For this purpose, our research group has carried out an in vivo study.

2.1 Subjects and study design

An in vivo randomized, single-dose, crossover, and compensated study with two 
periods and two treatments (A and B) was carried out. A single dose (10 mg) of 
MTD was administered to 12 healthy volunteers (six women and six men between 
18 and 42 years old) under fasting conditions. Blood, saliva, and urine samples were 
taken to determine pharmacokinetic and exposure parameters for both enantiomers 
of MTD and of its main metabolite (EDDP), as well as for the genotyping studies. 
The previous night and 30 minutes before the administration of MTD, the subjects 
received a dose of 10 mg of metoclopramide in order to avoid nauseas and vomits. 
Part of these results has already been published [37].

Food intake was standardized in the study protocol and was different for treat-
ments A and B. There was a higher frequency of food intake in the latter in order to 
investigate the impact of blood-gastrointestinal tract-blood recirculation processes on 
MTD metabolism. In treatment A, volunteers received lunch, dinner, and breakfast 
at 4, 13, and 24 hours post dose, while during treatment B, the volunteers received 
lunch, a light meal, a snack, dinner, and breakfast at 4, 7, 10, 13, and 24 hours post 
dose. Only frequency of food intake differs between treatments A and B.

The study conformed to standards indicated by the Declaration of Helsinki 
and its later amendments, approval was provided by the Ethics Committee of the 
Faculty of Chemistry (Uruguay), and all healthy volunteers in the study gave writ-
ten informed consent prior to participation.

2.2 Sampling and MTD and EDDP determination

Blood samples were withdrawn from the antecubital vein through cannula-
tion and saliva samples were collected in Salivette® tubes at the following times: 
0–0.5–1–2–3–4–6–8–10–12–16–24–36–48–72 and 96 hours post dose. Urine was col-
lected at 0 (before dose intake) and at the end of the following intervals: 0–2, 2–4, 
4–7, 7–8.5, 8.5–10, 10–11.5, 11.5–13, 13–14.5, 14.5–16, and 16–24 hours after dosing 
and sample volumes were recorded. Aliquots of urine samples were kept in order to 
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arterial blood to tissues such as MTD, such increased tissue/venous plasma ratio 
would explain the toxicity of MTD in certain tissues and the lack of correlation 
between venous MTD concentrations and adverse effects [15]. When elimination 
predominates, the opposite is observed [30]. However, if MTD recycling is operat-
ing at the monoexponential decay of levels, increased arterial/venous plasma drug 
concentration ratios will also be observed due to drug reabsorptions.

So its storage in body tissues and the slow release to plasma as well as its 
recycling process could be responsible for its prolonged elimination half-life. 
This last fact is exploited in preventing withdrawal symptoms. However, the long 
half-life does not seem to correlate with the observed shorter duration of analgesia 
(6–12 hours) after steady state is reached [31].

As measuring drug levels in arteries is an uncommon practice, our group has 
been working for a long time [32–35] using saliva in order to surrogate arterial free 
plasma drug concentrations as this biological fluid highly correlates with arte-
rial plasma due to the fact that it is produced by ultrafiltration of the latter [36]. 
Salivary peaks during the elimination phase would be indicating reentry processes 
as it was observed in a study carried out with patients [35].

It is important to study the stereoselectivity of MTD metabolism once the blood-
gastrointestinal tract cycling is operating, and to investigate whether the intestinal 
metabolism of MTD could be assessed as relevant in relation with the hepatic one. 
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2.1 Subjects and study design

An in vivo randomized, single-dose, crossover, and compensated study with two 
periods and two treatments (A and B) was carried out. A single dose (10 mg) of 
MTD was administered to 12 healthy volunteers (six women and six men between 
18 and 42 years old) under fasting conditions. Blood, saliva, and urine samples were 
taken to determine pharmacokinetic and exposure parameters for both enantiomers 
of MTD and of its main metabolite (EDDP), as well as for the genotyping studies. 
The previous night and 30 minutes before the administration of MTD, the subjects 
received a dose of 10 mg of metoclopramide in order to avoid nauseas and vomits. 
Part of these results has already been published [37].

Food intake was standardized in the study protocol and was different for treat-
ments A and B. There was a higher frequency of food intake in the latter in order to 
investigate the impact of blood-gastrointestinal tract-blood recirculation processes on 
MTD metabolism. In treatment A, volunteers received lunch, dinner, and breakfast 
at 4, 13, and 24 hours post dose, while during treatment B, the volunteers received 
lunch, a light meal, a snack, dinner, and breakfast at 4, 7, 10, 13, and 24 hours post 
dose. Only frequency of food intake differs between treatments A and B.

The study conformed to standards indicated by the Declaration of Helsinki 
and its later amendments, approval was provided by the Ethics Committee of the 
Faculty of Chemistry (Uruguay), and all healthy volunteers in the study gave writ-
ten informed consent prior to participation.

2.2 Sampling and MTD and EDDP determination

Blood samples were withdrawn from the antecubital vein through cannula-
tion and saliva samples were collected in Salivette® tubes at the following times: 
0–0.5–1–2–3–4–6–8–10–12–16–24–36–48–72 and 96 hours post dose. Urine was col-
lected at 0 (before dose intake) and at the end of the following intervals: 0–2, 2–4, 
4–7, 7–8.5, 8.5–10, 10–11.5, 11.5–13, 13–14.5, 14.5–16, and 16–24 hours after dosing 
and sample volumes were recorded. Aliquots of urine samples were kept in order to 
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measure the analyte content. Immediately after sampling, pH was measured using 
a portable pH meter for urine samples. All samples were kept in a freezer at −25°C 
until the time of analysis.

When the pre-dose blood sample was taken, another blood sample was taken 
to obtain genomic DNA in order to determine the genotype of the CYP2B6 and 
CY2C19 isoenzymes of the subjects.

MTD enantiomers in plasma, saliva, and urine were quantified. EDDP enantiomer 
quantification was performed in urine. MTD and EDDP were extracted with a mixture 
of hexane and isoamyl alcohol from 2.0 mL of plasma or 1.0 mL of urine or saliva 
samples that were previously alkalinized. Then, the organic phase was evaporated 
under a stream of nitrogen, and the residue was reconstituted with the mobile phase. 
Imipramine (10.00 μg/mL) was used as the internal standard and 50 mL was added 
to plasma or urine or saliva. MTD (in all the three fluids) and EDDP (only in urine) 
quantification was performed using a validated HPLC-UV chiral method, which was 
an adaptation of a previously published methodology [38]. The mobile phases con-
sisted of phosphate buffer 20 mM pH 6.0 + 2 mM diisopropylamine: acetonitrile (92:8) 
for urine analysis and phosphate buffer 20 mM pH 7.0 + 2 mM diisopropylamine: 
acetonitrile (82:18) for plasma and saliva analysis. The flow rate was 0.7 mL/min. The 
separation of the compounds was performed on a CHIRALPACK AGP™ (100 × 4 mm; 
5 μm) column with a silica guard column. Detection was performed at a wavelength of 
215 nm. The analysis was carried out at 25°C and the injection volume was 80 μL.

The HPLC method was linear for MTD between 4.0 and 160 ng/mL and 
between 19.0 and 3280 ng/mL for plasma or saliva and urine samples, respectively. 
The linearity for EDDP in urine was proven from 52.0 to 4200 ng/mL. Inter- and 
intra-day precision and accuracy were below 14% for both compounds.

2.3 Pharmacokinetic and statistical analysis

The following pharmacokinetic parameters were obtained from the MTD plasma 
and saliva concentration versus time curves for both enantiomers of MTD:

• Cmax: Maximum concentration.

• Tmax: Time to maximum concentration.

• AUC [0–96]: Area under the concentration-time curve from 0 to 96 hours.

• AUC [0–24]: Area under the concentration-time curve from 0 to 24 hours.

• R/S: Concentration ratio of the enantiomers.

Experimental Cmax and Tmax were computed and the AUC was estimated by 
the trapezoid method up to 96 hours, or until the last quantifiable concentration 
time. As for most of the subjects, the concentrations were not quantifiable for times 
longer than 24 h and AUC was determined up to 24 h. The R/S concentration ratio 
was computed as an indicator of possible stereoselective metabolic changes because 
of drug recycling.

From the urinary concentrations of MTD and EDDP and the volumes of urine 
recorded, the amounts excreted in the time interval between two consecutive 
micturitions were calculated. Excretion rates versus time were plotted and the R/S 
ratios of MTD and EDDP were calculated for this parameter.

Statistical significances between means were assessed by a nonpaired (between 
sexes) and a paired (between enantiomers) t-student test.
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2.4 Results and discussion

Mean R- and S-MTD plasma concentration-time profiles for treatments A and B 
in women and men are shown in Figure 1. As it is shown in this figure and in Table 1,  
a higher exposure of S-MTD for both treatments can be observed due to its higher 
plasma protein binding.

Figure 1 also shows a secondary peak 8 hours post dose (4 hours post lunch). 
This means a re-entry of the drug into the bloodstream, as a consequence of a 
plasma-gastrointestinal-plasma recirculation process of MTD.

The feasibility of MTD to follow this recirculation process is due to its basic 
nature previously mentioned. MTD can be secreted into the gastric juice as 
a consequence of the pH gradient between plasma (pH = 7) and gastric juice 
(pH = 1.2). In addition, after food intake there is an increase in blood flow and in 
the fraction of cardiac output destined to the gastric area, which would favor the 
secretion of MTD to the gastric juice. When food reaches the stomach, several 
milliliters of gastric juice are poured into the gastrointestinal tract, so molecules 
of MTD that could have been secreted into the gastric juice from the blood 
would pass into the intestinal lumen and could be re-absorbed from there again, 
re-entering the bloodstream. This secondary peak was evidenced in the sample 
obtained 8 hours post dose for both treatments, but the process could have begun 
sometime before as a result of food intake and depending on the gastric emptying 
of each volunteer. No differences were observed in the appearance of secondary 
peaks between treatments A and B, so a higher frequency of food intake does 
not add more mass of recirculating molecules, but perhaps a prolongation of the 
recirculation process.

Table 1 summarizes the results obtained from the plasma samples.

Figure 1. 
Mean R- and S-MTD plasma concentration-time profiles for treatments A and B in women and men.

t1/2

± SD (h)
AUC (0–24)

± SD (ng.h/mL)
CMAX

± SD (ng/mL)
TMAX

(range)a (h)

R S R S R S R S

Plasma Women 27.3 ± 12.6 22.1 ± 7.8 190b ± 61 302b ± 89 18.6b ± 10.3 32.2b ± 8.4 3.5  
(2.0–8.0)

2.0  
(1.0–8.0)

Men 25.0 ± 4.7 24.6 ± 6.8 192b ± 101 304b ± 118 17.5b ± 7.9 31.0b ± 6.3 3.0  
(1.0–10)

2.0  
(1.0–8.0)

amedian (range).
bp < 0.01, paired t-student test between R and S.

Table 1. 
Mean (± standard deviation) pharmacokinetic parameters of MTD obtained in women and in men.
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The value of Tmax obtained in healthy volunteers is in agreement with the 
literature [16, 27]. In patients, the value of Tmax is higher in comparison to healthy 
volunteers as chronic use of MTD delays gastric emptying and gastric motility and 
hence absorption.

Urinary exposure, as can be seen in Figure 2, showed an inverse relationship 
between isomers. Bearing in mind that the rate of urinary excretion of MTD could sub-
rogate its free plasma concentration, a lower intrinsic clearance of the R-isomer could 
be evidenced and therefore a stereoselective biotransformation in favor of the S-MTD.

Volunteers excreted significantly (p < 0.01) more (R)-methadone and (S)-EDDP 
(p < 0.001) than the corresponding enantiomers as is shown in Figures 2 and 3, 
respectively. However, as information about the stereoselectivity of the metabolite 
clearance is lacking, no conclusion can be drawn about its bioavailability.

The profile of the urinary excretion rate of MTD did not show the same pattern 
of secondary peaks as the profile of MTD plasma concentrations did. This could be 
explained by a significant drop in the rate of excretion after lunch, which can be 
attributed to the well-known increase in urinary pH after food intake (postprandial 
alkaline tide), causing a decrease in urinary MTD excretion.

A higher incidence of nausea was detected in women than in men during the 
experimental phase of the study; in fact, this adverse effect was not observed in 
men. This motivated a differentiated analysis of the results according to the sex of 
the subjects, as differences in the pharmacokinetics of opioids between the sexes 
can affect the safety and efficacy of the treatments. The pharmacological activity 
can be better predicted from free plasma concentrations than from the total ones, 
and as mentioned above, the rate of urinary excretion of MTD could subrogate the 
free plasma concentration. Women presented a higher urinary exposure of R-MTD 
(mainly responsible for the μ effect), which correlates with the greater intensity of 
adverse effects that they presented around Tmax in comparison to men. This is also 
shown in the profiles of saliva concentrations of MTD (Figure 4), which are also 
related to free plasma concentrations.

To assess stereoselectivity in MTD metabolism, R/S ratios were studied through-
out time as is shown in Figure 5. R/S ratios of MTD were constant once absorption 

Figure 2. 
Mean urinary excretion rates of R- and S-MTD versus time in men and women.

Figure 3. 
Mean urinary excretion rates of R- and S-EDDP versus time in men and women.
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had finished. During the absorption and rapid disposition phase, this ratio is 
increasing. However, R/S ratios of EDDP were constant from the beginning, except 
after food intake (mainly between 3 and 7 hours post lunch intake when MTD recir-
culation is taking place) when the ratio decreased and this might explain differences 
in EDDP systemic formation.

The molecules of MTD present in the systemic circulation undergo both intestinal 
and hepatic stereoselective metabolism by CYP2C19 and CYP2B6 enzymes. CYP2C19 
is stereoselective towards the R-isomer while CYP2B6 towards the S-isomer. After food 
intake, when a process of drug reentry is operating, the molecules of MTD that had 
been secreted into the gastric juice can be reabsorbed in the intestine. Consequently, 
a greater number of molecules enter the enterocyte. The change observed in the R/S 
ratio of EDDP after the ingestion of meals evidences a different stereoselectivity 
between intestinal and hepatic metabolism, possibly due to a relative differential 
content of CYP3A4 and CYP2C19 in enterocytes and hepatocytes, being the relative 
presence of CYP3A4 greater at the intestine. In the case of MTD, the metabolism of the 
S-enantiomer is favored after the passage of MTD through the intestine compared to 
its passage through the liver. Although during food intake there is an increased blood 
flow to the splanchnic area, and the liver and the other organs in this region receive a 
greater number of molecules from the blood coming from areas that do not belong to 
the splanchnic region, for drugs secreted in the gastric juice, the fraction of molecules 
that the intestine receives is even greater because there is a supplementary quantity of 
molecules that enter the intestine coming from the gastric juice. If no secretion was 
taking place, the molecules would be transferred from the stomach directly to the liver 
through the portal bloodstream without passing through the enterocytes.

Therefore, by favoring recirculation rather than bypassing hepatic metabolism, 
the intestinal metabolism would be increasing. Our research reveals an important 
role of the intestine in the systemic (and pre-systemic) metabolism of MTD, 
presenting a greater stereoselectivity towards the S-isomer. Although this isomer 
has little or no activity as an opioid agonist, it is able to inhibit the reuptake of 

Figure 4. 
Mean R- and S-MTD saliva concentration-time profiles for treatments A and B in women and men.

Figure 5. 
Mean (± 95%CI) R-to-S MTD and EDDP urinary excretion rate ratios after oral administration of MTD.
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serotonin and noradrenaline, in addition to acting as a noncompetitive antagonist of 
NMDA receptors, actions that enhance the opioid analgesic effect of the R- isomer. 
As a result, by favoring recirculation, the analgesic potency of MTD would not be 
increasing but decreasing instead. This could explain the shorter duration of the 
analgesic effect of MTD in view of the reported long elimination half-life.

3. Pharmacogenetic study

CYP2B6 and not CYP3A4 is the principle determinant of clinical MTD elimina-
tion and is one of the most polymorphic cytochrome P450 (P450) genes in humans 
and, currently, it has 30 defined alleles with over 100 described polymorphisms 
[39]. According to Kharasch et al. [40], CYP2B6*6 allele carriers showed higher 
MTD concentrations and slower elimination, whereas CYP2B6*4 carriers had lower 
concentrations and faster elimination.

CYP2C19 plays an important role in MTD metabolism and CYP2C19 gene is highly 
polymorphic as well. Loss of enzyme activity results from the CYP2C19*2 allele and 
the CYP2C19*17 allele is associated with increased enzymatic activity [41, 42].

3.1 Methodology

Once the genomic DNA was obtained from the leukocyte fraction, the individu-
als were genotyped for the CYP2B6 and CYP2C19 genes by massive sequencing, 
which was carried out at the Institute of Genomic Medicine (INMEGEN) in Mexico.

In order to be processed by massive sequencing, genomic DNA samples should 
have a concentration higher than 10 ng/μL, and the ratio of absorbances 260/280 
and 260/230 should be approximately 2 to be able to consider that the DNA 
obtained was of good quality. In cases in which the sample did not meet these 
requirements, purification was performed using the Mag Jet Genomic DNA Kit 
(Thermo Scientific) which includes incubation with proteinase and RNAse and 
purification with magnetic beads.

As a result of this processing, the genotype of the 12 volunteers was obtained for 
CYP2B6 and CYP2C19 enzymes. Considering the polymorphisms found and based 
on the literature, we determined the phenotype that would be expected, that is, 
increased, normal, or decreased enzyme activity.

3.2 Results and discussion

Regarding the polymorphisms in the gene that encodes CYP2C19, 5 of the volun-
teers in our study presented the allelic variant * 2 (rs4244285), which is associated with 
a decrease in the activity of the enzyme, whereas 2 volunteers presented the allelic 
variant * 17 (rs3758581), which is associated with an increase in the activity. Regarding 
the polymorphisms in the gene that encodes CYP2B6, 6 volunteers presented the allelic 
variant * 4 (rs2279343), which determines an increased enzymatic activity.

S/R ratios for MTD in plasma and urine and the S/R ratios for EDDP in urine 
were calculated. The individuals were grouped into two. Group 1 included those 
volunteers in whom the activity of CYP2B6 was increased and CYP2C19 activity 
was normal or decreased as well as those volunteers in whom CYP2B6 activ-
ity was normal but CYP2C19 activity was diminished. Group 2 included those 
individuals with normal activity of both enzymes as well as those in which the 
activity of CYP2B6 was normal but that of CYP2C19 was increased and a case 
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in which the activity of both enzymes was increased. This classification allowed 
grouping those individuals, in whom a preferential biotransformation was 
expected on the S isomer, considering the activity of the enzyme together with 
its stereoselectivity. The averages of the S/R ratios for each group were calculated, 
both for treatment A and for treatment B, and the results are shown in Tables 2 
and 3, respectively.

The three average S/R ratios were compared by a t-student test, and no signifi-
cant differences were obtained in any of the cases. However, the S/R ratios of MTD 
either in plasma or in urine are lower in Group 1 compared to Group 2, which is 
in agreement with the stereoselectivity of CYP2B6 towards the S-MTD since the 
metabolism of the S-isomer is greater compared to the R-isomer when the activity 
of CYP2B6 is increased and the activity of CYP2C19 decreased. The results obtained 
for the S/R ratios of EDDP are different, probably because the biotransformation of 
MTD mediated by these enzymes also leads to the formation of other metabolites. 
Moreover, there is a lack of information in the literature about the stereoselectivity 
of EDDP clearance.

Genetic variation of CYP2C19 mainly affects MTD metabolism, and it has a 
minor effect on the metabolite, maybe because it contributes very little to EDDP 
formation (1/10 compared to CYP2B6 contribution).

Group Volunteer CYP2B6 
activity

CYP2C19 
activity

S/R 
MTD in 
plasma

S/R 
MTD 

in 
urine

S/R 
EDDP 

in urine

Group 1 Vol. 1 Increased Decreased 1.63 0.840 1.757

Vol. 2 Increased Decreased 1.09 0.684 1.992

Vol. 4 Increased Normal 1.80 0.949 1.705

Vol. 5 Increased Decreased 1.65 0.818 2.019

Vol. 8 Normal Decreased 1.84 0.732 1.751

Vol. 9 Normal Decreased 1.61 0.782 2.050

Vol. 11 Increased Normal 1.55 0.567 1.707

Group 2 Vol. 3 Increased Increased 1.55 0.703 2.071

Vol. 6 Normal Normal 1.43 0.869 1.729

Vol. 7 Normal Increased 1.89 0.846 2.011

Vol. 10 Normal Normal 1.86 0.743 2.277

Vol. 12 Normal Normal 1.51 0.528

Average of the total 
number of volunteers

1.62 0.76 1.92

Standard error 0.065 0.032 0.058

Average Group 1 1.60 0.77 1.85

Standard error Group 1 0.093 0.046 0.060

Average Group 2 1.65 0.79 2.02

Standard error Group 2 0.094 0.036 0.113

Table 2. 
S/R ratios for MTD in plasma and urine and for EDDP in urine obtained in treatment A and the activity of 
CYP2B6 and CYP2C19.
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The three average S/R ratios were compared by a t-student test, and no signifi-
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4. Conclusions

Our results confirm MTD recirculation via gastric secretion and subsequent 
intestinal reabsorption. MTD is extensively metabolized in the liver but intestinal 
metabolism is not only relevant but also stereoselective.

Although the opioid effect of MTD is mainly due to the R-isomer, the S-isomer 
also has an analgesic action by inhibiting the reuptake of serotonin and nor-
adrenaline and by exhibiting a noncompetitive antagonism of the NMDA receptor. 
The latter action is also responsible for preventing or attenuating tolerance and 
withdrawal syndrome. Therefore, in those patients who have an increased activity 
of the CYP2B6 enzyme or a normal activity of this enzyme in combination with a 
decreased activity of CYP2C19, (situations that favor the S-isomer metabolism), the 
analgesic effect could be diminished and the development of tolerance as well as the 
withdrawal symptoms could be exacerbated.

Despite the fact that blood-gastrointestinal-blood recycling extends the resi-
dence of a drug in the body, in this case, the elimination of the S-isomer is increased 
with each passage through the enterocyte. Consequently, the recycling process of 
MTD would not be favoring an increased analgesic effect as it would be expected. 
This is in agreement with the shorter duration of analgesia observed in the clinical 
setting after steady state is reached.

Group Volunteer CYP2B6 
activity

CYP2C19 
activity

S/R 
MTD in 
plasma

S/R 
MTD 

in 
urine

S/R 
EDDP 

in urine

Group 1 Vol. 1 Increased Decreased 1.74 0.874 1.534

Vol. 2 Increased Decreased 1.26 0.716 1.848

Vol. 4 Increased Normal 1.41 0.958 1.565

Vol. 5 Increased Decreased 1.83 0.776 1.993

Vol. 8 Normal Decreased 1.63 0.717 1.657

Vol. 9 Normal Decreased 1.53 0.749 2.397

Vol. 11 Increased Normal 1.77 0.638 1.923

Group 2 Vol. 3 Increased Increased 1.37 0.820 2.126

Vol. 6 Normal Normal 1.86 0.866 1.871

Vol. 7 Normal Increased 1.71 0.781 1.635

Vol. 10 Normal Normal 1.65 0.766 1.961

Vol. 12 Normal Normal 1.95 0.580

Average of the total number of volunteers 1.64 0.77 1.86

Standard error 0.061 0.027 0.078

Average Group 1 1.60 0.78 1.85

Standard error Group 1 0.078 0.041 0.114

Average Group 2 1.71 0.81 1.90

Standard error Group 2 0.100 0.020 0.102

Table 3. 
S/R ratios for MTD in plasma and urine and for EDDP in urine obtained in treatment B and activity of 
CYP2B6 and CYP2C19.
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The occurrence of frequent adverse effects such as nausea was observed only 
in women, even after receiving two doses of metoclopramide prior to the dose of 
MTD. Although tolerance to nausea and vomits develop with chronic use, the physi-
cian should consider a lower starting dose of 5 mg/day for women. Apparently, an 
initial dose of 10 mg/day for men could be appropriate.
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Abstract

The drug discovery and development pipeline have more and more relied on 
in vitro testing and in silico predictions to reduce investments and optimize lead 
compounds. A comprehensive set of in vitro assays is available to determine key 
parameters of absorption, distribution, metabolism, and excretion, for example, 
lipophilicity, solubility, and plasma stability. Such test systems aid the evaluation 
of the pharmacological properties of a compound and serve as surrogates before 
entering in vivo testing and clinical trials. Nowadays, computer-aided techniques 
are employed not just in the discovery of new lead compounds but embedded as 
part of the entire drug development process where the ADME profiling and big data 
analyses add a new layer of complexity to those systems. Herein, we give a short 
overview of the history of the drug development pipeline presenting state-of-the-
art ADME in vitro assays as established in academia and industry. We will further 
introduce the underlying good practices and give an example of the compound 
development pipeline. In the next step, recent advances at in silico techniques will 
be highlighted with special emphasis on how pharmacogenomics and in silico PK 
profiling can enhance drug monitoring and individualization of drug therapy.

Keywords: ADME, drug discovery, in silico prediction, pharmacokinetics prediction, 
QSAR

1. Introduction

Drug discovery and development grew into a wide interdisciplinary field 
during the last decades and many factors played and play an important role in 
the successful evolution from a bioactive compound, or so-called new molecular 
entity (NME), into a potential drug [1]. Herein, we discuss the drug discovery 
and development (DDD) process where the pharmacokinetic profiling in terms of 
ADME assessment is concerned. Therefore, we provide a short overview of the in 
vitro, ex vivo, and in vivo state-of-the-art techniques used in academy and industry 
with special emphasis on how recent advances in computer science paved the 
path for in silico prediction in the DDD process for small molecules. However, the 
discussion of the whole topic is out of the scope of this review, which only aims to 
give insights into the principle process of (computer-aided) drug discovery and 
development.
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The current state of pharmaceutical DDD estimates that only up to ten com-
pounds out of thousand screened hits would result in optimized leads and enter 
preclinical testing, with a chance of 9.6% to pass the clinical testing phase [1, 2]. 
Additionally, the drug approval process is estimated to last in average 15 years, with 
major expenses in phases II and III of clinical trials, which highlights the drawback 
a failure in (pre-) clinical testing causes [3–6], where the overall DDD cost for each 
drug can reach as high as ~$2.56 billion preapproval rising to $2.87 billion including 
postapproval investments [6–8]. From the initial small molecule screened as hit to 
the optimized lead, a variety of in vitro tests are performed to guarantee efficacy 
and safety, but also to find structure-activity relationships (SAR), which can then 
be connected to specific physicochemical properties of the compound and further 
aid in the lead optimization phase [8–10].

The drug development phase starts with preclinical testing followed by the clini-
cal stage comprising phase I–III human trials. Each of the phases aims to answer 
a specific question. Initially, preclinical trials are conducted in animals and can 
provide information about whether a drug is toxic or not. Compounds that show no 
toxicity in animals then advance to phase I trials, which will study whether the drug 
is also safe in healthy humans and provide an initial idea for appropriate dosage. 
In phase II, the efficacy of the drug is examined in parallel to potential side effects 
to answer the question if it principally meets the expected performance. Phase II 
presents the biggest hurdle with a transition success rate as low as 30%. Ultimately, 
drug candidates enter clinical phase III in which the preliminary results found so far 
need to be proofed and any adverse reactions monitored to make sure that the drug 
really helps treating the disease [2, 11].

Starting from the generation of a lead compound assessment, and optimiza-
tion of pharmacokinetic properties and correlation to pharmacodynamic effects 
increases in importance as one of the three major attrition causes among toxicity 
and efficacy [8, 12]. In this sense, it is not surprising that the period between lead 
and the clinical candidate is sometimes referred to as “valley of death” due to the 
often occurring failures and dead ends during this time of the DDD process, which 
results in high costs and missing deadlines [13].

2. Role of computer-aided techniques in drug discovery

In a long ongoing effort, more and more in silico techniques are being integrated 
into several points of DDD with different purposes. In silico techniques can ease the 
process of SAR assessment as well as the generation of compound series by guiding 
combinatorial chemistry since they allow fast and easy evaluation of compounds 
prior to synthesis from big libraries. For instance, combinatorial chemistry offered 
an option to readily produce a broad range of potentially pharmaceutical active 
small molecules in a short time, while SAR data in combination with complex math-
ematical algorithms, such as regression analyses based or machine-learning–based 
approaches, allow to determine the potential effects of the analogues and deriva-
tive’s structures a priori [8].

Latter approach can save time and resources by eliminating in early stages 
molecules that have predicted low efficacy against the target or to suggest the 
next round of chemical modifications [14, 15]. Still, lead generation and/or 
optimization will eventually also include in vivo testing after no toxic side effect 
was shown in vitro. In vivo efficacy testing will be carried out as proof of concept 
followed by PK assessment and ultimately animal models of human disease to 
find correlations between preliminary data and potential performance later on in 
humans [12].
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In silico ADME prediction aims to generate tools and models based on experi-
mental data to calculate in vivo behavior of compounds by finding quantitative 
structure-property relationships (QSPRs), which connect structural information 
to physical and chemical characteristics or even biological behavior (quantita-
tive structure-activity relationship; QSAR). Gained empirical data are then 
related to descriptors/properties thereby supporting the process of hit-to-lead 
 optimization [10, 16].

When using in silico methods for prediction, it is important to keep in mind that 
algorithms and tools applied are only models thus being only as good as the data 
and idea they are based on. That implies a continuous experimental validation and 
improvement as a basic principle that is supported by an interdisciplinary team. In 
this sense, frequently used models include QSPR predictors, matched molecular 
pair (MMP), and data trend analysis since they allow comparably easy application 
and are based on a high amount of (end) point data. For instance, some experi-
ments offer highly convenient data but do not contribute much to model design, 
whereas others show high variability but lead to impactful models. Considering 
the nature of data, it is important to know which type can be used as input from 
different sources (low variability biological and activity data or homogeneously cal-
culated chemical descriptors) in contrast to data that should only be used from one 
source (Caco-2, MDCK). A sophisticated approach to generate reliable data or to 
determine differences between individual experiments is to use assays with control 
compounds [10]. The target property must be obtained under the same experimen-
tal condition and, in the best scenario, obtained from the same laboratory aiming to 
avoid interlaboratory and interpersonal data noise [17].

Furthermore, the choice of the number and type of molecular descriptors has a 
high impact, since it influences the accuracy and interpretability of the model. One 
would expect that using the maximum number of descriptors would be beneficial, 
but in reality, the risk of overfitting the data or losing the interpretability is a trade-
off. This leads to the point that it is fundamental for a “good” model to find the per-
fect compromise between quality and quantity. Nevertheless, it is crucial to test and 
train a model and to evaluate its predictability by different means, such as statistical 
measures and internal and external validation as recommended by organizations as 
OECD [18], and also includes outlier analysis to reduce the noise in the model. An 
extensive review of different adequate validation methods is discussed in [19].

As a result of newly achieved advances in computational capability, more com-
plex models and algorithms can now be applied. Despite this, it is still a challenge 
to create a model for the pharmacokinetic and pharmacodynamic phenomena and 
interactions within an organism as complex as a mammal, let alone humans [10]. 
Finally, notwithstanding the apparent linearity, the development of a new chemical 
entity into a drug is an iterative process, even more, where modeling is concerned, 
with data from failed attempts being integrated into the new predictions [13].

3. How specific parameters shape the pharmacology studies

Pharmacology is a major part of the DDD process and describes the interaction 
of an organism and the drug. It can be divided into two main branches: while phar-
macodynamics (PD) describes what the drug does to the body, pharmacokinetics 
(PK) is interested in what the body does to the drug [20]. The main processes of PK 
are absorption, distribution, metabolism, and excretion (ADME), finally comple-
mented by toxicity (ADMET). While ADME tries to maximize the pharmacological 
performance of a small molecule, toxicology aims to ensure that it causes no harm 
in any kind of side effect [21].
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Pharmacology is a major part of the DDD process and describes the interaction 
of an organism and the drug. It can be divided into two main branches: while phar-
macodynamics (PD) describes what the drug does to the body, pharmacokinetics 
(PK) is interested in what the body does to the drug [20]. The main processes of PK 
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mented by toxicity (ADMET). While ADME tries to maximize the pharmacological 
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The big hurdle to overcome is to combine appropriate physicochemical proper-
ties of the drug, which would drive its interaction with the organism and show 
biological activity [22]. Or according to Hodgson: “A chemical cannot be a drug, no 
matter how active nor how specific its action, unless it is also taken appropriately 
into the body (absorption), distributed to the right parts of the body, metabolized 
in a way that does not instantly remove its activity, and eliminated in a suitable 
manner—a drug must get in, move about, hang around, and then get out” [21].

As already reviewed [23] and suggested by the FDA, PK/PD assessment is 
one of the main focuses for optimization in the drug development process. This 
is apparently an idea that was shared among many: whereas ADME evaluation 
was previously addressed in the late stages of preclinical development, currently 
it became a major concern throughout the whole DDD process, starting from 
the very beginnings in drug discovery approaches until the very last steps in lead 
optimization [21, 24].

For each step in the drug’s path through the body, several parameters determine 
the destination of the drug. In respect to this, each of those parameters would be 
addressed directly and individually. Unfortunately, to address experimentally each 
potential parameter is timely unviable, due to the complexity of the human body 
where all those parameters influence each other. This is not only restricted to mecha-
nisms within the body between different compartments but also extends to interper-
sonal variations introduced through gender, age, genetic state, disease, etc. To find 
an approximation, most of the important variables are indirectly evaluated by either 
models or surrogates (Table 1). In an approach to characterize the properties of 
compounds, facilitate calculations, and allow standardization between experiments, 
descriptors are introduced as numerical representations encoding aspects of the 
chemical information of a molecule. Examples of descriptors and properties include 
molecular weight and H-bond donors/acceptors and they can be directly obtained 
from experimental or generated by computational techniques [25].

In vitro Ex vivo/cells In vivo In silico

Absorption Physicochemical 
properties
Dissolution and 
solubility
Cell monolayers
Artificial membranes

MDCK
Caco-2
Transfected cells

Mouse model
Knock-out/
down mice
Humanized 
mice

QSPR/QSAR
pKa
logP, logD
Binding and 
expression of 
transporters
Inhibition of efflux 
pumps

Distribution PAMPA
IAM
HAS-coupled (RP-) 
HPLC

Plasma/tissue 
binding

Vd
Plasma 
protein 
binding

Vd
Plasma protein 
binding
Activity and 
expression of 
transporters

Metabolism S9 fraction
Liver microsomes
Recombinant enzymes

Hepatocytes 
(HepG2)
Isolated tissue
Isolated organ

Humanized 
animals

Half-life
Activity and 
expression of 
transporters

Excretion Isolated tissue
Isolated organ
Transfected cells

Urine analysis Half-life prediction

Table 1. 
Tools for ADME evaluation.
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For instance, although the perfect approach of PK profiling would also reflect 
the kinetics of drug administration and concentration at the site of action, most in 
vivo systems rely on plasma sampling as a medium of drug equilibrium since it is 
easily accessible. As a consequence, results are highly influenced by intrinsic and 
extrinsic factors such as interpersonal variances as already stated above [20].

Each compound possesses individual physicochemical properties, such as solu-
bility or lipophilicity, which are influenced by biochemical properties of the body 
as the different pH of tissues. Although they can be similar, each compound will 
behave differently, and it is futile to address in vivo behavior without any prelimi-
nary knowledge of the basic PK parameters in vitro [26].

Furthermore, every PK assessment varies depending on the route of admin-
istration and requires different models and assays. While some routes depend on 
absorption mechanisms like oral and transdermal administration, others (i.e., 
intravenous) directly target the bloodstream and the bioavailability is essentially 
equal to 100%. Hereafter, we will discuss oral administration parameters of small 
molecules as the most common form due to many advantages like reliability, safety, 
price, their experimental approaches, and most common prediction modes [27, 28].

Passive transport across membranes is defined as permeability, which is depen-
dent on lipophilicity, since biological membranes are virtually lipid bilayers, and is 
by far the most important transport for small molecules, especially in oral absorp-
tion [8, 24, 29]. Nonlipophilic compounds normally do not traverse membranes 
passively, while highly lipophilic molecules run the risk to get stuck within the 
membranes [30].

Properties utilized for measuring lipophilicity are the logarithm of the partition 
coefficient (logP) and the distribution coefficient (logD) with the first not dif-
ferentiating between ionized and nonionized species. Both are normally applied for 
n-octanol/water representing an organic and aqueous phase, respectively [21, 26].

Ionizability and lipophilicity provide a strong indication if a compound is likely 
to be orally absorbed or not [21].

Ultimately, also the molecular size of the compound is involved in successful 
absorption due to the aforementioned effects on permeability and solubility [31]. 
Usually, increasing molecular weight by adding new chemical moieties leads to 
decreased solubility in aqueous solutions [32] and while big lipophilic compounds 
partition passively along membranes (transcellular), small charged molecules can 
also cross membranes via tight junctions (paracellular) [26]. For oral absorption in 
terms of permeability, Lipinski and collaborators already proposed in 1997 [33, 34] 
that orally active compounds should fit at least three of observed four parameters: 
molecular weight < 500 g mol−1, logP < 5; number of hydrogen bond acceptors <10; 
number of hydrogen bond donors <10; the well-known Lipinski’s rule of 5 (Ro5). 
In other words, Ro5 stated a physicochemical space in which molecules outside its 
domain has a low probability to become orally active. Other rules, as Veber rules 
[35], Daina and Zoete [36], Egan and collaborators [37], Lovering et al. [38], and 
Ritchie and colleagues’ [39] works for example, also included other properties as the 
sum of hydrogen bond acceptor and donors, rotatable bonds count, polar surface 
area, number of aromatic rings, and fraction of sp3 carbon atoms.

Despite the criticism and overinterpretation of Lipinski and derived rules, the 
influence of physicochemical parameters on oral bioavailability and related param-
eters (as logP and aqueous solubility) is notable. Moreover, these rules are still being 
employed nowadays in virtual screening campaigns aiming to reduce the number 
of compounds from massively large available libraries (e.g., ZINC, which contains 
more than 750 millions of compounds) [40–42]. Furthermore, those initial steps 
instigate the generation of more complex models to predict not just oral bioavail-
ability but other PK-related parameters as Caco-2 permeability, aqueous solubility, 
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and logP as indirectly related properties as well as other direct parameters as 
intestinal absorption, metabolism, clearance, etc.

3.1 Aqueous solubility and lipophilicity

As already mentioned, ionizability is one of the most important properties in 
PK, thus making pKa the physicochemical property with the highest impact.

Early attempts to increase the efficiency of pKa evaluation were reported by 
Morgan and colleagues by scaling down the classical titration and spectrophotomet-
ric methods introducing microscale versions [43].

These alterations, however, could not overcome the principle demands of each 
technique, which are moderate precision and frequent calibration (potentiometric), 
and the need for a chromophore within the analyte (spectrophotometric) [44]. 
Starting in 1998, capillary electrophoresis (CE) was effectively used to determine 
pKa of many compounds and was further upgraded from Pfizer by implementing 
pressure-assisted capillary electrophoresis (PACE) as a standard method, which is 
nowadays readily applied in industry settings showing superior features compared 
to the aforementioned methods [44, 45]. Other variants such as vacuum-assisted 
multiplexed capillary electrophoresis also exist (VAMCE) [46]. A different approach 
better suited for HTS is called pH gradient titration offered from Sirius Analytical 
Instruments but is still limited due to the UV spectroscopy technology [30].

It is well established that solubility in aqueous media is one of the most impor-
tant physicochemical properties to be evaluated in oral administration. It is not only 
necessary for absorption in the GI tract but also a requirement for almost all in vitro 
and in vivo assays, which depend on a solved compound. Poor solubility can affect 
the reproducibility of assay results by introducing high variability and further 
increase development costs of leads with low solubility [26, 47]. Traditionally, 
solubility measurements were conducted via labor-intensive potentiometric tech-
niques [48] or equilibrium solubility (thermodynamic; e.g., shake flask) [26]. HTS 
alternatives comprise laser nephelometric scans (kinetic) [47] and LC-MS/HPLC 
techniques, which can also be performed with DMSO solutions of the compound—
the standard for HTS applications [47, 49]. It should be noted, though, that aqueous 
solubility, as described above, is not an optimal model for GI solubility since it does 
not consider the composition of the GI fluids [49].

On the other hand, generally speaking, lipophilicity is the ability of a compound 
to dissolve in lipids and/or organic solvents thus being able to pass biological 
membranes. Descriptors for lipophilicity are the logarithm of the partition coef-
ficient (logP) or distribution coefficient (logD). Classically, logP was determined 
using the shake flask method applying n-octanol/water phases. Later, UV spectros-
copy became the standard, which unfortunately is not applicable for compounds 
without absorption in the UV range [50]. Today, RP-HPLC methods are frequently 
in use due to superior properties [25, 51]. As with many methods, comparison of 
results obtained under different conditions and in different laboratories proves to 
be difficult with RP-HPLC. A solution offers the implementation of a standardized 
lipophilicity value, for example, the chromatographic hydrophobicity index (CHI).

In recent years, a great effort has been made to improve the ability of in silico 
models to accurately predict aqueous solubility. One of the most developed model is 
Yalkowsky and Jain’s [52] general solubility equation (GSE), which is based on the 
melting point (m.p. °C − 25) and logP (the octanol-water partition coefficient of 
the un-ionized molecule) of a chemical substance (Eq. (1)), with a relevant predic-
tion power as represented by the coefficient of determination (R2) = 0.96 and root-
mean-square error (RMSE) = 0.53 in a dataset of 1026 organic compounds [53].

General solubility equation as proposed by Yalkowsky and Jain’s [52]:
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  logS = 0.5 − 0.01 (m . p .      °  C − 25) –logP  (1)

Modifications in terms of the GSE have been proposed, for instance with the 
SCRATCH model, which replaces the melting point by molar aqueous activity 
coefficient, with comparable accuracy (R2 = 0.956, RMSE = 0.859 in a dataset of 
883 compounds) [54]. Ali and collaborators suggested replacing the melting point 
descriptor of the GSE with TPSA, aiming to overcome the issues with compounds 
with high melting points and also to explicitly take into account the effect of polar 
and polarizable atoms on the aqueous solubility [55].

The argument that real drugs are actually more soluble than drug-like molecules, 
filtered by Lipinski’s rule of five [56], pointed out the studies in the direction of more 
complex models. Indeed, nowadays, the quantitative structure-property relationship 
(QSPR) models correlating the aqueous solubility with various molecular descriptors 
are often employed. As an example, Chevillard et al. reported the use of a random 
forest protocol to select the most accurate model among several available, both in 
commercial or free software packages, for each compound [57]. They report that the 
multimodel approach can enlarge the applicability domain given that more accurate 
results for solubility prediction were obtained in comparison to using individual 
models. This approach agrees with other reports that consensus of local QSAR 
models can generate predictive workflows, especially for datasets with large struc-
tural diversity [58, 59]. It is worth noting that Lipinski himself recently revisited his 
own rules [60], in vision of new potential classes of drugs, such as natural products, 
peptide-like, and fragments, which, despite the validated effect, would defy the 
original Ro5 limits.

3.2 Ionization state and pKa prediction

Early pKa measurement proves beneficial in lipophilicity assessment since logD 
values at any pH can be calculated from the pKa and logP values [25, 50]. Although 
octanol/water logP is similar to most components in the body, not all biological 
partition processes (i.e., blood-brain barrier and gastrointestinal absorption) can be 
easily modeled by it [25].

The prediction of ionization state of compounds, which is indicated by the pKa 
value, is relevant to derive several other physicochemical and ADME properties of 
drugs, including solubility, lipophilicity, and pharmacokinetic profile. The use of 
pKa prediction can be placed in two different stages along the DDD, in the begin-
ning with fast models for larger libraries, intending to generate all possible state 
populations of particular compounds, and/or later on with more refined semiem-
pirical and, computationally expensive, the density functional theory (DFT), in 
which more accurate ionization states can be accessed. Examples of fast prediction 
methods for ionization states, which are available as computer programs, are 
SPARC [61], MoKa [62], and Epik, which use the Hammett and Taft approaches for 
the pKa prediction [63]. On the other hand, once smaller subsets of molecules are 
being addressed, the use of semiempirical or density functional theory (DFT) with 
more computationally expensive models was reported to accurately incorporate the 
structural features and diversity into the pKa prediction [64, 65].

3.3 Permeability and the use of cellular and noncellular models

As already seen, lipophilicity (logP, logD) is highly involved in membrane 
permeability. Apart from the already described in vitro methods for logP and logD 
determination, systems for ex vivo/in situ but also in vivo assessment exist as “direct 
empirical” determination of permeability. When talking about permeability, the 
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difference between passive diffusion and transporter-mediated active transport 
needs to be considered.

Cell culture methods have been applied to study intestinal absorption for several 
decades already [66]. Finding the correct model or cell line is crucial to assess the 
desired parameters such as passive or active transport. In general, it cannot be 
distinguished between the different transport mechanisms when using cell culture 
approaches, but several models exist to shift the focus on one of the parameters.

Two main cell lines are in use as models for intestinal absorption: Caco-2 and 
MDCK cells. Caco-2 cells are derived from a human colorectal carcinoma and 
possess many of the typical properties of the small intestine, therefore represent-
ing a well-established and validated assay system for absorption, permeability, 
and secretion studies [21, 67]. This assay is mainly used for rank ordering of 
compounds in terms of oral absorption and permeability in early phases of drug 
design. Unfortunately, results obtained in different batches and laboratories vary 
heavily due to several reasons, which make control compound usage necessary and 
represent a drawback of the technique [26]. Additional disadvantages include long 
preparation times (about 3 weeks) and no specific permeation mechanism evalua-
tion. Caco-2 assays are usually used as a primary assay followed and complemented 
by other in vitro and ex vivo methods [68]. Recently, a 3D version of the Caco-2 
assay, “Caco-2 3D spheroid permeability assay” was reported, increasing the overall 
performance and correlation to a human in vivo data [69].

As already stated above, transcellular permeation either occurs passively via 
diffusion of lipophilic molecules or is driven by membrane transporters. Important 
transporter includes ATP-dependent efflux transporter such as MRP2, BCRP, and 
P-gp and the organic solute transporter and the multidrug resistance protein 3 
(MRP3) on the luminal and basolateral membranes, respectively [26].

Madin-Darby canine kidney (MDCK) cells are an alternative to Caco-2 
cell-based assays and the next most common cell line for passive permeability 
assessment as well as drug-receptor interaction [70]. MDCK cells also are ideal for 
transfection and overexpression experiments with human transporters and recep-
tors due to the lack of P-glycoprotein [68, 71]. For instance, the MDCK-MDR1 cell 
line overexpresses the multidrug resistance protein 1 (MDR1, P-glycoprotein) and 
can be used in concert with other cell-based assays to specifically address the influ-
ence of MDR1 in drug efflux [72].

Immobilized artificial membranes (IAMs) were already used very early on for lipo-
philicity determination and are gaining interest again in recent years for direct perme-
ability measures [25]. IAMs are also intensively used in the measurement of the volume 
of distribution to mimic in vivo binding to phospholipids and phospholipid bilayers 
(membranes). Therefore, IAMs are discussed in more detail in the following section.

The parallel artificial membrane permeability assay (PAMPA) [73] is a cheap 
and fast in vitro alternative to cellular-based assay systems. A very comprehensive 
review of recent PAMPA methodologies and applications is available [74]. In prin-
ciple, PAMPA was developed to overcome cellular-based systems (Caco-2, MDCK, 
etc.) for passive permeability evaluation, which are error-prone, more difficult, 
and labor and time intensive and tend to report false negatives. Another advantage 
of PAMPA over conventional cell-based assays is the ability to selectively measure 
passive permeability, while in cell-based systems influence of membrane transport-
ers cannot be left out. PAMPA assays can be readily applied in high throughput 
processes or scales and different variants exist to address ionic and H-bonding with 
membranes that influence permeability and complement the use of Caco-2 and 
other cell assays [73]. Bermejo and colleagues also showed a significant correlation 
between Caco-2, in situ rat perfusion, and PAMPA assay data underlining applica-
bility of the method for ADME assessment [75].
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Although high-throughput applications of newly developed and standardized 
techniques allow gathering of an exorbitant amount of data, it is crucial to also 
(cor)relate the physicochemical and biomimetic properties to structural features 
of the compound. This will facilitate the development of QSPRs and allows the 
construction of in silico models ultimately guiding the medicinal chemistry 
efforts [25].

When dealing with oral administration, it is important to note that the drug is 
not only confronted with the hurdles of solubility and permeability in the absorp-
tion process but is also facing metabolizing mechanisms (i.e., enzymes) in the 
gastrointestinal tract, which are referred to as first-pass metabolism [24, 76]. These 
include but are not limited to P-glycoproteins, uridine diphosphate glucuronosyl-
transferase, and mainly cytochrome P450s (CYP450) [24]. This will be discussed 
more deeply in the Metabolism section.

Permeability has a direct influence on the drug absorption rate and, as dis-
cussed, despite the several in vitro cellular models available (e.g., Caco-2, PAMPA, 
and MDCK), the high costs justify the use of in silico prediction. Further, QSPR 
study developed using a large compound dataset of Caco-2 permeability data (1272 
compounds) presented good apparent permeability prediction accuracy (R2 = 0.81 
for the test set) using the polar volume, number hydrogen bond donors, and the 
surface area as main descriptors [77].

However, we are far from a model that can predict overall permeability and, the 
current status, rather focuses on individual compartments and tissues, such as the 
gastrointestinal (GI) tract, skin, buccal membrane, and the blood-brain barrier 
(BBB). Since the first BBB permeability correlations with logP in 1977 [78], models 
to predict BBB permeability, particularly logBB (Eq. (2)), have greatly advanced. 
Current models using an array of machine-learning methods such as multilinear 
regression, support vector machine (SVM), and artificial neural network (ANN) 
against a dataset of 320 unique compounds had good predictive power (R2 = 0.89) 
[79]. The work of Shen et al. developed SVM models using 1593 compounds (1283 
BBB+ and 310 BBB−) by using different pattern selection methods and obtained the 
overall accuracy of 98.2% [80]. Both methods have the limitation of unbalanced 
datasets (where the number of BBB+ is higher than the BBB− within the training 
set), which was addressed on the work of Wang et al. by using resampling meth-
ods coupled with the machine-learning techniques, to achieve accuracy rates of 
0.919 in external test data [81]. Wang and collaborators compiled a dataset of 439 
unique molecules, which were employed to generate a diverse set of QSAR models 
and consensus (R2 = 0.504 for external dataset prediction). They also reported the 
use of transporter profiles as additional biological descriptors to develop hybrid 
QSAR BBB models, with an improved correlation coefficient R2 = 0.526 for external 
validation [82].

LogBB can be calculated by the log of the ratio between the concentration within 
the brain (Cbrain) by the bloodstream concentration (Cblood) of the determined 
chemical entitiy

  logBB = log  (   C  brain   _____  C  blood    )   (2)

Finally, beyond the usual ADME parameters of interest in DDD, there are 
several other unusual ones that also can be predicted; as examples, we here point 
the permeability of the models for skin permeability, which evolved from simple 
diffusion models based on molecular weight and n-octanol/water partition coef-
ficient [83, 84], until more sophisticated models, such as (non)-linear QSPR models 
and even molecular dynamics simulation (as extensively reviewed by [85, 86]).
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4. ADME properties: experimental approaches and in silico models

4.1 Absorption

Oral bioavailability is defined as the amount of drug that reaches the site of 
action after oral administration and is influenced by factors like drug solubility and 
dissolution, chemical and enzymatic stability in the gastric and intestinal lumen, 
interacting luminal contents (food), gastrointestinal transit time, enterocyte per-
meability, and intestinal and hepatic metabolism [24]. Recently, bioavailability has 
been also described as the rate and speed of the drug to reach systemic bloodstream, 
considering the initial formulation as the starting point.

Oral administration includes a pharmaceutical phase—prior to PK and PD 
phases—that comprises disintegration and dissolution of the dosage form. When 
using oral dosage forms, the shape and chemical composition (e.g., tablets) play 
an important role since they contribute to the time needed for disintegration and 
dissolution.

Following the pharmaceutical phase, absorption is the first step in the phar-
macokinetic phase and is defined as the movement of the drug from the site of 
administration to the bloodstream. The main properties determining the rate of oral 
absorption for small molecules are permeability and solubility [87].

As such, the rate of dissolution and ionization, which are described by the 
Noyes-Whitney and Henderson-Hasselbalch equation, respectively, is the key fac-
tors in lead optimization for oral administration and is complemented by lipophilic-
ity as an additional factor influencing membrane permeation and solubility of the 
compound [31].

Dissolution can be expressed by a function of the aqueous solubility of a com-
pound, the surface area of the administered tablet (or the particles in other solid 
formulation), and a specific dissolution rate constant. Altering any of these param-
eters directly affects the dissolution profile [26]. While solubility is an endpoint 
value indicating the amount of a compound that is soluble in a solvent, dissolution 
describes the kinetic process of a compound being solved in a solvent [88].

On the other hand, ionization reflects if a compound is present in the charged 
or uncharged state and is at least influenced by two major parameters. The physico-
chemical property responsible for ionization is the pKa and describes the ionization 
state of that entity at a given pH. It is also referred to as aqueous ionization constant 
[30]. Thereby, it is directly influenced by the pH of the environment, the second 
parameter, which drastically changes on the way through the GI tract, from about 
pH 1 to 8 in the stomach and ileum, respectively.

The determination of the ionization state of a compound in the gastrointestinal 
system (stomach, jejunum, ileum, and colon) is crucial for absorption since it 
not only influences the solubility of a compound but also the lipophilicity and 
permeability [26, 30, 89]. About 60–70% of all drugs (effective 1999) are ioniz-
able, which underlines the role that ionization plays in ADME assessment [30, 90]. 
While charged molecules easily dissolve in aqueous systems (GI tract), they do 
not permeate membranes via passive diffusion and are reliant on active transport. 
The contrary is true for uncharged molecules, which pass biological membranes 
passively but show low solubility in aqueous solutions. Mechanisms of drug absorp-
tion include passive diffusion, active transport, and receptor-mediated endocy-
tosis, which are influenced by different factors and can themselves influence the 
bioavailability.

Similar to model and prediction, the absorption of a drug is a complex process, 
which is influenced not only by the physicochemical properties of drugs themselves 
but also by the physiological state of the tissue in question. As such, there are a large 
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number of prediction models available, which were generated based on the physico-
chemical properties involved in the absorption process, such as membrane perme-
ability and drug solubility. These models can help formulation scientists to optimize 
drugs with poor absorption due to low aqueous solubility.

Initial absorption models can be separated into dispersion and compartmental 
models [91]. While dispersion models treat the GI as a continuous system, with 
variable pH and surface area, compartmental models take into account physi-
ological factors such as transporters. The compartmental absorption transit (CAT) 
was one of the first models to regard distinct physiological properties, such as the 
minimal absorption in the stomach and colon, while assuming some mathemati-
cal simplifications, such as the instant dissolution of the drug and linear kinetics 
[92]. CAT was further modified as advanced CAT (ACAT), by including nonlinear 
absorption kinetics and the effects of the first-pass metabolism. ACAT also consid-
ers the gastrointestinal tract as nine subsections, each with unique physicochemical 
properties, such as pH, allowed solubility, particle size, and permeability [93]. 
Novel developments have included other absorption routes other than the GI, 
which have been recently included in commercially available software, such as oral 
absorption for the development of sublingual zolpidem tablets [94]. The absorption 
constant (Ka, expressed in terms of h−1 min−1), or also called first-order absorp-
tion rate constant (to not be confounded with pKa), is employed in most of the 
aforementioned models and is determined as a result from the changes in mass of 
absorbable drug over time at the site of administration. Ka can be derived from the 
decrease in the drug amount of absorbable present at the site of administration over 
time; however, it is often indirectly determined by the drug amounts measured in 
the blood and/or urine.

Along physicochemical models, which have a global application, machine-learning 
techniques were extensively employed to model absorption (as comprehensively 
reviewed by Kumar et al. [95]) and are inclined to be local models, since they are 
mostly based on a small, homogeneous dataset that influences their applicability 
domain.

4.2 Distribution and the role of plasma-binding proteins

After being absorbed and entering the circulatory system, the drug moves 
reversibly between different compartments within the body, which is described 
as distribution and influenced by several physicochemical properties of the 
drug and biological factors of the body. One of the most important properties is 
lipophilicity, and as such logP/logD, since it reflects the ability of the compound 
to pass biological membranes to reach other sites, tissues, and organs within the 
body [25]. Additional factors include phospholipid and (plasma) protein binding, 
which reduces the free drug concentration within the body, can prevent the migra-
tion to the receptor side/side of action, and causes drug-drug interactions [25, 
96]. Interestingly, binding to plasma proteins can also prolong the drug action by 
releasing the drug over a longer period of time. It is also important to note that the 
influence of lipophilicity on plasma protein binding is hypothesized to be higher for 
acidic compounds than for bases, meaning that negative charges contribute highly 
to plasma protein binding and prevent tissue binding, which leads to diminished 
volumes of distribution (Vd, Eq. (3)). The Vd is the amount of drug that is freely 
available in the blood, thus not bound to plasma proteins or other components [25, 
97, 98]. Vd is an apparent volume that increases proportionally to the extravascular 
drug binding and not an anatomically defined volume. Consequently, exten-
sive drug binding outside the bloodstream leads to increasing values of volume 
distribution.
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was one of the first models to regard distinct physiological properties, such as the 
minimal absorption in the stomach and colon, while assuming some mathemati-
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[92]. CAT was further modified as advanced CAT (ACAT), by including nonlinear 
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Volume distribution (Vd) is defined by the ratio between the amount of drug in 
the body (A) and the drug concentration in plasma (C, comprising both free drug 
and protein-bound drug):

  Vd =   A __ C    (3)

The parameter describing protein binding is the plasma protein affinity con-
stant Ki. Many efforts to determine distribution led to chromatography-based meth-
ods, such as (RP-)HPLC to mimic n-octanol/water logP or lipophilicity to measure 
distribution. In general, chromatographic methods are believed to resemble biologi-
cal partition processes more than octanol/water partition [25]. In the beginning, 
stationary phases in (RP-)HPLC were either silica-based or polymer-based but both 
had difficulties to reproduce logP and logD values despite several additives in the 
mobile phases [99]. The introduction of biomimetic (stationary) phases coated with 
human serum albumin (HAS), α1 acid glycoprotein (AGP), or immobilized artificial 
membranes (IAM) revolutionized the methodology since they allowed a better 
approximation of the biological system [25, 100].

A method to address plasma protein binding is the use of HSA and other plasma 
proteins (e.g., α1 acid glycoprotein) coupled with RP-HPLC [25, 101]. On the other 
hand, HPLC combined with IAMs is a popularly accepted technique for phospho-
lipid interaction and partition and several IAM columns are commercially available 
for DDD projects. Both techniques represent good assay systems to model in vivo Vd 
in high-throughput scale [98]. Problems with HPLC techniques, which are also true 
for biomimetic phases, include the lack of a gold standard that is needed to calibrate 
and later standardize results to make a comparison possible [25].

In vitro standard methods for unbound plasma fraction calculation include equi-
librium dialysis and ultrafiltration among several others as the two most commonly 
used methods and are considered the gold standard for binding assessment [26].

To calculate the Vd “a priori”/nonexperimentally, plasma protein binding, 
experimental logD and pKa are necessary. Then again, based on the Vd, the half-life 
(t1/2) of a compound can be calculated [102]. Apart from protein binding, tissue 
binding is also involved in the distribution of the compound. Generally, “tissue” 
here comprises several components of the human body such as lipids, DNA, or RNA 
and is also referred to as nonspecific binding [26].

In silico models to predict the Vd are often based on lipophilicity and solubility 
descriptors, which correlate with the fractions of the drugs that are either bound to 
plasma proteins or freely available. The work of del Amo et al. not just accurately 
predicts Vd and unbound drug fraction but also compares the model’s performance 
against the commercially available software VolSurf+ with comparable accuracy 
(R2 = 0.70 and 0.71, respectively) [103].

Expanding these studies, the work of Lombardo and Jing generated a set of 
models to predict the Vd in the steady state (Vss), using a dataset of 1096 diverse 
compounds [104]. They compared models generated by linear (PLS) with nonlinear 
(Random Forest) models, recommending the latter, with 33 descriptors, as the 
optimal method for Vss prediction.

The Vd of drugs is greatly influenced by binding to plasma proteins with 
several machine-learning–based models generated to predict this interaction. 
Protein-protein interaction (PPI) information derived from molecular docking 
was employed to derive a PPI-QSAR model for a small dataset of antibiotics (65 
unique compounds), which resulted in an accurate model (R2 = 0.86 for the test set) 
[105]. Additionally, global quantitative models using an array of classification and 
regression models using physicochemical and molecular descriptors derived from 
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a dataset of 794 compounds were shown to correctly classify the binding status of 
the test set compounds and could be used as a prescreening [106]. Another recent 
QSAR study using an extensively curated training set of 967 diverse pharmaceuti-
cals aimed to predict plasma protein-bound fractions (fb) using models generated 
by six machine-learning algorithms with 26 molecular descriptors [107]. This study 
is particularly interesting where the applicability domain is concerned allowing to 
differentiate whether the classification derives from (un-)favorable regions.

del Amo et al. recently reported one of the first QSPR models to predict intra-
vitreal volume of distribution and clearance of small molecules [108]; the model 
relies on the LogD and hydrogen bond capacity to understand phenomena such as 
intraocular pressure and guide drug discovery. Complementarily, the prediction of 
the drug passage through the blood-ocular barrier was described to be an important 
factor to evaluate volume distribution in this organ [109].

Recently, as a novel approach bridging the animal experiments with human 
results, it was shown that in PXB mice, a chimeric mice linage with a humanized 
liver, plasma concentration-time profiles could be used to infer human’s compound 
half-life [110].

Volume of distribution is also closely related to half-life and clearance param-
eters. As the Vd is a relative measurement of the free concentration of drug in the 
blood, this same amount could be excreted by kidneys in the glomerular filtration 
(clearance). Consecutively, the rate of clearance (discussed below in Excretion sec-
tion) directly influences the amount of available drug. Naturally, the concentration 
of free drug that can bind its molecular target is related to the therapeutic dosage 
and the half-life of the administered drug (as seen in Eq. (4)).

Half-life definition. Half-life is calculated by a ratio between the Napierian 
logarithm multiplied by the volume of distribution (Vd) and renal clearance (CL):

  t1 / 2 =    Ln2 . Vd _______ CL    (4)

4.3 Metabolism

Drug metabolism normally involves enzymatic modification or degradation of 
the compound to facilitate excretion via one of the major clearance organs: liver, 
kidney, spleen, or bile. While phase I enzymatic reactions include modifications 
such as oxidation, hydrolysis, and reduction to either introduce a functional group 
to the molecule or make it accessible, phase II reactions are conjugation mechanisms 
(e.g., methylation, acetylation, glutathione conjugation, amino acid conjugation, 
and others) that result in polar products that can be actively effluxed [26]. Thus, 
isozymes of the CYP450 family and efflux transporters such as P-glycoprotein and 
members of the multidrug resistance transporter MRP family are highly involved 
in the metabolism of drugs as well as drug-drug interactions, which are a major 
attrition cause. For instance, CYP3A4, CYP2C9, and CYP2D6 together catalyze the 
hepatic metabolism of about 50% of drugs, which underlines the importance of the 
superfamily. Interestingly, when CYP3A4 is expressed, usually P-glycoprotein is as 
well [8, 10, 14, 24, 111]. An approximation for metabolic behavior analysis is the use 
of either liver microsomes or S9 fractions although also recombinantly expressed 
proteins are partially in use [24, 26].

When available, the 3D structure of those proteins could be employed in 
molecular docking and molecular dynamics simulations aiming to predict the bind-
ing affinity of drugs or drug candidates aiming the estimation of a PK profile [112]. 
The metabolism prediction combines mathematical models to predict whether 
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Volume distribution (Vd) is defined by the ratio between the amount of drug in 
the body (A) and the drug concentration in plasma (C, comprising both free drug 
and protein-bound drug):

  Vd =   A __ C    (3)

The parameter describing protein binding is the plasma protein affinity con-
stant Ki. Many efforts to determine distribution led to chromatography-based meth-
ods, such as (RP-)HPLC to mimic n-octanol/water logP or lipophilicity to measure 
distribution. In general, chromatographic methods are believed to resemble biologi-
cal partition processes more than octanol/water partition [25]. In the beginning, 
stationary phases in (RP-)HPLC were either silica-based or polymer-based but both 
had difficulties to reproduce logP and logD values despite several additives in the 
mobile phases [99]. The introduction of biomimetic (stationary) phases coated with 
human serum albumin (HAS), α1 acid glycoprotein (AGP), or immobilized artificial 
membranes (IAM) revolutionized the methodology since they allowed a better 
approximation of the biological system [25, 100].

A method to address plasma protein binding is the use of HSA and other plasma 
proteins (e.g., α1 acid glycoprotein) coupled with RP-HPLC [25, 101]. On the other 
hand, HPLC combined with IAMs is a popularly accepted technique for phospho-
lipid interaction and partition and several IAM columns are commercially available 
for DDD projects. Both techniques represent good assay systems to model in vivo Vd 
in high-throughput scale [98]. Problems with HPLC techniques, which are also true 
for biomimetic phases, include the lack of a gold standard that is needed to calibrate 
and later standardize results to make a comparison possible [25].

In vitro standard methods for unbound plasma fraction calculation include equi-
librium dialysis and ultrafiltration among several others as the two most commonly 
used methods and are considered the gold standard for binding assessment [26].

To calculate the Vd “a priori”/nonexperimentally, plasma protein binding, 
experimental logD and pKa are necessary. Then again, based on the Vd, the half-life 
(t1/2) of a compound can be calculated [102]. Apart from protein binding, tissue 
binding is also involved in the distribution of the compound. Generally, “tissue” 
here comprises several components of the human body such as lipids, DNA, or RNA 
and is also referred to as nonspecific binding [26].

In silico models to predict the Vd are often based on lipophilicity and solubility 
descriptors, which correlate with the fractions of the drugs that are either bound to 
plasma proteins or freely available. The work of del Amo et al. not just accurately 
predicts Vd and unbound drug fraction but also compares the model’s performance 
against the commercially available software VolSurf+ with comparable accuracy 
(R2 = 0.70 and 0.71, respectively) [103].

Expanding these studies, the work of Lombardo and Jing generated a set of 
models to predict the Vd in the steady state (Vss), using a dataset of 1096 diverse 
compounds [104]. They compared models generated by linear (PLS) with nonlinear 
(Random Forest) models, recommending the latter, with 33 descriptors, as the 
optimal method for Vss prediction.

The Vd of drugs is greatly influenced by binding to plasma proteins with 
several machine-learning–based models generated to predict this interaction. 
Protein-protein interaction (PPI) information derived from molecular docking 
was employed to derive a PPI-QSAR model for a small dataset of antibiotics (65 
unique compounds), which resulted in an accurate model (R2 = 0.86 for the test set) 
[105]. Additionally, global quantitative models using an array of classification and 
regression models using physicochemical and molecular descriptors derived from 
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the target compound could be a substrate of a specific enzyme in combination 
with metabolism site predictions. Usually, those initial predictions are followed 
by molecular docking simulations and quantum mechanics simulations due to the 
dependency of electronics structure from both substrate and enzyme in catalyzed 
reaction [113, 114].

Nowadays, several attempts have been made to develop in silico models for 
predicting drug metabolism, specifically site-of-metabolism (SOM), and quite 
often are also converted into online server prediction tools for general use, for 
instance, the FAst MEtabolizer (FAME) model, which was generated from a diverse 
chemical datasets of more than 20,000 molecules and their respective experimen-
tally determined metabolism sites. FAME prediction rates were comparable to other 
metabolism site predictors focused on specific enzyme families, despite using only 
seven chemical descriptors [115]. Similarly, SMARTCyp server, which initially 
relied on the 2D structure of the molecule, without considering electronic proper-
ties or generating 3D structures, to predict CYP2D6 [116], was later expanded for 
other CYP isoforms. A more refined version was later updated to include the atomic 
solvent accessible surface area, which is independent of 3D coordinates, slightingly 
improving the overall prediction accuracy for different CYP isoforms [117]. The 
newest SMARTCyp version (3.0) uses the activation energies calculated by  
the density functional theory (DFT), meaning the difference between the energy  
of the transition state and the reactant complex, to predict SOMs of molecular frag-
ments of the query in an unsupervised fashion. SMARTCyp 3.0 also calculates the 
similarity between the query molecule and the model fragment [118].

IDSite approach aims to overcome the ligand-based bias of SOM prediction by 
using it as a part of a large framework, more precisely by combining it with molecu-
lar docking, where an atom can be considered a significant SOM by a P450 enzyme 
when accessible to the reactive heme iron center, and/or quantum calculations, 
where the candidate atom must have some degree of reactivity in the absence of the 
enzyme [119]. Similarly, the work of Kingsley et al. combined different approaches 
into a framework to predict CYP2C9 substrates. They validated the predictions 
from SMARTCyp in an ensemble docking, followed by a QSAR model to account for 
influences of both the inherent reactivity of each atom and the physical structure 
of the CYP2C9 binding site [120]. This combined approach resulted in 88% of true 
SOMs accurately predicted among the top ranked sites.

4.4 Excretion

Excretion is guided by one of the major clearance organs, and the assessment 
of clearance behavior sometimes involves isolated organs or tissues [24]. Humans 
rely on the kidney clearance as a major route for xenobiotic excretion, despite other 
available routes such as feces, bile, sweat, and breath. The excretion pathways 
directly impact the concentration of available drugs and are often measured in 
terms of half-life and the initial administered dose.

The renal clearance of a drug is another important parameter, which is usually 
employed to predict drug excretion. Experimentally, clearance is defined by the 
drug concentration drug along a defined time of renal excretion by a linear equa-
tion (Eq. (5)).

Equation for renal clearance. m is the substance’s mass generation rate, K is the 
clearance and C is the concentration at the time, and V is the volume where the drug 
is distributed, or for systemic approaches the total body water.

  V .   dC ___ dt   = − K . C + m  (5)
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Gombar et al. developed SVM- and MLR-based QSAR models to predict both 
systemic clearance and apparent volume of distribution from intravenous data 
[121] using as input structural fingerprints and electro-topological states (so-called 
E-states), respectively. The model performed with high accuracy, despite the highly 
diverse initial dataset employed for its generation, which points the importance of 
those models in early steps of the drug-discovery pipeline.

Also, the work of Kusama et al. established a chemoinformatic-based classifica-
tion model to predict the major clearance pathways of 141 approved drugs based 
on four physicochemical parameters: charge, molecular weight, lipophilicity, and 
protein unbound fraction in plasma, resulting in a final model with an accuracy 
of 88% [122]. This model approach was further refined by using support vector 
machine and increasing the number of relevant descriptors [123]. In order to better 
model the biotransformation processes, often the major triggers of excretion, 
the work of Berellini et al. used ELASTICO (Enhanced Leave Analog-Structural, 
Therapeutic, Ionization Class Out) to provide an appropriate sampling during the 
validation process. Their partial least-square models resulted in a highly accurate 
model derived from 754 compounds [124].

On another topic, ABCB1, also known as P-glycoprotein (P-gp or MDR1), is 
a membrane protein member of the ATP-binding cassette (ABC) transporters 
superfamily. Together with the hERG channel and CYP3A4, P-gp is one of the most 
widely studied antitarget, where its inhibition could bring consequences for several 
processes, such as the absorption, distribution, and excretion of drugs. Classical 
studies used chemometric methods to describe bioavailability in terms of P-gp 
and CYP enzyme activities, generating QSAR models based on 805 unique drug 
molecules with high accuracy (R2 = 0.80 for the test set) [125]. Alternatively, an 
approach to predict P-glycoprotein inhibition using molecular interaction fields, 
derived from a literature collection of more than 1200 structures, generated a 
pharmacophore model for competitive P-gp inhibition [126].

The most recent reported studies involving prediction of drug clearance, both 
from human and rat hepatic in vitro systems, were based on microsomes, with a 
recent emphasis on the use of hepatocytes. Wood et al. discuss the inherent limita-
tion of using human hepatocyte predictions, due to underprediction when com-
pared to in vivo clearance data, and the comments on the potential causes for those 
divergences [127].

As the pinnacle of ADME in silico approaches, the holistic physiologically based 
pharmacokinetic (PBPK) modeling was initially conceptualized by Teorell [128], 
aiming to enable the prediction of drugs’ pharmacokinetic behavior in humans using 
preclinical data. Recent PBPK models benefit from the large amount of available 
ADME data not only to aid the drug discovery process and dose regiment selection 
but also to guide the risk assessment for regulatory reviews [129]. PBPK models are 
compartmentalized representations of the different organs, and each compartment 
can be described by a specific tissue volume and blood flow rate, which communi-
cates with the blood (venous and arterial). Each organ/tissue has a unique volume, 
permeability, and eliminating anatomical constants and terms, which are deter-
mined independently from the studied drug, while other physiological drug-specific 
parameters are later incorporated, such as affinity toward plasma proteins, tissue-to-
plasma distribution rate, and even on target activity (Km, Vmax, or binding kinetics).

One of PBPK models’ important features is the perspective for the mechanistic 
and prospective prediction of a drug’s pharmacokinetic profiles. The use of drug-
dependent parameters includes, but is not limited to, physicochemical properties, 
solubility and permeability values, and also the role of individual enzymes and 
transporters in the metabolism. Those parameters can be determined in vitro 
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or calculated from the compound structure with other in silico approaches, 
which allows the early use of PBPK in the DDD (the bottom-up approach). 
Concurrently, it is also noteworthy that the model construction and parameter 
fine-tuning are a source of knowledge for the hit development, where the predic-
tions from the ongoing model can help to understand the model’s accuracy itself 
along the way (called as middle-out approach) and then prospectively be applied 
to simulate unstudied scenarios. Currently, there are several free-to-use and com-
mercially available PBPK and ADME prediction options (Table 2), which are also 
extensively reviewed and discussed by the works of Madden et al. [130].

Name Description Link/reference

ADME prediction

vNN-ADMET Public web server for ADMET property 
prediction based on 15 nearest neighbor 
models.

https://vnnadmet.bhsai.org/
[132]

Swiss-ADME Public web server for ADME property 
prediction. It has a very unique LogP 
calculation (i.LogP) based on free energy.

http://www.swissadme.ch
[133]

pkCSM ADME web server based on chemical 
fragment similarity (the so-called 
graph-based signatures).

http://biosig.unimelb.edu.au/pkcsm/
[134]

ADMETlab Web server using similarity-based 
ADME calculator models and drug-
likeness analyses.

http://admet.scbdd.com/home/index/
[135]

Schrodinger—
QikProp

Calculates pKa; LogP; water 
solubility—Schrodinger also offers 
other tools for property calculation.

https://www.schrodinger.com/
QikProp, Schrödinger, LLC, NY, 2019

DDI-Predictor DDI-Predictor is able to make 
quantitative predictions of drug 
exposure even in cases where the 
interaction has not been studied yet.

https://www.ddi-predictor.org

PBPK models and platforms

GastroPlus Comprises 10 different modules 
including PBPK modeling and in 
vitro vs. in vivo correlation, can be 
parameterized for different disease 
states and age groups.

www.simulations-plus.com

PKSIM PBK modeling tool with integrated 
database of anatomical and 
physiological parameters for humans, 
mouse, rat, dog, and monkey. Can 
model different scenarios depending on 
the chosen building blocks.

www.system sbiology.com/products/
pk-sim.html

Simcyp Incorporates databases of genetic, 
physiological, and epidemiological 
information to enable simulation of 
different populations and species, 
ultimately is able to predict ADME 
parameters.

www.simcyp.com

ADMEWORKS 
DDI Simulator

As a differential is able to predict 
drug-drug interactions using nonlinear 
models.

http://www.fqs.pl/chemistry_ 
materials_life_science/products/
ddi_simulator

Table 2. 
Tools for ADME prediction and PBPK modeling.
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Early PBPK models, such as the work of Varma et al., described another layer of 
complexity by including drug-drug interactions (DDI). The dosing time-dependent 
model considering the interaction between repaglinide with rifampicin was able to pre-
dict repaglinide plasma concentrations along a day. The model also predicted the drug 
interaction with other CYP3A4 and OATP1B1 inhibitors, which could result in further 
DDIs. Reports of DDI leading to complications in patients with particular genotype 
stimulated studies such as the one performed by Fermier et al. [131], where the effects 
of polymorphic cytochromes provided the basis for a more accurate DDI prediction.

5. Biological (large) molecules

During recent years, larger molecules (LM) have gained in significance and 
popularity, due to achievements and approvals, as new molecular entities. These 
“biologics” are normally biotechnologically synthesized or recombinantly pro-
duced compounds of biological origin such as peptides, antibodies, and nucleic 
acids [136]. From a historical perspective, drug discovery and development of 
LMs are heavily delayed in comparison to SMs with their first approved entity 
happening in the 1980s [137]. At about the same time, two major inventions 
allowed huge progress in pharmacokinetics assessment of small molecules, 
contributing to smaller drop-out rates in later DDD stages [136]. One of them was 
the improved understanding of CYP450 mechanism and the other, the invention 
of (HP)LC-MS technology, fueled the assessment of the ADME parameters. LMs’ 
discovery and development face many challenges, which demand high efforts 
to overcome but also offer unique opportunities in comparison to those of small 
molecules [138, 139].

The main differences between small and large molecules, despite the molecular 
weight, the number of heavy atoms, and torsions, can be found in the physicochem-
ical properties, such as permeability, oral bioavailability, stability, specificity, and 
immunogenicity [138, 139]. New parameters, unique for large molecules, are also of 
interest, such as the physical particle size and the hydrodynamic radius, which has 
a dramatic effect on the absorption. Both parameters are related to the overall shape 
and correlate well with MW for globular proteins, but not necessarily for unstruc-
tured or highly modified entities. As a result, biologics are normally administered 
parenterally, only targeting extracellular structures; they are also more likely to trig-
ger an immune response; and their production costs are considerably higher [139]. 
Interestingly, with the exception of the costs, these disadvantages can potentially 
be circumvented by appropriate delivery systems, for example, nanoparticle-based 
delivery to facilitate membrane permeation.

Other parameters, such as charges, which were previously modeled by pKa 
in case of small molecules, are heavily heterogeneous in LMs. The charge can be 
represented by the use of isoelectric points (pI), which are calculated from the 
available amino-acid sequence, and surface charge, which can use individual pKa’s 
and structural information to be inferred. Overall protein charge often influences 
the biologic excretion [140], since negatively charged molecules undergo less renal 
filtration disregarding size effect [141].

While representing difficulties in the development of new molecular entities, 
the aforementioned properties also offer special advantages that small molecules 
cannot cover. As such, LMs normally have longer t1/2, slower clearance, and higher 
selectivity; are multifunctional; and rarely expose drug interactions [139]. Apart 
from those, it was suggested that only 2–5% of the human genes can be targeted by 
small molecules, offering a niche for LMs’ application against several diseases [138].
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Concurrently, it is also noteworthy that the model construction and parameter 
fine-tuning are a source of knowledge for the hit development, where the predic-
tions from the ongoing model can help to understand the model’s accuracy itself 
along the way (called as middle-out approach) and then prospectively be applied 
to simulate unstudied scenarios. Currently, there are several free-to-use and com-
mercially available PBPK and ADME prediction options (Table 2), which are also 
extensively reviewed and discussed by the works of Madden et al. [130].

Name Description Link/reference

ADME prediction

vNN-ADMET Public web server for ADMET property 
prediction based on 15 nearest neighbor 
models.

https://vnnadmet.bhsai.org/
[132]

Swiss-ADME Public web server for ADME property 
prediction. It has a very unique LogP 
calculation (i.LogP) based on free energy.

http://www.swissadme.ch
[133]

pkCSM ADME web server based on chemical 
fragment similarity (the so-called 
graph-based signatures).

http://biosig.unimelb.edu.au/pkcsm/
[134]

ADMETlab Web server using similarity-based 
ADME calculator models and drug-
likeness analyses.

http://admet.scbdd.com/home/index/
[135]

Schrodinger—
QikProp

Calculates pKa; LogP; water 
solubility—Schrodinger also offers 
other tools for property calculation.

https://www.schrodinger.com/
QikProp, Schrödinger, LLC, NY, 2019

DDI-Predictor DDI-Predictor is able to make 
quantitative predictions of drug 
exposure even in cases where the 
interaction has not been studied yet.

https://www.ddi-predictor.org

PBPK models and platforms

GastroPlus Comprises 10 different modules 
including PBPK modeling and in 
vitro vs. in vivo correlation, can be 
parameterized for different disease 
states and age groups.

www.simulations-plus.com

PKSIM PBK modeling tool with integrated 
database of anatomical and 
physiological parameters for humans, 
mouse, rat, dog, and monkey. Can 
model different scenarios depending on 
the chosen building blocks.

www.system sbiology.com/products/
pk-sim.html

Simcyp Incorporates databases of genetic, 
physiological, and epidemiological 
information to enable simulation of 
different populations and species, 
ultimately is able to predict ADME 
parameters.

www.simcyp.com

ADMEWORKS 
DDI Simulator

As a differential is able to predict 
drug-drug interactions using nonlinear 
models.

http://www.fqs.pl/chemistry_ 
materials_life_science/products/
ddi_simulator

Table 2. 
Tools for ADME prediction and PBPK modeling.
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Early PBPK models, such as the work of Varma et al., described another layer of 
complexity by including drug-drug interactions (DDI). The dosing time-dependent 
model considering the interaction between repaglinide with rifampicin was able to pre-
dict repaglinide plasma concentrations along a day. The model also predicted the drug 
interaction with other CYP3A4 and OATP1B1 inhibitors, which could result in further 
DDIs. Reports of DDI leading to complications in patients with particular genotype 
stimulated studies such as the one performed by Fermier et al. [131], where the effects 
of polymorphic cytochromes provided the basis for a more accurate DDI prediction.

5. Biological (large) molecules

During recent years, larger molecules (LM) have gained in significance and 
popularity, due to achievements and approvals, as new molecular entities. These 
“biologics” are normally biotechnologically synthesized or recombinantly pro-
duced compounds of biological origin such as peptides, antibodies, and nucleic 
acids [136]. From a historical perspective, drug discovery and development of 
LMs are heavily delayed in comparison to SMs with their first approved entity 
happening in the 1980s [137]. At about the same time, two major inventions 
allowed huge progress in pharmacokinetics assessment of small molecules, 
contributing to smaller drop-out rates in later DDD stages [136]. One of them was 
the improved understanding of CYP450 mechanism and the other, the invention 
of (HP)LC-MS technology, fueled the assessment of the ADME parameters. LMs’ 
discovery and development face many challenges, which demand high efforts 
to overcome but also offer unique opportunities in comparison to those of small 
molecules [138, 139].

The main differences between small and large molecules, despite the molecular 
weight, the number of heavy atoms, and torsions, can be found in the physicochem-
ical properties, such as permeability, oral bioavailability, stability, specificity, and 
immunogenicity [138, 139]. New parameters, unique for large molecules, are also of 
interest, such as the physical particle size and the hydrodynamic radius, which has 
a dramatic effect on the absorption. Both parameters are related to the overall shape 
and correlate well with MW for globular proteins, but not necessarily for unstruc-
tured or highly modified entities. As a result, biologics are normally administered 
parenterally, only targeting extracellular structures; they are also more likely to trig-
ger an immune response; and their production costs are considerably higher [139]. 
Interestingly, with the exception of the costs, these disadvantages can potentially 
be circumvented by appropriate delivery systems, for example, nanoparticle-based 
delivery to facilitate membrane permeation.

Other parameters, such as charges, which were previously modeled by pKa 
in case of small molecules, are heavily heterogeneous in LMs. The charge can be 
represented by the use of isoelectric points (pI), which are calculated from the 
available amino-acid sequence, and surface charge, which can use individual pKa’s 
and structural information to be inferred. Overall protein charge often influences 
the biologic excretion [140], since negatively charged molecules undergo less renal 
filtration disregarding size effect [141].

While representing difficulties in the development of new molecular entities, 
the aforementioned properties also offer special advantages that small molecules 
cannot cover. As such, LMs normally have longer t1/2, slower clearance, and higher 
selectivity; are multifunctional; and rarely expose drug interactions [139]. Apart 
from those, it was suggested that only 2–5% of the human genes can be targeted by 
small molecules, offering a niche for LMs’ application against several diseases [138].
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The increasing effort and development of new technologies, driven by the belief 
in higher success rates, enabled the latest advances in the field [138]. For instance, 
currently, peptide drugs only account for ~2% of the drug market but are in use in 
a wide range of diseases such as acromegaly and multiple sclerosis, together with 
different cancer types such as prostate and breast cancer.

Several other biologics are currently in use, namely monoclonal antibodies 
(mAbs) and bispecific antibodies (bsAbs), as example agents that activate or 
enhance the immunologic response. Of special interest in cancer therapy is a sub-
class of bsAbs, so-called bispecific T-cell engager (BiTEs), which can recruit CD3 
cells at the tumor site by binding to both cell types thereby directing the immuno-
logical response [142].

Other interesting examples for biologics comprise hormones (e.g., insulin), 
cytokines (such as erythropoietin, EPO; IL-1; IL-2; IL-6) [143], nucleic acids such 
as siRNA (ONPATTRO) [144], and aptamers (Pegaptanib) [145]. While such a 
broad spectrum of molecule classes offers also a wide range of treatments, at the 
same time, it exacerbates the need for new developments since every molecule type 
exhibits different properties. In the field of predicting the biologics activity against 
specific targets, classical modeling tools, such as Monte Carlo sampling, genetic algo-
rithms, docking, and molecular dynamics simulation, were adapted or even devel-
oped anew to accommodate the specifics (as extensively reviewed by [146, 147]).

On the other hand, the absence of standard techniques to assess ADME proper-
ties hampers the PK profiling and thus further development [136]. In fact, the 
current knowledge of LM pharmacokinetics is even impaired compared to the basic 
knowledge of ADME principles for small molecules in the 1980s [136]. Although 
the basic PK principles are similar between SMs and LMs, the specific mechanisms 
influencing each step of ADME are different. To begin with, the route of adminis-
tration between them can differ, which leads to different mechanisms of absorption 
and first-pass metabolism. Furthermore, LMs are not metabolized by CYPs but can 
still trigger the release of pro-inflammatory cytokines leading to heavy side effects 
known as cytokine storm [136, 139]. Also, other modifications play a role in biolog-
ics ADME, namely glycosylation, PEGylation, and neonatal Fc receptor (FcRn) 
interactions [139, 148]. Unfortunately, up until now, most of the evaluation of those 
factors is only addressed on in vivo level systems, which are not suited for HTS, are 
expensive and labor intensive, and require longer bioethics evaluation.

In this regard, the development of in vitro and in silico methods to evaluate 
ADME should be a high-profile goal. One of the main challenges will be to find 
a way to integrate as many of the biologics into the process in order to facilitate 
ADME assessment and guide large molecules’ DDD as already implemented for 
their smaller counterparts.

6. Conclusions

The main difficulties in PK profiling lie in the high costs and comparable low 
throughput of in vivo models. The extensive use of animals in DDD also raises ethi-
cal issues and is further affected since animal models not always translate readily to 
the humans, especially in terms of metabolism [149, 150]. Furthermore, the advent 
of combinatorial chemistry coupled with HTS for efficacy evaluation leads to an 
explosion in the number to an extent that the classical PK assays could not compen-
sate [29, 47]. In vitro PK screens are supposed to offer a solution to the problem by 
complementing in vivo assessment to reduce costs while increasing efficiency, but 
they also suffer from shortcomings. In general, one must distinguish between two 
main forms of in vitro systems: static and dynamic models. Only dynamic models 
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are suited for PK evaluation because they allow variation of compound concentra-
tions, a key factor in pharmacokinetics. In this sense, diffusion-based dynamic in 
vitro models offer a solution but still are quite limited in terms of high throughput 
and costs. An alternative was presented by Lockwood and colleagues in the form 
of a 3D-printed fluidic device utilizing trans-well technique generating dynamic in 
vitro PK profiles also applicable for HTS infrastructure [149].

What distinguishes the DDD “then” and “now” is principally two main changes. 
First, in the past, pharmaceutical companies as well as academic laboratories were not 
that concerned with ADMET assessment in the early stages of drug discovery (hit and 
lead generation) and only addressed PK from preclinical stages on forward. Instead, 
HTS/HCS, genomics, and computational chemistry were high-profile areas. Today, 
almost all pharmaceutical big-players have shifted pharmacokinetic profiling to dis-
covery phases. However, only the future will tell whether those changes will yield fruit.

Second, CADD became more and more part of the DDD pipeline in dif-
ferent stages facilitating fast screening of compounds in silico and supporting 
QSAR. Although bioinformatics techniques already substituted many in vitro tests, 
basically all of them require in vitro and/or in vivo validation and standardization 
to guarantee trustable predictions. Another important aspect, recently addressed 
by the work of Ferreria and Andricopulo [151], is the importance of translating 
those models into well-structured and user-friendly (online) platforms that can be 
accessed and used by the drug discovery community. Still, the efficacy and reli-
ability of computer simulations increase permanently and drastically, and many see 
a future of solely virtual drug discovery. Thankfully, these failures resulted in the 
consequence of addressing safety and efficacy concern earlier in the drug discovery 
process, for instance, via in vitro screens to assess metabolic stability and absorption 
properties and diminish failure rates later on [13].

Acknowledgements

The authors would like to acknowledge the Fundação de Amparo à Pesquisa do 
Estado de São Paulo (FAPESP grants 2018/08820-0, 2017/03966-4, and 2015/26722-8). 
The authors would like to thank Prof Dr. José Eduardo Gonçalves for his valuable com-
ments on the manuscript.

Notes

ORCID numbers of all authors:

Thales Kronenberger: 0000-0001-6933-7590
Carsten Wrenger: 0000-0001-5987-1749 
Vinicius Goncalves Maltarollo: 0000-0001-9675-5907
Arne Krüger: 0000-0002-5531-9508

Conflict of interest

The authors declare no conflict of interest.



Drug Discovery and Development - New Advances

102

The increasing effort and development of new technologies, driven by the belief 
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currently, peptide drugs only account for ~2% of the drug market but are in use in 
a wide range of diseases such as acromegaly and multiple sclerosis, together with 
different cancer types such as prostate and breast cancer.

Several other biologics are currently in use, namely monoclonal antibodies 
(mAbs) and bispecific antibodies (bsAbs), as example agents that activate or 
enhance the immunologic response. Of special interest in cancer therapy is a sub-
class of bsAbs, so-called bispecific T-cell engager (BiTEs), which can recruit CD3 
cells at the tumor site by binding to both cell types thereby directing the immuno-
logical response [142].

Other interesting examples for biologics comprise hormones (e.g., insulin), 
cytokines (such as erythropoietin, EPO; IL-1; IL-2; IL-6) [143], nucleic acids such 
as siRNA (ONPATTRO) [144], and aptamers (Pegaptanib) [145]. While such a 
broad spectrum of molecule classes offers also a wide range of treatments, at the 
same time, it exacerbates the need for new developments since every molecule type 
exhibits different properties. In the field of predicting the biologics activity against 
specific targets, classical modeling tools, such as Monte Carlo sampling, genetic algo-
rithms, docking, and molecular dynamics simulation, were adapted or even devel-
oped anew to accommodate the specifics (as extensively reviewed by [146, 147]).
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are suited for PK evaluation because they allow variation of compound concentra-
tions, a key factor in pharmacokinetics. In this sense, diffusion-based dynamic in 
vitro models offer a solution but still are quite limited in terms of high throughput 
and costs. An alternative was presented by Lockwood and colleagues in the form 
of a 3D-printed fluidic device utilizing trans-well technique generating dynamic in 
vitro PK profiles also applicable for HTS infrastructure [149].

What distinguishes the DDD “then” and “now” is principally two main changes. 
First, in the past, pharmaceutical companies as well as academic laboratories were not 
that concerned with ADMET assessment in the early stages of drug discovery (hit and 
lead generation) and only addressed PK from preclinical stages on forward. Instead, 
HTS/HCS, genomics, and computational chemistry were high-profile areas. Today, 
almost all pharmaceutical big-players have shifted pharmacokinetic profiling to dis-
covery phases. However, only the future will tell whether those changes will yield fruit.

Second, CADD became more and more part of the DDD pipeline in dif-
ferent stages facilitating fast screening of compounds in silico and supporting 
QSAR. Although bioinformatics techniques already substituted many in vitro tests, 
basically all of them require in vitro and/or in vivo validation and standardization 
to guarantee trustable predictions. Another important aspect, recently addressed 
by the work of Ferreria and Andricopulo [151], is the importance of translating 
those models into well-structured and user-friendly (online) platforms that can be 
accessed and used by the drug discovery community. Still, the efficacy and reli-
ability of computer simulations increase permanently and drastically, and many see 
a future of solely virtual drug discovery. Thankfully, these failures resulted in the 
consequence of addressing safety and efficacy concern earlier in the drug discovery 
process, for instance, via in vitro screens to assess metabolic stability and absorption 
properties and diminish failure rates later on [13].

Acknowledgements

The authors would like to acknowledge the Fundação de Amparo à Pesquisa do 
Estado de São Paulo (FAPESP grants 2018/08820-0, 2017/03966-4, and 2015/26722-8). 
The authors would like to thank Prof Dr. José Eduardo Gonçalves for his valuable com-
ments on the manuscript.

Notes

ORCID numbers of all authors:

Thales Kronenberger: 0000-0001-6933-7590
Carsten Wrenger: 0000-0001-5987-1749 
Vinicius Goncalves Maltarollo: 0000-0001-9675-5907
Arne Krüger: 0000-0002-5531-9508

Conflict of interest

The authors declare no conflict of interest.



Drug Discovery and Development - New Advances

104

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Author details

Arne Krüger1, Vinicius Gonçalves Maltarollo2, Carsten Wrenger1*  
and Thales Kronenberger3

1 Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical 
Sciences, University of São Paulo, São Paulo, Brazil

2 Department of Pharmaceutical Products, Pharmacy Faculty, Federal University of 
Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

3 Department of Internal Medicine VIII, University Hospital of Tübingen, 
Tübingen, Germany

*Address all correspondence to: cwrenger@icb.usp.br

105

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

[1] Strovel J, Sittampalam S, Coussens 
NP, Hughes M, Inglese J, Kurtz A, et al. 
Early drug discovery and development 
guidelines: For academic researchers, 
collaborators, and start-up companies. 
In: Sittampalam GS, Coussens NP, 
Brimacombe K, Grossman A, Arkin M, 
Auld D, et al., editors. Assay Guidance. 
Manual, Bethesda (MD): Eli Lilly & 
Company and the National Center for 
Advancing Translational Sciences; 2004

[2] BIO Industry Analysis Reports. 
BIO n.d. Available from: https://www.
bio.org/bio-industry-analysis-reports 
[Accessed February 13, 2019]

[3] Mullard A. Parsing clinical success 
rates. Nature Reviews Drug Discovery. 
2016;15:447. DOI: 10.1038/nrd.2016.136

[4] Hughes JP, Rees S, Kalindjian SB,  
Philpott KL. Principles of early 
drug discovery. British Journal of 
Pharmacology. 2011;162:1239-1249. 
DOI: 10.1111/j.1476-5381.2010.01127.x

[5] Van Norman GA. Drugs, devices, 
and the FDA: Part 1: An overview 
of approval processes for drugs. 
JACC: Basic to Translational Science. 
2016;1:170-179. DOI: 10.1016/j.
jacbts.2016.03.002

[6] Paul SM, Mytelka DS, Dunwiddie 
CT, Persinger CC, Munos BH, Lindborg 
SR, et al. How to improve R&D 
productivity: The pharmaceutical 
industry’s grand challenge. Nature 
Reviews. Drug Discovery. 2010;9:203-
214. DOI: 10.1038/nrd3078

[7] DiMasi JA, Grabowski HG, Hansen 
RW. Innovation in the pharmaceutical 
industry: New estimates of R&D 
costs. Journal of Health Economics. 
2016;47:20-33. DOI: 10.1016/j.
jhealeco.2016.01.012

[8] Shearer TW, Smith KS, Diaz D, Asher 
C, Ramirez J. The role of in vitro ADME 

assays in antimalarial drug discovery 
and development. Combinatorial 
Chemistry & High Throughput 
Screening. 2005;8:89-98

[9] Fraietta I, Gasparri F. The 
development of high-content screening 
(HCS) technology and its importance 
to drug discovery. Expert Opinion on 
Drug Discovery. 2016;11:501-514. DOI: 
10.1517/17460441.2016.1165203

[10] Lombardo F, Desai PV, Arimoto R,  
Desino KE, Fischer H, Keefer 
CE, et al. In silico absorption, 
distribution, metabolism, excretion, 
and pharmacokinetics (ADME-PK): 
Utility and best practices. An industry 
perspective from the international 
consortium for innovation through 
quality in pharmaceutical development. 
Journal of Medicinal Chemistry. 
2017;60:9097-9113. DOI: 10.1021/acs.
jmedchem.7b00487

[11] FDA. The Drug Development 
Process. n.d. https://www.fda.gov/
ForPatients/Approvals/Drugs/ 
[Accessed February 13, 2019]

[12] Sinha S, Vohora D. Chapter 2—
Drug discovery and development: 
An overview. In: Vohora D, Singh G, 
editors. Pharmaceutical Medicine and 
Translational Clinical Research. Boston: 
Academic Press; 2018. pp. 19-32. DOI: 
10.1016/B978-0-12-802103-3.00002-X

[13] Hefti FF. Requirements for 
a lead compound to become 
a clinical candidate. BMC 
Neuroscience. 2008;9:S7. DOI: 
10.1186/1471-2202-9-S3-S7

[14] Andrews KA, Wesche D, McCarthy 
J, Möhrle JJ, Tarning J, Phillips L, et al. 
Model-informed drug development for 
malaria therapeutics. Annual Review 
of Pharmacology and Toxicology. 
2018;58:567-582. DOI: 10.1146/
annurev-pharmtox-010715-103429

References



Drug Discovery and Development - New Advances

104

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Author details

Arne Krüger1, Vinicius Gonçalves Maltarollo2, Carsten Wrenger1*  
and Thales Kronenberger3

1 Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical 
Sciences, University of São Paulo, São Paulo, Brazil

2 Department of Pharmaceutical Products, Pharmacy Faculty, Federal University of 
Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

3 Department of Internal Medicine VIII, University Hospital of Tübingen, 
Tübingen, Germany

*Address all correspondence to: cwrenger@icb.usp.br

105

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

[1] Strovel J, Sittampalam S, Coussens 
NP, Hughes M, Inglese J, Kurtz A, et al. 
Early drug discovery and development 
guidelines: For academic researchers, 
collaborators, and start-up companies. 
In: Sittampalam GS, Coussens NP, 
Brimacombe K, Grossman A, Arkin M, 
Auld D, et al., editors. Assay Guidance. 
Manual, Bethesda (MD): Eli Lilly & 
Company and the National Center for 
Advancing Translational Sciences; 2004

[2] BIO Industry Analysis Reports. 
BIO n.d. Available from: https://www.
bio.org/bio-industry-analysis-reports 
[Accessed February 13, 2019]

[3] Mullard A. Parsing clinical success 
rates. Nature Reviews Drug Discovery. 
2016;15:447. DOI: 10.1038/nrd.2016.136

[4] Hughes JP, Rees S, Kalindjian SB,  
Philpott KL. Principles of early 
drug discovery. British Journal of 
Pharmacology. 2011;162:1239-1249. 
DOI: 10.1111/j.1476-5381.2010.01127.x

[5] Van Norman GA. Drugs, devices, 
and the FDA: Part 1: An overview 
of approval processes for drugs. 
JACC: Basic to Translational Science. 
2016;1:170-179. DOI: 10.1016/j.
jacbts.2016.03.002

[6] Paul SM, Mytelka DS, Dunwiddie 
CT, Persinger CC, Munos BH, Lindborg 
SR, et al. How to improve R&D 
productivity: The pharmaceutical 
industry’s grand challenge. Nature 
Reviews. Drug Discovery. 2010;9:203-
214. DOI: 10.1038/nrd3078

[7] DiMasi JA, Grabowski HG, Hansen 
RW. Innovation in the pharmaceutical 
industry: New estimates of R&D 
costs. Journal of Health Economics. 
2016;47:20-33. DOI: 10.1016/j.
jhealeco.2016.01.012

[8] Shearer TW, Smith KS, Diaz D, Asher 
C, Ramirez J. The role of in vitro ADME 

assays in antimalarial drug discovery 
and development. Combinatorial 
Chemistry & High Throughput 
Screening. 2005;8:89-98

[9] Fraietta I, Gasparri F. The 
development of high-content screening 
(HCS) technology and its importance 
to drug discovery. Expert Opinion on 
Drug Discovery. 2016;11:501-514. DOI: 
10.1517/17460441.2016.1165203

[10] Lombardo F, Desai PV, Arimoto R,  
Desino KE, Fischer H, Keefer 
CE, et al. In silico absorption, 
distribution, metabolism, excretion, 
and pharmacokinetics (ADME-PK): 
Utility and best practices. An industry 
perspective from the international 
consortium for innovation through 
quality in pharmaceutical development. 
Journal of Medicinal Chemistry. 
2017;60:9097-9113. DOI: 10.1021/acs.
jmedchem.7b00487

[11] FDA. The Drug Development 
Process. n.d. https://www.fda.gov/
ForPatients/Approvals/Drugs/ 
[Accessed February 13, 2019]

[12] Sinha S, Vohora D. Chapter 2—
Drug discovery and development: 
An overview. In: Vohora D, Singh G, 
editors. Pharmaceutical Medicine and 
Translational Clinical Research. Boston: 
Academic Press; 2018. pp. 19-32. DOI: 
10.1016/B978-0-12-802103-3.00002-X

[13] Hefti FF. Requirements for 
a lead compound to become 
a clinical candidate. BMC 
Neuroscience. 2008;9:S7. DOI: 
10.1186/1471-2202-9-S3-S7

[14] Andrews KA, Wesche D, McCarthy 
J, Möhrle JJ, Tarning J, Phillips L, et al. 
Model-informed drug development for 
malaria therapeutics. Annual Review 
of Pharmacology and Toxicology. 
2018;58:567-582. DOI: 10.1146/
annurev-pharmtox-010715-103429

References



Drug Discovery and Development - New Advances

106

[15] Lombardino JG, Lowe JA. The role of 
the medicinal chemist in drug discovery—
Then and now. Nature Reviews. Drug 
Discovery. 2004;3:853-862. DOI: 10.1038/
nrd1523

[16] Maltarollo VG, Kronenberger T,  
Espinoza GZ, Oliveira PR, Honorio 
KM. Advances with support 
vector machines for novel drug 
discovery. Expert Opinion on Drug 
Discovery. 2019;14:23-33. DOI: 
10.1080/17460441.2019.1549033

[17] Huang J, Fan X. Why QSAR fails: An 
empirical evaluation using conventional 
computational approach. Molecular 
Pharmaceutics. 2011;8:600-608. DOI: 
10.1021/mp100423u

[18] Validation of (Q )SAR Models—
OECD. n.d. http://www.oecd.org/
chemicalsafety/risk-assessment/
validationofqsarmodels.htm [Accessed 
February 13, 2019]

[19] Gramatica P, Sangion A. A 
historical excursus on the statistical 
validation parameters for QSAR 
models: A clarification concerning 
metrics and terminology. Journal of 
Chemical Information and Modeling. 
2016;56:1127-1131. DOI: 10.1021/acs.
jcim.6b00088

[20] Abdel-Rahman SM, Kauffman RE.  
The integration of pharmacokinetics 
and pharmacodynamics: Understanding 
dose-response. Annual Review 
of Pharmacology and Toxicology. 
2004;44:111-136. DOI: 10.1146/annurev.
pharmtox.44.101802.121347

[21] Hodgson J. ADMET—Turning 
chemicals into drugs. Nature 
Biotechnology. 2001;19:722-726. DOI: 
10.1038/90761

[22] Tietgen H, Walden M.  
Physicochemical properties. In: Vogel 
HG, Maas J, Hock FJ, Mayer D, editors. 
Drug Discovery and Evaluation: 
Safety and Pharmacokinetic Assays. 

Berlin, Heidelberg: Springer Berlin 
Heidelberg; 2013. pp. 1125-1138. DOI: 
10.1007/978-3-642-25240-2_48

[23] Vaddady PK, Lee RE, Meibohm B. In 
vitro pharmacokinetic/pharmacodynamic 
models in anti-infective drug 
development: Focus on TB. Future 
Medicinal Chemistry. 2010;2:1355-1369. 
DOI: 10.4155/fmc.10.224

[24] Dowty ME, Messing DM, Lai Y,  
Kirkovsky L. Adme. ADMET for 
Medicinal Chemists. John Wiley & 
Sons, Ltd; 2010. pp. 145-200. DOI: 
10.1002/9780470915110.ch4

[25] Valkó KL. Lipophilicity and 
biomimetic properties measured by 
HPLC to support drug discovery. 
Journal of Pharmaceutical and 
Biomedical Analysis. 2016;130:35-54. 
DOI: 10.1016/j.jpba.2016.04.009

[26] Fan J, de Lannoy IAM.  
Pharmacokinetics. Biochemical 
Pharmacology. 2014;87:93-120. DOI: 
10.1016/j.bcp.2013.09.007

[27] Amidon GL, Lennernäs H, Shah VP,  
Crison JR. A theoretical basis for a 
biopharmaceutic drug classification: 
The correlation of in vitro drug product 
dissolution and in vivo bioavailability. 
Pharmaceutical Research. 
1995;12:413-420

[28] Lennernäs H. Human intestinal 
permeability. Journal of Pharmaceutical 
Sciences. 1998;87:403-410. DOI: 
10.1021/js970332a

[29] Avdeef A. Physicochemical profiling 
(solubility, permeability and charge 
state). Current Topics in Medicinal 
Chemistry. 2001;1:277-351

[30] Comer J, Box K. High-throughput 
measurement of drug pK a values 
for ADME screening. Journal of 
the Association for Laboratory 
Automation. 2003;1:55-59. DOI: 10.1016/
S1535-5535(04)00243-6

107

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

[31] Valko K, Butler J, Eddershaw P.  
Predictive approaches to increase 
absorption of compounds during lead 
optimisation. Expert Opinion on Drug 
Discovery. 2013;8:1225-1238. DOI: 
10.1517/17460441.2013.815613

[32] Tolls J, van Dijk J, Verbruggen EJM,  
Hermens JLM, Loeprecht B, 
Schüürmann G. Aqueous solubility−
molecular size relationships: A 
mechanistic case study using C10- to 
C19-alkanes. The Journal of Physical 
Chemistry. A. 2002;106:2760-2765. DOI: 
10.1021/jp011755a

[33] Lipinski CA, Lombardo F, Dominy 
BW, Feeney PJ. Experimental and 
computational approaches to estimate 
solubility and permeability in drug 
discovery and development settings. 
Advanced Drug Delivery Reviews. 
2001;46:3-26

[34] Hou T, Wang J, Zhang W, Xu X.  
ADME evaluation in drug discovery. 
6. Can oral bioavailability in humans 
be effectively predicted by simple 
molecular property-based rules? Journal 
of Chemical Information and Modeling. 
2007;47:460-463. DOI: 10.1021/ci6003515

[35] Veber DF, Johnson SR, Cheng H-Y,  
Smith BR, Ward KW, Kopple KD.  
Molecular properties that influence the 
oral bioavailability of drug candidates. 
Journal of Medicinal Chemistry. 
2002;45:2615-2623

[36] Daina A, Zoete V. A BOILED-egg to 
predict gastrointestinal absorption and 
brain penetration of small molecules. 
ChemMedChem. 2016;11:1117-1121. 
DOI: 10.1002/cmdc.201600182

[37] Egan WJ, Merz Kenneth M, Baldwin 
JJ. Prediction of drug absorption using 
multivariate statistics. Journal of 
Medicinal Chemistry. 2000;43:3867-
3877. DOI: 10.1021/jm000292e

[38] Lovering F, Bikker J, Humblet C.  
Escape from flatland: Increasing 

saturation as an approach to improving 
clinical success. Journal of Medicinal 
Chemistry. 2009;52:6752-6756. DOI: 
10.1021/jm901241e

[39] Ritchie TJ, Macdonald SJF, Young 
RJ, Pickett SD. The impact of aromatic 
ring count on compound developability: 
Further insights by examining carbo- 
and hetero-aromatic and -aliphatic 
ring types. Drug Discovery Today. 
2011;16:164-171. DOI: 10.1016/j.
drudis.2010.11.014

[40] Meissner KA, Kronenberger T,  
Maltarollo VG, Trossini GHG, Wrenger 
C. Targeting the plasmodium flaciparum 
plasmepsin V by ligand-based virtual 
screening. Chemical Biology & Drug 
Design. Mar 2019;93(3):300-312. DOI: 
10.1111/cbdd.13416

[41] Yao T-T, Xie J-F, Liu X-G, Cheng J-L, 
Zhu C-Y, Zhao J-H, et al. Integration of 
pharmacophore mapping and molecular 
docking in sequential virtual screening: 
Towards the discovery of novel JAK2 
inhibitors. RSC Advances. 2017;7:10353-
10360. DOI: 10.1039/C6RA24959K

[42] Naz S, Farooq U, Ali S, Sarwar R,  
Khan S, Abagyan R. Identification 
of new benzamide inhibitor against 
α-subunit of tryptophan synthase 
from Mycobacterium tuberculosis 
through structure-based virtual 
screening, anti-tuberculosis activity 
and molecular dynamics simulations. 
Journal of Biomolecular Structure 
and Dynamics. 2018;0:1-11. DOI: 
10.1080/07391102.2018.1448303

[43] Morgan ME, Lui K, Anderson BD.  
Microscale titrimetric and 
spectrophotometric methods for 
determination of ionization constants 
and partition coefficients of new drug 
candidates. Journal of Pharmaceutical 
Sciences. 1998;87:238-245. DOI: 
10.1021/js970057s

[44] Kibbey CE, Poole SK, Robinson B,  
Jackson JD, Durham D. An 



Drug Discovery and Development - New Advances

106

[15] Lombardino JG, Lowe JA. The role of 
the medicinal chemist in drug discovery—
Then and now. Nature Reviews. Drug 
Discovery. 2004;3:853-862. DOI: 10.1038/
nrd1523

[16] Maltarollo VG, Kronenberger T,  
Espinoza GZ, Oliveira PR, Honorio 
KM. Advances with support 
vector machines for novel drug 
discovery. Expert Opinion on Drug 
Discovery. 2019;14:23-33. DOI: 
10.1080/17460441.2019.1549033

[17] Huang J, Fan X. Why QSAR fails: An 
empirical evaluation using conventional 
computational approach. Molecular 
Pharmaceutics. 2011;8:600-608. DOI: 
10.1021/mp100423u

[18] Validation of (Q )SAR Models—
OECD. n.d. http://www.oecd.org/
chemicalsafety/risk-assessment/
validationofqsarmodels.htm [Accessed 
February 13, 2019]

[19] Gramatica P, Sangion A. A 
historical excursus on the statistical 
validation parameters for QSAR 
models: A clarification concerning 
metrics and terminology. Journal of 
Chemical Information and Modeling. 
2016;56:1127-1131. DOI: 10.1021/acs.
jcim.6b00088

[20] Abdel-Rahman SM, Kauffman RE.  
The integration of pharmacokinetics 
and pharmacodynamics: Understanding 
dose-response. Annual Review 
of Pharmacology and Toxicology. 
2004;44:111-136. DOI: 10.1146/annurev.
pharmtox.44.101802.121347

[21] Hodgson J. ADMET—Turning 
chemicals into drugs. Nature 
Biotechnology. 2001;19:722-726. DOI: 
10.1038/90761

[22] Tietgen H, Walden M.  
Physicochemical properties. In: Vogel 
HG, Maas J, Hock FJ, Mayer D, editors. 
Drug Discovery and Evaluation: 
Safety and Pharmacokinetic Assays. 

Berlin, Heidelberg: Springer Berlin 
Heidelberg; 2013. pp. 1125-1138. DOI: 
10.1007/978-3-642-25240-2_48

[23] Vaddady PK, Lee RE, Meibohm B. In 
vitro pharmacokinetic/pharmacodynamic 
models in anti-infective drug 
development: Focus on TB. Future 
Medicinal Chemistry. 2010;2:1355-1369. 
DOI: 10.4155/fmc.10.224

[24] Dowty ME, Messing DM, Lai Y,  
Kirkovsky L. Adme. ADMET for 
Medicinal Chemists. John Wiley & 
Sons, Ltd; 2010. pp. 145-200. DOI: 
10.1002/9780470915110.ch4

[25] Valkó KL. Lipophilicity and 
biomimetic properties measured by 
HPLC to support drug discovery. 
Journal of Pharmaceutical and 
Biomedical Analysis. 2016;130:35-54. 
DOI: 10.1016/j.jpba.2016.04.009

[26] Fan J, de Lannoy IAM.  
Pharmacokinetics. Biochemical 
Pharmacology. 2014;87:93-120. DOI: 
10.1016/j.bcp.2013.09.007

[27] Amidon GL, Lennernäs H, Shah VP,  
Crison JR. A theoretical basis for a 
biopharmaceutic drug classification: 
The correlation of in vitro drug product 
dissolution and in vivo bioavailability. 
Pharmaceutical Research. 
1995;12:413-420

[28] Lennernäs H. Human intestinal 
permeability. Journal of Pharmaceutical 
Sciences. 1998;87:403-410. DOI: 
10.1021/js970332a

[29] Avdeef A. Physicochemical profiling 
(solubility, permeability and charge 
state). Current Topics in Medicinal 
Chemistry. 2001;1:277-351

[30] Comer J, Box K. High-throughput 
measurement of drug pK a values 
for ADME screening. Journal of 
the Association for Laboratory 
Automation. 2003;1:55-59. DOI: 10.1016/
S1535-5535(04)00243-6

107

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

[31] Valko K, Butler J, Eddershaw P.  
Predictive approaches to increase 
absorption of compounds during lead 
optimisation. Expert Opinion on Drug 
Discovery. 2013;8:1225-1238. DOI: 
10.1517/17460441.2013.815613

[32] Tolls J, van Dijk J, Verbruggen EJM,  
Hermens JLM, Loeprecht B, 
Schüürmann G. Aqueous solubility−
molecular size relationships: A 
mechanistic case study using C10- to 
C19-alkanes. The Journal of Physical 
Chemistry. A. 2002;106:2760-2765. DOI: 
10.1021/jp011755a

[33] Lipinski CA, Lombardo F, Dominy 
BW, Feeney PJ. Experimental and 
computational approaches to estimate 
solubility and permeability in drug 
discovery and development settings. 
Advanced Drug Delivery Reviews. 
2001;46:3-26

[34] Hou T, Wang J, Zhang W, Xu X.  
ADME evaluation in drug discovery. 
6. Can oral bioavailability in humans 
be effectively predicted by simple 
molecular property-based rules? Journal 
of Chemical Information and Modeling. 
2007;47:460-463. DOI: 10.1021/ci6003515

[35] Veber DF, Johnson SR, Cheng H-Y,  
Smith BR, Ward KW, Kopple KD.  
Molecular properties that influence the 
oral bioavailability of drug candidates. 
Journal of Medicinal Chemistry. 
2002;45:2615-2623

[36] Daina A, Zoete V. A BOILED-egg to 
predict gastrointestinal absorption and 
brain penetration of small molecules. 
ChemMedChem. 2016;11:1117-1121. 
DOI: 10.1002/cmdc.201600182

[37] Egan WJ, Merz Kenneth M, Baldwin 
JJ. Prediction of drug absorption using 
multivariate statistics. Journal of 
Medicinal Chemistry. 2000;43:3867-
3877. DOI: 10.1021/jm000292e

[38] Lovering F, Bikker J, Humblet C.  
Escape from flatland: Increasing 

saturation as an approach to improving 
clinical success. Journal of Medicinal 
Chemistry. 2009;52:6752-6756. DOI: 
10.1021/jm901241e

[39] Ritchie TJ, Macdonald SJF, Young 
RJ, Pickett SD. The impact of aromatic 
ring count on compound developability: 
Further insights by examining carbo- 
and hetero-aromatic and -aliphatic 
ring types. Drug Discovery Today. 
2011;16:164-171. DOI: 10.1016/j.
drudis.2010.11.014

[40] Meissner KA, Kronenberger T,  
Maltarollo VG, Trossini GHG, Wrenger 
C. Targeting the plasmodium flaciparum 
plasmepsin V by ligand-based virtual 
screening. Chemical Biology & Drug 
Design. Mar 2019;93(3):300-312. DOI: 
10.1111/cbdd.13416

[41] Yao T-T, Xie J-F, Liu X-G, Cheng J-L, 
Zhu C-Y, Zhao J-H, et al. Integration of 
pharmacophore mapping and molecular 
docking in sequential virtual screening: 
Towards the discovery of novel JAK2 
inhibitors. RSC Advances. 2017;7:10353-
10360. DOI: 10.1039/C6RA24959K

[42] Naz S, Farooq U, Ali S, Sarwar R,  
Khan S, Abagyan R. Identification 
of new benzamide inhibitor against 
α-subunit of tryptophan synthase 
from Mycobacterium tuberculosis 
through structure-based virtual 
screening, anti-tuberculosis activity 
and molecular dynamics simulations. 
Journal of Biomolecular Structure 
and Dynamics. 2018;0:1-11. DOI: 
10.1080/07391102.2018.1448303

[43] Morgan ME, Lui K, Anderson BD.  
Microscale titrimetric and 
spectrophotometric methods for 
determination of ionization constants 
and partition coefficients of new drug 
candidates. Journal of Pharmaceutical 
Sciences. 1998;87:238-245. DOI: 
10.1021/js970057s

[44] Kibbey CE, Poole SK, Robinson B,  
Jackson JD, Durham D. An 



Drug Discovery and Development - New Advances

108

integrated process for measuring the 
physicochemical properties of drug 
candidates in a preclinical discovery 
environment. Journal of Pharmaceutical 
Sciences. 2001;90:1164-1175

[45] Miller JM, Blackburn AC, Shi Y, 
Melzak AJ, Ando HY. Semi-empirical 
relationships between effective 
mobility, charge, and molecular weight 
of pharmaceuticals by pressure-assisted 
capillary electrophoresis: Applications 
in drug discovery. Electrophoresis. 
2002;23:2833-2841. DOI: 10.1002/1522-
2683(200209)23:17<2833:: 
AID-ELPS2833>3.0.CO;2-7

[46] Zhou C, Jin Y, Kenseth JR, Stella M, 
Wehmeyer KR, Heineman WR. Rapid 
pKa estimation using vacuum-assisted 
multiplexed capillary electrophoresis 
(VAMCE) with ultraviolet detection. 
Journal of Pharmaceutical Sciences. 
2005;94:576-589. DOI: 10.1002/
jps.20275

[47] Bevan CD, Lloyd RS. A high-
throughput screening method for 
the determination of aqueous drug 
solubility using laser nephelometry in 
microtiter plates. Analytical Chemistry. 
2000;72:1781-1787

[48] Avdeef A. pH-metric solubility. 1. 
Solubility-pH profiles from bjerrum 
plots. Gibbs buffer and pKa in the solid 
state. Pharmacy and Pharmacology 
Communications. 1998;4:165-178. 
DOI: 10.1111/j.2042-7158.1998.
tb00328.x

[49] Wan H, Holmén AG. High 
throughput screening of 
physicochemical properties and 
in vitro ADME profiling in drug 
discovery. Combinatorial Chemistry 
& High Throughput Screening. 
2009;12:315-329

[50] Valkó K. Chapter 12. Measurements 
of physical properties for drug design in 
industry. In: Valkó K, editor. Handbook 
of Analytical Separations. Vol. 1. 

Amsterdam: Netherlands; Elsevier 
Science B.V.; 2000. pp. 535-583. DOI: 
10.1016/S1567-7192(00)80015-7

[51] Hitzel L, Watt AP, Locker KL. An 
increased throughput method for 
the determination of partition 
coefficients. Pharmaceutical Research. 
2000;17:1389-1395

[52] Jain N, Yalkowsky SH. Estimation 
of the aqueous solubility I: Application 
to organic nonelectrolytes. Journal 
of Pharmaceutical Sciences. 
2001;90:234-252

[53] Ran Y, He Y, Yang G, Johnson JLH, 
Yalkowsky SH. Estimation of aqueous 
solubility of organic compounds by 
using the general solubility equation. 
Chemosphere. 2002;48:487-509

[54] Jain P, Yalkowsky SH. Prediction 
of aqueous solubility from 
SCRATCH. International Journal of 
Pharmaceutics. 2010;385:1-5. DOI: 
10.1016/j.ijpharm.2009.10.003

[55] Ali J, Camilleri P, Brown MB, Hutt 
AJ, Kirton SB. Revisiting the general 
solubility equation: In Silico prediction 
of aqueous solubility incorporating the 
effect of topographical polar surface 
area. Journal of Chemical Information 
and Modeling. 2012;52:420-428. DOI: 
10.1021/ci200387c

[56] Wang J, Hou T. Recent advances 
on aqueous solubility prediction. 
Combinatorial Chemistry & High 
Throughput Screening. 2011;14:328-338

[57] Chevillard F, Lagorce D, Reynès C, 
Villoutreix BO, Vayer P, Miteva MA. In 
silico prediction of aqueous solubility: A 
multimodel protocol based on chemical 
similarity. Molecular Pharmaceutics. 
2012;9:3127-3135. DOI: 10.1021/
mp300234q

[58] Bergström CAS, Wassvik CM, 
Norinder U, Luthman K, Artursson P.  
Global and local computational models 
for aqueous solubility prediction 

109

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

of drug-like molecules. Journal of 
Chemical Information and Computer 
Sciences. 2004;44:1477-1488. DOI: 
10.1021/ci049909h

[59] Raevsky OA, Polianczyk DE, 
Grigorev VY, Raevskaja OE, Dearden 
JC. In silico prediction of aqueous 
solubility: A comparative study of local 
and global predictive models. Molecular 
Informatics. 2015;34:417-430. DOI: 
10.1002/minf.201400144

[60] Lipinski CA. Rule of five in 
2015 and beyond: Target and ligand 
structural limitations, ligand chemistry 
structure and drug discovery project 
decisions. Advanced Drug Delivery 
Reviews. 2016;101:34-41. DOI: 10.1016/j.
addr.2016.04.029

[61] Lee PH, Ayyampalayam SN, 
Carreira LA, Shalaeva M, Bhattachar S, 
Coselmon R, et al. In silico prediction of 
ionization constants of drugs. Molecular 
Pharmaceutics. 2007;4:498-512. DOI: 
10.1021/mp070019+

[62] Cruciani G, Milletti F, Storchi 
L, Sforna G, Goracci L. In silico pKa 
prediction and ADME profiling. 
Chemistry & Biodiversity. 2009;6:1812-
1821. DOI: 10.1002/cbdv.200900153

[63] Shelley JC, Cholleti A, Frye LL, 
Greenwood JR, Timlin MR, Uchimaya 
M. Epik: A software program for 
pKa prediction and protonation state 
generation for drug-like molecules. 
Journal of Computer-Aided Molecular 
Design. 2007;21:681-691. DOI: 10.1007/
s10822-007-9133-z

[64] Ho J. Predicting pKa in implicit 
solvents: Current status and future 
directions. Australian Journal of 
Chemistry. 2014;67:1441. DOI: 10.1071/
CH14040

[65] Jensen JH, Swain CJ, Olsen L.  
Prediction of pKa values for druglike 
molecules using semiempirical quantum 
chemical methods. The Journal of 

Physical Chemistry. A. 2017;121:699-
707. DOI: 10.1021/acs.jpca.6b10990

[66] Artursson P. Cell cultures as models 
for drug absorption across the intestinal 
mucosa. Critical Reviews in Therapeutic 
Drug Carrier Systems. 1991;8:305-330

[67] Hidalgo IJ, Borchardt RT. Transport 
of bile acids in a human intestinal 
epithelial cell line, Caco-2. Biochimica 
et Biophysica Acta (BBA)—General 
Subjects. 1990;1035:97-103. DOI: 
10.1016/0304-4165(90)90179-Z

[68] Press B, Di Grandi D. Permeability 
for intestinal absorption: Caco-2 assay 
and related issues. Current Drug 
Metabolism. 2008;9:893-900

[69] Lee JB, Son SH, Park MC, Kim TH,  
Kim MG, Yoo SD, et al. A novel in vitro 
permeability assay using three-
dimensional cell culture system. Journal 
of Biotechnology. 2015;205:93-100. DOI: 
10.1016/j.jbiotec.2014.12.019

[70] Volpe DA. Drug-permeability and 
transporter assays in Caco-2 and MDCK 
cell lines. Future Medicinal Chemistry. 
2011;3:2063-2077. DOI: 10.4155/
fmc.11.149

[71] Tang F, Horie K, Borchardt RT. Are 
MDCK cells transfected with the human 
MRP2 gene a good model of the human 
intestinal mucosa? Pharmaceutical 
Research. 2002;19:773-779

[72] Jin X, Luong T-L, Reese N, Gaona H,  
Collazo-Velez V, Vuong C, et al. 
Comparison of MDCK-MDR1 and 
Caco-2 cell based permeability assays 
for anti-malarial drug screening 
and drug investigations. Journal of 
Pharmacological and Toxicological 
Methods. 2014;70:188-194. DOI: 
10.1016/j.vascn.2014.08.002

[73] Kansy M, Avdeef A, Fischer H.  
Advances in screening for membrane 
permeability: High-resolution PAMPA 
for medicinal chemists. Drug Discovery 



Drug Discovery and Development - New Advances

108

integrated process for measuring the 
physicochemical properties of drug 
candidates in a preclinical discovery 
environment. Journal of Pharmaceutical 
Sciences. 2001;90:1164-1175

[45] Miller JM, Blackburn AC, Shi Y, 
Melzak AJ, Ando HY. Semi-empirical 
relationships between effective 
mobility, charge, and molecular weight 
of pharmaceuticals by pressure-assisted 
capillary electrophoresis: Applications 
in drug discovery. Electrophoresis. 
2002;23:2833-2841. DOI: 10.1002/1522-
2683(200209)23:17<2833:: 
AID-ELPS2833>3.0.CO;2-7

[46] Zhou C, Jin Y, Kenseth JR, Stella M, 
Wehmeyer KR, Heineman WR. Rapid 
pKa estimation using vacuum-assisted 
multiplexed capillary electrophoresis 
(VAMCE) with ultraviolet detection. 
Journal of Pharmaceutical Sciences. 
2005;94:576-589. DOI: 10.1002/
jps.20275

[47] Bevan CD, Lloyd RS. A high-
throughput screening method for 
the determination of aqueous drug 
solubility using laser nephelometry in 
microtiter plates. Analytical Chemistry. 
2000;72:1781-1787

[48] Avdeef A. pH-metric solubility. 1. 
Solubility-pH profiles from bjerrum 
plots. Gibbs buffer and pKa in the solid 
state. Pharmacy and Pharmacology 
Communications. 1998;4:165-178. 
DOI: 10.1111/j.2042-7158.1998.
tb00328.x

[49] Wan H, Holmén AG. High 
throughput screening of 
physicochemical properties and 
in vitro ADME profiling in drug 
discovery. Combinatorial Chemistry 
& High Throughput Screening. 
2009;12:315-329

[50] Valkó K. Chapter 12. Measurements 
of physical properties for drug design in 
industry. In: Valkó K, editor. Handbook 
of Analytical Separations. Vol. 1. 

Amsterdam: Netherlands; Elsevier 
Science B.V.; 2000. pp. 535-583. DOI: 
10.1016/S1567-7192(00)80015-7

[51] Hitzel L, Watt AP, Locker KL. An 
increased throughput method for 
the determination of partition 
coefficients. Pharmaceutical Research. 
2000;17:1389-1395

[52] Jain N, Yalkowsky SH. Estimation 
of the aqueous solubility I: Application 
to organic nonelectrolytes. Journal 
of Pharmaceutical Sciences. 
2001;90:234-252

[53] Ran Y, He Y, Yang G, Johnson JLH, 
Yalkowsky SH. Estimation of aqueous 
solubility of organic compounds by 
using the general solubility equation. 
Chemosphere. 2002;48:487-509

[54] Jain P, Yalkowsky SH. Prediction 
of aqueous solubility from 
SCRATCH. International Journal of 
Pharmaceutics. 2010;385:1-5. DOI: 
10.1016/j.ijpharm.2009.10.003

[55] Ali J, Camilleri P, Brown MB, Hutt 
AJ, Kirton SB. Revisiting the general 
solubility equation: In Silico prediction 
of aqueous solubility incorporating the 
effect of topographical polar surface 
area. Journal of Chemical Information 
and Modeling. 2012;52:420-428. DOI: 
10.1021/ci200387c

[56] Wang J, Hou T. Recent advances 
on aqueous solubility prediction. 
Combinatorial Chemistry & High 
Throughput Screening. 2011;14:328-338

[57] Chevillard F, Lagorce D, Reynès C, 
Villoutreix BO, Vayer P, Miteva MA. In 
silico prediction of aqueous solubility: A 
multimodel protocol based on chemical 
similarity. Molecular Pharmaceutics. 
2012;9:3127-3135. DOI: 10.1021/
mp300234q

[58] Bergström CAS, Wassvik CM, 
Norinder U, Luthman K, Artursson P.  
Global and local computational models 
for aqueous solubility prediction 

109

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

of drug-like molecules. Journal of 
Chemical Information and Computer 
Sciences. 2004;44:1477-1488. DOI: 
10.1021/ci049909h

[59] Raevsky OA, Polianczyk DE, 
Grigorev VY, Raevskaja OE, Dearden 
JC. In silico prediction of aqueous 
solubility: A comparative study of local 
and global predictive models. Molecular 
Informatics. 2015;34:417-430. DOI: 
10.1002/minf.201400144

[60] Lipinski CA. Rule of five in 
2015 and beyond: Target and ligand 
structural limitations, ligand chemistry 
structure and drug discovery project 
decisions. Advanced Drug Delivery 
Reviews. 2016;101:34-41. DOI: 10.1016/j.
addr.2016.04.029

[61] Lee PH, Ayyampalayam SN, 
Carreira LA, Shalaeva M, Bhattachar S, 
Coselmon R, et al. In silico prediction of 
ionization constants of drugs. Molecular 
Pharmaceutics. 2007;4:498-512. DOI: 
10.1021/mp070019+

[62] Cruciani G, Milletti F, Storchi 
L, Sforna G, Goracci L. In silico pKa 
prediction and ADME profiling. 
Chemistry & Biodiversity. 2009;6:1812-
1821. DOI: 10.1002/cbdv.200900153

[63] Shelley JC, Cholleti A, Frye LL, 
Greenwood JR, Timlin MR, Uchimaya 
M. Epik: A software program for 
pKa prediction and protonation state 
generation for drug-like molecules. 
Journal of Computer-Aided Molecular 
Design. 2007;21:681-691. DOI: 10.1007/
s10822-007-9133-z

[64] Ho J. Predicting pKa in implicit 
solvents: Current status and future 
directions. Australian Journal of 
Chemistry. 2014;67:1441. DOI: 10.1071/
CH14040

[65] Jensen JH, Swain CJ, Olsen L.  
Prediction of pKa values for druglike 
molecules using semiempirical quantum 
chemical methods. The Journal of 

Physical Chemistry. A. 2017;121:699-
707. DOI: 10.1021/acs.jpca.6b10990

[66] Artursson P. Cell cultures as models 
for drug absorption across the intestinal 
mucosa. Critical Reviews in Therapeutic 
Drug Carrier Systems. 1991;8:305-330

[67] Hidalgo IJ, Borchardt RT. Transport 
of bile acids in a human intestinal 
epithelial cell line, Caco-2. Biochimica 
et Biophysica Acta (BBA)—General 
Subjects. 1990;1035:97-103. DOI: 
10.1016/0304-4165(90)90179-Z

[68] Press B, Di Grandi D. Permeability 
for intestinal absorption: Caco-2 assay 
and related issues. Current Drug 
Metabolism. 2008;9:893-900

[69] Lee JB, Son SH, Park MC, Kim TH,  
Kim MG, Yoo SD, et al. A novel in vitro 
permeability assay using three-
dimensional cell culture system. Journal 
of Biotechnology. 2015;205:93-100. DOI: 
10.1016/j.jbiotec.2014.12.019

[70] Volpe DA. Drug-permeability and 
transporter assays in Caco-2 and MDCK 
cell lines. Future Medicinal Chemistry. 
2011;3:2063-2077. DOI: 10.4155/
fmc.11.149

[71] Tang F, Horie K, Borchardt RT. Are 
MDCK cells transfected with the human 
MRP2 gene a good model of the human 
intestinal mucosa? Pharmaceutical 
Research. 2002;19:773-779

[72] Jin X, Luong T-L, Reese N, Gaona H,  
Collazo-Velez V, Vuong C, et al. 
Comparison of MDCK-MDR1 and 
Caco-2 cell based permeability assays 
for anti-malarial drug screening 
and drug investigations. Journal of 
Pharmacological and Toxicological 
Methods. 2014;70:188-194. DOI: 
10.1016/j.vascn.2014.08.002

[73] Kansy M, Avdeef A, Fischer H.  
Advances in screening for membrane 
permeability: High-resolution PAMPA 
for medicinal chemists. Drug Discovery 



Drug Discovery and Development - New Advances

110

Today: Technologies. 2004;1:349-355. 
DOI: 10.1016/j.ddtec.2004.11.013

[74] Avdeef A. The rise of 
PAMPA. Expert Opinion on Drug 
Metabolism & Toxicology. 2005;1: 
325-342. DOI: 10.1517/17425255.1.2.325

[75] Bermejo M, Avdeef A, Ruiz A, 
Nalda R, Ruell JA, Tsinman O, et al. 
PAMPA—A drug absorption in vitro 
model: 7. Comparing rat in situ, 
Caco-2, and PAMPA permeability of 
fluoroquinolones. European Journal of 
Pharmaceutical Sciences. 2004;21: 
429-441. DOI: 10.1016/j.
ejps.2003.10.009

[76] Cho H-J, Kim J-E, Kim D-D, Yoon 
I-S. In vitro-in vivo extrapolation 
(IVIVE) for predicting human intestinal 
absorption and first-pass elimination 
of drugs: Principles and applications. 
Drug Development and Industrial 
Pharmacy. 2014;40:989-998. DOI: 
10.3109/03639045.2013.831439

[77] Wang N-N, Dong J, Deng Y-H, 
Zhu M-F, Wen M, Yao Z-J, et al. ADME 
properties evaluation in drug discovery: 
Prediction of Caco-2 cell permeability 
using a combination of NSGA-II 
and boosting. Journal of Chemical 
Information and Modeling. 2016;56:763-
773. DOI: 10.1021/acs.jcim.5b00642

[78] Timmermans PB, Brands A, 
van Zwieten PA. Lipophilicity and 
brain disposition of clonidine and 
structurally related imidazolidines. 
Naunyn-Schmiedeberg’s Archives of 
Pharmacology. 1977;300:217-226

[79] Yan A, Liang H, Chong Y, Nie X, Yu 
C. In-silico prediction of blood-brain 
barrier permeability. SAR and QSAR in 
Environmental Research. 2013;24:61-74. 
DOI: 10.1080/1062936X.2012.729224

[80] Shen J, Cheng F, Xu Y, Li W, Tang 
Y. Estimation of ADME properties 
with substructure pattern recognition. 
Journal of Chemical Information and 

Modeling. 2010;50:1034-1041. DOI: 
10.1021/ci100104j

[81] Wang Z, Yang H, Wu Z, Wang T, 
Li W, Tang Y, et al. In silico prediction 
of blood–brain barrier permeability of 
compounds by machine learning and 
resampling methods. ChemMedChem. 
2018;13:2189-2201. DOI: 10.1002/
cmdc.201800533

[82] Wang W, Kim MT, Sedykh A, Zhu 
H. Developing enhanced blood-brain 
barrier permeability models: Integrating 
external bio-assay data in QSAR 
modeling. Pharmaceutical Research. 
2015;32:3055-3065. DOI: 10.1007/
s11095-015-1687-1

[83] Pugh WJ, Roberts MS, Hadgraft J.  
Epidermal permeability—Penetrant 
structure relationships: 3. The 
effect of hydrogen bonding 
interactions and molecular size 
on diffusion across the stratum 
corneum. International Journal of 
Pharmaceutics. 1996;138:149-165. DOI: 
10.1016/0378-5173(96)04533-4

[84] Potts RO, Guy RH. Predicting 
skin permeability. Pharmaceutical 
Research. 1992;9:663-669. DOI: 
10.1023/A:1015810312465

[85] Degim IT. New tools and approaches 
for predicting skin permeability. Drug 
Discovery Today. 2006;11:517-523. DOI: 
10.1016/j.drudis.2006.04.006

[86] Pecoraro B, Tutone M, Hoffman E, 
Hutter V, Almerico AM, Traynor M.  
Predicting skin permeability 
by means of computational 
approaches: Reliability and caveats 
in pharmaceutical studies. Journal of 
Chemical Information and Modeling. 
2019. DOI: 10.1021/acs.jcim.8b00934. 
[Epub ahead of print]

[87] Ermondi G, Vallaro M, Caron 
G. Learning how to use IAM 
chromatography for predicting 
permeability. European Journal 

111

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

of Pharmaceutical Sciences. 
2018;114:385-390. DOI: 10.1016/j.
ejps.2018.01.001

[88] Smith BT. Remington Education: 
Physical Pharmacy. London, UK: 
Pharmaceutical Press; 2015. ISBN 978 0 
85711 106 7

[89] Dressman JB, Amidon GL, Reppas 
C, Shah VP. Dissolution testing 
as a prognostic tool for oral drug 
absorption: Immediate release dosage 
forms. Pharmaceutical Research. 
1998;15:11-22

[90] Comer J, Tam K. Lipophilicity 
Profiles: Theory and Measurement. 
Pharmacokinetic Optimization in Drug 
Research. Postfach,  Switzerland; John 
Wiley & Sons, Ltd; Verlag Helvetica 
Chimica Acta; 2001. pp. 275-304.  
ISBN 978 0 85711 106 7. DOI: 
10.1002/9783906390437.ch17

[91] Huang W, Lee SL, Yu LX.  
Mechanistic approaches to predicting 
oral drug absorption. The AAPS 
Journal. 2009;11:217-224. DOI: 10.1208/
s12248-009-9098-z

[92] Yu LX, Lipka E, Crison JR, 
Amidon GL. Transport approaches to 
the biopharmaceutical design of oral 
drug delivery systems: Prediction of 
intestinal absorption. Advanced Drug 
Delivery Reviews. 1996;19:359-376

[93] Agoram B, Woltosz WS, 
Bolger MB. Predicting the impact 
of physiological and biochemical 
processes on oral drug bioavailability. 
Advanced Drug Delivery Reviews. 
2001;50(Suppl 1):S41-S67

[94] Xia B, Yang Z, Zhou H, Lukacova V, 
Zhu W, Milewski M, et al. Development 
of a novel oral cavity compartmental 
absorption and transit model for 
sublingual administration: Illustration 
with Zolpidem. The AAPS Journal. 
2015;17:631-642. DOI: 10.1208/
s12248-015-9727-7

[95] Kumar R, Sharma A, Siddiqui MH, 
Tiwari RK. Promises of machine learning 
approaches in prediction of absorption of 
compounds. Mini Reviews in Medicinal 
Chemistry. 2018;18:196-207. DOI: 10.217
4/1389557517666170315150116

[96] Trainor GL. The importance 
of plasma protein binding in drug 
discovery. Expert Opinion on Drug 
Discovery. 2007;2:51-64. DOI: 
10.1517/17460441.2.1.51

[97] Kratochwil NA, Huber W, Müller F,  
Kansy M, Gerber PR. Predicting 
plasma protein binding of drugs: A new 
approach. Biochemical Pharmacology. 
2002;64:1355-1374

[98] Hollósy F, Valkó K, Hersey A, 
Nunhuck S, Kéri G, Bevan C. Estimation 
of volume of distribution in humans 
from high throughput HPLC-based 
measurements of human serum albumin 
binding and immobilized artificial 
membrane partitioning. Journal of 
Medicinal Chemistry. 2006;49:6958-
6971. DOI: 10.1021/jm050957i

[99] Liang C, Lian H. Recent advances 
in lipophilicity measurement by 
reversed-phase high-performance 
liquid chromatography. TrAC Trends in 
Analytical Chemistry. 2015;68:28-36. 
DOI: 10.1016/j.trac.2015.02.009

[100] Valkó K. Application of high-
performance liquid chromatography 
based measurements of lipophilicity  
to model biological distribution. 
Journal of Chromatography. A. 
2004;1037:299-310

[101] Huang Z, Ung T. Effect 
of alpha-1-acid glycoprotein 
binding on pharmacokinetics and 
pharmacodynamics. Current Drug 
Metabolism. 2013;14:226-238

[102] Lombardo F, Obach RS, Shalaeva 
MY, Gao F. Prediction of volume 
of distribution values in humans 
for neutral and basic drugs using 



Drug Discovery and Development - New Advances

110

Today: Technologies. 2004;1:349-355. 
DOI: 10.1016/j.ddtec.2004.11.013

[74] Avdeef A. The rise of 
PAMPA. Expert Opinion on Drug 
Metabolism & Toxicology. 2005;1: 
325-342. DOI: 10.1517/17425255.1.2.325

[75] Bermejo M, Avdeef A, Ruiz A, 
Nalda R, Ruell JA, Tsinman O, et al. 
PAMPA—A drug absorption in vitro 
model: 7. Comparing rat in situ, 
Caco-2, and PAMPA permeability of 
fluoroquinolones. European Journal of 
Pharmaceutical Sciences. 2004;21: 
429-441. DOI: 10.1016/j.
ejps.2003.10.009

[76] Cho H-J, Kim J-E, Kim D-D, Yoon 
I-S. In vitro-in vivo extrapolation 
(IVIVE) for predicting human intestinal 
absorption and first-pass elimination 
of drugs: Principles and applications. 
Drug Development and Industrial 
Pharmacy. 2014;40:989-998. DOI: 
10.3109/03639045.2013.831439

[77] Wang N-N, Dong J, Deng Y-H, 
Zhu M-F, Wen M, Yao Z-J, et al. ADME 
properties evaluation in drug discovery: 
Prediction of Caco-2 cell permeability 
using a combination of NSGA-II 
and boosting. Journal of Chemical 
Information and Modeling. 2016;56:763-
773. DOI: 10.1021/acs.jcim.5b00642

[78] Timmermans PB, Brands A, 
van Zwieten PA. Lipophilicity and 
brain disposition of clonidine and 
structurally related imidazolidines. 
Naunyn-Schmiedeberg’s Archives of 
Pharmacology. 1977;300:217-226

[79] Yan A, Liang H, Chong Y, Nie X, Yu 
C. In-silico prediction of blood-brain 
barrier permeability. SAR and QSAR in 
Environmental Research. 2013;24:61-74. 
DOI: 10.1080/1062936X.2012.729224

[80] Shen J, Cheng F, Xu Y, Li W, Tang 
Y. Estimation of ADME properties 
with substructure pattern recognition. 
Journal of Chemical Information and 

Modeling. 2010;50:1034-1041. DOI: 
10.1021/ci100104j

[81] Wang Z, Yang H, Wu Z, Wang T, 
Li W, Tang Y, et al. In silico prediction 
of blood–brain barrier permeability of 
compounds by machine learning and 
resampling methods. ChemMedChem. 
2018;13:2189-2201. DOI: 10.1002/
cmdc.201800533

[82] Wang W, Kim MT, Sedykh A, Zhu 
H. Developing enhanced blood-brain 
barrier permeability models: Integrating 
external bio-assay data in QSAR 
modeling. Pharmaceutical Research. 
2015;32:3055-3065. DOI: 10.1007/
s11095-015-1687-1

[83] Pugh WJ, Roberts MS, Hadgraft J.  
Epidermal permeability—Penetrant 
structure relationships: 3. The 
effect of hydrogen bonding 
interactions and molecular size 
on diffusion across the stratum 
corneum. International Journal of 
Pharmaceutics. 1996;138:149-165. DOI: 
10.1016/0378-5173(96)04533-4

[84] Potts RO, Guy RH. Predicting 
skin permeability. Pharmaceutical 
Research. 1992;9:663-669. DOI: 
10.1023/A:1015810312465

[85] Degim IT. New tools and approaches 
for predicting skin permeability. Drug 
Discovery Today. 2006;11:517-523. DOI: 
10.1016/j.drudis.2006.04.006

[86] Pecoraro B, Tutone M, Hoffman E, 
Hutter V, Almerico AM, Traynor M.  
Predicting skin permeability 
by means of computational 
approaches: Reliability and caveats 
in pharmaceutical studies. Journal of 
Chemical Information and Modeling. 
2019. DOI: 10.1021/acs.jcim.8b00934. 
[Epub ahead of print]

[87] Ermondi G, Vallaro M, Caron 
G. Learning how to use IAM 
chromatography for predicting 
permeability. European Journal 

111

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

of Pharmaceutical Sciences. 
2018;114:385-390. DOI: 10.1016/j.
ejps.2018.01.001

[88] Smith BT. Remington Education: 
Physical Pharmacy. London, UK: 
Pharmaceutical Press; 2015. ISBN 978 0 
85711 106 7

[89] Dressman JB, Amidon GL, Reppas 
C, Shah VP. Dissolution testing 
as a prognostic tool for oral drug 
absorption: Immediate release dosage 
forms. Pharmaceutical Research. 
1998;15:11-22

[90] Comer J, Tam K. Lipophilicity 
Profiles: Theory and Measurement. 
Pharmacokinetic Optimization in Drug 
Research. Postfach,  Switzerland; John 
Wiley & Sons, Ltd; Verlag Helvetica 
Chimica Acta; 2001. pp. 275-304.  
ISBN 978 0 85711 106 7. DOI: 
10.1002/9783906390437.ch17

[91] Huang W, Lee SL, Yu LX.  
Mechanistic approaches to predicting 
oral drug absorption. The AAPS 
Journal. 2009;11:217-224. DOI: 10.1208/
s12248-009-9098-z

[92] Yu LX, Lipka E, Crison JR, 
Amidon GL. Transport approaches to 
the biopharmaceutical design of oral 
drug delivery systems: Prediction of 
intestinal absorption. Advanced Drug 
Delivery Reviews. 1996;19:359-376

[93] Agoram B, Woltosz WS, 
Bolger MB. Predicting the impact 
of physiological and biochemical 
processes on oral drug bioavailability. 
Advanced Drug Delivery Reviews. 
2001;50(Suppl 1):S41-S67

[94] Xia B, Yang Z, Zhou H, Lukacova V, 
Zhu W, Milewski M, et al. Development 
of a novel oral cavity compartmental 
absorption and transit model for 
sublingual administration: Illustration 
with Zolpidem. The AAPS Journal. 
2015;17:631-642. DOI: 10.1208/
s12248-015-9727-7

[95] Kumar R, Sharma A, Siddiqui MH, 
Tiwari RK. Promises of machine learning 
approaches in prediction of absorption of 
compounds. Mini Reviews in Medicinal 
Chemistry. 2018;18:196-207. DOI: 10.217
4/1389557517666170315150116

[96] Trainor GL. The importance 
of plasma protein binding in drug 
discovery. Expert Opinion on Drug 
Discovery. 2007;2:51-64. DOI: 
10.1517/17460441.2.1.51

[97] Kratochwil NA, Huber W, Müller F,  
Kansy M, Gerber PR. Predicting 
plasma protein binding of drugs: A new 
approach. Biochemical Pharmacology. 
2002;64:1355-1374

[98] Hollósy F, Valkó K, Hersey A, 
Nunhuck S, Kéri G, Bevan C. Estimation 
of volume of distribution in humans 
from high throughput HPLC-based 
measurements of human serum albumin 
binding and immobilized artificial 
membrane partitioning. Journal of 
Medicinal Chemistry. 2006;49:6958-
6971. DOI: 10.1021/jm050957i

[99] Liang C, Lian H. Recent advances 
in lipophilicity measurement by 
reversed-phase high-performance 
liquid chromatography. TrAC Trends in 
Analytical Chemistry. 2015;68:28-36. 
DOI: 10.1016/j.trac.2015.02.009

[100] Valkó K. Application of high-
performance liquid chromatography 
based measurements of lipophilicity  
to model biological distribution. 
Journal of Chromatography. A. 
2004;1037:299-310

[101] Huang Z, Ung T. Effect 
of alpha-1-acid glycoprotein 
binding on pharmacokinetics and 
pharmacodynamics. Current Drug 
Metabolism. 2013;14:226-238

[102] Lombardo F, Obach RS, Shalaeva 
MY, Gao F. Prediction of volume 
of distribution values in humans 
for neutral and basic drugs using 



Drug Discovery and Development - New Advances

112

physicochemical measurements 
and plasma protein binding data. 
Journal of Medicinal Chemistry. 
2002;45:2867-2876

[103] Amo EM d, Ghemtio L, Xhaard H,  
Yliperttula M, Urtti A, Kidron H. 
Applying linear and non-linear methods 
for parallel prediction of volume of 
distribution and fraction of unbound 
drug. PLoS One. 2013;8:e74758. DOI: 
10.1371/journal.pone.0074758

[104] Lombardo F, Jing Y. In silico 
prediction of volume of distribution 
in humans. Extensive data set and the 
exploration of linear and nonlinear 
methods coupled with molecular 
interaction fields descriptors. Journal of 
Chemical Information and Modeling. 
2016;56:2042-2052. DOI: 10.1021/acs.
jcim.6b00044

[105] Li H, Chen Z, Xu X, Sui X, Guo T, 
Liu W, et al. Predicting human plasma 
protein binding of drugs using plasma 
protein interaction QSAR analysis 
(PPI-QSAR). Biopharmaceutics & Drug 
Disposition. 2011;32:333-342. DOI: 
10.1002/bdd.762

[106] Ghafourian T, Amin ZQSAR. 
Models for the prediction of plasma 
protein binding. BioImpacts: BI. 
2013;3:21-27. DOI: 10.5681/bi.2013.011.

[107] Sun L, Yang H, Li J, Wang T, Li W,  
Liu G, et al. In silico prediction 
of compounds binding to human 
plasma proteins by QSAR models. 
ChemMedChem. 2018;13:572-581. DOI: 
10.1002/cmdc.201700582

[108] del Amo EM, Vellonen K-S, Kidron 
H, Urtti A. Intravitreal clearance and 
volume of distribution of compounds 
in rabbits: In silico prediction and 
pharmacokinetic simulations for drug 
development. European Journal of 
Pharmaceutics and Biopharmaceutics. 
2015;95:215-226. DOI: 10.1016/j.
ejpb.2015.01.003

[109] Vellonen K-S, Soini E-M, del 
Amo EM, Urtti A. Prediction of ocular 
drug distribution from systemic blood 
circulation. Molecular Pharmaceutics. 
2016;13:2906-2911. DOI: 10.1021/acs.
molpharmaceut.5b00729

[110] Miyamoto M, Iwasaki S, Chisaki I, 
Nakagawa S, Amano N, Kosugi Y, et al. 
Prediction of human pharmacokinetics 
of long half-life compounds using 
chimeric mice with humanised 
liver. Xenobiotica. 2019:1-31. DOI: 
10.1080/00498254.2019.1579394. [Epub 
ahead of print]

[111] Eyal S, Hsiao P, Unadkat JD. Drug 
interactions at the blood-brain barrier: 
Fact or fantasy? Pharmacology & 
Therapeutics. 2009;123:80-104. DOI: 
10.1016/j.pharmthera.2009.03.017

[112] Moroy G, Martiny VY, Vayer P, 
Villoutreix BO, Miteva MA. Toward 
in silico structure-based ADMET 
prediction in drug discovery. Drug 
Discovery Today. 2012;17:44-55. DOI: 
10.1016/j.drudis.2011.10.023

[113] Braga RC, Alves VM, Fraga CAM, 
Barreiro EJ, de Oliveira V, Andrade CH.  
Combination of docking, molecular 
dynamics and quantum mechanical 
calculations for metabolism prediction 
of 3,4-methylenedioxybenzoyl-2-
thienylhydrazone. Journal of Molecular 
Modeling. 2012;18:2065-2078. DOI: 
10.1007/s00894-011-1219-9

[114] Sadowski P, Fooshee D, 
Subrahmanya N, Baldi P. Synergies 
between quantum mechanics and 
machine learning in reaction prediction. 
Journal of Chemical Information and 
Modeling. 2016;56:2125-2128. DOI: 
10.1021/acs.jcim.6b00351

[115] Kirchmair J, Williamson MJ, Afzal 
AM, Tyzack JD, Choy APK, Howlett 
A, et al. FAst MEtabolizer (FAME): A 
rapid and accurate predictor of sites 
of metabolism in multiple species 

113

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

by endogenous enzymes. Journal of 
Chemical Information and Modeling. 
2013;53:2896-2907. DOI: 10.1021/
ci400503s

[116] Rydberg P, Olsen L. Ligand-based 
site of metabolism prediction for 
cytochrome P450 2D6. ACS Medicinal 
Chemistry Letters. 2012;3:69-73. DOI: 
10.1021/ml200246f

[117] Rydberg P, Rostkowski M, Gloriam 
DE, Olsen L. The contribution of atom 
accessibility to site of metabolism 
models for cytochromes P450. 
Molecular Pharmaceutics. 2013;10:1216-
1223. DOI: 10.1021/mp3005116

[118] Olsen L, Montefiori M, Tran KP,  
Jørgensen FS. SMARTCyp 3.0: Enhanced 
cytochrome P450 site-of-metabolism 
prediction server. Bioinformatics. 2019. 
DOI: 10.1093/bioinformatics/btz037. 
[Epub ahead of print]

[119] Li J, Schneebeli ST, Bylund J, Farid 
R, Friesner RA. IDSite: An accurate 
approach to predict P450-mediated 
drug metabolism. Journal of Chemical 
Theory and Computation. 2011;7:3829-
3845. DOI: 10.1021/ct200462q

[120] Kingsley LJ, Wilson GL, Essex ME, 
Lill MA. Combining structure- and 
ligand-based approaches to improve site 
of metabolism prediction in CYP2C9 
substrates. Pharmaceutical Research. 
2015;32:986-1001. DOI: 10.1007/
s11095-014-1511-3

[121] Gombar VK, Hall SD. Quantitative 
structure-activity relationship models 
of clinical pharmacokinetics: Clearance 
and volume of distribution. Journal of 
Chemical Information and Modeling. 
2013;53:948-957. DOI: 10.1021/
ci400001u

[122] Kusama M, Toshimoto K, 
Maeda K, Hirai Y, Imai S, Chiba K, 
et al. In silico classification of major 
clearance pathways of drugs with 

their physiochemical parameters. 
Drug Metabolism and Disposition. 
2010;38:1362-1370. DOI: 10.1124/
dmd.110.032789

[123] Toshimoto K, Wakayama N, 
Kusama M, Maeda K, Sugiyama Y, 
Akiyama Y. In silico prediction of major 
drug clearance pathways by support 
vector machines with feature-selected 
descriptors. Drug Metabolism and 
Disposition. 2014;42:1811-1819. DOI: 
10.1124/dmd.114.057893

[124] Berellini G, Waters NJ, Lombardo 
F. In silico prediction of total human 
plasma clearance. Journal of Chemical 
Information and Modeling. 2012;52: 
2069-2078. DOI: 10.1021/ci300155y

[125] Xu X, Zhang W, Huang C, Li Y, Yu 
H, Wang Y, et al. A novel chemometric 
method for the prediction of human 
oral bioavailability. International 
Journal of Molecular Sciences. 
2012;13:6964-6982. DOI: 10.3390/
ijms13066964

[126] Broccatelli F, Carosati E, Neri 
A, Frosini M, Goracci L, Oprea TI, 
et al. A novel approach for predicting 
P-glycoprotein (ABCB1) inhibition using 
molecular interaction fields. Journal of 
Medicinal Chemistry. 2011;54:1740-1751. 
DOI: 10.1021/jm101421d

[127] Wood FL, Houston JB, Hallifax 
D. Clearance prediction methodology 
needs fundamental improvement: 
Trends common to rat and human 
hepatocytes/microsomes and 
implications for experimental 
methodology. Drug Metabolism and 
Disposition. 2017;45:1178-1188. DOI: 
10.1124/dmd.117.077040

[128] Teorell T. Kinetics of distribution 
of substances administered to the 
body, I : The extravascular modes of 
administration. Archives Internationales 
de Pharmacodynamie et de Therapie. 
1937;57:205-225



Drug Discovery and Development - New Advances

112

physicochemical measurements 
and plasma protein binding data. 
Journal of Medicinal Chemistry. 
2002;45:2867-2876

[103] Amo EM d, Ghemtio L, Xhaard H,  
Yliperttula M, Urtti A, Kidron H. 
Applying linear and non-linear methods 
for parallel prediction of volume of 
distribution and fraction of unbound 
drug. PLoS One. 2013;8:e74758. DOI: 
10.1371/journal.pone.0074758

[104] Lombardo F, Jing Y. In silico 
prediction of volume of distribution 
in humans. Extensive data set and the 
exploration of linear and nonlinear 
methods coupled with molecular 
interaction fields descriptors. Journal of 
Chemical Information and Modeling. 
2016;56:2042-2052. DOI: 10.1021/acs.
jcim.6b00044

[105] Li H, Chen Z, Xu X, Sui X, Guo T, 
Liu W, et al. Predicting human plasma 
protein binding of drugs using plasma 
protein interaction QSAR analysis 
(PPI-QSAR). Biopharmaceutics & Drug 
Disposition. 2011;32:333-342. DOI: 
10.1002/bdd.762

[106] Ghafourian T, Amin ZQSAR. 
Models for the prediction of plasma 
protein binding. BioImpacts: BI. 
2013;3:21-27. DOI: 10.5681/bi.2013.011.

[107] Sun L, Yang H, Li J, Wang T, Li W,  
Liu G, et al. In silico prediction 
of compounds binding to human 
plasma proteins by QSAR models. 
ChemMedChem. 2018;13:572-581. DOI: 
10.1002/cmdc.201700582

[108] del Amo EM, Vellonen K-S, Kidron 
H, Urtti A. Intravitreal clearance and 
volume of distribution of compounds 
in rabbits: In silico prediction and 
pharmacokinetic simulations for drug 
development. European Journal of 
Pharmaceutics and Biopharmaceutics. 
2015;95:215-226. DOI: 10.1016/j.
ejpb.2015.01.003

[109] Vellonen K-S, Soini E-M, del 
Amo EM, Urtti A. Prediction of ocular 
drug distribution from systemic blood 
circulation. Molecular Pharmaceutics. 
2016;13:2906-2911. DOI: 10.1021/acs.
molpharmaceut.5b00729

[110] Miyamoto M, Iwasaki S, Chisaki I, 
Nakagawa S, Amano N, Kosugi Y, et al. 
Prediction of human pharmacokinetics 
of long half-life compounds using 
chimeric mice with humanised 
liver. Xenobiotica. 2019:1-31. DOI: 
10.1080/00498254.2019.1579394. [Epub 
ahead of print]

[111] Eyal S, Hsiao P, Unadkat JD. Drug 
interactions at the blood-brain barrier: 
Fact or fantasy? Pharmacology & 
Therapeutics. 2009;123:80-104. DOI: 
10.1016/j.pharmthera.2009.03.017

[112] Moroy G, Martiny VY, Vayer P, 
Villoutreix BO, Miteva MA. Toward 
in silico structure-based ADMET 
prediction in drug discovery. Drug 
Discovery Today. 2012;17:44-55. DOI: 
10.1016/j.drudis.2011.10.023

[113] Braga RC, Alves VM, Fraga CAM, 
Barreiro EJ, de Oliveira V, Andrade CH.  
Combination of docking, molecular 
dynamics and quantum mechanical 
calculations for metabolism prediction 
of 3,4-methylenedioxybenzoyl-2-
thienylhydrazone. Journal of Molecular 
Modeling. 2012;18:2065-2078. DOI: 
10.1007/s00894-011-1219-9

[114] Sadowski P, Fooshee D, 
Subrahmanya N, Baldi P. Synergies 
between quantum mechanics and 
machine learning in reaction prediction. 
Journal of Chemical Information and 
Modeling. 2016;56:2125-2128. DOI: 
10.1021/acs.jcim.6b00351

[115] Kirchmair J, Williamson MJ, Afzal 
AM, Tyzack JD, Choy APK, Howlett 
A, et al. FAst MEtabolizer (FAME): A 
rapid and accurate predictor of sites 
of metabolism in multiple species 

113

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

by endogenous enzymes. Journal of 
Chemical Information and Modeling. 
2013;53:2896-2907. DOI: 10.1021/
ci400503s

[116] Rydberg P, Olsen L. Ligand-based 
site of metabolism prediction for 
cytochrome P450 2D6. ACS Medicinal 
Chemistry Letters. 2012;3:69-73. DOI: 
10.1021/ml200246f

[117] Rydberg P, Rostkowski M, Gloriam 
DE, Olsen L. The contribution of atom 
accessibility to site of metabolism 
models for cytochromes P450. 
Molecular Pharmaceutics. 2013;10:1216-
1223. DOI: 10.1021/mp3005116

[118] Olsen L, Montefiori M, Tran KP,  
Jørgensen FS. SMARTCyp 3.0: Enhanced 
cytochrome P450 site-of-metabolism 
prediction server. Bioinformatics. 2019. 
DOI: 10.1093/bioinformatics/btz037. 
[Epub ahead of print]

[119] Li J, Schneebeli ST, Bylund J, Farid 
R, Friesner RA. IDSite: An accurate 
approach to predict P450-mediated 
drug metabolism. Journal of Chemical 
Theory and Computation. 2011;7:3829-
3845. DOI: 10.1021/ct200462q

[120] Kingsley LJ, Wilson GL, Essex ME, 
Lill MA. Combining structure- and 
ligand-based approaches to improve site 
of metabolism prediction in CYP2C9 
substrates. Pharmaceutical Research. 
2015;32:986-1001. DOI: 10.1007/
s11095-014-1511-3

[121] Gombar VK, Hall SD. Quantitative 
structure-activity relationship models 
of clinical pharmacokinetics: Clearance 
and volume of distribution. Journal of 
Chemical Information and Modeling. 
2013;53:948-957. DOI: 10.1021/
ci400001u

[122] Kusama M, Toshimoto K, 
Maeda K, Hirai Y, Imai S, Chiba K, 
et al. In silico classification of major 
clearance pathways of drugs with 

their physiochemical parameters. 
Drug Metabolism and Disposition. 
2010;38:1362-1370. DOI: 10.1124/
dmd.110.032789

[123] Toshimoto K, Wakayama N, 
Kusama M, Maeda K, Sugiyama Y, 
Akiyama Y. In silico prediction of major 
drug clearance pathways by support 
vector machines with feature-selected 
descriptors. Drug Metabolism and 
Disposition. 2014;42:1811-1819. DOI: 
10.1124/dmd.114.057893

[124] Berellini G, Waters NJ, Lombardo 
F. In silico prediction of total human 
plasma clearance. Journal of Chemical 
Information and Modeling. 2012;52: 
2069-2078. DOI: 10.1021/ci300155y

[125] Xu X, Zhang W, Huang C, Li Y, Yu 
H, Wang Y, et al. A novel chemometric 
method for the prediction of human 
oral bioavailability. International 
Journal of Molecular Sciences. 
2012;13:6964-6982. DOI: 10.3390/
ijms13066964

[126] Broccatelli F, Carosati E, Neri 
A, Frosini M, Goracci L, Oprea TI, 
et al. A novel approach for predicting 
P-glycoprotein (ABCB1) inhibition using 
molecular interaction fields. Journal of 
Medicinal Chemistry. 2011;54:1740-1751. 
DOI: 10.1021/jm101421d

[127] Wood FL, Houston JB, Hallifax 
D. Clearance prediction methodology 
needs fundamental improvement: 
Trends common to rat and human 
hepatocytes/microsomes and 
implications for experimental 
methodology. Drug Metabolism and 
Disposition. 2017;45:1178-1188. DOI: 
10.1124/dmd.117.077040

[128] Teorell T. Kinetics of distribution 
of substances administered to the 
body, I : The extravascular modes of 
administration. Archives Internationales 
de Pharmacodynamie et de Therapie. 
1937;57:205-225



Drug Discovery and Development - New Advances

114

[129] Shebley M, Sandhu P, Emami 
Riedmaier A, Jamei M, Narayanan R, 
Patel A, et al. Physiologically based 
pharmacokinetic model qualification 
and reporting procedures for 
regulatory submissions: A consortium 
perspective. Clinical Pharmacology and 
Therapeutics. 2018;104:88-110. DOI: 
10.1002/cpt.1013

[130] Madden JC, Pawar G, Cronin MTD, 
Webb S, Tan Y-M, Paini A. In silico 
resources to assist in the development 
and evaluation of physiologically-
based kinetic models. Computational 
Toxicology. 2019;11:33-49. DOI: 
10.1016/j.comtox.2019.03.001

[131] Fermier N, Bourguignon L, 
Goutelle S, Bleyzac N, Tod M. 
Identification of cytochrome P450-
mediated drug–drug interactions at risk 
in cases of gene polymorphisms by using 
a quantitative prediction model. Clinical 
Pharmacokinetics. 2018;57:1581-1591. 
DOI: 10.1007/s40262-018-0651-8

[132] Schyman P, Liu R, Desai V, 
Wallqvist A. vNN web server for 
ADMET predictions. Frontiers in 
Pharmacology. 2017;8:889. DOI: 
10.3389/fphar.2017.00889

[133] Daina A, Michielin O, Zoete 
V. SwissADME: A free web tool to 
evaluate pharmacokinetics, drug-
likeness and medicinal chemistry 
friendliness of small molecules. 
Scientific Reports. 2017;7:42717. DOI: 
10.1038/srep42717

[134] Pires DEV, Blundell TL, Ascher 
DB. pkCSM: Predicting small-molecule 
pharmacokinetic and toxicity properties 
using graph-based signatures. 
Journal of Medicinal Chemistry. 
2015;58:4066-4072. DOI: 10.1021/acs.
jmedchem.5b00104

[135] Dong J, Wang N-N, Yao Z-J, Zhang 
L, Cheng Y, Ouyang D, et al. ADMETlab: 
A platform for systematic ADMET 
evaluation based on a comprehensively 

collected ADMET database. Journal of 
Cheminformatics. 2018;10:1:11. DOI: 
10.1186/s13321-018-0283-x

[136] Prueksaritanont T, Tang C. ADME 
of biologics-what have we learned 
from small molecules? The AAPS 
Journal. 2012;14:410-419. DOI: 10.1208/
s12248-012-9353-6

[137] Ortho Multicenter Transplant 
Study Group. A randomized clinical 
trial of OKT3 monoclonal antibody 
for acute rejection of cadaveric renal 
transplants. The New England Journal 
of Medicine. 1985;313:337-342. DOI: 
10.1056/NEJM198508083130601

[138] Di L. Strategic approaches to 
optimizing peptide ADME properties. 
The AAPS Journal. 2015;17:134-143. 
DOI: 10.1208/s12248-014-9687-3

[139] Shi S. Biologics: An update and 
challenge of their pharmacokinetics. 
Current Drug Metabolism. 
2014;15:271-290

[140] Khawli LA, Goswami S, 
Hutchinson R, Kwong ZW, Yang J, 
Wang X, et al. Charge variants in 
IgG1: Isolation, characterization, 
in vitro binding properties and 
pharmacokinetics in rats. MAbs. 
2010;2:613-624. DOI: 10.4161/
mabs.2.6.13333

[141] Haraldsson B, Nyström J, Deen 
WM. Properties of the glomerular 
barrier and mechanisms of proteinuria. 
Physiological Reviews. 2008;88:451-487. 
DOI: 10.1152/physrev.00055.2006

[142] Suryadevara CM, Gedeon PC, 
Sanchez-Perez L, Verla T, Alvarez-
Breckenridge C, Choi BD, et al. 
Are BiTEs the “missing link” in 
cancer therapy? Oncoimmunology. 
2015;4:e1008339. DOI: 
10.1080/2162402X.2015.1008339

[143] Schooltink H, Rose-John 
S. Cytokines as therapeutic drugs. 

115

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

Journal of Interferon & Cytokine 
Research. 2002;22:505-516. DOI: 
10.1089/10799900252981981

[144] Hoy SM. Patisiran: First global 
approval. Drugs. 2018;78:1625-1631. 
DOI: 10.1007/s40265-018-0983-6

[145] Stein CA, Castanotto D. FDA-
approved oligonucleotide therapies in 
2017. Molecular Therapy. 2017;25: 
1069-1075. DOI: 10.1016/j.
ymthe.2017.03.023

[146] Roy A, Nair S, Sen N, Soni N, 
Madhusudhan MS. In silico methods 
for design of biological therapeutics. 
Methods. 2017;131:33-65. DOI: 10.1016/j.
ymeth.2017.09.008

[147] Sormanni P, Aprile FA, 
Vendruscolo M. Third generation 
antibody discovery methods: In silico 
rational design. Chemical Society 
Reviews. 2018;47:9137-9157. DOI: 
10.1039/c8cs00523k

[148] Tibbitts J, Canter D, Graff R, 
Smith A, Khawli LA. Key factors 
influencing ADME properties of 
therapeutic proteins: A need for ADME 
characterization in drug discovery and 
development. MAbs. 2016;8:229-245. 
DOI: 10.1080/19420862.2015.1115937

[149] Lockwood SY, Meisel JE, Monsma 
FJ, Spence DM. A diffusion-based and 
dynamic 3D-printed device that enables 
parallel in vitro pharmacokinetic 
profiling of molecules. Analytical 
Chemistry. 2016;88:1864-1870. DOI: 
10.1021/acs.analchem.5b04270

[150] Gloede J, Scheerans C, Derendorf 
H, Kloft C. In vitro pharmacodynamic 
models to determine the effect of 
antibacterial drugs. The Journal 
of Antimicrobial Chemotherapy. 
2010;65:186-201. DOI: 10.1093/jac/
dkp434

[151] Ferreira LLG, Andricopulo AD.  
ADMET modeling approaches in drug 

discovery. Drug Discovery Today. 2019. 
DOI: 10.1016/j.drudis.2019.03.015. 
[Epub ahead of print]



Drug Discovery and Development - New Advances

114

[129] Shebley M, Sandhu P, Emami 
Riedmaier A, Jamei M, Narayanan R, 
Patel A, et al. Physiologically based 
pharmacokinetic model qualification 
and reporting procedures for 
regulatory submissions: A consortium 
perspective. Clinical Pharmacology and 
Therapeutics. 2018;104:88-110. DOI: 
10.1002/cpt.1013

[130] Madden JC, Pawar G, Cronin MTD, 
Webb S, Tan Y-M, Paini A. In silico 
resources to assist in the development 
and evaluation of physiologically-
based kinetic models. Computational 
Toxicology. 2019;11:33-49. DOI: 
10.1016/j.comtox.2019.03.001

[131] Fermier N, Bourguignon L, 
Goutelle S, Bleyzac N, Tod M. 
Identification of cytochrome P450-
mediated drug–drug interactions at risk 
in cases of gene polymorphisms by using 
a quantitative prediction model. Clinical 
Pharmacokinetics. 2018;57:1581-1591. 
DOI: 10.1007/s40262-018-0651-8

[132] Schyman P, Liu R, Desai V, 
Wallqvist A. vNN web server for 
ADMET predictions. Frontiers in 
Pharmacology. 2017;8:889. DOI: 
10.3389/fphar.2017.00889

[133] Daina A, Michielin O, Zoete 
V. SwissADME: A free web tool to 
evaluate pharmacokinetics, drug-
likeness and medicinal chemistry 
friendliness of small molecules. 
Scientific Reports. 2017;7:42717. DOI: 
10.1038/srep42717

[134] Pires DEV, Blundell TL, Ascher 
DB. pkCSM: Predicting small-molecule 
pharmacokinetic and toxicity properties 
using graph-based signatures. 
Journal of Medicinal Chemistry. 
2015;58:4066-4072. DOI: 10.1021/acs.
jmedchem.5b00104

[135] Dong J, Wang N-N, Yao Z-J, Zhang 
L, Cheng Y, Ouyang D, et al. ADMETlab: 
A platform for systematic ADMET 
evaluation based on a comprehensively 

collected ADMET database. Journal of 
Cheminformatics. 2018;10:1:11. DOI: 
10.1186/s13321-018-0283-x

[136] Prueksaritanont T, Tang C. ADME 
of biologics-what have we learned 
from small molecules? The AAPS 
Journal. 2012;14:410-419. DOI: 10.1208/
s12248-012-9353-6

[137] Ortho Multicenter Transplant 
Study Group. A randomized clinical 
trial of OKT3 monoclonal antibody 
for acute rejection of cadaveric renal 
transplants. The New England Journal 
of Medicine. 1985;313:337-342. DOI: 
10.1056/NEJM198508083130601

[138] Di L. Strategic approaches to 
optimizing peptide ADME properties. 
The AAPS Journal. 2015;17:134-143. 
DOI: 10.1208/s12248-014-9687-3

[139] Shi S. Biologics: An update and 
challenge of their pharmacokinetics. 
Current Drug Metabolism. 
2014;15:271-290

[140] Khawli LA, Goswami S, 
Hutchinson R, Kwong ZW, Yang J, 
Wang X, et al. Charge variants in 
IgG1: Isolation, characterization, 
in vitro binding properties and 
pharmacokinetics in rats. MAbs. 
2010;2:613-624. DOI: 10.4161/
mabs.2.6.13333

[141] Haraldsson B, Nyström J, Deen 
WM. Properties of the glomerular 
barrier and mechanisms of proteinuria. 
Physiological Reviews. 2008;88:451-487. 
DOI: 10.1152/physrev.00055.2006

[142] Suryadevara CM, Gedeon PC, 
Sanchez-Perez L, Verla T, Alvarez-
Breckenridge C, Choi BD, et al. 
Are BiTEs the “missing link” in 
cancer therapy? Oncoimmunology. 
2015;4:e1008339. DOI: 
10.1080/2162402X.2015.1008339

[143] Schooltink H, Rose-John 
S. Cytokines as therapeutic drugs. 

115

ADME Profiling in Drug Discovery and a New Path Paved on Silica
DOI: http://dx.doi.org/10.5772/intechopen.86174

Journal of Interferon & Cytokine 
Research. 2002;22:505-516. DOI: 
10.1089/10799900252981981

[144] Hoy SM. Patisiran: First global 
approval. Drugs. 2018;78:1625-1631. 
DOI: 10.1007/s40265-018-0983-6

[145] Stein CA, Castanotto D. FDA-
approved oligonucleotide therapies in 
2017. Molecular Therapy. 2017;25: 
1069-1075. DOI: 10.1016/j.
ymthe.2017.03.023

[146] Roy A, Nair S, Sen N, Soni N, 
Madhusudhan MS. In silico methods 
for design of biological therapeutics. 
Methods. 2017;131:33-65. DOI: 10.1016/j.
ymeth.2017.09.008

[147] Sormanni P, Aprile FA, 
Vendruscolo M. Third generation 
antibody discovery methods: In silico 
rational design. Chemical Society 
Reviews. 2018;47:9137-9157. DOI: 
10.1039/c8cs00523k

[148] Tibbitts J, Canter D, Graff R, 
Smith A, Khawli LA. Key factors 
influencing ADME properties of 
therapeutic proteins: A need for ADME 
characterization in drug discovery and 
development. MAbs. 2016;8:229-245. 
DOI: 10.1080/19420862.2015.1115937

[149] Lockwood SY, Meisel JE, Monsma 
FJ, Spence DM. A diffusion-based and 
dynamic 3D-printed device that enables 
parallel in vitro pharmacokinetic 
profiling of molecules. Analytical 
Chemistry. 2016;88:1864-1870. DOI: 
10.1021/acs.analchem.5b04270

[150] Gloede J, Scheerans C, Derendorf 
H, Kloft C. In vitro pharmacodynamic 
models to determine the effect of 
antibacterial drugs. The Journal 
of Antimicrobial Chemotherapy. 
2010;65:186-201. DOI: 10.1093/jac/
dkp434

[151] Ferreira LLG, Andricopulo AD.  
ADMET modeling approaches in drug 

discovery. Drug Discovery Today. 2019. 
DOI: 10.1016/j.drudis.2019.03.015. 
[Epub ahead of print]



117

Section 4

Recent Case Studies: 
Advances in Drug 

Discovery Research



117

Section 4

Recent Case Studies: 
Advances in Drug 

Discovery Research



119

Chapter 7

Successive Drug Therapy for a Very 
Rare Autosomal Diseases
Mohammed Chyad Al-Noaemi and Hassan Ali Daghriri

Abstract

It is very rare to find reports concerning a drug therapy successively treating 
chromosomal abnormalities. In this paper, we are reporting a successive use of 
nitisinone in treating a fatal and very rare autosomal disease called hereditary tyro-
sinemia type-1 [HT-1]. HT-1 is affecting about one person in 100,000 to 120,000 
births worldwide. It is due to a genetic defect in the enzyme fumarylacetoacetate 
hydroxylase (FAH), which is responsible for the final degradation of tyrosine. 
Accumulation of tyrosine metabolites is responsible for tissue damage such as 
liver, kidney, and neural tissues, finally causing the death of the newborn babies 
in their early months of life if not treated. Fumarylacetoacetate hydrolase gen has 
mapped on chromosome 15q23-15q25. Since 1992, the initiation of treating HT-1 
with nitisinone (NTBC) has become the medical therapy of choice in combination 
with diet. NTBC therapy has shown a direct correlation between age of initiation 
and subsequent clinical course. We are reporting three brothers treated safely and 
successively with NTBC in combination with diet. All of them are in very good 
conditions. The elder brother is on NTBC since 27 years ago.

Keywords: autosomal diseases, hepatocellular tyrosinemia, nitisinone, NTBC, 
hepatocellular carcinoma, newborn screening

1. Introduction

1.1 Tyrosine

Tyrosine (4-hydroxyphenylalanine) is a nonessential amino acid with a polar 
side group, 1 of the 22 amino acids that are used by cells to synthesize proteins. 
Tyrosine is also a precursor to neurotransmitters (catecholamines) and hormones 
(thyroxine and melatonin) [1–3]. In humans, tyrosine is obtained from two sources, 
dietary intake and hydroxylation of phenylalanine [4, 5]. Tyrosine degradation 
as shown in Figure 1 is catalyzed by a series of five enzymatic reactions that yield 
acetoacetate, which is ketogenic, and the Krebs cycle intermediate fumarate, which 
is glucogenic [4, 6, 7]. Although tyrosine degradation occurs mainly in the liver 
but to a lesser extent, it occurs in the proximal renal tubules [5, 8, 9]. Impaired 
catabolism of tyrosine is a feature of several acquired and genetic disorders. Four 
autosomal-recessive disorders result from deficiencies in specific enzymes in the 
tyrosine catabolic pathway: hereditary tyrosinemia (HT) types 1, 2, and 3, and 
alkaptonuria (AKU). These disorders result in elevated blood tyrosine levels except 
for AKU [4, 7, 9–11].
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2. Hereditary tyrosinemia type 1 (HT-1)

Synonyms: hepatorenal tyrosinemia (HRT), tyrosinemia type-1, hereditary 
infantile tyrosinemia, congenital tyrosinosis, and fumarylacetoacetate hydrolase 
(FAH) deficiency (FAHD), and is assigned OMIM 276700.

2.1 History

Inborn errors of metabolism (IEMs) are a group of diseases involving a genetic 
defect that alters a metabolic pathway and that presents during infancy.

The tyrosine degradation pathway contains five enzymes, four of which are 
associated with IEMs. The most severe metabolic disorder associated with this 
catabolic pathway is hereditary tyrosinemia type 1 (HT-1; OMIM 276700) [10].

In 1932, American biochemist Grace Medes, at the University of Minnesota 
Medical School in Minneapolis, first described “a new disorder of tyrosine metabo-
lism” and called it “tyrosinosis” after observing 4-hydroxyphenylpyruvate in the 
urine of a 49-year-old man with myasthenia gravis [12]. She proposed that the 
metabolic defect in this patient was a deficiency of 4-hydroxyphenylpyruvate 
dioxygenase.

In 1957, Japanese scientists, Kiyoshi Sakai and colleagues, published three 
reports describing the clinical, biochemical, and pathological findings of a 2-year-
old boy with hepatorenal tyrosinemia who was then thought to have an “atypical” 
case of tyrosinosis (“atypical” because it differed from the supposedly prototypical 
case reported by Medes) [13–16].

Then, between 1963 and 1965, Swedish pediatrician Rolf Zetterström and 
associates published the first detailed descriptions of hepatorenal tyrosinemia 
and its variants, a disorder then hypothesized to be caused by a defective 
4-hydroxyphenylpyruvate dioxygenase enzyme [17–20]. Furthermore, in 1964 
several pediatricians in Chicoutimi (Quebec-Canada) became aware of an 
increased incidence of infantile liver cirrhosis that was later recognized to be due 
to hereditary tyrosinemia type [21, 22]. Both the Scandinavian and Canadian 
groups suggested that the Japanese patients described earlier by Sakai and col-
leagues had the same disorder, that is, HT-1 [16]. Therefore, it has been consid-
ered that the first definite case report in the world of HT-1 was in Japan by Sakai 
and colleagues in 1957 [23].

2.2 Pathophysiology

Hereditary tyrosinemia type 1 is an inborn error of metabolism, inherited 
as an autosomal recessive disorder. The biochemical defect was shown to be 

Figure 1. 
The steps of tyrosine degradation.
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due to a genetic defect causing a deficiency (weak activity) or absence in 
the enzyme fumarylacetoacetate hydrolase (FAH), the enzyme catalyzing 
the final step of tyrosine catabolism pathway as shown in Figure 2 [24, 25]. 
Fumarylacetoacetate hydrolase gen has located on chromosome 15q23-
15q2515q23 and is composed of 14 exons [26]. This enzyme defect leads to 
subsequent accumulation of the amino acid tyrosine and its toxic metabolites 
such as succinylacetone, maleylacetoacetate, and Fumarylacetoacetate in the 
blood and tissues such as the liver, kidney, heart, and peripheral nerves, leading 
to dysfunction of these organs [24, 27–30]. The patient may develop acute and 
severe liver failure that is life-threatening in early infancy (<6 months of age). 
The survivors of the acute failure show before two years of life liver cirrhosis, 
complex renal tubulopathy, rickets, cardiomyopathy, and hemorrhagic syn-
drome. Hepatocellular carcinoma (HCC) is a frequent complication of this form 
of HT1, which is often the cause of death in early life in an untreated individual 
[22, 25, 31, 32].

2.3 Prevalence of HT-1

In general, hereditary tyrosinemia type-1 is a very rare inborn genetic disease 
affecting about one person in 100,000–120,000 live births worldwide [29, 31, 33, 
34]. In some areas, the incidence of HT1 is noticeably higher. In Norway, Finland, 
and Tunisia, the frequency of HT1 is 1:74,800, 1:60,000, and 1:14,804, respectively 
[35–37]. The highest prevalence of the disorder is observed in Canada (the Province 
of Quebec), which is about 1 in 16,000 live births [32, 33, 38, 39], and even in a 
certain region of Quebec near Saguenay-Lac Saint-Jean Jean, it is estimated to be 
1:1846 live births [32], and the carrier rate has been estimated to be between 1 in 20 
and 1 in 31 [39].

The estimated incidence of tyrosinemia in the Eastern Province of Saudi Arabia 
is 3 in 100,000 live births, although the authors concluded that data obtained from 
their study underestimate the true number [40].

Figure 2. 
Steps of tyrosine and its inborn enzymatic error of metabolism causing tyrosinemia type I, II, and III.
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2. Hereditary tyrosinemia type 1 (HT-1)
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the final step of tyrosine catabolism pathway as shown in Figure 2 [24, 25]. 
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15q2515q23 and is composed of 14 exons [26]. This enzyme defect leads to 
subsequent accumulation of the amino acid tyrosine and its toxic metabolites 
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blood and tissues such as the liver, kidney, heart, and peripheral nerves, leading 
to dysfunction of these organs [24, 27–30]. The patient may develop acute and 
severe liver failure that is life-threatening in early infancy (<6 months of age). 
The survivors of the acute failure show before two years of life liver cirrhosis, 
complex renal tubulopathy, rickets, cardiomyopathy, and hemorrhagic syn-
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of HT1, which is often the cause of death in early life in an untreated individual 
[22, 25, 31, 32].
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certain region of Quebec near Saguenay-Lac Saint-Jean Jean, it is estimated to be 
1:1846 live births [32], and the carrier rate has been estimated to be between 1 in 20 
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2.4 Diagnosis

A diagnosis of HT-1 is made based upon thorough clinical evaluation, a detailed 
patient history, and specialized tests.

Elevated blood tyrosine level in newborns should be seen as soon as possible 
for clinical and laboratory evaluations for the possibility of HT-1. The diagnosis of 
HT-1 is based on elevated succinylacetone (SA) levels in the blood and or urine, as 
tyrosine elevation is an unreliable marker. There are many false-positive and false-
negative results when tyrosine is used as the only diagnostic parameter [41]. In the 
US, Canada, and some of the European countries, they use the detection of plasma 
SA as a newborn screening test for the detection of HT-1 [42].

If there is a high suspicion for HT-1, plasma amino acids (PAA) and liver func-
tion tests including prothrombin time (PT), international normalized ratio (INR), 
partial thromboplastin time (PTT), and α-fetoprotein (AFP) should be evaluated at 
the first visit. [43].

Clinical symptoms typically begin before two years of age, with the majority 
of children presenting before the age of 6 months with hepatosplenomegaly and 
evidence of acute liver failure and renal dysfunction. A few affected children may 
present over the age of 2 years with isolated coagulopathy or other signs of liver 
dysfunction, renal tubular disease, hypophosphatemic rickets, and failure to thrive. 
All children with HT-1 are at high risk for hepatocellular carcinoma (HCC), and this 
also may be the first recognized clinical event [44].

Molecular genetic testing for FAH gene mutations is available to confirm the 
diagnosis [45, 46].

2.5 Differential diagnosis

HT-1 should be differentiated from another inherited inborn autosomal reces-
sive disorders with dramatically elevated blood tyrosine levels such as:

Tyrosinemia type II, which is due to tyrosine aminotransferase (TAT) defi-
ciency as shown in Figure 2, causing accumulation of tyrosine that produces a 
severe dermatologic and ophthalmologic abnormalities. Type II tyrosinemia occurs 
in less than 1 in 250,000 individuals [47–49].

Tyrosinemia type III is due to 4-hydroxyphenylpyruvate dioxygenase (HPD) 
deficiency as shown in Figure 2. It is the rarest of the three conditions, with only 
a few cases ever reported. Most of those cases have included intellectual disability 
and neurologic dysfunction. It also has highly elevated blood tyrosine levels but 
does not manifest liver disease or renal tubular disease [50–53].

Tyrosinemia types II and III variably respond to phenylalanine and tyrosine 
dietary restriction therapies, unlike HT-I, the dietary restriction, even if begun 
within the first month of life, did not eliminate the development of hepatic, renal, 
or neurological complications.

Plasma amino acids (PAA) will help to differentiate tyrosinemia types II and III 
from HT-1 in those cases where the children are detected by an elevated tyrosine 
level but do not have detectable succinylacetone (SA).

2.6 Management of HT-1

2.6.1 Nitisinone drug therapy

Nitisinone, orfadin, or 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-
1,3-dione (NTBC). Its structure is shown in Figure 3.

123

Successive Drug Therapy for a Very Rare Autosomal Diseases
DOI: http://dx.doi.org/10.5772/intechopen.89583

2.6.2 History of nitisinone discovery

Nitisinone is a member of the benzoylcyclohexane-1,3-dione family of herbi-
cides, which are chemically derived from a natural phytotoxin, leptospermone, 
obtained from the Australian bottlebrush plant (Callistemon citrinus) [29].

Nitisinone was discovered as part of a program to develop a class of herbicides 
called 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors. HPPD is essential 
in plants and animals for catabolism, or breaking apart, of tyrosine. In plants, 
preventing this process leads to the destruction of chlorophyll and the death of the 
plant [54].

In normal humans, fumarylacetoacetate hydrolase acts on the final step of 
tyrosine metabolism after HPPD does. The absence or weak activity of fumaryl-
acetoacetate hydrolase as in HT-1 leads to very harmful products building up in the 
body [24, 27–30]. So scientists working on making herbicides in the class of HPPD 
inhibitors hypothesized that inhibiting HPPD and controlling tyrosine in the diet 
could treat this disease. A series of small clinical trials attempted with one of their 
compounds, nitisinone, were conducted and were successful, leading to nitisinone 
brought to market as an orphan drug Swedish Orphan International, which was 
later acquired by Swedish Orphan Biovitrum (Sobi). [55, 56]. Therefore, in HT-1, 
the mechanism of nitisinone action will involve reversible inhibition of HPPD pre-
venting the formation of maleylacetoacetic acid and fumarylacetoacetic acid, which 
have the potential to be converted to succinylacetone, a toxin that damages the liver 
and kidneys. This causes the symptoms of HT-1 experienced by untreated patients.

Lock described nitisinone by a nice statement “From Weed Killer to Wonder 
Drug” [57].

2.6.3 The clinical trial of nitisinone

Sven Lindstedt recognized the potential value of NTBC for the treatment of 
HT-1. By blocking the proximal tyrosinemia pathway, NTBC minimizes the forma-
tion of FAA and maleylacetoacetic. It was this keen insight that led to the original 
clinical trial with five patients, which documented the rapid reversal of clinical 
symptoms [58].

NTBC dosing should be sufficient to completely suppress plasma and urine SA 
detection and normalize liver and renal function. SA, in either plasma or urine, 
should be below detectable limits (or within the limits of normal established by 

Figure 3. 
The structure of nitisinone (NTBC).
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the reference laboratory). The dose of NTBC should be increased if the SA level 
increases once patient adherence has been confirmed [43].

The standard recommended dosage of NTBC is 1 mg/kg body weight [43, 59, 60]. 
The half-life of NTBC has been measured in healthy human subjects and found 
to be approximately 54 h [61]. Because of this long half-life, a single daily dose of 
NTBC is satisfactory for maintaining inhibition of HPD [62, 63].

In the evaluation of its safety profile, rats and dogs exposed to NTBC developed 
elevated plasma tyrosine levels and ocular lesions. The ocular lesions (keratopathy) 
were caused by tyrosine crystals within the cornea, which on cessation of the diet 
recovered [43, 57].

The FDA approved NTBC in January 2002 [64].

2.6.4 Nutritional therapy

The combined nitisinone and low phenylalanine and tyrosine diet treatment 
should be initiated as soon as possible following the diagnosis of HT-1, to maintain 
PAA concentrations within the treatment range. Phenylalanine must be restricted 
in the diets of affected patients since approximately 75% of dietary phenylalanine 
is hydroxylated to form tyrosine [65, 66]. The combined diet restriction and NTBC 
treatment resulted in a greater than 90% survival rate, normal growth, improved 
liver function, prevention of cirrhosis, correction of renal tubular acidosis, and 
improvement in secondary rickets [67–69].

2.6.5 Liver transplantation

Before the availability of nitisinone for the treatment of tyrosinemia type I, the 
only definitive therapy was liver transplantation. The first case of HT-1 treated with 
liver transplant was in 1978 performed by Fisch and his colleagues [70]. The patient 
died 3 months later, but the biochemical derangements improved. Subsequently, 
the use of liver transplants in HRT cases has increased, and the benefits appear to be 
confirmed [71].

Liver transplantation should be reserved for those children who (1) have a severe 
liver failure at clinical presentation and fail to respond to nitisinone therapy or (2) 
have documented evidence of malignant changes in hepatic tissue [72]. Transplant 
recipients may also benefit from low-dose (0.1 mg/kg/day) nitisinone therapy to 
prevent continued renal tubular and glomerular dysfunction resulting from the 
persistence of succinylacetone in the plasma and urine [73].

2.6.6 Low phenylalanine and tyrosine diet restriction

Diet restriction for the treatment of HT-1 patients was introduced by Halvorsen 
and Gjessing in 1964 [19] and for a long time was the only treatment available. It 
had a beneficial effect on the renal tubular defects but did not cure the liver disease. 
A girl with HT-1, diagnosed at 6 months of age, was treated with a diet restricted in 
phenylalanine and tyrosine. At 9½ years of age, she developed an acutely enlarged 
liver and spleen, and the diagnosis of hepatocarcinoma was made [70].

2.6.7 Genetic therapy

Gene therapy is a promising means to cure many monogenic diseases. 
However, traditional gene therapies are best suited to treat diseases of deficient or 
absent gene products rather than those diseases caused by aberrantly functioning 
proteins [74].
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Adeno-associated virus (AAV)-mediated gene repair is feasible in vivo and can 
functionally correct a mouse model [74] and pig model of HT-1 [75] and con-
cluded that further exploration of ex vivo hepatocyte genetic correction is war-
ranted for clinical use. Although AAV-mediated gene therapy in a mouse model 
of HT-1 was successful as it has shown that none-treated FAH mutant control 
mice died within six weeks from fulminant liver failure, FAH adenovirus-infected 
animals survived 2–9 months. But this gene therapy does not obviate the tumor 
risk inherent in HT-1 as nine of 13 virus-treated animals developed hepatocellular 
cancer [76].

2.6.8 Family cases of HT-1 treated successively with nitisinone

We are reporting three Saudi siblings who have diagnosed as patients with HT-1. 
They are living in Najran city, the southern province of Saudi Arabia.

The first case is 27-year-old male patient. He has been diagnosed at the age of 
4 months in Great Ormond Street Hospital (London-UK) and treated by nitisinone 
in combination with tyrosine and phenylalanine-free diet. For the next 15 years, 
he used to visit the clinic for regular checking. The final report showed that he 
has good general health, with normal liver and renal function test and normal 
alpha-fetoprotein. Since then and until now, he attends the National Laboratory for 
Newborn Screening, Department of Genetics, King Faisal Specialist Hospital and 
Research Centre for a routine checkup. Still, he is on nitisinone and diet restriction. 
He has graduated from Najran Technical College, and now he is doing very well 
in his job as the vice director of staff affairs at Al-Ghad International College for 
Applied Medical Sciences in Najran-KSA.

The second case is his brother, who is 20 years old. He has been diagnosed in 
the first few days after birth by the National Laboratory for Newborn Screening, 
Department of Genetics, King Faisal Specialist Hospital and Research Centre, 
Riyadh, Saudi Arabia. Since then he has been treated by nitisinone in combination 
with tyrosine and phenylalanine-free diet. He is having good general and mental 
conditions. He is now a 2nd-year university student and doing well in his study.

The third case is their younger brother, who is 15 years old. Diagnosed since 
birth by the National Laboratory for Newborn Screening, Department of Genetics, 
King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia. Since 
then, he has also been put on nitisinone in combination with tyrosine and phenyl-
alanine-free diet. He is also having a good general and mental conditions. He is a 
secondary school student, and he is also doing very well in his study.

The three brothers are now on nitisinone in a dose of 1 mg/kg/day. It is marketed 
under the brand name Orfadin by the company Swedish Orphan Biovitrum (Sobi). 
Also, they are on tyrosine and a phenylalanine-free diet supplemented with HCU 
Anamix Junior LQ [Nutricia Advanced Medical Nutrition Company].

They have a regular visit to the National Laboratory for Newborn Screening, 
Department of Genetics, King Faisal Specialist Hospital, and Research Centre, 
Riyadh, Saudi Arabia for regular checking, and the last visit was a few weeks ago.

Their elder two siblings (sister and brother) died in their early life of unknown 
cause. The sister died at the age of 26 months. From the history of her mother, it 
seems that the daughter developed abdominal distension, and their doctors told 
her that the baby has hepatosplenomegaly. She also developed jaundice and became 
reluctant to milk or food. Until the day of death at the age of 26 months, she could 
not sit or walk; she was very week as her mother described.

Then after, they have a boy who developed after birth hepatomegaly, and 
jaundice, abdominal distension with very thin extremities and died early after birth 
at the age of 4 months, as his mother said.
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The combined nitisinone and low phenylalanine and tyrosine diet treatment 
should be initiated as soon as possible following the diagnosis of HT-1, to maintain 
PAA concentrations within the treatment range. Phenylalanine must be restricted 
in the diets of affected patients since approximately 75% of dietary phenylalanine 
is hydroxylated to form tyrosine [65, 66]. The combined diet restriction and NTBC 
treatment resulted in a greater than 90% survival rate, normal growth, improved 
liver function, prevention of cirrhosis, correction of renal tubular acidosis, and 
improvement in secondary rickets [67–69].
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Before the availability of nitisinone for the treatment of tyrosinemia type I, the 
only definitive therapy was liver transplantation. The first case of HT-1 treated with 
liver transplant was in 1978 performed by Fisch and his colleagues [70]. The patient 
died 3 months later, but the biochemical derangements improved. Subsequently, 
the use of liver transplants in HRT cases has increased, and the benefits appear to be 
confirmed [71].

Liver transplantation should be reserved for those children who (1) have a severe 
liver failure at clinical presentation and fail to respond to nitisinone therapy or (2) 
have documented evidence of malignant changes in hepatic tissue [72]. Transplant 
recipients may also benefit from low-dose (0.1 mg/kg/day) nitisinone therapy to 
prevent continued renal tubular and glomerular dysfunction resulting from the 
persistence of succinylacetone in the plasma and urine [73].
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Diet restriction for the treatment of HT-1 patients was introduced by Halvorsen 
and Gjessing in 1964 [19] and for a long time was the only treatment available. It 
had a beneficial effect on the renal tubular defects but did not cure the liver disease. 
A girl with HT-1, diagnosed at 6 months of age, was treated with a diet restricted in 
phenylalanine and tyrosine. At 9½ years of age, she developed an acutely enlarged 
liver and spleen, and the diagnosis of hepatocarcinoma was made [70].

2.6.7 Genetic therapy

Gene therapy is a promising means to cure many monogenic diseases. 
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absent gene products rather than those diseases caused by aberrantly functioning 
proteins [74].
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Department of Genetics, King Faisal Specialist Hospital, and Research Centre, 
Riyadh, Saudi Arabia for regular checking, and the last visit was a few weeks ago.

Their elder two siblings (sister and brother) died in their early life of unknown 
cause. The sister died at the age of 26 months. From the history of her mother, it 
seems that the daughter developed abdominal distension, and their doctors told 
her that the baby has hepatosplenomegaly. She also developed jaundice and became 
reluctant to milk or food. Until the day of death at the age of 26 months, she could 
not sit or walk; she was very week as her mother described.

Then after, they have a boy who developed after birth hepatomegaly, and 
jaundice, abdominal distension with very thin extremities and died early after birth 
at the age of 4 months, as his mother said.
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After the birth of the third baby (our first case), they went to Great Ormond 
Street Hospital and diagnosed as having tyrosinemia-1. At the same time, the 
parents diagnosed as a carrier of the disease.

The clinical history of their previous dead siblings suggested that they did have 
undiagnosed HT-1. Furthermore, the diagnosis of the parents that they are a carrier 
of the disease is highly supporting that the death of their two children early life was 
due to the lack of diagnosis and treatment of HT-1.

3. Discussion

HT-1 is a rare but clinically severe and fatal inborn error that principally affects 
the liver, kidney, and peripheral nerve [32]. In general, the most diagnosed patients 
of inborn errors of metabolism (IEMs) including HT-1, were born from consan-
guineous married parents. As HT-1 is a rare inherited autosomal recessive disorder, 
it explains why it is more common in population with a high rate of consanguineous 
marriages, such as in United Arab Emirates, Oman, Kuwait, and Saudi Arabia, 
in which the rate of consanguineous marriages reaches up to approximately 60% 
[33, 77–80], and even the first reported case of HT-1 in Japan (1957) was a child 
from parents of consanguineous marriage [13, 14]. Furthermore, in our study, the 
reported three family cases are also born from a consanguineous married parent.

In the sixties and early seventies HT-1 patients were treated by phenylalanine- 
and tyrosine-free died; it delayed the mortality and morbidity for a few years but 
it did not prevent the development of hepatic failure, renal complications and 
hepatocellular carcinoma (HCC) even if begun within the first month of life [43]. 
Then after, treatment with hepatic transplantation was the only option for survival. 
But it has been reported that the development of HCC was observed in 17–37% of 
affected children [81, 82]. Furthermore, after transplantation, urine and plasma 
SA decreases but is not completely suppressed [43, 63], and even other scientists 
reported that plasma succninylacetone is persistently raised after liver transplanta-
tion [73] presumably because of continued production in the kidneys which could 
cause damage to the liver and the kidney. Also, some of the patients died from 
the complications of hepatic transplant, whether the surgical or the immuno-
suppressive drug complications [43, 63, 69]. Therefore, in 1992, the introduction 
of nitisinone in combination with diet restriction was the ideal therapy for HT-1 
patients especially if started in their early neonatal days [58].

The three HT-1 patients in our study used nitisinone in combination with 
phenylalanine and tyrosine diet restriction from early days of their neonatal life and 
till now, which is 27, 20, and 15 years, respectively. They are not only still alive but 
also doing very well in their living.

These results justify implementing prevention programs that incorporate 
genetic counseling and neonatal diagnostic screening tests, especially in the sus-
pected families of consanguineous marriages to detect the neonatal patients with 
HT-1 as early as possible and then to start treatment which will minimize the lethal 
consequences of the disease.

All subsequent children of the parents of a child with HT-1 should have urine 
and blood succinylacetone analyzed as soon as possible after birth to enable the ear-
liest possible diagnosis and initiation of therapy. Early detection of newborn babies 
with HT-1, followed by prompt treatment with nitisinone in combination with a low 
phenylalanine and tyrosine diet has improved the survival to over 90% and resulted 
in normal growth, improved liver function, prevention of cirrhosis, correction of 
kidney disease, and improvement in rickets [41, 42, 83, 84]. In 2012, Larochelle 
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et al. reported that patients who receive nitisinone treatment before 1 month had no 
detectable liver disease after more than 5 years [69].

These data suggested that early neonatal diagnosis of HT-1 and treatment with 
nitisinone and diet restriction not only keep the survival of the patients but also 
keep them in good general, physical, and mental conditions.

4. Conclusion

Nitisinone (NTBC) has been used since 1992 and proves to be an effective and 
safe pharmacological treatment for HT-1 in combination with phenylalanine- and 
tyrosine-free diet.

In this paper, we are reporting three cases (brothers) treated safely and succes-
sively with NTBC in combination with diet. All of them are in very good condi-
tions. The elder brother is on NTBC since 27 years ago. He is one of the few cases 
worldwide treated since 1992 and till now, and he is living with a very good general 
health.

HT-1 is not only a rare and fatal autosomal disease, but it is a very rare genetic 
disease that can be successfully, effectively, and safely treated by drug therapy, 
which is nitisinone (NTBC).

4.1 Recommendation

We highly recommend establishing a national Newborn Screening Center, 
which provides newborn screening test for the diagnosis of HT-1, especially for the 
high-risk neonates in the suspected families. The use of tandem-mass-spectrometry 
could make an early diagnosis of HT-1 by measurement of succinylacetone in blood 
spot specimens.

Prenatal diagnosis is also possible by doing DNA analysis in addition to the 
detection of succinylacetone in the amniotic fluid of the suspected pregnancies.

Early diagnosis and treatment of this life-threatening disease provide an oppor-
tunity to intervene before symptom onset.

Furthermore, this report justifies implementing prevention program by doing 
genetic counseling and DNA analysis in the suspected families, where consanguine-
ous marriages are prevalent.
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Abstract

Drug discovery and development advances in the last decades allowed to find 
a treatment for many preventable diseases. However, all too often, children are 
excluded from these progresses since most of the new medicines have been discov-
ered and developed for the adult population. Even if paediatricians routinely give 
drugs to children ‘off-label’, researchers have demonstrated that children do not 
respond to medications in the same way as adults. Furthermore, certain specific 
disorders are unique to children or occur in children differently than in adults. 
Besides specifically testing medicines in children in proper clinical studies taking 
into due account the peculiarity of this population, there is a growing recognition 
of the need to develop paediatric medicines having in mind the specificities of this 
vulnerable population. In this chapter, we will provide an overview on the drug 
discovery and development path for children highlighting challenges and new fron-
tiers of each phase from the discovery to the preclinical and clinical development 
as well as we will provide a slightest hint about paediatric biomarkers discovery, 
age-appropriate formulation, pregnancy, and perinatal pharmacology and in silico 
pharmacology. Finally, pricing and reimbursement policies for medicines and new 
and existing research initiatives in the field will be discussed.

Keywords: human development research, paediatric drug discovery, preclinical 
research, juvenile animal models, paediatric pharmacology, paediatric biomarkers, 
age-appropriate formulations, perinatal pharmacology, physiologically-based 
pharmacokinetic (PBPK)

1. Introduction

Even if paediatricians routinely give drugs to children ‘off-label’ (drug not 
specifically approved for use in children), it is known that children respond to drugs 
in a very different way than adults in terms of safety and efficacy [1]. Anatomical, 
physiological and developmental differences between children and adults and 
among children of different ages reflect in changes in absorption, distribution, 
metabolism and excretion (ADME). Moreover, less information is available in 
younger age groups and neonates. Furthermore, while certain specific disorders 
are unique to children, others could be more common in children than adults or 
infrequent in children compared to adults. Notwithstanding, children have been 
excluded from testing of new drugs for many years and for this reason have been 
defined as ‘Therapeutic Orphans’ by Shirkey in 1969 [2].



Drug Discovery and Development - New Advances

134

retrospective review of the spectrum of 
inborn errors of metabolism presenting 
in a tertiary center in Saudi Arabia. 
Orphanet Journal of Rare Diseases. 
2016;11(1):126

[80] Chyad A-NM, Daghriri HA. A 
family cases report of tyrosinemia 
type-1 from Najran province of Saudi 
Arabia. Journal of Molecular and 
Genetic Medicine. 2019;13:43

[81] Weinberg AG, Mize CE, 
Worthen HG. The occurrence of 
hepatoma in the chronic form of 
hereditary tyrosinemia. The Journal of 
Pediatrics. 1976;88:434-438

[82] van Spronsen FJ, Thomasse Y, 
Smit GP, Leonard JV, Clayton PT, 
Fidler V, et al. Hereditary tyrosinemia 
type I: A new clinical classification 
with difference in prognosis on 
dietary treatment. Hepatology. 
1994;20:1187-1191

[83] McKiernan PJ, Preece MA, 
Chakrapani A. Outcome of children 
with hereditary tyrosinemia following 
newborn screening. Archives of Disease 
in Childhood. 2015;100:738-741

[84] Geppert J, Stinton C, 
Freeman K. Evaluation of pre-
symptomatic nitisinone treatment on 
long-term outcomes in Tyrosinemia 
type 1 patients: A systematic review. 
Orphanet Journal of Rare Diseases. 
2017;12(1):154

135

Chapter 8

Challenges and New Frontiers in 
the Paediatric Drug Discovery and 
Development
Angelica Intini, Donato Bonifazi and Giovanni Migliaccio

Abstract

Drug discovery and development advances in the last decades allowed to find 
a treatment for many preventable diseases. However, all too often, children are 
excluded from these progresses since most of the new medicines have been discov-
ered and developed for the adult population. Even if paediatricians routinely give 
drugs to children ‘off-label’, researchers have demonstrated that children do not 
respond to medications in the same way as adults. Furthermore, certain specific 
disorders are unique to children or occur in children differently than in adults. 
Besides specifically testing medicines in children in proper clinical studies taking 
into due account the peculiarity of this population, there is a growing recognition 
of the need to develop paediatric medicines having in mind the specificities of this 
vulnerable population. In this chapter, we will provide an overview on the drug 
discovery and development path for children highlighting challenges and new fron-
tiers of each phase from the discovery to the preclinical and clinical development 
as well as we will provide a slightest hint about paediatric biomarkers discovery, 
age-appropriate formulation, pregnancy, and perinatal pharmacology and in silico 
pharmacology. Finally, pricing and reimbursement policies for medicines and new 
and existing research initiatives in the field will be discussed.

Keywords: human development research, paediatric drug discovery, preclinical 
research, juvenile animal models, paediatric pharmacology, paediatric biomarkers, 
age-appropriate formulations, perinatal pharmacology, physiologically-based 
pharmacokinetic (PBPK)

1. Introduction

Even if paediatricians routinely give drugs to children ‘off-label’ (drug not 
specifically approved for use in children), it is known that children respond to drugs 
in a very different way than adults in terms of safety and efficacy [1]. Anatomical, 
physiological and developmental differences between children and adults and 
among children of different ages reflect in changes in absorption, distribution, 
metabolism and excretion (ADME). Moreover, less information is available in 
younger age groups and neonates. Furthermore, while certain specific disorders 
are unique to children, others could be more common in children than adults or 
infrequent in children compared to adults. Notwithstanding, children have been 
excluded from testing of new drugs for many years and for this reason have been 
defined as ‘Therapeutic Orphans’ by Shirkey in 1969 [2].



Drug Discovery and Development - New Advances

136

The lack of a regulatory framework that obliged to test medications in the pae-
diatric population taking into account the specificities of children and the ethical 
concerns behind resulted in several examples of therapeutic tragedies in paediatric 
patients. A new liquid formulation of the antibiotic sulphanilamide was developed 
in 1938 to allow oral dosing for paediatric patients who could not swallow the tablet 
form. Unluckily, the solvent used to dissolve the active substance was a toxin that 
caused many adverse events with a 30% mortality rate [3]. And again, Thalidomide 
was marketed in Europe in the late 1950s for the treatment of nausea in pregnant 
women causing severe birth defects in thousands of children including severe 
shortening of the extremities, malformations of ears, heart, intestines and other 
structures, depending on the embryologic stage at the time of exposure [4].

These tragedies are just an example of the high risk to which children have been 
exposed for years and have led to the increasing awareness that new medications 
for children should be carefully studied before they could be approved, defining 
the proper requirements and ethical issues to guarantee efficacious and safer drugs 
for children. As a consequence, regulations have been adopted independently in 
the most developed countries, but in accordance with unified guidelines suggested 
by the International Conference on Harmonisation of Technical Requirements for 
Registration of Pharmaceuticals for Human Use (ICH), an organisation working on 
the harmonisation of pharmaceutical regulatory requirements within the European 
Union (EU), Japan and the United States (US) [5].

The European Paediatric Regulation was adopted in 2006 and entered into force 
in 2007 [6] imposing to pharmaceutical companies developing drugs of potential 
interest for children to prepare a paediatric investigational plan (PIP) to obtain a mar-
keting authorisation for an indication in adults, unless they were granted a product-
specific waiver by the Paediatric Committee of the European Medicines Agency 
(EMA), for example if the indication does not occur in children [7]. The paediatric 
regulation has defined rules concerning the development of medicinal products for 
paediatric use and introduced rewards and incentives for the development of paediat-
ric drugs (i.e. the paediatric-use marketing authorization—PUMA) [5].

In the US, two main acts have complemented each other ruling the evaluation of 
drugs in infants and children and increasing the paediatric clinical studies and drug 
labelling for children: the PREA of 2003 [8] and the BPCA of 2002 [9], both amended 
in the FDAAA of 2007 [10]. A different approach has been taken in Japan, more 
focused on premiums granted to pharmaceutical companies as rewards for developing 
paediatric medicines without a regulatory framework specifically addressing paedi-
atric clinical research. As an effect of these premiums, the price of those drugs is not 
reduced as normally occurred every 2 years in the Japanese system [11].

2. Paediatric diseases

A major challenge in studying paediatric diseases is the relatively low incidence 
rate or uniqueness of some disorders in children. Paediatric diseases may resemble 
those in adults, but considerable differences may also exist with regards to aetiol-
ogy, progression, comorbidities and prognosis [12].

Several cancer types are genetically different in children compared to adults as 
demonstrated by a comprehensive analysis of genetic alterations in a pan-cancer 
cohort including 961 tumours from children, adolescents, and young adults, and 
comprising 24 distinct molecular types of cancer [13]. Epilepsy in children is 
associated with a wide range of congenital or hereditary diseases, while in adults, 
it is associated mainly with strokes and brain tumours [14]. The onset of systemic 
lupus erythematosus (SLE) during childhood is associated with different clinical 
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manifestations and two to three times higher mortality compared to adult-onset 
SLE [15]. Moreover, frequent comorbidities are specific of premature neonates 
including persistent ductus arteriosus, sepsis, intra-ventricular haemorrhage and 
necrotising enterocolitis, and mortality is the highest in premature neonates born 
<28 weeks’ gestation [16, 17].

The above studies provide just some examples of how children and adults can 
be differently affected by similar diseases underling the importance to address 
the drug discovery and development process starting from the specificities of the 
paediatric population.

2.1 Changes occurring during development and age groups

Obviously, childhood is the period of life when the physiological and physical 
changes are the most important and the fastest. Physiological systems and functions 
are immature in neonates at birth with the degree of immaturity depending on 
gestational age. These systems develop progressively and changes can be observed, 
for example, in gastrointestinal motility and function, body composition and size, 
activities of transporters and metabolism enzymes, and renal function. The process 
is dynamic and nonlinear with progressive rapid growth and maturation in the first 
weeks/months of life, and slower thereafter. These developmental changes affect 
drug disposition, as discussed later, with differences among neonates, children, 
adolescents and adults [18, 19].

Therefore, defining the paediatric population is a very complex issue since it rep-
resents an extremely heterogeneous population. To address the peculiarity of each 
age group and to provide guidance for regulatory and clinical matters, the interna-
tional regulation on paediatric clinical trials [20] has described four subsets: pre-
term and term neonates (0–27 days), infants (1–23 months), children (2–11 years) 
and adolescents (12–18 years). In addition, the recently revised EMA guideline 
‘Ethical considerations for clinical trials on medicinal products conducted with 
minors’ issued on September 2017 has further sub-divided the age group 2–18 years 
into pre-schoolers (2–5 years), schoolers (6–9 years) and adolescents (10–18 years) 
[5, 21]. It has to be underlined that this definition, although useful to unify the 
system of rules and law in this field, does not always reflect the maturity of the 
child, which is something that is generally recognised as crucial aspect to be taken 
into account during the conduct of paediatric clinical trials [5].

2.2 Rare diseases

When it comes to talking about paediatric diseases, we cannot exclude the rare 
disease field since many rare diseases are diagnosed during childhood. Rare diseases 
include a very heterogeneous group of disorders, affecting any body system. A 
disease is defined rare if it affects fewer than 1 in 2000 people in Europe and fewer 
than 200,000 people in the United State. A high percentage of rare diseases (about 
80%) affect children, and in 50% of cases, all rare diseases are characterised by 
a childhood-onset with a significant impact on the well-being of the patients and 
families [22–24].

Although rare diseases have by definition a low prevalence, with some having a 
single identified case worldwide, collectively they affect about 6–8% of the human 
population with a number of diseases recognised as rare comprised between 6000 
and 8000 diseases [25].

Despite the high impact they have on the worldwide population, few treatments 
are available on the market. Drug development for rare diseases poses unique scien-
tific and ethical challenges, most of which in common with the obstacles described 
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in this chapter for the paediatric population. Since they affect a small population, 
heterogeneous and widely dispersed, it is more difficult to enrol enough patients in 
clinical studies and pharmaceutical company shows a scarce interest in this field for 
the low return they may have.

Moreover, considering the high incidence and prevalence during the childhood, the 
ethical issue is predominant in this field. And additional challenges may result from 
the frequently progressive, life-limiting or life-threatening nature of these diseases.

As described below, new approaches in all the phases of the drug development 
process may offer valuable solutions to overcome these difficulties in the rare 
diseases as well as paediatric diseases field.

3. Tailored drugs for children

Drug discovery and development path represents the long process starting with 
the identification of new target molecules (discovery phase), going through stud-
ies on microorganisms and animals (preclinical development) and finally testing 
the new medicines in the target population (clinical development) to bring them 
to the market (authorization and commercialization). Considering the differences 
between children and adults above mentioned, a new drug to be used in children 
should be specifically tested in children themselves in controlled clinical studies. 
At the same extent, medicines for children should be developed having in mind the 
specificities of this vulnerable population starting from the very initial phase of 
discovery.

3.1 Drug discovery

In order to make available better medicines for children, it is mandatory to start 
thinking differently from the beginnings of the long process of drug development 
and stop the habit to translate results from adult to children. Even if we cannot 
deny the potentialities and advantages of using existing drugs in alternative ways or 
populations, as the case of repurposed drugs or the use of extrapolation in paediat-
ric drug development, these approaches should be considered complementary to a 
drug discovery tailored to children and not the only way to go.

Drug discovery for children should be focused on specific targets for paediatric 
indications and should not be influenced by the existing knowledge for adults. 
Appropriate preclinical animal and cellular models should be used, and new emer-
gent technologies should be implemented.

The main challenges in the research of novel medications for children come 
from a range of unique characteristics of this population. As highlighted before, 
several paediatric diseases are unique of childhood or differ in children compared 
to adult. Therefore, it is of major importance to increase our understanding of the 
disease mechanism in children and of the human development mechanism relevant 
for paediatric diseases and use this knowledge to favour a proper drug target selec-
tion and validation. For this aim, the availability of adequate disease models, both 
at in vitro and in vivo experimentation level, is a critical factor.

The existing human cell lines are frequently derived from adult sources, making 
them inappropriate as in vitro model of paediatric diseases. Indeed, several studies 
have highlighted the differences existing between adult and foetal/neonatal cells. 
Differences in platelet transcriptome [26] and proteome [27] have been described 
between platelets derived from healthy adults and full-term neonates. Variations 
between neonatal and adult fibroblasts and keratinocytes have been described as prob-
ably associated with improved wound healing during the early neonatal period [28]. 
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Xu et al. provided an overview on the in vitro models used to study paediatric brain 
tumours underlined that in the initial drug screening for new therapies, it is critical 
to use cell lines more closely related to the tumour and organism being studied. The 
authors listed 60 paediatric brain tumour cell lines reported in the literature, of which 
only a small number can be obtained from central repositories such as ATCC [29] or 
Children’s Oncology Group (COG) [30], thus rendering more difficult for the research 
community to have access to the most adequate cell lines [31].

Considering these findings, novel preclinical models should be evaluated as plat-
form for drug discovery for paediatric diseases, such as induced pluripotent stem 
cells (iPSCs) or innovative techniques including organoids and organs-on-a-chip. 
Disease-specific iPSCs represent a promising platform to understand pathologi-
cal progression in patient-derived cells presenting many advantages: iPSCs are an 
unlimited source of patient-specific cells for drug testing and for the development 
of personalised medicine [32]. Advances in human pluripotent stem cell (hPSC) or 
tissue-resident adult stem cell (AdSC) research have led to the possibility to mimic 
any tissue in the human body through three-dimensional (3D) model including 
organoids and organs-on-a-chip that can be used as in vitro screening models [33]. 
However, to confirm the adherence of these in vitro models with their normal coun-
terparts in vivo, we need a much deeper understanding of the physiology of human 
development than what is currently available.

In addition, as regarding the animal models, the number of comprehensive 
studies describing the normal development of different physiological systems and 
processes in laboratory animals from molecular to system levels is very limited, 
and such studies usually do not exist in animal models of paediatric diseases. Thus, 
questions of comparability of developmental stages across species continue to 
create debate. The need to use juvenile animal models will be better discussed in the 
following section.

In addition to the need of developing cellular and animal models more suitable 
to study paediatric diseases and the instruments to work with immature animals, 
all the new emergent technologies should be timely applied to the paediatric drug 
discovery in order to speed up the pharmacological research, including pluripotent 
stem cell, 3D cell cultures, target validation, patient-derived cell assays, micro-
fluidics, high-throughput cell image analysis, non-invasive drug delivery systems 
and devices to measure drug safety or efficacy non-invasively.

3.2 Preclinical development

Commonly, only a small number of compounds identified in the initial discov-
ery phase will pass through to more rigorous preclinical development. Pre-clinical 
studies—in vitro, in vivo, and ex vivo—are essential steps in the drug development 
path to provide detailed information about the pharmacokinetic (PK) and phar-
macodynamics (PD) properties of the selected molecules. The main goal of this 
phase is to improve the understanding of the drug properties in vivo, evaluating 
their efficacy, biodistribution, toxicity involving multiple experts, and competences 
from pharmacologists, drug metabolism specialists, chemists, toxicologists and 
formulation experts.

Drug dosing and response may differ markedly between adults and children for 
many reasons: anatomical and physiological differences between paediatric and 
adult population [34, 35], different diseases or presentation of diseases [36], differ-
ences in PK and/or PD profiles [37], different ‘host’ responses [38] different adverse 
drug reactions [39] and drug formulation.

There are many examples of drugs with a diverse PK profile in children com-
pared to adults as a consequence of a different absorption, distribution, metabolism 
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fluidics, high-throughput cell image analysis, non-invasive drug delivery systems 
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path to provide detailed information about the pharmacokinetic (PK) and phar-
macodynamics (PD) properties of the selected molecules. The main goal of this 
phase is to improve the understanding of the drug properties in vivo, evaluating 
their efficacy, biodistribution, toxicity involving multiple experts, and competences 
from pharmacologists, drug metabolism specialists, chemists, toxicologists and 
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Drug dosing and response may differ markedly between adults and children for 
many reasons: anatomical and physiological differences between paediatric and 
adult population [34, 35], different diseases or presentation of diseases [36], differ-
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and excretion (ADME) [40]. The rate and extent of the bioavailability of a drug 
may vary as a consequence of the development changes that occur in absorptive sur-
faces, especially the gastrointestinal tract. Dissimilarities have also been reported 
in drug metabolism, transporters expression, biliary function and renal clearance, 
resulting in differences in drug disposition and elimination [41].

Similarly to PK profile, PD profile is also affected by human development and 
drug targets may vary under developmental control: their level of expression, 
affinity or activity may diverge according to the patient’s age, resulting in variable 
drug responses depending on patients’ age group. This is particularly important 
in younger infants, more vulnerable to drug toxicity and related adverse events by 
modifying drug therapeutic windows [42].

Another aspect to be taken into due account is represented by the effect of the 
ontogeny and genetic variation interactions on drug response, known as pharma-
cogenetics [43]. Several pharmacogenetics studies have indeed demonstrated the 
differences in response to drugs between children and adults [44].

To take into consideration these aspects, age-appropriated technologies and 
models in paediatric drug development should be applied: appropriate cellular 
models, juvenile animal model, administration of sub-pharmacologic doses (micro-
dosing) to evaluate PK in a first-in-paediatric study, modelling and simulations and 
pharmacogenetics biomarkers.

Juvenile animal models should be used to take into due account the specificities 
of the paediatric population as described above and to fill the gap between devel-
opmental and mature toxicity. Indeed, the same drugs can have a different safety 
profile in children compared to adults due to many aspects such as body weight, 
developmental differences in growth and function of target organs, immune system 
maturation and different expression of receptors system. For example, adult models 
of epilepsy cannot be simply applied to the study of paediatric epilepsy and key 
differences exist in human and rodent brain maturation process [45].

Extrapolation of data from adults or studies using adult animals is not always 
adequate to predict these differences in safety profile for paediatric age groups. 
For this aim, ‘Guideline on the need for non-clinical testing in juvenile animals of 
pharmaceuticals for paediatric indications’ has been adopted in January 2008 by 
the EMA. The guidelines recommend the ‘use of juvenile animal models when a 
drug safety cannot be appropriately defined in the intended paediatric age group 
on the basis of human data or previous animal studies’ and provide recommenda-
tion on the ‘timing and utility of juvenile animal studies in relation to phases of 
drug development process’. In particular, the document points out that studies in 
juvenile animals should be performed on a case-by-case basis rather than using 
standardised study protocols and describes the key aspects to take into consid-
eration in the study’s design: age of the animal and duration of the studies, route 
of administration, selection of species, PK and toxicokinetics, dose selection, 
endpoint [46]. Juvenile studies are especially recommended when it has been 
demonstrated that a medicine causes toxicity in adult at the target organ level and/
or to tissues that undergo significant post-natal development (CNS, immune, or 
reproductive systems). As also underlined by Anderson et al., it is important to 
conduct the preclinical experiments in the most appropriate species at the most 
relevant age on the basis of comparability of the specific organ system develop-
ment in question [47]. And many issues have to be considered in juvenile toxicol-
ogy studies: difficulties in the dose administration due to the small size of the 
animals, in blood and tissue sample collection, and in distinguishing direct versus 
latent effects [48].

Therefore, proper animal models should be developed. As an example, Lohi 
et al. described the zebrafish as a model for paediatric diseases, with particular 
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emphasis on haematopoietic and infectious diseases [49]. In this direction, several 
zebrafish models for the study of leukaemia have been developed [50–52].

Preclinical data obtained from juvenile studies, extrapolated assuming a cor-
relation between developmental growth in animals and children, can be linked 
to different information from a variety of data sources using the modelling and 
simulation (M&S) approach.

M&S is a multidisciplinary science, which integrates knowledge about diseases, 
drug characteristics, in vitro, in vivo, and ex vivo data, patient populations and 
clinical trial parameters in order to optimise study design and drug labelling [53]. 
Modelling and simulation tools have long been used in drug development to allow 
a quantitative assessment of age- or growth-related differences in drug effects and 
consequently the potential implications for different paediatric age groups [54]. 
On this basis, software has been created to link in vitro data to in vivo ADME and 
pharmacokinetic/pharmacodynamic (PK/PD) outcomes in order to predict the 
potential clinical complexities prior to human studies [55].

The use of a model-based approach in the paediatric context provides several 
advantages allowing the integration of prior in vitro data and physiologically based 
pharmacokinetic (PBPK) models with pharmacodynamics (PD) models (PBPK-PD 
models) and the optimization of experimental protocols. Finally, this approach 
improves the accuracy and efficiency of data extrapolation and allows the reduction 
in the number of animals per experiment that sometimes may also be replaced by in 
silico experiments.

3.3 Clinical development

Finally, efficacy and safety of the new medicine should be tested in appropriate 
clinical trials. When it comes to the clinical development of a drug, several issues 
related to the peculiarity of the paediatric population have to be faced. Conducting 
a paediatric clinical trial raises several scientific and operational challenges.

First of all, the low prevalence of many paediatric diseases leads to a limited 
number of children affected by each condition. In addition, the ethical issues are 
also to be considered to obtain clinical benefits for children assuring the best pos-
sible protection for these vulnerable subjects. Moreover, considering the heteroge-
neous nature of the paediatric population, the population subsets to be included in a 
study should be chosen with great attention in order to be sure to consider the most 
likely target population for the medicine being tested.

Another issue to be considered in the design of a paediatric clinical trial is the 
lack of tools and/or methods for quantitative and qualitative assessment tailored for 
the paediatric population and its sub-groups (study endpoints, questionnaires and 
scales for the measurement of psychophysical parameters and tools for the assess-
ment of adverse reactions).

The difficulties described above, in testing appropriate drugs in children, 
have brought to an increased use of off-label drugs with high risks for adverse 
safety events and efficacy failures and to a general knowledge gap in paediatric 
research [1].

The US and EU Regulatory agencies foster the drug clinical development 
through regulations and incentives and the increasing number of paediatric trials 
and specific label changes and dosing recommendations.

Ground-breaking methodologies such as innovative trial design, application of 
modelling and simulation and other tools supporting paediatric trials (such as spe-
cific outcomes measures, biomarkers, statistical methods, etc.) can help researchers 
to overcome obstacles faced in planning, initiating and conducting a clinical trial 
involving children.
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First of all, the low prevalence of many paediatric diseases leads to a limited 
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For example, to reduce the number of samples required for a study, sparse and 
scavenged sampling approach can be used. Sparse sampling uses a lower number of 
samples per patient compared with traditional PK sampling methods. Scavenged 
sampling consists in the use of residual blood/plasma samples remaining after the 
laboratory tests obtained in the course of medical care. These approaches reduce  
the risk for the child and eliminate the need for vascular punctures specifically for 
the study and, as a consequence, increase the rate of parental consent and the avail-
ability of several samples per infant [56].

Statistical methods, such as the Bayesian design, allow the extrapolation of 
results out of fewer children than in the conventional, fixed-number design, also 
considering evidences in adults [5].

Modelling and simulation approaches allow to successfully predict the optimal 
dosing regimens from the preclinical to the clinical phase [57].

More innovative trial design methods are being developed to overcome the 
limits related to small samples and to the acceptability of the trial. These alterna-
tive approaches, limiting the amount of experimentation in children, represent a 
promising way of ultimately improving paediatric care [58].

3.4 Paediatric biomarkers

A biomarker can be defined as ‘a characteristic that is objectively measured and 
evaluated as an indicator of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention’ [59].

Biomarkers can be influential in every phase of drug development, from drug 
discovery and preclinical development, through each phase of clinical trials and 
into post-marketing studies. Evaluation and application of biomarkers can be useful 
to refine a drug dose or dose interval, or to select the appropriate population during 
early-phase clinical development of a product [60].

Despite this, the discovery of paediatric biomarkers has been limited and to 
cover the resultant gap, extrapolation, in children, of biomarkers identified and 
employed successfully in adults has become a common practice. However, human 
development impacts almost all factors and systems from organ function to drug 
disposition including the commonly utilised biomarkers that are influenced by 
changes occurring from birth onwards [61]. Therefore, adult biomarkers are not 
always appropriate to a paediatric setting.

A major challenge in the paediatric biomarkers discovery path is the sample 
availability due to the low prevalence of many paediatric diseases. Moreover, 
compared to adults, the paediatric populations is more heterogeneous making 
more difficult to obtain samples for biomarker discovery and validation, with 
the patients often distributed among several centres. Consequently, multicentre 
collaborations are often necessary in order to access sufficiently large study popu-
lations of affected children to generate big enough datasets to adequately power 
research studies [62].

Additional obstacles in children are represented by the difficulty to obtain 
appropriate age-matching control samples in order to minimise the influence that 
age-related changes may have on biomarker discovery and validation. Research on 
healthy children is generally restricted to minimal risk procedures, so although bio-
logical samples like saliva and urine can be relatively easy to obtain, blood samples 
are difficult to obtain in healthy children, particularly in neonates [61].

Moreover, several ethical considerations have to be taken into due account to 
enrol children in a biomarkers study: an effective and simplified consent process, 
long-term retention of samples for future research, the impact of ancillary genetic 
information on family members and predisposition to adult-onset disease [61].
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Current advances in molecular techniques and the speed up of the ‘-omics’ 
technologies (i.e. genomics, transcriptomics, metabolomics and proteomics) have 
provided new tools facilitating the discovery of new biomarkers. The promise of 
omics technologies is considered huge, but translation of these technologies into 
clinical setting has been quite slow especially in the paediatric field.

3.5 Age-appropriate formulation

The effect of age on PK profile, as discussed above, leads to different dosing 
requirements for different age groups. The proper dose administered may vary nearly 
100-fold during childhood as a consequence of the body size and weight increase from 
birth to adulthood [63]. Premature neonates admitted to the hospital can weigh as little 
as 500 g. Moreover, since the maturation process in children is not linear, not always a 
linear relationship exists between a medication dose and body size and/or weight.

The need to have safe and suitable drugs for children has led to the awareness 
that drug formulations tailored to children in all the target age groups is essential. 
Formulation acceptability differs across age groups as children gradually develop their 
cognitive and motor skills, and improve their ability to swallow medications. And taste 
of a drug may be critical to ensure acceptable adherence to paediatric oral formulations.

The ideal formulation for children should have flexible dosage increments and 
minimal excipients, be palatable if given oral, easy and safe to administer, and be 
stable with regard to light, humidity and heat.

Continuous effort in formulation science by academic and paediatric researchers 
and commitment of policy makers and regulators should promote the preparation 
of pharmaceutical formulations for paediatric use, focusing on age tailored forms, 
excipient-related toxicity and safety risks in order to improve acceptability and 
facilitate medication adherence in children.

3.6 Pregnancy and perinatal pharmacology

Up to 80% of women receive at least one medication, over-the-counter (OTC) 
or prescribed, during pregnancy in Europe [64]. The most common drugs used dur-
ing pregnancy are anti-infectives and respiratory drugs [65]. It is recognised that 
medications assumption during pregnancy can represent a risk for the foetus, and 
therefore, medication use is approached with caution by pregnant women and their 
health care providers [66]. Nevertheless, the majority of current therapeutics used 
were never being studied in pregnancy for many reasons. Traditionally, pregnancy 
usually represents an exclusion criterion for phase I testing studies and women of 
childbearing age are usually excluded from clinical trials. Moreover, pharmaceutical 
companies manifest a low interest in the pregnant population since this population 
has more medico-legal risks and ethical concerns and represents a small percentage 
of the patient population that these companies target [66].

Due to the lack of studies involving pregnant women, safety drugs profile is 
usually obtained from either post-marketing surveillance or late-stage retrospective 
studies and efficacy and dosing data can be extrapolated from studies conducted in 
men or non-pregnant women [66].

To foster the availability of more effective and safer obstetrical drugs, a better 
understanding of the changes that occur in the mother, placenta and foetus is essen-
tial and strategies to monitor the therapeutic progress have to be improved [65].

The placenta represents a maternal-foetal interface between the mother and 
baby’s blood and controls exchanges of nutrients, oxygen, wastes and drug transport. 
The process regulating molecular transfer across the placental barrier is poorly under-
stood leading to a lack of precious information for the drug development process.
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Most studies on human placental biology have been conducted on tissue obtained 
after term delivery, or earlier, often from pathological pregnancies at various stages 
of disease, or from ex vivo model system. Less information can be obtained about the 
earlier phases of gestation and the normal development and functions of human pla-
centa [67]. Behind these difficulties in obtaining the tissue, the studies on placenta 
require high level of expertise. To overcome these limitations, some initiatives have 
been undertaken. A 3D in vitro model of human placenta has been developed by a 
research group at the University of Vienna. The 3D model shows self-organisation, 
self-renewal and constant growth capacity and can be also pharmacologically and 
genetically manipulated allowing to study the physiological and pathophysiological 
processes of human placenta [68]. Another attempt to develop a model of human 
placenta has been carried out by the Huh Lab at the University of Pennsylvania, 
which developed the first placenta-on-a-chip to study drug delivery to the placenta 
and preterm birth. It consists of a small block of silicone that contains two overlap-
ping layers of microchannels that are lined with trophoblast cells isolated from the 
outer surface of the placental barrier and separated by a porous membrane [69]. 
These advancements will allow a better understanding of the transport processes 
through the placenta and a better designing of new obstetrician drug.

3.7 In silico pharmacology

In the last decades, advances in computer technology has led to an increase in 
the use of informatics and bioinformatics in biomedical research, moving into an in 
silico era. The introduction of the in silico methods in the drug discovery and devel-
opment has provided the opportunity to simulate every stage of the process, from 
preclinical to clinical, allowing to combine various heterogeneous types of data into 
computer-based pharmacological model.

As an example, in silico methods have been applied successfully in 2003 to drug 
screening when two different research groups found an identical molecule as inhibi-
tor for the TGFb-1 receptor kinase: one using conventional ‘wet-lab’ assays and the 
other using an in silico approach [70]. In parallel, computational methods for drug 
development began to emerge, in order to model the interactions between drugs 
and biological systems [70].

This approach has been translated in paediatrics as a promising method to sup-
port the design of in vivo studies in the early phase of drug development. Johnson 
et al. predict with reasonable accuracy the in vivo drug clearance of 11 drugs that are 
commonly used in neonates, infants and children using in silico prediction methods 
and in particular the Simcyp® software [71]. Using a similar in silico approach, a 
physiologically-based pharmacokinetic model (PBPK) was developed in PK-Sim 
v4.2® to predict lorazepam PK in children as a function of age [72].

The introduction of PBPK modelling software in the field of paediatric drug 
development presents many advantages considering the peculiarities of this popu-
lation. Notwithstanding these approaches could not replace totally the need for 
clinical trials, but they could reduce the amount of clinical trials required in chil-
dren providing a primary exploratory investigation of drug PK, first-time dosing in 
children and study design [71, 72].

4. Pricing and reimbursement policies

The issues linked to the pricing and reimbursement of drugs administered to 
paediatric population are strictly linked to the mechanisms of drug marketing. 
Multiple factors are involved, and alteration of the regulatory environment can 
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rapidly change the drug development pathway chosen by pharmaceutical compa-
nies. At the moment, most of the drugs used for children have a marketing autho-
rization for adults and are used ‘off-label’. No incentives are present for a company 
to perform further studies in a paediatric population if the drug is used and reim-
bursed all the same.

The introduction of regulatory requirements for clinical studies in paediatric 
populations [6, 8, 9] has altered this paradigm for the newest drugs but has not 
changed the situation for the already used ones.

A basic principle for price calculation is the pay for quality-adjusted life years. 
Theoretically, this approach should increase the value of a new paediatric drug, 
but if the same drug is also used for an adult population, the payer would limit the 
price as a larger population is involved. In fact, due to the age stratification of the 
paediatric population, many paediatric pathologies might be considered as a rare 
disease. In fact, due to the facilitation linked to the development of a drug for a rare 
disease, an emerging approach from commercial entities is to develop drugs for the 
smaller paediatric population and to ask for an extension of the marketing licence 
to the adult group only when the licence is going to expire in a reverse approach to 
maximising the revenues for each new drug.

As this is applicable to all small populations, the regulatory agencies are already 
eliminating the rare diseases from the groups receiving extra benefit during the 
marketing authorization process, further complicating the issue.

Overall, due to the personalised medicine approach stratification, there is a 
strong need to increase the public funding during the early stages of drug develop-
ment in order to not only reduce and control the cost of new drug but also encour-
age the development of new class of drugs based on the increased knowledge of the 
human normal and pathological development.

5. New and existing research initiatives in the field

The advancement of innovative technologies in the paediatric pharmacology and 
preclinical phase of drug development will contribute to speed up both the develop-
ment of new medicines for children and the paediatric clinical research. The aware-
ness about the limited application of the innovative technologies in the paediatric 
drug development process and the scarce availability of safer and efficacious drugs 
for children has led, over the last years, to the onset of initiatives and collaborative 
efforts in this field.

At European level, we can cite EnprEMA [73], a network of research networks, 
investigators and centres with recognised expertise in performing paediatric 
clinical studies, which have greatly contributed to increase availability of medi-
cines authorised for use in the paediatric population, according to what foreseen 
in the Paediatric Regulation. The TEDDY Network of Excellence (European 
Network of Excellence for Paediatric Clinical Research) [74], funded within the Sixth 
Framework Programme of the European Commission as Task-force in Europe for 
Drug Development for the Young and recognised as category 1 network member of 
Enpr-EMA, aims to favour adequate health policies and a social awareness on the 
importance of the paediatric medicines across Europe. TEDDY network goal is to 
support the paediatric clinical pharmacology and reduce the current fragmentation 
in the development of medicine in children. In line with this goal, TEDDY set up 
the European Paediatric Medicines Database as a pan-European source of informa-
tion that includes data on paediatric medicines authorised by EMA collected by 
several sources (national authorities, regulatory bodies and pharmaceutical com-
panies). Among other initiatives, we can mention the Conect4Children (C4C) IMI2 
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(Innovative Medicines Initiative 2) project [75] and the PedCRIN project [76]. C4C 
is a European project aimed to implement an infrastructure of clinical sites organ-
ised as a pan-European network to test medicines through well-organised, moni-
tored and evaluated profit and non-profit paediatric clinical trials. PedCRIN project 
is intended to develop tools and actions for paediatric and neonatal trials in order to 
better address the real needs and gaps of the paediatric research community.

Behind the initiatives mentioned above, other actions have been taken to foster 
the early drug discovery and preclinical development phases. In this field, we can 
mention the European Paediatric Translational Research Infrastructures (EPTRI) 
project [77], aimed to design a research infrastructure (RI) completely dedicated 
to paediatrics to be included in the landscape of the ESFRI RIs. EPTRI aims to be 
complementary and fully integrated in the context of the existing RIs providing 
services, competences, expertise in the paediatric drug discovery and develop-
ment. EPTRI will provide support to the paediatric research community through 
its thematic platform: Human Development and Paediatric Medicines Discovery, 
Paediatric Biomarkers and Biosamples, Paediatric Pharmacology, and Paediatric 
Medicines Formulations and Medical Devices. Through them, EPTRI will promote 
a translational approach from the bedside to the bench side, to make available 
more efficacious and safer drugs for children. In the formulation field, it has to be 
mentioned that the European Paediatric Formulation Initiative (EuPFI) [78] is a 
consortium working in a pre-competitive way on paediatric drug formulations and 
aimed to speed up the development of better and safer medicines for children by 
identifying issues and challenges in paediatric formulation development. EuPFI has 
set up the database Safety and Toxicity of Excipients for Paediatrics (STEP) that 
provides updated information on excipients safety and toxicity in children.

To address specifically the rare diseases, the European Joint Programme Rare 
Disease (EJP RD) [79], recently founded by the European Commission, brings over 
130 institutions from 35 countries to create virtuous circle among research, care and 
medical innovation in the rare disease landscape. In particular, the project will improve 
the integration, the efficacy, the development and the social impact of research on 
rare disease and will implement an efficient model of financial support for all types 
of research on RD (fundamental, clinical, epidemiological, social, economic and 
health service), providing support to accelerate the exploitation of research results 
for the benefit of patients. To more specifically focus on the drug development in rare 
diseases, a task force has been created within International Rare Diseases Research 
Consortium(IRDiRC) [80], the Orphan Drug Development Guidebook Taskforce, 
aimed at providing support to academic and industrial drug developers and describing 
the available tools and initiatives specific for rare disease drug development [81].

As described, many initiatives exist as a result of the growing understanding 
that children cannot be considered as small adults, but need to be addressed specifi-
cally in the drug development path. But more efforts and the involvement of the 
national and international policy bodies are still needed to make the development 
of medicines for children a priority.

6. Conclusion

Children represent particular vulnerable subjects and therefore should be pro-
tected and preserved by the risks that a clinical research can entail. However, at the 
same time, higher risks in term of major toxicity and/or reduced efficacy can result 
by the administration of drugs not properly tested and developed for them. Despite 
this, the off-label drug administration is still common in the paediatric population 
and children have been considered for year as the therapeutic orphans due to the 
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recognised lack of medicines specifically targeted for them. Moreover, the enor-
mous progresses and advancements reached in the pharmaceutical field have not 
been applied to the paediatric population at the same extent of the adults.

The gap in the availability of proper medicines for children can be traced back to 
ethical, practical and economic reasons. As discussed in the chapter, the main prac-
tical reasons can be associated with the differences existing in the diseases affecting 
children compared to adults, as well as in the different physiology itself of the chil-
dren compared to adults, the low number of patients affected, the need to take into 
account different age groups and the need to make available appropriate formula-
tions. Moreover, the ethical concerns make more difficult to obtain the parents’ 
consent. In addition, the pharmaceutical companies are not interested in this niche 
market, since they cannot foresee an adequate economic return. Furthermore, more 
challenges have to be faced when considering paediatric rare diseases. Complex 
aetiology, small affected population and subsequently small market size, high cost, 
and possibly low return on investment led to a large gap between basic research and 
patient unmet needs for rare disease drug discovery.

Many initiatives have been taken over the years, also at institutional levels, to 
promote a ‘good research’ in the paediatric field, in order to involve children and at 
the same time preserve them by unnecessary risks. Only increasing our understand-
ing about human development processes and about how these processes impact 
on the onset and progression of diseases will able us to develop specific medicines 
targeted for children. The knowledge of these processes will allow us to transfer in 
the paediatrics all the advancements and innovative technologies nowadays avail-
able in the adults’ pharmacological research. Thus, more efforts are needed in terms 
of capitals, human resources, and technological expertise to speed up both the 
preclinical and clinical drug development in children and make available to children 
new medicines and appropriate treatments.
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