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Preface

The full implementation of autonomous vehicles on a large scale, despite
appearing to be far off, is inevitable. One of the biggest challenges for autono-
mous vehicle navigation and manoeuvrability is to assure the vehicle’s ability to
react instantaneously to potential hazards in its environment. This requires the
formulation of a dependable path planning strategy. Path planning re-plans the
autonomous vehicle’s original reference trajectory based on the environmental
information provided by the vehicle’s perception modules. Despite the amount
of work done in the areas of autonomous vehicles and mobile robots, real-time
implementation still faces some challenges. This is due to the dynamic nature of
the real world. For example, a commonly traversable road can suddenly be sub-
ject to continuous changes in its landscape due to reconstruction, thus creating
hindrances for driverless navigation. This requires dependable planning modules
for the driverless platform to provide reliable reference routes for the vehicle.
Regarding autonomous mobile robots, manoeuvring in a narrow and scattered
environment is also a challenge. Thus path planning is a challenge to be addressed
in many fields.

This book is based on our combined experiences in the fields of automated driving 
and vehicle controls. The editors are experienced researchers from Finland, Turkey, 
the United States, Canada, and Malaysia who have worked extensively in the field of
autonomous vehicles and mobile robots. We would like to thank all of the reviewers
and authors involved in creating this volume.

In this book, we provide introductory ideas on the topic of ‘path planning’ to not
only researchers but interested readers alike. The content is not limited to path
planning algorithm formulation for road vehicles; it also explores the topic in the
context of mobile robots, off-road scenarios, multi-robot motion, and unmanned 
aerial vehicles (UAVs).

The book is divided into three sections. The first section, ‘Path Planning for
Autonomous Vehicles’ provides the introduction to the book. It includes a discus-
sion of the factors that influence path planning for autonomous military vehicles. 
The second section, ‘Path Planning in Varied Environments’, discusses path plan-
ning as it relates to different use cases, such as off-road vehicles and UAVs, and 
the themes of unknown environment exploration. The final section, ‘Towards an
Optimal Path Planning’, explores path planning in the off-road scenario, followed 
by a discussion of optimizing driverless navigation by integrating path planning 
and control strategies.

In conclusion, for wide implementation of autonomous vehicles to come to fruition, 
the question is not ‘Can it be done?’ but rather ‘How do we do it safely?’ The first
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step in answering this question is a discussion of path planning as presented in 
this book.
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Chapter 1

Introductory Chapter: Roles 
of Path Planning in Providing 
Reliable Navigation and Control 
for Autonomous Vehicles and 
Robots
Umar Zakir Abdul Hamid, Volkan Sezer, Bin Li, 
Yanjun Huang and Muhammad Aizzat Zakaria

1. Introduction

Shared, connected, and driverless vehicles have been the discussion of many 
researchers, and autonomous vehicle (AV) itself is considered as a highly disrup-
tive emerging technology. One of the examples of its disrupting feature is when 
11 major automotive companies which include BMW, Daimler and Volkswagen 
have collaborated and published a white paper entitled “Safety First for 
Automated Driving” in 2019 to address the topic [1]. With the predicted market 
value of US$7 Trillion by 2050 for the automated driving segments, it is hard to 
ignore the highly disruptive effects that the AV will deliver [2, 3]. In addition to 
the ongoing development of the autonomous vehicles’ platforms, to complement 
for its expanding advancement, the discussion is also now reaching other topics 
such as the mobility-as-a-service (MaaS), city infrastructures as well as policy-
making [4–6].

2. How does autonomous vehicle work?

Generally, in addition to the hardware requirements, a high-level autonomous 
vehicle software module comprises of the perception and vision, localization and 
mapping as well as the guidance, navigation and control modules (Figure 1). 
The combination of these modules yields an ability to compensate for the driver’s 
absence during the navigation. AV, in any case, should possess the ability to measure 
the risk surrounding its environment as well as guiding the vehicle motion. In addi-
tion, a driverless vehicle is also expected to compensate for the absence of a human 
driver by possessing the required intelligence to mimic the human driving behavior 
of the vehicle.

The smooth and comfortable automated driving experience requires the 
expertise of interdisciplinary fields, which includes the development of required 
hardware and software integration. In the case of road navigation of an autonomous 
vehicle, the vehicle is typically expected to navigate independently during the entire 
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Figure 2. 
Challenges and issues for path planning of autonomous vehicles [12–14].

driving process. This implies that the vehicle is fully responsible for preventing any 
unwanted incidents.

In a controlled environment, the use of predefined information of the environ-
ment is usually sufficient. However, in the risky scenario that demands the AV to 
react to its environment, the usage of dependable path planning strategies to replan 
its current reference or trajectory is demanded.

3. Path planning

Path planning (PP) is the computation of a maneuverable path from an ini-
tial point to a terminal point, which the host vehicle or robots tracks and follows 
[8, 9]. Despite much of the works done in the PP fields for autonomous robots 
and vehicles, real-time implementation still possesses some challenges. This is 
due to the dynamic nature of the environment of the real world. For example, a 
road that is usually traversable can abruptly be having a continuous change in a 
construction site. This requires dependable PP for AV to provide reliable refer-
ence path for the vehicle. In addition, for the discussion of autonomous mobile 
robots, the maneuver in the narrow scattered environment is also a challenge. 
Thus, PP does not only revolve on the topics of moving from point A to B, but 
instead, the challenges are of large scales.

Figure 1. 
Modules of driverless vehicles [7].
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3.1 Challenges of path planning

Due to the rapid progress of works done in recent years, the implementation and 
validation of AV development have been performed in varied environments, which 
include harsh-weather conditions and city environment, among many others [10, 
11]. These studies have led to the identification of previously known and new issues 
in the path planning topics, with some of them being highlighted in Figure 2. For 
brevity, details of the listed issues can be found in the following references [12–14]. 
Thus, to ensure reliable and safe navigation by AV and autonomous robots, it is 
evident the necessity to understand the topics of PP.

4. Aim of the book and its organization

Realizing the importance of the path planning topic for autonomous vehicles 
and robots, this book is written. With the open-access publication concept, the 
book is hoped to give the introductory ideas to the researchers and the general audi-
ence about the topics. It is co-edited by researchers who have worked extensively in 
the field of autonomous vehicles and robots from Finland, Turkey, USA, Canada as 
well as Malaysia.

It is important to be mentioned that this book does not aim to solve and high-
light each of the available PP issues. But instead, it tries to present as many topics 
and issues as possible to give the wide idea of path planning. As automation of 
the vehicles does not only cover the road vehicles, the book will also cover the 
autonomous vehicle for the off-road, military, and unmanned aerial vehicles (UAV). 
Despite the different type of vehicle and robot, the ethos of the discussions can still 
be adapted to the varied platforms.

5. Conclusion and expectations

We hope this introductory chapter and the book will be able to indicate and give 
ideas on the issues related to PP topics, where the authors explore the topics of PP in 
the context of road vehicles, robots, off-road scenario, multi-robot motion, and UAVs.

For further reading following the discussions in this book (which serve as the 
introductory ideas for new researchers), we are recommending the topics of path 
planning as an active safety feature of AV, which includes the collision avoidance 
theme, among many others. We believe the knowledge of path planning will help 
researchers in developing safer collision avoidance system for AV.

Concluding, for a wide implementation of AV to be seen, the questions are 
not limited to “Can it be done?” but instead, the real question is “How do we do it 
safely?”. And the discussion of PP is one of the prerequisites of a safe AV. With the 
open access nature of the book, it is hoped that the discussion reaches as much as 
possible audience.

Acknowledgements

The editors would like to thank all the reviewers and authors involved in the 
works.
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Chapter 2

Military Factors Influencing Path 
Planning
Jaroslav Kozůbek, Zdeněk Flasar and Ivo Dumišinec

Abstract

The chapter discussed and considered the factors that influence the path plan-
ning for military purposed autonomous vehicles. The planning of movement (path 
planning) for autonomous vehicles is complex process influenced by many catego-
ries of factors. The complexity of autonomous vehicles path planning is dramati-
cally increasing in military operational environment when the confrontation with 
enemy is expected. From operational point of view, it is necessary to considered in 
which military domain the autonomous vehicles will operate, for example, in Land 
domain, Air domain or Sea domain. From tactical point of view, there will be group 
of common factors for each domains and group of different factors for specific 
domain. As much as possible factors which will be included in consideration of path 
planning as the part of mathematical algorithms will increase the prerequisite for 
successful fulfilling of assigned tasks and missions.

Keywords: path planning, military factors, domains, operation environment

1. Introduction

Within last decade the utilization of autonomous vehicles during waged military 
operations significantly increased in importance. The main factor of their utiliza-
tion was protection and safe lives of own soldiers or contributors. This trend will 
surely continue and become relevant in the future as well.

In military operations the decision support systems for utilization of autono-
mous vehicles have become an integral part of the commander’s decision-making 
process [1]. One of the models of autonomous vehicles are Unmanned Aerial 
Systems (UAS) mainly utilize for reconnaissance which is the part of the Tactical 
Decision Support Systems (TDSS) developed at University of Defence, Czech 
Republic [2]. This system aims at supporting commanders of the Czech Army with 
their Military Decision-Making Process (MDMP). More detailed information about 
the integration of TDSS into commander’s Troop Leading Procedures (TLP) can 
be found in [3]. Reconnaissance is one of the crucial parts of intelligence support. 
Intelligence support is the one of the essential part of MDMP to find a solution for 
a specific problem allowing to fulfil the assigned mission. It consists of models of 
military tactics. Each model can solve the corresponding task.

One of many important models in military tactics is the optimal cooperative 
reconnaissance which is a problem when an area of interest needs to be searched 
(observed) by multiple military elements (scouts, UAVs, UGVs) as quickly as 
possible [4].
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Figure 2. 
Categories of factors-steps for consideration and planning.

The operational environment1 generally consists of factors and conditions that 
must be understood to successfully apply military capabilities protect the force and 
complete the mission. It influences the completion of a single mission as well as 
an entire campaign and its constituent elements [5]. The operational environment 
includes the sea, land, air and space, the enemy, neutral, friendly and other actors, 
facilities, weather, terrain, electromagnetic spectrum (EMS) CBRN threats and 
hazards, and the information environment (e.g., Figure 1).

The operational environment of the armed conflicts was, is and will be very 
diverse and it is involving many aspects. The armed forces must be able to perform 
a wide range of tactical activities in different domains as Land, Air, Sea, Cosmic and 
Cyber [5].

Both (all) fighting parties will strive to achieve their goals in the most effective 
way, including minimizing their loss of life and deployed resources. One of the ways 
to minimize the loss of lives is the utilization of modern technical means-as autono-
mous vehicles could be.

Nowadays the predominant domain where fighting parties operate by soldiers is 
Land. But the most significant domain to gain domination by forces is Air. The mul-
tiplier of requested armed forces capabilities to effectively operate in each domain is 
electromagnetic spectrum.

Focusing on solving issues the Land domain is the most demanding for autono-
mous vehicles path planning. For ground autonomous vehicles path planning 

1 According to Allied Administrative Publication 6 (AAP-6) the operational environment is defined as: A 
composite of the conditions, circumstances and influences that affect the employment of capabilities and bear on 
the decisions of the commander.

Figure 1. 
Military domains in operational environment.
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is possible to apply the analogical approaches as for military units movement 
planning.

Movement can be understood in broad terms as relocating someone from point 
to point in order to create conditions for and to be capable carry out particular 
planned activities after the move is over.

There has to be considered amount of factors that affect the move and the goals 
set for it (e.g., Figure 2). The first step in movement consideration is capability 
(parameters, technical data) of the autonomous vehicle itself, the second step is the 
autonomous vehicles mission (recce, destroy, cooperate, transport, refuel, etc.), the 
third step is opposite acting force and the last step is complexity of environment 
(terrain, weather, temperature, visibility, etc.).

2. Capability of autonomous vehicles

Most modern armies, assessing, in particular, combat vehicles and its combat 
capability, evaluate four basic parameters:

1. combat power/special purpose ability,

2. protection (if applicable) of the crew (subsystems),

3. mobility,

4. signal and command.

The utilization of autonomous vehicles for military purposes can be considered 
in two basic missions, as lethal or non-lethal assets. Within both types of mission 
the opposite side tries to eliminate autonomous vehicle or to capture it. For develop-
ment of autonomous vehicle to be used by military purpose should be considered 
the same approach as for development of the combat vehicles operated by soldiers. 
The parameters of autonomous vehicles have to meet maximum of factors which are 
influencing its movement.

According to author’s long-life military experiences and deep and comprehensive 
analysis of the facts in the Army of the Czech Republic Lessons Learned Databases 
[6] the capabilities of autonomous vehicles can be considered in following ways.

The combat power of the autonomous vehicle will consist of the ability to meet 
the desired goal. This goal can be “only” to carry out monitoring and to find out the 
required information about the enemy, the task environment and their transfer to 
appropriate locations, detect the presence of undesirable substances in the area of 
operation, and warn troops about the presence of such substances until possible 
destruction of the enemy and its objects. Autonomous vehicle will be equipped with 
appropriate sensors and devices for special sub-tasks.

It is necessary to consider the degree of autonomy of the resource for the issue 
of protecting the crew of an autonomous vehicle. Fully autonomous vehicle will 
be equipped with an artificial intelligence that will enable him to perform the 
task without any human intervention (collaboration), from his deployment to the 
fulfilment of the task, including eventual return to assigned assembly area. Partial 
autonomy may consist in the necessity or only the possibility of intervening in the 
selected phases of the autonomous vehicle implementation by the operator. The 
operator may, depending on the specific conditions on the battlefield and their 
change over the autonomous vehicle deployment planning phase, correct and 
control selected functions and their interdependence.
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change over the autonomous vehicle deployment planning phase, correct and 
control selected functions and their interdependence.



Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation...

12

Partly autonomous means can be considered as a means of transporting directly 
to this device, although some of the required functions will be automated and 
autonomous vehicle operators will either not influence at all or will be able to cor-
rect them. Under the declared crew protection (operator), we can understand the 
“only” protection of the entire device and its component components and sensors in 
the case of autonomous vehicle.

Like a standard combat vehicle, the autonomous vehicle should be able to 
withstand the effects of the environment (weather conditions, fulfillment of the 
task within the required temperature range, in dusty and other environments, 
etc.) as well as enemy effects in the form of explosive firefighting systems, enemy 
fire interventions to a certain caliber, contamination or ignition of autonomous 
vehicle area of operation, etc. An important role in the area of autonomous vehicle 
resilience and its ability to move and perform tasks in a particular environment 
will play the location of its components and sensors on the “base” of autonomous 
vehicle. It can be said that the autonomous vehicle as a whole will be so resistant to 
environmental influences (both natural and caused by human factor), how least 
its component, component, sensor will be resistant. Both in the profile (overlap-
ping the sensor above the “base” of the autonomous vehicle) and attaching this 
sensor to the “base” of the autonomous vehicle and its cabling.

The autonomous vehicles should have the required mobility parameters, the 
ability to perform tasks in the widest possible sense of the word mobility. For most 
moving assets, and not only for the vehicles used by the army, the following param-
eters are listed:

• the average speed of the resource depending on the specific  
communication-on the road, on the ground, etc.,

• maximum travel speed,

• acceleration (usually from zero to desired or maximum),

• ability to overcome climb/descent (usually expressed as a percentage),

• side tilt (usually in degrees),

• crossing the obstacle and pitch,

• consumption and necessity of refueling,

• range,

• the height, width and weight,

• ability to overcome water barriers and a number of other parameters.

Mobility is also related to terrain throughput. A tactical view of terrain patency 
typically features three stages-through terrain (where no action is needed to move 
the device), partially through terrain (in which action must be taken towards the 
device or field so that it can be (although some radical measures could be taken 
to penetrate the terrain, but these measures would be inefficient for time or other 
reasons). The landing area of autonomous vehicle also relates to its undercarriage. 
There are terrains that are more suitable for wheeled chassis and on the contrary 
are terrains that can be easily overcome with tracked chassis. The ideal autonomous 
vehicle, which would be deployed in different terrain, could have a combined bogie 
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(wheel and belt) where it would autonomously (based on artificial intelligence) 
evaluate the most suitable variant of the chassis and “deploy” itself (it would 
move from one platform to second, or the process could be managed by the opera-
tor. Similarly, the problem of adhesion conditions could be solved in the sense of 
increasing or decreasing the contact surface of the undercarriage with the terrain, 
or an automatic or operator controlled change of autonomous vehicle aperture. For 
example, in the Russian army some combat vehicles have been introduced, which 
can change the clearance by up to 30 cm during the movement.

If the vehicle’s clearance (vehicle) changes during movement, logically this will 
change the position of the center of gravity of the device. Due to the generally small 
dimensions of autonomous vehicle compared to other combat vehicles, the change 
in autonomous vehicle center of gravity may radically change (as a rule reduce) 
some other mobility-related features such as side tilt, climb/descending, etc. But this 
problem is technically feasible for autonomous vehicle. It can be envisaged that by 
changing the autonomous vehicle’s aperture and thus increasing the center of gravity 
of the device, the autonomous vehicle could either autonomously or by an operator’s 
intervention modify the axle or half-axle of the undercarriage so that at one side of 
the bottom of the “hull” the second is lower, and the original offshore characteristics 
can be achieved. With mobility, the dimensions, profile and weight of the autono-
mous vehicle and its parts, components and sensors are logically related.

The parameters in the area of signal and command can be included:

• source sufficiency of the autonomous vehicle as a whole and its individual 
components (to fulfill their functions),

• the reach of command and control means in case the autonomous vehicle is 
not completely autonomous (will be operated by the operator),

• transferring data and information obtained by the autonomous vehicle in real-
time tasks, various data paths, or even confidentially,

• resistance to interference with the autonomous vehicle control and  
information transmission system and more.

To fulfill task in any mode of autonomy, the device must be equipped with the 
most accurate information, parameters and programs. Ideally, autonomous vehicle 
would be able to “retrieve” real-world information (such as changing the terrain 
and the terrain, etc.) into its software and, if necessary, by the operator to correct 
the data and update it.

Among autonomous vehicle requirements that can be perceived as borderline 
between “combat power” and “mobility”, views such as:

• in what environment, in terms of an unfriendly/friendly atmosphere, the 
autonomous vehicle will move and perform tasks;

• whether their mission will be demonstrative or will be interested in secrecy 
(until the possible use of lethal weapons) and some others.

3. Mission of autonomous vehicles

Autonomous vehicles (ground or air) are especially valuable in environments 
where immediate information feedback is needed, manned ground or air vehicles 
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Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation...

14

are unavailable or excessive risk or other conditions render use of manned vehicles 
less than deliberate. The autonomous vehicles can conduct day and night operations 
to support units.

The autonomous vehicle missions can include:

• Route, area, object and zone reconnaissance,

• Surveillance of named areas of interest (NAIs),

• Adjusting indirect fire weapons, close air support (CAS), and close-in fire 
support (CIFS),

• Support to:

 ○ Combat search and rescue (C-SAR),

 ○ Target acquisition (TA),

 ○ Battle damage assessment (BDA),

 ○ Rear area security,

 ○ Situation awareness (SA) development,

 ○ Intelligent preparation of battlefield (IPB),

 ○ Electronic warfare (EW),

 ○ Communications relay,

 ○ Mine and chemical detection,

 ○ Mine cleaning,

 ○ Weather surveillance,

 ○ Material and munition resupply,

 ○ Casualty evacuation.

In case of that autonomous vehicle is equipped by a weapon system (considered 
as a combat vehicle) it can fulfill combat missions to destroy enemy in open terrain, 
in vehicles or covered in shelters or in buildings.

Special consideration for mission planning is if autonomous vehicle act indepen-
dently (alone) or act in cooperation with other vehicle or with units (soldiers) or act 
in swarming collaboration (dozens of vehicles).

4. Opposite force

The basic factor in the use of the autonomous vehicle will be the possibility of a 
conflict with the enemy. This factor is based on all other factors and, in particular, 
on autonomous vehicle technology. In the case of a high probability of a conflict 
with the enemy it will put demands on the protection of the autonomous vehicle, 
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weapon system, observation systems and autonomous vehicle cloaking. The 
enemy’s factor will further affect the mobility and speed of the autonomous vehicle, 
which also affects its navigation on the battlefield.

Factors affecting autonomous vehicle movement within conflict with the enemy:

• audio concealment of the enemy movement,

• thermal confidentiality of movement before the enemy,

• vulnerability to air strikes and other enemy means,

• opportunity to observe and conduct fire,

• the ability and speed of capturing advantageous lines or firing positions on the 
battlefield,

• way of recognizing the enemy,

• start and firing time,

• selection of an effective weapon system to destroy the enemy,

• setting elements for shooting to effectively destroy the enemy,

• possibilities of camouflage,

• the possibility of protection by using space-saving,

• ability to overcome obstacles (see below),

• ability to move at night and under reduced visibility.

5. Environment

Last but not least, the type of autonomous vehicle will influence the intent to use 
in a specific environment in which the autonomous vehicle fulfills and performs the 
desired activity. Completely different requirements for autonomous vehicle design, 
parameters and technology will have an urbanized, hilly and wooded environment 
and other desert or arctic environment.

The limitations set out help us to specify what type of autonomous vehicle is 
best for our purposes in order to efficiently use and meet the desired goals of the 
operation. The following list of factors applies without limitation to all autonomous 
vehicles. Which factor and level of its impact on the move depends on the choice of 
the type of autonomous vehicle.

5.1 Geographical factors

One of the basic groups of factors influencing autonomous vehicle movement 
are factors of a geographical nature. Area of operation will fundamentally affect 
the process of planning and executing autonomous vehicle moves. Combined with 
another factor such as weather, these factors are no less important as an opposite 
force (enemy).
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For autonomous vehicle used out of the contact with the enemy for supporting 
and logistic operations, a set of geographic and hydro meteorological factors are 
more important than tactical factors.

Geographic factors affecting autonomous vehicle path planning are:

• incline of the terrain relief,

• terrain throughput,

• elevation of the terrain,

• terrain load capacity,

• hide and cover options,

• ability to evaluate key terrain for maneuver,

• frequency of roads and their type (paved, unpaved, forest, etc.)

• the width and clear height when moving along roads,

• characteristics of shores (banks) of waterways and streams,

• the width and depth of rivers, streams and waterways,

• nature of water areas,

• water flow and river flow rate,

• ability to overcome artificially created obstacles.

5.1.1 Terrain relief

The relief of the terrain is the most important element of the physical-geographic 
conditions at the theater (area of operation). It has an impact on the preparation and 
conduct of the fighting activities of the troops and especially on their mobility. The 
fragmentation of the terrain in specific areas of operation determines the choice of the 
most appropriate directions of the autonomous vehicle activities, its correct evalua-
tion and the use of the peculiarities of the types and shapes of the relief can contribute 
to the surprising maneuver or to the complete concealment of the movements. The 
significance of the relief increases with growing fragmentation and altitude.

5.1.2 Terrain throughput

The effect on throughput (cross-country) or activity in the area of operation has 
obstructions that are either natural or created by human activity. The examples of 
effects which are obstructing movement of autonomous vehicles are mentioned in 
Section 5.1.5.

Another aspect of the terrain throughput when moving troops on unpaved roads 
and in the open terrain is the assessment of their condition, taking into account 
parameters of the physical condition of the subsoil, which vary depending on the 
season and the hydro-meteorological conditions.

In the case of forestry throughput, the main factor influencing the use of 
autonomous vehicle is its inclination. In the case of openness, open-air space will be 
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influenced by the types of vegetation (shrubs, grasses or trees), their density and 
the space among trees.

5.1.3 Shelters and covers

Evaluating and optimizing the use of terrain shelters and covers will provide 
autonomous vehicle high level of protection as well as confidentiality of movement. 
It also makes it possible to estimate possible access routes to the mission area, and 
the intended gathering points or directions of action of enemy units.

Hidden access and free movement create, depending on the mission in a military 
operation, so-called key areas. Their knowledge provides a significant advantage in 
realizing the intentions of who controls the given key space.

5.1.4 Terrain load capacity

The decisive influence on the behavior of autonomous vehicle has the properties 
of the earth surface with which the vehicle meets its wheels (belts). This surface can 
be divided into “pavements” (suitably treated surface) and “terrain” (modified only 
partially-forest or field roads-or not modified at all).

Defining the surface type (grass, asphalt, sand, etc.) characterized by a certain 
degree of adhesion and rolling resistance is another sub-parameter that will affect 
autonomous vehicle shifts.

Soil conditions, along with current meteorological conditions (especially rainfall 
and air and soil temperatures) are logically another factor that cannot be over-
looked when planning autonomous vehicle shifts as they greatly affect the autono-
mous vehicle rate of movement.

5.1.5 Obstacles

Obstacles generally prevent the maneuver from making or directing it from 
spaces with more favorable or disadvantageous conditions for its implementation. 
For autonomous vehicle needs, it is necessary to define the types of major obstacles 
and the autonomous vehicle activity when dealing with the obstacle. It is also neces-
sary for each autonomous vehicle to be able to evaluate the tactical importance of 
the obstacle at a certain stage of the combat task and to be able to use the obstacle to 
its own advantage or against the enemy’s activity.

Natural obstacles:

• vegetation:

 ○ species and types of forests and wooded areas,

 ○ shrubs and ravines

 ○ sets,

 ○ hop,

• water:

 ○ rivers,

 ○ streams,
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 ○ water tanks,

 ○ marshes,

 ○ swamps,

 ○ wetlands.

Artificial obstacles:

• communication:

 ○ road,

 ○ railways,

 ○ bridges and bridges,

 ○ passes,

 ○ tunnels,

 ○ fords,

• utilities:

 ○ power lines,

 ○ pipelines.

• built up areas:

 ○ buildings and blocks of buildings,

 ○ power stations,

 ○ railway station,

• other objects:

 ○ chimneys,

 ○ masts,

 ○ towers,

 ○ lookout towers.

5.2 Hydro-meteorological factors

Hydro-meteorological conditions create advantages and disadvantages for both the 
enemy and the troops. Thanks to good knowledge of conditions and correct weather 
information, we can streamline our own troops and also minimize their adverse effects.
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Weather in conjunction with the terrain forms an inseparable and mutually 
integrated system. The weather affects the visibility, the function of the sensors and 
the weapons used, the autonomous vehicle’s operability, but and already mentioned 
terrain passage. An important aspect of the weather is that the effect of changing 
weather does not have to valid information recorded on maps.

In the summer season, the use of ground autonomous vehicle affects above all 
high air temperature, high dustiness and difficult driving conditions.

By increasing the humidity in the soil, it becomes more difficult to move the 
fighting techniques to such an extent that the unpaved roads become unstable. The 
exception is sandy soils, which are dry in the dry state, they are more solid and pass-
able during the wet season.

In winter, the strength of the soil without the snow cover depends on the degree 
of freezing of the surface layer. At melting (thaw) the thickness of the thawed layer 
and the frozen layer below it.

Climate factors affecting autonomous vehicle:

• air temperature,

• air pressure,

• humidity and water vapor,

• cloudiness,

• visibility and visibility,

• wind conditions,

• collisions,

• sunshine and radiation.

5.2.1 Air temperatures

Temperature is one of the basic characteristics of the atmosphere. It character-
izes the heat state of the air.

Low air temperature in the winter period causes a change in the physical prop-
erties of fuels, lubricants and operating materials. It also reduces the capacity of 
autonomous vehicle batteries. It also works the temperature of the motors, the 
power of the electrical triggering device and the degree of mechanical wear.

High ambient air temperature adversely affects engine operation. It also 
affects engine cooling, when less air is sucked into the cylinders. Water and 
operating fluids are also rapidly evaporating. Higher temperatures risk engine 
overheating.

5.2.2 Air pressure

All atmospheric objects and the Earth’s surface are affected by the pressure 
caused by the weight of the atmosphere. Changes in pressure are closely related to 
the development of basic atmospheric processes. Extremely high or low air pres-
sures can affect the autonomous vehicle control and measurement sensors, observa-
tion devices or autonomous vehicle navigation modules.
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5.2.3 Humidity

Increased air humidity is manifested especially in winter. For the operation of 
any technique the optimum relative humidity is around 60%. The functions of all 
groups and subgroups into which the air is accessible are influenced by the high 
content of water vapor in the air. In the long run, corrosion can occur, thus render-
ing any part of autonomous vehicle unnecessary. From a tactical point of view, it is 
possible to ignite and fog the sighting devices, sighting or significant corrosion of 
parts of weapon systems.

5.2.4 Visibility

Visibility is the maximum distance to which the contours of the object observed 
in daylight under normal human eye conditions can still be distinguished. At night, 
it is the longest distance to which light can be distinguished by steady and dimly 
changing luminosity. Visibility is most affected by precipitation and fog and is 
therefore dependent on the presence of solid particles and water condensation 
products in the atmosphere.

Visibility is one of the most important meteorological elements influencing 
combat activity.

It has a major impact on the exploration, discovery and recognition of the enemy 
and its activities, the determination of landmarks, and the effective destruction of 
the enemy’s ground and air targets.

5.2.5 Wind conditions

Wind may be a cause that will not allow the required combat tasks to be accom-
plished. Due to strong winds, the autonomous vehicle may be delayed. And also 
when it comes to the side wind to overturn the autonomous vehicle and hence 
the inability to continue moving. Combined with rain or snow, it may icy optical 
devices or sensors (sensors) and thus makes it impossible to control the autono-
mous vehicle or to limit its (combat) capabilities.

5.2.6 Precipitation

Precipitation (rain-fall) are a significant factor and have a great impact on soil 
conditions and thus the slopes of slopes, roads and terrain especially during win-
ter (snow and deep snow). This is mainly the longest rain, after which the soil is 
saturated with water and thus decreases its load capacity. Long-term precipitation 
also causes significant changes in the nature of watercourses and surfaces.

In the case of storms, there is a risk of interference with autonomous vehicle thus 
the decommissioning of its electronic systems.

6. Military factors evaluation for path planning

Proposed factors were identified as the outputs of complex analysis of the facts 
in the Army of the Czech Republic Lessons Learned Databases [6] and compared by 
outputs gained from The Army of the Czech Republic Units Leaders who are using 
military designed autonomous vehicles for fulfilling the military missions.

Factors should not only be considered as factors that negatively affect autonomous 
vehicle’s movement. The opposing forces (enemy) vs. our own can be stated in a 
general sense that if something adversely affects the activity of the enemy, it is for the 
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own forces an advantage, a positive influence and vice versa. Positive influences must 
be able to use by autonomous vehicle, negatively minimize or completely suppress.

Some of the above aspects and autonomous vehicle requirements may be con-
ceived at the same time as the factors that will movement of the autonomous vehicle 
both during the planning phase of the movement and during the management 
phase of the movement. Some aspects (factors) will be influencing ground autono-
mous vehicle, the same factor can affect the air autonomous vehicle in a radically 
different way and intensity.

The influence of this factor can be assessed by different approaches:

• has an effect-it does not affect;

• has a major influence-it has influence-it does not affect (possibly a wider 
range);

• weight of individual influences-percentage (or point) representation of 
individual influences, etc.

To more precisely the range of effects and the weight of the individual effects on 
the autonomous vehicle movement will be determined the better equipped autono-
mous vehicle could be designed (HW and SW) in order to eliminate or reduce 
the effects of negative influences and will ultimately be higher quality (reliable, 
faster, with minimizing losses, ...) a combat mission is met. However, the weight 
of individual influences will likely be variable in relation to the specific task the 
autonomous vehicle has to fulfill. The goal to be attained will always be decisive! 
And the objective of the mission can be characterized primarily by time, of the type 
“Fulfill the task even with possible losses, but the decisive criterion is that it must 
be fulfilled by ...” In another mission, the primary criterion may be an effect on the 
target area, such as “Detect the enemy and destroy it; until you do, do not return!” 
If necessary, “Complete the task with minimal losses on your own side!”, etc. So it 
is important and decisive to be aware of the factors that influence the movement of 
autonomous vehicle in the specific situation and the specific task and then assign 
these factors their specific weight.

The fulfillment of the autonomous vehicle task with the acceptance of individual 
factors and their weight can be expressed also mathematically (1), e.g.,

  Pmf =   fpos1 . kpos1 + fpos2 . kpos2 + … +fposn . kposn    __________________________________    
fneg1 . kneg1 + fneg2 . kneg2 + … +fnegn . knegn

    (1)

where:
 Pmf , probability of mission fulfilment;  fpos1 till  n, positive factor (1/first/till 

n/n-th/);  kpos1 till n,  coefficient of positive factor (1/first/till n/n-th/);  fneg1 till  n, 
negative factor (1/first/till n/n-th/);  kneg1 till n,  coefficient of negative factor  
(1/first/till n/n-th/).

The coefficient is an integer from one to the value specified by the “assignor 
of the mission”. The coefficients (both positive and negative factors) indicate the 
weight, the effect of these factors on the fulfillment of the given task. The larger the 
scale (value) of the coefficients, the more precisely their influence on the task can be 
defined. The scale can be set, for example, from 1 to 5 (10 and other variants). “Task 
designer” may even divide these factors into several groups after the factors involved 
in mission planning, from the point of view of the size of their impact on the task and 
the individual groups, and their significance separated from each other by a diverse 
range of coefficients. A group of the most important factors can be evaluated, for 
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In the case of storms, there is a risk of interference with autonomous vehicle thus 
the decommissioning of its electronic systems.

6. Military factors evaluation for path planning

Proposed factors were identified as the outputs of complex analysis of the facts 
in the Army of the Czech Republic Lessons Learned Databases [6] and compared by 
outputs gained from The Army of the Czech Republic Units Leaders who are using 
military designed autonomous vehicles for fulfilling the military missions.

Factors should not only be considered as factors that negatively affect autonomous 
vehicle’s movement. The opposing forces (enemy) vs. our own can be stated in a 
general sense that if something adversely affects the activity of the enemy, it is for the 
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own forces an advantage, a positive influence and vice versa. Positive influences must 
be able to use by autonomous vehicle, negatively minimize or completely suppress.

Some of the above aspects and autonomous vehicle requirements may be con-
ceived at the same time as the factors that will movement of the autonomous vehicle 
both during the planning phase of the movement and during the management 
phase of the movement. Some aspects (factors) will be influencing ground autono-
mous vehicle, the same factor can affect the air autonomous vehicle in a radically 
different way and intensity.

The influence of this factor can be assessed by different approaches:

• has an effect-it does not affect;

• has a major influence-it has influence-it does not affect (possibly a wider 
range);

• weight of individual influences-percentage (or point) representation of 
individual influences, etc.

To more precisely the range of effects and the weight of the individual effects on 
the autonomous vehicle movement will be determined the better equipped autono-
mous vehicle could be designed (HW and SW) in order to eliminate or reduce 
the effects of negative influences and will ultimately be higher quality (reliable, 
faster, with minimizing losses, ...) a combat mission is met. However, the weight 
of individual influences will likely be variable in relation to the specific task the 
autonomous vehicle has to fulfill. The goal to be attained will always be decisive! 
And the objective of the mission can be characterized primarily by time, of the type 
“Fulfill the task even with possible losses, but the decisive criterion is that it must 
be fulfilled by ...” In another mission, the primary criterion may be an effect on the 
target area, such as “Detect the enemy and destroy it; until you do, do not return!” 
If necessary, “Complete the task with minimal losses on your own side!”, etc. So it 
is important and decisive to be aware of the factors that influence the movement of 
autonomous vehicle in the specific situation and the specific task and then assign 
these factors their specific weight.

The fulfillment of the autonomous vehicle task with the acceptance of individual 
factors and their weight can be expressed also mathematically (1), e.g.,

  Pmf =   fpos1 . kpos1 + fpos2 . kpos2 + … +fposn . kposn    __________________________________    
fneg1 . kneg1 + fneg2 . kneg2 + … +fnegn . knegn

    (1)

where:
 Pmf , probability of mission fulfilment;  fpos1 till  n, positive factor (1/first/till 

n/n-th/);  kpos1 till n,  coefficient of positive factor (1/first/till n/n-th/);  fneg1 till  n, 
negative factor (1/first/till n/n-th/);  kneg1 till n,  coefficient of negative factor  
(1/first/till n/n-th/).

The coefficient is an integer from one to the value specified by the “assignor 
of the mission”. The coefficients (both positive and negative factors) indicate the 
weight, the effect of these factors on the fulfillment of the given task. The larger the 
scale (value) of the coefficients, the more precisely their influence on the task can be 
defined. The scale can be set, for example, from 1 to 5 (10 and other variants). “Task 
designer” may even divide these factors into several groups after the factors involved 
in mission planning, from the point of view of the size of their impact on the task and 
the individual groups, and their significance separated from each other by a diverse 
range of coefficients. A group of the most important factors can be evaluated, for 
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example, coefficients ranging from 1 to 10, a group of minor factors, coefficients in 
the range 1–6, and a group of least significant factors, coefficients in the range 1–3.

The result of calculating the probability of completing a task is either left in a 
fraction that is adjusted to the “number” on the numerator or denominator side 
(e.g., 1/3.8 or 2.6/1). Such a fraction shape gives a multiple predominance of the 
probability of fulfilling/not fulfilling the task.

The possible factors affecting the ground autonomous vehicle (as listed in 
Table 1) to which the “assignor of a particular task” has to assign a specific value 
before commencing (in the mission planning process).

7. Approach to the maneuver optimization

One of the approach for optimizing the autonomous vehicle maneuver in the con-
ditions of the opposition forces is to utilize advantages of modelling combat activi-
ties. During the military decision making process, commander and his staff members 
use a series of models and programs to accelerate and refine decision-making and 
operation missions. Example of good practise is exploitation of model of cooperative 

Factors Influence Effect weight 
[number/
order]*Positive Negative

Preparation of autonomous vehicle to be put in place (time 
required to get ready for task start)

Complexity/ease of operation of autonomous vehicle in all 
phases of task fulfillment (especially in the semi-automatic 
autonomous vehicle controlled by the operator)

x

Sufficient capacity of source x

Functionality of all components (sensors) x

Interaction with “control center” at declared distance x

Terrain Pass Through pass through x

partially 
through

x

impassable x

Ability to select the axis of movement without detection by 
the enemy

x

Ability to transmit information in the required ways x

The existence of enemy means in the transfer space, which 
can destroy the autonomous vehicle

x

Autonomous vehicle ability to overtake the enemy in its 
destruction (to detect and destroy the enemy before he 
does so)

x

Heavy detection of autonomous vehicle by enemy means 
(autonomous vehicle does not produce sounds, smoke, 
other manifestations, minimizes radiation, etc.)

x

Easily detection of autonomous vehicle by enemy means x

Inapplicability of autonomous vehicle to cooperate with 
other vehicles in mass deployment

x

Etc.
*Specified by the “assignor of the mission”.

Table 1. 
Example of evaluation factors influencing autonomous vehicle movement.
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reconnaissance as part of Tactical Decision Support System [7]. According to [8], 
the fundamental approach is based on a sequence of procedures and the weighted 
integration of discrete layers, where all phases converge to a maneuver optimization 
issued from modified versions of Floyd-Warshall algorithm. Initial C++ application 
was designed for a basic experiments, providing relatively fast solution (derived 
from path-finding algorithms used in autonomous systems), whose task was to 
verify theoretical approach and the time profile of solution. If it is necessary, applica-
tion could find alternative routes with more-favorable movement factor.

Fundamental theoretical approach in that case was inspired by Floyd-Warshall 
algorithm [8]. Original algorithm was pushed throughout several modifications that 
make it computationally applicable even for a large data structures comprising more 
than 106 nodes. Basic adjustment lay in elimination of so-called reverse cycles by 
stopping the 82 calculation on all nodes in its root.

This process is carried out through the main field elements chosen for next 
phase solution. The status and verification cycle matches the bit position in the bit 
field with the position of the active element in the default structure. If the element 
belongs to a root what was modified (attribute is present), the element is excluded 
from the processing in the following iterative phase because it will be modified in 
the next steps.

This process is theoretically simple; however, the realization of this step is 
relatively difficult in practice, because the memory performance Pn achieves (2):

  Pn =    N   2  ___ 8    (2)

where: N is the number of nodes (elements) of the graph.
It means that models which contain more than 106 nodes must allocate over 

125 GB memory only for genetic structure of each element. In the case of informa-
tion transfer into other elements the amount of operations raise to a level that is 
incompatible neither with the real time application, nor on the fastest nowadays 
computers. It is therefore necessary to address the sub-problem in a different way 
and optimize the whole process by other approach. Previously mentioned idea 
works well but for a wide set of nodes (more than 106) is ineffective.

For the purpose of utilizing autonomous vehicle in role as reconnaissance means is 
the part of MDMP to plan the reconnaissance operation of the area of interest. For 
optimization of using more than one air autonomous vehicle so called as Unmanned 
Air Vehicle (UAV) in one assigned mission was developed model for optimization of 
using swarm of UAV to effectively reconnaissance the area of interest [2].

The objective of the model is specified in Formula (3) which is to minimize the 
maximum time of flight of all routes of individual UAS in the fleet. The details of 
the model along with its complete mathematical formulation can be found in [8].

  minimize  (max  ( T  1  ,  T  2  , … ,  T  N  ) )   (3)

where Ti is the time of flight of i-th UAS in the fleet, N is the total number of 
UAS in the fleet.

The model of UAS Reconnaissance is similar to the Multi-Depot Vehicle Routing 
Problem (MDVRP) [9, 10]. The MDVRP is also about optimization of routes of a set 
of vehicles originating from multiple depots to visit a number of customers to deliver 
goods or services. There is, however, the significant difference between the models. 
While the main objective of the MDVRP is to minimize the total distance travelled by 
all vehicles which is expressed in Formula (4), the objective of the UAS Reconnaissance 
is to minimize the time of whole operation as already mentioned in Formula (1).
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example, coefficients ranging from 1 to 10, a group of minor factors, coefficients in 
the range 1–6, and a group of least significant factors, coefficients in the range 1–3.
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fraction that is adjusted to the “number” on the numerator or denominator side 
(e.g., 1/3.8 or 2.6/1). Such a fraction shape gives a multiple predominance of the 
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The possible factors affecting the ground autonomous vehicle (as listed in 
Table 1) to which the “assignor of a particular task” has to assign a specific value 
before commencing (in the mission planning process).

7. Approach to the maneuver optimization

One of the approach for optimizing the autonomous vehicle maneuver in the con-
ditions of the opposition forces is to utilize advantages of modelling combat activi-
ties. During the military decision making process, commander and his staff members 
use a series of models and programs to accelerate and refine decision-making and 
operation missions. Example of good practise is exploitation of model of cooperative 

Factors Influence Effect weight 
[number/
order]*Positive Negative

Preparation of autonomous vehicle to be put in place (time 
required to get ready for task start)

Complexity/ease of operation of autonomous vehicle in all 
phases of task fulfillment (especially in the semi-automatic 
autonomous vehicle controlled by the operator)

x

Sufficient capacity of source x

Functionality of all components (sensors) x

Interaction with “control center” at declared distance x

Terrain Pass Through pass through x
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through

x

impassable x

Ability to select the axis of movement without detection by 
the enemy

x

Ability to transmit information in the required ways x

The existence of enemy means in the transfer space, which 
can destroy the autonomous vehicle

x

Autonomous vehicle ability to overtake the enemy in its 
destruction (to detect and destroy the enemy before he 
does so)

x

Heavy detection of autonomous vehicle by enemy means 
(autonomous vehicle does not produce sounds, smoke, 
other manifestations, minimizes radiation, etc.)

x

Easily detection of autonomous vehicle by enemy means x

Inapplicability of autonomous vehicle to cooperate with 
other vehicles in mass deployment

x

Etc.
*Specified by the “assignor of the mission”.

Table 1. 
Example of evaluation factors influencing autonomous vehicle movement.
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reconnaissance as part of Tactical Decision Support System [7]. According to [8], 
the fundamental approach is based on a sequence of procedures and the weighted 
integration of discrete layers, where all phases converge to a maneuver optimization 
issued from modified versions of Floyd-Warshall algorithm. Initial C++ application 
was designed for a basic experiments, providing relatively fast solution (derived 
from path-finding algorithms used in autonomous systems), whose task was to 
verify theoretical approach and the time profile of solution. If it is necessary, applica-
tion could find alternative routes with more-favorable movement factor.

Fundamental theoretical approach in that case was inspired by Floyd-Warshall 
algorithm [8]. Original algorithm was pushed throughout several modifications that 
make it computationally applicable even for a large data structures comprising more 
than 106 nodes. Basic adjustment lay in elimination of so-called reverse cycles by 
stopping the 82 calculation on all nodes in its root.

This process is carried out through the main field elements chosen for next 
phase solution. The status and verification cycle matches the bit position in the bit 
field with the position of the active element in the default structure. If the element 
belongs to a root what was modified (attribute is present), the element is excluded 
from the processing in the following iterative phase because it will be modified in 
the next steps.

This process is theoretically simple; however, the realization of this step is 
relatively difficult in practice, because the memory performance Pn achieves (2):

  Pn =    N   2  ___ 8    (2)

where: N is the number of nodes (elements) of the graph.
It means that models which contain more than 106 nodes must allocate over 

125 GB memory only for genetic structure of each element. In the case of informa-
tion transfer into other elements the amount of operations raise to a level that is 
incompatible neither with the real time application, nor on the fastest nowadays 
computers. It is therefore necessary to address the sub-problem in a different way 
and optimize the whole process by other approach. Previously mentioned idea 
works well but for a wide set of nodes (more than 106) is ineffective.

For the purpose of utilizing autonomous vehicle in role as reconnaissance means is 
the part of MDMP to plan the reconnaissance operation of the area of interest. For 
optimization of using more than one air autonomous vehicle so called as Unmanned 
Air Vehicle (UAV) in one assigned mission was developed model for optimization of 
using swarm of UAV to effectively reconnaissance the area of interest [2].

The objective of the model is specified in Formula (3) which is to minimize the 
maximum time of flight of all routes of individual UAS in the fleet. The details of 
the model along with its complete mathematical formulation can be found in [8].

  minimize  (max  ( T  1  ,  T  2  , … ,  T  N  ) )   (3)

where Ti is the time of flight of i-th UAS in the fleet, N is the total number of 
UAS in the fleet.

The model of UAS Reconnaissance is similar to the Multi-Depot Vehicle Routing 
Problem (MDVRP) [9, 10]. The MDVRP is also about optimization of routes of a set 
of vehicles originating from multiple depots to visit a number of customers to deliver 
goods or services. There is, however, the significant difference between the models. 
While the main objective of the MDVRP is to minimize the total distance travelled by 
all vehicles which is expressed in Formula (4), the objective of the UAS Reconnaissance 
is to minimize the time of whole operation as already mentioned in Formula (1).
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  minimize  ( ∑ 
i=1

  
N

    Di)   (4)

where Di is the distance travelled by i-th vehicle, N is the total number of 
vehicles.

For verification of the proposed UAS Reconnaissance model there were designed 
two scenarios of tactical situation and applied experiments in real terrain with real 
UAV’s [2, 11].

8. Conclusion

The information mentioned in the text of the chapter could not provide an 
exhaustive overview of all the factors that may influence the planning of the mov-
ing of autonomous vehicles. In the chapter there is presented a view especially on 
the military factors, respectively, factors from a military perspective when using 
autonomous vehicles in environments conducting military operations. In the case 
of the use of autonomous vehicles in military operations, the factory has no influ-
ence on whether an enemy will be operating in the environment in order to take 
measures against the effects of autonomous vehicles and to eliminate their activities 
to the maximum.

The chapter did not address the issue of methodology when planning the trans-
fer of autonomous vehicles, which goes to the chapter itself.

Mentioned information can be used as a guideline in which detail to contemplate 
when intending to use autonomous vehicles in military operations.
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Chapter 3

Path Planning for Autonomous
Vehicle in Off-Road Scenario
Boyuan Li, Haiping Du and Bangji Zhang

Abstract

The road topography information, such as bank angle and road slope, can sig-
nificantly affect the trajectory tracking performance of the autonomous vehicle, so
this information needs to be considered in the trajectory planning and tracking
control for off-road autonomous vehicle. In this chapter, a two-level real-time
dynamically integrated spatiotemporal-based trajectory planning and control
method for off-road autonomous vehicle is proposed. In the upper-level trajectory
planner, the most suitable time-parameterised trajectory with the minimum values
of road slope and bank angle can be selected from a set of candidate trajectories. In
the lower-level trajectory tracking controller, the sliding-mode control (SMC)
technique is applied to control the vehicle and achieve the desired trajectory.
Finally, simulation results are presented to verify the proposed integrated trajectory
planning and control method and prove that the proposed integrated method has
better overall tracking control and dynamics control performance than the conven-
tional method both in the highway scenario and off-road scenario. Furthermore, the
four-wheel-independent-steering (4WIS) and four-wheel-independent-driving
(4WID) vehicle shows better tracking control performance than vehicle based on
two-wheel model.

Keywords: trajectory planning, trajectory tracking control, off-road vehicle,
vehicle dynamics, optimisation

1. Introduction

Nowadays, the off-road autonomous ground vehicle has been widely applied in
various industries, such as military [1, 2] and space applications [3, 4]. Further-
more, this kind of vehicle also received focused attention in mining [5], agriculture
and forestry sectors [6].

In order to improve the stability and safety of off-road autonomous vehicles, the
path planning of these vehicles should be considered as the priority of current
research. The path planning of autonomous vehicle includes two stages: the trajec-
tory planning in the upper-level and trajectory tracking control in the lower-level.
The upper-level trajectory planner considers the surrounding environment infor-
mation according to the various sensors and selects the best desired trajectory, while
the lower-level trajectory tracking controller controls the steering and driving
actuators to achieve the desired trajectory.

In the current literature, the path planning of autonomous vehicle has attracted
focused attention. Particularly, the spatial-based path planning methods are widely
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and forestry sectors [6].

In order to improve the stability and safety of off-road autonomous vehicles, the
path planning of these vehicles should be considered as the priority of current
research. The path planning of autonomous vehicle includes two stages: the trajec-
tory planning in the upper-level and trajectory tracking control in the lower-level.
The upper-level trajectory planner considers the surrounding environment infor-
mation according to the various sensors and selects the best desired trajectory, while
the lower-level trajectory tracking controller controls the steering and driving
actuators to achieve the desired trajectory.

In the current literature, the path planning of autonomous vehicle has attracted
focused attention. Particularly, the spatial-based path planning methods are widely
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applied, but the time parameter is not considered [7]. For example, for the direct
tracking method, the steering system is controlled to follow the pre-planned spatial-
based desired path exactly at every time step [8, 9]. In the potential field method
proposed in [10], the desired path is planned within a potential field with a tracking
error tolerance along the road centreline. In this way, the autonomous vehicle does
not need to strictly follow the road centreline, and smaller steering control effort is
required compared with the direct tracking method. The spatiotemporal-based
trajectory planning concept, on the other hand, considers the kinematic constraints
and generates time-parameterised trajectories. Several typical spatiotemporal-based
trajectory planning methods, such as the methods proposed in [11–13], aim to find
the best suitable time-parameterised trajectory connecting the initial vehicle states
with exactly defined goal states. These methods rely on discrete geometric struc-
ture, such as the rapidly exploring random trees (RRT) [14] and state lattice [13].
However, the generation of candidate trajectories requires large computational
work. When the surrounding environment is unconstructed and complex, these
methods may not be computational efficient. In [15, 16], the proposed trajectory
planning strategies utilise ‘deliberated multiple final states’ method. This method
deliberately generates multiple alternative final states which can respond to traffic
changes very fast. In study [17], based on the concept of ‘deliberated multiple final
states’, the combined trajectory planning of the longitudinal and lateral motion of
autonomous vehicle are proposed, and the ‘deliberated multiple final states’ are
described as the offset error values from the target reference final states. The
most suitable trajectory which satisfies the initial and ending states with certain
terminal time can be selected from candidate trajectory set, and the kinematic
constraints are satisfied.

Motivated by the widely application of the off-road autonomous vehicle in
various industries and based on above research studies on path planning, this
chapter proposed a two-level real-time dynamically integrated spatiotemporal-
based trajectory planning and control method by considering the off-road scenario.
The major innovative part of this chapter is the development of the spatiotemporal-
based trajectory planning method and considering the off-road topography
information in trajectory planning. In the upper-level trajectory planner, a
number of candidate spatiotemporal-based trajectories with various terminal
times and state-ending conditions are generated. These candidate trajectories also
include the road topography information—the bank angle and road slope. The best
suitable trajectory can be selected from these candidate trajectories based on the
optimised cost function which is used to minimise the tracking error, terminal
time spent and the effect of road topography on the vehicle. After that, trajectory
tracking controller in the lower-level is proposed based on the sliding-mode
technique and vehicle dynamics model in order to track the selected best suitable
trajectory. In addition, the vehicle dynamics model of this chapter is based on a
four-wheel-independent-steering (4WIS) and four-wheel-independent-driving
(4WID) electric vehicle. Due to a large number of available control actuators,
the 4WIS-4WID electric vehicle shows advantages over the traditional vehicle.
This chapter also discusses the advantage of 4WIS-4WID electric vehicle on
trajectory planning and trajectory tracking control over traditional two-wheel
vehicle.

In this chapter, Section 2 first discusses the vehicle dynamics model based on
4WIS-4WID electric vehicle. Then Section 3 describes the upper-level trajectory
planner, and Section 4 shows the lower-level trajectory tracking control. After that,
Section 5 presents the simulation results to verify the proposed trajectory planning
and control method. Finally, the conclusion is given in Section 6.
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2. Vehicle dynamics modelling

In this section, a 4WIS-4WID vehicle model is utilised first to describe the
dynamic motion of an off-road autonomous vehicle [18]. The information of road
slope and bank angle is included in the vehicle longitudinal and lateral dynamics
equations. Furthermore, vehicle roll dynamics equation and pitch dynamics equa-
tion are included in the dynamics model to better present the effect of bank angle
and road slope on the vehicle dynamics. The vector diagram of vehicle dynamics
model is presented in Figure 1.

The equations of motion of this model are described as follows:
Longitudinal motion:

m _vx ¼ mvyrþ Fxfl þ Fxfr þ Fxrl þ Fxrr
� �þmg sin θs (1)

Lateral motion:

m _vy ¼ �mvxrþ Fyfl þ Fyfr þ Fyrl þ Fyrr
� �þmg sin θb (2)

Yaw motion:

Iz _r ¼ lf Fyfl þ Fyfr
� �� lr Fyrl þ Fyrr

� �þ bf
2

Fxfl � Fxfr
� �þ br

2
Fxrl � Fxrrð Þ (3)

Roll motion:

Ix €ϕ ¼ �mer _vy �mervxrþmger sinϕ� Kϕϕ� Cϕ
_ϕ (4)

Pitch motion:

Iy €φ ¼ �mep _vx �mepvyrþmgep sinφ� Kφφ� Cφ _φ (5)

Figure 1.
The vector diagram of 4WIS-4WID vehicle dynamics model.
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applied, but the time parameter is not considered [7]. For example, for the direct
tracking method, the steering system is controlled to follow the pre-planned spatial-
based desired path exactly at every time step [8, 9]. In the potential field method
proposed in [10], the desired path is planned within a potential field with a tracking
error tolerance along the road centreline. In this way, the autonomous vehicle does
not need to strictly follow the road centreline, and smaller steering control effort is
required compared with the direct tracking method. The spatiotemporal-based
trajectory planning concept, on the other hand, considers the kinematic constraints
and generates time-parameterised trajectories. Several typical spatiotemporal-based
trajectory planning methods, such as the methods proposed in [11–13], aim to find
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However, the generation of candidate trajectories requires large computational
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deliberately generates multiple alternative final states which can respond to traffic
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states’, the combined trajectory planning of the longitudinal and lateral motion of
autonomous vehicle are proposed, and the ‘deliberated multiple final states’ are
described as the offset error values from the target reference final states. The
most suitable trajectory which satisfies the initial and ending states with certain
terminal time can be selected from candidate trajectory set, and the kinematic
constraints are satisfied.

Motivated by the widely application of the off-road autonomous vehicle in
various industries and based on above research studies on path planning, this
chapter proposed a two-level real-time dynamically integrated spatiotemporal-
based trajectory planning and control method by considering the off-road scenario.
The major innovative part of this chapter is the development of the spatiotemporal-
based trajectory planning method and considering the off-road topography
information in trajectory planning. In the upper-level trajectory planner, a
number of candidate spatiotemporal-based trajectories with various terminal
times and state-ending conditions are generated. These candidate trajectories also
include the road topography information—the bank angle and road slope. The best
suitable trajectory can be selected from these candidate trajectories based on the
optimised cost function which is used to minimise the tracking error, terminal
time spent and the effect of road topography on the vehicle. After that, trajectory
tracking controller in the lower-level is proposed based on the sliding-mode
technique and vehicle dynamics model in order to track the selected best suitable
trajectory. In addition, the vehicle dynamics model of this chapter is based on a
four-wheel-independent-steering (4WIS) and four-wheel-independent-driving
(4WID) electric vehicle. Due to a large number of available control actuators,
the 4WIS-4WID electric vehicle shows advantages over the traditional vehicle.
This chapter also discusses the advantage of 4WIS-4WID electric vehicle on
trajectory planning and trajectory tracking control over traditional two-wheel
vehicle.

In this chapter, Section 2 first discusses the vehicle dynamics model based on
4WIS-4WID electric vehicle. Then Section 3 describes the upper-level trajectory
planner, and Section 4 shows the lower-level trajectory tracking control. After that,
Section 5 presents the simulation results to verify the proposed trajectory planning
and control method. Finally, the conclusion is given in Section 6.
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slope and bank angle is included in the vehicle longitudinal and lateral dynamics
equations. Furthermore, vehicle roll dynamics equation and pitch dynamics equa-
tion are included in the dynamics model to better present the effect of bank angle
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model is presented in Figure 1.
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where vx, vy and r are the vehicle longitudinal velocity, lateral velocity and yaw
rate. θs shows the road slope, and θb represents the road bank angle. bf and br
represent the front and rear track width. lf is the length of front wheel base, and lr is
the length of rear wheel base. Iz represents the moment of yaw inertia, and m is
vehicle mass. Fxfl and Fxfr represent the longitudinal tyre force of front left and
front right tyre, while Fxrl and Fxrr present the longitudinal tyre force of rear left
and rear right wheel. Fyfl and Fyfr present the lateral tyre force of front left and front
right tyre, while Fyrl and Fyrr present the lateral tyre force of rear left and rear right
wheel. ϕ and φ represent the vehicle roll angle and pitch angle, respectively. er is the
distance from the vehicle centre of gravity (CG) to the roll centre, and ep is the
distance from the vehicle CG to the pitch motion centre. Kϕ is the roll axis torsional
stiffness, and Cϕ is the roll axis torsional damping. Kφ is the pitch axis torsional
stiffness, and Cφ is the pitch axis torsional damping.

The tyre side force Fsi and traction or brake force Fti can be transferred to the
longitudinal force Fxi and the lateral tyre force Fyi as follows:

Fxi ¼ Fti cos δi � Fsi sin δi
Fyi ¼ Fti sin δi þ Fsi cos δi

(6)

where i ¼ fl, fr, rl and rr, which represents the front left wheel, front right
wheel, rear left wheel and rear right wheel.

The non-linear Dugoff tyre model is used in this chapter [19], and tyre traction
or brake force and side force of each wheel are described by:

Tyre side force:

Fsi ¼ Cα tan αi
1� si

f λið Þ (7)

Tyre traction or brake force:

Fti ¼ Cssi
1� si

f λið Þ (8)

λi in Eqs. (7) and (8) can be determined by the following equation:

λi ¼
μFzi 1� εrui

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i þ tan 2αi

ph i
1� sið Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
s s
2
i þ C2

α tan 2αi

q (9)

f λið Þ in Eqs. (7) and (8) can be determined by the following equation:

f λið Þ ¼ λi 2� λið Þ λi < 1ð Þ
1 λi>1ð Þ

�
(10)

where Cα represents the lateral cornering stiffness and Cs is the longitudinal
cornering stiffness. The tyre-road friction coefficient can be represented as μ, and
Fzi represents the individual wheel vertical load. αi represents the lateral side-slip
angle, and si is the longitudinal slip ratio. ui represents the vehicle longitudinal
velocity in the individual wheel plane. εr is the road adhesive reduction factor,
which is a constant value.

The following equation shows the wheel rotation dynamics:

Iω _ωi ¼ �RωFti þ Ti (11)
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where ωi presents the wheel angular velocity of each wheel and Ti presents the
traction or brake torque of each wheel. Rω is the wheel radius, and Iω is the wheel
moment of inertial.

The load transfer model is considered here by adding the roll and pitch motion
to better present the effect of road slope and bank angle on the vehicle vertical load
distribution [20]. The vertical load of individual wheel can be presented by the
following equations by including the load transfer model:

Fzfl ¼ m
lf þ lr

1
2
glr � 1

2
_vxhþ lr

bf
_vyh� ger sinϕ
� �þ 1

2
gep sinφ lf þ lr

� �2
 !

(12)

Fzfr ¼ m
lf þ lr

1
2
glr � 1

2
_vxh� lr

bf
_vyh� ger sinϕ
� �þ 1

2
gep sinφ lf þ lr

� �2
 !

(13)

Fzrl ¼ m
lf þ lr

1
2
glf þ 1

2
_vxhþ

lf
br

_vyh� ger sinϕ
� �� 1

2
gep sinφ lf þ lr

� �2� �
(14)

Fzrl ¼ m
lf þ lr

1
2
glf þ 1

2
_vxh�

lf
br

_vyh� ger sinϕ
� �� 1

2
gep sinφ lf þ lr

� �2� �
(15)

where h is the height of the vehicle CG above the ground.

3. Upper-level trajectory planner

Figure 2 presents the whole structure of the proposed integrated trajectory
planning and control method, which mainly includes the upper-level trajectory
planner, the lower-level trajectory controller and the vehicle dynamics model [21].

At the beginning, it is assumed that a behaviour layer planner exists and can
determine the rough global reference path according to the digital map. This
behaviour layer planner consists of a number of modules, such as digital map,
perception and localisation system and behaviour level path planner [22]. The
digital map provides real-time traffic information, and the real-time vehicle posi-
tion on the digital map can be determined by the perception and localization system
(such as the GPS combined with IMU and wheel encoder). When digital map and
vehicle’s real-time position on the digital map are available, the behaviour planner
can make deliberate manoeuvre task decisions, such as lane following, lane chang-
ing, vehicle following and overtaking, in complex street-driving scenario. Based on
the manoeuvre task decisions, the global route planner in the behaviour planner can
compute the rough reference path. This is a reasonable assumption because many
studies in the literature have determined the rough reference path by behaviour
level task planner based on digital map [22–24].

In the upper-level trajectory planner, according to the rough desired path deter-
mined by the behaviour planner, the desired vehicle initial and ending states of each
section of the road along the rough reference path can be assumed to be known in
advance.

3.1 Generate the candidate trajectory set

In each section of road, when the initial states are assumed to be available, the
multiple target ending states can be defined as a group of offset state values from
the reference state values (such as longitudinal position, longitudinal velocity,
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where vx, vy and r are the vehicle longitudinal velocity, lateral velocity and yaw
rate. θs shows the road slope, and θb represents the road bank angle. bf and br
represent the front and rear track width. lf is the length of front wheel base, and lr is
the length of rear wheel base. Iz represents the moment of yaw inertia, and m is
vehicle mass. Fxfl and Fxfr represent the longitudinal tyre force of front left and
front right tyre, while Fxrl and Fxrr present the longitudinal tyre force of rear left
and rear right wheel. Fyfl and Fyfr present the lateral tyre force of front left and front
right tyre, while Fyrl and Fyrr present the lateral tyre force of rear left and rear right
wheel. ϕ and φ represent the vehicle roll angle and pitch angle, respectively. er is the
distance from the vehicle centre of gravity (CG) to the roll centre, and ep is the
distance from the vehicle CG to the pitch motion centre. Kϕ is the roll axis torsional
stiffness, and Cϕ is the roll axis torsional damping. Kφ is the pitch axis torsional
stiffness, and Cφ is the pitch axis torsional damping.

The tyre side force Fsi and traction or brake force Fti can be transferred to the
longitudinal force Fxi and the lateral tyre force Fyi as follows:

Fxi ¼ Fti cos δi � Fsi sin δi
Fyi ¼ Fti sin δi þ Fsi cos δi

(6)

where i ¼ fl, fr, rl and rr, which represents the front left wheel, front right
wheel, rear left wheel and rear right wheel.

The non-linear Dugoff tyre model is used in this chapter [19], and tyre traction
or brake force and side force of each wheel are described by:

Tyre side force:

Fsi ¼ Cα tan αi
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where Cα represents the lateral cornering stiffness and Cs is the longitudinal
cornering stiffness. The tyre-road friction coefficient can be represented as μ, and
Fzi represents the individual wheel vertical load. αi represents the lateral side-slip
angle, and si is the longitudinal slip ratio. ui represents the vehicle longitudinal
velocity in the individual wheel plane. εr is the road adhesive reduction factor,
which is a constant value.

The following equation shows the wheel rotation dynamics:

Iω _ωi ¼ �RωFti þ Ti (11)
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where ωi presents the wheel angular velocity of each wheel and Ti presents the
traction or brake torque of each wheel. Rω is the wheel radius, and Iω is the wheel
moment of inertial.

The load transfer model is considered here by adding the roll and pitch motion
to better present the effect of road slope and bank angle on the vehicle vertical load
distribution [20]. The vertical load of individual wheel can be presented by the
following equations by including the load transfer model:
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where h is the height of the vehicle CG above the ground.

3. Upper-level trajectory planner

Figure 2 presents the whole structure of the proposed integrated trajectory
planning and control method, which mainly includes the upper-level trajectory
planner, the lower-level trajectory controller and the vehicle dynamics model [21].

At the beginning, it is assumed that a behaviour layer planner exists and can
determine the rough global reference path according to the digital map. This
behaviour layer planner consists of a number of modules, such as digital map,
perception and localisation system and behaviour level path planner [22]. The
digital map provides real-time traffic information, and the real-time vehicle posi-
tion on the digital map can be determined by the perception and localization system
(such as the GPS combined with IMU and wheel encoder). When digital map and
vehicle’s real-time position on the digital map are available, the behaviour planner
can make deliberate manoeuvre task decisions, such as lane following, lane chang-
ing, vehicle following and overtaking, in complex street-driving scenario. Based on
the manoeuvre task decisions, the global route planner in the behaviour planner can
compute the rough reference path. This is a reasonable assumption because many
studies in the literature have determined the rough reference path by behaviour
level task planner based on digital map [22–24].

In the upper-level trajectory planner, according to the rough desired path deter-
mined by the behaviour planner, the desired vehicle initial and ending states of each
section of the road along the rough reference path can be assumed to be known in
advance.

3.1 Generate the candidate trajectory set

In each section of road, when the initial states are assumed to be available, the
multiple target ending states can be defined as a group of offset state values from
the reference state values (such as longitudinal position, longitudinal velocity,
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lateral position and lateral velocity). The start state is assumed as d0 _d0
€d0

h i
, and

the desired ending state is assumed as d1 _d1
€d1

h i
. d0 is the initial vehicle

position, and d1 is a group of offset positions from reference ending position, and
these offset positions are constrained within the road boundary. _d0 and €d0 present
the initial velocity and acceleration, while _d1 and €d1 present the ending velocity and
acceleration. For the purpose of the guarantee of the continuities of the planned
trajectory between each section of the road, the initial state d0 in current section of
road should be the ending state of previous section.

In each section of the road, when the initial and ending state values are deter-
mined, the candidate trajectories with different ending conditions d1i and terminal
time τj can be generated [17], where i, j means that the number of i� j trajectories
will be generated by the trajectory planner. d1i represents i number of final positions
and will close to the target ending position when d1i ! d1. τj represents the j
number of candidate terminal time. The optimisation algorithm presented in the
later section will choose the best trajectory from these i� j trajectories.

It can be assumed that the candidate vehicle trajectory d τð Þ in the optimisation
of trajectory planning can be described by the following quintic state equations [17]:

For the position of candidate trajectory:

d1 ¼ c0 þ c1tþ c2t2 þ c3t3 þ c4t4 þ c5t5 (16)

For the velocity of candidate trajectory:

Figure 2.
The whole structure of the proposed integrated trajectory planning and control method.
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_d1 ¼ c1 þ 2c2tþ 3c3t2 þ 4c4t3 þ 5c5t4 (17)

For the acceleration of candidate trajectory:

€d1 ¼ 2c2 þ 6c3tþ 12c4t2 þ 20c5t3 (18)

with c0, c1,…, c5 ∈R and t∈ 0 τ½ �. τ is the terminal time of the candidate trajec-
tory and τ∈ 0 T½ �. T is the longest time required to complete the motion.

Eqs. (16)–(18) can be rewritten as the following equation:

ξt tð Þ ¼ M1 tð Þc012 þM2 tð Þc345 (19)

where M1 tð Þ ¼
1 t t2

0 1 2t
0 0 2

2
64

3
75, M2 tð Þ ¼

t3 t4 t5

3t2 4t3 5t4

6t 12t2 20t3

2
64

3
75 and ξt tð Þ ¼

d1 tð Þ
_d1 tð Þ
€d1 tð Þ

2
64

3
75.

The coefficients c012 and c345 of the quintic state trajectory in Eq. (19) can be
calculated as follows:

c012 ¼
c0
c1
c2

2
64

3
75 ¼ M1 0ð Þ�1ξ0 (20)

c345 ¼
c3
c4
c5

2
64

3
75 ¼ M2 τð Þ�1 ξt �M1 τð Þc012½ � (21)

where M1 0ð Þ ¼
1 0 0

0 1 0

0 0 2

2
64

3
75 and ξ0 ¼

d0
_d0

€d0

2
64

3
75:

After the coefficients c012 and c345 are calculated, the vehicle trajectory can be
described as d1 tð Þ in Eq. (16). In this way, candiadate trajectories in this section of
the road can be determined, and the best trajectory can be selected based on the
proposed optimisation cost function in the next section.

3.2 Determine the optimisation cost function

After the candidate trajectories have been determined in each section of the
road, the next step is to determine the cost function to select the best suitable
trajectory. The optimisation cost function is designed as the following equation:

min
d1, τ

J1 ¼ kττ þ kd dr � d1 τð Þð Þ2 (22)

where this cost function has two optimization variables, the ending position d1
and terminal time τ. This cost function also includes two terms, and kτ and kd are
the scaling factors of each term, which can be used to balance the term of total time
cost and the term of offset error from the desired ending state. dr is the reference
vehicle ending state. dr � d1 τð Þ presents the offset error from the desired reference
ending state. The selection of total time cost can greatly affect the vehicle trajectory
tracking behaviour: with the small total time cost, the vehicle can reach the final
states early, while large time cost will make the vehicle movement slow and stable
with late arrival of final states.
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of trajectory planning can be described by the following quintic state equations [17]:

For the position of candidate trajectory:

d1 ¼ c0 þ c1tþ c2t2 þ c3t3 þ c4t4 þ c5t5 (16)

For the velocity of candidate trajectory:

Figure 2.
The whole structure of the proposed integrated trajectory planning and control method.
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_d1 ¼ c1 þ 2c2tþ 3c3t2 þ 4c4t3 þ 5c5t4 (17)

For the acceleration of candidate trajectory:

€d1 ¼ 2c2 þ 6c3tþ 12c4t2 þ 20c5t3 (18)

with c0, c1,…, c5 ∈R and t∈ 0 τ½ �. τ is the terminal time of the candidate trajec-
tory and τ∈ 0 T½ �. T is the longest time required to complete the motion.

Eqs. (16)–(18) can be rewritten as the following equation:

ξt tð Þ ¼ M1 tð Þc012 þM2 tð Þc345 (19)

where M1 tð Þ ¼
1 t t2
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The coefficients c012 and c345 of the quintic state trajectory in Eq. (19) can be
calculated as follows:

c012 ¼
c0
c1
c2

2
64

3
75 ¼ M1 0ð Þ�1ξ0 (20)

c345 ¼
c3
c4
c5

2
64

3
75 ¼ M2 τð Þ�1 ξt �M1 τð Þc012½ � (21)

where M1 0ð Þ ¼
1 0 0

0 1 0

0 0 2

2
64

3
75 and ξ0 ¼

d0
_d0

€d0

2
64

3
75:

After the coefficients c012 and c345 are calculated, the vehicle trajectory can be
described as d1 tð Þ in Eq. (16). In this way, candiadate trajectories in this section of
the road can be determined, and the best trajectory can be selected based on the
proposed optimisation cost function in the next section.

3.2 Determine the optimisation cost function

After the candidate trajectories have been determined in each section of the
road, the next step is to determine the cost function to select the best suitable
trajectory. The optimisation cost function is designed as the following equation:

min
d1, τ

J1 ¼ kττ þ kd dr � d1 τð Þð Þ2 (22)

where this cost function has two optimization variables, the ending position d1
and terminal time τ. This cost function also includes two terms, and kτ and kd are
the scaling factors of each term, which can be used to balance the term of total time
cost and the term of offset error from the desired ending state. dr is the reference
vehicle ending state. dr � d1 τð Þ presents the offset error from the desired reference
ending state. The selection of total time cost can greatly affect the vehicle trajectory
tracking behaviour: with the small total time cost, the vehicle can reach the final
states early, while large time cost will make the vehicle movement slow and stable
with late arrival of final states.
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Furthermore, the vehicle longitudinal or lateral jerk (presented as d ⃛ τð Þ) should
be minimised to improve the smoothness of the trajectory. The total optimisation
cost function J1 of the trajectory planning can be augmented as:

min
d1, τ

J1 ¼ kJ d ⃛1 τð Þ� �2 þ kττ þ kd dr � d1 τð Þð Þ2 (23)

where kJ is the scaling factor of the term related to longitudinal or lateral jerk. It
can be noted that the target final velocity _d1 or acceleration €d1 can be used in (23)
instead of d1 if the final velocity or acceleration is required to be optimised.

In optimisation cost function (23), the road topography information, such as the
road slope and bank angle, has not been considered. However, road topography will
greatly affect the trajectory planning and vehicle dynamics performance in off-road
scenario. The trajectory planning optimisation cost function should consider the
additional optimisation control target of road topography by selecting the trajectory
with the smaller road slope and bank angle. Furthermore, in order to prevent the
abrupt change of road slope and bank angle, the change of the road slope and bank
angle between current and previous time step should be minimised.

The assumption is made that the topography information along each candidate
trajectory is already known through various sensors equipped in the intelligent
vehicle system. In this chapter, the topography information at a specific point can
be obtained from a lookup table. The average road slope θs and bank angle θb along
one particular candidate trajectory could be calculated as the following equation:

θs ¼
∑n

i¼1θs xi; yi
� �
n

(24)

θb ¼
∑n

i¼1θb xi; yi
� �
n

(25)

where θs xi; yi
� �

and θb xi; yi
� �

are the road slope and bank angle at a specific point
along the candidate trajectory. n is the total number of discrete points along this
candidate trajectory.

After the road topography information is available, the road topography informa-
tion can be included into the optimal cost function (23) as the following equation:

min
d1, τ

J1 ¼ kJ d ⃛1 τð Þ� �2 þ kττ þ kd dr � d1 τð Þð Þ2 þ ksθs d1 τð Þð Þ þ ksd
_θs d1 τð Þð Þ

þkbθb d1 τð Þð Þ þ kbd
_θb d1 τð Þð Þ

(26)

where this cost function have four additional cost function terms compared with
cost function (23). The terms ksθs d1 τð Þð Þ and kbθb d1 τð Þð Þ are designed to minimise

the road slope and bank angle along the selected trajectory. ksd
_θs dx,y τð Þ� �

and

kbd
_θb dx,y τð Þ� �

are designed to prevent the abrupt change of road slope and bank
angle. ks, ksd and kb, kbd are scaling factors of each term.

When the optimisation values of ending position d1 and terminal time τ are
determined based on (26), the desired best trajectory can be determined according
to Eqs. (16)–(18).

It is noted that the trajectory planning in this section can be divided as the
longitudinal trajectory planning and lateral trajectory planning. Eqs. (16)–(26)
merely provide the common mathematical equations to generate the candidate
trajectory set and determine the best suitable trajectory according to optimisation
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cost function. These mathematical equations are only corresponding to one section
of road. The predefined global desired path can have a number of sections of road,
and a number of the optimisation calculations are implemented successively. In the
ideal condition, the more sections the desired global path is divided, the more
accurate the optimisation results would be. However, a large number of the divided
sections of road require intensive computing efforts, and the computational cost
will increase a lot.

3.3 Map planned trajectory into vehicle dynamics control targets

After the desired trajectory is planned and determined while satisfying certain
position constraints and velocity constraints, the next step is to map the desired
trajectory into vehicle dynamics control targets: desired yaw angle and desired
longitudinal velocity in the body-fixed coordinate system.

The desired yaw angle φd and longitudinal velocity vxd in the body-fixed coor-
dinate system can be determined according to the following optimisation cost
function:

min
φd, vxd

J2 ¼ a vxd kð Þ � vxd�b kð Þð Þ2 þ b vxd tanφd kð Þ � vyd�b kð Þ� �2 þ c φd kð Þ � φd k� 1ð Þð Þ2

(27)

where this cost function includes three terms, which are used to achieve the
desired longitudinal velocity (the first term), desired lateral velocity (the second
term) and avoid the abrupt change of the yaw angle between each time step and
improve the smooth of the trajectory (the third term). a, b and c are scaling factors
of each term. k represents the time step t kð Þ, and k� 1 represents the time step
t k� 1ð Þ. vxd�b and vyd�b represent the desired longitudinal velocity and lateral
velocity in the body-fixed coordinate system, which can be calculated according to
the desired longitudinal velocity vxd�g and lateral velocity vyd�g in the global coor-
dinate system:

vxd�b ¼ vxd�g cosφþ vyd�g sinφ (28)

vyd�b ¼ vxd�g sinφ� vyd�g cosφ (29)

where the desired longitudinal velocity vxd�g and lateral velocity vyd�g along the
desired trajectory in the global coordinate system can be determined according to
Eqs. (17), (26).

After the desired longitudinal velocity and yaw angle in the vehicle body-fixed
coordinate system are determined, the desired tyre forces and yaw moment to
achieve these desired control targets can be calculated by the lower-level trajectory
controller in the next section.

4. Lower-level trajectory tracking controller

In this section, the lower-level two-layer trajectory tracking controller is pro-
posed to control the autonomous vehicle to follow the desired planned trajectory
[21]. In the first layer, according to the desired longitudinal velocity, desired zero
lateral velocity and desired yaw angle, the desired longitudinal force, lateral force
and yaw moment in the vehicle body-fixed coordinate system can be calculated. In
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Furthermore, the vehicle longitudinal or lateral jerk (presented as d ⃛ τð Þ) should
be minimised to improve the smoothness of the trajectory. The total optimisation
cost function J1 of the trajectory planning can be augmented as:

min
d1, τ

J1 ¼ kJ d ⃛1 τð Þ� �2 þ kττ þ kd dr � d1 τð Þð Þ2 (23)

where kJ is the scaling factor of the term related to longitudinal or lateral jerk. It
can be noted that the target final velocity _d1 or acceleration €d1 can be used in (23)
instead of d1 if the final velocity or acceleration is required to be optimised.

In optimisation cost function (23), the road topography information, such as the
road slope and bank angle, has not been considered. However, road topography will
greatly affect the trajectory planning and vehicle dynamics performance in off-road
scenario. The trajectory planning optimisation cost function should consider the
additional optimisation control target of road topography by selecting the trajectory
with the smaller road slope and bank angle. Furthermore, in order to prevent the
abrupt change of road slope and bank angle, the change of the road slope and bank
angle between current and previous time step should be minimised.

The assumption is made that the topography information along each candidate
trajectory is already known through various sensors equipped in the intelligent
vehicle system. In this chapter, the topography information at a specific point can
be obtained from a lookup table. The average road slope θs and bank angle θb along
one particular candidate trajectory could be calculated as the following equation:

θs ¼
∑n

i¼1θs xi; yi
� �
n

(24)

θb ¼
∑n

i¼1θb xi; yi
� �
n

(25)

where θs xi; yi
� �

and θb xi; yi
� �

are the road slope and bank angle at a specific point
along the candidate trajectory. n is the total number of discrete points along this
candidate trajectory.

After the road topography information is available, the road topography informa-
tion can be included into the optimal cost function (23) as the following equation:

min
d1, τ

J1 ¼ kJ d ⃛1 τð Þ� �2 þ kττ þ kd dr � d1 τð Þð Þ2 þ ksθs d1 τð Þð Þ þ ksd
_θs d1 τð Þð Þ

þkbθb d1 τð Þð Þ þ kbd
_θb d1 τð Þð Þ

(26)

where this cost function have four additional cost function terms compared with
cost function (23). The terms ksθs d1 τð Þð Þ and kbθb d1 τð Þð Þ are designed to minimise

the road slope and bank angle along the selected trajectory. ksd
_θs dx,y τð Þ� �

and

kbd
_θb dx,y τð Þ� �

are designed to prevent the abrupt change of road slope and bank
angle. ks, ksd and kb, kbd are scaling factors of each term.

When the optimisation values of ending position d1 and terminal time τ are
determined based on (26), the desired best trajectory can be determined according
to Eqs. (16)–(18).

It is noted that the trajectory planning in this section can be divided as the
longitudinal trajectory planning and lateral trajectory planning. Eqs. (16)–(26)
merely provide the common mathematical equations to generate the candidate
trajectory set and determine the best suitable trajectory according to optimisation
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cost function. These mathematical equations are only corresponding to one section
of road. The predefined global desired path can have a number of sections of road,
and a number of the optimisation calculations are implemented successively. In the
ideal condition, the more sections the desired global path is divided, the more
accurate the optimisation results would be. However, a large number of the divided
sections of road require intensive computing efforts, and the computational cost
will increase a lot.

3.3 Map planned trajectory into vehicle dynamics control targets

After the desired trajectory is planned and determined while satisfying certain
position constraints and velocity constraints, the next step is to map the desired
trajectory into vehicle dynamics control targets: desired yaw angle and desired
longitudinal velocity in the body-fixed coordinate system.

The desired yaw angle φd and longitudinal velocity vxd in the body-fixed coor-
dinate system can be determined according to the following optimisation cost
function:

min
φd, vxd

J2 ¼ a vxd kð Þ � vxd�b kð Þð Þ2 þ b vxd tanφd kð Þ � vyd�b kð Þ� �2 þ c φd kð Þ � φd k� 1ð Þð Þ2

(27)

where this cost function includes three terms, which are used to achieve the
desired longitudinal velocity (the first term), desired lateral velocity (the second
term) and avoid the abrupt change of the yaw angle between each time step and
improve the smooth of the trajectory (the third term). a, b and c are scaling factors
of each term. k represents the time step t kð Þ, and k� 1 represents the time step
t k� 1ð Þ. vxd�b and vyd�b represent the desired longitudinal velocity and lateral
velocity in the body-fixed coordinate system, which can be calculated according to
the desired longitudinal velocity vxd�g and lateral velocity vyd�g in the global coor-
dinate system:

vxd�b ¼ vxd�g cosφþ vyd�g sinφ (28)

vyd�b ¼ vxd�g sinφ� vyd�g cosφ (29)

where the desired longitudinal velocity vxd�g and lateral velocity vyd�g along the
desired trajectory in the global coordinate system can be determined according to
Eqs. (17), (26).

After the desired longitudinal velocity and yaw angle in the vehicle body-fixed
coordinate system are determined, the desired tyre forces and yaw moment to
achieve these desired control targets can be calculated by the lower-level trajectory
controller in the next section.

4. Lower-level trajectory tracking controller

In this section, the lower-level two-layer trajectory tracking controller is pro-
posed to control the autonomous vehicle to follow the desired planned trajectory
[21]. In the first layer, according to the desired longitudinal velocity, desired zero
lateral velocity and desired yaw angle, the desired longitudinal force, lateral force
and yaw moment in the vehicle body-fixed coordinate system can be calculated. In
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the second layer, the individual steering and driving actuators are optimised and
controlled to achieve the desired longitudinal force, lateral force and yaw moment.

4.1 Trajectory tracking controller in the first layer

First, the error dynamics equation of vehicle trajectory tracking including the
longitudinal velocity error, lateral velocity error and yaw angle error is presented to
calculate the feedback tyre force and moment, which can be presented by the
following equation based on [25]:

evy ¼ vx sin eφ þ vy cos eφ� � vyd
�

(30)

evx ¼ vx cos eφ � vy sin eφ� � vxd
�

(31)

eφ ¼ φact � φd (32)

where φact is the actual measurement yaw angle. vx and vy are actual measure-
ment feedback longitudinal and lateral velocity. evx and evy are longitudinal velocity
error and lateral velocity error, respectively. In order to improve the vehicle stabil-
ity, the desired lateral velocity vyd is assumed as zero value.

The feedback tyre force and moment can be determined according to the track-
ing error dynamics in Eqs. (30–32):

Fx, feedback ¼ �K1evx (33)

Fy, feedback ¼ �K2pevy � K2d
_evy (34)

Mz,feedback ¼ �K3peφ � K3d
_eφ (35)

where K1, K2p, K2d, K3p and K3d represent feedback control gains.
The feedforward tyre force and moment can be calculated as:

Fx, forward ¼ m _vxd �mevy _φd (36)

Fy, forward ¼ mvxd _φd þmevx _φd (37)

Mz,forward ¼ Iz €φd (38)

The vehicle total desired longitudinal force Fx, total, lateral force Fy, total and yaw
moment Mz,total can be determined by adding up feedforward and feedback terms:

Fx,total ¼ m _vxd �mevy _φd � K1evx (39)

Fy, total ¼ mvxd _φd þmevx _φd � K2pevy � K2d
_evy (40)

Mz,total ¼ Iz €φd � K3peφ � K3d
_eφ (41)

4.2 Trajectory controller in the second layer

In this section, the individual steering and driving control actuators are allocated
and controlled to achieve the desired total longitudinal tyre force, the desired total
lateral tyre force and desired yaw moment determined in the first layer of trajectory
controller. First the individual tyre forces are optimal allocated by the optimisation
cost function, and then the allocated tyre forces can be mapped into the individual
steering and driving control actuators.
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The mathematical equation of cost function of this control allocation and opti-
misation problem can be shown as follows:

min
Fti, Fsi

J3 ¼
F2
tfl þ F2

sfl

μ2F2
zfl

þ F2
tfr þ F2

sfr

μ2F2
zfr

þ F2
trl þ F2

srl

μ2F2
zrl

þ F2
trr þ F2

srr

μ2F2
zrr

(42)

with the constraints of:

BxF ¼ Fx, total (43)

ByF ¼ Fy, total (44)

BrF ¼ Mz,total (45)

where F ¼ Ftfl Ftfr Ftrl Ftrr Fsfl Fsfr Fsrl Fsrr
� �T,

Bx ¼ cos δfl cos δfr cos δrl cos δrr
� � sin δfl � sin δfr � sin δrl � sin δrr:

�
By ¼ sin δfl sin δfr sin δrl sin δrr

�
cos δfl cos δfr cos δrl cos δrr

�

Br ¼ lf sin δfl þ 0:5bf cos δfl lf sin δfr � 0:5bf cos δfr
�

�lr sin δrl þ 0:5br cos δrl �lr sin δrr � 0:5br cos δrr

lf cos δfl � 0:5bf sin δfl lf cos δfr þ 0:5br sin δfr

�lr cos δrl � 0:5br sin δrl �lr cos δrr þ 0:5br sin δrr �
F2
ti þ F2

si ≤ μF2
zi (46)

where the optimisation variables of this cost function are individual tyre forces
Fti, and Fsi. Fx, total, Fy, total and Mz,total are the desired total longitudinal tyre force,
lateral tyre force and yaw moment determined in the first layer controller. The
effect of tyre friction circle is considered in (46). The constraints (43), (44) and
(45) are used to achieve the desired total longitudinal tyre force, lateral tyre force
and yaw moment. In order to overcome the model error due to the non-linear
characteristic of the vehicle dynamics model, the sliding-mode controller (SMC) is
applied and included in constraints (43), (44) and (45) to accurately track the
desired total tyre forces and yaw moment. After applying the SMC control law, the
following equations are proposed to replace the constraints (43), (44), (45):

BxF ¼ Fx, total � Ks1 sgn S1 (47)

ByF ¼ Fy, total � Ks2 sgn S2 (48)

BrF ¼ Mz,total � Ks3 sgn S3 (49)

where Ks1, Ks2 and Ks3 are positive control gains of SMC. The sliding surface
S1, S2 and S3 in Eqs. (47)–(49) can be presented as follows:

S1 ¼
ð
BxF � Fx, total (50)

S2 ¼
ð
ByF � Fy, total (51)

S3 ¼
ð
BrF �Mz,total (52)
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the second layer, the individual steering and driving actuators are optimised and
controlled to achieve the desired longitudinal force, lateral force and yaw moment.

4.1 Trajectory tracking controller in the first layer

First, the error dynamics equation of vehicle trajectory tracking including the
longitudinal velocity error, lateral velocity error and yaw angle error is presented to
calculate the feedback tyre force and moment, which can be presented by the
following equation based on [25]:

evy ¼ vx sin eφ þ vy cos eφ� � vyd
�

(30)

evx ¼ vx cos eφ � vy sin eφ� � vxd
�

(31)

eφ ¼ φact � φd (32)

where φact is the actual measurement yaw angle. vx and vy are actual measure-
ment feedback longitudinal and lateral velocity. evx and evy are longitudinal velocity
error and lateral velocity error, respectively. In order to improve the vehicle stabil-
ity, the desired lateral velocity vyd is assumed as zero value.

The feedback tyre force and moment can be determined according to the track-
ing error dynamics in Eqs. (30–32):

Fx, feedback ¼ �K1evx (33)

Fy, feedback ¼ �K2pevy � K2d
_evy (34)

Mz,feedback ¼ �K3peφ � K3d
_eφ (35)

where K1, K2p, K2d, K3p and K3d represent feedback control gains.
The feedforward tyre force and moment can be calculated as:

Fx, forward ¼ m _vxd �mevy _φd (36)

Fy, forward ¼ mvxd _φd þmevx _φd (37)

Mz,forward ¼ Iz €φd (38)

The vehicle total desired longitudinal force Fx, total, lateral force Fy, total and yaw
moment Mz,total can be determined by adding up feedforward and feedback terms:

Fx,total ¼ m _vxd �mevy _φd � K1evx (39)

Fy, total ¼ mvxd _φd þmevx _φd � K2pevy � K2d
_evy (40)

Mz,total ¼ Iz €φd � K3peφ � K3d
_eφ (41)

4.2 Trajectory controller in the second layer

In this section, the individual steering and driving control actuators are allocated
and controlled to achieve the desired total longitudinal tyre force, the desired total
lateral tyre force and desired yaw moment determined in the first layer of trajectory
controller. First the individual tyre forces are optimal allocated by the optimisation
cost function, and then the allocated tyre forces can be mapped into the individual
steering and driving control actuators.

38

Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation…

The mathematical equation of cost function of this control allocation and opti-
misation problem can be shown as follows:

min
Fti, Fsi

J3 ¼
F2
tfl þ F2

sfl

μ2F2
zfl

þ F2
tfr þ F2

sfr

μ2F2
zfr

þ F2
trl þ F2

srl

μ2F2
zrl

þ F2
trr þ F2

srr

μ2F2
zrr

(42)

with the constraints of:

BxF ¼ Fx, total (43)

ByF ¼ Fy, total (44)

BrF ¼ Mz,total (45)

where F ¼ Ftfl Ftfr Ftrl Ftrr Fsfl Fsfr Fsrl Fsrr
� �T,

Bx ¼ cos δfl cos δfr cos δrl cos δrr
� � sin δfl � sin δfr � sin δrl � sin δrr:

�
By ¼ sin δfl sin δfr sin δrl sin δrr

�
cos δfl cos δfr cos δrl cos δrr

�

Br ¼ lf sin δfl þ 0:5bf cos δfl lf sin δfr � 0:5bf cos δfr
�

�lr sin δrl þ 0:5br cos δrl �lr sin δrr � 0:5br cos δrr

lf cos δfl � 0:5bf sin δfl lf cos δfr þ 0:5br sin δfr

�lr cos δrl � 0:5br sin δrl �lr cos δrr þ 0:5br sin δrr �
F2
ti þ F2

si ≤ μF2
zi (46)

where the optimisation variables of this cost function are individual tyre forces
Fti, and Fsi. Fx, total, Fy, total and Mz,total are the desired total longitudinal tyre force,
lateral tyre force and yaw moment determined in the first layer controller. The
effect of tyre friction circle is considered in (46). The constraints (43), (44) and
(45) are used to achieve the desired total longitudinal tyre force, lateral tyre force
and yaw moment. In order to overcome the model error due to the non-linear
characteristic of the vehicle dynamics model, the sliding-mode controller (SMC) is
applied and included in constraints (43), (44) and (45) to accurately track the
desired total tyre forces and yaw moment. After applying the SMC control law, the
following equations are proposed to replace the constraints (43), (44), (45):

BxF ¼ Fx, total � Ks1 sgn S1 (47)

ByF ¼ Fy, total � Ks2 sgn S2 (48)

BrF ¼ Mz,total � Ks3 sgn S3 (49)

where Ks1, Ks2 and Ks3 are positive control gains of SMC. The sliding surface
S1, S2 and S3 in Eqs. (47)–(49) can be presented as follows:

S1 ¼
ð
BxF � Fx, total (50)

S2 ¼
ð
ByF � Fy, total (51)

S3 ¼
ð
BrF �Mz,total (52)

39

Path Planning for Autonomous Vehicle in Off-Road Scenario
DOI: http://dx.doi.org/10.5772/intechopen.85384



After the individual tyre forces have been optimised and allocated in (42), the
controlled values of individual steering and driving actuators can be mapped from
the individual tyre force according to the following equations:

Ti ¼ FtiRω (53)

δfl ¼
Fsfl

Cα
þ lf r

vx
(54)

δfr ¼
Fsfr

Cα
þ lf r

vx
(55)

δrl ¼ Fsrl

Cα
� lrr

vx
(56)

δrr ¼ Fsrr

Cα
� lrr

vx
(57)

This controlled actuator values can be input into actual electric vehicle to
achieve desired vehicle trajectory.

5. Simulation results

In this section, two sets of simulation results are used to verify the effectiveness
of proposed trajectory planner and controller in both highway and off-road scenar-
ios. The simulation parameters are shown in Table 1.

In the first set of simulations, the controlled vehicle is overtaking the vehicle
ahead in the same lane in the highway scenario. A slow vehicle (with the velocity of

Symbol Definition Values

m Mass 1298.9 kg

lf Distance of CG from the front axle 1.3 m

lr Distance of CG from the rear axle 1.5 m

bf Front track width 1.6 m

br Rear track width 1.6 m

Cs Longitudinal stiffness of the tyre 50,000 N/unit slip

Cα Cornering stiffness of the tyre 30,000 N/unit slip

Iz Vehicle moment of inertial about yaw axle 3900 kgm2

Ix Vehicle moment of inertial about longitudinal axle 765 kgm2

Iy Vehicle moment of inertial about lateral axle 3477 kgm2

Rω Wheel radius 0.3 m

Iω Wheel moment of inertial 4 kgm2

e The distance between the vehicle roll centre and CG 0.4 m

h Height of the vehicle centre of gravity 0.533 m

Kϕ The stiffness of roll axis 89,000

Table 1.
The simulation parameters [18].
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15 m/s) is moving 100 metres ahead of the controlled vehicle (with the velocity of
20 m/s). In order to overtake the slow vehicle, the controlled vehicle first deceler-
ates from 20 m/s into 15 m/s and then makes the lane change to the right lane. After
that, the controlled vehicle accelerates from 15 m/s into 20 m/s to go ahead of the
overtaken vehicle. Finally, the controlled vehicle goes back to the left lane. The
details of this scenario are described in Figure 3(a), and the whole global desired
path can be divided by 5 sections. For the purpose of comparison, the control
performance of the potential field method based on [26] is also presented here.
Furthermore, in order to show the advantage of 4WIS-4WID vehicle model, the
proposed trajectory planning and control performance based on two-wheel model is
presented and compared.

In Figure 3(b), the moving trajectory of the overtaking vehicle controlled by
both the potential field method and the proposed method based on two-wheel
model and 4WIS-4WID model is compared. The proposed method based on two-
wheel model and 4WIS-4WID model shows good control performance, and the
controlled vehicle is moving within the road boundary. Figure 3(c) shows that the
overtaking vehicle and overtaken vehicle maintain the safety distance to avoid
collision. Figure 4 demonstrates that the potential field method shows big lateral
tracking error compared with the proposed methods based on two-wheel model and
four-wheel model, while the longitudinal tracking error of potential filed method is
smaller than the proposed method. Since the lateral tracking error is more impor-
tant than longitudinal tracking error on highway overtaking scenario, the proposed
method has better overall tracking performance than potential field method. It is
also noted that the tracking error of proposed method based on two-wheel model is
larger than four-wheel model, especially for the tracking error of the lateral posi-
tion. This shows the advantages of 4WIS-4WID model.

In Figures 5(a) and 5(b), the longitudinal velocity and lateral velocity in the
global coordinate system for both the potential field method and the proposed
trajectory planning method are presented. Vxd1, Vxd2, Vxd3, Vxd4 and Vxd5 are
desired longitudinal velocities on each section of road, while Vyd1, Vyd2,
Vyd3, Vyd4 and Vyd5 are desired lateral velocities on each section of road. The poten-
tial field method can only roughly achieve the desired longitudinal velocity and
lateral velocity, while the proposed method can accurately achieve desired values.
This proves that the proposed method can not only achieve the desired ending
positions but also achieve the desired ending velocities. Figure 5(c) and
Figure 5(d) present the vehicle yaw rate and body side-slip angle responses, which
proves that the proposed trajectory planning method can achieve much better
handling and stability performance compared with potential field method.

In the second set of simulations, the autonomous vehicle is assumed to move in
the off-road scenario, and the road topography should be considered. Figure 6
presents the scenario in the second set of simulations: in a particular section of the
road, the vehicle start position is (0, 0) and the target ending position is constrained
by a certain boundary (90–110, 20–30); the initial and ending longitudinal velocity
is 5 m/s, and the initial and ending lateral velocity is 0 and 3 m/s, respectively. The
bank angle and road slope of this section of road is shown in Figure 7. The trajectory
planner proposed in Eq. (26) will choose the best suitable ending position and
vehicle trajectory by considering the road topography information (minimising the
bank angle and road slope). The vehicle dynamics response of the trajectory planner
which has not considered the road topography information proposed in Eq. (23) is
also shown and compared. It is noted that trajectory planner without considering
road topography is briefly called ‘trajectory planner 1’ and trajectory planner con-
sidering road topography is briefly called ‘trajectory planner 4’. Figure 8 compares
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After the individual tyre forces have been optimised and allocated in (42), the
controlled values of individual steering and driving actuators can be mapped from
the individual tyre force according to the following equations:

Ti ¼ FtiRω (53)

δfl ¼
Fsfl

Cα
þ lf r

vx
(54)

δfr ¼
Fsfr

Cα
þ lf r

vx
(55)

δrl ¼ Fsrl

Cα
� lrr

vx
(56)

δrr ¼ Fsrr

Cα
� lrr

vx
(57)

This controlled actuator values can be input into actual electric vehicle to
achieve desired vehicle trajectory.

5. Simulation results

In this section, two sets of simulation results are used to verify the effectiveness
of proposed trajectory planner and controller in both highway and off-road scenar-
ios. The simulation parameters are shown in Table 1.

In the first set of simulations, the controlled vehicle is overtaking the vehicle
ahead in the same lane in the highway scenario. A slow vehicle (with the velocity of

Symbol Definition Values

m Mass 1298.9 kg

lf Distance of CG from the front axle 1.3 m

lr Distance of CG from the rear axle 1.5 m

bf Front track width 1.6 m

br Rear track width 1.6 m

Cs Longitudinal stiffness of the tyre 50,000 N/unit slip

Cα Cornering stiffness of the tyre 30,000 N/unit slip

Iz Vehicle moment of inertial about yaw axle 3900 kgm2

Ix Vehicle moment of inertial about longitudinal axle 765 kgm2

Iy Vehicle moment of inertial about lateral axle 3477 kgm2

Rω Wheel radius 0.3 m

Iω Wheel moment of inertial 4 kgm2

e The distance between the vehicle roll centre and CG 0.4 m

h Height of the vehicle centre of gravity 0.533 m

Kϕ The stiffness of roll axis 89,000

Table 1.
The simulation parameters [18].
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15 m/s) is moving 100 metres ahead of the controlled vehicle (with the velocity of
20 m/s). In order to overtake the slow vehicle, the controlled vehicle first deceler-
ates from 20 m/s into 15 m/s and then makes the lane change to the right lane. After
that, the controlled vehicle accelerates from 15 m/s into 20 m/s to go ahead of the
overtaken vehicle. Finally, the controlled vehicle goes back to the left lane. The
details of this scenario are described in Figure 3(a), and the whole global desired
path can be divided by 5 sections. For the purpose of comparison, the control
performance of the potential field method based on [26] is also presented here.
Furthermore, in order to show the advantage of 4WIS-4WID vehicle model, the
proposed trajectory planning and control performance based on two-wheel model is
presented and compared.

In Figure 3(b), the moving trajectory of the overtaking vehicle controlled by
both the potential field method and the proposed method based on two-wheel
model and 4WIS-4WID model is compared. The proposed method based on two-
wheel model and 4WIS-4WID model shows good control performance, and the
controlled vehicle is moving within the road boundary. Figure 3(c) shows that the
overtaking vehicle and overtaken vehicle maintain the safety distance to avoid
collision. Figure 4 demonstrates that the potential field method shows big lateral
tracking error compared with the proposed methods based on two-wheel model and
four-wheel model, while the longitudinal tracking error of potential filed method is
smaller than the proposed method. Since the lateral tracking error is more impor-
tant than longitudinal tracking error on highway overtaking scenario, the proposed
method has better overall tracking performance than potential field method. It is
also noted that the tracking error of proposed method based on two-wheel model is
larger than four-wheel model, especially for the tracking error of the lateral posi-
tion. This shows the advantages of 4WIS-4WID model.

In Figures 5(a) and 5(b), the longitudinal velocity and lateral velocity in the
global coordinate system for both the potential field method and the proposed
trajectory planning method are presented. Vxd1, Vxd2, Vxd3, Vxd4 and Vxd5 are
desired longitudinal velocities on each section of road, while Vyd1, Vyd2,
Vyd3, Vyd4 and Vyd5 are desired lateral velocities on each section of road. The poten-
tial field method can only roughly achieve the desired longitudinal velocity and
lateral velocity, while the proposed method can accurately achieve desired values.
This proves that the proposed method can not only achieve the desired ending
positions but also achieve the desired ending velocities. Figure 5(c) and
Figure 5(d) present the vehicle yaw rate and body side-slip angle responses, which
proves that the proposed trajectory planning method can achieve much better
handling and stability performance compared with potential field method.

In the second set of simulations, the autonomous vehicle is assumed to move in
the off-road scenario, and the road topography should be considered. Figure 6
presents the scenario in the second set of simulations: in a particular section of the
road, the vehicle start position is (0, 0) and the target ending position is constrained
by a certain boundary (90–110, 20–30); the initial and ending longitudinal velocity
is 5 m/s, and the initial and ending lateral velocity is 0 and 3 m/s, respectively. The
bank angle and road slope of this section of road is shown in Figure 7. The trajectory
planner proposed in Eq. (26) will choose the best suitable ending position and
vehicle trajectory by considering the road topography information (minimising the
bank angle and road slope). The vehicle dynamics response of the trajectory planner
which has not considered the road topography information proposed in Eq. (23) is
also shown and compared. It is noted that trajectory planner without considering
road topography is briefly called ‘trajectory planner 1’ and trajectory planner con-
sidering road topography is briefly called ‘trajectory planner 4’. Figure 8 compares
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Figure 3.
(a) Vehicle overtaking scenario in the first set of simulations (unit: m). (b) The vehicle trajectory in the global
coordinate system. (c) The relative distance between the overtaking vehicle and overtaken vehicle [21].
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the bank angle and road slope of the desired trajectories planned by trajectory
planner 1 and trajectory planner 4 and proves that the trajectory planner 4 can
generate the trajectory with smaller bank angle and road slope. Figure 9 shows the
trajectory tracking performance when trajectory planner 4 applied is much
improved compared with trajectory planner 1. Figure 10 shows the dynamics
responses between trajectory planner 1 and trajectory planner 4. Figure 10(a)
suggests that the undesired lateral velocity is reduced a lot when trajectory planner
4 has been applied. Figure 10(b) and Figure 10(c) prove that the autonomous

Figure 4.
The tracking errors of vehicle trajectory in the first set of simulations: (a) longitudinal position and (b) lateral
position [21].
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the bank angle and road slope of the desired trajectories planned by trajectory
planner 1 and trajectory planner 4 and proves that the trajectory planner 4 can
generate the trajectory with smaller bank angle and road slope. Figure 9 shows the
trajectory tracking performance when trajectory planner 4 applied is much
improved compared with trajectory planner 1. Figure 10 shows the dynamics
responses between trajectory planner 1 and trajectory planner 4. Figure 10(a)
suggests that the undesired lateral velocity is reduced a lot when trajectory planner
4 has been applied. Figure 10(b) and Figure 10(c) prove that the autonomous
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position [21].
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Figure 5.
The vehicle state in the first set of simulations: (a) longitudinal velocity in the global coordinate system,
(b) lateral velocity in the global coordinate system, (c) yaw rate and (d) body slip angle [21].
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Figure 6.
The vehicle off-road scenario in the second set of simulations (unit: mm).

Figure 7.
The vehicle (a) road slope and (b) bank angle of the one particular section of uneven road surface in the second
set of simulations.
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Figure 6.
The vehicle off-road scenario in the second set of simulations (unit: mm).

Figure 7.
The vehicle (a) road slope and (b) bank angle of the one particular section of uneven road surface in the second
set of simulations.
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Figure 8.
The actual (a) bank angle and (b) road slope in the second set of simulations.

Figure 9.
The desired trajectory tracking performance in the second set of simulations.
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vehicle has smoother roll angle and pitch angle response when trajectory planner 4
is applied since the road bank angle and road slope is minimised compared with the
situation when trajectory planner 1 is applied.

Figure 10.
Vehicle dynamics responses in the second set of simulations: (a) lateral velocity, (b) roll angle and (c) pitch
angle.
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The actual (a) bank angle and (b) road slope in the second set of simulations.

Figure 9.
The desired trajectory tracking performance in the second set of simulations.
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vehicle has smoother roll angle and pitch angle response when trajectory planner 4
is applied since the road bank angle and road slope is minimised compared with the
situation when trajectory planner 1 is applied.

Figure 10.
Vehicle dynamics responses in the second set of simulations: (a) lateral velocity, (b) roll angle and (c) pitch
angle.
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6. Conclusion

In this chapter, a dynamically integrated spatiotemporal-based trajectory plan-
ning and control method for the off-road autonomous vehicles is proposed. The
upper-level trajectory planner can select the best time-parameterised trajectory
among a group of the candidate trajectories by considering the road topography
information. Then, the lower-level trajectory controller can control the motion of
the vehicle and achieve the desired trajectory.

Simulation results have proved that the proposed trajectory planning and control
method can successfully control the motion of autonomous vehicles and achieve the
spatiotemporal-based desired trajectory while satisfying the target ending position
and velocity. In the highway scenario, the proposed method has better overall
position tracking control performance and can better achieve the desired longitudi-
nal and lateral velocity compared with the conventional potential field method. In
addition, the 4WIS-4WID vehicle shows better tracking control performance than
traditional vehicle based on two-wheel model.

In the off-road scenario, the proposed trajectory planning method can success-
fully find a specific trajectory which can avoid the peak values of bank angle and
road slope. Simulation results prove that the proposed trajectory planner when
considering the road topography information can generate the trajectory with much
smaller bank angle and road slope compared with trajectory generated by tradi-
tional trajectory planner. The actual trajectory tracking performance, roll stability
and pitch stability performance can be improved by using the proposed trajectory
planning method to minimise the effect of road topography on vehicle dynamics.
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6. Conclusion

In this chapter, a dynamically integrated spatiotemporal-based trajectory plan-
ning and control method for the off-road autonomous vehicles is proposed. The
upper-level trajectory planner can select the best time-parameterised trajectory
among a group of the candidate trajectories by considering the road topography
information. Then, the lower-level trajectory controller can control the motion of
the vehicle and achieve the desired trajectory.

Simulation results have proved that the proposed trajectory planning and control
method can successfully control the motion of autonomous vehicles and achieve the
spatiotemporal-based desired trajectory while satisfying the target ending position
and velocity. In the highway scenario, the proposed method has better overall
position tracking control performance and can better achieve the desired longitudi-
nal and lateral velocity compared with the conventional potential field method. In
addition, the 4WIS-4WID vehicle shows better tracking control performance than
traditional vehicle based on two-wheel model.

In the off-road scenario, the proposed trajectory planning method can success-
fully find a specific trajectory which can avoid the peak values of bank angle and
road slope. Simulation results prove that the proposed trajectory planner when
considering the road topography information can generate the trajectory with much
smaller bank angle and road slope compared with trajectory generated by tradi-
tional trajectory planner. The actual trajectory tracking performance, roll stability
and pitch stability performance can be improved by using the proposed trajectory
planning method to minimise the effect of road topography on vehicle dynamics.
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Chapter 4

Vision-Based Path Finding 
Strategy of Unmanned 
Aerial Vehicles for Electrical 
Infrastructure Purpose
Alexander Cerón, Flavio Prieto and Luis Mejias

Abstract

In this chapter we present the development of automated visual inspection 
systems for electrical infrastructure. The inspection is performed using images 
acquired with an unmanned aerial vehicle (UAV). Through automated inspection 
routes, the state of the infrastructure can be evaluated and then the appropriate 
correcting measures be taken. The monitoring of power lines can be done using 
passive sensors such as cameras or active sensors such as light detection and rang-
ing (LIDAR) cameras, image processing techniques, computer vision and control 
systems can then be used. Additionally, a three-dimensional (3D) reconstruction 
process is possible using images either offline or during the monitoring. An UAV 
with an onboard embedded computer is used to execute the computer vision and 
path planning algorithms. The work done shows that the proposed strategy aids in 
the automation of power line inspection.

Keywords: UAV, power line detection, 3D reconstruction

1. Introduction

There exist numerous applications for UAVs that include autonomous naviga-
tion, tracking and 3D reconstruction [1–3]. Electrical infrastructure inspection with 
aerial robots, especially transmission line inspection, is very important since it can 
minimize costs, risk and logistic problems that usually are associated with manual 
inspection [4]. In this context the use of new technologies for power line inspection 
such as UAVs can bring great benefits. The common methods for power line inspec-
tion are manual inspection, manned helicopters and UAVs as shown in Figure 1.

In the work presented in [5], three aspects have been shown: (1) strategies for 
risk administration in high power line corridors, (2) selection of suitable platforms 
for sensor location and (3) data processing techniques for identifying vegetation.

One of the principal problems to resolve in this field is the image distortion/
noise due to camera movement/vibration, which can be mitigated with the use of 
the gimbal stabilizers and a mechanical vibration isolator under the flight controller.

A path planning process for electrical infrastructure inspection requires to 
consider the detection of power lines and electrical towers because these elements can 
generate a corridor where an autonomous system can perform the inspection task [5].
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Chapter 4

Vision-Based Path Finding 
Strategy of Unmanned 
Aerial Vehicles for Electrical 
Infrastructure Purpose
Alexander Cerón, Flavio Prieto and Luis Mejias

Abstract

In this chapter we present the development of automated visual inspection 
systems for electrical infrastructure. The inspection is performed using images 
acquired with an unmanned aerial vehicle (UAV). Through automated inspection 
routes, the state of the infrastructure can be evaluated and then the appropriate 
correcting measures be taken. The monitoring of power lines can be done using 
passive sensors such as cameras or active sensors such as light detection and rang-
ing (LIDAR) cameras, image processing techniques, computer vision and control 
systems can then be used. Additionally, a three-dimensional (3D) reconstruction 
process is possible using images either offline or during the monitoring. An UAV 
with an onboard embedded computer is used to execute the computer vision and 
path planning algorithms. The work done shows that the proposed strategy aids in 
the automation of power line inspection.

Keywords: UAV, power line detection, 3D reconstruction

1. Introduction

There exist numerous applications for UAVs that include autonomous naviga-
tion, tracking and 3D reconstruction [1–3]. Electrical infrastructure inspection with 
aerial robots, especially transmission line inspection, is very important since it can 
minimize costs, risk and logistic problems that usually are associated with manual 
inspection [4]. In this context the use of new technologies for power line inspection 
such as UAVs can bring great benefits. The common methods for power line inspec-
tion are manual inspection, manned helicopters and UAVs as shown in Figure 1.

In the work presented in [5], three aspects have been shown: (1) strategies for 
risk administration in high power line corridors, (2) selection of suitable platforms 
for sensor location and (3) data processing techniques for identifying vegetation.

One of the principal problems to resolve in this field is the image distortion/
noise due to camera movement/vibration, which can be mitigated with the use of 
the gimbal stabilizers and a mechanical vibration isolator under the flight controller.

A path planning process for electrical infrastructure inspection requires to 
consider the detection of power lines and electrical towers because these elements can 
generate a corridor where an autonomous system can perform the inspection task [5].
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An important aspect of autonomous navigation systems is the collision avoid-
ance [6, 7]. In a path planning process for automatic inspection of electrical 
infrastructure, it is necessary to be able to avoid electrical towers and power lines. 
The first task for accomplishing this goal is an object detection process that will be 
discussed in this chapter.

The access throughout the corridor is very important since it is necessary in order to 
inspect the area surrounding power lines. It must be free of obstacles and vegetation.

As a part of the inspection process, an important task is the detection of ele-
ments of the electrical infrastructure; this is achieved by using computer vision 
techniques such as object detection. The common objects present in the electrical 
infrastructure scene are the power lines and electrical towers. An additional task is 
the 3D reconstruction of the elements of the scene by using the captured images.

2. Power line detection

In this section, we show different methods for the detection of electrical lines 
through image processing and computer vision, which include methods for detection 
of rectilinear segments and catenary. Also, the use of machine learning is presented.

2.1 Line detection process

There are different methods for line detection [8–11]. Some of them are based on 
graphics processing unit (GPU) approaches and geometrical considerations [12–15] 
that can be used in the context of power line detection. It is important to note that 
line detection methods based on monocular images present better results in uni-
form background sceneries.

For the detection of rectilinear long segments from images taken from a top-
down view, the process can be composed of the stages shown in Figure 2.

As this process cannot differentiate the power lines from other lines presented in 
the scene, there exists the possibility of using machine learning to reduce detection 
errors or improving the power line detection.

2.1.1 Machine learning method

The recognition system has to be trained with real power lines; after that the 
system must be able to recognize or select the power lines in a scene. In the first 
stage, it is necessary to define what lines are electrical lines. This is done by using an 
application for labelling as shown in Figure 3.

This system operates in two modes, training and detection, as shown in Figure 4.
The training mode begins with an edge detector such as Sobel, Prewitt, Canny or 

Edge drawing. After that, different line detection methods can be used for detecting 
a representative set of lines present in the scene. The dataset is obtained by labelling 

Figure 1. 
Example of different methods for power line inspection.

Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation...

53

Vision-Based Path Finding Strategy of Unmanned Aerial Vehicles for Electrical Infrastructure…
DOI: http://dx.doi.org/10.5772/intechopen.86689

(tagging), manually, the power lines in each image in order to select only the lines 
that correspond to power lines in the training mode as a true example. For this 
reason, an application with a graphical user interface (GUI) for selecting lines over 
a copy of the real image can be used (Figure 3).

Figure 2. 
Stages of a rectilinear process detection.

Figure 3. 
Power line labelling.
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(tagging), manually, the power lines in each image in order to select only the lines 
that correspond to power lines in the training mode as a true example. For this 
reason, an application with a graphical user interface (GUI) for selecting lines over 
a copy of the real image can be used (Figure 3).

Figure 2. 
Stages of a rectilinear process detection.

Figure 3. 
Power line labelling.
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The overall detected lines are compared with the labeled lines in order to differ-
entiate the positive and negative samples. The positive samples are power lines that 
overlap the previously labeled lines. The negative samples are other lines detected in 
the scene that are not power lines. This corresponds to lines that have not been tagged.

The overlapping between the tagged lines and detected lines that are not power 
lines must be zero.

After that, a feature extraction stage is performed by using HOG descriptors 
[16], which are computed for the selected lines on the labeled dataset. This is done 
in spaced squared windows centred in the lines. In Figure 5, the extraction of the 
HOG descriptor in windows across a labeled power line is shown.

Finally, the obtained descriptor values in the previous stage are the input data 
for the classifier. The SVM classifier is trained with this input data using a sigmoid 
kernel.

The detection mode has to be used after a training mode. The objective of this 
stage is to detect the power lines using the previously trained classifier.

This begins with segmenting and detecting lines as in the previous mode. After 
that, HOG descriptors are computed across the detected lines using squared win-
dows as were done in training mode. This information is gathered for the classifier.

Figure 4. 
Process for line recognition system, training and detection.
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In Figure 6, the detection of all linear elements using a conventional line detection 
method is shown. The results of the machine learning method are shown in Figure 7.

Finally, the SVM is evaluated with the obtained descriptor data. Line segments 
which pass this evaluation are power line candidates. Another possibility is to use deep 
learning methods and contextual information in order to improve the detection [1].

2.2 Catenary detection

Most of the works on power line detection are focused in straight line detection. 
Nevertheless, the electrical infrastructure is composed of catenaries which are 

Figure 5. 
Extracting HOG descriptor in lines.

Figure 6. 
Line detection in the scene.

Figure 7. 
Result of a machine learning method.
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Finally, the SVM is evaluated with the obtained descriptor data. Line segments 
which pass this evaluation are power line candidates. Another possibility is to use deep 
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Figure 9. 
The ROI selection of an electrical tower.

generated when a flexible cable is suspended between two poles or towers. This type 
of object appears in images of electrical infrastructure taken from non-top-down 
views, which could be obtained using manned aircraft or UAVs. Different methods 
for catenary detection that includes the use of matching filters, line segment pool 
and a graph-cut model as is shown in [17] exist, also using geometrical consider-
ations and data structures of segment concatenation [18]. The results of catenary 
detection based on a segment concatenation are shown in Figure 8.

3. Tower detection process

The transmission towers are important elements of the electric transmission 
system. They require maintenance of its components such as the isolators and the 
power line connections.

The tower detection process is done mainly using computer vision techniques 
based in machine learning methods such as neural networks, SVM [19, 20] and 
recently deep learning [1]. The process requires a training stage. In this case a clas-
sifier is trained using a set of labelled images. A manual tool is used for labelling, 
this is for selecting the region of interest (ROI) where the tower is located as shown 
in Figure 9. In the selected ROI, a set of descriptors is extracted. The descriptors 
are the input to the classifier. After that, a detection stage operates with frames of 
videos. The linear information of the scene can be obtained using line detection 
methods. This can be useful to simplify the scene. The tower detection process is 
composed of two stages, training and detection, as shown in Figure 10. The result 
of the tower detection process is in Figure 11.

Figure 8. 
Catenary detection based in a segment concatenation.
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For an autonomous inspection system based on UAV, the tower can be a distinctive 
element for the navigation process. However, it is an element that may be at risk of 
collision. Autonomous systems must be prepared to use towers as a reference area and 
also to avoid collisions with them.

The recent advances in computer vision methods for object detection towards 
the use of deep learning methods. These algorithms can be implemented on 
onboard computers provided with GPU (graphics processing unit) for accelerating 
computation [1].

4. Autonomous navigation process

Vision-based autonomous navigation for UAVs is a complex process that 
requires short computing times and accurate measurements in order to provide 
suitable and safe control commands to the device. The UAV navigation requires 
real-time measurements to produce a response within a specified time (at least 
100 ms); otherwise, severe consequences including failure may affect the device. 
The simulation of a control system for a fixed-wing UAV that uses vision-based 
navigation for power line tracking is presented in [21]. In a previous work, the 

Figure 10. 
Training and detection stages for tower detection.

Figure 11. 
Tower detection examples using SVM and a grid of descriptors.
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The tower detection process is done mainly using computer vision techniques 
based in machine learning methods such as neural networks, SVM [19, 20] and 
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sifier is trained using a set of labelled images. A manual tool is used for labelling, 
this is for selecting the region of interest (ROI) where the tower is located as shown 
in Figure 9. In the selected ROI, a set of descriptors is extracted. The descriptors 
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videos. The linear information of the scene can be obtained using line detection 
methods. This can be useful to simplify the scene. The tower detection process is 
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of the tower detection process is in Figure 11.
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For an autonomous inspection system based on UAV, the tower can be a distinctive 
element for the navigation process. However, it is an element that may be at risk of 
collision. Autonomous systems must be prepared to use towers as a reference area and 
also to avoid collisions with them.

The recent advances in computer vision methods for object detection towards 
the use of deep learning methods. These algorithms can be implemented on 
onboard computers provided with GPU (graphics processing unit) for accelerating 
computation [1].

4. Autonomous navigation process

Vision-based autonomous navigation for UAVs is a complex process that 
requires short computing times and accurate measurements in order to provide 
suitable and safe control commands to the device. The UAV navigation requires 
real-time measurements to produce a response within a specified time (at least 
100 ms); otherwise, severe consequences including failure may affect the device. 
The simulation of a control system for a fixed-wing UAV that uses vision-based 
navigation for power line tracking is presented in [21]. In a previous work, the 

Figure 10. 
Training and detection stages for tower detection.

Figure 11. 
Tower detection examples using SVM and a grid of descriptors.
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Figure 13. 
UAV system.

Figure 14. 
Autonomous mission process stages.

Figure 12. 
Simulation of autonomous navigation.
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simulation of a visual-based navigation process for power line following in a 3D 
environment using a closed loop control was presented in [22].

Two pictures of the simulator of autonomous navigation using power line detec-
tion are shown in Figure 12.

This camera provided images that are suitable for the line detection process. The 
frame rate permits closed loop control. The UAV system consists of a set of related 
components that are shown in Figure 13. The main components of the system are 
the UAV flight platform; the flight controller; the sensors that include GPS and 
inertial measurement unit (IMU) that includes three-axis magnetometers, gyro-
scopes, accelerometers and compass; camera; and the onboard computer to run the 
developed software. In this system, the flight controller receives setpoints from the 
onboard computer and sends sensed information to it. The vision sensor (camera) 
sends frames of images to the onboard computer.

Different kinds of missions for power line following and terrain inspection can 
be established.  The main stages of a complete mission are shown in Figure 14.

5. 3D reconstruction of electrical infrastructure

Effective and efficient generation of 3D models from a set of 2D images is a well-
studied problem in the literature and the principle of numerous computer vision 
applications. The keypoint detection and the 2D descriptor extraction are the first 
steps in the reconstruction process followed by the matching. There are different 2D 
descriptors such as SIFT, ORB, BRISK and FREAK that can be used in the context 
of 3D reconstruction using structure from motion (SFM). From the study [3], it can 
be concluded that it is possible to use the aforementioned descriptors in electrical 
tower reconstruction context. Also, the results shown that the SIFT descriptor pres-
ents the best performance in the generated cloud of points, but it spends more time 
than using other descriptors. Another good option is the use of the ORB descriptor. 
In Figure 15, a result using SIFT is presented.

Current developments tend towards the use of other types of sensors such as 
LIDAR whose information can be merged with information from cameras with 
different spectra.

Also it is important to develop an online process of object recognition by using 
simultaneous localization and mapping (SLAM). This can help to improve the 
object detection stage in order to obtain a more robust navigation system.

Figure 15. 
Results of 3D reconstruction of electrical infrastructure.
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Figure 13. 
UAV system.

Figure 14. 
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Figure 12. 
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simulation of a visual-based navigation process for power line following in a 3D 
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Different kinds of missions for power line following and terrain inspection can 
be established.  The main stages of a complete mission are shown in Figure 14.
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Effective and efficient generation of 3D models from a set of 2D images is a well-
studied problem in the literature and the principle of numerous computer vision 
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steps in the reconstruction process followed by the matching. There are different 2D 
descriptors such as SIFT, ORB, BRISK and FREAK that can be used in the context 
of 3D reconstruction using structure from motion (SFM). From the study [3], it can 
be concluded that it is possible to use the aforementioned descriptors in electrical 
tower reconstruction context. Also, the results shown that the SIFT descriptor pres-
ents the best performance in the generated cloud of points, but it spends more time 
than using other descriptors. Another good option is the use of the ORB descriptor. 
In Figure 15, a result using SIFT is presented.

Current developments tend towards the use of other types of sensors such as 
LIDAR whose information can be merged with information from cameras with 
different spectra.

Also it is important to develop an online process of object recognition by using 
simultaneous localization and mapping (SLAM). This can help to improve the 
object detection stage in order to obtain a more robust navigation system.
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6. Conclusions

Real-time power line detection is a challenging problem that must be performed 
using different methods such as edge detectors, machine learning methods and 
3D computer vision. The main problems inside this are the image correction due 
the abrupt movements of the UAV, the difference of backgrounds found while 
flying and illumination changes. The tower detection using deep learning methods 
is recommended for a robust detection. The proposed vision strategy could help 
monitor the environment of power lines in order to prepare preventive maintenance 
for reducing risk of tree branches that can affect the electrical infrastructure.

As future work, a technique based on SLAM could be useful to deal with com-
plex scenes in order to improve the process and extract 3D information as an online 
process using an onboard computer.

It is mandatory to focus the future work in collision avoidance systems that allow 
to protect both UAV and electrical infrastructure in order to minimize the risk of 
damages during inspection process or autonomous navigation. Motion prediction is 
necessary for path planning in autonomous systems, and risk assessment for intel-
ligent vehicles is fundamental to improve the safety.

The development of a system with a fixed wing platform could be useful for 
long-distance inspections. Finally, the study of the effects of oscillation of the 
detected angle between the UAV and the power lines can be considered in order to 
improve the control strategy using methods such as filtering.
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6. Conclusions

Real-time power line detection is a challenging problem that must be performed 
using different methods such as edge detectors, machine learning methods and 
3D computer vision. The main problems inside this are the image correction due 
the abrupt movements of the UAV, the difference of backgrounds found while 
flying and illumination changes. The tower detection using deep learning methods 
is recommended for a robust detection. The proposed vision strategy could help 
monitor the environment of power lines in order to prepare preventive maintenance 
for reducing risk of tree branches that can affect the electrical infrastructure.

As future work, a technique based on SLAM could be useful to deal with com-
plex scenes in order to improve the process and extract 3D information as an online 
process using an onboard computer.

It is mandatory to focus the future work in collision avoidance systems that allow 
to protect both UAV and electrical infrastructure in order to minimize the risk of 
damages during inspection process or autonomous navigation. Motion prediction is 
necessary for path planning in autonomous systems, and risk assessment for intel-
ligent vehicles is fundamental to improve the safety.

The development of a system with a fixed wing platform could be useful for 
long-distance inspections. Finally, the study of the effects of oscillation of the 
detected angle between the UAV and the power lines can be considered in order to 
improve the control strategy using methods such as filtering.
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Abstract

The autonomous construction of environment maps using mobile robots is a fun-
damental problem of robotics; this is because virtually all tasks performed by robots 
need a representation of the working environment to operate. Although many works 
have addressed this problem known as SLAM, it still remains open; since most of the 
solutions do not consider a planner that allows the robot to explore autonomously 
the working environment or the works that consider it, they have developed slow 
algorithms that do not guarantee a total coverage of the environment or an opti-
mal development of the exploration, which may result in maps of poor quality or 
definitely not usable given this lack of information. Thus, this work presents a new 
exploration method based on the random exploration graph (REG), which, unlike 
its predecessor, defines a systematic analysis of the next positions to be explored 
eliminating randomness in decision-making and thus minimizing the amount of 
movements that the robot must make to reach them and the time required to achieve 
total coverage of the environment. Additionally, a series of tests carried out on the 
proposed method are presented, and the results obtained in classical variables such 
as time and distance allow to validate the efficiency of our approach.

Keywords: SLAM, integrated exploration, path planning, unknown environments, 
random exploration graph

1. Introduction

Path planning is a well-known topic in the area of robotics whose main objective 
is to determine the best way for a robot to navigate autonomously in a work environ-
ment. Although many areas of robotics have benefited from research in this field, 
one of the most recent is its application to the problem of autonomous construction 
of environment maps, also known as integrated exploration or active SLAM, where 
the basic principle of operation consists of a mobile robot that must move through 
an unknown environment while constructing an environment map of it.

In this context, one of the first contributions can be traced to the work of Feder 
et al. [1], in which the authors describe an adaptive trajectory planning technique 
applied to the SLAM problem, where through the minimization of the inverse of the 
error covariance as an objective function, the next position is determined where the 
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robot must move with the intention of maximizing the information obtained, while 
it simultaneously localizes and constructs the environment map.

Commonly, the development of SLAM path planners requires dynamic and agile 
algorithms that can be adapted to new operating conditions in environments when 
obstacles are detected; with this in mind, many proposals have been developed by 
various researchers [2–10], being one of the most popular the sensor-based random 
tree (SRT) presented by Oriolo, Freda, and Franchi in [11]. This method is based on 
the random generation of robot configurations within a local security area detected 
by the robot’s sensors, from which a compact tree-type data structure is con-
structed, which represents the road map of the area explored. In this structure, the 
leaves represent a previously reached robot position and their respective representa-
tion of the environment segment detected by the onboard sensors in that position 
called local safety region (LSR).

The SRT method randomly selects free borders detected at the current position 
of the robot where he can continue the exploration task; in case it is not possible 
to find one, the robot will automatically go to its parent node to look for new areas 
with exploration possibility. The process ends when the backspace behavior leads 
the robot to the root of the tree.

However, despite the popularity of the SRT scheme, it has certain problems 
that should be considered. The first of them lies in the ignorance of the state of 
the structure that is being built, where it is not possible to know if the nodes of the 
structure left behind contain more areas available for exploration, and therefore 
the total coverage of the environment cannot be guaranteed. The second problem 
depends on the first one, since not knowing which areas of the environment you 
remain unexplored, it is necessary for the robot to go back to parent nodes to find 
out if it is possible to continue exploring, which causes the structure to be traveled 
twice, and consequently the exploration time is very high.

From the above, a new method based on the SRT is developed by Franchi and 
others [4] for the multirobot case known as the sensor-based random graph (SRG). 
This method transforms the tree structure generated by the SRT method into an 
exploration network when the robot finds a safe way to travel between two nodes. In 
this method, a probability proportional to the length of the arc of the free edges that 
are in the node in which the robot is located is used to determine which will be the 
next position to explore; in addition, the way to verify the structure to establish the 
way to revisit zones already explored to continue the exploration is carried out by 
means of the generation of a tree of minimum expansion with all the adjacent nodes 
of the network, choosing that of the adjacent node with the greater weight with 
respect to the length of the free limits of the frontiers.

The SRG method presents similar problems to those of the SRT method: 
although the data structure is transformed into an exploration graph, the struc-
ture is not fully exploited to make exploration more efficient, because the way of 
revisiting nodes to verify unexplored areas creates a tree structure, which generates 
a discontinuous path that forces the robot to go through the parent nodes, ignoring 
the versatility of the graph. In fact, if the number of adjacent nodes and the number 
of nodes that conforms the environment are too large, the time to complete the 
exploration is increased. Also, like the SRT method, the robot decides the next posi-
tion to explore without considering that the randomness of the selection causes too 
many orientation changes, which directly affects the odometric system.

More recently, Toriz et al. [12] presented a new approach known as the random 
exploration graph (REG), which optimizes map coverage in the exploration process. 
This method is based on the working principle of the SRT method and adapts it 
to build an exploration graph structure. Although this method has a probabilistic 
nature that can cause an excess of movements in the robot to complete its task and 
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increase the exploration time, one of its main advantages is the accumulation of 
knowledge acquired through the concept of border control, which stores informa-
tion about areas that the robot left behind in the exploration process and that needs 
to be revisited to complete the exploration. This feature, plus the generated graph 
structure, allows an optimal return to unexplored areas to complete the exploration.

As it can be observed, the methods presented here maintain a random character 
to define the next position to explore, the problems found in these algorithms are 
the excess of time required to complete the task, and in some cases the uncertainty 
on the total coverage of the exploration area, which can have repercussions on 
partially constructed or low-quality maps, the reason why an integrated exploration 
strategy created from these methods would not be viable.

Thus, this work presents an approach to the problem of path planning of unknown 
environments based on the basic principles of the REG method; however, unlike this 
method, our proposal eliminates the randomness of the choice of the next frontiers to 
explore and, instead, relies on an analysis of the best frontier whose choice criterion is 
based on minimizing the amount of movements the robot has to make to reach it and 
maximizing the amount of information from the environment that will be acquired.

2. Extended random exploration graph

The exploration strategy presented in this research is a modified version of the 
REG algorithm, where the main difference lies in the way in which the robot will 
plan the exploration trajectory by performing a deterministic analysis of the next 
position to be explored; the algorithm is shown in Figure 1.

Figure 1. 
Extended REG algorithm.
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The initial node considered in the algorithm will be the starting and fin-
ishing node, and as in the rest of the exploration structure, it will contain a 
position reached by the robot (in this case it will be the initial qinit position), as 
well as a representation of the environment surrounding it known as the local 
security region (LSR) where the robot will be able to navigate without the risk 
of colliding with any obstacle. With this node created, the cycle controls the 
exploration process.

Next, in each iteration k of the algorithm, the frontiers of the nodes adjacent to 
the current node are evaluated with the intention of verifying which free frontier 
segments with possibility of exploration of these are of the current LSR. The nodes 
that present positive intersections in this evaluation will be updated eliminating 
the free frontier segments of both the neighboring node and the current node, 
with the intention of not considering these frontiers in a possible return of the 
robot to continue with the exploration. In addition, the verification of intersec-
tions between nodes is used to modify the structure of the exploration graph by 
adding edges between nonadjacent nodes as long as there are safe roads to travel 
between them (see Figure 2). The described analysis is performed by the function 
CURR_INTERSECTION.

After the analysis of the frontiers of neighboring nodes covered by the new LSR 
and the modification of the exploration structure with new edges, the next step is to 
identify the remaining free frontiers F of the current position, which is performed by 
the FRONTIERS function. For each of the frontiers found, if they exist, an approxi-
mation point will be determined, which will serve to prioritize the free frontiers, 

Figure 2. 
Modification of the exploration graph structure through the insertion of new edges between nonadjacent nodes. 
(a) The insertion of the edge between qi-1 and qi + 1 nodes is not possible (dotted red line) since there is no safe 
path between the nodes. (b) The insertion of the edge between the qi-1 and qi + 1 nodes is not possible (dotted red 
line) since, although there is a collision-free path between the nodes, the intersection of the LSRs does not have 
enough space to navigate safely between the nodes. (c) The insertion of the edge between the qi-1 and qi + 1 nodes 
is possible (dotted green line) since there is a collision-free path and enough space at the intersection of the LSRs 
to navigate safely.
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ranking them according to the effort required to reach them (FRONT_DET func-
tion) and choosing a new frontier to explore which has the highest hierarchy.

The approximation point is defined as the midpoint of the arc segment formed 
by the frontiers, if they can be covered in their entirety by the threshold defined by 
the LSR area (see Figure 3).

In the case that the criterion of choice of approximation point is not met, it will be 
redefined by taking the midpoint of the arc length proportional to the area that can be 
covered by the LSR, taken from the initial end of the border. With this new point chosen 
to continue the exploration, the frontier or segment of it, as the case may be, is removed 
from the group of free borders found by the REMOVE function (see Figure 4).

With the new frontier to explore chosen and the approximation point of it 
defined, the DISPLACE function will obtain the new qdest position to visit to 
continue the exploration. This is done by taking a step of dimension α * r in the 
direction of the border approximation point, where the parameter α represents the 
defined radius of the LSR and the value r < 1 will guarantee that the new position 
will remain within it. Once the qdest position is obtained, the MOVE_TO function 
will plan the path and take the robot to this new position.

In the qdest position, the robot will calculate the surrounding space Sdest of this 
position (PERCEPTION function) and the VERIFIES function will determine 
precisely which is the real portion of the free frontier that was covered by this new 
LSR. In case the chosen frontier has not been fully covered, the remaining portion 

Figure 3. 
Hierarchy of frontiers.
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Figure 2. 
Modification of the exploration graph structure through the insertion of new edges between nonadjacent nodes. 
(a) The insertion of the edge between qi-1 and qi + 1 nodes is not possible (dotted red line) since there is no safe 
path between the nodes. (b) The insertion of the edge between the qi-1 and qi + 1 nodes is not possible (dotted red 
line) since, although there is a collision-free path between the nodes, the intersection of the LSRs does not have 
enough space to navigate safely between the nodes. (c) The insertion of the edge between the qi-1 and qi + 1 nodes 
is possible (dotted green line) since there is a collision-free path and enough space at the intersection of the LSRs 
to navigate safely.
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will be added to the list of free frontiers F of the previous node. Thus, if the F list of 
the node is not empty, its header will be added to the list of nodes with exploration 
possibility, also known as frontier control (see Figure 5).

After verification and validation of the structure with the new node, the ADD 
function will attach it to the exploration graph, and the objects on the map being 
constructed will be extended with the new information collected. At this point, the 
destination information (qdest and Sdest) obtained at the previous point will become the 
current node information (qcurr and Scurr), and the described process will start again.

When the robot fails to find a new position to explore in the current node, i.e., 
there are no more free frontiers, one of the nodes contained in the frontier control 
will be chosen to continue the exploration, where the choice of it will be determined 
by the A* search algorithm in bidirectional way, where a path will extend from the 
current node to the frontier control nodes and from the nodes in the frontier control 
to the current position, ending when some path P is found (see Figure 6). At this 
moment the index of the node on which the trajectory was found will be removed 
from frontier control. This task is carried out by the FIND_PATH function.

Figure 5. 
Frontier control. (a) Environment almost explored, where the arcs Fi and qj represent unexplored free frontiers. 
(b) List of nodes not fully explored (frontiers control).

Figure 4. 
Criterion of approximation to the new frontier to explore. (a) The robot makes an incorrect approach to the 
new frontier, since the new LSR of the chosen position leaves two free frontiers in opposite directions. (b) Correct 
choice of the next position to explore, since, although the new RSL is unable to cover the border completely, no 
more than one free border is left.
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Figure 6. 
Bidirectional application of the A* algorithm from the current position of the robot to the nodes with possibility 
of exploration, stored in the frontiers control.

Figure 7. 
Flowchart of the extended REG method.
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The MOVE_TO function will then use the path P obtained in the previous step 
to take the robot to the node from where scanning will continue. In this way, the 
method will continue executing the described process, until there are no more free 
frontiers in the current node, and the frontier control list is empty; at this point, the 
robot will look for a path to return to the initial node from where the exploration 
process starts. Figure 7 shows the flow diagram of the extended REG algorithm.

3. Experimental results

Numerous experiments were carried out with the intention of validating the 
accuracy and consistency of the proposal made in this investigation; in addition, 
typical quantitative variables used in the field of exploration methods were ana-
lyzed, such as exploration time, distance traveled, and total environmental cover-
age, which were compared with data obtained by other methods such as SRT [11], 
SRG [6], and REG [12], which allows us to explain the efficiency of our method.

With respect to the integrated exploration paradigm, our exploration approach 
was designed to operate under the general concept of any SLAM method; however, 
for the tests performed, it was determined to use the method presented in [13] given 
the integral way of exploiting data from the work environment.

The tests were conducted using simulated information from a pioneer P3DX dif-
ferential robot, which was equipped with a Hokuyo URG-04LX range sensor with a 
maximum detection range of 4 meters, an angular resolution of 0.360°, and a scan-
ning angle of 240°. The environment used for the experiments is a modified version 
of the corridors of the Montpellier Computer, Robotics and Micro-electronics 
laboratory (LIRMM) (see Figure 8).

Figure 9 shows the exploration structure generated by the extended REG method 
after its application in the LIRMM environment; in it, the edges represent routes that 
the robot can navigate without the risk of colliding with obstacles in the environment.

Figure 8. 
The LIRMM environment.

Figure 9. 
Generated graph structure by the proposed exploration approach.
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Tables 1 and 2 show the comparative results of the time and distance variables 
traveled by the robot using the SRT, SRG, REG, and Extended REG exploration 
methods; the results were obtained on the basis of 30 tests. In these tables, it is easy 

Table 1. 
Time needed for the Extended REG, REG, SRT, and SRG exploration methods to explore the LIRMM environment 
on the basis of 30 tests
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to observe that the Extended REG requires approximately 25% less time than the best 
average time of the other three methods, and about 16% in the best average distance 
was reported by the other three methods. In addition, it is possible to observe that 

Table 2. 
Distance traveled for the Extended REG, REG, SRT, and SRG exploration methods to cover the LIRMM 
environment on the basis of 30 tests
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the standard deviation in both variables is very low compared to the other methods 
due to the deterministic way of choosing the next position to explore, which allows 
sustaining the affirmation that the method will always obtain the same results.

Table 3. 
Surface covered of the LIRMM environment for the Extended REG, REG, SRT, and SRG exploration 
methods on the basis of 30 tests
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Figure 10. 
Consistency test of the Extended REG method applied to the SLAM problem.

Figure 11. 
Map obtained with the Extended REG method applied to the SLAM problem.

Moreover, since our proposal is based on the REG algorithm, one of the main 
benefits contained in the extension presented in this paper is the guarantee with a 
high degree of confidence that the environment will be fully covered in most cases, 
because it is possible to have a constant knowledge of the state of unexplored areas 
of the environment thanks to frontier control. Thus, to evaluate the coverage of the 
environment by the exploration method, this was divided into grids, which served 
to determine which of them had been explored (Table 3).

Finally, the algorithm of path planning for unknown environments presented in 
this article was developed with the intention of being integrated to SLAM algorithms 
to obtain an integral tool for the construction of autonomous maps. Although the 
Extended REG method could be used as a control module with any SLAM algorithm, 
for the tests performed, it was decided to use the method developed by Pedraza et al. 
[13] given the similarity of approaches when applying the methods in unstructured 
environments. The tests and results obtained are shown in Figures 10 and 11.

4. Conclusions

In this work, a strategy was presented for the problem of exploration of environ-
ments for SLAM; the approach presented is based on the REG algorithm introduced 
in [12], which builds a graph-like data structure that integrally exploits the experi-
ence acquired during the exploration process to perform this task efficiently. The 
main contribution of the exploration proposal made in this article is the use of a 
simplified criterion to find the next position to explore based on the hierarchy of 
free borders detected in an instant of time, which allows the elimination of unnec-
essary movements of the robot, increasing its efficiency. The main advantage of this 
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choice criterion is that the robot will travel short distances to the position closest to 
being explored, reducing the amount of time needed to reach them, which can be 
verified in the results of the tests performed to the method.

Also the Extended REG method is designed to be integrated in the context of a 
SLAM method, which facilitates the construction of environment maps simplify-
ing the task of planning paths in unknown environments, which allows giving true 
autonomy to the robot responsible for obtaining the environment map eliminat-
ing the dependence on decision-making by a human operator. Finally, a series of 
simulations of the proposed integrated exploration strategy were carried out, which 
allowed us to validate our approach.
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Chapter 6

Model of the Optimal Maneuver
Route
Jan Nohel, Petr Stodola and Zdeněk Flasar

Abstract

The chapter deals with the mathematical model for planning the optimal
movement route, which has been implemented in the Tactical Decision Support
System (TDSS). The model processes and evaluates the data contained in the five
raster layers, which are tactically relevant for planning the movement route of
troops or autonomous vehicles on the battlefield. The basis for calculating the
optimal movement route is a ground surface layer, which is then modified by
algorithmic and criterion relationships with the layers of hypsometry, weather
attack, and the activities of enemy and friendly units. The result of mathematical
model calculations is a time-optimized and safe movement route displayed on the
topographic basis. The experiments realized have verified the function of the opti-
mal movement route model when neither the reconnaissance group nor the auton-
omous vehicle was observed by the enemy. The total time of the UGV with the
use of the TDSS to cover the route of maneuver was 67 minutes shorter than the
real time of the BRAVO group movement with the use of the TDSS and
105 minutes shorter than the real time of the ALFA group without the use of
the TDSS. The comparison of responses to the attack shows that the BRAVO
group using the Maneuver Control System (MCS CZ) as part of the TDSS
has destroyed the attackers faster by 71 seconds than the ALFA group without
the use of the TDSS.

Keywords: autonomous vehicle navigation, optimal route of maneuver,
off-road capability, passability, terrain analysis

1. Introduction

Over the past 10 years, a considerable progress has been observed in the field
of autonomous systems in various fields of activity. Currently, autonomous
systems are used and will continue to be used in all spatial dimensions, i.e.,
ground, aerial (space), as well as maritime ones. One of the criteria for the division
of autonomous systems is a degree of autonomy. The system (vehicle) can be
fully autonomous, when all the functions that the system has to carry out are
controlled by a vehicle itself. The semiautonomous system is autonomous only in
some of its partial functions, when the complex decision function is edited and
controlled by the operator. In the case of ground autonomous systems
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(Unmanned Ground System (UGS)), it is necessary to deal with two
management processes in terms of their movement. On the one hand, it is a
direct movement control in the field where the most important factors are
microrelief and various types of obstacles and, on the other hand, the process of
planning and creating the optimal movement route itself before completing the
task itself.

In the past, the problem of searching for the optimal movement route was
already dealt with using both vector and raster graphics. Based on the values of
edges or raster cells, the shortest route between two points can be found using
the mathematical algorithms described in [1, 2]. Some publications can also be
found that describe models for moving different elements through the terrain.
Based on passability parameters, they assess the movement possibilities for per-
sonnel and wheeled and tracked vehicles. These models can be found in [3–5].
The vector format of geographic data offers another route planning for autono-
mous vehicles. This format is commonly used by GPS receivers with the use of
the road structure and graph theory. The graph of the road structure includes
nodes and edges in the form of crossroads and roads. It is called “edge-defined,”
which means that the only criteria are the edge value and the movement direc-
tion. The shortest path includes the sum of all edge values between the beginning
and the end with the smallest value. Outside the network of paths, the vector
model navigates directly to the target, without any analysis of the influence of
the vegetation and the relief. Another planning strategy of movement for auton-
omous vehicles can be a “potential field” consisting of a limited space of artificial
potential values. Autonomous vehicles operating in the area mentioned move
from the position with the highest potential to the position with the lowest
potential. However, it is very difficult to use the potential field in
real-world situations.

Many articles deal with a series of “tracking strategies,” route planning, and
obstacle avoidance in the case of autonomous vehicles. For example, [6] deals
with obstacle avoidance in an urbanized environment and the comparison of
techniques for the movement planning of autonomous and semiautonomous
vehicles. The content of most articles aims at the movement planning strategies.
These are characterized by route planning algorithms implemented in the planning
process.

The tracking strategies, threat assessment, and route planning as part of the
collision avoidance system are described in [7]. The most important part
evaluates particular current methods in each collision avoidance strategy according
to their advantages and disadvantages. The safety and fast resolution of collision
situations is an important precondition for the efficient operation of fully
automated vehicles.

The potential of unmanned marine vehicle (UMV) development is analyzed in
[8]. One of the goals of the US Navy in the field of UMVs is to improve their
autonomous movement planning and integrate the obstacle avoidance process at
sea. The purpose of the UMV development mentioned is to prevent anticipated
marine accidents and the future use of fully autonomous ships.

The cross-country movement analysis and the terrain passability testing are
specified in [9]. Terrain passability is affected by many factors; it represents a key
factor in achieving success in military operations. The geographic factors of the area
of operations and the technical parameters of the vehicles define the capabilities of
military units to move on the battlefield.

The optimal movement route model implemented in the Tactical Decision
Support System (TDSS) can be used for planning and creating a movement route.
The TDSS has been developed at the University of Defense in Brno, the Czech
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Republic, since 20061. The implemented model of the optimal movement route uses
a raster digital data model, map algebra algorithms, and associated criterion assess-
ments of the effects of the situation to process the effects of the situation on the
battlefield. The model raster has an optional resolution, which means it indicates
how large area of a given terrain the cell represents. An important feature of each
raster cell is its value (attribute), which is specified by a particular or continuous
character of the represented terrain area. It may be a landform, a terrain slope,
weather effects, the enemy activity, or the time of its covering in a predetermined
manner. The raster format of the network graph allows the layers of individual
situation variables to be flexibly updated and mathematically combined; the layers
of the individual situation variables affect the process of creating the movement
route. Depending on the importance or the character of information, each raster cell
acquires an attribute from a minimum value to ∞, which represents the time of
covering the raster cell in hundredths of a second. The algorithm of the optimal
movement route model then searches for the path between the two selected points
with the lowest total sum of attribute values on the route; this allows the estimated
total time of covering the route to be obtained. The TDSS uses the combination of
Floyd-Warshall and Dijkstra’s principle, described in [1, 10].

The model processes and evaluates tactical geographical information for three
methods of troop movement:

• Dismounted movement

• Wheeled vehicles

• Tracked vehicles

Each method of the movement is influenced by specific characteristics of speed,
terrain passability, and weather. The resulting movement route, evaluated by the
model, is calculated with respect to the real terrain passability, the shortest time
between the start and end points, and the safety. The enemy activity is the worst
predictable part of the model due to its uncertainty and variant design.

2. Model concept

The concept of the optimal movement route model uses rasterized geographic
data of the Digital Terrain Model and the Digital Relief Model for its work. The
structure of the model is composed of several matrix layers that represent individ-
ual groups of horizontal (HF) and vertical (VF) factors of the passability (move-
ment demands) of the area and safety. Each raster cell contains a numerical value of
the difficulty of its covering (Pnp, cost surface of passability), derived from the
current state of the effects of task variables at a given position in the area. These are
represented by HF and VF related to the difficulty of movement, which depend on
the criterion evaluation of their occurrence characteristics, described in [11, 12].

When designing a movement route of forces and equipment, the model evalu-
ates the following layers:

1 The TDSS is an experimental platform for testing of mathematic algorithmic models, using raster

representation of data, having been developed at the Department of Tactics at the University of Defense

since 2006 by Lt-Col. assoc. prof. Petr Stodola, PhD, and Lt-Col. assoc. prof. Jan Mazal, PhD.
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1. Ground surface layer (Pnp1, HF1)

2. Elevation layer (VF2)

3. Weather layer (HF3)

4. Enemy situation layer (HF4)

5. Friendly forces and equipment layer of (HF5)

The metrics of criterion evaluation are different for each layer in relation to its
character and composition. The basic data for its calculation are cell dimensions, the
average movement speed of a selected element on a given type of the ground
surface that moves across the cell, and the resistance of the factor under consider-
ation. The value calculated through the combination of Pnp1 and all layers of the
model indicates the combined time of covering a given cell, influenced by all terrain
and situation factors, in the form of the combined cost surface of passability (SPnp),
shown in Figure 1.

2.1 Model layers

The calculation of the model combined cost surface of passability consists of
several layers of the task variables that are defined in the following text:

1. Ground surface layer

The ground surface layer forms a basis for further analysis of the model. Its cost
surface of passability (Pnp1) consists of sublayers representing the types of ground
surface as follows, described in [11–13]:

a. Plant and soil cover

Figure 1.
The creation of the combined cost surface of passability (source: own).
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b.Watercourses and water areas

c. Communication over land and buildings

d.Urbanized area

Based on its Pnp1, the effects of other layers of the model are derived.

2. Elevation layer

The hypsometry layer is formed by topography, which enters the calculation of
SPnp through the vertical factor (VF2) of the terrain slope. Its definition can be
formulated as a measure of demanding movement in the elevated terrain. SPnp1,2 is
created by a multiple of Pnp1 with a value of VF2. It varies according to the type of
movement as a vertical factor of the terrain slope for vehicles (VF2V) and for
dismounted units (VF2C). The calculation of these factors is expressed by mathe-
matical formulas (1) and (2). In the case of the movement of tracked or wheeled
vehicles, it is possible to refer to the so-called linear influence of the terrain slope on
the average speed of a given type of a vehicle. The vehicle engine load increases
evenly with the rise in the terrain slope, and, under unchanged operating condi-
tions, it causes a steady drop in speed. On the contrary, when driving downhill, the
vehicle speed increases steadily. However, its gravity increase, given by the down-
hill driving and the pull of gravity, is usually broken by the driver using the braking
system of the vehicle. The vertical factor of the terrain slope for vehicles (VF2V) is
expressed by the mathematical formula as follows:

ð1Þ

The limiting passable terrain slope is set for tracked vehicles in the range of�30° to
+30° and for wheeled vehicles of�30° to +20°, derived from [14–16]. Out of the range
of these values, the terrain slope in the model is assessed as impassable, with VF2 = 0.
The course of VF2V has a linear character given by constant value KV2V = �0.004.

The difficulty of the movement of a dismounted element in the field has a
nonlinear course as opposed to vehicles. The terrain slope (ω) affects the
dismounted movement downhill or uphill differently depending on the topography
and the safe movement controllability. Its difficulty in walking uphill increases
exponentially as the slope increases. When walking downhill, it drops down up to
20°, when it is equal to the difficulty of movement on the flat ground. When
walking downhill with the angle of slope of more than 20°, the difficulty increases
again with the increasing slope. Such a course is caused by a degree of gravity that
facilitates the movement at first. However, when the terrain slope is more than 20°,
it forces the dismounted movement of individuals to brake in order to maintain a
safe control over their movement. The influence of the terrain slope on the
dismounted movement is expressed by the vertical factor of the terrain slope for
dismounted movement (VF2C). The coefficient of the vertical factor for dismounted
individuals (KV2C) is included in its calculation shown in Figure 2, which repre-
sents the degree of difficulty of the dismounted movement for a given terrain slope.
Its values have been borrowed from the thesis developed by Lenka Mezníková,
described in [17]. The limiting passable terrain slope for the dismounted movement
is set in the range of �50° to +50°.
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The KV2C curve, shown in the graph in Figure 2, has been put through the third
degree polynomial curve to generate a regression equation as follows:

KV2C ¼ �0:0121
ω

10

� �3
þ 0:0968

ω

10

� �2
þ 0:3156

ω

10
þ 0:9933 (2)

The value of the regression equation reliability is 0.9875.

3. Weather layer

In the weather layer, snowfall and rainfall are taken into account as direct effects
on the terrain passability. Both of these effects are characterized by the overall
impact of its occurrence in [18], which can be defined in the model based on the
weather forecast or meteorological radar outputs. Snowfall limits the terrain
passability on the entire terrain area. On the roads, it reduces the adhesion of their
surface to the chassis of moving vehicles, even on a thin layer of snow.

To calculate the possibilities of passability in the field with a zero slope, the
coefficients of the snow layer influence (K3.1) related to particular types of moving
elements were mathematically derived, as follows:

• For tracked vehicles: K3.1P = 0.01205

• For wheeled vehicles: K3.1K = 0.0192

• For the dismounted movement: K3.1C = 0.008

The combination of the influences of the terrain slope and the snow layer
thickness implements the coefficient of the snow-covered topography (O3.1) in the
calculation of HF3.1, which is differentiated according to the type of a moving
element. O3.1 attains the following values:

• For tracked vehicles: O3.1P = 0.034

• For wheeled vehicles: O3.1K = 0.0576

Figure 2.
Coefficient of vertical factor for dismounted movement (source: own).
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• For the dismounted element: O3.1C = VF2C

For the movement of tracked and wheeled vehicles, the derived mathematical
formula is used as follows:

HF3:1P=K ¼ 1� K3:1P=K � L3:1
� �� O3:1P=K � ω

� �
(3)

For the movement of the dismounted element, the derived mathematical for-
mula is used as follows:

HF3:1C ¼ 1� K3:1C � L3:1ð Þ � 1�O3:1Cð Þ (4)

The limiting passable snow thickness for the dismounted element is set for
90 cm of snow since a thicker layer of snow is negotiable with great difficulties or
even impassable for the dismounted element.

The model of the movement route for forces and equipment evaluates the
effects of rainfall only for tracked and wheeled vehicles that move off the paved
roads. The limitation of the terrain passability due to rainfall is generally assessed in
four steps based on the precipitation amount for the purpose of creating a move-
ment route in the model. The degree of limitation of individual steps is derived from
the reduction in vehicle climbing performance, which defines the approximated
reduction in vehicle climbing performance up to 50% when moving on a muddy soil
surface. The muddy soil surface is defined generally as a precipitation amount larger
than 40 mm in 3 days. Based on the meteorological forecast or the measurement of
the abovementioned precipitation amounts, the model user can set a horizontal
rainfall factor (HF3.2), which attains the values listed in Table 1.

4. The enemy situation layer

The enemy situation layer evaluates the safe passability of the area, depending
on the possibilities of effective fire of his main weapons. It is created by the results
of collecting the information on the enemy forces and equipment, which are
defined in the model by their geographical position and the attributes of the tactical
and technical characteristics of his weapons. From the location of their deployment,
the area that is visible within the effective range of enemy weapon systems is then
evaluated. Further, the model evaluates the danger area (which is impassable) of
detected unexploded ammunition, improvised explosive devices (IEDs) or mine-
fields, which is set based on the weight of detonating charge and the type of
ammunition. The degree of danger expresses the degree of difficulty of covering the
given area in the form of horizontal factor of the enemy situation (HF4). The
database of forces and equipment enables the rapid editing of enemy forces and
equipment.

HF3.2 Rainfall amounts

0 impassable Larger than 80 mm

0.25 Larger than 60 mm

0.5 Larger than 40 mm

0.75 Larger than 20 mm

1 without an effect Smaller than 20 mm

Table 1.
The value of HF3.2 with different rainfall amounts.
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KV2C ¼ �0:0121
ω

10

� �3
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ω

10

� �2
þ 0:3156

ω

10
þ 0:9933 (2)

The value of the regression equation reliability is 0.9875.

3. Weather layer

In the weather layer, snowfall and rainfall are taken into account as direct effects
on the terrain passability. Both of these effects are characterized by the overall
impact of its occurrence in [18], which can be defined in the model based on the
weather forecast or meteorological radar outputs. Snowfall limits the terrain
passability on the entire terrain area. On the roads, it reduces the adhesion of their
surface to the chassis of moving vehicles, even on a thin layer of snow.

To calculate the possibilities of passability in the field with a zero slope, the
coefficients of the snow layer influence (K3.1) related to particular types of moving
elements were mathematically derived, as follows:

• For tracked vehicles: K3.1P = 0.01205

• For wheeled vehicles: K3.1K = 0.0192

• For the dismounted movement: K3.1C = 0.008

The combination of the influences of the terrain slope and the snow layer
thickness implements the coefficient of the snow-covered topography (O3.1) in the
calculation of HF3.1, which is differentiated according to the type of a moving
element. O3.1 attains the following values:

• For tracked vehicles: O3.1P = 0.034

• For wheeled vehicles: O3.1K = 0.0576

Figure 2.
Coefficient of vertical factor for dismounted movement (source: own).
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• For the dismounted element: O3.1C = VF2C

For the movement of tracked and wheeled vehicles, the derived mathematical
formula is used as follows:

HF3:1P=K ¼ 1� K3:1P=K � L3:1
� �� O3:1P=K � ω

� �
(3)

For the movement of the dismounted element, the derived mathematical for-
mula is used as follows:

HF3:1C ¼ 1� K3:1C � L3:1ð Þ � 1�O3:1Cð Þ (4)

The limiting passable snow thickness for the dismounted element is set for
90 cm of snow since a thicker layer of snow is negotiable with great difficulties or
even impassable for the dismounted element.

The model of the movement route for forces and equipment evaluates the
effects of rainfall only for tracked and wheeled vehicles that move off the paved
roads. The limitation of the terrain passability due to rainfall is generally assessed in
four steps based on the precipitation amount for the purpose of creating a move-
ment route in the model. The degree of limitation of individual steps is derived from
the reduction in vehicle climbing performance, which defines the approximated
reduction in vehicle climbing performance up to 50% when moving on a muddy soil
surface. The muddy soil surface is defined generally as a precipitation amount larger
than 40 mm in 3 days. Based on the meteorological forecast or the measurement of
the abovementioned precipitation amounts, the model user can set a horizontal
rainfall factor (HF3.2), which attains the values listed in Table 1.

4. The enemy situation layer

The enemy situation layer evaluates the safe passability of the area, depending
on the possibilities of effective fire of his main weapons. It is created by the results
of collecting the information on the enemy forces and equipment, which are
defined in the model by their geographical position and the attributes of the tactical
and technical characteristics of his weapons. From the location of their deployment,
the area that is visible within the effective range of enemy weapon systems is then
evaluated. Further, the model evaluates the danger area (which is impassable) of
detected unexploded ammunition, improvised explosive devices (IEDs) or mine-
fields, which is set based on the weight of detonating charge and the type of
ammunition. The degree of danger expresses the degree of difficulty of covering the
given area in the form of horizontal factor of the enemy situation (HF4). The
database of forces and equipment enables the rapid editing of enemy forces and
equipment.

HF3.2 Rainfall amounts

0 impassable Larger than 80 mm

0.25 Larger than 60 mm

0.5 Larger than 40 mm

0.75 Larger than 20 mm

1 without an effect Smaller than 20 mm

Table 1.
The value of HF3.2 with different rainfall amounts.
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5. Friendly forces and equipment layer

The model of the optimal movement route evaluates the influence of
availability of fire support executed by friendly forces and equipment based on
their current position and effective range of the main weapon system. The model
evaluates these facts as a supporting factor for the ability to pass through the area
affected by the enemy activity via HF5. HF5 expresses the degree of reduction in
the impact of the enemy activity in terms of supporting the passage of the danger
area of the task performance. The layer of friendly forces and equipment does
not affect the passability of the area as a whole. It expresses only the ability or
capabilities of friendly forces and equipment to support the maneuvering
element by eliminating security risks. Thus, the combined cost surface of
passability includes layers 1.4 and 5 only. The calculation of SPnp1.4,5 is then
expressed by formula (5):

ð5Þ

In the areas where any combat activity of the enemy is not and even
was not detected in the past, its influence on the passability in the model is
not evaluated.

2.2 Combined cost surface of passability

The model of combined cost surface of passability (SPnp) is created by Pnp1 as a
basis for its calculation and then by mathematical operations (division) of Pnp1
with HF and VF of individual layers. The SPnp calculation is then expressed by the
mathematical formula as follows:

ð6Þ

The result of the SPnp calculations is the difficulty of covering a given area in
time affected by all the factors of the situation in the operation area shown in
Figure 1.

3. Possibilities of the enemy activity influence

The enemy activity in the area of operation has the greatest influence on the
planning of the movement route of forces and equipment along with the terrain
passability. Estimating the future activity of the enemy is always a very complicated
and intuitive matter for the analyst who processes it. Due to its uncertainty and
variant implementation, it is impossible to create a mathematical algorithm that
would accurately identify the intention of the enemy. However, it can be visualized
based on the real terrain passability, including the weather attack, known deploy-
ment of enemy forces and equipment, and their activities in the past. The greatest
deviations in the measurements were achieved outside paved roads, where hardly
predictable impact of the microrelief, a driver’s caution, and the dense vegetation of
the terrain were evident.
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3.1 Influence of detected enemy combat activity in the past

The past activity of the enemy includes the activity of his forces and equipment
over the last 6 months, which can be divided according to the observed type of
activity (laid minefields, barriers, IED, IDF, SAF, SVEST attacks, demonstrations,
and other incidents). The geographical position, the type of activity or attack and its
development, the frequency of repetition in the same areas, and the description of
surroundings are critical for this kind of evaluation.

The degree of threat to the safe movement through the area can be expressed by
the horizontal factor of enemy activity in the past HF4.2, which can acquire the
following average values:

• HF4.2 = 0, an impassable area, at a distance of 500 m from the site of the
enemy activity, active minefields and barriers, and the repeated occurrence of
attacks and incidents over the last 3 months

• HF4.2 = 0.5, at a distance of 1000 m from the site of the enemy activity and
the repeated occurrence of attacks and incidents over the last 3 months

• HF4.2 = 1, without affecting the passability, at a distance of more than 1000 m
from the site of the enemy activity, attacks, and incidents older than 3 months

3.2 Influence of the current deployment of enemy forces and equipment

This evaluation has already been described in a simplified fashion in the enemy
situation layer. The model evaluates danger areas of the potential enemy conduct of
effective fire depending on the visibility and effective range of the main weapons.

The degree of threat to the safe movement through the area may be expressed by
horizontal factor of the enemy firepower HF4.1, which attains the following values:

• HF4.1 = 0, impassable, enemy-observable area of an effective range of his
weapon systems

• HF4.1 = 0.5, an area at a distance of 1 to 1.5 multiple of the effective range of the
enemy weapon systems in a strip of the area observable by the enemy

• HF4.1 = 1, a passable area with minimal predictable threat, at a distance of 1.5
multiple of the effective range of the enemy weapon system in the area
observable by the enemy

3.3 Databases of system information

The system input information must be structured and stored in thematic data-
bases so that they can always be used quickly.

The information databases can be divided into:

• The TTD of friendly military equipment and weapon systems (including
width, length, clearance height, weight, maximum range, terrain passability,
carried weapon systems, and their effective range)

• The characteristics of performance parameters of the dismounted element
(including the speed of movement at different slopes and on different terrain
surfaces)
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5. Friendly forces and equipment layer
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planning of the movement route of forces and equipment along with the terrain
passability. Estimating the future activity of the enemy is always a very complicated
and intuitive matter for the analyst who processes it. Due to its uncertainty and
variant implementation, it is impossible to create a mathematical algorithm that
would accurately identify the intention of the enemy. However, it can be visualized
based on the real terrain passability, including the weather attack, known deploy-
ment of enemy forces and equipment, and their activities in the past. The greatest
deviations in the measurements were achieved outside paved roads, where hardly
predictable impact of the microrelief, a driver’s caution, and the dense vegetation of
the terrain were evident.
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This evaluation has already been described in a simplified fashion in the enemy
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effective fire depending on the visibility and effective range of the main weapons.
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3.3 Databases of system information

The system input information must be structured and stored in thematic data-
bases so that they can always be used quickly.
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• The TTD of friendly military equipment and weapon systems (including
width, length, clearance height, weight, maximum range, terrain passability,
carried weapon systems, and their effective range)

• The characteristics of performance parameters of the dismounted element
(including the speed of movement at different slopes and on different terrain
surfaces)
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• An urbanized area (including location, population, livelihood, ethnic groups
and their leaders with photographs, layout and characteristic of infrastructure,
structure of state and municipal authorities, facilities, and important buildings)

• The TTD of enemy military equipment and weapon systems (including width,
length, clearance height, weight, maximum range, terrain passability, carried
weapon systems, and their effective range)

• Land mines and barriers

• IED attacks (date, time, location, type, description of the surrounding
situation)

• IDF attacks (date, time, location, type, description of the surrounding
situation)

• SAF attacks (date, time, location, type, description of the surrounding
situation)

• Incidents (date, time, location, type, description of the surrounding situation)

Editing the new types of military equipment and weapon systems in the data-
base, as well as creating a completely new database, is apparent.

4. Simulation of movement executed by enemy forces and equipment

The movement variant of the detected or predicted enemy units can be visual-
ized in the terrain using the optimal route model and the TDSS. The editing and
evaluation of the information related to all five layers identify the possibilities for
performing the movement of the enemy. The specification of how to perform the
movement to the system will complement the capabilities of a particular unit. The
system, after selecting the initial deployment area and the projected objective area
of the movement, will calculate the movement route optimized in terms of time and
safety. However, an integral part of the simulated enemy movement will still be a
qualified intelligence estimate of the enemy future intention, which will have to
include the objective area or at least the direction of the enemy movement. Further,
it will be necessary for the enemy to predict the deployment of particular friendly
units so that the model could also include this factor in the calculation of the enemy
movement route. Another suitable direction for the development of the TDSS will
be a spatially specified and coordinated group movement of several units with the
same goal. It will be necessary to specify the visualizations of movement routes of a
larger concentration of enemy units with the same goal. It can provide commanders
with an idea of a possible variant of the enemy activity in the whole area of
responsibility of friendly forces and equipment.

5. Testing and verification of model functions

For the practical verification of the basic function and correctness of the math-
ematical processing and criterion evaluation of input geographical tactical informa-
tion implemented in the TDSS, practical measurements have been made. The
measurements have been focused on the correctness of the movement route
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identification meeting the criteria of optimality in terms of the minimum time spent
when covering and the calculation of the total time needed for its covering. In its
implementation, most of the types of movement considered have been verified.
Tracked vehicles were represented by BVP-2, wheeled vehicles by Tatra T815
(4�4), and the dismounted element by soldiers. The mean deviation of verified
model results and the practical measurements besides the abovementioned
extremes reached 2.74%, described in [11].

Supplemental measurements were carried out in experiments No. 1 and No. 2
relating to the movement of a reconnaissance group for the purpose of a concealed
approach and the tracking of the object of interest. The same method of maneuver
and approach was used in the experiment with a ground autonomous vehicle, the
execution of which was calculated for the passability of wheeled vehicles. An off-
road four-wheeler with a driver was simulating the vehicle, which solved the prob-
lems with the direct control of the vehicle, and the requirements for the terrain
passability of wheeled vehicles were fulfilled. Experiment No. 3 was aimed at using
the flanking maneuver model implemented in the TDSS. In all the cases, the enemy
was made up of groups of individuals armed with hand weapons, taking up a fire
position. For performing experiments No. 1 and No. 3, two groups were selected;
each one consisted of four soldiers with comparable experience and skills. The
commanders of both groups were soldiers who had the same level of experience in
the decision-making process, terrain analysis, and leadership. All the experiments
were carried out in daylight conditions in January when the temperature ranged
from 2 to �2°C, without precipitation, on a frosted surface with a layer of snow
cover of about 2 cm.

5.1 Experiment No. 1: Reconnaissance group movement

Both reconnaissance groups were given a task to move unnoticed and as quickly
as possible to the object of interest to monitor it. The load carried by each group
member included a personal weapon, individual protective equipment, and a back-
pack of a total weight of 20 kg. Both groups were given the task mentioned at the
same time and in the same initial area. Then, their decision-making and planning
process to accomplish the task followed; they planned the fastest and safest move-
ment route to the object of interest. In the phase of approach to the object, both
groups should have used the route concealed from the identified enemy units’
observation in the area of maneuver and should have begun the immediate moni-
toring of the object. The ALFA reconnaissance group used only a printed topo-
graphic map, compass, and GPS receiver to plan and cover the movement route.
The planning process of this group lasted 16 minutes. The ALFA group commander
tried to estimate the conditions of the terrain passability, the visibility of the enemy,
and protecting terrain features. The result of his rapid assessment was a movement
route along the edge of the forest, which protected the group from the observation
over a distance of more than 50 m. The route was 4190 m long (see Figure 3). The
group covered the route in 113 minutes. During this movement, the group was not
observed by the enemy soldiers. In the time of 118 minutes, the group took up
positions in the vicinity of the object of interest and started its observation.

As a support for the decision-making process to create a movement route, the
BRAVO reconnaissance group used the optimal movement route model,
implemented in the TDSS, the possible application of which is described in [19].
The planning process of the BRAVO reconnaissance group took 7 minutes, includ-
ing entering the identified enemy positions into the TDSS and the minimum neces-
sary preparation to accomplish the task. Its route designed by the model is shown in
Figure 4. When designing the optimal movement route, the TDSS calculated the
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ematical processing and criterion evaluation of input geographical tactical informa-
tion implemented in the TDSS, practical measurements have been made. The
measurements have been focused on the correctness of the movement route
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identification meeting the criteria of optimality in terms of the minimum time spent
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implementation, most of the types of movement considered have been verified.
Tracked vehicles were represented by BVP-2, wheeled vehicles by Tatra T815
(4�4), and the dismounted element by soldiers. The mean deviation of verified
model results and the practical measurements besides the abovementioned
extremes reached 2.74%, described in [11].
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relating to the movement of a reconnaissance group for the purpose of a concealed
approach and the tracking of the object of interest. The same method of maneuver
and approach was used in the experiment with a ground autonomous vehicle, the
execution of which was calculated for the passability of wheeled vehicles. An off-
road four-wheeler with a driver was simulating the vehicle, which solved the prob-
lems with the direct control of the vehicle, and the requirements for the terrain
passability of wheeled vehicles were fulfilled. Experiment No. 3 was aimed at using
the flanking maneuver model implemented in the TDSS. In all the cases, the enemy
was made up of groups of individuals armed with hand weapons, taking up a fire
position. For performing experiments No. 1 and No. 3, two groups were selected;
each one consisted of four soldiers with comparable experience and skills. The
commanders of both groups were soldiers who had the same level of experience in
the decision-making process, terrain analysis, and leadership. All the experiments
were carried out in daylight conditions in January when the temperature ranged
from 2 to �2°C, without precipitation, on a frosted surface with a layer of snow
cover of about 2 cm.

5.1 Experiment No. 1: Reconnaissance group movement

Both reconnaissance groups were given a task to move unnoticed and as quickly
as possible to the object of interest to monitor it. The load carried by each group
member included a personal weapon, individual protective equipment, and a back-
pack of a total weight of 20 kg. Both groups were given the task mentioned at the
same time and in the same initial area. Then, their decision-making and planning
process to accomplish the task followed; they planned the fastest and safest move-
ment route to the object of interest. In the phase of approach to the object, both
groups should have used the route concealed from the identified enemy units’
observation in the area of maneuver and should have begun the immediate moni-
toring of the object. The ALFA reconnaissance group used only a printed topo-
graphic map, compass, and GPS receiver to plan and cover the movement route.
The planning process of this group lasted 16 minutes. The ALFA group commander
tried to estimate the conditions of the terrain passability, the visibility of the enemy,
and protecting terrain features. The result of his rapid assessment was a movement
route along the edge of the forest, which protected the group from the observation
over a distance of more than 50 m. The route was 4190 m long (see Figure 3). The
group covered the route in 113 minutes. During this movement, the group was not
observed by the enemy soldiers. In the time of 118 minutes, the group took up
positions in the vicinity of the object of interest and started its observation.

As a support for the decision-making process to create a movement route, the
BRAVO reconnaissance group used the optimal movement route model,
implemented in the TDSS, the possible application of which is described in [19].
The planning process of the BRAVO reconnaissance group took 7 minutes, includ-
ing entering the identified enemy positions into the TDSS and the minimum neces-
sary preparation to accomplish the task. Its route designed by the model is shown in
Figure 4. When designing the optimal movement route, the TDSS calculated the

89

Model of the Optimal Maneuver Route
DOI: http://dx.doi.org/10.5772/intechopen.85566



terrain passability characteristics, in which the system also included the possibilities
of the enemy visibility. The priority was to lead the movement route off roads for
safety reasons, which was achieved by the deliberate suppression of variable speeds
on the routes in the TDSS. Through linking the calculations together, the system
calculated the areas concealed from the identified enemy’s observation. Subse-
quently, it used the areas identified in this way to create the fastest and safest
movement route. The group covered the route (2963 m long) in 75 minutes. The
time calculated using the TDSS to cover this route was 68 minutes. During this
movement, the group was not observed by the enemy soldiers. In the time of
78 minutes, the group started observing the object of interest.

5.2 Experiment No. 2: Movement of an autonomous vehicle

Experiment No. 2 was carried out using the simulation of an autonomous vehicle
in the form of a Yamaha Grizzly off-road four-wheeler (Figure 5) driven by one
person and powered by a gasoline engine. The four-wheeler was selected due to
similar terrain passability characteristics as a modern UGV. The need for direct

Figure 3.
The movement route of the ALFA group (source: TDSS).

Figure 4.
The movement route of the BRAVO group (source: TDSS).
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control and the influence of microrelief were eliminated thanks to the four-wheeler
driver. The optimal movement route model implemented in the TDSS was used to
plan and cover the UVG movement route. Entering the identified enemy positions
in the TDSS and the minimum necessary preparation for the movement took
3 minutes. The UGV route was designed in the passability mode “for wheeled
vehicles,” and its course can be seen in Figure 6. As in the BRAVO reconnaissance
group, the TDSS assessed the passability possibilities of the vehicles in the field and
calculated the areas concealed from the observation and fire of the identified
enemy. Covering the proposed fastest and safest route (3419 m long) of the four-
wheeler took 7 minutes and 25 seconds. During the movement, the vehicle at 124 cm
high was not observed by the enemy. However, its engine running was audible,
which could be replaced by a silent electric motor. The time calculated by the TDSS
to cover this route was 7 minutes and 4 seconds.

5.3 Evaluation of experiments No. 1 and No. 2

As for the movement of reconnaissance groups in experiment No. 1, a noticeable
difference in time required for planning the movement route was observed. When
planning the movement route, the ALFA group commander used mainly his
knowledge and experience and a printed military topographic map. He was not able

Figure 5.
The Yamaha Grizzly four-wheeler (source: own).

Figure 6.
Autonomous vehicle movement route (source: TDSS).
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control and the influence of microrelief were eliminated thanks to the four-wheeler
driver. The optimal movement route model implemented in the TDSS was used to
plan and cover the UVG movement route. Entering the identified enemy positions
in the TDSS and the minimum necessary preparation for the movement took
3 minutes. The UGV route was designed in the passability mode “for wheeled
vehicles,” and its course can be seen in Figure 6. As in the BRAVO reconnaissance
group, the TDSS assessed the passability possibilities of the vehicles in the field and
calculated the areas concealed from the observation and fire of the identified
enemy. Covering the proposed fastest and safest route (3419 m long) of the four-
wheeler took 7 minutes and 25 seconds. During the movement, the vehicle at 124 cm
high was not observed by the enemy. However, its engine running was audible,
which could be replaced by a silent electric motor. The time calculated by the TDSS
to cover this route was 7 minutes and 4 seconds.
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As for the movement of reconnaissance groups in experiment No. 1, a noticeable
difference in time required for planning the movement route was observed. When
planning the movement route, the ALFA group commander used mainly his
knowledge and experience and a printed military topographic map. He was not able

Figure 5.
The Yamaha Grizzly four-wheeler (source: own).

Figure 6.
Autonomous vehicle movement route (source: TDSS).
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to accurately estimate the areas endangered by the enemy fire (by observation).
Therefore, he directed the movement route through the forest vegetation, which
provided the group with an estimated cover from observation from the ground. For
planning the movement route, the BRAVO group commander took advantage of the
optimal movement route model in the TDSS, which accurately calculated the areas
concealed from the enemy’s observation. Subsequently, the TDSS used these areas
for planning the fastest and safest movement route, provided that the enemy does
not significantly change his deployment or that he patrols the area. Its practical
realization can be considered in terms of the necessity to fulfill the task as quickly as
possible, with the acceptance of the abovementioned risk. In the case of an autono-
mous vehicle (four-wheeler), the route designed by the TDSS was the fastest and
safest one for wheeled vehicles with variable speeds adapted to the type of vehicle
(see Figure 7). The terrain passable for the Yamaha Grizzly off-road four-wheeler
includes especially roads and open areas by the reason of its wheel undercarriage. Its
height of 1240 mm is comparable to the height of the UGV, developed or used in
modern armies (compare) [20]. The lower silhouette of the vehicle and the
unmanned control make it possible to use even less concealed areas for the move-
ment. The driver of the four-wheeler followed the proposed route and eliminated
the impact of the microrelief on the terrain passability using the control mecha-
nisms of the vehicle. In none of the experiments mentioned, the reconnaissance
group or the four-wheeler was observed by the enemy. The movement of all
elements was stopped in the area of the target object at a maximum distance of
visibility. An additional change of the position of the observation post was subse-
quently done with the utmost care and minimum movement. In the case of four-
wheeler approach, the guard of the target object would hear the sound of the vehicle
engine but without locating the exact position. At that time, the four-wheeler
appeared approximately 200 m from the object.

The experiments performed have proven the usefulness of the optimal maneu-
ver model, especially when solving the situations requiring the fastest maneuver,

Figure 7.
Speeds of Yamaha Grizzly on individual types of surface in the TDSS (source: TDSS).
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even at the price of the risk of revelation on the account of the enemy’s
unpredictable movement or the use of a hostile air reconnaissance. The reconnais-
sance of an important target, e.g., command posts or the location of fire support
means, can be mentioned as examples. Using the TDSS optimal maneuver model in
experiment No. 1, the total time from the receipt of the task to the attainment of
readiness to fulfill it was reduced to 9 minutes. The calculation of the time to cover
the movement route had a difference of 38 minutes from the real time of the ALFA
group movement.

6. Maneuver control system

The optimal maneuver route model described in [11] represents the basis for
optimizing the maneuver between the starting point and the target point of the
maneuver. It can be used for dealing with different tactical situations and tasks on
the battlefield including the UGV maneuver. One of them is an offensive maneuver
performed by military forces and equipment; its technical term is flanking maneu-
ver. The flanking maneuver represents an offensive maneuver of a part of the
military unit, in which the detached forces attack on the flank and the rear of the
enemy in the firing and tactical cooperation with the units attacking from the
frontal direction. It is defined in [21].

One of the most significant benefits of this chapter is the flanking maneuver
model, which represents the complement to the TDSS [11] in the form of the Maneu-
ver Control System CZ application program. It is specified by the so-called invisible
layer of the cost surface of passability in the form of an impassable (forbidden) area.
This impassable area is in the form of a circle with a diameter equal to the distance “d”
between the position of a friendly unit and an attacking unit of the enemy, but not
more than 1 km. The attacking unit is divided into two independent elements, i.e., a
firing group and an assault group. The TDSS suggests the maneuver route of the firing
element to the nearest edge of the visibility area of the target enemy, but not more
than 1 km from his position. The 1 km distance is specified in the model due to the
expected maximum distance of the direct fire by handguns and mounted weapons.
The firing group of the unit should be able to hold the enemy under fire at this
maximum distance. Then, depending on the terrain, the assault group should be able
to bypass this circular distance to the enemy and cover it. In the case of planning the
offensive activity at a distance greater than 1 km, the TDSS will plan the movement
route of the firing group to the nearest area with the direct visibility of the enemy (see
Figure 8). Subsequently, it will plan the maneuver route of the assault group
maintaining 1 km of the circular forbidden area. The reason is a real feasibility and
success rate of the offensive maneuver in the direction of the enemy at a distance of
1 km or more while the firing group attacks on the identified enemy.

The maximum usability of the flanking maneuver in the TDSS can be considered
when dealing with a response to attacking the unit by a weaker enemy, in the case
of its inability to leave the attacked area completely (see Figure 9). Such a situation
can occur, for example, in the case of multiple injuries of friendly forces or during
the movement using combat vehicles. The solution of this situation can provide the
enemy with the time, which he will probably use to change his position or to
perform a direct attack without a direct pressure on his forces and equipment. The
route of the flanking maneuver will be created outside the impassable circle, with-
out including the layer of influence (the maximum effective range) of the target
enemy. The reason for not including the target enemy’s maximum effective range
may be the absence of the fastest and safest route of movement to the area of his
occurrence.
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experiment No. 1, the total time from the receipt of the task to the attainment of
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the movement route had a difference of 38 minutes from the real time of the ALFA
group movement.
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performed by military forces and equipment; its technical term is flanking maneu-
ver. The flanking maneuver represents an offensive maneuver of a part of the
military unit, in which the detached forces attack on the flank and the rear of the
enemy in the firing and tactical cooperation with the units attacking from the
frontal direction. It is defined in [21].
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6.1 Experiment No. 3: Response to the attack

The experiment was carried out in a broken and partially forested terrain. The
motorized unit was moving along the paved road. When passing through a partially
open area, it was attacked by shooting handguns from an almost perpendicular
direction to the paved road from a distance of approximately 230 m. The incapaci-
tated vehicle with a severely injured driver remained at the scene of the incident.
The attacker was interpreted as a group of men armed with handguns. During the

Figure 8.
The planned flanking maneuver route at a distance of more than 1 km (source: own).

Figure 9.
The flanking maneuver route in response to the attack (source: own).
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response to the attack, the unit had to provide the primary emergency treatment to
the injured driver.

The commander of the attacked ALFA unit, using standard means to support
decision-making (radio station and map), began to create an overview of the situa-
tion at the scene of the incident. He identified the position of the enemy based on
the reports from his subordinates. He was well versed in the space distribution of
his attacked unit, the attacking enemy, the open space in the shooting direction, the
forest vegetation, and the relief of the terrain. The decision-making process to
respond to the attack took him approximately 60 seconds. Its result was the
approach maneuver of the assault group through a forest area to take up an advan-
tageous fire position and to eliminate the enemy (see Figure 10). Executing the
maneuver (428 m long) took 6 minutes and 50 seconds, including destroying the
enemy and securing his positions.

Using the TDSS and its maneuver control system application, the commander of
the attacked BRAVO unit defined the enemy’s position and entered the calculation
of the flanking maneuver approximately 30 seconds after the attack. Subsequently,
the TDSS calculated the cost surface of passability in the area of the attack and
proposed the fastest and safest route of the flanking maneuver to the position of the
attackers with the use of mathematical algorithm. These calculations did not include
visibility and the attackers’ weapon range so that the system could plan the route in
their position. Approximately 40 seconds after attack, the assault group started the
flanking maneuver along the route in the direction of the enemy’s position.

The route led to the position of the attackers through the forest vegetation
passing into the open plain (see Figure 11). At the edge of the forest, the assault
group took a hastily prepared firing position and almost immediately started
destroying the enemy by fire. Then, it destroyed the enemy and secured his posi-
tions. The time to cover the route (369 m long) was calculated by the TDSS for
5 minutes and 3 seconds, which represented the difference of 36 seconds compared
to the actual time of BRAVO unit. The delay of the real maneuver was caused by the
destruction of the attackers by fire, which preceded the occupation of the target
position itself.

6.2 Evaluation of experiment No. 3

When comparing both variants of experiment No. 3, a significant difference can
be observed in both the speed of orientation and the decision-making process of the

Figure 10.
The movement route of the ALFA group (source: TDSS).
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attacked unit commander, as well as in the mode of maneuver execution. The
difference in time of the commencement of the flanking maneuver to the enemy’s
position shows that the assault group of the BRAVO unit started more than
20 seconds earlier than the ALFA unit.

The terrain in the attacked area did not enable executing the direct attack, and,
therefore, both units used the flanking maneuver. The maneuver route of the ALFA
unit was displaced to the area where the commander expected the most advanta-
geous and safest fire position. On the contrary, the BRAVO unit carried out the
flanking maneuver using the fastest and safest route. The maneuver speed of the
BRAVO unit created an effective pressure on the enemy’s activity; he had to par-
tially switch his attention to the damaged vehicle. At approximately 5 minutes and
40 seconds, after the commencement of the attack, the assault group of the BRAVO
unit began firing on the enemy’s position. The comparison of both responses to the
attack shows that the BRAVO unit destroyed the attackers by 71 seconds faster than
the ALFA unit. From the abovementioned facts, it can be stated that if the enemy
did not abandon its position immediately after the commencement of the attack, he
would be completely destroyed by rapid response of the BRAVO unit.

7. Conclusion

The abovementioned text has described the structure of the optimal movement
route model implemented in the TDSS and its further possible use within the
Maneuver Control System application. The practical benefit is a total of three
experiments, in which two groups of soldiers and an autonomous vehicle simulation
have been used. The results of the experiments have shown that the optimal move-
ment route model is functional and very effective from the viewpoint of time
demands for creating a movement route and the method of deploying military
forces.

The optimal movement route model, implemented in the TDSS, has proven its
usefulness even when planning the movement route of autonomous vehicles. In its
calculations, it combines the assessment of all terrain and safety characteristics of
the operational area; it also focuses on the possibilities of the passability of wheeled
vehicles in the terrain. The passability of the routes calculated has been verified and
confirmed during the experiments. Nevertheless, in the case of autonomous

Figure 11.
The movement route of the BRAVO group (source: MCS CZ,TDSS).

96

Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation…

vehicles, there is still a need for direct control in the terrain due to the accidental
occurrence of microrelief forms and obstacles. The implemented model represents a
basis for planning the movement route before the task fulfillment itself. The exper-
iments realized have verified the function of the optimal movement route model
when neither the reconnaissance group nor the autonomous vehicle was observed
by the enemy. The total time of the UGV with the use of the TDSS to cover the route
of maneuver was 67 minutes shorter than the real time of the BRAVO group
movement with the use of the TDSS and 105 minutes shorter than the real time of
the ALFA group without the use of the TDSS.

The TDSS calculation results are available in the order of seconds from the
definition of all the tactical situation variables and the commencement of the cal-
culation. This speed of calculation significantly minimizes time demands of the unit
commanders’ decision-making process. The functionality of the system has been
verified in response to the enemy attacking a moving unit, the consequence of
which was one incapacitated vehicle with a severely injured driver. The tactical
situation of experiment No. 3 has been created precisely for the situation that
demonstrates the most appropriate use of the TDSS. These are especially the situa-
tions with great time demands for creating an optimized decision, when friendly
forces are endangered by the enemy. To achieve a successful solution with minimal
death toll and loss of material, the decision must be taken as soon as possible after
the attack of the enemy. The comparison of responses to the attack shows that the
BRAVO group using the Maneuver Control System (MCS CZ) as part of the TDSS
destroyed the attackers by 71 seconds faster than the ALFA group without the use of
the TDSS. The optimal maneuver route model and the MCS CZ implemented in the
TDSS represent the appropriate support tools for the command and control process
in the military operation. They can also be used for planning a maneuver route of
logistic support units and equipment if these units use UGVs for their activities in a
military operation. Another possibility for using other types of autonomous vehicles
is in military amphibious operations. The MCS CZ can be easily adapted to
amphibious operations by adding a layer of the water surface. The standard part of
the MCS CZ analyzes the terrain passability during the approach of the vehicle to
the water surface. The added layer of the water surface will evaluate the character
of the bottom along the coast as an approach route to the sea or to the river. The
influence of direction and power of a water stream as a passability factor for
amphibious vehicles as well as the standard or planned shipping lanes would also be
included in this special water layer. The abovementioned MCS CZ update will
reduce the risks of autonomous amphibious vehicles during the approach to the
water surface and shipping.
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Chapter 7

Path Planning Optimization 
with Flexible Remote Sensing 
Application
Agoston Restas

Abstract

The purpose of the path planning optimization is to find the most favorable 
route between starting and arrival points based on defined criteria and target func-
tions. The change in the characteristics of each route becomes complicated when 
there is an increase in the number of intermediate points. This study predominately 
analyses the monitoring of a limited area. The author demonstrates how the path of 
the autonomous systems will change in different conditions and further introduces 
the possibility of using mobile remote sensing systems. The test is performed firstly 
in 2D flat area, then 3D spaces, and then—taking a forest fire as an example—the 
ideal conditions changed to reality. The study reveals findings on efficiency, based 
both on professional and economic considerations. The utilization of remote sens-
ing technologies was found to optimize the observation of the given area generating 
new problems, such as what is the size of the monitored area at a given moment and 
how can we increase it for the higher effectiveness. An increase in the size of the 
monitored area results into an efficient and functional autonomous system albeit 
generating a shorter and modified path. Mobile autonomous systems therefore can 
be replaced by stable systems; simultaneously under real conditions, they can be 
more efficient than stable ones.

Keywords: path planning optimization, remote sensing, professional and  
economic analysis, 2D and 3D analysis, test in ideal and real conditions

1. Introduction

The purpose of path planning is to be able to get from point of A to B in the 
most efficient way. Most often we look at criteria such as the speed of travel, the 
shortest possible distance, the comfort, or the economy, but sometimes there are 
special aspects such as the minimum time for a particular route to go, the exact date 
of arrival, or the cost-effectiveness of the travel. The method of acquiring the most 
efficient solution in a given criteria is called as the optimization process. There is an 
abundance of literature and studies dealing with this problem, such as a common 
problem [1], a special problem for ground [2] or aerial vehicles [3], and a problem 
of industrial robots [4] or public service [5], even the author’s team [6] tried to 
analyze the problem, that results are basically used for this study.

Path planning between two or more points may have even other goals than just 
doing the route. For example, during the travel we can observe the immediate sur-
roundings of the route. If we take into account the possibility of remote sensing, the 
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observed field can be wider and wider when passing the route. Following this logic, 
we can conclude that choosing a route is not merely premised on getting from one 
point to another one but rather on supervising and monitoring an area of respon-
sibility. The purpose of the area monitoring is typical for safety reason, prevention 
and protection against criminals, swift forest fire detection, or offering first aid to 
victims in case of disaster.

Following the path or monitoring, the area can be done by the traditional way 
meaning that the trained staff uses a vehicle; conversely it can be done in advanced 
way meaning that the presence of staff on board of the vehicle is no longer required. 
The latter can be interpreted as using the autonomous system. One of the advan-
tages of autonomous systems is that we can eliminate human error by applying it.

The effectiveness of the autonomous system should be examined under differ-
ent conditions. For easier understanding, the best method is if we start with the 
simplest condition that means the least distracting circumstances. This can also be 
called as an ideal case.

The purpose of observing an area is to detect the unrequired event or incident as 
soon as possible. In general, the faster the autonomous system detects the event, the 
more effective it is to apply. We need to look at how to optimize the path planning of 
the autonomous system with flexible remote sensing methods.

2. Basics of path planning

2.1 Path planning problems between two points

The purpose of path planning is to find the best route according to the desired 
target function between two points. The target function may have different 
expectations, such as making the route as short as possible or as fast as possible 
(1). Assuming a two-dimensional plane area and ignoring any kind of disturbing 
circumstance, ideally shown in Figure 1 (left) and assuming constant speed, it 
means in both cases the same path and the same time spent:

  A → B (s ⇒ min; t ⇒ min)   (1)

The simplest assumption in reality is very rarely found. In most cases the natural 
conditions make the simplest approach impossible, which means longer paths as 
shown in Figure 1 (right) and longer access times. If the ideal path between the 
two points is not available, you have to choose from the other options available. The 
number of available options may vary between zero and infinity, but both lower 
and upper extremes should be excluded. At the theoretical starting point, the zero 
option means that there is no point in the task, and with the infinite possibility, 
we can only count on the theory. By excluding the two extremes, we find that the 
number of solutions varies from 1 to a large number. The only possible path, of 
course, does not give a choice. The first choice appears in case of two different paths 

Figure 1. 
Path planning between points of “A” and “B” in ideal (left) and in natural (right) circumstances with only one 
option.
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as shown in Figure 2. The quality of the different routes may be the same or differ-
ent, but it is natural the better road quality allows faster progress, which means that 
it takes less time to do the same route length.

However, in case of different routes, choice is useless if there is no difference 
between them according to the target functions. The following options are available 
for two routes based on their length and quality:

1. The length and the quality of the two paths are the same (s1 = s2; q1 = q2).

2. The length of the two routes is different, but the quality is the same (s1 ≠ s2; 
q1 = q2).

3. The length of the two routes is the same, but the quality is different (s1 = s2; 
q1 ≠ q2).

4. The length and quality of the routes are different (s1 ≠ s2; q1 ≠ q2).

In general, the last one can be assumed. This gives new more opportunities, so 
the quality of the longer road can be better or worse than the shorter one and vice 
versa. In the latter case, when a longer road is combined with a poorer quality, it 
is clear this is not a choice. In the first case, when the quality of the longer road is 
better than the shorter one, you can get the following solutions:

1. The quality of the road is better, but not so much as to compensate the choice 
with time gains.

2. The quality of the road is better; however, its quality is able to compensate only 
for the loss of time resulting from the longer distance.

3. The quality of the road is so good that, despite the longer distance, we can 
achieve time gains.

The above is a mere combination of two different routes. It is easy to notice 
that changing the conditions makes the above more complicated. Example, if we 
increase the optional routes or the possibility of road quality per each new route 
but even with changing the quality along one route, the solutions increase expo-
nentially. It is easy to notice that the above assumptions provide an ever-increasing 
choice, which is in the direction of infinity. However, a large part of the choices can 
be excluded, so all of those are certainly in a less favorable direction than the one 
that has already been examined before. As an example, all new routes with the same 
or worse route quality compared to a route of a given length can be excluded if they 
are longer than the examined one.

Figure 2. 
Path planning options between points of “A and “B” with two different possible routes.
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Based on the above, it can be observed that in natural conditions there can be a 
significant number of solutions even between two points.

2.2 Path planning problems between several points

If we assume more than two points to be touched in the course of the route, we 
find that the number of options increases dramatically again as shown in Figure 3. 
Optimizing a multipoint path planning in a given plane area raises the travelling sales-
man problem (TSP) that has already been examined by many studies. At elementary 
level this question is raised hundreds years ago together with the trade development; 
however, as a classic scientific problem, it was mentioned firstly by Held and Karp [7] 
and Bellman [8]. They used dynamic programming approaches to find the solution.

Later other researchers followed these methods [9, 10], and others developed 
new ones offering other algorithms as well as time-dependent TSP [11] or TSP with 
time window and precedence constraints [12].

As new technologies appear in autonomous systems, like unmanned aerial 
vehicles (UAV) or drone applications, researchers found new problems and tried to 
give new approaches finding the best or optimized solution. Some of these studies 
focus only on the drone applications; others tried to combine drone application 
with the traditional delivery system [13, 14]. In these studies authors used different 
examining methods, as well as exact methods [15], heuristic methods [16–18], or 
approximation algorithm [14]. Bouman et al. cites a detailed summary about the 
above researches and results [19].

Based on the above, TSP is a very complex therefore not just natural condition, 
but also some idealistic assumption can generate a significant number of solutions.

3. The problem of path planning developed for area monitoring

3.1 Differences between effectiveness and efficiency

The overall goal of planning and optimizing routes is to solve practical problems 
in order to achieve the intended goal. This can focus only on one problem like 
transportation, e.g. the traveling salesman problem (TSP), in which the previous 
abovementioned logic can be continued, but the purpose can also be to select the 
path to optimize the observation of a particular area. Author calls it as the effective 

Figure 3. 
An example for path planning between points of “A” and “B” in case of more options with pathway and with 
intermediate points.

105

Path Planning Optimization with Flexible Remote Sensing Application
DOI: http://dx.doi.org/10.5772/intechopen.86500

patrolling path problem (E3P), where the selected area is under observation by the 
staff who make its supervision by continuous patrol. In this assumption the staff of 
the patrol can also be replaced by an autonomous system.

Obviously, the purpose of observing an area is to detect a particular event or 
phenomenon as early as possible. Early detection prevents the escalation of many 
unwanted events, for example, CCTV camera used for criminal prevention [20], 
aerial surveillance for forest fire detection [21, 22], or disaster escalation [23, 24]. 
The effectiveness of the prevention correlates to the early detection. The problem is 
that the patrol can see only a limited part of the supervised area, so the entire area 
can be divided in time into observed and not observed parts. However, the event or 
phenomenon can be noticed not only by the patrol but also by any other person in 
the area. Therefore, it is questionable who will be the first to detect the event, the 
patrol in duty or any other person spontaneously. This question focuses not only on 
the effectiveness of the applications but also on the efficiency of the autonomous 
systems. Patrol is costly, while spontaneous detection has virtually no cost. From 
the above, efficiency can be approached from several sides:

1. Performing the patrol, the average detection time is shorter than without 
patrol. In this case the autonomous system used for patrol is professionally 
effective; however, we do not take its costs in account.

2. Performing the patrol, the average detection time is shorter than without 
patrol; moreover, the costs of patrol will return. The latter means that the 
faster the detection of the event, the faster the response of the dedicated 
service to the event or phenomenon, which can raise the amount of the saved 
value or reduce the loss of the damage. In this case the saved value or the 
reduced damage balances or overtakes the total costs of patrolling. At this 
point, the application is effective not just professionally but even economically, 
meaning that using autonomous system is efficient.

3. The costs of patrolling can be reduced significantly while its benefit remains. 
In this case we are looking for different methods to further increase efficiency 
within a given budget, to make the use of limited resources more efficient.

Each of the above approaches requires different analyses to understand how to 
optimize autonomous systems with remote sensing application. Since the optimiza-
tion in the reality means not only the mathematical solution but also the economical 
point of view, the latest author takes it in account too.

3.2 Path planning is effective in professional point of view

Previously it has been clarified that the purpose of patrol is to detect an incident or 
phenomenon earlier than it would be performing by other sources. Professional effi-
ciency does not count with anything else, just to make the signal faster with a new system 
than without it. If the average signals performed by autonomous system are faster than 
without it, then the autonomous system is efficient from a professional point of view.

It is logical that, with increasing number of people present in a given area, the 
frequency and quickness of the report will increase statistically. The dispersion of 
signals from the larger population over time is broader; however, only one of the 
extreme values of the scatter is required, which is manifested by faster detection. 
Recognizing this, it can be concluded that the quickness of the report depends both 
on the number of people present and the population density of the area; moreover, 
both of them increase proportionally.
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3. The problem of path planning developed for area monitoring
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Figure 3. 
An example for path planning between points of “A” and “B” in case of more options with pathway and with 
intermediate points.
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patrolling path problem (E3P), where the selected area is under observation by the 
staff who make its supervision by continuous patrol. In this assumption the staff of 
the patrol can also be replaced by an autonomous system.

Obviously, the purpose of observing an area is to detect a particular event or 
phenomenon as early as possible. Early detection prevents the escalation of many 
unwanted events, for example, CCTV camera used for criminal prevention [20], 
aerial surveillance for forest fire detection [21, 22], or disaster escalation [23, 24]. 
The effectiveness of the prevention correlates to the early detection. The problem is 
that the patrol can see only a limited part of the supervised area, so the entire area 
can be divided in time into observed and not observed parts. However, the event or 
phenomenon can be noticed not only by the patrol but also by any other person in 
the area. Therefore, it is questionable who will be the first to detect the event, the 
patrol in duty or any other person spontaneously. This question focuses not only on 
the effectiveness of the applications but also on the efficiency of the autonomous 
systems. Patrol is costly, while spontaneous detection has virtually no cost. From 
the above, efficiency can be approached from several sides:

1. Performing the patrol, the average detection time is shorter than without 
patrol. In this case the autonomous system used for patrol is professionally 
effective; however, we do not take its costs in account.

2. Performing the patrol, the average detection time is shorter than without 
patrol; moreover, the costs of patrol will return. The latter means that the 
faster the detection of the event, the faster the response of the dedicated 
service to the event or phenomenon, which can raise the amount of the saved 
value or reduce the loss of the damage. In this case the saved value or the 
reduced damage balances or overtakes the total costs of patrolling. At this 
point, the application is effective not just professionally but even economically, 
meaning that using autonomous system is efficient.

3. The costs of patrolling can be reduced significantly while its benefit remains. 
In this case we are looking for different methods to further increase efficiency 
within a given budget, to make the use of limited resources more efficient.

Each of the above approaches requires different analyses to understand how to 
optimize autonomous systems with remote sensing application. Since the optimiza-
tion in the reality means not only the mathematical solution but also the economical 
point of view, the latest author takes it in account too.

3.2 Path planning is effective in professional point of view

Previously it has been clarified that the purpose of patrol is to detect an incident or 
phenomenon earlier than it would be performing by other sources. Professional effi-
ciency does not count with anything else, just to make the signal faster with a new system 
than without it. If the average signals performed by autonomous system are faster than 
without it, then the autonomous system is efficient from a professional point of view.

It is logical that, with increasing number of people present in a given area, the 
frequency and quickness of the report will increase statistically. The dispersion of 
signals from the larger population over time is broader; however, only one of the 
extreme values of the scatter is required, which is manifested by faster detection. 
Recognizing this, it can be concluded that the quickness of the report depends both 
on the number of people present and the population density of the area; moreover, 
both of them increase proportionally.
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It is easy to see that in case of random but large number of event or phenomena, 
the average detection time of the autonomous system is equal to half of the patrol-
ling cycle time (2). It is logical that with the increase in the density of the potential 
observers in the observed area, the advantage of patrol decreases. It happens 
because the standard deviation of the reports given by external persons decreases 
the amount of efficiency (3). This statement can be accepted as a logical conclusion:

    t ̄    Autonomous_report   =   1 _ 2    t  Autonomous_patrol    (2)

    t ̄    Autonomous_report   <   t ̄    Civil_report    (3)

• tAutonomous_patrol: full time of the patrol, made by autonomous system

• tAutonomous_report: average time of the report given by the autonomous system

• tCivil_report: average time of reports, given by civilians

Based on the above, it can be concluded that, in the event of the occurrence of 
random but regular phenomena, the effectiveness of patrol in densely populated 
areas decreases, while in less populated areas, it increases. The rarer the population 
density of an area, the higher the effectiveness of patrol and vice versa: the more 
densely populated the area, the lower the effectiveness of patrol.

It can be concluded that patrolling can be advantageous or not advantageous, 
depending on the attendance and the population density of the area. Similarly, it 
means also the professional effectiveness or ineffectiveness. Till the average devia-
tion of the signals given by external persons is higher than the average detection 
time of the autonomous systems during observations, the method is professionally 
effective, but no longer.

3.3 Path planning is effective in economic point of view

Economic effectiveness can be proven by counting the costs of patrolling and 
comparing the expected benefits of the application. In this case it is natural that the 
professional aspects—discussed in the previous point—are fulfilled. As a result, it is 
required to fulfill the professional efficiency, but this is not a sufficient condition to 
achieve economic effectiveness.

In case of forest fires, the response with and without patrolling had to be 
demonstrable in the difference of the damage caused by fire and the saved value. 
As a result of the previous indication, the damage is reduced to such an extent (4), 
which at least reaches but rather exceeds all costs of autonomous system patrol. 
We can approach this statement even from the opposite site that is saved value: 
it should expand to such an extent, which at least reaches, but rather exceeds, all 
costs of autonomous systems used for patrol (5). In this case, the advantageous of 
patrol exists not only in professional but even in economic view. The economically 
advantageous response also means fulfilling the condition of the national economy 
in broader interpretation:

  Δ  K  damage   > Σ  C  patrol    (4)

  Δ  M  saved_value   > Σ  C  patrol    (5)
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• ΔKdamage: damage difference between patrolling response and non-patrolling 
response

• ΣCpatrol: total cost of patrolling

• ΔMsaved_value: the difference of the rescued value between patrolling and 
non-patrolling

The operating costs of autonomous systems can only be paying back from an 
economic point of view if significant reductions in damage are detected by percep-
tions. Therefore, the total number of the perceptions during patrolling reaches 
or exceeds a certain level. This rate is due to the frequency of observations. The 
result is that a quicker detection also makes a quicker response; thus, the damage 
decreases, or the saved value increases, because of the escalation of the event. The 
total loss of damage must reach or exceed the total cost of the patrolling. The use of 
limited resources is efficient.

3.4 Description of the example area

The criterion of the efficiency is to get information about the change we want 
to detect as quickly as possible. On the one hand, this can prevent the occurrence 
of unwanted change (e.g. surveillance of the security area for crime prevention), 
and on the other hand, it can reduce the extent of change, such as the amount of 
resources needed for liquidation (e.g. flood management).

The negative effect caused by the phenomenon is minimal if it is detected 
immediately. In some cases, this may mean immediate detection (e.g. crime), 
while in others it is more time-consuming (e.g. forest fire detection). In this latter 
mentioned case, e.g. the author’s experience and other sources [25–27] accept that 
detection within 15 min of the occurrence of a fire can be called effective. Apart 
from the extreme fire spread possibilities, the extent of the fire still allows for safe 
firefighting by using minimal power and tools.

For the purpose of path planning, we can create a large number of routes on the 
responsible area which should be followed by the staff during the patrol. Optimization 
requires the shortest route during the patrol with the same rate of observation time 
per a pixel of the given area. It can be observed that in ideal case pathway cannot cross 
itself during a cycle. Depending on the scale of the responsible area and the size of the 
observed pixel at the same time made by the autonomous systems, we can create many 
path configurations with the equivalent value as shown in Figure 4.

When judging the effectiveness of patrolling, the basic question is how fast the 
autonomous system can do a report on the detection of a problem at any location. 
Patrolling can be divided into a period of one cycle for a specific area of under 
“observation” and “non-observation”. The “blind area” can also be used for the 
non-observed area.

In the following, a sample area will be presented. Its parameters can be changed, 
so it can be adapted for other tasks as well. The area is a regular quadrilateral whose 
terrain condition does not limit the effectiveness of observation from the side. So 
it can be considered as a flat surface for the examination. The size of the examined 
area is 24 km × 24 km, making the whole area of 576 km2.

According to the assumption, the autonomous system, which makes the patrol-
ling, can run at different speeds on any route because of the nature of the area. It 
means the detection is done in two dimensions. An additional assumption is that the 
device installed on board of the autonomous system provides an angle of view that 
allows the simultaneous viewing of a 3 km × 3 km area at a given time.
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• ΣCpatrol: total cost of patrolling

• ΔMsaved_value: the difference of the rescued value between patrolling and 
non-patrolling

The operating costs of autonomous systems can only be paying back from an 
economic point of view if significant reductions in damage are detected by percep-
tions. Therefore, the total number of the perceptions during patrolling reaches 
or exceeds a certain level. This rate is due to the frequency of observations. The 
result is that a quicker detection also makes a quicker response; thus, the damage 
decreases, or the saved value increases, because of the escalation of the event. The 
total loss of damage must reach or exceed the total cost of the patrolling. The use of 
limited resources is efficient.

3.4 Description of the example area

The criterion of the efficiency is to get information about the change we want 
to detect as quickly as possible. On the one hand, this can prevent the occurrence 
of unwanted change (e.g. surveillance of the security area for crime prevention), 
and on the other hand, it can reduce the extent of change, such as the amount of 
resources needed for liquidation (e.g. flood management).

The negative effect caused by the phenomenon is minimal if it is detected 
immediately. In some cases, this may mean immediate detection (e.g. crime), 
while in others it is more time-consuming (e.g. forest fire detection). In this latter 
mentioned case, e.g. the author’s experience and other sources [25–27] accept that 
detection within 15 min of the occurrence of a fire can be called effective. Apart 
from the extreme fire spread possibilities, the extent of the fire still allows for safe 
firefighting by using minimal power and tools.

For the purpose of path planning, we can create a large number of routes on the 
responsible area which should be followed by the staff during the patrol. Optimization 
requires the shortest route during the patrol with the same rate of observation time 
per a pixel of the given area. It can be observed that in ideal case pathway cannot cross 
itself during a cycle. Depending on the scale of the responsible area and the size of the 
observed pixel at the same time made by the autonomous systems, we can create many 
path configurations with the equivalent value as shown in Figure 4.

When judging the effectiveness of patrolling, the basic question is how fast the 
autonomous system can do a report on the detection of a problem at any location. 
Patrolling can be divided into a period of one cycle for a specific area of under 
“observation” and “non-observation”. The “blind area” can also be used for the 
non-observed area.

In the following, a sample area will be presented. Its parameters can be changed, 
so it can be adapted for other tasks as well. The area is a regular quadrilateral whose 
terrain condition does not limit the effectiveness of observation from the side. So 
it can be considered as a flat surface for the examination. The size of the examined 
area is 24 km × 24 km, making the whole area of 576 km2.

According to the assumption, the autonomous system, which makes the patrol-
ling, can run at different speeds on any route because of the nature of the area. It 
means the detection is done in two dimensions. An additional assumption is that the 
device installed on board of the autonomous system provides an angle of view that 
allows the simultaneous viewing of a 3 km × 3 km area at a given time.
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Based on the above, we have the following data:

• A = 576 km2: total observation area.

• AEA = 3 km × 3 km = 9 km2 is the size of the pixel.

• α = focus angel of the camera.

• Hp = altitude of the patrol.

• vp = patrol speed of the autonomous systems.

• Ao = size of the observed area in the given case.

• l = side length of a pixel.

• tp = total cycle time of the patrol.

• Lp = total length of the patrol.

• to = observation time per a pixel.

• tblind = non-observation time per a pixel (blind time).

• Ro = rate of observation and non-observation time per a pixel.

During the assumption the camera on board has an angle of view that allows 
a simultaneous viewing of a 3 km × 3 km area at a given moment. In this test, we 
increase the speed of patrolling within reasonable limits, and next we increase the 
angle of view of the camera. Our aim is to determine how the observed and the 
blind area changes to an arbitrary point and what further conclusions can be drawn 
from the trend of change.

4. Path planning: taking into account remote sensing applications

4.1 Path planning in two dimensions with patrolling speed modification

During the examination a route which ensures that each territorial unit, the so-
called pixel, was chosen and only detected once during the cycle time of the patrol. 
Paths can be displayed in several forms as shown in Figure 4, but the equivalent is 
essential in the case of the fulfillment of the previous condition. The initial speed 
of the patrolling of the autonomous system is taken to be 60 km/h, and then it 
increased by 30 km/h up to 180 km/h. To examine the differences, the author takes 
the values of Table 1.

Defining the values of the basic case, “A” means that the area A = 576 km2 
divided into 9 km2; taking AA = 64 units of floor area, we got the so-called pixels, 
which look like a chessboard. When an AA area unit has been flown at 60 km/h, 
the observation time is to = l/vpA = 3 km/60 km/h = 0.05 h, so that is 3 min. The 
length of the total route Lp = 64 × 3 km = 192 km long, which takes the next tp = LpA/
vp = 192 km/60 km/h = 3.2 h, that is, 192 min.

It can be seen from the values in the table that, by increasing the speed, the ratio 
of the observation time to the complete route is not changed (Ro = 1/64).  
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The non-observation time frequency changes exponentially, the exponent is 
negative. In security checks, this result could be acceptable, but not in case of other 
examples like fire detection. The reason for this is that the fire increases constantly 
from the ignition time, so the burnt area changes exponentially. In the case of 
wildfires, it can be stated that the detection must be done within 15 min [25–27]. 
Continuing with the logic of the table, it can be calculated that it can only be 
provided at extremely high speed (vp > 720 km/h). Based on the information above, 
it can be determined that by increasing the speed of the patrol, the efficiency of the 
detection cannot be increased (Figure 5).

The purpose of patrolling is to provide faster detection than the signals of the 
citizens. This allows police officers to investigate hot trail or firefighters to begin the 
intervention earlier. The result of it is a faster response and more saved values. If 
the patrolling can result faster signal, it can be considered as an effective method. 
Professionally, this approach is obviously true; however, the higher efficiency in 
the point of national economy view is not proven by this method. It is effective at 
national economy level only in that case if the increase of the saved values reaches 
or exceeds the all cost of the patrolling.

4.2 Using remote sensing: increasing the camera’s angle of view

To optimize the autonomous system’s path planning, we should examine what 
happens if the camera’s angle view is changed. For it we have to take the values from 
Table 2. We suppose the speed of patrolling, the maximum value of the patrolling 
speed based on Table 1, so the value is 180 km/h. We should also take other special 

Value 
event

vp 
(km/h)

Hp 
(m)

α (o) Ao 
(km2)

l (km) Lp (km) tp 
(min)

to 
(min)

tblind 
(min)

Ro 
(−)

A 60 0 180 9 3 192 192 3 189 1/64

B 90 0 180 9 3 192 128 2 126 1/64

C 120 0 180 9 3 192 96 1.5 94.5 1/64

D 150 0 180 9 3 192 78 1.3 76.7 1/64

E 180 0 180 9 3 192 64 1 63 1/64

Table 1. 
Effects of changing speed of patrol for the observation time per a pixel and for the rate of observation and 
non-observation time.

Figure 4. 
Examples of path planning with different pathway configurations for patrol. With constant patrol speed, the 
time of observation is equivalent in each pixel as well as equivalent to the length of total patrol route in each 
configuration.
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Based on the above, we have the following data:

• A = 576 km2: total observation area.

• AEA = 3 km × 3 km = 9 km2 is the size of the pixel.

• α = focus angel of the camera.

• Hp = altitude of the patrol.

• vp = patrol speed of the autonomous systems.

• Ao = size of the observed area in the given case.

• l = side length of a pixel.

• tp = total cycle time of the patrol.

• Lp = total length of the patrol.

• to = observation time per a pixel.

• tblind = non-observation time per a pixel (blind time).

• Ro = rate of observation and non-observation time per a pixel.

During the assumption the camera on board has an angle of view that allows 
a simultaneous viewing of a 3 km × 3 km area at a given moment. In this test, we 
increase the speed of patrolling within reasonable limits, and next we increase the 
angle of view of the camera. Our aim is to determine how the observed and the 
blind area changes to an arbitrary point and what further conclusions can be drawn 
from the trend of change.

4. Path planning: taking into account remote sensing applications

4.1 Path planning in two dimensions with patrolling speed modification

During the examination a route which ensures that each territorial unit, the so-
called pixel, was chosen and only detected once during the cycle time of the patrol. 
Paths can be displayed in several forms as shown in Figure 4, but the equivalent is 
essential in the case of the fulfillment of the previous condition. The initial speed 
of the patrolling of the autonomous system is taken to be 60 km/h, and then it 
increased by 30 km/h up to 180 km/h. To examine the differences, the author takes 
the values of Table 1.

Defining the values of the basic case, “A” means that the area A = 576 km2 
divided into 9 km2; taking AA = 64 units of floor area, we got the so-called pixels, 
which look like a chessboard. When an AA area unit has been flown at 60 km/h, 
the observation time is to = l/vpA = 3 km/60 km/h = 0.05 h, so that is 3 min. The 
length of the total route Lp = 64 × 3 km = 192 km long, which takes the next tp = LpA/
vp = 192 km/60 km/h = 3.2 h, that is, 192 min.

It can be seen from the values in the table that, by increasing the speed, the ratio 
of the observation time to the complete route is not changed (Ro = 1/64).  

109

Path Planning Optimization with Flexible Remote Sensing Application
DOI: http://dx.doi.org/10.5772/intechopen.86500

The non-observation time frequency changes exponentially, the exponent is 
negative. In security checks, this result could be acceptable, but not in case of other 
examples like fire detection. The reason for this is that the fire increases constantly 
from the ignition time, so the burnt area changes exponentially. In the case of 
wildfires, it can be stated that the detection must be done within 15 min [25–27]. 
Continuing with the logic of the table, it can be calculated that it can only be 
provided at extremely high speed (vp > 720 km/h). Based on the information above, 
it can be determined that by increasing the speed of the patrol, the efficiency of the 
detection cannot be increased (Figure 5).

The purpose of patrolling is to provide faster detection than the signals of the 
citizens. This allows police officers to investigate hot trail or firefighters to begin the 
intervention earlier. The result of it is a faster response and more saved values. If 
the patrolling can result faster signal, it can be considered as an effective method. 
Professionally, this approach is obviously true; however, the higher efficiency in 
the point of national economy view is not proven by this method. It is effective at 
national economy level only in that case if the increase of the saved values reaches 
or exceeds the all cost of the patrolling.

4.2 Using remote sensing: increasing the camera’s angle of view

To optimize the autonomous system’s path planning, we should examine what 
happens if the camera’s angle view is changed. For it we have to take the values from 
Table 2. We suppose the speed of patrolling, the maximum value of the patrolling 
speed based on Table 1, so the value is 180 km/h. We should also take other special 

Value 
event

vp 
(km/h)

Hp 
(m)

α (o) Ao 
(km2)

l (km) Lp (km) tp 
(min)

to 
(min)

tblind 
(min)

Ro 
(−)

A 60 0 180 9 3 192 192 3 189 1/64

B 90 0 180 9 3 192 128 2 126 1/64

C 120 0 180 9 3 192 96 1.5 94.5 1/64

D 150 0 180 9 3 192 78 1.3 76.7 1/64

E 180 0 180 9 3 192 64 1 63 1/64

Table 1. 
Effects of changing speed of patrol for the observation time per a pixel and for the rate of observation and 
non-observation time.

Figure 4. 
Examples of path planning with different pathway configurations for patrol. With constant patrol speed, the 
time of observation is equivalent in each pixel as well as equivalent to the length of total patrol route in each 
configuration.



Path Planning for Autonomous Vehicles - Ensuring Reliable Driverless Navigation...

110

circumstances regarding the camera’s view angle to understand the process better. 
Even if the patrol example in the previous subchapter was worked out at ground 
level, in Table 2 the author counted with 1500 m altitude. It is performed to demon-
strate with good visibility how the camera angle should change to be able to observe 
more than only one pixel at the same time.

The easiest way to change observation parameters is that to double the side 
length of the pixels, which means the territory becomes four times bigger than 
before. This process shows the development direction of the method. With this 
step we jump from the two-dimensional flat area to the three-dimensional space 
area that can be seen in the next subchapter even if in this moment this assumption 
serves only the more demonstrative understand.

It can be seen that by increasing the angle of view, the ratio of the time under 
observation increases exponentially comparing to the total flight time. Non-
observation time reduces in the same way as well as the non-observed area but with 
the opposite direction as shown in Figure 6.

The 15 min criteria as the tipping point of the effectiveness can be satisfied at the 
case of line “C” in Table 2 with α = 1510 camera angle. In this case the value of the rate 
of observed area and non-observed area is ¼. By increasing the observation angle, the 
observed area unit increased as shown in Figure 7.

Value 
event

vp 
(km/h)

Hp 
(m)

αD 
(0)

Ao 
(km2)

l (km) Lp 
(km)

tp 
(min)

to 
(min)

tblind 
(min)

Ro (−)

A 180 1500 90 9 3 192 64 1 63 1/64

B 180 1500 126 36 6 96 32 2 30 4/64

C 180 1500 151 144 12 48 16 4 12 16/64

D — 1500 165 576 24 — — Cont. — 64/64

Table 2. 
The effect of changing camera angle for the observed part of the area, demonstrating the theory with 1500 m 
path altitude.

Figure 5. 
Correlation of patrol speed and time of patrol cycle (left) and a variation of patrol route planned for 
autonomous systems (right).
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Since the sample area is delimited, the centre of the larger area unit—4 pixels, 
than 16 pixels—as well as the trend of the path change moves also toward to the 
centre of the area. In the “D” case of Table 2, we can see that, under certain condi-
tions, by increasing the angle of view, the area can be monitored continuously. In 
conclusion, by increasing the camera’s angle of view, the efficiency of the detection 
can increase significantly.

Even if we used 1500 m altitude to better understand the process, it is easy to 
accept that the method works at non-zero but minimal altitude too. We can assume 
a 2–3 m high installed camera on autonomous systems like an unmanned ground 
vehicles (UGV), but in this case the change of camera angel is very minimal. Since 
the assumed speed is 180 km/h, it is much easier to take an aerial autonomous 
system like unmanned aerial vehicle (UAV) for this example. This assumption signs 
also the direction of the next examination.

4.3  Extending the possibility of patrolling by remote sensing to the third 
dimension

As a next step, we can unlock the criteria for monitoring in two-dimensional 
area or standard but relatively at low-altitude (1500 m) observation. Based on it 
we can examine how the results change if we extend the possibility of patrolling to 
the third dimension. In this case we use the aerial autonomous systems like UAVs 
or drones as it was explained in the previous subchapter where 1500 m altitude 
was used. In this example we assume the same observation area that is 576 km2, the 
same maximum patrol speed that is 180 km/h, and the standard camera angle view 
that is 90°. However, we modify now the altitude of the flight path using 1500 m 
basic level—as it was in the previous subchapter—and raise it with double steps as 
well as 1500, 3000, 6000, and 12,000 m. Based on these conditions, the results are 
shown in Table 3.

It can be seen that by increasing the flight altitude, the ratio of the time under 
observation increases exponentially comparing to the total flight time. Non-observation 
time reduces in the same way but with the opposite direction as shown in Table 3.

Figure 6. 
The effect of changing camera angle for the flight path.

Figure 7. 
Changing camera angle moves the flight path in to the centre of the observed area.
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circumstances regarding the camera’s view angle to understand the process better. 
Even if the patrol example in the previous subchapter was worked out at ground 
level, in Table 2 the author counted with 1500 m altitude. It is performed to demon-
strate with good visibility how the camera angle should change to be able to observe 
more than only one pixel at the same time.

The easiest way to change observation parameters is that to double the side 
length of the pixels, which means the territory becomes four times bigger than 
before. This process shows the development direction of the method. With this 
step we jump from the two-dimensional flat area to the three-dimensional space 
area that can be seen in the next subchapter even if in this moment this assumption 
serves only the more demonstrative understand.

It can be seen that by increasing the angle of view, the ratio of the time under 
observation increases exponentially comparing to the total flight time. Non-
observation time reduces in the same way as well as the non-observed area but with 
the opposite direction as shown in Figure 6.

The 15 min criteria as the tipping point of the effectiveness can be satisfied at the 
case of line “C” in Table 2 with α = 1510 camera angle. In this case the value of the rate 
of observed area and non-observed area is ¼. By increasing the observation angle, the 
observed area unit increased as shown in Figure 7.

Value 
event

vp 
(km/h)

Hp 
(m)

αD 
(0)

Ao 
(km2)

l (km) Lp 
(km)

tp 
(min)

to 
(min)

tblind 
(min)

Ro (−)

A 180 1500 90 9 3 192 64 1 63 1/64

B 180 1500 126 36 6 96 32 2 30 4/64

C 180 1500 151 144 12 48 16 4 12 16/64

D — 1500 165 576 24 — — Cont. — 64/64

Table 2. 
The effect of changing camera angle for the observed part of the area, demonstrating the theory with 1500 m 
path altitude.

Figure 5. 
Correlation of patrol speed and time of patrol cycle (left) and a variation of patrol route planned for 
autonomous systems (right).
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Since the sample area is delimited, the centre of the larger area unit—4 pixels, 
than 16 pixels—as well as the trend of the path change moves also toward to the 
centre of the area. In the “D” case of Table 2, we can see that, under certain condi-
tions, by increasing the angle of view, the area can be monitored continuously. In 
conclusion, by increasing the camera’s angle of view, the efficiency of the detection 
can increase significantly.

Even if we used 1500 m altitude to better understand the process, it is easy to 
accept that the method works at non-zero but minimal altitude too. We can assume 
a 2–3 m high installed camera on autonomous systems like an unmanned ground 
vehicles (UGV), but in this case the change of camera angel is very minimal. Since 
the assumed speed is 180 km/h, it is much easier to take an aerial autonomous 
system like unmanned aerial vehicle (UAV) for this example. This assumption signs 
also the direction of the next examination.

4.3  Extending the possibility of patrolling by remote sensing to the third 
dimension

As a next step, we can unlock the criteria for monitoring in two-dimensional 
area or standard but relatively at low-altitude (1500 m) observation. Based on it 
we can examine how the results change if we extend the possibility of patrolling to 
the third dimension. In this case we use the aerial autonomous systems like UAVs 
or drones as it was explained in the previous subchapter where 1500 m altitude 
was used. In this example we assume the same observation area that is 576 km2, the 
same maximum patrol speed that is 180 km/h, and the standard camera angle view 
that is 90°. However, we modify now the altitude of the flight path using 1500 m 
basic level—as it was in the previous subchapter—and raise it with double steps as 
well as 1500, 3000, 6000, and 12,000 m. Based on these conditions, the results are 
shown in Table 3.

It can be seen that by increasing the flight altitude, the ratio of the time under 
observation increases exponentially comparing to the total flight time. Non-observation 
time reduces in the same way but with the opposite direction as shown in Table 3.

Figure 6. 
The effect of changing camera angle for the flight path.

Figure 7. 
Changing camera angle moves the flight path in to the centre of the observed area.
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Taking the forest fire detection as an example, the efficiency criterion is 15 min. 
This overflying time above the same point (pixel) can be assured at 6000 m 
flight altitude, ignoring the fact that the observation time ratio in this case is ¼. 
Increasing the observation altitude, the size of the observed area unit also increases. 
As the sample area is delimited, the centre of the larger area unit and the route of 
the patrol are moved toward the centre of the area as shown in Figures 8 and 9. In 
the “D” case of Table 3, we can see that by increasing the altitude, there is a point 
where the whole area can be monitored continuously.

Practically, the results are the same as we could see at the process of raising the 
camera angle view at the previous subchapter. Obvious changes of the flight paths 
are also the same in both cases as it can be seen in Figures 6 and 8 as well as in 
Figures 7 and 9. Both in raising the flight altitude and the camera’s angle view the 
efficiency of the detection increases significantly.

According to the example, the continuous monitoring was materialized quite 
high, that is, at 12,000 m. The possibility of it can be carried out by a medium-
altitude long-endurance (MALE) or high-altitude long-endurance (HALE) 
unmanned aerial vehicle (UAV) or system (UAS). Moreover, it can be served even 
by satellite-based monitoring systems.

Value 
event

Vp 
(km/h)

Hp (m) αD 
(0)

Ao 
(km2)

l (km) Lp 
(km)

tp 
(min)

to 
(min)

tblind 
(min)

Ro (−)

A 180 1500 90 9 3 192 64 1 63 1/64

B 180 3000 90 36 6 96 32 2 30 4/64

C 180 6000 90 144 12 48 16 4 12 16/64

D — 12,000 90 576 24 — — Cont. — 64/64

Table 3. 
The effect of flight altitude of autonomous system for flight path.

Figure 8. 
Changing flight altitude moves the flight path in to the centre of the observed area.

Figure 9. 
Higher observation altitude means that the flight path will move to the centre of the given area.
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The effect of raising the camera angle of the autonomous system or the flight 
altitude of the aerial autonomous systems, like drone, UAV, or UAS results in the 
same effect meaning that the path will move to the centre of the responsible area.

4.4 Comparing the mobile and stabile remote sensing applications

The results from the increase of the flight altitude and of the camera angle, 
logically, will lead to further ascertainment. In both cases, the entire area can be 
observed simultaneously. This point locates in the centre of the area. From the data 
we can see that the speed value belonging to the centre point is zero. This is a very 
special situation: The camera of the autonomous system, as a monitoring device, 
does not require any movement, i.e. patrolling. The values in line “D” of Table 2 
and Figure 7 show the increase of the camera’s angle view—which justifies the full 
observation of the area—can be ensured if the observation is not only from the 
same point but also from the same height! This statement proves that the applica-
tion of the mobile autonomous system with the help of a stable or fixed installed 
autonomous system—in case of a flat area—can be theoretically triggered.

The characteristics of the function between the monitored pixels and flight 
altitude (left) or camera’s angle view (right) can be seen at Figure 10. In both cases 
we can see that there is a value where all pixels—which means the whole area—are 
under observation in the same time.

The comparison analysis based on economic base of the abovementioned ascer-
tainment gives results as follows:

1. The camera, as a remote sensing device, would be present in both test lines, 
with approximately the same values in its technical parameters. Technically 
this would not cause a significant difference.

2. According to Table 2, the fixed-system monitoring rate is apparently full, so 
the comparison with the use of a mobile device is definitely a disadvantage of 
the latter.

3. While using a fixed installation system, we should choose the solution, when 
the camera does not see the whole area at the same time but detects it moving 

Figure 10. 
Rate of blind and observation area depending on raising the flight altitude (left) and the camera angle (right).
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are also the same in both cases as it can be seen in Figures 6 and 8 as well as in 
Figures 7 and 9. Both in raising the flight altitude and the camera’s angle view the 
efficiency of the detection increases significantly.

According to the example, the continuous monitoring was materialized quite 
high, that is, at 12,000 m. The possibility of it can be carried out by a medium-
altitude long-endurance (MALE) or high-altitude long-endurance (HALE) 
unmanned aerial vehicle (UAV) or system (UAS). Moreover, it can be served even 
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The effect of flight altitude of autonomous system for flight path.

Figure 8. 
Changing flight altitude moves the flight path in to the centre of the observed area.
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Higher observation altitude means that the flight path will move to the centre of the given area.
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observation of the area—can be ensured if the observation is not only from the 
same point but also from the same height! This statement proves that the applica-
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autonomous system—in case of a flat area—can be theoretically triggered.
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we can see that there is a value where all pixels—which means the whole area—are 
under observation in the same time.

The comparison analysis based on economic base of the abovementioned ascer-
tainment gives results as follows:

1. The camera, as a remote sensing device, would be present in both test lines, 
with approximately the same values in its technical parameters. Technically 
this would not cause a significant difference.

2. According to Table 2, the fixed-system monitoring rate is apparently full, so 
the comparison with the use of a mobile device is definitely a disadvantage of 
the latter.

3. While using a fixed installation system, we should choose the solution, when 
the camera does not see the whole area at the same time but detects it moving 
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around. The advantage of this is that in its parameters, almost the same 
efficiency can be achieved with less power.

4. In the abovementioned case, the degree of efficiency can be calculated from 
the speed of rotation and the ratio of the angle of view, similar to the method 
used for speed testing.

5. The purchasing, operating, and personal costs of the autonomous system are 
very high. The investment costs of the fixed system are low. The continuous 
operation of the system is also low, practically free, because it does not require 
human intervention.

Of course, the abovementioned data are the extreme values of the mobile 
autonomous system’s route planning. This can sometimes be an objective function, 
but that does not mean that it is always the only way to go, but this is the direction 
of increasing the efficiency by using remote sensing technology.

4.5 Examples with real circumstances

The result of the examinations above is a flat or an area which is almost flat. 
Aside from examining the advantages of using a fixed installed camera system and 
the possibilities of using an autonomous system, it is also important to examine 
their limitations.

4.5.1 Considering the articulation of the monitored area

The sample area allowed, for example, the detection of fire or its accompanying 
smoke, from the side. The latter is strongly influenced by the terrain. If there is only 
indirect fire detection, which is really a smoke detection (e.g. in a valley, a hill, or a 
fire behind a hill) in this case, the possibility of the detection is the rise of the smoke 
column above the mountain ridge and its visibility.

If the distribution of the terrain and the level differences are significant, the detec-
tion of smoke by a fixed monitoring system is also significant, but it may be delayed, 
which has an influence on the effectiveness. In this case, the efficiency of using a 
mobile autonomous system may again exceed the efficiency of fixed systems. [28]

The absolute criterion of the efficiency for the above mentioned case can be 
defined as the following: the non-observation time of using aerial patrolling is less 
than the average deviation of the appearance of smoke rising above the ridge due to 
fire development and reaching the detection threshold.

4.5.2 Considering extreme weather condition of the year

Examining the possibility of the fire detection in some periods, especially in 
dry seasons, the conditions of fire propagation become significantly more favor-
able. As a result of it, the burned area increases per unit of time. The damage will 
increase, the amount of power and tools for firefighting should be increased, and a 
higher alert state should be ordered. The time of the intervention will be longer, and 
costs will also increase. The firefighting units which are located far away from the 
fire department take a long time, the potential protection of the original location 
decreases, and the vulnerability of people and material goods increases. These 
factors also increase the risk of danger; the risks however can be reduced, if the fire 
department commences promptly with fire suppression efforts preferably in the 
early stages of the development of fire.

115

Path Planning Optimization with Flexible Remote Sensing Application
DOI: http://dx.doi.org/10.5772/intechopen.86500

As a condition of this, in areas where stable fire monitoring stations are not 
required due to the low average risk level, it is advisable to shorten the average time 
of fire detection by using aerial or ground patrolling. To do this, we need to develop 
objective indicators which on the basis of the cost of patrolling can be recovered 
from an economic point of view. In this case, the interpretation of the return results 
from the quick firefighting of fires and the loss values.

In highly flammable periods, air reconnaissance may be more effective from an 
economic point of view than a stable observer station. The reason for this is that the 
probability of detecting air surveillance during these periods increases, so its unit 
costs are decreasing in relation to the number of “matches” meaning the number 
of detections. Due to the higher fire propagation, the unit costs are also reduced to 
the damages per unit time. Although it is difficult to measure, it has added benefit 
because people who are responsible for the fire take into consideration the air 
patrolling which also serves as a kind of deterrent.

5. Summarizing

This chapter examined a specific form of path planning. It has been stated 
that by increasing the number of the intermediate points and changing some 
characteristics of each path, the number of the possible options increases 
exponentially. It has already been confirmed by multiple literature sources, and 
it is part of the traveling salesman problem. The two-dimensional approach to 
the problem of the path planning to different points is abandoned. The chapter 
focused mainly on the problem of path planning in case of area observation. It 
further revealed that the optimization of path planning enables detection and 
observation of unexpected event during patrolling. If this activity is regular and 
targeted, we can call it patrolling and get to the effective path patrol problem 
(E3F). The author aimed to make an effective detection by using patrolling in a 
particular area.

E3P has been tested in several ways. The author assessed the effectiveness 
of the phenomena and the event of the detection from a professional and an 
economical point of view. An investigation on how to make use of the available 
limited resources more efficient was conducted. It has been determined that when 
we want to increase the speed, it is not practical to increase the efficiency, because 
of some objective reasons. However, by increasing the angle of view of the remote 
sensing system and introducing the possibility of aerial patrolling in different 
altitudes, the same results were achieved. Ideally, to monitor a two-dimensional 
particular area, the moving autonomous system can be replaced by a stable set 
of devices. However, apart from ideal conditions and taking three-dimensional 
area, we can conclude that mobile autonomous systems may be more efficient 
than stable systems. The optimization is entirely dependent on the on the target 
function we achieved and also on a particular condition system. This can usually 
be determined individually.
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around. The advantage of this is that in its parameters, almost the same 
efficiency can be achieved with less power.
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column above the mountain ridge and its visibility.

If the distribution of the terrain and the level differences are significant, the detec-
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The absolute criterion of the efficiency for the above mentioned case can be 
defined as the following: the non-observation time of using aerial patrolling is less 
than the average deviation of the appearance of smoke rising above the ridge due to 
fire development and reaching the detection threshold.
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Examining the possibility of the fire detection in some periods, especially in 
dry seasons, the conditions of fire propagation become significantly more favor-
able. As a result of it, the burned area increases per unit of time. The damage will 
increase, the amount of power and tools for firefighting should be increased, and a 
higher alert state should be ordered. The time of the intervention will be longer, and 
costs will also increase. The firefighting units which are located far away from the 
fire department take a long time, the potential protection of the original location 
decreases, and the vulnerability of people and material goods increases. These 
factors also increase the risk of danger; the risks however can be reduced, if the fire 
department commences promptly with fire suppression efforts preferably in the 
early stages of the development of fire.
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As a condition of this, in areas where stable fire monitoring stations are not 
required due to the low average risk level, it is advisable to shorten the average time 
of fire detection by using aerial or ground patrolling. To do this, we need to develop 
objective indicators which on the basis of the cost of patrolling can be recovered 
from an economic point of view. In this case, the interpretation of the return results 
from the quick firefighting of fires and the loss values.

In highly flammable periods, air reconnaissance may be more effective from an 
economic point of view than a stable observer station. The reason for this is that the 
probability of detecting air surveillance during these periods increases, so its unit 
costs are decreasing in relation to the number of “matches” meaning the number 
of detections. Due to the higher fire propagation, the unit costs are also reduced to 
the damages per unit time. Although it is difficult to measure, it has added benefit 
because people who are responsible for the fire take into consideration the air 
patrolling which also serves as a kind of deterrent.

5. Summarizing

This chapter examined a specific form of path planning. It has been stated 
that by increasing the number of the intermediate points and changing some 
characteristics of each path, the number of the possible options increases 
exponentially. It has already been confirmed by multiple literature sources, and 
it is part of the traveling salesman problem. The two-dimensional approach to 
the problem of the path planning to different points is abandoned. The chapter 
focused mainly on the problem of path planning in case of area observation. It 
further revealed that the optimization of path planning enables detection and 
observation of unexpected event during patrolling. If this activity is regular and 
targeted, we can call it patrolling and get to the effective path patrol problem 
(E3F). The author aimed to make an effective detection by using patrolling in a 
particular area.

E3P has been tested in several ways. The author assessed the effectiveness 
of the phenomena and the event of the detection from a professional and an 
economical point of view. An investigation on how to make use of the available 
limited resources more efficient was conducted. It has been determined that when 
we want to increase the speed, it is not practical to increase the efficiency, because 
of some objective reasons. However, by increasing the angle of view of the remote 
sensing system and introducing the possibility of aerial patrolling in different 
altitudes, the same results were achieved. Ideally, to monitor a two-dimensional 
particular area, the moving autonomous system can be replaced by a stable set 
of devices. However, apart from ideal conditions and taking three-dimensional 
area, we can conclude that mobile autonomous systems may be more efficient 
than stable systems. The optimization is entirely dependent on the on the target 
function we achieved and also on a particular condition system. This can usually 
be determined individually.
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Chapter 8

Distributed Optimization of
Multi-Robot Motion with
Time-Energy Criterion
Mohamad T. Shahab and Moustafa Elshafei

Abstract

This paper is an application of a special case of distributed optimization prob-
lem. It is applied on optimizing the motion of multiple robot systems. The problem
is decomposed into L subproblems with L being the number of robot systems. This
decomposition reduces the problem to solving a single robot problem. The optimi-
zation problem is solved via a distributed algorithm, utilizing subgradient method.
A global objective function is set as the sum of individual robot objectives in time
and energy. Constraints are divided into two sets, namely, robot-individual con-
straints and robots’ interactions (collision) constraints. The approach is applied for
the case of wheeled mobile robots: we are able to generate in parallel for each robot
an optimized control input trajectory and then illustrate it in simulation examples.

Keywords: distributed algorithms, multi-robot systems, numerical optimal control,
time-energy minimization

1. Introduction

Research in multi-robot systems is motivated by several notions; namely, some
motivation can be put as [1]:

• It is complex for one single robot system to fulfill complex tasks. Instead, more
than one system would simplify the solution.

• Tasks are generally distributed in nature.

• Multiple limited-resource robot systems are more efficient to deal with than a
single powerful robot system.

• Speed of the task process increases through parallelism in multiple robot
systems.

• Robustness increases as redundancy is introduced in multiple systems.

Until recently, the number of real-life implementations of multi-robot systems is
relatively small. The reason is the complexity associated with the field. Also, the
related technologies are relatively new. Emergence of autonomous driving vehicle
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Research in multi-robot systems is motivated by several notions; namely, some
motivation can be put as [1]:

• It is complex for one single robot system to fulfill complex tasks. Instead, more
than one system would simplify the solution.

• Tasks are generally distributed in nature.

• Multiple limited-resource robot systems are more efficient to deal with than a
single powerful robot system.

• Speed of the task process increases through parallelism in multiple robot
systems.

• Robustness increases as redundancy is introduced in multiple systems.

Until recently, the number of real-life implementations of multi-robot systems is
relatively small. The reason is the complexity associated with the field. Also, the
related technologies are relatively new. Emergence of autonomous driving vehicle
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technology and market can push the boundaries in the field. As technology
develops, new venues for application will open for mainstream use rather than only
in research and development labs. Due to its promising applicability, autonomous
cars and vehicles (or various intelligent transportation systems in general) sit at the
forefront [2, 3]. To name a few, benefits include reducing congestions [4], increas-
ing road safety [5], and, of course, self-driving cars [6]. Another application in civil
environments is related to safety and security like rescue missions of searching for
missing people in areas hard for humans to operate in [7] or searching for dangerous
materials or bombs [8] in an evacuated building. Also, another area of application of
multi-robot systems is in military area; research was done heavily in the fields of
unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) [9, 10].

Many approaches are developed to tackle the issue of multiple robot systems.
Under the inspiration of biological systems and the need of technologies, many
problems are defined as cooperative motions. Cooperative motion is discussed in
[11–16]. Optimization in both time and energy has been tackled in the literature
[17–20]. There is an opportunity to incorporate concept of time/energy optimiza-
tion into the paradigm of multi-robot systems.

This paper investigates the solution of a time-energy optimal control problem
for multiple mobile robots; namely, the paper is to study the problem as a nonlinear
programming (NLP) problem. The main idea of the solution used here is to utilize
distributed optimization techniques to solve the overall optimization problem.
Solving for optimal time and energy of more than one robot system adds more
burden on the problem; robot interaction with each other is added to the problem.
This paper will focus more on the distributed aspect of the problem; more details
about the numerical optimal control problem formulation can be found in [21]. In
[21], the problem of controlling the motion of a single mobile robot is solved using
the direct method of numerical optimal control (see [22]); this showed great flexi-
bility in incorporating physical constraints and nonlinear dynamics of the system.

The rest of this section will define the global problem formulation. Discussion
about distributed optimization and associated algorithm is presented in Section 2.
Section 3 will apply the method on the multi-robot problem. Application to wheeled
mobile robots and simulation examples are discussed in Section 4 followed by the
conclusion.

1.1 Global problem formulation

We can present the discrete time global optimization (numerical optimal
control) problem for L robots as follows:

min
ui;tisf g∀k,∀i

∑
∀i
H xi Nð Þ� �þ zi Nð Þ

s:t:

zi kþ 1ð Þ ¼ zi kð Þ þ tis kð Þ � L xi kð Þ; ui kð Þ; tis kð Þ� �� �

xi kþ 1ð Þ ¼ f D xi kð Þ; ui kð Þ; tis kð Þ� �

g xi kð Þ; ui kð Þ; tis kð Þ� �
≤0

Ωi xi kð Þ� �
∀i; ui kð Þ� �

∀i; tis kð Þ� �
∀i

� �
≤0

∀k, zi 0ð Þ ¼ 0, xi 0ð Þ ¼ xi0, i ¼ 1, 2,…, L

(1)

with t being the time-independent variable, k being the time index in discrete
domain, tis being the sampling period, and N being the number of time discrete
instants across the time horizon, i.e., k ¼ 0, 1,…, N. The sampling period
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corresponds to the length of time the system input ui tð Þ is kept constant (zero-order
hold): we assume the system input to be

ui tð Þ ¼ ui kð Þ, for tik ≤ t < tikþ1, t
i
kþ1 ¼ tik þ tis kð Þ, ti0 ¼ 0, ∀i

System behavior is governed by the nonlinear dynamic system in
f D xi kð Þ; ui kð Þ; tis kð Þ� �

with xi kð Þ as the robot i states an initial condition of
xi 0ð Þ ¼ xi0. The above optimal control problem has a final state objective of
H xi Nð Þ� �

with the Lagrangian L xi kð Þ; ui kð Þ; tis kð Þ� �
information being embedded

into a dummy state variable zi kð Þ.
The above optimization problem can be viewed as having two sets of control

variables; the first set resembles the discretized system inputs, ui kð Þ� �
∀k, and the

other set consists of the variable sampling period, tis kð Þ� �
∀k. Let us have the

Lagrangian for the problem be

L ¼ xTQxþ uTRuþ β,

with β being the scalar weight on time. The performance is restricted by a
collection of inequality constraints of robot-specific constraints g :ð Þ≤0 and robot-
interaction constraints of Ωi :ð Þ≤0. The objective function is just the summation of
individual objectives. In this paper, as it will be explained later, we consider only
collision avoidance as robot-interaction requirement; however, the above formula-
tion can also meet other considerations. It can be shown that the objective function
in (1) corresponds to objective function of the form

min∑
L

i¼1
H xi tf

� �� �þ
ðtf
t0
x tð ÞTQx tð Þ þ u tð ÞTRu tð Þ þ βdt

� �

2. Distributed optimization

Here in this section, the concept of distributed optimization is explored. This
area tackles optimization problems with distributed nature. Consider the following
optimization problem:

min
uif g∀i

∑
L

i¼1
Ji ui
� �

s:t: ui ∈Ωi, for i ¼ 1,…, L

(2)

with Ji ui
� �

as the objective function and Ωi the set of constraints. We can easily
separate the problem into its corresponding sub problems. An ith subproblem is
easily put as

min
ui

Ji ui
� �

s:t: ui ∈Ωi
(3)

Observing the global problem in (2), we can see that it is just equivalent to the
combination of all the subproblems; it is easy to see that solving for each subprob-
lem (3) individually will result in the solution for the whole global problem. Now,
however, consider the following problem:
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min
uif g

∑
L

i¼1
Ji ui
� �

s:t: gi u1; u2;…; uL
� �

≤0,∀i
(4)

You see clearly that the above problem cannot be trivially separated into some
subproblems due to the constraint gi u1; u2;…; uL

� �
≤0. This can be called a

complicating constraint or a coupling constraint. In the next subsection, we discuss
an optimization method that will help us in solving this kind of problems.

Decomposition in mathematics is the concept of breaking a mathematical problem
into smaller subproblems that can be solved independently while not violating the
original problem. Primary works of [23, 24] discuss multiple aspects of optimization
in general while exploring specific classes as well; these works are excellent resources
for reading and understanding. Viewing the applications of distributed optimization
will convey the impression that they, however different, are all mostly very similar
theoretically. Terms of networked, distributed, decentralized, cooperative, and the like
are becoming all corresponding to somewhat similar problems. Other works related
to this area and the area of multi-agent systems can be found in [25–29].

2.1 Subgradient method

Before going further, we discuss a method used in solving distributed optimiza-
tion problem which will help us in solving the problem of this paper. This method
is called subgradient methods [30]. These methods are similar to the popular
optimization algorithms using gradient descent. However, they are extended to
escape function differentiation. The works [31–33] also explore the method in the
perspective of multi-agent systems.

Consider the typical problem:

min
u

J uð Þ (5)

This typical problem can be solved using any gradient descent method. At itera-
tion m of an algorithm, a solver, or an optimizer, can be constructed as

u mþ1ð Þ ¼ u mð Þ � α mð Þd mð Þ (6)

with α mð Þ as a predefined step size. For a standard gradient method, the vector
d mð Þ contains the gradient information of the problem. The simplest definition is to
have

d mð Þ ¼ ∇J u mð Þ
� �

(7)

However, for the subgradient method [33], we will have a definition of

d mð Þ ¼ p mð Þ (8)

with p mð Þ, called subgradient of J uð Þ, being any vector that satisfies the following:

J xð Þ � J u mð Þ
� �

≥ p mð Þ
T x� u mð Þ
� �

, ∀x (9)

The subgradient method is a simple first-order algorithm to minimize a possibly
nondifferentiable function. The above definition escapes the requirement of a dif-
ferentiated objective function. It is defined as finding any vector that makes the
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optimization algorithm go to better value in a first-order optimality sense. Of course,
when a gradient ∇J u mð Þ

� �
exists, we can compute the subgradient as the gradient. As

it is a first-order method, it could have a lower performance than other second-
order approaches. However, the advantage here is that it does not require differen-
tiation. Also, and perhaps more importantly, it gives us flexibility to solve problems
in a distributed manner as will be seen later.

Now observe the following constrained optimization problem:

min
u

J uð Þ

s:t: g uð Þ≤0
(10)

Let g uð Þ be a vector of M constraints. Then, we can define the dual problem. Let
us define the dual function of λ and u as

q λ; uð Þ ¼ J uð Þ þ λTg uð Þ (11)

The vector λ of size M corresponds to the multipliers associated with each
constraint. The dual problem relaxes the constraints of the original primal problem
in (10) and solves for λ to maximize the dual function:

max
λ

q λ; uð Þ

s:t: λ≥0
(12)

The dual optimization problem is the pair of two optimization problems,
namely, a maximization in λ as in (12) and a minimization in u. The pair resembles a
maximization-minimization problem. You can visualize the solution of the problem
as attacking the effect of constraint violation while solving for the original minimi-
zation problem concurrently.

Now, an algorithm for solving the dual problem utilizing subgradient method is
discussed. Let us define

u λð Þ ¼ argmin
u

J uð Þ þ λTg uð Þ� �
(13)

The above definition is to clarify the minimum attained at any value of λ. So,
with the above definition, at iteration m, with also denoting u mð Þ ¼ u λ mð Þ

� �
, we can

safely have

q λ; u mð Þ
� � ¼ J u mð Þ

� �þ λTg u mð Þ
� � ¼ min

u
J uð Þ þ λTg uð Þ� �

(14)

Now, it is obvious from (14) that at iteration m, a subgradient of the dual
function in (14) as function of λ can be computed as p mð Þ ¼ g u mð Þ

� �
. At iteration m

of the algorithm, an update for the multipliers is constructed as

λ mþ1ð Þ ¼ Pλ≥0 λ mð Þ þ α mð Þg u mð Þ
� �� �

(15)

The projection operator Pλ≥0 :f g is to ensure that the value of the update
λ mð Þ þ α mð Þp mð Þ is positive or enforced to zero. Also, observe the ascent update with
the “+” sign rather than a descent update as it is a maximization. We can assume an
initial λ 0ð Þ ¼ 0 or any other positive value. An optimal solution to the original
problem in (10) will be attained as m ! ∞, with the optimal solution value of u mð Þ.
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min
uif g

∑
L

i¼1
Ji ui
� �

s:t: gi u1; u2;…; uL
� �

≤0,∀i
(4)

You see clearly that the above problem cannot be trivially separated into some
subproblems due to the constraint gi u1; u2;…; uL

� �
≤0. This can be called a

complicating constraint or a coupling constraint. In the next subsection, we discuss
an optimization method that will help us in solving this kind of problems.

Decomposition in mathematics is the concept of breaking a mathematical problem
into smaller subproblems that can be solved independently while not violating the
original problem. Primary works of [23, 24] discuss multiple aspects of optimization
in general while exploring specific classes as well; these works are excellent resources
for reading and understanding. Viewing the applications of distributed optimization
will convey the impression that they, however different, are all mostly very similar
theoretically. Terms of networked, distributed, decentralized, cooperative, and the like
are becoming all corresponding to somewhat similar problems. Other works related
to this area and the area of multi-agent systems can be found in [25–29].

2.1 Subgradient method

Before going further, we discuss a method used in solving distributed optimiza-
tion problem which will help us in solving the problem of this paper. This method
is called subgradient methods [30]. These methods are similar to the popular
optimization algorithms using gradient descent. However, they are extended to
escape function differentiation. The works [31–33] also explore the method in the
perspective of multi-agent systems.

Consider the typical problem:

min
u

J uð Þ (5)

This typical problem can be solved using any gradient descent method. At itera-
tion m of an algorithm, a solver, or an optimizer, can be constructed as

u mþ1ð Þ ¼ u mð Þ � α mð Þd mð Þ (6)

with α mð Þ as a predefined step size. For a standard gradient method, the vector
d mð Þ contains the gradient information of the problem. The simplest definition is to
have

d mð Þ ¼ ∇J u mð Þ
� �

(7)

However, for the subgradient method [33], we will have a definition of

d mð Þ ¼ p mð Þ (8)

with p mð Þ, called subgradient of J uð Þ, being any vector that satisfies the following:

J xð Þ � J u mð Þ
� �

≥ p mð Þ
T x� u mð Þ
� �

, ∀x (9)

The subgradient method is a simple first-order algorithm to minimize a possibly
nondifferentiable function. The above definition escapes the requirement of a dif-
ferentiated objective function. It is defined as finding any vector that makes the
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optimization algorithm go to better value in a first-order optimality sense. Of course,
when a gradient ∇J u mð Þ

� �
exists, we can compute the subgradient as the gradient. As

it is a first-order method, it could have a lower performance than other second-
order approaches. However, the advantage here is that it does not require differen-
tiation. Also, and perhaps more importantly, it gives us flexibility to solve problems
in a distributed manner as will be seen later.

Now observe the following constrained optimization problem:

min
u

J uð Þ

s:t: g uð Þ≤0
(10)

Let g uð Þ be a vector of M constraints. Then, we can define the dual problem. Let
us define the dual function of λ and u as

q λ; uð Þ ¼ J uð Þ þ λTg uð Þ (11)

The vector λ of size M corresponds to the multipliers associated with each
constraint. The dual problem relaxes the constraints of the original primal problem
in (10) and solves for λ to maximize the dual function:

max
λ

q λ; uð Þ

s:t: λ≥0
(12)

The dual optimization problem is the pair of two optimization problems,
namely, a maximization in λ as in (12) and a minimization in u. The pair resembles a
maximization-minimization problem. You can visualize the solution of the problem
as attacking the effect of constraint violation while solving for the original minimi-
zation problem concurrently.

Now, an algorithm for solving the dual problem utilizing subgradient method is
discussed. Let us define

u λð Þ ¼ argmin
u

J uð Þ þ λTg uð Þ� �
(13)

The above definition is to clarify the minimum attained at any value of λ. So,
with the above definition, at iteration m, with also denoting u mð Þ ¼ u λ mð Þ

� �
, we can

safely have

q λ; u mð Þ
� � ¼ J u mð Þ

� �þ λTg u mð Þ
� � ¼ min

u
J uð Þ þ λTg uð Þ� �

(14)

Now, it is obvious from (14) that at iteration m, a subgradient of the dual
function in (14) as function of λ can be computed as p mð Þ ¼ g u mð Þ

� �
. At iteration m

of the algorithm, an update for the multipliers is constructed as

λ mþ1ð Þ ¼ Pλ≥0 λ mð Þ þ α mð Þg u mð Þ
� �� �

(15)

The projection operator Pλ≥0 :f g is to ensure that the value of the update
λ mð Þ þ α mð Þp mð Þ is positive or enforced to zero. Also, observe the ascent update with
the “+” sign rather than a descent update as it is a maximization. We can assume an
initial λ 0ð Þ ¼ 0 or any other positive value. An optimal solution to the original
problem in (10) will be attained as m ! ∞, with the optimal solution value of u mð Þ.
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2.2 The distributed algorithm

Recall the problem of combination of L subproblems in (2). Now, let us have the
following global problem:

min
uif g

∑
L

i¼1
Ji ui
� �

s:t: ui ∈Ωi, ∀i
gi u1; u2;…; uL
� �

≤0, ∀i

(16)

As mentioned, the constraints gi u1; u2;…; uL
� �

≤0 are the complicating (or cou-
pling) constraints. We can formulate the dual pair problems to be

max
λif g

q λi
� �� �

s:t: λi ≥0,∀i
(17)

Put in mind that λi
� � ¼ λ1; λ2;⋯; λL

� �
. If we define the notations of

u ¼ u1 u2 … uL
� �T, λ ¼ λ1 λ2 … λL

� �T,
then we can apply the primal-dual update from (13) and (15) at an iterationm as

u�
mþ1ð Þ ¼ arg min

uif g∈Ωi
∑
L

i¼1
Ji ui
� �þ λimð Þ

h iT
gi uð Þ

� �� �

λ mþ1ð Þ ¼ P λ≥0 λ mð Þ þ α mð Þ � g1 u�
mð Þ

� �
g2 u�

mð Þ
� �

… gL u�
mð Þ

� �h iT� � (18)

We can see that the above pair of updates can easily be distributed; after the
relaxing of the constraints, the primal problem can be separated. The facility of
subgradients lets us propose that any iteration m for subproblem i has

uimþ1ð Þ ¼ φmin Ji uimð Þ
� �

þ λimð Þ
h iT

gi u1mð Þ; u
2
mð Þ;…; uLmð Þ

� �� �

λimþ1ð Þ ¼ P λi ≥0 λimð Þ þ αgi u1mð Þ; u
2
mð Þ;…; uLmð Þ

� �n o (19)

The function φmin :ð Þ is any algorithm minimizer for the primal problem
constrained by ui ∈Ωi,∀i. Observe that the primal update for each subproblem needs
only the latest values of the other subproblem updates. During the computations of an
iteration, computation of uimþ1ð Þ and λimþ1ð Þ is done independent of each other; the
updates above can be computed in parallel for each subproblem. The only informa-
tion shared after each iteration is u1mð Þ, u

2
mð Þ,…, uLmð Þ among all.

3. Distributed algorithm for multi-robot system

3.1 Problem formulation

Now, in this section we can apply the previous discussion into the problem of
optimizing the motion of multiple robots. Recall the global optimization problem of
motion of L mobile robots from (1)
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min
ui;tisf g∀k,∀i

∑
L

i¼1
H xi Nð Þ� �þ zi Nð Þ

s:t:

zi kþ 1ð Þ ¼ zi kð Þ þ tis kð Þ � L xi kð Þ;ui kð Þ; tis kð Þ� �� �

xi kþ 1ð Þ ¼ f D xi kð Þ;ui kð Þ; tis kð Þ� �

gi xi kð Þ;ui kð Þ; tis kð Þ� �
≤0

Ωi xi kð Þ� �
∀i; ui kð Þ� �

∀i; tis kð Þ� �
∀i

� �
≤0

k ¼ 0, 1,…, N, i ¼ 1,…, L, zi 0ð Þ ¼ 0,xi 0ð Þ ¼ xi
0

(20)

You can see that the problem above is just the combination of L subproblems
with superscript i corresponding to each robot. The objective function is
just the summation of individual objectives. The coupling constraint of

Ωi xi kð Þ� �
∀i; ui kð Þ� �

∀i; tis kð Þ� �
∀i

� �
≤0,∀k is the only difference to the single robot

problem. To simplify the notations, let us define

ui ¼ ui kð Þ; tis kð Þ� �N
k¼0

The above definition is just to reduce the notation of robot input sequence. If we

have, for example, two robot inputs ui ¼ ui1 ui2
� �T (e.g., wheel torques), thenwe have

a total of 3� L�N control variables of the optimization problem.We can condense
notation of the global problem ofmulti-robot systemwithout loss of generality to be

min
uif g∀i

∑
L

i¼1
Ji ui� �

s:t: ui ∈Ξi

Ωi u1;u2;…;uL
� �

≤0,∀i

(21)

with objectives

Ji ui
� � ¼ H xi Nð Þ� �þ zi Nð Þ (22)

which are subject to the set of individual robot i constraints of

Ξi :

zi kþ 1ð Þ ¼ zi kð Þ þ tis kð Þ � L xi kð Þ; ui kð Þ; tis kð Þ� �� �

xi kþ 1ð Þ ¼ f D xi kð Þ; ui kð Þ; tis kð Þ� �

gi xi kð Þ; ui kð Þ; tis kð Þ� �
≤0

∀k, zi 0ð Þ ¼ 0, xi 0ð Þ ¼ xi0

8>>><
>>>:

(23)

3.2 Distributed algorithm

Returning back to the primal-dual problem pair in Section 2, we can establish the
algorithm updates according to the defined updates in (19). At each iteration m, we
update each robot inputs and multipliers according to

ui
mþ1ð Þ ¼ φmin Ji ui

mð Þ
� �

þ λimð Þ
h iT

Ωi
mð Þ

h i� �

λimþ1ð Þ ¼ P λi ≥0 λimð Þ þ αΩi
mð Þ

n o (24)
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2.2 The distributed algorithm

Recall the problem of combination of L subproblems in (2). Now, let us have the
following global problem:

min
uif g

∑
L

i¼1
Ji ui
� �

s:t: ui ∈Ωi, ∀i
gi u1; u2;…; uL
� �

≤0, ∀i

(16)

As mentioned, the constraints gi u1; u2;…; uL
� �

≤0 are the complicating (or cou-
pling) constraints. We can formulate the dual pair problems to be

max
λif g

q λi
� �� �

s:t: λi ≥0,∀i
(17)

Put in mind that λi
� � ¼ λ1; λ2;⋯; λL

� �
. If we define the notations of

u ¼ u1 u2 … uL
� �T, λ ¼ λ1 λ2 … λL

� �T,
then we can apply the primal-dual update from (13) and (15) at an iterationm as

u�
mþ1ð Þ ¼ arg min

uif g∈Ωi
∑
L

i¼1
Ji ui
� �þ λimð Þ

h iT
gi uð Þ

� �� �

λ mþ1ð Þ ¼ P λ≥0 λ mð Þ þ α mð Þ � g1 u�
mð Þ

� �
g2 u�

mð Þ
� �

… gL u�
mð Þ

� �h iT� � (18)

We can see that the above pair of updates can easily be distributed; after the
relaxing of the constraints, the primal problem can be separated. The facility of
subgradients lets us propose that any iteration m for subproblem i has

uimþ1ð Þ ¼ φmin Ji uimð Þ
� �

þ λimð Þ
h iT

gi u1mð Þ; u
2
mð Þ;…; uLmð Þ

� �� �

λimþ1ð Þ ¼ P λi ≥0 λimð Þ þ αgi u1mð Þ; u
2
mð Þ;…; uLmð Þ

� �n o (19)

The function φmin :ð Þ is any algorithm minimizer for the primal problem
constrained by ui ∈Ωi,∀i. Observe that the primal update for each subproblem needs
only the latest values of the other subproblem updates. During the computations of an
iteration, computation of uimþ1ð Þ and λimþ1ð Þ is done independent of each other; the
updates above can be computed in parallel for each subproblem. The only informa-
tion shared after each iteration is u1mð Þ, u

2
mð Þ,…, uLmð Þ among all.

3. Distributed algorithm for multi-robot system

3.1 Problem formulation

Now, in this section we can apply the previous discussion into the problem of
optimizing the motion of multiple robots. Recall the global optimization problem of
motion of L mobile robots from (1)
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min
ui;tisf g∀k,∀i

∑
L

i¼1
H xi Nð Þ� �þ zi Nð Þ

s:t:

zi kþ 1ð Þ ¼ zi kð Þ þ tis kð Þ � L xi kð Þ;ui kð Þ; tis kð Þ� �� �

xi kþ 1ð Þ ¼ f D xi kð Þ;ui kð Þ; tis kð Þ� �

gi xi kð Þ;ui kð Þ; tis kð Þ� �
≤0

Ωi xi kð Þ� �
∀i; ui kð Þ� �

∀i; tis kð Þ� �
∀i

� �
≤0

k ¼ 0, 1,…, N, i ¼ 1,…, L, zi 0ð Þ ¼ 0,xi 0ð Þ ¼ xi
0

(20)

You can see that the problem above is just the combination of L subproblems
with superscript i corresponding to each robot. The objective function is
just the summation of individual objectives. The coupling constraint of

Ωi xi kð Þ� �
∀i; ui kð Þ� �

∀i; tis kð Þ� �
∀i

� �
≤0,∀k is the only difference to the single robot

problem. To simplify the notations, let us define

ui ¼ ui kð Þ; tis kð Þ� �N
k¼0

The above definition is just to reduce the notation of robot input sequence. If we

have, for example, two robot inputs ui ¼ ui1 ui2
� �T (e.g., wheel torques), thenwe have

a total of 3� L�N control variables of the optimization problem.We can condense
notation of the global problem ofmulti-robot systemwithout loss of generality to be

min
uif g∀i

∑
L

i¼1
Ji ui� �

s:t: ui ∈Ξi

Ωi u1;u2;…;uL
� �

≤0,∀i

(21)

with objectives

Ji ui
� � ¼ H xi Nð Þ� �þ zi Nð Þ (22)

which are subject to the set of individual robot i constraints of

Ξi :

zi kþ 1ð Þ ¼ zi kð Þ þ tis kð Þ � L xi kð Þ; ui kð Þ; tis kð Þ� �� �

xi kþ 1ð Þ ¼ f D xi kð Þ; ui kð Þ; tis kð Þ� �

gi xi kð Þ; ui kð Þ; tis kð Þ� �
≤0

∀k, zi 0ð Þ ¼ 0, xi 0ð Þ ¼ xi0

8>>><
>>>:

(23)

3.2 Distributed algorithm

Returning back to the primal-dual problem pair in Section 2, we can establish the
algorithm updates according to the defined updates in (19). At each iteration m, we
update each robot inputs and multipliers according to

ui
mþ1ð Þ ¼ φmin Ji ui

mð Þ
� �

þ λimð Þ
h iT

Ωi
mð Þ

h i� �

λimþ1ð Þ ¼ P λi ≥0 λimð Þ þ αΩi
mð Þ

n o (24)
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The minimizer update φmin :ð Þ is responsible to solve the single robot optimiza-
tion (primal) problem according to the objective defined in (22) and subject to
constraints in (23). In this paper, the minimizer update φmin :ð Þ is selected to be any
state-of-the-art nonlinear programming (NLP) algorithm. Let us have the step size
α for the dual update to be constant. This is sufficient for converging to a solution of
the original problem [33]. You can read the algorithm updates in (24) at iteration m
as each robot independently optimizes its whole motion throughout the whole time
horizon k ¼ 0, 1,…, N while at the same time puts in mind the extra cost of cooper-

ation/interaction with others introduced by the term λimð Þ
h iT

Ωi
mð Þ

h i
and so on.

3.3 Algorithm convergence

In this brief section, elaboration is put forth about how to practically use the
algorithm. The ultimate goal is to optimize primal problem with no collision viola-
tion, i.e., reaching optimal dual (maximum) solution. At each global iteration, we
only need to improve the primal problem values for the updated extra cost of the

interaction constraint, λi
� �T

Ωi
� �

. In this paper, a perfect solution is to optimize
while maintaining Ωi

� �
∀k ≤0. A logical property is to monitor the M-element vector

of constraints for positive values, i.e., violations. So, a stopping criterion for the
algorithm can be chosen to be some minimum change TolJ in the primal problem
value:

J mþ1ð Þ � J mð Þ
���

���≤TolJ with J mð Þ ¼ ∑L
i¼1J uimð Þ
� �

(25)

We can also distribute the stopping decision to individual robots by observing the
change in individual objective values.

With condition (25) on its own, we cannot always be satisfying the collision
requirement. So, this condition can be accompanied by a condition on the collision
constraint violation. For all robots, elements of the complete constraint vector
Ωi
� �

∀k should be less than a relatively small positive value TolΩ. So, for each robot,
an extra stopping criterion along with criteria in (25) is to have

max Ωi
mð Þ

h i
∀k

� �
≤TolΩ (26)

Specific values of TolΩ and TolJ depend on the nonlinear programming algo-
rithm and/or the global desired requirements. Note that the behavior of the two
tolerance parameters could be competitive with each other.

4. Application to wheeled mobile robots

4.1 System description

Figure 1 shows the individual robot system considered here. Robot state
includes xi ¼ x y ϕ θR θL vR vL½ �T with both position x; yð Þ and orienta-
tion ϕ and θR; θL; vR; vLð Þ as the right and left wheel angular positions and velocities,
respectively. Robot input includes the respective wheel torques ui ¼ τR τL½ �T. You
can have the details of the applied nonlinear dynamic model f D xi kð Þ; ui kð Þ; tis kð Þ� �
based on the system model developed in [34, 35]. Details of discretization and
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choice of parameters of the robot model can be found in [21]. As mentioned before,
for choices of Q ,R in Section 1, the Lagrangian for the problem is chosen to include
the cost for energy spent by the torques of the wheels, the cost for kinetic energy
spent by robot body, and the weight on time. Individual robot constraints include
final desired configuration tolerance, torque limits, and the ensurance of zero final
velocities (see more details in [36]).

4.2 Collision avoidance

Here, we will discuss the formulation and the structure of the coupling con-
straints. The robots can be designed to perform any cooperative strategy in their
motion. Here, we only consider the global goal of optimizing the motion of each robot
in time and energy while avoiding colliding with each other during the motion. Let us
define the coupling constraint vector across the discrete time indexes as

Ωi kð Þ ¼ Ωi xi kð Þ� �
∀i; ui kð Þ� �

∀i; tis kð Þ� �
∀i

� �
:

For the ith robot, it tries to avoid colliding with the rest of L� 1 robots at each of
its time indexes k. Let us label elements of the constraint vector as Ωij kð Þ� �

. Each
element is corresponding to a definition of constraint at time index k for all other
robots, j 6¼ i. So, for each robot, the constraint vector Ωi

� �
is of size

M ¼ L� 1ð Þ �N; of course, the multiplier vector λi in (24) is of the same size.
We define the collision avoidance by constraining motion of other robots to be

outside a safety circle region around each i robot at the position xi; yi
� �

in the 2D plane:

xi kð Þ � x̂j kð Þ� �2 þ yi kð Þ � ŷj kð Þ� �2 ≥ p2:

So, we can define each element of the constraint vector as

Ωij kð Þ ¼ p2 � xi kð Þ � x̂j kð Þ� �2 þ yi kð Þ � ŷj kð Þ� �2
(27)

The radius of the safety region is chosen as p. Because of the definition of the
sampling period variable, at each of discrete time step k, the actual time variable
does not necessarily imply ti kð Þ ¼ tj kð Þ for all the other L� 1 robots. That is why you

Figure 1.
Wheeled mobile robot.
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The minimizer update φmin :ð Þ is responsible to solve the single robot optimiza-
tion (primal) problem according to the objective defined in (22) and subject to
constraints in (23). In this paper, the minimizer update φmin :ð Þ is selected to be any
state-of-the-art nonlinear programming (NLP) algorithm. Let us have the step size
α for the dual update to be constant. This is sufficient for converging to a solution of
the original problem [33]. You can read the algorithm updates in (24) at iteration m
as each robot independently optimizes its whole motion throughout the whole time
horizon k ¼ 0, 1,…, N while at the same time puts in mind the extra cost of cooper-

ation/interaction with others introduced by the term λimð Þ
h iT

Ωi
mð Þ

h i
and so on.

3.3 Algorithm convergence

In this brief section, elaboration is put forth about how to practically use the
algorithm. The ultimate goal is to optimize primal problem with no collision viola-
tion, i.e., reaching optimal dual (maximum) solution. At each global iteration, we
only need to improve the primal problem values for the updated extra cost of the

interaction constraint, λi
� �T

Ωi
� �

. In this paper, a perfect solution is to optimize
while maintaining Ωi

� �
∀k ≤0. A logical property is to monitor the M-element vector

of constraints for positive values, i.e., violations. So, a stopping criterion for the
algorithm can be chosen to be some minimum change TolJ in the primal problem
value:

J mþ1ð Þ � J mð Þ
���

���≤TolJ with J mð Þ ¼ ∑L
i¼1J uimð Þ
� �

(25)

We can also distribute the stopping decision to individual robots by observing the
change in individual objective values.

With condition (25) on its own, we cannot always be satisfying the collision
requirement. So, this condition can be accompanied by a condition on the collision
constraint violation. For all robots, elements of the complete constraint vector
Ωi
� �

∀k should be less than a relatively small positive value TolΩ. So, for each robot,
an extra stopping criterion along with criteria in (25) is to have

max Ωi
mð Þ

h i
∀k

� �
≤TolΩ (26)

Specific values of TolΩ and TolJ depend on the nonlinear programming algo-
rithm and/or the global desired requirements. Note that the behavior of the two
tolerance parameters could be competitive with each other.

4. Application to wheeled mobile robots

4.1 System description

Figure 1 shows the individual robot system considered here. Robot state
includes xi ¼ x y ϕ θR θL vR vL½ �T with both position x; yð Þ and orienta-
tion ϕ and θR; θL; vR; vLð Þ as the right and left wheel angular positions and velocities,
respectively. Robot input includes the respective wheel torques ui ¼ τR τL½ �T. You
can have the details of the applied nonlinear dynamic model f D xi kð Þ; ui kð Þ; tis kð Þ� �
based on the system model developed in [34, 35]. Details of discretization and
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choice of parameters of the robot model can be found in [21]. As mentioned before,
for choices of Q ,R in Section 1, the Lagrangian for the problem is chosen to include
the cost for energy spent by the torques of the wheels, the cost for kinetic energy
spent by robot body, and the weight on time. Individual robot constraints include
final desired configuration tolerance, torque limits, and the ensurance of zero final
velocities (see more details in [36]).

4.2 Collision avoidance

Here, we will discuss the formulation and the structure of the coupling con-
straints. The robots can be designed to perform any cooperative strategy in their
motion. Here, we only consider the global goal of optimizing the motion of each robot
in time and energy while avoiding colliding with each other during the motion. Let us
define the coupling constraint vector across the discrete time indexes as

Ωi kð Þ ¼ Ωi xi kð Þ� �
∀i; ui kð Þ� �

∀i; tis kð Þ� �
∀i

� �
:

For the ith robot, it tries to avoid colliding with the rest of L� 1 robots at each of
its time indexes k. Let us label elements of the constraint vector as Ωij kð Þ� �

. Each
element is corresponding to a definition of constraint at time index k for all other
robots, j 6¼ i. So, for each robot, the constraint vector Ωi

� �
is of size

M ¼ L� 1ð Þ �N; of course, the multiplier vector λi in (24) is of the same size.
We define the collision avoidance by constraining motion of other robots to be

outside a safety circle region around each i robot at the position xi; yi
� �

in the 2D plane:

xi kð Þ � x̂j kð Þ� �2 þ yi kð Þ � ŷj kð Þ� �2 ≥ p2:

So, we can define each element of the constraint vector as

Ωij kð Þ ¼ p2 � xi kð Þ � x̂j kð Þ� �2 þ yi kð Þ � ŷj kð Þ� �2
(27)

The radius of the safety region is chosen as p. Because of the definition of the
sampling period variable, at each of discrete time step k, the actual time variable
does not necessarily imply ti kð Þ ¼ tj kð Þ for all the other L� 1 robots. That is why you

Figure 1.
Wheeled mobile robot.
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see that the x- and y- coordinates in (23) of the jth robot are noted as x̂j; ŷj
� �

which
are chosen to be calculated as linear interpolation of positions according to available
actual times of ti kð Þ and t j kð Þ.

4.3 Simulation examples

You can follow the whole distributed algorithm for the time-energy optimiza-
tion of multi-robot system with collision avoidance in the flowchart in Figure 2.
View the flowchart as the process for each individual robot (subproblem). We
implement the algorithm in Figure 2. For the primal minimizer update in (24), the
nonlinear programming (NLP) function of fmincon in MATLAB is used. We solved
the problem for motion of L ¼ 3 mobile robots. Utilizing the parallel capability in
MATLAB, the distributed steps are solved independently utilizing three parallel
processors. We choose number of instants N ¼ 40; so, we are going to optimize 120
control variables for each robot. More details can be found in [36].

Example 1. In this example, exploration of the behavior of the algorithm is
shown. The problem has the following desired values of initial and final positions
and orientations for the three robots:

x10; y
1
0;ϕ

1
0

� � ¼ 0;�8;
π

2

� �
, x1f ; y

1
f ;ϕ

1
f

� �
¼ 0; 5; πð Þ

Figure 2.
Distributed algorithm flowchart to optimize multi-robot motion.
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3
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� � ¼ 5;0; πð Þ, x3f ; y
3
f ;ϕ

3
f

� �
¼ �8;�1;
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2

� �

Here, robot 1 has equal objective weights of 5 on both time and energy, robot 2
has weights of 10 on energy and 1 on time, and robot 3 has 10 on time and 1 on
energy. The maximum number of internal NLP iterations (primal update) is set to

Figure 3.
The time-energy objective values throughout global iterations (Example 1).

Figure 4.
Collision avoidance (Example 1).
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only 10. The step size is set to α ¼ 0:1. Maximum global iterations are allowed for
100 iterations. The safety circle radius is chosen to be p ¼ 2.

Figure 3 contains the objective (time-energy) value evolution throughout
iterations. You can see the stable convergence as the algorithm progresses. Figure 4
shows each of the robots’ safety clearances during the optimized motion. In
Figure 5, snapshots of motion of the three robots at different time instants are
depicted. This illustrates the collision avoidance attained throughout the optimized
motion. Observe also how different are the speeds of each robot because of objec-
tive weights; note from Figure 4 that each robot has a different final time for their
motion. The algorithm has shown good performance at eliminating collision con-
straint violations. Figures 4 and 5 show an instant (around t = 12) where robots 1
and 3 violate collision distance with very small value, but no collision occurs. This is
because the maximum number of iterations of the algorithm is exhausted. This

Figure 5.
Snapshots of optimized motions at different instants (Example 1).
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indicates the possibility for the motion to be optimized even more if collision
constraints were relaxed or if more algorithm iterations were allowed. Initialization
of the algorithm also plays a role in algorithm evolution.

Figure 6.
Optimized trajectories of the three robots: each row of plots shows x-coordinate error, y-coordinate error, and
orientation error, respectively; each column of plots show robots 1, 2, and 3 errors, respectively (Example 2).

Figure 7.
Collision avoidance (Example 2).
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Example 2. This example illustrates more the satisfaction of the objectives. In
this example the safety circle radius is put as p ¼ 3. Here we choose the following
initial and final positions and orientations for the three robots:
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After applying our approach, you can see the resulting optimized motions in
Figure 6. In Figure 6, errors in x- and y-coordinates and orientation of each robot
are shown with respect to time. It is clear that errors of zero are achieved. In
Figure 7 for each robot, constraint evaluations, i.e., safety clearance, are displayed
for the other two robots throughout time. You can see that robots come close to
each other sometimes but without violating the safety distance. This result is
attained maybe because of special structure of initial and final positions and orien-
tations. That could have given flexibility for the algorithm.

5. Conclusion

The paper investigated the time-energy minimization onto the multi-robot case.
A global objective function is formulated as the sum of individual robot objectives
in time and energy. Constraints are divided into two sets, namely, robot-individual
constraints and robots’ interaction constraints. The problem is decomposed into L
subproblems with L being the number of robot systems. The subproblems are
coupled with each other by the collision avoidance information. Applying a distrib-
uted algorithm solved the problem iteratively. The overall output gives optimized
motions for all robots in time and energy while adhering and not colliding with each
other. We applied our approach to the case of three wheeled mobile robots: we
generated in parallel for each robot an optimized control input trajectory.

An extension to this study is to generate optimized motion trajectories and apply
them experimentally. A possible area for experimentation is full-scale autonomous
vehicles. Issues related to communication and distributing information during the
parallel algorithm will need to be incorporated and investigated. Also, aspects of
state estimation and localization of the robot system will come into the place which
were not considered in this work. A possible other investigation is to distribute the
problem further onto the time variable k; this will lead the problem to the domain of
distributed model predictive control. This will, possibly, pave the way to faster
deployment into autonomous vehicles.
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