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Preface

Industries require maintenance to ensure the correct operation of engines,
components, structures, etc. Any failure, i.e. termination of the ability of an item
to perform a required function, generates downtime, costs, risks for personnel,
etc. High competitiveness in the current industry does not lead these failures to
the firms.

Advances in information and communication systems, together with technologies, 
lead the industry to incorporate new sensors, condition monitoring systems, etc. 
They also require advanced analytics to format, save, and analyze these signals and 
information, from qualitative and quantitative point of views.

To reduce failure occurrence probabilities, a correct maintenance task is required. 
British Standard, BS EN-13306:2017 defines maintenance as “managerial actions
during the life cycle of an item intended to retain it in, or restore it to, a state in
which it can perform the required function. Technical maintenance actions include
observation and analyses of the item state (e.g. inspection, monitoring, testing, 
diagnosis, prognosis, etc.) and active maintenance actions (e.g. repair, refurbish-
ment).” Correct maintenance support for a maintenance organization to carry out
the correct tasks is called maintenance supportability.

There are a large number of maintenance types: 

Corrective maintenance is the most common type, and is done when the failure
appears. When it is delayed it is defined as deferred corrective maintenance; in
other cases it is called immediate corrective maintenance.

Preventive maintenance is done at certain times or according to criteria to reduce
the probability of failure. Predetermined maintenance is set according to time inter-
vals or use of an item.

Scheduled maintenance is done as predetermined maintenance or in a time schedule
established previously.

Condition-based maintenance is carried out with regard to the item status and is set
generally by sensors, testing, and analytics.

Predictive maintenance is the maintenance task done according to the predicted 
item condition to avoid failure.

According to EN 13306:2010, maintenance management is defined as “all activities
that determine the maintenance objectives, strategies and responsibilities, and 
implementation of them by such means as maintenance planning, maintenance
control, and the improvement of maintenance activities and economics.” The main-
tenance strategy is set to achieve objectives, fixed by costs, availability, safety, reli-
ability, etc. The maintenance strategy should be set by maintenance management
from a responsibility point of view, considering availability, safety of personnel, 



Preface

Industries require maintenance to ensure the correct operation of engines, 
components, structures, etc. Any failure, i.e. termination of the ability of an item 
to perform a required function, generates downtime, costs, risks for personnel, 
etc. High competitiveness in the current industry does not lead these failures to 
the firms.

Advances in information and communication systems, together with technologies, 
lead the industry to incorporate new sensors, condition monitoring systems, etc. 
They also require advanced analytics to format, save, and analyze these signals and 
information, from qualitative and quantitative point of views.

To reduce failure occurrence probabilities, a correct maintenance task is required. 
British Standard, BS EN-13306:2017 defines maintenance as “managerial actions 
during the life cycle of an item intended to retain it in, or restore it to, a state in 
which it can perform the required function. Technical maintenance actions include 
observation and analyses of the item state (e.g. inspection, monitoring, testing, 
diagnosis, prognosis, etc.) and active maintenance actions (e.g. repair, refurbish-
ment).” Correct maintenance support for a maintenance organization to carry out 
the correct tasks is called maintenance supportability.

There are a large number of maintenance types: 

Corrective maintenance is the most common type, and is done when the failure 
appears. When it is delayed it is defined as deferred corrective maintenance; in 
other cases it is called immediate corrective maintenance.

Preventive maintenance is done at certain times or according to criteria to reduce 
the probability of failure. Predetermined maintenance is set according to time inter-
vals or use of an item.

Scheduled maintenance is done as predetermined maintenance or in a time schedule 
established previously.

Condition-based maintenance is carried out with regard to the item status and is set 
generally by sensors, testing, and analytics.

Predictive maintenance is the maintenance task done according to the predicted 
item condition to avoid failure.

According to EN 13306:2010, maintenance management is defined as “all activities 
that determine the maintenance objectives, strategies and responsibilities, and 
implementation of them by such means as maintenance planning, maintenance 
control, and the improvement of maintenance activities and economics.” The main-
tenance strategy is set to achieve objectives, fixed by costs, availability, safety, reli-
ability, etc. The maintenance strategy should be set by maintenance management 
from a responsibility point of view, considering availability, safety of personnel, 



XIV

the environment, other mandatory requirements associated with the item, item 
durability, and final product quality taking into account the cost and any influence 
to the environment. Procedures, activities, resources, and time are considered in the 
maintenance plan.

The key indicators are found in European Standard EN 15341:2007. The objectives 
of key indicators are to measure the status, compare (internal and external bench-
marks), diagnose (analysis of strengths and weaknesses), and identify objectives, 
and define targets to be reached, plan improvement actions, and continuously 
measure changes over time. There are three main groups of indicators: economic, 
technical, and organizational. They are set considering endogenous (company 
culture, industry, lifecycle of the components, criticality, etc.) and exogenous 
(location, society, culture, market, laws, regulations, etc.) variables.

This book presents the main concepts, state of the art, advances, and case studies of 
fault detection, diagnosis, and prognosis. This topic is a critical variable in industry 
to reach and maintain competitiveness. Therefore, proper management of the 
corrective, predictive, and preventive politics in any industry is required. This book 
complements other subdisciplines such as economics, finance, marketing, decision 
and risk analysis, engineering, etc.

The book presents real case studies in multiple disciplines. It considers the main 
topics using prognostic and subdiscipline techniques. It is essential to link these 
topics with the areas of finance, scheduling, resources, downtime, etc. to increase 
productivity, profitability, maintainability, reliability, safety, and availability, and 
reduce costs and downtime. Advances in mathematics, modeling, computational 
techniques, dynamic analysis, etc. are employed analytically.

Computational techniques, dynamic analysis, probabilistic methods, and math-
ematical optimization techniques are expertly blended to support the analysis of 
prognostic problems with defined constraints and requirements.

The book is intended for graduate students and professionals in industrial engineer-
ing, business administration, industrial organization, operations management, 
applied microeconomics, and the decisions sciences, either studying maintenance or 
needing to solve large, specific, and complex maintenance management problems as 
part of their jobs. The work will also be of interest to researches from academia.

Fausto Pedro García Márquez
Ingenium Research Group,

Universidad Castilla-La Mancha, 
Ciudad Real, Spain
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Chapter 1

Introductory Chapter: 
Prognostics - An Overview
Fausto Pedro García Márquez

1. Introduction

Prognostics, in general, can be defined as “knowledge beforehand”. Prognostics
is usually identified with medical issues. Nowadays, due to the new advances in
technologies and information systems, prognostic is beginning to be employed in
other fields, e.g. engineering, financial, business, etc.

The main key indicators are given by European Standard EN 15341:2007 [1].
The objectives of the key indicators are to measure the status, compare (internal
and external benchmarks), diagnose (analysis of strengths and weaknesses),
identify objectives and define targets to be reached, plan improvement actions and
continuously measure changes over time. There are three main groups of indica-
tors: economic [2], technical [3] and organisational [4]. They are set considering
endogenous (company culture, industry, life cycle of the components, criticality,
etc.) and exogenous (location, society culture, market, laws, regulations, etc.)
variables [5].

Prognostics requires also of advance analytics in order to format, save and 
analyse these signals and information, from qualitative and quantitative points of
view. Model-based approach takes into account the state prediction achieved through
physics or system models, the following being mainly employed: model based on
detection and isolation [6]. Hybrid models, extended Kalman filtering and particle
filtering [7, 8]. Data-driven approach is also a state prediction with criteria evalua-
tion, where the state prediction is achieved through regression or stochastic process
modelling. The most important are autoregressive moving average (ARMA) or
autoregressive integrated moving average (ARIMA) [9], etc.

Nowadays the information from an item or person is getting more and more, 
with more variables, complex, etc. The large amount of data requires to be anal-
ysed, considering the heterogeneity, noise accumulation, spurious correlations, and 
incidental endogeneity of the data. It does that new approach and algorithms based 
on artificial intelligence which will be appearing; Artificial Neural Network [10]; 
Fuzzy Logic System [11]; Hidden Markov Model [12]; Support Vector Machine [13], 
Relevance Vector Machine (RVM); Gaussian Process Regression [14], Multivariate
Logistic Regression in general form, K-Means Clustering, Fuzzy Logic-Based 
Algorithms and Bayesian Belief Network, etc. Some algorithms can be applied 
together with the above-mentioned methods, e.g. gradient descent, alternating least
squares, collaborative filtering, SVM kernel, belief propagation, matrix factoriza-
tion and Gibbs sampling.

The next generation of approaches will require to process Big Data. Big Data is
one of the central and influential research challenges for the 2020 Horizon, where
the quantity of world data will be 44 times bigger in the next few years (0.8–35 
zettabytes) [15].
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Chapter 2

Prognostics 102: Efficient
Bayesian-Based Prognostics
Algorithm in MATLAB
Ting Dong, Dawn An and Nam H. Kim

Abstract

An efficient Bayesian-based algorithm is presented for physics-based
prognostics, which combines a physical model with observed health monitoring
data. Unknown model parameters are estimated using the observed data, from
which the remaining useful life (RUL) of the system is predicted. This paper focuses
on the Bayesian method for parameter estimation of a damage degradation model
where epistemic uncertainty in model parameters is reduced with the observed
data. Markov-chain Monte Carlo sampling is used to generate samples from the
posterior distribution, which are then propagated through the physical model to
estimate the distribution of the RUL. A MATLAB script of 76 lines is included in this
paper with detailed explanations. A battery degradation model and crack growth
model are used to explain the process of parameter estimation, the evolution of
degradation and RUL prediction. The code presented in this paper can easily be
altered for different applications. This code may help beginners to understand and
use Bayesian method-based prognostics.

Keywords: Bayesian method, physics-based prognostics, remaining useful life,
MATLAB code, crack growth, battery degradation

1. Introduction

Structural health monitoring (SHM) [1, 2] is the process of identifying damage
and evaluating the safety of a system based on online and/or off-line data. It uses an
array of sensors to obtain measurement data that are directly or indirectly related to
damage. The statistical analysis of these measurements can help predict the future
state of the system and thus improve the safety of the system. SHM can be found in
a wide variety of applications such as bridges and dams, buildings, stadiums, plat-
forms, airframes, turbines, etc. Prognostics is an extension of SHM, which is the
process of estimating the time beyond which a system can no longer function to
meet desired performances [3]. The time, in terms of cycles/hours, remaining to
run the system before it fails is called the remaining useful life (RUL).

There are two types of prognostics methods: data-driven and physics-based
approaches. The data-driven approaches are advantageous when many training data
are available for a complex system, while the physics-based approaches are good
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Chapter 2

Prognostics 102: Efficient
Bayesian-Based Prognostics
Algorithm in MATLAB
Ting Dong, Dawn An and Nam H. Kim

Abstract

An efficient Bayesian-based algorithm is presented for physics-based
prognostics, which combines a physical model with observed health monitoring
data. Unknown model parameters are estimated using the observed data, from
which the remaining useful life (RUL) of the system is predicted. This paper focuses
on the Bayesian method for parameter estimation of a damage degradation model
where epistemic uncertainty in model parameters is reduced with the observed
data. Markov-chain Monte Carlo sampling is used to generate samples from the
posterior distribution, which are then propagated through the physical model to
estimate the distribution of the RUL. A MATLAB script of 76 lines is included in this
paper with detailed explanations. A battery degradation model and crack growth
model are used to explain the process of parameter estimation, the evolution of
degradation and RUL prediction. The code presented in this paper can easily be
altered for different applications. This code may help beginners to understand and
use Bayesian method-based prognostics.

Keywords: Bayesian method, physics-based prognostics, remaining useful life,
MATLAB code, crack growth, battery degradation
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Measured data is used to estimate model parameters, which are then used to predict
the RUL.

Recently, many prognostics algorithms have been published in the literature
[4–8]. However, many of the proposed algorithms are complex and not easily
applicable. This complexity can present a serious hurdle for the beginner. In addi-
tion, using commercial programs may not be the best choice in teaching algorithms
to students. As a continuation of our educational paper on prognostics algorithm
[9], the objective of this paper is to explain the fundamentals of a Bayesian-based
prognostics method and demonstrate how to use it using a simple MATLAB code.

The MATLAB code consists of 76 lines, which is further divided into three parts:
(1) problem definition; (2) prognostics using the Bayesian method (BM); and (3)
post-processing. The program is structured in such a way that the users only need to
modify the problem definition part for their own application. This paper shows an
example of battery degradation and crack growth models, and attempts to explain
prognostics using BM with MATLAB code.

The remaining sections are organized as follows: In Section 2, the overall process
of BM is explained; in Section 3, implementation of the code is explained with
details using battery degradation example; and in Section 4, modification of the
code for crack growth example is described, followed by conclusions in Section 5.

2. Methodology

In this section, a physics-based approach is explained using the procedure shown
in Figure 1. The theoretical discussions in this section are mainly to help understand
the MATLAB implementation in Section 3. The physics-based approach comprises
of the following steps: (1) developing or identifying a physical model that describes
the degradation of system health, (2) collecting data by operating the system under
usage conditions and measuring degradation at a sequence of times/cycles, (3)
estimating the model parameters by fitting the measured data, (4) progressing the
physical model to the future times/cycles, and (5) predicting the RUL. A statistical

Figure 1.
Flowchart of physics-based prognostics.
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inference technique called the Bayesian method (BM) is used in this paper to
estimate the model parameters based on measured data. Many other methods, such
as particle filter and Kalman filter, also use Bayesian inference to estimate the model
parameters. In BM, all model parameters are estimated in the form of a joint
probability density function (PDF), whose distribution can be represented using
samples. Among various sampling methods, Markov-chain Monte Carlo (MCMC)
algorithm is employed to draw samples from the distribution. These samples of
model parameters are then substituted in the physical model to calculate the sam-
ples of RUL, from which the statistical distribution is evaluated.

2.1 Model definition

In this section, a degradation model of a battery is used to explain the physics-
based prognostics algorithm using the Bayesian method. The degradation model of
crack growth will also be explained in Section 4. It is expected that the users develop
a degradation model for their own application. This section explains the basic
requirements of a degradation model.

In a lithium-ion battery, it is well known that the capacity of a secondary cell
degrades over cycles in use. Therefore, the capacity can be used as a degradation
feature. The degradation feature is an output of the degradation model that shows a
monotonic trend as a function of time. The system is considered failed when the
degradation feature goes beyond a threshold. In the case of a lithium-ion battery,
the failure threshold is defined when the charging capacity fades by 30% of that of a
pristine battery. In this paper, the C/1 capacity (capacity at a nominally rated
current of 1A) of the battery is used as a degradation feature. Since the C/1 capacity
is inversely proportional to the sum of the transfer resistance and the electrolyte
resistance, it represents the overall performance of a battery.

Although the degradation process of a battery is complicated, a simple empirical
model is available when the usage of the battery is the repetition of fully charging-
discharging cycles. In such a case, the degradation model can be written as a
function of time only. Since the capacity of a battery degrades over time, the ratio of
the capacity compared to that of the pristine battery is expressed by an exponential
decaying model as [10]

~y t; bð Þ ¼ exp �btð Þ (1)

where b is the model parameter, t is the time, and ~y t; bð Þ is the relative degradation
of the C/1 capacity compared to the pristine capacity. The notation in Eq. (1) is
chosen such that the degradation model depends on both the time of usage and
model parameters. In general, the degradation model is either monotonically
decreased (e.g., the capacity decay of a battery) or monotonically increased
(e.g., crack growth).

The main goal of the physics-based prognostics is to predict the degradation
behavior using the degradation model. If the model is perfect, then it can be used to
find the time tEOL at the end of life from

~y tEOL; bð Þ ¼ ythreshold (2)

where ythreshold is the failure threshold. Since the relative capacity is used as a
degradation feature, the failure threshold is defined at ythreshold ¼ 0:7. Let the
current time be tCUR, then the RUL can be defined as

tRUL ¼ tEOL � tCUR (3)
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crack growth will also be explained in Section 4. It is expected that the users develop
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function of time only. Since the capacity of a battery degrades over time, the ratio of
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In practice, however, the degradation model is not perfect in the sense that the
model form, as well as the model parameters, may not be accurate. The error in the
model form can be handled by introducing a model form error and identifying the
error using measured data, which would be considered as the out of the scope of this
paper. Interested readers can refer to Guan et al. [11].

Once the model form is accepted, the next task is to identify the accurate model
parameters. In the case of the battery degradation model in Eq. (1), the parameter b
needs to be identified. In most cases, the model parameters are not an intrinsic
property but depend on operating conditions and environment. Therefore, these
parameters can be different for different batteries and need to be identified for the
specific battery of interest. In fact, the major task of physics-based prognostics is to
identify the model parameters.

The model parameter b for a specific battery can be identified by measuring the
capacity degradation during regular operation. The measuring process is often
called health monitoring, where the degradation feature is measured over time. It is
possible that the degradation feature can be monitored online. However, for the
purpose of prognostics, the real-time continuous monitoring may not be necessary.
Therefore, it is often suggested to collect data in a discrete set of times. Then, many
different physics-based prognostics algorithms use these data to identify the model
parameters so that the degradation model represents the degradation feature the
best. For example, nonlinear least-squares method minimizes the error between
measured data and the model prediction. Kalman filter, particle filter, and Bayesian
methods are using Bayesian inference to estimate the model parameters. Different
methods use different assumptions and different numerical approaches. Interested
readers are referred to Kim et al. [3] for details of these methods.

If the measured data are accurate, then a small number of measured data
should be good enough to estimate the model parameters. In reality, however,
most measured data include noise and bias, which make the estimation process
difficult. Noise is a random fluctuation of signals due to uncontrollable factors in
the measurement environment, while bias is a systematic departure from the
average data. If the measurement is repeated, noise can be changed, while the bias
may remain the same. The bias can occur because of calibration error of the
sensors, but it may also occur due to the model form error. The effect of the
model form error can partially be addressed by introducing the bias in the esti-
mation process. Bias can be added in the model as an extra term and estimated in
the same way as other parameters. The distribution of estimated bias is a good
indicator if the model can represent degradation data well enough. If estimated
bias is widely distributed, it means model form error is large. If it is narrowly
distributed and the mean is close to 0, it means the model is accurate. Since noise
is random, it is important to compensate for its effect in the parameter estimation
process. It is obvious that a large level of noise makes the process difficult.
Therefore, it is important to keep the signal-to-noise ratio as high as possible. It is
also important to understand the statistical characteristics of the noise. In this
paper, it is assumed that the noise follows a Gaussian distribution with a zero
mean and unknown standard deviation. On the other hand, the effect of bias will
not be considered. Therefore, in addition to the unknown model parameters, it is
necessary to estimate the unknown standard deviation of noise in data.

Because of noise and bias, it is often expected that a large number of data be
required to estimate the model parameters accurately. In prognostics, it is often
assumed that Ndata data are collected from a start time to the current time
t∈ t0; tCUR½ �. Time does not have to be a physical time; it can also be the number of
cycles of operation. Then, the model parameters are estimated using Ndata data, and
future degradation is predicted using the degradation model with the estimated
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parameters. In particular, the goal is to accurately predict the end of life in Eq. (2)
and the RUL in Eq. (3).

It is important to note that the data should show a significant change in the
damage feature over time. In the case of crack growth in Section 4, for example,
when the crack size is small, it grows very slowly. Therefore, the measurement data
in an early stage do not show a significant change in the crack size. In such a case, the
signal-to-noise ratio is too low and it is difficult to estimate the model parameters.

In this paper, instead of measuring the degradation of a real battery, the degra-
dation data are generated based on an assumed true model. This has a couple of
advantages. First, since the true model and its model parameters are known, it is
possible to evaluate the accuracy of the estimation process and that of the RUL. It
also allows us to investigate the effect of noise on the performance of prognostics
algorithms. In this paper, the relative capacity data are generated based on Eq. (1)
with the true model parameter btrue = 0.012. It is assumed that the C/1 capacity of
the battery is measured once a week up to the ninth week. In order to simulate the
real measurement environment, a Gaussian noise ε � N(0, 0.0052) is added to
the true data. The following MATLAB commands can be used to generate the
measured data:

>> time=(0:9)';
>> b=0.012;
>> trueData=exp(-b*time);
>> measuData=trueData+0.005*randn(10,1);

Once the measurement data are generated, the true model parameters and the
information of noise are not used. Table 1 and Figure 2 show the true degradation
data and simulated measurement data up to the current time tCUR ¼ 9 weeks. Based
on the true model, the end of life of the battery is tEOL ¼ 29:72 weeks, and thus, the
true RUL should be tRUL ¼ 20:72 weeks.

2.2 Bayesian parameter estimation

Once the measurement data are available, the next step would be to estimate the
model parameters. Among many parameter estimation methods, the Bayesian
inference is explained in this section. In the following explanation, Θ represents the
random variable of the unknown model parameter, and Y represents the random
variable of degradation feature. A variable with an upper case denotes a random
variable, while a variable with a lower case denotes a realization of the random
variable. Bayesian inference estimates the degree of belief in a hypothesis based on
collected evidence. Bayes [12] formulated the degree of belief using the identity in
conditional probability:

P Θ∩Yð Þ ¼ P ΘjYð ÞP Yð Þ ¼ P YjΘð ÞP Θð Þ (4)

where P ΘjYð Þ is the conditional probability of Θ given Y. In the case of estimating
the model parameter using measured data, the conditional probability of Θ when
the probability of measured data Y is available can be written as

Time (weeks) 0 1 2 3 4 5 6 7 8 9

True degradation 1.000 0.988 0.976 0.965 0.953 0.942 0.931 0.919 0.909 0.898

Measured degradation 0.995 0.983 0.975 0.974 0.942 0.938 0.930 0.920 0.911 0.895

Table 1.
Measurement data (relative capacity) for the battery degradation example.
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data and simulated measurement data up to the current time tCUR ¼ 9 weeks. Based
on the true model, the end of life of the battery is tEOL ¼ 29:72 weeks, and thus, the
true RUL should be tRUL ¼ 20:72 weeks.

2.2 Bayesian parameter estimation

Once the measurement data are available, the next step would be to estimate the
model parameters. Among many parameter estimation methods, the Bayesian
inference is explained in this section. In the following explanation, Θ represents the
random variable of the unknown model parameter, and Y represents the random
variable of degradation feature. A variable with an upper case denotes a random
variable, while a variable with a lower case denotes a realization of the random
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P Θ∩Yð Þ ¼ P ΘjYð ÞP Yð Þ ¼ P YjΘð ÞP Θð Þ (4)
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P ΘjYð Þ ¼ P YjΘð ÞP Θð Þ
P Yð Þ (5)

where P Θð Þ is the prior probability of parameter Θ, which represents the
preexisting knowledge on the parameter. P ΘjYð Þ is the posterior probability of
parameter Θ after updating the prior with measurement data Y. P YjΘð Þ is the
likelihood function or the probability of obtaining data Y for a given parameter Θ.
The measurement data affect the posterior probability through the likelihood func-
tion. The denominator, P(Y), is the marginal probability of Y and acts as a normal-
izing constant. The above equation can be used to improve the knowledge of P(Θ)
when additional information P(Y) is available.

If the Bayes’ theorem in Eq. (5) is going to be used for identifying unknown
model parameters, it would be better to express the theorem in the form of a
probability density function (PDF) [13], which is used in the present paper. Let
fΘ θð Þ be a PDF of model parameter Θ. When there are more than one model
parameters, fΘ θð Þ can be a joint PDF of multiple parameters. If the health monitor-
ing measures a degradation feature Y, the measurement variability can be
represented using PDF, f Y yð Þ. Then, the conditional PDFs between Θ and Y can be
related to the joint PDF and the marginal PDF, fΘ θð Þ and f Y yð Þ, as

fΘY θ; yð Þ ¼ fΘ θjY ¼ yð Þf Y yð Þ ¼ f Y yjΘ ¼ θð ÞfΘ θð Þ (6)

It is obvious that the joint PDF can be written as fΘY θ; yð Þ ¼ fΘ θð Þf Y yð Þ when Θ
and Y are independent, and Bayesian inference cannot be used to improve the
probability distribution of fΘ θð Þ. Similar to Eqs. (5) and (6) can be used for
obtaining the Bayesian inference in the form of PDF as [14].

fΘ θjY ¼ yð Þ ¼ f Y yjΘ ¼ θð ÞfΘ θð Þ
f Y yð Þ (7)

Since the denominator f Y yð Þ is a constant and since the integral of fΘ θjY ¼ yð Þ is
one from the property of PDF, the denominator in Eq. (7) can be considered as a

Figure 2.
True degradation curve and measured data for the relative capacity.
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normalizing constant. Similar to Eq. (5), fΘ θjY ¼ yð Þ is the posterior PDF of param-
eter Θ that is updated from the prior PDF fΘ θð Þ with the likelihood function
f Y yjΘ ¼ θð Þ, which is the probability density value of measured data y given model
parameter Θ ¼ θ. The process of updating the posterior distribution fΘ θjY ¼ yð Þ of
the model parameter using the measured data y is called Bayesian inference.

The Bayesian inference can be extended to the case when many data are avail-
able. In general, it is possible that the posterior PDF can be obtained by applying all
data simultaneously or by iteratively applying each data at a time. Although two
approaches are theoretically equivalent, they end up numerically different methods.
For example, the particle filter method uses a single measurement to update the
posterior distribution, and the previous posterior distribution is used as a prior
distribution for the following measurement. On the other hand, Bayesian method
uses all measurement data together to build a single posterior distribution, which is

used in this paper. Let us consider that y ¼ y1; y2;…; yNdata

n o
is the vector or Ndata

measurements. In such a case, the Bayes’ theorem can be written as

fΘ θjY ¼ y
� � ¼ 1

K

YNdata

i¼1

f Y yijΘ ¼ θ
� �� �

fΘ θð Þ (8)

where K is the product of all marginal PDFs. However, it can be considered as a
normalizing constant to make the integration of the posterior PDF to be one. It is
noted that the total likelihood function is the product of the likelihood functions of
individual data, which is then multiplied by the prior PDF followed by normaliza-
tion to yield the posterior PDF.

In contrast to the traditional least-squares method, the Bayes’ theorem can
estimate not only the best values of parameters but also the uncertainty structure of
the identified parameters. Since these uncertainty structures are derived from that
of the prior distribution and likelihood function, the uncertainty of the posterior
distribution is directly related to that of the likelihood and the prior distribution.

In the Bayesian method, it is assumed that the users know the prior distribution
of model parameters and the distribution type of measurement noise. In this paper,
it is assumed that the prior distribution is given as a uniform distribution with a
lower- and upper-bound. It is also assumed that the measurement noise is a
Gaussian distribution; that is ε � N 0; s2ð Þ, where s is the standard deviation of noise.
However, users can change these assumptions easily. For example, the case when
noise in data follows a lognormal distribution is considered in the crack growth
problem in Section 4. In most cases, since the standard deviation of noise is
unknown, it should be a part of unknown model parameters. In the case of the
battery model, therefore, the vector of unknown model parameters is defined as
Θ ¼ b; sf g. By assuming that the two model parameters are statistically indepen-
dent, the prior joint PDF of the two parameters can be defined as

fΘ θð Þ ¼ f bð Þ � f sð Þ, f bð Þ � U 0;0:05ð Þ, f sð Þ � U 10�5;0:1
� �

(9)

Once the prior distribution is determined, it is necessary to build the likelihood
function using the measurement data and to yield the posterior distribution shown
in Eq. (8). The meaning of the likelihood function is the PDF value of obtaining the
measured data yk for given model parameters θ ¼ b; sf g. Since the measured data
are fixed, the likelihood function is a function of model parameters, which makes
the likelihood function different from the PDF. If the model prediction is close to the
measured data, then the likelihood is large, while the likelihood is small when
the two values are significantly different. In order to build the likelihood, it is

11

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781



P ΘjYð Þ ¼ P YjΘð ÞP Θð Þ
P Yð Þ (5)

where P Θð Þ is the prior probability of parameter Θ, which represents the
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Figure 2.
True degradation curve and measured data for the relative capacity.
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normalizing constant. Similar to Eq. (5), fΘ θjY ¼ yð Þ is the posterior PDF of param-
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n o
is the vector or Ndata
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� � ¼ 1

K

YNdata

i¼1
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� �� �

fΘ θð Þ (8)
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Gaussian distribution; that is ε � N 0; s2ð Þ, where s is the standard deviation of noise.
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problem in Section 4. In most cases, since the standard deviation of noise is
unknown, it should be a part of unknown model parameters. In the case of the
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Θ ¼ b; sf g. By assuming that the two model parameters are statistically indepen-
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function using the measurement data and to yield the posterior distribution shown
in Eq. (8). The meaning of the likelihood function is the PDF value of obtaining the
measured data yk for given model parameters θ ¼ b; sf g. Since the measured data
are fixed, the likelihood function is a function of model parameters, which makes
the likelihood function different from the PDF. If the model prediction is close to the
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necessary to measure degradations at different times. Since the measured degradation
data yk; tk

� �
, k ¼ 1, 2,…, Ndata are given at discrete times, the degradation model is

also evaluated at the same discrete times as ~yk bð Þ ¼ ~y tk; bð Þ, k ¼ 1, 2,…, Ndata. Since
the times between the measurement and the model are synchronized, ~yk bð Þ is only a
function of model parameter b. The measured data yk include the random noise that is
governed by s, while the model prediction ~yk bð Þ depends on b. Then, the likelihood
function of the k-th measured data can be defined as

f Y ykjθ
� � ¼ 1

s
ffiffiffiffiffi
2π

p exp � 1
2s2

yk � ~yk bð Þ� �2� �
, k ¼ 1, 2,…, Ndata (10)

As shown in Eq. (8), the likelihoods of multiple data can be multiplied to obtain

the posterior distribution. With Ndata data, y ¼ y1; y2;…; yNdata

n o
, the posterior joint

PDF can be calculated by multiplying all likelihood functions and the prior PDF as

fΘ θjy� � ¼ 1
KsNdata

exp � 1
2s2

∑
Ndata

k¼1
yk � ~yk bð Þ� �2� �

fΘ θð Þ (11)

where K is again a normalizing constant.

2.3 Markov chain Monte Carlo sampling

Bayesian parameter estimation in Eq. (11) shows the functional expression of the
posterior joint PDF of unknown model parameters. When the prior and posterior
are conjugate, the posterior distribution can be expressed in the form of a standard
probability distribution. In general cases, however, the posterior distribution can be
expressed as a product of complex functions, such as the posterior PDF shown in
Eq. (11).

The posterior PDF is then used to calculate the degradation trend and predict the
RUL. For complex nonlinear models, it is difficult to propagate uncertainty in the
parameters to the degradation model. Instead, samples of model parameters are
generated from the posterior distribution, and the degradation model with the
threshold in Eq. (2) is used to propagate these samples to calculate the samples of
the end of life, and thus, the samples of the RUL in Eq. (3). Therefore, it is
important to generate samples that follow the posterior distribution of parameters.

In general, the inverse cumulative distribution function (CDF) method is the
easiest way of generating samples from a non-standard probability distribution, but it
requires the functional expression of CDF, not PDF. For practical engineering appli-
cations, it is likely that the posterior PDF may be different from a standard probabil-
ity distribution, or the posterior PDF is complicated due to the complex correlation
structures between parameters. In such a case, sampling-based methods can be used
to generate samples of parameters. There are many sampling methods, such as the
grid approximation [15], rejection sampling [16], importance sampling [17], and the
Markov Chain Monte Carlo (MCMC) method [18]. In this paper, the MCMCmethod
using the Metropolis-Hastings (MH) algorithm is employed. MCMC is a simulation
technique used to estimate quantities of interest by sampling consecutive random
variables wherein the future state depends only on the current state [19].

The MCMC sampling method uses a Markov chain model in a random walk,
where the distribution of the next sample depends only on the current sample
(see Figure 3). As the algorithm generates more and more samples, the samples
more closely approximate the posterior PDF. Specifically, Starting with an arbitrary
initial sample (current sample), a new candidate sample is drawn from a proposal
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distribution centered at the current sample. In this paper, a uniformly distributed
proposal distribution is used. Therefore, it is expected that the users provide the
initial sample of parameters and the width of the proposal distribution. At i-th
iteration, it is expected that the current sample θ i�1ð Þ is available, and the new
candidate sample θ∗ is drawn from the following proposal distribution that is uni-
formly distributed centered at θ i�1ð Þ:

g θ∗; jθ i�1ð Þ
� �

� U θ i�1ð Þ �w; θ i�1ð Þ þw
h i

(12)

where w is the user-provided width of the proposal distribution. It is noted that the
proposal distribution is symmetric; that is g θ∗; jθ i�1ð Þ� � ¼ g θ i�1ð Þ; jθ∗� �

.
Once the candidate sample is generated, it is either accepted as a new sample or

rejected based on an acceptance criterion. When accepted, the candidate sample is
added to a new sample and used in the next iteration. When rejected, the candidate
sample is discarded, and the current sample is reused in the next iteration. In the
original MH algorithm, it is suggested to use a function that is proportional to
the posterior distribution for the acceptance/rejection test. In this paper, however,
the posterior distribution is directly used as its evaluation is not computationally
expensive. Since the proposal distribution is symmetric, the following acceptance
ratio can be defined:

Q θ i�1ð Þ; θ∗
� �

¼ fΘ θ∗jy� �

fΘ θ i�1ð Þjy� � (13)

The acceptance ratio compares the posterior probability of the new candidate
sample against that of the current sample. If the candidate sample has a higher proba-
bility than that of the current sample; i.e.,Q θ i�1ð Þ; θ∗

� �
>1, then it is always accepted as

a new sample. When 0 <Q θ i�1ð Þ; θ∗
� �

< 1; that is, the probability of the candidate
sample is lower than that of the current sample, the acceptance is determined based on
the ratio. A high acceptance ratio has a more probability to be accepted, while a low
ratio is occasionally accepted. This can be achieved by generating a sample from a
uniform distribution, u � U 0; 1½ �, and the candidate sample is accepted if
u<Q θ i�1ð Þ; θ∗

� �
; otherwise, it is rejected. Intuitively, this is why this algorithmworks,

and returns samples that follow the desired distribution fΘ θjy� �
. In Figure 3, two

Figure 3.
Markov chain Monte Carlo sampling using random walk.
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necessary to measure degradations at different times. Since the measured degradation
data yk; tk

� �
, k ¼ 1, 2,…, Ndata are given at discrete times, the degradation model is

also evaluated at the same discrete times as ~yk bð Þ ¼ ~y tk; bð Þ, k ¼ 1, 2,…, Ndata. Since
the times between the measurement and the model are synchronized, ~yk bð Þ is only a
function of model parameter b. The measured data yk include the random noise that is
governed by s, while the model prediction ~yk bð Þ depends on b. Then, the likelihood
function of the k-th measured data can be defined as

f Y ykjθ
� � ¼ 1
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p exp � 1
2s2

yk � ~yk bð Þ� �2� �
, k ¼ 1, 2,…, Ndata (10)

As shown in Eq. (8), the likelihoods of multiple data can be multiplied to obtain

the posterior distribution. With Ndata data, y ¼ y1; y2;…; yNdata

n o
, the posterior joint

PDF can be calculated by multiplying all likelihood functions and the prior PDF as

fΘ θjy� � ¼ 1
KsNdata

exp � 1
2s2

∑
Ndata
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yk � ~yk bð Þ� �2� �

fΘ θð Þ (11)

where K is again a normalizing constant.

2.3 Markov chain Monte Carlo sampling

Bayesian parameter estimation in Eq. (11) shows the functional expression of the
posterior joint PDF of unknown model parameters. When the prior and posterior
are conjugate, the posterior distribution can be expressed in the form of a standard
probability distribution. In general cases, however, the posterior distribution can be
expressed as a product of complex functions, such as the posterior PDF shown in
Eq. (11).

The posterior PDF is then used to calculate the degradation trend and predict the
RUL. For complex nonlinear models, it is difficult to propagate uncertainty in the
parameters to the degradation model. Instead, samples of model parameters are
generated from the posterior distribution, and the degradation model with the
threshold in Eq. (2) is used to propagate these samples to calculate the samples of
the end of life, and thus, the samples of the RUL in Eq. (3). Therefore, it is
important to generate samples that follow the posterior distribution of parameters.

In general, the inverse cumulative distribution function (CDF) method is the
easiest way of generating samples from a non-standard probability distribution, but it
requires the functional expression of CDF, not PDF. For practical engineering appli-
cations, it is likely that the posterior PDF may be different from a standard probabil-
ity distribution, or the posterior PDF is complicated due to the complex correlation
structures between parameters. In such a case, sampling-based methods can be used
to generate samples of parameters. There are many sampling methods, such as the
grid approximation [15], rejection sampling [16], importance sampling [17], and the
Markov Chain Monte Carlo (MCMC) method [18]. In this paper, the MCMCmethod
using the Metropolis-Hastings (MH) algorithm is employed. MCMC is a simulation
technique used to estimate quantities of interest by sampling consecutive random
variables wherein the future state depends only on the current state [19].

The MCMC sampling method uses a Markov chain model in a random walk,
where the distribution of the next sample depends only on the current sample
(see Figure 3). As the algorithm generates more and more samples, the samples
more closely approximate the posterior PDF. Specifically, Starting with an arbitrary
initial sample (current sample), a new candidate sample is drawn from a proposal
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distribution centered at the current sample. In this paper, a uniformly distributed
proposal distribution is used. Therefore, it is expected that the users provide the
initial sample of parameters and the width of the proposal distribution. At i-th
iteration, it is expected that the current sample θ i�1ð Þ is available, and the new
candidate sample θ∗ is drawn from the following proposal distribution that is uni-
formly distributed centered at θ i�1ð Þ:

g θ∗; jθ i�1ð Þ
� �

� U θ i�1ð Þ �w; θ i�1ð Þ þw
h i

(12)

where w is the user-provided width of the proposal distribution. It is noted that the
proposal distribution is symmetric; that is g θ∗; jθ i�1ð Þ� � ¼ g θ i�1ð Þ; jθ∗� �

.
Once the candidate sample is generated, it is either accepted as a new sample or

rejected based on an acceptance criterion. When accepted, the candidate sample is
added to a new sample and used in the next iteration. When rejected, the candidate
sample is discarded, and the current sample is reused in the next iteration. In the
original MH algorithm, it is suggested to use a function that is proportional to
the posterior distribution for the acceptance/rejection test. In this paper, however,
the posterior distribution is directly used as its evaluation is not computationally
expensive. Since the proposal distribution is symmetric, the following acceptance
ratio can be defined:

Q θ i�1ð Þ; θ∗
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¼ fΘ θ∗jy� �

fΘ θ i�1ð Þjy� � (13)

The acceptance ratio compares the posterior probability of the new candidate
sample against that of the current sample. If the candidate sample has a higher proba-
bility than that of the current sample; i.e.,Q θ i�1ð Þ; θ∗

� �
>1, then it is always accepted as

a new sample. When 0 <Q θ i�1ð Þ; θ∗
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< 1; that is, the probability of the candidate
sample is lower than that of the current sample, the acceptance is determined based on
the ratio. A high acceptance ratio has a more probability to be accepted, while a low
ratio is occasionally accepted. This can be achieved by generating a sample from a
uniform distribution, u � U 0; 1½ �, and the candidate sample is accepted if
u<Q θ i�1ð Þ; θ∗

� �
; otherwise, it is rejected. Intuitively, this is why this algorithmworks,

and returns samples that follow the desired distribution fΘ θjy� �
. In Figure 3, two
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dashed circles mean that these candidate samples are not selected according to the
criterion. In such a case, the current sample is selected again. This process is repeated as
many times as necessary until a sufficient number of samples are obtained. Figure 4
summarizes the MCMC sampling procedure using theMH algorithm.

The performance of MCMC sampling depends on the initial sample and the
selection of the proposal distribution. A too-narrow proposal distribution can yield
destabilization by not fully covering the posterior distribution, while a too-wide
distribution can yield many duplications in sampling result by not accepting new
samples. In addition, if the initial sample is located far away from the posterior
distribution, many iterations (samples) will be required to converge to the posterior
distribution. To prevent the effect of inaccurate initial samples, an initial portion
of the samples can be discarded in estimating the posterior distribution, which is
called the burn-in. In this paper, the first 20 percent of the samples are discarded as
a burn-in.

2.4 Prognostics

Once the samples of parameters are obtained based on the posterior distribution,
the future damage state and the RUL can be predicted by substituting the samples
of parameters in the degradation model and estimating the RUL using Eqs. (2) and
(3). In general, since the degradation model is a nonlinear implicit function of time,

solving for t ið Þ
EOL with a given sample b ið Þ in Eq. (2) may require an iterative process.

Instead, in this paper, the degradation model is evaluated at a set of discrete future
times, and then, the end of life is calculated using a simple interpolation. More
specifically, let the set of discrete times is defined as

time ¼ t0 t1 ⋯ tCUR ⋯ tend½ � (14)

Then, the measurement data are available between t0 and tCUR. Bayesian param-
eter estimation in the previous section uses the measurement data between t0 and

Figure 4.
Metropolis-Hastings algorithm for generating samples from a posterior distribution.
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tCUR to estimate the posterior PDF of model parameters. Using the estimated model
parameters, the degradations in the future times between tCUR and tend are calcu-
lated in the prediction stage. If two consecutive degradations cross the threshold;
that is,

~yk bð Þ � ythresholdÞ � ~ykþ1 bð Þ � ythresholdÞ≤0
��

(15)

then tEOL exists between tk and tkþ1, which can be found by a simple linear interpo-
lation. When the set of futures times do not include the end of life, it can extrapo-
late based on the trend of data. It is also possible that the degradation model never
reaches the threshold; that is, the system has an infinite of life. In such a case, the
sample is deleted from the calculation. Once the samples of the end of life are
obtained, the samples of RUL can be calculated using Eq. (3).

Once the samples of RUL are available, the confidence interval and/or the
prediction interval is used to evaluate the accuracy or precision of the RUL. The
confidence interval represents how good the RUL is. Therefore, the confidence
interval of 95% means that the true RUL will be within this interval with the
probability of 95%. That is, the confidence interval tells us about the likely location
of the true RUL. In the case of RUL samples, the 95% confidence interval can be
calculated by taking the lower 2.5 percentile and the upper 2.5 percentile from the
samples. On the other hand, the prediction interval shows the possible location of
the next sample. Knowing that the next sample will have additional randomness
from the predicted RUL, the prediction interval is calculated by adding additional
randomness to the data. In practice, the RUL estimation is important for
scheduling maintenance. Therefore, only the lower confidence/prediction bound is
of interest in the practical application. Figure 5 shows a representative result of
prognostics, which shows the statistical distribution and the confidence interval of
the RUL.

Figure 5.
Statistical distribution and the confidence interval of the remaining useful life.
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tCUR to estimate the posterior PDF of model parameters. Using the estimated model
parameters, the degradations in the future times between tCUR and tend are calcu-
lated in the prediction stage. If two consecutive degradations cross the threshold;
that is,

~yk bð Þ � ythresholdÞ � ~ykþ1 bð Þ � ythresholdÞ≤0
��

(15)

then tEOL exists between tk and tkþ1, which can be found by a simple linear interpo-
lation. When the set of futures times do not include the end of life, it can extrapo-
late based on the trend of data. It is also possible that the degradation model never
reaches the threshold; that is, the system has an infinite of life. In such a case, the
sample is deleted from the calculation. Once the samples of the end of life are
obtained, the samples of RUL can be calculated using Eq. (3).

Once the samples of RUL are available, the confidence interval and/or the
prediction interval is used to evaluate the accuracy or precision of the RUL. The
confidence interval represents how good the RUL is. Therefore, the confidence
interval of 95% means that the true RUL will be within this interval with the
probability of 95%. That is, the confidence interval tells us about the likely location
of the true RUL. In the case of RUL samples, the 95% confidence interval can be
calculated by taking the lower 2.5 percentile and the upper 2.5 percentile from the
samples. On the other hand, the prediction interval shows the possible location of
the next sample. Knowing that the next sample will have additional randomness
from the predicted RUL, the prediction interval is calculated by adding additional
randomness to the data. In practice, the RUL estimation is important for
scheduling maintenance. Therefore, only the lower confidence/prediction bound is
of interest in the practical application. Figure 5 shows a representative result of
prognostics, which shows the statistical distribution and the confidence interval of
the RUL.

Figure 5.
Statistical distribution and the confidence interval of the remaining useful life.
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3. MATLAB implementation

In this section, MATLAB implementation of prognostics using the Bayesian
method is discussed. In the following explanation, ‘line’ or ‘lines’ in a parenthesis
indicated the number of the line of the code in Appendix. The code is divided into
three parts: (1) Problem Definition (lines 2–15, 65–67) (2) Bayesian parameter
estimation and MCMC sampling (lines 16–29, 60–76) (3) Post-processing for
displaying results (lines 40–57). Only the Problem Definition part needs to be
changed for different applications. Detailed explanations are given in the subse-
quent sections with an example of battery degradation.

It is expected that the MATLAB script is saved as a file with the name of ‘BM.m’,
which has two input arguments, para0 and weigh (line 1). The first argument,
para0, is the initial sample of model parameters, and weigh is the width w of the
proposal distribution in Eq. (12). The size of each array should be the same as the
number of model parameters. The following is an example of calling the code in the
command window of MATLAB:

samplResul=BM([0.011 0.02]', [0.001 0.003]');

In the above MATLAB command, para0 = [0.011 0.02]' is the initial sample of b
and s, and weigh = [0.001 0.003]' is the width of proposal distribution of b and s.
Since the convergence and accuracy depend on these two variables, it is suggested
to try with different values. Since the users know the prior distribution of the model
parameters, it is a good practice to start with the mean of the prior distribution as an
initial sample. If the code ran successfully, it will return the samples of model
parameters in the samplResul array and will generate two plots. The first plot is the
trace of MCMC samples, and the second plot is the histogram of the RUL.

3.1 Problem definition (lines 2–15, 65–67)

The problem definition means defining the degradation equation using model
parameters and time/cycle. All known parameters, as well as the initial estimate of
unknown parameters, parameter names, and model data, need to be defined. The
problem definition consists of two parts: parameter definition and model definition.
For parameter definition (lines 2–15), ‘Battery’ is used as a WorkName (line 3).
The capacity is measured every week, so TimeUnit is ‘weeks’ (line 4). In line 5,
time is an array of discrete times in the units of TimeUnit. Measurements and
predictions will be done at these times. The relative C/1 capacity data is stored as
measuData (lines 6–7), which has 10 weeks of measurement; that is, Ndata ¼ 10 (k1
in line 18). These data correspond to the first 10 times in time array. Since time
starts from 0, the 10th time corresponds to 9 weeks, which is the current time; that
is, tCUR ¼ 9week. The degradation will be predicted for future times that are from
10 to 50 weeks. The measurement data are generated using the MATLAB script in
Section 2.1. It is noted that due to random noise, the users may experience different
realizations of measurement data.

In line 8, the degradation threshold ythreshold is defined using variable ‘thres’with
the value of 0.7. ParamName in line 9 is the name of model parameters: model
parameter ‘b’ and standard deviation of noise ‘s’. Since the parameter name will
actually be used in the model, it is important to use the actual name of variables
here. The number of parameters is stored in the variable ‘p’ in line 17. It is noted
that the last parameter should be the standard deviation of noise ‘s’. prioDisPar
stores the information of the prior distribution of model parameters, as given in
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Eq. (9). When a uniform prior distribution is used, each row contains the lower-
and upper-bounds of the distribution.

During MCMC sampling, the number of samples Ns is set to 5000 (line 12). Since
the sampling process takes many iterations to converge, the initial 20% of the samples
are discarded in calculating the posterior distribution by command burnIn = 0.2
(line 13). In order to keep 5000 samples, Ns/(1-burnIn) = 6250 samples (line 21) are
generated first, and then, nBurn = 1250 samples (line 30) are discarded.

Since the RUL is represented by Ns samples, the confidence interval or the
prediction interval is often used to support the decision-making process. signiLevel
(line 14) is the significance level of this interval in percentage. When signiLevel = 5,
the code will return the lower 5 percentile, median, and the upper 5 percentile.
Following is the sample output from BM.m:

# Percentiles of RUL at 9 cycles
5prct: 18.7182, median: 20.381, 95prct: 22.1576

For the model definition, the degradation model ~y t; bð Þ in Eq. (1) is defined in
lines 65–67. In this equation, t is the time of measurement, and b is the model
parameter as defined in line 9. The model equation needs to be defined in such a
way that component-by-component operations are possible. This is because the
time and model parameters can be an array of samples.

3.2 Bayesian parameter estimation with MCMC (lines 16–31)

In the Bayesian parameter estimation process, the posterior distribution is
expressed in terms of the product of the prior distribution and the likelihoods of all
measured data. In the MATLAB code BM.m, the degradation model and the poste-
rior distribution are calculated in the function BMappl (lines 60–76). First, the
parameter samples in param are assigned to the variables using the eval function
(line 62–64):

for j=1:size(param,1)
eval([ParamName(j,:) '=param(j,:);']);
end

In the case of the battery example, this command is equivalent to.
b = param(1,:);
s = param(2,:);

This is why the ParamName in line 9 must have the same name with the actual
variable. Then, these parameters are used to calculate the degradation model with
given time t (line 66).

If measurement data (measuData) is empty, then BMappl only calculates the
degradation model with given parameter samples at a given time t. This corre-
sponds to propagating the degradation model using parameter samples to the future
time for prognostics. If measurement data are provided (lines 71–74), then BMappl
calculates the values of the posterior distribution at the parameter samples. In this
case, the time should be given as an array ofNdata components from the start time to
the current time. The posterior distribution in Eq. (11) (line 74) is the multiplication
of the prior distribution (line 71) in Eq. (9) with the likelihood of all measured
data (lines 72–73) in Eq. (10). The calculated posterior distribution from BMappl
is used for calculating the acceptance ratio (line 23).

MCMC sampling using the MH algorithm starts with the initial sample that is
provided by the users (line 19) and the value of the posterior PDF (line 20). In the
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3. MATLAB implementation
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in line 18). These data correspond to the first 10 times in time array. Since time
starts from 0, the 10th time corresponds to 9 weeks, which is the current time; that
is, tCUR ¼ 9week. The degradation will be predicted for future times that are from
10 to 50 weeks. The measurement data are generated using the MATLAB script in
Section 2.1. It is noted that due to random noise, the users may experience different
realizations of measurement data.

In line 8, the degradation threshold ythreshold is defined using variable ‘thres’with
the value of 0.7. ParamName in line 9 is the name of model parameters: model
parameter ‘b’ and standard deviation of noise ‘s’. Since the parameter name will
actually be used in the model, it is important to use the actual name of variables
here. The number of parameters is stored in the variable ‘p’ in line 17. It is noted
that the last parameter should be the standard deviation of noise ‘s’. prioDisPar
stores the information of the prior distribution of model parameters, as given in
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Eq. (9). When a uniform prior distribution is used, each row contains the lower-
and upper-bounds of the distribution.

During MCMC sampling, the number of samples Ns is set to 5000 (line 12). Since
the sampling process takes many iterations to converge, the initial 20% of the samples
are discarded in calculating the posterior distribution by command burnIn = 0.2
(line 13). In order to keep 5000 samples, Ns/(1-burnIn) = 6250 samples (line 21) are
generated first, and then, nBurn = 1250 samples (line 30) are discarded.

Since the RUL is represented by Ns samples, the confidence interval or the
prediction interval is often used to support the decision-making process. signiLevel
(line 14) is the significance level of this interval in percentage. When signiLevel = 5,
the code will return the lower 5 percentile, median, and the upper 5 percentile.
Following is the sample output from BM.m:

# Percentiles of RUL at 9 cycles
5prct: 18.7182, median: 20.381, 95prct: 22.1576

For the model definition, the degradation model ~y t; bð Þ in Eq. (1) is defined in
lines 65–67. In this equation, t is the time of measurement, and b is the model
parameter as defined in line 9. The model equation needs to be defined in such a
way that component-by-component operations are possible. This is because the
time and model parameters can be an array of samples.

3.2 Bayesian parameter estimation with MCMC (lines 16–31)

In the Bayesian parameter estimation process, the posterior distribution is
expressed in terms of the product of the prior distribution and the likelihoods of all
measured data. In the MATLAB code BM.m, the degradation model and the poste-
rior distribution are calculated in the function BMappl (lines 60–76). First, the
parameter samples in param are assigned to the variables using the eval function
(line 62–64):

for j=1:size(param,1)
eval([ParamName(j,:) '=param(j,:);']);
end

In the case of the battery example, this command is equivalent to.
b = param(1,:);
s = param(2,:);

This is why the ParamName in line 9 must have the same name with the actual
variable. Then, these parameters are used to calculate the degradation model with
given time t (line 66).

If measurement data (measuData) is empty, then BMappl only calculates the
degradation model with given parameter samples at a given time t. This corre-
sponds to propagating the degradation model using parameter samples to the future
time for prognostics. If measurement data are provided (lines 71–74), then BMappl
calculates the values of the posterior distribution at the parameter samples. In this
case, the time should be given as an array ofNdata components from the start time to
the current time. The posterior distribution in Eq. (11) (line 74) is the multiplication
of the prior distribution (line 71) in Eq. (9) with the likelihood of all measured
data (lines 72–73) in Eq. (10). The calculated posterior distribution from BMappl
is used for calculating the acceptance ratio (line 23).

MCMC sampling using the MH algorithm starts with the initial sample that is
provided by the users (line 19) and the value of the posterior PDF (line 20). In the
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loop of MCMC sampling (lines 21–29), a candidate sample is randomly generated
from a uniform distribution, centered at the current sample and the width of �w
(line 22). The value of posterior PDF for the candidate sample is also calculated (line
23). If the acceptance ratio in Eq. (13) is greater than a randomly generated number
u, then the candidate sample is accepted as a new sample (lines 25–26). Otherwise,
the current sample and its posterior PDF are kept as a new sample and PDF. Once
the MCMC sampling loop is over, the first 20% of the samples are discarded as a
burn-in process (line 31). At the end of Bayesian parameter estimation, samplResul
array contains Ns samples of model parameters.

3.3 Remaining useful life prediction (lines 32–39)

Once the samples of model parameters are obtained based on the posterior
distribution, they can be used to find the RUL, which is the time when the degra-
dation prediction reaches the threshold. First, for all samples in samplResul, the
degradation is predicted in the future times between tCUR ¼ k1 and tend.

for k=1:length(time(k1:end))
[degrPreCon(k,:),�]=BMappl(samplResul,ParamName,time(k1-1+k),[],[]);

end

Once the degradations in the future times are calculated, MATLAB function
interp1 is used to find the time when ~y tEOL; bð Þ ¼ ythreshold. Once tEOL is found, the
RUL can be calculated using Eq. (3).

for i=1:Ns
RUL(i)=interp1(degrPreCon(:,i),time(k1:end),thres,'pchip') - time(k1);

end

The option ‘pchip’ in interp1 uses a shape-preserving piecewise cubic interpola-
tion, which preserves C1-continuity.

3.4 Postprocessing (lines 40–58)

In the postprocessing stage, the results given in samples are interpreted in terms
of statistical quantities or in the form of graphs. First, in the RUL array, those
components that have an infinite life should be removed (line 41). Then, the
confidence intervals of [5%, median, 95%] are calculated from the RUL array and
stored in rulPerce (line 42–43).

The MATLAB code plots two figures. The first figure plots the trace of
MCMC samples (lines 45–50) as shown in Figure 6(a). This trace shows the
quality of MCMC samples. If samples are distributed randomly and symmetrically
around the mean with a constant bound, then it means that the samples are
stabilized and well represent the posterior distribution. If the trace of samples
shows an irregular behavior as shown in Figure 6(b), the samples may not
represent the posterior PDF properly. This can happen when the initial sample was
far away from the mean and when the width of the proposal distribution is too
narrow or too wide.

The second plot is the histogram of RUL (lines 51–53) as shown in Figure 7. At
the end of the code, the confidence intervals of [5%, median, 95%] are printed on
the command window (lines 54–56). All variables are saved in the computer file so
that they can be loaded to the memory for further analysis (line 57). The name of
the saved database is “WorkName at tCUR.mat”. For example, in the battery case,
the saved database name is “Battery at 9.mat”.
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Although the MATLAB code plots two figures, it is possible that the users can
plot different figures using the saved database. After calling the BM.m function, the
saved database has to be loaded to the memory using the following commands:

clear; clc; load('Battery at 9.mat')

Figure 6.
Trace of samples from MCMC sampling (a) proper samples and (b) improper samples.

Figure 7.
Histogram of the remaining useful life.
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loop of MCMC sampling (lines 21–29), a candidate sample is randomly generated
from a uniform distribution, centered at the current sample and the width of �w
(line 22). The value of posterior PDF for the candidate sample is also calculated (line
23). If the acceptance ratio in Eq. (13) is greater than a randomly generated number
u, then the candidate sample is accepted as a new sample (lines 25–26). Otherwise,
the current sample and its posterior PDF are kept as a new sample and PDF. Once
the MCMC sampling loop is over, the first 20% of the samples are discarded as a
burn-in process (line 31). At the end of Bayesian parameter estimation, samplResul
array contains Ns samples of model parameters.

3.3 Remaining useful life prediction (lines 32–39)

Once the samples of model parameters are obtained based on the posterior
distribution, they can be used to find the RUL, which is the time when the degra-
dation prediction reaches the threshold. First, for all samples in samplResul, the
degradation is predicted in the future times between tCUR ¼ k1 and tend.

for k=1:length(time(k1:end))
[degrPreCon(k,:),�]=BMappl(samplResul,ParamName,time(k1-1+k),[],[]);

end

Once the degradations in the future times are calculated, MATLAB function
interp1 is used to find the time when ~y tEOL; bð Þ ¼ ythreshold. Once tEOL is found, the
RUL can be calculated using Eq. (3).

for i=1:Ns
RUL(i)=interp1(degrPreCon(:,i),time(k1:end),thres,'pchip') - time(k1);

end

The option ‘pchip’ in interp1 uses a shape-preserving piecewise cubic interpola-
tion, which preserves C1-continuity.

3.4 Postprocessing (lines 40–58)

In the postprocessing stage, the results given in samples are interpreted in terms
of statistical quantities or in the form of graphs. First, in the RUL array, those
components that have an infinite life should be removed (line 41). Then, the
confidence intervals of [5%, median, 95%] are calculated from the RUL array and
stored in rulPerce (line 42–43).

The MATLAB code plots two figures. The first figure plots the trace of
MCMC samples (lines 45–50) as shown in Figure 6(a). This trace shows the
quality of MCMC samples. If samples are distributed randomly and symmetrically
around the mean with a constant bound, then it means that the samples are
stabilized and well represent the posterior distribution. If the trace of samples
shows an irregular behavior as shown in Figure 6(b), the samples may not
represent the posterior PDF properly. This can happen when the initial sample was
far away from the mean and when the width of the proposal distribution is too
narrow or too wide.

The second plot is the histogram of RUL (lines 51–53) as shown in Figure 7. At
the end of the code, the confidence intervals of [5%, median, 95%] are printed on
the command window (lines 54–56). All variables are saved in the computer file so
that they can be loaded to the memory for further analysis (line 57). The name of
the saved database is “WorkName at tCUR.mat”. For example, in the battery case,
the saved database name is “Battery at 9.mat”.
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Although the MATLAB code plots two figures, it is possible that the users can
plot different figures using the saved database. After calling the BM.m function, the
saved database has to be loaded to the memory using the following commands:

clear; clc; load('Battery at 9.mat')

Figure 6.
Trace of samples from MCMC sampling (a) proper samples and (b) improper samples.

Figure 7.
Histogram of the remaining useful life.
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In addition to the trace of samples shown in Figure 6, it is possible to plot the
histogram of model parameters using the same samples. The following commands
plot the histograms of all model parameters.

figure; % histogram of parameters
for j=1:p;
subplot(1,p,j);
hist(samplResul(j,:),30);

end

When the true degradation model is known, it is possible to compare the
predicted degradation with the true one. The following MATLAB script plots the
median and confidence intervals of the predicted degradation along with the true
degradation and the threshold.

figure;
degraTrue=exp(-0.012.*time);
degraPI=prctile(degraPredi',perceValue)';
plot(time,degraTrue,'k'); hold on;
plot(time(1:k1),measuData,'*b');
plot(time(k1:end),degraPI(:,1),'–r');
plot(time(k1:end),degraPI(:,2:3),':r');
plot([0 time(end)],[thres thres],'g');
xlabel('weeks'); ylabel('Relative C/1 capacity');

The degradation curves up to 50 weeks are shown in Figure 8 for the battery
example. The true degradation with b ¼ 0:012 is shown with the black curve. The
red curves show 5, 50 (median) and 95 percentiles of the predicted degradation,
which are caused by signiLevel = 5 (line 14). The plot also shows the threshold
(green line) and measurement data (blue asterisk marks). Based on the true model,
the end of life of the battery is tEOL ¼ 29:72 weeks, and thus, the true RUL should
be tRUL ¼ 20:72 weeks. The prediction shows that the median of RUL is

Figure 8.
Comparison of the predicted degradation with the true degradation.
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20.38 weeks, which is close to the true RUL. In addition, the 90% confidence
interval is about 3.4 weeks; that is, the uncertainty in the prediction is about 17%.

4. Application to crack growth prognostics

The code can be modified easily by the users for various applications. In this
section, an example of crack growth is used to explain how the MATLAB code BM.m
can be modified.

4.1 Model definition: crack growth

In fatigue crack growth, the failure criterion is given in terms of the crack size.
Therefore, it would be appropriate to use the size of crack as a degradation feature.
In this case, the degradation feature monotonically increases, while it was mono-
tonically decreased for the battery example. Assuming that a through-the-thickness
center crack exists in an infinite plate under mode-I loading condition, the rate of
fatigue crack growth can be expressed using the Paris-Erdogan model as

da
dN

¼ C ΔKð Þm (16)

where a is the half crack size, N is the number of cycles, m and C are model
parameters, ΔK ¼ Δσ

ffiffiffiffiffiffi
πa

p
is the range of stress intensity factor, and Δσ is the stress

range. It is assumed that time is the number of fatigue loading cycles. For the
consistent notation, the crack size and cycles are replaced with ~y ¼ a and t ¼ N in
the following explanation. Since the degradation model requires the crack size as a
function of time and model parameters, Eq. (16) can be integrated to obtain the
following degradation model:

~y t;m;Cð Þ ¼ tC 1�m
2

� �
Δσ

ffiffiffi
π

p� �m þ a1�
m
2

0

h i 2
2�m

(17)

The system is under fatigue loading with the range of stress being Δσ ¼ 75MPa at
each cycle. It is assumed that the health monitoring is performed every 50 cycles to
measure the crack size yk until the current time tCUR ¼ 1, 200 cycles, and the initial
size of the crack is a0 ¼ 0:01m. Similar to the battery degradation example, the
measurement data are simulated by adding random noise to the true crack size. First,
the true crack size data are generated at every 50 cycles using Eq. (17) with
mtrue ¼ 3:8 and Ctrue ¼ 1:5� 10�10. The measured crack size data are then generated
by adding Gaussian noise ε � N 0; s2ð Þ, s ¼ 0:0005m to the true crack sizes. The
measured crack size data are used to identify three model parameters,
θ ¼ m; ln Cð Þ; sf g. In the Paris-Erdogan model, the y-intercept C is very small but
changes its magnitude by several orders. Therefore, it would be better to identify
logarithm of C. For RUL calculation, the critical crack size is determined as 0.043 m.

For the Bayesian method, it is necessary to define the prior distribution and the
likelihood function. In the battery example, it was assumed that noise in data
follows a normal distribution. However, when the distribution type of measure-
ment noise is unknown, it is possible that the likelihood function might be different
from the true noise distribution. The same is true for the prior/initial distribution.
Therefore, it would be a good exercise to study the effect of different distribution
types by changing the MATLAB codes. In this example, the lognormal distribution
is employed for the likelihood function as:

21

Prognostics 102: Efficient Bayesian-Based Prognostics Algorithm in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.82781



In addition to the trace of samples shown in Figure 6, it is possible to plot the
histogram of model parameters using the same samples. The following commands
plot the histograms of all model parameters.

figure; % histogram of parameters
for j=1:p;
subplot(1,p,j);
hist(samplResul(j,:),30);

end

When the true degradation model is known, it is possible to compare the
predicted degradation with the true one. The following MATLAB script plots the
median and confidence intervals of the predicted degradation along with the true
degradation and the threshold.
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plot(time(k1:end),degraPI(:,1),'–r');
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The degradation curves up to 50 weeks are shown in Figure 8 for the battery
example. The true degradation with b ¼ 0:012 is shown with the black curve. The
red curves show 5, 50 (median) and 95 percentiles of the predicted degradation,
which are caused by signiLevel = 5 (line 14). The plot also shows the threshold
(green line) and measurement data (blue asterisk marks). Based on the true model,
the end of life of the battery is tEOL ¼ 29:72 weeks, and thus, the true RUL should
be tRUL ¼ 20:72 weeks. The prediction shows that the median of RUL is
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20.38 weeks, which is close to the true RUL. In addition, the 90% confidence
interval is about 3.4 weeks; that is, the uncertainty in the prediction is about 17%.

4. Application to crack growth prognostics

The code can be modified easily by the users for various applications. In this
section, an example of crack growth is used to explain how the MATLAB code BM.m
can be modified.

4.1 Model definition: crack growth

In fatigue crack growth, the failure criterion is given in terms of the crack size.
Therefore, it would be appropriate to use the size of crack as a degradation feature.
In this case, the degradation feature monotonically increases, while it was mono-
tonically decreased for the battery example. Assuming that a through-the-thickness
center crack exists in an infinite plate under mode-I loading condition, the rate of
fatigue crack growth can be expressed using the Paris-Erdogan model as

da
dN

¼ C ΔKð Þm (16)

where a is the half crack size, N is the number of cycles, m and C are model
parameters, ΔK ¼ Δσ

ffiffiffiffiffiffi
πa

p
is the range of stress intensity factor, and Δσ is the stress

range. It is assumed that time is the number of fatigue loading cycles. For the
consistent notation, the crack size and cycles are replaced with ~y ¼ a and t ¼ N in
the following explanation. Since the degradation model requires the crack size as a
function of time and model parameters, Eq. (16) can be integrated to obtain the
following degradation model:

~y t;m;Cð Þ ¼ tC 1�m
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The system is under fatigue loading with the range of stress being Δσ ¼ 75MPa at
each cycle. It is assumed that the health monitoring is performed every 50 cycles to
measure the crack size yk until the current time tCUR ¼ 1, 200 cycles, and the initial
size of the crack is a0 ¼ 0:01m. Similar to the battery degradation example, the
measurement data are simulated by adding random noise to the true crack size. First,
the true crack size data are generated at every 50 cycles using Eq. (17) with
mtrue ¼ 3:8 and Ctrue ¼ 1:5� 10�10. The measured crack size data are then generated
by adding Gaussian noise ε � N 0; s2ð Þ, s ¼ 0:0005m to the true crack sizes. The
measured crack size data are used to identify three model parameters,
θ ¼ m; ln Cð Þ; sf g. In the Paris-Erdogan model, the y-intercept C is very small but
changes its magnitude by several orders. Therefore, it would be better to identify
logarithm of C. For RUL calculation, the critical crack size is determined as 0.043 m.

For the Bayesian method, it is necessary to define the prior distribution and the
likelihood function. In the battery example, it was assumed that noise in data
follows a normal distribution. However, when the distribution type of measure-
ment noise is unknown, it is possible that the likelihood function might be different
from the true noise distribution. The same is true for the prior/initial distribution.
Therefore, it would be a good exercise to study the effect of different distribution
types by changing the MATLAB codes. In this example, the lognormal distribution
is employed for the likelihood function as:
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f ykjθ
� � ¼ 1

ykζk
ffiffiffiffiffi
2π

p exp � 1
2

ln yk � ηk
ζk

� �2
" #

, k ¼ 1,…, Ndata (18)

where ζk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ s=~ykÞ2

� ihr
and ηk ¼ ln ~ykÞ � 0:5 ζkð Þ2

�
are the standard

deviation and mean of a lognormal distribution, respectively. In the above equation,
~yk θð Þ is the model prediction from Eq. (17) at time tk with given model parameters
m and C.

Also, the prior distribution of each parameter is assumed as a normal distribution as

f mð Þ � N 4;0:22
� �

, f lnCð Þ � N �22:33;0:52
� �

, and f sð Þ � N 5� 10�4; 1� 10�4
� �2� �

.

Therefore, the joint prior distribution can be obtained from the independence
assumption as

fΘ θð Þ ¼ f mð Þ � f lnCð Þ � f sð Þ (19)

The posterior distribution can be obtained by multiplying the prior distribution in
Eq. (19) with the likelihood function in Eq. (18).

4.2 Modifying the code

For the crack growth example, the code in Appendix needs to be changed as
follows. First, the problem definition part in lines 2–15 is replaced with the follow-
ing code:

%===== PROBLEM DEFINITION 1 (Required Parameters)==================
WorkName='Crack'; %work results are saved by WorkName
TimeUnit='cycles'; % time unit name
time=(0:50:3600)'; % time including both at measurement and at prediction
measuData=[1.03 1.00 0.96 1.14 1.13 1.10 1.15 1.15 1.19 1.19 1.14 ...

1.14 1.20 1.22 1.37 1.21 1.25 1.25 1.36 1.30 1.32 1.48 ...
1.52 1.47 1.59]'*0.01;

thres=0.043; % threshold - critical value
ParamName=['m'; 'C'; 's']; % model parameters' name to be estimated
prioDisPar=[4 0.2; -22.33 .5; 5E-4 1E-4]; % parameter prior distributions
Ns=10000; % num. of samples for MCMC simulation
burnIn=0.2; % burn-in fraction
signiLevel=2.5; % significance level for C.I. and P.I.
%===============================================================

A total of Ndata ¼ 25 measurement data are provided up to tCUR ¼ 1, 200cycles,
and the degradation is predicted until tend ¼ 3, 600cycles. Since the prior distribu-
tions are assumed a normal distribution, the first column of prioDisPar is the mean,
and the second column is the standard deviation.

Next, the model definition part in lines 65–67 is replaced with the following
code:

%===== PROBLEM DEFINITION 2 (model equation)=======================
a0=0.01; dsig=75; coef=1-m/2;
degraModel=(t.*exp(C).*coef.*(dsig*sqrt(pi)).^m + a0.^coef).^(1./coef);
loca=imag(degraModel)�=0; degraModel(loca)=real(degraModel(loca));
%===============================================================
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Initially, a fatigue crack grows slowly and then grows rapidly just before
becoming unstable. The crack growth model in Eq. (17) is only valid when the crack
growth is stable. Normally the threshold ythreshold is set before the crack becomes
unstable. When the crack becomes unstable, Eq. (17) yield a complex number.
Therefore, the last line of the model definition code identifies if a prediction
yields a complex number and converts it to a real number by ignoring the
complex part.

In addition to the problem definition part, the posterior distribution part also
needs to be modified because instead of a uniform distribution, a normal distribu-
tion is used for the prior distribution. Also, lognormal distributions are used instead
of normal distributions for the likelihood function. The posterior distribution part
in lines 71–74 needs to be modified as follows:

prior=prod(normpdf(param,prioDisPar(:,1),prioDisPar(:,2)));
likel=1;
for k=1:length(measuData)
zeta=sqrt(log(1+(s./degraModel(k)).^2)); eta=log(degraModel(k))-0.5*zeta.^2;
likel=lognpdf(measuData(k),eta,zeta).*likel;

end
poste=likel.*prior;

4.3 Results

Similar to the battery example, the MATLAB code can be used to plot the trace
of MCMC sampling and the histogram of model parameters and RUL. Using a
similar code provided in Section 3.4, the degradation trend could also be plotted.
For example, Figure 5 shows the predicted degradation with the true degradation.
Even if the median (1553 cycles) has a relatively large error with the true RUL
(1709 cycles), the 95% confidence interval covers the true RUL.

An important information that was not discussed before is the correlation
between model parameters. It is well known that the Paris-Erdogan model parame-
ters, m and C, are strongly correlated [20]. Therefore, it would be beneficial to plot
the MCMC samples in the parameter space. The following MATLAB script plots the
MCMC samples of the parameters.

clear; clc; load('Crack at 1200.mat');
[m, C]=meshgrid((3.4:0.009:4.3)',(-24:0.025:-21.5));
for i=1:101; for j=1:101

para=[m(i,j); C(i,j); 0.0005];
[�,post(i,j)]=BMappl(para,ParamName,time(1:k1),measuData,prioDisPar);

end; end
plot(samplResul(1,:),samplResul(2,:),'.','color',[0.5 0.5 0.5]); hold on
contour(m,C,real(post));
plot(3.8,log(1.5E-10),'pk','markersize',14);

Figure 9 shows the MCMC samples in the parameter space along with the
exact value of the parameters (star marker). The figure also shows the contour of
the joint posterior PDF based on the grid method. It can be observed that the
MCMC samples represent the joint posterior PDF well, and the joint PDF covers the
true parameter values. However, due to a strong correlation between the two
Paris-Erdogan model parameters, the joint PDF shows a narrow but long tail. Any
combination of model parameters along the correlation line may yield a similar
damage growth trend.
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Therefore, the joint prior distribution can be obtained from the independence
assumption as

fΘ θð Þ ¼ f mð Þ � f lnCð Þ � f sð Þ (19)

The posterior distribution can be obtained by multiplying the prior distribution in
Eq. (19) with the likelihood function in Eq. (18).

4.2 Modifying the code

For the crack growth example, the code in Appendix needs to be changed as
follows. First, the problem definition part in lines 2–15 is replaced with the follow-
ing code:

%===== PROBLEM DEFINITION 1 (Required Parameters)==================
WorkName='Crack'; %work results are saved by WorkName
TimeUnit='cycles'; % time unit name
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1.14 1.20 1.22 1.37 1.21 1.25 1.25 1.36 1.30 1.32 1.48 ...
1.52 1.47 1.59]'*0.01;

thres=0.043; % threshold - critical value
ParamName=['m'; 'C'; 's']; % model parameters' name to be estimated
prioDisPar=[4 0.2; -22.33 .5; 5E-4 1E-4]; % parameter prior distributions
Ns=10000; % num. of samples for MCMC simulation
burnIn=0.2; % burn-in fraction
signiLevel=2.5; % significance level for C.I. and P.I.
%===============================================================

A total of Ndata ¼ 25 measurement data are provided up to tCUR ¼ 1, 200cycles,
and the degradation is predicted until tend ¼ 3, 600cycles. Since the prior distribu-
tions are assumed a normal distribution, the first column of prioDisPar is the mean,
and the second column is the standard deviation.

Next, the model definition part in lines 65–67 is replaced with the following
code:

%===== PROBLEM DEFINITION 2 (model equation)=======================
a0=0.01; dsig=75; coef=1-m/2;
degraModel=(t.*exp(C).*coef.*(dsig*sqrt(pi)).^m + a0.^coef).^(1./coef);
loca=imag(degraModel)�=0; degraModel(loca)=real(degraModel(loca));
%===============================================================
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Initially, a fatigue crack grows slowly and then grows rapidly just before
becoming unstable. The crack growth model in Eq. (17) is only valid when the crack
growth is stable. Normally the threshold ythreshold is set before the crack becomes
unstable. When the crack becomes unstable, Eq. (17) yield a complex number.
Therefore, the last line of the model definition code identifies if a prediction
yields a complex number and converts it to a real number by ignoring the
complex part.

In addition to the problem definition part, the posterior distribution part also
needs to be modified because instead of a uniform distribution, a normal distribu-
tion is used for the prior distribution. Also, lognormal distributions are used instead
of normal distributions for the likelihood function. The posterior distribution part
in lines 71–74 needs to be modified as follows:

prior=prod(normpdf(param,prioDisPar(:,1),prioDisPar(:,2)));
likel=1;
for k=1:length(measuData)
zeta=sqrt(log(1+(s./degraModel(k)).^2)); eta=log(degraModel(k))-0.5*zeta.^2;
likel=lognpdf(measuData(k),eta,zeta).*likel;

end
poste=likel.*prior;

4.3 Results

Similar to the battery example, the MATLAB code can be used to plot the trace
of MCMC sampling and the histogram of model parameters and RUL. Using a
similar code provided in Section 3.4, the degradation trend could also be plotted.
For example, Figure 5 shows the predicted degradation with the true degradation.
Even if the median (1553 cycles) has a relatively large error with the true RUL
(1709 cycles), the 95% confidence interval covers the true RUL.

An important information that was not discussed before is the correlation
between model parameters. It is well known that the Paris-Erdogan model parame-
ters, m and C, are strongly correlated [20]. Therefore, it would be beneficial to plot
the MCMC samples in the parameter space. The following MATLAB script plots the
MCMC samples of the parameters.

clear; clc; load('Crack at 1200.mat');
[m, C]=meshgrid((3.4:0.009:4.3)',(-24:0.025:-21.5));
for i=1:101; for j=1:101

para=[m(i,j); C(i,j); 0.0005];
[�,post(i,j)]=BMappl(para,ParamName,time(1:k1),measuData,prioDisPar);

end; end
plot(samplResul(1,:),samplResul(2,:),'.','color',[0.5 0.5 0.5]); hold on
contour(m,C,real(post));
plot(3.8,log(1.5E-10),'pk','markersize',14);

Figure 9 shows the MCMC samples in the parameter space along with the
exact value of the parameters (star marker). The figure also shows the contour of
the joint posterior PDF based on the grid method. It can be observed that the
MCMC samples represent the joint posterior PDF well, and the joint PDF covers the
true parameter values. However, due to a strong correlation between the two
Paris-Erdogan model parameters, the joint PDF shows a narrow but long tail. Any
combination of model parameters along the correlation line may yield a similar
damage growth trend.
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5. Conclusions

This paper presents a Bayesian-based prognostics algorithm with a MATLAB
code. This code is constructed with simply 76 lines in the case of a battery degrada-
tion example. Users can easily modify this code as per their own application. As an
example of code modification, the case of crack growth model is also presented. The
paper also provided several MATLAB scripts to help plot the degradation curve and
correlation between multiple parameters.

A. Appendix

1 function samplResul=BM(para0,weigh)
2 %===== PROBLEM DEFINITION 1 (Required Parameters)================
3 WorkName='Battery'; % work results are saved by WorkName
4 TimeUnit='weeks'; % time unit name
5 time=(0:50)'; % time including both at measurement and at prediction
6 measuData=[0.9951 0.9826 0.9750 0.9736 0.9424 0.9381 ...
7 0.9300 0.9203 0.9114 0.8952]'; % measured data at time (0:9)
8 thres=0.7; % threshold - critical value
9 ParamName=['b'; 's']; % model parameters' name to be estimated
10 prioDisPar=[0 0.05; % parameter prior distributions
11 1e-5 0.1];
12 Ns=5000; % num. of samples for MCMC simulation
13 burnIn=0.2; % burn-in fraction
14 signiLevel=5; % significance level for C.I. and P.I.
15 %============================================================
16 %%% Bayesian parameter estimation with MCMC
17 p=size(ParamName,1); % num. of parameters
18 k1=length(measuData); % num. of data
19 sampl(:,1)=para0; % Initial samples of parameters
20 [�,jPdf0]=BMappl(para0,ParamName,time(1:k1),measuData,prioDisPar);
21 for i=2:Ns/(1-burnIn) %% MCMC Process

Figure 9.
Correlation between the two Paris-Erdogan model parameters.
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22 para1(:,1)=para0+weigh.*(2*rand(p,1)-1); % sample from proposal dist.
23 [�,jPdf1]=BMappl(para1,ParamName,time(1:k1),measuData,prioDisPar);
24 if rand<(jPdf1/jPdf0) && jPdf1>0 % acceptance criterion
25 para0=para1;
26 jPdf0=jPdf1;
27 end
28 sampl(:,i)=para0; % new MCMC sample
29 end
30 nBurn=Ns/(1-burnIn)-Ns; % No. of effective MCMC samples
31 samplResul=sampl(:,nBurn+1:end); % Final Sampling results
32 %%% RUL prediction
33 for k=1:length(time(k1:end)) % degradation prediction
34 [degrPreCon(k,:),�]=BMappl(samplResul,ParamName,time(k1-1+k),[],[]);
35 degraPredi(k,:)=degrPreCon(k,:)+normrnd(0,samplResul(end,:));
36 end
37 for i=1:Ns % RUL prediction
38 RUL(i)=interp1(degrPreCon(:,i),time(k1:end),thres,'pchip') - time(k1);
39 end
40 %%% POST-PROCESSING
41 Index=isnan(RUL); RUL(Index)=[];
42 perceValue=[50 signiLevel 100-signiLevel]; % median & confi-
dence intervals
43 rulPerce=prctile(RUL,perceValue); %percentiles of RUL
44 figure(1);
45 for j=1:p % plotting MCMC sample trace
46 subplot(p,1,j); % for all model parameters
47 plot(samplResul(j,:));
48 ylabel(ParamName(j,:));
49 title('MCMC sample trace');
50 end
51 figure(2); set(gca,'fontsize',14); hist(RUL,30); % RUL histogram
52 xlim([min(RUL) max(RUL)]); xlabel(['RUL' ' (' TimeUnit ')']);
53 titleName=['at ' num2str(time(k1)) ' ' TimeUnit]; title(titleName)
54 fprintf( '\n # Percentiles of RUL at %g cycles \n', time(k1))
55 fprintf('\n %gprct: %g, median: %g, %gprct: %g \n' , perceValue(2), ...
56 rulPerce(2), rulPerce(1), perceValue(3), rulPerce(3))
57 Name=[WorkName ' at ' num2str(time(k1)) '.mat']; save(Name); % save work
58 end
59 %
60 function [degraModel, poste]=BMappl(param,ParamName,t,measuData,
prioDisPar)
61 % Evaluate the degradation model or posterior PDF
62 for j=1:size(param,1)
63 eval([ParamName(j,:) '=param(j,:);']);
64 end
65 %===== PROBLEM DEFINITION 2 (model equation)====================
66 degraModel=exp(-b.*t);
67 %===========================================================
68 if isempty(measuData)
69 poste=0;
70 else
71 prior=prod(unifpdf(param,prioDisPar(:,1),prioDisPar(:,2))); % prior
72 likel=(1./s).^length(measuData) ... % likelihood
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5. Conclusions

This paper presents a Bayesian-based prognostics algorithm with a MATLAB
code. This code is constructed with simply 76 lines in the case of a battery degrada-
tion example. Users can easily modify this code as per their own application. As an
example of code modification, the case of crack growth model is also presented. The
paper also provided several MATLAB scripts to help plot the degradation curve and
correlation between multiple parameters.

A. Appendix

1 function samplResul=BM(para0,weigh)
2 %===== PROBLEM DEFINITION 1 (Required Parameters)================
3 WorkName='Battery'; % work results are saved by WorkName
4 TimeUnit='weeks'; % time unit name
5 time=(0:50)'; % time including both at measurement and at prediction
6 measuData=[0.9951 0.9826 0.9750 0.9736 0.9424 0.9381 ...
7 0.9300 0.9203 0.9114 0.8952]'; % measured data at time (0:9)
8 thres=0.7; % threshold - critical value
9 ParamName=['b'; 's']; % model parameters' name to be estimated
10 prioDisPar=[0 0.05; % parameter prior distributions
11 1e-5 0.1];
12 Ns=5000; % num. of samples for MCMC simulation
13 burnIn=0.2; % burn-in fraction
14 signiLevel=5; % significance level for C.I. and P.I.
15 %============================================================
16 %%% Bayesian parameter estimation with MCMC
17 p=size(ParamName,1); % num. of parameters
18 k1=length(measuData); % num. of data
19 sampl(:,1)=para0; % Initial samples of parameters
20 [�,jPdf0]=BMappl(para0,ParamName,time(1:k1),measuData,prioDisPar);
21 for i=2:Ns/(1-burnIn) %% MCMC Process

Figure 9.
Correlation between the two Paris-Erdogan model parameters.
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22 para1(:,1)=para0+weigh.*(2*rand(p,1)-1); % sample from proposal dist.
23 [�,jPdf1]=BMappl(para1,ParamName,time(1:k1),measuData,prioDisPar);
24 if rand<(jPdf1/jPdf0) && jPdf1>0 % acceptance criterion
25 para0=para1;
26 jPdf0=jPdf1;
27 end
28 sampl(:,i)=para0; % new MCMC sample
29 end
30 nBurn=Ns/(1-burnIn)-Ns; % No. of effective MCMC samples
31 samplResul=sampl(:,nBurn+1:end); % Final Sampling results
32 %%% RUL prediction
33 for k=1:length(time(k1:end)) % degradation prediction
34 [degrPreCon(k,:),�]=BMappl(samplResul,ParamName,time(k1-1+k),[],[]);
35 degraPredi(k,:)=degrPreCon(k,:)+normrnd(0,samplResul(end,:));
36 end
37 for i=1:Ns % RUL prediction
38 RUL(i)=interp1(degrPreCon(:,i),time(k1:end),thres,'pchip') - time(k1);
39 end
40 %%% POST-PROCESSING
41 Index=isnan(RUL); RUL(Index)=[];
42 perceValue=[50 signiLevel 100-signiLevel]; % median & confi-
dence intervals
43 rulPerce=prctile(RUL,perceValue); %percentiles of RUL
44 figure(1);
45 for j=1:p % plotting MCMC sample trace
46 subplot(p,1,j); % for all model parameters
47 plot(samplResul(j,:));
48 ylabel(ParamName(j,:));
49 title('MCMC sample trace');
50 end
51 figure(2); set(gca,'fontsize',14); hist(RUL,30); % RUL histogram
52 xlim([min(RUL) max(RUL)]); xlabel(['RUL' ' (' TimeUnit ')']);
53 titleName=['at ' num2str(time(k1)) ' ' TimeUnit]; title(titleName)
54 fprintf( '\n # Percentiles of RUL at %g cycles \n', time(k1))
55 fprintf('\n %gprct: %g, median: %g, %gprct: %g \n' , perceValue(2), ...
56 rulPerce(2), rulPerce(1), perceValue(3), rulPerce(3))
57 Name=[WorkName ' at ' num2str(time(k1)) '.mat']; save(Name); % save work
58 end
59 %
60 function [degraModel, poste]=BMappl(param,ParamName,t,measuData,
prioDisPar)
61 % Evaluate the degradation model or posterior PDF
62 for j=1:size(param,1)
63 eval([ParamName(j,:) '=param(j,:);']);
64 end
65 %===== PROBLEM DEFINITION 2 (model equation)====================
66 degraModel=exp(-b.*t);
67 %===========================================================
68 if isempty(measuData)
69 poste=0;
70 else
71 prior=prod(unifpdf(param,prioDisPar(:,1),prioDisPar(:,2))); % prior
72 likel=(1./s).^length(measuData) ... % likelihood
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73 .*exp(-0.5./s.^2.*norm(measuData-degraModel)^2);
74 poste=likel.*prior; % posterior
75 end
76 end
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Abstract

This chapter describes the sets of interacting automata constructed on the
cascades of wavelet coefficients of input signal. The basic principles of the evolution
of automata during the processing of incoming cascades and the vector of processes
consisting of segments of cascades of constant length are described. The main
principles of constructing the family of automata are determined from the internal
symmetry of incoming cascades and the definition of symmetry groups of vector
processes and their isotropy groups. The trajectories of states are defined on
nontrivial topological spaces, the so-called degeneration spaces of the characteristic
functional. The family of evolving automata with tunable communications
architecture is designed to predict the state of engineering objects and identify
predictors, early predictors, and hidden predictors of failure. This chapter provides
examples of the work of predictive automata in various fields of engineering and
medicine. It demonstrates the operation of the automaton in spaces with a
nontrivial topology of input cascades, algorithms of the predictor search, and
estimations. The family of evolving automata with reconstructing architecture of
connections is designed to predict the state of engineering objects and medicine
and identify predictors, early predictors, and hidden predictors of failure. The
architecture and functional properties of automata are determined from the results
and main conclusions.

Keywords: preventive monitoring, failure prognosis, remote calculating cluster,
optimize drug therapy, Turing machine, maintenance optimization, preventive
maintenance, remaining useful life

1. Introduction

This chapter is devoted to a detailed analysis of the structure and properties of
predictive automata sets and the analysis of their ability to predict and to achieve
accurate time estimates of the predicted events.

The creation of set of predictive automata was preceded by the construction of
various models for prognosis of the state of technical devices; basically it was about
rotational and reciprocating mechanisms [1]. The same interests of the authors
attracted research in the field of prognosis in cardiology [2, 3], where, especially
in the last decade, significant progress has been made in understanding the
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predictive automata sets and the analysis of their ability to predict and to achieve
accurate time estimates of the predicted events.

The creation of set of predictive automata was preceded by the construction of
various models for prognosis of the state of technical devices; basically it was about
rotational and reciprocating mechanisms [1]. The same interests of the authors
attracted research in the field of prognosis in cardiology [2, 3], where, especially
in the last decade, significant progress has been made in understanding the
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mechanisms of the emergence of various kinds of arrhythmias and the mechanisms
of so-called sudden cardiac death. In the field of technical devices, some progress is
observed in the modeling of turbulent combustion of fuels.

As is known, the diagnosis and prognosis of combustion modes, their stability
serves as the basis for the development of a causal prognosis, including for the
mechanics of various types of engines and turbines, as well as for the analysis of
hydrogasdynamic processes that support the combustion modes of fuel. Uniting all
these systems is the fact that both the processes of propagation of action potential in
the myocardium and the processes of combustion of fuels belong to the so-called
reaction-diffusion systems. Regarding cardiological applications, it is also necessary
to note the class of tasks for prognosis and management associated with implantable
devices represented by the CRT and ICD devices. Here arises a problem of progno-
sis and developing a strategy for the management of devices in order to prevent
such heart events as multiple births of sources of secondary waves in the myocar-
dium, leading to fibrillation of the ventricles of the heart and to sudden cardiac
death [4]. This chapter contains examples and comments on the operation of
automata in various machines, without avoiding examples from cardiology.
Demonstrating systems of automata sets for predicting objects of various natures
(mechanisms and objects of biological nature), the authors sought to build autom-
ata on general principles that are universal for a wide range of objects. As an
introduction to the subject matter, it is necessary to describe the basic conceptual
constructions that precede the construction of set of recognizing automata and the
description of their properties. We are talking about the substantive part of the
hierarchy model [5] in the prognostic tasks. It is implied that the observed signals
from various sensors and devices are represented as a continuous or discrete series
of their wavelet coefficients [6]. All the observed signals from accelerometers,
pressure sensors, and the sensors of the angle of rotation of the shaft, along with
them the signals of the electrodes from the human body, have a quasi-periodic
nature, i.e., their periods differ by a certain random value, for which when
collecting statistics, one can use sequences of a series of signals with close periods.
To simplify the presentation in the future, if there are no special reservations, only
one class of wavelet coefficients generated by changing the number of the cycle or
period will be considered while fixing all other indices of wavelet coefficients. Thus,
each indexed cascade with numbers of cycles taken as discrete time corresponds to a
cascade of wavelet coefficients with fixed indices of wavelet coefficients [6].

Further consideration of segments of a cascade of fixed length generates a
cascade of vectors, where the growth of the cycle number is selected as the direc-
tion. The following construction of the task of prognosis is reduced to the repre-
sentation of the task of wandering a vector along a multidimensional lattice or along
its continual analog of a space of dimension N∗, where N∗ is the length of the
selected segment. Further representation of the probability of transition from the
initial vector to the final vector in the form of the Feynman integral along trajecto-
ries in L steps leads in the continuum limit to the well-known evolution equations of
the Fokker-Planck type for the probability density P R0;RL;Lð Þ [2, 7]. If the final
vector is predetermined, then the problem of determining the number of steps that
is necessary to achieve a given vector arises. The solution of such task gives the time
to achieve a given vector; in other words, if the vector is specified on the border of
the failure, then the remaining useful life is determined. If the solution of the
evolution equation is known, for example, its solution in the moments, then further
analytical calculation of the RUL is simple.

However, the presented approach to prognosis harbors many underwater reefs.
The main difficulties are associated with the variability of properties of the
observed signal and, therefore, the properties of the cascades. In terms of
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wandering around the lattice or in its continuum analogs, these properties are
associated with the presence of certain prohibitions, for example, wandering with-
out self-intersections or taking into account the excluded volume [8] and more
realistic taking into account the prohibitions on a part of admissible trajectories
connected with the physical boundary of the failure. The listed and not only pro-
hibitions generate a state space of RN∗

with forbidden states, which makes the state
space a complex, multiply connected subset in RN∗

. In this case, the process under
consideration may lose the properties of Markov process; the Chapman-
Kolmogorov identity is not satisfied. Ultimately, the evolution equations become
integro-differential, and moreover, there is a need to introduce many-particle den-
sities of probability transition [7]. As a result the solution of evolution equations
becomes difficult and hardly solvable for the general case.

In addition, most often, in practice, the probabilities of transition from nodes of
a multidimensional lattice (elementary transitions) are unknown. The listed diffi-
culties induce to the further development of the model free from the noted prob-
lems. For this, together with the main state space of the cascade vector, a symbolic
space is constructed. Symbolic space appeals to the frequency representation of the
process in the form of a histogram of a cascade vector built on each vector. In this
case, elementary transitions are represented by an abelian subgroup of matrices. At
the same time, multiplying such a matrix by a column from the frequencies in the
representation of the affine space is reduced to adding or subtracting one in two
fixed coordinates of the frequency vector. This fact allows us to consider the fre-
quency histograms of the vectors of the cascade vector as the internal states of the
Turing machine. Elementary transitions change the internal state of the Turing
machine and correspond to the shift of the incoming tape by one. Some analogy
with topological Markov chains is also possible, but the transition matrix contains
both 1 and �1. The representation of the vector column of the frequency histogram
in Euclidean space of dimension equal to the number of components or the length of
the column allows to represent the process of changing the internal states of the
automaton as a walking in RN∗

space, or taking into account the obvious restriction
on the value of the sum of the column components to represent the same process as
a walking on a multidimensional simplex Σn�1 of the dimension n�1 [2].

The vector column in the process of evolution of the system is described by
solving the basic kinetic or balance equations [2].

The constructed sets of automata allow to predict or determine one’s state at
future times based on the set of states at previous moments, i.e., on the basis of
knowledge of the state of the automaton and transition probabilities. Automata
themselves receive this knowledge on the basis of a set of statistics after entering the
stationary mode. The next step in the formalization and algorithmization of the
prognostic tasks is to describe the set of admissible values of the state vectors. To
this end, by analogy with the theory of topological defects of condensed media, a
degeneration space G H= and k-multiple loop space Ωk G H=ð Þ of degeneration space are
introduced. Due to this step, the formalization of the prognosis model is completed,
and further in the work, a lot of the automata for the prognosis are constructed.

2. Description of topological dynamics

The immediate goal of this section is to describe an automaton operating in a
homogeneous space or space of degeneration. This section completes the construc-
tion of the set of interacting automata. To construct the set of automata defined for
each cascade of wavelet coefficients of the observed signal, a certain symbolic space
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was defined, which allows treating the change in the internal states of the automa-
ton as a wandering point on an n-1-dimensional simplex. In parallel with this, the
evolution of the states of the automaton was interpreted as the wandering of a point
in the multidimensional homogeneous space or the degeneration space G H= . The
construction given in [6] without taking into account the topology of the space of
degeneracy leads to evolution equations such as the balance equation or the master
equation and, in more general cases, to the basic kinetic equation. The only restric-
tion imposed on the probabilities of transitions from the quasi-stationarity condi-
tion was reduced to the fulfillment of the quasi-stationarity conditions, imposed on
transition probabilities between histogram columns [2]:

∑
k
ŵk,m ¼ ∑

m
ŵm,k (1)

The transition from the initial state to the final state was determined by the
product of elementary transitions, represented as matrices acting in affine space,
and was reduced to subtracting one from one component of the vector to adding
one to another component. Some analogy with topological Markov chains was
noted.

This chapter is a direct continuation of the presentation of the models and
algorithms given in the works [2, 3]. The basic model is reduced to the construction
of two main spaces. The first of them is the state space, and it is defined as a subset
in RN∗

of all admissible values of the wavelet segments of the coefficients of the
observed signal at the fixing all indices of wavelet coefficients k
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On the cascades thus defined, segments of fixed length are defined. The segment
length can be different, but the main requirement for the length is that at this
length, the cascade goes into a quasi-stationary mode. That is, the following
assumption is implicitly admitted: it follows from the construction that each cascade
is indexed by the numbers of the columns of the histograms of quasi-periods, that
is, each cascade corresponds to the numbers of the periods of almost constant
length. For example, for rotary equipment, the set of revolutions of the shaft is
indexed by the sequence numbers of revolutions with some fixed time of complete
rotation. Thus, the set of revolutions is factorized by a histogram of the shaft
revolution duration. For four-stroke internal combustion engines, the shaft turning
time is fixed at 4π. In cardiac applications, a histogram of beat-to-beat durations,
etc. is determined. In part, this approach solves the synchronization problem by
allowing the signal to be represented on a quasi-period as the implementation of
some random process.
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In this case, the assumption of the exit mode to quasi-stationarity in some cases,
for example, if the process is diffusive, presupposes the existence of such a regime
not only during the exit but also with the further evolution of the stochastic process.
For example, in the number of additional conditions, the Lyapunov functional is
determined and an analog of the H-theorem of Boltzmann is valid. In this case, the
Lyapunov functional is entropy, which is a complete analog of the Kulbak entropy.
At the same time, the nonstationary density of the distribution function asymptot-
ically tends monotonically to the stationary one:

H ¼
ðb

a

dxp x; tð Þln p x; tð Þ=ps xð Þ� �
(5)

The next step comes down to a more detailed description of the subset of states,
i.e., sets of admissible states in RN∗

.
The basic principle of the construction of the marked set appeals to the

construction of the degeneration spaces of the free energy functional in various
condensed media [9]. For this, the symmetry group G for the generating func-
tional is determined, and then the isotropy group of the state vector is deter-
mined. The factorization of a symmetry group G into isotropy subgroups H
gives the so-called degeneration space G H= . In essence, the symmetry group
transitively acts where the states of the automaton defined in [2] are invariant
with respect to the action of group G; the transition probability is constant
during transformations of the state vector by multiplying the elements by the
action of a symmetry group.

For further formalization of the prognosis task, all homotopy classes of the
degeneration space G H= : M; G H=½ � are considered. MappingM ! G H= defines the set of
system states. In particular, as М spheres of various dimensions Siare considered. In
this case

Si; G H=
� � ¼ πi G H=ð Þ (6)

And i ¼ 1, πi G H=ð Þ—a group, i. 1, πi G H=ð Þ—an Abelian group.
Some examples of the construction of degeneration spaces are described in this

paper [10]. It is shown that under the assumptions made, the degeneration space for
some set of segments of a fixed length is the so-called homogeneous space. The term
“degeneration space” is often used in physics, which is more accurate, since with
respect to the action of degeneration groups on vector states, they are invariant with
respect to the characteristic functional of the process. In other words, it is assumed
that the states of the predictive automaton introduced in the cited paper are invari-
ant with respect to the discrete subgroup of the translation group. In this case,
translation is carried out along a cascade with a step N∗: There is some analogy to
the constructed objects with stochastic processes with a measure invariant with
respect to the group of translations [11].

Since the properties of the signal are initially unknown, and under the assump-
tion that the properties of the signal may change, it turns out that it is necessary to
consider nested sequences by dimension:

RN1 ⊂RN2 ⊂RN3 ⊂…⊂RNk ⊂ ; G1=H1
⊂ G2=H2

⊂…⊂ Gk=Hk
⊂… (7)

Nested sequences of groups and spaces of degeneracy, these sequences are
constructed for each index of the wavelet coefficients; therefore, all trajectories
generated by such embeddings as multitrajectories are considered.
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revolution duration. For four-stroke internal combustion engines, the shaft turning
time is fixed at 4π. In cardiac applications, a histogram of beat-to-beat durations,
etc. is determined. In part, this approach solves the synchronization problem by
allowing the signal to be represented on a quasi-period as the implementation of
some random process.

32

Fault Detection, Diagnosis and Prognosis

In this case, the assumption of the exit mode to quasi-stationarity in some cases,
for example, if the process is diffusive, presupposes the existence of such a regime
not only during the exit but also with the further evolution of the stochastic process.
For example, in the number of additional conditions, the Lyapunov functional is
determined and an analog of the H-theorem of Boltzmann is valid. In this case, the
Lyapunov functional is entropy, which is a complete analog of the Kulbak entropy.
At the same time, the nonstationary density of the distribution function asymptot-
ically tends monotonically to the stationary one:

H ¼
ðb

a

dxp x; tð Þln p x; tð Þ=ps xð Þ� �
(5)

The next step comes down to a more detailed description of the subset of states,
i.e., sets of admissible states in RN∗

.
The basic principle of the construction of the marked set appeals to the

construction of the degeneration spaces of the free energy functional in various
condensed media [9]. For this, the symmetry group G for the generating func-
tional is determined, and then the isotropy group of the state vector is deter-
mined. The factorization of a symmetry group G into isotropy subgroups H
gives the so-called degeneration space G H= . In essence, the symmetry group
transitively acts where the states of the automaton defined in [2] are invariant
with respect to the action of group G; the transition probability is constant
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degeneration space G H= : M; G H=½ � are considered. MappingM ! G H= defines the set of
system states. In particular, as М spheres of various dimensions Siare considered. In
this case

Si; G H=
� � ¼ πi G H=ð Þ (6)

And i ¼ 1, πi G H=ð Þ—a group, i. 1, πi G H=ð Þ—an Abelian group.
Some examples of the construction of degeneration spaces are described in this

paper [10]. It is shown that under the assumptions made, the degeneration space for
some set of segments of a fixed length is the so-called homogeneous space. The term
“degeneration space” is often used in physics, which is more accurate, since with
respect to the action of degeneration groups on vector states, they are invariant with
respect to the characteristic functional of the process. In other words, it is assumed
that the states of the predictive automaton introduced in the cited paper are invari-
ant with respect to the discrete subgroup of the translation group. In this case,
translation is carried out along a cascade with a step N∗: There is some analogy to
the constructed objects with stochastic processes with a measure invariant with
respect to the group of translations [11].

Since the properties of the signal are initially unknown, and under the assump-
tion that the properties of the signal may change, it turns out that it is necessary to
consider nested sequences by dimension:

RN1 ⊂RN2 ⊂RN3 ⊂…⊂RNk ⊂ ; G1=H1
⊂ G2=H2

⊂…⊂ Gk=Hk
⊂… (7)

Nested sequences of groups and spaces of degeneracy, these sequences are
constructed for each index of the wavelet coefficients; therefore, all trajectories
generated by such embeddings as multitrajectories are considered.
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The analog of the Turin machine defined in the work [2], hereinafter referred to
as the recognizing automaton, moving along the cascade, changes its internal state.
A change in the internal state generates a trajectory in the nk � 1-dimensional
simplex Σnk�1. Accounting for all coefficients of the wavelet decomposition of the
signal thus generates a set of predictive automata. Further, it is shown that the
change in the internal state of the automaton is reduced to elementary steps on the
nk � 1-dimensional simplexes or the multidimensional space of frequency vectors.
Each elementary step is determined by multiplying the frequency vector by the
elementary jump matrix for each coordinate of the frequency vector [2, 3]. The
product of the N∗-th number of such matrices in the space RN∗

determines the
transition from the initial vector to the final one in N∗ elementary steps.

The set of sequences of elementary matrices from N∗ from cofactors is also
imposed by the restrictions arising from the condition of the quasi-stationarity of
the state of the automaton (Eq. (1)). And following the above assumptions leading
to the conditions of the H-theorem, the admissible set of matrices of elementary
steps is also limited by the condition of convergence to a quasi-stationary state.

Thus, the interpretation of the model in terms of a random walk on a lattice or in
a continuum undergoes significant changes. The meaning of them is as follows:
topological restrictions, namely, the nontrivial homotopy type of degeneration
space in state and trajectory spaces defines such configurations of states when,
defined at the boundary of the some region, they cannot be continued to the interior
of the region by continuity, which indicates the presence of discontinuities in
attempts of continuous continuation. That is, there is a singularity inside such a
region. The kernel of the singularity is a set with partially or completely broken
symmetry, i.e., the degeneration space changes with its homotopy type. Thus, in the
state spaces and spaces of k-multiple paths [2, 3], defined on these spaces, regions
with broken symmetry appear, and these regions have a complex topological nature
and are capable of various transformations within their homotopy class.

Examples: Let the space of degeneration is a homogeneous space

G H= ¼ SO 3ð Þ=SO 2ð Þ�Z2 ¼ RP2: (8)

RP2 is projective space:

π1 RP2� � ¼ Z2  π2 RP2� � ¼ Z (9)

To understand the main points of the model, further examples will be given for
low-dimensional spaces of degeneracy. This demonstrates the basic principles of
constructing automata that are intuitive in low dimensions. So, the nontriviality of
the fundamental group RP2 determines the presence of linear singularities that are
closed at their ends by themselves or ending at the boundary of the region. The
nontriviality of the second homotopy group, π2 RP2� �

of the space of degeneracy,
implies the existence of singularities in the spaces that are homotopy equivalent to a
point. In the space of paths in the above case, (Eq.(10)) is used to interpret the
singularities [12].

W;ΩX½ � $ ΣW;X½ � (10)

From which it follows that

πi ΩXð Þ ffi πiþ1 Xð Þ (11)

Consequently,
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π1 Ω G H=ð Þð Þ ¼ π1 Ω SO 3ð Þ=SO 2ð Þ�Z2

� �� � ¼ π2 RP2� � ¼ Z (12)

According to the above formulas, one-dimensional singularities are not a sepa-
rately taken state, but a path or loop, which is homotopy equivalent.

The nontriviality of the homotopy groups of the space of degeneracy G H= and the
presence of the group structure of homotopy classes give rise to a nontrivial inter-
action between singularities. In particular, the fusion of singularities is accompanied
by the addition of elements of groups of homotopy groups (topological charges)
generating singularity data. Other transformations are possible. For example, two
linked circular singularities can be continuously transformed into the singularity
shown on Figure 1.

The interaction of point singularities in the vicinity of a linear singularity can
also be nontrivial. In particular, depending on the features of the topological
dynamics in the vicinity of the linear singularity, the interacting point singularities
may annihilate.

As already noted, the singularity kernel is a region of the state space, the trajec-
tory space, where, in connection with symmetry breaking, trajectories with broken
symmetry are realized. In particular, within the framework of the initial space, the
degeneracies of the kernel of a singularity represent regions where the state of the
automaton is not defined. In this case, the singularity in the original space of
degeneracy is interpreted as a discontinuity in the standard topology of RN∗

, gener-
ated by the metric of the Euclidean space. The gap in the trajectory space can be
defined in various functional metrics. For example, as shown in Figure 2, two
trajectories are on opposite sides of the singularity.

For simplicity, let it be a point singularity on a plane. The trajectories shown in
Figure 2 are homotopically non-equivalent. Therefore, an attempt to continuously
deform one trajectory into another cannot be continuous. If we are talking about a
loop space, then the class of trajectories on both sides of the singularity will undergo
the discontinuity in the topology defined in the loop space. That is, the kernel of the
singularity contains a class of trajectories, not close to the class of trajectories.

In practice, such trajectories surrounded by quasi-stationary trajectories are
already non-quasi-stationary. Removing the degeneracy with respect to the time
inversion leads to the appearance of trends in the states of the automaton in such
trajectories. The conditions of quasi-stationarity are violated.

Figure 1
Transformation of two coupled singularities 1 and 2, with singularity 3 connecting them into a bunch of two
one-dimensional spheres.

Figure 2
Two non-homotopic trajectories due to a point singularity between them.
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At the same time, the range of permissible sequences in the product of matrices
of elementary steps is reduced due to the need to take into account the chronolog-
ical ordering on the set of products of matrices of elementary transitions. The listed
changes do not allow the system to reach some previous states, in view of what new
states and new trajectories appear in the system with necessity.

The set of admissible states of automata also changes. In particular, to over-
come the prohibitions that have arisen on part of the trajectories, new cells of
the automaton are born, that is, an increase in the dimension of the state space
and the trajectory space occurs, i.e., there is an increase in the dimension of the
state space and the trajectory space. As a result, such change increases the
dimension of the symbolic state space represented as n� 1-dimensional simplex
Σn�1 . The increase in the simplex dimension and the dimension of the state
space generates new types of singularities in the new dimensions and, on the
other hand, allows us to again and expand the class of admissible trajectories by
increasing the dimension.

In this case, the dimension in the evolution equation changes the conditions of
quasi-stationarity and other prohibitions on the set of admissible states expressed as
inequalities or equalities also change. An effect similar to the effect of singularity
falling into the third dimension in nematic liquid crystals, for example, is observed.
Only in the case under consideration is the system’s trajectory squeezed onto the
verge of a simplex ΣK�1, K. n. The state of the automaton during such a process
changes, and the empirical density of the distribution may become non-Gaussian.
Thus, with a small movement of the trajectories of the previous class, the extruded
path in higher dimensions has a gap in loop space.

Returning to the set of predictive automata, it should be noted that the described
scenario of restructuring the internal state of the automaton is far from being the
only one, and the topological model offers many different scenarios for the recon-
struction of internal states. However, even in the above example, predictors or
hidden predictors of reconstructions are identified. Since the task of the prognosis
model is to predict exactly the reconstructions, the predictors detected by the
automata are predictors of dysfunctions, failure, heart failure, etc. In the example
analyzed above, the early predictors are the emergence of the process of birth and
destruction of the cells of an automaton; the earlier predictors are associated with
the violation of the limiting conditions for the transition probabilities. A change in
the stationary conditions leads to an evolution equation that depends on time,
respectively; in the state space, there is a change in the transition probabilities over
time, which, in turn, determines the trajectories different from the stationary ones.
Accordingly, the RUL estimates also change. Returning to the set of predictive
automata, it should be noted that the described scenario of restructuring the inter-
nal state of the automaton is far from being the only one, and the topological model
offers many different scenarios for the reconstruction of internal states. However,
even in the above example, predictors or hidden predictors of reconstructions are
identified. Since the task of the prognosis model is to predict exactly the recon-
structions, the predictors detected by the automata are predictors of dysfunctions,
failure, heart failure, etc. In the example analyzed above, the early predictors are
the emergence of the process of birth and destruction of the cells of an automaton;
the earlier predictors are associated with the violation of the limiting conditions
for the transition probabilities. A change in the stationary conditions leads to an
evolution equation that depends on time, respectively; in the state space there
is a change in the transition probabilities over time, which, in turn, determines
the trajectories different from the stationary ones. Accordingly, the RUL estimates
also change.
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One of the conclusions arising from the symbolic model is associated with the
prediction of hidden predictors. The essence of it is as follows. In the process of
evolution, any material is subject to degradation. In the materials of which the
mechanisms are composed, such as alloys, composite, and polymeric materials,
changes occur that affect the functional properties of the material, for example, a
local change in the composition of titanium alloys under thermal cycling conditions,
grain growth in metals, the formation of dislocations and microcracks, etc. Partially
such changes are reflected in the signals of the sensors, if, in addition, structural
degradation affects the functional properties of the material. Biomaterials also
degrade, for example, the appearance of scar tissue, which replaces the tissue in the
myocardium, entailing changes in the ability of the material with the spread of
action potential, etc.

With the degradation of the material, the number of class of permissible trajec-
tories changes, as noted above. Taking into account the nontriviality of the
homotopy type of degeneration space, cases are allowed when the forbidden trajec-
tory is squeezed onto the verge of a simplex of higher dimension from the class of
normal, not forbidden trajectories. Extrusion of a trajectory to higher dimensions
leads to changes in the internal state of the automaton. In higher dimensions, there
are changes in the number of kinetic or evolution equations, as a result, a change in
the conditions of quasi-stationarity and other conditions that limit the set of trajec-
tories, either represented as topological prohibitions, or as equalities or inequalities
on the set of admissible states. This leads to the conclusion that in the general case,
it is impossible to introduce a metric in the trajectory space in which the develop-
ment of hidden predictors continuously migrates to the boundary of the heart event
or to the boundary of failure. That is, the process of reaching the failure boundary
may occur as jump. In this case, the jump is carried out from the class of permissible
trajectories, against the background of the absence of dysfunctions by the mecha-
nism of extrusion of the trajectory on the verge of a simplex of higher dimension. In
this case, the state of the automaton is transformed in violation of the conditions of
quasi-stationarity. Certain analogs of the described effect is noise-induced transi-
tions, but in this case, the system does not require the additional conditions, under
which such transitions occur, does not require a Markov property, the fulfillment of
the Chapman-Kolmogorov identity, and the conditions imposed on the signal for
the validity of the Fokker-Planck equations. In this case, the signal can be both
stochastic and chaotic.

In conclusion, it is necessary to stop at the complexity model of the set of
automata, begun in [3]. In this case, the interaction between automata is
introduced, described in [3] using a metric based on the Radon-Nikodym
derivative. However, a simple example should be given of the necessity of
complicating automata in order to understand the ultimate goal of such com-
plications. Let us consider an automaton with a two-dimensional cascade or its
continual limit. Only such automata are combined into one automaton, for
which it can be said that the corresponding stochastic processes are statistically
dependent:

P X;Yð Þ � P1 Xð ÞP2 Yð Þ 6¼ 0 (13)

P, P1, P2—is the density of distribution function.
We now turn to the degeneration spaces for processes X;Yð Þ. In case of statisti-

cal independence

G H= X;Yð Þ ¼ G H= Xð Þ � G H= Yð Þ (14)
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cal independence

G H= X;Yð Þ ¼ G H= Xð Þ � G H= Yð Þ (14)
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πi G H= X;Yð Þð Þ ¼ πi G H= Xð Þð Þ � πi G H= Yð Þð Þ (15)

The situation changes when there is a statistical dependence or some other
variant of the interaction of processes. In this case, the formula (13, 14) is unfair.
The situation is much more complicated. For example, if Eq. (13) holds true and

G H= Yð Þ⊂ G H= Xð Þð Þ (16)

That homotopy groups can be fundamentally different from the product of the
homotopy groups of direct products of spaces of degeneration. In particular, the
theorem on the exact sequence of a pair is valid [13]:

… ! πi G H= Yð Þð Þ ! πi G H= Xð Þð Þ, G H= Yð ÞÞ ! πi�1 G H= Yð Þð Þ ! …

Example : G H= Xð Þ ¼ S3,G=H Yð Þ ¼ S1

… ! π2 S3
� �! π2 S3; S1

� �! πi�1 S1
� �! …

0 ! π2 S3; S1
� �! π1 S1

� �! 0

π2 S3; S1
� � ¼ Z- is the relative homotopy group.

For comparison: π2 S1
� � ¼ 0, π2 S3

� � ¼ 0.
Thus, in the interaction of automata, singularities appear, described in terms of

relative homotopy groups, and these singularities in the general case are funda-
mentally different from the singularities of the direct product of degeneration
spaces. Accordingly, interacting automata exhibit other scenarios of topological
dynamics, other predictors and mechanisms for breaking symmetries or lifting
degenerations.

The need for complicating the automata described above also determines a
number of additional properties of the set of automata, namely, bundle of automata
and hypernets.

For a fixed length of the partition of the physically permissible range of values of
the sensor readings and in those cases when such partition is determined from the
conditions of reducing computational costs or following the traditionally accepted
in the general statistics, there is a risk of missing hidden predictors. In this case,
bundle of the automaton occurs, which is determined by a shorter partition step. It
turns out that each cell of the automaton is also an automaton. This stratification is
also necessary in cases where the observed signal has several scale levels.

Formation of hypernets is associated with the formation in the network of
interacting automata of a higher dimension. Such an association is not artificial, as
was shown in this chapter. When merging automata into the higher-dimensional
automaton, the degeneracy space of the finite automaton differs significantly from
the degeneration spaces of each of the parent automata.

As a consequence, there is a change in the types of singularities, their topological
dynamics, a change in the transformations of the states of automata in the process
of their falling out into the faces of the higher dimensions of the simplex, changes in
the numerical estimates of the achievement of predicted indicators or limits of
failure, heart events, etc.

Ultimately, the architecture and functionality of the predictive monitoring
system is as follows. Telemetry enters the computing kernels with automata and
preprocessing programs, which includes the wavelet transformation, cleaning the
signal by the wavelet filters, and then fed to the recognizing automata. As already
noted, the task of predictive automata is reduced to determining the class of the
trajectory, determining trends and early predictors based on an analysis of
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transition probabilities, the number of permissible transition matrices in the prod-
uct (omega), and also to determine the evolution of this number and the qualitative
structure of the set of transition probabilities. It also checks the fulfillment of the
stationarity conditions, the behavior of the Kulbak entropy with deviations from
the stationarity. Taking into account the revealed evolution of transition probabili-
ties, the trajectory of a walk on the faces of a simplex is determined (predicted).
This happens on all the set of automata, including automata with high dimension.
Moreover, a causal graph is determined on a subset of high-dimensional automata.
Automata that had previously reacted by changing their state to subsequent pre-
dictors of later automata are allocated to a separate class. It should be noted here
that the selected class is also subject to change, that is, the automata can leave this
class or, on the contrary, appear in this class.

The reason for this behavior is as follows:

a. Taking into account the individual characteristics of the mechanism.

b.Individual changes on the sets of transition probabilities and, therefore, on the
entire trajectory of states

c. The emergence of new types of singularities due to a change in the structure of
the space of degeneration

In a certain class, the earliest automata can be partially placed on the computing
power located on the mechanism itself, for example, on the onboard computer, the
computing power of the microprocessor of a wearable medical device, etc. Such
automata acquire some additional functions; in particular, these automata begin to
control the computing kernels of the remote cluster. And, on the contrary, when
changing in the whole class, the computing cluster replaces onboard automata with
other automata with the same functions. As a result, it becomes possible to optimize
the calculations in the system “automata on-board - automata of the computing
kernels of remote cluster” up to the advent of opportunities to go offline.

However, periodically online mode is required for inspection. At the same time,
the onboard automata connect the online mode based on the determination of their
own state, for the most part, with the appearance of birth-death processes, changes
in the structure of the set of transition probabilities, the appearance of trends, or
rearrangements.

The described situation reflects a more general property of the family of autom-
ata, namely, their ability to differentiate. It has already been noted that automata
possess the properties of differentiation; a similar property of automata is necessary
in cases where an explicit failure predictor is formed. In this case, several automata
proceed only to the predictor analysis, for example, when signs of the beginning of
a trend in the QT interval are predicted. In this case, besides the set of intervals that
capture the cascades corresponding to the QT interval of the ECG, an additional
automaton is added to them, processing only the length of the QT interval. The task
of the selected family is in this case an estimate of the time to reach critical values of
the QT interval. All of the above applies to any traditional geometric characteristics
of the ECG as a whole and intervals, complex, and teeth.

3. Return on investment

The question about ROI, more precisely, about optimizing the maintenance
strategies, was discussed on the basis of the automata model and the hierarchical
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πi G H= X;Yð Þð Þ ¼ πi G H= Xð Þð Þ � πi G H= Yð Þð Þ (15)
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G H= Yð Þ⊂ G H= Xð Þð Þ (16)
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… ! πi G H= Yð Þð Þ ! πi G H= Xð Þð Þ, G H= Yð ÞÞ ! πi�1 G H= Yð Þð Þ ! …
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… ! π2 S3
� �! π2 S3; S1

� �! πi�1 S1
� �! …

0 ! π2 S3; S1
� �! π1 S1

� �! 0

π2 S3; S1
� � ¼ Z- is the relative homotopy group.

For comparison: π2 S1
� � ¼ 0, π2 S3

� � ¼ 0.
Thus, in the interaction of automata, singularities appear, described in terms of

relative homotopy groups, and these singularities in the general case are funda-
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dynamics, a change in the transformations of the states of automata in the process
of their falling out into the faces of the higher dimensions of the simplex, changes in
the numerical estimates of the achievement of predicted indicators or limits of
failure, heart events, etc.

Ultimately, the architecture and functionality of the predictive monitoring
system is as follows. Telemetry enters the computing kernels with automata and
preprocessing programs, which includes the wavelet transformation, cleaning the
signal by the wavelet filters, and then fed to the recognizing automata. As already
noted, the task of predictive automata is reduced to determining the class of the
trajectory, determining trends and early predictors based on an analysis of
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transition probabilities, the number of permissible transition matrices in the prod-
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the stationarity. Taking into account the revealed evolution of transition probabili-
ties, the trajectory of a walk on the faces of a simplex is determined (predicted).
This happens on all the set of automata, including automata with high dimension.
Moreover, a causal graph is determined on a subset of high-dimensional automata.
Automata that had previously reacted by changing their state to subsequent pre-
dictors of later automata are allocated to a separate class. It should be noted here
that the selected class is also subject to change, that is, the automata can leave this
class or, on the contrary, appear in this class.

The reason for this behavior is as follows:

a. Taking into account the individual characteristics of the mechanism.

b.Individual changes on the sets of transition probabilities and, therefore, on the
entire trajectory of states

c. The emergence of new types of singularities due to a change in the structure of
the space of degeneration

In a certain class, the earliest automata can be partially placed on the computing
power located on the mechanism itself, for example, on the onboard computer, the
computing power of the microprocessor of a wearable medical device, etc. Such
automata acquire some additional functions; in particular, these automata begin to
control the computing kernels of the remote cluster. And, on the contrary, when
changing in the whole class, the computing cluster replaces onboard automata with
other automata with the same functions. As a result, it becomes possible to optimize
the calculations in the system “automata on-board - automata of the computing
kernels of remote cluster” up to the advent of opportunities to go offline.

However, periodically online mode is required for inspection. At the same time,
the onboard automata connect the online mode based on the determination of their
own state, for the most part, with the appearance of birth-death processes, changes
in the structure of the set of transition probabilities, the appearance of trends, or
rearrangements.

The described situation reflects a more general property of the family of autom-
ata, namely, their ability to differentiate. It has already been noted that automata
possess the properties of differentiation; a similar property of automata is necessary
in cases where an explicit failure predictor is formed. In this case, several automata
proceed only to the predictor analysis, for example, when signs of the beginning of
a trend in the QT interval are predicted. In this case, besides the set of intervals that
capture the cascades corresponding to the QT interval of the ECG, an additional
automaton is added to them, processing only the length of the QT interval. The task
of the selected family is in this case an estimate of the time to reach critical values of
the QT interval. All of the above applies to any traditional geometric characteristics
of the ECG as a whole and intervals, complex, and teeth.

3. Return on investment

The question about ROI, more precisely, about optimizing the maintenance
strategies, was discussed on the basis of the automata model and the hierarchical
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prognosis model in the works [5, 14]. In the most general formulation, the optimi-
zation task is reduced to carrying out the necessary maintenance and variation of
the management parameters in order to maximize the stay of the process trajectory
in a given homotopy class. The preventive monitoring cluster architecture
described above allows reducing the computation time on a remote cluster by
transferring a small part of the automata to the monitored object using onboard
computing power.

In the field of medical applications (cardiology), we can take as an example the
transfer of automaton of the R-R interval to the processor of portable ECG recorder
for multi-day monitoring. In addition to this automaton and depending on the
general analysis of the evolution of states, automata of a specific purpose are also
installed. For example, an automaton for the QT interval, which can autonomously
predict a change in the QT interval with an estimate of the time, it takes to reach
critical values of a given ECG interval. All of the above is also true for the definition
and evolution of such ECG indicators as R-R pause length, QT interval dispersion,
and other significant ECG predictors of cardiac events. It should be recalled that the
onboard automata can also go offline and manage the computing kernels of the
remote cluster. In the above example, such transition is carried out on the basis of
the prognosis obtained by the onboard automatic devices. In other cases, an autom-
aton on one of the leads may be sufficient, and a specific cascade corresponding to,
for example, the average value of one of the ECG teeth, is monitored.

The described manipulation with automata allows minimizing the cost of the
traffic of all ECG leads, as well as the costs associated with the abundance of
computations by the entire set of cluster automata.

Of course, the described optimization of calculations increases the comfort of
using wearable ECG gadgets, bracelets, and mHealth platforms.

However, the general goal in this case is prognosis of the life-threatening cardiac
events, taking preventive measures to eliminate them or minimize the conse-
quences. An example should be the procedure for optimizing drug therapy for atrial
fibrillation. The well-known fact that antiarrhythmic drugs used in the treatment of
arrhythmias can provoke the appearance of life-threatening arrhythmias. Timely
adjustment of the dose of the drug, the rejection of the drug, and its replacement
with another drug is one of the actual problems during treatment. In this situation,
predictive automata solve the problem of optimizing drug therapy, determining the
ineffectiveness of prescribed drugs, thereby reducing the time they are taken. On
the other hand, automata predict with an estimate of the probability and time to
achieve proarrhythmic effects, which allows the doctor to take steps in advance to
correct the treatment.

Consider the field of monitoring engineering for mobile objects, in particular, in
transport and directly monitoring for internal combustion engines, hybrid engines.
Here, as onboard signaling automata, it offers an automatic device that processes
signals from onboard standard sensors, for example, a crankshaft angle sensor or a
pressure sensor on common rail systems, etc. With an onboard computer and
graphics processors, the number of automata can be increased by covering most of
the standard sensors that give an analog or digital signal, for example, the automata
processing of the so-called uneven stroke. The evolution of the states of automata
that process uneven stroke based on the crankshaft angle sensor reflects the evolu-
tion of the cylinder-piston group and, therefore, predicts the development of the
most dangerous predictors of failure associated with changes in the combustion
mode of the fuel mixture. Adding an accelerometer to the family of standard
sensors for analyzing the vibrations of the engine body allows to expand the pre-
diction capabilities for the main friction pairs in the engine mechanics and analyze
the status of injectors and high pressure fuel pump (diesel engines). The calculated
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RUL estimate allows to calculate an optimizing maintenance strategy in real time.
This can also be attributed to railway transport where there are many problems with
the analysis of friction pairs, for example, bearings, rotors, etc.

The following fact also contributes to cost reduction and, accordingly, a change
in ROI. At the beginning of the operation of automata, the entire set of automata
participates in the processing of sensor signals. In the course of time and with the
increase in statistical data, the increase in the number of monitored objects of the
same type on the set of mechanisms, its clustering becomes possible, that is, the
division of mechanisms into classes determined by approximately the same set of
predictors necessary for prognosis. In the case of clustering, an additional automa-
ton is introduced, the purpose of which is to determine whether the mechanism
belongs to a certain class of the cluster. At the same time, the cumulative chrono-
logical database as individual objects or the entire class can significantly reduce the
cost of remote computing resource, particularly in cases where onboard computing
resource is sufficient for placing on it a few key automata.

The effect of optimization of the computing resource is also provided with the
development of self-maintenance or self-recovery systems. As an example of self-
recovery systems, there are such failures as coking of nozzles or a piston group of an
engine, which is especially common when operating engines subjected to tuning, in
violation of the speeds of operation, etc. In such cases, an early prognosis using an
automaton on the rotation sensor of the engine and accelerometer allows to deter-
mine the initial stages, or rather, the change in the mode of combustion of the fuel
mixture at the stage of nucleation of coking centers. However, feeding on several
motorcycles of the depleted mixture leads to the dissolution of the germs of growth
of the new phase, in this case, the centers of growth of coke deposits. At the same
time, substantial savings are quite obvious, since in the more advanced stages of
coking, dismantling the nozzle is necessary for its cleaning, processing in an ultra-
sonic bath, checking at the stand, etc. The same problem is relevant in aviation,
where coking of the inner surface of turbine compressor blades is often detected
under the conditions of a repair aircraft factory. In this case, expensive blades are
simply replaced by new ones. Thus, self-recovery or maintenance of the system or
modes can be very effective, especially in the case of early prediction of dysfunc-
tions and at the stage where the group of time inversion enters the degeneration
space, which turns the degeneration space into a projective space. In other words,
the trajectories in this case are invariant with respect to the time inversion. The
presence of such symmetry and, moreover, reversibility is some good approxima-
tion of the process at low diffusion velocities in evolution equations of the Fokker-
Planck type, for example. It should be noted that the maintenance management task
formalized in the previous chapter is most effectively solved exactly in the
described class of processes, i.e., in the presence of marked symmetry.

4. Conclusions

The prognostic models considered in this chapter are built on the assumption that
each observed signal to a certain extent reflects the internal state of the object being
studied. In engineering, in medicine, the observed signal is at least indirectly due to
the processes occurring in the mechanisms and bioobjects. The task of a complete set
of measured parameters as a whole is hardly solvable; one way or another, when
studying any object, a model of the object itself is needed, capable of reflecting not
only the instantaneous state but also the evolution of the object over time. The
observed signal, as a rule, is not obtained directly from an evolving object, because it
is impossible to place an accelerometer or a pressure sensor directly into the boiler of
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prognosis model in the works [5, 14]. In the most general formulation, the optimi-
zation task is reduced to carrying out the necessary maintenance and variation of
the management parameters in order to maximize the stay of the process trajectory
in a given homotopy class. The preventive monitoring cluster architecture
described above allows reducing the computation time on a remote cluster by
transferring a small part of the automata to the monitored object using onboard
computing power.

In the field of medical applications (cardiology), we can take as an example the
transfer of automaton of the R-R interval to the processor of portable ECG recorder
for multi-day monitoring. In addition to this automaton and depending on the
general analysis of the evolution of states, automata of a specific purpose are also
installed. For example, an automaton for the QT interval, which can autonomously
predict a change in the QT interval with an estimate of the time, it takes to reach
critical values of a given ECG interval. All of the above is also true for the definition
and evolution of such ECG indicators as R-R pause length, QT interval dispersion,
and other significant ECG predictors of cardiac events. It should be recalled that the
onboard automata can also go offline and manage the computing kernels of the
remote cluster. In the above example, such transition is carried out on the basis of
the prognosis obtained by the onboard automatic devices. In other cases, an autom-
aton on one of the leads may be sufficient, and a specific cascade corresponding to,
for example, the average value of one of the ECG teeth, is monitored.

The described manipulation with automata allows minimizing the cost of the
traffic of all ECG leads, as well as the costs associated with the abundance of
computations by the entire set of cluster automata.

Of course, the described optimization of calculations increases the comfort of
using wearable ECG gadgets, bracelets, and mHealth platforms.

However, the general goal in this case is prognosis of the life-threatening cardiac
events, taking preventive measures to eliminate them or minimize the conse-
quences. An example should be the procedure for optimizing drug therapy for atrial
fibrillation. The well-known fact that antiarrhythmic drugs used in the treatment of
arrhythmias can provoke the appearance of life-threatening arrhythmias. Timely
adjustment of the dose of the drug, the rejection of the drug, and its replacement
with another drug is one of the actual problems during treatment. In this situation,
predictive automata solve the problem of optimizing drug therapy, determining the
ineffectiveness of prescribed drugs, thereby reducing the time they are taken. On
the other hand, automata predict with an estimate of the probability and time to
achieve proarrhythmic effects, which allows the doctor to take steps in advance to
correct the treatment.

Consider the field of monitoring engineering for mobile objects, in particular, in
transport and directly monitoring for internal combustion engines, hybrid engines.
Here, as onboard signaling automata, it offers an automatic device that processes
signals from onboard standard sensors, for example, a crankshaft angle sensor or a
pressure sensor on common rail systems, etc. With an onboard computer and
graphics processors, the number of automata can be increased by covering most of
the standard sensors that give an analog or digital signal, for example, the automata
processing of the so-called uneven stroke. The evolution of the states of automata
that process uneven stroke based on the crankshaft angle sensor reflects the evolu-
tion of the cylinder-piston group and, therefore, predicts the development of the
most dangerous predictors of failure associated with changes in the combustion
mode of the fuel mixture. Adding an accelerometer to the family of standard
sensors for analyzing the vibrations of the engine body allows to expand the pre-
diction capabilities for the main friction pairs in the engine mechanics and analyze
the status of injectors and high pressure fuel pump (diesel engines). The calculated
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RUL estimate allows to calculate an optimizing maintenance strategy in real time.
This can also be attributed to railway transport where there are many problems with
the analysis of friction pairs, for example, bearings, rotors, etc.

The following fact also contributes to cost reduction and, accordingly, a change
in ROI. At the beginning of the operation of automata, the entire set of automata
participates in the processing of sensor signals. In the course of time and with the
increase in statistical data, the increase in the number of monitored objects of the
same type on the set of mechanisms, its clustering becomes possible, that is, the
division of mechanisms into classes determined by approximately the same set of
predictors necessary for prognosis. In the case of clustering, an additional automa-
ton is introduced, the purpose of which is to determine whether the mechanism
belongs to a certain class of the cluster. At the same time, the cumulative chrono-
logical database as individual objects or the entire class can significantly reduce the
cost of remote computing resource, particularly in cases where onboard computing
resource is sufficient for placing on it a few key automata.

The effect of optimization of the computing resource is also provided with the
development of self-maintenance or self-recovery systems. As an example of self-
recovery systems, there are such failures as coking of nozzles or a piston group of an
engine, which is especially common when operating engines subjected to tuning, in
violation of the speeds of operation, etc. In such cases, an early prognosis using an
automaton on the rotation sensor of the engine and accelerometer allows to deter-
mine the initial stages, or rather, the change in the mode of combustion of the fuel
mixture at the stage of nucleation of coking centers. However, feeding on several
motorcycles of the depleted mixture leads to the dissolution of the germs of growth
of the new phase, in this case, the centers of growth of coke deposits. At the same
time, substantial savings are quite obvious, since in the more advanced stages of
coking, dismantling the nozzle is necessary for its cleaning, processing in an ultra-
sonic bath, checking at the stand, etc. The same problem is relevant in aviation,
where coking of the inner surface of turbine compressor blades is often detected
under the conditions of a repair aircraft factory. In this case, expensive blades are
simply replaced by new ones. Thus, self-recovery or maintenance of the system or
modes can be very effective, especially in the case of early prediction of dysfunc-
tions and at the stage where the group of time inversion enters the degeneration
space, which turns the degeneration space into a projective space. In other words,
the trajectories in this case are invariant with respect to the time inversion. The
presence of such symmetry and, moreover, reversibility is some good approxima-
tion of the process at low diffusion velocities in evolution equations of the Fokker-
Planck type, for example. It should be noted that the maintenance management task
formalized in the previous chapter is most effectively solved exactly in the
described class of processes, i.e., in the presence of marked symmetry.

4. Conclusions

The prognostic models considered in this chapter are built on the assumption that
each observed signal to a certain extent reflects the internal state of the object being
studied. In engineering, in medicine, the observed signal is at least indirectly due to
the processes occurring in the mechanisms and bioobjects. The task of a complete set
of measured parameters as a whole is hardly solvable; one way or another, when
studying any object, a model of the object itself is needed, capable of reflecting not
only the instantaneous state but also the evolution of the object over time. The
observed signal, as a rule, is not obtained directly from an evolving object, because it
is impossible to place an accelerometer or a pressure sensor directly into the boiler of
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a nuclear reactor, glue the patient’s heart with electrodes and install a pressure sensor
in the working part of the aircraft turbine. Thus, in the end, there is a signal from
only ten electrodes from the surface of the human body; the sensors of the machinery
are installed far enough from the combustion zone in engines and turbines. Every-
thing briefly listed above leads to the appearance of artifacts of various natures in the
signal, and these artifacts must be taken into account in order to isolate the useful part
of the signal. In addition to all the above, signals from the so-called distributed
systems are usually analyzed. Strong heterogeneity, complex geometry, and complex
processes supporting the functionality of these systems are not restored and not
reproduced by a set of a dozen sensors. Therefore, by virtue of the above, physical
models of objects and their evolution are needed, using the so-called concise descrip-
tion, where, often, an infinite set of measured parameters necessary for modeling the
system is replaced by a much smaller number of parameters. The simplest example
and classical descriptive compression is the equilibrium thermodynamics, when
coordinates and momenta of all particles are reduced in thermodynamic approxima-
tion to such quantities as temperature, pressure, etc.

In the cases under consideration, the main emphasis in constructing the prog-
nostic model for evolving distributed systems is to take into account the internal
symmetry of the observed signal, without discussing the relationship between the
internal signal symmetry and the symmetry inherent in the state of the object and
the processes in it.

So, internal symmetry allows representing a signal as a product of slowly varying
amplitude and a rapidly oscillating phase cofactor. The phase cofactor has symme-
try groups, which acts transitively in pseudo-phase space. Ultimately, the state of
the system is described as a vector in multidimensional space, and when taking into
account the space of degeneration of a point in the space of degeneration, the
evolution of the system is a trajectory of states in the space of degeneration or a
multiple space of loops. Further analogies with the theory of topological defects of
condensed media make it possible to formalize the evolution of the prediction
problem in the form of the evolution of the set of trajectories, their transformations,
and a change in the types of trajectories with various kinds of lifting degenerations.
The transition to symbolic space, and in fact to the space of probability measures,
offers different interpretations of the evolution of a measure in time, in particular,
in the form of a complex-arranged walk of the point in a multidimensional simplex.
This, in turn, allows to construct families of predictive automata, the evolution of
which internal states takes into account the topological nontriviality of the space of
degeneracy. Considering the topological nontriviality and, as a result, the topologi-
cal nontriviality of the set of trajectories determines the complex topological
dynamics of the trajectories and the dynamics of the interaction of topological
singularities and, most importantly, provides an opportunity for algorithmic con-
struction of the search and definition of predictors of various events associated with
changes in the characteristics of the trajectory. Finally, it becomes clear that any
change in the characteristic features of the trajectory is associated with the violation
of the corresponding symmetry, the removal of the degeneracy in groups or sub-
groups of the isotropy of the space of degeneracy.

The resulting set of automata has a number of properties that must be men-
tioned in the context of their further development:

1. Differentiation of automata

2. Bundle of automata

3. Formation of hypernets
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Ultimately, the predicting set of automata will have the ability to adapt, i.e.,
restructuring of its entire structure with changes in the properties of the observed
signal, adding signals from new sensors, and changing the operating conditions of
engineering.

Thus, the family of automata is capable of analyzing a multitude of signals from
various sensors, which makes it possible to use them in all types of engineering and
medicine. In the initial stage of operation of the automata, one should limit our-
selves to standard onboard diagnostic sensors, which allows one to obtain the
necessary data on the need for additional sensors, which, in turn, provides further
calculation of the ROI for construction of optimizing maintenance strategies, cal-
culating optimal operating conditions, etc.
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a nuclear reactor, glue the patient’s heart with electrodes and install a pressure sensor
in the working part of the aircraft turbine. Thus, in the end, there is a signal from
only ten electrodes from the surface of the human body; the sensors of the machinery
are installed far enough from the combustion zone in engines and turbines. Every-
thing briefly listed above leads to the appearance of artifacts of various natures in the
signal, and these artifacts must be taken into account in order to isolate the useful part
of the signal. In addition to all the above, signals from the so-called distributed
systems are usually analyzed. Strong heterogeneity, complex geometry, and complex
processes supporting the functionality of these systems are not restored and not
reproduced by a set of a dozen sensors. Therefore, by virtue of the above, physical
models of objects and their evolution are needed, using the so-called concise descrip-
tion, where, often, an infinite set of measured parameters necessary for modeling the
system is replaced by a much smaller number of parameters. The simplest example
and classical descriptive compression is the equilibrium thermodynamics, when
coordinates and momenta of all particles are reduced in thermodynamic approxima-
tion to such quantities as temperature, pressure, etc.

In the cases under consideration, the main emphasis in constructing the prog-
nostic model for evolving distributed systems is to take into account the internal
symmetry of the observed signal, without discussing the relationship between the
internal signal symmetry and the symmetry inherent in the state of the object and
the processes in it.

So, internal symmetry allows representing a signal as a product of slowly varying
amplitude and a rapidly oscillating phase cofactor. The phase cofactor has symme-
try groups, which acts transitively in pseudo-phase space. Ultimately, the state of
the system is described as a vector in multidimensional space, and when taking into
account the space of degeneration of a point in the space of degeneration, the
evolution of the system is a trajectory of states in the space of degeneration or a
multiple space of loops. Further analogies with the theory of topological defects of
condensed media make it possible to formalize the evolution of the prediction
problem in the form of the evolution of the set of trajectories, their transformations,
and a change in the types of trajectories with various kinds of lifting degenerations.
The transition to symbolic space, and in fact to the space of probability measures,
offers different interpretations of the evolution of a measure in time, in particular,
in the form of a complex-arranged walk of the point in a multidimensional simplex.
This, in turn, allows to construct families of predictive automata, the evolution of
which internal states takes into account the topological nontriviality of the space of
degeneracy. Considering the topological nontriviality and, as a result, the topologi-
cal nontriviality of the set of trajectories determines the complex topological
dynamics of the trajectories and the dynamics of the interaction of topological
singularities and, most importantly, provides an opportunity for algorithmic con-
struction of the search and definition of predictors of various events associated with
changes in the characteristics of the trajectory. Finally, it becomes clear that any
change in the characteristic features of the trajectory is associated with the violation
of the corresponding symmetry, the removal of the degeneracy in groups or sub-
groups of the isotropy of the space of degeneracy.

The resulting set of automata has a number of properties that must be men-
tioned in the context of their further development:

1. Differentiation of automata

2. Bundle of automata

3. Formation of hypernets
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Ultimately, the predicting set of automata will have the ability to adapt, i.e.,
restructuring of its entire structure with changes in the properties of the observed
signal, adding signals from new sensors, and changing the operating conditions of
engineering.

Thus, the family of automata is capable of analyzing a multitude of signals from
various sensors, which makes it possible to use them in all types of engineering and
medicine. In the initial stage of operation of the automata, one should limit our-
selves to standard onboard diagnostic sensors, which allows one to obtain the
necessary data on the need for additional sensors, which, in turn, provides further
calculation of the ROI for construction of optimizing maintenance strategies, cal-
culating optimal operating conditions, etc.
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Chapter 4

Fault Diagnosis Techniques for
a Wind Turbine System
Silvio Simani and Paolo Castaldi

Abstract

The fault diagnosis and prognosis of wind turbine systems represent a
challenging issue, thus justifying the research topics developed in this work with
application to safety-critical systems. Therefore, this chapter addresses these
research issues and demonstrates viable techniques of fault diagnosis and condition
monitoring. To this aim, the design of the so-called fault detector relies on its
estimate, which involves data-driven methods, as they result effective methods
for managing partial information of the system dynamics, together with errors,
model-reality mismatch and disturbance effects. In particular, the considered
data-driven strategies use fuzzy systems and neural networks, which are employed
to establish non-linear dynamic links between measurements and faults. The
selected prototypes are based on non-linear autoregressive with exogenous input
descriptions, since they are able to approximate non-linear dynamic functions
with arbitrary degree of accuracy. The capabilities of the designed fault diagnosis
schemes are verified via a high-fidelity simulator, which describes the normal
and the faulty behaviour of a wind turbine plant. Finally, the robustness and the
reliability features of the proposed methods are validated in the presence of
uncertainty and disturbance implemented in the wind turbine simulator.

Keywords: fault diagnosis, analytical redundancy, fuzzy prototypes,
neural networks, diagnostic residuals, fault reconstruction, wind turbine simulator

1. Introduction

The increasing level of wind-generated energy in power generation worldwide
also increases the levels of reliability and the so-called ‘sustainability’ shown by
wind turbines. Wind turbine systems should generate the required amount of
electrical power continuously, depending on the available wind speed, the grid’s
demand and possible malfunctions.

To achieve this aim, possible malfunctions affecting the process have to be
properly detected and managed, before they degrade the nominal working condi-
tions of the plant or become critical issues. Wind turbines with large rotors (i.e., of
megawatt size) are very expensive systems, thus requiring an extremely high level
of availability and reliability, in order to maximise the generated energy (at a
reduced cost), with a minimisation of the operation and maintenance (O&M)
services. In fact, the costs of the produced energy are mainly due to the installation
cost of the wind turbine, while unplanned O&M costs could increase it up to about
30%, in particular when offshore installations are considered, see Odgaard [1].
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The fault diagnosis and prognosis of wind turbine systems represent a
challenging issue, thus justifying the research topics developed in this work with
application to safety-critical systems. Therefore, this chapter addresses these
research issues and demonstrates viable techniques of fault diagnosis and condition
monitoring. To this aim, the design of the so-called fault detector relies on its
estimate, which involves data-driven methods, as they result effective methods
for managing partial information of the system dynamics, together with errors,
model-reality mismatch and disturbance effects. In particular, the considered
data-driven strategies use fuzzy systems and neural networks, which are employed
to establish non-linear dynamic links between measurements and faults. The
selected prototypes are based on non-linear autoregressive with exogenous input
descriptions, since they are able to approximate non-linear dynamic functions
with arbitrary degree of accuracy. The capabilities of the designed fault diagnosis
schemes are verified via a high-fidelity simulator, which describes the normal
and the faulty behaviour of a wind turbine plant. Finally, the robustness and the
reliability features of the proposed methods are validated in the presence of
uncertainty and disturbance implemented in the wind turbine simulator.
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1. Introduction

The increasing level of wind-generated energy in power generation worldwide
also increases the levels of reliability and the so-called ‘sustainability’ shown by
wind turbines. Wind turbine systems should generate the required amount of
electrical power continuously, depending on the available wind speed, the grid’s
demand and possible malfunctions.

To achieve this aim, possible malfunctions affecting the process have to be
properly detected and managed, before they degrade the nominal working condi-
tions of the plant or become critical issues. Wind turbines with large rotors (i.e., of
megawatt size) are very expensive systems, thus requiring an extremely high level
of availability and reliability, in order to maximise the generated energy (at a
reduced cost), with a minimisation of the operation and maintenance (O&M)
services. In fact, the costs of the produced energy are mainly due to the installation
cost of the wind turbine, while unplanned O&M costs could increase it up to about
30%, in particular when offshore installations are considered, see Odgaard [1].
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These issues have motivated the development of fault diagnosis techniques that
can be coupled with the fault-tolerant controllers (the so-called ‘sustainable’ sys-
tems). On the other hand, many turbine manufacturers adopt conservative
approaches against faults, which lead to the shutdown of the plant in order to wait
for O&M service. Hence, effective tools for coping with faults have to be investi-
gated, in order to improve wind turbine features, particularly during faulty situa-
tions. This will lead to prevent critical failures that may affect other wind turbine
components, thus avoiding unplanned replacement of functional parts, as well as
the decrease of O&M costs, with the increase of the energy production. Moreover,
the development of digital control systems, big data tools and artificial intelligence
strategies enhance the development of new real-time condition monitoring, diag-
nosis and fault-tolerant control strategies for industrial processes, which can be
available only on demand.

In recent years, many works have been proposed on the topics of fault diagnosis
of wind turbines, as shown very recently in Habibi et al. [2] and Lan et al. [3]. Some
of them are focused on the diagnosis of particular faults, for example, those affect-
ing the drive-train system at a wind turbine level. Sometimes, these faults are better
managed when the wind turbine system is considered in comparison to other parts
of the whole plant, see Odgaard & Stoustrup [4]. Moreover, fault-tolerant control
of wind turbines has been investigated, for example, in Parker et al. [5] and inter-
national cooperations on these problems were also proposed, see Odgaaard and
Shafiei [6].

Fault diagnosis oriented to the sustainability feature when applied to safety-
critical systems such as wind turbines has been proven to be a challenging issue, see
Byrski and Byrski [7] and Xu et al. [8], thus motivating the research topics
addressed in this chapter.

This point is fundamental as the increasing demand for energy generation
using renewable sources has led to higher attention on renewable energy conversion
systems, and in particular wind turbines. They represent very complex and
safety-critical plants which require reliability, availability, maintainability and
safety. Moreover, their efficiency to generate electrical power has to be maximised.
This motivates novel research aspects, in particular in the context of diagnosis
and control. The earlier diagnosis of faults and sustainable control solutions can lead
to optimise energy conversion and guarantee the desired performances in the
presence of possible malfunctions due to unexpected faults and disturbance.

Therefore, this chapter analyses the problem of the fault diagnosis for wind
turbine systems, and the development of practical and reliable solutions for fault
diagnosis, also known as fault detection and isolation (FDI). Further design of fault-
tolerant controllers is not considered in this work, but it can rely on the tools
considered in this chapter. In fact, the fault diagnosis module provides information
on the faulty or fault-free conditions of the system, so that the controller activity
can be compensated. This fault diagnosis task is enhanced by the use of fault
estimators, which are obtained via data-driven approaches, as they offer effective
tools for managing limited analytical knowledge of the process dynamics, together
with noise and disturbance effects.

The first data-driven solution considered in this chapter uses fuzzy Takagi-
Sugeno models, see Babuška [9], which are derived from a clustering algorithm,
followed by an identification procedure, see Simani et al. [10]. A second solution is
also considered, which relies on neural networks to describe the non-linear analyt-
ical links between measurement and fault signals. The chosen network architecture
belongs to the Nonlinear AutoRegressive with eXogenous (NARX) input prototype,
which can describe dynamic relationships along time. The training of the neural
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network fault estimators exploits standard training algorithm, that processes the
data acquired from the process, see Roy and Ganguli [11].

The developed fault diagnosis strategies are verified by means of a high-fidelity
simulator, which describes the normal and the faulty behaviour of a wind turbine
plant. The achieved performances are verified in the presence of uncertainty and
disturbance effects, thus validating the robustness features of the proposed
schemes. The effectiveness verified from the achieved results suggests further
investigations on more realistic applications of the proposed schemes.

The work is organised as follows. Section 2 recalls the wind turbine simulator.
Section 3 illustrates the fault diagnosis methodologies relying on fuzzy and neural
network prototypes. The obtained results are summarised in Section 4. Finally,
Section 5 ends the chapter by outlining the key achievements of the study, and
providing suggestions for future research issues.

2. Wind turbine simulator description

The wind turbine simulator used in this work was proposed in Odgaard et al.
[12]. It describes the realistic behaviour of a three-blade horizontal-axis variable-
speed pitch-controlled wind turbine coupled with a full converter generator. The
overall system consists of four interconnected modules, that is, the wind driving
process, the wind turbine, the measurement system and the baseline controller. The
wind turbine block contains three submodels: the blade and the pitch system, the
drive-train model and the generator system. The links between the system
submodels are represented in Figure 1, with the fault diagnosis system to be
designed. The simulator is able to generate several fault scenarios, see
Odgaard et al. [12].

In the following, the description of these interconnected submodels is briefly
recalled.

Figure 1.
The wind turbine simulator with its fault diagnosis system.
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These issues have motivated the development of fault diagnosis techniques that
can be coupled with the fault-tolerant controllers (the so-called ‘sustainable’ sys-
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network fault estimators exploits standard training algorithm, that processes the
data acquired from the process, see Roy and Ganguli [11].

The developed fault diagnosis strategies are verified by means of a high-fidelity
simulator, which describes the normal and the faulty behaviour of a wind turbine
plant. The achieved performances are verified in the presence of uncertainty and
disturbance effects, thus validating the robustness features of the proposed
schemes. The effectiveness verified from the achieved results suggests further
investigations on more realistic applications of the proposed schemes.

The work is organised as follows. Section 2 recalls the wind turbine simulator.
Section 3 illustrates the fault diagnosis methodologies relying on fuzzy and neural
network prototypes. The obtained results are summarised in Section 4. Finally,
Section 5 ends the chapter by outlining the key achievements of the study, and
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2. Wind turbine simulator description

The wind turbine simulator used in this work was proposed in Odgaard et al.
[12]. It describes the realistic behaviour of a three-blade horizontal-axis variable-
speed pitch-controlled wind turbine coupled with a full converter generator. The
overall system consists of four interconnected modules, that is, the wind driving
process, the wind turbine, the measurement system and the baseline controller. The
wind turbine block contains three submodels: the blade and the pitch system, the
drive-train model and the generator system. The links between the system
submodels are represented in Figure 1, with the fault diagnosis system to be
designed. The simulator is able to generate several fault scenarios, see
Odgaard et al. [12].

In the following, the description of these interconnected submodels is briefly
recalled.

Figure 1.
The wind turbine simulator with its fault diagnosis system.
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2.1 Wind turbine model

The turbine system consists of three submodels motivated by the power trans-
mission flow. First, the blade and pitch block represents how the blades capture
wind energy, which is based on the following aerodynamic law:

τr tð Þ ¼
ρπR3Cq λ tð Þ; β tð Þð Þv2w tð Þ

2
(1)

For each blade, Eq. (1) describes the torque acting on the rotor τr, depending on
the squared wind speed v2w, the air density ρ and the rotor radius R. The coefficient
Cq is usually defined using a two-dimensional map depending on the blade pitch
angle β and the tip-speed ratio λ, that is, the ratio between the linear velocity of the
blade tip and the wind speed. This map is represented by means of a look-up table.
The blade and pitch system includes the dynamics of the pitch angle hydraulic
piston servo system, which is approximated as a second-order transfer function of
Eq. (2):

β sð Þ
βref sð Þ ¼

ω2
n

s2 þ 2ζωn sþ ω2
n

(2)

where βref is the reference pitch angle computed by the turbine controller, while
ζ and ωn are the transfer function parameters.

The drive-train system determines the power flow through the gear box from
the rotor toward the electric generator, whose dynamics are described as in Eq. (3):

Jr _ωr ¼ τr � Kdt θΔ � Bdt þ Brð Þωr þ Bdt

Ng
ωg

Jg _ωg ¼ ηdt Kdt

Ng
θΔ þ ηdt Bdt

Ng
ωr � ηdt Bdt

N2
g

þ Bg

 !
ωg � τg

_θΔ ¼ ωr �
ωg

Ng

8>>>>>>>><
>>>>>>>>:

(3)

where Jr and Jg are the inertia moments of the rotor and generator shafts,
respectively. Kdt is the torsion stiffness, Bdt is the torsion damping factor, Bg is the
viscous friction of the generator shaft, Br is the viscous friction of the low-speed
shaft, Ng is the gear ratio, ηdt is the efficiency and θΔ is the torsion angle.

Finally, the generator submodel represents the converter dynamics by means of
first-order transfer function of Eq. (4):

τg sð Þ
τg, ref sð Þ ¼

αg
sþ αg

(4)

where τg, ref is the reference torque defined by the controller and αg is the transfer
function parameter.

Finally, the generated power Pg is computed as the product of the generator
torque by its speed, decreased by the efficiency coefficient ηg :

Pg ¼ ηgωg τg (5)

As sketched in Figure 1, the signals generated by the wind turbine system are
assumed to be acquired through the measurement block, whose objective is to
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simulate the real behaviour of sensors and actuators. Therefore, the measured
signals are modelled as sum of their actual value and white Gaussian process terms.
Moreover, the wind turbine simulator includes a baseline controller, represented by
a PID standard regulator, which regulates the generated power on the basis of the
actual wind speed, as shown in Odgaard & Stoustrup [4] and Odgaard et al. [12].

2.2 Simulated fault scenario

The wind turbine simulator includes the generation of three different typical
fault cases, that is, sensor, actuator and system faults, see Odgaard and Stoustrup
[4] and Odgaard et al. [12].

For the case of the sensor faults, they are generated as additive signals on the
affected measurements. As an example, the faulty sensor of faulty pitch angle βm
provides wrong measurements on blade orientation; thus, if not handled, the con-
troller cannot fully track the power reference signal.

On the other hand, actuator faults lead to the alteration of pitch angle or the
generator torque transfer functions of Eqs. (2) and (4), by modifying their dynam-
ics. They simulate a pressure drop in the hydraulic circuit of the pitch actuator or an
electronic break down in the converter device.

Finally, a system fault affects the drive train of the turbine, which is described as
a slow variation in time of the friction coefficient. This can be due to the effect of
wear and tear along time of the mechanical parts.

These nine fault cases are summarised in Table 1, which also highlights which
measured signals are affected by them, as shown in Figure 1.

With these assumptions, the overall model of the wind turbine process can be
represented as a non-linear continuous-time function fwt describing the evolution
of the turbine state vector xwt excited by the input vector u:

_xwt tð Þ ¼ fwt xwt;u tð Þð Þ
y tð Þ ¼ xwt tð Þ

�
(6)

where in this case, the state of the system is considered equal to the monitored
system output, that is, the rotor speed, the generator speed and the generated
power:

xwt tð Þ ¼ y tð Þ ¼ ωg,m1;ωg,m2;ωr,m1;ωr,m2;Pg,m
� �

Fault case Fault type Affected measurement

1 Sensor β1,m1

2 Sensor β2,m2

3 Sensor β3,m1

4 Sensor ωr,m1

5 Sensor ωr,m2 and ωg,m2

6 Actuator Pitch system of blade #2

7 Actuator Pitch system of blade #3

8 Actuator τg,m

9 System Drive train

Table 1.
Wind turbine simulator fault scenario.
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where Jr and Jg are the inertia moments of the rotor and generator shafts,
respectively. Kdt is the torsion stiffness, Bdt is the torsion damping factor, Bg is the
viscous friction of the generator shaft, Br is the viscous friction of the low-speed
shaft, Ng is the gear ratio, ηdt is the efficiency and θΔ is the torsion angle.

Finally, the generator submodel represents the converter dynamics by means of
first-order transfer function of Eq. (4):

τg sð Þ
τg, ref sð Þ ¼

αg
sþ αg

(4)

where τg, ref is the reference torque defined by the controller and αg is the transfer
function parameter.

Finally, the generated power Pg is computed as the product of the generator
torque by its speed, decreased by the efficiency coefficient ηg :

Pg ¼ ηgωg τg (5)

As sketched in Figure 1, the signals generated by the wind turbine system are
assumed to be acquired through the measurement block, whose objective is to
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simulate the real behaviour of sensors and actuators. Therefore, the measured
signals are modelled as sum of their actual value and white Gaussian process terms.
Moreover, the wind turbine simulator includes a baseline controller, represented by
a PID standard regulator, which regulates the generated power on the basis of the
actual wind speed, as shown in Odgaard & Stoustrup [4] and Odgaard et al. [12].

2.2 Simulated fault scenario

The wind turbine simulator includes the generation of three different typical
fault cases, that is, sensor, actuator and system faults, see Odgaard and Stoustrup
[4] and Odgaard et al. [12].

For the case of the sensor faults, they are generated as additive signals on the
affected measurements. As an example, the faulty sensor of faulty pitch angle βm
provides wrong measurements on blade orientation; thus, if not handled, the con-
troller cannot fully track the power reference signal.

On the other hand, actuator faults lead to the alteration of pitch angle or the
generator torque transfer functions of Eqs. (2) and (4), by modifying their dynam-
ics. They simulate a pressure drop in the hydraulic circuit of the pitch actuator or an
electronic break down in the converter device.

Finally, a system fault affects the drive train of the turbine, which is described as
a slow variation in time of the friction coefficient. This can be due to the effect of
wear and tear along time of the mechanical parts.

These nine fault cases are summarised in Table 1, which also highlights which
measured signals are affected by them, as shown in Figure 1.

With these assumptions, the overall model of the wind turbine process can be
represented as a non-linear continuous-time function fwt describing the evolution
of the turbine state vector xwt excited by the input vector u:

_xwt tð Þ ¼ fwt xwt;u tð Þð Þ
y tð Þ ¼ xwt tð Þ

�
(6)

where in this case, the state of the system is considered equal to the monitored
system output, that is, the rotor speed, the generator speed and the generated
power:

xwt tð Þ ¼ y tð Þ ¼ ωg,m1;ωg,m2;ωr,m1;ωr,m2;Pg,m
� �

Fault case Fault type Affected measurement

1 Sensor β1,m1

2 Sensor β2,m2

3 Sensor β3,m1

4 Sensor ωr,m1

5 Sensor ωr,m2 and ωg,m2

6 Actuator Pitch system of blade #2

7 Actuator Pitch system of blade #3

8 Actuator τg,m

9 System Drive train

Table 1.
Wind turbine simulator fault scenario.
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On the other hand, the input vector:

u tð Þ ¼ β1,m1; β1,m2; β2,m1; β2,m2; β3,m1; β3,m2; τg,m
� �

consists of the measurements of the pitch angles from the three redundant
sensors, as well as the measured torque. These signals are sampled with sample time
T in order to acquire a number N of data u kð Þ, y kð Þ with k ¼ 1,…, N, in order to
implement the data-driven fault diagnosis solutions proposed in this chapter.

3. Fault diagnosis techniques

This chapter considers two data-driven approaches, relying on fuzzy system and
neural network structures, which are used to design the fault diagnosis schemes.
Therefore, this section briefly introduces the general scheme of the fault diagnosis
strategy, by recalling the basic features of the fuzzy systems and neural networks, as
addressed in Sections 3.1 and 3.2, respectively. Moreover, these architectures, which
are represented by NARX structures, are exploited residual generators for solving
the problem of fault diagnosis, according to the analytical redundancy principle, see
Chen and Patton [13].

In order to solve the fault diagnosis problem, this work assumes that the wind
turbine system is affected by equivalent additive faults on the input and the output
measurements, as well as measurement errors, as described by Eq. (7):

u kð Þ ¼ u∗ kð Þ þ ~u kð Þ þ fu kð Þ
y kð Þ ¼ y∗ kð Þ þ ~y kð Þ þ fy kð Þ

(
(7)

where u∗ kð Þ and y∗ kð Þ represent the actual process variables, u kð Þ and y kð Þ are
the measurements acquired from the sensors, while ~u kð Þ and ~y kð Þ describe the
measurement errors. According to the description of Eq. (7), signals of the faults
fu kð Þ and fy kð Þ also have equivalent additive effects. Obviously, these functions are
different from zero in faulty cases. In general, the vector u kð Þ has r components,
that is, the number of process inputs, while y kð Þ hasm elements, that is, the number
of process outputs.

Among the possible approaches exploited for residual generation, and based on
the analytical redundancy principle, this work proposes to exploit fuzzy system and
neural network structures, which provide an on-line estimation f̂ kð Þ of the fault
signals fu kð Þ and fy kð Þ. Hence, as shown in Figure 1, the so-called diagnostic resid-

uals r kð Þ are equal to the estimated fault signals, f̂ kð Þ, which are computed by the
general fault estimator, as highlighted by Eq. (8):

r kð Þ ¼ f̂ kð Þ (8)

The variable f̂ kð Þ is the generic fault vector, that is, f̂ kð Þ ¼ f̂ 1 kð Þ;…; f̂ rþm kð Þ
n o

.

Therefore, the general fault estimate f̂ i kð Þ can be equal to one of the i components
of the fault vectors fu kð Þ or fy kð Þ in Eqs. (7), with i ¼ 1,…, rþm.

The residual generation scheme exploiting the fault estimators as residual gen-
erator is depicted in Figure 2. Note that this strategy is able to provide both the fault
detection and isolation tasks, that is, the fault diagnosis function, see Chen and
Patton [13].
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Figure 2 shows that in general the residual generators use the acquired input and
output measurements u kð Þ and y kð Þ. As first step, the fault diagnosis scheme con-
sists of the fault detection task. In this case, as the residual is equal to the estimated
fault signal, it is easily performed via a proper thresholding logic directly operating
on the residual itself, without requiring complex elaboration with proper evaluation
functions, as shown in Chen and Patton [13]. Therefore, the occurrence of the ith
fault can be simply detected via the threshold logic of Eq. (9) applied to the ith
residual ri kð Þ:

ri � δσri ≤ ri ≤ ri þ δσi fault‐free case

ri < ri � δσrior ri > ri þ δσri faulty case

�
(9)

with ri kð Þ representing the ith component of the vector r kð Þ. If it is considered as
a random variable, its means ri and variance σ2ri values can be estimated in fault-free
condition, after the acquisition of N samples, according to Eq. (10):

ri ¼ 1
N

∑
N

k¼1
ri kð Þ

σ2ri ¼
1
N

∑
N

k¼1
ri kð Þ � rið Þ2

8>>><
>>>:

(10)

Note that the parameter δ≥2 represents a tolerance variable, which has to be
properly tuned in order to effectively separate the fault-free from the faulty condi-
tions. A common choice of δ can rely on the three-sigma rule, otherwise extensive
simulations can be exploited for optimising this δ value, see Chen and Patton [13].

Once the fault detection phase is accomplished, the fault isolation task is directly
obtained by means of a bank of estimators. As described by Eq. (7), the faults are
considered as equivalent signals that are injected and affect the input measurements
via the signal fu, or the output measurements by means of fy.

According to the scheme depicted in Figure 3, in order to uniquely isolate one of
the input or output faults, under the assumption that multiple faults cannot occur, a
bank of multi-input single-output (MISO) fault estimators is designed. In general,
the number of this estimators is equal to the number of faults that have to be
diagnosed, that is, which coincides with the number of input and output measure-
ments, rþm. Therefore, the ith estimator providing the reconstruction of the fault
f̂ kð Þ ¼ ri kð Þ is driven by the components of the input and output signals u kð Þ and
y kð Þ, respectively. These components are selected in order to be sensitive to the

Figure 2.
Fault detectors for fault diagnosis.
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On the other hand, the input vector:
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� �
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3. Fault diagnosis techniques
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strategy, by recalling the basic features of the fuzzy systems and neural networks, as
addressed in Sections 3.1 and 3.2, respectively. Moreover, these architectures, which
are represented by NARX structures, are exploited residual generators for solving
the problem of fault diagnosis, according to the analytical redundancy principle, see
Chen and Patton [13].

In order to solve the fault diagnosis problem, this work assumes that the wind
turbine system is affected by equivalent additive faults on the input and the output
measurements, as well as measurement errors, as described by Eq. (7):
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where u∗ kð Þ and y∗ kð Þ represent the actual process variables, u kð Þ and y kð Þ are
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measurement errors. According to the description of Eq. (7), signals of the faults
fu kð Þ and fy kð Þ also have equivalent additive effects. Obviously, these functions are
different from zero in faulty cases. In general, the vector u kð Þ has r components,
that is, the number of process inputs, while y kð Þ hasm elements, that is, the number
of process outputs.

Among the possible approaches exploited for residual generation, and based on
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neural network structures, which provide an on-line estimation f̂ kð Þ of the fault
signals fu kð Þ and fy kð Þ. Hence, as shown in Figure 1, the so-called diagnostic resid-

uals r kð Þ are equal to the estimated fault signals, f̂ kð Þ, which are computed by the
general fault estimator, as highlighted by Eq. (8):
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.

Therefore, the general fault estimate f̂ i kð Þ can be equal to one of the i components
of the fault vectors fu kð Þ or fy kð Þ in Eqs. (7), with i ¼ 1,…, rþm.

The residual generation scheme exploiting the fault estimators as residual gen-
erator is depicted in Figure 2. Note that this strategy is able to provide both the fault
detection and isolation tasks, that is, the fault diagnosis function, see Chen and
Patton [13].
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Note that the parameter δ≥2 represents a tolerance variable, which has to be
properly tuned in order to effectively separate the fault-free from the faulty condi-
tions. A common choice of δ can rely on the three-sigma rule, otherwise extensive
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Once the fault detection phase is accomplished, the fault isolation task is directly
obtained by means of a bank of estimators. As described by Eq. (7), the faults are
considered as equivalent signals that are injected and affect the input measurements
via the signal fu, or the output measurements by means of fy.

According to the scheme depicted in Figure 3, in order to uniquely isolate one of
the input or output faults, under the assumption that multiple faults cannot occur, a
bank of multi-input single-output (MISO) fault estimators is designed. In general,
the number of this estimators is equal to the number of faults that have to be
diagnosed, that is, which coincides with the number of input and output measure-
ments, rþm. Therefore, the ith estimator providing the reconstruction of the fault
f̂ kð Þ ¼ ri kð Þ is driven by the components of the input and output signals u kð Þ and
y kð Þ, respectively. These components are selected in order to be sensitive to the

Figure 2.
Fault detectors for fault diagnosis.

51

Fault Diagnosis Techniques for a Wind Turbine System
DOI: http://dx.doi.org/10.5772/intechopen.83810



specific fault f i kð Þ. In fact, the design of these fault estimators is enhanced by the
fault sensitivity analysis described in Section 3.3. For each case, the fault modes and
their resulting effects on the rest of the system are analysed, and in particular the
most sensitive input uj kð Þ and output yl kð Þ measurements to that specific fault
situation are selected. In this way, by means of the fuzzy system and neural network
tools, it will be possible to derive the dynamic relationships between the input-
output measurements, uj kð Þ and yl kð Þ, and the faults f i kð Þ, as highlighted by
Figure 3.

Figure 3 shows this fault estimator bank, where the fault estimators are driven
by the input-output signals selected via the fault sensitivity analysis procedure. In
this way, the residual ri kð Þ ¼ f̂ i kð Þ is insensitive only to the fault affecting those
inputs and outputs, uj kð Þ and yl kð Þ, defined by the selector blocks. It is worth noting
that, using this configuration, multiple faults occurring at the same time cannot be
correctly isolated.

As already remarked, the sensitivity analysis, which has to be executed before
the design of the fault estimators, suggests how to select the input-output signals
feeding the fault estimator modules. After this selection procedure is performed, as
described in Section 3.3, the design of the fuzzy or neural network models is
achieved, as recalled in Sections 3.1 and 3.2, respectively. Finally, the threshold test
logic of Eq. (9) allows the achievement of the fault diagnosis task.

3.1 Fuzzy system modelling and identification

This section describes the design of the fault estimators described by means of
the Takagi-Sugeno (TS) prototypes, see Takagi and Sugeno [14]. Therefore, the
unknown relationships between the selected measurements and the faults are
described by fuzzy models, which consist of a number of rules. These rules connect
the measured signals acquired from the system under diagnosis to its faults,
described in form of IF)THEN relations, processed by a fuzzy inference system
(FIS), see Babuška [9].

Figure 3.
Residual generators bank with ri kð Þ ¼ f i kð Þ.
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According to this approach, the approximation of non-linear multi-input
single-output (MISO) systems can be achieved by the Takagi-Sugeno (TS) fuzzy
reasoning, as described in Babuška [9]. The TS modelling approach proposed here,
as addressed in Takagi and Sugeno [14], describes the consequents as deterministic
functions gi �ð Þ of the inputs, while the antecedents remain fuzzy propositions.

The fuzzy rule of the FIS has the form of Eq. (11):

Ri : IF fuzzy combination of inputs
� �

THEN output ¼ gi inputsð Þ (11)

where i refers to the number of rules. The antecedents are combined by means
of membership functions λi xð Þ that take into account the logical connectives
expressed by linguistic propositions. The rule consequent function gi �ð Þ is defined as
parametric function in the affine form of Eq. (12):

gi xð Þ ¼ aTi xþ bi (12)

where ai is the parameter vector, and bi is a scalar offset, while gi xð Þ is the ith rule
output. The number of rules is supposed equal the number of clusters nC used for
partitioning the data into regions where the relations gi �ð Þ hold, see Babuška [9].
Furthermore, the antecedent of each rule defines the degree of fulfilment for the
corresponding consequent model, defined by the membership function λi xð Þ.
Therefore, the global model is expressed as a fuzzy composition of parametric
models gi xð Þ.

The TS prototype takes the form of the expression of Eq. (13):

f̂ ¼ ∑nC
i¼1λi xð Þgi xð Þ
∑nC

i¼1λi xð Þ (13)

Using this fuzzy approach, in general, the fault f̂ can be reconstructed from
suitable data acquired from the system under diagnosis. In other words, the fault f̂
is a weighted average of affine functions gi xð Þ of the input-output measurements,
where the weights are the combined degree of fulfilment λi xð Þ of the system inputs.

It is worth noting that the system under investigation corresponds to the wind
turbine process described in Section 2, which has a dynamic behaviour. Therefore,
the considered input vector x of the TS model of Eq. (13) contains the current as
well as delayed samples of the system input and output signals.

Therefore, in order to include dynamics into the static relation of Eq. (11), the
consequents are described as discrete-time linear AutoRegressive models with
eXogenous input (ARX) of order o, in which the regressor vector has the form of
Eq. (14):

x kð Þ ¼ …; yl k� 1ð Þ;…; yl k� oð Þ;…uj kð Þ;…; uj k� oð Þ;…� �T (14)

where ul �ð Þ and yj �ð Þ are the components of the actual system input and output
vectors u kð Þ and y kð Þ is selected via the fault sensitivity analysis tool of Section 3.3,
and exploited in the scheme of Figure 3. The variable k represents the time step,
with k ¼ 1, 2,…, N. The affine parameters associated to the ith model of the Eq. (12)
are collected into the vector:

ai ¼ α ið Þ
1 ;…; α ið Þ

o ; δ ið Þ
1 ;…; δ ið Þ

o

h iT
(15)

where the α ið Þ
j coefficients refer to the output samples, while δ ið Þ

j are associated to
the input ones.
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A powerful approach to the design of the ith FIS as approximator for the system
under diagnosis begins with the partitioning of the available data u kð Þ and y kð Þ of
Eq. (7) into subsets, known as cluster. A cluster is defined as a set of data that are
more similar to each other rather than to the members of another cluster. The
similarity among data can be expressed in terms of their distance from a particular
item, exploited as the cluster prototype. Fuzzy clustering provides an effective tool
to obtain a partitioning of data in which the transitions among subsets are smooth,
rather than abrupt. Moreover, fuzzy clustering assumes that the data of each cluster
are characterised by an affine behaviour, which is indeed modelled by the relation
of Eq. (12). Different clustering methods have been proposed in literature, see for
example, more recent works Graaff and Engelbrecht [15] and Jun et al. [16].

With reference to this work, the design of the FIS is considered as a system
identification problem from the noisy data of Eqs. (7). In fact, the estimation of the
consequent parameters ai and bi of Eq. (12) is required using the input-output data
for designing the bank of the fault estimations reported in Figure 3. Moreover, the
data are acquired from the measurements selected from the procedure suggested in
Section 3.3. The identification scheme exploited in this work was proposed by the
authors in Fantuzzi et al. [17]. This approach is based on the minimisation of the
prediction errors of the individual TS local affine models considered as
nC-independent estimation problems. Their solutions rely on the estimation of
errors-in-variables models in Fantuzzi et al. [17], which is also the assumption
represented by Eq. (7).

Another key aspect, which is not considered here, regards the determination of
the optimal number of clusters nC, as the clustering algorithm assumes that the
number of clusters nC has been fixed. These issues are considered in the develop-
ment of the estimation procedure properly integrated by the authors, which also
determines the antecedent degrees of fulfilment μik required by Eq. (13) and solved
with curve fitting methods, see Babuška [9].

3.2 Neural network modelling and training

This study proposes a different data-driven approach, based on neural networks,
which is exploited to implement the fault diagnosis block. This section briefly
recalls their general structure and properties, which are used to implement the fault
estimators.

Therefore, according to the scheme shown in Figure 4, a bank of neural net-
works is realised in order to reproduce the behaviour of the faults affecting the
system under diagnosis using a proper set of input and output measurements. The
neural network structure consists of different layers of neurons, also known as
perceptron, see Haykin [18], modelled as a static function f. This function is
described by an activation function with multiple inputs properly weighted by
unknown parameters that determine the learning capabilities of the whole network.

A categorisation of these learning structures concerns the way in which their
neurons are connected to each other, see Xu et al. [19]. This work proposes to use a
feedforward network, also called multilayer perceptron, where the neurons are
grouped into unidirectional layers. The first of them, the input layer, is directly fed
by the network inputs; then, a hidden layer takes the inputs from the neurons of the
input layer and transmits them the output to the neurons of the third layer, the
output layer, which produces the final network outputs. According to this structure,
neurons are connected from one layer to the next, but not within the same layer.
The only constraint is the number of neurons in the output layer, that has to be
equal to the number of actual network outputs. On the other hand, recurrent
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networks are multilayer networks, in which the output of some neurons is fed back
to neurons belonging to previous layers, thus the information flow in forward as
well as in backward directions, allowing a dynamic memory inside the network, see
Hunt et al. [20].

A noteworthy intermediate solution is provided by the multilayer perceptron
with a tapped delay line, which is a feedforward network whose inputs come from a
delay line. This study proposes to use this solution, defined as quasistatic neural
network, as it represents a suitable tool to predict dynamic relationships between
the input-output measurements and the considered fault functions. In this way,
another NARX description is obtained, since the non-linear (static) network is fed
by the delayed samples of the system inputs and outputs selected by the fault
sensitivity analysis tool described in Section 3.3. Indeed, if properly trained, the
NARX network can estimate the current (and the next) fault samples f j kð Þ on the
basis of the selected past measurements of system inputs and outputs ul kð Þ and
yj kð Þ, respectively, in the same way of the fuzzy systems.

Therefore, with reference to the ith residual generator of Figure 4, which is used
to design the estimator bank of Figure 3, this NARX network is described by the
relation of Eq. (16):

f̂ i kð Þ ¼ F …; uj kð Þ;…; uj k� duð Þ;…yl k� 1ð Þ;…; yl k� dy
� �

;…
� �

(16)

where f̂ i kð Þ is the estimation of the generic ith fault, while uj �ð Þ and yl �ð Þ are the
generic jth and lth components of the measured inputs and outputs u and y,
respectively, that are selected via the fault sensitivity analysis tool. k is the time
step, du and dy are the number of delay of inputs and outputs, respectively, which
have to be properly selected. F �ð Þ is the function realised by the static neural
network, which depends on the layer architecture, the number of neurons, their
weights and their activation functions. The NARX network used as generic fault
f i kð Þ estimator is depicted in Figure 4.

Figure 4.
Neural networks as fault estimators with f̂ i kð Þ ¼ ri kð Þ.
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A powerful approach to the design of the ith FIS as approximator for the system
under diagnosis begins with the partitioning of the available data u kð Þ and y kð Þ of
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to obtain a partitioning of data in which the transitions among subsets are smooth,
rather than abrupt. Moreover, fuzzy clustering assumes that the data of each cluster
are characterised by an affine behaviour, which is indeed modelled by the relation
of Eq. (12). Different clustering methods have been proposed in literature, see for
example, more recent works Graaff and Engelbrecht [15] and Jun et al. [16].

With reference to this work, the design of the FIS is considered as a system
identification problem from the noisy data of Eqs. (7). In fact, the estimation of the
consequent parameters ai and bi of Eq. (12) is required using the input-output data
for designing the bank of the fault estimations reported in Figure 3. Moreover, the
data are acquired from the measurements selected from the procedure suggested in
Section 3.3. The identification scheme exploited in this work was proposed by the
authors in Fantuzzi et al. [17]. This approach is based on the minimisation of the
prediction errors of the individual TS local affine models considered as
nC-independent estimation problems. Their solutions rely on the estimation of
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number of clusters nC has been fixed. These issues are considered in the develop-
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with curve fitting methods, see Babuška [9].

3.2 Neural network modelling and training

This study proposes a different data-driven approach, based on neural networks,
which is exploited to implement the fault diagnosis block. This section briefly
recalls their general structure and properties, which are used to implement the fault
estimators.

Therefore, according to the scheme shown in Figure 4, a bank of neural net-
works is realised in order to reproduce the behaviour of the faults affecting the
system under diagnosis using a proper set of input and output measurements. The
neural network structure consists of different layers of neurons, also known as
perceptron, see Haykin [18], modelled as a static function f. This function is
described by an activation function with multiple inputs properly weighted by
unknown parameters that determine the learning capabilities of the whole network.

A categorisation of these learning structures concerns the way in which their
neurons are connected to each other, see Xu et al. [19]. This work proposes to use a
feedforward network, also called multilayer perceptron, where the neurons are
grouped into unidirectional layers. The first of them, the input layer, is directly fed
by the network inputs; then, a hidden layer takes the inputs from the neurons of the
input layer and transmits them the output to the neurons of the third layer, the
output layer, which produces the final network outputs. According to this structure,
neurons are connected from one layer to the next, but not within the same layer.
The only constraint is the number of neurons in the output layer, that has to be
equal to the number of actual network outputs. On the other hand, recurrent
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networks are multilayer networks, in which the output of some neurons is fed back
to neurons belonging to previous layers, thus the information flow in forward as
well as in backward directions, allowing a dynamic memory inside the network, see
Hunt et al. [20].

A noteworthy intermediate solution is provided by the multilayer perceptron
with a tapped delay line, which is a feedforward network whose inputs come from a
delay line. This study proposes to use this solution, defined as quasistatic neural
network, as it represents a suitable tool to predict dynamic relationships between
the input-output measurements and the considered fault functions. In this way,
another NARX description is obtained, since the non-linear (static) network is fed
by the delayed samples of the system inputs and outputs selected by the fault
sensitivity analysis tool described in Section 3.3. Indeed, if properly trained, the
NARX network can estimate the current (and the next) fault samples f j kð Þ on the
basis of the selected past measurements of system inputs and outputs ul kð Þ and
yj kð Þ, respectively, in the same way of the fuzzy systems.

Therefore, with reference to the ith residual generator of Figure 4, which is used
to design the estimator bank of Figure 3, this NARX network is described by the
relation of Eq. (16):
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where f̂ i kð Þ is the estimation of the generic ith fault, while uj �ð Þ and yl �ð Þ are the
generic jth and lth components of the measured inputs and outputs u and y,
respectively, that are selected via the fault sensitivity analysis tool. k is the time
step, du and dy are the number of delay of inputs and outputs, respectively, which
have to be properly selected. F �ð Þ is the function realised by the static neural
network, which depends on the layer architecture, the number of neurons, their
weights and their activation functions. The NARX network used as generic fault
f i kð Þ estimator is depicted in Figure 4.
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The design parameters are represented by the number of neurons and the num-
ber of delays of the network inputs and outputs, while the value of the weights of
each neuron are derived from the network training from the data acquired from the
system under diagnosis, see Hunt et al. [20].

3.3 Fault sensitivity analysis

The design of the fault diagnosis schemes proposed for the application example
considered in this chapter have been summarised in Section 4. However, the tool
addressed in this chapter enhances the design of the banks of these fault estimators
depicted in Figure 3.

This tool consists of a fault sensitivity analysis that has to be performed on the
wind turbine simulator. It is aimed at defining the most sensitive measurements
uj kð Þ and yl kð Þ with respect to the fault conditions f i kð Þ considered in Section 2.2. In
practice, the considered fault signals have been injected into the wind turbine
simulator, assuming that only a single fault may occur. Then, the relative mean
square errors (RMSE) between the fault-free and faulty measured signals are eval-
uated, so that, for each fault, the most sensitive signal uj kð Þ and yl kð Þ can be
selected. The results of the fault sensitivity analysis are summarised in Table 2 for
the wind turbine system.

In particular, the fault sensitivity analysis is conducted on the basis of a selection
algorithm that is performed by introducing the normalised sensitivity function Nx,
defined in Eq. 17:

Nx ¼ Sx
S∗x

(17)

with

Sx ¼
xf kð Þ � xn kð Þ�� ��

2

xn kð Þk k2
(18)

and

S∗x ¼ max
xf kð Þ � xn kð Þ�� ��

2

xn kð Þk k2
(19)

The value of Nx indicates the effect of the considered fault case with respect to
the general measured signal x kð Þ, with k ¼ 1, 2,…, N. The subscripts ‘f’ and ‘n’
indicate the faulty and the fault-free case, respectively. Therefore, the

Fault fi 1 2 3 4 5

Measurements uj, yl β1,m1 β2,m2 β3,m1 ωr,m1 ωr,m1

RMSE 11.29 0.98 2.48 1.44 1.45

Fault fi 6 7 8 9

Measurements uj or yl β2,m1 β3,m2 τg,m ωg,m1

RMSE 0.80 0.73 0.84 0.77

Table 2.
Fault sensitivity f i kð Þ with respect uj kð Þ and yl kð Þ.
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measurements that are most affected by the considered fault lead to a value of Nx

equal to 1. Otherwise, a smaller value of Nx, that is, close to zero, represents a signal
x kð Þ not affected by the fault. Those signals characterised by high value of Nx are
thus selected as the most sensitive measurements, and they will be considered in the
design of the fault diagnosis modules of the bank sketched in Figure 3.

The complete results of the fault sensitivity analysis are summarised in Table 3.
For each fault case, the selected signals of the wind turbine benchmark are marked
as inputs or outputs.

This method represents a key feature of the proposed approach to fault diagno-
sis. In fact, the fault estimators of the bank of Figure 3 can be designed by
exploiting a reduced number of signals, thus leading to a noteworthy simplification
of the overall complexity, and a decrease in the computational cost of the training
and identification phases.

4. Simulation results

This section summarises the simulations performed with the considered wind
turbine benchmark, and the performances of the proposed fault diagnosis solutions.
Due to the presence of the uncertainty and disturbance effects included in the
benchmark, the robustness features of the developed fault diagnosis techniques are
also verified in simulation.

With reference to the wind turbine benchmark of Section 2, all simulations are
driven by the same wind mean speed sequence. It was acquired from a real mea-
surement of wind speed, which represents a good coverage of typical operating
conditions, as it ranges from 5 to 20 m/s, with a few spikes at 25 m/s, see Odgaard
et al. [12]. The simulations last for 4400 s, with single fault occurrences. The
discrete-time simulator runs at a sampling frequency of 100 Hz, so that
N = 440,000 samples are acquired during each simulation. With reference to the
different fault cases reported in Section 2.2, Table 4 shows the shape and the timing
of the fault modes affecting the process. They model input (actuator) or output
(sensor) additive faults, which are used for sensitivity analysis of Section 3.3.

As an example, in order to highlight the actual fault effect on the wind turbine
measurements, Figure 5 shows the fault sensitivity test. In particular, the cases of
the faults 1, 2, 3 and 8 in fault-free and faulty conditions are depicted.

Fault case fi Most sensitive inputs uj Most sensitive outputs yl

1 β1,m1, β1,m2 ωg,m2

2 β1,m2, β2,m2 ωg,m2

3 β1,m2, β3,m1 ωg,m2

4 β1,m2 ωg,m2, ωr,m1

5 β1,m2 ωg,m2, ωr,m2

6 β1,m2, β2,m1 ωg,m2

7 β1,m2, β3,m2 ωg,m2

8 β1,m2, τg,m ωg,m2

9 β1,m2 ωg,m1, ωg,m2

Table 3.
Fault sensitivity test.
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The design parameters are represented by the number of neurons and the num-
ber of delays of the network inputs and outputs, while the value of the weights of
each neuron are derived from the network training from the data acquired from the
system under diagnosis, see Hunt et al. [20].

3.3 Fault sensitivity analysis

The design of the fault diagnosis schemes proposed for the application example
considered in this chapter have been summarised in Section 4. However, the tool
addressed in this chapter enhances the design of the banks of these fault estimators
depicted in Figure 3.

This tool consists of a fault sensitivity analysis that has to be performed on the
wind turbine simulator. It is aimed at defining the most sensitive measurements
uj kð Þ and yl kð Þ with respect to the fault conditions f i kð Þ considered in Section 2.2. In
practice, the considered fault signals have been injected into the wind turbine
simulator, assuming that only a single fault may occur. Then, the relative mean
square errors (RMSE) between the fault-free and faulty measured signals are eval-
uated, so that, for each fault, the most sensitive signal uj kð Þ and yl kð Þ can be
selected. The results of the fault sensitivity analysis are summarised in Table 2 for
the wind turbine system.

In particular, the fault sensitivity analysis is conducted on the basis of a selection
algorithm that is performed by introducing the normalised sensitivity function Nx,
defined in Eq. 17:

Nx ¼ Sx
S∗x

(17)

with
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and
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The value of Nx indicates the effect of the considered fault case with respect to
the general measured signal x kð Þ, with k ¼ 1, 2,…, N. The subscripts ‘f’ and ‘n’
indicate the faulty and the fault-free case, respectively. Therefore, the

Fault fi 1 2 3 4 5

Measurements uj, yl β1,m1 β2,m2 β3,m1 ωr,m1 ωr,m1

RMSE 11.29 0.98 2.48 1.44 1.45

Fault fi 6 7 8 9
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measurements that are most affected by the considered fault lead to a value of Nx

equal to 1. Otherwise, a smaller value of Nx, that is, close to zero, represents a signal
x kð Þ not affected by the fault. Those signals characterised by high value of Nx are
thus selected as the most sensitive measurements, and they will be considered in the
design of the fault diagnosis modules of the bank sketched in Figure 3.

The complete results of the fault sensitivity analysis are summarised in Table 3.
For each fault case, the selected signals of the wind turbine benchmark are marked
as inputs or outputs.

This method represents a key feature of the proposed approach to fault diagno-
sis. In fact, the fault estimators of the bank of Figure 3 can be designed by
exploiting a reduced number of signals, thus leading to a noteworthy simplification
of the overall complexity, and a decrease in the computational cost of the training
and identification phases.

4. Simulation results

This section summarises the simulations performed with the considered wind
turbine benchmark, and the performances of the proposed fault diagnosis solutions.
Due to the presence of the uncertainty and disturbance effects included in the
benchmark, the robustness features of the developed fault diagnosis techniques are
also verified in simulation.

With reference to the wind turbine benchmark of Section 2, all simulations are
driven by the same wind mean speed sequence. It was acquired from a real mea-
surement of wind speed, which represents a good coverage of typical operating
conditions, as it ranges from 5 to 20 m/s, with a few spikes at 25 m/s, see Odgaard
et al. [12]. The simulations last for 4400 s, with single fault occurrences. The
discrete-time simulator runs at a sampling frequency of 100 Hz, so that
N = 440,000 samples are acquired during each simulation. With reference to the
different fault cases reported in Section 2.2, Table 4 shows the shape and the timing
of the fault modes affecting the process. They model input (actuator) or output
(sensor) additive faults, which are used for sensitivity analysis of Section 3.3.

As an example, in order to highlight the actual fault effect on the wind turbine
measurements, Figure 5 shows the fault sensitivity test. In particular, the cases of
the faults 1, 2, 3 and 8 in fault-free and faulty conditions are depicted.

Fault case fi Most sensitive inputs uj Most sensitive outputs yl

1 β1,m1, β1,m2 ωg,m2

2 β1,m2, β2,m2 ωg,m2

3 β1,m2, β3,m1 ωg,m2

4 β1,m2 ωg,m2, ωr,m1

5 β1,m2 ωg,m2, ωr,m2

6 β1,m2, β2,m1 ωg,m2

7 β1,m2, β3,m2 ωg,m2

8 β1,m2, τg,m ωg,m2

9 β1,m2 ωg,m1, ωg,m2

Table 3.
Fault sensitivity test.
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4.1 Fuzzy estimators for fault diagnosis

The problem of the fault diagnosis of the wind turbine simulator is solved in this
work by designing fuzzy prototypes as fault reconstructors. The considered

Fault case Fault type Fault shape Occurrence (s)

1 Actuator Step 2000–2100

2 Actuator Step 2300–2400

3 Actuator Step 2600–2700

4 Actuator Step 1500–1600

5 Actuator Step 1000–1100

6 Sensor Step 2900–3000

7 Sensor Trapezoidal 3500–3600

8 Sensor Step 3800–3900

9 Sensor Step 4100–4300

Table 4.
Wind turbine simulator fault conditions.

Figure 5.
Example of fault-free (grey line) and faulty (black line) signals.
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approach is different from the one presented in Simani et al. [21], where the fuzzy
models were used as output predictors.

Section 3.1 suggested to exploit the fuzzy c-means clustering algorithm. When
applied to the data of the wind turbine simulator, a number nC ¼ 4 of clusters and
o ¼ 3 delays on input and output regressors were determined. The tool also gener-
ated the membership function points that are fitted through Gaussian membership

functions. After data clustering, the regressands α ið Þ
j and δ ið Þ

j of Eq. (15) were iden-
tified for each cluster by following the procedure of Section 3.1. The TS models of
Eq. (13) were thus implemented and nine fault estimators were designed, built and
organised into the estimator scheme in order to accomplish the fault diagnosis task,
as sketched in Figure 3.

The effectiveness of the fuzzy TS fault estimators used was assessed in terms of
root mean squared error (RMSE), which is computed as the difference between the
predicted f̂ i kð Þ and the actual fault f i kð Þ signals for each of the fuzzy estimators,
with i ¼ 1,…, 9. Table 5 summarises the achieved performance of the nine fault
estimators of Figure 3.

In this case, these estimated signals f̂ i are directly exploited as diagnostic resid-
uals ri, as remarked by Eq. (8). They can be compared with the thresholds of
Eq. (9), optimally selected in order to achieve the optimisation of the overall fault
diagnosis performance indices, in terms of missed fault and the false alarm rates, see
Ding [22]. In particular, Table 6 summarises the values of the parameter δ of
Eq. (9) for each fault estimator i.

Note that, in general, each of the nine fuzzy fault estimators described by the
relations of Eqs. (13) and (14) has three inputs (see Table 3), with a number of
delays n ¼ 3 and nC ¼ 4 clusters. Therefore, the number of estimated parameters
for each fuzzy MISO model (three inputs and one output) is equal to
3þ 1ð Þ � n ¼ 12. Moreover, for each fault estimator, the estimation of the fuzzy
membership functions λi �ð Þ of Eq. (13) with i ¼ 1,…, nC was required.

In the following, the main simulation results are summarised. Two actuator
faults fu and two sensor fault fy are considered, namely the fault cases 1, 4, 8 and 9 of
the scenarios recalled in Section 2.2.

According to Table 3, these faults caused the alteration of the monitored input and
output signal u, y affecting the residual r1 ¼ f̂ 1, r4 ¼ f̂ 4, r8 ¼ f̂ 8 and r9 ¼ f̂ 9 gener-

ated by the fuzzy fault estimators. These faults f̂ i depicted in Figure 6 demonstrate

Fault estimator f̂ i
1 2 3 4 5

RMSE 0.016 0.023 0.021 0.020 0.019

Fault estimator f̂ i
6 7 8 9

RMSE 0.021 0.017 0.021 0.019

Table 5.
Fuzzy fault estimator capabilities with RMSE.

Residual ri kð Þ 1 2 3 4 5 6 7 8 9

δ 3.8 4.3 4.2 4.5 3.7 4.4 4.3 3.5 3.9

Table 6.
The parameter δ for the threshold selection.
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approach is different from the one presented in Simani et al. [21], where the fuzzy
models were used as output predictors.

Section 3.1 suggested to exploit the fuzzy c-means clustering algorithm. When
applied to the data of the wind turbine simulator, a number nC ¼ 4 of clusters and
o ¼ 3 delays on input and output regressors were determined. The tool also gener-
ated the membership function points that are fitted through Gaussian membership

functions. After data clustering, the regressands α ið Þ
j and δ ið Þ

j of Eq. (15) were iden-
tified for each cluster by following the procedure of Section 3.1. The TS models of
Eq. (13) were thus implemented and nine fault estimators were designed, built and
organised into the estimator scheme in order to accomplish the fault diagnosis task,
as sketched in Figure 3.

The effectiveness of the fuzzy TS fault estimators used was assessed in terms of
root mean squared error (RMSE), which is computed as the difference between the
predicted f̂ i kð Þ and the actual fault f i kð Þ signals for each of the fuzzy estimators,
with i ¼ 1,…, 9. Table 5 summarises the achieved performance of the nine fault
estimators of Figure 3.

In this case, these estimated signals f̂ i are directly exploited as diagnostic resid-
uals ri, as remarked by Eq. (8). They can be compared with the thresholds of
Eq. (9), optimally selected in order to achieve the optimisation of the overall fault
diagnosis performance indices, in terms of missed fault and the false alarm rates, see
Ding [22]. In particular, Table 6 summarises the values of the parameter δ of
Eq. (9) for each fault estimator i.

Note that, in general, each of the nine fuzzy fault estimators described by the
relations of Eqs. (13) and (14) has three inputs (see Table 3), with a number of
delays n ¼ 3 and nC ¼ 4 clusters. Therefore, the number of estimated parameters
for each fuzzy MISO model (three inputs and one output) is equal to
3þ 1ð Þ � n ¼ 12. Moreover, for each fault estimator, the estimation of the fuzzy
membership functions λi �ð Þ of Eq. (13) with i ¼ 1,…, nC was required.

In the following, the main simulation results are summarised. Two actuator
faults fu and two sensor fault fy are considered, namely the fault cases 1, 4, 8 and 9 of
the scenarios recalled in Section 2.2.

According to Table 3, these faults caused the alteration of the monitored input and
output signal u, y affecting the residual r1 ¼ f̂ 1, r4 ¼ f̂ 4, r8 ¼ f̂ 8 and r9 ¼ f̂ 9 gener-

ated by the fuzzy fault estimators. These faults f̂ i depicted in Figure 6 demonstrate

Fault estimator f̂ i
1 2 3 4 5

RMSE 0.016 0.023 0.021 0.020 0.019

Fault estimator f̂ i
6 7 8 9

RMSE 0.021 0.017 0.021 0.019

Table 5.
Fuzzy fault estimator capabilities with RMSE.

Residual ri kð Þ 1 2 3 4 5 6 7 8 9

δ 3.8 4.3 4.2 4.5 3.7 4.4 4.3 3.5 3.9

Table 6.
The parameter δ for the threshold selection.
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the achievement of the fault diagnosis task, as they exceed the threshold levels only
when the relative fault is active, as recalled in Table 4.

Figure 6 depicts the reconstructed fault functions f̂ i kð Þ generated by the fuzzy
estimators in faulty conditions (black continuous line) with respect to the fault-free
residuals (grey line). The fixed thresholds are depicted with dotted lines. The
considered residuals refer to the fault cases 1, 4, 8 and 9. It is worth noting that in
fault-free conditions, the estimated fault functions f̂ i kð Þ are not zero due to both the
model-reality mismatch. Figure 6 also highlights the robustness and reliability
features of the developed fuzzy estimators.

4.2 Neural networks for fault diagnosis

As for the fuzzy systems, nine NARX neural networks described in Section 3.2
were designed to estimate the nine faults affecting the acquired measurements,
according to the scheme of Figure 3. The neural networks selected for fault diag-
nosis purpose consist of 3 layers, with 3 neurons in the input layer, 16 in the hidden
one, and 1 neuron in the output layer. A number of du ¼ dy ¼ 4 delays were selected
in the relation of Eq. (16). Both the input and the hidden layers used sigmoidal
activation functions, while the output layer exploits the linear one. According to
Table 3 and Figure 4, each of the nine neural networks was driven by three inputs.

As for the fuzzy models, the prediction efficacy of the designed neural networks
was verified in terms of RMSE. The achieved results are summarised in Table 7,
which were obtained by comparing the estimated faults with respect to the
simulated ones.

Figure 6.
Fault-free (grey line) and faulty (black continuous line) residuals with faults 1, 4, 8 and 9.
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Fault estimate f̂ i kð Þ 1 2 3 4 5

RMSE 0.009 0.009 0.009 0.012 0.011

Fault estimate f̂ i kð Þ 6 7 8 9

RMSE 0.011 0.009 0.009 0.014

Table 7.
Neural network performances.

ri kð Þ 1 2 3 4 5 6 7 8 9

δ 4.2 4.9 4.7 5.1 4.2 4.6 4.8 4.1 4.3

Table 8.
δ values for the threshold selector.

Figure 7.
Estimated faults (continuous line) f̂ i kð Þ and thresholds (dashed line) for cases 1, 2, 3 and 4.
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the achievement of the fault diagnosis task, as they exceed the threshold levels only
when the relative fault is active, as recalled in Table 4.

Figure 6 depicts the reconstructed fault functions f̂ i kð Þ generated by the fuzzy
estimators in faulty conditions (black continuous line) with respect to the fault-free
residuals (grey line). The fixed thresholds are depicted with dotted lines. The
considered residuals refer to the fault cases 1, 4, 8 and 9. It is worth noting that in
fault-free conditions, the estimated fault functions f̂ i kð Þ are not zero due to both the
model-reality mismatch. Figure 6 also highlights the robustness and reliability
features of the developed fuzzy estimators.

4.2 Neural networks for fault diagnosis

As for the fuzzy systems, nine NARX neural networks described in Section 3.2
were designed to estimate the nine faults affecting the acquired measurements,
according to the scheme of Figure 3. The neural networks selected for fault diag-
nosis purpose consist of 3 layers, with 3 neurons in the input layer, 16 in the hidden
one, and 1 neuron in the output layer. A number of du ¼ dy ¼ 4 delays were selected
in the relation of Eq. (16). Both the input and the hidden layers used sigmoidal
activation functions, while the output layer exploits the linear one. According to
Table 3 and Figure 4, each of the nine neural networks was driven by three inputs.

As for the fuzzy models, the prediction efficacy of the designed neural networks
was verified in terms of RMSE. The achieved results are summarised in Table 7,
which were obtained by comparing the estimated faults with respect to the
simulated ones.

Figure 6.
Fault-free (grey line) and faulty (black continuous line) residuals with faults 1, 4, 8 and 9.
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Fault estimate f̂ i kð Þ 1 2 3 4 5

RMSE 0.009 0.009 0.009 0.012 0.011

Fault estimate f̂ i kð Þ 6 7 8 9

RMSE 0.011 0.009 0.009 0.014

Table 7.
Neural network performances.

ri kð Þ 1 2 3 4 5 6 7 8 9

δ 4.2 4.9 4.7 5.1 4.2 4.6 4.8 4.1 4.3

Table 8.
δ values for the threshold selector.

Figure 7.
Estimated faults (continuous line) f̂ i kð Þ and thresholds (dashed line) for cases 1, 2, 3 and 4.

61

Fault Diagnosis Techniques for a Wind Turbine System
DOI: http://dx.doi.org/10.5772/intechopen.83810



The fault diagnosis task is thus achieved by comparing the residuals ri ¼ f̂ i kð Þ of
Eq. (8) with fixed optimised thresholds, as described by Eq. (9). As for the fuzzy
estimators, the values of the parameter δ of Eq. (9) for each fault estimator i is
summarised in Table 8.

On the other hand, Figure 7 shows an example of residual signals for the fault
cases 1, 2, 3 and 4, together with the selected thresholds.

In particular, Figure 6 depicts the residuals f̂ i kð Þ generated in faulty conditions
by the neural network estimators (continuous line) compared with the fixed
thresholds (dashed line). The considered residuals refer to the faults f 1 kð Þ, f 2 kð Þ,
f 3 kð Þ and f 4 kð Þ of Table 4.

The achieved results show the effectiveness of the proposed fault diagnosis
solutions, also with respect to disturbance and uncertainty effects on the wind
turbine simulator, thus highlighting their potential application to real wind turbine
systems.

5. Conclusion

The chapter studied data-driven tools for solving the problem of the fault diagno-
sis and prognosis of a wind turbine process. The design of this fault detector is based
on the estimate of the fault itself, achieved by means of artificial intelligence
methods. They were considered since these viable tools demonstrated to be able to
cope with poor information on the process dynamics, in the presence of errors,
model-reality mismatch and disturbance effects. In particular, these methodologies
rely on fuzzy and neural network structures used to determine the non-linear
dynamic links between measurements and fault signals. The selected structures
belong to the non-linear autoregressive with exogenous input architectures, since
they may model any non-linear dynamic relationship with arbitrary degree of accu-
racy. The fault diagnosis and prognosis strategies were validated via a high-fidelity
simulator of a wind turbine process. The achieved performances in terms of reliability
and robustness were thus tested by considering the presence of uncertainty and
disturbance effects modelled by this wind turbine simulator. Further works will
verify the features of the same fault diagnosis schemes when applied to real plants.
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The fault diagnosis task is thus achieved by comparing the residuals ri ¼ f̂ i kð Þ of
Eq. (8) with fixed optimised thresholds, as described by Eq. (9). As for the fuzzy
estimators, the values of the parameter δ of Eq. (9) for each fault estimator i is
summarised in Table 8.

On the other hand, Figure 7 shows an example of residual signals for the fault
cases 1, 2, 3 and 4, together with the selected thresholds.

In particular, Figure 6 depicts the residuals f̂ i kð Þ generated in faulty conditions
by the neural network estimators (continuous line) compared with the fixed
thresholds (dashed line). The considered residuals refer to the faults f 1 kð Þ, f 2 kð Þ,
f 3 kð Þ and f 4 kð Þ of Table 4.

The achieved results show the effectiveness of the proposed fault diagnosis
solutions, also with respect to disturbance and uncertainty effects on the wind
turbine simulator, thus highlighting their potential application to real wind turbine
systems.

5. Conclusion

The chapter studied data-driven tools for solving the problem of the fault diagno-
sis and prognosis of a wind turbine process. The design of this fault detector is based
on the estimate of the fault itself, achieved by means of artificial intelligence
methods. They were considered since these viable tools demonstrated to be able to
cope with poor information on the process dynamics, in the presence of errors,
model-reality mismatch and disturbance effects. In particular, these methodologies
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dynamic links between measurements and fault signals. The selected structures
belong to the non-linear autoregressive with exogenous input architectures, since
they may model any non-linear dynamic relationship with arbitrary degree of accu-
racy. The fault diagnosis and prognosis strategies were validated via a high-fidelity
simulator of a wind turbine process. The achieved performances in terms of reliability
and robustness were thus tested by considering the presence of uncertainty and
disturbance effects modelled by this wind turbine simulator. Further works will
verify the features of the same fault diagnosis schemes when applied to real plants.
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Chapter 5

Analytic Prognostic in the Linear
Damage Case Applied to Buried
Petrochemical Pipelines and the
Complex Probability Paradigm
Abdo Abou Jaoude

Abstract

In 1933, Andrey Nikolaevich Kolmogorov established the system of five axioms
that define the concept of mathematical probability. This system can be developed
to include the set of imaginary numbers by adding a supplementary three original
axioms. Therefore, any experiment can be performed in the set C of complex
probabilities which is the summation of the set R of real probabilities and the set
M of imaginary probabilities. The purpose here is to include additional imaginary
dimensions to the experiment taking place in the “real” laboratory in R and hence
to evaluate all the probabilities. Consequently, the probability in the entire set C ¼
RþM is permanently equal to one no matter what the stochastic distribution of
the input random variable in R is; therefore the outcome of the probabilistic
experiment in C can be determined perfectly. This is due to the fact that the
probability in C is calculated after subtracting from the degree of our knowledge the
chaotic factor of the random experiment. Consequently, the purpose in this chapter
is to join my complex probability paradigm to the analytic prognostic of buried
petrochemical pipelines in the case of linear damage accumulation. Accordingly,
after the calculation of the novel prognostic model parameters, we will be able to
evaluate the degree of knowledge, the magnitude of the chaotic factor, the complex
probability, the probabilities of the system failure and survival, and the probability
of the remaining useful lifetime; after that a pressure time t has been applied to the
pipeline, which are all functions of the system degradation subject to random and
stochastic influences.

Keywords: probability norm, complex probability set, degree of our knowledge,
chaotic factor, remaining useful lifetime, degradation, analytic prognostic,
linear damage

1. Introduction

“An intellect which at any given moment knew all the forces that animate Nature
and the mutual positions of the beings that comprise it, if this intellect were vast
enough to submit its data to analysis, could condense into a single formula the
movement of the greatest bodies of the universe and that of the lightest atom: for such
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intellect nothing could be uncertain; and the future just like the past would be
present before its eyes”.

Marquis Pierre-Simon de Laplace.

“The Divine Spirit found a sublime outlet in that wonder of analysis, that portent of the ideal
world, that amphibian between being and not-being, which we call the imaginary
root of negative unity”.

Gottfried Wilhelm von Leibniz.

The high availability of technological systems, like defense, aerospace, auto-
mobile industries, and petrochemistry, is a central major objective of previous and
latest developments in the technology of system design. Pipelines are the primary
component of the systems of hydrocarbon transport in petrochemical industries.
They are vital for human activities because they serve to transport water, natural
gases, and oil from sources to all consumer sites. A novel analytic prognostic model
was established in my earlier research work and applied to the case of pipelines
subject to the effects of corrosion, to soil loading, and to internal pressure. These will
initiate micro-cracks in the body of the tubes that can spread suddenly and can lead to
failure. The increase of pipeline availability and the reduction of their global mission
cost and performance necessitate to elaborate a suitable process of prognostic.
Accordingly, a novel strategy based on degradation analytic laws was applied to
diverse dynamic systems and was developed in my research work [1–6].
Additionally, the remaining useful lifetime (RUL) was predicted and calculated
from a predefined threshold of degradation. Based on a system of a physical petro-
chemical pipeline, my publications developed a strategy to design a model of failure
prognostic that will be more elaborated and further enhanced in the present
book chapter.

Moreover, prognostic is a process involving a prediction capacity. Using prog-
nostic, we are able to evaluate the equipment remaining useful lifetime in terms of
its future usage and its history of functioning. Predicting the remaining useful
lifetime of industrial systems turns out to be presently a vital goal for industrialists
knowing that the consequences of failure, which can occur suddenly, are usually
very expensive. The traditional maintenance strategies [7, 8] founded on a static
threshold of alarm are no more practical and efficient since they do not consider the
instantaneous functioning state of a product. The establishment of a prognostic
approach as an “intelligent” maintenance consists of the health follow-up, monitor-
ing, and analysis, based on physical measurements utilizing sensors.

Also, earlier expert studies of prognostic belong in general to three categories of
technical approaches: the first category is the “experience-based prognostic” [9]
which is based on measurements taken from a machine health monitoring, for
example, those based on stochastic model, expert judgment, Bayesian approach,
reliability analysis, Markovian process, optimization of preventive maintenance,
etc. Their methodology of prognostic shows to be simple but inflexible toward
changes in the environment and in the system behavior. The second category is the
“estimation-based or trending prognostic” based on the statistics of vast measured
data. We can cite as illustrations the work relying on the behavior of degradation
expressed by abaci and utilizing a system expert description (process-mission-
environment) [10]; the work relying on artificial intelligence, machine learning
[11], neural network [12], and fuzzy logic [13]; and additionally the work based on
dissipativity-based fuzzy integral sliding mode control of continuous time T-S fuzzy
systems, SMC design for robust stabilization of nonlinear Markovian jump singular
systems, sliding mode control of fuzzy singularly perturbed systems with
application to electric circuits, the stabilization of quantized sampled-data neural
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network-based control systems, etc. Their methodologies are designated generally
as not very precise, but they propose a powerful tool to the theory of prognostic.
The third category is the “model-based prognostic” relying on the mathematical
description of the process of degradation and its evolution level utilizing nonde-
structive inspection (NDI) monitoring. It is designated to be more precise and
flexible than the two first categories. My earlier research illustrates a methodology
of analytical prognostic relying on analytic laws of damage, such as the linear
damage accumulation law of Palmgren-Miner and the fatigue crack propagation law
of Paris-Erdogan. It fits in the third category of models. This approach is used
whenever the law of damage of the studied system is analytically available. The
advantage of this approach is consequently its precise and realistic features in
evaluating the remaining useful lifetime of a system [14–17].

Additionally, pipes are petrochemical systems that transport natural gas and oil
in huge quantities and over long distances. Their life prognostic is crucial in this
industry because their availability has vital outcomes. Their major failures are due
to soil settlements, seismic ground waves, deformations, buckling, internal and
external corrosion, vibration and resonance, stress concentration in welding and
fitting, and pressure fluctuation over long period. The failures due to fatigue by
means of cracks propagation are noticed and measured by the tools of crack detec-
tion. Therefore, three case studies of pipelines were taken into consideration in my
earlier publications [18, 19]: buried, unburied, and subsea (offshore pipelines).
Each one of these situations necessitates different physical parameters like friction
and soil pressure, atmospheric and water pressure, and corrosion. The buried pipes
case will only be considered in the present chapter.

2. The purpose and the advantages of the present work

Computing probabilities is the main work of classical probability theory. Adding
new dimensions to the stochastic experiments will lead to a deterministic expres-
sion of probability theory. This is the original idea at the foundations of this work.
Actually, the theory of probability is a nondeterministic system in its essence; that
means that the event outcomes are due to the chance and randomness. The addition
of novel imaginary dimensions to the chaotic experiment occurring in the setRwill
yield a deterministic experiment, and hence a stochastic event will have a certain
result in the complex probability set C. If the random event becomes completely
predictable, then we will be fully knowledgeable to predict the outcome of stochas-
tic experiments that arise in the real world in all stochastic processes. Consequently,
the work that has been accomplished here was to extend the real probabilities setR
to the deterministic complex probabilities set C ¼ RþM by including the contri-
butions of the set M which is the imaginary set of probabilities. Therefore, since
this extension was found to be successful, then a novel paradigm of stochastic
sciences and prognostic was laid down in which all stochastic phenomena in R was
expressed deterministically. I called this original model “the Complex Probability
Paradigm” that was initiated and illustrated in my 12 research publications. [20–31].

Furthermore, although the analytic linear prognostic laws are deterministic and
very well-known in [14, 16], there are chaotic and stochastic influences and aspects
(such as humidity, temperature, material nature, geometry dimensions, applied
load location, water action, corrosion, soil pressure and friction, atmospheric pres-
sure, etc.) that influence the buried pipeline system and make its function of
degradation diverge from its computed trajectory modeled by these deterministic
laws. An updated follow-up of the degradation performance and behavior with
cycle number or time, which is subject to non-chaotic and chaotic influences, is
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They are vital for human activities because they serve to transport water, natural
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etc. Their methodology of prognostic shows to be simple but inflexible toward
changes in the environment and in the system behavior. The second category is the
“estimation-based or trending prognostic” based on the statistics of vast measured
data. We can cite as illustrations the work relying on the behavior of degradation
expressed by abaci and utilizing a system expert description (process-mission-
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systems, sliding mode control of fuzzy singularly perturbed systems with
application to electric circuits, the stabilization of quantized sampled-data neural
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network-based control systems, etc. Their methodologies are designated generally
as not very precise, but they propose a powerful tool to the theory of prognostic.
The third category is the “model-based prognostic” relying on the mathematical
description of the process of degradation and its evolution level utilizing nonde-
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flexible than the two first categories. My earlier research illustrates a methodology
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damage accumulation law of Palmgren-Miner and the fatigue crack propagation law
of Paris-Erdogan. It fits in the third category of models. This approach is used
whenever the law of damage of the studied system is analytically available. The
advantage of this approach is consequently its precise and realistic features in
evaluating the remaining useful lifetime of a system [14–17].
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to soil settlements, seismic ground waves, deformations, buckling, internal and
external corrosion, vibration and resonance, stress concentration in welding and
fitting, and pressure fluctuation over long period. The failures due to fatigue by
means of cracks propagation are noticed and measured by the tools of crack detec-
tion. Therefore, three case studies of pipelines were taken into consideration in my
earlier publications [18, 19]: buried, unburied, and subsea (offshore pipelines).
Each one of these situations necessitates different physical parameters like friction
and soil pressure, atmospheric and water pressure, and corrosion. The buried pipes
case will only be considered in the present chapter.

2. The purpose and the advantages of the present work

Computing probabilities is the main work of classical probability theory. Adding
new dimensions to the stochastic experiments will lead to a deterministic expres-
sion of probability theory. This is the original idea at the foundations of this work.
Actually, the theory of probability is a nondeterministic system in its essence; that
means that the event outcomes are due to the chance and randomness. The addition
of novel imaginary dimensions to the chaotic experiment occurring in the setRwill
yield a deterministic experiment, and hence a stochastic event will have a certain
result in the complex probability set C. If the random event becomes completely
predictable, then we will be fully knowledgeable to predict the outcome of stochas-
tic experiments that arise in the real world in all stochastic processes. Consequently,
the work that has been accomplished here was to extend the real probabilities setR
to the deterministic complex probabilities set C ¼ RþM by including the contri-
butions of the set M which is the imaginary set of probabilities. Therefore, since
this extension was found to be successful, then a novel paradigm of stochastic
sciences and prognostic was laid down in which all stochastic phenomena in R was
expressed deterministically. I called this original model “the Complex Probability
Paradigm” that was initiated and illustrated in my 12 research publications. [20–31].

Furthermore, although the analytic linear prognostic laws are deterministic and
very well-known in [14, 16], there are chaotic and stochastic influences and aspects
(such as humidity, temperature, material nature, geometry dimensions, applied
load location, water action, corrosion, soil pressure and friction, atmospheric pres-
sure, etc.) that influence the buried pipeline system and make its function of
degradation diverge from its computed trajectory modeled by these deterministic
laws. An updated follow-up of the degradation performance and behavior with
cycle number or time, which is subject to non-chaotic and chaotic influences, is
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made possible by what I called the system failure probability due to its definition
that estimates the jumps in the function of degradation D.

Additionally, my objective in this present work is to connect the complex prob-
ability paradigm to the buried pipeline system analytic prognostic in the case of
linear damage accumulation which is subject to fatigue. In fact, the system failure
probability derived from prognostic will be applied to and included in the complex
probability paradigm. This will lead to the original and novel model of prognostic
illustrated in this chapter. Thus, by determining the new prognostic model param-
eters, it becomes possible to evaluate the degree of our knowledge, the magnitude of
the chaotic factor, the complex probability, the RUL probability, and the system
failure and survival probabilities; after that a pressure cycle time t has been applied
to the buried pipeline, which are all functions of the system degradation subject to
chaotic and stochastic influences.

Accordingly, the advantages and the purpose of the current chapter are to:

1.Extend classical probability theory to the set of complex numbers and
therefore to link the theory of probability to the field of complex variables and
analysis. This job was started and elaborated in my previous 12 papers.

2.Do an updated follow-up of the degradation D performance and behavior
with cycle number or time which is subject to chaos. This follow-up is
accomplished by the real failure probability of the system due to its definition
that evaluates the jumps in D, therefore linking a system degradation to
probability theory in a novel and original way.

3.Apply the new axioms of probability and paradigm to system prognostic; thus,
I will extend the prognostic concepts to the set of complex probabilities C.

4.Show that all stochastic phenomena can be expressed deterministically in the
set of complex probabilities C.

5.Measure and compute both the degree of our knowledge and the chaotic factor
of the system remaining useful lifetime and its degradation.

6.Draw and illustrate the graphs of the parameters and functions of the original
paradigm corresponding to a buried pipeline prognostic.

7.Show that the classical concepts of random remaining useful lifetime and
degradation possess a probability permanently equal to one in the complex set;
hence, no randomness, no chaos, no uncertainty, no ignorance, no disorder,
and no unpredictability exist in:

C complex setð Þ ¼ R real setð Þ þM ðimaginary setÞ:

8.Show that by adding new and supplementary dimensions to any stochastic
phenomenon, whether it is a pipeline system or any other random experiment,
it becomes possible to do prognostic in a deterministic way in the set C of
complex probabilities.

9.Pave the way to implement this novel model to other areas in stochastic
processes and to the field of prognostics in science and engineering. These will
be the topics of my future research works.
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Concerning some applications of the original elaborated paradigm and as a
future work, it can be applied to a wide set of dynamic systems like vehicle suspen-
sion systems and offshore and buried petrochemical pipelines which are subject to
fatigue and in the cases of nonlinear and linear damage accumulation. Furthermore,
compared with existing literature, the main contribution of the present research
work is to apply the novel paradigm of complex probability to the concepts of
random remaining useful lifetime and degradation of a buried pipeline system
hence to the case of analytic prognostic in the case of linear damage accumulation
subject to fatigue. The following figure shows the main purposes of the complex
probability paradigm (CPP) (Figure 1).

To conclude and to summarize, in the real probability universeR, our degree of
our certain knowledge is regrettably imperfect; therefore we extend our study to
the complex set C which embraces the contributions of both the real probabilities
set R and the imaginary probabilities set M. Subsequently, this will lead to a
perfect and complete degree of knowledge in the universe C ¼ RþM (since
Pc = 1). In fact, working in the complex universe C leads to a certain prediction of
any random event, because in C we eliminate and subtract from the calculated
degree of our knowledge the quantified chaotic factor. This will yield a probability
in the universe C equal to one (Pc2 = DOK � Chf = DOK + MChf = 1 = Pc). Many

Figure 1.
The diagram of the main purposes of the complex probability paradigm and research work.

Figure 2.
The EKA or the CPP diagram.
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illustrations considering various continuous and discrete probability distributions in
my 12 previous research papers verify this hypothesis and novel paradigm [20–31].
The extended Kolmogorov axioms (EKA for short) or the complex probability
paradigm can be summarized and shown in the following figure (Figure 2).

3. Previous research work: analytic prognostic and linear damage
accumulation for buried petrochemical pipelines

In this section a comprehensive summary of a part of my previously published
PhD thesis [16] and of the formerly published IFAC conference paper [14] will be
done, and the results that this current chapter needs will be just cited.

3.1 A brief introduction to the adopted methodology

The objective of my earlier research study, which will be enhanced in the
present chapter and will be linked to CPP, was to develop an analytic linear model
of prognostic capable of predicting the remaining useful lifetime and the degrada-
tion D curves of a buried petrochemical pipeline system subject to fatigue starting
from an initial known damage and under a given environment [14, 16]. This shows
to be beneficial for many reasons which are fewer pipe bending; reduced plant
congestion, wind, and other loads; and protection from ambient temperature
changes. This work is restricted here to normal service loads that consist of only soil
action and internal pressure.

Petrochemical pipelines are systems that are used to transport natural gas and oil
between sites. We believe that pipeline tubes are a major element in petrochemical
industries. As a matter of fact, the prognostic of their life is essential in this industry
since their availability has decisive and critical consequences on the cost of exploi-
tation. Fatigue, which is due to internal pressure-depression variation along time, is
the major failure cause of these systems. These pipelines are typically devised for
ultimate limit states (resistance). Additionally, due to soil aggression influences,
buried pipelines are subject to corrosion. Pipelines are designed as cylindrical tubes
of thickness e and radius R.

A target failure probability of about 10�5 for pipelines is suggested by the DNV
2000 rules. Their major failure causes are soil settlements, seismic ground waves,
deformations, buckling, stress concentration in welding and fitting, internal and
external corrosion, pressure fluctuation over a long period, and vibration and
resonance. Moreover, crack detection tools detect the crack propagation caused by
failures due to fatigue.

An important part of the main pipes is exposed to external cracking, which is a
dangerous setback for the industry of pipes, for example, in the USA, Canada, and
Russia. External crack identification is accomplished using diverse nondestructive
evaluation (NDE) methods. If cracks were detected during inspection, we should
evaluate their influence on the remaining useful lifetime of the pipeline in order to
select the action of maintenance that should be applied: do nothing/repair/replace.
We judge the integrity of pipes by assuming that some defects after in-line inspec-
tion (ILI) can be still undetected; detected, but not measured; detected and
measured.

Moreover, the objective in my publications was to assess the evolution of the
lifetime of a system at each instant. Consequently, and for this purpose, the trajec-
tories of degradation had been utilized in terms of the time of operation or cycles’
number. Hence, we deduce the RUL variations from these trajectories of degrada-
tion. Thus, I have considered many industrial illustrations in the simulation of my
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model in these earlier publications and work to prove the effectiveness of my model
[1–6, 13–19]. Three case studies of pipelines were taken into consideration: buried,
unburied, and subsea (offshore pipes). Each one of these situations necessitates
different physical parameters like friction and soil pressure, corrosion, and atmo-
spheric and water pressure. One of these cases is elaborated here which is the
system of buried petrochemical pipes where three modes of pressure profiles (mode
1 = high, mode 2 = middle, and mode 3 = low-pressure conditions) were examined
and simulated. My model showed that it presented a useful tool for a prognostic
analysis and that it is very convenient in such industrial systems. Furthermore, it
proved that it is less expensive than other models that require a huge number of
measurements and data.

3.2 Fatigue crack growth

The stress intensity factor was introduced to calculate the correlation between
the crack growth rate, da/dN, and the stress intensity factor range, ΔK. The Paris-
Erdogan’s law [7] allows to evaluate the rate of propagation of the crack length a
after its detection. This damage growth law is expressed by the following equation:

da
dN

¼ C ΔKð Þm (1)

where
da
dN, the crack growth rate = the increase of the crack length a per cycle N.
ΔK að Þ ¼ Y að ÞΔσ ffiffiffiffiffiffi

π a
p

, the intensity factor of the stress.
Y að Þ, the component’s crack geometry function.
Δσ, the range of the applied stress in a cycle.
m and C, the constants of materials obtained experimentally; 2≤m≤4ð Þ and

0<C≪ 1ð Þ.

3.3 The modeling of linear cumulative damage

To do the prognostic of a degrading element, my approach was to evaluate and to
predict the end of life of the element by modeling and tracking the function of
degradation. My model of damage, whose progress is up to the macro-crack initiation
point, is illustrated in Figure 3 by the damage linear rule of Palmgren-Miner.

As a matter of fact, this law [7] is used to calculate the cumulative damage di of
different stress levels σi (i = 1, i = 2, ..., i = k) applied for ni cycles. Knowing thatNi is

Figure 3.
Palmgren-Miner’s linear rule of damage.
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the total cycle’s number of stress σi to be applied and that lead to failure. The linear
cumulative damage corresponding to the applied stresses (i = 1 to k) is provided by

Dk ¼
Xk
i¼1

di ¼
Xk
i¼1

ni
Ni

(2)

The initial detectable crack a0 at the cycle N0, the crack length aN at any cycle N,
and the crack length aC at the failure cycle NC are estimated by a sensor, and their
values are included in the model of damage prognostic in the equation of damage. It
is expressed in my model by the resulting relation

DN ¼ aN
aC � a0

(3)

Or in terms of the pressure cycle time t, the relation is given by

Dt ¼ at
aC � a0

(4)

To simplify the study, it is suitable to adopt a measurement of damage denoted
by D ϵ [0, 1] which is computed by the Palmgren-Miner’s law of linear cumulative
damage. The damage level in a system at a specific cycle which is due to fatigue is
illustrated by a scalar function of damage denoted by D(t) or D(N). “No damage”
corresponds to the value D = 0, and “total damage” or the appearance of the first
macro-crack corresponds to D = 1.

3.4 An expression for degradation

Therefore, my general prognostic analytic linear model function, which is a
recursive relation for the sequence of D, is given by [16]

DN ¼ D Nð Þ ¼ Prog aNð Þ

¼ aN�1

aC � a0
þ C
aC � a0

� πaN�1ð Þ3=2 � 0:6 � 1þ 2 aN�1=eð Þ
1� aN�1=eð Þ32

" #3
� PjR=e
� �3 (5)

where C, the environment parameter; e, the pipe thickness; R, the pipe radius;
a0, the initial crack length at the cycle N0; aN�1, the crack length at the load cycle
N–1; ac: the crack length at the failure cycle NC. It was assumed in the model that
aC ¼ e=8 for justified reasons [16]; Pj: the pipe internal pressure.

Or in terms of the pressure cycle time t, the recursive relation for the sequence of
D is given by

Dt ¼ D tð Þ ¼ Prog atð Þ

¼ at�1

aC � a0
þ C
aC � a0

� πat�1ð Þ3=2 � 0:6 � 1þ 2 at�1=eð Þ
1� at�1=eð Þ32

" #3
� PjR=e
� �3 (6)

Consequently, the previous recursive relation leads to a sequence of Dt values
with N0 ≤N ≤NC or t0 ≤ t≤ tC whose limit is DC = 1:

D0 ¼ a0
aC � a0

; D1 ¼ a1
aC � a0

; D2 ¼ a2
aC � a0

; ⋯ ; Dt�1 ¼ at�1

aC � a0
; Dt ¼ at

aC � a0
(7)
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We will consider three different levels of internal pressure to take into account
the diverse states of pressure conditions which are low, middle, and high. Moreover,
as the stress load is a function of the cycles N or of time t, then we can draw the
trajectories of degradation of D(N) or D(t) in addition to the trajectories of RUL(N)
or RUL(t) in terms of the total number of loading cyclesN or in terms of the pressure
time t. Therefore, my developed model of linear damage will be applied in order to
compute the pipeline system prognostic.

3.5 The three levels of internal pressure simulations

We will consider in our current work a pipeline transporting natural gas of
radius R = 240 mm and of thickness e = 8 mm. The parameters in this case are
C = 1.3 � 10�14 (under soil, buried pipelines) and m = 3 (metal). The initial crack
length is considered to be a0 = 0.02 mm. The crack length aC at the failure cycle
time tC was assumed in the model to be equal to e=8 for justified reasons [16].
Hence, from Eqs. (5) and (6), we get

D0 ¼ a0
aC � a0

¼ a0
e=8ð Þ � a0

¼ 0:02
8=8ð Þ � 0:02

¼ 0:02
0:98

¼ 0:020408163

The soil specific weight is γ = 9.843 kN/m3. The weight per linear meter of pipe
and gas content is Wp = 203.27 kg/m. The specific gravity of the pipe material and
of the natural gas are, respectively, γpipe = 7850 kg/m3 and γgas = 600 kg/m3. The
depth of the pipe is taken as H = 7R, and the friction coefficient interval is
0.5 ≤ μ ≤ 0.7 [16].

The internal pressure Pj is modeled following a triangular form and distribution
in order to be similar to the real case of pipeline operating condition (pressure-
depression) (Figure 4).

We will consider three maximal levels of Pj which are P0 = 3, 5, and 8 MPa and
with a period of repetition T. This repetition period varies depending on the condi-
tions of exploitation; it is considered to be equal to 20 h. We note that these three
levels are supposed to be the extreme conditions of the pipeline exploitations and
are mean estimations of the real and actual random period and pressure rates. A
trajectory of degradation D(N) is inferred at each of these three levels in terms of
the cycle number N or pressure cycle time t. When Dt or DN attains the unit value,
therefore the corresponding t = tC or N = NC is the lifetime of the pipeline in the
fatigue case.

For the purposes of simulations, in Table 1, the values of pressure Pj are consid-
ered to be equal to the maximal values P0. The analytic linear prognostic model

Figure 4.
Triangular variation of internal pressure.
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the total cycle’s number of stress σi to be applied and that lead to failure. The linear
cumulative damage corresponding to the applied stresses (i = 1 to k) is provided by
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Or in terms of the pressure cycle time t, the recursive relation for the sequence of
D is given by

Dt ¼ D tð Þ ¼ Prog atð Þ

¼ at�1

aC � a0
þ C
aC � a0

� πat�1ð Þ3=2 � 0:6 � 1þ 2 at�1=eð Þ
1� at�1=eð Þ32

" #3
� PjR=e
� �3 (6)

Consequently, the previous recursive relation leads to a sequence of Dt values
with N0 ≤N ≤NC or t0 ≤ t≤ tC whose limit is DC = 1:

D0 ¼ a0
aC � a0

; D1 ¼ a1
aC � a0

; D2 ¼ a2
aC � a0

; ⋯ ; Dt�1 ¼ at�1

aC � a0
; Dt ¼ at

aC � a0
(7)
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We will consider three different levels of internal pressure to take into account
the diverse states of pressure conditions which are low, middle, and high. Moreover,
as the stress load is a function of the cycles N or of time t, then we can draw the
trajectories of degradation of D(N) or D(t) in addition to the trajectories of RUL(N)
or RUL(t) in terms of the total number of loading cyclesN or in terms of the pressure
time t. Therefore, my developed model of linear damage will be applied in order to
compute the pipeline system prognostic.

3.5 The three levels of internal pressure simulations

We will consider in our current work a pipeline transporting natural gas of
radius R = 240 mm and of thickness e = 8 mm. The parameters in this case are
C = 1.3 � 10�14 (under soil, buried pipelines) and m = 3 (metal). The initial crack
length is considered to be a0 = 0.02 mm. The crack length aC at the failure cycle
time tC was assumed in the model to be equal to e=8 for justified reasons [16].
Hence, from Eqs. (5) and (6), we get

D0 ¼ a0
aC � a0

¼ a0
e=8ð Þ � a0

¼ 0:02
8=8ð Þ � 0:02

¼ 0:02
0:98

¼ 0:020408163

The soil specific weight is γ = 9.843 kN/m3. The weight per linear meter of pipe
and gas content is Wp = 203.27 kg/m. The specific gravity of the pipe material and
of the natural gas are, respectively, γpipe = 7850 kg/m3 and γgas = 600 kg/m3. The
depth of the pipe is taken as H = 7R, and the friction coefficient interval is
0.5 ≤ μ ≤ 0.7 [16].

The internal pressure Pj is modeled following a triangular form and distribution
in order to be similar to the real case of pipeline operating condition (pressure-
depression) (Figure 4).

We will consider three maximal levels of Pj which are P0 = 3, 5, and 8 MPa and
with a period of repetition T. This repetition period varies depending on the condi-
tions of exploitation; it is considered to be equal to 20 h. We note that these three
levels are supposed to be the extreme conditions of the pipeline exploitations and
are mean estimations of the real and actual random period and pressure rates. A
trajectory of degradation D(N) is inferred at each of these three levels in terms of
the cycle number N or pressure cycle time t. When Dt or DN attains the unit value,
therefore the corresponding t = tC or N = NC is the lifetime of the pipeline in the
fatigue case.

For the purposes of simulations, in Table 1, the values of pressure Pj are consid-
ered to be equal to the maximal values P0. The analytic linear prognostic model

Figure 4.
Triangular variation of internal pressure.
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(Eqs. (5) and (6)) simulation is achieved for each internal pressure level (low,
middle, and high).

A huge amount of pressure simulations of the order of hundreds of millions are
required to estimate the real system lifetime; hence, we have used an approximated
model of lifetime simulation of the order of 10,000,000 iterations. Accordingly, we
have considered for this purpose a high-capacity computer system: a workstation
computer with parallel microprocessors, a 64-Bit operating system, a 64 GB RAM,
as well as a 64-Bit MATLAB version 2019 software.

3.6 RUL computation

The evaluation of the remaining useful lifetime of the system is the major
objective in a prognostic study. Since the RUL is the complement of the damage
curve D(t), it can be deduced from it. Accordingly, at each time t, the required RUL
is the length from cycle time t to the critical cycle time tC that corresponds to the
threshold D = 1. The entire RUL is inferred using the following relation:

RUL ¼ tC � t0 (8)

where tC is the necessary cycle time for the appearance of the first macro-cracks
that means to reach failure, and t0 is the initial cycle time considered in general to be
equal to 0.

Consequently, my prognostic model computes the RULs for the three internal
pressure modes that can be now simply inferred from these three curves at any
instant t or at any active cycle N in this manner:

For mode 3, RUL3(t) = tC3 – t.
For mode 2, RUL2(t) = tC2 – t.
For mode 1, RUL1(t) = tC1 – t.

3.7 The effects of environment in the suggested prognostic model

Two parameters which are C and m embody the effects of the environment.
These two parameters are associated to the material environment. C and m depend
on the initial crack length, on the geometry and size of the specimen, and on the
testing conditions (such as the loading ratio σ). These two parameters affect the
performance of the material during the process of fatigue through the crack propa-
gation. The influencing parameters on this fatigue process, like humidity, tempera-
ture, material nature, geometry dimensions, applied load location, corrosion, water
action, soil pressure and friction, atmospheric pressure, etc., can be stochastic and
can be also embodied by C and m. Furthermore, it is crucial to note here that these
two parameters can be as well random variables and hence can be represented by
probability distributions materializing the environment stochastic and chaotic
influences on the system. It is also important to mention that these two parameters
are computed by the mean of experiments in real conditions. We give here some

Pressure mode Pj (MPa) Model

High (mode 1) 8 Triangular

Middle (mode 2) 5 Triangular

Low (mode 3) 3 Triangular

Table 1.
Characteristics of each internal pressure mode.
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examples from several and other prognostic studies [7, 8]: C = 5.2 � 10�13 (free air,
unburied pipelines), C = 1.3 � 10�14 (under soil, buried pipelines), C = 2 � 10�11

(for offshore pipelines), and m = 3 (metal).

4. The complex probability paradigm applied to prognostic

In this section, the novel complex probability paradigm will be presented after
applying it to prognostic.

4.1 The basic parameters of the new model

It is very well-known that in systems engineering, the remaining useful lifetime
and the degradation prediction is profoundly linked to many aspects (like humidity,
temperature, material nature, geometry dimensions, applied load location, water
action, corrosion, soil pressure and friction, atmospheric pressure, etc.) that usually
have a stochastic and chaotic behavior which reduces the degree of our certain system
knowledge [32–35]. Consequently, the lifetime of the system becomes a random
variable and is computed by the arbitrary time tC which is evaluated when sudden
failure occurs due to these stochastic causes and chaotic factors. We can deduce from
the CPP that we can foretell the exact probabilities of RUL andDwith certitude in the
whole set C ¼ RþM if we add to the probability measure of a random variable in
the real setR the corresponding imaginary counterpartM since Pc = 1 perpetually
and constantly. In fact, prognostic is based on the forecast of a system remaining
useful lifetime at any cycleN or instant t and during the system operation. Therefore,
we can make use of this novel idea and procedure to do the prognostic analysis of the
system RUL and degradation prediction and evolution.

Let us consider a system degradation trajectory D(t) where we study a specific
instant (or cycle) tk. The system age is measured by the number of years and by the
variable tk (Figure 5). From the illustrated figures (Figures 5a and 5b), we can infer
that at the system age tk of the prognostic study must give the prediction of the
failure instant tC. Therefore, the RUL predicted here at the instant tk has the
following value:

RUL tkð Þ ¼ tC–tk (9)

As a matter of fact, at tk = 0 (at the beginning) (point J), the system is intact, then
the failure probability of the system is Pr = 0, the chaotic factor in our prognostic is
null (MChf = 0) because no chaos exists yet, and our knowledge of the unharmed and
undamaged system is complete and certain (DOK = 1); consequently,

RUL 0ð Þ ¼ tC � tk ¼ tC � 0 ¼ tC:

If tk = tC (point L), the system is completely damaged, then RUL(tC) = tC� tC = 0,
and therefore the failure probability of the system is one (Pr = 1). Failure occurs at
this point. Thus, our knowledge of the totally worn-out system is perfect (DOK = 1)
and the harmful task of chaos has finished; hence it is no more applicable
(MChf = 0).

If 0 < tk < tC (point K, where J < K < L), the probability of occurrence of this
instant and the probabilities of prediction of RUL and D are both less than 1 and are
imperfect in R (0 < Pr < 1). This is the result of non-zero chaotic factors influenc-
ing the system (MChf > 0). The system degree of our knowledge which is subject to
chaos is thus uncertain and is consequently less than one in R (0.5 < DOK < 1).
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is the length from cycle time t to the critical cycle time tC that corresponds to the
threshold D = 1. The entire RUL is inferred using the following relation:
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where tC is the necessary cycle time for the appearance of the first macro-cracks
that means to reach failure, and t0 is the initial cycle time considered in general to be
equal to 0.

Consequently, my prognostic model computes the RULs for the three internal
pressure modes that can be now simply inferred from these three curves at any
instant t or at any active cycle N in this manner:

For mode 3, RUL3(t) = tC3 – t.
For mode 2, RUL2(t) = tC2 – t.
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Two parameters which are C and m embody the effects of the environment.
These two parameters are associated to the material environment. C and m depend
on the initial crack length, on the geometry and size of the specimen, and on the
testing conditions (such as the loading ratio σ). These two parameters affect the
performance of the material during the process of fatigue through the crack propa-
gation. The influencing parameters on this fatigue process, like humidity, tempera-
ture, material nature, geometry dimensions, applied load location, corrosion, water
action, soil pressure and friction, atmospheric pressure, etc., can be stochastic and
can be also embodied by C and m. Furthermore, it is crucial to note here that these
two parameters can be as well random variables and hence can be represented by
probability distributions materializing the environment stochastic and chaotic
influences on the system. It is also important to mention that these two parameters
are computed by the mean of experiments in real conditions. We give here some

Pressure mode Pj (MPa) Model

High (mode 1) 8 Triangular

Middle (mode 2) 5 Triangular

Low (mode 3) 3 Triangular

Table 1.
Characteristics of each internal pressure mode.
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examples from several and other prognostic studies [7, 8]: C = 5.2 � 10�13 (free air,
unburied pipelines), C = 1.3 � 10�14 (under soil, buried pipelines), C = 2 � 10�11

(for offshore pipelines), and m = 3 (metal).

4. The complex probability paradigm applied to prognostic

In this section, the novel complex probability paradigm will be presented after
applying it to prognostic.

4.1 The basic parameters of the new model

It is very well-known that in systems engineering, the remaining useful lifetime
and the degradation prediction is profoundly linked to many aspects (like humidity,
temperature, material nature, geometry dimensions, applied load location, water
action, corrosion, soil pressure and friction, atmospheric pressure, etc.) that usually
have a stochastic and chaotic behavior which reduces the degree of our certain system
knowledge [32–35]. Consequently, the lifetime of the system becomes a random
variable and is computed by the arbitrary time tC which is evaluated when sudden
failure occurs due to these stochastic causes and chaotic factors. We can deduce from
the CPP that we can foretell the exact probabilities of RUL andDwith certitude in the
whole set C ¼ RþM if we add to the probability measure of a random variable in
the real setR the corresponding imaginary counterpartM since Pc = 1 perpetually
and constantly. In fact, prognostic is based on the forecast of a system remaining
useful lifetime at any cycleN or instant t and during the system operation. Therefore,
we can make use of this novel idea and procedure to do the prognostic analysis of the
system RUL and degradation prediction and evolution.

Let us consider a system degradation trajectory D(t) where we study a specific
instant (or cycle) tk. The system age is measured by the number of years and by the
variable tk (Figure 5). From the illustrated figures (Figures 5a and 5b), we can infer
that at the system age tk of the prognostic study must give the prediction of the
failure instant tC. Therefore, the RUL predicted here at the instant tk has the
following value:

RUL tkð Þ ¼ tC–tk (9)

As a matter of fact, at tk = 0 (at the beginning) (point J), the system is intact, then
the failure probability of the system is Pr = 0, the chaotic factor in our prognostic is
null (MChf = 0) because no chaos exists yet, and our knowledge of the unharmed and
undamaged system is complete and certain (DOK = 1); consequently,
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If tk = tC (point L), the system is completely damaged, then RUL(tC) = tC� tC = 0,
and therefore the failure probability of the system is one (Pr = 1). Failure occurs at
this point. Thus, our knowledge of the totally worn-out system is perfect (DOK = 1)
and the harmful task of chaos has finished; hence it is no more applicable
(MChf = 0).

If 0 < tk < tC (point K, where J < K < L), the probability of occurrence of this
instant and the probabilities of prediction of RUL and D are both less than 1 and are
imperfect in R (0 < Pr < 1). This is the result of non-zero chaotic factors influenc-
ing the system (MChf > 0). The system degree of our knowledge which is subject to
chaos is thus uncertain and is consequently less than one in R (0.5 < DOK < 1).
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Furthermore, by applying here the CPP paradigm, we can therefore determine
at any instant tk (0≤ tk ≤ tC) and, at any point between J and L inclusively, the RUL
and D of the system with certitude in the set C ¼ RþM because in C we have
Pc = 1 permanently.

Additionally, we can express two complementary phenomena or events E and E
by their respective probabilities as follows:

Prob Eð Þ ¼ p and Prob E
� � ¼ q ¼ 1� p:

Therefore, let the probability Prob Eð Þ as a function of the time tk be defined by

Prob Eð Þ ¼ Prob t≤ tkð Þ ¼ F tkð Þ (10)

where the classical and usual cumulative distribution function (CDF) of the
random variable t is denoted by the term F tð Þ.

Since Prob Eð Þ þ Prob E
� � ¼ 1, therefore, we deduce at an instant t = tk:

Prob E
� � ¼ 1� Prob Eð Þ ¼ 1� Prob t≤ tkð Þ ¼ Prob t> tkð Þ ¼ 1� F tkð Þ (11)

In addition, two particular instants can be defined:
t = t0 = 0 which corresponds to the system raw state and which is assumed to be

the initial time of functioning where D = D0.
t = tC which corresponds to the system wear-out state and which is the failure

instant where D = DC = 1.
Consequently, we can state the boundary conditions as follows:
For t = t0 = 0, we have D = D0 ≈ 0 (the initial damage that may be nearly 0) and

F tð Þ ¼ F t0ð Þ ¼ Prob t≤0ð Þ ¼ 0.
For t = tC, we have D = DC = 1 and F tð Þ ¼ F tCð Þ ¼ Prob t≤ tCð Þ ¼ 1.
We note also that since F(tk) is defined as a cumulative probability function,

then F(tk) is a non-decreasing function that varies between 0 and 1. In addition,
since RUL(tk) = tC � tk and tk is always increasing (0≤ tk ≤ tC), then RUL(tk) is a
non-increasing remaining useful lifetime function (Figure 5b).

Figure 5.
CPP. (a) The prognostic of degradation and (b) The prognostic of RUL.
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4.2 The new prognostic model

The novel model of prognostic basic assumption will be presented now [36–53].
We assume first the cumulative probability distribution function F(t) of the random
variable time t as being equal to the function of degradation itself, which means

F tkð Þ ¼ Prob t0 ≤ t≤ tkð Þ ¼
Xt¼tk

t¼t0

Prob tð Þ ¼ D tkð Þ (12)

We mention here that we are working with discrete random functions that
depend on the discrete random time t of pressure cycles.

This basic assumption is reasonable because:

1.BothD and F are cumulative functions starting from zero and ending with one.

2.Both are non-decreasing functions.

3.Both functions are without measure units: D is an indicator quantifying system
damage and degradation, as well as F which is an indicator quantifying
randomness and chance.

Afterward, we suppose that, at the instant t ¼ tk, the term Pr tð Þ=ψ j is the real
probability of system failure and is computed as follows:

Pr tkð Þ ¼ ψ j � Prob t≤ tkð Þ � Prob t≤ tk�1ð Þ½ � ¼ ψ j � F tkð Þ � F tk�1ð Þ½ �
¼ ψ j � D tkð Þ �D tk�1ð Þ½ �

¼ ψ j �
Xt¼tk

t¼t0

Prob tð Þ �
Xt¼tk‐1

t¼t0

Prob tð Þ
" #

¼ ψ j �
Xt¼tk

t¼tk�1

Prob tð Þ ¼ ψ j � Prob tk�1 ≤ t≤ tkð Þ

(13)

Figure 6.
Pr , degradation, and the CDF step function.
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= ψ j times the jump in F(t) or D(t) from t ¼ tk�1 to t ¼ tk (Figures 6 and 7).
where t ¼ 0, 1, 2, … , tk�1, tk, tkþ1, … , tC½ � is the time of pressure cycles and

t0 = 0 is the initial time of pressure cycles at the simulation beginning. It
corresponds to a degradation D = D(t0) = D0 which is generally considered to be
nearly equal to 0.

Hence, since F(tk) = D(tk) then F(t0) = D(t0) = 0.020408 ≈ 0, but F(t0) is taken
all over this research work as being equal to 0;

t1 = 1 = the first pressure cycle time ... tk = the kth pressure cycle time … tC = the
pressure cycles time that leads to system failure = the critical pressure time. It
corresponds to D = DC = 1. It follows directly that F(tC) = D(tC) = DC = 1.

ψ j is the simulation magnifying factor that depends on the pressure profile. It is
ψ1 ¼ 5082 for the high-pressure mode (j = 1, mode 1), ψ2 ¼ 6737 for the middle-
pressure mode (j = 2, mode 2), and ψ3 ¼ 9151 for the low-pressure mode (j = 3,
mode 3).

Thus, initially we have

Pr tk ¼ t0 ¼ 0ð Þ ¼ ψ j � F t0ð Þ ¼ ψ j � 0 ¼ 0

Moreover,

Pr tkð Þ ¼ ψ j � f j tkð Þ ) Pr tkð Þ=ψ j ¼ f j tkð Þ, (14)

where 1=ψ j is a normalizing constant that is used to reduce Pr tkð Þ function to a
probability density function (PDF) with a total probability equal to one. 1=ψ j is a
function of the pressure mode and conditions, and it depends on the parameters in
the degradation (Eqs. (5) and (6)). The decreasing values of 1=ψ j are logical since
pipeline failure probabilities are decreasing with the decreasing pressure modes;
hence, 1=ψ1 > 1=ψ2 > 1=ψ3. Consequently, we deduce that f j tkð Þ is the usual proba-
bility density function (PDF) for each pressure mode j. Knowing that, from classical
probability theory, we have always:

Figure 7.
Pr as a function of degradation D(t).
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Xtk¼tC

tk¼t0

f j tkð Þ ¼
Xtk¼tC

tk¼t0

Pr tkð Þ=ψ j ¼ 1 for any pressure profile j ¼ 1, 2, 3:

This result is reasonable since Pr tkð Þ=ψ j is here a probability density function
(Figure 6).

Therefore, we can deduce that

Xtk¼tC

tk¼t0

Pr tkð Þ ¼ ψ j �
Xt¼tC

t¼t0

Prob tð Þ ¼ ψ j � Prob t0 ≤ t≤ tCð Þ

¼ ψ j � F t ¼ tCð Þ � F t ¼ t0ð Þ½ � ¼ ψ j � D t ¼ tCð Þ �D t ¼ t0ð Þ½ �

¼ ψ j � F tCð Þ≈ψ j �D tCð Þ,

since D tCð Þ ¼ 1 and D t0ð Þ ¼ 0:020408≈0 and F t0ð Þ is taken as ¼ 0

¼ ψ j �
Xtk¼tC

tk¼t0

f j tkð Þ ¼ ψ j � 1 ¼ ψ j

)
Xtk¼tC

tk¼t0

Pr tkð Þ=ψ j ¼ 1, for any pressure profile j ¼ 1, 2, 3

(15)

We can understand that F(t) = D(t) is a discrete CDF where the amount of the
jump is Pr tð Þ=ψ j; then, Pr tð Þ=ψ j is a damage evolution and degradation function
(Figures 6 and 7). And we can infer from the preceding computations that Pr tð Þ=ψ j

is a probability density function. Accordingly, we can realize now that Pr tð Þ=ψ j

quantifies and measures the system degradation or failure probability. Conse-
quently, what we have achieved at this point is that we have linked degradation
measure to probability theory.

We can notice the following:

0≤Pr tkð Þ=ψ j ≤ 1, 0≤ F tkð Þ≤ 1, and D0 ≈0ð Þ≤D tkð Þ≤ DC ¼ 1ð Þ,
for every tk : 0≤ tk ≤ tC:

and
If tk ! 0 ) D ! D0 ¼ 0:020408≈0 ) F ! 0 ) Pr tkð Þ ! 0
if tk ! tC ) D ! DC ¼ 1 ) F ! 1 ) Pr tkð Þ ! 1.

This, since the degradation is very flat near 0 and starts increasing with t,
becoming very acute at t = tC, hence, near tC, Pr is the greatest and is equal to 1
(Figures 7 and 8).

Furthermore, we have:
RUL tkð Þ ¼ tC � tk and it corresponds to a degradation of D tkð Þ.
RUL tk�1ð Þ ¼ tC � tk�1 and it corresponds to a degradation of D tk�1ð Þ.

This implies that (Figure 9)

Pr tkð Þ ¼ ψ j � D tkð Þ �D tk�1ð Þ½ �
¼ ψ j � D tC � RUL tkð Þ½ � �D tC � RUL tk�1ð Þ½ �f g

(16)
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= ψ j times the jump in F(t) or D(t) from t ¼ tk�1 to t ¼ tk (Figures 6 and 7).
where t ¼ 0, 1, 2, … , tk�1, tk, tkþ1, … , tC½ � is the time of pressure cycles and
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corresponds to a degradation D = D(t0) = D0 which is generally considered to be
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Figure 7.
Pr as a function of degradation D(t).
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Xtk¼tC

tk¼t0

f j tkð Þ ¼
Xtk¼tC

tk¼t0

Pr tkð Þ=ψ j ¼ 1 for any pressure profile j ¼ 1, 2, 3:

This result is reasonable since Pr tkð Þ=ψ j is here a probability density function
(Figure 6).
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Xtk¼tC
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Xt¼tC

t¼t0
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¼ ψ j � F t ¼ tCð Þ � F t ¼ t0ð Þ½ � ¼ ψ j � D t ¼ tCð Þ �D t ¼ t0ð Þ½ �

¼ ψ j � F tCð Þ≈ψ j �D tCð Þ,

since D tCð Þ ¼ 1 and D t0ð Þ ¼ 0:020408≈0 and F t0ð Þ is taken as ¼ 0

¼ ψ j �
Xtk¼tC

tk¼t0

f j tkð Þ ¼ ψ j � 1 ¼ ψ j

)
Xtk¼tC

tk¼t0

Pr tkð Þ=ψ j ¼ 1, for any pressure profile j ¼ 1, 2, 3

(15)

We can understand that F(t) = D(t) is a discrete CDF where the amount of the
jump is Pr tð Þ=ψ j; then, Pr tð Þ=ψ j is a damage evolution and degradation function
(Figures 6 and 7). And we can infer from the preceding computations that Pr tð Þ=ψ j

is a probability density function. Accordingly, we can realize now that Pr tð Þ=ψ j

quantifies and measures the system degradation or failure probability. Conse-
quently, what we have achieved at this point is that we have linked degradation
measure to probability theory.

We can notice the following:

0≤Pr tkð Þ=ψ j ≤ 1, 0≤ F tkð Þ≤ 1, and D0 ≈0ð Þ≤D tkð Þ≤ DC ¼ 1ð Þ,
for every tk : 0≤ tk ≤ tC:

and
If tk ! 0 ) D ! D0 ¼ 0:020408≈0 ) F ! 0 ) Pr tkð Þ ! 0
if tk ! tC ) D ! DC ¼ 1 ) F ! 1 ) Pr tkð Þ ! 1.

This, since the degradation is very flat near 0 and starts increasing with t,
becoming very acute at t = tC, hence, near tC, Pr is the greatest and is equal to 1
(Figures 7 and 8).

Furthermore, we have:
RUL tkð Þ ¼ tC � tk and it corresponds to a degradation of D tkð Þ.
RUL tk�1ð Þ ¼ tC � tk�1 and it corresponds to a degradation of D tk�1ð Þ.

This implies that (Figure 9)

Pr tkð Þ ¼ ψ j � D tkð Þ �D tk�1ð Þ½ �
¼ ψ j � D tC � RUL tkð Þ½ � �D tC � RUL tk�1ð Þ½ �f g

(16)
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4.3 Analysis and extreme chaotic and random conditions

Although the analytic linear laws of prognostic are very well-known and deter-
ministic in [14, 16], there are general influences and aspects that can be chaotic and
stochastic (like humidity, temperature, material nature, geometry dimensions,
applied load location, water action, corrosion, soil pressure and friction, atmo-
spheric pressure, etc.). Moreover, various variables in the expressions (5) and (6) of
degradation which are considered as deterministic can also have a random aspect,
such as the magnitude of applied pressure (due to the different conditions of
pressure profile) and the length of the initial crack (potentially existing from the
process of manufacturing). All those stochastic factors, embodied in the model by
their mean values, influence the buried pipeline system and make its function of

Figure 9.
Pr , D, and RUL.

Figure 8.
Degradation and Pr .
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degradation diverge from its computed trajectory modeled by these deterministic
laws. An updated follow-up of the degradation performance and behavior with
cycle number or time, which is subject to non-chaotic and chaotic influences, is
made possible by Pr tkð Þ=ψ j due to its definition that evaluates the jumps in D. In
fact, chaos modifies and affects all the environment and system parameters
included in the degradation equations (Eqs. (5) and (6)). Consequently, chaos
total effect on the pipelines contributes to shape the degradation curve D and is
materialized by and counted in the pipeline system failure probability Pr tkð Þ=ψ j.
Actually, Pr tkð Þ=ψ j quantifies the resultant of all the nonrandom (deterministic) and
random (nondeterministic) parameters and aspects which are contained in the
equation of D, which affect the system and which lead to the consequent final
curve of degradation. Consequently, an accentuated influence of chaos on the
pipeline can lead to a smaller (or bigger) jump in the trajectory of degradation and
therefore to a smaller (or bigger) failure probability Pr tkð Þ=ψ j. If, for example, due
to extreme deterministic causes and random factors, D jumps directly from D0 ≈0
to 1 then RUL goes straight from tC to 0 and consequently Pr tkð Þ=ψ j jumps instantly
from 0 to 1:

Pr tkð Þ=ψ j ¼ D tkð Þ �D tk�1ð Þ ¼ D tCð Þ �D 0ð Þ≈ 1� 0 ¼
Xt¼tC

t¼0

Prob tð Þ ¼ 1

where t jumps directly from 0 to tC.
In the extreme ideal case, if the pipeline system never deteriorates (no stresses

or pressure) and with zero random causes and chaotic factors, then the resultant of
all the nondeterministic and deterministic influences is null (like in the pipeline
isolated and idle state). Accordingly, the system remains indefinitely at D0 ≈0 and
RUL stays equal to tC. So consequently, the jump in D is constantly zero. Hence, the
failure probability remains ideally 0:

Pr tkð Þ=ψ j ¼ D tkð Þ �D tk�1ð Þ½ � ¼ D0 �D0½ � ¼ 0

where D t0ð Þ ¼ D t1ð Þ ¼ … ¼ D tk�1ð Þ ¼ D tkð Þ ¼ D tkþ1ð Þ ¼ … ¼ D0 ¼
0:020408≈0, for k ¼ 0, 1, 2, 3, …∞.

Figure 6 illustrates the real probability of failure Pr(t) in terms of the random
degradation step CDF of the pipeline as a function of the cycle time t of pressure for
mode 1.

Figure 7 illustrates the real probability of failure Pr(t) in terms of the
random degradation of the pipeline as a function of the cycle time t of pressure for
mode 1.

Figure 8 illustrates the real probability of failure Pr(t) and the random
degradation D(t) of the pipeline in terms of the number of cycle time t of pressure
for mode 1.

Figure 9 illustrates the real probability of failure Pr(t) in terms of the random
degradation D(t) of the pipeline and the random RUL(t) of the pipeline as a
function of the cycle time t (in years) of pressure for mode 1.

4.4 The flowchart of the complex probability analytic linear prognostic model

The following flowchart summarizes all the procedures of the proposed complex
probability prognostic model:
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4.5 The evaluation of the new paradigm parameters

We can infer from what has been elaborated previously the following:

The real probability is Pr tkð Þ ¼ ψ j � D tkð Þ–D tk�1ð Þ½ �, for pressure modes j ¼ 1, 2, 3

(17)

The imaginary probability is Pm tkð Þ ¼ i� 1–Pr tkð Þ½ � ¼ i� 1–ψ j � D tkð Þ–D tk�1ð Þ½ �
n o

(18)

The complementary probability is Pm tkð Þ=i ¼ 1–Pr tkð Þ ¼ 1–ψ j � D tkð Þ–D tk�1ð Þ½ �
(19)

The complex probability vector is Z tkð Þ ¼ Pr tkð Þ þ Pm tkð Þ ¼ Pr tkð Þ þ i� 1–Pr tkð Þ½ �
(20)
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The degree of our knowledge

DOK tkð Þ ¼ Z tkð Þj j2 ¼ 1þ 2iPr tkð ÞPm tkð Þ ¼ 1–2Pr tkð ÞPm tkð Þ=i ¼ 1–2Pr tkð Þ 1–Pr tkð Þ½ �
¼ 1–2Pr tkð Þ þ 2Pr

2 tkð Þ
(21)

The chaotic factor

Chf tkð Þ ¼ 2iPr tkð ÞPm tkð Þ ¼ �2Pr tkð ÞPm tkð Þ=i ¼ �2Pr tkð Þ 1� Pr tkð Þ½ �
¼ �2Pr tkð Þ þ 2Pr

2 tkð Þ (22)

Chf is null when Pr(Nk) = Pr(0) = 0 (point J) and when Pr(tk) = Pr(tC) = 1
(point L) (Figures 5a and 5b).

The magnitude of the chaotic factor MChf:

MChf tkð Þ ¼ ∣Chf tkð Þ∣ ¼ �2iPr tkð ÞPm tkð Þ ¼ 2Pr tkð ÞPm tkð Þ=i ¼ 2Pr tkð Þ 1� Pr tkð Þ½ �
¼ 2Pr tkð Þ � 2Pr

2 tkð Þ
(23)

MChf is null when Pr(tk) = Pr(0) = 0 (point J) andwhen Pr(tk) = Pr(tC) = 1 (point L)
(Figures 5a and 5b).

At any instant tk 0≤∀tk ≤ tC, the probability expressed in the complex set C is
the following:

Pc tkð Þ2 ¼ Pr tkð Þ þ Pm tkð Þ=i½ �2 ¼ Z tkð Þj j2 � 2iPr tkð ÞPm tkð Þ
¼ DOK tkð Þ � Chf tkð Þ
¼ DOK tkð Þ þMChf tkð Þ
¼ 1

(24)

then, Pc(tk) = Pr(tk) + Pm(tk)/i = Pr(tk) + [1 � Pr(tk)] = 1 always.
Therefore, the prognostic of RUL(tk) and D(tk) of the pipeline in the set C is

forever certain. The buried pipeline system is considered thereafter under three
modes of pressure in order to simulate the cumulative distribution function
D(tk) = F(tk) and hence in order to visualize, to quantify, as well as to draw all the
prognostic parameters and CPP.

5. The simulation of the new paradigm

We will simulate in this section the original model of prognostic for the three
internal pressure modes. We note that we have used the 64-Bit MATLAB version
2019 software to evaluate and find all the numerical values of the paradigm func-
tions analysis.

5.1 The parameter simulation in the pipeline prognostic for mode 1

See Figures 10–12.
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5.1.1 The complex probability cubes for mode 1

See Figures 13–15.

Figure 12.
Degradation, rescaled RUL, and CPP parameters with Chf (a) and with MChf (b) for mode 1.

Figure 10.
Pipeline degradation (a) and RUL (b) under linear damage law for high-pressure mode of excitation (mode 1).

Figure 11.
Degradation and CPP parameters with Chf (a) and with MChf (b) for mode 1.
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Figure 13.
DOK and Chf in terms of t and of each other for mode 1.

Figure 14.
Pr and Pm/i in terms of t and of each other for mode 1.
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5.2 The parameter simulation in the pipeline prognostic for mode 2

See Figures 16–18.

Figure 15.
The complex probability vector Z in terms of t for mode 1.

Figure 16.
Pipeline degradation (a) and RUL (b) under linear damage law for middle-pressure mode of excitation (mode 2).

Figure 17.
Degradation and CPP parameters with Chf (a) and with MChf (b) for mode 2.
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5.2.1 The complex probability cubes for mode 2

See Figures 19–21.

5.3 The parameter simulation in the pipeline prognostic for mode 3

See Figures 22–24.

5.3.1 The complex probability cubes for mode 3

See Figures 25–27.

Figure 18.
Degradation, rescaled RUL, and CPP parameters with Chf (a) and with MChf (b) for mode 2.

Figure 19.
DOK and Chf in terms of t and of each other for mode 2.
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Figure 20.
Pr and Pm/i in terms of t and of each other for mode 2.

Figure 21.
The complex probability vector Z in terms of t for mode 2.
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Figure 22.
Pipeline degradation (a) and RUL (b) under linear damage law for low-pressure mode of excitation (mode 3).

Figure 23.
Degradation and CPP parameters with Chf (a) and with MChf (b) for mode 3.

Figure 24.
Degradation, rescaled RUL, and CPP parameters with Chf (a) and with MChf (b) for mode 3.
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Figure 20.
Pr and Pm/i in terms of t and of each other for mode 2.

Figure 21.
The complex probability vector Z in terms of t for mode 2.
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Figure 22.
Pipeline degradation (a) and RUL (b) under linear damage law for low-pressure mode of excitation (mode 3).

Figure 23.
Degradation and CPP parameters with Chf (a) and with MChf (b) for mode 3.

Figure 24.
Degradation, rescaled RUL, and CPP parameters with Chf (a) and with MChf (b) for mode 3.

89

Analytic Prognostic in the Linear Damage Case Applied to Buried Petrochemical Pipelines…
DOI: http://dx.doi.org/10.5772/intechopen.90157



Figure 25.
DOK and Chf in terms of t and of each other for mode 3.

Figure 26.
Pr and Pm/i in terms of t and of each other for mode 3.
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6. Final analysis: explanation and the general prognostic equations

We will present in this section the original general prognostic equations, we will
interpret all the achieved simulations and the obtained data, and we will do a final
analysis. Also, we will illustrate the results and a detailed discussion of the all the
previous simulations and figures and of the following corresponding tables.

Firstly, we have linked prognostic characterized by the degradation D(t) with
probability theory characterized by the CDF F(t) by supposing that D(t) = F(t) and
the justification for this assumption were given. Consequently, the deterministic D(t)
computed from deterministic analytic linear prognostic becomes a nondeterministic
cumulative probability distribution function. Therefore, the deterministic and dis-
crete variable of pressure cycles time t becomes a random and discrete variable. Thus,
the resultant of all the factors influencing the system which was deterministic
becomes a stochastic resultant because D(t) quantifies now the random degradation
of the pipeline in terms of the random cycle time t. Accordingly, all the parameters’
exact values of the D(t) expression (Eq. 6) become now the mean values of the
stochastic factors influencing the pipeline and are embodied by PDFs as functions of
the stochastic variable of pressure cycle time t (refer to Section 3.5). As a matter of
fact, this is the real-world case where randomness is omnipresent in one form or
another. What we consider and judge as a deterministic phenomenon is nothing
in reality but a simplification and an approximation of an actual chaotic and
stochastic phenomenon and experiment due to the impact of a huge number of
nondeterministic and deterministic forces and factors (a good example is a lottery
machine).

Subsequently, we do an updated follow-up of the performance of the random
degradation in terms of time or cycle number, which is subject to non-chaotic and

Figure 27.
The complex probability vector Z in terms of t for mode 3.
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Figure 25.
DOK and Chf in terms of t and of each other for mode 3.

Figure 26.
Pr and Pm/i in terms of t and of each other for mode 3.
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Firstly, we have linked prognostic characterized by the degradation D(t) with
probability theory characterized by the CDF F(t) by supposing that D(t) = F(t) and
the justification for this assumption were given. Consequently, the deterministic D(t)
computed from deterministic analytic linear prognostic becomes a nondeterministic
cumulative probability distribution function. Therefore, the deterministic and dis-
crete variable of pressure cycles time t becomes a random and discrete variable. Thus,
the resultant of all the factors influencing the system which was deterministic
becomes a stochastic resultant because D(t) quantifies now the random degradation
of the pipeline in terms of the random cycle time t. Accordingly, all the parameters’
exact values of the D(t) expression (Eq. 6) become now the mean values of the
stochastic factors influencing the pipeline and are embodied by PDFs as functions of
the stochastic variable of pressure cycle time t (refer to Section 3.5). As a matter of
fact, this is the real-world case where randomness is omnipresent in one form or
another. What we consider and judge as a deterministic phenomenon is nothing
in reality but a simplification and an approximation of an actual chaotic and
stochastic phenomenon and experiment due to the impact of a huge number of
nondeterministic and deterministic forces and factors (a good example is a lottery
machine).

Subsequently, we do an updated follow-up of the performance of the random
degradation in terms of time or cycle number, which is subject to non-chaotic and

Figure 27.
The complex probability vector Z in terms of t for mode 3.
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chaotic influences, by using the quantity Pr tkð Þ=ψ j due to its definition that evalu-
ates the jumps in the stochastic degradation CDF D(t). Hence,

Pr tkð Þ ¼ ψ j � D tkð Þ �D tk�1ð Þ½ �, for any pressure mode j ¼ 1, 2, 3:

Referring to classical probability theory, this makes Pr tkð Þ=ψ j the system proba-

bility of failure at t = tk, with 0≤Pr tkð Þ=ψ j ≤ 1 and
Pt¼tC

t¼t0Pr tð Þ=ψ j = [sum of all the
jumps in D from t0 to tC] = DC = 1, just like any probability density function (PDF).

In addition, in the simulations, a constant and very small increments in t have
been taken which lead to very small increments in D and hence in Pr tkð Þ=ψ j. So, we
have multiplied those very small jumps in D by a simulation magnifying factor that
we called ψ j. Note that 1=ψ j is a normalizing constant that is used to reduce Pr tkð Þ
function to a probability density function with a total probability equal to one. 1=ψ j

is a function of the pressure mode and conditions, and it depends on the parameters
in the degradation (Eq. (6)). We have from the simulations ψ1 ¼ 5082 for the high-
pressure mode (j = 1, mode 1), ψ2 ¼ 6737 for the middle-pressure mode (j = 2,
mode 2), and ψ3 ¼ 9151 for the low-pressure mode (j = 3, mode 3). So we get the
following: if t tends to t0 = 0, then Pr tkð Þ tends to 0, and if t tends to tC then Pr tkð Þ
tends to 1, so 0≤Pr tkð Þ≤ 1 and

Pt¼tC
t¼t0Pr tð Þ ¼ ψ j �DC ¼ ψ j � 1 ¼ ψ j as if Pr tkð Þ was a

CDF although mathematically speaking it is not at all. This, since Pr tkð Þ is not
cumulative, it is just ψ j times the probability of failure at t = tk. Hence, in the
simulations, Pr tkð Þ becomes now the probability that the system failure occurs at
t = tk and is used accordingly to compute all the CPP parameters.

Therefore, D tkð Þ ¼ F tkð Þ ¼ Prob 0≤ t≤ tkð Þ = Prob(t = 0 or t = 1 or t = 2 or … or
t = tk) = sum of all failure probabilities between 0 and tk = probability that failure
will occur somewhere between 0 and tk. So, if tk = 0 then Prob t≤0ð Þ ¼ D 0ð Þ ¼ D0

= probability that failure will occur at t = 0 and before. If tk = tC then
Prob 0≤ t≤ tCð Þ ¼ D tCð Þ ¼ 1 = sum of all failure probabilities between 0 and
tC = probability that failure will occur somewhere between 0 and tC. If tk > tC then
Prob t> tCð Þ ¼ D tCð Þ ¼ 1 = probability that failure will occur beyond tC. We can see
that failure probability increases with the increase of the pressure cycles time tk
until at the end it becomes 1 when tk ≥ tC.

Hence, if t0 ¼ 0 and D t0ð Þ ¼ 0 then

D tkð Þ ¼ Prob 0≤ t≤ tkð Þ ¼
Xt¼tk

t¼0

Prob tð Þ ¼
Xt¼tk

t¼0

Pr tð Þ=ψ j

This implies that D tCð Þ ¼ Prob 0≤ t≤ tCð Þ ¼ Pt¼tC

t¼0
Prob tð Þ ¼ Pt¼tC

t¼0
Pr tð Þ=ψ j ¼ 1 and

D 0ð Þ ¼ Prob t≤0ð Þ ¼
Xt¼0

t¼0

Prob tð Þ ¼
Xt¼0

t¼0

Pr tð Þ=ψ j ¼ Pr 0ð Þ=ψ j ¼ 0:

If t0 6¼ 0 and D t0ð Þ 6¼ 0, then the prognostic equation in the new model is

D tkð Þ ¼ Prob t0 ≤ t≤ tkð Þ ¼
Xt¼tk

t¼t0

Prob tð Þ ¼
Xt¼tk

t¼t0

Pr tð Þ=ψ j (25)

for any mode j of pressure profile and with Pr t0ð Þ=ψ j ¼ D0.
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Moreover, since Pr tkð Þ ¼ ψ j D tkð Þ �D tk�1ð Þ½ �, this leads to the following recursive
relation:

D tkð Þ ¼ D tk�1ð Þ þ Pr tkð Þ=ψ j; for every tk, t0 ≤ tk ≤ tC: (26)

In the case of general prognostic, if we possess the PDF of system failure then it
can be included in Eqs. (25) and (26) and hence evaluate at any instant tk the system
degradation and vice versa. Consequently, all the other CPP model parameters
(DOK, Chf,MChf, Pr, Pm, Pm/i, Z, Pc) will follow. This would be our new prognostic
model general equation:

D tkð Þ ¼ Prob t0 ≤ t≤ tkð Þ ¼
Xt¼tk

t¼t0

Prob tð Þ ¼
Xt¼tk

t¼t0

PDFfailure tð Þ (27)

And the recursive relation

D tkð Þ ¼ D tk�1ð Þ þ PDFfailure tkð Þ (28)

with PDFfailure t0ð Þ ¼ D0.
It is crucial to indicate here that the PDFfailure function of the system failure has

all the mathematical characteristics and all the possible features of a probability
density function whether it is a continuous or a discrete stochastic function and it
can follow any imaginable probability distribution in condition only that it charac-
terizes the failure function and the random degradation of the studied system
whether it is a petrochemical pipe in the buried, unburied, or offshore case or a
vehicle suspension system or any nondeterministic system under the effect of
randomness and chaos. In fact, the function PDFfailure inherits all the attributes and
features of the failure system function and of the nondeterministic degradation.

Furthermore, by applying CPP to the pipe prognostic, and in the three simula-
tions of pressure modes, we were successful in the original prognostic model to
quantify in R (our real laboratory) both our chaos embodied by Chf and MChf and
our certain knowledge embodied by DOK. These three parameters of CPP are
evaluated and caused by the resultant of all the nonrandom (deterministic) and
random (nondeterministic) aspects influencing the system of pipeline. Knowing
that, in the novel paradigm, the factors’ resultant effect on RUL and D is material-
ized by the jumps in their curves and is accordingly expressed and concretized inR
by Pr and in M by Pm. As it was defined in CPP, M is an imaginary probability
extension of the real probability setR, and the complex probability set C is the sum
of both probability sets; thus, C ¼ RþM. Because Pm = i(1 – Pr), therefore it is the
complementary probability of Pr in M. Hence, if Pr is identified as the failure
probability of the system in R at the pressure cycle time t = tk, then Pm is identified
as the corresponding probability in the set M that the system failure will not occur
at the same pressure time t = tk. So, Pm is the associated probability in the set M of
the system survival at t = tk. It follows that Pm/i = 1 – Pr is the associated probability
but in the set R of the system survival at the same pressure cycles time. Accord-
ingly, we know that the sum in R of both complementary probabilities is surely 1
from classical probability theory. This sum is nothing but PC which is equal to
Pr + Pm/i = Pr + (1 – Pr) = 1 always. The sum in C of both complementary
probabilities is the complex random number and vector Z which is equal to
Pr + Pm = Pr + i(1 – Pr). And as the complex probability cubes show and illustrate, we
realize that Z is the sum in C of the real probability of failure and of the imaginary
probability of survival in the complex probability plane that has the equation
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chaotic influences, by using the quantity Pr tkð Þ=ψ j due to its definition that evalu-
ates the jumps in the stochastic degradation CDF D(t). Hence,

Pr tkð Þ ¼ ψ j � D tkð Þ �D tk�1ð Þ½ �, for any pressure mode j ¼ 1, 2, 3:

Referring to classical probability theory, this makes Pr tkð Þ=ψ j the system proba-

bility of failure at t = tk, with 0≤Pr tkð Þ=ψ j ≤ 1 and
Pt¼tC

t¼t0Pr tð Þ=ψ j = [sum of all the
jumps in D from t0 to tC] = DC = 1, just like any probability density function (PDF).

In addition, in the simulations, a constant and very small increments in t have
been taken which lead to very small increments in D and hence in Pr tkð Þ=ψ j. So, we
have multiplied those very small jumps in D by a simulation magnifying factor that
we called ψ j. Note that 1=ψ j is a normalizing constant that is used to reduce Pr tkð Þ
function to a probability density function with a total probability equal to one. 1=ψ j

is a function of the pressure mode and conditions, and it depends on the parameters
in the degradation (Eq. (6)). We have from the simulations ψ1 ¼ 5082 for the high-
pressure mode (j = 1, mode 1), ψ2 ¼ 6737 for the middle-pressure mode (j = 2,
mode 2), and ψ3 ¼ 9151 for the low-pressure mode (j = 3, mode 3). So we get the
following: if t tends to t0 = 0, then Pr tkð Þ tends to 0, and if t tends to tC then Pr tkð Þ
tends to 1, so 0≤Pr tkð Þ≤ 1 and

Pt¼tC
t¼t0Pr tð Þ ¼ ψ j �DC ¼ ψ j � 1 ¼ ψ j as if Pr tkð Þ was a

CDF although mathematically speaking it is not at all. This, since Pr tkð Þ is not
cumulative, it is just ψ j times the probability of failure at t = tk. Hence, in the
simulations, Pr tkð Þ becomes now the probability that the system failure occurs at
t = tk and is used accordingly to compute all the CPP parameters.

Therefore, D tkð Þ ¼ F tkð Þ ¼ Prob 0≤ t≤ tkð Þ = Prob(t = 0 or t = 1 or t = 2 or … or
t = tk) = sum of all failure probabilities between 0 and tk = probability that failure
will occur somewhere between 0 and tk. So, if tk = 0 then Prob t≤0ð Þ ¼ D 0ð Þ ¼ D0

= probability that failure will occur at t = 0 and before. If tk = tC then
Prob 0≤ t≤ tCð Þ ¼ D tCð Þ ¼ 1 = sum of all failure probabilities between 0 and
tC = probability that failure will occur somewhere between 0 and tC. If tk > tC then
Prob t> tCð Þ ¼ D tCð Þ ¼ 1 = probability that failure will occur beyond tC. We can see
that failure probability increases with the increase of the pressure cycles time tk
until at the end it becomes 1 when tk ≥ tC.

Hence, if t0 ¼ 0 and D t0ð Þ ¼ 0 then

D tkð Þ ¼ Prob 0≤ t≤ tkð Þ ¼
Xt¼tk

t¼0

Prob tð Þ ¼
Xt¼tk

t¼0

Pr tð Þ=ψ j

This implies that D tCð Þ ¼ Prob 0≤ t≤ tCð Þ ¼ Pt¼tC

t¼0
Prob tð Þ ¼ Pt¼tC

t¼0
Pr tð Þ=ψ j ¼ 1 and

D 0ð Þ ¼ Prob t≤0ð Þ ¼
Xt¼0

t¼0

Prob tð Þ ¼
Xt¼0

t¼0

Pr tð Þ=ψ j ¼ Pr 0ð Þ=ψ j ¼ 0:

If t0 6¼ 0 and D t0ð Þ 6¼ 0, then the prognostic equation in the new model is

D tkð Þ ¼ Prob t0 ≤ t≤ tkð Þ ¼
Xt¼tk

t¼t0

Prob tð Þ ¼
Xt¼tk

t¼t0

Pr tð Þ=ψ j (25)

for any mode j of pressure profile and with Pr t0ð Þ=ψ j ¼ D0.
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Moreover, since Pr tkð Þ ¼ ψ j D tkð Þ �D tk�1ð Þ½ �, this leads to the following recursive
relation:

D tkð Þ ¼ D tk�1ð Þ þ Pr tkð Þ=ψ j; for every tk, t0 ≤ tk ≤ tC: (26)

In the case of general prognostic, if we possess the PDF of system failure then it
can be included in Eqs. (25) and (26) and hence evaluate at any instant tk the system
degradation and vice versa. Consequently, all the other CPP model parameters
(DOK, Chf,MChf, Pr, Pm, Pm/i, Z, Pc) will follow. This would be our new prognostic
model general equation:

D tkð Þ ¼ Prob t0 ≤ t≤ tkð Þ ¼
Xt¼tk

t¼t0

Prob tð Þ ¼
Xt¼tk

t¼t0

PDFfailure tð Þ (27)

And the recursive relation

D tkð Þ ¼ D tk�1ð Þ þ PDFfailure tkð Þ (28)

with PDFfailure t0ð Þ ¼ D0.
It is crucial to indicate here that the PDFfailure function of the system failure has

all the mathematical characteristics and all the possible features of a probability
density function whether it is a continuous or a discrete stochastic function and it
can follow any imaginable probability distribution in condition only that it charac-
terizes the failure function and the random degradation of the studied system
whether it is a petrochemical pipe in the buried, unburied, or offshore case or a
vehicle suspension system or any nondeterministic system under the effect of
randomness and chaos. In fact, the function PDFfailure inherits all the attributes and
features of the failure system function and of the nondeterministic degradation.

Furthermore, by applying CPP to the pipe prognostic, and in the three simula-
tions of pressure modes, we were successful in the original prognostic model to
quantify in R (our real laboratory) both our chaos embodied by Chf and MChf and
our certain knowledge embodied by DOK. These three parameters of CPP are
evaluated and caused by the resultant of all the nonrandom (deterministic) and
random (nondeterministic) aspects influencing the system of pipeline. Knowing
that, in the novel paradigm, the factors’ resultant effect on RUL and D is material-
ized by the jumps in their curves and is accordingly expressed and concretized inR
by Pr and in M by Pm. As it was defined in CPP, M is an imaginary probability
extension of the real probability setR, and the complex probability set C is the sum
of both probability sets; thus, C ¼ RþM. Because Pm = i(1 – Pr), therefore it is the
complementary probability of Pr in M. Hence, if Pr is identified as the failure
probability of the system in R at the pressure cycle time t = tk, then Pm is identified
as the corresponding probability in the set M that the system failure will not occur
at the same pressure time t = tk. So, Pm is the associated probability in the set M of
the system survival at t = tk. It follows that Pm/i = 1 – Pr is the associated probability
but in the set R of the system survival at the same pressure cycles time. Accord-
ingly, we know that the sum in R of both complementary probabilities is surely 1
from classical probability theory. This sum is nothing but PC which is equal to
Pr + Pm/i = Pr + (1 – Pr) = 1 always. The sum in C of both complementary
probabilities is the complex random number and vector Z which is equal to
Pr + Pm = Pr + i(1 – Pr). And as the complex probability cubes show and illustrate, we
realize that Z is the sum in C of the real probability of failure and of the imaginary
probability of survival in the complex probability plane that has the equation
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Pr(t) = iPm(t) + 1 for ∀t : 0≤ t≤ tC, ∀Pr : 0≤Pr ≤ 1, and ∀Pm : 0≤Pm ≤ i. What is
interesting is that the square of the norm of Z which is Zj j2 is nothing but DOK, as it
was proved inCPP and in the newmodel. Moreover, sinceMChf =�2iPrPm = 2PrPm/i,
therefore it is twice the product inR of both the probability of failure and the
probability of survival, and it quantifies the magnitude of chaos since it is always 0 or
positive. All the simulations show and prove all these facts.

We can conclude from all the above that since D(t) is a CDF, since the factor
resultant is random, and since the jumps in D are the simulations failure probabil-
ities Pr tkð Þ, then we are dealing with a random experiment, thus the natural
appearance of Chf, MChf, DOK, Z, and hence Pc. So, we get in the simulations:

Chf tkð Þ ¼ �2Pr tkð ÞPm tkð Þ=i ¼ �2 ψ j D tkð Þ �D tk�1ð Þ½ �
n o

1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

:

(29)

MChf tkð Þ ¼ Chf tkð Þj j ¼ 2 ψ j D tkð Þ �D tk�1ð Þ½ �
n o

1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

: (30)

DOK tkð Þ ¼ 1� 2Pr tkð ÞPm tkð Þ=i
¼ 1� 2 ψ j D tkð Þ �D tk�1ð Þ½ �

n o
1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

: (31)

Z tkð Þ ¼ Pr tkð Þ þ Pm tkð Þ ¼ ψ j D tkð Þ �D tk�1ð Þ½ � þ i 1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

: (32)

Pc2 tkð Þ ¼ DOK tkð Þ � Chf tkð Þ ¼ DOK tkð Þ þMChf tkð Þ ¼ 1; for every tk, 0≤ tk ≤ tC:

(33)

Furthermore, in the new model, we have

RUL tkð Þ ¼ tC � tk:

Note that since t and D are random, then RUL is also a random function of t.
Thus, we have in the set R:

Prob RUL tkð Þ½ � ¼ Prob the system will survive for tk < t≤ tCð Þ
¼ 1–Prob the system will fail for t≤ tkð Þ
¼ 1–D tkð Þ
¼ Rescaled RUL tkð Þ½ � in all the three pressure modes simulations

(34)

Then, we get always Prob RUL tkð Þ½ � þD tkð Þ ¼ 1 everywhere.
This implies that Prob RUL tk ¼ 0ð Þ½ � ¼ 1�D tk ¼ 0ð Þ ¼ 1�D0 ≈ 1.
and Prob RUL tk ¼ tCð Þ½ � ¼ 1�D tk ¼ tCð Þ ¼ 1�DC ¼ 1� 1 ¼ 0.
Hence, we reach a new and general prognostic equation for RUL. If t0 6¼ 0 and

D t0ð Þ 6¼ 0 then

Prob RUL tkð Þ½ � ¼ Prob Survival : tk < t≤ tCð Þ ¼ 1� Prob Failure : t0 ≤ t≤ tkð Þ

¼ 1�
Xt¼tk

t¼t0

Pr tð Þ=ψ j; with Pr t0ð Þ=ψ j ¼ D0
(35)

¼ 1�D tkð Þ ¼
Xt¼tC

t¼tkþ1

Pr tð Þ=ψ j

¼ 1�
Xt¼tk

t¼t0

PDFfailure tð Þ; with PDFfailure t0ð Þ ¼ D0

(36)
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¼
Xt¼tC

t¼tkþ1

PDFfailure tð Þ (37)

for any mode j of pressure profile.
Moreover, from Eqs. (25), (26), (27), and (28) and for any mode j of pressure

profile, we have the following recursive relations:

Prob RUL tkð Þ½ � ¼ 1�D tkð Þ ¼ 1� D tk�1ð Þ þ Pr tkð Þ=ψ j

n o
(38)

¼ 1� D tk�1ð Þ þ PDFfailure tkð Þ� �
(39)

¼ 1� 1� Prob RUL tk�1ð Þ½ � þ Pr tkð Þ=ψ j

n o
(40)

¼ Prob RUL tk�1ð Þ½ � � Pr tkð Þ=ψ j (41)

¼ Prob RUL tk�1ð Þ½ � � PDFfailure tkð Þ (42)

where Prob RUL tk�1ð Þ½ � ¼ 1�D tk�1ð Þ.
In the ideal case, if all the factors are 100% deterministic, then we have inR the

probability of failure for tk < tC is 0 and is 1 for tk ≥ tC; accordingly the probability of
system survival for tk < tC is 1 and is 0 for tk ≥ tC, since certain failure will occur only
at tk ¼ tC. So, degradation is determined surely everywhere in R, and its CDF is
replaced by a deterministic function and curve. Therefore, chaos is null, and hence
Chf = MChf = 0, and DOK = 1 always for all 0≤ tk ≤ tC. Thus, Prob RUL tk < tCð Þ½ � ¼ 1
and Prob RUL tk ≥ tCð Þ½ � ¼ 0.

Furthermore, at each instant t in the original prognostic paradigm, the stochastic
RUL(t) and D(t) are predicted with certitude in the complex probability set C with
Pc2 = DOK – Chf = DOK + MChf maintained as equal to 1 through a continuous
compensation between Chf and DOK. This compensation is from the instant t = 0
where D(t) = D0 = 0.020408 ≈ 0 until the instant of failure tC where D(tC) = 1.
Moreover, we can realize thatDOK does not include any uncertain knowledge (with
a probability less than 100%); it is the measure of our certain knowledge (proba-
bility = 100%) about the expected event. We can understand that we have elimi-
nated and subtracted in the equation above all the random factors and chaos (Chf)
from our random experiment when computing Pc2; hence no chaos exists in C, and
it only exists (if it does) in R; consequently, this has led to a 100% deterministic
outcome and experiment in C since the probability Pc is constantly equal to 1.
This is one of the advantages of extending R to M and therefore of working in

Table 2.
The new prognostic model parameters for any pipeline internal pressure mode.
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Pr(t) = iPm(t) + 1 for ∀t : 0≤ t≤ tC, ∀Pr : 0≤Pr ≤ 1, and ∀Pm : 0≤Pm ≤ i. What is
interesting is that the square of the norm of Z which is Zj j2 is nothing but DOK, as it
was proved inCPP and in the newmodel. Moreover, sinceMChf =�2iPrPm = 2PrPm/i,
therefore it is twice the product inR of both the probability of failure and the
probability of survival, and it quantifies the magnitude of chaos since it is always 0 or
positive. All the simulations show and prove all these facts.

We can conclude from all the above that since D(t) is a CDF, since the factor
resultant is random, and since the jumps in D are the simulations failure probabil-
ities Pr tkð Þ, then we are dealing with a random experiment, thus the natural
appearance of Chf, MChf, DOK, Z, and hence Pc. So, we get in the simulations:

Chf tkð Þ ¼ �2Pr tkð ÞPm tkð Þ=i ¼ �2 ψ j D tkð Þ �D tk�1ð Þ½ �
n o

1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

:

(29)

MChf tkð Þ ¼ Chf tkð Þj j ¼ 2 ψ j D tkð Þ �D tk�1ð Þ½ �
n o

1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

: (30)

DOK tkð Þ ¼ 1� 2Pr tkð ÞPm tkð Þ=i
¼ 1� 2 ψ j D tkð Þ �D tk�1ð Þ½ �

n o
1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

: (31)

Z tkð Þ ¼ Pr tkð Þ þ Pm tkð Þ ¼ ψ j D tkð Þ �D tk�1ð Þ½ � þ i 1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

: (32)

Pc2 tkð Þ ¼ DOK tkð Þ � Chf tkð Þ ¼ DOK tkð Þ þMChf tkð Þ ¼ 1; for every tk, 0≤ tk ≤ tC:

(33)

Furthermore, in the new model, we have

RUL tkð Þ ¼ tC � tk:

Note that since t and D are random, then RUL is also a random function of t.
Thus, we have in the set R:

Prob RUL tkð Þ½ � ¼ Prob the system will survive for tk < t≤ tCð Þ
¼ 1–Prob the system will fail for t≤ tkð Þ
¼ 1–D tkð Þ
¼ Rescaled RUL tkð Þ½ � in all the three pressure modes simulations

(34)

Then, we get always Prob RUL tkð Þ½ � þD tkð Þ ¼ 1 everywhere.
This implies that Prob RUL tk ¼ 0ð Þ½ � ¼ 1�D tk ¼ 0ð Þ ¼ 1�D0 ≈ 1.
and Prob RUL tk ¼ tCð Þ½ � ¼ 1�D tk ¼ tCð Þ ¼ 1�DC ¼ 1� 1 ¼ 0.
Hence, we reach a new and general prognostic equation for RUL. If t0 6¼ 0 and

D t0ð Þ 6¼ 0 then

Prob RUL tkð Þ½ � ¼ Prob Survival : tk < t≤ tCð Þ ¼ 1� Prob Failure : t0 ≤ t≤ tkð Þ

¼ 1�
Xt¼tk

t¼t0

Pr tð Þ=ψ j; with Pr t0ð Þ=ψ j ¼ D0
(35)

¼ 1�D tkð Þ ¼
Xt¼tC

t¼tkþ1

Pr tð Þ=ψ j

¼ 1�
Xt¼tk

t¼t0

PDFfailure tð Þ; with PDFfailure t0ð Þ ¼ D0

(36)
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¼
Xt¼tC

t¼tkþ1

PDFfailure tð Þ (37)

for any mode j of pressure profile.
Moreover, from Eqs. (25), (26), (27), and (28) and for any mode j of pressure

profile, we have the following recursive relations:

Prob RUL tkð Þ½ � ¼ 1�D tkð Þ ¼ 1� D tk�1ð Þ þ Pr tkð Þ=ψ j

n o
(38)

¼ 1� D tk�1ð Þ þ PDFfailure tkð Þ� �
(39)

¼ 1� 1� Prob RUL tk�1ð Þ½ � þ Pr tkð Þ=ψ j

n o
(40)

¼ Prob RUL tk�1ð Þ½ � � Pr tkð Þ=ψ j (41)
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Table 2.
The new prognostic model parameters for any pipeline internal pressure mode.
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C ¼ RþM. Thus, in the original prognostic paradigm, our knowledge of all the
indicators and parameters (RUL, Prob, D, etc.) is totally predictable, always perfect,
and constantly complete because Pc = 1 permanently, independently of any random
factors or any pressure profile (Table 2).

Finally, we say that we have applied for pressure modes 2 and 3 the same
analysis, logic, and methodology that we have used for pressure mode 1 regarding
the remaining useful lifetime, the degradation, as well as all the CPP parameters
(Tables 3 and 4). Therefore, we can accordingly infer that whatever the pressure
conditions and environment are, then the results and conclusions are analogous.
This demonstrates the strength and soundness of the novel axioms adopted and of
the new prognostic paradigm developed.

7. Conclusion and perspectives

The high availability of technological systems, like defense, aerospace, automo-
bile industries, and petrochemistry, is a central major objective of previous and
latest developments in the technology of system design where it is very well-known

Table 3.
The new prognostic model and the relative pipeline pressure mode comparisons for 0<Pr < 0:5.

Table 4.
The new prognostic model and the relative pipeline pressure mode comparisons for 0:5<Pr < 1.
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that expensive failure may in general happen unexpectedly. A novel model of
analytic prognostic was established in my earlier work and publications as a coun-
terpart of existent classical strategies of maintenance in order to take into account
the evolving environment and product state and in order to make them more
efficient. We have applied this model to systems of petrochemical pipes that are
exposed to fatigue failure under cyclic repetitive triangular pressure. It is known
that the effects of fatigue will initiate micro-cracks that can spread rapidly and
hence will lead to failure. This model is founded on existing laws of damage in
fracture mechanics which are the law of Palmgren-Miner of linear damage accu-
mulation and the law of Paris-Erdogan of crack propagation. This prognostic model
estimates the system RUL from a predefined threshold of degradation DC. The
model of degradation established in this earlier work is founded on the damage
measurement D accumulation after each cycle time of pressure. The system is
judged to be in wear-out state when this measured and predefined threshold DC is
reached. Moreover, to make the model more realistic and accurate, we have taken
into consideration the stochastic influences afterward as well here. We have applied
this model to the industry of pipelines; therefore, a prognostic study of the pipeline
system enables us to enhance its strategies of maintenance.

In the present research work, the novel extended Kolmogorov paradigm of eight
axioms (EKA) was applied and bonded to the analytic and linear prognostic of
buried petrochemical pipeline systems subject to fatigue. Hence, a tight link
between the remaining useful lifetime or degradation and the original paradigm was
made. Therefore, the model of “complex probability” was more elaborated beyond
the scope of my previous 12 research works on this subject.

Although the analytic linear laws of prognostic are very well-known and deter-
ministic in [14, 16], there are general influences and aspects that can be chaotic and
stochastic (like humidity, temperature, material nature, geometry dimensions,
applied load location, water action, corrosion, soil pressure and friction, atmo-
spheric pressure, etc.). Moreover, various variables in the expressions (5) and (6) of
degradation which are considered as deterministic can also have a random aspect,
such as the magnitude of applied pressure (due to the different conditions of
pressure profile) and the length of the initial crack (potentially existing from the
process of manufacturing). All those stochastic factors, embodied in the model by
their mean values, influence the buried pipeline system and make its function of
degradation diverge from its computed trajectory modeled by these deterministic
laws. An updated follow-up of the degradation performance and behavior with
cycle number or time, which is subject to non-chaotic and chaotic influences, is
made possible by Pr tkð Þ=ψ j due to its definition that evaluates the jumps in D. In
fact, chaos modifies and affects all the environment and system parameters
included in the degradation equations (Eqs. (5) and (6)). Consequently, chaos total
effect on the pipelines contributes to shape the degradation curve D and is materi-
alized by and counted in the pipeline system failure probability Pr tkð Þ=ψ j. Actually,
Pr tkð Þ=ψ j quantifies the resultant of all the nonrandom (deterministic) and random
(nondeterministic) parameters and aspects which are contained in the equation of
D, which affect the system and which lead to the consequent final curve of degra-
dation. Consequently, an accentuated influence of chaos on the pipeline can lead to
a smaller (or bigger) jump in the trajectory of degradation and therefore to a smaller
(or bigger) failure probability Pr tkð Þ=ψ j.

Additionally, as it was verified and shown in the novel model, when the degra-
dation index is 0 or 1 and correspondingly the RUL is tC or 0, then the chaotic factor
(Chf and MChf) is zero, and the degree of our knowledge (DOK) is 1 since the
system state is totally known. During the process of degradation (0 < D < 1), we
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have �0.5 ≤ Chf < 0, 0 < MChf ≤ 0.5, and 0.5 ≤ DOK < 1. Notice that during
this whole process, we have always Pc2 = DOK – Chf = DOK + MChf = 1 = Pc,
which means that the phenomenon which looked to be stochastic and random in the
set R is now certain and deterministic in the set C ¼ RþM, and this after the
addition of the contributions of M to the phenomenon occurring in R and thus
after subtracting and eliminating the chaotic factor from the degree of our knowl-
edge. Moreover, the probabilities of the system survival and of failure
corresponding to each instant t have been evaluated, in addition to the probability
of RUL after a pressure cycles time t, which are all functions of the stochastic
degradation jump. Consequently, at each instance of t, all the novel CPP parameters
D, RUL, Pr, Pm, Pm=i, DOK, Chf, MChf, Pc, and Z are certainly and perfectly
predicted in the complex probability set C with Pc maintained as equal to 1 con-
stantly and permanently. Furthermore, using all these illustrated simulations and
drawn graphs all over the whole research work, we can quantify and visualize both
the certain knowledge (expressed by DOK and Pc) and the system chaos and
random effects (expressed by Chf and MChf) of the pipeline system. This is defi-
nitely very fascinating, fruitful, and wonderful and proves once again the advan-
tages of extending the five probability axioms of Kolmogorov and thus the novelty
and benefits of this original field in prognostic and applied mathematics that can be
called verily “The Complex Probability Paradigm.”

As a prospective and future work and challenges, and concerning some applica-
tions to practical engineering, it is planned to more elaborate the original created
prognostic paradigm and to implement it to a varied set of nondeterministic and
dynamic systems like vehicle suspension systems and offshore and buried petro-
chemical pipes which are under the influence of fatigue and in the cases of
nonlinear and linear damage accumulation. Furthermore, we will apply also CPP to
other random experiments in classical probability theory and in stochastic processes
and to the field of prognostic in engineering using the first order reliability method
(FORM) as well as to the random walk problems which have enormous applications
in physics, in economics, in chemistry, in applied and pure mathematics.
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Z the sum of Pr and Pm, complex probability number and vector
DOK = |Z|2, the square of the norm of Z, degree of our knowledge of the

random event and experiment
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t pressure cycle time
tC pressure cycle time till system failure
Pj pipelines internal triangular pressure
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Prob[RUL(t)] probability of RUL after a pressure cycle time t.
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Chapter 6

Fault Detection of Single
and Interval Valued Data Using
Statistical Process Monitoring
Techniques
Mohammed Ziyan Sheriff, Nour Basha,
Muhammad Nazmul Karim, Hazem Nounou
and Mohamed Nounou

Abstract

Principal component analysis (PCA) is a linear data analysis technique widely
used for fault detection and isolation, data modeling, and noise filtration. PCAmay be
combined with statistical hypothesis testing methods, such as the generalized likeli-
hood ratio (GLR) technique in order to detect faults. GLR functions by using the
concept of maximum likelihood estimation (MLE) in order to maximize the detection
rate for a fixed false alarm rate. The benchmark Tennessee Eastman Process (TEP) is
used to examine the performance of the different techniques, and the results show
that for processes that experience both shifts in the mean and/or variance, the best
performance is achieved by independently monitoring the mean and variance using
two separate GLR charts, rather than simultaneously monitoring them using a single
chart. Moreover, single-valued data can be aggregated into interval form in order to
provide a more robust model with improved fault detection performance using PCA
and GLR. The TEP example is used once more in order to demonstrate the effective-
ness of using of interval-valued data over single-valued data.

Keywords: principal component analysis, generalized likelihood ratio,
hypothesis testing, fault detection, Tennessee Eastman Process, interval data

1. Introduction

Current technological advancements allow data to be collected from a number of
different sources. The availability of abundant data collected from different sensors
is beneficial, as they can be utilized in order to observe trends between and within
different measured process variables. This allows process models to be developed in
order to help identify if different processes or applications are behaving as expected
[1]. Additionally, with industrial growth present in many developing countries,
efficient process monitoring is essential for newer and more complex processes.
Monitoring of these processes is required in order to ensure process safety, maintain
product quality, increase economic benefits, and also to ensure that the process
adheres to strict environmental regulation standards [2].
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Statistical process monitoring methods can be classified into three broad catego-
ries: quantitative model based methods, qualitative model based methods, and
process history based methods [3–5]. Quantitative model based methods require
detailed knowledge of a process in order to construct a model that can be used for
monitoring, for example, Kalman filters [3], while qualitative model based methods
require the presence of process engineering experts in order to develop monitoring
procedures or tasks, for example, fault trees [4]. In the absence of these two
requirements, and due to the complexity of many processes that require monitor-
ing, data-based techniques are often commonly used by the industry for various
applications from drug design, to drinking water treatment [5–7].

Principal component analysis (PCA) is a powerful, linear data analysis technique
widely used in research and industrial applications [8], for fault detection and
isolation, data modeling and reconstruction, feature extraction, and noise filtration.
PCA is useful for the extraction of dominant underlying information from a dataset,
without any previous knowledge of the model. An example of the practical appli-
cation of PCA has been discussed in [8], where data gathered from parallel sensors
are used to quantify the quality of a given food sample. PCA is used to reduce the
dimensionality of a dataset, whilst filtering out variability caused by noise [9]. The
PCA model has been utilized in order to monitor a wide variety of processes, and
has seen many extensions [10–13]. Two main fault detection statistics are typically
utilized with a PCA model: Hotelling’s T2 statistic, and the Q statistic [10]. Varia-
tions captured by the principal component space are monitored using the T2 statis-
tic, while variations in the residual space are monitored using the Q statistic [14].

On the other hand, statistical hypothesis testing methods function by using
statistical techniques in order to determine if observations collected from a given
process follow the null hypothesis, that is, operating under normal operating con-
ditions, or alternate hypothesis, that is, operating under abhorrent or faulty operat-
ing conditions [15]. These faults can be of different types, such as shifts in the mean,
variance, or both. The generalized likelihood ratio (GLR) technique has received a
lot of attention in process monitoring literature [10, 11, 13, 16]. The GLR method
aims to maximize the detection rate for a fixed false alarm rate [15]. Therefore, an
objective of this work is to provide a comparative review of the different GLR
charts by utilizing examples such as the benchmark Tennessee Eastman Process
(TEP) [17].

Data utilized in the construction of a PCA model may be of two types depending
on the application being monitored: single-valued, and interval-valued. Single-
valued data can be directly obtained from sensors measuring particular variables in
a process, while interval-valued data is aggregated or artificially generated from
batch single-valued measurements, thereby resulting in a range of possible mea-
surement values for a given process variable at one time instant. The use of interval
data in fault detection was originally introduced in order to reduce large datasets
to a more manageable size [18], without compromising the integrity of the dataset.
In addition, the use of interval data is beneficial because of its inherent ability to
deal with missing values in samples, which may happen due to malfunctioning
sensors or varying sampling frequencies between variables [19].

However, in cases where reducing the dataset may not be a viable option, due to
a relatively limited sample size or sampling frequency, the use of interval data can
be applied using a moving window aggregation method. This is also true of
applications where batch process monitoring is not a viable option, thereby
necessitating the need for real-time online monitoring of samples. The benchmark
TEP example will be used once more in order to analyze the benefit of using
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moving window interval aggregation on the fault detection performance of
PCA and GLR.

The rest of this chapter will be organized as follows. In Section 2, a more detailed
introduction to PCA is provided along with a quick overview of the fault detection
statistics used to examine the fault detection performance of the methods discussed
in this paper. Section 3 will introduce hypothesis testing methods and the different
GLR charts. In Section 4, the moving window interval aggregation method is
explained, as well as its integration with PCA and GLR for the purposes of fault
detection. Section 5 then presents illustrative examples using simulated synthetic
data and TEP using a PCA-based GLR technique, used to demonstrate the effect
that using GLR and interval data has on the fault detection performance.
Conclusions are then presented in Section 6.

2. Principal component analysis (PCA)

Principal component analysis (PCA) is a linear dimensionality reduction tool
used to reduce the number of variables in a dataset, whilst retaining most of
the data’s variability. PCA finds a new set of variables, called principal components,
using a linear combination of the dataset’s original cross-correlated variables [9].
The algorithm for PCA is summarized below.

2.1 PCA algorithm

Given a n� p classical training dataset X, where n is the number of sample rows
and p is the number of variable columns, the PCA model is found as follows:

1. Find the correlation matrix R of X.

2. Find the column eigenvectors matrix P and the diagonal eigenvalues matrix Λ
of R. Each eigenvector defines the linear combination coefficients used to find
the principal components from the original variables, and each eigenvalue
represents the amount of variance that its respective principal component
covers in the dataset.

3. Retain l principal components that cover the minimum desired variability in
the dataset, denoted as P̂.

4.Find the predictive transformation matrix, Ĉ ¼ P̂P̂T .

5. Find the residual transformation matrix, ~C ¼ 1� Ĉ.

Ĉ is used to find the projection of the dataset onto the PCA model, and ~C is used
to find the amount of deviation of the dataset from its projection onto the PCA
model, also known as the matrix of residuals. For more comprehensive details,
please refer to [9, 19, 20].

The training dataset X defines the system under normal or optimal operating
conditions, where there are no faults and the noise is minimal. Consequently, X is
used to find the PCA model, defined using Ĉ and ~C transformation matrices. The
testing dataset S defines the system under unknown operating conditions, and it
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is monitored for faults using its respective residuals ~S ¼ S � ~C, as will be
discussed later.

2.2 Fault detection statistics

Knowing the optimal number of eigenvectors or principal components to retain,
fault detection is then carried out by evaluating the PCA model’s residuals using any
detection statistic. This section will focus on briefly introducing the two most well-
known statistics in literature: The Q and T2 statistics.

The Q-statistics of a n� p classical residual matrix ~X is defined as [11]:

Qx i½ � ¼
Xp

j¼1

~Xj i½ �
� �2

(1)

Qx is used to find the Q-threshold value γ, which defines the maximum possible
value for a testing data’s Q-statistic, denoted as Qs, beyond which the sample will be
declared as a fault [14, 19, 21]. The threshold is calculated using the empirical
cumulative distribution function (CDF) of Qx, which is an estimate of the true CDF
of its discrete values.

The fault detection performance is tabulated by comparing Qs with γ. If Qs i½ �>γ,
then the ith sample is declared as faulty, otherwise it is normal. There are two metrics
used for benchmarking each method: false alarm rate (FAR) and detection rate (DR).

FAR is the average percentage of samples that were wrongfully declared as
faults. The detection rate is the average percentage of samples that were rightfully
declared as faults. It is desirable to maximize DR, for a fixed FAR, in order to have a
better fault detector.

Alternatively, the Hotelling T2 statistic, which measures variations in the prin-
cipal component space can be used, is computed as follows [22]:

T2 ¼ xTP̂Λ̂
�1
P̂
T
x, (2)

where, Λ̂ ¼ diag λ1; λ2;…; λlð Þ, is a diagonal matrix that contains the eigenvalues
that are associated with the l retained principal components The threshold for the
T2 statistic can be computed either computational or empirically [22]. The Q statis-
tic is often utilized by authors instead of the T2 statistic as it better able to detect
smaller faults [10, 11].

3. Hypothesis testing methods

Hypothesis testing methods such as the generalized likelihood ratio (GLR), have
received a lot of attention in recent literature [10, 13, 23]. Hypothesis testing
methods utilize fundamental statistical theory in order to determine if given data
conforms to a targeted distribution, that is, a null hypothesis, or deviates from this
distribution, and follows an alternative distribution, that is, an alternate hypothesis
[15]. In process monitoring terms, the parameters of the null and alternate hypoth-
eses are defined using data from normal and abhorrent operating conditions,
respectively [1].

3.1 Generalized likelihood ratio

The generalized likelihood ratio (GLR) technique defines the alternate hypothe-
ses by parameters that can assume an infinite number of values, and is therefore
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called a composite hypothesis. An efficient point estimation method that utilizes the
concept of maximum likelihood estimates (MLEs) is employed in order to estimate
the required parameters.

The univariate GLR chart uses the concept of maximum likelihood estimates in
order to maximize the detection rate for a fixed false alarm rate. The GLR process is
accomplished through the following steps [15]:

1. The null and alternate hypotheses are defined, and their respective likelihood
functions are derived.

2. Any unknown parameters in the alternate hypothesis are computed from
the testing data using their MLEs, for example, the mean and/or variance.

3. The log likelihood ratio of the alternate to null hypotheses is then computed,
and its maximum value is calculated, which maximizes the detection rate.

Univariate GLR charts can be designed based on the type of the fault that needs
to be detected. Most processes experience shifts in the mean, and/or shifts in the
variance, and three of these GLR charts will be explained next.

For the case when residuals are collected from processes under normal operating
conditions, the likelihood function derived from a random normal distribution can
be defined as follows [24]:

L ∞; μ0; σ
2
0jx1; x2;…; xk

� � ¼ 2πð Þ�k=2 σ20
� ��k=2

exp � 1
2σ20

Xk
i¼1

xi � μ0ð Þ2
 !

(3)

where μ0 and σ20 mean and variance of the process variable measured under
normal operating conditions respectively.

3.1.1 Univariate GLR chart for a shift in the mean

If a shift in the mean has occurred at time τ, from μ0 to μ1, the likelihood
function of the alternate hypothesis is defined as follows [24]:

L τ; μ1; σ
2
0jx1; x2;…; xk

� �

¼ 2πð Þ�k=2 σ20
� ��k=2 exp � 1

2σ20

Xτ
i¼1

xi � μ0ð Þ2 þ
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i¼τþ1

xi � μ1ð Þ2
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(4)

Since the magnitude of the new mean is unknown, its MLE can be computed
using testing data as follow [24]:

μ̂1, τ, k ¼
1

k� τð Þ
Xk
i¼τþ1

xi: (5)

The GLR statistic designed to specifically monitor a shift in the mean can now be
computed by taking the log-likelihood ratio of (Eqs. (3) and (4)) [24]:

Rk ¼ max
0≤ τ < k

k� τð Þ
2σ20

μ̂1,τ, k � μ0
� �2

: (6)

The authors in [24] state that it is not necessary to store the entire length of
previous historical data in order to compute the MLEs, but a window length
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is monitored for faults using its respective residuals ~S ¼ S � ~C, as will be
discussed later.
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Xp

j¼1

~Xj i½ �
� �2

(1)

Qx is used to find the Q-threshold value γ, which defines the maximum possible
value for a testing data’s Q-statistic, denoted as Qs, beyond which the sample will be
declared as a fault [14, 19, 21]. The threshold is calculated using the empirical
cumulative distribution function (CDF) of Qx, which is an estimate of the true CDF
of its discrete values.

The fault detection performance is tabulated by comparing Qs with γ. If Qs i½ �>γ,
then the ith sample is declared as faulty, otherwise it is normal. There are two metrics
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faults. The detection rate is the average percentage of samples that were rightfully
declared as faults. It is desirable to maximize DR, for a fixed FAR, in order to have a
better fault detector.

Alternatively, the Hotelling T2 statistic, which measures variations in the prin-
cipal component space can be used, is computed as follows [22]:
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where, Λ̂ ¼ diag λ1; λ2;…; λlð Þ, is a diagonal matrix that contains the eigenvalues
that are associated with the l retained principal components The threshold for the
T2 statistic can be computed either computational or empirically [22]. The Q statis-
tic is often utilized by authors instead of the T2 statistic as it better able to detect
smaller faults [10, 11].

3. Hypothesis testing methods

Hypothesis testing methods such as the generalized likelihood ratio (GLR), have
received a lot of attention in recent literature [10, 13, 23]. Hypothesis testing
methods utilize fundamental statistical theory in order to determine if given data
conforms to a targeted distribution, that is, a null hypothesis, or deviates from this
distribution, and follows an alternative distribution, that is, an alternate hypothesis
[15]. In process monitoring terms, the parameters of the null and alternate hypoth-
eses are defined using data from normal and abhorrent operating conditions,
respectively [1].

3.1 Generalized likelihood ratio

The generalized likelihood ratio (GLR) technique defines the alternate hypothe-
ses by parameters that can assume an infinite number of values, and is therefore
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called a composite hypothesis. An efficient point estimation method that utilizes the
concept of maximum likelihood estimates (MLEs) is employed in order to estimate
the required parameters.

The univariate GLR chart uses the concept of maximum likelihood estimates in
order to maximize the detection rate for a fixed false alarm rate. The GLR process is
accomplished through the following steps [15]:

1. The null and alternate hypotheses are defined, and their respective likelihood
functions are derived.

2. Any unknown parameters in the alternate hypothesis are computed from
the testing data using their MLEs, for example, the mean and/or variance.

3. The log likelihood ratio of the alternate to null hypotheses is then computed,
and its maximum value is calculated, which maximizes the detection rate.

Univariate GLR charts can be designed based on the type of the fault that needs
to be detected. Most processes experience shifts in the mean, and/or shifts in the
variance, and three of these GLR charts will be explained next.

For the case when residuals are collected from processes under normal operating
conditions, the likelihood function derived from a random normal distribution can
be defined as follows [24]:
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where μ0 and σ20 mean and variance of the process variable measured under
normal operating conditions respectively.

3.1.1 Univariate GLR chart for a shift in the mean

If a shift in the mean has occurred at time τ, from μ0 to μ1, the likelihood
function of the alternate hypothesis is defined as follows [24]:
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Since the magnitude of the new mean is unknown, its MLE can be computed
using testing data as follow [24]:

μ̂1, τ, k ¼
1

k� τð Þ
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i¼τþ1

xi: (5)

The GLR statistic designed to specifically monitor a shift in the mean can now be
computed by taking the log-likelihood ratio of (Eqs. (3) and (4)) [24]:

Rk ¼ max
0≤ τ < k

k� τð Þ
2σ20

μ̂1,τ, k � μ0
� �2

: (6)

The authors in [24] state that it is not necessary to store the entire length of
previous historical data in order to compute the MLEs, but a window length
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of about 400 is sufficient to provide reliable results. Therefore, a window length of
400 was utilized throughout this work for all GLR charts.

3.1.2 Univariate GLR chart for a shift in the variance

If only a shift in the variance has occurred from at time τ, from σ20 to σ21, the
alternate hypothesis for this case is defined as follows [25]:

L τ; μ0; σ
2
1jxτþ1; x2;…; xk

� �

¼ 2πð Þ�k=2 σ21
� ��k=2 exp � 1

2σ21

Xk
i¼τþ1

xi � μ0ð Þ2
 ! !

:
(7)

From a quality control standpoint we are only concerned with increases in
variance, as larger variations imply that product is being manufactured with quality
further away from the targeted amount, and since the magnitude of the new
variance is unknown, its MLE can be computed using testing data as follows [25]:

σ̂2
1, τ, k ¼ max σ20;

1
k� τ

Xk
i¼τþ1

xi � μ0ð Þ2
( )

: (8)

The GLR statistic designed to specifically monitor a shift in the variance can now
be computed by taking the log-likelihood ratio of (Eqs. (3) and (7)) [25]:

Rk ¼ max
0≤ τ < k

k� τ

2
σ̂2
1, τ, k

σ20
� 1� ln

σ̂2
1,τ, k

σ20

 !" #
(9)

3.1.3 Univariate GLR chart for a shift in the mean and/or variance

Since it is possible for most processes to experience both shifts in the mean and
variance, a GLR statistic that is capable of detecting either type of shift can be
designed. The likelihood function of the alternate hypothesis for this case is defined
as follows [26]:

L τ; μ1; σ
2
1jx1; x2;…; xk

� �

¼ 2πð Þ�k=2 σ20
� ��τ=2

σ21
� �� k�τð Þ=2 exp � 1

2σ20

Xτ
i¼1

xi � μ0

 !2

� 1
2σ21

Xk
i¼τþ1

xi � μ1

 !2
0
@

1
A:

(10)

The MLE of the mean can be computed from the testing data using (Eq. (5)).
However, the variance now has to be computed utilizing the MLE for the mean as
well [26]:

S2τ, k ¼
1

k� τ

Xk
i¼τþ1

xi � μ̂1, τ, k
� �2

: (11)

As previously stated, from a quality control standpoint only an increase in the
variance is of concern, and the MLE for the variance can be computed as follows [26]:
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σ̂2
1, τ, k ¼ max σ20; S

2
τ, k

� �
: (12)

If there are no shifts in the mean for testing data, the variance is computed as
follows [26]:

S20,τ, k ¼
1

k� τ

Xk
i¼τþ1

xi � μ0ð Þ2: (13)

In this case, the GLR statistic designed to simultaneously monitor both shifts in
the mean and variance, and can be computed by taking the log-likelihood ratio of
(Eqs. (3) and (10)) resulting in the following equation [26]:

Rk ¼ max
0≤ τ < k

k� τ

2
S20,τ, k
σ20

� S2τ, k
σ̂

2

1, τ, k
� ln

σ̂2
1, τ, k

σ20

 !" #
(14)

It is important to note that for this particular GLR method, two parameters, that
is, the mean and the variance have to be estimated using their MLE, since the type
of shift is unknown.

3.1.4 Multivariate GLR chart for a shift in the mean

Since using a univariate GLR chart may not always be practical, Wang and
Reynolds [27] introduce the multivariate GLR chart, designed to specifically moni-
tor shifts in the process mean for multivariate applications. In this case, the GLR
statistic is defined as follows:

Rk ¼
max

max 0; k�mð Þ≤ t < k
k� t
2

μ̂1, t,k � μ0
� � �

X�1

0
� μ̂1, t,k � μ0
� �� �

(15)

Where μ0 is the multivariate mean vector of the process under normal operating
conditions, μ̂1, t,k is the MLE of a sustained process mean shift μ1 at time index k
over sample window of maximum length m, and

P
0 is the process covariance

matrix under normal conditions [27].

3.2 Fault detection using PCA-based GLR

The PCA method introduced in Section 2 is commonly utilized by many indus-
tries. Therefore, it is necessary to integrate the simplicity of the PCA method with
the advantages brought forward by the GLR charts, so that it can be easily applied to

Figure 1.
PCA-based GLR fault detection algorithm.
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of about 400 is sufficient to provide reliable results. Therefore, a window length of
400 was utilized throughout this work for all GLR charts.

3.1.2 Univariate GLR chart for a shift in the variance

If only a shift in the variance has occurred from at time τ, from σ20 to σ21, the
alternate hypothesis for this case is defined as follows [25]:
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From a quality control standpoint we are only concerned with increases in
variance, as larger variations imply that product is being manufactured with quality
further away from the targeted amount, and since the magnitude of the new
variance is unknown, its MLE can be computed using testing data as follows [25]:
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The GLR statistic designed to specifically monitor a shift in the variance can now
be computed by taking the log-likelihood ratio of (Eqs. (3) and (7)) [25]:

Rk ¼ max
0≤ τ < k
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3.1.3 Univariate GLR chart for a shift in the mean and/or variance

Since it is possible for most processes to experience both shifts in the mean and
variance, a GLR statistic that is capable of detecting either type of shift can be
designed. The likelihood function of the alternate hypothesis for this case is defined
as follows [26]:
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The MLE of the mean can be computed from the testing data using (Eq. (5)).
However, the variance now has to be computed utilizing the MLE for the mean as
well [26]:

S2τ, k ¼
1

k� τ

Xk
i¼τþ1

xi � μ̂1, τ, k
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: (11)

As previously stated, from a quality control standpoint only an increase in the
variance is of concern, and the MLE for the variance can be computed as follows [26]:

110

Fault Detection, Diagnosis and Prognosis

σ̂2
1, τ, k ¼ max σ20; S

2
τ, k

� �
: (12)

If there are no shifts in the mean for testing data, the variance is computed as
follows [26]:
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In this case, the GLR statistic designed to simultaneously monitor both shifts in
the mean and variance, and can be computed by taking the log-likelihood ratio of
(Eqs. (3) and (10)) resulting in the following equation [26]:
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It is important to note that for this particular GLR method, two parameters, that
is, the mean and the variance have to be estimated using their MLE, since the type
of shift is unknown.

3.1.4 Multivariate GLR chart for a shift in the mean

Since using a univariate GLR chart may not always be practical, Wang and
Reynolds [27] introduce the multivariate GLR chart, designed to specifically moni-
tor shifts in the process mean for multivariate applications. In this case, the GLR
statistic is defined as follows:
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Where μ0 is the multivariate mean vector of the process under normal operating
conditions, μ̂1, t,k is the MLE of a sustained process mean shift μ1 at time index k
over sample window of maximum length m, and

P
0 is the process covariance

matrix under normal conditions [27].

3.2 Fault detection using PCA-based GLR

The PCA method introduced in Section 2 is commonly utilized by many indus-
tries. Therefore, it is necessary to integrate the simplicity of the PCA method with
the advantages brought forward by the GLR charts, so that it can be easily applied to
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PCA-based GLR fault detection algorithm.
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monitor processes online. Figure 1 illustrates the fault detection algorithm utilized
in this work.

PCA is utilized in order to model available data. The different GLR charts can
then be applied on the residuals produced by the PCA model in order to determine
if the process is operating under normal or faulty conditions. The fault detection
threshold limits are obtained from an empirical distribution of the GLR statistic
computed under normal operating conditions. The residual space is typically better
able at detecting faults of smaller magnitude [10].

4. Moving window interval data aggregation

Data utilized in the construction of a PCA model may be of two types depending
on the application being monitored: single-valued, and interval-valued. Single-
valued data can be directly obtained from sensors measuring particular variables in
a process, while interval-valued data is aggregated or artificially generated from
batch single-valued measurements, thereby resulting in a range of possible
measurement values for a given process variable at one time instant [18].

An interval is defined using a lower and upper bound, such as [a, b], where
a≤ b. In this work, interval data is generated by aggregating the single-valued
samples in a dataset, such that the mean of each block of aggregated samples is
defined as the interval center (c), and the standard deviation of each block of
aggregated samples is defined as the interval radii (r). Consequently, the intervals
can now be defined as [c � r, c + r]. Unlike the lower and upper bounds, the centers
and radii are of particular importance because they can be used to represent unique
characteristics of the classical samples from which they are generated [19].

Initially, the use of interval data is motivated by the need to quickly and effi-
ciently monitor large datasets [28], in addition to its ability to deal with missing
values without the need to remove entire samples. Generating intervals by aggre-
gation is a form of batch processing, which may not always be ideal. The ability to
monitor faults in real-time is typically much more desirable from a quality and
safety standpoint. It also becomes impractical to use batch aggregation when
discussing processes with a low sample size or low sampling frequency.

As a result, interval data aggregation must be adapted for real-time monitoring
purposes. One way to do that would be to use a moving window aggregation
technique, such that any observed sample is aggregated with previously gathered
samples, if any, in the defined window size. This allows for the generation and
processing of interval data in real-time, without the need to wait for multiple
samples to be observed before processing.

As expected, however, this method suffers from some drawbacks relative to its
batch aggregation counterpart. The moving window approach may cause smearing
along the detection statistic, leading to higher false alarms and lower detection rates.
This is especially true for large window sizes, as is the case for most methods which
apply that approach. The problem can be mitigated by limiting the window size to
reasonable limits, whilst also adjusting the threshold in order to meet the desired
false alarm rates of the process.

4.1 Integration with PCA-based GLR

Interval principal component analysis (IPCA) methods are an extension to the
classical PCA method, and they have been explored in literature for fault detection
and isolation examples [29, 30]. In this work, three IPCA methods will be briefly
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introduced, before discussing our proposed method of integrating the moving win-
dow interval approach to the PCA-based GLR technique.

Centers IPCA (CIPCA) was introduced by Cazes et al. [31], where the idea was
to only apply PCA to the matrix of interval centers. This method focuses on the
variation between the intervals of a dataset, rather than the variations within them
[18, 32]. Midpoint-Radii IPCA (MRIPCA) was developed by Lauro et al. [33–36],
where PCA models are separately generated for the centers and radii matrices of the
interval training dataset. Finally, the Symbolic Covariance IPCA (SCIPCA) method
was introduced by Le-Rademacher et al. [18, 32] as a way to better represent the
range and variability found in interval data.

In this paper, the integration of the moving window aggregation to PCA-based
GLR will be as follows. After generating an interval sample for each single-valued
sample, the single-valued matrices of interval centers and radii are extracted. The
matrices are then concatenated along the variables dimension, so as to maintain the
number of samples, but double the number of variables. This is similar to the
MRIPCA method, except it avoids the need to apply PCA twice, eliminating any
additional processing complexity.

5. Illustrative examples

This section evaluates the performance of the three PCA-based GLR charts
described in Section 3, and the moving window aggregation method discussed in
Section 4. The PCA-based GLR charts are evaluated under different fault scenarios,
and this is done through two illustrative examples: a simulated synthetic data set,
and the benchmark Tennessee Eastman Process (TEP). Three fault detection met-
rics are used to evaluate the performance of each univariate chart: missed DR
(which is equal to 100-DR), FAR, and average out-of-control run length (ARL1).
Finally, the moving window interval aggregation method, in tandem with the PCA-
based multivariate GLR chart, are analyzed using the benchmark TEP process, and
the results are tabulated and compared to the single-valued multivariate GLR chart.

5.1 Simulated synthetic data example

The purpose of this example is to utilize a simple linear model to compare and
evaluate the performance of the difference PCA-based univariate GLR charts. The
linear data set can be generated using the following model [37]:

x1
x2
x3
x4
x5
x6

2
666666664

3
777777775
¼

�0:3441 0:4815 0:6637

�0:2313 �0:5936 0:3545

�0:5060 0:2495 0:0739

�0:5552 �0:2405 �0:1123

�0:3371 0:3822 �0:6115

�0:3877 �0:3868 �0:2045

2
666666664

3
777777775

t1
t2
t3

2
64

3
75þ noise (16)

where, t1, t2, and t3, are uniformly distributed random variables with ranges,
0; 2½ �, 0; 1:6½ �, and 0; 1:2½ �, respectively, while the noise follows a normal distribution
with zero-mean and standard deviation of 0.2 [37].

The linear model is used to generate 6000 observations, split into training and
testing data sets of 3000 observations each. The training data are used to train the
PCA model, while the testing data are used to evaluate the performance of all
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monitor processes online. Figure 1 illustrates the fault detection algorithm utilized
in this work.

PCA is utilized in order to model available data. The different GLR charts can
then be applied on the residuals produced by the PCA model in order to determine
if the process is operating under normal or faulty conditions. The fault detection
threshold limits are obtained from an empirical distribution of the GLR statistic
computed under normal operating conditions. The residual space is typically better
able at detecting faults of smaller magnitude [10].

4. Moving window interval data aggregation

Data utilized in the construction of a PCA model may be of two types depending
on the application being monitored: single-valued, and interval-valued. Single-
valued data can be directly obtained from sensors measuring particular variables in
a process, while interval-valued data is aggregated or artificially generated from
batch single-valued measurements, thereby resulting in a range of possible
measurement values for a given process variable at one time instant [18].

An interval is defined using a lower and upper bound, such as [a, b], where
a≤ b. In this work, interval data is generated by aggregating the single-valued
samples in a dataset, such that the mean of each block of aggregated samples is
defined as the interval center (c), and the standard deviation of each block of
aggregated samples is defined as the interval radii (r). Consequently, the intervals
can now be defined as [c � r, c + r]. Unlike the lower and upper bounds, the centers
and radii are of particular importance because they can be used to represent unique
characteristics of the classical samples from which they are generated [19].

Initially, the use of interval data is motivated by the need to quickly and effi-
ciently monitor large datasets [28], in addition to its ability to deal with missing
values without the need to remove entire samples. Generating intervals by aggre-
gation is a form of batch processing, which may not always be ideal. The ability to
monitor faults in real-time is typically much more desirable from a quality and
safety standpoint. It also becomes impractical to use batch aggregation when
discussing processes with a low sample size or low sampling frequency.

As a result, interval data aggregation must be adapted for real-time monitoring
purposes. One way to do that would be to use a moving window aggregation
technique, such that any observed sample is aggregated with previously gathered
samples, if any, in the defined window size. This allows for the generation and
processing of interval data in real-time, without the need to wait for multiple
samples to be observed before processing.

As expected, however, this method suffers from some drawbacks relative to its
batch aggregation counterpart. The moving window approach may cause smearing
along the detection statistic, leading to higher false alarms and lower detection rates.
This is especially true for large window sizes, as is the case for most methods which
apply that approach. The problem can be mitigated by limiting the window size to
reasonable limits, whilst also adjusting the threshold in order to meet the desired
false alarm rates of the process.

4.1 Integration with PCA-based GLR

Interval principal component analysis (IPCA) methods are an extension to the
classical PCA method, and they have been explored in literature for fault detection
and isolation examples [29, 30]. In this work, three IPCA methods will be briefly
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introduced, before discussing our proposed method of integrating the moving win-
dow interval approach to the PCA-based GLR technique.

Centers IPCA (CIPCA) was introduced by Cazes et al. [31], where the idea was
to only apply PCA to the matrix of interval centers. This method focuses on the
variation between the intervals of a dataset, rather than the variations within them
[18, 32]. Midpoint-Radii IPCA (MRIPCA) was developed by Lauro et al. [33–36],
where PCA models are separately generated for the centers and radii matrices of the
interval training dataset. Finally, the Symbolic Covariance IPCA (SCIPCA) method
was introduced by Le-Rademacher et al. [18, 32] as a way to better represent the
range and variability found in interval data.

In this paper, the integration of the moving window aggregation to PCA-based
GLR will be as follows. After generating an interval sample for each single-valued
sample, the single-valued matrices of interval centers and radii are extracted. The
matrices are then concatenated along the variables dimension, so as to maintain the
number of samples, but double the number of variables. This is similar to the
MRIPCA method, except it avoids the need to apply PCA twice, eliminating any
additional processing complexity.

5. Illustrative examples

This section evaluates the performance of the three PCA-based GLR charts
described in Section 3, and the moving window aggregation method discussed in
Section 4. The PCA-based GLR charts are evaluated under different fault scenarios,
and this is done through two illustrative examples: a simulated synthetic data set,
and the benchmark Tennessee Eastman Process (TEP). Three fault detection met-
rics are used to evaluate the performance of each univariate chart: missed DR
(which is equal to 100-DR), FAR, and average out-of-control run length (ARL1).
Finally, the moving window interval aggregation method, in tandem with the PCA-
based multivariate GLR chart, are analyzed using the benchmark TEP process, and
the results are tabulated and compared to the single-valued multivariate GLR chart.

5.1 Simulated synthetic data example

The purpose of this example is to utilize a simple linear model to compare and
evaluate the performance of the difference PCA-based univariate GLR charts. The
linear data set can be generated using the following model [37]:

x1
x2
x3
x4
x5
x6

2
666666664

3
777777775
¼

�0:3441 0:4815 0:6637

�0:2313 �0:5936 0:3545

�0:5060 0:2495 0:0739

�0:5552 �0:2405 �0:1123

�0:3371 0:3822 �0:6115

�0:3877 �0:3868 �0:2045

2
666666664

3
777777775

t1
t2
t3

2
64

3
75þ noise (16)

where, t1, t2, and t3, are uniformly distributed random variables with ranges,
0; 2½ �, 0; 1:6½ �, and 0; 1:2½ �, respectively, while the noise follows a normal distribution
with zero-mean and standard deviation of 0.2 [37].

The linear model is used to generate 6000 observations, split into training and
testing data sets of 3000 observations each. The training data are used to train the
PCA model, while the testing data are used to evaluate the performance of all
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techniques using three cases of faults: a shift in the mean, a shift in the variance, and
a simultaneous shift in both.

Five charts are evaluated and compared: the PCA-based T2 and Q charts, and the
three different PCA-based univariate GLR charts. The faulty region is highlighted in
light blue for all figures, and the fault detection threshold limits for all charts are
represented by the red dotted line. For each case a Monte-Carlo simulation of 1000
realizations is carried out in order to obtain meaningful results, so that conclusions
can be drawn.

5.1.1 Case 1: a shift in the mean

For this case, a shift in the mean of 1σ was introduced between observations
1501 and 3000 in x1 in the testing data set. This fault size was chosen as most
conventional techniques are unable to detect a fault of this magnitude. Faults of
higher magnitude would likely provide misleading results and exaggerate the
robustness of the method in question, leading to a biased comparison.

As can be seen through Figure 2, the T2 and Q charts are unable to detect the
entirety of the fault. In contrast, two GLR charts (Figure 3a and c), are able to
detect most of the fault, while the GLR chart designed to monitor a shift in the
variance (Figure 3b) could not detect that a shift in the mean was present.

Examining the summary of the fault detection results (Table 1), it can be
observed that the GLR chart designed to monitor shifts in the mean (Figure 3a)
provided the lowest missed DR and ARL1 values, compared to all other charts.

Figure 2.
PCA-based T2 and Q charts (case 1).

Figure 3.
PCA-based GLR charts (case 1).
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The relatively high missed DR of the GLR chart designed to simultaneously
monitor shifts in both the mean and variance (Figure 3c) can be attributed to the
fact that two parameters need to be estimated from available data while maximizing
the GLR statistic, thereby making it difficult to predict a shift in a single parameter
as efficiently.

5.1.2 Case 2: a shift in the variance

For this case, an increase in the variance (double that of the training data) was
introduced between observations 1501:3000 in x1 in the testing data set. This shift
in the variance is too small for detection by most conventional techniques.

As can be seen through Figure 4, the T2 and Q charts are unable to detect the
entirety of the fault. In contrast, two GLR charts (Figure 5b and c) were able to
detect most of the fault, while the GLR chart designed to monitor a shift in the mean
(Figure 5a) could not detect it as well. Examining the summary of the results
(Table 2), it can be observed that the GLR chart designed to monitor a shift in the
variance (Figure 5b) provided the lowest missed DR and ARL1 values, compared to
other charts.

5.1.3 Case 3: a shift in the mean and/or variance

For this case, a simultaneous shift in the mean of 1σ and an increase in the
variance (double that of the training data) was introduced between observations
1501:3000 in x1 in the testing data set.

PCA-
based
T2

PCA-
based
Q

PCA-based GLR
(to monitor mean)

PCA-based GLR
(to monitor
variance)

PCA-based GLR (to
monitor mean and/or

variance)

Missed
DR (%)

95.3 94.5 00.4 85.1 31.5

FAR
(%)

05.2 05.5 05.3 05.8 04.6

ARL1 20.1 16.6 04.8 81.8 05.0

Table 1.
Summary of fault detection results (case 1).

Figure 4.
PCA-based T2 and Q charts (case 2).
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techniques using three cases of faults: a shift in the mean, a shift in the variance, and
a simultaneous shift in both.

Five charts are evaluated and compared: the PCA-based T2 and Q charts, and the
three different PCA-based univariate GLR charts. The faulty region is highlighted in
light blue for all figures, and the fault detection threshold limits for all charts are
represented by the red dotted line. For each case a Monte-Carlo simulation of 1000
realizations is carried out in order to obtain meaningful results, so that conclusions
can be drawn.

5.1.1 Case 1: a shift in the mean

For this case, a shift in the mean of 1σ was introduced between observations
1501 and 3000 in x1 in the testing data set. This fault size was chosen as most
conventional techniques are unable to detect a fault of this magnitude. Faults of
higher magnitude would likely provide misleading results and exaggerate the
robustness of the method in question, leading to a biased comparison.

As can be seen through Figure 2, the T2 and Q charts are unable to detect the
entirety of the fault. In contrast, two GLR charts (Figure 3a and c), are able to
detect most of the fault, while the GLR chart designed to monitor a shift in the
variance (Figure 3b) could not detect that a shift in the mean was present.

Examining the summary of the fault detection results (Table 1), it can be
observed that the GLR chart designed to monitor shifts in the mean (Figure 3a)
provided the lowest missed DR and ARL1 values, compared to all other charts.

Figure 2.
PCA-based T2 and Q charts (case 1).

Figure 3.
PCA-based GLR charts (case 1).
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The relatively high missed DR of the GLR chart designed to simultaneously
monitor shifts in both the mean and variance (Figure 3c) can be attributed to the
fact that two parameters need to be estimated from available data while maximizing
the GLR statistic, thereby making it difficult to predict a shift in a single parameter
as efficiently.

5.1.2 Case 2: a shift in the variance

For this case, an increase in the variance (double that of the training data) was
introduced between observations 1501:3000 in x1 in the testing data set. This shift
in the variance is too small for detection by most conventional techniques.

As can be seen through Figure 4, the T2 and Q charts are unable to detect the
entirety of the fault. In contrast, two GLR charts (Figure 5b and c) were able to
detect most of the fault, while the GLR chart designed to monitor a shift in the mean
(Figure 5a) could not detect it as well. Examining the summary of the results
(Table 2), it can be observed that the GLR chart designed to monitor a shift in the
variance (Figure 5b) provided the lowest missed DR and ARL1 values, compared to
other charts.

5.1.3 Case 3: a shift in the mean and/or variance

For this case, a simultaneous shift in the mean of 1σ and an increase in the
variance (double that of the training data) was introduced between observations
1501:3000 in x1 in the testing data set.
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variance)
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Summary of fault detection results (case 1).
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As can be seen through Figure 6, the T2 and Q charts are unable to detect the
entirety of the fault once more. Although it might seem that all three GLR charts
(Figure 7) are able to detect most of the fault, upon closer inspection of the results
summarized in Table 3, it can be observed that the GLR charts designed to inde-
pendently detect a shift in the mean (Figure 7a), and variance (Figure 7b), are able
to provide significantly lower missed DR and ARL1 values compared to the chart
designed to monitors shifts in both (Figure 7c).

The main conclusion from this example is that if a process is expected to expe-
rience shifts in both the mean and/or variance, it is more beneficial to run the PCA-
based GLR charts designed to independently monitor shifts in the mean and vari-
ance as two parallel charts, rather than utilizing the GLR chart designed to simulta-
neously monitor both. Based on this conclusion, only the former two GLR charts
will be utilized for the next example.

PCA-
based T2

PCA-
based Q

PCA-based GLR
(to monitor mean)

PCA-based GLR
(to monitor
variance)

PCA-based GLR (to
monitor mean and/or

variance)

Missed
DR (%)

90.2 88.6 47.5 00.7 33.0

FAR
(%)

05.3 05.4 05.0 04.8 04.8

ARL1 10.1 8.3 07.9 04.5 05.6

Table 2.
Summary of fault detection results (case 2).

Figure 6.
PCA-based T2 and Q charts (case 3).

Figure 5.
PCA-based GLR charts (case 2).
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5.2 Tennessee Eastman Process (TEP)

In order to assess the feasibility of using two separate GLR charts to monitor
shifts in the process mean and variance, their performance has to be evaluated using
real data. Many authors utilize the Tennessee Eastman Process (TEP) in order to
evaluate the performance of their techniques [17, 38, 39]. The Tennessee Eastman
Process is a realistic simulation of an actual chemical process that consists of a
reactor, condenser, stripper, compressor, and separator, and is widely accepted as a
benchmark for fault detection [17].

The Tennessee Eastman Process contains a bank of pre-defined faults that can be
utilized by authors in order to assess the performance of their developed fault detec-
tion algorithms. More information on the Tennessee Eastman Process, the process
description, and the available bank of faults is available in literature [10, 17, 21, 38, 39].

Two fault scenarios will be examined in this work: IDV 3 and IDV 11 [39]. IDV 3
is a shift in the mean of the temperature of Feed D, while IDV 11 is random
variation in the reactor cooling water inlet temperature [39]. These two fault sce-
narios were selected because the conventional techniques are unable to provide the
best possible detection. For both scenarios, the fault is introduced after 800 obser-
vations of normal operation. The performance of four charts are evaluated: PCA-
based T2 and Q charts, and the PCA-based univariate GLR charts designed to
independently monitor shifts in the mean and variance. The faulty region is
highlighted in light blue in all figures.

5.2.1 IDV 3: a step fault in the mean of the temperature of feed D

For the case where there is a shift in the mean of the temperature of Feed D, the
PCA-based T2 and Q charts, and the PCA-based univariate GLR charts are

PCA-
based T2

PCA-
based Q

PCA-based GLR
(to monitor mean)

PCA-based GLR
(to monitor
variance)

PCA-based GLR (to
monitor mean and/or

variance)

Missed
DR (%)

86.7 84.5 00.4 00.4 24.2

FAR
(%)

05.2 05.2 04.9 05.3 05.5

ARL1 07.5 06.0 03.2 03.9 04.9

Table 3.
Summary of fault detection results (case 3).

Figure 7.
PCA-based GLR charts (case 3).
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As can be seen through Figure 6, the T2 and Q charts are unable to detect the
entirety of the fault once more. Although it might seem that all three GLR charts
(Figure 7) are able to detect most of the fault, upon closer inspection of the results
summarized in Table 3, it can be observed that the GLR charts designed to inde-
pendently detect a shift in the mean (Figure 7a), and variance (Figure 7b), are able
to provide significantly lower missed DR and ARL1 values compared to the chart
designed to monitors shifts in both (Figure 7c).

The main conclusion from this example is that if a process is expected to expe-
rience shifts in both the mean and/or variance, it is more beneficial to run the PCA-
based GLR charts designed to independently monitor shifts in the mean and vari-
ance as two parallel charts, rather than utilizing the GLR chart designed to simulta-
neously monitor both. Based on this conclusion, only the former two GLR charts
will be utilized for the next example.
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Table 2.
Summary of fault detection results (case 2).

Figure 6.
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Figure 5.
PCA-based GLR charts (case 2).
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5.2 Tennessee Eastman Process (TEP)

In order to assess the feasibility of using two separate GLR charts to monitor
shifts in the process mean and variance, their performance has to be evaluated using
real data. Many authors utilize the Tennessee Eastman Process (TEP) in order to
evaluate the performance of their techniques [17, 38, 39]. The Tennessee Eastman
Process is a realistic simulation of an actual chemical process that consists of a
reactor, condenser, stripper, compressor, and separator, and is widely accepted as a
benchmark for fault detection [17].

The Tennessee Eastman Process contains a bank of pre-defined faults that can be
utilized by authors in order to assess the performance of their developed fault detec-
tion algorithms. More information on the Tennessee Eastman Process, the process
description, and the available bank of faults is available in literature [10, 17, 21, 38, 39].

Two fault scenarios will be examined in this work: IDV 3 and IDV 11 [39]. IDV 3
is a shift in the mean of the temperature of Feed D, while IDV 11 is random
variation in the reactor cooling water inlet temperature [39]. These two fault sce-
narios were selected because the conventional techniques are unable to provide the
best possible detection. For both scenarios, the fault is introduced after 800 obser-
vations of normal operation. The performance of four charts are evaluated: PCA-
based T2 and Q charts, and the PCA-based univariate GLR charts designed to
independently monitor shifts in the mean and variance. The faulty region is
highlighted in light blue in all figures.

5.2.1 IDV 3: a step fault in the mean of the temperature of feed D

For the case where there is a shift in the mean of the temperature of Feed D, the
PCA-based T2 and Q charts, and the PCA-based univariate GLR charts are
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illustrated in Figures 8 and 9 respectively, and the fault detection results are
summarized in Table 4.

From Figure 8 it can be observed that the T2 and Q charts are unable to detect
the entirety of the fault, while the GLR chart designed to monitor shifts in the mean
(Figure 9a) is able to detect the most of the fault, and provides the lowest missed
DR (Table 4). Although, the T2 chart returns a low ARL1 value, it does not detect
the fault efficiently, and the low ARL1 value can be attributed to random noise.

Figure 8.
PCA-based T2 and Q charts (IDV 3).

Figure 9.
PCA-based GLR charts (IDV 3).

PCA-
based T2

PCA-
based Q

PCA-based GLR (to
monitor mean)

PCA-based GLR (to monitor
variance)

Missed DR
(%)

97.6 92.8 07.9 70.9

FAR (%) 04.8 04.5 05.0 05.4

ARL1 02.0 86.0 84.0 84.00

Table 4.
Summary of fault detection results (IDV 3).
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5.2.2 IDV 11: random variation in the reactor cooling water inlet temperature

For the case where there is random variation in the reactor cooling water inlet
temperature, the T2 and Q charts, and the GLR charts are illustrated in Figures 10
and 11 respectively, and the fault detection results are summarized in Table 5.

Although it might seem like the T2 and Q charts (Figure 10) are able to detect
most of the fault, they still have higher missed DR than both GLR charts
(Figure 11). The GLR chart designed to monitor shifts in the variance provides the
lowest missed DR from the charts that were compared.

From this example we can conclude that the PCA-based GLR charts are able
to provide improved fault detection results over the conventional PCA-based

Figure 10.
PCA-based T2 and Q charts (IDV 11).

Figure 11.
PCA-based GLR charts (IDV 11).

PCA-
based T2

PCA-
based Q

PCA-based GLR (to
monitor mean)

PCA-based GLR (to monitor
variance)

Missed DR (%) 09.9 22.3 02.3 01.9

FAR (%) 05.1 05.0 05.0 05.4

ARL1 20.0 24.0 28.0 24.0

Table 5.
Summary of fault detection results (IDV 11).
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5.2.2 IDV 11: random variation in the reactor cooling water inlet temperature

For the case where there is random variation in the reactor cooling water inlet
temperature, the T2 and Q charts, and the GLR charts are illustrated in Figures 10
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Although it might seem like the T2 and Q charts (Figure 10) are able to detect
most of the fault, they still have higher missed DR than both GLR charts
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PCA-
based T2

PCA-
based Q

PCA-based GLR (to
monitor mean)

PCA-based GLR (to monitor
variance)
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T2 and Q charts. The improved results can be attributed to the use of MLEs to
estimate the values of the unknown parameters used to maximize the GLR statistic,
allowing for the best possible DR to be achieved for a fixed FAR. This example also
demonstrates that the GLR charts can be easily designed and utilized to monitor
chemical processes, such as the TEP.

5.2.3 IDV 3 and IDV 11: single-valued vs. interval-valued multivariate GLR chart

For the final case study, the moving window interval aggregation method is
tested for the same fault scenarios tested previously for the TEP: IDV 3 and IDV 11.
A smaller sample window size of 10 samples is used for the multivariate GLR chart

Figure 12.
PCA-based multivariate GLR charts (IDV 3).

Figure 13.
PCA-based multivariate GLR charts (IDV 11).
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in order to highlight the difference between using single and interval-valued data
more clearly.

The interval aggregation window size was set at 10 samples. The IDV 3 and IDV
11 scenarios for both data types are shown in Figures 12 and 13, and the metrics for
each method are tabulated in Table 6.

There are two major observations to be made from the results. First, the use of
the multivariate GLR chart allowed for a more stable FAR for all cases due to the
presence of a single statistic to monitor for all variables, as opposed to the one for
each variable when using the univariate GLR charts. Second, the missed DR when
using interval data was significantly lower than that for single-valued data, reaching
perfect performance levels of zero missed DR for both scenarios.

The latter observation is attributed to interval data, especially the method of
generation, where the centers and radii are used as independent variables in the
same dataset. This method of aggregation helps the PCA model account for
shifts in the mean and variance respectively, similar to the univariate GLR chart
outline in Section 3.1.3. However, it does so without the need to tune any extra
parameters, due to the fact that a fault in the centers is likely to be caused by a
shift in the mean, while a fault in the radii is likely to be caused by a shift in
the variance.

6. Conclusions

In this chapter, the performance of GLR charts were compared to conventional
fault detection statistics, specifically the Q and T2 statistics, and the integration of
interval-valued data into real-time process monitoring was explored. The perfor-
mance of different PCA-based univariate GLR charts were examined using single-
valued data through two illustrative examples: simulated synthetic data, and the
Tennessee Eastman Process. The performance of the moving window interval
aggregation method was evaluated alongside that of single-valued data for the
multivariate GLR chart as well.

The results demonstrate that in order to monitor processes that may experience
both shifts in the mean and/or variance, the best performance is achieved by
implementing the two respective univariate GLR charts separately in parallel, rather
than the single chart designed to simultaneously detect shifts in both, as the simul-
taneous estimation of two parameters is unable to provide the best possible fault
detection performance. Moreover, the moving window interval aggregation
method, when combined with the multivariate GLR chart, was able to provide a
perfectly stable statistic, with an unwavering false alarm rate, in addition to the best
possible performance in detecting shifts in the mean and variance for two scenarios
of the Tennessee Eastman Process.

IDV 3 Single-
valued

multivariate GLR

IDV 3 Interval-
valued multivariate

GLR

IDV 11 Single-
valued multivariate

GLR

IDV 11 Interval-
valued multivariate

GLR

Missed
DR (%)

15.1 00.0 02.0 00.0

FAR (%) 05.0 05.0 05.0 05.0

Table 6.
Summary of fault detection results (single vs. interval data) for α = 5%.
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11 scenarios for both data types are shown in Figures 12 and 13, and the metrics for
each method are tabulated in Table 6.

There are two major observations to be made from the results. First, the use of
the multivariate GLR chart allowed for a more stable FAR for all cases due to the
presence of a single statistic to monitor for all variables, as opposed to the one for
each variable when using the univariate GLR charts. Second, the missed DR when
using interval data was significantly lower than that for single-valued data, reaching
perfect performance levels of zero missed DR for both scenarios.

The latter observation is attributed to interval data, especially the method of
generation, where the centers and radii are used as independent variables in the
same dataset. This method of aggregation helps the PCA model account for
shifts in the mean and variance respectively, similar to the univariate GLR chart
outline in Section 3.1.3. However, it does so without the need to tune any extra
parameters, due to the fact that a fault in the centers is likely to be caused by a
shift in the mean, while a fault in the radii is likely to be caused by a shift in
the variance.
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In this chapter, the performance of GLR charts were compared to conventional
fault detection statistics, specifically the Q and T2 statistics, and the integration of
interval-valued data into real-time process monitoring was explored. The perfor-
mance of different PCA-based univariate GLR charts were examined using single-
valued data through two illustrative examples: simulated synthetic data, and the
Tennessee Eastman Process. The performance of the moving window interval
aggregation method was evaluated alongside that of single-valued data for the
multivariate GLR chart as well.

The results demonstrate that in order to monitor processes that may experience
both shifts in the mean and/or variance, the best performance is achieved by
implementing the two respective univariate GLR charts separately in parallel, rather
than the single chart designed to simultaneously detect shifts in both, as the simul-
taneous estimation of two parameters is unable to provide the best possible fault
detection performance. Moreover, the moving window interval aggregation
method, when combined with the multivariate GLR chart, was able to provide a
perfectly stable statistic, with an unwavering false alarm rate, in addition to the best
possible performance in detecting shifts in the mean and variance for two scenarios
of the Tennessee Eastman Process.

IDV 3 Single-
valued

multivariate GLR

IDV 3 Interval-
valued multivariate

GLR

IDV 11 Single-
valued multivariate

GLR

IDV 11 Interval-
valued multivariate

GLR

Missed
DR (%)

15.1 00.0 02.0 00.0

FAR (%) 05.0 05.0 05.0 05.0

Table 6.
Summary of fault detection results (single vs. interval data) for α = 5%.
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Chapter 7

Real-Time Fault Detection and 
Diagnosis Using Intelligent 
Monitoring and Supervision 
Systems
Gustavo Pérez Alvarez

Abstract

In monitoring and supervision schemes, fault detection and diagnosis  
characterize high efficiency and quality production systems. To achieve such prop-
erties, these structures are based on techniques that allow detection and diagnosis 
of failures in real time. Detection signals faults and diagnostics provide the root 
cause and location. Fault detection is based on signal and process mathematical 
models, while fault diagnosis is focused on systems theory and process modeling. 
Monitoring and supervision complement each other in fault management, thus 
enabling normal and continuous operation. Its application avoids stopping pro-
ductive processes by early detection of failures and by applying real-time actions 
to eliminate them, such as predictive and proactive maintenance based on process 
conditions. The integration of all these methodologies enables intelligent monitor-
ing and supervision systems, enabling real-time fault detection and diagnosis. 
Their high performance is associated with statistical decision-making techniques, 
expert systems, artificial neural networks, fuzzy logic and computational pro-
cedures, making them efficient and fully autonomous in making decisions in the 
real-time operation of a production system.

Keywords: automatic control, availability, intelligent systems, monitoring,  
predictive maintenance, supervision

1. Introduction

Advances in production techniques have improved the capacity of the produc-
tive systems of the industries, since the equipment used in these processes have 
improved their reliability and availability in the operation, making the productive 
processes more efficient.

One of the most critical questions about automated system design today is reli-
ability and availability of a system. A traditional way to improve the reliability and 
availability of systems is to improve the quality, reliability, and robustness of the 
individual components of such a system, such as such as sensors, actuators, control-
lers and/or computers, used integrally in modern monitoring processes. Even so, a 
fault-free operation cannot be guaranteed. Process monitoring and fault diagnosis 
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are a vital part of the innovative and modern systems of automatic management of 
the operation of production systems [1, 2].

Since the life cycle stages of production process equipment require high invest-
ments, and maintenance and operation procedures to achieve appropriate return 
times on the investments made, must ensure high availability and reliability rates. 
These performance indexes are improved by reducing the number of failures and 
managing their severities, while ensuring an increase in overall security.

To achieve these goals, two important techniques are available that allow opti-
mized maintenance management, known as predictive and proactive, which are 
complemented by the techniques: corrective and preventive. This set of techniques 
offers its best results through the implementation of efficient real-time monitoring 
and supervision structures, making production systems highly reliable in supply-
ing their products and in the quality of products offered. Corrective maintenance 
corrects the problem, preventive maintenance prevents the problem.

On the other hand, predictive maintenance consists in the frequent measure-
ment of physical quantities, considered representative and through the analysis of 
their behavior, to extract their state or operative condition. This allows to suggest 
the most appropriate moment to apply the necessary actions in the equipments that 
present characteristics of being in the initial state of a fault - early failure (the root 
cause is slightly impacting the equipment continuously), anticipating in this way 
to the emergence of a serious system failure. The predictive maintenance process 
allows obtaining a report on the operational condition of the equipment. This 
process of issuing the report basically comprises four stages:

• Identification of the failure modes that are occurring;

• Fault location;

• Evaluation of its extension;

• Estimation of the remaining life of the equipment or component in question.

In traditional predictive maintenance processes, all these steps are performed 
manually. Alternatively, these steps can be performed using computer systems that 
allow automating this process is called Systems for Automatic Fault Diagnosis [3].

As can be inferred, the selection, implementation, operation and maintenance of 
a System for Automatic Diagnosis of Failures is not a simple task, requiring at each 
stage, care so that the result provided by the system, after its implementation, is 
within the one initially specified. For this, it is necessary to use appropriate tools and 
strategies, in each step, in order to maximize the success in executing each of them.

Proactive maintenance is a procedure that minimizes the impact of lack of 
maintenance or reduced maintenance on the equipment of a production system 
and also by its own characteristics complements the other maintenance techniques. 
The main action of this maintenance is to analyze the performance indicators and 
identify the root cause of the failures, the degradation of the equipment and to 
remove them before the severity of a fault itself increases [4].

In this chapter, a description will be given of the various methodologies for 
converting an online monitoring and supervision system into an intelligent system 
that allows the detection and diagnosis of failures, training it to assure autonomy 
in taking the necessary actions in real time to avoid them and seek their causes to 
eliminate them.

The proposed content has two basic objectives: to discuss some important 
factors for the success in the implantation and use of these structures or systems, as 
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well as the main benefits in the integrated and simultaneous use of the monitoring 
and supervision of several physical quantities of the equipment, with the goal of 
increasing the “accuracy” of fault detection and diagnosis.

The technological development in this area has allowed the emergence of 
innovative methodologies for the detection and diagnosis of failures. The failure 
detection method recognizes that the failure has occurred, and fault diagnosis finds 
the root cause and location of that failure. In general, fault detection methods are 
based on mathematical models of signal and process, and on methods of systems 
theory and process modeling to generate fault symptoms. Fault diagnosis methods 
use causal relationships between fault and symptom, applying statistical decision 
methods, artificial intelligence and computational software [5].

Among the existing model-based fault diagnosis schemes, the so-called observa-
tions-based technique has received much attention since the 1990s. This technique 
was developed within the framework of the successful theory of advanced control, 
where powerful tools are available to design or to extrapolate recorded observations 
through efficient and reliable algorithms for data processing in order to reconstruct 
process variables.

The content described here is intended to provide an introduction to advanced 
monitoring and supervision, focused as a framework or intelligent assembly for 
fault detection and diagnostics [1, 6], and fault-tolerant systems especially for 
processes characterized by continuous and sampled (discrete) signals.

In general, almost all physical signals are continuous, for example, position and 
velocity of a body, speech or music picked up by a microphone, voltage or current in 
an electric circuit.

The sampling (instantaneous) of an analog signal or waveform is the process 
by which the signal is represented by a discrete set of numbers. These numbers, or 
samples, are equal to the signal value at well-determined instants (the sampling 
times). Samples must be obtained in such a way that it is possible to reconstruct the 
signal accurately. That is, the original waveform, defined in “continuous” time, is 
represented in “discrete” time by samples obtained at conveniently spaced sam-
pling instants.

An application-oriented approach will also be done with methods that have 
proven their proper performance in practical applications.

2. Monitoring and supervision of systems

The monitoring and supervision of processes aim to show the real state of the 
equipment involved in a productive process, indicating undesirable or illicit states 
and the appearance of a change in its initial phase (early failure). This situation will 
require taking appropriate and immediate action to avoid catastrophic damage in 
the future.

Deviations from the normal behavior of the parameters of an equipment or sys-
tem arise from faults and/or errors, which can be attributed to several causes. These 
changes are symptoms of possible early failure, and if the necessary actions are not 
taken to eliminate them, they may become actual failures that may compromise the 
performance of productive systems. The justification for monitoring and supervi-
sion systems is to avoid such defects or failures in systems by collecting continuous 
information (provided by the monitoring system) in real time, on the behavior of 
the equipment of a production system and its supervision data) that will allow you 
to determine if a device or equipment is operating normally or at risk.

Deviations from the normal behavior of the parameters of an equipment or 
system arise from faults and/or errors, which can be attributed to several causes. 
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are a vital part of the innovative and modern systems of automatic management of 
the operation of production systems [1, 2].

Since the life cycle stages of production process equipment require high invest-
ments, and maintenance and operation procedures to achieve appropriate return 
times on the investments made, must ensure high availability and reliability rates. 
These performance indexes are improved by reducing the number of failures and 
managing their severities, while ensuring an increase in overall security.

To achieve these goals, two important techniques are available that allow opti-
mized maintenance management, known as predictive and proactive, which are 
complemented by the techniques: corrective and preventive. This set of techniques 
offers its best results through the implementation of efficient real-time monitoring 
and supervision structures, making production systems highly reliable in supply-
ing their products and in the quality of products offered. Corrective maintenance 
corrects the problem, preventive maintenance prevents the problem.

On the other hand, predictive maintenance consists in the frequent measure-
ment of physical quantities, considered representative and through the analysis of 
their behavior, to extract their state or operative condition. This allows to suggest 
the most appropriate moment to apply the necessary actions in the equipments that 
present characteristics of being in the initial state of a fault - early failure (the root 
cause is slightly impacting the equipment continuously), anticipating in this way 
to the emergence of a serious system failure. The predictive maintenance process 
allows obtaining a report on the operational condition of the equipment. This 
process of issuing the report basically comprises four stages:

• Identification of the failure modes that are occurring;

• Fault location;

• Evaluation of its extension;

• Estimation of the remaining life of the equipment or component in question.

In traditional predictive maintenance processes, all these steps are performed 
manually. Alternatively, these steps can be performed using computer systems that 
allow automating this process is called Systems for Automatic Fault Diagnosis [3].

As can be inferred, the selection, implementation, operation and maintenance of 
a System for Automatic Diagnosis of Failures is not a simple task, requiring at each 
stage, care so that the result provided by the system, after its implementation, is 
within the one initially specified. For this, it is necessary to use appropriate tools and 
strategies, in each step, in order to maximize the success in executing each of them.
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maintenance or reduced maintenance on the equipment of a production system 
and also by its own characteristics complements the other maintenance techniques. 
The main action of this maintenance is to analyze the performance indicators and 
identify the root cause of the failures, the degradation of the equipment and to 
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In this chapter, a description will be given of the various methodologies for 
converting an online monitoring and supervision system into an intelligent system 
that allows the detection and diagnosis of failures, training it to assure autonomy 
in taking the necessary actions in real time to avoid them and seek their causes to 
eliminate them.

The proposed content has two basic objectives: to discuss some important 
factors for the success in the implantation and use of these structures or systems, as 
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well as the main benefits in the integrated and simultaneous use of the monitoring 
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increasing the “accuracy” of fault detection and diagnosis.

The technological development in this area has allowed the emergence of 
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detection method recognizes that the failure has occurred, and fault diagnosis finds 
the root cause and location of that failure. In general, fault detection methods are 
based on mathematical models of signal and process, and on methods of systems 
theory and process modeling to generate fault symptoms. Fault diagnosis methods 
use causal relationships between fault and symptom, applying statistical decision 
methods, artificial intelligence and computational software [5].

Among the existing model-based fault diagnosis schemes, the so-called observa-
tions-based technique has received much attention since the 1990s. This technique 
was developed within the framework of the successful theory of advanced control, 
where powerful tools are available to design or to extrapolate recorded observations 
through efficient and reliable algorithms for data processing in order to reconstruct 
process variables.

The content described here is intended to provide an introduction to advanced 
monitoring and supervision, focused as a framework or intelligent assembly for 
fault detection and diagnostics [1, 6], and fault-tolerant systems especially for 
processes characterized by continuous and sampled (discrete) signals.

In general, almost all physical signals are continuous, for example, position and 
velocity of a body, speech or music picked up by a microphone, voltage or current in 
an electric circuit.

The sampling (instantaneous) of an analog signal or waveform is the process 
by which the signal is represented by a discrete set of numbers. These numbers, or 
samples, are equal to the signal value at well-determined instants (the sampling 
times). Samples must be obtained in such a way that it is possible to reconstruct the 
signal accurately. That is, the original waveform, defined in “continuous” time, is 
represented in “discrete” time by samples obtained at conveniently spaced sam-
pling instants.

An application-oriented approach will also be done with methods that have 
proven their proper performance in practical applications.

2. Monitoring and supervision of systems

The monitoring and supervision of processes aim to show the real state of the 
equipment involved in a productive process, indicating undesirable or illicit states 
and the appearance of a change in its initial phase (early failure). This situation will 
require taking appropriate and immediate action to avoid catastrophic damage in 
the future.

Deviations from the normal behavior of the parameters of an equipment or sys-
tem arise from faults and/or errors, which can be attributed to several causes. These 
changes are symptoms of possible early failure, and if the necessary actions are not 
taken to eliminate them, they may become actual failures that may compromise the 
performance of productive systems. The justification for monitoring and supervi-
sion systems is to avoid such defects or failures in systems by collecting continuous 
information (provided by the monitoring system) in real time, on the behavior of 
the equipment of a production system and its supervision data) that will allow you 
to determine if a device or equipment is operating normally or at risk.

Deviations from the normal behavior of the parameters of an equipment or 
system arise from faults and/or errors, which can be attributed to several causes. 
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These changes are symptoms of possible failures in their early state, and failure to take 
the necessary actions to eliminate them can lead to real failures that may compromise 
the performance of productive systems. The justification for the monitoring and 
supervision systems is to avoid these defects or failures in the systems by collecting 
continuous information (provided by the monitoring system) in real time, on the 
behavior of the equipment of a production system and its supervision (data evaluation 
collected) to determine whether a device or equipment is operating normally or at risk.

The content presented in this chapter is focused primarily on the areas of system 
monitoring and supervision. We have shown the changes that can be made in these 
two areas of observation and analysis of the behavior of the parameters of a system 
during its operation, to make them more efficient in solving problems of production 
systems. The fundamental objective of this information is to integrate these two areas 
into one set only through the use of the Smart System technique, allowing its unified 
application in real time in decision making, in any area of a production system [2].

The Smart System technique will make productive systems economically 
efficient by improving their performance, quality, reliability of supply, operational 
flexibility, safety, etc.

2.1 Fault diagnosis monitoring systems

It should be noted that the selection, implementation, operation and mainte-
nance of a system for automatic fault diagnosis is a complex task [2, 7]. You must 
ensure that the result provided by this system is within the programmed specifica-
tions. For this, it is necessary to use appropriate tools and strategies, in each step, in 
order to maximize the success in executing each of them.

The concept of predictive maintenance is directly linked to the monitoring of 
the condition (state) of one or more equipment. O monitoring as such is a basic 
tool for the implementation of predictive maintenance strategies. Monitoring can 
be classified from the point of view of the type of sensor installation (permanent 
or mobile), or be classified by the data acquisition strategy “continuous/on-line” or 
“periodic/off-line”.

“Continuous/on-line” monitoring systems often work in an integrated way with 
the Supervisory and Control Systems, or “Supervisory Systems” of the production 
systems, both of which have individual requirements for data acquisition and func-
tions totally different from one another. The integration of these two systems allows 
for the “continuous” acquisition of operating data and the variables of slow varia-
tion (temperatures, levels, position values, static pressures, etc.) normally available 
in these systems.

Automatic Diagnostic Systems - ADS are the next step to pure and simple 
monitoring. These more advanced systems receive information from the monitor-
ing system and, through the use of intelligent software, can manage” Knowledge 
Bank”, where information obtained from various physical parameters is crossed and 
integrated, from where a result that is closer to what one really wants: an effective 
aid to decision-making.

2.2 Main features of automatic fault diagnostic systems

Automatic processing systems are integrated by computer programs, focused 
on the technique of artificial intelligence, and are responsible for automatically 
processing all information from the monitoring systems. The main objective of the 
integration of these systems in the operation of a productive system is the automatic 
detection of incipient faults and their main characteristics, that is, faults that are in 
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the initial phase of their formation (early faults), their identification, location and 
estimation of the degree of severity.

The main characteristic of ADSs is that they can handle large amounts of data 
generated by Monitoring Systems in a systematic, frequent and automatic way, 
and optimize the process of data storage during long periods of operation (months 
or years). Another attribute of the ADSs is their intrinsic characteristic, that is, 
throughout the time of use, each time less need of the interference of the user. 
Another important feature of ADSs is their adequacy as a Knowledge Management 
tool in predictive maintenance [8, 9].

The characteristic limitation of this type of system, as well as of any type of 
Monitoring System traditionally used, is presented when dealing with faults of 
instant or catastrophic evolution. For this, “Protection Systems”, with fixed and 
well-established alarm limits, should be considered as the main option. The prin-
ciples of operation, as well as the necessary technical characteristics, relating to the 
acquisition, communication and processing of data from each of these systems are 
fundamentally different and should not be confused [10].

Basically, ADSs have the function of reporting the occurrence of failures when 
they are still in their infancy, while the Protection Systems must act at the moment 
an unacceptable operating situation occurs.

The technological development in the systems of monitoring and supervision will 
allow the structuring and optimized evolution of the areas of automated detection 
and diagnosis, this being the next step to the pure and simple monitoring. These sys-
tems receive information from the monitoring system, consisting essentially of sen-
sors and through the use of the technique of intelligent systems and expert systems, a 
“knowledge bank” is managed or also called the knowledge base for decision making.

The evaluation of the information provided by the monitoring and supervi-
sion system will allow to detect and locate a problem and diagnose its root cause, 
simultaneously, it will be possible to select the best action to mitigate changes in the 
behavior of the parameters of interest and eliminate the cause that produces them. 
Finally, the system itself will decide whether to take this action online or offline, 
depending on the severity and robustness of the problem.

Another important characteristic that is considered in the design of these systems 
is their intrinsic characteristic that, throughout the time of use, they are less and less 
required to interfere with the user. That is, while in the case of traditional monitoring 
systems, the accumulation of stored, non-processed data by the user is a natural conse-
quence of the monitoring process itself, and the effort to treat such data never dimin-
ishes over time. In the ADSs the manual work involved in the processing of information 
is decreasing over time. This is due to the fact that there are tools and mechanisms of 
retention and improvement of the knowledge registered in these systems. Thus, by 
using knowledge management tools, maintenance team members can track, correct, 
insert, retrieve, and refine existing content in their Knowledge Bank (expert systems).

In this way, it can be said that the joint monitoring and supervision system has 
become intelligent and consequently autonomous to operate a production system in 
an efficient way from a technical as well as an economic point of view.

2.3 Structuring of monitoring and supervision systems in an intelligent system

In this section, a description of the methodology used for the conversion of a 
monitoring and supervision system in an intelligent system that allows the detec-
tion, localization and diagnosis of failures is made possible to take the most appro-
priate actions to eliminate them and to seek their causes to avoid them. This will 
improve the efficiency of production systems.
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The Smart System technique will make productive systems economically 
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nance of a system for automatic fault diagnosis is a complex task [2, 7]. You must 
ensure that the result provided by this system is within the programmed specifica-
tions. For this, it is necessary to use appropriate tools and strategies, in each step, in 
order to maximize the success in executing each of them.

The concept of predictive maintenance is directly linked to the monitoring of 
the condition (state) of one or more equipment. O monitoring as such is a basic 
tool for the implementation of predictive maintenance strategies. Monitoring can 
be classified from the point of view of the type of sensor installation (permanent 
or mobile), or be classified by the data acquisition strategy “continuous/on-line” or 
“periodic/off-line”.

“Continuous/on-line” monitoring systems often work in an integrated way with 
the Supervisory and Control Systems, or “Supervisory Systems” of the production 
systems, both of which have individual requirements for data acquisition and func-
tions totally different from one another. The integration of these two systems allows 
for the “continuous” acquisition of operating data and the variables of slow varia-
tion (temperatures, levels, position values, static pressures, etc.) normally available 
in these systems.

Automatic Diagnostic Systems - ADS are the next step to pure and simple 
monitoring. These more advanced systems receive information from the monitor-
ing system and, through the use of intelligent software, can manage” Knowledge 
Bank”, where information obtained from various physical parameters is crossed and 
integrated, from where a result that is closer to what one really wants: an effective 
aid to decision-making.

2.2 Main features of automatic fault diagnostic systems

Automatic processing systems are integrated by computer programs, focused 
on the technique of artificial intelligence, and are responsible for automatically 
processing all information from the monitoring systems. The main objective of the 
integration of these systems in the operation of a productive system is the automatic 
detection of incipient faults and their main characteristics, that is, faults that are in 
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the initial phase of their formation (early faults), their identification, location and 
estimation of the degree of severity.

The main characteristic of ADSs is that they can handle large amounts of data 
generated by Monitoring Systems in a systematic, frequent and automatic way, 
and optimize the process of data storage during long periods of operation (months 
or years). Another attribute of the ADSs is their intrinsic characteristic, that is, 
throughout the time of use, each time less need of the interference of the user. 
Another important feature of ADSs is their adequacy as a Knowledge Management 
tool in predictive maintenance [8, 9].

The characteristic limitation of this type of system, as well as of any type of 
Monitoring System traditionally used, is presented when dealing with faults of 
instant or catastrophic evolution. For this, “Protection Systems”, with fixed and 
well-established alarm limits, should be considered as the main option. The prin-
ciples of operation, as well as the necessary technical characteristics, relating to the 
acquisition, communication and processing of data from each of these systems are 
fundamentally different and should not be confused [10].

Basically, ADSs have the function of reporting the occurrence of failures when 
they are still in their infancy, while the Protection Systems must act at the moment 
an unacceptable operating situation occurs.

The technological development in the systems of monitoring and supervision will 
allow the structuring and optimized evolution of the areas of automated detection 
and diagnosis, this being the next step to the pure and simple monitoring. These sys-
tems receive information from the monitoring system, consisting essentially of sen-
sors and through the use of the technique of intelligent systems and expert systems, a 
“knowledge bank” is managed or also called the knowledge base for decision making.

The evaluation of the information provided by the monitoring and supervi-
sion system will allow to detect and locate a problem and diagnose its root cause, 
simultaneously, it will be possible to select the best action to mitigate changes in the 
behavior of the parameters of interest and eliminate the cause that produces them. 
Finally, the system itself will decide whether to take this action online or offline, 
depending on the severity and robustness of the problem.

Another important characteristic that is considered in the design of these systems 
is their intrinsic characteristic that, throughout the time of use, they are less and less 
required to interfere with the user. That is, while in the case of traditional monitoring 
systems, the accumulation of stored, non-processed data by the user is a natural conse-
quence of the monitoring process itself, and the effort to treat such data never dimin-
ishes over time. In the ADSs the manual work involved in the processing of information 
is decreasing over time. This is due to the fact that there are tools and mechanisms of 
retention and improvement of the knowledge registered in these systems. Thus, by 
using knowledge management tools, maintenance team members can track, correct, 
insert, retrieve, and refine existing content in their Knowledge Bank (expert systems).

In this way, it can be said that the joint monitoring and supervision system has 
become intelligent and consequently autonomous to operate a production system in 
an efficient way from a technical as well as an economic point of view.

2.3 Structuring of monitoring and supervision systems in an intelligent system

In this section, a description of the methodology used for the conversion of a 
monitoring and supervision system in an intelligent system that allows the detec-
tion, localization and diagnosis of failures is made possible to take the most appro-
priate actions to eliminate them and to seek their causes to avoid them. This will 
improve the efficiency of production systems.
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Figure 1. 
Flowchart of intelligent monitoring and supervision system.

Smart System or Smart Grid in general terms is the application of information 
technologies in production systems, integrated with communication systems and 
with an automated network infrastructure. This technique requires the installation 
of sensors in all the fundamental equipment of the production systems, structur-
ing a reliable two-way communication system with wide coverage with the various 
devices and automation of the physical assets.

The current sensors have chips that detect information about the behavior of 
the parameters of certain equipment. These devices collect the information and 
those with changes are sent to an operation center through a communication system 
where they are analyzed to determine what is significant.

This process must occur in real time and online mode and in the presence of 
significant information, a centralized analysis system (specialized software) will 
evaluate them and determine the changes that have occurred and what should be 
done to improve the performance of a given parameter.
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In Figure 1, a block diagram is presented where the sequential structure of an 
intelligent monitoring and supervision system is described at a macro level. This 
configuration is a technological innovation in the area of intelligent automation. Its 
implementation is done through computational software of reference that will help 
in the process of evaluation, detection, location, diagnosis and application of the 
most appropriate actions in the elimination of a problem or failure.

An overview of each of the steps that will make up the intelligent monitoring 
and supervision systems (see flowchart in Figure 1) will be presented, highlighting 
the methodologies and techniques that will be used in each one of them in order to 
reach the required efficiency level which allows solving the various problems that 
arise in the equipment used in the production processes. This efficiency will be 
measured by the degree of automatism in real time and the autonomy in decision 
making in the presence of a certain disturbance. This will indicate a fully intelligent 
system that will safeguard the integrity and security of a production system, avoid-
ing collapses and economic and technical damages.

2.3.1 Monitoring

To monitor is to observe, analyze and be aware of possible signs that something 
is not normal. In information technology, “not normal” can indicate unavailability 
of one or more parts of a system or simply change a parameter of a device.

In this phase the observation of changes or changes in the modules of the param-
eters of transcendence in time is realized. These changes must be recorded within a 
data collection system called the Database, which will allow us to construct a history 
of the behavior in time of a given variable or parameter according to a reference 
level or threshold of behavior [11, 12].

This process is carried out only through a robust system of sensors, installed at 
strategic points of equipment or system, allowing its observability continuous  
in time [1].

Monitoring is carried out using the following methodologies:

a. Digital recorders—perform digital recording of all information from the sen-
sors. It is through these devices that the history of the behavior of a parameter 
or variable in time is constructed. This information is usually stored in the 
binary system.

b. Remote digital sensors (threshold)—transducer is the name given to a sensor or 
actuator, which in turn are devices for detection and actuation in a given process.

With the advent of microcontrollers and microprocessors and the great avail-
ability of tools and resources for the processing of digital systems, it was possible to 
introduce a high computing capacity to the transducers.

The intelligent transducer, which is the integration of: (a) an analog or digital 
sensor or an actuator, (b) a processing unit, and (c) a network interface.

A smart transducer transforms the sensor’s raw signals into a standardized 
digital representation, transmitting this digital signal to its users through a stan-
dardized digital communication protocol.

In Table 1, the sensors that are part of the two types of sensors existent for the 
realization of the monitoring process are described.

c. Oscillography—aims to enable the post-event analysis of disturbances, dif-
ferent from the protection systems that must act in real time in response to 
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In Figure 1, a block diagram is presented where the sequential structure of an 
intelligent monitoring and supervision system is described at a macro level. This 
configuration is a technological innovation in the area of intelligent automation. Its 
implementation is done through computational software of reference that will help 
in the process of evaluation, detection, location, diagnosis and application of the 
most appropriate actions in the elimination of a problem or failure.

An overview of each of the steps that will make up the intelligent monitoring 
and supervision systems (see flowchart in Figure 1) will be presented, highlighting 
the methodologies and techniques that will be used in each one of them in order to 
reach the required efficiency level which allows solving the various problems that 
arise in the equipment used in the production processes. This efficiency will be 
measured by the degree of automatism in real time and the autonomy in decision 
making in the presence of a certain disturbance. This will indicate a fully intelligent 
system that will safeguard the integrity and security of a production system, avoid-
ing collapses and economic and technical damages.

2.3.1 Monitoring

To monitor is to observe, analyze and be aware of possible signs that something 
is not normal. In information technology, “not normal” can indicate unavailability 
of one or more parts of a system or simply change a parameter of a device.

In this phase the observation of changes or changes in the modules of the param-
eters of transcendence in time is realized. These changes must be recorded within a 
data collection system called the Database, which will allow us to construct a history 
of the behavior in time of a given variable or parameter according to a reference 
level or threshold of behavior [11, 12].

This process is carried out only through a robust system of sensors, installed at 
strategic points of equipment or system, allowing its observability continuous  
in time [1].

Monitoring is carried out using the following methodologies:

a. Digital recorders—perform digital recording of all information from the sen-
sors. It is through these devices that the history of the behavior of a parameter 
or variable in time is constructed. This information is usually stored in the 
binary system.

b. Remote digital sensors (threshold)—transducer is the name given to a sensor or 
actuator, which in turn are devices for detection and actuation in a given process.

With the advent of microcontrollers and microprocessors and the great avail-
ability of tools and resources for the processing of digital systems, it was possible to 
introduce a high computing capacity to the transducers.

The intelligent transducer, which is the integration of: (a) an analog or digital 
sensor or an actuator, (b) a processing unit, and (c) a network interface.

A smart transducer transforms the sensor’s raw signals into a standardized 
digital representation, transmitting this digital signal to its users through a stan-
dardized digital communication protocol.

In Table 1, the sensors that are part of the two types of sensors existent for the 
realization of the monitoring process are described.

c. Oscillography—aims to enable the post-event analysis of disturbances, dif-
ferent from the protection systems that must act in real time in response to 
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disturbances. In fact, oscillography is a complementary tool to the protection 
systems, as it allows the specialist in the analysis of disturbances to verify the 
adjustments of a given protection, as well as any defects that may arise.

A very useful calculation performed by specialists from the oscillograms is to 
determine the distance at which a disturbance occurred. In this case, the specialist 
informs the maintenance team in which region of the transmission line it must act 
in order to repair the damage caused by the disturbance, making its work easier 
and more efficient. In addition, the expert performs other procedures, such as the 
phasor analysis to verify the balance between the phases and the harmonic analysis 
to observe the intensity of the harmonics present in the signal.

The digitalization of the oscillography signals motivated the growth of the 
number of computational tools developed to aid in the analysis of perturbations, 
also allowing the development of sophisticated signal processing tools and intel-
ligent processing systems.

Nowadays the use of oscillography has become quite frequent for the recording 
of events in production systems (electrical systems, mechanical systems, etc.), since 
it is possible to observe the development sequence of an event and the interaction 
between the elements of the system that are part of the event. This implies the 
progressive growth of the number of oscillography files.

Thus, the need arises to study and develop compression methods with the 
purpose of reducing the space needed to store these files and make better use of the 
resources. It is proposed the use of a compression method by synthesis of oscil-
lography files, using redundant adaptive decompositions, which provide a coherent 
representation with the phenomena present in the recorded signals. These decom-
positions were based on the technique of Matching Pursuits (MP).

Remote and real time monitoring allows observation of data related to operating 
conditions, mechanical parameters (fuel, temperature, engine speed, oil pres-
sure and level, vibration, etc.), electrical parameters (currents, powers, voltages, 
oscillations, etc.), hydraulic parameters (flow, cavitations, water hammer, etc.) and 
operating hours.

2.3.2 Supervision

It is a process that performs the analysis of collected data for detection of 
unwanted or non-permitted states. It is searched if a parameter is within the 
permitted limits or if there are unusual variations.

The supervision area receives information from the Monitoring System and, 
through the use of intelligent software, a “Knowledge Bank” must be managed, 
where information obtained from various physical parameters is crossed and 

Active sensors Passive sensors

Thermoelectric Resistive

Piezoelectric Capacitive

Pyro electric Inductive

Photovoltaic Resonant

Electromagnetic

Hall effect

Table 1. 
Types of sensors.
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integrated, from which a result that is closer to what one really wants: an effective 
aid to decision-making.

The supervisory system automatically processes the information collected 
by the monitoring system through internal routines using intelligent techniques 
(Computational Intelligence). The objective is the automatic detection of incipient 
faults, that is, early detection of faults, their identification, location and estimation 
of the degree of severity [4, 13].

Within the area of supervision three very significant and decisive procedures are 
performed in solving the problems of a productive system:

1. Evaluation of the information collected;

2. Diagnosis of the changes present in these collected data - the system will 
inform if they are faults in their precocious state or catastrophic failures and 
their root cause. It will also inform your location;

3. Elimination of failures and their root cause. This will prevent damage and col-
lapse in a production process. Here will be decided the actions that must be taken 
and depending on the severity of the failure its execution will be online or offline.

2.3.2.1 Evaluation

At this stage, the detection of variations or changes in the normal behavior of a 
parameter is carried out. For this, a comparison process is carried out with a previ-
ously defined reference value. This revision is performed in real time and its result 
compared to the past behavior, this will allow defining if it is really presenting an 
abnormality or simply it is an isolated eventuality.

The behavior history is analyzed and an image of the state of the selected 
parameters is created [8, 9]. This image is compared to the behavior of these same 
parameters in real time. This part of the evaluation uses only stored (digital) data 
that reaches a threshold value (reference value).

An evaluation of the recorded oscillograms is also performed, interpreting all 
recorded graphs related to the behavior of a given parameter.

To perform the database evaluation process with the historical behavior of the 
parameters of interest, there are tools or methodologies that allow the execution 
of this process in an optimized and efficient manner. These methodologies are as 
follows and depend greatly on the type of signal being monitored:

a. Statistical and Probabilistic Techniques

At this stage of the research the most used statistical method is least squares. 
Applies mainly to processes with linear characteristics. The probabilistic methods most 
commonly used to determine the probabilities of states and the probability density 
function of an equipment or system are: (a) state space method or Markovian 
process that describes states and possible transitions between them, (b) Monte 
Carlo simulation performs several computational simulations of a process for a 
certain period, ending the simulations procedure, estimating the desired indices as 
the probability of a failure to occur, its frequency and the duration of the failure.

b. Kalman filter

The Kalman filter produces estimates of the actual values of measured quanti-
ties and associated values, predicting a value, estimating the uncertainty of the 
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disturbances. In fact, oscillography is a complementary tool to the protection 
systems, as it allows the specialist in the analysis of disturbances to verify the 
adjustments of a given protection, as well as any defects that may arise.
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and more efficient. In addition, the expert performs other procedures, such as the 
phasor analysis to verify the balance between the phases and the harmonic analysis 
to observe the intensity of the harmonics present in the signal.

The digitalization of the oscillography signals motivated the growth of the 
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progressive growth of the number of oscillography files.
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operating hours.
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unwanted or non-permitted states. It is searched if a parameter is within the 
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The supervision area receives information from the Monitoring System and, 
through the use of intelligent software, a “Knowledge Bank” must be managed, 
where information obtained from various physical parameters is crossed and 
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integrated, from which a result that is closer to what one really wants: an effective 
aid to decision-making.

The supervisory system automatically processes the information collected 
by the monitoring system through internal routines using intelligent techniques 
(Computational Intelligence). The objective is the automatic detection of incipient 
faults, that is, early detection of faults, their identification, location and estimation 
of the degree of severity [4, 13].

Within the area of supervision three very significant and decisive procedures are 
performed in solving the problems of a productive system:

1. Evaluation of the information collected;

2. Diagnosis of the changes present in these collected data - the system will 
inform if they are faults in their precocious state or catastrophic failures and 
their root cause. It will also inform your location;

3. Elimination of failures and their root cause. This will prevent damage and col-
lapse in a production process. Here will be decided the actions that must be taken 
and depending on the severity of the failure its execution will be online or offline.

2.3.2.1 Evaluation

At this stage, the detection of variations or changes in the normal behavior of a 
parameter is carried out. For this, a comparison process is carried out with a previ-
ously defined reference value. This revision is performed in real time and its result 
compared to the past behavior, this will allow defining if it is really presenting an 
abnormality or simply it is an isolated eventuality.

The behavior history is analyzed and an image of the state of the selected 
parameters is created [8, 9]. This image is compared to the behavior of these same 
parameters in real time. This part of the evaluation uses only stored (digital) data 
that reaches a threshold value (reference value).

An evaluation of the recorded oscillograms is also performed, interpreting all 
recorded graphs related to the behavior of a given parameter.

To perform the database evaluation process with the historical behavior of the 
parameters of interest, there are tools or methodologies that allow the execution 
of this process in an optimized and efficient manner. These methodologies are as 
follows and depend greatly on the type of signal being monitored:

a. Statistical and Probabilistic Techniques

At this stage of the research the most used statistical method is least squares. 
Applies mainly to processes with linear characteristics. The probabilistic methods most 
commonly used to determine the probabilities of states and the probability density 
function of an equipment or system are: (a) state space method or Markovian 
process that describes states and possible transitions between them, (b) Monte 
Carlo simulation performs several computational simulations of a process for a 
certain period, ending the simulations procedure, estimating the desired indices as 
the probability of a failure to occur, its frequency and the duration of the failure.

b. Kalman filter

The Kalman filter produces estimates of the actual values of measured quanti-
ties and associated values, predicting a value, estimating the uncertainty of the 
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predicted value, and calculating a weighted average between the predicted value 
and the measured value. The highest weight is given to the least uncertainty value. 
The estimates generated by the method tend to be closer to the actual values than 
the original measurements, since the weighted average presents a better estimate 
of uncertainty than both values used in its calculation. From a theoretical point of 
view, the Kalman filter is an algorithm for efficiently making accurate inferences 
about a linear dynamic system, which is a Bayesian model similar to a Markov 
hidden model, but where the state space of the variables is not observed is continu-
ous and all observed and unobserved variables have normal distribution (or often 
multivariate normal distribution).

c. Fourier Transform

This technique applies mainly to stationary periodic signals.
The Fourier transform is an integral transform that expresses a function in 

terms of sinusoidal base functions, i.e. as the sum or integral of sinusoidal func-
tions multiplied by coefficients. There are several directly related variations of this 
transform, depending on the type of function to transform. The Fourier transform 
decomposes a temporal function (a signal) into frequencies, just as a musical 
instrument string can be expressed as the amplitude (or volume) of its constituent 
notes. The Fourier transform of a temporal function is a complex frequency value 
function whose absolute value represents the sum of the frequencies present in the 
original function and whose complex argument is the phase of displacement of the 
sinusoidal base at that frequency.

d. Wavelet Transform

This technique applies mainly to non-stationary Periodic signals.
Many of the time series exhibit non-stationary behaviors such as changing 

trends, structural breakdowns from the beginning to the end of the event. These 
features are often the most important parts of the signal and by applying TF it is not 
possible to efficiently capture these events.

The wavelet transform is a very useful tool for analyzing these non-stationary 
series.

The wavelet transform has attractive qualities that make it a very useful method 
for time series, exhibiting characteristics that could vary both in time and fre-
quency (or scale).

The wavelet transform allows the signal to be decomposed into a set of function 
bases at different resolution levels and localization times. From these levels it is pos-
sible to reconstruct or represent a function, using the wavelet bases and coefficients 
of these levels appropriately.

e. ARMA (p,q) model

This technique applies mainly to stochastic signals.
In the statistical analysis of time series, autoregressive moving average (ARMA) 

models provide a poor description of a weakly stationary stochastic process in terms 
of two polynomials, one for autoregression and one for average mobile.

Given a time series of X data, the ARMA model is a tool for understanding and 
perhaps predicting future values in this series. The model consists of two parts, an 
autoregressive part (AM) and a moving average part (AM). The AR part involves 
returning the variable to its own lagged, that is, past values. The AM part involves 

137

Real-Time Fault Detection and Diagnosis Using Intelligent Monitoring and Supervision Systems
DOI: http://dx.doi.org/10.5772/intechopen.90158

modeling the error term as a linear combination of error terms that occur contem-
poraneously and at various times in the past.

The model is generally referred to as the ARMA (p,q) model, where p is the 
order of the autoregressive part and q is the order of the moving average part.

In signal processing, a time series is a collection of observations made sequen-
tially over time. In linear regression models with cross-section data the order of 
observations is irrelevant to the analysis, in time series the order of data is funda-
mental. A very important feature of this type of data is that neighboring observa-
tions are dependent and the interest is to analyze and model this dependency.

Within probability theory, a stochastic process is a family of random vari-
ables representing the evolution of a value system over time. It is the proba-
bilistic counterpart of a deterministic process. Instead of a process that has a 
single way of evolving, as in the solutions of ordinary differential equations, for 
example, in a stochastic process there is an indetermination: even if one knows 
the initial condition, there are sometimes infinite directions in which the process 
can evolve.

In discrete time, as opposed to continuous time cases, the stochastic process is a 
sequence of random variables, such as a Markov chain. The variables corresponding 
to the various times may be completely different, the only requirement being that 
these different values are all in the same space, that is, in the contradiction of the 
function. One possible approach is to model random variables as random functions 
of one or more deterministic arguments, in most cases, relative to the time param-
eter. Although the random values of a stochastic process at different times seem to 
be independent random variables, in the most common situations they exhibit a 
complex statistical dependence.

2.3.2.2 Diagnosis

At this stage the type and degree of variation, the type of failure, its location,  
its severity and the incidence on the performance of an element or component  
are determined, and most particularly the root cause of this disturbance is  
identified [8].

In order to achieve the objectives of the fault diagnosis stage, two very important 
techniques allow the monitoring and supervision system to achieve this intelligent 
and autonomous decision-making system feature [5, 7, 14]. The application of 
these two methodologies is the major differential between classical monitoring and 
supervision and intelligent monitoring and supervision. These two methodologies 
are described below:

1. Fault detection methods

They detect faults, locate them and determine their degree of severity. The 
methodologies used in this technique to detect faults are:

a. Fault detection with limit checking

It is a simple and often used method to detect faults by checking the limit of a 
directly measured Y(t) variable. The measured variables of a process are monitored 
and checked if their absolute values or trends exceed a threshold. An additional 
possibility is to check its plausibility.

To detect failures in a device of a production system it is necessary to establish 
or determine variation limits for the variables considered of interest. Usually these 
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predicted value, and calculating a weighted average between the predicted value 
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features are often the most important parts of the signal and by applying TF it is not 
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The wavelet transform is a very useful tool for analyzing these non-stationary 
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The wavelet transform has attractive qualities that make it a very useful method 
for time series, exhibiting characteristics that could vary both in time and fre-
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The wavelet transform allows the signal to be decomposed into a set of function 
bases at different resolution levels and localization times. From these levels it is pos-
sible to reconstruct or represent a function, using the wavelet bases and coefficients 
of these levels appropriately.

e. ARMA (p,q) model

This technique applies mainly to stochastic signals.
In the statistical analysis of time series, autoregressive moving average (ARMA) 

models provide a poor description of a weakly stationary stochastic process in terms 
of two polynomials, one for autoregression and one for average mobile.

Given a time series of X data, the ARMA model is a tool for understanding and 
perhaps predicting future values in this series. The model consists of two parts, an 
autoregressive part (AM) and a moving average part (AM). The AR part involves 
returning the variable to its own lagged, that is, past values. The AM part involves 
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modeling the error term as a linear combination of error terms that occur contem-
poraneously and at various times in the past.

The model is generally referred to as the ARMA (p,q) model, where p is the 
order of the autoregressive part and q is the order of the moving average part.

In signal processing, a time series is a collection of observations made sequen-
tially over time. In linear regression models with cross-section data the order of 
observations is irrelevant to the analysis, in time series the order of data is funda-
mental. A very important feature of this type of data is that neighboring observa-
tions are dependent and the interest is to analyze and model this dependency.

Within probability theory, a stochastic process is a family of random vari-
ables representing the evolution of a value system over time. It is the proba-
bilistic counterpart of a deterministic process. Instead of a process that has a 
single way of evolving, as in the solutions of ordinary differential equations, for 
example, in a stochastic process there is an indetermination: even if one knows 
the initial condition, there are sometimes infinite directions in which the process 
can evolve.

In discrete time, as opposed to continuous time cases, the stochastic process is a 
sequence of random variables, such as a Markov chain. The variables corresponding 
to the various times may be completely different, the only requirement being that 
these different values are all in the same space, that is, in the contradiction of the 
function. One possible approach is to model random variables as random functions 
of one or more deterministic arguments, in most cases, relative to the time param-
eter. Although the random values of a stochastic process at different times seem to 
be independent random variables, in the most common situations they exhibit a 
complex statistical dependence.

2.3.2.2 Diagnosis

At this stage the type and degree of variation, the type of failure, its location,  
its severity and the incidence on the performance of an element or component  
are determined, and most particularly the root cause of this disturbance is  
identified [8].

In order to achieve the objectives of the fault diagnosis stage, two very important 
techniques allow the monitoring and supervision system to achieve this intelligent 
and autonomous decision-making system feature [5, 7, 14]. The application of 
these two methodologies is the major differential between classical monitoring and 
supervision and intelligent monitoring and supervision. These two methodologies 
are described below:

1. Fault detection methods

They detect faults, locate them and determine their degree of severity. The 
methodologies used in this technique to detect faults are:

a. Fault detection with limit checking

It is a simple and often used method to detect faults by checking the limit of a 
directly measured Y(t) variable. The measured variables of a process are monitored 
and checked if their absolute values or trends exceed a threshold. An additional 
possibility is to check its plausibility.

To detect failures in a device of a production system it is necessary to establish 
or determine variation limits for the variables considered of interest. Usually these 
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limits are the maximum values these variables can reach. When the values   of the 
variables reach these limits, it can be inferred that a variable is presenting abnormal 
changes. If these changes are continuous or discrete, it can be concluded that the 
device is in a process of failure.

The fault detection threshold verification technique is based on two procedures 
in order to achieve its goal, namely:

• Binary thresholds;

• Diffuse thresholds.

In most situations the binary decision between “normal” and “disturbance” is 
sometimes artificial, because there is rarely a marked difference between these two 
states. Therefore, the diffuse threshold procedure is a more realistic alternative for 
detecting changes in the behavior of variables.

2. Fault diagnosis methods—root cause identification.

Identify the impact a failure has on the performance of an element or device. 
This is strongly related to the severity of the failure. The important part of the 
diagnostic step is that the system is able to identify the root cause of a problem.

Many measured signals show oscillations that are either harmonic or sto-
chastic in nature or both [9]. If changes to these signals are related to actuator, 
process and sensor failures, signal model-based failure detection methods may be 
applied.

Assuming special mathematical models for signal measurement, appropriate 
characteristics can be determined. Comparison with observed characteristics for 
normal behavior provides changes in these characteristics which are considered as 
analytical symptoms.

The signal model can be divided into non-parametric models, such as frequency 
spectrum or correlation functions, and into parametric models as amplitudes to 
distinguish frequencies or ARMA models.

At this stage usually the signals that are analyzed for being frequent in different 
production processes are focused on the following types of signals:

• Periodic signs;

• Non-stationary periodic signals;

• Stochastic signals.

2.4 Applying corrective actions: alternatives

Within the various alternatives available to eliminate these changes in the 
behavior of a given parameter, the best is sought from the technical and economic 
point of view and, most importantly, that can be applied in real time, either in on 
mode online or offline [15]. This depends on the severity of the failure, for example 
whether it is a failure that is likely to happen and the serious consequences or 
symptoms of an incipient failure.

This optimized solution is found by applying intelligent optimization techniques 
such as:

• Expert systems;
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• Neural networks;

• Fuzzy logic.

An ES is capable of processing non-numerical information, presenting conclu-
sions on a certain subject as long as it is properly oriented and “fed”. Another com-
mon feature in expert systems is the existence of an uncertain reasoning mechanism 
that allows one to present uncertainty about domain knowledge. In other words, ES 
employ human knowledge to solve problems that require the experience of one or 
more specialists. Within the application of expert systems it is necessary to count 
on the participation of a robust database, where the knowledge base will be stored 
(expert knowledge to solve numerous problems).

2.4.1 Knowledge base

The knowledge base is a permanent but specific element of an expert system. 
This is where the information of an expert system is stored, that is, the facts and 
rules. Information stored in a particular domain makes the system an expert in that 
domain.

2.4.2 Blackboard

Communication of information between expert systems is done by a mecha-
nism called a blackboard. A blackboard is a place within computer memory 
where information stored in an expert system is “pinned” so that any other expert 
system can use them if you need the information contained therein to achieve 
your goals.

The blackboard is a structure that contains information that can be examined by 
cooperative expert systems. What these systems do with this information depends 
on the application.

Still, a blackboard, draft, or working memory (temporary memory) has a useful 
life during the course of a query and is linked to a concrete query. It is an area of   
memory used to make evaluations of the rules that are retrieved from the knowl-
edge base to arrive at a solution.

Information is recorded and erased in an inference process until the desired 
solution is reached.

2.4.3 Inference machine

Inference engine or inference engine is a permanent element that can even be 
reused by various expert systems. It is the party responsible for seeking knowledge 
base rules to be evaluated, directing the inference process [13]. Knowledge must be 
prepared for good interpretation and objects must be in a certain order, represented 
by a context tree.

Basically the inference engine is divided into the following steps:

• Select and search;

• Evaluate and Search.

Summarizing the above tasks, it can be said that the rules necessary to reach a 
goal must be sought in the knowledge base. These rules will be placed on the black-
board, and existing rules will only be evaluated after the most recent ones.
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• Neural networks;

• Fuzzy logic.

An ES is capable of processing non-numerical information, presenting conclu-
sions on a certain subject as long as it is properly oriented and “fed”. Another com-
mon feature in expert systems is the existence of an uncertain reasoning mechanism 
that allows one to present uncertainty about domain knowledge. In other words, ES 
employ human knowledge to solve problems that require the experience of one or 
more specialists. Within the application of expert systems it is necessary to count 
on the participation of a robust database, where the knowledge base will be stored 
(expert knowledge to solve numerous problems).

2.4.1 Knowledge base

The knowledge base is a permanent but specific element of an expert system. 
This is where the information of an expert system is stored, that is, the facts and 
rules. Information stored in a particular domain makes the system an expert in that 
domain.

2.4.2 Blackboard

Communication of information between expert systems is done by a mecha-
nism called a blackboard. A blackboard is a place within computer memory 
where information stored in an expert system is “pinned” so that any other expert 
system can use them if you need the information contained therein to achieve 
your goals.

The blackboard is a structure that contains information that can be examined by 
cooperative expert systems. What these systems do with this information depends 
on the application.

Still, a blackboard, draft, or working memory (temporary memory) has a useful 
life during the course of a query and is linked to a concrete query. It is an area of   
memory used to make evaluations of the rules that are retrieved from the knowl-
edge base to arrive at a solution.

Information is recorded and erased in an inference process until the desired 
solution is reached.

2.4.3 Inference machine

Inference engine or inference engine is a permanent element that can even be 
reused by various expert systems. It is the party responsible for seeking knowledge 
base rules to be evaluated, directing the inference process [13]. Knowledge must be 
prepared for good interpretation and objects must be in a certain order, represented 
by a context tree.

Basically the inference engine is divided into the following steps:
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Summarizing the above tasks, it can be said that the rules necessary to reach a 
goal must be sought in the knowledge base. These rules will be placed on the black-
board, and existing rules will only be evaluated after the most recent ones.
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The evaluation order on the blackboard follows a stack-like structure to achieve 
the most recent goal. The rule will continue to be evaluated as long as the assump-
tion conditions are true, otherwise the rule will be dropped, the set goal will be 
unstacked and a new rule will be loaded.

When a value of a parameter in a given context is not known and is not in the 
stack structures, one should then look for new information in the knowledge base, 
search for new rules, or ask the user directly.

2.4.4 Neural networks

An artificial neural network is made up of several processing units whose 
operation is quite simple. These units are usually connected by communication 
channels that are associated with a certain weight. Units perform operations only 
on their local data, which is input received by their connections. The intelligent 
behavior of an Artificial Neural Network comes from interactions between net-
work processing units.

Neural networks allow optimized selection of a particular solution alternative 
for a given event or change. The neural network is used in this process to evaluate 
the results of the expert system, that is, the final solution should be selected as the 
best of all presented, the neural network allows to establish this solution.

2.4.5 Fuzzy logic

Fuzzy logic is based on fuzzy set theory. Traditionally, a logical proposition has 
two extremes: either it is completely true or it is completely false. However, in Fuzzy 
logic, a premise varies in degree of truth from 0 to 1, which leads to being partially 
true or partially false.

Fuzzy logic is the logic that supports the modes of reasoning that are approxi-
mate rather than exact. Fuzzy systems modeling and control are techniques for rig-
orously handling qualitative information. Derived from the concept of fuzzy sets, 
fuzzy logic forms the basis for the development of process modeling and control 
methods and algorithms, reducing the complexity of design and implementation, 
making it the solution to control problems hitherto intractable classic techniques.

In classical and modern control theories, the first step in implementing process 
control is to derive the mathematical model that describes the process. The proce-
dure requires knowing in detail the process to be controlled, which is not always 
feasible if the process is too complex. Existing control theories apply to a wide 
variety of systems where the process is well defined.

However, all of these techniques are not capable of solving real problems whose 
mathematical modeling is impractical. For example, in many situations a considerable 
amount of essential information is only known a priori qualitatively. Similarly, perfor-
mance criteria are only available in linguistic terms. This picture leads to inaccuracies 
and inaccuracies that make it impossible to use most of the theories used so far.

Fuzzy modeling and control theory are techniques for rigorously handling 
qualitative information. It assesses how imprecision and uncertainty should be 
managed and, in so doing, become powerful enough to properly manipulate 
knowledge. This technology considers the relationship between inputs and out-
puts, aggregating various process and control parameters. This allows processes 
considered complex to be reconsidered so that the resulting control systems pro-
vide a more accurate result as well as stable and robust performance. The sheer 
simplicity of implementing fuzzy control systems can reduce the complexity of 
a project to a point where previously intractable problems are now solvable.
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2.5 Solution

The intelligent monitoring and supervision system becomes autonomous to 
decide, but this decision should indicate the best action that should be taken to 
mitigate or eliminate a particular change. This intervention must be in real time 
and in online mode. It should show the type of application that will be performed, 
the point where the intervention will be made, the components that will be 
reached and their intervention time. This solution can be given by the following 
procedure:

2.5.1 Maintenance

Depending on the situation, it can be in real time and in Online mode, mean-
ing the maintenance team can make the necessary adjustments without shutting 
down the equipment and reducing its availability in the shortest possible time. 
The smart system should provide recommendations for making these correc-
tives without compromising equipment operation. This is accomplished through 
expert system intervention. This system will decide on what type of maintenance 
to perform.

2.5.2 Predictive and proactive maintenance

Depending on the situation, it can be in real time and in Online mode, meaning 
the maintenance team can make the necessary adjustments without shutting down 
the equipment and reducing its availability in the shortest possible time.

The smart system should provide recommendations for corrective action 
without compromising equipment operation. This is accomplished through expert 
system intervention.

2.5.3 Element or device replacement

The intelligent system must have the ability to make this decision, supported by 
technical and economic criteria (losses).

2.6 Innovation

The final and ultimate solution will demonstrate the versatility, autonomy 
and efficiency of monitoring and supervision systems when they work and are 
structured as intelligent systems. Errors in procedures with these systems will be 
minimal to ensure safety and accuracy.

2.7 Benefits

Safe (high availability and reliability) and efficient operation of production 
systems, balanced and timely investments, reduced operating and energy costs.

Following is a typical output (report) of the software developed for the imple-
mentation of the methodology, especially the part related to data evaluation, fault 
diagnosis, root cause finding and determination, action decision making to be 
performed and execution of these actions [3, 4].

Following is an output of the software developed to implement the proposed 
intelligent system framework [1, 15]. All the tools presented in this chapter have 
been included:
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3. Conclusions

Intelligent monitoring and control systems allow minimize the risks of failure of 
production systems, as is the case with generation systems (will be taken as a refer-
ence for this project), where intelligent systems are widely used, especially in large 
and top technology plants, and consequently increase its reliability (reduced failure 
rate/year) and the availability, improving the quality of energy supply by reducing 
the periods and interruption frequency of power supply, by improving indicators 
DEC, FEC, DIC, FIC and DMIC, and reliable management charge and distributed 
generation.

Centralization of information processing by intelligent monitoring systems will 
improve the efficiency of operation of electrical systems, optimize maintenance 
processes within the generation plants and consequently increase or maintain the 
estimated useful life of the generators, economically benefiting utilities power.

The transformation of the current systems for monitoring and supervision of 
hydroelectric plants in intelligent systems, effectively represents a technological 
advancement over conventional monitoring systems. What defines the quality of 
the response of these systems, in relation to the supervision and diagnosis, it is the 
experience of those responsible for analysis of failure modes.

The data management infrastructure, established by the power utilities, will 
be responsible for more or less extracted benefit of the system as well as for main-
taining the efficient operation of the same. The choice of the best strategy for 
the Data and Information Management, will depend on the policies adopted by 
companies to their treatment. The benefits of smart grid technology, in monitoring 
systems will come when there is a data management policy functional within the 
utilities should be avoided as much as possible “excess of monitored parameters”. 
Prioritization criteria of failures “detectable” or “observable” must be considered. 
For each observable failure mode, there will always be a form of detection, which 
keeps a relationship “sensitivity/installation cost” more, and that in principle, 
should be chosen.
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An action of great interest, which should be considered in the monitoring and 
supervision systems is the integration of auxiliary systems, to conduct their analysis 
and diagnosis, together with those from the main systems, causing minimal impact 
on its cost of installation. The influence of failures in auxiliary systems (ancillary 
services) with the probability of generating, forced stops of the equipment and 
system is high and in some situations similar to those of the main systems.

Importantly, there is not a single application and solution of systems or smart 
grids. Many of these functions will not become viable if coexist with others and 
should be implemented according to the needs of utilities. Thus, individual func-
tions such as monitoring and fault detection in generators or feeder circuits, may 
not have their benefits evaluated separately.
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Abstract

The problems of information security in public organizations in Ecuador are 
evident, which, as a result, have led to corruptions that are present at all levels of 
operational, tactical and strategic management. The objective of this chapter is 
to analyze the available information found in different media, written, spoken, 
among others. The deductive method was used for the collection of information 
and observation techniques. It turned out the improve in the administrative pro-
cesses, prototype diagram of sequence of access of users and services, prototype of 
integration of technologies of security of the information for public organizations 
of Ecuador. It was concluded that to avoid corruption in a country change should 
happen at all levels: the way of thinking and culture of the inhabitants, laws, penal-
ties to politicians without parliamentary immunity, application of information and 
communications technologies (ICT) in an appropriate manner, and complying with 
international standards in information security. To improve information security, 
administrative policies on information security must be changed, and technologies 
related to immutable security algorithms, Ledger, Hyperledger, etc., must be used.

Keywords: information security, information security management, database 
security, public organizations of Ecuador, security models, cryptography

1. Introduction

Public organizations in Ecuador have problems in the management of 
Information Security. The “Ministry of Telecommunications and the Information 
Society” ratify that information security problems persist. According to the publi-
cation of the “White Book of the Information and Knowledge Society”, it turned out 
that only 8% comply with the Security Policies, and those responsible for informa-
tion security that are part of IT have 51% and that are part of Contingency Plan only 
have 16%, among other security indicators [1].

The company Deloitte conducted a study in 2017 concerning the problem 
of information security, and the results were published by the “White Paper on 
the Information and Knowledge Society,” in which more than 50 national and 
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1. Introduction

Public organizations in Ecuador have problems in the management of 
Information Security. The “Ministry of Telecommunications and the Information 
Society” ratify that information security problems persist. According to the publi-
cation of the “White Book of the Information and Knowledge Society”, it turned out 
that only 8% comply with the Security Policies, and those responsible for informa-
tion security that are part of IT have 51% and that are part of Contingency Plan only 
have 16%, among other security indicators [1].

The company Deloitte conducted a study in 2017 concerning the problem 
of information security, and the results were published by the “White Paper on 
the Information and Knowledge Society,” in which more than 50 national and 
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multinational companies participated to improve information security management 
and the following was determined:

1. Around 50% had some security breach, and of this, 20% could not determine 
the impact of this gap, since they did not have an incident management process.

2. Nearly 50% indicated that their main initiative for 2018 will be training and 
awareness in information security.

3. More than 50% cited as one of their main difficulties the lack of budget, fol-
lowed, very closely, by aspects such as the lack of visibility and influence and 
the lack of competent personnel.

4. Around 75% did not measure the return on investments in information 
security.

5. The 20% were prepared to face security incidents, originated in social networks.

6. The 60% did not have an SOC (Security Operation Center); meanwhile, 
almost 20% said they will have one by 2018.

7. The 36% did not have a disaster recovery plan.

8. As a result of internal and external reviews of companies, user manage-
ment remains the most shaky element in the management of CISOs (Chief 
Information Security Officer (Deloitte, 2017) [1].

Among others defined by the CENDIA published in 2017 that is recorded in the 
“White Paper of the Information and Knowledge Society”.

The implementation projects of the Information Security Management System 
ISO 27000 ensure all the information assets to have complete control of the organi-
zation according to what is stated in the book “Public Companies and Planning” [2].

The security of information is critical today in all public or private organizations; 
based on this reason, it is necessary that Latin and world universities generate special-
ized careers in the area of information security to provide qualified personnel consider-
ing that information security is a key aspect for the management of an organization [3].

With the foregoing, it is confirmed that public and private organizations in 
Ecuador and in a large part of the world have serious problems of information 
security. Information is considered as data, videos, sound, and documents, among 
others, that can be saved, shared, socialized, etc.

Therefore, mishandling of information can lead to failure of organizations; on 
the other hand, correct decisions can be made based on information that provides 
confidentiality, integrity, and authenticity.

In accordance with the current paradigms in information security and computer 
auditing, the following most relevant points to be considered by public organiza-
tions to improve information security management were determined:

1. Change of information security culture in first level executives, so that they 
consider that information security is not a cost, but is an investment to guaran-
tee the mission, vision, and strategic objectives of an organization.

2. All persons working in public organizations, both the first authority and 
the lowest office, which may be the custodian or guard, are an important 
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and responsible party in order to maintain the integrity of the information. 
One of the main errors in the management of information security in public 
companies is that we are convinced that only those who handle information or 
strategic managers are responsible.

3. The structural and functional organizations currently available to public 
organizations do not allow information and communications technologies 
(ICT) coordinators/directors/managers to govern the organization.

4. The lack of planning and control in a globalized way for the generation of 
security plans, contingency, backup, and protection against natural disasters, 
etc., causes vulnerabilities, risks, and threats in the security of information in 
the organization.

5. Adequate security models and technologies are required for each public organi-
zation considering the mission, vision, and strategic objectives.

6. There should be qualified personnel with experience with an average 10 years 
in the area of information security and with academic training at all levels 
(Engineering, Master’s, and Doctorate) in the same area of knowledge in 
accordance with the provisions of UNESCO, SENESCYT, CES (title nomencla-
ture) [4].

7. The World Bank determines that one of the main causes for corruption in 
Latin America and the Caribbean is that there is no adequate management 
of Information and Communications Technologies (ICT) in the area of 
Information Security, and proposes to use it as technologies’ alternative such 
as blockchain, Ledger, and Hyperledger. It also clarifies that as long as there is 
direct human intervention in the processes and no adequate technologies are 
used, there will be a greater probability of corruption and the only ones who 
pay for this incorrect management will be the low-income inhabitants [5].

2. Security of the information

Information security worldwide is considered the main fixed asset of a public or 
private organization. With the appropriate management of information, corruption 
in public-private organizations can be avoided, such as transfers of money without 
due authorization, terrorist attacks, information theft, manipulation of processes and 
legal reports, kidnappings, violations, accidents, prevention of natural disasters, etc.

2.1 Pillars of information security

To carry out the analysis of information security, the current situation and the 
functions of the security pillars must be considered clearly: vulnerabilities, risks, 
threats, which will have a direct relationship with the identity, authenticity, authori-
zation, and audit (IAAA), so that the information is with confidentiality, integrity, 
and availability (CIA).

The following is a structure for the security of information in public organiza-
tions of Ecuador, considering the pillars of security to mitigate the vulnerabilities, 
threats, and risks of information.

Figure 1 shows that information systems have vulnerability, threats, and risk 
generation and have two layers of security that are covered first with the identity, 
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authentication, authorization, and audit (IAAA) and the second with the confiden-
tiality, integrity, and availability (CIA).

2.1.1 Analysis of information security pillars

Public organizations in Ecuador have vulnerabilities, and as a result, threats and 
risks are generated for not having adequate procedures for users to have identity, 
authenticity, authorization, and audit (IAAA), so that the delivery of the informa-
tion to internal and external users is with confidentiality, integrity, and availability 
(CIA), then the general description of the following pillars of security will be made.

• Identity is considered to internal or external users who have access to information.

• Authentication corresponds to the identification of users for access through 
technological or manual system.

• Authorization corresponds to what information the user who has been identi-
fied and has an authentication is entitled.

• Audits are the processes and activities performed in the user and recorded in a 
log to store their identity, authentication, and authorization, to be used at any 
time in processes of computer audits.

Figure 1. 
Pillars of information security.
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• Confidentiality of the information is considered to be the right that guaran-
tees access only to the personnel that previously have authorization under its 
responsibility.

• Integrity of the information is when the information is not modified from the 
beginning of its generation until the final delivery to the authorized persons.

• Availability of information, so that it can be used by users; depending on a 
technological infrastructure, the availability of information can be guaranteed.

2.1.2 Consequence due to the incorrect management of information security

To solve the problems of the security information of vulnerabilities, risks, threats, 
which has a direct relationship with the identity, authenticity, authorization, audit 
(IAAA) and with the security triangle confidentiality, integrity, availability (CIA), 
one of the alternatives is to carry out the risk analysis; apply the Cobit 5.0 methodol-
ogy references adapted to the public organization regarding information security ISO 
27001; evaluate the degree of knowledge and implementation of information security 
management systems, based on the norm NCh-ISO 27001, ITIL, COSO; generate 
or adopt models and appropriate security technologies for each organization; apply 
immutable security algorithms; generate or adopt own methodologies of the organi-
zation for the change of computer culture; and make plans of security, among others.

2.1.3 Alternatives to solve information security problems

To solve the problems of vulnerabilities, risks, threats; which has a direct rela-
tionship with the identity, authenticity, authorization, audit (IAAA) and with the 
security triangle confidentiality, integrity, availability (CIA); one of the alternatives 
is: Carry out the risk analysis, Apply the Cobit 5.0 methodology references adapted 
to the public organization regarding information security ISO 27001, evaluation 
of the degree of knowledge and implementation of information security manage-
ment systems, based on the norm NCh-ISO 27001, ITIL, COSO, generate or adopt 
models, appropriate security technologies for each organization, apply immutable 
security algorithms, generate or adopt own methodologies of the organization for 
the change of computer culture, make plans of security among others.

Also take as a reference other similar projects such as the one applied in a health 
institution in Chile [6].

3. Related investigations

3.1 Publications related to the research topic

Below is a list of the articles published in different conferences and scientific 
journals directly related to the public organizations of Ecuador, in the area of 
information and communications technologies (ICT) and information security.

Indicator Model for measuring the Alignment between Institutional Strategies and 
ICT Strategies for a Public Sector Company [7], Las TIC en el Ecuador [8], Tecnologías 
de Información y Comunicación Impactan la Optimización de los Procesos para el 
Desarrollo Local [9], Analysis to define management of identities access control 
of security processes for the registration civil from Ecuador [10], security analysis 
of civil registry database of Ecuador [11], an approach to information security by 
applying a conceptual model of identities in smart cities projects [12], adequate 
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of security processes for the registration civil from Ecuador [10], security analysis 
of civil registry database of Ecuador [11], an approach to information security by 
applying a conceptual model of identities in smart cities projects [12], adequate 
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security protocols adopt in a conceptual model in identity management for the civil 
registry of Ecuador [13], analysis of model Clark Wilson to adopt to the database of 
the civil registry of Ecuador [14], mitigating the security of the database by applying a 
conceptual model of integrity for the civil registry of Ecuador [15], a security algo-
rithms approach to apply to the civil registry database of the Ecuador [16], conceptual 
model for identity management to mitigate the database security of the registry civil 
of Ecuador [17], adoption of the Hash algorithm in a conceptual model for the civil 
registry of Ecuador [18], an approach of efficient security algorithms for distribute 
architectures [19], biometric systems approach applied to a conceptual model to miti-
gate the integrity of the information [20], algorithms for efficient biometric systems 
to mitigate the integrity of a distributed database [21], analysis of efficient processes 
for optimization in a distributed database [22], analysis of HIPAA for adopt in the 
information security in the civil registry of the Ecuador [23], a blockchain approach to 
mitigate information security in a public organization for Ecuador [24], analysis of the 
appropriate security models to apply in a distributed architecture [25], optimization 
of an electronic signature scheme in a voting system in a distributed architecture [26], 
ensuring the blind signature for the electoral system in a distributed environment 
[27], analysis cryptographic for electronic votes in systems of distributed architec-
tures [28], an approach to the efficient security algorithms used in voting scanning 
in an electoral process [29], a homomorphic encryption approach in a voting system 
in a distributed architecture [30], analysis of security algorithms for a distributed 
database [31], a Hyperledger scheme for the deployment of smart contracts in a public 
organization of Ecuador [32], analysis of adequate bandwidths to guarantee an elec-
toral process in Ecuador [33], appropriate security protocols to mitigate the risks in 
electronic money management [34], cryptographic algorithms to mitigate the risks of 
database in the management of a smart city [35], impact on the information security 
management due to the use of social networks in a public organization in Ecuador 
[36], an information security approach in the armed forces of Ecuador [37].

3.2 General summary of articles published by segments

• The management of information and communications technologies (ICT), 
Models of Indicators, allows to visualize all the processes and activities in 
general form of public institutions that must be analyzed with priority to be 
considered strategic [7–9].

• The analysis of information security regarding models, technologies, concep-
tual models, security protocols, prototypes, and cryptographic algorithms, 
among others, for the civil registry of Ecuador 10–25].

• They support the analysis, design, models, and prototypes of security for the 
National Electoral Council to mitigate the risks in the integrity of the informa-
tion that will be delivered from the electoral processes [26–33].

• Analysis of appropriate security protocols to guarantee the cash flow of public 
organizations using electronic money [34].

• Cryptographic analysis that allows improving the security of data in smart 
cities that involve the main cities of Ecuador such as Quito, Guayaquil, and 
Cuenca, among others [35].

• Impact of social networks on information security in public organizations, as it 
affects both internal and external users to prevent the information from being 
disclosed without control [36].
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• The security of information in the joint command of the armed forces of 
Ecuador is important to analyze because it guarantees the internal and external 
sovereignty of the country [37].

3.3 Priority of Ecuador’s public organizations for the analysis

It defines public institutions that have problems in the management of informa-
tion and communications technologies (ICT) and information security [1]. For 
this analysis, public organizations with the highest priority for the evaluation of 
information security management are considered; the same that in the medium 
term should be analyzed [7–8]. We must mention that all public organizations in 
Ecuador must improve the management of information security, but it should be 
done in phases.

In Table 1, the public organizations that should be in the first phase are detailed, 
considering that they have a high priority for the interrelation they have in state 
processes, to reduce corruption with the use of appropriate information and com-
munication technologies.

4. Models, security technologies, and good practices

To apply the models, security technologies, and good practices, the mission, 
vision, and strategic objectives of each organization must be analyzed; it is not 
appropriate to apply the same to everyone, given that each organization will have 
its priorities for the application of confidentiality, integrity, and availability of 
information. Each model, technologies, and good practices have different strengths, 
which can be applied appropriately [38].

Odr. Public organization name Priority

Low Half High

1 National directorate of the civil registry of Ecuador x

2 National electoral council x

3 National directorate of public data x

4 National council of the judiciary x

5 National assembly x

6 General comptroller of the state x

7 Joint command of the armed forces x

8 Secretaria de gestión de riesgos x

9 National secretary of higher education science, technology and 
innovation (SENESCYT)

x

10 Central bank of Ecuador x

11 National secretary of planning and development, Ecuador x

12 Ministry of communications and the information society x

13 Superintendency of banks x

14 Internal revenue services of Ecuador among others x

Table 1. 
Main organizations of Ecuador that should be evaluated in the first phase.
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4.1 Security models

4.1.1 Model Clark-Wilson

The Clark-Wilson model is based on four principles: authentication, audit trail, 
separation of obligations, and well-formed transactions.

Clark-Wilson is a widely used model to protect business information against 
unauthorized modification. In the CW model, the data in the system are requested 
in two groups:

• Restricted data elements (CDIs) that are elements or objects whose integrity 
must be maintained

• Unrestricted data elements (UDIs) that are elements or objects that are not cov-
ered by the integrity policy, such as the input data, but which are relevant since 
they can be transformed into CDIs [39]

4.1.2 Chinese Wall Model

The Chinese Wall model is oriented to guarantee the confidentiality of the 
information it raises and provides controls to reduce conflicts of interest that may 
exist between organizations that handle the same business logic [40].

4.1.3 Model Bell-LaPadula

The Bell-LaPadula model’s strength lies in multilevel security, which does not allow 
sensitive information to be filtered by people or entities that do not have the appropri-
ate level of access; this helps maintain a certain degree of confidentiality [41].

4.2 Security technologies

4.2.1 Cryptography

The importance of cryptography is that it is the only current method able to 
enforce the objective of computer security “maintain privacy, integrity, and authen-
ticity” and enforce nonrejection, related to not being able to deny authorship and 
reception of a message sent [42].

4.2.2 Log inmutables

Applications require robust and inviolable registration systems, for example 
electronic voting or bank information systems. At Scytl, we use technologies called 
immutable records, which are implemented in electronic voting solutions. This 
technology ensures the integrity, authenticity, and nonrepudiation of the generated 
records; therefore, in case of any event, the auditors can use them to investigate 
the problem. To improve the integrity of the information, an implementation for 
immutability is required, the integrity tests of the secure registers within the chain 
of blocks known as Bitcoins that is based on SHA-1 [43].

4.2.3 Biometric systems

Biometrics is considered a solution in information security problems; biometrics 
has the necessary assurances that the information stored in databases in institutions 
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cannot be manipulated and lose their integrity. There are some types of biometric 
systems that can be used, such as fingerprint, iris reader, facial recognition, and 
voice recognition. The use of multimodal biometrics has been considered in the 
study [44].

4.2.4 Ledger

The Ledger technology is based on the blockchain that ensures the registration 
of information in a distributed architecture, at the highest possible level, despite 
being distributed. With Ledger technology, we are thinking of a specific purpose 
distributed network, a network that shares a local maintenance [45].

4.2.5 Hyperledger

It is a technology that consists of a network infrastructure based on blockchain. 
Hyperledger fabric (HLF) is an open source implementation of a distributed 
accounting platform to execute intelligent contracts in a modular architecture. The 
implementation of Hyperledger technologies will mitigate the risks of informa-
tion; because in all the transactions you make, you will register through immutable 
log [46].

4.3 Good practices

All public organizations must apply good information security practices such 
as those defined in ISO 27001, define appropriate indicators, change of culture 
in the area of information and communications technologies (ICT) by execu-
tives, consider the Cobit 5.0 methodology that the technologies of information 
and communications govern the organization (separate what is management and 
government).

In addition, the following good practices are suggested: update systems, limit 
users, block output systems, separate the most important files, automate, monitor 
permanently, define safety standards, unify processes, and educate internal and 
external users.

5. Alternatives to improve information security

In this research, several alternatives were analyzed to improve the security of the 
information such as mechanical safety that is applied in an appropriate way for each 
organization and definition of all the processes of each public organization, models, 
prototypes, and cryptographic security algorithms using techniques of flow chart, 
etc. [7–33].

5.1 Description in general

It should be noted that in the publications of the reference of [7–33], you can 
find the following information:

The situation of Information and Communications Technologies (ICT) in 
Ecuador, definition of processes, conceptual security models, cryptographic 
algorithms, security models, analysis of security protocols, technological infra-
structures, technologies, applied to public organizations in Ecuador in this case to 
the Civil Registry and National Electoral Council of Ecuador. To be considered as 
alternatives to improve the management of information security.
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of blocks known as Bitcoins that is based on SHA-1 [43].

4.2.3 Biometric systems

Biometrics is considered a solution in information security problems; biometrics 
has the necessary assurances that the information stored in databases in institutions 
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cannot be manipulated and lose their integrity. There are some types of biometric 
systems that can be used, such as fingerprint, iris reader, facial recognition, and 
voice recognition. The use of multimodal biometrics has been considered in the 
study [44].

4.2.4 Ledger

The Ledger technology is based on the blockchain that ensures the registration 
of information in a distributed architecture, at the highest possible level, despite 
being distributed. With Ledger technology, we are thinking of a specific purpose 
distributed network, a network that shares a local maintenance [45].

4.2.5 Hyperledger

It is a technology that consists of a network infrastructure based on blockchain. 
Hyperledger fabric (HLF) is an open source implementation of a distributed 
accounting platform to execute intelligent contracts in a modular architecture. The 
implementation of Hyperledger technologies will mitigate the risks of informa-
tion; because in all the transactions you make, you will register through immutable 
log [46].

4.3 Good practices

All public organizations must apply good information security practices such 
as those defined in ISO 27001, define appropriate indicators, change of culture 
in the area of information and communications technologies (ICT) by execu-
tives, consider the Cobit 5.0 methodology that the technologies of information 
and communications govern the organization (separate what is management and 
government).

In addition, the following good practices are suggested: update systems, limit 
users, block output systems, separate the most important files, automate, monitor 
permanently, define safety standards, unify processes, and educate internal and 
external users.

5. Alternatives to improve information security

In this research, several alternatives were analyzed to improve the security of the 
information such as mechanical safety that is applied in an appropriate way for each 
organization and definition of all the processes of each public organization, models, 
prototypes, and cryptographic security algorithms using techniques of flow chart, 
etc. [7–33].

5.1 Description in general

It should be noted that in the publications of the reference of [7–33], you can 
find the following information:

The situation of Information and Communications Technologies (ICT) in 
Ecuador, definition of processes, conceptual security models, cryptographic 
algorithms, security models, analysis of security protocols, technological infra-
structures, technologies, applied to public organizations in Ecuador in this case to 
the Civil Registry and National Electoral Council of Ecuador. To be considered as 
alternatives to improve the management of information security.
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6. Proposals to improve information security

After having analyzed all the published articles [5–31] that are directly related 
to this chapter of the book, the following activities to improve the management of 
information security are proposed to be carried out.

6.1 Improve administrative processes

In administrative processes, it is important that planning bodies modify the func-
tional structural organization of public organizations, considering the good practices 
of Cobit 5.0. In the organic structure, the general manager (CEO) and the information 
and communications technologies (ICT) manager (CIO) must be at the same level.

Figure 2 defines a generic structure chart suitable for public organizations 
where the manager/coordinator/director of information and communications 
technologies (ICT) can govern the organization to comply with the recommenda-
tions of Cobit 5.0.

6.1.1 Change of culture in information and communications technologies (ICT)

To make the change in the information and communications technologies (ICT) 
culture, a training plan is required, with an appropriate methodology at all opera-
tional, tactical, and strategic levels, especially at the strategic level so that they are 
clear. For an organization to be competitive and the management of information 
security to improve, information and communications technologies (ICT) must 
govern public organizations.

This change of culture at the level of high-level officials of public organizations 
is necessary to execute, considering that 95% of the authorities of public organi-
zations defined by information and communications technologies (ICT) at the 
operational level are convinced that they are simply a support for the management 
of the organization [7].

6.1.2 Processes and activities that should be considered

To carry out this activity, it can be executed through different types of indica-
tors in the information and communications technologies (ICT) area; in this 
case, the following indicators are used as an alternative: Degree of Utilization, 
Degree of Support for the Process, Degree of Use, Degree of Online Support, 

Figure 2. 
Generic structural organization chart of a public organization.
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Degree of Scope, Degree of Coverage, Degree of Operational Support, Degree of 
Management Support, and Degree of Support Corporate. This allows to deter-
mine the current situation of the organization in all areas. With this information, 
it is more feasible to identify the information security situation to improve its 
management [7].

Another alternative to get to identify the current situation of information 
security is to ask the following frequently asked questions:

In Figure 3, the frequent questions are asked with the objective that during 
this process the entry of the information is determined and also the output of 
the information with identity, authenticity, authorization and audit (IAAA) and 
confidentiality, integrity and availability (CIA).

6.1.3 Phases that must be considered to improve the security of information

Consider the results obtained in the different articles published on the public 
organizations of Ecuador, to consider as an alternative with the objective of improv-
ing the security of information [7–33].

1. Adopt or generate a training plan with appropriate methodology for the public 
organization for the change of computer culture at the operational, tactical, 
and strategic levels.

2. Perform the analysis and define the organizational structure of the organiza tion 
considering the Cobit 5.0 methodology as a reference, where the general man-
ager (CEO) and the manager/coordinator/director of information and communi-
cations technologies (ICT) equivalent to chief information officer (CIO) have the 
same level of authority and the CIO is the one who governs the organization.

3. Carry out the analysis to define the vulnerabilities, risks, and threats that are 
generated.

4. Define the structure for the execution of the project: general coordina-
tor, specialist in information security, process specialist, administrator of 
information and communications technologies (ICT) infrastructures, etc., 
all with academic training in the area of knowledge at all levels, engineering, 
masters, and if the case deserves in the doctorate fulfilling standards of the 
SENESCYT and UNESCO. Also have a referential budget.

5. Consider the application of ISO 27001:2013 regarding the certification process 
by FIRST (International Incident Management Community, CSIRTS, and 
CERTS).

6. Take into account the good practices of the Cobit 5.0, ITIL, and COSO 
methodologies to integrate information security management in a globalized 
manner.

Figure 3. 
Frequently asked questions on information security.
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7. Define functions for a work group.

8. Define the steps to be taken with the respective responsibility to each officer of 
the organization.

9. Prepare an information technology strategic plan (ITSP) with their respective 
security plans, contingency, backup, etc., with the participation of official’s at 
all operational, tactical, and strategic levels.

10. The exposed phases are those that are suggested to be used as an alternative to 
define a generic methodology for public organizations in the next chapter of 
the book.

6.2 Prototype sequence diagram of users and services access

A prototype of the sequence of accesses of internal/external users and services to 
the information of public organizations is defined.

Figure 4 describes the dynamic interaction of the user, administrator, verifier, 
interface, and auditor to perform the sequence of access to information and services.

6.3 Prototype of security technology integration

In order to generate this prototype, the recommendations of the World 
Bank for Latin America and the Caribbean are taken into account, which states 
textifically: “In the midst of all the technological advances we are currently 

Figure 4. 
Prototype sequence diagram of users and services access.
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experiencing, Blockchain, or chain of blocks, has the power to alter current mod-
els economic and business, and become a particularly valuable asset for emerging 
economies. According to the experts, it could also be very useful as a method 
to fight corruption, especially in Latin America and the Caribbean, where the 
penetration of mobile telephony can facilitate technological adoptions” [5], the 
application of Hyperledger Fabric technology with intelligent contracts, provides 
a starting point to understand a chain of Hyperledger Fabric blocks to consult and 
update with a Ledger to generate X.509 certificates that are used by applications 
that interact with a blockchain authorized [47].

Figure 5 describes how the Hyperledger Fabric, which is a set of functions, uses 
the Ledger to initiate the status information and the read/write requests through the 
connections.

7. Conclusions

The security of information is considered strategic and the main asset of 
public and private organizations. In this chapter, we consider the previous ana-
lyzes carried out by the authors in the area of information and communications 
technologies (ICT) and information security to determine the impact it has on 
the incorrect management of information. The weakness in the administration 
of information security is taken advantage of by all officials or workers at an 
operational, tactical, and strategic level of the public organizations of Ecuador 
to generate corruption such as incorrect identification of citizens, dead voters, 
embezzlement in public coffers, false titles especially acquired by the politicians, 
for all the aforementioned it is concluded that to avoid corruption in a country at 

Figure 5. 
Prototype integration of security technologies.
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all levels the first matter that we are the inhabitants must be changed, laws with 
strong sanctions to the politicians without parliamentary immunity, applica-
tion of information and communications technologies (ICT) in suitable form, to 
fulfill international standards in administration of security of the information 
like ISO 27001, Cobit 5.0, definition of profiles for the selection of information 
and communications technologies (ICT) managers, directors or coordinators who 
are from the area of knowledge in undergraduate degrees, masters, and doctor-
ates, complying with the provisions of SENESCYT and UNESCO. That planning 
organisms such as the National Secretariat of Planning and Development-Ecuador 
(Senplades) and the Ministry of Labor Relations consider the position of manager, 
director, general coordinator of information and communications technologies 
(ICT) at the same level as the main authority of the Public Organization, Change 
of culture in the directive civil servants who must consider that the information 
and communications technologies (ICT) are those that a public organization must 
govern to be competitive.

To improve the security of information, administrative policies must be changed 
in information security, using technologies related to immutable security algo-
rithms, Ledger, Hyperledger, etc..
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