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Preface

Artificial intelligence (AI) is taking on an increasingly important role in our society 
today.  In the early days, machines fulfilled only manual activities. Nowadays, these 
machines extend their capabilities to cognitive tasks as well. And now AI is poised 
to make a huge contribution to medical and biological applications.

Scientists and doctors alike are fascinated by the potential of AI. As computer 
systems become increasingly more intelligent and capable of storing and processing 
vast amounts of information, interest in AI has started to grow as well. For example, 
AI has great potential for use in medical equipment, disease diagnosis and progno-
sis, medical care, healthcare infrastructure, and image and video processing, among 
others. Much recent scientific research has focused on using accurate, reliable, and 
robust intelligent systems to accurately diagnose and predict patterns of disease.

The ability of AI to make informed decisions, learn and perceive the environment, 
and predict certain behavior, among its many other skills, makes this application of 
paramount importance in today’s world.

This book is organized into the following sections:

1. Machine Learning Applications

2. Image Processing in Medicine and Biology

3. Emerging Paradigms of Machine Learning

This work will be of interest to students and researchers alike, as it comprises qual-
ity research contributions with a number of different applications.

Marco Antonio Aceves-Fernandez, Ph.D.
Universidad Autonoma de Queretaro,

Mexico
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Chapter 1

Designing Data-Driven Learning 
Algorithms: A Necessity to Ensure 
Effective Post-Genomic Medicine 
and Biomedical Research
Gaston K. Mazandu, Irene Kyomugisha, Ephifania Geza, 
Milaine Seuneu, Bubacarr Bah and Emile R. Chimusa

Abstract

Advances in sequencing technology have significantly contributed to shaping 
the area of genetics and enabled the identification of genetic variants associated 
with complex traits through genome-wide association studies. This has provided 
insights into genetic medicine, in which case, genetic factors influence variability in 
disease and treatment outcomes. On the other side, the missing or hidden heritabil-
ity has suggested that the host quality of life and other environmental factors may 
also influence differences in disease risk and drug/treatment responses in genomic 
medicine, and orient biomedical research, even though this may be highly con-
strained by genetic capabilities. It is expected that combining these different factors 
can yield a paradigm-shift of personalized medicine and lead to a more effective 
medical treatment. With existing “big data” initiatives and high-performance 
computing infrastructures, there is a need for data-driven learning algorithms and 
models that enable the selection and prioritization of relevant genetic variants 
(post-genomic medicine) and trigger effective translation into clinical practice. In 
this chapter, we survey and discuss existing machine learning algorithms and post-
genomic analysis models supporting the process of identifying valuable markers.

Keywords: learning algorithms, machine learning, genome-wide association study, 
genomic medicine, biomedical research, post-genomic analysis

1. Introduction

Advancements in the human deoxyribonucleic acid (DNA) microarray 
and genome sequencing technology have resulted in an exponential growth of 
publicly available and accessible biological datasets [1, 2]. These “big data” are 
being explored to systematically uncover useful signals and gain more insights to 
advance current knowledge and answer specific biological and health questions. 
Considering current data delude and relatively increased computing power, it is 
becoming possible to accurately infer desirable features from such data. This high-
lights the need for efficient learning algorithms to process these data for knowledge 
discovery by identifying pertinent patterns related to the comparison and classifica-
tion of different features in these datasets. These learning algorithms should enable 
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the extraction of appropriate features for application in a novel event or situation 
to support decision-making by mapping a given system to an input-output trans-
formation task as shown in Figure 1. Emerging trends in (deep) machine learning 
algorithms have made possible the identification and discovery of new patterns 
and hidden processes in genomic sequences that are essential in the functioning of 
biological systems. The heterogeneity of diseases, such as cancer, requires primarily 
the analysis of genomic data in order to improve diagnosis and to design an optimal 
therapy for an efficient clinical management of the disease. There is an increasing 
need of machine learning techniques in genomic medicine.

Machine learning algorithms can be classified into three main categories, namely 
supervised, unsupervised and reinforcement learning, described below:

Supervised learning algorithms build a mapping function, f, from the input vari-
able, X, to the output result, Y, expressed by: Y = f(X). There exist two main groups of 
supervised learning algorithms, namely classification and regression. Classification 
model is used to predict the outcome of a given sample with categorical output, 
for instance, case or sick individuals, labeled 0, and control or healthy individuals, 
labeled 1. On the other hand, a regression model is used to predict the outcome of a 
given sample with a real-valued output. Examples of supervised learning algorithms 
include logistic and linear regression models, Naive Bayes, classification and regres-
sion trees (CART) [3], K-nearest neighbor (KNN) [4, 5], support vector machine 
(SVM) [6], random forest (RF) [7], and artificial neural networks (ANNs) [8].

Unsupervised learning algorithms retrieve the underlying structure of the 
dataset based on input X only, using unlabeled data, that is, input data with no 
corresponding output. In this type of learning algorithm, we have: clustering, 
dimensionality reduction, and association models. Clustering consists of grouping 
samples so that items within the same cluster are more similar to each other than to 
items from another cluster for a given well-defined metric. Dimensionality reduc-
tion uses feature extraction and selection methods to reduce the number of input 
variables, conveying the most important information and minimizing noise in the 
dataset. Feature selection extracts a subset of useful variables among the original 
variables and transforms data from a high- to a low-dimensional space. Finally, 
association model just computes the probability of the co-occurrence of elements in 

Figure 1. 
Mapping a system to an input-output transformation task through learning algorithms namely supervised, 
unsupervised, and reinforcement learning.
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a collection, thus inferring how likely two different elements are to co-occur in a col-
lection. Unsupervised learning includes hierarchical clustering [9], K-means [10], 
and principal component analysis (PCA).

Reinforcement learning algorithms are a class of learning algorithms allow-
ing an agent to decide the optimal next action based on its current state to control 
an environment or a system [11], by learning behaviors that will maximize the 
reward or outcome [12, 13]. These algorithms interact with a system, for example 
human system under a specific condition which may be disease or treatment, to 
learn the best setting and optimally perform sequential decisions along a timeline 
[11], generally under uncertainty, based solely on the present state of the system. 
It follows that this sequential and dynamic decision-making process is assumed to 
be a Markov decision process [14], in which the present state of the system fully 
describes the system and is sufficient to optimally predict the best next state. 
Reinforcement learning algorithms generally use a dynamic programming method 
following Bellman-based optimality principle [12], which requires optimal sub-
structure for a given optimal option. In clinical research, these algorithms can be 
effective for longitudinal analyses, including retrospective and prospective studies, 
which consist of following a cohort across a specific-time interval [15].

Most of these learning algorithms have been extensively used to overcome sev-
eral issues in genomic medicine, including identification of genetic markers under-
lying disease risk, novel mechanisms for disease prevention, control, diagnosis and 
therapy, building predictive disease models, predicting treatment outcomes, etc. 
Currently, there exist several platforms producing large-scale datasets, including 
genomics, transcriptomics, proteomics, metabolomics, and microbial and epide-
miological data. This provides a unique opportunity of setting models and learning 
algorithms to enable the integration of these different heterogeneous datasets for 
elucidating determinant factors contributing to disease outcome and therapy in 
order to take full advantage of this data wealth in post-genomic medicine. In the fol-
lowing sections, we review some cases where machine and deep learning techniques 
have been used in health era and how post-genomic analysis constitutes a necessary 
route for optimally elucidating mechanisms of disease for an appropriate disease 
clinical management, and for predicting effective therapeutic strategies.

2. Use of machine learning in biology and health domains

As pointed out previously, machine learning algorithms have been success-
fully applied in many areas of biology and health-related research, including the 
identification of previously unknown processes in the genome, identification and 
understanding of several differentially expressed genes, binding specificities, and 
alternative splicing effects on cell processes, gene-gene and gene-environment 
interactions, disease-causing mutations, genetic determinants of diseases, pathway 
analysis, network and co-expression analysis, prediction of new drug-targets 
and response to treatment, etc. Here, we provide some illustrations of the use of 
supervised classification machine learning algorithms such as regression, SVM, 
ANN, and RF in some specific genomic applications, including predicting sequence 
specificities, analyzing gene expression profiles, identifying gene-gene and protein-
protein interactions, and elucidating disease-associated variants.

2.1 Predicting sequence specificities of DNA- and RNA-binding proteins

Sequence specificities of DNA- and RNA-binding proteins are essential for develop-
ing models of regulatory processes in biological systems. Alipanahi et al. [16] present 
the possibility of predicting sequence specificities from experimental data through 
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deep learning. They developed a software tool (DeepBind) based on deep convo-
lutional neural networks that has the ability to discover new patterns in a sequence 
without knowledge of the particular location of the pattern within the sequence. 
DeepBind is also said to have the ability to: learn from very large amounts of sequence 
data through parallel implementation on a graphics processing unit (GPU); use both 
microarray and sequencing data; automatically train predictive models without requir-
ing hand-tuning; tolerate mislabeled data and some noise; and generalize well across 
technologies regardless of existing biases across technologies. Furthermore, DeepBind 
was also used for identifying RNA- and DNA-binding protein sequence specificities, 
and showed resilience to outliers and array biases. This suggests that the issue of 
predicting sequence specificities has been efficiently addressed using the deep learning 
approach.

2.2 Analyzing gene expression profiles

With the increased availability of genome-wide gene expression assays in public 
databases, there is increasing demand for more efficient computational models for 
data interpretation. The use of artificial neural networks in biomedical research is cur-
rently taking precedence over traditional analysis methods, as they have been proven 
to be better classifiers. Deep neural networks, using data from RNA-seq as inputs, 
are being used for prediction modeling. Classic models in applications like predicting 
patient outcomes using gene expression data are still not effective to the expected 
level, thus creating a need for more efficient robust algorithms. Recent studies that 
use deep learning models on gene expression data have indicated better performance. 
Urda et al. [17] illustrated the use of a multi-layer feed-forward artificial neural 
network, shown in Figure 2, in analyzing the RNA-seq gene expression data.

Dincer et al. [18] present a model that uses variational auto-encoders (VAEs) to 
extract latent variables from publicly available expression datasets and use them 
as features for predicting phenotypes. Their system, called DeepProfile, uses deep 
learning to learn a feature representation from large unlabeled expression data 
samples that are not incorporated in the prediction problem. This system was suc-
cessfully used for the prediction of response to cancer drugs based on gene expres-
sion data. It also helped determine the effects of given drugs on specific patients 

Figure 2. 
Example neural network for binary classification. Input layer of P gene expression levels connected to k-hidden 
layers through synaptic weights w.
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and thus provides a tool for precision medicine. The model was trained on gene 
expression data of acute myeloid leukemia, from GEO. Results indicated that low-
dimensional representation (latent variables) generated using VAEs significantly 
outperformed the original input feature representation (gene expression levels) 
in the drug response prediction problem. Therefore, variational auto-encoders 
were shown to be effective in extracting a low-dimensional feature representation 
from unlabeled gene expression datasets and these learned features were found to 
capture important processes relevant to the prediction problem.

It is worth noting that detecting certain differentially expressed genes 
(DEGs) from RNA-seq results still faces challenges despite the quality control 
measures applied during sample preparation and data analysis. Data process-
ing methods can lead to a certain number of false-positives and false-negatives 
that affect the accuracy and sensitivity of DEGs analysis. The combination of 
machine learning techniques with RNA-seq has been shown to significantly 
improve the sensitivity of DEGs [18] and thus help increase the identification 
of DEGs that are missed by traditional RNA-seq techniques. The study by Wang 
et al. [19] used a differential network analysis, based on machine learning, to 
predict stress-responsive genes by learning the patterns of 32 expression charac-
teristics of known stress-related genes. For analysis using machine learning, the 
WEKA 3 data mining software was used for feature selection, classifier training, 
and evaluation. Three feature selection algorithms, correlation feature selection 
(CFS), information gain (InfoGain), and RELIEF [20], were used to identify 
features and five classifiers, logistic regression, random forest, LMT, classifica-
tion via regression, and random subspace, that exhibited better performance 
than other machine learning algorithms, were deployed to predict up- and 
down-regulated genes. With this approach, the authors were able to identify the 
top 23 most informative features.

2.3  Inferring protein-protein interaction and biological networks for knowledge 
discovery

In the context of this chapter, we only focus on protein-protein interaction 
(PPI) network, which is defined as a set of nodes (or vertices), representing 
proteins connected by undirected edges (or links), which are the interactions 
or relationships between them (either direct physical or functional interactions). 
A physical interaction is an interaction that involves physical contact between 
proteins, and on the other hand, functional interaction, which is broad, does 
not necessarily involve direct physical contact, but rather refers to a mechanism 
through which a protein participates in cell functions [21]. Several learning algo-
rithms have been used to infer human and human-pathogen PPIs [22], including 
ANN [23].

There exist several types of PPI networks based on the type of interactions and 
when integrated in a single network, the relationships between proteins in a unified 
network are referred to as functional interactions. Here, we only refer to functional 
interactions, which include physical and genetic interactions, and those inferred 
from knowledge about co-expression and shared evolutionary history or biological 
pathways. Other types of biological networks include signaling networks, gene 
regulatory or DNA-protein interaction networks [24, 25], disease-gene networks 
linking diseases to genes causing the disease, and drug interaction networks 
connecting drugs to their targets [26]. These biological networks have been used 
in several applications and analyzing individual, collective, and sub-network 
behaviors of these biological networks has enabled effective knowledge discovery at 
different levels of biology.
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Figure 2. 
Example neural network for binary classification. Input layer of P gene expression levels connected to k-hidden 
layers through synaptic weights w.

7

Designing Data-Driven Learning Algorithms: A Necessity to Ensure Effective Post-Genomic…
DOI: http://dx.doi.org/10.5772/intechopen.84148

and thus provides a tool for precision medicine. The model was trained on gene 
expression data of acute myeloid leukemia, from GEO. Results indicated that low-
dimensional representation (latent variables) generated using VAEs significantly 
outperformed the original input feature representation (gene expression levels) 
in the drug response prediction problem. Therefore, variational auto-encoders 
were shown to be effective in extracting a low-dimensional feature representation 
from unlabeled gene expression datasets and these learned features were found to 
capture important processes relevant to the prediction problem.

It is worth noting that detecting certain differentially expressed genes 
(DEGs) from RNA-seq results still faces challenges despite the quality control 
measures applied during sample preparation and data analysis. Data process-
ing methods can lead to a certain number of false-positives and false-negatives 
that affect the accuracy and sensitivity of DEGs analysis. The combination of 
machine learning techniques with RNA-seq has been shown to significantly 
improve the sensitivity of DEGs [18] and thus help increase the identification 
of DEGs that are missed by traditional RNA-seq techniques. The study by Wang 
et al. [19] used a differential network analysis, based on machine learning, to 
predict stress-responsive genes by learning the patterns of 32 expression charac-
teristics of known stress-related genes. For analysis using machine learning, the 
WEKA 3 data mining software was used for feature selection, classifier training, 
and evaluation. Three feature selection algorithms, correlation feature selection 
(CFS), information gain (InfoGain), and RELIEF [20], were used to identify 
features and five classifiers, logistic regression, random forest, LMT, classifica-
tion via regression, and random subspace, that exhibited better performance 
than other machine learning algorithms, were deployed to predict up- and 
down-regulated genes. With this approach, the authors were able to identify the 
top 23 most informative features.

2.3  Inferring protein-protein interaction and biological networks for knowledge 
discovery

In the context of this chapter, we only focus on protein-protein interaction 
(PPI) network, which is defined as a set of nodes (or vertices), representing 
proteins connected by undirected edges (or links), which are the interactions 
or relationships between them (either direct physical or functional interactions). 
A physical interaction is an interaction that involves physical contact between 
proteins, and on the other hand, functional interaction, which is broad, does 
not necessarily involve direct physical contact, but rather refers to a mechanism 
through which a protein participates in cell functions [21]. Several learning algo-
rithms have been used to infer human and human-pathogen PPIs [22], including 
ANN [23].

There exist several types of PPI networks based on the type of interactions and 
when integrated in a single network, the relationships between proteins in a unified 
network are referred to as functional interactions. Here, we only refer to functional 
interactions, which include physical and genetic interactions, and those inferred 
from knowledge about co-expression and shared evolutionary history or biological 
pathways. Other types of biological networks include signaling networks, gene 
regulatory or DNA-protein interaction networks [24, 25], disease-gene networks 
linking diseases to genes causing the disease, and drug interaction networks 
connecting drugs to their targets [26]. These biological networks have been used 
in several applications and analyzing individual, collective, and sub-network 
behaviors of these biological networks has enabled effective knowledge discovery at 
different levels of biology.



Artificial Intelligence - Applications in Medicine and Biology

8

2.4 Predicting gene-gene and gene-environment interactions

Generally, disease outcome involves multiple genes contributing in every 
stage of disease progression [27]. This suggests the influence of gene-gene and 
gene-environment interactions in the outcome of a disease. Genes interact in large 
networks and some genes in the network are more important or central than others. 
Understanding these interactions is necessary for setting optimal prevention and 
control mechanisms to contain the disease. There have been challenges in identify-
ing the distinctive nature of gene-gene and gene-environment interactions and 
their impact on disease risk, using traditional statistical methods. This has been due 
to the high dimensionality of the data, presence of epistasis and multiple polymor-
phisms leading to complex datasets for analysis. Machine learning methods such as 
SVM, ANN, and RF are used in addressing these challenges.

Neural networks use pattern recognition to address challenges in genomics. In 
the context of predicting gene-gene interaction, the neural network architecture 
depends on the type of interactions [28], shown in Figure 3. Genetic programming 
has been utilized to optimize the architecture of neural networks and back propaga-
tion for modeling gene-gene interactions as illustrated by Ritchie et al. [29]. Genetic 
programing neural nets (GPNN) were found to have more prediction power for 
models with heritability greater than 0.026 as compared to back propagation neural 
nets (BPNNs) which had only 80% power for models with greater than 0.051 herita-
bility. The GPNN also outperformed the BPNN when applied to models containing 
functional and nonfunctional SNPs. Complex nonlinear interactions with binary 
endpoints that have previously been analyzed by logistic regression and classification 
and regression trees (CARTs) can be examined by GPNN. Motsinger et al. [30] dem-
onstrated the use of grammatical evolution neural networks (GENNs) in detecting 
gene-gene and gene-environment interactions in high dimensional data with noise. 
GENN were found to be more vigorous with missing data and genotyping errors.

On the other hand, random forest (RF) algorithm is a flexible supervised 
machine learning algorithm that can be used for classification and regression. The 
RF algorithm is often able to produce good results even with missing values in the 
data and without need for hyper-parameter tuning. Therefore, RF algorithm can 
be well suited for high-dimensional genomic data analysis. This algorithm is also 
useful in reducing the search space of epistatic interactions, thereby creating a 
manageable set of possible combinations of genetic variants.

Finally, support vector machine (SVM) is a machine learning algorithm that uses 
hyper-planes for classification and regression tasks. The SVM approach has been 
applied to detecting gene-gene interactions through learning from the features of 
genetically interacting pairs. For training, SVM takes in two sets of feature vectors 

Figure 3. 
Categories of gene-gene interactions retrieved from Koo et al. [23].
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labeled as positive and negative, indicating presence and absence of genetic interac-
tion, respectively. Feature mapping is done by use of a hyper-plane with maximum 
margin to separate genetically interacting pairs and non-genetically interacting 
pairs. SVM and neural network modeling was used to investigate gene-gene inter-
actions in a study by Matchenko-Shimko and Dube [31]. They used pre-selection 
of SNP-SNP combination to determine the effects of interactions between genes. 
However, the pre-selection strategy did not work well with combinations of low 
disease allele frequencies and low margin effects. It was discovered that larger 
sample sizes are required for determining gene-gene interactions with SNPs having 
low marginal effect sizes as compared to interactions with moderate marginal gene 
effect sizes. Both SVM and ANN models exhibited good performance in increas-
ing allele frequency with low marginal gene effects [31]. SVM was used to identify 
the most promising SNPs and interactions. Shen et al. used it in two stages for 
determining gene-gene interactions where the second stage involves the applica-
tion of logistic regression analysis. It was shown that SVM is also useful in methods 
for case-control studies in which multiple logistic regression performs better than 
traditional logistic regression for each interaction. Additionally, application of the 
SVM in improving the accuracy of cancer classification, through extending the 
SVM pedigree-based generalized multifactor dimensionality, has been functional in 
detecting gene-gene and gene-covariate interactions in limited family samples [32]. 
Moreover, the SVM can also be used to extract known gene-disease associations 
and infer known genes for future experimental analysis using automatic literature 
mining based on dependency parsing and SVM [33].

In addition, the application of SVM in SUPPORTMIX [34], which is a local ances-
try inference method, facilitates gene-gene and gene-environment interactions. For 
instance, Aschard et al. [35] highlighted that local ancestry estimates might provide 
insights into detecting gene-gene interactions, while Florez et al. [36] showed that 
non-European ancestry in the Latino populations is associated with type 2 diabetes 
and lower economic status, illustrating gene-environment interaction. Local ances-
try inference estimates the proportion of alleles that originates from a particular 
population at every chromosomal site of an admixed individual. SUPPORTMIX 
integrates SVM with hidden Markov models (HMMs). Using SVM in SUPPORTMIX 
improves multi-way local ancestry inference overall, since it addresses the challenge 
of few genotyped or existing reference panels [1]. Furthermore, it facilitates both 
gene-gene and gene-environment interactions due to the improved computational 
time as a result of its flexibility and ability to handle “big data.”

2.5 Elucidating disease-causing genetic variants

The identification of disease-causing genetic variants is challenging because 
several of them are found in the non-coding regions of the genome. The role of 
non-coding regions in the maintenance of genome functions is not well understood. 
However, some machine learning algorithms have been designed to annotate coding 
and non-coding genetic variants in order to identify disease-causing mutations. 
Combined annotation-dependent depletion (CADD) is an algorithm designed to 
annotate coding and non-coding variants [37]. CADD trains a linear kernel sup-
port vector machine to separate observed genetic variants from simulated ones. 
However, due to the SVM’s inability to capture nonlinear relationships among 
features, a deep neural network that uses the same feature set and training data as 
CADD is preferred. Deep neural networks are better suited than SVMs for problems 
with large samples and features.

How genetic variants, especially those which are not within protein coding 
regions, affect RNA splicing is not entirely understood. This type of problem can 
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pairs. SVM and neural network modeling was used to investigate gene-gene inter-
actions in a study by Matchenko-Shimko and Dube [31]. They used pre-selection 
of SNP-SNP combination to determine the effects of interactions between genes. 
However, the pre-selection strategy did not work well with combinations of low 
disease allele frequencies and low margin effects. It was discovered that larger 
sample sizes are required for determining gene-gene interactions with SNPs having 
low marginal effect sizes as compared to interactions with moderate marginal gene 
effect sizes. Both SVM and ANN models exhibited good performance in increas-
ing allele frequency with low marginal gene effects [31]. SVM was used to identify 
the most promising SNPs and interactions. Shen et al. used it in two stages for 
determining gene-gene interactions where the second stage involves the applica-
tion of logistic regression analysis. It was shown that SVM is also useful in methods 
for case-control studies in which multiple logistic regression performs better than 
traditional logistic regression for each interaction. Additionally, application of the 
SVM in improving the accuracy of cancer classification, through extending the 
SVM pedigree-based generalized multifactor dimensionality, has been functional in 
detecting gene-gene and gene-covariate interactions in limited family samples [32]. 
Moreover, the SVM can also be used to extract known gene-disease associations 
and infer known genes for future experimental analysis using automatic literature 
mining based on dependency parsing and SVM [33].

In addition, the application of SVM in SUPPORTMIX [34], which is a local ances-
try inference method, facilitates gene-gene and gene-environment interactions. For 
instance, Aschard et al. [35] highlighted that local ancestry estimates might provide 
insights into detecting gene-gene interactions, while Florez et al. [36] showed that 
non-European ancestry in the Latino populations is associated with type 2 diabetes 
and lower economic status, illustrating gene-environment interaction. Local ances-
try inference estimates the proportion of alleles that originates from a particular 
population at every chromosomal site of an admixed individual. SUPPORTMIX 
integrates SVM with hidden Markov models (HMMs). Using SVM in SUPPORTMIX 
improves multi-way local ancestry inference overall, since it addresses the challenge 
of few genotyped or existing reference panels [1]. Furthermore, it facilitates both 
gene-gene and gene-environment interactions due to the improved computational 
time as a result of its flexibility and ability to handle “big data.”

2.5 Elucidating disease-causing genetic variants

The identification of disease-causing genetic variants is challenging because 
several of them are found in the non-coding regions of the genome. The role of 
non-coding regions in the maintenance of genome functions is not well understood. 
However, some machine learning algorithms have been designed to annotate coding 
and non-coding genetic variants in order to identify disease-causing mutations. 
Combined annotation-dependent depletion (CADD) is an algorithm designed to 
annotate coding and non-coding variants [37]. CADD trains a linear kernel sup-
port vector machine to separate observed genetic variants from simulated ones. 
However, due to the SVM’s inability to capture nonlinear relationships among 
features, a deep neural network that uses the same feature set and training data as 
CADD is preferred. Deep neural networks are better suited than SVMs for problems 
with large samples and features.

How genetic variants, especially those which are not within protein coding 
regions, affect RNA splicing is not entirely understood. This type of problem can 
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however be addressed by machine learning computational models designed to 
predict splicing during gene expression. Regulation of splicing is very important 
and faulty regulation could lead to several diseases, such as cancer and neurological 
disorders. A computational technique, that scores the magnitude of the effects of 
genetic variants on RNA splicing, was developed by Xiong et al. [38]. The compu-
tational model can be applied to any sequence with a triplet of exons and used to 
determine how splicing is altered by genetic variants. The model computes a score 
that predicts how much a given variant affects splicing.

Linkage and association analysis are types of neural network methods used to 
identify genes associated with diseases. Linkage analysis is used to detect the con-
nection between a disease locus and a marker and uses genotypes as inputs and 
the outputs are phenotype values such as disease status and quantitative clinical 
variables. Association analysis on the other hand is used for detecting the disequi-
librium between disease locus and marker. The data in association analysis are of 
case-control type with a sample comprised of genotypes for multiple markers. In 
most cases, it is useful to integrate genotype information into pathway analysis for 
more effective biological interpretation of these genotype contributions into the trait 
under consideration. In this case, random survival forest pathway hunting algorithm 
can be used to identify signaling pathways in a relatively small sample size [39].

Finally, considering the RF features, the RF algorithm can also be used in 
identifying a set of risk-associated SNPs from a large number of unassociated SNPs 
in models of complex diseases. There are unknown interactions among true risk-
associated SNPs or SNPs and the environment in large-scale genetic data and RF 
can be used to significantly reduce the number of SNPs in the data as pointed out 
previously.

2.6 Applying learning algorithms in clinical decision process

Setting appropriate diagnostic and effective therapeutic regimens is a critical 
clinical decision and essential for setting effective health measures and efficient 
strategies to control a disease. This process is limited by the lack of advanced diag-
nostic tools and approved therapy or vaccine against most existing and emerging 
diseases [40, 41]. Moreover, despite undeniable advances made in understanding 
of human biology, etiology, and pathogenesis of several diseases, and emergence of 
advanced technologies, the translation of the existing biological knowledge toward 
effective new treatments and clinical interventions has not been as fast as expected 
or anticipated. This highlights the need for powerful and general tools for orienting 
these clinical decision processes. Machine learning algorithms are contributing to 
satisfying this need with several advantages in representational power even though 
challenges in biological interpretation still hamper clinical applications [15].

As an initial illustration, Adabor and Acquaah-Mensah [42] introduced the 
median supplement model to appropriately balance a training set with unequal 
numbers of instances associated with each class or group to improve the clas-
sification decision. They also assessed different machine learning techniques in 
predicting the receptor expression status of breast cancer patients, namely pro-
gesterone receptor (PR) status and HER2 expression status using gene expression 
datasets. These receptors are essential in deciding on treatment and predicting the 
treatment outcome. In this chapter, we used results of their performance evalua-
tions to highlight two essential features common to most of the machine learning 
algorithms as shown in Figure 4: (1) as the size of the training set increases, the 
performance of the learning algorithm increases (see Sample Data 1 vs. Sample 
Data 2) and (2) learning algorithm on a balanced training set may perform better 
than on an unbalanced training set (see NB vs. MNB and RF vs. MRF).
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It is worth mentioning that machine learning algorithms have been used in 
several contexts with a common goal of improving healthcare measures and patient 
clinical management. For examples, deep learning algorithms are used to classify 
patients based on clinical healthcare records [43], to predict the effectiveness of 
clinical trials (i.e., likelihood of success or failure of clinical trials) [44], to improve 
and predict patient treatment response and outcome based on pharmaco-genomics 
data [45]. Moreover, Nemati et al. [14] optimized a treatment dosing policy for 
intensive care patients using deep reinforcement learning and Wang et al. [46] 
predicted drug-target binding site interactions using ANN with two hidden lay-
ers taking a drug and a target binding site as inputs. Finally, it is known that drug 
repositioning or re-purposing approach, which examines new therapeutic uses 
for approved drugs, represents an optimal model for suggesting new drugs using 
drug-target interactions [40, 41]. Wang and Zeng [47] used a learning technique 
based on restricted Boltzmann machines to predict novel drug-target interactions 
directing to drug re-purposing.

3. Integrative approaches for post-genomic analysis

Over the years, thousands of genetic associations have been discovered using 
genetic approach, known as genome-wide association studies (GWAS). GWAS 
approaches are mostly based on a single-marker association test model that lever-
ages thousands of genomes of cases and controls (sick and healthy individuals) in 
order to elucidate variants or single-nucleotide polymorphisms (SNPs) with unusual 
significant differences in frequency throughout genomes [48]. This indicates that 
GWAS approaches are based on machine learning techniques, which mostly take 
SNP profiles of cases and controls as inputs, and predict a SNP carrying disease risk. 
Note that these approaches have been successful [49] and several GWAS results have 
helped elucidating genetic determinants of susceptibility to several diseases, includ-
ing complex diseases, such as cancer, and monogenic diseases, such as sickle cell 

Figure 4. 
Performance of different machine learning techniques for predicting progesterone receptor (PR) status 
phenotype of breast cancer patients based on classification rate (proportion of correctly classified instances), 
information extracted from [42]. Sample Data 1 is a smaller-sized dataset as compared to sample data 2, 
containing 162 and 1146 instances of breast cancer patients, respectively. Learning techniques: support vector 
machine (SVM), logistic regression (logistic), Bayesian network (BN), Naive Bayes (NB), random trees (RT), 
random forest (RF), median-supplement Naive Bayes (MNB), and median-supplement random forest (MRF).
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disease. In fact, in case of the breast cancer disease, a genetic testing tool has been 
implemented [50] based on specific genetic variants in breast cancer type 1 (BRCA1) 
and 2 (BRCA2) susceptibility genes in chromosomes 17 (17q21.31) and 13 (13q13.1) 
[51], respectively. It is widely known that the outcome of a disease, in particular a 
complex disease, or a response to a drug is influenced by multiple genes and sig-
nificant contribution from the environment. This strongly argues that using only 
genomic analysis will not be sufficient to entirely embed phenotypic variation and 
heritability, suggesting that genomic analysis alone is not sufficient to elucidate the 
complex structure of the disease [52]. Thus, there is a significant need of integrating 
information derived from environmental studies and other heterogeneous datasets 
into genomic analysis to enhance the predictive power of genomic analysis.

As indicated above, even though genomic information is critical, it is not 
sufficient to completely elucidate disease outcome and progression, which involve 
gene-gene and gene-environment interactions. In this context, the post-genomic 
analysis may provide a new paradigm to genomic analysis and may enable further 
functional characterization of genetic susceptibility to a disease and correlate 
disease-associated (candidate) genes by combining association signals from 
genomic analysis and available knowledge, including functional, environmental, 
epidemiological, and clinical information. This integrative approach increases the 
likelihood of effectively identifying suitable candidate genes [53] and biological 
pathways that may be critical in the etiology and pathogenesis of the disease, and 
in the drug response. The next goal is to integrate large-scale datasets from het-
erogeneous sources [2, 54] to move beyond a single genomic approach and foster a 
whole genome-based integrative approach to achieve global view [55]. A biological 
network, which is a network modeling a biological system as an entity composed of 
sub-units connected as a whole, has become a useful tool enabling the integration of 
heterogeneous datasets into a single framework [26].

4. Challenges and perspectives

Currently, there is an exponential growth of several platforms producing 
large-scale datasets, including genomics, transcriptomics, proteomics, metabolo-
mics, microbial and epidemiological data. These high-dimensional datasets from 
heterogeneous sources create an opportunity of designing appropriate data-driven 
learning algorithms and models to ensure effective post-genomic medicine and 
biomedical research with an increased prediction power. While the use of these 
large-scale post-genomic datasets from heterogeneous sources, such as transcrip-
tomics, proteomics, metabolomics, microbial and epidemiological data, shows 
several potential advantages and opportunities, many challenges still exist in terms 
of computational models, learning algorithms, and biological interpretation of 
result outputs. Furthermore, as discussed previously, learning, reinforcement, and 
deep learning algorithms are quickly evolving with several potential applications 
in biology and medicine (see Section 2.6). Currently, predictions from different 
models are unable to contribute to clinical decision processes as the effectiveness 
of these models still poses problems in the absence of ground-truth, gold standard 
(benchmark) datasets, or experimental validation. This suggests that one of the 
future trend aspects of learning algorithms in biology and medicine will be to make 
possible the integration of predictive models generated by these learning algo-
rithms into dynamic clinical settings. This integration will necessitate that issues 
raised above are addressed systematically and will ensure an effective exploitation 
of the post-genomic datasets and potentially revolutionize the study of human 
disease and health.
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Machine intelligence and deep learning models present more powerful compu-
tational techniques that are able to effectively learn from large complex datasets 
in order to reveal several hidden interactions within cell variables and give more 
insight into the intricate processes linked to diseases [56]. On the other hand, 
despite the current undoubted data wealth, we still have a very limited understand-
ing of the mechanisms underlying the outcome, pathogenesis, and progress of 
many diseases, which is reflected in an existing gap between this data wealth and 
translation toward enhancing treatment and interventions for diseases, leading to 
the paradigm of “world with data wealth and information poor”. This is partly due 
to issues related to different existing datasets, including: (1) increased heterogeneity 
within a dataset as, in general, these datasets are collected across different locations, 
thus lacking a standardized representation of the data and (2) variation of cohorts 
in terms of size across populations and geographical locations. This highlights the 
need for designing adequate meta-analysis models to assist in retrieving useful 
information within each data source. This may also require more advanced machine 
learning techniques to play an important role in genomic medicine and advance our 
knowledge about disease and health.

5. Conclusions

Numerous large-scale platforms have been designed for producing differ-
ent types of high-dimensional datasets, including genomics, transcriptomics, 
proteomics, metabolomics, microbial and epidemiological data. This data deluge 
provides a rich source of information, which can advance our understanding of 
human and pathogenic organisms to enhance post-genomic medicine and biomedi-
cal research. In this chapter, we have provided some illustrations of machine learn-
ing algorithms for knowledge discovery in biological and health areas and discussed 
existing challenges. This discussion highlights the need for adequate meta-analysis-
based post-genomic models to optimally integrate diverse datasets from different 
sources. This clearly suggests that initial machine learning algorithms will need 
to be refined or new ones need to be developed to account for current data chal-
lenges in order to speed up the translation of the current and future knowledge into 
effective new treatment strategies and health measures, enabling efficient clinical 
disease management and ensuring effective post-genomic medicine.
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Abstract

Electromyography (EMG) is a commonly used technique to record myoelectric 
signals, i.e., motor neuron signals that originate from the central nervous system 
(CNS) and synergistically activate groups of muscles resulting in movement. EMG 
patterns underlying movement, recorded using surface or needle electrodes, can be 
used to detect movement and gait abnormalities. In this review article, we examine 
EMG signal processing techniques that have been applied for diagnosing gait dis-
orders. These techniques span from traditional statistical tests to complex machine 
learning algorithms. We particularly emphasize those techniques are promising 
for clinical applications. This study is pertinent to both medical and engineering 
research communities and is potentially helpful in advancing diagnostics and 
designing rehabilitation devices.

Keywords: electromyography, feature extraction, classification, gait disorders, 
machine learning, time-frequency analysis

1. Introduction

EMG is an electrodiagnostic technique used to record the electrical activity in 
skeletal muscles. EMG signals are complex and exhibit intricate patterns that are 
dependent on the anatomical properties of the muscle [1–3]. The signal manifests 
the neuromuscular activation underlying muscle contraction [1, 3]. Therefore, 
an abnormality in the contraction of a muscle due to an injury, nerve damage, or 
muscular or neurological disorder that causes motor dysfunction can be identified 
through EMG signal diagnosis. The motor neuron signal carries information from 
the CNS aimed for limb displacement by flexing and extending the joints [4, 5]. The 
dynamic electrical activity of these motor units is called motor unit action poten-
tials (MUAPs). These are super-positioned and recorded by the EMG device [6]. 
EMG can be recorded using surface electrodes, fine wire electrodes as well as anal 
and vaginal probes for pelvic floor muscles [2]. A simple model of an EMG signal is 
given by Eq. (1), where, y(n) is the sampled EMG signal, a(r) is the MUAP, x(n) is 
point processed firing impulse, wn is the white Gaussian noise and N is the number 
of motor unit firing at a particular time.

  y (n)  =   ∑ 
i=1

  
N−1

    a  i   (r)   x  i   (n − r)  +  w  n    (1)
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(CNS) and synergistically activate groups of muscles resulting in movement. EMG 
patterns underlying movement, recorded using surface or needle electrodes, can be 
used to detect movement and gait abnormalities. In this review article, we examine 
EMG signal processing techniques that have been applied for diagnosing gait dis-
orders. These techniques span from traditional statistical tests to complex machine 
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and vaginal probes for pelvic floor muscles [2]. A simple model of an EMG signal is 
given by Eq. (1), where, y(n) is the sampled EMG signal, a(r) is the MUAP, x(n) is 
point processed firing impulse, wn is the white Gaussian noise and N is the number 
of motor unit firing at a particular time.
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Our aim in this article is to review EMG signal processing techniques that facili-
tate detection of gait and movement disorders. We discuss techniques from simple 
enveloping to complex computational machine learning algorithms that may help 
detect alterations in EMG patterns while performing daily life activities. We may 
note that there are number of highly cited review articles such as Raez et al. [7], and 
Chowdhury et al. [8], that review EMG processing and classification techniques. 
The novelty in our review is that in addition to discussing innovative processing 
techniques we have emphasized their applications, particularly focusing on lower 
limb disorders. In Section 2, we review the basic techniques such as EMG envelop-
ing, followed by EMG onset/offset detection in Section 3. In Section 4, we review 
current literature on the decomposition of EMG signals into MUAPs and muscle 
synergies. In Section 5, we discuss the analysis of the EMG signal in the frequency 
and time-frequency domain to understand changes due to motor impairment. 
When working with a larger sample size, a machine learning system can be used to 
classify subjects with altered muscle activation and abnormal gait patterns [9, 10]. 
In Section 6, we discuss algorithms that employ supervised and unsupervised learn-
ing to detect patterns of gait disorders, followed by a discussion of future trends 
and conclusion in Section 7.

2. EMG envelopes

Visual inspection of the raw EMG plot or its envelope requires high dexterity 
and clinical experience to detect motor impairment. The methodology to obtain 
the EMG envelope includes preprocessing, signal filtering, rectification, smooth-
ing, standardization, statistical testing, and intricate computational algorithms. 
Scientific recommendations by SENIAM project and International society of elec-
tromyography and Kinesiology (ISEK) suggest use of bandpass filters (10–500 Hz) 
to reduce aliasing effects when using a sampling frequency of 1 kHz. Intramuscular 
and needle recordings should be made with the low-pass cut-off set at 1500 Hz. 
Avoiding notch filter is recommended as it destroys the signal information [2]. De 
Luca et al. recommended root mean square (RMS) value to compute the signal 
amplitude of the EMG during voluntary contraction [3]. Methods to form EMG 
envelopes include moving average, root mean square, spline interpolation over 
local maxima, integrated EMG etc. EMG envelope can also be obtained from low 
pass Butterworth 6 Hz filter. Hilbert finite impulse response (FIR) filter computes 
magnitude of the analytic EMG signal.

A decrease in EMG amplitude was visually observable for chronic spinal cord 
injury (SCI) patients while walking for 3 min [11]. Biceps femoris (BF) and gas-
trocnemius medial (GM) revealed consistent activity, but that was not the case for 
tibialis anterior (TA) and rectus femoris (RF). The RMS magnitude of the signal 
from BF and GM muscles decreased with longer activity duration (10 min) followed 
by an EMG burst resulting from muscle spasm. Identification of chronic SCI was 
done by simple visual inspection of the raw EMG [11]. The inter-neuronal degrada-
tion was the cause of decreased locomotor performance [11]. The RMS amplitude 
of the EMG signal using a paired t-test showed a higher duration of muscle activity 
for BF and TA among cervical spondylotic myelopathic patients (CSM) [12]. The 
amplitude of the muscle burst activity was not statistically different between the 
healthy group and CSM [12]. The muscle stretch analyzed from kinematic data did 
not relate with spasticity, but the ratio of EMG RMS amplitude to the mechanomyo-
gram data showed statistically significant results for healthy and myotonic control 
groups [12, 13].
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The stochastic and nonstationary nature of EMG signals makes it harder to 
study the innate patterns of the electrical activity of the muscles. Statistical tests 
such as Pearson’s, Pearson’s r, the Kolmogorov-Smirnov T-test, ANOVA F ratio 
and t-test, and Wilcoxon Signed Rank Test can demonstrate significant changes 
in the EMG profiles associated with different behavior [14, 15]. Domingo et al. 
performed an ANOVA on the normalized EMG amplitude of spinal cord injured 
patients, which led to the conclusion that with increased speed and no manual 
assistance the EMG pattern exhibited statistical significance when compared to 
the control group. The shape and timing of EMG patterns were less similar to 
controls [16]. Among stroke patients, the EMG activity displayed heterogeneity 
in comparison with healthy individuals [17]. Nieuwboer et al. [18] demonstrated 
that raw EMG and its linear envelopes of Parkinson’s patients during freezing 
episodes displayed abnormal activity of TA and GM. Nonparametric tests on the 
RMS EMG envelope of the hemiplegic patient showed statistical significance 
during push off and early stance phase [14]. EMG data acquired from Parkinson 
patients’ shoulder muscles revealed higher activation than those of healthy 
control subjects [19]. Average and maximum EMG amplitude were calculated for 
comparison [19].

Traditional statistical testing of the EMG uses ANOVA techniques that may not 
identify visually differentiable waveform features. McKay et al. [20] developed a 
more reliable statistical method to find the underlying patterns with the wavelet-
based functional test (wfANOVA). Its performance to detect the changes in the 
magnitude and shape of EMG was more precise than the time domain ANOVA test. 
Wilcoxon signed rank tests were also used in studies with non-parametric data [12]. 
EMG envelope extraction using time domain features from multichannel sensors and 
their statistical tests can assist in the detection of altered myoelectric activity. Specific 
features such as EMG onset/offset, MUAP etc. can be analyzed from the envelopes 
for the diagnosis of gait disorders. Figure 1 shows signal envelope extracted from 
the EMG signal with RMS. MATLAB functions were used to extract envelope and 
perform a statistical hypothesis test for a healthy individual and other disorders.

Figure 1. 
RMS envelope from a healthy, a myopathic, and a neuropathic patient. A non-overlapping window of 200 
samples was used and a paired student t-test revealed statistical significance (p < 0.05) between healthy and 
neuropathic, and healthy and myopathic conditions. The data was obtained from physionet [21].
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Figure 1. 
RMS envelope from a healthy, a myopathic, and a neuropathic patient. A non-overlapping window of 200 
samples was used and a paired student t-test revealed statistical significance (p < 0.05) between healthy and 
neuropathic, and healthy and myopathic conditions. The data was obtained from physionet [21].
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3. EMG onset detection

EMG onset parameters define the duration for the muscles to stay active [2]. 
Onset estimation is useful to diagnose abnormality in muscle coordination. To 
detect the EMG onset, visual inspection or measurement of nerve conduction 
velocity may be used [22]. The basic thresholding method for onset detection is sen-
sitive to the type of trials, EMG amplifiers and noise level in the signal. The thresh-
olding based on SD baseline noise can be improved with local peak value. In a study 
[23], integrated EMG provided more information about early activation. During 
preconditioning, Teager-Kaiser Energy Operator (TKEO) also improved the onset 
detection accuracy by constricting the energy of the baseline noise [24, 25]. Staude 
et al. compared onset detection methods based on the statistical optimal decision 
threshold [26]. The simple threshold algorithm of Hodges and Bui [26] identifies 
the onset at a point where the mean of the samples within a fixed time window 
surpasses the baseline level by a defined multiple of standard deviation [27].

The basic framework of the threshold detection algorithm includes signal 
conditioning (rectification, filtering, whitening etc.), detection (Test Function and 
Decision rule), and postprocessing [26]. A block diagram is shown in Figure 2.

Double threshold methods are considered better in comparison to single thresh-
old methods [7]. The Bonato algorithm [28] includes pre-whitening filter and data 
sample squaring in the conditioning unit. The test function is computed between 
two successive samples from the conditioned EMG signal. The onset point identifi-
cation is based on the following rules: (1) x out of y samples must exceed the thresh-
old and (2) activation state of the muscle after surpassing the threshold should last 
for a certain number of samples or duration of time [26].

In Lidierth [29] method, the signal conditioning unit performs full wave recti-
fication. The test function and decision rule are based on Hodges [26]. Additional 
post-processing rules increase the efficiency of the algorithm. The test function 
unit detects the onset if the sEMG signal exceeds the threshold. Any decline in the 
activity below threshold within a defined duration, should not be longer than the 
defined range of samples [29]. The power spectral correlation coefficient method 
performs better than TKEO and utilizes the moving average method of Hodges and 
Bui [30]. The statistical estimation algorithm includes an optimal estimator and 
approximated generalized likelihood-ratio detector. The statistically optimized 
algorithms are more robust in terms of signal parameters [26]. Tenan et al. [25] 
reviewed three classes of standard EMG (linear envelope, entropy, TKEO) and 
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EMG onset estimation framework; xk is Gaussian noise signal, yk is the processed signal, σ′o and μ′o are 
standard deviation and mean of samples, respectively, gk ≥ Th (Threshold) is the value to trigger an alarm ta, 
and t′o is the change time estimation.
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six classes of statistical EMG onset detection (general time series/mean–variance, 
sequential change point detection with parametric and non-parametric methods, 
batch change point detection, and Bayesian change point analysis). The Bayesian 
Change Point analysis algorithm showed higher reliability and accuracy for the 
singular EMG onset detection.

Maximum voluntary contraction (MVC) is a common scaling technique for 
EMG onset detection. MVC is the largest RMS amplitude a muscle generates in 
maximum contraction [31]. MVC has a curvilinear relationship with the muscle 
force production, where less force production amount to muscle weakness. EMG 
onset on a normalized time series with MVC can help diagnose gait disorders 
associated with atrophy [2]. Muscle spasticity/co-contraction during tremors 
among patients with neurological gait disorder exhibited abnormality in EMG onset 
compared to healthy individuals [12, 32]. EMG envelope indicated alterations in 
EMG onset for patients with Parkinson’s during freezing episodes [20]. A premature 
activation of TA and GM muscles before a freezing episode was observed. In gait 
impairment, due to cervical spondylotic myelopathy, delayed onset and prolonged 
activation were present [12]. In cerebral palsy earlier onset suppression of EMG 
within cutaneous muscular reflex is associated with motor dysfunction, which 
results in inhibitory postsynaptic potentials [33].

4. EMG decomposition into MUAP

Raw EMG signal consists of superpositioned motor unit activation potentials 
(MUAP) and noise components. Muscle crosstalk is a major issue during recording 
of the biological signals. The crosstalk is dependent on factors such as anatomical 
site for the placement of electrodes, type of movement, and skin thickness. Since 
it is harder for sEMG to detect the origin of muscle electrical activity, the chances 
of muscle crosstalk are higher in sEMG than needle EMG [13]. Besides, low spatial 
resolution, high movement artifact, and narrow frequency range makes needle 
EMG more promising as a diagnostic tool in nerve conduction studies for assessing 
neurological disorders [13]. Changes in the shape of MUAPs, large dynamic range 
of action potential among motor units and superposition of motor units pose major 
challenges to decomposing the sEMG.

Fang et al. [34] decomposed EMG into MUAP by wavelet transform. The 
technique utilized spectrum matching in wavelet domain as opposed to waveform 
matching. De Luca et al. [35] proposed a method to decompose the sEMG into 
MUAP during cyclic dynamic contractions. The algorithm solved two main prob-
lems, the first associated with the displacement of the electrode on the surface 
of the skin leading to alteration in the shape of MUAPs, and second regarding 
lengthening and shortening of the muscle fibers while undergoing those contrac-
tions. The algorithm was an extension of the algorithm by Nawab et al. The process 
was followed as an extracting time-varying time template parameter, performing 
time-varying filter analysis, clustering on MUAP trains, shape refinement, test, 
and decomposition. If the test failed, the iterations were done again for shape 
refinement of MUAPs. Precision Decomposition I (PD I), which was earlier used 
to decompose needle EMG data was updated to decompose sEMG and referred as 
PD (III). An updated approach of PD III reported by Nawab et al. has PD-IPUS 
(Integrated Processing and Understanding) and PD-IGAT (Iterative Generate and 
Test) [36, 37]. Another method to decompose sEMG into MUAP trains included 
a hybrid approach of K-means clustering and convolution kernel compensation 
method. K-means clustering was performed to estimate the pulse trains, which were 
later updated iteratively by convolution kernel compensation method [38].
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3. EMG onset detection
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sitive to the type of trials, EMG amplifiers and noise level in the signal. The thresh-
olding based on SD baseline noise can be improved with local peak value. In a study 
[23], integrated EMG provided more information about early activation. During 
preconditioning, Teager-Kaiser Energy Operator (TKEO) also improved the onset 
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sample squaring in the conditioning unit. The test function is computed between 
two successive samples from the conditioned EMG signal. The onset point identifi-
cation is based on the following rules: (1) x out of y samples must exceed the thresh-
old and (2) activation state of the muscle after surpassing the threshold should last 
for a certain number of samples or duration of time [26].

In Lidierth [29] method, the signal conditioning unit performs full wave recti-
fication. The test function and decision rule are based on Hodges [26]. Additional 
post-processing rules increase the efficiency of the algorithm. The test function 
unit detects the onset if the sEMG signal exceeds the threshold. Any decline in the 
activity below threshold within a defined duration, should not be longer than the 
defined range of samples [29]. The power spectral correlation coefficient method 
performs better than TKEO and utilizes the moving average method of Hodges and 
Bui [30]. The statistical estimation algorithm includes an optimal estimator and 
approximated generalized likelihood-ratio detector. The statistically optimized 
algorithms are more robust in terms of signal parameters [26]. Tenan et al. [25] 
reviewed three classes of standard EMG (linear envelope, entropy, TKEO) and 
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six classes of statistical EMG onset detection (general time series/mean–variance, 
sequential change point detection with parametric and non-parametric methods, 
batch change point detection, and Bayesian change point analysis). The Bayesian 
Change Point analysis algorithm showed higher reliability and accuracy for the 
singular EMG onset detection.

Maximum voluntary contraction (MVC) is a common scaling technique for 
EMG onset detection. MVC is the largest RMS amplitude a muscle generates in 
maximum contraction [31]. MVC has a curvilinear relationship with the muscle 
force production, where less force production amount to muscle weakness. EMG 
onset on a normalized time series with MVC can help diagnose gait disorders 
associated with atrophy [2]. Muscle spasticity/co-contraction during tremors 
among patients with neurological gait disorder exhibited abnormality in EMG onset 
compared to healthy individuals [12, 32]. EMG envelope indicated alterations in 
EMG onset for patients with Parkinson’s during freezing episodes [20]. A premature 
activation of TA and GM muscles before a freezing episode was observed. In gait 
impairment, due to cervical spondylotic myelopathy, delayed onset and prolonged 
activation were present [12]. In cerebral palsy earlier onset suppression of EMG 
within cutaneous muscular reflex is associated with motor dysfunction, which 
results in inhibitory postsynaptic potentials [33].

4. EMG decomposition into MUAP

Raw EMG signal consists of superpositioned motor unit activation potentials 
(MUAP) and noise components. Muscle crosstalk is a major issue during recording 
of the biological signals. The crosstalk is dependent on factors such as anatomical 
site for the placement of electrodes, type of movement, and skin thickness. Since 
it is harder for sEMG to detect the origin of muscle electrical activity, the chances 
of muscle crosstalk are higher in sEMG than needle EMG [13]. Besides, low spatial 
resolution, high movement artifact, and narrow frequency range makes needle 
EMG more promising as a diagnostic tool in nerve conduction studies for assessing 
neurological disorders [13]. Changes in the shape of MUAPs, large dynamic range 
of action potential among motor units and superposition of motor units pose major 
challenges to decomposing the sEMG.

Fang et al. [34] decomposed EMG into MUAP by wavelet transform. The 
technique utilized spectrum matching in wavelet domain as opposed to waveform 
matching. De Luca et al. [35] proposed a method to decompose the sEMG into 
MUAP during cyclic dynamic contractions. The algorithm solved two main prob-
lems, the first associated with the displacement of the electrode on the surface 
of the skin leading to alteration in the shape of MUAPs, and second regarding 
lengthening and shortening of the muscle fibers while undergoing those contrac-
tions. The algorithm was an extension of the algorithm by Nawab et al. The process 
was followed as an extracting time-varying time template parameter, performing 
time-varying filter analysis, clustering on MUAP trains, shape refinement, test, 
and decomposition. If the test failed, the iterations were done again for shape 
refinement of MUAPs. Precision Decomposition I (PD I), which was earlier used 
to decompose needle EMG data was updated to decompose sEMG and referred as 
PD (III). An updated approach of PD III reported by Nawab et al. has PD-IPUS 
(Integrated Processing and Understanding) and PD-IGAT (Iterative Generate and 
Test) [36, 37]. Another method to decompose sEMG into MUAP trains included 
a hybrid approach of K-means clustering and convolution kernel compensation 
method. K-means clustering was performed to estimate the pulse trains, which were 
later updated iteratively by convolution kernel compensation method [38].
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The question arises, what changes may a neurological disorder or injury bring 
to MUAPs? The features of a MUAP (rise time, duration, amplitude, phases/turns, 
recruitment and, stability) are vital to diagnosing the cause of abnormality in 
muscle coordination leading to gait or other movement disorders. A normal motor 
unit and a motor unit after injury (axonal injury) are distinguishable [32, 39–41]. 
MUAPs from needle EMG are not only adequate in diagnosing neuropathy (nerve 
injury) but can also determine the severity of the neuropathic condition [41]. 
Abnormal motor units constitute polyphasic potentials, unlike diphasic or triphasic 
potentials that exist in healthy individuals. Polyphasic potentials are a result of 
nascent potentials and terminal collateral sprouting [40]. Rodriguez-Carreno et al. 
[6] reported MUAPs shape abnormality pertinent to the anatomical phenomena 
shown in Table 1. A study conducted on mice with amyotrophic lateral sclerosis 
(ALS) using single unit extracellular recording within the spinal cord and EMG 
revealed gait variability [32]. In ALS mice, the low frequency of motor neuron and 
irregularities in the motor burst were co-occurring with fractionated EMG.

Among patients with myopathy, short, small, long duration, polyphasic and 
early recruitment of MUAPs were observed [39]. Different myopathy disorder 
studies in relation to MUAP trains were conducted using needle EMG by Paganoni 
et al. [39]. In early phases of disorders due to loss in muscle fibers the compound 
muscle action potential amplitude is lower. The result was short, small and early 
recruitment of MUAPs, but in Lambert-Eaton Myasthenic Syndrome, higher CMAP 
amplitude was observed. The shapes of MUAPs also alter with chronicity. Instead of 
positive sharp wave and fibrillation in the needle EMG, a mixture of long and short 
duration of EMG is prevalent [39]. Use of sEMG in comparison to needle EMG for 
postural disorder is preferable. sEMG is very good at detecting kinesiological disor-
ders such as myotonia, myoclonus and tremors [13]. It can further be decomposed 
into MUAPs with the PD (III) algorithm, or hybrid of K-means and convolution 
kernel compensation method.

5. Extraction of muscle synergies

Linear decomposition of multi-source EMG signal is another method to diag-
nose the alteration in EMG patterns of patients with gait disorders [5, 42]. The 
muscle synergy hypothesis can be employed to understand better the physiological 
aspects of gait disorders using a number of linear decomposition algorithms such 

MUAP abnormality Anatomical relation to changes

Increased amplitude Increment in connective tissues, loss of muscle fibers

Decreased amplitude Muscle fibers grouping

Decreased duration Loss of muscle fibers

Increased duration Increased muscle fibers

Increased spike duration Variation in muscle diameter and increased endplate thickness

Increase in number of turns and 
phases

Slow conduction of terminal axons/increased diameter of muscle fiber 
and end plate

Increase in firing rate Loss of motor units

Increase in the jiggle Atypical neuromuscular transmission

Table 1. 
MUAP abnormalities and indicated anatomical changes.
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as principal component analysis (PCA), factor analysis (FA), independent com-
ponent analysis (ICA), and non-negative matrix factorization algorithm (NNMF). 
Each algorithm is unique and extracts the synergy structure based on the assump-
tion made on the synergy (e.g. orthogonality, non-negativity, statistical indepen-
dence, etc.). After applying the factorization algorithm, the multi-electrode EMG 
signal is decomposed into the activation coefficients and synergies. The synergy 
vectors from the healthy group can be compared with a group suffering from the 
neurological or non-neurological disorder [43]. Statistical tests including cosine 
correlation, Pearson correlation or cluster analysis are generally used to compare 
the similarity and alterations in synergy structures [44, 45]. The application of 
a clustering algorithm for diagnosing gait disorder is discussed in a later section. 
Patients with thoracic spinal cord injury revealed lesser modules, higher co-
contraction and, less directional tuning in relation to healthy individuals [46]. It 
is likely that the number of dimensional space was affected due to the choice of 
preprocessing [47]. A review cum research by Kieliba et al. [47] supported that 
increase in the cut off frequency of the filter decreases the variance, accounts 
for a particular component and increases dimensional space of synergies to be 
extracted. EMG acquired from children with cerebral palsy and from individual’s 
post-stroke has shown that the choice of preprocessing (filtering, normalization) 
had an effect on the number of synergies and differentiation of physiological 
traits [48, 49]. Figure 3 displays how the choice of low pass filter (10 and 20 Hz), a 
second-order Butterworth filter, effects the dimensional space. Filters are generally 
used to remove movement artifact. The principal component variance is higher for 
10 than 20 Hz.

From a neurophysiological perspective, the recruitment of fewer spinal modules 
during movement is due to the loss of supraspinal inflow that results in simple 
muscle coordination (neuroadaptation). In upper extremities, the neuroadaptation 
was similarly perceived in the form of changes in the dimensional space of muscle 
synergy structures. Alteration of synergy structures was also present in patients 
with chronic stroke (upper extremity), and cerebral palsy [42, 43, 45, 50]. The 
linear envelopes extracted from the EMG data are subjected to MS extraction. The 
synergy hypothesis is well suited for capturing the physiological aspects of motor 

Figure 3. 
A variance threshold ≥0.9 reveals five synergies for 10 Hz low pass filter and four synergies for 20 Hz low pass 
filter for 9-channel EMG data.
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positive sharp wave and fibrillation in the needle EMG, a mixture of long and short 
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signal is decomposed into the activation coefficients and synergies. The synergy 
vectors from the healthy group can be compared with a group suffering from the 
neurological or non-neurological disorder [43]. Statistical tests including cosine 
correlation, Pearson correlation or cluster analysis are generally used to compare 
the similarity and alterations in synergy structures [44, 45]. The application of 
a clustering algorithm for diagnosing gait disorder is discussed in a later section. 
Patients with thoracic spinal cord injury revealed lesser modules, higher co-
contraction and, less directional tuning in relation to healthy individuals [46]. It 
is likely that the number of dimensional space was affected due to the choice of 
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during movement is due to the loss of supraspinal inflow that results in simple 
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was similarly perceived in the form of changes in the dimensional space of muscle 
synergy structures. Alteration of synergy structures was also present in patients 
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impairment [19]. In chronic stroke, merging and fractionation of synergies were 
observed. Merging of muscle synergies results in poor muscle coordination. In 
children with cerebral palsy, the dimensional space was smaller than it was in the 
control participants (unimpaired) [42]. However, the modules for cerebral palsy 
were higher for Duchenne muscular dystrophy (DMD) and typical developing 
(TD) children [43]. Rodriguez et al. revealed that fewer modules were recruited 
while walking on treadmill among Parkinson’s patients. Thus, the size of dimen-
sional space is crucial for the assessment of gait disorder such as cerebral palsy and 
Parkinson’s [51, 52]. It is also important to properly choose preprocessing before 
analyzing the synergies as the dimensional space is sensitive to the preprocessing 
methods.

6. Frequency and time-frequency analysis

EMG power spectrum estimation methods can be categorized into parametric 
and nonparametric techniques. The spectral methods include fast Fourier transform 
(FFT), multitaper analysis and short-time Fourier transform (STFT) and wavelet 
transform. The difference between FFT and Wavelet Transformation is that FFT is 
localized to the frequency domain whereas the latter is localized to time-frequency 
analysis. Hu [53] recorded cortical and spinal somatosensory evoked potential 
(CSEP and SSEP), cortical motor evoked potential (CMEP) and spinal cord evoked 
potential (SCEP). The short time Fourier transformation was applied to the CSEP 
signal with a Hanning window [53]. The results revealed that the time-frequency 
analysis is a better marker for spinal injury than time domain analysis. The peak 
power after spinal injury had lesser energy with more dispersion in time-frequency 
scale.

The EMG time series signal can be analyzed in the frequency domain for the 
diagnosis of gait disorders. The frequency spectrum for EMG signals is in range of 
0–500 Hz [54]. The FFT algorithm [55] computes the discrete Fourier transform 
(DFT) of EMG signal more efficiently. The FFT decomposes the EMG signals into 
periodic sine and cosine waves. We computed the FFT of EMG signal recorded from 
the Vastus Medialis (VM) during walking (Figure 4).

Figure 4. 
(A) sEMG signal from VM during walking in time domain; (B) frequency domain representation of the signal 
using FFT.
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The FFT allows computation of power spectra by squaring of FFT’s magnitude 
[56]. In Parkinson disease, the spectral power of the signal has lower amplitude for 
the usual tremor than for the unusual tremor, which has peak amplitude of 4–6 Hz 
during an atypical tremor [15]. The signals associated with nonperiodic tremors 
are differentiable with FFT [57]. The EMG signal from neuropathic patients with 
SCI also exhibited distinct power spectrum density and amplitude in comparison 
to healthy individuals [58]. The application of FFT to the EMG envelope revealed 
muscle burst discharge in frequency domain ranging from 4 to 7 Hz [15]. Average 
power spectra computed from fractionated EMG of ALS mice by FFT was signifi-
cantly higher than the control group. In the ALS group the spectra were skewed 
towards higher frequency content but single unit recordings revealed the absence 
of higher motor neuron (MN) frequencies or shortening of MN frequency in 
ALS mice [32], due to small type firing neurons improperly increasing firing 
frequency. This phenomenon results in co-contraction thus producing fraction-
ated EMG. Co-contraction in muscles can also be observed in spinal cord injured 
patients [32]. In a study, EMG signals from lower limbs of dystonic and non-
dystonic participants while walking were recorded. The non-dystonic participants 
were also patients suffering from other gait disorders. The power spectral density 
was computed using FFT with the Welch method of 50% overlap. The median 
power frequency (MdPF) and total power in low frequency were calculated for each 
muscle. The results revealed that MdPF for dystonic muscles had shifted to low 
frequencies and a concurrent increase in total power percentage in low-frequency 
range was observed [59]. Thus, frequency analysis of EMG signal not only provides 
us with distinction between normal and abnormal gait behavior but also specific 
gait abnormalities can be distinguished.

6.1 Short-time Fourier transform

Short-time Fourier transformation (STFT) is used to analyze a nonstation-
ary signal in the frequency-domain. The signal is sliced and subjected to Fourier 
transform. Segmenting the signal is called time domain windowing, and the time 
localized signal is defined by   S  t   (τ)  = S  (τ) h (τ − t)  , where h(t) is the window function 
centered at time t. The equation for STFT is given by (2).

   S  t   (ω, t)  =   1 ___ 
 √ 

___
 2n  
  ∫ S  (τ) h (τ − t)   e   −i𝜔𝜔t  .  d𝜏𝜏  (2)

Mitchell et al. [60] used cross time-frequency analysis to diagnose hypertension 
of the GM muscle. The study included 57 elderly people with 10 younger adults. 
Reduced Interference distribution (RID) was utilized to remove cross terms imple-
menting time smoothing window and frequency smoothing window. A Hanning 
frequency smoothing window was chosen. In the study of gait, it is necessary to 
consider a time-localized cross-correlation between two signals, such as left and 
right muscle groups responsible for gait [60]. Hence, cross Wigner distribution 
(CWD) was selected to preserve the phase information. The results revealed 
statistical significance for several time-frequency parameters of sEMG between 
control group and persons with neuropathy, diabetes, osteoporosis, and arthritis 
patients [60]. STFT does not adopt an optimal time window or frequency resolution 
for non-stationary signals [7]. For the implementation of FFT and STFT the signals 
are considered to be stationary [8]. The problem or resolution can be overcome by 
continuous wavelet transform (CWT) [8]. Multitaper analysis is another and per-
haps more efficient method for power spectral analysis to deal with non-stationary 
signals [61, 62].
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were higher for Duchenne muscular dystrophy (DMD) and typical developing 
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(CSEP and SSEP), cortical motor evoked potential (CMEP) and spinal cord evoked 
potential (SCEP). The short time Fourier transformation was applied to the CSEP 
signal with a Hanning window [53]. The results revealed that the time-frequency 
analysis is a better marker for spinal injury than time domain analysis. The peak 
power after spinal injury had lesser energy with more dispersion in time-frequency 
scale.

The EMG time series signal can be analyzed in the frequency domain for the 
diagnosis of gait disorders. The frequency spectrum for EMG signals is in range of 
0–500 Hz [54]. The FFT algorithm [55] computes the discrete Fourier transform 
(DFT) of EMG signal more efficiently. The FFT decomposes the EMG signals into 
periodic sine and cosine waves. We computed the FFT of EMG signal recorded from 
the Vastus Medialis (VM) during walking (Figure 4).
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The FFT allows computation of power spectra by squaring of FFT’s magnitude 
[56]. In Parkinson disease, the spectral power of the signal has lower amplitude for 
the usual tremor than for the unusual tremor, which has peak amplitude of 4–6 Hz 
during an atypical tremor [15]. The signals associated with nonperiodic tremors 
are differentiable with FFT [57]. The EMG signal from neuropathic patients with 
SCI also exhibited distinct power spectrum density and amplitude in comparison 
to healthy individuals [58]. The application of FFT to the EMG envelope revealed 
muscle burst discharge in frequency domain ranging from 4 to 7 Hz [15]. Average 
power spectra computed from fractionated EMG of ALS mice by FFT was signifi-
cantly higher than the control group. In the ALS group the spectra were skewed 
towards higher frequency content but single unit recordings revealed the absence 
of higher motor neuron (MN) frequencies or shortening of MN frequency in 
ALS mice [32], due to small type firing neurons improperly increasing firing 
frequency. This phenomenon results in co-contraction thus producing fraction-
ated EMG. Co-contraction in muscles can also be observed in spinal cord injured 
patients [32]. In a study, EMG signals from lower limbs of dystonic and non-
dystonic participants while walking were recorded. The non-dystonic participants 
were also patients suffering from other gait disorders. The power spectral density 
was computed using FFT with the Welch method of 50% overlap. The median 
power frequency (MdPF) and total power in low frequency were calculated for each 
muscle. The results revealed that MdPF for dystonic muscles had shifted to low 
frequencies and a concurrent increase in total power percentage in low-frequency 
range was observed [59]. Thus, frequency analysis of EMG signal not only provides 
us with distinction between normal and abnormal gait behavior but also specific 
gait abnormalities can be distinguished.

6.1 Short-time Fourier transform

Short-time Fourier transformation (STFT) is used to analyze a nonstation-
ary signal in the frequency-domain. The signal is sliced and subjected to Fourier 
transform. Segmenting the signal is called time domain windowing, and the time 
localized signal is defined by   S  t   (τ)  = S  (τ) h (τ − t)  , where h(t) is the window function 
centered at time t. The equation for STFT is given by (2).

   S  t   (ω, t)  =   1 ___ 
 √ 

___
 2n  
  ∫ S  (τ) h (τ − t)   e   −i𝜔𝜔t  .  d𝜏𝜏  (2)

Mitchell et al. [60] used cross time-frequency analysis to diagnose hypertension 
of the GM muscle. The study included 57 elderly people with 10 younger adults. 
Reduced Interference distribution (RID) was utilized to remove cross terms imple-
menting time smoothing window and frequency smoothing window. A Hanning 
frequency smoothing window was chosen. In the study of gait, it is necessary to 
consider a time-localized cross-correlation between two signals, such as left and 
right muscle groups responsible for gait [60]. Hence, cross Wigner distribution 
(CWD) was selected to preserve the phase information. The results revealed 
statistical significance for several time-frequency parameters of sEMG between 
control group and persons with neuropathy, diabetes, osteoporosis, and arthritis 
patients [60]. STFT does not adopt an optimal time window or frequency resolution 
for non-stationary signals [7]. For the implementation of FFT and STFT the signals 
are considered to be stationary [8]. The problem or resolution can be overcome by 
continuous wavelet transform (CWT) [8]. Multitaper analysis is another and per-
haps more efficient method for power spectral analysis to deal with non-stationary 
signals [61, 62].



Artificial Intelligence - Applications in Medicine and Biology

28

6.2 The wavelet transform

Wavelet transform such as Multitaper is well suited for non-stationary signals. 
Wavelet transform elicits good localization of energy when the MUAP shape 
matches that of the wavelet [8]. Continuous wavelet transform (CWT) of bandpass 
filtered EMG showed alteration in the motor unit among stroke patients when a foot 
drop stimulator device was used (FDS) [63]. Energy localization below 100 Hz that 
resulted from foot drop was caused by slow motor unit recruitment. The neuromus-
cular activation improved with FDS. The time-frequency plot for Gastrocnemius 
showed that peak energy localization shifted from 50 to 100 Hz as a neuromuscular 
strategy [63]. Instantaneous mean frequency (IMNF) is the average frequency of 
power density spectrum of a signal and is computed from time-frequency distribu-
tion, W(f, t) [63], where W is obtained from continuous wavelet transformation 
defined by (3) and (4).

  IMNF  (  t )    =    ∑  j=1  N      f  i   W  (   f  i  , t )    ____________ 
 ∑  j=1  N    W  (   f  i  , t )   

    (3)

  W (x, y)  =   1 __  √ 
__

 x       ∫ 
−∞

  
+∞

   y (t) ψ .    (t − y)  _____ x   dt  (4)

In the above, x is the scaling factor that controls the width of the wavelet, y 
controls its location in time,  ψ  is the mother wavelet function and y(t) is the signal. 
Instantaneous mean frequency can also be computed from the scalogram of CWT 
by its dimensional reduction. The scalogram has three dimensional space with time 
(x axis), frequency (y axis) and power (z axis) [63, 64]. In growing children, the 
higher IMNF level computed from scalogram revealed difference with respect to 
the children with cerebral palsy. The IMNF frequency component, unlike healthy 
children, decreased with age and maturation for children with cerebral palsy. IMNF 
also provided significant differences between the affected and unaffected site 
among stroke patients [63].

7. Feature extraction and classification

Time and frequency domain features of the EMG signal may be used to diag-
nose gait disorders. For example, an image processing technique can be used to 
detect pathological gait affected by abnormal firing of MUs [65]. Machine learning 
algorithms are important tools in detecting the pattern of normal and abnormal 
gait [66, 67]. They do so by making minimum assumptions about the data gener-
ating system, as it does not need a carefully controlled experimental design [9]. 
Application of machine learning algorithms to detect and classify gait disorders is 
suited to big data. Machine Learning is further divided into: (1) Supervised learn-
ing and (2) unsupervised learning. We will now discuss techniques to detect gait 
disorders using supervised and unsupervised learning algorithms.

7.1 Unsupervised learning

Unsupervised learning can be used to find structures in the EMG data. For 
example, cluster analysis has been used to identify alteration in the gait patterns, 
which are undetected by statistical tests. Patients with Parkinson’s disease can be 
distinguished from a healthy individual by using cluster analysis of dimensionally 
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reduced feature vector [68, 69]. K-means clustering is a very common clustering 
technique that initially estimates K centroids randomly or selectively. The algorithm 
iterates between two steps, data assignment steps and updating centroid. The aim is 
to minimize objective function, which is given by (5).

  V (j)  =  ∑ 
j=1

  
k
    ∑ 
i=1

  
n
      ‖ x  i   −  c  j  ‖    2   (5)

where V(j) is the objective function, n is the number of data points in jth cluster, 
k is the number of clusters and    ‖ x  i   −  c  j  ‖    2   is the square of Euclidean distance.

The hypothesis of muscle synergies has been applied in several studies [44, 45, 70]. 
Unsupervised Learning helps in grouping identical synergies and can be helpful 
in diagnosing gait disorders. Kim et al. [70] identified synergies using iterative 
K-mean clustering and intraclass correlation. Hierarchical, model-based, fuzzy c 
means clustering has been employed to group gait patterns [69, 71–73]. Dolatabadi 
et al. [71] used mixture model clustering on spatiotemporal gait pattern to classify 
pathological gait. Pathological disorders such as cerebral palsy that show higher 
inter-stride variability can be analyzed with a hierarchical clustering method 
proposed by Rosati et al. [72]. Feature Fusion technique with Davies Bouldin 
Index (DBI) based on fuzzy C means algorithm was used in a trip/fall study [73]. 
The DBI can be used to evaluate the clustering algorithm. We have used K mean 
cluster analysis to cluster normal gait and gait with constraints, which are  
displayed in Figure 5.

7.2 Supervised learning

In supervised learning, the predictive models are based on the input and output 
data. Some of the widely used learning algorithms are decision trees, Bayesian net-
works, support vector machine, artificial neural networks, and linear discriminant 
analysis (LDA). After feature extraction and classification, the EMG time series 
can be modeled to control prosthetic or rehabilitative device. The fundamental 
approach to classification of EMG signal is shown in Figure 6 [66].

The performance of different algorithms (SVM, LDA, MLP) in classifying gait 
disorders (Cerebral Palsy) was compared [74]. SVM classifier, compared to LDA 
and MLP, performed better when the analysis was done on kinematic data [74]. 
The normalization of the EMG data from different limb configurations increased 

Figure 5. 
A total of four clusters were chosen to group sEMG signal based on 93% variability in data within each cluster. 
The clusters were plotted for the first two principal components for walking with and without constraint.
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6.2 The wavelet transform

Wavelet transform such as Multitaper is well suited for non-stationary signals. 
Wavelet transform elicits good localization of energy when the MUAP shape 
matches that of the wavelet [8]. Continuous wavelet transform (CWT) of bandpass 
filtered EMG showed alteration in the motor unit among stroke patients when a foot 
drop stimulator device was used (FDS) [63]. Energy localization below 100 Hz that 
resulted from foot drop was caused by slow motor unit recruitment. The neuromus-
cular activation improved with FDS. The time-frequency plot for Gastrocnemius 
showed that peak energy localization shifted from 50 to 100 Hz as a neuromuscular 
strategy [63]. Instantaneous mean frequency (IMNF) is the average frequency of 
power density spectrum of a signal and is computed from time-frequency distribu-
tion, W(f, t) [63], where W is obtained from continuous wavelet transformation 
defined by (3) and (4).
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+∞

   y (t) ψ .    (t − y)  _____ x   dt  (4)

In the above, x is the scaling factor that controls the width of the wavelet, y 
controls its location in time,  ψ  is the mother wavelet function and y(t) is the signal. 
Instantaneous mean frequency can also be computed from the scalogram of CWT 
by its dimensional reduction. The scalogram has three dimensional space with time 
(x axis), frequency (y axis) and power (z axis) [63, 64]. In growing children, the 
higher IMNF level computed from scalogram revealed difference with respect to 
the children with cerebral palsy. The IMNF frequency component, unlike healthy 
children, decreased with age and maturation for children with cerebral palsy. IMNF 
also provided significant differences between the affected and unaffected site 
among stroke patients [63].

7. Feature extraction and classification

Time and frequency domain features of the EMG signal may be used to diag-
nose gait disorders. For example, an image processing technique can be used to 
detect pathological gait affected by abnormal firing of MUs [65]. Machine learning 
algorithms are important tools in detecting the pattern of normal and abnormal 
gait [66, 67]. They do so by making minimum assumptions about the data gener-
ating system, as it does not need a carefully controlled experimental design [9]. 
Application of machine learning algorithms to detect and classify gait disorders is 
suited to big data. Machine Learning is further divided into: (1) Supervised learn-
ing and (2) unsupervised learning. We will now discuss techniques to detect gait 
disorders using supervised and unsupervised learning algorithms.

7.1 Unsupervised learning

Unsupervised learning can be used to find structures in the EMG data. For 
example, cluster analysis has been used to identify alteration in the gait patterns, 
which are undetected by statistical tests. Patients with Parkinson’s disease can be 
distinguished from a healthy individual by using cluster analysis of dimensionally 
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reduced feature vector [68, 69]. K-means clustering is a very common clustering 
technique that initially estimates K centroids randomly or selectively. The algorithm 
iterates between two steps, data assignment steps and updating centroid. The aim is 
to minimize objective function, which is given by (5).

  V (j)  =  ∑ 
j=1

  
k
    ∑ 
i=1

  
n
      ‖ x  i   −  c  j  ‖    2   (5)

where V(j) is the objective function, n is the number of data points in jth cluster, 
k is the number of clusters and    ‖ x  i   −  c  j  ‖    2   is the square of Euclidean distance.

The hypothesis of muscle synergies has been applied in several studies [44, 45, 70]. 
Unsupervised Learning helps in grouping identical synergies and can be helpful 
in diagnosing gait disorders. Kim et al. [70] identified synergies using iterative 
K-mean clustering and intraclass correlation. Hierarchical, model-based, fuzzy c 
means clustering has been employed to group gait patterns [69, 71–73]. Dolatabadi 
et al. [71] used mixture model clustering on spatiotemporal gait pattern to classify 
pathological gait. Pathological disorders such as cerebral palsy that show higher 
inter-stride variability can be analyzed with a hierarchical clustering method 
proposed by Rosati et al. [72]. Feature Fusion technique with Davies Bouldin 
Index (DBI) based on fuzzy C means algorithm was used in a trip/fall study [73]. 
The DBI can be used to evaluate the clustering algorithm. We have used K mean 
cluster analysis to cluster normal gait and gait with constraints, which are  
displayed in Figure 5.

7.2 Supervised learning

In supervised learning, the predictive models are based on the input and output 
data. Some of the widely used learning algorithms are decision trees, Bayesian net-
works, support vector machine, artificial neural networks, and linear discriminant 
analysis (LDA). After feature extraction and classification, the EMG time series 
can be modeled to control prosthetic or rehabilitative device. The fundamental 
approach to classification of EMG signal is shown in Figure 6 [66].

The performance of different algorithms (SVM, LDA, MLP) in classifying gait 
disorders (Cerebral Palsy) was compared [74]. SVM classifier, compared to LDA 
and MLP, performed better when the analysis was done on kinematic data [74]. 
The normalization of the EMG data from different limb configurations increased 

Figure 5. 
A total of four clusters were chosen to group sEMG signal based on 93% variability in data within each cluster. 
The clusters were plotted for the first two principal components for walking with and without constraint.
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classification accuracy [74, 75]. Feature level fusion is used to extract the feature 
space from daily life activities [73]. Patients with Parkinson’s were classified with high 
accuracy using SVM with leave-one-out cross-validation [75]. Results from Nair et al. 
[76] suggest that least square kernel algorithm performed better than LDA, Neural 
Network, MLP and learning vector quantification (LVQ ) for patients with arthritis. 
Decision Tree (DT) classifier used to classify toe walking gait disorder revealed three 
major toe-walking patterns [77]: (1) muscle weakness of TA and quadriceps and 
spasticity of Tibialis Surae; (2) severe spasticity of Tibialis Surae with limited range 
of ankle motion; and, (3) hamstring spasticity. The MLP, on the other hand, exhib-
ited higher accuracy while classifying gait disorders associated with myopathy and 
neuropathy. Based on the literature studied, normalization, feature extraction and 
selection are important steps for accurately classifying gait disorders [75, 76].

Artificial neural networks (ANNs) are considered better at discovering nonlin-
ear relationships in data. Ozsert et al. [78] classified biceps, frontalis and abductor 
muscles using ANN. The authors used wavelet transform for pre-processing the 
sEMG signal and an AR model to train the ANN. Senanayake et al. [79] used EMG 
RMS value and soft tissue deformation parameter (STDP) extracted from the video 
recordings to train a feed-forward-backward propagation neural network (FFBPN) 
to identify gait patterns. The proposed evaluation scheme improved classification 
accuracy between healthy and injured subject’s gait patterns as Vastus Medialis and 
Lateralis revealed higher positive correlation between EMG and STDP for healthy 
individuals [79].

An adaptive neuro-fuzzy inference system (ANFIS) successfully diagnosed 
neurological disorders [8, 80]. In a number of studies, ANN and SVM worked well 
in diagnosing the gait pathology [7, 8, 71, 81]. Naik et al. [82] decomposed needle 
EMG from brachial biceps with ensemble empirical mode decomposition (EMD). 
The authors used Fast ICA and LDA classifier with majority voting to diagnose 
healthy participants from ALS, and myopathic individuals [82]. The algorithm of 
Naik et al. [83] for walking, sitting and standing tasks, achieved 86% classification 
accuracy for participants with and 96% without knee pathology. ICA via entropy 
bound minimization, time domain feature extraction, and feature selection with 
fisher score were performed prior to LDA classification. Ai et al. [30] used fused 
accelerometer and EMG data to discriminate among four participants including an 
amputee; more amputees in the study could provide better insight of the suggested 
technique [30].

There is no perfect machine learning algorithm to detect gait disorders. Signal 
processing techniques for feature extraction and selection, and standardization of 
the time series play a crucial role in enhancing classification accuracy. We also see 

Figure 6. 
Block diagram of an EMG Signal classification system.
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consistent improvement in the existing models with increased classification accu-
racy [84]. ANN classifier has some deficiencies, such as high training process time 
and overfitting. Extreme Machine Learning algorithm (EML) improves on these 
anomalies at no cost to classification accuracy [8]. SVM accuracy was low for eight 

Classifier Authors Year Conditions Classification Performance

Neural 
networks

Senanayake 
et al.

2014 Soft tissue 
deformation

Gait pattern 
identification 
between healthy 
and injured

Accuracy = 98%

Nair et al. 2010 Osteoarthritis EMG of healthy 
and osteoarthritis

Accuracy = 89.4 ± 11.8%

Nair et al. 2010 Rheumatoid 
arthritis

EMG of healthy 
and rheumatoid 
arthritis

Accuracy = 57 ± 1 8%

Kamruzzaman 
and Begg.

2006 Cerebral 
palsy

Gait pattern 
identification 
using stride length 
and cadence 

Accuracy = 94.87%

LDA Naik et al. 2018 Knee 
pathology

Movement 
classification 
for healthy and 
patients with knee 
pathology

Accuracy = 86% 
(Unhealthy) and 96% 
(Healthy)

Nair et al. 2010 Rheumatoid 
arthritis

EMG of healthy 
and rheumatoid 
arthritis

Accuracy = 72 ± 20%

Ai et al. 2017 Normal and 
amputated

Movement-based 
classification 
for normal and 
amputee subject

Accuracy = 95.6 ± 2.2%

Kamruzzaman 
and Begg.

2006 Cerebral 
palsy

Gait pattern 
identification 
using stride length 
and cadence 

Accuracy = 93.59%

SVM Kamruzzaman 
and Begg.

2006 Cerebral 
palsy

Gait pattern 
identification 
using stride length 
and cadence 

Accuracy = 96.8%

Kugler et al. 2013 Parkinson Differentiate 
between healthy 
and Parkinson 
patients by auto-
step segmentation

Specificity = 90% and 
Sensitivity = 90%

Ai et al. 2017 Normal and 
amputated

Movement-based 
classification 
for normal and 
amputee subject

Accuracy = 98.1 ± 1.6%

Xi et al. 2018 Fall Gait recognition 
for daily life 
activities 
including Fall

Accuracy = 100%

Decision 
tree

Armand et al. 2006 Toe Walking 
disorders 

Identification of 
ankle kinematic 
patterns for toe 
walkers

Accuracy = 81%



Artificial Intelligence - Applications in Medicine and Biology

30

classification accuracy [74, 75]. Feature level fusion is used to extract the feature 
space from daily life activities [73]. Patients with Parkinson’s were classified with high 
accuracy using SVM with leave-one-out cross-validation [75]. Results from Nair et al. 
[76] suggest that least square kernel algorithm performed better than LDA, Neural 
Network, MLP and learning vector quantification (LVQ ) for patients with arthritis. 
Decision Tree (DT) classifier used to classify toe walking gait disorder revealed three 
major toe-walking patterns [77]: (1) muscle weakness of TA and quadriceps and 
spasticity of Tibialis Surae; (2) severe spasticity of Tibialis Surae with limited range 
of ankle motion; and, (3) hamstring spasticity. The MLP, on the other hand, exhib-
ited higher accuracy while classifying gait disorders associated with myopathy and 
neuropathy. Based on the literature studied, normalization, feature extraction and 
selection are important steps for accurately classifying gait disorders [75, 76].

Artificial neural networks (ANNs) are considered better at discovering nonlin-
ear relationships in data. Ozsert et al. [78] classified biceps, frontalis and abductor 
muscles using ANN. The authors used wavelet transform for pre-processing the 
sEMG signal and an AR model to train the ANN. Senanayake et al. [79] used EMG 
RMS value and soft tissue deformation parameter (STDP) extracted from the video 
recordings to train a feed-forward-backward propagation neural network (FFBPN) 
to identify gait patterns. The proposed evaluation scheme improved classification 
accuracy between healthy and injured subject’s gait patterns as Vastus Medialis and 
Lateralis revealed higher positive correlation between EMG and STDP for healthy 
individuals [79].

An adaptive neuro-fuzzy inference system (ANFIS) successfully diagnosed 
neurological disorders [8, 80]. In a number of studies, ANN and SVM worked well 
in diagnosing the gait pathology [7, 8, 71, 81]. Naik et al. [82] decomposed needle 
EMG from brachial biceps with ensemble empirical mode decomposition (EMD). 
The authors used Fast ICA and LDA classifier with majority voting to diagnose 
healthy participants from ALS, and myopathic individuals [82]. The algorithm of 
Naik et al. [83] for walking, sitting and standing tasks, achieved 86% classification 
accuracy for participants with and 96% without knee pathology. ICA via entropy 
bound minimization, time domain feature extraction, and feature selection with 
fisher score were performed prior to LDA classification. Ai et al. [30] used fused 
accelerometer and EMG data to discriminate among four participants including an 
amputee; more amputees in the study could provide better insight of the suggested 
technique [30].

There is no perfect machine learning algorithm to detect gait disorders. Signal 
processing techniques for feature extraction and selection, and standardization of 
the time series play a crucial role in enhancing classification accuracy. We also see 

Figure 6. 
Block diagram of an EMG Signal classification system.

31

A Review of EMG Techniques for Detection of Gait Disorders
DOI: http://dx.doi.org/10.5772/intechopen.84403

consistent improvement in the existing models with increased classification accu-
racy [84]. ANN classifier has some deficiencies, such as high training process time 
and overfitting. Extreme Machine Learning algorithm (EML) improves on these 
anomalies at no cost to classification accuracy [8]. SVM accuracy was low for eight 

Classifier Authors Year Conditions Classification Performance

Neural 
networks

Senanayake 
et al.

2014 Soft tissue 
deformation

Gait pattern 
identification 
between healthy 
and injured

Accuracy = 98%

Nair et al. 2010 Osteoarthritis EMG of healthy 
and osteoarthritis

Accuracy = 89.4 ± 11.8%

Nair et al. 2010 Rheumatoid 
arthritis

EMG of healthy 
and rheumatoid 
arthritis

Accuracy = 57 ± 1 8%

Kamruzzaman 
and Begg.

2006 Cerebral 
palsy
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using stride length 
and cadence 
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LDA Naik et al. 2018 Knee 
pathology

Movement 
classification 
for healthy and 
patients with knee 
pathology

Accuracy = 86% 
(Unhealthy) and 96% 
(Healthy)

Nair et al. 2010 Rheumatoid 
arthritis

EMG of healthy 
and rheumatoid 
arthritis

Accuracy = 72 ± 20%

Ai et al. 2017 Normal and 
amputated

Movement-based 
classification 
for normal and 
amputee subject

Accuracy = 95.6 ± 2.2%

Kamruzzaman 
and Begg.

2006 Cerebral 
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Gait pattern 
identification 
using stride length 
and cadence 

Accuracy = 93.59%

SVM Kamruzzaman 
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2006 Cerebral 
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Gait pattern 
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Accuracy = 96.8%

Kugler et al. 2013 Parkinson Differentiate 
between healthy 
and Parkinson 
patients by auto-
step segmentation

Specificity = 90% and 
Sensitivity = 90%

Ai et al. 2017 Normal and 
amputated

Movement-based 
classification 
for normal and 
amputee subject

Accuracy = 98.1 ± 1.6%

Xi et al. 2018 Fall Gait recognition 
for daily life 
activities 
including Fall

Accuracy = 100%
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Armand et al. 2006 Toe Walking 
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Identification of 
ankle kinematic 
patterns for toe 
walkers

Accuracy = 81%
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daily life activities including falling. The accuracy for detecting trip fall improved 
with weighted genetic algorithm [73]. A wide variety of time domain, frequency 
domain, and time-frequency domain features, and optimization techniques pro-
vide multiple options to enhance the classification accuracy of gait diagnosis. The 
performance of each algorithmic class discussed in this review with respect to the 
abnormal physiological condition is shown in Table 2.

8. Future trends

The computational methods reviewed in this study have evolved over several 
decades and continue to do so. For example, ANOVA test’s inability to detect visu-
ally observable waveform due to abnormal gait behavior had been improved with 
wfANOVA test [20]. Apart from factorization algorithms and PCA, artificial neural 

Classifier Authors Year Conditions Classification Performance

Least 
square 
Kernel 
Algorithm

Nair et al. 2010 Rheumatoid 
arthritis

EMG of healthy 
and rheumatoid 
arthritis

Accuracy = 91%

Nair et al. 2010 Osteoarthritis EMG of healthy 
and osteoarthritis

Accuracy = 97%

Table 2. 
EMG classification methods.

EMG method Pros Cons

Visual inspection 
of raw EMG

1. Lower computational burden
2. Takes advantage of experience

1. Relies on experience only, hence 
chances of error

2. Limited theoretical basis

EMG envelope/
onset detection

1. EMG onset can reveal altered muscle 
activity (e.g., freezing episodes in 
Parkinson’s)

1. Impacted by a number of param-
eters, hence may not be reliable

Frequency and 
time-frequency 
analysis

1. Provides quantitative information 
in frequency and time-frequency 
domain

2. Specific Gait abnormalities can be dis-
tinguished (suitable for SCI patients)

3. Provides additional features like 
MdPF, IMNF for further classification

4. Provides algorithmic options that 
sidestep stationarity issues

1. Added processing time and 
computational burden

2. Assumption of stationarity is made 
for some FFT tools

MUAP 
decomposition

1. An abnormality in MUAP’s shape 
reveals altered motor behavior

2. Requires less processing for Needle 
EMG

1. Harder to decompose sEMG signal
2. Computational cost is high for 

sEMG

Muscle synergy 
decomposition

1. Recovers dominant spatio-temporal 
profiles in EMG signal

2. Useful in certain disorder diagnosis 
(Cerebral Palsy, stroke, SCI, etc.)

3. Computational cost is dependent on 
the type of factorization algorithm

1. Preprocessing of EMG signal 
impacts the dimensional space for 
synergy extraction

2. Choice of algorithm alters the 
results, i.e., assumption on the type 
of synergies need to be made

Table 3. 
Pros and cons of EMG processing techniques discussed.
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network were implemented for synergy extraction [5]. New time and frequency 
domain features and hybrid methods for feature selection have been developed and 
introduced over the years [67]. In these examples, the conventional techniques were 
enhanced or detection of gait disorders. There is a consistent effort to augment cur-
rent computational techniques and improve the EMG based detection methods for 
motor behavior abnormalities. Optimization algorithms, feature level fusion, and 
advances in computational methodology point to a future for detecting intricate 
EMG patterns EMG associated with abnormal gait behavior in machine learning. 
Recently, application of deep learning algorithms to detect abnormal EMG patterns 
appears more promising [85], and performs well with EMG acquired directly from 
the muscles. The main issue in clinical application of deep learning is its real-time 
implementation. The development of powerful graphics processing unit (GPU) and 
faster training algorithms will likely resolve such issues in near future.

In conclusion, in this article we reviewed the existing literature on EMG process-
ing techniques from simple thresholding to complex computation algorithms and 
their application in detecting gait disorders. The pros and cons of the techniques 
discussed are summarized in Table 3. Besides discussing these techniques in detail, 
our study cites pertinent literature where these techniques were successfully used 
to detect gait abnormalities. This study clearly points towards the recent trend in 
assessing gait disorders from EMG data using an intelligent system. Examples of 
such systems using supervised and unsupervised learning were also reviewed.
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daily life activities including falling. The accuracy for detecting trip fall improved 
with weighted genetic algorithm [73]. A wide variety of time domain, frequency 
domain, and time-frequency domain features, and optimization techniques pro-
vide multiple options to enhance the classification accuracy of gait diagnosis. The 
performance of each algorithmic class discussed in this review with respect to the 
abnormal physiological condition is shown in Table 2.

8. Future trends

The computational methods reviewed in this study have evolved over several 
decades and continue to do so. For example, ANOVA test’s inability to detect visu-
ally observable waveform due to abnormal gait behavior had been improved with 
wfANOVA test [20]. Apart from factorization algorithms and PCA, artificial neural 

Classifier Authors Year Conditions Classification Performance

Least 
square 
Kernel 
Algorithm

Nair et al. 2010 Rheumatoid 
arthritis

EMG of healthy 
and rheumatoid 
arthritis

Accuracy = 91%

Nair et al. 2010 Osteoarthritis EMG of healthy 
and osteoarthritis

Accuracy = 97%

Table 2. 
EMG classification methods.

EMG method Pros Cons

Visual inspection 
of raw EMG

1. Lower computational burden
2. Takes advantage of experience

1. Relies on experience only, hence 
chances of error

2. Limited theoretical basis

EMG envelope/
onset detection

1. EMG onset can reveal altered muscle 
activity (e.g., freezing episodes in 
Parkinson’s)

1. Impacted by a number of param-
eters, hence may not be reliable

Frequency and 
time-frequency 
analysis

1. Provides quantitative information 
in frequency and time-frequency 
domain

2. Specific Gait abnormalities can be dis-
tinguished (suitable for SCI patients)

3. Provides additional features like 
MdPF, IMNF for further classification

4. Provides algorithmic options that 
sidestep stationarity issues

1. Added processing time and 
computational burden

2. Assumption of stationarity is made 
for some FFT tools

MUAP 
decomposition

1. An abnormality in MUAP’s shape 
reveals altered motor behavior

2. Requires less processing for Needle 
EMG

1. Harder to decompose sEMG signal
2. Computational cost is high for 

sEMG

Muscle synergy 
decomposition

1. Recovers dominant spatio-temporal 
profiles in EMG signal

2. Useful in certain disorder diagnosis 
(Cerebral Palsy, stroke, SCI, etc.)

3. Computational cost is dependent on 
the type of factorization algorithm

1. Preprocessing of EMG signal 
impacts the dimensional space for 
synergy extraction

2. Choice of algorithm alters the 
results, i.e., assumption on the type 
of synergies need to be made

Table 3. 
Pros and cons of EMG processing techniques discussed.
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network were implemented for synergy extraction [5]. New time and frequency 
domain features and hybrid methods for feature selection have been developed and 
introduced over the years [67]. In these examples, the conventional techniques were 
enhanced or detection of gait disorders. There is a consistent effort to augment cur-
rent computational techniques and improve the EMG based detection methods for 
motor behavior abnormalities. Optimization algorithms, feature level fusion, and 
advances in computational methodology point to a future for detecting intricate 
EMG patterns EMG associated with abnormal gait behavior in machine learning. 
Recently, application of deep learning algorithms to detect abnormal EMG patterns 
appears more promising [85], and performs well with EMG acquired directly from 
the muscles. The main issue in clinical application of deep learning is its real-time 
implementation. The development of powerful graphics processing unit (GPU) and 
faster training algorithms will likely resolve such issues in near future.

In conclusion, in this article we reviewed the existing literature on EMG process-
ing techniques from simple thresholding to complex computation algorithms and 
their application in detecting gait disorders. The pros and cons of the techniques 
discussed are summarized in Table 3. Besides discussing these techniques in detail, 
our study cites pertinent literature where these techniques were successfully used 
to detect gait abnormalities. This study clearly points towards the recent trend in 
assessing gait disorders from EMG data using an intelligent system. Examples of 
such systems using supervised and unsupervised learning were also reviewed.
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Chapter 3

Radiation Oncology in the Era of 
Big Data and Machine Learning 
for Precision Medicine
Alexander F.I. Osman

Abstract

Machine learning (ML) applications in medicine represent an emerging field 
of research with the potential to revolutionize the field of radiation oncology, in 
particular. With the era of big data, the utilization of machine learning algorithms 
in radiation oncology research is growing fast with applications including patient 
diagnosis and staging of cancer, treatment simulation, treatment planning, treat-
ment delivery, quality assurance, and treatment response and outcome predictions. 
In this chapter, we provide the interested reader with an overview of the ongoing 
advances and cutting-edge applications of state-of-the-art ML techniques in radia-
tion oncology process from the radiotherapy workflow perspective, starting from 
patient’s diagnosis to follow-up. We present with discussion the areas where ML 
has presently been used and also areas where ML could be applied to improve the 
efficiency (i.e., optimizing and automating the clinical processes) and quality (i.e., 
potentials for decision-making support toward a practical application of precision 
medicine in radiation therapy) of patient care.

Keywords: big data, machine learning, radiation oncology, decision-making, 
precision medicine

1. Introduction

Radiation oncology is the discipline dealing with the treatment of malignant 
neoplasias or cancerous lesions (and occasionally benign lesions) with ionizing 
radiation for cure or palliation intent. The clinical modality or technique has been 
used to treat the patient in radiation oncology is referred to as radiation therapy (or 
“radiotherapy”). Radiotherapy has often given in combination with other treatment 
modalities for instance chemotherapy, surgery, hormonal therapy, etc. The aim 
of radiotherapy is to deliver a precisely measured dose of irradiation to a defined 
tumor volume with as minimal damage as possible to surrounding healthy tissue, 
resulting in eradication the tumor, high quality of life, and prolongation of survival 
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Chapter 3

Radiation Oncology in the Era of 
Big Data and Machine Learning 
for Precision Medicine
Alexander F.I. Osman

Abstract

Machine learning (ML) applications in medicine represent an emerging field 
of research with the potential to revolutionize the field of radiation oncology, in 
particular. With the era of big data, the utilization of machine learning algorithms 
in radiation oncology research is growing fast with applications including patient 
diagnosis and staging of cancer, treatment simulation, treatment planning, treat-
ment delivery, quality assurance, and treatment response and outcome predictions. 
In this chapter, we provide the interested reader with an overview of the ongoing 
advances and cutting-edge applications of state-of-the-art ML techniques in radia-
tion oncology process from the radiotherapy workflow perspective, starting from 
patient’s diagnosis to follow-up. We present with discussion the areas where ML 
has presently been used and also areas where ML could be applied to improve the 
efficiency (i.e., optimizing and automating the clinical processes) and quality (i.e., 
potentials for decision-making support toward a practical application of precision 
medicine in radiation therapy) of patient care.

Keywords: big data, machine learning, radiation oncology, decision-making, 
precision medicine

1. Introduction

Radiation oncology is the discipline dealing with the treatment of malignant 
neoplasias or cancerous lesions (and occasionally benign lesions) with ionizing 
radiation for cure or palliation intent. The clinical modality or technique has been 
used to treat the patient in radiation oncology is referred to as radiation therapy (or 
“radiotherapy”). Radiotherapy has often given in combination with other treatment 
modalities for instance chemotherapy, surgery, hormonal therapy, etc. The aim 
of radiotherapy is to deliver a precisely measured dose of irradiation to a defined 
tumor volume with as minimal damage as possible to surrounding healthy tissue, 
resulting in eradication the tumor, high quality of life, and prolongation of survival 
[1]. Figure 1 presents a typical radiotherapy workflow, from patient consult and 
assessment to follow-up. The field of radiotherapy has witnessed with significant 
technological advances over the last decades. This advancing has introduced the 
complexity of radiotherapy processes and generating a massive amount of data 
(also so-called “big data”) during radiotherapy workflow.
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1.1 Big data

Big data is data which is of a large volume, often combining multiple data sets 
and requiring innovative forms of information technology to process this data [3]. 
Big data has characterized by four V’s: volume, variety, velocity and veracity [3]. In 
radiation oncology, data can be categorized as “Big Data” because (a) the use of data-
intensive imaging modalities (volume), (b) the imaging archives are growing rapidly 
(velocity), (c) there is an increasing amount of imaging and diagnostic modalities 
available (variety), and (d) interpretation and quality differs between care providers 
(veracity) [4]. The radiation oncologists are overwhelmed with scientific literature, 
rapidly evolving treatment techniques, and the exponentially increasing amount of 
clinical data [5]. Figure 2 shows more and more information is associated with the 
patient as the proceeds along the radiotherapy process, like a snowball rolling down a 
hill [2]. The radiation oncologists need help translating all these data into knowledge 
that supports decision-making in routine clinical practice [6–10].

In this direction, such collaborative efforts have been established in the last few 
years to advance the possibilities of using big data to facilitate personalized clinical 
patient care in the field of radiation oncology. For example, in 2015, the American 
Society for Therapeutic Radiation Oncology (ASTRO), National Cancer Institute 
(NCI), and American Association of Physicists in Medicine (AAPM) co-organized 
a workshop with aims focused on opportunities for radiation oncology in the era of 
big data [9]. Later in 2017, the American College of Radiology (ACR) has established 
the Data Science Institute (DSI) with a core purpose to empower the advancement, 
validation, and implementation of artificial intelligence (AI) in medical imaging and 
the radiological science for the benefit of patients, society, and the profession [10].

Figure 1. 
Radiotherapy workflow, from patient consult and assessment to follow-up.

Figure 2. 
With each step along the radiotherapy workflow, more information is created and collected which has 
associated with the patient (reproduced from [2]).
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1.2 Machine learning

Machine learning (ML), a branch of artificial intelligence, is the technology of 
developing computer algorithms that are able to emulate human intelligence. An ML 
algorithm is a computational process that uses input data to achieve the desired task 
without being literally programmed (i.e., “hard-coded”) to produce a particular out-
come [2]. These algorithms are in a sense “soft-coded” in that they automatically alter 
or adapt their architecture through repetition (i.e., experience) so that they become 
better and better at achieving the desired task [2]. The process of adaptation is called 
training, in which samples of input data have provided along with desired outcomes [2]. 
The algorithm then optimally configures itself so that it cannot only provide the desired 
result when presented with the training inputs, but it can even generalize to produce 
the desired outcome from new data [2]. Figure 3 shows a generic ML workflow. In 
which, the ML model is trained first on a training data then the trained model is used for 
predicting the results for new data [2]. More deeply, ML algorithms have been classified 
according to the nature of the data labeling into supervised (e.g., classification or regres-
sion), unsupervised (e.g., clustering and estimation of probability density function), 
and semi-supervised learning approach (e.g., text/image retrieval systems) [11–13].

With the era of big data, the utilization of machine learning algorithms in radia-
tion oncology research is rapidly growing. Its applications include treatment response 
modeling, treatment planning, organ segmentation, image-guidance, motion tracking, 
quality assurance, and more. In this chapter, we provide the interested reader with 
an overview about the ongoing advances and cutting-edge applications of the ML 
methods in radiation oncology from a workflow perspective, from patient diagnosis 
and assessment to treatment delivery and follow-up. We present the areas where ML 
could be applied to improve the efficiency, i.e., optimizing and automating the clinical 
processes, and quality, i.e., potentials for decision-making support toward precision 
medicine in radiation therapy, of patient care. This chapter is organized as follows: 
Section 1 provides introduction to radiation oncology, big data, and machine learning 
concept; Section 2 illustrates an overview of the utilization of machine learning meth-
ods in radiation oncology research from a workflow perspective; Section 3 discusses 
limitations and the challenges of the of the current approaches as well as the future 
vision to overcome these problems; and Section 4 presents conclusions.

2. Machine learning in radiation oncology

The utilization of machine learning algorithms in radiation oncology research 
has covered almost every part in radiotherapy workflow process (Figure 1). ML 

Figure 3. 
A generic machine learning workflow.
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techniques could compensate for human limitations in handling a large amount of 
flowing information in an efficient manner, in which simple errors can make the 
difference between life and death. Also, it would allow improvements in quality 
of patient care through the potentials toward a practical application of precision 
medicine in radiation oncology. In this section, we go over each part in the radiation 
oncology workflow (Figure 1) process presenting studies that have been conducted 
with machine learning models. The radiation oncology workflow starts with patient 
diagnosis and assessment, to treatment simulation, to treatment planning, to qual-
ity assurance and treatment delivery, to treatment outcome and follow-up.

2.1 Patient diagnosis, assessment, and consultation

The radiation oncology process begins at the first consultation. During which, the 
radiation oncologist and patient meet to discuss the clinical situation to determine a 
treatment strategy [14]. The stage that precedes the patient assessment and consulta-
tion is a patient diagnosis, in which patient with cancer disease identified on medical 
images and then pathologically confirmed the disease. Machine learning toolkits such 
as computer-aided detection/diagnosis have been introduced for identifying and 
classifying cancer subtypes (staging). For example, lesion candidates into abnormal 
or normal (identify and mark suspicious areas in an image), lesions or non-lesions 
(help radiologists decide if a patient should have a biopsy or not), malignant or 
benign (report the likelihood that a lesion is malignant), etc. Machine learning plays 
a crucial role in computer-aided detection/diagnosis toolkits, and it could provide a 
“second opinion” in decision-making to the physician in diagnostic radiology.

2.1.1 Computer-aided detection

Computer-aided detection (CADe) has defined as detection made by a physi-
cian/radiologist who takes into account the computer output as a “second opinion” 
[2]. CADe has been an active research area in medical imaging [2]. Its task is classifi-
cation based solving a problem, in which the ML classifier task here is to determine 
“optimal” boundaries for separating classes in the multidimensional feature space. 
It focuses on a detection task, e.g., localization of lesions in medical images with the 
possibility of providing the likelihood of detection.

Several investigators [15–18] have developed ML-based models for detection 
of cancer, e.g., lung nodules [15] in thoracic computed tomography (CT) using 
massive training artificial neural network (ANN), micro-calcification breast masses 
[16] in mammography using a convolutional neural network (CNN), prostate 
cancer [17] and brain lesion [18] on magnetic resonance imaging (MRI) data using 
deep learning. Chan et al. [16] achieved a very good accuracy, an area under a 
receiver operating characteristic curve (AUC) of 0.90, in the automatic detection of 
clustered of breast microcalcifications on mammograms. Suzuki et al. [15] reported 
an improved accuracy in the detection of lung nodules in low-dose CT images. Zhu 
et al. [17] reported an averaged detection rate of 89.90% of prostate cancer on MR 
images, with clear indication that the high-level features learned from the deep 
learning method can achieve better performance than the handcrafted features 
in detecting prostate cancer regions. Rezaei et al. [18] results demonstrated the 
superior ability of the deep learning approach in brain lesions detection.

Overall, the use of computer-aided detection systems as a “second opinion” 
tool in identifying the lesion regions in the images would significantly contribute 
to improving diagnostic performance. For example, it would lead to avoid missing 
cancer regions, increase sensitivity and specificity of detection (increased accu-
racy), and diminish inter- and intraobserver variability.
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2.1.2 Computer-aided diagnosis

Computer-aided diagnosis (CADx) is a computerized procedure to provide a 
“second objective opinion” for the assistance of medical image interpretation and 
diagnosis [19]. Similar to CADe, its task is a classification solving-problem. CADx 
focuses on a diagnosis (characterization) task, e.g., distinction and automatically 
classifying a tumor or lesion being malignant or benign with a possibility of provid-
ing the likelihood of diagnosis.

Numerous studies [19–22] have demonstrated the application of CADx tools for 
diagnosing lung [19–21] and breast [19, 22] lesions. Cheng et al. [19] investigated 
the deep learning capability for the diagnosis of breast lesions in ultrasound (US) 
images and pulmonary nodules in CT scans. Their results showed that the deep-
learning-based CADx can achieve better differentiation performance than the 
comparison methods across different modalities and diseases. Figure 4 illustrates 
several cases of breast lesions and pulmonary nodules in US and CT images, respec-
tively, differentiated with deep learning-based CADx [19]. Feng et al. [20] and Beig 
et al. [21] studied the classification of lung lesions on endo-bronchoscopic images 
[20] with logistic regressions, and non-small cell lung cancer (NSCLC) adeno-
carcinomas distinctions from granulomas on non-contrast CT [21] using support 
vector machine (SVM) and neural network (NN). The reported results indicated 
an accuracy of 86% in distinguishing lung cancer types, e.g., adenocarcinoma and 
squamous cell carcinoma [20]. Surprisingly, the reported results [21] in distinguish-
ing non-small cell lung cancer adenocarcinomas from granulomas on non-contrast 
CT images showed that the developed CADx systems outperformed the radiologist 
readers. Joo et al. [22] developed a CADx system using an ANN for breast nodule 
malignancy diagnosis in US images. Their results demonstrated the potential to 
increase the specificity of US for characterization of breast lesions.

Overall, computer-aided diagnosis tool as a “second opinion” system could sig-
nificantly enhance the radiologists’ performance by reducing the misdiagnosed rate 
of malignant cases, then decreases the false positive of the cases sent for surgical 
biopsy. Also with CADx, the diagnosis can be performed based on multimodality 
medical images in a non-invasive (without biopsy), fast (fast scanning) and a low-
cost way (no additional examination cost).

2.1.3 Assessment and consultation

During the patient assessment phase, the radiation oncologist and patient meet to 
discuss the clinical situation. Circumstances like the risks and benefits of treatment 
and the patient’s goals of care are determined for the treatment strategy [14]. Useful 
information to assess the potential benefit of treatment is acquired, e.g., tumor 

Figure 4. 
Computer-aided diagnosis for lung nodules and breast lesion with deep learning. It shows that it may be hard to 
differentiate for a person without a medical background and for a junior medical doctor (reproduced from [19]).
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stage, prior and current therapies, margin status if post-resection, ability to tolerate 
multimodality therapy, and overall performance status [14]. Parameters that impact 
potential risk and tolerability of treatment are balanced, e.g., patient age, comorbidi-
ties, functional status, the proximity between tumor and critical normal tissues, and 
ability to cooperate with motion management [14]. All of these represent valuable 
features which can be utilized to build predictive models of treatment outcome and 
toxicity. These models, then, can be used to inform physicians and patients to man-
age expectations and guide trade-offs between risks and benefit [14].

Machine learning models [23–26] such as logistic regressions, decision trees, 
random forests, gradient boosting, and support vector machines are suitable for this 
purpose. Logistic regressions or decision trees are similarly effective [23, 24] for a 
goal to assist physicians and patients reach the best decision, compromising balance 
between interpretability of the results and accurate predictions. In case of accuracy 
is favored over interpretability, then methods [25, 26] such as random forests or 
gradient boosting, and SVMs with kernels, are better and consistently win most 
modeling competitions [14].

Overall, the delivery of models that could help with these scenarios require 
standardizing nomenclature and developing standards for data collection of these 
heterogeneous patient clinical data remain a challenge in radiation oncology.

2.2 Treatment simulation

Once a physician and patient have decided to proceed with radiation therapy, the 
physician will place robust instructions for a simulation, which is then scheduled. 
The order for simulation includes details about immobilization, scan range, treat-
ment site, and other specifics necessary to complete the procedure appropriately 
[14]. Patient preparation for simulation could include fiducial placement, fasting 
or bladder/rectal filling instructions, or kidney function testing for intravenous 
(IV) contrast. Special instructions have given for patients with a cardiac device, or 
who are pregnant, and lift help or a translator is requested if necessary [14]. The 
treatment simulation process typically includes patient’s setup and immobilization, 
three- or four-dimensional computed tomography (3DCT or 4DCT) image data 
acquisition, and image reconstruction/segmentation. Machine learning algorithms 
could have an essential role to play in this sequence to improve the simulation qual-
ity, hence a better treatment outcome.

2.2.1 3D/4DCT image acquisition

Three-dimensional CT anatomical image information for the patient are 
acquired during the simulation on a dedicated CT scanner (“CT-Simulator”) to be 
used later for the treatment planning purposes. A good CT simulation is critical to 
the success of all subsequent processes, to achieve an accurate, high quality, robust, 
and deliverable plan for a patient. It could prevent a repeated CT simulation due to 
insufficient scan range, suboptimal immobilization, non-optimal bladder/rectal 
filling, artifacts, lack of breath-hold reproducibility, and so on [14]. 4DCT scanning 
is used increasingly in radiotherapy departments to track the motion of tumors in 
relation to the respiratory cycle of the patient. It monitors the breathing cycle of the 
patient and can either; acquire CT images at a certain point in the breathing cycle, 
or acquire CT images over the whole breathing cycle. This CT data is then used to 
generate an ITV (internal target volume) that encompasses the motion of the CTV 
(clinical target volume), or MIP (maximum intensity projection) scans to aid in the 
definition of an ITV [2]. 4DCT imaging is necessary for successful implementation 
of stereotactic ablative radiotherapy (SBRT), e.g., for early-stage NSCLC.
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Few works [27–30] have carried out using ML-based methods for this purpose. 
For instance, a work by Fayad et al. [27] demonstrated an ML method based on the 
principal component analysis (PCA) to develop a global respiratory motion model 
capable of relating external patient surface motion to internal structure motion 
without the need for a patient-specific 4DCT acquisition. Its finding looks promis-
ing but future works of assessing the model extensively are needed. Another study 
by Steiner et al. [28] investigated an ML-based model on correlations and linear 
regressions for quantifying whether 4DCT or 4D CBCT (cone-beam CT) represents 
the actual motion range during treatment using Calypso (Varian Medical Systems 
Inc., Palo Alto, CA, USA) motion signals as the “ground truth.” The study results 
found that 4DCT and 4DCBCT under-predict intra-fraction lung target motion 
during radiotherapy. A third interesting one by Dick et al. [29] examined an ANN 
model for fiducial-less tracking for the radiotherapy of liver tumors through track-
ing lung-diaphragm border. The findings showed that the diaphragm and tracking 
volumes are closely related, and the method has indicated the potential to replace 
fiducial markers for clinical application. Finally, a study by Johansson et al. [30] 
investigated an ML-based PCA model for reconstructing breathing-compensated 
images showing the phases of gastrointestinal (GI) motion. Its results indicated that 
GI 4D MRIs could help define internal target volumes for treatment planning or 
support GI motion tracking during irradiation.

Overall, the discussed ML-based methods in the simulation area have shown the 
potential for improved accuracy of patient CT simulation. Machine learning utiliza-
tion in 3D/4D CT image acquisition simulation is an area where the community has 
focused little effort. Thus, focusing on the simulation, there are many questions 
that could be answered/optimized through ML algorithms to aid in decision-mak-
ing and overall workflow efficiency.

2.2.2 Image reconstruction

Here, we explore the power of machine learning based methods for image recon-
struction in radiation oncology procedure. We present two application examples 
where ML has utilized for estimating CT from MRI images and reconstructing a 7 
Tesla (7 T)-like MR image from a 3 T MR image.

The first application supports reconstructing an image modality form another 
imaging modality, e.g., CT image from MR image. Clinical implementation of 
MRI-only treatment planning radiotherapy approach requires a method to derive 
or reconstruct synthetic CT image from MR image. CT is currently supporting 
the workflows of radiation oncology treatment planning for dose calculations. 
However, CT imaging modality has some limitations in comparison with other 
modalities like MRI, e.g., (a) CT images provide poor soft tissue contrast compared 
to MRI scans which has superior visualization of anatomical structures and tumors, 
and (b) CT exposes radiation during CT imaging, which may cause side effect to the 
patient, where MRI is much safer and does not involve radiation.

Numerous studies [31–34] have demonstrated ML-based approaches to map CT 
images to MR images like deep learning (fully CNN) model [31], boosting-based 
sampling (RUSBoost) algorithm [32], random forest and auto-context model [33], 
and U-net CNN model [34]. Nie et al. [31] experimental results showed that deep 
learning method is accurate and robust for predicting CT image from MRI image. 
Figure 5 shows the synthetic CT image from MRI data with deep learning and the 
“ground truth” MRI [31]. The developed deep learning model outperformed other 
state-of-the-art methods under comparison. Bayisa et al. [32] proposed an approach 
based on boosting algorithm indicated outperformance in CT estimation quality in 
comparison with the existing model-based methods on the brain and bone tissues. 
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based on boosting algorithm indicated outperformance in CT estimation quality in 
comparison with the existing model-based methods on the brain and bone tissues. 
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Huynh et al. [33] experimental results showed that a structured random forest and 
auto-context based model can accurately predict CT images in various scenarios, 
and also outperformed two state-of-the-art methods. Chen et al. [34] investigated 
the feasibility of a deep CNN for MRI-based synthetic CT generation. The gamma 
analysis of their results with “ground truth” CT image for 1%/1 mm gamma pass 
rates was over 98.03%. The dosimetric accuracy on the dose-volume histogram 
(DVH) parameters discrepancy was less than 0.87% and the maximum point dose 
discrepancy within PTV (planning target volume) was less than 1.01% respect to 
the prescription on prostate intensity modulated radiotherapy (IMRT) planning.

Overall, the presented findings have obviously demonstrated the potential of the 
discussed methods to generate synthetic CT images to support the MR-only work-
flow of radiotherapy treatment planning and image guidance.

The second application supports reconstructing a high-quality image modality 
from a lower quality one, e.g., 7 T-like MR image from 3 T MR image. The advanced 
ultra—high 7 T magnetic field scanners provide MR images with higher resolution 
and better tissue contrast compared to routine 3 T MRI scanners. However, 7 T MRI 
scanners are currently more expensive, less available in clinical centers, and higher 
restrictions are required for safety due to its extremely high magnetic field power. 
As a result, generating/reconstructing a 7 T-like MR image from a 3 T MR image 
with ML-based approaches would resolve these concerns as well as facilitate early 
disease diagnosis.

Researchers [35–38] have developed ML-based models to generate a 7 T-like MR 
image from 3 T MR image. Approaches based on deep learning CNN [35], hierarchical 
reconstruction based on group sparsity in a novel multi-level canonical correlation 
analysis (CCA) space [36], and random forest and sparse representation [37, 38] have 
been investigated to map 3 T MR images to be as 7 T-like MR images. Bahrami et al. 
[35] visual and numerical results showed that deep learning method outperformed 
the comparison methods. Figure 6 presents the reconstruction of 7 T-like MR image 
from 3 T MR image with deep learning. A second study [36] done by the same author 
showed that a hierarchical reconstruction based on group sparsity method outper-
formed other previous methods and resulted in higher accuracy in the segmentation 
of brain structures, compared to segmentation of 3 T MR images. Other studies by 
Bahrami et al. [37, 38] using random forest regression model and a group sparse repre-
sentation showed that the predicted 7 T-like MR images can best match the “ground-
truth” 7 T MR images, compared to other methods. Moreover, the experiment on brain 
tissue segmentation showed that predicted 7 T-like MR images lead to the highest 
accuracy in the segmentation, compared to segmentation of 3 T MR images.

Overall, the predicted 7 T-like MR images have demonstrated better spatial 
resolution compared to 3 T MR images. Moreover, delineation critical structure, 

Figure 5. 
Synthetic CT image from MRI data. MR image (left), estimated CT form the MR (middle) with deep learning, 
and “ground truth” (right) MR image for the same subject (reproduced from [31]).
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i.e., brain tissue structures on 7 T-like MR images showed better accuracy compared 
to segmentation of 3 T MR images. Adding to above, such high-quality 7 T-like MR 
image could better help disease diagnosis and intervention.

2.2.3 Image registration/fusion

Image registration in radiotherapy is the process of aligning images rigidly which 
allows some changes in images to be easily detected. However, such an alignment 
does not model changes from, e.g., organ deformation, patient weight loss, or tumor 
shrinkage. It is possible to take such changes into account using deformable image 
registration (DIR) which is a method for finding the mapping between points in 
one image and the corresponding points in another image. DIR has the perspective 
of being widely integrated into many different steps of the radiotherapy process. 
The tasks of planning, delivery, and evaluation of radiotherapy can all be improved 
by taking organ deformation into account. Use of image registration in image-
guided radiotherapy (IGRT) can be split into intra-patient (inter- and intra-fraction-
ated) and inter-patient registration. Intra-patient registration is matching of images 
of a single patient, e.g., inter-fractional registration (i.e., improving patient position-
ing, and evaluating organ motion relative to bones) and intra-fractional registration 
(i.e., online tracking of organ movement). In contrast, inter-patient registration 
is matching images from different patients (i.e., an “average” of images acquired 
from a number of patients, thereby allowing information to be transferred from the 
atlas to the newly acquired image). The process of combining information from two 
images after these have been registered is called data fusion. A particular use of data 
transfer between images is the propagation of contours from the planning image 
or an atlas to a newly acquired image [39, 40]. Although many image registration 
methods have been proposed, there are still some challenges for DIR of complex 
situations, e.g., large anatomical changes and dynamic appearance changes. 

Figure 6. 
Reconstruction of 7 T-like MR image from 3 T MR image. 3 T MR image (left), reconstructed 7 T-like MR 
image (middle) using deep learning, and 7 T MR “ground truth” image (left) of the same subject with each one 
corresponded with a same selected zoomed area. From the figure, 7 T MR image shows clearly better anatomical 
details and tissue contrast compared to 3 T MR image (reproduced from [35]).
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Advancement in computer vision and deep learning could provide solutions to 
overcome these challenges of conventional rigid/deformable image registrations.

Various machine learning-based methods [41–47] for image registration have 
proposed by investigators to not only align the anatomical structures but also allevi-
ate the appearance difference. Hu et al. [41] proposed a method based on regres-
sion forest for image registration of two arbitrary MR images. The learning-based 
registration method achieved higher registration accuracy compared with other 
counterpart registration methods. Zagoruyko et al. [42] proposed a general similar-
ity function for comparing image patches, which is a task for many computer vision 
problems. The results showed that such an approach like CNN-based model can 
significantly outperform other state-of-the-art methods. Jiang et al. [43] employed 
a discriminative local derivative pattern method to achieve fast and robust multi-
modal image registration. The results revealed that the proposed method can achieve 
superior performance regarding accuracy in multimodal image registration as well 
as also indicated the potential for clinical US-guided intervention. Neylon et al. [44] 
developed a deep neural network for automated quantification of DIR performance. 
Their results showed a correlation between the NN predicted error and the “ground 
truth” for the PTV and the organs at risk (OARs) were consistently observed to be 
greater than 0.90. Wu et al. [45, 46] developed an NN-based registration quality 
evaluator, and a deep learning-based image registration framework, respectively, 
to improve the image registration robustness. The quality evaluator method [45] 
showed potentials to be used in a 2D/3D rigid image registration system to improve 
the overall robustness, and the new image registration framework [46] consistently 
demonstrated more accurate registration results when compared to the state-of-the-
art. Kearney et al. [47] developed a deep unsupervised learning strategy for CBCT to 
CT deformable image registration. The results indicated that deep learning method 
performed better than rigid registration, intensity corrected demons and landmark-
guided deformable image registration for all evaluation metrics.

Overall, most of the machine learning based methods discussed here for image 
registration have revealed superior performance regarding accuracy in multimodal 
image registration. Hence, potentials for improved rigid/deformable image registra-
tion in radiation oncology are clinically feasible.

2.2.4 Image segmentation/auto-contouring

Volume definition is a prerequisite for meaningful 3D treatment planning and 
for accurate dose reporting. International Commission on Radiation Units and 
Measurements (ICRU) Reports No. 50, 62, 71 and 83 [48] define and describe 
target volumes (e.g., planning target volume) and critical structure/normal tissue 
(organ at risk) volumes that aid in the treatment planning process and that provide 
a basis for comparison of treatment outcomes. The organ at risk is an organ whose 
sensitivity to radiation is such that the dose received from a treatment plan may be 
significant compared with its tolerance, possibly needs to be delineated to evaluate 
its received dose [49]. Multimodal diagnostic images, e.g., CT, MRI, US, positron 
emission tomography (PET)/CT, etc. can be used through image fusion to help in 
the process of delineating tumor and OAR structures on CT slices acquired dur-
ing the patient’s treatment simulation. The delineation (auto-contouring) process 
has subsequently become performed via automated or semi-automated analytical 
model-based software commercially available for clinical use (e.g., Atlas based-
models). These software tools are performing reasonably well for critical organs/
OARs delineation but not yet ready for tumor/target structures contouring which 
represent a challenging task. State-of-the-art machine learning algorithms may play 
an effective role here for both tasks.
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Several ML-based methods [52–58] have reported for tumor/target segmenta-
tion/auto-contouring, e.g., brain [52–55], prostate [56], rectum [57], sclerosis lesion 
[58], etc. The reported results showed that deep learning [54, 55] and ensemble 
learning [50, 53] ML-based methods are the winner algorithms over the other 
ML-based methods in the brain tumor segmentation competitions [50]. Such a 
method by Osman [52] based on SVM for glioma brain tumor segmentation showed 
a robust consistency performance on the training and new “unseen” testing data 
even though its reported accuracy on multi-institution datasets was reasonably 
acceptable. Figure 7 shows the whole glioma brain tumor segmentation on MRI 
(BRATS’2017 dataset [50, 51]) with an SVM model [52]. For organs segmentation, 
deep learning algorithm [57, 59, 60] has shown a superior performance than other 
state-of-the-art segmentation methods and commercially available software for 
segmentation of, e.g., rectum [57], parotid [59], etc.

Overall, tumor/target segmentation/auto-contouring using ML-based methods 
still remains challenging for some reasons such as availability of big data of multi-
modal images with their “ground truth” annotation data for training these models. 
Recent advances in computer vision, specifically around deep learning [61], are 
particularly well suited for segmentation and it has shown superiority over the 
other machine learning algorithms for tumor and organs segmentation tasks.

Figure 7. 
Whole glioma brain tumor segmentation on MRI (BRATS’2017 dataset [50, 51]). (a) T2-FLAIR MRI, 
(b) manual “ground truth” glioma segmentation by an experienced board-certified radiation oncologist, 
(c) machine learning—SVM model glioma segmentation [52], and (d) both, manual and ML, segmented 
annotations overlap; for four different subjects.
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2.3 Treatment planning

The planning process starts by delineating both the target(s) and the OARs as we 
discussed it earlier in the image segmentation section (Section 2.2.4). Once the target 
volumes and OARs have been outlined/contoured, the planning process continues by 
(1) setting dosimetric goals for targets and normal tissues; (2) selecting an appropri-
ate treatment technique (e.g., 3D, fixed beam IMRT, VMAT (volumetric arc radia-
tion therapy), protons); (3) iteratively modifying the beams/weights/etc., until the 
planning goals have been achieved; and (4) evaluating (estimating the treatment dose 
distributions with prescribed doses in the treatment planning system using dose calcu-
lation algorithms) and approving the plan [14]. The applications of machine learning 
in radiotherapy treatment planning as a tool for knowledge-based treatment planning 
(KBTP) and automated/self-driven planning process will be discussed in this section.

2.3.1 Knowledge-based treatment planning

Prior information about patient status and previously archived treatment plans, 
particularly if performed by expert medical dosimetrists/physicists, could be used 
to inform the treating team of a currently pending case [2]. This concept of using 
prior treatment planning information constitutes the underlying principle of the 
so-called knowledge-based treatment planning. Such KBTP approaches have lever-
aged hundreds of prior treatment plans to reproducibly improve planning efficiency 
across multiple disease sites [62]. Figure 8 illustrates the schematic of a KBTP 
System [2]. The motivation for KBTP approach lies in reducing current complexity 
and time spent on generating a new treatment plan from each incoming patient, as 
well as its potential for decision-making support in radiotherapy.

Several studies [63–67] have carried out to explore the utilization of KBTP 
approach for treatment plan generation in radiotherapy. The current scientific 
research and available commercial products for KBTP are limited to predicting 
DVHs within accepted ranges [14]. Plans generated based on KBTP utilizing 
artificial intelligence often meet or exceed adherence to dose constraints compared 
to manually generated plans in many clinical scenarios (e.g., prostate cancer [63], 
cervical cancer [64], gliomas and meningiomas [65], head and neck cancer [66], 
and spine SBRT [67]). A more recent commercial product, Quick Match  

Figure 8. 
Schematic of a KBTP system. Initially, the user builds a query using features related to patient, disease, 
imaging, treatment setup, dose, etc., for the treatment plan (TP). Then, the database returns a set of similar 
treatment plans that the user could select from to optimize and compare with the current one according to the 
query (reproduced from [2]).
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(Siris Medical, Redwood City, CA, USA), uses gradient boosting (the most accurate 
algorithm on expectation when structured data are available) to explore predictions 
in dosimetric trade-offs [68]. This application provides quick rough predicted treat-
ment planning results to be obtained before the treatment planning process. Thus it 
can facilitate communication between dosimetrist and physicians, establish  
individualized and achievable goals, and help physicians and patients decide the 
course of a plan before initializing the treatment planning process. For example, it 
can help to choose an optimal technique (e.g., photon versus protons). This approach 
has also been applied to post-planning quality assurance of DVH data [69, 70].

Overall, the incentive for such an approach like KBTP lies in reducing current 
complexity and time spent on generating a new treatment plan from each incoming 
patient. It is believed that such a standardization process based on KBTP can help 
enhance consistency, efficiency, and plan quality. Ultimately, data-driven planning 
is not fully automated at present as it requires expert oversight and/or intervention 
to ensure safely deliverable treatment plans.

2.3.2 Automated planning (self-driving) process

Once the dosimetric goals have been established and the technique chosen, 
automatic plan generation is also possible [14].

Some attempts [71, 72] have made to solve various aspects of this problem 
by predicting the best beam orientations. The larger task of automated treat-
ment planning, however, is well suited for reinforcement learning method [14]. 
Reinforcement is extensively used in games, self-driving cars, and other popular-
culture applications. In reinforcement learning method, an algorithm learns to 
navigate a set of rules, given some constraints, by self-correcting its decisions. 
Basically, the algorithm will take a decision (for instance, increase the weight of a 
given constraint) and learn from the simulator (the treatment planning system) 
whether the decision resulted in the right direction [14]. This technique has success-
fully used by Google Brain to develop an algorithm capable of beating a Go world 
champion [73]. So, reinforcement technique could provide performance at the level 
of our best dosimetrists if properly implemented.

Overall, one challenge of achieving full automatic planning using reinforcement 
learning lies in the close integration and need for robust treatment planning systems 
(TPSs) [14]. The future vision is toward a fully-automated planning process, from 
contouring to plan creation [62], with the human experts (dosimetrists, physicists, 
and physicians) evaluating, supervising, and providing QA to the given results.

2.4 Quality assurance and treatment delivery

Quality assurance (QA) is demanding for the safe delivery of radiotherapy. It rep-
resents a core part of a medical physicist’s task in the clinical practice. Machine learn-
ing could be utilized to solve multiple long-standing problems and improve workflow 
efficiency. Its applications in the quality assurance (e.g., detection and prediction of 
radiotherapy errors, and treatment planning QA) and treatment delivery validation 
(e.g., prediction planning deviations from the initial intentions, and prediction the 
need for re-planning for adaptive radiotherapy) are discussed in this section.

2.4.1 Quality assurance

Machine learning has potential in many aspects of radiotherapy QA program, 
specifically in error detection and prevention, treatment machine QA, patient-
specific quality assurance, etc. In addition, ML may contribute to automating the 
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(Siris Medical, Redwood City, CA, USA), uses gradient boosting (the most accurate 
algorithm on expectation when structured data are available) to explore predictions 
in dosimetric trade-offs [68]. This application provides quick rough predicted treat-
ment planning results to be obtained before the treatment planning process. Thus it 
can facilitate communication between dosimetrist and physicians, establish  
individualized and achievable goals, and help physicians and patients decide the 
course of a plan before initializing the treatment planning process. For example, it 
can help to choose an optimal technique (e.g., photon versus protons). This approach 
has also been applied to post-planning quality assurance of DVH data [69, 70].

Overall, the incentive for such an approach like KBTP lies in reducing current 
complexity and time spent on generating a new treatment plan from each incoming 
patient. It is believed that such a standardization process based on KBTP can help 
enhance consistency, efficiency, and plan quality. Ultimately, data-driven planning 
is not fully automated at present as it requires expert oversight and/or intervention 
to ensure safely deliverable treatment plans.

2.3.2 Automated planning (self-driving) process

Once the dosimetric goals have been established and the technique chosen, 
automatic plan generation is also possible [14].

Some attempts [71, 72] have made to solve various aspects of this problem 
by predicting the best beam orientations. The larger task of automated treat-
ment planning, however, is well suited for reinforcement learning method [14]. 
Reinforcement is extensively used in games, self-driving cars, and other popular-
culture applications. In reinforcement learning method, an algorithm learns to 
navigate a set of rules, given some constraints, by self-correcting its decisions. 
Basically, the algorithm will take a decision (for instance, increase the weight of a 
given constraint) and learn from the simulator (the treatment planning system) 
whether the decision resulted in the right direction [14]. This technique has success-
fully used by Google Brain to develop an algorithm capable of beating a Go world 
champion [73]. So, reinforcement technique could provide performance at the level 
of our best dosimetrists if properly implemented.

Overall, one challenge of achieving full automatic planning using reinforcement 
learning lies in the close integration and need for robust treatment planning systems 
(TPSs) [14]. The future vision is toward a fully-automated planning process, from 
contouring to plan creation [62], with the human experts (dosimetrists, physicists, 
and physicians) evaluating, supervising, and providing QA to the given results.

2.4 Quality assurance and treatment delivery

Quality assurance (QA) is demanding for the safe delivery of radiotherapy. It rep-
resents a core part of a medical physicist’s task in the clinical practice. Machine learn-
ing could be utilized to solve multiple long-standing problems and improve workflow 
efficiency. Its applications in the quality assurance (e.g., detection and prediction of 
radiotherapy errors, and treatment planning QA) and treatment delivery validation 
(e.g., prediction planning deviations from the initial intentions, and prediction the 
need for re-planning for adaptive radiotherapy) are discussed in this section.

2.4.1 Quality assurance

Machine learning has potential in many aspects of radiotherapy QA program, 
specifically in error detection and prevention, treatment machine QA, patient-
specific quality assurance, etc. In addition, ML may contribute to automating the 
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QA process and analysis, which significantly influence an increase in efficiency and 
a decrease in the physical effort in performing the QA.

Numerous studies [74–77, 79–83] have conducted to develop a computerized system 
for QA process based on machine learning methods. We can generally categorize 
these QA into the machine-based and patient-based approach. For machine-based 
QA approach, ML utilizations for automatic QA process of medical linear accelerator 
(Linac) machine [74–77] have investigated by research scientists. A study by Li et al. 
[74] investigated the application of ANN to monitor the performance of the Linac for 
continuous improvement of patient safety and quality of care. The preliminary results 
showed better accuracy and effective applicability in the dosimetry and QA field over 
other techniques, and in some cases, its performance beat the detection rate by current 
clinical metrics. El Naqa et al. [75] introduced a system utilizing anomaly detection to 
overcome the problem of direct modeling of QA errors and rare events in radiotherapy 
and to support the intent of automated QA and safety management for patients 
undergo radiotherapy treatment. Ford et al. [76] and Hoisak et al. [77] investigated 
quantifying the error-detection effectiveness of commonly used quality control 
(QC) measures [76] preventative maintenance [77] in radiation oncology. The results 
indicated that the effectiveness of QC measures in radiation oncology depends sensi-
tively on which checks are used and in which combinations [76], and also a decreased 
machine downtime and other technical failures leading to treatment cancellations [77]. 
The ability of these ML algorithms to automatically detect outliers allows physicists to 
focus attention on those aspects of a process most likely to impact the patient care, as 
recommended in AAPM Task Group report 100 [78].

For patient-based QA approach, application of ML algorithms for a plan and 
patient-specific QA, multi-leaf collimators (MLCs) QA, and imaging [79–83] have 
discovered by many investigators. A study by Valdes et al. [80] investigated the use 
of SVM-based system to automatically detect problems with the Linac 2D/3D imag-
ing system that are used for patient IGRT treatment accuracy. The proposed method 
results showed that the bare minimum and the best practice QA programs could be 
implemented with the same manpower. Regarding plan QA and patient-specific QA, 
investigators [81, 82] studied applications of Poisson regression with LASSO regu-
larization to predict individualized IMRT QA passing rates. Their results pointed 
out that virtual IMRT QA can predict passing rates with a high likelihood, allows the 
detection of failures due to setup errors. Osman et al. [79] and Carlson et al. [83] 
utilized NN and a cubist algorithm, respectively, to predict MLC positional errors 
using the Linac generated log file data of IMRT and VMAT delivered plans. Their 
studies results showed that predicted parameters were in closer agreement to the 
delivered parameters than the planned parameters. The inclusion of these predicted 
deviations in leaves positioning into the TPS during dose calculation leads to a more 
realistic representation of plan delivery. Figure 9 illustrates a generic flow diagram 
and results of an NN utilized for prediction of MLCs positional errors [79].

Overall, despite these significant improvements in QA processes with the 
involvement of ML, they carry implicit maintenance costs in the form of additional 
QA demands for the algorithms themselves. The performance of all deployed 
ML-based algorithms will, therefore, need to be verified periodically using an 
evolving series of tests [62]. Virtual QA can have profound implications on the cur-
rent IMRT/VMAT process and potentially enabling intelligent resource allocation in 
favor of plans more likely to fail.

2.4.2 Treatment delivery

Tumor shrinkage and anatomical patient variations (e.g., due to weight loss) may 
occur throughout a few weeks of a fractionated radiotherapy treatment. Adaptive 
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radiation therapy (ART) is a treatment approach that uses frequent imaging to compen-
sate for anatomical differences that occur during the course of treatment. Images are 
taken daily, or almost daily. When significant changes are observed, replanning is con-
sidered. It is possible to achieve image-guided adaptation either off-line (i.e., using image 
information acquired during a fraction for improving following fraction) or online  
(i.e., changing treatment plan for a fraction based on information from the same fraction).

The re-planning process involves three steps [84]: (1) simulating the plan from the 
daily CBCT image dataset to calculate the estimated actual delivered daily dose for the 
given treatment fraction, (2) delineating the structures of interest to obtain daily DVHs 
to provide dose metrics for the tumor and OARs from which radiation oncologists can 
evaluate treatment plan effectiveness, and (3) modifying the doses to the therapeutic tar-
get and OARs to meet the dose constraints in the original treatment plan. The implemen-
tation of adaptive radiotherapy into routine clinical practice is technically challenging 
and requires significant resources to perform and validate each process step. It needs to be 
fast (where time is a big issue) in order to fit into the clinical workflow. Machine learning 
techniques, i.e., deep learning, may offer potentials to have very sophisticated software 
tools for adaptive therapy. In recent years, deep learning [61] applications have grown in a 
variety of fields including video games, computer vision, and pattern recognition.

Figure 9. 
Top: A generic flow diagram of the proposed method of prediction MLC positional errors [79]. Bottom: Differences 
in the leaf positions between the delivered and planned (upper), and delivered and predicted with NN (lower). Boxes 
report quartiles including the median (the 50% central sample distribution); whiskers and dots indicate outliers.
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QA process and analysis, which significantly influence an increase in efficiency and 
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A number of researchers [85–88] have investigated the application of ML, par-
ticularly deep learning, in treatment re-planning process for adaptive radiotherapy. 
Studies by Guidi et al. [85] and Chetvertkov et al. [86] conducted to predict patients 
who would benefit from ART and re-planning intervention using SVM [85] and PCA 
[86] ML models. The studies results indicated a capability of identifying patients 
would benefit from ART and ideal time for a re-planning intervention. Tseng et al. 
[87] investigated deep reinforcement learning based on historical treatment plans for 
developing automated radiation adaptation protocols for lung cancer patients aiming 
to maximize tumor local control at reduced rates of radiation pneumonitis. The study 
findings revealed that automated dose adaptation by deep reinforcement learning is a 
feasible and promising approach for achieving similar results to those chosen by clini-
cians. Varfalvy et al. [88] introduced a new automated patient classification method 
based on relative gamma analysis and hidden Markov models to identify patients 
undergoing important anatomical changes during radiotherapy. The results obtained 
indicated that it can complement the clinical information collected during treatment 
and help identify patients in need of a plan adaptation.

Overall, adaptive radiotherapy demands a high-speed planning system, combined 
with high-quality imaging. Deep learning-based ML methods have shown potential 
and feasibility to transform adaptive radiation therapy more effectively and effi-
ciently into the routine clinical practice soon. Effective implementation of adaptive 
radiation therapy can further improve the precision in the radiotherapy treatments.

2.5 Patient follow-up

Patient follow-up begins at the start of the treatment and continues to beyond 
the end of the treatment. Accurate prediction of treatment outcomes would provide 
clinicians with better tools for informed decision-making about expected benefits 
versus anticipated risks [2]. Machine learning has the potential to revolutionize the 
way radiation oncologists follow patients treated with definitive radiation therapy 
[14]. In addition, it may potentially enable practical use of precision medicine in 
radiation oncology by predicting treatment outcomes for individual patients using 
radiomics “tumor/healthy tissue phenotypes” analysis.

2.5.1 Treatment outcome

Radiotherapy treatment outcomes are determined by complex interactions 
among treatment, anatomical, and patient-related variables [2]. A key component of 
radiation oncology research is to predict at the time of treatment planning, or during 
the course of fractionated radiation treatment, the tumor control probability (TCP) 
and normal tissue control probability (NTCP) for the type of treatment being con-
sidered for that particular patient [2]. Recent approaches have utilized increasingly 
data-driven models incorporating advanced bioinformatics and machine learning 
tools in which dose-volume metrics are mixed with other patients- or disease-based 
prognostic factors in order to improve outcomes prediction [2]. Obviously, better 
models based on early assessment are needed to predict the outcome, in time for 
treatment intensification with additional radiotherapy, early addition of systemic 
therapy, or application of a different treatment modality [14].

Many research scientists [89–95] have investigated the application of ML in radio-
therapy treatment response and outcome predictions. Lee et al. [89] studied utilizing 
of Bayesian network ensemble to predict radiation pneumonitis risk for NSCLC 
patients whom received curative 3D conformal radiotherapy. The preliminary results 
demonstrated that such framework combined with an ensemble method can possibly 
improve the prediction of radiation pneumonitis under real-life clinical circumstances. 
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Naqa et al. [90] introduced a data mining framework estimating model parameters for 
predicting TCP using statistical resampling and a logistic, SVM, logistic regression, 
Poisson-based TCP, and cell kill equivalent uniform dose model. Their findings indi-
cated that prediction of treatment response can be improved by utilizing data mining 
approaches, which were able to unravel important non-linear complex interactions 
among model variables and have the capacity to predict on unseen data for prospective 
clinical applications. Zhen et al. [91] introduced a CNN model to analyze the rectum 
dose distribution and predict rectum toxicity. The evaluation results demonstrated 
the feasibility of building a CNN-based rectum dose-toxicity prediction model with 
transfer learning for cervical cancer radiotherapy. Deist et al. [92] studied the compar-
ison of six ML classifiers (namely, decision tree, random forest, NN, SVM, elastic net 
logistic regression, and LogitBoost) for chemo-radiotherapy to estimate their average 
discriminative performance for radiation treatment outcome prediction. The study 
results indicated that random forest and elastic net logistic regression yield higher 
discriminative performance in (chemo) radiotherapy outcome and toxicity prediction 
than other studied classifiers. Yahya et al. [93] explored multiple statistical-learning 
strategies for prediction of urinary symptoms following external beam radiotherapy 
of the prostate. The study results showed that logistic regression and multivariate 
adaptive regression splines (MARS) were most likely to be the best-performing strat-
egy for the prediction of urinary symptoms. Zhang et al. [94] studied the prediction 
of organ-at-risk complications as a function of dose-volume constraint settings using 
SVMs and decisions trees. Their results showed that ML can be used for predicting 
OAR complications during treatment planning allowing for alternative dose-volume 
constraint settings to be assessed within the IMRT planning framework. A review by 
Kang et al. [95] presented the use of ML to predict radiation therapy outcomes from 
the clinician’s point of view. The study focused on three popular ML methods: logistic 
regression, SVM, and ANN. The study concluded that although current studies are in 
exploratory stages, the overall methodology has progressively matured, and the field is 
ready for larger-scale further investigation.

Overall, a significant hope of advanced clinical informatics systems would be 
the potential to learn even more about the safety and effectiveness of the therapies 
that are provided to patients. The rapid adoption of technological advancements 
in radiotherapy has made outcomes analyses of both treatment regimens and the 
systems that deliver them to be separated substantially in time. Successful applica-
tion of advanced ML tools for radiation oncology big data is essential to better-
predicting radiotherapy treatment response and outcomes. The ultimate measure of 
success is an improvement in outcomes which can manifest as decreased toxicity or 
increased tumor control.

2.5.2 Radiomics for “precision medicine” radiotherapy

Precision medicine is a treatment strategy for making decisions about a molecu-
larly targeted agent according to genetic mutations, rather than affected organs. 
Radiomics is the comprehensive quantitative analysis of medical images in order to 
extract a large number of phenotypic features (including those based on size and 
shape, image intensity, texture, relationships between voxels, and fractal characteris-
tics) reflecting cancer traits or phenotypes. Then it explores the associations between 
the features and patients’ prognoses in order to improve decision-making at each 
radiation treatment step (diagnosis, treatment planning, treatment delivery, and 
follow-up) and hence precision medicine in radiotherapy [96]. Individual patients 
can be stratified into subtypes based on radiomic biomarkers that contain informa-
tion about cancer traits that determine the patient’s prognosis [97]. Machine-learning 
algorithms can then be deployed to correlate the computer-extracted image-based 
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2.5.1 Treatment outcome

Radiotherapy treatment outcomes are determined by complex interactions 
among treatment, anatomical, and patient-related variables [2]. A key component of 
radiation oncology research is to predict at the time of treatment planning, or during 
the course of fractionated radiation treatment, the tumor control probability (TCP) 
and normal tissue control probability (NTCP) for the type of treatment being con-
sidered for that particular patient [2]. Recent approaches have utilized increasingly 
data-driven models incorporating advanced bioinformatics and machine learning 
tools in which dose-volume metrics are mixed with other patients- or disease-based 
prognostic factors in order to improve outcomes prediction [2]. Obviously, better 
models based on early assessment are needed to predict the outcome, in time for 
treatment intensification with additional radiotherapy, early addition of systemic 
therapy, or application of a different treatment modality [14].

Many research scientists [89–95] have investigated the application of ML in radio-
therapy treatment response and outcome predictions. Lee et al. [89] studied utilizing 
of Bayesian network ensemble to predict radiation pneumonitis risk for NSCLC 
patients whom received curative 3D conformal radiotherapy. The preliminary results 
demonstrated that such framework combined with an ensemble method can possibly 
improve the prediction of radiation pneumonitis under real-life clinical circumstances. 
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Naqa et al. [90] introduced a data mining framework estimating model parameters for 
predicting TCP using statistical resampling and a logistic, SVM, logistic regression, 
Poisson-based TCP, and cell kill equivalent uniform dose model. Their findings indi-
cated that prediction of treatment response can be improved by utilizing data mining 
approaches, which were able to unravel important non-linear complex interactions 
among model variables and have the capacity to predict on unseen data for prospective 
clinical applications. Zhen et al. [91] introduced a CNN model to analyze the rectum 
dose distribution and predict rectum toxicity. The evaluation results demonstrated 
the feasibility of building a CNN-based rectum dose-toxicity prediction model with 
transfer learning for cervical cancer radiotherapy. Deist et al. [92] studied the compar-
ison of six ML classifiers (namely, decision tree, random forest, NN, SVM, elastic net 
logistic regression, and LogitBoost) for chemo-radiotherapy to estimate their average 
discriminative performance for radiation treatment outcome prediction. The study 
results indicated that random forest and elastic net logistic regression yield higher 
discriminative performance in (chemo) radiotherapy outcome and toxicity prediction 
than other studied classifiers. Yahya et al. [93] explored multiple statistical-learning 
strategies for prediction of urinary symptoms following external beam radiotherapy 
of the prostate. The study results showed that logistic regression and multivariate 
adaptive regression splines (MARS) were most likely to be the best-performing strat-
egy for the prediction of urinary symptoms. Zhang et al. [94] studied the prediction 
of organ-at-risk complications as a function of dose-volume constraint settings using 
SVMs and decisions trees. Their results showed that ML can be used for predicting 
OAR complications during treatment planning allowing for alternative dose-volume 
constraint settings to be assessed within the IMRT planning framework. A review by 
Kang et al. [95] presented the use of ML to predict radiation therapy outcomes from 
the clinician’s point of view. The study focused on three popular ML methods: logistic 
regression, SVM, and ANN. The study concluded that although current studies are in 
exploratory stages, the overall methodology has progressively matured, and the field is 
ready for larger-scale further investigation.

Overall, a significant hope of advanced clinical informatics systems would be 
the potential to learn even more about the safety and effectiveness of the therapies 
that are provided to patients. The rapid adoption of technological advancements 
in radiotherapy has made outcomes analyses of both treatment regimens and the 
systems that deliver them to be separated substantially in time. Successful applica-
tion of advanced ML tools for radiation oncology big data is essential to better-
predicting radiotherapy treatment response and outcomes. The ultimate measure of 
success is an improvement in outcomes which can manifest as decreased toxicity or 
increased tumor control.

2.5.2 Radiomics for “precision medicine” radiotherapy

Precision medicine is a treatment strategy for making decisions about a molecu-
larly targeted agent according to genetic mutations, rather than affected organs. 
Radiomics is the comprehensive quantitative analysis of medical images in order to 
extract a large number of phenotypic features (including those based on size and 
shape, image intensity, texture, relationships between voxels, and fractal characteris-
tics) reflecting cancer traits or phenotypes. Then it explores the associations between 
the features and patients’ prognoses in order to improve decision-making at each 
radiation treatment step (diagnosis, treatment planning, treatment delivery, and 
follow-up) and hence precision medicine in radiotherapy [96]. Individual patients 
can be stratified into subtypes based on radiomic biomarkers that contain informa-
tion about cancer traits that determine the patient’s prognosis [97]. Machine-learning 
algorithms can then be deployed to correlate the computer-extracted image-based 
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Figure 10. 
A typical radiomics workflow. Imaging: Tumors are different. Example CT images with tumor contours of lung 
cancer patients. Segmentation: 3D visualizations of tumor contours delineated by experienced physicians on 
all CT slices. Pre-processing: Strategy for extracting radiomics data from images. Feature Extraction: Features 
are extracted from the defined tumor contours on the CT images quantifying tumor intensity, shape, texture 
and wavelet texture. Analysis: For the analysis, the radiomics features are compared with clinical data and 
gene-expression data (reproduced from [98]).

features in radiomics with biological observations or clinical outcomes. Here, we 
present some current results and emerging paradigms in radiomics boosted with ML 
approaches in clinical radiation oncology (recently received higher attention from 
the investigators) to maximize its potential impact on precision radiotherapy.

Several research scientists [97–102] have investigated the using of ML methods 
for predicting radiotherapy outcomes (e.g., survival, treatment failure or recurrence, 
toxicity or developed a late complication, etc.) using radiomics features to improve 
decision-making for precision medicine. A review study by Arimura et al. [97] showed 
that radiomic approaches in combination with AI may potentially enable the practical 
use of precision medicine in radiation therapy by predicting outcomes and toxicity 
for individual patients. Aerts et al. [98] performed a radiomic analysis of 440 features 
quantifying tumor image intensity, shape, and texture, which are extracted from CT 
data of patients with lung or head-and-neck cancer. The study findings proved the 
power of radiomics for identifying a general prognostic phenotype existing in both 
lung and head-and-neck cancer. Figure 10 shows a workflow of radiomics analysis 
(example: CT radiomic analysis of with lung cancer) [98]. A study by Depeursinge 
et al. [99] investigated the importance of pre-surgical CT intensity and texture infor-
mation from ground-glass opacities and solid nodule components for the prediction 
of adenocarcinoma recurrence in the lung using LASSO and SVMs, and their survival 
counterparts: Cox-LASSO and survival SVMs. The study results showed the useful-
ness of the method in clinical practice to identify patients for which no recurrence is 
expected with very high confidence using a pre-surgical CT scan only. Lambin et al. 
[100] studied the development of automated and reproducible analysis methodolo-
gies to extract more information from image-based features. The study addressed the 
radiomics as one of the approaches that hold great promises but need further validation 
in multi-centric settings. A review by Wu et al. [101] recommended that ultimately 
prospective validation in multi-center clinical trials will be needed to demonstrate the 
clinical validity and utility of newly identified imaging markers and truly establish 
the value of radiomics and radiogenomics in precision radiotherapy. Lao et al. [102] 
investigated if deep features extracted via transfer learning can generate radiomics 
signatures for prediction of overall survival in patients with glioblastoma multiforme 
using the LASSO Cox regression model. The study outcomes demonstrated that the 
proposed method is capable to generate prognostic imaging signature for OS prediction 
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and patient stratification for glioblastoma, indicating the potential of deep imaging 
feature-based biomarker in preoperative care of glioblastoma patients.

Overall, radiomics is the study of imaging data from any imaging source that 
is used to predict the therapeutic outcome, as well as radiogenomics. The limited 
reproducibility of imaging systems both within and across institutions remains a 
significant challenge for radiomics [98, 100]. Application of deep learning to image 
quantification has produced stellar results in other areas [103] which can be trans-
ferred into the radiomics analysis. Physicians may prescribe a more or less intense 
radiation regimen for an individual based on model predictions of local control 
benefit and toxicity risk [2], which would be considered for the optimal treatment 
planning design process and hence improving the quality of life for radiotherapy 
cancer patients. Also, as imaging is routinely used in clinical practice, radiomics 
is providing an unprecedented opportunity to improve decision-making support 
toward precision medicine in cancer treatment at low cost.

3. Discussion

A comprehensive review of the most recent evolution and ongoing research 
utilizing machine learning methods in radiation oncology in the era of big data for 
precision medicine has been provided in this chapter and critically discussed.

3.1 Big data in radiation oncology: challenges?

There are ongoing community-wide efforts in term of big data in radiation 
oncology, e.g., [9, 10, 50, 51] have made available and established validation frame-
works [50] used as a benchmark for the evaluation of different algorithms. Deep 
learning [61] based models have indicated superiority among the other alternatives 
for the most prediction tasks in radiation oncology. However, it requires a lot of 
annotated datasets (across multiple institutions) to tune the algorithm (even when 
transfer learning is used [14]) to obtain high prediction accuracy. This can prove 
challenging in radiation oncology, where datasets are limited. Standardizing the 
radiation oncology nomenclature (i.e., clinical, dosimetric, imaging, etc.), which is 
aided by the AAPM task group TG-263 efforts [104], and developing standards for 
data collection process (structures) of the patient data are also essential for training 
models using datasets from multiple institutions.

3.2 What are the strengths and limitations of ML algorithms applied?

There is no one algorithm works best for every problem (“No Free Lunch”). 
Each ML algorithm has its strengths and limitations. Table 1 lists the strengths 
and weaknesses of the most machine learning methods discussed here appearing 
in radiation oncology studies. It is believed that such usage optimization of these 
models with available resources would provide improved solutions. A major limita-
tion in the acceptance of ML by the larger medical community has been addressed 
as the “black box” stigma, where the ML algorithm maps a given input data to 
output predictions without providing any additional insight into the system map-
ping [6]. Interpretability of algorithms used (e.g., the ability for humans experts 
to understand the reasons behind a prediction) will play an important role to avoid 
preventable errors. Although there are inherently interpretable ML algorithms, 
for instance, decision trees, Bayesian networks, or generalized linear models 
(e.g., logistic regression), they are usually outperformed in terms of accuracy by 
ensemble methods or deep neural networks (not interpretable and provide very 
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Figure 10. 
A typical radiomics workflow. Imaging: Tumors are different. Example CT images with tumor contours of lung 
cancer patients. Segmentation: 3D visualizations of tumor contours delineated by experienced physicians on 
all CT slices. Pre-processing: Strategy for extracting radiomics data from images. Feature Extraction: Features 
are extracted from the defined tumor contours on the CT images quantifying tumor intensity, shape, texture 
and wavelet texture. Analysis: For the analysis, the radiomics features are compared with clinical data and 
gene-expression data (reproduced from [98]).

features in radiomics with biological observations or clinical outcomes. Here, we 
present some current results and emerging paradigms in radiomics boosted with ML 
approaches in clinical radiation oncology (recently received higher attention from 
the investigators) to maximize its potential impact on precision radiotherapy.

Several research scientists [97–102] have investigated the using of ML methods 
for predicting radiotherapy outcomes (e.g., survival, treatment failure or recurrence, 
toxicity or developed a late complication, etc.) using radiomics features to improve 
decision-making for precision medicine. A review study by Arimura et al. [97] showed 
that radiomic approaches in combination with AI may potentially enable the practical 
use of precision medicine in radiation therapy by predicting outcomes and toxicity 
for individual patients. Aerts et al. [98] performed a radiomic analysis of 440 features 
quantifying tumor image intensity, shape, and texture, which are extracted from CT 
data of patients with lung or head-and-neck cancer. The study findings proved the 
power of radiomics for identifying a general prognostic phenotype existing in both 
lung and head-and-neck cancer. Figure 10 shows a workflow of radiomics analysis 
(example: CT radiomic analysis of with lung cancer) [98]. A study by Depeursinge 
et al. [99] investigated the importance of pre-surgical CT intensity and texture infor-
mation from ground-glass opacities and solid nodule components for the prediction 
of adenocarcinoma recurrence in the lung using LASSO and SVMs, and their survival 
counterparts: Cox-LASSO and survival SVMs. The study results showed the useful-
ness of the method in clinical practice to identify patients for which no recurrence is 
expected with very high confidence using a pre-surgical CT scan only. Lambin et al. 
[100] studied the development of automated and reproducible analysis methodolo-
gies to extract more information from image-based features. The study addressed the 
radiomics as one of the approaches that hold great promises but need further validation 
in multi-centric settings. A review by Wu et al. [101] recommended that ultimately 
prospective validation in multi-center clinical trials will be needed to demonstrate the 
clinical validity and utility of newly identified imaging markers and truly establish 
the value of radiomics and radiogenomics in precision radiotherapy. Lao et al. [102] 
investigated if deep features extracted via transfer learning can generate radiomics 
signatures for prediction of overall survival in patients with glioblastoma multiforme 
using the LASSO Cox regression model. The study outcomes demonstrated that the 
proposed method is capable to generate prognostic imaging signature for OS prediction 

59

Radiation Oncology in the Era of Big Data and Machine Learning for Precision Medicine
DOI: http://dx.doi.org/10.5772/intechopen.84629

and patient stratification for glioblastoma, indicating the potential of deep imaging 
feature-based biomarker in preoperative care of glioblastoma patients.

Overall, radiomics is the study of imaging data from any imaging source that 
is used to predict the therapeutic outcome, as well as radiogenomics. The limited 
reproducibility of imaging systems both within and across institutions remains a 
significant challenge for radiomics [98, 100]. Application of deep learning to image 
quantification has produced stellar results in other areas [103] which can be trans-
ferred into the radiomics analysis. Physicians may prescribe a more or less intense 
radiation regimen for an individual based on model predictions of local control 
benefit and toxicity risk [2], which would be considered for the optimal treatment 
planning design process and hence improving the quality of life for radiotherapy 
cancer patients. Also, as imaging is routinely used in clinical practice, radiomics 
is providing an unprecedented opportunity to improve decision-making support 
toward precision medicine in cancer treatment at low cost.

3. Discussion

A comprehensive review of the most recent evolution and ongoing research 
utilizing machine learning methods in radiation oncology in the era of big data for 
precision medicine has been provided in this chapter and critically discussed.

3.1 Big data in radiation oncology: challenges?

There are ongoing community-wide efforts in term of big data in radiation 
oncology, e.g., [9, 10, 50, 51] have made available and established validation frame-
works [50] used as a benchmark for the evaluation of different algorithms. Deep 
learning [61] based models have indicated superiority among the other alternatives 
for the most prediction tasks in radiation oncology. However, it requires a lot of 
annotated datasets (across multiple institutions) to tune the algorithm (even when 
transfer learning is used [14]) to obtain high prediction accuracy. This can prove 
challenging in radiation oncology, where datasets are limited. Standardizing the 
radiation oncology nomenclature (i.e., clinical, dosimetric, imaging, etc.), which is 
aided by the AAPM task group TG-263 efforts [104], and developing standards for 
data collection process (structures) of the patient data are also essential for training 
models using datasets from multiple institutions.

3.2 What are the strengths and limitations of ML algorithms applied?

There is no one algorithm works best for every problem (“No Free Lunch”). 
Each ML algorithm has its strengths and limitations. Table 1 lists the strengths 
and weaknesses of the most machine learning methods discussed here appearing 
in radiation oncology studies. It is believed that such usage optimization of these 
models with available resources would provide improved solutions. A major limita-
tion in the acceptance of ML by the larger medical community has been addressed 
as the “black box” stigma, where the ML algorithm maps a given input data to 
output predictions without providing any additional insight into the system map-
ping [6]. Interpretability of algorithms used (e.g., the ability for humans experts 
to understand the reasons behind a prediction) will play an important role to avoid 
preventable errors. Although there are inherently interpretable ML algorithms, 
for instance, decision trees, Bayesian networks, or generalized linear models 
(e.g., logistic regression), they are usually outperformed in terms of accuracy by 
ensemble methods or deep neural networks (not interpretable and provide very 
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little insight) for large datasets [6, 13]. The development of accurate and interpre-
table models using different ML architectures is an active area of research [6]. As 
with any algorithm that we use in radiation oncology today (e.g., dose calculation or 
deformable registration), ML algorithms will need acceptance, commissioning, and 
QA to ensure that the right algorithm or model are applied to the right application 
and that the model results make sense in a given clinical situation. Finally, the field 
of radiation oncology is highly algorithmic and data-centric, and while the road 
ahead is filled with potholes, the destination holds tremendous promise [14].

3.3 How far are the reported results by the investigators correct?

The reported prediction results [15–38, 41–47, 52–60, 63–67, 71, 72, 74–77, 79–83, 
85–88, 89–95, 97–102] by investigators indicate the performance of these predictive 
models on data that used in modeling. However, these ML models can suffer from dif-
ferent data biases which may lead to lack of generalizability. A machine learning system 
trained on local datasets only may not be able to predict (reproduce) the needs of out-
of-sample datasets (new datasets that are not presented in the training data). External 
validation of models in cohorts, which were acquired independently from the discovery 
cohort (e.g., from another institution) is considered the gold standard for true esti-
mates of performance and generalizability of prediction models [6]. The application of 
different algorithms to the same dataset may yield variable results for predictors found 
to be significantly associated with the outcome of interest [6, 105]. However, this may 

Method Strengths Weaknesses

Decision tree Interpretability (with a format consistent 
with many clinical pathways)

Overgrowing a tree with too few 
observations at leaf nodes

Random forest Often can produce very accurate 
predictions with little feature engineering

Not easily interpretable, and not optimizing 
the number of trees

LASSO regression Better interpretability (compared to ridge 
regularization method)

Provides a bias towards zero (not be 
appropriate in some applications)

Gradient boosting 
machines

Generates very stable results (compared 
to random forest)

More tuning parameters (compared to 
random forest), and overfitting

Support vector 
machines

Very accurate, few parameters that 
require tuning, and kernels options

Not readily interpretable, and not 
optimizing the parameters perfectly

Neural networks 
or more precisely 
artificial neural 
networks

Works even if one or a few units fail to 
respond to the network

Referred to as “black box” models and 
provide very little insight, and require a 
large diversity of training datasets

Deep learning Very accurate, can be adapted to many 
types of problems, and the hidden layers 
reduce the need for feature engineering

Requires a very large amount of data, and 
computationally intensive to train

Logistic regression Have a nice probabilistic interpretation, 
and updated easily with new data

Not flexible enough to naturally capture 
more complex relationships

K-means Fast, simple, and flexible Manually specify the number of clusters

Ensembles (decision 
tree)

Perform very well, robust to outliers, and 
scalable

Unconstrained, and prone to overfitting

Principal component 
analysis

Versatile, fast, and simple to implement Not interpretable, and manually set a 
threshold for a cumulative variance

Naive Bayes Performs surprisingly well, easy to 
implement, and can scale with the dataset

Often beaten by models properly trained 
and tuned (algorithms listed)

Table 1. 
Strengths and weaknesses of the most machine learning methods discussed here appearing in radiation  
oncology studies.
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also suggest a potential limitation of self-critical assessment of published ML models or 
realistic confidence levels with implications for their practical clinical value [6].

3.4 How would the reported results be improved?

Although promising and improving accuracy results of many ML-based predic-
tive models in radiation oncology have been reported [18, 19, 21, 31–38, 41–43, 53–55, 
74, 79–83, 85, 86, 89–95, 97–102], the effective applications of these methods in 
day-to-day clinical practice are very few yet. Such an example of a recently deployed 
commercial product into clinical use is Quick Match (Siris Medical, Redwood City, 
CA, USA) [68]. A private initiative, such as IBM’s Watson, is already used in some 
institutions such as the Memorial Sloan Kettering Cancer Center in New York 
[106–109]. Watson Oncology [108] is a cognitive AI computing system designed to 
support the broader oncology community of physicians as they consider treatment 
options with their patients. To improve the prediction accuracy of these reported 
results, more training and validation datasets from multi-institution are required. 
Such frameworks, e.g., [50] to compare these methods on standard consensus data 
to establish benchmarks for evaluating different models would definitely lead to 
improving these results and developing robust toolkits/systems. It is anticipated to 
see ML and AI tools very soon settled more effectively with the indispensable role in 
the routine clinical practice for the benefit of patients, society, and the profession.

3.5 Impact on automating the clinical process

The machine learning systems have been developed and deployed to do jobs on 
their own. Automated clinical processes in radiation oncology could be auto-piloted 
with driving technologies to execute automated tasks. For example, data-driven 
planning [63–67] is not fully automated at present as it requires expert oversight 
and/or intervention to ensure safely deliverable treatment plans. One challenge of 
achieving full automatic planning using reinforcement learning lies in the close inte-
gration and need for robust TPSs [14]. The future vision is toward a fully-automated 
planning process, from contouring to plan creation. Machine-based and patient-
based virtual QA can have profound implications on the current IMRT/VMAT 
process. The automated process nature would definitely lead to expediting radiation 
oncology workflow and reduce the time burden of human intervention [62].

3.6  Impact on clinical decision-making support toward precision medicine in 
radiation oncology

ML tools for computer-aided detection/diagnosis [15–22] as “second opinion” sys-
tems for clinical decision-making support would undoubtedly enhance the radiologists’ 
performance and hence improved diagnostic performance. The emerging paradigms 
in radiomics for therapeutic outcome predictions (i.e., patient’s survival, decrease 
recurrence, late complication, etc.) [97–102] for individual patients would maximize 
its potential impact on precision radiotherapy. Individual patients can be stratified 
into subtypes based on radiomic biomarkers that contain information about cancer 
traits that determine the patient’s prognosis [97]. Therefore, physicians may prescribe 
a more or less intense radiation regimen for an individual based on model predic-
tions of local control benefit and toxicity risk [2], which would be considered for the 
optimal treatment planning design process and hence improving the quality of life for 
radiotherapy cancer patients. Effective implementation of adaptive radiation therapy 
with ML [85–88] can also further improve the precision in the radiotherapy treatments. 
The pre-planning prediction of dosimetric tradeoffs to assist physicians and patients 
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little insight) for large datasets [6, 13]. The development of accurate and interpre-
table models using different ML architectures is an active area of research [6]. As 
with any algorithm that we use in radiation oncology today (e.g., dose calculation or 
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different algorithms to the same dataset may yield variable results for predictors found 
to be significantly associated with the outcome of interest [6, 105]. However, this may 
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also suggest a potential limitation of self-critical assessment of published ML models or 
realistic confidence levels with implications for their practical clinical value [6].

3.4 How would the reported results be improved?

Although promising and improving accuracy results of many ML-based predic-
tive models in radiation oncology have been reported [18, 19, 21, 31–38, 41–43, 53–55, 
74, 79–83, 85, 86, 89–95, 97–102], the effective applications of these methods in 
day-to-day clinical practice are very few yet. Such an example of a recently deployed 
commercial product into clinical use is Quick Match (Siris Medical, Redwood City, 
CA, USA) [68]. A private initiative, such as IBM’s Watson, is already used in some 
institutions such as the Memorial Sloan Kettering Cancer Center in New York 
[106–109]. Watson Oncology [108] is a cognitive AI computing system designed to 
support the broader oncology community of physicians as they consider treatment 
options with their patients. To improve the prediction accuracy of these reported 
results, more training and validation datasets from multi-institution are required. 
Such frameworks, e.g., [50] to compare these methods on standard consensus data 
to establish benchmarks for evaluating different models would definitely lead to 
improving these results and developing robust toolkits/systems. It is anticipated to 
see ML and AI tools very soon settled more effectively with the indispensable role in 
the routine clinical practice for the benefit of patients, society, and the profession.

3.5 Impact on automating the clinical process

The machine learning systems have been developed and deployed to do jobs on 
their own. Automated clinical processes in radiation oncology could be auto-piloted 
with driving technologies to execute automated tasks. For example, data-driven 
planning [63–67] is not fully automated at present as it requires expert oversight 
and/or intervention to ensure safely deliverable treatment plans. One challenge of 
achieving full automatic planning using reinforcement learning lies in the close inte-
gration and need for robust TPSs [14]. The future vision is toward a fully-automated 
planning process, from contouring to plan creation. Machine-based and patient-
based virtual QA can have profound implications on the current IMRT/VMAT 
process. The automated process nature would definitely lead to expediting radiation 
oncology workflow and reduce the time burden of human intervention [62].

3.6  Impact on clinical decision-making support toward precision medicine in 
radiation oncology

ML tools for computer-aided detection/diagnosis [15–22] as “second opinion” sys-
tems for clinical decision-making support would undoubtedly enhance the radiologists’ 
performance and hence improved diagnostic performance. The emerging paradigms 
in radiomics for therapeutic outcome predictions (i.e., patient’s survival, decrease 
recurrence, late complication, etc.) [97–102] for individual patients would maximize 
its potential impact on precision radiotherapy. Individual patients can be stratified 
into subtypes based on radiomic biomarkers that contain information about cancer 
traits that determine the patient’s prognosis [97]. Therefore, physicians may prescribe 
a more or less intense radiation regimen for an individual based on model predic-
tions of local control benefit and toxicity risk [2], which would be considered for the 
optimal treatment planning design process and hence improving the quality of life for 
radiotherapy cancer patients. Effective implementation of adaptive radiation therapy 
with ML [85–88] can also further improve the precision in the radiotherapy treatments. 
The pre-planning prediction of dosimetric tradeoffs to assist physicians and patients 
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to make better informed decisions about treatment modality and dose prescription 
[68] thus it can establish individualized and achievable goals. The clinical implications 
derived from personalized cancer therapy ensure not only that patients receive optimal 
treatment, but also that the right resources are being used for the right patients.

4. Conclusions

Machine learning methods used in radiation oncology workflow, from patient 
consult to follow-up, are presented and discussed in this chapter. Big data in radiation 
oncology, efforts made and current challenges, are addressed. With the era of big 
data, the utilization of machine learning algorithms in radiation oncology is grow-
ing fast. ML techniques could compensate for human limitations in handling a large 
amount of flowing information in an efficient manner, in which simple errors can 
make the difference between life and death. Machine learning is also indispensable in 
the radiomics scheme, characterization of image phenotypes of the tumor, with the 
potential for decision-making and precision medicine in radiation therapy by predict-
ing treatment outcomes for individual patients rather than one-size-fits-all approach.
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Chapter 4

A Survey on 3D Ultrasound 
Reconstruction Techniques
Farhan Mohamed and Chan Vei Siang

Abstract

This book chapter aims to discuss the 3D ultrasound reconstruction and 
visualization. First, the various types of 3D ultrasound system are reviewed, 
such as mechanical, 2D array, position tracking-based freehand, and untracked-
based freehand. Second, the 3D ultrasound reconstruction technique or pipeline 
used by the current existing system, which includes the data acquisition, data 
preprocessing, reconstruction method and 3D visualization, is discussed. The 
reconstruction method and 3D visualization will be emphasized. The recon-
struction method includes the pixel-based method, volume-based method, and 
function-based method, accompanied with their benefits and drawbacks. In the 
3D visualization, methods such as multiplanar reformatting, volume rendering, 
and surface rendering are presented. Lastly, its application in the medical field 
is reviewed as well.

Keywords: ultrasound, 3D reconstruction, position tracking technology, volume 
rendering, scientific visualization

1. Introduction

The medical imaging is very important for the physicians to visualize the inner 
anatomy of the patient for diagnosis and analysis purposes. There are various types 
of imaging modality, which are the magnetic resonance imaging (MRI), ultraso-
nography imaging, and computer tomography (CT) imaging. Recently, the use of 
ultrasound has become widely popular among the practitioners and researchers 
alike especially in the medical field, such as in obstetrics, in cardiology as well as in 
surgical guidance. This is due to the fact that the ultrasound is faster and safer, has 
noninvasive nature, and less expensive than the MRI and CT.

The conventional way to use the ultrasound machine is that the physician 
moves the ultrasound probe over the subject’s skin to examine the region of interest 
(ROI). The ultrasound probe will feed the input signal to the ultrasound machine 
to display the 2D ultrasound image on the screen output. The 2D ultrasound image 
shows the cross-sectional part of the ROI. By using the hand-eye coordination 
approach, the physician is able to form a mentally constructed volume of that 
ROI for examination of the organ features and also to estimate the volume of the 
ROI. However, the reliance of 2D ultrasound images during the ultrasound scan-
ning session can present some of the limitations as follows [1]:
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1. The decision-making in diagnosis and analysis is very time-consuming and can 
also lead to incorrect decision, as the physician needs to transform a set of 2D 
ultrasound frames to mentally create a 3D impression of ROI.

2. The organ volume measurement is less accurate and dependent on operator’s skill 
because only simple measurement is used to calculate the dimension of a ROI.

3. Some ROIs, such as the viewing of planes that are parallel to the skin, are dif-
ficult to visualize. This is due to the fact that movement of ultrasound probe is 
restricted when moving around the ROI.

On the other hand, 3D ultrasound volume can enhance the understanding of 
physicians to the scanned ROI without spending too much of mental workload. The 
3D ultrasound volume visualization can be achieved by undergoing the 3D ultra-
sound reconstruction process, which is the generation of 3D ultrasound volume 
from a series of 2D ultrasound image. Before the 3D volume is reconstructed, data 
collection is required. There are several methods used for data acquisition, which 
are the 2D array scanning, mechanical scanning, tracked freehand scanning, and 
untracked freehand scanning. The data collected are generally comprised of the 2D 
ultrasound images and their relative spatial information.

After the data are obtained, the volume reconstruction method is implemented 
by using interpolation and approximation algorithm to get the 3D volume data and 
put them in a 3D volume grid based on the spatial information acquired from the 
tracking system. There are several methods of volume reconstruction method, such 
as pixel-nearest neighbor (PNN), voxel-nearest neighbor (VNN), distance weighted 
(DW), radial basis function (RBF), image-based algorithm, etc.

In order to visualize the reconstruction result, there are three basic types of 
rendering techniques, which are the surface rendering techniques, multiplanar 
reformatting techniques, and volume rendering techniques. This is the final stage 
for the 3D ultrasound reconstruction process where the physicians can view the 3D 
ultrasound data for analysis and diagnosis purposes, as well as for surgical guidance.

In terms of state-of-the-art approaches, many researchers also focused on the real-
time 3D ultrasound imaging technology. In this way, the physicians are able to view the 
reconstruction results of the ROI immediately while scanning. Hence, the real-time 3D 
ultrasound can help the physicians to make decision efficiently and accurately as they 
can get an immediate feedback. Furthermore, the improvement in hardware devices, 
such as the graphical processing unit (GPU), also helps to achieve the goal of several 
research studies where the hardware limitation was an obstacle in the past.

This book chapter aims to present the current state of 3D ultrasound reconstruc-
tion and visualization techniques. The remainder of the book chapter is organized 
as follows. In Section 2, we will present the various 3D ultrasound imaging systems. 
In Section 3, the 3D ultrasound reconstruction process is described step by step. In 
Section 4, we present the application of 3D ultrasound in the medical application. 
We draw discussion and conclusion for future studies in Section 5. Although the 
ultrasound can be used in many other applications, such as in high-intensity focused 
ultrasound (HIFU) to kill cancer cell and to view crack in the wall and metal struc-
ture, etc., our scope is focused on the imaging or visualization of medical application.

2. 3D ultrasound imaging systems

The 3D ultrasound imaging system is a system that visualizes a ROI in 3D by 
reconstructing and combining a set of 2D ultrasound frames, which view from 
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different positions and angles of that ROI. The set of 2D ultrasound frames can be 
captured by different scanning methods or techniques as well as the transducer’s 
dimensionality. Figure 1 shows the classification of 3D ultrasound imaging system.

As data acquisition plays an important role in the accuracy and applicability of 
the 3D ultrasound volume reconstruction, selecting the most suitable 3D ultra-
sound imaging system is crucial. The choice is highly depended on the application, 
for example, the use of mechanical scanning system is suitable for transrectal 
ultrasound examination to evaluate the prostate gland in human body.

2.1 2D array transducer system

The 2D array scanning system used a dedicated 2D array ultrasound probe 
or 3D ultrasound probe that creates a pyramidal volume scan, which obtains a 
series of 2D ultrasound frames in real time [2]. Hence, it is able to create a time-
dependent 3D ultrasound imaging system that can display the animation and flow 
visualization of the scanned ROI in between the scanning timeframe. It is the 
fastest way to view 3D ultrasound imaging in real time. As shown in Figure 2, the 
transducer elements are arranged in 2D array where each element fired an ultra-
sonic beam, which are combined to form a pyramidal volumetric scan. Hence, the 
transducer can remain stationery during ultrasound scanning session.

In contrast, 2D array scanning system is very expensive, is difficult to develop 
in terms of hardware and software, and is not commonly available [1, 4, 5]. Besides 
that, the transducer and ultrasound machine between different companies are 
not compatible to each other, due to the commercialized competition among the 
competitors [5]. Furthermore, the size of the acquired volume is limited by the 
geometric dimension of the transducer [3, 6].

2.2 Mechanical system

The 3D ultrasound image can also be obtained by the use of a cheaper linear 
array ultrasound probe, also known as the 2D ultrasound probe. This can be done 
by the transformation of a series of 2D ultrasound frames into a 3D ultrasound 
volume via the 3D ultrasound reconstruction process. These include the use of 
mechanical scanning system as well as freehand-based scanning system.

Figure 1. 
The classification of 3D ultrasound imaging system.
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ture, etc., our scope is focused on the imaging or visualization of medical application.

2. 3D ultrasound imaging systems

The 3D ultrasound imaging system is a system that visualizes a ROI in 3D by 
reconstructing and combining a set of 2D ultrasound frames, which view from 
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different positions and angles of that ROI. The set of 2D ultrasound frames can be 
captured by different scanning methods or techniques as well as the transducer’s 
dimensionality. Figure 1 shows the classification of 3D ultrasound imaging system.

As data acquisition plays an important role in the accuracy and applicability of 
the 3D ultrasound volume reconstruction, selecting the most suitable 3D ultra-
sound imaging system is crucial. The choice is highly depended on the application, 
for example, the use of mechanical scanning system is suitable for transrectal 
ultrasound examination to evaluate the prostate gland in human body.

2.1 2D array transducer system

The 2D array scanning system used a dedicated 2D array ultrasound probe 
or 3D ultrasound probe that creates a pyramidal volume scan, which obtains a 
series of 2D ultrasound frames in real time [2]. Hence, it is able to create a time-
dependent 3D ultrasound imaging system that can display the animation and flow 
visualization of the scanned ROI in between the scanning timeframe. It is the 
fastest way to view 3D ultrasound imaging in real time. As shown in Figure 2, the 
transducer elements are arranged in 2D array where each element fired an ultra-
sonic beam, which are combined to form a pyramidal volumetric scan. Hence, the 
transducer can remain stationery during ultrasound scanning session.

In contrast, 2D array scanning system is very expensive, is difficult to develop 
in terms of hardware and software, and is not commonly available [1, 4, 5]. Besides 
that, the transducer and ultrasound machine between different companies are 
not compatible to each other, due to the commercialized competition among the 
competitors [5]. Furthermore, the size of the acquired volume is limited by the 
geometric dimension of the transducer [3, 6].

2.2 Mechanical system

The 3D ultrasound image can also be obtained by the use of a cheaper linear 
array ultrasound probe, also known as the 2D ultrasound probe. This can be done 
by the transformation of a series of 2D ultrasound frames into a 3D ultrasound 
volume via the 3D ultrasound reconstruction process. These include the use of 
mechanical scanning system as well as freehand-based scanning system.

Figure 1. 
The classification of 3D ultrasound imaging system.
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The 3D mechanical probe consists of a linear array ultrasound probe, which 
is guided by a stepper motor inside a compact casing. The motor guides the ultra-
sound probe in a tilting, rotating, or linear movement around the ROI, as shown 
in Figure 3. When the motor is activated, multiple 2D ultrasound images can 
be acquired around the scanned ROI in a short time. Besides that, there is also a 
mechanical scanning system that uses a motorized mechanism and the external 
fixture, such as robot arm, to move the ultrasound probe. Both of the systems move 
the transducer in a predefined translation and orientation path around the ROI [4]. 
Therefore, this system is able to acquire regularly spaced 2D ultrasound frames [7] 
and also with accurate position and orientation that is relative to a frame [1]. These 
are the important factors to determine an accurate 3D ultrasound reconstruction 
image. However, mechanical scanning system is costly, not flexible, and angle of 
movement is limited because of its bulkiness size [3, 7].

2.3 Freehand-based system

The freehand-based scanning system acquires the 2D ultrasound images along 
with their position and orientation, by attaching a sensor on the ultrasound probe. 
The position tracking sensors are such as the electromagnetic sensor and the optical 
sensor. This system allows the operator to use the probe to scan around the desired 
ROI arbitrarily and hence is more flexible in terms of mobility than aforementioned 

Figure 2. 
The pyramidal volumetric scan of 2D array transducer [3].

Figure 3. 
Schematic diagram of 3D mechanical ultrasound probe scanning methods [3]: (a) tilting scanning; (b) linear 
scanning; (c) rotational scanning.

77

A Survey on 3D Ultrasound Reconstruction Techniques
DOI: http://dx.doi.org/10.5772/intechopen.81628

systems. Besides that, there exists a freehand-based scanning system that is without 
the use of position sensor. The advantages of freehand scanning system are low cost 
and scanning flexibility [4, 8]. On the downside, the 2D ultrasound frames acquired 
by freehand scanning system are usually irregular spacing between images and are 
highly sparse [9], which may cause undesired artifact in the reconstruction result. 
Therefore, the reconstruction methods or algorithms are researched and developed 
in order to solve the stated problem, which is further discussed in Section 3.3.

With the recent advancement of position tracking technology, the tracked 
freehand ultrasound scanning method has improved in terms of imaging quality, 
accuracy, effectiveness, portability, and reliability. Alternatively, the advancement 
of consumer-friendly hardware technologies introduced by the game industry not 
only can support better gaming experience but also provides a cost-effective solu-
tion to current problems, such as the use of Microsoft Kinect in healthcare sector 
[10]. The use of Sony’s PlayStation (PS) Move and PS Eye are also proven to be 
useful in tracking positions in 3D space [11].

2.3.1 Electromagnetic-based position tracking

The electromagnetic tracking system is one of the popular types of freehand 
scanning system. Similar to the optical tracking system, this system also consists of 
two important components: the electromagnetic sensor mounted on the probe, as 
well as the electromagnetic transmitter, which tracks the position and orientation of 
that sensor on probe [4]. The recorded spatial information is then transferred to the 
computer workstation for reconstruction and visualization. However, electromag-
netic tracking system suffers from the interference of magnetic signals if working 
nearby the sources, for example, surrounding metal instruments and power cables, 
which will affect the tracking accuracy [12], and also caused geometric distortion 
during the 3D reconstruction process [1].

2.3.2 Optical-based position tracking

The freehand 3D ultrasound imaging system with optical tracking sensor 
involves two important equipments: the markers mounted on the probe and one 
or multiple cameras to track the marker. Currently, the Polaris Optical Tracking 
System and Optotrak Certus are the two commercial optical trackers for 3D 
ultrasound imaging system and both are the product of Northern Digital (NDI). 
However, the problems found in the optical tracking system are that the marker 
mounted on the probe is large and caused the ultrasound scanning session to be 
inconvenient [12] and the line of sight of cameras must not be obstructed [13]. In 
order to counter this problem, the work in [13] created an optical tracking system 
with inertial sensor for freehand 3D ultrasound imaging, without external refer-
ence such as cameras. As for the cost-effective feature, in [11], the authors had 
introduced the use of PlayStation (PS) Move and PS Eye in the conventional 2D 
ultrasound probe for the 3D ultrasound reconstruction. This method is also able to 
offer portability and extensibility to the ultrasound imaging system.

2.3.3 Sensorless

The untracked freehand system or sensorless method requires the operator to 
move the transducer in a steady and regular motion at a constant linear or angular 
velocity, while 2D ultrasound frames are captured to generate a 3D ultrasound image 
[14]. Recently, a sensorless reconstruction method has been designed using a regres-
sion-based distance measurement, interpolation techniques, and unconstrained 
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systems. Besides that, there exists a freehand-based scanning system that is without 
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System and Optotrak Certus are the two commercial optical trackers for 3D 
ultrasound imaging system and both are the product of Northern Digital (NDI). 
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mounted on the probe is large and caused the ultrasound scanning session to be 
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introduced the use of PlayStation (PS) Move and PS Eye in the conventional 2D 
ultrasound probe for the 3D ultrasound reconstruction. This method is also able to 
offer portability and extensibility to the ultrasound imaging system.

2.3.3 Sensorless

The untracked freehand system or sensorless method requires the operator to 
move the transducer in a steady and regular motion at a constant linear or angular 
velocity, while 2D ultrasound frames are captured to generate a 3D ultrasound image 
[14]. Recently, a sensorless reconstruction method has been designed using a regres-
sion-based distance measurement, interpolation techniques, and unconstrained 
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freehand data without any limitation on the trajectory [15]. In recent study, the 
image-based algorithm makes use of the adaptive speckle decorrelation to learn rela-
tive position and orientation between the acquired 2D ultrasound image pairs [16]. 
Since the sensorless freehand ultrasound does not need any position tracking sensor, 
it is considered the most portable 3D freehand ultrasound system [16]. However, 
the inconsistency scan rate and angle can cause the reconstruction result to be not 
smooth and also results in less quality 3D image during 3D visualization step [14].

3. 3D ultrasound reconstruction process

This section explained the 3D ultrasound reconstruction process in detail. This 
process is achieved from the use of 2D ultrasound probe with linear array. Based on 
[6], the standard workflow of the 3D ultrasound reconstruction is data acquisition 
stage, data preprocessing stage, volume reconstruction method stage, and 3D visu-
alization stage. Figure 4 shows the overall process of 3D ultrasound reconstruction.

3.1 Data acquisition

The data can be obtained from any ultrasound scanning systems that are pre-
sented in Section 2, such as sensorless system, electromagnetic tracking system, and 
optical tracking system. The obtained data are the 2D ultrasound frames and the 
orientation and position of the tracking sensor when a particular frame was taken. 
The B-scan image and its relative orientation and position must be synchronized 
[11]. As for the real-time system, there is a need to synchronize the image captured, 
position and orientation, and the time [17]. This synchronization process is also 
known as the temporal calibration [18].

Next, ultrasound probe calibration or spatial calibration is used to get the homo-
geneous transformation to convert each 2D coordinate pixel in 2D ultrasound frames 
into 3D coordinates voxel of ultrasound probe frame [12, 19, 20]. This method is 
used mostly in the real-time ultrasound 3D reconstruction system [19, 21].

Figure 4. 
The 3D ultrasound reconstruction process.
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Scan conversion is also important for the reconstruction and visualization 
processes later, because of the possibility of different coordinate systems used by 
the scanning devices, such as in the work of [22], where the polar coordinate system 
recorded by the tracking system is converted into Cartesian coordinate system for 
3D reconstruction. Besides that, reference [11] provides a method for the conver-
sion of quaternion-based coordinate system into Cartesian coordinate system.

3.2 Data preprocessing

After the acquisition of the data, the data such as the 2D ultrasound frames 
are sent to the workstation for further processing. Most of the image processing 
techniques are used during this step, in order to enhance the 2D frames quality, 
remove noise, and preserve the edge boundary. This is because the 2D frames have 
various types of noise and artifacts, such as speckle noise, refraction, shadowing, 
reverberation, etc., and the spatial resolution within a 2D ultrasound frame is not 
uniform due to the transducer and signal characteristics varies with the penetration 
depth [7]. The example of image enhancement techniques included noise removing 
technique, histogram equalization, 2D Gaussian filter, median filtering, etc.

Figure 5 shows the noise and artifacts found in the 2D ultrasound frame. Besides 
that, segmentation process is also important to distinguish between the scanned 
objects in a region of interest (ROI), such as the skin, bone structure, etc., before 
the volume can be calculated. There are three types of segmentation process, which 
are automatic segmentation algorithms, semiautomatic segmentation algorithm, 
and manual segmentation. Automatic segmentation proves to be effective in obstet-
rics as the boundary of fetus and surrounding amniotic fluid is easy to be detected 
because of the high contrast between these two [6].

3.3 Volume reconstruction

The volume reconstruction methods are the most important part in the 3D ultra-
sound reconstruction process, which involved the implementation of interpolation 
and approximation algorithm to get the 3D volume data and put them in a 3D volume 
grid based on the spatial information acquired from the tracking system. The volume 
reconstruction also aims to reduce computational requirements without damaging 
or losing the underlying shape of the data [18]. Before the volume reconstruction 
methods start, the coordinate system and volume grid of reconstructed volume need 
to be established, such as volume size, axes of volume, origin of axes, and the size of 
voxel [23]. The volume coordinate configuration uses principal component analysis 
(PCA), which is a statistical tool that estimates the largest difference of collected data 

Figure 5. 
Noise and artifacts [7]: (a) speckle noise; (b) transducer malfunction, and (c) elevational focal zone.
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reverberation, etc., and the spatial resolution within a 2D ultrasound frame is not 
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Figure 5. 
Noise and artifacts [7]: (a) speckle noise; (b) transducer malfunction, and (c) elevational focal zone.
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that the volume can enclose all the data values [23]. The bounding box technique is 
configured by computing the volume size by filling the voxel with pixels from a series 
of 2D ultrasound frames, and then the maximum point and the minimum point can 
be obtained. The bounding box is fast and simple to determine the volume coordinate 
configuration [8]. The minimum point is set as the origin of the volume. After the vol-
ume coordinate is configured, the volume reconstruction can be performed. There are 
several methods of volume reconstruction and they are pixel-based method (PBM), 
voxel-based method (VBM), and also function-based method (FBM). In addition, 
the Visualization Toolkit (VTK) is the most common software package for volume 
reconstruction and visualization, such as in [4, 11, 14, 16, 17, 24].

3.3.1 Pixel-based method (PBM)

The pixel-nearest neighbor (PNN) method is the example of pixel-based method 
(PBM), which is used to reconstruct the 3D volume by traveling across each pixel of 
acquired 2D ultrasound frames. In general, PNN consists of two important steps, 
which are bin-filling step and hole-filling step [25]. First, the bin-filling step is also 
known as distribution step and it travels across each pixel in all the 2D ultrasound 
frames, and then the nearest voxel in the 3D reconstructed volume is filled with that 
pixel value [4,8]. The method to assign pixel to voxel is based on the corresponding 
position and orientation information of 2D frames [9]. In this way, the 2D pixels can 
be transformed into voxels in the 3D volume space. If there have been multiple pixels 
assigned to a single voxel, the pixel values are averaged [4]. The bin-filling step might 
lead to empty voxel. Hence, hole-filing phase is used to identify and fill the empty 
voxel, usually by using the average, maximum, minimum, or a median of the neighbor 
filled voxels value [8, 9]. The selection of neighbor voxels is determined by a parameter 
value that represents the distance [24] or the radius of spherical region [8] from an 
empty voxel to be filled. However, the disadvantages of PNN method are causing 
blurred result and losing important information of 2D frames [9]. Besides that, some 
artifacts have been observed on the boundaries between the bin-filled area with 
original texture pattern and the hole-filled area with smoothed texture pattern [8].

Some research works are done in order to recover the disadvantages of PNN, 
especially in the hole-filling steps. Fast marching method (FMM) is proposed in 
the hole-filling step to interpolate empty voxel to preserve the sharp edges in the 
image and hence reduce the artifacts of the smoothed texture pattern [8]. Besides 
that, an improved Olympic operation is also proposed to estimate the empty voxel 
effectively [26]. Based on the observation, the PNN method is still favorable among 
the researchers in the field of 3D ultrasound reconstruction because of its simplicity 
to use as well as its capability to avoid complex computational time. Many improved 
PNN also has been proposed to create higher-quality reconstruction results.

3.3.2 Voxel-based method (VBM)

The voxel-based method (VBM) is used to reconstruct the 3D volume by travel-
ing across each voxel in a volume grid and gathering the pixel values from input 2D 
ultrasound frames and computing them by various methods. The newly computed 
value is then placed at that voxel. The most common methods in VBM are voxel-
nearest neighbor (VNN) and distance-weighted (DW). The VNN travels across 
each volume voxel and selects the nearest pixel value from a set of 2D frames to be 
put on that voxel. This method is capable to preserve the original texture patterns 
from 2D ultrasound frames; however, its downside is that large distance of the voxel 
to the 2D frames will generate large reconstruction artifacts and also it tends to 
preserve the speckle noise from corrupted ultrasound echo [8, 9].
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As for the DW method, it also travels across each volume voxel first. Then, its 
local neighborhood pixels of 2D ultrasound frames are weighted by the inverse 
distances between the pixels and that voxel [27]. Lastly, the average value of those 
pixels is placed on the voxel. The DW method is able to suppress speckle noise [8]. 
On the other hand, it also smoothens the 3D reconstructed volume, causing the loss 
of some information on the original 2D ultrasound frames [9].

Besides that, the implementation of kernel regression can also help estimate the 
whole voxels in a volume, which is filled by bin-filling stage with more details and 
suppressing speckle noises, but it suffers from computational speed [9]. Although 
there is a use of bin-filling step, the use of kernel regression in this sense is consid-
ered a VBM as it also requires the reconstruction process to travel across each voxel 
in a volume.

3.3.3 Function-based method (FBM)

The functional-based method (FBM) takes a set of input data and uses a func-
tion like polynomial to reconstruct 3D ultrasound volume [28]. The radial basis 
function (RBF) is one of the FBMs that used an estimate function to compute a 
spline that passes through the pixels that form a shape in the 2D ultrasound frames 
[9, 27]. The created splines need to be as identical and smooth as the original 
shapes in the 2D frames. The approximation requirement is required because of 
the existence of measurement errors, as well as to reduce the overshoots in order to 
have the gray-level range of interpolated voxels to be same as that of the original 2D 
ultrasound frames [27]. The mentioned measurement errors are such as the tissue 
motion, position sensor error, and calibration error during the data acquisition pro-
cess. In addition, the overshoot is a situation in signal processing where the signal or 
function exceeds its supposed target.

Besides RBF, Bayesian framework can be used to infer the voxel values in a 
volume grid by assuming a 3D parametric function that has basic function centered 
at every voxel, and the volume grid is modeled using piecewise smooth Markov 
random field (PS-MRF) with typical 6-connected neighborhood system [7, 29]. 
The work of [7] showed that the PS-MRF can work with irregular spaced B-scan 
images and to reduce the speckle noise and preserve boundary. However, it requires 
extreme computation time and needs to use GPU and parallel programming to 
overcome this limitation. The FBMs able to create a high-quality 3D volume from 
the 2D ultrasound frames; however, they require intensive computational power as 
well as speed, which imply that these methods are not widely studied in the field of 
3D ultrasound reconstruction.

3.4 3D visualization

After volume reconstruction, the 3D visualization method is used to display the 
volume data from the volume gird for the operator and physicians to see the result 
of ultrasound scanning. This is useful for them to analyze the scanned anatomy and 
assist in diagnosis, as well as for image-guided surgery. The 3D visualization process 
is also the last step to complete the fully functioning 3D ultrasound reconstruction. 
The common rendering algorithms or techniques for 3D visualization are multipla-
nar reformatting, volume rendering, and surface rendering.

3.4.1 Multiplanar reformatting

The multiplanar reformatting method is a visualization technique where 2D 
ultrasound planes, also known as resliced image, are extracted from the 3D ultrasound 
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is also the last step to complete the fully functioning 3D ultrasound reconstruction. 
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ultrasound planes, also known as resliced image, are extracted from the 3D ultrasound 
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data and displayed to the user with 3D impression [30]. The physicians can view the 3D 
ultrasound reconstruction result on three orthogonal slice views, which is in terms of 
traverse plane, coronal plane, and sagittal plane [17]. The resliced images are presented 
together with texture-mapped 3D rendering. There are three approaches of display [1], 
which are the planar cross-sectional images, the cube view, and the orthogonal planes. 
The limitation of planar viewing is that there will be possibility to loss of information 
due to the complex shape of ROI, especially when viewing spinal curvature. Thus, the 
use of nonplanar volume rendering method can compensate this limitation [31]. Due 
to its simplicity and the fact that it does not require high computational power, the 
multiplanar reformatting method is favorable among researchers and practitioners alike 
to visualize the 3D ultrasound reconstruction. Figure 6 shows the examples of planar 
cross-sectional images and the cube view, while Figure 7 shows the difference between 
planar and nonplanar volume rendering.

Figure 7. 
The example shows the difference of planar and nonplanar volume rendering in the assessment of scoliosis [31].

Figure 6. 
(a) Planar cross-sectional images of reconstructed volume data [8] and (b) cube view of reconstructed volume 
data [1].
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3.4.2 Volume rendering

Volume rendering technique involves ray-casting or ray-marching techniques 
where the change of light that went through the 3D volume data is projected as the 
output visualization results for the operator to view [32]. The light absorption prin-
ciple [33] is implemented in the volume rendering technique where every voxel has 
the attributes such as brightness, transparency, and color [30]. So, there are several 
approaches used for the volume rendering visualization, and they are maximum 
intensity projection and translucency rendering [1]. The volume rendering can 
distinguish between tissue and fluids very well, and hence, it is suitable to view 3D 
ultrasound fetal image [1, 32]. However, the volume rendering is CPU-intensive and 
is not suitable to view the soft tissues details [1]. Figure 8 shows the ray-casting in 
volume rendering technique, and Figure 9 shows the example of volume rendering 
that uses maximum and minimum intensity projection.

Figure 8. 
The volume rendering technique involves several rays passing through 3D volume data. The synthesis methods 
can be applied to each voxel value that the ray passed to produce specific effects, such as transparency and 
maximum intensity projection of certain objects [32], such as tissues, blood vessels, etc.

Figure 9. 
The different volumes rendering visualization of 3D ultrasound imaging system approaches, where (a) shows 
the maximum intensity projection of a fetus and (b) shows the minimum intensity projection of blood vessels 
in the liver [30].
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Figure 10. 
(a) The indirect surface rendering of cardiac structure [35] and (b) the direct surface rendering of an MR 
heart phantom [35].

3.4.3 Surface rendering

The surface rendering produces a 3D surface based on the segmented boundary 
data points by generating the surface triangles or polygons associated with standard 
surface-rendering techniques being provided by interpolation [34]. The surface 
rendering can improve the interpretation of data sets [14]. The surface rendering 
technique can be classified into indirect surface rendering and direct surface ren-
dering. The direct surface rendering is a special case of volume rendering technique, 
where the surface is rendered directly from the volume without intermediate 
geometric representations, setting thresholds or using object labels to define a range 
of voxel intensities to be viewed [35]. The transparency and colors are used for the 
better 3D visualization of the volume [36]. As for the indirect surface rendering, 
it requires that the surfaces of relevant structure boundaries within the volume be 
identified a priori by segmentation [35]. The example of indirect surface rendering 
is such as contour filtering and marching cubes. Figure 10 shows the 3D visualiza-
tion using surface rendering technique.

Contour filtering decides how contours of two successive slices to be connected 
where the vertices of the assigned contours should be connected to form triangular 
mesh [37]. This method is first introduced by Keppel [37] that used the triangula-
tion for 3D surface rendering of contour lines from the medical data slices. The 
method is then optimized in the work of [38] using simplification algorithm to 
improve the level of detail as well as rendering speed.

Marching cubes algorithm is also one of the popular surface reconstruction 
algorithms introduced by Lorensen and Cline to display high-quality surface 
rendering for medical 3D volume data. The marching cubes algorithm uses a divide-
and-conquer method [39] in a 3D volume data where the 3D volume is divided into 
many voxel cubes that form a voxel array. Each cube is made from eight vertices, 
which represents a voxel value from the volume data. A user-specific parameter 
value known as isovalue is defined before reconstruction in order to create a sur-
face, also known as isosurface, by determining how the surface intersects with the 
cube [39]. Therefore, the surface rendering of different parts of the medical data, 
such as the arteries and atrium of the heart, can be distinguished and visualized, 
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as shown in Figure 10(b). Then, the marching cubes process is moved to the next 
cube by following the order from left to right, front to back, and top to bottom until 
the algorithm ends [24]. In the marching cubes algorithm process, each vertex is 
assigned to a binary number either 1 or 0, where 1 means that the vertex is outside 
the surface, while 0 means that the vertex is inside the surface. In general, there 
are 28 = 256 cases on how surface intersects in a voxel cube, since eight vertices are 

Figure 11. 
The 15 unique pattern configurations [39].
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contained in a cube and are represented as binary number. Due to the fact that some 
of the cases are the inverse or symmetry of each other, the 256 cases are reduced 
into 15 cases with unique pattern configuration [33] and are put in a lookup table. 
The 15 unique pattern configurations are as shown in Figure 11.

The marching cubes algorithm has been implemented in the 3D reconstruc-
tion of medical data, such as in medical imaging reconstruction and creating a 3D 
contour of a mathematical scalar field [40] and in CT reconstruction [24]. Because 
of the utilization of lookup table, the marching cubes algorithm is fast and simple to 
use. It is also capable to take full advantage of the graphical processing unit (GPU) 
acceleration function to create good 3D reconstruction result [24].

However, the original marching cubes algorithm suffers from the connectivity 
problems between triangle of adjacent cubes also known as the “hole problem” [40], 
which will cause the reconstruction result to be not smooth. Figure 12 shows the 
“hole problem” found in the conventional marching cubes algorithm. In order to 
solve this issue, the efforts have been made by the past researchers, such as modify-
ing the lookup table, extending the look-up table, etc. In [40] introduced the 21 
unique pattern configurations that will always ensure the triangles of adjacent cubes 
will connect to each other.

By the comparison, Wan et al. [14] found out that the marching cubes algorithm 
can produce sharper 3D ultrasound reconstruction image when compared with the 
contour filtering algorithm. Besides that, the result using marching cubes algorithm 
is easier to detect the edges and inner part of the ROI. However, the conventional 
marching cubes algorithm can generate a very large number of triangles for the 
3D visualization [38]. In summary, marching cubes algorithm trades off speed for 
higher level of detail, while contour filtering sacrifices some details for computa-
tional speed.

4.  Application of 3D ultrasound reconstruction in the medical 
visualization

The improvement of data acquisition methods, 3D reconstruction algorithms, 
volume visualizations, and hardware capabilities has greatly increased the feasibil-
ity of 3D ultrasound imaging in clinical application. Hence, the 3D ultrasound 
imaging has become more relevant in the medical field due to the increase in flex-
ibility, efficiency, and real time applicability. In this section, the clinical application 
of 3D ultrasound reconstruction is discussed.

The 3D ultrasound imaging used in obstetrics brings two main advantages. Firstly, 
3D ultrasound imaging can be used to determine the number of fetuses, fetus’ surface 
feature, and placenta location [41]. The volume rendering can distinguish between 
tissue and surrounding amniotic fluids very well, and hence it is suitable to view 3D 

Figure 12. 
The “hole problem” [40].
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ultrasound fetal image for the physicians to examine the fetal presentation, as well 
as for the parents to see the fetus’ face [1, 32]. It also can reduce the repeatability of 
physicians to relocate the placenta location and reduce mental workload to mentally 
construct the 2D ultrasound images into volumetric view. The second advantage is 
3D ultrasound imaging that can assist in the accurate volume measurement of fetal 
size. Based on the World Health Organization (WHO) [41], the physicians need to 
measure the femur length, abdominal circumference, biparietal diameter, and head 
circumference, in order to determine whether the fetal is oversized or undersized.

In cardiology, 3D ultrasound imaging can help to identify the plague in blood 
vessel, such as atherosclerotic stenosis. This can be achieved using segmentation 
method to get the surface of the blood vessel [12].

Besides that, the 3D ultrasound imaging also proved to be effective in the 
assessment of scoliosis [31, 42]. Due to the need to follow up treatment frequently 
during the early stage, frequent X-ray examination is harmful for the young patient. 
Hence, 3D ultrasound reconstruction can help in scoliosis examination as ultra-
sound has less radiation generation and nontraumatic to the subject. The flexibility 
of ultrasound also allows the subject to be scanned in standing posture, which is 
more accurate to measure the spinal curvature angle as shown in Figure 13.

5. Conclusions

This chapter discussed the analysis on the literature of existing 3D ultrasound 
reconstruction method or algorithm. First, the 3D ultrasound imaging system can 
be classified as the 2D array scanning system, the mechanical scanning system, and 
the freehand scanning system. Their properties, advantages, and disadvantages are 
discussed. Second, the reconstruction process for the 3D ultrasound imaging sys-
tem is explained. The steps required by the 3D ultrasound reconstruction are data 
acquisition stage, data preprocessing stage, implementing volume reconstruction 
method stage, and 3D visualization stage. Lastly, the advantages of 3D ultrasound 
reconstruction in the medical visualization are discussed, which includes obstetrics, 
cardiology, and scoliosis assessment.

The main limitation found in the current methods is the requirement for large 
computational processing power in order to visualize accurate medical data. 
Through the improvement of hardware capabilities such as GPU, the computa-
tional power and speed limitation can be improved. However, this presents a new 

Figure 13. 
The schematic diagram for the assessment of scoliosis using 3D ultrasound imaging system [31].
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problem, which is the increase in the cost of production. Therefore, we observed 
that the computational speed, accuracy of reconstruction, and cost-effectiveness 
are the challenges to be faced to provide a practicable 3D ultrasound reconstruction 
system.

In the future, the augmented reality (AR) medical can solve a lot of issue in 
ultrasonography, especially in the viewing of ultrasound image, as it can display the 
ultrasound image or other important information in the field of view of the physi-
cians. This can further improve the clinician’s perception toward the scanned ROI.

Furthermore, the data visualization method can also greatly improve the 
ultrasound perception by assigning the color to the scanned organs. This is because 
the current ultrasound images are black and white and are very hard to distinguish 
between different organs. Based on the physical properties of organs, the reflected 
intensity of ultrasonic wave is different for every organ. In this way, the color 
mapping can be used in different intensities to produce colorful ultrasound image, 
which represents and distinguishes every organ in the scanned region. Besides that, 
flow visualization can also be incorporated in the ultrasound visualization, such as 
different colors for different blood flow directions.
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problem, which is the increase in the cost of production. Therefore, we observed 
that the computational speed, accuracy of reconstruction, and cost-effectiveness 
are the challenges to be faced to provide a practicable 3D ultrasound reconstruction 
system.

In the future, the augmented reality (AR) medical can solve a lot of issue in 
ultrasonography, especially in the viewing of ultrasound image, as it can display the 
ultrasound image or other important information in the field of view of the physi-
cians. This can further improve the clinician’s perception toward the scanned ROI.

Furthermore, the data visualization method can also greatly improve the 
ultrasound perception by assigning the color to the scanned organs. This is because 
the current ultrasound images are black and white and are very hard to distinguish 
between different organs. Based on the physical properties of organs, the reflected 
intensity of ultrasonic wave is different for every organ. In this way, the color 
mapping can be used in different intensities to produce colorful ultrasound image, 
which represents and distinguishes every organ in the scanned region. Besides that, 
flow visualization can also be incorporated in the ultrasound visualization, such as 
different colors for different blood flow directions.
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Chapter 5

Quantum Neural Machine
Learning: Theory and Experiments
Carlos Pedro dos Santos Gonçalves

Abstract

Cloud-based access to quantum computers opens up the way for the empirical
implementation of quantum artificial neural networks and for the future integration
of quantum computation in different devices, using the cloud to access a quantum
computer. The current work experimentally implements quantum artificial neural
networks on IBM’s quantum computers, accessed via cloud. Examples are provided
for the XOR Boolean function representation problem and decision under risk; in
the last case, quantum object-oriented programming using IBM’s Qiskit Python
library is employed to implement a form of quantum neural reinforcement learning
applied to a classical decision under risk problem, showing how decision can be
integrated into a quantum artificial intelligence system, where an artificial agent
learns how to select an optimal action when facing a classical gamble. A final
reflection is provided on quantum robotics and a future where robotic systems are
connected to quantum computers via cloud, using quantum neural computation to
learn to optimize tasks and act accordingly.

Keywords: quantum artificial neural networks, quantum neural reinforcement
learning, quantum object-oriented programming, decision under risk

1. Introduction

Research on quantum neural machine learning has, until recently, mostly been a
theoretical effort, anticipating a future where quantum computers would become
available and sufficiently advanced to support quantum neural machine learning
[1–5]. However, we now have quantum computers that are capable of
implementing quantum artificial neural networks (QUANNs) experimentally, and
one is able to access these computers via cloud. This brings QUANNs from the
purely theoretical realm to the experimental realm, setting up the new stage for the
expansion of quantum connectionism. In the current chapter, we address this issue,
by implementing different QUANNs on IBM’s quantum computers using the IBM Q
Experience cloud-based access.

The chapter is divided into three sections. In Section 2, we address the basic
properties of quantum neural computation, the connection with the quantum cir-
cuit computation model, and how different interpretations of quantum mechanics
may address the basic computational dynamics involved.

In Section 3, we discuss how the IBM quantum computers can be considered
QUANNs, illustrating with an example of a QUANN applied to the problem of the
XOR Boolean function computation, implemented experimentally on two of IBM’s

95



Chapter 5

Quantum Neural Machine
Learning: Theory and Experiments
Carlos Pedro dos Santos Gonçalves

Abstract

Cloud-based access to quantum computers opens up the way for the empirical
implementation of quantum artificial neural networks and for the future integration
of quantum computation in different devices, using the cloud to access a quantum
computer. The current work experimentally implements quantum artificial neural
networks on IBM’s quantum computers, accessed via cloud. Examples are provided
for the XOR Boolean function representation problem and decision under risk; in
the last case, quantum object-oriented programming using IBM’s Qiskit Python
library is employed to implement a form of quantum neural reinforcement learning
applied to a classical decision under risk problem, showing how decision can be
integrated into a quantum artificial intelligence system, where an artificial agent
learns how to select an optimal action when facing a classical gamble. A final
reflection is provided on quantum robotics and a future where robotic systems are
connected to quantum computers via cloud, using quantum neural computation to
learn to optimize tasks and act accordingly.

Keywords: quantum artificial neural networks, quantum neural reinforcement
learning, quantum object-oriented programming, decision under risk

1. Introduction

Research on quantum neural machine learning has, until recently, mostly been a
theoretical effort, anticipating a future where quantum computers would become
available and sufficiently advanced to support quantum neural machine learning
[1–5]. However, we now have quantum computers that are capable of
implementing quantum artificial neural networks (QUANNs) experimentally, and
one is able to access these computers via cloud. This brings QUANNs from the
purely theoretical realm to the experimental realm, setting up the new stage for the
expansion of quantum connectionism. In the current chapter, we address this issue,
by implementing different QUANNs on IBM’s quantum computers using the IBM Q
Experience cloud-based access.

The chapter is divided into three sections. In Section 2, we address the basic
properties of quantum neural computation, the connection with the quantum cir-
cuit computation model, and how different interpretations of quantum mechanics
may address the basic computational dynamics involved.

In Section 3, we discuss how the IBM quantum computers can be considered
QUANNs, illustrating with an example of a QUANN applied to the problem of the
XOR Boolean function computation, implemented experimentally on two of IBM’s

95



devices (Section 3.1); afterward (Section 3.2), we turn to the experimental imple-
mentation of quantum robotics and quantum decision with a more complex form of
quantum neural computation in the form of a variant of quantum neural reinforce-
ment learning (QNRL), applied to a problem of decision under risk, where the
agent must learn the optimal action that leads to the highest expected reward in a
classical gamble.

The problem is first addressed in terms of the fundamental equations which
employ quantum adaptive computation, namely quantum adaptive gates; then, we
implement it experimentally on IBM’s quantum computers and, afterward, we
address the main Python code that was used to run the algorithm on these com-
puters, thus, introducing quantum object-oriented programming (QOOP) and
reflecting on its relevance for research on quantum artificial intelligence.

While, in Section 3.1, the main goal is to illustrate the implementation of
QUANNs in a case where QUANNs exhibit a greater efficiency over classical ANNs,
in Section 3.2, our main goal is not to address the speed-up of quantum algorithms
over classical ones or even the greater efficiency of quantum algorithms over clas-
sical ones, but rather to provide for a reflection on the first steps for a possible
future where quantum computation is incorporated in different (classical) robotic
systems by way of the internet of things and cloud-based access to quantum
devices, and the role that quantum adaptive computation may play in such a future.

In particular, in Section 3.2, we illustrate how a QUANN can become adaptive
with respect to a problem that is given to it, in this case, a decision problem under
risk, therefore, allowing us to address how QOOP can be employed to simulate an
artificial agent, with a QUANN as its cognitive architecture, that must make a
decision when presented a problem of classical decision under risk; therefore, our
main goal in Section 3.2, from a computer science standpoint, is to address how a
quantum artificially intelligent system decides when faced with a classical decision
under risk problem, using QUANNs and QOOP.

In Section 4, we conclude with a chapter review and a reflection on future
directions for cloud-based quantum-enabled technologies and QOOP.

2. Quantum neural computation and quantum mechanics

In order to address quantum neural computation, we need to first introduce
some notation, which is commonly used in quantum computation, namely, we use
the standard Dirac’s bra-ket notation, where a ket vector corresponds to a column
vector and the bra vector is its conjugate transpose. Defining, then, the fundamental
ket vectors 0j i and 1j i, respectively, as:

0j i ¼ 1

0

� �
, 1j i ¼ 0

1

� �
(1)

with the corresponding bra vectors 0h j and 1h j being defined, respectively, as the
conjugate transpose of 0j i and 1j i, then, we can represent Pauli’s operators as:

σ̂ 1 ¼ 0j i 1h j þ 1j i 0h j ¼ 0 1

1 0

� �
(2)

σ̂2 ¼ �i 0j i 1h j þ i 1j i 0h j ¼ 0 �i
i 0

� �
(3)

σ̂3 ¼ 0j i 0h j � 1j i 1h j ¼ 1 0

0 �1

� �
(4)
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The unit operator on the two-dimensional Hilbert space, spanned by the basis
0j i; 1j if g, is denoted by 1̂ ¼ 0j i 0h j þ 1j i 1h j which has the form of the identity

matrix.
The Walsh-Hadamard transform unitary operator is, in turn, given by:

ÛWH ¼ σ̂1 þ σ̂3ffiffiffi
2

p ¼ 1ffiffiffi
2

p 1 1

1 �1

� �
(5)

We also use the usual notation for the ket vectors þj i ¼ ÛWH 0j i and
�j i ¼ ÛWH 1j i.

Besides the above notation, we denote the binary alphabet by A2 ¼ 0; 1f g and
the set of d-length binary strings by Ad

2, using boldface letters to represent binary
strings of length greater than 1.

Using this notation, we are now ready to address some basic general properties
of quantum neural computation.

The basic computational unit of a QUANN is a neuron with a two-level firing
dynamics that can be described by the neural firing operator [5, 6]:

ν̂ ¼ 1̂ � σ̂3

2
ν (6)

where ν is a neural firing frequency expressed in Hertz.
The eigenvectors for this operator are given by:

ν̂ sj i ¼ sν sj i, s ¼ 0, 1 (7)

Therefore, the eigenvector 0j i corresponds to a neural activity where the firing
frequency is 0 Hz, while the eigenvector 1j i corresponds to a neural activity where
the firing frequency is 1 Hz. This means that there are two quantized energy levels
associated with the artificial neuron, and these energy levels are obtained from the
single neuron Hamiltonian, expressed in terms of the neural firing frequency oper-
ator as follows [5, 6]:

Ĥ ¼ 2πην̂ (8)

Therefore, the eigenvector 0j i is associated with a neural firing energy level of
0 Joules, while the eigenvector 1j i is associated with a neural firing energy level of
2πην Joules.

For a neural network with d neurons, the neural firing activity can be addressed
in terms of a neural field in the network, with the firing frequency field operators
such that the k-th neuron neural firing operator ν̂k obeys the eigenvalue equation:

ν̂k s1s2…sdj i ¼ skν s1s2…sdj i (9)

and any pair of neural firing operators commute; that is, for k, l ¼ 1, 2,…, d,
ν̂k; ν̂l½ � ¼ 0. Thus, the total neural firing frequency operator is given by:

ν̂Tot ¼ ∑
d

k¼1
ν̂k (10)

which leads to the eigenvalue spectrum for the neural network:

ν̂Tot s1s2…sdj i ¼ ∑
d

k¼1
skν s1s2…sdj i (11)
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The general computational dynamics of a d-neuron QUANN can be addressed,
in the quantum circuit model, by a computational chain of unitary operators, where
the networked computation is implemented by conditional unitary operators that
follow the structure of the neural links [4–6], which means that not all conditional
unitary operators can be implemented in the neural network, but only those that
respect the network’s topology and processing direction.

Formally, then, an N-length computational chain that propagates forward in a
quantum neural computation circuit is comprised of a sequential product of unitary
operators:

Ĉ ¼ ÛNÛN�1…Û1 (12)

The sequence is read from right to left and such that Û1 is the first operator to be
applied and ÛN is the last. This is the forward sequence proceeding from the
beginning to the end of the computation. The reverse chain, which propagates
backward in the computational circuit, is, then, given by the conjugate transpose of
the forward chain:

Ĉ
† ¼ Û†

1…Û†
N�1Û

†
N (13)

Formally, given a general initial density operator, representing the initial neural
field dynamics of the QUANN, expressed as follows:

ρ̂in ¼ ∑
r, s∈Ad

2

ρr,s rj i sh j (14)

the quantum computation can be addressed in terms of the propagation:

ρ̂out ¼ Ĉρ̂Ĉ
† ¼

¼ ∑
r0, s0 ∈Ad

2

∑
r, s∈Ad

2

ρr,s r
0
ÛNÛN�1…Û1
�� ��r

D E
r
0�� E s

0
D �� s Û

†

1…Û†
N�1Û

†
N

���
���s0

D E !

(15)

The firing patterns, in Eq. (15), r and s correspond to input neural firing patterns
for the QUANN, while the firing patterns r

0
and s

0
correspond to output neural

firing patterns; in this way, the quantum neural computation is propagating in both
directions of the computational chain, so that we have the propagation from the
input to the output (from the beginning to the end of the computational chain),
which corresponds to the amplitude r

0
ÛNÛN�1…Û1
�� ��r� �

, and the propagation from
the output to the input (from the end to the beginning of the computational chain),

which corresponds to the amplitude s Û
†

1…Û†
N�1Û

†
N

���
���s0

D E
.

For the cases where there is a mismatch between the final output firing dynam-
ics, that is, when r

0 6¼ s
0
, the QUANN does not reach a well-defined output; from a

computational perspective, we can state that the network does not reach a final
solution, since the output computed in the forward direction of the computational
circuit, r

0
ÛNÛN�1…Û1
�� ��r� �

, does not match the output computed in the reverse

direction of the computational circuit, s Û
†

1…Û†
N�1Û

†
N

���
���s0

D E
.

However, when r
0 ¼ s

0
, the output computed in the forward and backward

directions matches; this leads to the diagonal components of the final density
operator that, for each s

0 ∈Ad
2, are given by:
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s
0
ρ̂outj js0

D E
s
0�� E s

0
D �� ¼ ∑

r, s∈Ad
2

ρr,s s
0
ÛNÛN�1…Û1
�� ��r

D E
s Û

†

1…Û†
N�1Û

†
N

���
���s0

D E !
s
0�� E s

0
D ��

(16)

This means that the neural field computes each alternative final firing pattern
s
0 ∈Ad

2 with a projective intensity given by the weighted sum over each pair of
alternative initial firing patterns propagated in both directions of the computational
chain:

s
0
ρ̂outj js0

D E
¼ ∑

r, s∈Ad
2

ρr,s s
0
ÛNÛN�1…Û1
�� ��r

D E
s Û

†

1…Û†
N�1Û

†
N

���
���s0

D E
(17)

From a computer science standpoint, this two-directional propagation, which is a
basic result of the quantum circuit-based computation (generalizable to any type of
quantum computer), exhibits a form of forward propagation and backward propaga-
tion, where the forward and backward amplitudes can be, from a computer science
standpoint, addressed in terms of a probe and response dynamics, respectively;
returning to Eq. (15), each amplitude r

0
ÛNÛN�1…Û1
�� ��r� �

can be addressed as a
probing computational dynamics from the beginning to the end of the computational
circuit that links the initial (input) firing pattern r to the final probed (output) firing

pattern r
0
, and the reverse amplitude s Û

†

1…Û†
N�1Û

†
N

���
���s0

D E
can be addressed as a

response that comes from the end of the computational circuit to the beginning, a
response that links the output firing pattern s

0
to the initial input firing pattern s.

When the two output firing patterns do not match, r
0 6¼ s

0
, we have a mismatch

between the probe and the response, and when the two firing patterns match,
r
0 ¼ s

0
, an echo is produced with an intensity given by the sum in Eq. (17); the

computation is, then, like the search for the solution to a computational problem,
where each probed alternative final output gets a response with a specific intensity.

These dynamics are simultaneous, that is, the QUANN processes in both the
forward and backward directions simultaneously to arrive at the final result.

The above fundamental computational dynamics is characteristic of quantum
mechanics, and not limited to QUANNs or quantum computation, nor is it depen-
dent on one’s interpretation of quantum mechanics. It arises when one considers the
structure of a general density operator for a quantum system [6].

Indeed, as an example, let us consider a general density operator for a quantized
observable Ô on some quantum system, which, for the purpose of illustration we
consider to have a discrete, not necessarily finite, non-degenerate eigenvalue spec-
trum, so that the ket vectors mj i, form ¼ 0, 1, 2…, satisfying Ô mj i ¼ om mj i, span the
basis for a Hilbert space associated with the quantum system with respect to the
observable; then, the general dynamics for the quantum system, with respect to the
observable, can be represented as a density operator on the system’s Hilbert space:

ρ̂ ¼ ∑
m,n

ρm,n mj i nh j (18)

The off-diagonal components of such an operator are such that there is no
matching between the corresponding eigenvalues, only in the diagonal do we find a
matching between the eigenvalues. The ket vector can, in this case, be considered as
a probing vector, while the bra vector can be considered as a response vector.

In this way, only when a probed alternative eigenvalue finds a matching
response eigenvalue do we have an echo for an alternative eigenvalue that can be
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actualized, and the probability for this actualization coincides with the diagonal
density value ρm,m which corresponds to the echo intensity. This is a basic result from
quantum mechanics that extends to any observable, including observables with
both discrete as well as continuous spectra.

It is important to stress that this echo dynamics is not specific to QUANNs, but is
present in any quantum system; any density operator characterizing a quantum
system exhibits, in the formalism, this main dynamics, so the echo dynamics is a
characteristic of the physics of quantum systems and accounts for Born’s probability
rule in quantum mechanics—that is, the probability of an alternative eigenvalue
to be observed is equal to the corresponding diagonal component of a density
operator.

Therefore, embedded within quantum mechanics’ formalism, we find an
account of Born’s probability rule. Furthermore, given a Hamiltonian operator for
the quantum system ĤS, and a time lapse of Δt, quantum mechanics defines the
unitary propagation of a density operator at time t0 as:

ρ̂ t0 þ Δtð Þ ¼ e�
i
ηĤSΔtρ̂ t0ð Þei

ηĤSΔt (19)

In the case of the illustrative general example, given in Eq. (18), we get:

ρ̂ t0 þ Δtð Þ ¼ ∑
m,n

∑
k, l

ρk, l t0ð Þ mh je� i
ηĤSΔt kj i lh jei

ηĤSΔt nj i
 !

mj i nh j (20)

where m exp �i=ηĤSΔt
� ��� ��k� �

is a forward in time propagating amplitude from
the k-th initial eigenvalue to the m-th final eigenvalue and l exp i=ηĤSΔt

� ��� ��n� �
is a

backward in time propagating amplitude from the n-th final eigenvalue to the l-th
initial eigenvalue1, and this basic dynamics is a general result that stems from
Schrödinger’s unitary evolution.

Cramer was, however, the first to fully address the consequences of this
dynamics and propose the concept of echo, within the context of quantum mechan-
ics, addressing it related to Born’s rule, deriving Born’s rule from within the quan-
tum formalism.

While Cramer [7] addresses the echo in terms of the encounter of a forward-
propagating retarded wave (which we addressed above under the probe dynamics,
proceeding forward from the beginning to the endpoint of the unitary evolution)
and the backward-propagating advanced wave (which we addressed above under
the response dynamics, proceeding from the endpoint to the beginning of the
unitary evolution), by working with the density operator, instead of the wave
function, we get a clearer picture of the corresponding dynamics, which accounts,
in the case of any quantum physical system, for both the off-diagonal terms
(as failed echoes) and the diagonal terms of the density operator (as the echoes where
the probe was met by a matching response) with the echo intensity giving Born’s
probability rule. This result is generalizable and independent of the interpretation
of quantum mechanics that one follows; that is, all interpretations of quantum
mechanics agree with the above results.

It is important to clarify what an interpretation of quantum mechanics is and
why there are different interpretations of the same theoretical body and equations.
It turns out that the main interpretations do not disagree on the formalism,

1 One may notice the change in the time lapse signal so that the conjugate transposition corresponds to

time reversal.
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methods, and how the mathematics is built and applied for prediction of experi-
mental results. The interpretations do not stem from any ambiguity or lack of
robustness in the formalism and in the application of the formalism, they stem from
the fact that not everything is accounted for by the formalism, and that is where the
interpretations come in.

To better frame this issue, one must consider the nature of the theory that one is
dealing with, what it explains, and what is outside its theoretical scope.

Quantum mechanics is, in fact, a probabilistic theory of the quantized dynamics
of fundamental physical fields, fields that work at the level of the building blocks of
physical nature. The physical theory and methods that form the basic structure of
quantum mechanics developed progressively from empirical observations and sta-
tistical findings on fundamentally random outcomes of physical experiments deal-
ing with the quantum level.

This means that physicists found the basic rules for (dynamical) probability
assignments that robustly capture the main probabilistic dynamics of quantum fields.

To understand the nature of the theory, it is important to stress that it was born
out of laboratory experiments, that it was built out of the statistical patterns found
in an observed stochastic dynamics, and that it was aimed at predicting the statisti-
cal distributions of that stochastic dynamics. The current formulation of quantum
mechanics essentially encompasses a set of rules for obtaining the probabilities
associated with the dynamics of quantum systems.

The theory does not state anything beyond that. A point that allowed many
physicists to pragmatically take the theory as it is, not dwelling on the why quantum
systems work that way, that is, to take the theory as a rule book that works, is
robustly tested empirically, applying it to problems following what is usually called
a shut up and calculate stance.

When one starts to ask on the why quantum systems work that way, the interpre-
tations enter into play, but they go beyond the physical setting of the theory in the
sense that they are related to ontological questions; that is, each interpretation
regards the ontological issue of physical reality and why the quantum dynamics
follows the echoes with probabilities coincident with the echo intensities.

In the pragmatic stance, one just takes the formalism as a recipe, calculates the
echo intensities without dwelling further on it. Any result in quantum mechanics
applying the formalism is valid and empirically testable and the formalism has time
and again, during twentieth and twenty-first centuries, been shown to be robust in
its predictions.

One way out of the ontological questioning would be to assume that we are
dealing with human representations, that we cannot speak of a reality independent
of human representations and experiments, that is, that the question of what reality
really is outside those representations and experiments cannot be answered and,
therefore, one just postulates that the field follows the echoes. This was the approach
of the Copenhagen school, including Bohr and Born, leading to Born’s rule that the
probabilities are coincident with the echoes, a rule that is introduced, usually, in
quantum mechanics’ classes as a postulate, a very detailed description of this can be
found in [7].

Contrasting with the Copenhagen school are the ontological schools, so called
because they assume a reality independent of human representations and
experiments.

Quantum mechanics itself does not state anything about this, so there is room
for proposals; Cramer [7], for instance, considers these interpretations as actually
new physical theories that go beyond the strict formalism and introduce new con-
jecture that cannot be tested under the formalism itself. The ontological interpreta-
tions that include the Bohmian and Everettian lines are all consistent with the
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1 One may notice the change in the time lapse signal so that the conjugate transposition corresponds to

time reversal.
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methods, and how the mathematics is built and applied for prediction of experi-
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formalism, that is, they agree with the formalism and mathematical methods of
quantum mechanics and, therefore, cannot be tested using just the formalism.

In the case of Cramer, his proposed transactional interpretation (TI) of quantum
mechanics [7] considers a probabilistic selection in terms of a quantum handshake
(Cramer’s transaction), where there is a sequential hierarchical selection for a
quantum handshake linking the beginning and endpoint of the quantum dynamics,
where each alternative is evaluated probabilistically for the formation of a quantum
handshake or not; if no handshake is selected for a given alternative, the quantum
dynamics proceeds to the next alternative. In each case, the probability for a quan-
tum handshake is equal to the echo intensity, thus deriving Born’s rule from within
the formalism, instead of assuming it as a postulate.

Everett [8] assumed that all alternatives for a quantum system are actualized
simultaneously in different cosmic branches. This led to the many worlds interpre-
tation (MWI). MWI’s proposal is, thus, that reality is multidimensional and the
formalism is considered to be describing such a multidimensional reality that is a
single Cosmos with many worlds (many branching lines). This conjecture cannot be
tested empirically; it is consistent with the formalism and agrees with the predic-
tions of quantum mechanics. Namely, the statistical measure associated with
repeated experiments made on quantum systems tends to coincide with the echo
intensities since the echo intensities coincide with the existence intensity of each
world, recovering a statistical measure upon repeated experiments, as argued by
Everett in [8] regarding Born’s rule.

Bohm initially worked on the pilot wave model for quantum mechanics but just
as a first approximation. Indeed, in [9], the author addressed the pilot wave model
as a first approximation but then criticized it, in particular, in regard to the
assumption of a particle being separate from the field; even more, in [9], Bohm
defended that, at a lower level, the particle does not move as a permanently existing
entity, but is formed in a random way by suitable concentrations of the field’s
energy. Furthermore, he considered that any quantum field was characterized by a
nonlocal dynamics, and that the equations of quantum mechanics were just an
approximation, an average that emerged at the quantum level, proposing the con-
cept of quantum force and hypothesizing the existence of a subquantum level, so
that both the quantum and subquantum levels play a fundamental role in the field’s
dynamics.

Gonçalves in [6] addressed the relation between the echo and Bohm’s proposal
recovering the Bohmian concept of quantum force [9, 10].

In this interpretation, the echo is associated with a dynamics of a quantum field
for the evaluation of each alternative; the probing and response dynamics, thus,
play a fundamental role, allowing a quantum field, any quantum field, to compute
each alternative in parallel, leading to an echo associated with each alternative.

As argued in [6], the intensity (modulated) echoes would, thus, have a functional
role as signalizers of an order to be risen (in the QUANN case, this order corre-
sponds to a specific quantum neural firing pattern); the field’s quantum and
subquantum levels would, then, work in tandem, mobilizing the forces needed to
make rise one specific alternative, and the resulting field lines of force, therefore,
coincide, in their intensities, with the echo intensities.

This quantum computational dynamics, present in quantum mechanics’ formal-
ism, works as a basic form of quantum “learning” dynamics, where the quantum field
“learns” about each alternative in the probe (forward propagating) and response
(back propagating) dynamics and, then, the field’s lines of force are formed along
the echoes resulting from the encounters of matching probe and response vectors,
with a force intensity that matches the corresponding echo’s intensity; the field then
follows one of these lines of force with a probability that coincides with the echo
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intensity, so that the following of a given line of force is similar to a bifurcation
dynamics where the field will follow, stochastically, one of the branches with a
probability that coincides with the force intensity associated with each branch [6].

There is a consequence that comes from assuming the Bohmian framework,
namely, from the Bohm’s conjecture that a subquantum level randomness averages
out at the quantum level, but may lead to small deviations from the theoretical
probabilities [9, 10]; if such a conjecture holds, then deviations in quantum physical
experiments with actual quantum computers may always take place, such that, even
if we were to reduce the interaction with the environment to zero (or close to zero),
we could still have deviations due to subquantum level fluctuations, so that the field
would tend to follow the lines of force with probabilities that would hold on average
but with some deviations that might occur in each case.

While Bohm’s proposal is potentially testable, at the present stage of scientific
and technological development, we have not yet found a way to test the
subquantum proposal regarding quantum physical systems, and, in particular, to
test, empirically, the possibility that deviations from the main lines of force that
agree with a theory’s prediction are not due to environmental noise and, rather, to
subquantum level fluctuations.

All main interpretations, as reviewed above, agree with quantum mechanics’
general predictions, even Bohm, who considers that the predictions will hold
empirically on average, therefore, the interpretations do not have, at present, a
direct consequence on the results of technological implementation of quantum
computers, as long as one is not dealing with fundamental ontological issues
regarding the computational nature of quantum fields, but rather with the techno-
logical application of quantum algorithms, one is free to choose any interpretation
since it is consistent with the main formalism and results.

We consider, nonetheless, that future research directions on Bohm’s conjectural
line may prove fruitful both at a theoretical and technological level, concerning the
issue of quantum errors. This point, however, goes beyond the current chapter’s
scope. The results that follow, as of any work using the formalism of quantum
mechanics, hold for any interpretation of the theory. However, having made that
point, we will return to Bohm’s conjecture regarding some of the results obtained in
the next section, regarding the issue of quantum computing errors.

3. Implementing quantum artificial neural networks on IBM’s quantum
computers

The development of quantum computing devices has opened up the possibility
of transitioning from the purely theoretical approach to QUANNs to an experimen-
tal implementation of these networks. A particular example is IBM’s quantum
processors, available via cloud, under IBM Q Experience, using superconducting
transmon quantum processing units.

The term transmon stands for transmission-line shunted plasma oscillation. A
transmon qubit [11, 12] is an attempt at a technological implementation of a qubit for
quantum computation, using superconductivity and Josephson junctions, gaining
in charge noise insensitivity [11, 12]. The control, coupling, and measurement
are implemented by means of microwave resonators and circuit quantum
electrodynamics.

IBM has different transmon-based quantum computers in different locations
around the world and provides access to these computers via cloud; this availability
allows researchers to implement quantum experiments on actual quantum com-
puters via cloud using IBM Q Experience, opening also the way for programmers to
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logical application of quantum algorithms, one is free to choose any interpretation
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line may prove fruitful both at a theoretical and technological level, concerning the
issue of quantum errors. This point, however, goes beyond the current chapter’s
scope. The results that follow, as of any work using the formalism of quantum
mechanics, hold for any interpretation of the theory. However, having made that
point, we will return to Bohm’s conjecture regarding some of the results obtained in
the next section, regarding the issue of quantum computing errors.
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run algorithms on quantum computers by using the Python library Qiskit, which
allows for the programmer to build quantum circuits in the Python code and
manage the cloud-based access for simulation and experiments. The examples
addressed in the present section all used Qiskit and two devices were employed: the
“IBM Q 5 Tenerife” (ibmqx4)2 and the “IBM Q 16 Melbourne”3

(ibmq_16_melbourne).
The “IBM Q 5 Tenerife” device is a 5 qubit device with quantum registers labeled

from Q0 to Q4, and the connectivity is, according to IBM, provided by two coplanar
waveguide (CPW) resonators with resonances around 6.6 GHz (coupling Q2, Q3,
and Q4) and 7.0 GHz (coupling Q0, Q1, and Q2).

The “IBM Q 16 Melbourne” device is a 14 qubit device with a connectivity that
is, in turn, provided by a total of 22 CPW bus resonators each one connecting two
quantum registers. For both the Tenerife and Melbourne devices, each quantum
register also has a dedicated CPW readout resonator attached for control and
readout.

From a computational model standpoint, we can treat the network connections
and resulting quantum computing framework, provided by these physical devices,
as a form of QUANN, where the conditional neural gates must obey the quantum
device’s basic topology in what regards the possible quantum controlled gates.

This is so because the quantum registers are linked in specific topologies that
limit how conditional quantum operations are implemented; this is a main charac-
teristic of QUANNs, namely, the conditional unitary gates implemented in neural
computational circuits are dependent upon the topology and links between the
different artificial neurons.

For the simplest algorithms, we can use just a few registers and connections,
which means that each quantum device can simulate different QUANNs, within the
restrictions of their respective topologies.

For a QUANN using all the quantum registers in the device, the types of algo-
rithms are limited by the device structure, which can only implement a specific
neural network topology and link direction.

In Figures 1 and 2, we, respectively, show the connectivity structure of the “IBM
Q 5 Tenerife” and the “IBM Q 16 Melbourne” devices.

Having introduced the two devices, we now exemplify the theoretical and
experimental implementation of a QUANN, on these devices, for a basic problem:
the XOR Boolean function representation. This is a relevant example in the artificial
neural network (ANN) literature, since the classical feedforward ANN needs a
hidden layer to solve this problem, while its quantum counterpart does not [4].

Namely, a three-neuron QUANN with two input neurons feeding forward to a
single output neuron is capable of representing the XOR function, while, in the
classical case, we need an additional hidden layer comprised of two neurons. This is
a feature of QUANNs that is generalizable to other Boolean functions as discussed in
[4] regarding the computational efficiency of QUANNs over classical ANNs.

The reason for the greater efficiency is linked to entanglement, namely, the
output neuron’s firing dynamics can become entangled with the input layer’s firing
dynamics by way of the implementation of conditional NOT (CNOT) gates,

2 The relevant elements on this processor, including the quantum circuit structure, can be consulted at

the Qiskit backend website: https://github.com/Qiskit/qiskit-backend-information/tree/master/backend

s/tenerife/V1 (consulted in 21/10/2018)
3 The relevant elements on this processor, including the quantum circuit structure, can be consulted at

the Qiskit backend website: https://github.com/Qiskit/qiskit-backend-information/blob/master/backend

s/melbourne/V1/README.md (consulted in 21/10/2018).
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providing for an example of the importance of entanglement in the efficiency of
quantum computation over classical computation, a point that was object of
detailed discussion in [4] regarding the relevance of entanglement for quantum
neural computational efficiency.

3.1 The XOR representation problem

The XOR Boolean function representation problem is such that we want an
output neuron to fire when the input neurons’ firing patterns are reversed and to
remain nonfiring when the input neurons’ firing patterns are aligned. This means
that the neural network’s output follows the XOR truth table with the output neuron
firing when the XOR function evaluates to “True” and not firing otherwise.

In this case, as shown in [4], the XOR function representation problem can be
solved by a standard quantum feedforward neural network with no hidden layer, by
taking advantage of quantum entanglement dynamics.

Formally, the quantum circuit, in the forward direction, can be represented by
the following chain:

Ĉ ¼ Û3Û2Û1 (21)

with the gates, respectively, given by:

Û1 ¼ ÛWH ⊗ ÛWH ⊗ 1̂ (22)

Û2 ¼ 0j i 0h j⊗ 1̂⊗ 1̂ þ 1j i 1h j⊗ 1̂⊗ σ̂ 1 (23)

Û3 ¼ 1̂⊗ 0j i 0h j⊗ 1̂ þ 1̂⊗ 1j i 1h j⊗ σ̂1 (24)

Figure 1.
IBM Q 5 Tenerife (ibmqx4) connectivity structure.

Figure 2.
IBM Q 16 Melbourne (ibmq_16_melbourne) connectivity structure.
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Ĉ ¼ Û3Û2Û1 (21)

with the gates, respectively, given by:
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Figure 1.
IBM Q 5 Tenerife (ibmqx4) connectivity structure.

Figure 2.
IBM Q 16 Melbourne (ibmq_16_melbourne) connectivity structure.
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We begin with all three neurons in a nonfiring dynamics; then, the
propagation from input to output (in the forward direction of the computational
circuit) yields:

s1s2s3 Ĉ
�� ��000

D E
¼ s1s2s3h jÛ3 Û2Û1 000j i ¼

¼ s1s2s3h jÛ3Û2
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2

þ δs1,1δs2,1δs3,0
2

(25)

The result in Eq. (25) means that the only probed final alternatives are those
where the XOR rule s3 ¼ s1 ⊕ s2 holds; that is, these are the only alternatives where
there is a nonzero amplitude.

Likewise, back propagation from the output to the input yields the same result,
that is, the only responses come from outputs where the XOR rule s3 ¼ s1 ⊕ s2 holds,
as the following derivation shows:
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Û3

†
s1s2s3j i ¼

¼ δs2,0 000h jÛ1
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þ δs1,1δs2,1δs3,0
2

(26)

Replacing Eqs. (25) and (26) in the general Eq. (17) yields, for this quantum
circuit, the echo intensities:

s1s2s3 ρ̂outj js1s2s3h i ¼ s1s2s3 Ĉ
�� ��000

D E
000 Ĉ

†
���
���s1s2s3

D E
¼ δs3, s1 ⊕ s2

4
(27)

That is, the forward and back propagation is such that the echoes are only formed
for the cases where the rule s3 ¼ s1 ⊕ s2 holds, leading to a ¼ probability associated
with each alternative firing pattern of the first two neurons.

The Figure 3 shows the theoretical results from the above equations, the simu-
lation in the IBM quantum assembly language (QASM) simulator and the experi-
mental implementation on the Tenerife (ibmqx4) and Melbourne
(ibmq_16_melbourne) devices.

The QASM simulation expresses, as expected, the basic random results from the
repeated experiments, which is associated with the fundamental stochastic dynam-
ics underlying quantum processing; however, the simulator results agree with the
theoretical results, so that the basic XOR computation holds, that is, in each case,
the output neuron exhibits the firing pattern that is consistent with the XOR rule.
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In the case of experiments, the XOR rule is predominant, that is, the dominant
frequencies are those consistent with the circuit; there are, however, also a few
residual cases that deviate from the XOR rule, all with low relative frequencies.
These deviations are to be expected on the actual physical devices. For the Tenerife
device, the relative frequency of cases that follow the XOR rule is 0.857; for the
Melbourne device, this relative frequency is 0.835.

One of the main problems in physical implementation of quantum computation
is the presence of errors. Indeed, the equations are derived for an isolated circuit so
that the only echoes are those matching the quantum circuit; therefore, in an isolated
QUANN, the stochastic results from repeated trials tend, in a frequentist approach,
to the actual probabilities with zero frequencies associated with the alternatives for
which no echo is produced. This is a basic property of quantum mechanics as
predicted by the theory, and explains that the QASM simulator gets a zero measure
for those alternatives for which there is no echo.

Of course, if Bohm’s conjecture regarding the subquantum dynamics [9, 10] is
right, then, even for a sufficiently isolated circuit, small deviations coming from the
subquantum level may be present and lead to echoes that do not correspond to those
of the main computing circuit. In any other interpretation that does not assume a
subquantum dynamics and that takes the formalism to be exact, then, such devia-
tions, for an isolated system, are considered physically impossible.

While we cannot rule out Bohm’s subquantum hypothesis, we cannot also con-
firm it for now, since one never has a completely isolated circuit, and both conjec-
tural lines (Bohmian and others) agree that some deviations on physical devices will
always be present due to the environment.

The differences between the two conjectural lines, for quantum computer sci-
ence, are worth considering regarding quantum error correction; however, for now,
in regard to the technological issue of quantum error correction, we cannot yet
make use of Bohm’s conjecture that the quantum probabilities are average quantities
and that subquantum fluctuations may introduce small deviations that average out
at the quantum level to lead to the main experimental agreement with the theory.

Having provided, through the XOR problem, an example of how quantum
neural computation can be run experimentally on IBM’s quantum devices, we now
address artificial intelligence (AI) applications; we are interested in the theoretical

Figure 3.
Theoretical and experimental implementation of the XOR representation problem on the QASM simulator,
Tenerife and Melbourne devices, with 8192 shots.
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000j i þ 010j i þ 100j i þ 110j i

2

� �
¼

¼ s1s2s3h jÛ3
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The result in Eq. (25) means that the only probed final alternatives are those
where the XOR rule s3 ¼ s1 ⊕ s2 holds; that is, these are the only alternatives where
there is a nonzero amplitude.
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That is, the forward and back propagation is such that the echoes are only formed
for the cases where the rule s3 ¼ s1 ⊕ s2 holds, leading to a ¼ probability associated
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The Figure 3 shows the theoretical results from the above equations, the simu-
lation in the IBM quantum assembly language (QASM) simulator and the experi-
mental implementation on the Tenerife (ibmqx4) and Melbourne
(ibmq_16_melbourne) devices.

The QASM simulation expresses, as expected, the basic random results from the
repeated experiments, which is associated with the fundamental stochastic dynam-
ics underlying quantum processing; however, the simulator results agree with the
theoretical results, so that the basic XOR computation holds, that is, in each case,
the output neuron exhibits the firing pattern that is consistent with the XOR rule.
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One of the main problems in physical implementation of quantum computation
is the presence of errors. Indeed, the equations are derived for an isolated circuit so
that the only echoes are those matching the quantum circuit; therefore, in an isolated
QUANN, the stochastic results from repeated trials tend, in a frequentist approach,
to the actual probabilities with zero frequencies associated with the alternatives for
which no echo is produced. This is a basic property of quantum mechanics as
predicted by the theory, and explains that the QASM simulator gets a zero measure
for those alternatives for which there is no echo.

Of course, if Bohm’s conjecture regarding the subquantum dynamics [9, 10] is
right, then, even for a sufficiently isolated circuit, small deviations coming from the
subquantum level may be present and lead to echoes that do not correspond to those
of the main computing circuit. In any other interpretation that does not assume a
subquantum dynamics and that takes the formalism to be exact, then, such devia-
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firm it for now, since one never has a completely isolated circuit, and both conjec-
tural lines (Bohmian and others) agree that some deviations on physical devices will
always be present due to the environment.

The differences between the two conjectural lines, for quantum computer sci-
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and that subquantum fluctuations may introduce small deviations that average out
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Having provided, through the XOR problem, an example of how quantum
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and experimental implementation of a form of reinforcement learning using
QUANNs, namely the quantum neural reinforcement learning (QNRL) and its
connection to quantum robotics and quantum adaptive computation.

3.2 Quantum neural reinforcement learning, robotics, and quantum adaptive
computation

Quantum robotics involves the need for the development of quantum adaptive
algorithms that allow the robot to process alternatives and select appropriate
actions using quantum rules [6, 13–15], that is, to incorporate decisions in
quantum AI. In this context, there are two major types of artificial agents that
one may consider:

• classical agents that implement classical actions but whose cognitive substrate
is quantum computational;

• quantum agents that implement quantum operations on a quantum target.

The first type of agent is addressed as a classical robot dealing with problems at a
classical level but whose computational substrate is run via cloud access on a
quantum computer, thus, pointing toward a possible future where quantum com-
putation is incorporated on different robotic systems by way of the internet of
things and cloud-based access to quantum devices.

The second type of agents corresponds to quantum software robots (quantum
bots) that are implemented within a quantum computer and can be used for the
adaptive management of target quantum registers and for the purpose of more
complex adaptive computation [6, 13–15].

This second type of agents forms the basis for AI solutions aiming at intelligent
quantum computing systems with application in quantum internet technologies
and, also, possible quantum adaptive error correction.

This latter point (quantum adaptive error correction) must draw specifically on
the empirical implementation in physical devices, since it is this implementation
that may ultimately test the best adaptive algorithms for quantum error correction.
A basic direction, in this case, regards echo strengthening, in order to diminish the
echoes coming from alternatives that do not fall in an intended computation.

We do not address this last point here, but rather illustrate the implementation
of the first type of agent in the context of an adaptive computation of a classical
gamble, namely, optimal action selection in a classical gambling problem through
quantum neural reinforcement learning (QNRL).

In this case, the artificial agent is dealing with a classical problem and
implementing its decision processing on a QUANN, namely, the agent has an action
set described by 2d binary strings; following an evolutionary computation frame-
work, we use d-length genetic codes to address actions, so that the actions’ codes are
comprised of d loci, each with two alleles, 0 and 1.

Now, given each alternative action, the agent is offered a classical gamble on a
measurable space Ω;℘ð Þ where ℘ is a sigma-algebra of subsets of Ω and
Ω ¼ w0;w1;…;wN�1f g is the set of rewards for the gamble, which we consider, in
this example, to be discrete, although the results also apply to continuous reward
spaces and (classical) probability distributions.

Now, for each action genetic code s∈Ad
2 there is a corresponding gamble prob-

ability measure Ps that is offered to the agent, so that the conditional expected value
for the reward w can be calculated as:
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E wjs½ � ¼ ∑
N�1

n¼0
wnPs wn½ � (28)

The goal for the agent is to select the action that maximizes this conditional
expected reward, that is:

s∗ ¼ arg max
s

E wjs½ � (29)

To solve the optimization problem in Eq. (29), we use a variant of QNRL, which
applies modular networked learning [16], in the sense that, instead of a single
neural network for a single problem, we expand the cognitive architecture and
work with a modular system of neural networks.

Modular networked learning (MNL) was addressed in [16] and applied to
financial market prediction, where, instead of a single problem and a single target,
one uses an expanded cognitive architecture to work on multiple targets with a
module assigned to each target and possible links between the modules used to map
links between subproblems of a more complex problem.

For modular neural networks, the resulting cognitive architecture resembles an
artificial brain with specialized “brain regions” devoted to different tasks and con-
nections between different neural modules corresponding to connections between
different brain regions. In the present case, the agent’s “artificial brain” (as shown
in Figure 4) is comprised of three “brain regions” connected with each other for a
specific functionality, where the first module (first brain region) corresponds to the
action exploration region, the second module (second brain region) corresponds to
the reward processing region, and the third module to the decision region.

The connections between the modules follow the hierarchical process associated
with the necessary quantum reinforcement learning for each action, Figure 4
expresses this relation. The reinforcement learning, in this case, is a form of quan-
tum search, implemented on the above modular structure, that proceeds in two
stages: the exploration stage and the exploitation stage.

In the exploration stage, the agent’s first brain region, taking advantage of
quantum superposition, explores with equal weights, in parallel, each alternative
initial action and the second brain region processes the conditional expected
rewards; this last processing is based on optimizing quantum circuits [6], where

Figure 4.
Modular structure for the reward maximization problem.
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the unitary operator for the second brain region incorporates the optimization
itself.

The second brain region will work as a form of oracle in the remaining adaptive
computation and allows for the agent’s artificial brain to implement an optimal
expected reward-seeking dynamics.

Now, in the second phase of the exploration stage, the synaptic connections
from the first to the second brain region are activated, leading to a quantum
entangled dynamics between the two brain regions, where the first region acts as
the control (input layer) and the second as the target (output layer).

Thus, at the end of the exploration stage, the first two brain regions exhibit an
entangled dynamics. This is a basic point of quantum strategic cognition, in the
sense that the processing of the alternative courses of action is not localized in a
specific neuron or neurons, but rather it leads to quantum correlations between
different brain regions; these connections allow the artificial brain to efficiently
select the best course of action, from the evaluation of the alternatives and
rewards.

In the exploitation stage, the synaptic connections from the first brain region
(the action exploration region) to the third brain region (the decision region) are
activated first, so that the decision region is first processing the explored alternative
actions, becoming entangled with the action exploration region; then, the synaptic
connections between the reward processing region and the decision region are
activated for the conditional expected reward processing by the decision module. In
this way, the decision module makes the transition for the optimal action, consult-
ing the “oracle” (which is the reward processing module) only once.

The artificial brain thus takes advantage of quantum entanglement in order to
adaptively output the optimal action. Formalizing this dynamics, the artificial
brain is initialized in a nonfiring probe and response dynamics so that the initial
density is:

ρ̂0 ¼ 0j i 0h j⊗ 3d (30)

Now, we denote by s∗k the k-th bit in the string s∗, and use the following notation
for the maximization in Eq. (29) evaluated at the k-th bit:

s∗k ¼ arg max
s, k

E wjs½ � (31)

Using this notation, the first phase of the exploration stage is given by the
unitary operator:

Û1 ¼

¼ ÛWH
⊗ d ⊗ d

k¼1 cos

arg max
s, k

E wjs½ �

2
π

0
B@

1
CA1̂ � i sin

arg max
s, k

E wjs½ �

2
π

0
B@

1
CAσ̂2

0
B@

1
CA⊗ 1̂

⊗ d

(32)

The operator incorporates the optimization dynamics into the conditional quan-
tum gates’ parameters themselves. Since we have:

cos
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E wjs½ �

2
π
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E wjs½ �

2
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0
B@

1
CA 0j i þ sin

arg max
s, k

E wjs½ �

2
π

0
B@

1
CA 1j i ¼ s∗k

�� �

after the first phase of the of exploration stage, the resulting density is given by:

ρ̂1 ¼ Û1ρ̂0Û1
† ¼ þj i þh j⊗ d ⊗ s∗j i s∗h j⊗ 0j i 0h j⊗ d (34)

Thus, the neural field is probing, for the first brain region, each alternative
neural pattern (each alternative action) with equal weight, the response dynamics
also comes, for the first brain region, from each alternative neural pattern with
equal weight, which means that the echoes for the first brain region are independent
from the echoes for the remaining brain regions and show an equal intensity associ-
ated with each alternative neural pattern.

On the other hand, for the second brain region, the neural field exhibits a
reward-seeking dynamics that is adaptive with respect to the optimal action; that is,
the probing dynamics is directed toward the optimal action and the response
dynamics also comes from the optimal action, so that, due to the adaptive unitary
propagation, the second brain region is projecting over the optimum value, and this
is the only echo that it gets.

The third brain region still has a projective dynamics toward the nonfiring
neural activity.

Now, for the second phase of the exploration stage, we have the operator:

Û2 ¼ ∑
s∈Ad

2

sj i sh j⊗ d
k¼1 1� skð Þ1̂ þ skσ̂1
� �" #

⊗ 1̂
⊗ d

(35)

which leads to the density after the second phase of the exploration stage:

ρ̂2 ¼ Û2ρ̂1Û2
† ¼ ∑

r, s∈Ad
2

rj i sh j⊗ d
k¼1 s

∗
k ⊕ rk
�� �

s∗k ⊕ sk
� ��

2d
⊗ 0j i 0h j⊗ d (36)

Thus, after the second phase, the first and second brain regions exhibit an
entangled probe and response dynamics, where the neural field, for second brain
region, is effectively computing both the rewards and the explored actions.

Next comes the exploitation stage with the neural processing for the decision
module (the third brain region).

The first step of the exploitation stage is the processing of the initially explored
actions, by way of the operator:

Û3 ¼ ∑
s∈Ad

2

sj i sh j⊗ 1̂
⊗ d

⊗ d
k¼1 1� skð Þ1̂ þ skσ̂1
� �

(37)

which leads to the density:

ρ̂3 ¼ Û3ρ̂2Û3
† ¼ ∑

r, s∈Ad
2

rj i sh j⊗ d
k¼1 s

∗
k ⊕ rk
�� �

s∗k ⊕ sk
� ��⊗ rj i sh j

2d
(38)

That is, the probe and response dynamics for the third brain region are corre-
lated and coincident with the probe and response dynamics for the first brain
region, so that the third brain region is effectively computing the initially explored
actions.
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ρ̂0 ¼ 0j i 0h j⊗ 3d (30)

Now, we denote by s∗k the k-th bit in the string s∗, and use the following notation
for the maximization in Eq. (29) evaluated at the k-th bit:
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Using this notation, the first phase of the exploration stage is given by the
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The operator incorporates the optimization dynamics into the conditional quan-
tum gates’ parameters themselves. Since we have:
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after the first phase of the of exploration stage, the resulting density is given by:

ρ̂1 ¼ Û1ρ̂0Û1
† ¼ þj i þh j⊗ d ⊗ s∗j i s∗h j⊗ 0j i 0h j⊗ d (34)

Thus, the neural field is probing, for the first brain region, each alternative
neural pattern (each alternative action) with equal weight, the response dynamics
also comes, for the first brain region, from each alternative neural pattern with
equal weight, which means that the echoes for the first brain region are independent
from the echoes for the remaining brain regions and show an equal intensity associ-
ated with each alternative neural pattern.

On the other hand, for the second brain region, the neural field exhibits a
reward-seeking dynamics that is adaptive with respect to the optimal action; that is,
the probing dynamics is directed toward the optimal action and the response
dynamics also comes from the optimal action, so that, due to the adaptive unitary
propagation, the second brain region is projecting over the optimum value, and this
is the only echo that it gets.

The third brain region still has a projective dynamics toward the nonfiring
neural activity.
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which leads to the density after the second phase of the exploration stage:
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Thus, after the second phase, the first and second brain regions exhibit an
entangled probe and response dynamics, where the neural field, for second brain
region, is effectively computing both the rewards and the explored actions.

Next comes the exploitation stage with the neural processing for the decision
module (the third brain region).

The first step of the exploitation stage is the processing of the initially explored
actions, by way of the operator:
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which leads to the density:

ρ̂3 ¼ Û3ρ̂2Û3
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That is, the probe and response dynamics for the third brain region are corre-
lated and coincident with the probe and response dynamics for the first brain
region, so that the third brain region is effectively computing the initially explored
actions.
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Now, the second step for the third brain region results from the activation of the
synaptic links with the second brain region, leading to the conditional unitary
operator:
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(39)

Under this operator, we get the final density:
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Since we have the Boolean equality p⊕ q⊕ pð Þ ¼ q, this means that the above
density can be simplified, so that the neural field’s probe and response dynamics for
the third brain region projects over the optimal action:

ρ̂4 ¼ Û4ρ̂3Û4
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∗
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 !
⊗ s∗j i s∗h j (41)

The third brain region’s computation takes advantage of the entangled dynamics
between the first and second brain regions to learn the optimal action. For the final
density, while the first and second brain regions exhibit an entangled probe and
response dynamics, the third brain region is always projecting over the optimum.

It is important to stress how QNRL takes advantage of quantum entanglement
such that the neural field for the third brain region followed each alternative action
and then the reward processing dynamics to find the optimum in all these alterna-
tive paths, so that the optimal action is always followed by the agent.

As an example of the above problem, let us consider the case where we the
reward set is Ω ¼ �1; 1f g, and that there are two possible actions 0 and 1 leading,
respectively, to the classical probability measures P0 and P1, with P0 w ¼ 1½ � ¼ 0:4
and P1 w ¼ 1½ � ¼ 0:6; then, we get the probabilities of selection for each gamble and
device shown in Table 1, for 8192 repeated experiments.

As expected, the QASM simulator always selects the action 1, which is the best
performing action by the conditional expected payoff criterion. The Tenerife device
selects the correct action with a proportion of 0.778, while the Melbourne device
selects the correct action with a proportion of 0.647. If, instead of the above gamble
profile, we had P0 w ¼ 1½ � ¼ 0:6 and P1 w ¼ 1½ � ¼ 0:4, the optimal choice would be
the action 0; in this case, as shown in Table 2, the QASM simulator, again, selects
the correct action each time. The Tenerife device, in turn, selects the correct action
with a 0.857 frequency and the Melbourne device with a 0.814 frequency.

In Figure 5, we show the Melbourne device’s results4 when we have four actions
for the same rewards profile, and the probabilities are P00 w ¼ 1½ � ¼ 0:6,
P01 w ¼ 1½ � ¼ 0:4, P10 w ¼ 1½ � ¼ 0:8, and P11 w ¼ 1½ � ¼ 0:9, still setting the rewards to
Ω ¼ �1; 1f g.

In this case, if we run the experiment on the QASM backend, with 8192 shots,
we get the action encoded by the string 11 with relative frequency equal to 1, which

4 We can only use the Melbourne device since the Tenerife device does not have the required capacity in

terms of number of quantum registers.
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is the optimal action. If we run the experiment with the same number of shots on
the Melbourne device, then, as shown in Figure 5, the output 11 is still the dominant
action, however, with a proportion of 0.370, the second dominant action being non-
residual and with a value of 0.309 occurs for the output 10.

Therefore, the first qubit tends to be measured with the right pattern with a
proportion of 0.679 (0.309 + 0.370); the probability of the second qubit being
correct given that the first is correct is only about 0.54492 (0.370/0.679). This
suggests that the deviation may be due to the entanglement with the environment
significantly deviating the second qubit from the correct pattern.

The above algorithm was implemented using Qiskit and Python’s Object Ori-
ented Programming (OOP); the code, shown in the appendix, exemplifies how OOP
can be integrated with quantum computation for implementing quantum AI on any

Device Action

0 1

QASM 0 1

Tenerife 0.222 0.778

Melbourne 0.353 0.647

Table 1.
Results for two alternative actions using the QASM simulator, the Tenerife device (ibmqx4) and the Melbourne
device (ibmq_16_melbourne); in each case, 8192 shots were used, with P0 w ¼ 1½ � ¼ 0:4 and P1 w ¼ 1½ � ¼ 0:6.

Device Action

0 1

QASM 1 0

Tenerife 0.857 0.143

Melbourne 0.814 0.186

Table 2.
Results for two actions using the QASM simulator, the Tenerife device (ibmqx4) and the Melbourne device
(ibmq_16_melbourne); in each case, 8192 shots were used, with P0 w ¼ 1½ � ¼ 0:6 and P1 w ¼ 1½ � ¼ 0:4.

Figure 5.
Results for four actions using the Melbourne device (“ibmq_16_melbourne”), with 8192 shots used, and
probability profiles given by: P00 w ¼ 1½ � ¼ 0:6, P01 w ¼ 1½ � ¼ 0:4, P10 w ¼ 1½ � ¼ 0:8 and P11 w ¼ 1½ � ¼ 0:9.
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Now, the second step for the third brain region results from the activation of the
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we get the action encoded by the string 11 with relative frequency equal to 1, which
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is the optimal action. If we run the experiment with the same number of shots on
the Melbourne device, then, as shown in Figure 5, the output 11 is still the dominant
action, however, with a proportion of 0.370, the second dominant action being non-
residual and with a value of 0.309 occurs for the output 10.

Therefore, the first qubit tends to be measured with the right pattern with a
proportion of 0.679 (0.309 + 0.370); the probability of the second qubit being
correct given that the first is correct is only about 0.54492 (0.370/0.679). This
suggests that the deviation may be due to the entanglement with the environment
significantly deviating the second qubit from the correct pattern.

The above algorithm was implemented using Qiskit and Python’s Object Ori-
ented Programming (OOP); the code, shown in the appendix, exemplifies how OOP
can be integrated with quantum computation for implementing quantum AI on any
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device (ibmq_16_melbourne); in each case, 8192 shots were used, with P0 w ¼ 1½ � ¼ 0:4 and P1 w ¼ 1½ � ¼ 0:6.
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(ibmq_16_melbourne); in each case, 8192 shots were used, with P0 w ¼ 1½ � ¼ 0:6 and P1 w ¼ 1½ � ¼ 0:4.
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terminal, due to the cloud access to IBM’s quantum resources, constituting an
example of Quantum Object Oriented Programming (QOOP) using Qiskit.

The code defines the class “Agent” with an attribute that is the quantum neural
network; in this case, the attribute will be assigned a quantum circuit with the
required quantum and classical registers.

There are two methods that any instance of the class Agent must be able to
implement: the first method manages the cloud access to IBM’s resources, the
second method implements the action selection and the quantum algorithm.

The inputs for the first method are the accounts to be loaded, for the classical
computer to be able to access quantum computer via the cloud service, and the
backend code, which, by default, is set to the QASM simulator but can be changed
to any of the devices. The method returns the backend to be used.

The second method, for the action selection, has a structure that is specific to the
problem in question; that is, the agent is offered a set of rewards and probabilities
associated with each alternative action, and must choose the action that maximizes
the conditional expected reward.

Thus, the probabilities are known to the agent and form part of the gamble that
is offered to it; therefore, we are dealing with a decision problem under risk, and
wish to address how the agent’s QUANN can exhibit an adaptive computation with
respect to this problem.

While, in the above equations, the adaptive nature of the quantum neural circuit
was introduced in the unitary operator’s parameters themselves, the Python code
for the method must use the gamble’s inputs to make the quantum circuit adaptive;
that is, the method must be such that the agent designs its own cognitive architec-
ture (updating its qnnet attribute) and quantum circuit using the inputs to the
method, and, then, the agent must implement the cloud-based access to run, in
IBM’s quantum computers, the corresponding quantum algorithm.

The inputs for the method are, then, given by a list of probability distributions,
where each line corresponds to a different probability gamble profile associated
with each action, for instance, in the case of Table 1, the distributions are given by
([0.6, 0.4],[0.4, 0.6]). In the case of Tables 1 and 2 and Figure 5, the rewards list is
[�1, 1].

The other two inputs for the method are the backend used which allows the
agent that is instantiated in a classical computer to access via cloud the quantum
computer, using the backend code (backend_used) and repeatedly running the
algorithm on the respective device for a number of shots (num_shots).

The choose_action method’s step zero is the extraction of the expected values
and of the corresponding parameters for the adaptive gates, namely, the expected
values array associated with each action is extracted by the agent using the Python
library NumPy’s dot product applied to the distributions and rewards lists.

The number of actions and dimension d that determines the network size are
extracted from the length of the expected values array; then, the parameters for the
adaptive gates are extracted by applying NumPy’s argmax function on the expected
values array and then converting the resulting index in binary format (using
NumPy’s binary_repr). Since the indexes match the lexicographic order of binary
strings, the agent, thus, effectively extracts the parameters for the adaptive unitary
gates.

Now, the next step is to set up the QUANN, including the three modules, the
classical registers for the measurement of the final actions to be chosen and
updating the agent’s qnnet attribute, assigning it the corresponding Qiskit’s quan-
tum circuit object.

The last step implements the QNRL algorithm, following the inter-module links
as per the main equations introduced in this section, and defines the quantum

114

Artificial Intelligence - Applications in Medicine and Biology

measurement for the decision module, executing the algorithm on the backend
(taking advantage of the cloud access) and plotting the histogram to extract the
main experimental relative frequencies obtained from the repeated experiments
(the number of shots).

4. Conclusions

Cloud-based access to quantum computers opens up a major point: the empirical
testing of algorithms and the implementation of computer programs in a quantum
computational substrate has become feasible.

The IBM Q Experience constitutes an example of how a programmer can use
Python programming language and IBM’s Python Qiskit package for building pro-
grams that use quantum computation, limited only by the specific device resources,
namely the number of quantum registers available.

For quantum AI and machine learning, this provides a way to effectively bring
the algorithms from the theoretical level to the test level, allowing one to test drive
different quantum AI frameworks on actual quantum computers. The work devel-
oped in the previous sections allowed us to provide several examples of such an
implementation, with a few main points standing out:

• We showed how one can address IBM’s superconducting transmon devices as
examples of QUANNs, since, just as in a QUANN, the devices can only
implement the conditional gates depending on the network topology and the
directions of the links, which only allow for specific conditional gates to be
implemented; as an example, the Tenerife device is a bowtie feedforward
network, we cannot turn it into a recurrent network so that the gates have to be
implemented following specific directions of the links (this limit can be
experienced by any user that accesses the online resources and tries to visually
build circuits in IBM Q Experience homepage).

• We exemplified how basic Boolean functions’ representation, in this case the
XOR function, can be implemented on a (physical) quantum computer using
the cloud access to Tenerife and Melbourne devices and compared the
experimental results with the theoretical derivation; a relevant point of this is
that we only needed three quantum registers and no hidden layer to solve the
XOR problem, a point already raised about this function and generalized to
other functions in [4], regarding the theoretical efficiency of QUANNs.

• We addressed how a form of quantum adaptive computation, incorporating a
reward-seeking behavior and a variant of QNRL, can be implemented, in the
context of quantum robotics and AI, on different quantum devices.

The three main points above help strengthen two core arguments: the first is that
quantummachine learning can now be tested on actual quantum computers, making
it feasible to empirically test the algorithms; the second is that, in the near future,
with further advancements in quantum computation and quantum hardware, quan-
tum adaptive computation may be implemented on actual robots with a quantum
cognitive architecture that is based on cloud access to a quantum computer.

The present work addresses both core arguments by exemplifying how a form of
QNRL can be employed to implement quantum adaptive computation on a physical
QUANN with cloud-based access, employing QOOP and addressing, experimen-
tally, a decision under risk problem.
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terminal, due to the cloud access to IBM’s quantum resources, constituting an
example of Quantum Object Oriented Programming (QOOP) using Qiskit.
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Now, the next step is to set up the QUANN, including the three modules, the
classical registers for the measurement of the final actions to be chosen and
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tum circuit object.

The last step implements the QNRL algorithm, following the inter-module links
as per the main equations introduced in this section, and defines the quantum
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measurement for the decision module, executing the algorithm on the backend
(taking advantage of the cloud access) and plotting the histogram to extract the
main experimental relative frequencies obtained from the repeated experiments
(the number of shots).
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testing of algorithms and the implementation of computer programs in a quantum
computational substrate has become feasible.

The IBM Q Experience constitutes an example of how a programmer can use
Python programming language and IBM’s Python Qiskit package for building pro-
grams that use quantum computation, limited only by the specific device resources,
namely the number of quantum registers available.

For quantum AI and machine learning, this provides a way to effectively bring
the algorithms from the theoretical level to the test level, allowing one to test drive
different quantum AI frameworks on actual quantum computers. The work devel-
oped in the previous sections allowed us to provide several examples of such an
implementation, with a few main points standing out:
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• We exemplified how basic Boolean functions’ representation, in this case the
XOR function, can be implemented on a (physical) quantum computer using
the cloud access to Tenerife and Melbourne devices and compared the
experimental results with the theoretical derivation; a relevant point of this is
that we only needed three quantum registers and no hidden layer to solve the
XOR problem, a point already raised about this function and generalized to
other functions in [4], regarding the theoretical efficiency of QUANNs.

• We addressed how a form of quantum adaptive computation, incorporating a
reward-seeking behavior and a variant of QNRL, can be implemented, in the
context of quantum robotics and AI, on different quantum devices.

The three main points above help strengthen two core arguments: the first is that
quantummachine learning can now be tested on actual quantum computers, making
it feasible to empirically test the algorithms; the second is that, in the near future,
with further advancements in quantum computation and quantum hardware, quan-
tum adaptive computation may be implemented on actual robots with a quantum
cognitive architecture that is based on cloud access to a quantum computer.

The present work addresses both core arguments by exemplifying how a form of
QNRL can be employed to implement quantum adaptive computation on a physical
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A. Python Code for Quantum Neural Reinforcement Learning Problem.

# Import NumPy and Qiskit’s main functionalities
import numpy as np
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit import execute
from qiskit import IBMQ
from qiskit.tools.visualization import plot_histogram
class Agent:
def __init__(self, qnnet):
self.qnnet = qnnet # agent’s Quantum Neural Network
def get_backend(self,
load_accounts = True, # if accounts are to be loaded
backend_code = ‘ibmq_qasm_simulator’ # backend code
):
# Load IBM account if needed
if load_accounts == True:
IBMQ.load_accounts()
# Get the backend to use in the computation
backend_used = IBMQ.get_backend(backend_code)
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num_shots): # number of shots to run in quantum computer
# Step 0: get the expected values and unitary parameters:
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Chapter 6

Using Artificial Intelligence and 
Big Data-Based Documents to 
Optimize Medical Coding
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Abstract

Clinical information systems (CISs) in some hospitals streamline the data 
management from data warehouses. These warehouses contain heterogeneous 
information from all medical specialties that offer patient care services. It is increas-
ingly difficult to manage large volumes of data in a specific clinical context such as 
quality coding of medical services. The document-based not only SQL (NoSQL) 
model can provide an accessible, extensive, and robust coding data management 
framework while maintaining certain flexibility. This paper focuses on the design 
and implementation of a big data-coding warehouse, and it also defines the rules 
to convert a conceptual model of coding into a document-oriented logical model. 
Using that model, we implemented and analyzed a big data-coding warehouse 
via the MongoDB database and evaluated it using data research mono- and multi-
criteria and then calculated the precision of our model.

Keywords: diagnostic coding, clinical decision support, decision-making, big data, 
optimization, medical diagnostic computing

1. Introduction

Care processes are becoming increasingly complex with the growth of techno-
logical, biological, and genetic knowledge [1]. This leads naturally to a subdivision 
of medical specialties, with increasing patient’s care costs. Such subdivision, in view 
of the multiplicity of pathologies of certain patients, complicates diagnosis coding 
measures, regardless of the coding plan used in clinical and medical-economic 
settings. It was assumed that incorrect coding of medical information caused, on 
average, a 14.7% hospital revenue loss per patient [2]. More than three-quarters of 
these errors are caused by clinicians. These numbers are explained by the intricacy 
of the classifications and nomenclatures used to code medical acts [3]. In addition, 
they make it difficult for medical officers to understand the process involved in the 
coding of this activity [4]. In this context, the establishment of clinical informa-
tion systems in hospitals can be a key factor in optimizing the coding process of 
medical information and therefore the expenses of healthcare. The successful 
establishment of the latter is not done without challenge. In fact, its deployment is 
based on the data warehouse, which plays an important role in the collection and 
analysis of large volume of data for decision support. Generally, a data warehouse is 
often implanted under the relational database management systems (DBMS). The 
latter obtrudes itself by the richness of their functionality and performance of their 
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Clinical information systems (CISs) in some hospitals streamline the data 
management from data warehouses. These warehouses contain heterogeneous 
information from all medical specialties that offer patient care services. It is increas-
ingly difficult to manage large volumes of data in a specific clinical context such as 
quality coding of medical services. The document-based not only SQL (NoSQL) 
model can provide an accessible, extensive, and robust coding data management 
framework while maintaining certain flexibility. This paper focuses on the design 
and implementation of a big data-coding warehouse, and it also defines the rules 
to convert a conceptual model of coding into a document-oriented logical model. 
Using that model, we implemented and analyzed a big data-coding warehouse 
via the MongoDB database and evaluated it using data research mono- and multi-
criteria and then calculated the precision of our model.
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1. Introduction

Care processes are becoming increasingly complex with the growth of techno-
logical, biological, and genetic knowledge [1]. This leads naturally to a subdivision 
of medical specialties, with increasing patient’s care costs. Such subdivision, in view 
of the multiplicity of pathologies of certain patients, complicates diagnosis coding 
measures, regardless of the coding plan used in clinical and medical-economic 
settings. It was assumed that incorrect coding of medical information caused, on 
average, a 14.7% hospital revenue loss per patient [2]. More than three-quarters of 
these errors are caused by clinicians. These numbers are explained by the intricacy 
of the classifications and nomenclatures used to code medical acts [3]. In addition, 
they make it difficult for medical officers to understand the process involved in the 
coding of this activity [4]. In this context, the establishment of clinical informa-
tion systems in hospitals can be a key factor in optimizing the coding process of 
medical information and therefore the expenses of healthcare. The successful 
establishment of the latter is not done without challenge. In fact, its deployment is 
based on the data warehouse, which plays an important role in the collection and 
analysis of large volume of data for decision support. Generally, a data warehouse is 
often implanted under the relational database management systems (DBMS). The 
latter obtrudes itself by the richness of their functionality and performance of their 
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request. Nevertheless, they are inadequate to build distributed data warehouses and 
needful to cope with the scalability of storage space and the increase of hospital 
stay data [5]. In addition, execution of decision requests demeans the performance 
of data warehouses in DBMS [6]. In the context of the Georges Pompidou European 
Hospital, the data warehouse is rapidly growing and contains structured (ICD-10 
code, etc.) and unstructured (natural language text, etc.) data of stays from differ-
ent medical specialties. These data are scattered and do not offer direct access to the 
medical act coding data based on hierarchies of the 10th revision of International 
Classification of Disease (ICD-10) for diagnostics as well as the French Common 
Classification of Medical Act (CCMA) for medical procedures. Moreover, the com-
plexity of the classification in a coding process poses a major problem for sub coding 
(code forgotten) and over coding (addition of codes not justified) of hospital stays 
[7]. These challenges can be addressed by providing physicians with a big data stor-
age environment dedicated to coding hospital stays whose particularity is to combine 
their size (volume), frequency of updates (velocity), or diversity (variety) [8].  
Volume, variety, and velocity, often referred to as the three Vs, capture the real 
meaning of big data [9].

Because big data bring many attractive opportunities to knowledge management 
[9, 10], the aim of this study is to model the coding data of hospital stays extracted 
from a data warehouse and implement them in a document-oriented NoSQL data 
model capable of storing a large distributed big data set. This study sought also 
to design a big data-coding warehouse efficient for medical coding according to 
a NoSQL document-oriented data model, which will allow to obtain the optimal 
combination of codes (diagnoses and acts) for any given reason for care.

2. Methods

This section describes the methodology used to design, implement, and evaluate 
our data model. Generally, there is a need for a semantic data model to define how 
data will be structured and related in the database [11], and it is generally acquired 
that Unified Modeling Language (UML) meets this requirement [12]. Therefore, 
we first used the formalism of UML [13, 14] to build a conceptual model describing 
big data of hospital stays. Then, the corresponding rules were used to convert the 
conceptual model to NoSQL database. In this paper, we choose to focus on docu-
ment-oriented NoSQL model, namely, MongoDB. This model developed since 2007 
by the company of the same name is considered to be the most efficient in terms 
of performance, for multi-criteria access queries. Finally, the document-oriented 
model of the big data warehouse was described in JavaScript Object Notation 
(JSON) format and implemented in the MongoDB database. Subsequently, decision 
requests were used to evaluate the model.

2.1 Data source

The CIS grouping software for Georges Pompidou European Hospital was used 
to extract the base of hospital summary report (HSR) from the digestive, oncologic, 
and orthopedic surgery units. This base of HSR contains a year of hospital stays 
coded and validated by the department of medical information. Each HSR has 
medical benefit entities and temporal and administrative patients’ data. The entity 
of medical benefits represented by the medical act and diagnostics appears in three 
different types of diagnoses: the associated significant diagnosis (ASD), principal 
diagnosis (PD), and related diagnosis (RD). Moreover, there are various types of 
acts such as a surgery act and medical technical act.
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2.2 Conceptual data model

The goal of a document-oriented database is the representation of more or less 
complex information that satisfies the needs of flexibility, richness of structure, etc. 
Modeling of a big data-coding warehouse is a function of the hospital stay’s struc-
turing elements. The hospital stay is a document represented by a pair (key, value) 
and has a tree-shaped structure. The stay entity is the root of the tree. The entities 
(key) and values for coming up with a conceptual model (Figure 1) were designed 
from the base of HSR. The main entities were defined as an object class that con-
sisted of stay, patient, movement of the patient between the different clinical unit 
entities, and terminology. The medical benefit entity is a sub-document of stay 
entities in which the related act and diagnosis are sub-entities.

The entities have a heterogeneous structure and multiple values. The relation-
ship between them is of cardinality “n,m.” To ensure that they are unified, it is 
important to have a flexible open data schema whose structure can be extensible 
and is able to adapt to more or less important variations. The rank of medical acts, 
as well as the rank of diagnoses, can easily complete the corresponding type of diag-
nosis and acts. The rule used to convert the conceptual model to a document-based 
model is based on the tree model so that the code associates the structure  
(the tree) and the content (the text in the sheets).

2.3 Correspondence rules with the conceptual/logical level

The coding data are arranged in rows and columns through the big data ware-
house model. It is structured into the nested documents in document-oriented 
NoSQL. The entity stay is a set of facts (patient, movement, medical benefit, etc.) 
where an instance turns into a nested document. Every sub-entity (movement, 
medical benefit, etc.) is changed into a nested document. Every sub-sub-entity 
(Diag, Act, etc.) is changed into a nested document. Every entity also changes to 
a nested document held in the same document as the fact instance. A stay that has 
only one main diagnosis is converted into a document that is turned into only one 
sub-entity Diag. The attributes (key, values) of the other sub-entities are null. There 
is no preservation of hierarchical organization.

2.4 Document-based model

Under the prism of rules published in Section 2.3, the document-oriented model 
considers each hospital stay as a key associated with a value. The values can be either 

Figure 1. 
Hospital stay conceptual data model.
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request. Nevertheless, they are inadequate to build distributed data warehouses and 
needful to cope with the scalability of storage space and the increase of hospital 
stay data [5]. In addition, execution of decision requests demeans the performance 
of data warehouses in DBMS [6]. In the context of the Georges Pompidou European 
Hospital, the data warehouse is rapidly growing and contains structured (ICD-10 
code, etc.) and unstructured (natural language text, etc.) data of stays from differ-
ent medical specialties. These data are scattered and do not offer direct access to the 
medical act coding data based on hierarchies of the 10th revision of International 
Classification of Disease (ICD-10) for diagnostics as well as the French Common 
Classification of Medical Act (CCMA) for medical procedures. Moreover, the com-
plexity of the classification in a coding process poses a major problem for sub coding 
(code forgotten) and over coding (addition of codes not justified) of hospital stays 
[7]. These challenges can be addressed by providing physicians with a big data stor-
age environment dedicated to coding hospital stays whose particularity is to combine 
their size (volume), frequency of updates (velocity), or diversity (variety) [8].  
Volume, variety, and velocity, often referred to as the three Vs, capture the real 
meaning of big data [9].

Because big data bring many attractive opportunities to knowledge management 
[9, 10], the aim of this study is to model the coding data of hospital stays extracted 
from a data warehouse and implement them in a document-oriented NoSQL data 
model capable of storing a large distributed big data set. This study sought also 
to design a big data-coding warehouse efficient for medical coding according to 
a NoSQL document-oriented data model, which will allow to obtain the optimal 
combination of codes (diagnoses and acts) for any given reason for care.

2. Methods

This section describes the methodology used to design, implement, and evaluate 
our data model. Generally, there is a need for a semantic data model to define how 
data will be structured and related in the database [11], and it is generally acquired 
that Unified Modeling Language (UML) meets this requirement [12]. Therefore, 
we first used the formalism of UML [13, 14] to build a conceptual model describing 
big data of hospital stays. Then, the corresponding rules were used to convert the 
conceptual model to NoSQL database. In this paper, we choose to focus on docu-
ment-oriented NoSQL model, namely, MongoDB. This model developed since 2007 
by the company of the same name is considered to be the most efficient in terms 
of performance, for multi-criteria access queries. Finally, the document-oriented 
model of the big data warehouse was described in JavaScript Object Notation 
(JSON) format and implemented in the MongoDB database. Subsequently, decision 
requests were used to evaluate the model.

2.1 Data source

The CIS grouping software for Georges Pompidou European Hospital was used 
to extract the base of hospital summary report (HSR) from the digestive, oncologic, 
and orthopedic surgery units. This base of HSR contains a year of hospital stays 
coded and validated by the department of medical information. Each HSR has 
medical benefit entities and temporal and administrative patients’ data. The entity 
of medical benefits represented by the medical act and diagnostics appears in three 
different types of diagnoses: the associated significant diagnosis (ASD), principal 
diagnosis (PD), and related diagnosis (RD). Moreover, there are various types of 
acts such as a surgery act and medical technical act.

121

Using Artificial Intelligence and Big Data-Based Documents to Optimize Medical Coding
DOI: http://dx.doi.org/10.5772/intechopen.85749

2.2 Conceptual data model

The goal of a document-oriented database is the representation of more or less 
complex information that satisfies the needs of flexibility, richness of structure, etc. 
Modeling of a big data-coding warehouse is a function of the hospital stay’s struc-
turing elements. The hospital stay is a document represented by a pair (key, value) 
and has a tree-shaped structure. The stay entity is the root of the tree. The entities 
(key) and values for coming up with a conceptual model (Figure 1) were designed 
from the base of HSR. The main entities were defined as an object class that con-
sisted of stay, patient, movement of the patient between the different clinical unit 
entities, and terminology. The medical benefit entity is a sub-document of stay 
entities in which the related act and diagnosis are sub-entities.

The entities have a heterogeneous structure and multiple values. The relation-
ship between them is of cardinality “n,m.” To ensure that they are unified, it is 
important to have a flexible open data schema whose structure can be extensible 
and is able to adapt to more or less important variations. The rank of medical acts, 
as well as the rank of diagnoses, can easily complete the corresponding type of diag-
nosis and acts. The rule used to convert the conceptual model to a document-based 
model is based on the tree model so that the code associates the structure  
(the tree) and the content (the text in the sheets).

2.3 Correspondence rules with the conceptual/logical level

The coding data are arranged in rows and columns through the big data ware-
house model. It is structured into the nested documents in document-oriented 
NoSQL. The entity stay is a set of facts (patient, movement, medical benefit, etc.) 
where an instance turns into a nested document. Every sub-entity (movement, 
medical benefit, etc.) is changed into a nested document. Every sub-sub-entity 
(Diag, Act, etc.) is changed into a nested document. Every entity also changes to 
a nested document held in the same document as the fact instance. A stay that has 
only one main diagnosis is converted into a document that is turned into only one 
sub-entity Diag. The attributes (key, values) of the other sub-entities are null. There 
is no preservation of hierarchical organization.

2.4 Document-based model

Under the prism of rules published in Section 2.3, the document-oriented model 
considers each hospital stay as a key associated with a value. The values can be either 

Figure 1. 
Hospital stay conceptual data model.



Artificial Intelligence - Applications in Medicine and Biology

122

atomic value (date of stay) or other documents (patient, medical benefit, etc.). The 
base of HSRs is a collection of hospital stays, and every stay corresponds to a single 
entry of this base. The collection includes documents for certain entities, shown 
through their structure, such as name of the key (medical unit, patients, etc.) and its 
content (values of the keys (integer (id stay), string (patients, ICD-10), etc.)). The 
rest of the entities are shown through structural imbrications, such as the medical 
benefit that is a medical act value aggregate. The entities “medical benefits” refer to 
an aggregate of a key (diag), which is also an aggregate of (value is ICD-10 code, key 
is codediag). A document can be defined as a hierarchy of elements that can act as 
atomic values or nested documents shown by a new set of pairs (value, attribute). 
There is a simple attribute in the HSR, which makes these values to atomic. The 
values of compounded attributes are nested documents, as shown in Figure 2.

The relationship between different entities is translated in the form of nesting. 
A document model uses the specific NoSQL request language to query in width and 
depth all entities present in the collection. A multi- and mono-criteria request can 
be carried out. An example could be as follows: for a given diagnostic and the type 
of diagnostic, give all associated diagnostic codes and act codes.

2.5 Evaluation

To evaluate our model, framework MongoDB was deployed in only one data 
node. The system resources used were (8Go RAM, processor i5–4 heats 2 Terabytes 
hard disk). MongoDB is a key-value system using document-oriented storage. The 
volume of data received by one node for the test is 1.6 million documents represent-
ing 1 year of the hospital stays. The volume of documents can be worm at 40 times 
the initial volume. These data are divided into two major groups: encoded and 
rejected data. The interest of the rejected data is to expand the database, introduce 
the noise, and have a case of associations of diagnostic code to avoid. Two evalua-
tions were performed. The first one was performed by calculating the model perfor-
mance (multi-criteria request (Query #2), mono’s (Query #1) elapsed time), and 
the second one was performed by calculating the precision and recall of the model. 
The initial step was to create two main groups of requests arranged by dimensional-
ity and selectivity validated by the business process, which can be used in a real 
context. Dimensionality is the value of different keys of the entities (“typediag” 
and/or “typeact”). Selectivity refers to the degree of data elimination through an 
aggregate function on the search attribute (code = “CCMA code or ICD-10 code”).

Figure 2. 
Document-based schema.
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Query #1 is expressed as follows: for a given diagnosis or act codes, find all 
associated code and their corresponding type (typediag, typeact). Three functional 
use cases were used. The first one concerns the specific case of Z codes as part of 
the entire ICD-10 code set. Z codes are diagnosis codes used for situations where 
patients Do not have a known disorder and required a related code to precise the 
real medical. The second one concerns the code of another chapter of ICD-10, and 
the last concerns the CCMA act code. Query #2 is expressed as follows: for a given 
diagnosis and act codes, find all associated codes and their corresponding type 
(typediag, typeact). Second, through cross-validation, random evaluation is used 
in measuring the impact of a distributed data storage device on medical procedures’ 
coding optimization. This method provides an opportunity for inserting the process 
of selection codes of medical acts in a random draw. There are two groups that arise 
from this draw: an oriented test group with 20% sampling size and 50% of the 
volume of the data warehouse. The second is a control group with a 50% sampling 
size and 80% of the data warehouse volume of coding derived by the medical 
information department. Ten samplings with the same percentage were generated 
to perform the tests. We used the request previously described to compute the pre-
cision and recall of the model. Precision is the ratio between the number of correct 
associations and the total number of associations, and the ratio is the number of 
correct associations to the number of all associations to be corrected.

3. Results

The document-oriented model of the big data-coding warehouse was imple-
mented in the MongoDB database. Ten separate single-criteria queries were exe-
cuted with an elapsed time between 75 and 90 milliseconds (ms), while an elapsed 
time between 80 and 110 ms was obtained during the execution of 10 separate 
multi-criteria queries.

Query #1 requests the data warehouse to display all association codes, in which 
the diagnosis code is equal to “Z092” in the ICD-10 coding system, corresponding 
to “the pharmacotherapy for other conditions.” Associated codes obtained are the 
associated diagnostic code “E780” used to code “pure hypercholesterolemia” and 
the act code “EBQM002” used to code “Doppler ultrasonography of extracranial 
cervicocephalic arteries, with Doppler ultrasound of lower extremity arteries.” The 
elapsed time of this request is 90 ms (Table 1).

Table 1 presents results of five sequences of request of Query #1 where 
requested code represents the code to be queried, associated code represents the 
obtained associated codes, typology represents different types of diagnostic, and 
elapsed time represents the execution time of request.

Query #2 requests the data warehouse to display all association codes, in which 
the type of diagnosis is the main diagnosis and the diagnosis code is equal to “I51.4” 
in the ICD-10 coding system, corresponding to “cardiomegaly.” The response time 
obtained with no index is approximately 1900 ms. The response time obtained with 
a diagnostic code indexed is approximately 110 ms. The associated codes are “I080” 
corresponding to “disorders of mitral and aortic valves” and “D721” corresponding 
to “eosinophilia,” and associated act is “DEQP003” corresponding to “electrocardi-
ography at least 12 leads” (Table 2).

Table 2 presents results of five sequences of request of Query #2 where 
requested code represents the code to be queried and its typologies, associated 
code represents obtained associated codes (diagnostic and act), typology repre-
sents different types of diagnostic, and elapsed time represents the execution time 
of request.
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size and 80% of the data warehouse volume of coding derived by the medical 
information department. Ten samplings with the same percentage were generated 
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associations and the total number of associations, and the ratio is the number of 
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3. Results

The document-oriented model of the big data-coding warehouse was imple-
mented in the MongoDB database. Ten separate single-criteria queries were exe-
cuted with an elapsed time between 75 and 90 milliseconds (ms), while an elapsed 
time between 80 and 110 ms was obtained during the execution of 10 separate 
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Query #1 requests the data warehouse to display all association codes, in which 
the diagnosis code is equal to “Z092” in the ICD-10 coding system, corresponding 
to “the pharmacotherapy for other conditions.” Associated codes obtained are the 
associated diagnostic code “E780” used to code “pure hypercholesterolemia” and 
the act code “EBQM002” used to code “Doppler ultrasonography of extracranial 
cervicocephalic arteries, with Doppler ultrasound of lower extremity arteries.” The 
elapsed time of this request is 90 ms (Table 1).

Table 1 presents results of five sequences of request of Query #1 where 
requested code represents the code to be queried, associated code represents the 
obtained associated codes, typology represents different types of diagnostic, and 
elapsed time represents the execution time of request.

Query #2 requests the data warehouse to display all association codes, in which 
the type of diagnosis is the main diagnosis and the diagnosis code is equal to “I51.4” 
in the ICD-10 coding system, corresponding to “cardiomegaly.” The response time 
obtained with no index is approximately 1900 ms. The response time obtained with 
a diagnostic code indexed is approximately 110 ms. The associated codes are “I080” 
corresponding to “disorders of mitral and aortic valves” and “D721” corresponding 
to “eosinophilia,” and associated act is “DEQP003” corresponding to “electrocardi-
ography at least 12 leads” (Table 2).

Table 2 presents results of five sequences of request of Query #2 where 
requested code represents the code to be queried and its typologies, associated 
code represents obtained associated codes (diagnostic and act), typology repre-
sents different types of diagnostic, and elapsed time represents the execution time 
of request.
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The list of associated codes present in Tables 1 and 2 is not exhaustive; it can be 
extended to more than 100. We make the choice to present a small number.

These results show that the main coding rules have been respected. The associ-
ated diagnosis must always be coupled to Z code declared as the main diagnostic 
and associated acts linked to disease declared as main diagnostic. The presence of 
related diagnostic demonstrates the quality of associated code containing in the 
data warehouse.

Query #1 and Query #2 were used to compute the precision and the robustness 
of the model (Table 3).

Based on the observation, the least selective (more lines selected) queries 
required a long execution time. According to our evaluation, we observed that the 
system is bijective and corresponds to the reality of the coding of clinical activity of 
HEGP. This suggests that we can, from the document-oriented model, recover the 
initial encoding data and vice versa. In this regard, it is apparent that everything 
that has been set in the big data warehouse corresponds to the reality of the patient. 
The data warehouse gives the possibility of being more aware of the coding per-
formed in the previous year.

Based on the requests defined above and executed using the learn/control 
database, Table 1 shows the results of the evaluation provided by the big data 

Requested code/typology Associated code Typology Elapsed time (ms)

I49.9/dp Not associated code No typology 75

Z09.8/dp Q21.3 (PD, RD) or (PD, ASD) 85

(Z09.8/dp) and (N185/das) Z992.1, D638, and JVJB001 PD, RD, and ASD 89

E26.0/dr Z71.3, D35.0, and DZQM006 PD, RD, ASD, and/or 
ACT

87

EQQP008 N18.5, I70.2, and Z098 ACT, PD, RD, and ASD

Table 2. 
Associations of diagnosis codes according to their typology and their elapsed time.

Requested 
code

Associated code Typology Elapsed time (ms)

I49.9 Not associated code No typology 75

Z09.8 D35.0 (PD, RD) or (PD, ASD) 85

Z09.8 EBQM002, E78.0 PD, RD, ASD 90

E660.0 I10, N17.9 PD, RD, ASD 87

DEQP003 Z864, I708, E70.8 ACT, PD, RD, ASD 90

Table 1. 
Associations of diagnosis codes according to their typology and their elapsed time.

Learn/control DB (%) Precision (%) Recall (%)

Mono-criteria 50/50 40 25

Mono-criteria 80/20 92 87

Multi-criteria 80/20 80 70

Table 3. 
Evaluation results of the big data model.
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model. The 50/50% precision test was 40 and 25% for recall versus 92/87% for the 
mono-criteria (Query #1) request. For the multi-criteria (Query #2) request, it was 
80/70% for the 80/20% test. Although there are some errors in the test, the sensitiv-
ity of conformity computation was 0.8, and its specification was 0.7. Based on this 
result, the level of accuracy depended on the number of associated diagnostic codes 
present in the association of codes.

4. Discussion and conclusion

This study investigated the process for implementation of a big data-coding 
warehouse for coding support in a document-oriented NoSQL system. We 
observed that flexibility is the particularity of this model as it allows inserting 
redundancy into the database. A stay with four ASD codes and one PD code is split 
into four documents. The duplicated line is high when there are more associated 
diagnoses and medical acts. Therefore, presenting one entity is easier in the entire 
document. The case of “stay” with only a primary diagnosis, one or more associ-
ated diagnosis, and/or without a medical act can be easily inserted in the database 
without the need to implement a generic code to replace the missing one. In most 
cases, the addition of a generic code is meant to let the physician understand that 
there is no need of associating a diagnostic code used with the medical act. This 
system is advantageous since there is complete information because the issue of 
missing data is solved. Therefore, the information can be handled without any 
need to join. Only one reading is needed to get all information. If there is no link 
between the documents, it is possible to arrange the collection without any chal-
lenge. This is an essential part of the construction of a big data-coding warehouse. 
However, one of the disadvantages associated with this model is that the hierar-
chization of access does not allow access to ICD-10 code information without going 
through the type of medical benefit, in addition to the redundancy; there are two 
pseudorandom choices that provide effective results, while the hazardous choice 
(50/50%) produces wrong results. To generate huge volumes of data, we used 
the same “HSR base” and swapped the name ICD-10 by the concept “Obicd10’’  
and CCMA by the concept “Obccam” (Ob as rejected). The rejected data were 
used to show that, in the optimization process of coding, we learn about as many 
accepted cases as rejected cases. The major interest in building the coding aid data 
warehouse is to use the huge volumes of coding information from a large number 
of hospitals because it is more exhaustive. The model that was implemented allows 
obtaining an optimal combination of codes (diagnosis, acts) for a given reason 
for care. Because of the way they are structured, relational databases usually scale 
vertically—a single server has to host the entire database to ensure reliability and 
continuous availability of data. This gets expensive quickly, places limits on scale, 
and creates a relatively small number of failure points for database infrastructure. 
It’s why we propose our model to solve this problem. Indeed, our coding aid data 
warehouse scales horizontally—several servers host the entire database, allow 
grouping of all the relevant data for the diagnosis and medical coding in a generic 
way, to enrich the coding data by crossing the coding information from other 
hospital sources and to allow for easier exploration of the coding code associations. 
It’s a system that is subject to expertise. This fact Does not remove the richness of 
Clinical Data Warehouse (CDW). Our contribution consists of building a specific 
CDW-based document to propose an “in silico” test framework to enhance the 
efficacy of algorithms used to optimize coding as an example of algorithm based 
on manual decision-making paper [15] and various natural language processing 
(NLP) tools associated with the EHR in−/outpatient summary reports [16].
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model. The 50/50% precision test was 40 and 25% for recall versus 92/87% for the 
mono-criteria (Query #1) request. For the multi-criteria (Query #2) request, it was 
80/70% for the 80/20% test. Although there are some errors in the test, the sensitiv-
ity of conformity computation was 0.8, and its specification was 0.7. Based on this 
result, the level of accuracy depended on the number of associated diagnostic codes 
present in the association of codes.

4. Discussion and conclusion

This study investigated the process for implementation of a big data-coding 
warehouse for coding support in a document-oriented NoSQL system. We 
observed that flexibility is the particularity of this model as it allows inserting 
redundancy into the database. A stay with four ASD codes and one PD code is split 
into four documents. The duplicated line is high when there are more associated 
diagnoses and medical acts. Therefore, presenting one entity is easier in the entire 
document. The case of “stay” with only a primary diagnosis, one or more associ-
ated diagnosis, and/or without a medical act can be easily inserted in the database 
without the need to implement a generic code to replace the missing one. In most 
cases, the addition of a generic code is meant to let the physician understand that 
there is no need of associating a diagnostic code used with the medical act. This 
system is advantageous since there is complete information because the issue of 
missing data is solved. Therefore, the information can be handled without any 
need to join. Only one reading is needed to get all information. If there is no link 
between the documents, it is possible to arrange the collection without any chal-
lenge. This is an essential part of the construction of a big data-coding warehouse. 
However, one of the disadvantages associated with this model is that the hierar-
chization of access does not allow access to ICD-10 code information without going 
through the type of medical benefit, in addition to the redundancy; there are two 
pseudorandom choices that provide effective results, while the hazardous choice 
(50/50%) produces wrong results. To generate huge volumes of data, we used 
the same “HSR base” and swapped the name ICD-10 by the concept “Obicd10’’  
and CCMA by the concept “Obccam” (Ob as rejected). The rejected data were 
used to show that, in the optimization process of coding, we learn about as many 
accepted cases as rejected cases. The major interest in building the coding aid data 
warehouse is to use the huge volumes of coding information from a large number 
of hospitals because it is more exhaustive. The model that was implemented allows 
obtaining an optimal combination of codes (diagnosis, acts) for a given reason 
for care. Because of the way they are structured, relational databases usually scale 
vertically—a single server has to host the entire database to ensure reliability and 
continuous availability of data. This gets expensive quickly, places limits on scale, 
and creates a relatively small number of failure points for database infrastructure. 
It’s why we propose our model to solve this problem. Indeed, our coding aid data 
warehouse scales horizontally—several servers host the entire database, allow 
grouping of all the relevant data for the diagnosis and medical coding in a generic 
way, to enrich the coding data by crossing the coding information from other 
hospital sources and to allow for easier exploration of the coding code associations. 
It’s a system that is subject to expertise. This fact Does not remove the richness of 
Clinical Data Warehouse (CDW). Our contribution consists of building a specific 
CDW-based document to propose an “in silico” test framework to enhance the 
efficacy of algorithms used to optimize coding as an example of algorithm based 
on manual decision-making paper [15] and various natural language processing 
(NLP) tools associated with the EHR in−/outpatient summary reports [16].
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