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Chapter 1

Using Wavelets for Gait and Arm 
Swing Analysis
Yor Jaggy Castaño-Pino, Andrés Navarro, Beatriz Muñoz  
and Jorge Luis Orozco

Abstract

The human walking pattern can be affected by different factors such as accidents, 
transplants, or diseases, like Parkinson’s disease, which affects motor and mental 
functions. In motor terms, this disease can generate alterations such as tremors, festi-
nation, rigidity, unbalance, slowness, and freezing of gait. Additionally, it is esti-
mated that for the year 2040, the number of people with Parkinson’s in the world will 
be between 12.9 and 14.2 million people. These alarming figures make Parkinson’s 
disease an important focus of attention. In this chapter, we present contributions 
that suggest wavelet techniques as a useful tool to perform a gait and arm swing 
analysis; this represents an important approximation that can contribute to describe 
and differentiate people with Parkinson’s disease in early stages of the disease.

Keywords: wavelet, gait analysis, arm swing, Parkinson diagnose, 
spatiotemporal variables

1. Introduction

Aging is associated with numerous physiological problems that affect the brain. 
Some of these problems occur in the context of aging, such as cognitive deteriora-
tion and motor involvement, and often have an important impact on the central 
nervous system [1]. The causes of these deficits can be multifactorial and involve 
the central nervous system, the sensory receptors, the muscles, and the peripheral 
nerves [2]. On the other hand, there are comorbidities such as Parkinson’s disease 
that can generate an even more marked deterioration of the motor skills of the 
affected elderly.

Parkinson’s disease (PD) is a neurodegenerative disease that mainly affects people 
older than 60 years and is characterized by a neuronal loss in several areas and brain 
nuclei, but particularly in the substantia nigra, which can lead initially to motor 
alterations and delayed cognitive disorders that condition the patient to present 
physical dependence toward the caregiver and commitment to their autonomy [3].

Among the alterations mentioned are those associated with walking and arm 
swing. The march and its spatiotemporal characteristics have been analyzed since 
the Renaissance, and currently the analysis of this has become a very useful tool in 
the diagnostic evaluation and the severity of the disease, the response to treatment, 
as well as the impact of therapeutic interventions which can additionally predict the 
risk of falls [4]. Quantitative gait studies have usually focused on the characteristics 
of each participant and on the average of steps ignoring the step-by-step fluctuations 
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between subjects. However, it has been shown for two decades that the magnitude 
of the step-by-step fluctuations and the changes over time during the march (gait 
dynamics) can be useful to understand the motor control of gait, in the quantifica-
tion of the pathological and age-related alterations in the locomotion system and in 
an increase in objectivity in the measurement of mobility and functional status [5].

Motor alterations are one of the key points in the diagnosis of PD patients even in 
the early stages of the disease; however, the evaluation of the gait may be inconclusive 
because the slow and short steps are nonspecific and may be related to age, depressive 
disorders, and other conditions. On the other hand, we must remember that when 
patients meet the motor criteria for the diagnosis of PD, approximately 70% of the 
neurons of the substantia nigra have degenerated and the concentration of striatal 
dopamine has been reduced by 80% [6]; this shows that the typical motor manifesta-
tions of PE appear when there is already advanced neurodegeneration, and it has been 
determined that there is a “preclinical or prediagnostic phase” of PD [7].

Additionally, it is known that PD in early stages can start asymmetrically, since 
it can affect extremities of a hemibody predominantly and can even differentially 
affect the upper and lower limbs [8–10]. Thus, the asymmetry in the swing of the 
arms can be an opportunity for the earlier diagnosis of PE, even in the “prediagnosis 
stage” [10–14]. The function of swinging the arms during walking is to minimize the 
angular momentum of the body around the vertical axis [15]; however, there is still 
controversy as to whether it plays a role in gait stability. The coordination of the lower 
and upper limbs in the march is a complex phenomenon that has not yet been fully 
elucidated and involves circuits that we do not yet know. Previously it was thought 
that the movement of the arms was only passive (like a pendulum due to inertia) and 
did not imply muscle contraction [16]; however, Braune and Fischer when analyz-
ing the march in a study postulated that this movement should present some muscle 
activity [17]. Much later, Ballesteros et al. were able to demonstrate with surface 
electromyography that there is an active muscle component involved which implies 
some control exerted by superior neural structures [18]. Another study showed that 
the amplitude of the swing of the arms is partly mediated by muscular activity, since, 
by reducing it, the amplitude of the swing of the arms decreases markedly by just 
depending on the passive component [15]. All of the above shows that the arm swing 
does depend in part on the CNS and can be measured, for example, in PD to observe 
alterations that correlate with the presence or absence of the disease.

Currently, the main reason for the disability in the world is adjudicated to neu-
rological disorders; one of these is PD, which is the fastest growing, even faster than 
Alzheimer. In the last 25 years, the prevalence of PD is more than double, which 
generates double disability and deaths. The Global Burden of Disease study affirms 
that approximately 6.2 million people have PD. Currently, different subjective tools 
to assess and diagnose the PD are used in the clinical context; some of these tools 
are the DGI and UPDRS [19, 20].

However, with the rise of recent technologies, it has become possible to 
develop tools that allow taking objective measures to complement the diagnosis of 
Parkinson’s; these measures focus on quantifying symptoms of the disease such as 
tremor, the amount and speed of the steps, as well as the amount of movement in 
the arms and their speed. However, these tools are considered difficult to access, 
according to their technological requirements, since they usually require up to 10 
specialized cameras, a minimum space of 10 m2, and must be handled by a clinical 
expert. Some of the assessment tools used in laboratory settings are motion-capture 
systems, such as GAITRite, Optitrack, Qualisys, and Vicon. These are used to obtain 
a quantitative and accurate gait representation, to help the analysis performed by the 
clinical expert in sport and physical rehabilitation and in gaming industries [20–22]. 
These systems are characterized by their high cost and complexity, since it requires 
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a minimum technical expertise, enough space to capture test, and a patient prepara-
tion and demands a long examination time.

With the technological advance, different motion capture systems of medium 
complexity have been introduced to the market, able to generate clinically useful 
variables in medical environments, with a low cost and setup times. Microsoft 
Kinect was tested for use in the clinical context, as the primary motion-capture 
device; additionally, it has demonstrated sufficient accuracy for PD assessment 
through gait analysis [23–29].

In addition to these devices, recent research has focused on efforts to build 
systems that support the clinical assessment from different perspectives; some of 
these are force platforms or pressure sensors, which are a set of sensors intercon-
nected and located on the ground along a march corridor, and instrumented shoes, 
which include small force sensors placed on the template, which are used to detect 
the initial phases of the march, moments of festination, and freezing of the march.

Other alternatives to tools based on RGBD cameras are those based on wearable 
devices such as accelerometers or inertial units. With these devices, solutions have 
been implemented to evaluate movement in the upper extremities and generate 
metrics to quantify the alterations. Ref. [30] is presented with a system for monitor-
ing and measuring the swing of arms for patients. With Parkinson’s disease, this 
system is composed of a set of handles with accelerometers, which allow extracting 
variables from the signals that may be related to the alterations generated by the 
disease, such as the asymmetry in rolling.

2. Wavelet in biomedical applications

For decades, signal processing has been applied to multiple sectors such as 
industrial, military, health, and entertainment, among others. Regarding the health 
sector, these techniques have been used to facilitate access to technology and sup-
port or complement the diagnosis of a wide variety of diseases. As presented by Suk 
and Kojima, who use signal processing techniques to clean and extract information 
from speech signals to make speech recognition, with the purpose of generating a 
tool that allows disabled people to control by multiple voice home appliances and 
allow voice control of a wheelchair [31].

Conventional processing techniques and methods allow to filter signals in a 
frequency range, extract relevant characteristics such as maximum and minimum 
peaks, fill data by interpolation, and transform and decompose signals in other 
domains such as frequency and time. Among these processing techniques, wavelet 
has shown to have a broad application panorama; the literature documents wavelet 
uses in different and varied fields such as detection of anomalies associated with 
seismic events in ultralow-frequency geomagnetic signals [32]; it is also possible to 
use wavelet techniques for image compression, as detailed in [33], who decompose 
into singular values and use a discrete wavelet transform to improve the maximum 
ratio of signal-to-noise ratio compared to techniques such as JPEG2000.

In biomedical signals, wavelet transforms have also been suggested for signal 
compression [34], cardiac pattern recognition [35], EMG classification and decodi-
fication [34, 36], feature detection and extraction for ECGs [35] and PPGs [37], 
and epilepsy diagnosis [38]. Finally, in this chapter, we detail two potential usage 
scenarios for wavelet techniques, such as gait analysis and arm swing analysis. 
These two approaches were designed and tested in Parkinson’s disease patients, but 
we consider are not limited to this population, other potential use cases are gait and 
arm swing alterations in stroke patients, gait analysis in patients with knee replace-
ment, and gait detection and recognition for surveillance.
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3. Wavelet background

In this chapter, we apply wavelet decomposition using multiple wavelet moth-
ers, like Daubechies. The discrete wavelet transform (DWT) uses a set of basic 
functions to perform a decomposition over a  x (n)   signal in two resultant signals: 
detailed and approximated signals. The first one is the scaling function, called the 
basic dilation function. The second one is the main wavelet function. This decom-
position is defined by the equation used in [39, 40] and represented as follows:

  x (n)  =  ∑ 
j=1

  
J
       ∑ 

k𝜖𝜖Z
     d   2   j    (k)   ψ  J,k  ∗   (n)  +   ∑ 

k𝜖𝜖Z
     a   2   j    (k)   ϕ  J,k   (n)    (1)

where (1) j  is the scale that represents the dilation index and  k  represents the 
index in time.  J  is the decomposition level and  ∗  denotes complex conjugation. The 
wavelet and scaling functions are defined as

   ϕ  J,k   (n)  =  2   −j/2  ϕ ( 2   −j  n − k)    (2)

   ψ  J,k   (n)  =  2   −j/2  ψ ( 2   −j  n − k)    (3)

In   ϕ  J,k   (n)   and   ψ  J,k   (n)  ,  j  allows the scaling and the wavelet function the dilation or 
compression.  k  controls the translation in time. The functions   ϕ  J,k   (n)   and   ψ  J,k   (n)   have 
the essential properties of low-pass and band-pass Fourier transform, respectively.

The approximation obtained with   a   2   0    (n)   at scale  j = 0  is equivalent to the original 
signal  x (n)  . The signal   a   2   j    (n)   at lower resolutions represents smoothed   a   2   j−1    (k)  . The 
detailed signals   d   2   j    (n)   are given by the difference between approximate signals   a   2   j    (n)   
and   a   2   j−1    (k)  . The approximate signals   a   2   j    (n)   and the detailed signals   d   2   j    (n)   are replaced 
by the following equations:

   a   2   j    (n)  =  ∑ 
k
     h (k −  2   j  n)   a   2   j−1    (k)    (4)

   d   2   j    (n)  =  ∑ 
k
      g (k −  2   j  n)   a   2   j−1    (k)    (5)

where  h  and  g  represent the coefficients of the discrete low-pass and high-pass 
filters associated with the scaling function and the wavelet function, respectively. Given 
that each level of wavelet decomposition generates coefficients of length less than the 
original signal, it is important to clarify that for the use of the approximation and detail 
coefficients, it was necessary to perform an interpolation process to adjust the size of the 
coefficients according to the size of the original signal.

4. Capture device

Based on criteria provided by clinical experts, the space selected to record the 
gait signals with the Microsoft Kinect was a corridor of 1.5 m wide by 4 m long. 
Each volunteer did walk in the selected space three times. Kinect’s represent the 
joints in a basic human shape with 20 points, three of these points were used  
(the ankle, the wrist, and the spine base) because they are in the same positions as 
in the standard anthropometric model used in the benchmark data [24, 26].

To obtain the distance between the Kinect and the subject, we use our eMo-
tion Capture software, which provides the distances to each joint in meters. In the 
preliminary review [26], we obtain results that suggest the ankle trajectory accurate 
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for gait tracking. The clinical space settings are shown in Figure 1. The acceptable 
capture area was restricted to a distance of 1.5–3.5  m from the camera, which was 
able to record at least one full gait cycle during each walking test.

Figure 1. 
Graphic interface from eMotion Capture software and acceptable capture area.

Figure 2. 
Signals obtained from Kinect. The first image shows the spine base movement, the second shows the movement related 
to the left and right ankles, and the third shows the movement related to the left and right wrist.
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for gait tracking. The clinical space settings are shown in Figure 1. The acceptable 
capture area was restricted to a distance of 1.5–3.5  m from the camera, which was 
able to record at least one full gait cycle during each walking test.

Figure 1. 
Graphic interface from eMotion Capture software and acceptable capture area.

Figure 2. 
Signals obtained from Kinect. The first image shows the spine base movement, the second shows the movement related 
to the left and right ankles, and the third shows the movement related to the left and right wrist.
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This software allows us to obtain a representation of the distance between the 
person and the Kinect, for each articulation of interest, at each instant of time. 
Figure 2 shows a representation of the movement of the base of the spine, ankle left 
and right, and wrist left and right, respectively.

5. Gait analysis with wavelet

In this section, we present the results obtained to apply wavelet in gait signals, 
obtained with the eMotion Capture system. In this analysis, only the ankle data 
(left and right) were considered. To generate spatiotemporal variables, we select the 
best wavelet performance, which was obtained by a comparison between multiple 
wavelet decomposition and the clinical expert judgment [41].

5.1 Methodology and data

For this study 12 volunteers were selected, 6 women and men, with an age range 
of 53–73. In each gender group, there were three subjects with early stage PD and 
three healthy with normal walking patterns. Early stage was defined as stage I or II 
on the Hoehn and Yahr scale. All participants were evaluated under a dopaminergic 
agonist, i.e., “on” state. All PD subjects were of completely independent mobility 
and did not require a walking aid.

5.2 Signal processing with wavelet

The wavelet families tested were Biorthogonal, Coiflets, Daubechies, and 
Symlets; a total of 12 wavelet decompositions were tested for each gait signal. This 
was realized with the aim to obtain the best wavelet performance and to observe 
different spectral- and time-domain information.

To evaluate the wavelet performance, we assess each transformation with the 
clinical expert criteria. Matlab was used as programming and processing tool; 
in this software wavelet is defined using an identifier (id) and decomposition 
value. For example, in “db8” the “db” indicates Daubechies family, and the 8 refers 
to the vanishing moments. For the present study, we test four wavelet families 
(Daubechies, Coiflet, Symlet, and Biorthogonal), each wavelet transform with dif-
ferent vanishing moments (db3, db4, db5, db6, db7, db8, coif1, coif2, sym2, sym3, 
bior2.2, and bior 2.4).

The wavelet transformation was applied with one level of decomposition to each 
individual ankle signal (left and right). We assess the algorithm applying 12 wavelet 
decomposition, to 12 subjects, to every ankle, walking in the corridor 3 times. 
Finally, the system was tested with a total of 864 ankle signals.

Each  j  level of decomposition is obtained by generating  j  approximation and 
detail coefficients, which can be associated to a noise-free version of the original 
signal and to a version of the noise extracted, respectively.

Figure 3 shows one-level decomposition of a gait signal using wavelet; this 
process generates two signal, an approximated signal to the original and other with 
the details extracted.

5.3 Gait phases detection

To distinguish the gait phases, we calculated the mean values of each of the 12 
wavelet decompositions we applied to the gait signals, using this as a threshold 
to distinguish the phases. This threshold was defined as the average value of each 
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wavelet decomposition. To extract the support and swing phases from the ankle 
signals using this threshold, we defined all values above it as the swing phase and 
all values below it as the support phase. These allow us to obtain a binary signal 
with true or 1 when on swing phase and false or 0 when on support phase. Figure 4 
shows one gait signal, the threshold applied to the detail coefficients, and the binary 
signal generated for this one gait signal.

5.4 Gait phase error detection and correction

From step described in section 5.3 (Figure 3), we obtain binary signals, some of 
these with small intermediate phases. According to gait signals obtained, we set as 
a criterion that each gait phase should have at least 10 binary elements; some small 
gait phases do not meet this minimum number of elements and were considered 
errors. These small intermediate phases are generated due to wavelet sensitivity to 
detect small changes in signals.

To correct these errors, we designed an algorithm to detect the start and end of 
each phase and correct for abnormal phases; this algorithm was designed based on the 
criterion for the minimum number of values that could represent a real gait phase.

5.5 Results

We use Hamming distance [42] as the metric to select the best wavelet trans-
form. This metric was used to compare all the binary gait signals to the ideal 
reference values. With this we could obtain a quantitative value of the wavelet 
decomposition accuracies.

Figure 3. 
One-level wavelet decomposition using db8, (a) approximation coefficients, and (b) details coefficients.
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bior2.2, and bior 2.4).

The wavelet transformation was applied with one level of decomposition to each 
individual ankle signal (left and right). We assess the algorithm applying 12 wavelet 
decomposition, to 12 subjects, to every ankle, walking in the corridor 3 times. 
Finally, the system was tested with a total of 864 ankle signals.

Each  j  level of decomposition is obtained by generating  j  approximation and 
detail coefficients, which can be associated to a noise-free version of the original 
signal and to a version of the noise extracted, respectively.

Figure 3 shows one-level decomposition of a gait signal using wavelet; this 
process generates two signal, an approximated signal to the original and other with 
the details extracted.

5.3 Gait phases detection

To distinguish the gait phases, we calculated the mean values of each of the 12 
wavelet decompositions we applied to the gait signals, using this as a threshold 
to distinguish the phases. This threshold was defined as the average value of each 
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wavelet decomposition. To extract the support and swing phases from the ankle 
signals using this threshold, we defined all values above it as the swing phase and 
all values below it as the support phase. These allow us to obtain a binary signal 
with true or 1 when on swing phase and false or 0 when on support phase. Figure 4 
shows one gait signal, the threshold applied to the detail coefficients, and the binary 
signal generated for this one gait signal.

5.4 Gait phase error detection and correction

From step described in section 5.3 (Figure 3), we obtain binary signals, some of 
these with small intermediate phases. According to gait signals obtained, we set as 
a criterion that each gait phase should have at least 10 binary elements; some small 
gait phases do not meet this minimum number of elements and were considered 
errors. These small intermediate phases are generated due to wavelet sensitivity to 
detect small changes in signals.

To correct these errors, we designed an algorithm to detect the start and end of 
each phase and correct for abnormal phases; this algorithm was designed based on the 
criterion for the minimum number of values that could represent a real gait phase.

5.5 Results

We use Hamming distance [42] as the metric to select the best wavelet trans-
form. This metric was used to compare all the binary gait signals to the ideal 
reference values. With this we could obtain a quantitative value of the wavelet 
decomposition accuracies.

Figure 3. 
One-level wavelet decomposition using db8, (a) approximation coefficients, and (b) details coefficients.
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The error before and after correction is given in Table 1. Before correction the 
minimum value was 13%, obtained for the db3, db4, db5, bior2.2, and sym3 wavelet 
members. After correction, the average error was reached for the same wavelet mem-
bers and by db7 and db8, with 7%. This represents that our algorithm to detect gait 
phases (stance and swing) has 93% of accuracy, compared with the clinical expert.

After the wavelet comparison, we choose the wavelet “db8” as the member to 
determine spatiotemporal variables for each subject. Initially, was selected arbitrarily, 
but later, the “db8” wavelet selection was validated by the statistical comparison. 

Figure 4. 
First image shows the right ankle signal sequence from one subject, who covered about 2 m in about 3 seconds. The 
second signals show the one-level wavelet decomposition using db8; the red line shows the mean, used as a gait 
phase classification threshold. The third signal shows the binarized signal, before error correction. The last binary 
signal shows the ideal gait phase classification, where the gait phases were identified manually by a clinical expert.
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The variables obtained are clinically important and provide objective measures that 
can be used in the evaluation context to measure and diagnose the PD progression.

The variables presented in Table 2 are the results obtained for healthy volunteers and 
PD volunteers. These results suggest significant differences between both groups and rep-
resent an objective metric for disease progression quantification. The variables obtained 
reflect that patients were slower than controls; this is related to the PD gait alterations.

Finally, since PD is an asymmetric disease, we perform a Mann-Whitney test to 
identify differences statistically significant in the left and right variables for case and 
control subjects. As shown in Table 3, all variables considered provide a mechanism to 

Wavelet name Avg error
Before correction After correction

Bior2.2 13% 7%

Bior2.4 16% 11%

Coif1 14% 8%

Coif2 17% 11%

Db3 13% 7%

Db4 13% 7%

Db5 13% 7%

Db6 14% 8%

Db7 14% 7%

Db8 14% 7%

Sym2 14% 8%

Sym3 13% 7%

Table 1. 
Average error obtained before and after error correction

Variable Cases Controls

Left Right Left Right

Stance time (s) 2.24 (0.31) 2.17 (0.23) 0.91 (0.10) 1.06 (0.10)

Swing time (s) 1.33 (0.14) 1.33 (0.18) 0.76 (0.09) 0.76 (0.06)

No. of steps 10 (0.55) 9.67 (0.19) 6.83 (0.36) 6.17 (0.29)

Duration time (s) 3.7 (0.41) 3.65 (0.32) 1.72 (0.07) 1.89 (0.09)

Speed test (m/s) 0.63 (0.06) 0.65 (0.05) 1.20 (0.05) 1.04 (0.07)

Table 2. 
Average spatiotemporal variable values (standard deviations) obtained for PD and non-PD volunteers

Variable p-Value

Left Right

Stance time (s) 0.01 0.04

Swing time (s) 0.02 0.03

No. of steps 0.04 0.03

Duration time (s) 0.01 0.01

Speed test (m/s) 0.01 0.01

Table 3. 
p-Values obtained from Mann-Whitney tests
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differentiate PD and non-PD people. The parameters that can be considered as the most 
appropriate to discriminate patients are stance time, duration time, and test speed.

6. Arm swing analysis with wavelet

In gait analysis with wavelet was important to detect the gait phases; in this case, 
we were interested in obtaining a measure that allows quantifying the minimum 
and the maximum displacement of each wrist. For this reason, to generate spatio-
temporal variables, we use multiple denoising methods that allow us to obtain a 
signal without big fluctuations; according to this, we use methods like Savitzky-
Golay filter and wavelet decomposition [43]. In this chapter, we present the results 
obtained of applied wavelet decomposition using db8 to wrist signals.

6.1 Methodology and data

For this study, 25 patients (aged 45–87 years) and 25 controls (aged 46–88 years) 
were selected, and like in the gait analysis, PD patients were in an early stage of 
the disease. All participants with PD were under a dopaminergic agonist and were 
evaluated while in the “on” state. The absence of dementia and any other related to 
neurological conditions that affect gait was confirmed by an expert neurologist. All 
PD subjects were completely independent mobility and did not require a walking aid.

6.2 Noise reduction using wavelet

Since the original signals had fluctuations that could affect the analysis and 
processing, it was necessary to apply wavelet techniques to remove alterations and 
clean the signal. As showed in Figure 5, we apply three-level wavelet decomposi-
tion using Daubechies wavelet with eight vanishing moments. From this step, the 
approximation coefficients at level 3 were used as clean signal.

As a result of the wavelet decomposition, we obtain a clean signal to determine 
the relative displacement of the wrist, which allows to observe conditions such as 
rigidity and asymmetry in upper limbs. For the next step, we use the   a  3    signal.

Figure 5. 
Approximation coefficient and detail coefficient for wrist signal, the sum of these coefficient level generates 
original signals ( s =  a  3   +  d  1   +  d  2   +  d  3   ).
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6.3 Swing variables

The arm swing variables calculated using the signal provided by eMotion were 
arm swing magnitude, arm swing time, arm swing speed, and arm swing asymme-
try; these variables are defined as follows:

• Arm swing magnitude: the average distance traveled by the wrist in the anterior/
posterior plane, normalized accord the hip center joint [10]

• Arm swing time: duration that took the displacement of a wrist, during a swing 
cycle, in the anterior/posterior plane

• Arm swing speed: the ratio between the arm swing magnitude and the arm swing 
time

• Arm swing asymmetry (ASA): proposed by Zifchock et al. and used by Lewek 
et al. [44], is the outcome of the next equation:

•   ASA =   
 [ 45   °  − arct (   ArmSwing  more   ____________  ArmSwing  less  

  ) ] 
  _____________________ 

 90   ° 
   x 100%   

6.4 Results

Table 4 shows a comparison of arm swing variables obtained for each limb 
with the eMotion. This shows that arm swing magnitude (left p = 0.002, right 
p = 0.006) and arm swing speed (left p = 0.002, right p = 0.004) were signifi-
cantly reduced in the PD group for both limbs. The control group shows a lowest 
arm swing asymmetry than the patient group (p < 0.001). Based on the side, the 
variables that show significant differences for the left side were arm swing mag-
nitude, speed, and ASA and for the right side were arm swing magnitude, speed, 
and ASA. Also, the most affected side determined with Kinect and the one with 
the highest score of the pondered items of the MDS-UPDRS-III were compared. 
These comparisons suggest that our device is to recognize the most affected side 
in the 80% of cases. Due to the limited sample size, differences in the symmetri-
cal group were not evaluated.

Arm swing 
variables

Left wrist (n:50) p-Value 
(left 

wrist)

Right wrist (n:50) p-Value 
(right 
wrist)

PD 
patients

Healthy 
subjects

PD 
patients

Healthy 
subjects

Arm swing 
magnitude

0.16 (IQR 
0.08–0.2)

0.26 (IQR 
0.17–0.33)

0.002 0.16 (IQR 
0.09–0.24)

0.26 (IQR 
0.20–0.34)

0.006

Arm swing 
time

0.99 (IQR 
0.93–1.12)

1.09 (IQR 
0.94–1.15)

0.171 0.98 (IQR 
0.90–1.03)

1.05 (IQR 
0.96–1.12)

0.177

Arm swing 
speed

0.16 (IQR 
0.08–0.2)

0.25 (IQR 
0.18–0.29)

0.002 0.14 (IQR 
0.09–0.21)

0.26 (IQR 
0.18–0.31)

0.004

PD patients Healthy subjects p-Value

ASA 0.16 (IQR 0.09–0.23) 0.063 (IQR 0.03–0.08) <0.001

Table 4. 
Arm swing differences between PD patients and the healthy subject group.
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obtained of applied wavelet decomposition using db8 to wrist signals.

6.1 Methodology and data

For this study, 25 patients (aged 45–87 years) and 25 controls (aged 46–88 years) 
were selected, and like in the gait analysis, PD patients were in an early stage of 
the disease. All participants with PD were under a dopaminergic agonist and were 
evaluated while in the “on” state. The absence of dementia and any other related to 
neurological conditions that affect gait was confirmed by an expert neurologist. All 
PD subjects were completely independent mobility and did not require a walking aid.

6.2 Noise reduction using wavelet

Since the original signals had fluctuations that could affect the analysis and 
processing, it was necessary to apply wavelet techniques to remove alterations and 
clean the signal. As showed in Figure 5, we apply three-level wavelet decomposi-
tion using Daubechies wavelet with eight vanishing moments. From this step, the 
approximation coefficients at level 3 were used as clean signal.

As a result of the wavelet decomposition, we obtain a clean signal to determine 
the relative displacement of the wrist, which allows to observe conditions such as 
rigidity and asymmetry in upper limbs. For the next step, we use the   a  3    signal.

Figure 5. 
Approximation coefficient and detail coefficient for wrist signal, the sum of these coefficient level generates 
original signals ( s =  a  3   +  d  1   +  d  2   +  d  3   ).
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6.3 Swing variables

The arm swing variables calculated using the signal provided by eMotion were 
arm swing magnitude, arm swing time, arm swing speed, and arm swing asymme-
try; these variables are defined as follows:

• Arm swing magnitude: the average distance traveled by the wrist in the anterior/
posterior plane, normalized accord the hip center joint [10]

• Arm swing time: duration that took the displacement of a wrist, during a swing 
cycle, in the anterior/posterior plane

• Arm swing speed: the ratio between the arm swing magnitude and the arm swing 
time

• Arm swing asymmetry (ASA): proposed by Zifchock et al. and used by Lewek 
et al. [44], is the outcome of the next equation:

•   ASA =   
 [ 45   °  − arct (   ArmSwing  more   ____________  ArmSwing  less  

  ) ] 
  _____________________ 

 90   ° 
   x 100%   

6.4 Results

Table 4 shows a comparison of arm swing variables obtained for each limb 
with the eMotion. This shows that arm swing magnitude (left p = 0.002, right 
p = 0.006) and arm swing speed (left p = 0.002, right p = 0.004) were signifi-
cantly reduced in the PD group for both limbs. The control group shows a lowest 
arm swing asymmetry than the patient group (p < 0.001). Based on the side, the 
variables that show significant differences for the left side were arm swing mag-
nitude, speed, and ASA and for the right side were arm swing magnitude, speed, 
and ASA. Also, the most affected side determined with Kinect and the one with 
the highest score of the pondered items of the MDS-UPDRS-III were compared. 
These comparisons suggest that our device is to recognize the most affected side 
in the 80% of cases. Due to the limited sample size, differences in the symmetri-
cal group were not evaluated.

Arm swing 
variables

Left wrist (n:50) p-Value 
(left 

wrist)

Right wrist (n:50) p-Value 
(right 
wrist)

PD 
patients

Healthy 
subjects

PD 
patients

Healthy 
subjects

Arm swing 
magnitude

0.16 (IQR 
0.08–0.2)

0.26 (IQR 
0.17–0.33)

0.002 0.16 (IQR 
0.09–0.24)

0.26 (IQR 
0.20–0.34)

0.006

Arm swing 
time

0.99 (IQR 
0.93–1.12)

1.09 (IQR 
0.94–1.15)

0.171 0.98 (IQR 
0.90–1.03)

1.05 (IQR 
0.96–1.12)

0.177

Arm swing 
speed

0.16 (IQR 
0.08–0.2)

0.25 (IQR 
0.18–0.29)

0.002 0.14 (IQR 
0.09–0.21)

0.26 (IQR 
0.18–0.31)

0.004

PD patients Healthy subjects p-Value

ASA 0.16 (IQR 0.09–0.23) 0.063 (IQR 0.03–0.08) <0.001

Table 4. 
Arm swing differences between PD patients and the healthy subject group.
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7. Limitations

The use of Kinect® in this clinical context has reported relative and overall 
reliability regarding spatiotemporal parameters [45–47]. Further advances in 
software and hardware are essential to further enhance Kinect’s® sensitivity 
for kinematic measurements [48, 49]. Nevertheless, since the RGBD cameras, 
like Kinect, are low-cost and portable devices, this represents an opportunity 
in the field of telemedicine, allowing easy access to gait assessment in the 
clinical space and allowing remote diagnose in rural areas, where there are no 
clinical experts. Finally, it is remarkable how the eMotion Capture system can 
calculate and automatically obtain the gait cycle variables that are considered 
relevant for decision-making processes in the clinical context of patients with 
Parkinson’s disease.

Some authors propose that arm swing analysis could help in the differentia-
tion between TD and PIG subtypes, but the small sample in this study limited the 
subgroup analysis. Because Kinect was discontinued from the market, in future 
research jobs, alternative RGBD cameras, such as the Intel RealSense D435, needs to 
be investigated.

8. Conclusion

From the previous sections, the use of wavelet techniques for gait analysis and 
arm swing was detailed. Finally, we can conclude that it is possible to use wavelet 
techniques to automate and quantify spatiotemporal variables related to the gait, 
to perform an objective analysis of Parkinson’s disease. In addition to this, the 
eMotion system has demonstrated to be a useful tool that can be used in a clini-
cal context to generate spatiotemporal variables like arm swing asymmetry, arm 
swing speed, swing magnitude, stance time, swing time, step number, duration 
test, and speed, which are useful for differentiating PD patients from healthy 
individuals.
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Abstract

The technique of filter banks has been extensively applied in signal processing in
the last three decades. It provides a very efficient way of signal decomposition,
characterization, and analysis. It is also the main driving idea in almost all frequency
division multiplexing technologies. With the advent of wavelets and subsequent
realization of its wide area of application, filter banks became even more important
as it has been proven to be the most efficient way a wavelet system can be
implemented. In this chapter, we present an analysis of the design of a wavelet
transform using the filter bank technique. The analysis covers the different sections
which make up a filter bank, i.e., analysis filters and synthesis filters, and also the
upsamplers and downsamplers. We also investigate the mathematical properties of
wavelets, which make them particularly suitable in the design of wavelets. The
chapter then focuses attention to the particular role the analysis and the synthesis
filters play in the design of a wavelet transform using filter banks. The precise
procedure by which the design of a wavelet using filter banks can be achieved is
presented in the last section of this chapter, and it includes the mathematical
techniques involved in the design of wavelets.
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1. Introduction

Filter banks can be defined as the cascaded arrangement of filters, i.e., low-pass,
high-pass, and band-pass filters connected by sampling operators in such a manner
as to achieve the decomposition and recomposition of a signal from a spectrum
perspective. The sampling operators could either be downsamplers or upsamplers.
The downsamplers are called decimators while the upsamplers are called expanders.
The technique of filter banks plays an important role in most digital systems that
rely on signal processing for their operations. Using this technique, any signal
feature can be reliably extracted and analyzed; hence filter banks have wide
applications in digital signal processing systems. A filter bank as shown in Figure 1
[1, 2] consists of different parts, which collectively execute a desired function.

As can be seen in Figure 1, the filter bank is made of two sections: the analysis
filter bank section (composed of analysis filters and downsamplers), and the
synthesis filter bank section (composed of upsamplers and synthesis filters). In this
chapter, we will discuss the analysis and synthesis filter bank sections, their
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1. Introduction

Filter banks can be defined as the cascaded arrangement of filters, i.e., low-pass,
high-pass, and band-pass filters connected by sampling operators in such a manner
as to achieve the decomposition and recomposition of a signal from a spectrum
perspective. The sampling operators could either be downsamplers or upsamplers.
The downsamplers are called decimators while the upsamplers are called expanders.
The technique of filter banks plays an important role in most digital systems that
rely on signal processing for their operations. Using this technique, any signal
feature can be reliably extracted and analyzed; hence filter banks have wide
applications in digital signal processing systems. A filter bank as shown in Figure 1
[1, 2] consists of different parts, which collectively execute a desired function.

As can be seen in Figure 1, the filter bank is made of two sections: the analysis
filter bank section (composed of analysis filters and downsamplers), and the
synthesis filter bank section (composed of upsamplers and synthesis filters). In this
chapter, we will discuss the analysis and synthesis filter bank sections, their
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responses to incoming signals, and how they work together in the derivation of a
wavelet transform function.

2. Analysis filter bank section

The analysis filter bank section is made up of the analysis filter banks, and
downsamplers or decimators which together act on an input signal to perform a
desired function through decomposition of the signal. In this section, we will ana-
lyze the mathematical relationship that exists between these two components. To
have a thorough understanding of this relationship, it is important to briefly discuss
these components separately.

2.1 Analysis filter bank

The filters that make up the analysis filter banks could either be low-pass filters,
or high-pass filters. Each of these filters, as shown in Figure 2, allows the passage of
only a particular frequency component of the input signal y nð Þ. Thus, specific
features of the input signal embedded at different frequencies can be individually
extracted and investigated using the analysis filter bank [3, 4]. The k-channel filter
bank in Figure 2 separates the frequencies of the input signal in the manner
presented.

It can be seen from the frequency responses that the output of the filters overlap
each other. This is because in practice, the filters are not ideal. However, the
overlapping condition can be improved through an optimized design of the filters.
Mathematically, the effect of each of the filters in the filter bank on the input signal
y nð Þ can be stated as follows:

U0 Zð Þ ¼ Y Zð ÞH0 Zð Þ
U1 Zð Þ ¼ Y Zð ÞH1 Zð Þ
U2 Zð Þ ¼ Y Zð ÞH2 Zð Þ

Uk�1 Zð Þ ¼ Y Zð ÞHM�1 Zð Þ

(1)

Figure 1.
k-Channel filter bank [1, 2].
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where Ui zð Þ is the z-transform of the result from the convolution operation
between the z-transform of the input signal Y Zð Þ and the z-transform of the filter
Hi Zð Þ. The output Ui zð Þ in Figure 2 is fed into the corresponding downsampler of
Figure 1. In the next section, we will analyze the downsampler and state the
mathematical operation it performs on a given signal.

2.2 Downsampler/decimator

The downsampler shown in Figure 1 downsamples an input signal by a factor of
N. This implies that it only retains all the Nth samples in a given sequence. For
example, if N ¼ 2, then the downsampler will retain all even samples in a given
sequence. Given an input signal x nð Þ, the downsampler with a factor of 2 will
downsample the signal as:

x̂ nð Þ ¼ x 2nð Þ,∀n∈ℤ (2)

Figure 3 shows the conceptual depiction of the relationship in Eq. (2).
Mathematically, the output of the decimator in Figure 1 can be expressed as a

product of the input sequence ui nð Þ and the sequence of unit impulses which are N
samples apart, i.e.,

vi nð Þ ¼ ∑
k∈ℤ

ui nð Þδ n� kNð Þ, ∀k∈ℤ (3)

The relationship in Eq. (3) will only select the kNth sample of ui nð Þ, and the
Fourier series expansion of the impulse series can be expressed as [5]:

Figure 2.
Separation of input signals into sub-band frequencies by analysis filter bank.

Figure 3.
Decimation by a factor of 2.
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∑
k∈ℤ

δ n� kNð Þ ¼ 1
N

∑
N�1

k¼0
e�j2πkn=N (4)

Setting WN ¼ e�j2π=N and n ¼ 1, the relationship in Eq. (4) becomes:

∑
k∈ℤ

δ n� kNð Þ ¼ 1
N

∑
N�1

k¼0
W�k

N (5)

Substituting Eq. (5) into (3) yields:

vi nð Þ ¼ 1
N

∑
N�1

k¼0
ui nð ÞW�k

N (6)

In terms of z-transformation, the relationship in Eq. (6) can be expressed as:

Vi Zð Þ ¼ 1
N

∑
N�1

k¼0
Ui Z

1
NW�k

N

� �
(7)

Having looked at the analysis filters and downsamplers, we will now turn our
attention to synthesis filter bank section of Figure 1.

3. Synthesis filter bank section

The synthesis filter bank section is made of the upsamplers and synthesis filter
banks. These components work together to perform the opposite operation
performed by the analysis filter bank section shown in Figure 1. In this section, we
will make an analysis of the mathematical relationship that governs the operation of
the synthesis filters and upsamplers.

3.1 Synthesis filter bank

Similar to the analysis filter bank, the synthesis filter bank is made of low-pass
and high-pass filters. The output of these filters as shown in Figure 1, are summed
to a common output. In typical filter bank applications, the frequency responses of
these filters are typically matched to those of the analysis filters shown in Figure 2.
The mathematical expression for the effect each of these filters has on the
corresponding input signal wi nð Þ is as stated below [6]:

P0 Zð Þ ¼ W0 Zð ÞG0 Zð Þ
P1 Zð Þ ¼ W1 Zð ÞG1 Zð Þ
P2 Zð Þ ¼ W2 Zð ÞG2 Zð Þ
Pk�1 Zð Þ ¼ Wk�1 Zð ÞGM�1 Zð Þ

(8)

In Figure 2, the input to the synthesis filter bank is upsamplers or expanders.
The next section gives a brief review of the upsamplers.

3.2 Upsampler/expander

The upsampler expands an input signal by a factor N. It does this by inserting
zeros at every nth position in the sequence of the input signal. For example, if
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N ¼ 2, then the upsampler will insert a zero between every two adjacent samples in
a given sequence as shown in Figure 4.

Given an input signal vi nð Þ in Figure 1, an upsampler with a factor of 2 will
upsample the signal using the relationship [7]:

wi nð Þ ¼ ∑
k∈ℤ

vi nð Þδ n� kNð Þ,∀k∈ℤ (9)

Similar to the expression in Eq. (3), the z-transform of the expression in Eq. (9)
which is an upsampler is stated as follows [8]:

Wi Zð Þ ¼ 1
N

∑
N�1

k¼0
Vi ZNW�k

N

� �
(10)

To be useful in wavelet designs, filter banksmust be designed to have certain
characteristicswhich guarantee that a signal at the input of a filter bankwill be received
accurately at the output of the filter bank. In the next section, we will examine the
properties of filter banks and how these properties influence the design of wavelets.

4. Properties of filter banks for wavelet design

In wavelet designs, filter banks are required to possess three important proper-
ties which are fundamental to the realization of a wavelet function. These properties
include: perfect reconstruction, orthogonality, and paraunitary condition.

4.1 Perfect reconstruction

This property guarantees that the signal at the output of a given filter bank is a
delayed version of the signal at the input of the filter bank. Perfect reconstruction is an
important property of a filter bank because it cancels the effect of aliasing of the input
signal at the output, caused by the downsamplers and upsamplers. To understand this
point, consider a two-channel finite impulse response FIR filter bank shown in Figure 5.

The output ŷ nð Þ is derived using Eqs. (6) and (10) as follows in terms of the
signal component and aliasing component as:

Ŷ zð Þ ¼ signal_component þ aliasing_component (11)

where the signal_component and aliasing_component are defined as:

signal_component ¼ 1
2
F0 zð ÞH0 zð Þ þ F1 zð ÞH1 zð Þ½ �X zð Þ

aliasing_component ¼ 1
2
F0 zð ÞH0 �zð Þ þ F1 zð ÞH1 �zð Þ½ �X �zð Þ

9>=
>;

(12)

Figure 4.
Upsampling by a factor of 2.
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Figure 4.
Upsampling by a factor of 2.
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To achieve perfect reconstruction, the following condition must be satisfied [1]:

F0 zð ÞH0 zð Þ þ F1 zð ÞH1 zð Þ ¼ 2 z�1

F0 zð ÞH0 �zð Þ þ F1 zð ÞH1 �zð Þ ¼ 0

�
(13)

The relationships in Eqs. (11) and (13) are possible when the filter bank is
constructed as a QMF (quadrature mirror filter) filter bank or CQF (conjugate
quadrature filter) filter bank. Both QMF and CQF banks provide a mechanism by
which complete cancellation of the aliasing component in Eq. (11) can be accom-
plished. Using QMF, aliasing cancellation can be achieved by constructing the filters
in Figure 5 based on the following relationships [4, 5]:

F0 zð Þ ¼ H0 zð Þ
H1 zð Þ ¼ H0 �zð Þ
F1 zð Þ ¼ �H1 zð Þ

9>=
>;

(14)

In Eq. (14), the synthesis filter F0 zð Þ has the same coefficients as the analysis
filter H0 zð Þ; the analysis filter H1 zð Þ has the same coefficients as the analysis filter
H0 zð Þ, but every other value is negated; the synthesis filter F1 zð Þ is a negative copy
of the analysis filter H1 zð Þ. For example, if the analysis filter H0 zð Þ has
coefficientsp, q, r, s, then the filter bank in Figure 5 will assume the structure shown
in Figure 6.

For the CQF bank, the coefficients of the analysis filter H1 zð Þ are a reversed
version of the analysis filter H0 zð Þ with every other value negated. The synthesis
filters F0 zð Þ and F1 zð Þ are a reversed versions of the analysis filters H0 zð Þ and H1 zð Þ,
respectively. These relationships can be stated mathematically as follows [10]:

H1 zð Þ ¼ z�1H0 �z�1ð Þ
F0 zð Þ ¼ H1 �zð Þ
F1 zð Þ ¼ �H0 �zð Þ

9>=
>;

(15)

Based on the relationship in Eq. (15), the filter bank shown in Figure 6 for CQF
will assume the structure shown in Figure 7.

Based on the structure of Figures 6 or 7, the output signal ŷ n½ � is related to the
input signal y n½ � by the expression:

ŷ n½ � ¼ ppþ qqþ rrþ ssð Þy n� 3½ � (16)

If we impose the condition that ppþ qqþ rrþ ss ¼ 1, then Eq. (16) becomes:

Figure 5.
Two-channel FIR filter bank.
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ŷ n½ � ¼ y n� 3½ � (17)

The relationship in Eq. (17) states that the output signal ŷ n½ � is delayed version of
the input signal y n½ � by three samples. We leave the verification of Eq. (16) as an
exercise for the reader.

Having looked at perfect reconstruction as a necessary property for a filter bank
in wavelet design, we now look at orthogonality as also an essential property for a
filter bank in the design of wavelets.

4.2 Orthogonality

Orthogonality in a filter bank is a situation in which the synthesis filter bank is a
transpose of the analysis filter bank. This is a useful property in the sense that it
allows for the energy preservation of the signal being processed. This important
property is achieved through the imposition of the orthogonality condition on both
the analysis and filter bank sections while at the same time preserving the perfect
reconstruction condition of the filter bank. The imposition of the orthogonality
condition in a filter bank (see Figure 5) occurs when the following relationships are
satisfied [11]:

~f 0 n� 2kð Þ; h1 n� 2 lð Þi ¼ 0 ~f 1 n� 2kð Þ; h0 n� 2lð Þi ¼ 0
DD

(18)

where

~gi nð Þ ¼ gi �nð Þ

and

Figure 6.
QMF two-channel FIR filter bank.

Figure 7.
CQF two-channel FIR filter bank.
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To achieve perfect reconstruction, the following condition must be satisfied [1]:
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�
(13)
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quadrature filter) filter bank. Both QMF and CQF banks provide a mechanism by
which complete cancellation of the aliasing component in Eq. (11) can be accom-
plished. Using QMF, aliasing cancellation can be achieved by constructing the filters
in Figure 5 based on the following relationships [4, 5]:

F0 zð Þ ¼ H0 zð Þ
H1 zð Þ ¼ H0 �zð Þ
F1 zð Þ ¼ �H1 zð Þ

9>=
>;

(14)

In Eq. (14), the synthesis filter F0 zð Þ has the same coefficients as the analysis
filter H0 zð Þ; the analysis filter H1 zð Þ has the same coefficients as the analysis filter
H0 zð Þ, but every other value is negated; the synthesis filter F1 zð Þ is a negative copy
of the analysis filter H1 zð Þ. For example, if the analysis filter H0 zð Þ has
coefficientsp, q, r, s, then the filter bank in Figure 5 will assume the structure shown
in Figure 6.

For the CQF bank, the coefficients of the analysis filter H1 zð Þ are a reversed
version of the analysis filter H0 zð Þ with every other value negated. The synthesis
filters F0 zð Þ and F1 zð Þ are a reversed versions of the analysis filters H0 zð Þ and H1 zð Þ,
respectively. These relationships can be stated mathematically as follows [10]:

H1 zð Þ ¼ z�1H0 �z�1ð Þ
F0 zð Þ ¼ H1 �zð Þ
F1 zð Þ ¼ �H0 �zð Þ

9>=
>;

(15)

Based on the relationship in Eq. (15), the filter bank shown in Figure 6 for CQF
will assume the structure shown in Figure 7.

Based on the structure of Figures 6 or 7, the output signal ŷ n½ � is related to the
input signal y n½ � by the expression:

ŷ n½ � ¼ ppþ qqþ rrþ ssð Þy n� 3½ � (16)

If we impose the condition that ppþ qqþ rrþ ss ¼ 1, then Eq. (16) becomes:

Figure 5.
Two-channel FIR filter bank.
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ŷ n½ � ¼ y n� 3½ � (17)

The relationship in Eq. (17) states that the output signal ŷ n½ � is delayed version of
the input signal y n½ � by three samples. We leave the verification of Eq. (16) as an
exercise for the reader.

Having looked at perfect reconstruction as a necessary property for a filter bank
in wavelet design, we now look at orthogonality as also an essential property for a
filter bank in the design of wavelets.

4.2 Orthogonality

Orthogonality in a filter bank is a situation in which the synthesis filter bank is a
transpose of the analysis filter bank. This is a useful property in the sense that it
allows for the energy preservation of the signal being processed. This important
property is achieved through the imposition of the orthogonality condition on both
the analysis and filter bank sections while at the same time preserving the perfect
reconstruction condition of the filter bank. The imposition of the orthogonality
condition in a filter bank (see Figure 5) occurs when the following relationships are
satisfied [11]:

~f 0 n� 2kð Þ; h1 n� 2 lð Þi ¼ 0 ~f 1 n� 2kð Þ; h0 n� 2lð Þi ¼ 0
DD

(18)

where

~gi nð Þ ¼ gi �nð Þ

and

Figure 6.
QMF two-channel FIR filter bank.

Figure 7.
CQF two-channel FIR filter bank.
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~g0 n� 2kð Þ; h0 nð Þi ¼ δk ~g1 n� 2kð Þ; h1 nð Þi ¼ δk
��

(19)

In Eq. (18), the inner product of the coefficients of the synthesis filter F0 zð Þ and
the analysis filter H1 zð Þmust be zero and the inner product of the coefficients of the
synthesis filter F1 zð Þ and the analysis filter H0 zð Þ must also be zero for the orthog-
onality condition to hold.

Also, the low-pass analysis filter H0 zð Þ is related to the other three filters
through the following expressions [12]:

H1 zð Þ ¼ cz� L�1ð Þ ~H0 �zð Þ
F0 zð Þ ¼ z� L�1ð Þ ~H0 zð Þ
F1 zð Þ ¼ z� L�1ð Þ ~H1 zð Þ

9>=
>;

(20)

where L denotes the length of the filter which must be even, and c is a constant
with cj j ¼ 1; ~H0 �zð Þ is the flipped and conjugated version of H0 zð Þ, ~H0 zð Þ is the
conjugated version of H0 zð Þ, and ~H1 zð Þ is the conjugated version of H1 zð Þ.

The condition in Eq. (20) also describe the necessary requirement for a filter
bank to be paraunitary (which we shall examine in the next section), i.e., the low-
pass filter H0 zð Þ satisfy the following power symmetry of halfband condition [8, 9]:

P zð Þ þ P �zð Þ ¼ 2 (21)

where P zð Þ ¼ H0 zð ÞĤ0 zð Þ. If the low-pass filter H0 zð Þ satisfies the required
symmetry condition:

H0 zð Þ ¼ z� L�1ð ÞH0 z�1� �
(22)

then P zð Þ is said to be a real filter. The implication of the constraint in Eq. (21) is
that H1 zð Þ and F1 zð Þ be antisymmetric filters, and F0 zð Þ is a symmetric filter. The
relationships in Eqs. (20)–(22) give the necessary and sufficient condition for the
characterization of a filter bank with orthogonality and symmetry.

The orthogonality condition for a filter bank can also be examined from a
polyphase perspective. Consider the polyphase representation of the filter bank in
Figure 5 as illustrated in Figure 8 [13].

If E zð Þ in Figure 8 is type-I analysis polyphase matrix, and R zð Þ is type-II
synthesis polyphase matrix, then [13]:

H0 zð Þ H1 zð Þ½ �T ¼ E z2ð Þ 1 z�1
� �T

F0 zð Þ F1 zð Þ½ � ¼ z�1 1
� �

R z2ð Þ (23)

Figure 8.
Polyphase implementation of filter bank.
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The conditions in Eqs. (20)–(22) hold true iff E zð Þ and R zð Þ satisfy the following:

Ê zð ÞE zð Þ ¼ I
R zð Þ ¼ z� k�1ð ÞE zð Þ

E zð Þ ¼ z� k�1ð Þdiag 1,�1ð ÞE z�1ð ÞJ

9>=
>;

(24)

where k ¼ L=2, with the first and second condition in Eq. (24) relating to the filter
bank orthogonality condition, and the last represents the filter bank symmetry.

We now look at the paraunitary condition of a filter bank, which is also a
necessary property in filter bank implementation of wavelets.

4.3 Paraunitary condition

In the filter bank implementation of a wavelet transform, the paraunitary con-
dition plays the critical role of guaranteeing the generation of orthonormal wave-
lets, and also perfect recovery of a decomposed signal. The paraunitary condition
guarantees that recovered signal will suffer no phase or aliasing effect if a filter bank
satisfies the paraunitary condition [14].

Given a polyphase transfer function matrix E zð Þ, the paraunitary condition is
established by the matrix iff [15]:

EH z�1� �
E zð Þ ¼ I (25)

where the H superscript denotes the conjugated transpose, and I denotes the
identity matrix. Paraunitary filter banks also have an attractive property of
losslessness, which implies that for every frequency, the total signal power is con-
served [16]. From this property [17], any M�M real-coefficient lossless matrix
with N � 1 degree can be realized using the structure shown in Figure 9 [18].

If the real-coefficient lossless matrix is denoted by E zð Þ; then the matrix is said
to have a special case of lossless degree of one iff it can be characterized by the
relationship [18]:

E zð Þ ¼ I� vvþ þ z�1vvþ� �
R (26)

where R is an arbitrary M�M unitary matrix and v is an M� 1 column vector
with unit norm. From Eq. (26), the paraunitary condition for a filter bank is
obtained as follows [18]:

I� vkvþ
k þ vkvþ

k z
� �

Ek zð Þ ¼ Ek�1 zð Þ (27)

Figure 9.
Cascade implementation of E zð Þ as FIR lossless unitary matrices separated by delays.
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Having looked at the filter bank and its three important properties for the design
of a wavelet, we will in the next section examine the application of these properties
in the design of a wavelet.

5. Filter bank design of a wavelet transform

The filter bank design of a wavelet transform is usually implemented from the
analysis filter bank segment to the synthesis filter bank segment.

5.1 Analysis filter bank in wavelet transform design

Given that the expression for a scaling function φ n½ � is the series sum of the
shifted versions of φ 2n½ �, then according to [15, 16], φ n½ � can be represented as:

φ n½ � ¼ ∑
k
h k½ �

ffiffiffi
2

p
φ 2n� kð Þ, ∀k∈ℤ (28)

where h k½ � denotes the scaling coefficients. If n is transformed such that
n ! 2αn� β, then the relationship in Eq. (28) becomes [14]:

φ 2αn� β½ � ¼ ∑
k
h k½ �

ffiffiffi
2

p
φ 2 2αn� βð Þ � k½ � (29)

which translates into:

φ 2αn� β½ � ¼ ∑
m¼2βþk

h m� 2β½ �
ffiffiffi
2

p
φ 2αþ1n�m
� �

(30)

when k ¼ m� 2β.
In a similar consideration to Eq. (28), the wavelet function ψ n½ � can be

represented as [19]:

ψ n½ � ¼ ∑
k
g k½ �

ffiffiffi
2

p
φ 2n� kð Þ, ∀k∈ℤ (31)

where g k½ � denotes the wavelet coefficients. Also, if n is transformed such that
n ! 2αn� β, then the relationship in Eq. (31) becomes [14]:

φ 2αn� β½ � ¼ ∑
k
g k½ �

ffiffiffi
2

p
φ 2 2αn� βð Þ � k½ � (32)

which translates into:

ψ 2αn� β½ � ¼ ∑
m¼2βþk

g m� 2β½ �
ffiffiffi
2

p
φ 2αþ1n�m
� �

(33)

when k ¼ m� 2β.

5.2 Synthesis filter bank in wavelet transform design

In the synthesis filter bank, the reconstruction of the original coefficients of a
signal can be achieved through the combination of the scaling and wavelet function
coefficients at a coarse level of resolution. Given a signal at αþ 1 scaling space
f n½ �∈Vαþ1, then according to [16, 17], the reconstruction is derived as follows:
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f n½ � ¼ 1ffiffiffiffiffi
M

p ∑
∞

β¼�∞
λαþ1,βφαþ1,β n½ �

 !
¼ 1ffiffiffiffiffi

M
p ∑

∞

β¼�∞
λαþ1,β

ffiffiffiffiffiffiffiffiffi
2αþ1

p
ψ 2αþ1n� β
� � !

(34)

For the next scale, Eq. (34) becomes:

f n½ � ¼ 1ffiffiffiffiffi
M

p ∑
β
λα,β2α=2φ 2αn� β½ � þ∑

β
γα,β2

α=2ψ 2αn� β½ �
 !

(35)

Substituting Eqs. (28) and (31) into Eq. (35) and after algebraic manipulations
yields [14]:

λαþ1,β ¼ ∑
m
λα,βh β � 2m½ � þ∑

m
γα,βg β � 2m½ � (36)

Figure 10.
State chart for wavelet design procedure.
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2
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In the synthesis filter bank, the reconstruction of the original coefficients of a
signal can be achieved through the combination of the scaling and wavelet function
coefficients at a coarse level of resolution. Given a signal at αþ 1 scaling space
f n½ �∈Vαþ1, then according to [16, 17], the reconstruction is derived as follows:
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6. Wavelet transform design procedure using filter banks

In the design of a wavelet system using filter banks, it is of utmost importance
that the filters which will execute the filter bank system as shown in Figure 1,
possess the properties discussed in Section 4. Owing to the fact that in a filter bank,
all the filters can be derived from an initial filter H0 as described in Eq. (13), then
this initial filter must be designed in such a manner that the relationships in Sections
5.1 and 5.2 are realized. To this end, the following steps as shown in the state
diagram in Figure 10 are necessary.

In the first state in Figure 10, the design problem formulation which can be
achieved using trigonometric polynomial, takes the following into consideration [14]:

i. Compact support which guarantees that the wavelet is characterized by finite
non-zero coefficient.

ii. Paraunitary condition which guarantees the generation of orthonormal
wavelets.

iii. Flatness/k-regularity which guarantees the smoothness of the wavelet in both
time and frequency domains.

The second state which involves conditioning the problem as a tractable problem
involves, if necessary, transforming a non-linear formulation of the problem to a
linear formulation, and then optimizing the problem using techniques like convex
optimization. The generation of the filter coefficients using solvers in the third state
of the machine involves techniques like spectral factorization. Through simulation
in the fourth state of the chart, the generated coefficients can be verified whether or
not they meet the design constraints. Using the QMF or CQF relationships in
Eqs. (13) and (14), the other filters in the filter bank are generated in the fifth state
of the chart.

7. Conclusion

In this chapter, we have presented an analysis of the design of wavelets using
filter bank technique. The chapter looked at the two major components of a filter
bank which the analysis and the synthesis components. The properties of filter
banks which are desirable in the design of wavelets were also investigated, along-
side the mathematical description of these properties. The chapter also gave a brief
mathematical description of the role the analysis and the synthesis filter banks play
in the design of wavelets. Finally, the required general procedure for the design of
wavelets was presented, showing the necessary steps to take in order to achieve an
effective design.

The major contribution of this chapter is the provision of a step by step analysis
and procedure for the design of filter banks in a precise and concise manner.
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Chapter 3

Wavelets for Differential
Equations and Numerical
Operator Calculus
Riccardo Bernardini

Abstract

Differential equations are commonplace in engineering, and lots of research
have been carried out in developing methods, both efficient and precise, for their
numerical solution. Nowadays the numerical practitioner can rely on a wide range
of tools for solving differential equations: finite difference methods, finite element
methods, meshless, and so on. Wavelets, since their appearance in the early 1990s,
have attracted attention for their multiresolution nature that allows them to act as
a “mathematical zoom,” a characteristic that promises to describe efficiently the
functions involved in the differential equation, especially in the presence of singu-
larities. The objective of this chapter is to introduce the main concepts of wavelets
and differential equation, allowing the reader to apply wavelets to the solution of
differential equations and in numerical operator calculus.

Keywords: wavelets, differential equations, numerical analysis,
finite element method, meshless, multiresolution analysis

1. Introduction

Partial differential equations (PDEs) are used commonplace in science and in
engineering to model the behavior of physical systems. Because of their importance,
many numerical techniques for their solutions have been developed: finite differ-
ence methods (FDMs), finite element methods (FEMs), spectral methods, Ritz/
Galerkin approach, meshless approaches, and so on. The main characteristic of
PDEs is that the “unknown” is a function, that is, an object with an infinite number
of degrees of freedom. Because of this, it is usually impossible (even in principle) to
get an exact solution by numerical means. The objective of every technique for PDE
solving is to get a good approximation of the solution with limited computational
resources (CPU time, memory, etc.).

The first step of every PDE solution algorithm is to discretize the PDE, that is, to
approximate it with a finite-dimensional problem that can be solved by numerical
means. A popular discretization technique is to discretize the space where the solution
is searched by restricting the problem to a finite-dimensional vector space, that is, by
writing the solution as the linear combination of several base functions. If the original
PDE was linear, discretization will map it to a linear problem (typically a linear system
or an eigenvalue problem). Even techniques such as FDM (that discretizes the
domain) can be often reformulated as suitable discretization of the function space.
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Intuitively, better approximations of the solution require finer discretization
(the exact meaning of finer depends on the specific approach), especially if the
solution has some regions of large variability. Since finer discretization implies
larger problems (and, therefore, higher computational efforts), it is of interest to be
able to change locally the discretization resolution to the solution variability, possi-
bly in an adaptive way.

This need for different resolutions in different regions is the idea that links PDE
with multiresolution analysis. The birth of multiresolution analysis goes back to 1990
with the works of Mallat [1] and Meyer [2]. Since then there have been a large
number of papers ranging from very theoretical ones to application [3]. In a
multiresolution analysis, a space of signals (most commonly L2 IRð Þ, but not only) is
represented as a nesting of spaces with different levels of “resolution.” This allows
to write a signal as the sum of a “low-resolution” version plus some higher-
resolution “details.”

Because of the ability of changing the resolution used to observe the signal (by
adding or removing details), the multiresolution analysis is sometimes described as a
mathematical zoom. This fact inspired many applications, including numerical solu-
tion of PDEs where they sound promising, especially for those problems that contains
localized phenomena (e.g., shockwaves) or intra-scale interaction (e.g., turbulence).

The objective of this chapter is to introduce the reader to the application of
wavelets to PDE solutions. This chapter can be ideally divided in three parts: in the
first part, we recall briefly the main concepts about PDE and the main algorithms
for solving PDE; successively we do a brief recall of multiresolution analysis and
wavelets including also multiwavelets and second-generation wavelets that find
often application in PDE solutions; and finally, we will illustrate few techniques that
can be found in the literature.

1.1 Notation

Ω⊆ IRd is the domain where the functions of interest are defined. The boundary
of Ω is partitioned as follows: ∂Ω ¼ ΩD ∪ΩN, ΩD ∩ΩN ¼ ∅, where ΩD or ΩN can be
empty.

H Ωð Þ will denote a space of functions u : Ω ! IR defined on Ω⊆ IRd.
IR≥0 is the set of nonnegative reals.

2. Generalities on PDE

Most of the physical problems modeled by PDEs fall in one of the following
three large classes: equilibrium, propagation, or eigenvalue problems.

• In an equilibrium problem, we are interested in finding a function u∈ H Ωð Þ
such that

Du ¼ f in Ω (1)

u ¼ uD on ΩD (2)

∂u
∂n

¼ uN on ΩN (3)

In (1)–(3) D is an operator that includes derivatives and f ∈ H Ωð Þ is known.
Boundary conditions are typically given as constraint about u or its derivatives
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on regions of ∂Ω. Typical examples of physical systems giving rise to this type
of problem are systems in steady state (e.g., temperature distribution, potential
distribution, steady flows, and so on). Typically equilibrium problems are
elliptic, that is, D is an elliptic operator (a generalization of the Laplacian).

• In a propagation problem, we are interested in modeling the time evolution of a
physical system. The PDE can still be written as in (1)–(3), but the domain can
typically be written as Ω ¼ IR≥0 �W, whereW ⊆ IRd�1 and the first coordinate
represents time. Boundary conditions for t ¼ 0 are known as initial conditions.
Example physical problems are heat or wave propagation. Propagation
problems are typically hyperbolic or parabolic.

• Finally, in eigenvalue problems we are interested in finding u and λ that satisfy

Du ¼ λu (4)

A wide class of eigenvalue problems is represented by Sturm-Liouville problems
that can be written as

p � y0½ �0 þ q � y ¼ �λw � y (5)

where the apostrophe denotes derivation, the unknowns are λ, and function is
y∈ H a; b½ �ð Þ, while p, q, and w, all belonging to H a; b½ �ð Þ, are known. Sturm-
Liouville problems include Bessel differential equations (obtained by writing
Laplace, Helmholtz, or Schrodinger equation in cylindrical coordinates) and
Lagrange differential equation (obtained working in spherical coordinates).

2.1 Solution of differential equations

The field of numerical solution of differential equations is very wide, and many
techniques have been developed. Nevertheless, a categorization in few large classes
is possible. An important step in every solution algorithm is mapping the differen-
tial equation into a discrete version with only a finite number of degrees of freedom.
A first distinction can be done between techniques that achieve this objective by
discretizing the domain Ω or the function space H Ωð Þ.

2.1.1 Domain discretization

The most known technique based on a domain discretization is the FDM where
the unknown function is sampled in a finite number of points p1, p2,…, pN ∈ Ω and
the derivatives are approximated with finite differences. By writing the differen-
tial equation for every p, with the derivative approximated as finite differences,
one obtains a system of N equations in N unknowns that can be solved with
known techniques. If the original PDE was linear, the discretized system will be
linear too.

FDM is maybe the simplest approach and the most intuitive, and it can work
quite well for simple problems and geometries. Moreover, in the linear case, since
any approximation of a derivative in p will consider only few points around p, the
matrix of the discretized linear system will be very sparse, allowing for a reduction
in the computational effort. The application of FDM techniques becomes difficult,
albeit possible, in the case of complex problems.
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2.1.2 Function space discretization

Another class of techniques discretizes the function space H Ωð Þ by approxi-
mating it with an n-dimensional space Hn, that is, unknown function u is approxi-
mated as

u≈ ∑
n

i¼1
αibi, αi ∈ IR (6)

where bif gni¼1 is a basis of Hn.
By exploiting approximation (6), one can transform PDE (1)–(3) into a finite-

dimensional problem. The different solution techniques differ in how (6) is used
and in the way of choosing space Hn and its basis bif gni¼1.

One possibility is to choose functions bi that are infinitely differentiable and
nonvanishing on the whole Ω. This gives rise to so-called spectral methods. Typical
choices for basis functions can be complex exponential/sinusoidal functions (if the
solution is expected to be periodic), Chebyshev polynomials (for separable
domains, e.g., d-dimensional cubes), and spherical harmonics (for systems with
spherical symmetry). Spectral methods can work very well if the solution is
expected to be smooth; they can even converge exponentially fast. However, their
spatial localization is not good, and if the functions involved are not smooth (e.g.,
they are discontinuous), they lose most of their interest.

Another approach, very popular, is FEM that chooses functions bi by first
partitioning the domain Ω into a set of elements (triangles and their multidim-
ensional counterpart are a popular choice) and assigning to every element a suitable
finite-dimensional vector space. The final approximation of u is constructed in a
piecewise fashion by gluing, so to say, the approximations of u over every single
element.

In a typical implementation of FEM, all the elements are affine images of a single
reference element. This simplifies the implementation since it suffices to choose
only the vector space of the reference element T0. Another popular choice is to
choose the space associated to the elements as spaces of polynomials. The basis is
selected by choosing a set of control points in q1, q2,…∈ T0 and choosing as basis
vectors bi the polynomials that satisfy the interpolation property

bi qj
� �

¼ δi, j ¼
1 if i ¼ j
0 if i 6¼ j

�
(7)

Remark 2.1 (generalized collocation method).
A generalization of this idea is to choose a set of functionals σj mapping func-

tions defined over T0 to IR and requiring

σj bið Þ ¼ δi, j (8)

Eq. (8) gives back (7) if σj is defined as the functional that corresponds to
evaluating the argument of the functional in qj. Eq. (8) is, however, more general
than (7) since it can be used, for example, to control the flow through a face of the
element.

An issue with FEM is that creating the grid of elements can be expensive. This
is especially true in those problems where the geometry is not fixed but needs to
be updated. An example of this type of system is free-surface fluid flows, where
the interface between air and fluid changes with time, requiring a continuous
update of the mesh. In order to solve this problem, meshless methods have been
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developed [4]. A typical meshless approach is to approximate u with a discrete
convolution with kernel as a chosen function φ, that is,

u xð Þ ¼ Cρ ∑
I
αIϕ

x� xI
ρ

� �
(9)

where XI are a set of points of Ω and ρ is a scale factor that allows to change
the “resolution” of kernel function ϕ. Coefficient Cρ can be used to keep the energy
constant as ρ is changed.

2.1.3 Exploiting the discretization

After expressing u as linear combination of bi, we are left with the problem of
determining the coefficients of the linear combination. Several approaches are
possible; the easiest way to briefly present them is by rewriting the differential
equation as

Ru≔Du� f ¼ 0 (10)

where operator R : H Ωð Þ ! H Ωð Þ is called the residual.
If we restrict u to be a linear combination of bi, most probably we will not be

able to make residual (10) exactly zero; therefore, we will aim to make it as small
as possible. Since the result of the residual operator is a function, there are many
possible approaches in minimizing it.

With the collocation approach, we choose a number of points of the domain
p1, p2,…, pn ∈ Ω and ask that the residual is zero on the chosen points, that is,

0 ¼ Ru½ � pj
� �

¼ Du½ � pj
� �

� f pj
� �

j ¼ 1,…, n (11)

Eq. (11) represents a system of n equations having as unknown the coefficients
αi, i ¼ 1,…, n. For example, if D is linear, (11) becomes

f pj
� �

¼ D∑
n

i¼1
αibi

� �
pj
� �

¼ ∑
n

i¼1
αi Dbi½ � pj

� �
¼ ∑

n

i¼1
αiAj, i j ¼ 1,…, n (12)

where, clearly, Aj, i ¼ Dbi½ � pj
� �

. Note that (12) is a linear system in unknowns αi.

Remark 2.2.
With reference to Remark 2.1, one can generalize the collocation method by

using a set of linear functionals σj : H Ωð Þ ! IR. In this case one can obtain a gener-
alized version of (12), namely,

σjf ¼ ∑
n

i¼1
αiσj Dbið Þ|fflfflfflffl{zfflfflfflffl}

Aj, i

j ¼ 1,…, n (13)

Another approach is to solve Ru ¼ 0 in a least square sense, that is, to search
for coefficients αi that minimize

Ruk k2 ¼ Ru;Ruh i (14)

Standard algebra allows to show that (14) is minimized when Ru is orthogonal
to ∂Ru=∂αi for every i, that is,
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convolution with kernel as a chosen function φ, that is,

u xð Þ ¼ Cρ ∑
I
αIϕ

x� xI
ρ

� �
(9)

where XI are a set of points of Ω and ρ is a scale factor that allows to change
the “resolution” of kernel function ϕ. Coefficient Cρ can be used to keep the energy
constant as ρ is changed.

2.1.3 Exploiting the discretization

After expressing u as linear combination of bi, we are left with the problem of
determining the coefficients of the linear combination. Several approaches are
possible; the easiest way to briefly present them is by rewriting the differential
equation as

Ru≔Du� f ¼ 0 (10)

where operator R : H Ωð Þ ! H Ωð Þ is called the residual.
If we restrict u to be a linear combination of bi, most probably we will not be

able to make residual (10) exactly zero; therefore, we will aim to make it as small
as possible. Since the result of the residual operator is a function, there are many
possible approaches in minimizing it.

With the collocation approach, we choose a number of points of the domain
p1, p2,…, pn ∈ Ω and ask that the residual is zero on the chosen points, that is,

0 ¼ Ru½ � pj
� �

¼ Du½ � pj
� �

� f pj
� �

j ¼ 1,…, n (11)

Eq. (11) represents a system of n equations having as unknown the coefficients
αi, i ¼ 1,…, n. For example, if D is linear, (11) becomes

f pj
� �

¼ D∑
n

i¼1
αibi

� �
pj
� �

¼ ∑
n

i¼1
αi Dbi½ � pj

� �
¼ ∑

n

i¼1
αiAj, i j ¼ 1,…, n (12)

where, clearly, Aj, i ¼ Dbi½ � pj
� �

. Note that (12) is a linear system in unknowns αi.

Remark 2.2.
With reference to Remark 2.1, one can generalize the collocation method by

using a set of linear functionals σj : H Ωð Þ ! IR. In this case one can obtain a gener-
alized version of (12), namely,

σjf ¼ ∑
n

i¼1
αiσj Dbið Þ|fflfflfflffl{zfflfflfflffl}

Aj, i

j ¼ 1,…, n (13)

Another approach is to solve Ru ¼ 0 in a least square sense, that is, to search
for coefficients αi that minimize

Ruk k2 ¼ Ru;Ruh i (14)

Standard algebra allows to show that (14) is minimized when Ru is orthogonal
to ∂Ru=∂αi for every i, that is,
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Ru;
∂Ru
∂αi

� �
¼ 0 i ¼ 1,…, n (15)

If D is linear,

∂Ru
∂αj

¼ ∂

∂αj
D∑

n

i¼1
αibi � f

� �
¼ Dbj (16)

and we get

0 ¼ Ru;
∂Ru
∂αj

� �

¼ D∑
n

i¼1
αibi � f ;Dbj

� �

¼ ∑
n

i¼1
αi Dbi;Dbj
� �� f ;Dbj

� �

(17)

which is still a linear system.
The Galerkin method is inspired on the idea that in a least square approximation,

the error is orthogonal to the space where the approximating function lives. We
would like to approximate the solution of the PDE with a vector of Hn; however, we
do not know the solution, so we ask for the residual to be orthogonal to Hn, that is,

Ru; vh i ¼ 0 ∀v∈ Hn (18)

Eq. (18) is equivalent to

Du; vh i ¼ f ; vh i ∀v∈ Hn (19)

which can be interpreted as the original differential equation Du ¼ f in weak
form. Form (19) is often exploited by integrating by parts the left-hand side scalar
product, moving one differentiation from the unknown function u to the test
function v. This is often useful when a piecewise linear approximation is employed
and D contains second-order differential operators (that cannot be applied on
piecewise linear functions). Eq. (19) is verified for all v∈ Hn if and only if it is
verified for every vector in a basis of Hn, that is, (19) is equivalent to

Du; bj
� � ¼ f ; bj

� �
j ¼ 1,…, n (20)

If D is linear, from (20) one can easily derive the linear system in αi

f ; bj
� � ¼ ∑

n

i¼1
αi Dbi; bj
� �

j ¼ 1,…, n (21)

Finally, it is worth citing the method of weighted residuals that can be seen as a
generalization of the Galerkin PDE method. The idea is that instead of asking the
residual being orthogonal to the spaceHn used to approximate u, we ask the residual
to be orthogonal to a different n-dimensional space Kn ¼ span β1;…; βnf g where
βif gni¼1 is clearly a basis of Kn. One obtains

f ; βj
D E

¼ ∑
n

i¼1
αi Dbi; βj
D E

j ¼ 1,…, n (22)
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Remark 2.3.
It is worth observing that from the weighted residual method, Galerkin and least

square methods can be derived by a suitable choice of βi; even collocation method
can be derived if we allow βi to be a delta function (so that the scalar product needs
to be interpreted as a distribution pairing). Moreover, for every v since map
x↦ x; vh i is a functional, it is easy to recognize that every method can be considered
like a generalized collocation method, as described in Remark 2.1.

3. Wavelets

The idea of multiresolution analysis is to approximate vectors of L2 IRð Þ with
variable degrees of resolution. This is achieved through a multiresolution analysis
scheme defined by means of some axioms. The first axiom is the existence of a
sequence Vnf gn∈ Z of subspaces of L2 IRð Þ nested one inside the other, that is,

⋯⊂V�2 ⊂V�1 ⊂V0 ⊂V1 ⊂V2 ⊂⋯ (23)

The idea is that if one approximates (in a least square sense) a function f with
vectors belonging to Vn, the approximation error gets smaller as n increases since
every vector of Vn also belongs to Vnþ1. Note, however, that (23) does not grant
that we will be able to approximate f with an error as small as desired; in order to
grant this, we need another axiom

⋃
n∈ Z

Vn ¼ L2 IRð Þ (24)

where the overline denotes set closure (in the topology induced by the norm on
L2 IRð Þ). Axiom (24) requires that every vector of L2 IRð Þ is in the closure of the union
in the left hand; this means that given any ϵ.0 and f ∈ L2 IRð Þ, it is possible to find
an element of the union whose distance from f is less than ϵ. In other words, (24)
means that whatever f ∈ L2 IRð Þ and whatever the chosen maximum approximation
error allowed ϵ, one can find a space Vn that approximates f with the required
precision.

An axiom dual to (24) is

⋂
n∈ Z

Vn ¼ 0f g (25)

that requires that there is only one “lowest resolution vector,” that is, the null
vector.

Remark 3.1.
In order to see that axiom (24) is not obvious, it is more convenient to work with

Hilbert space L2 0; 1½ �ð Þ. Recall that functions x↦ cos 2πnxð Þ, x↦ sin 2πnxð Þ, and
n∈ IN and the constant 1 are an orthogonal basis of L2 0; 1½ �ð Þ.

Define S0 ¼ sin 2π 2kð Þtð Þ; k∈ INf g as the set of all the even-numbered sines, and
define V0 as the space generated by S0, that is,

V0 ≔ spanS0 (26)

Now define spaces Vn, n,0 by removing one vector at time from the basis of
V0, and define spaces Vn, n,0 by adding one odd harmonic at time. More pre-
cisely, define
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Remark 2.3.
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every vector of Vn also belongs to Vnþ1. Note, however, that (23) does not grant
that we will be able to approximate f with an error as small as desired; in order to
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that requires that there is only one “lowest resolution vector,” that is, the null
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Remark 3.1.
In order to see that axiom (24) is not obvious, it is more convenient to work with

Hilbert space L2 0; 1½ �ð Þ. Recall that functions x↦ cos 2πnxð Þ, x↦ sin 2πnxð Þ, and
n∈ IN and the constant 1 are an orthogonal basis of L2 0; 1½ �ð Þ.

Define S0 ¼ sin 2π 2kð Þtð Þ; k∈ INf g as the set of all the even-numbered sines, and
define V0 as the space generated by S0, that is,

V0 ≔ spanS0 (26)

Now define spaces Vn, n,0 by removing one vector at time from the basis of
V0, and define spaces Vn, n,0 by adding one odd harmonic at time. More pre-
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Vn ¼ spanSn (27)

where

Sn ¼
Snþ1 sin 2π �2nð Þtð Þf g if n,0

Sn�1 ∪ sin 2π 2n� 1ð Þtð Þf g if n.0

�
(28)

It is clear that the sequence of spaces defined in this way satisfies axiom (23), but
not (24), since, for example, function cos 2πtð Þ is orthogonal to every Vn. Note that
this construction can be repeated for any Hilbert space using an orthonormal basis
of the space instead of sines and cosines. Another axiom makes more precise the
idea of “increasing resolution” by asking that vectors in Vn vary twice as faster than
the vectors in Vn�1. In order to make this more precise, define operator
S : L2 IRð Þ ! L2 IRð Þ as the rescaling operator Sf½ � xð Þ ¼ ffiffiffi

2
p

f 2xð Þ. Note that because
of the multiplication by

ffiffiffi
2

p
, S is unitary, that is, Sfk k ¼ fk k. The new axiom is

f ∈ Vn ⇔Sf ∈ Vnþ1 (29)

It follows that Vn ¼ SnV0. With this position one can interpret (25) by saying
that the slowest function is the constant (and the only constant in L2 IRð Þ is the
zero).

The last axiom puts a constraint on the structure of V0 by asking that is gener-
ated by a function ϕ and its translations. In order to make this more precise, define
the operator τt : L2 IRð Þ ! L2 IRð Þ associated to a translation of t as τtf½ � xð Þ ¼ f x� tð Þ.
Note that also τt is unitary and that the exponential notation is convenient since
τaτb ¼ τaþb. Observe also the commutation relation Sτt ¼ τt=2S. The last axiom can
be written as

∃ϕ∈ L2 IRð Þ : V0 ¼ span τiϕ; i∈ Z
� �

(30)

Often as part of axioms, it is required that ϕ is orthogonal to its translations,
that is,

τiϕ; τjϕ
� � ¼ δi, j (31)

However, it is not necessary to include (31) explicitly in the axioms since, given
a ϕ that satisfies (30), it is possible to orthonormalize it, so that it satisfies (31), with
a well-known “Fourier trick” [3]. Therefore, we will suppose (31) satisfied.

It is worth to summarize here the axioms

⋯⊂V�2 ⊂V�1 ⊂V0 ⊂V1 ⊂V2 ⊂⋯ (32)

⋃
n∈ Z

Vn ¼ L2 IRð Þ (33)

⋂
n∈ Z

Vn ¼ 0f g (34)

Vnþ1 ¼ SVn (35)

V0 ¼ span τiϕ; i∈ Z
� �

∃ϕ∈ L2 IRð Þ (36)

The axioms above allow us to determine a property of ϕ. Note that since
V1 ⊃V0, ϕ∈ V1. Note also that set Sτiϕ ¼ τi=2Sϕi∈ Z

� �
is an orthonormal basis of

V1. It follows that one can write ϕ as linear combination of Sϕ and its half-integer
translations, that is,
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ϕ ¼ ∑
i∈ Z

gi τi=2Sϕ (37)

for some sequence gi : Z ! IR. Eq. (37) is known as two-scale equation and it is
central to wavelet theory. Function ϕ is known as scaling function.

Remark 3.2.
Note that from the orthonormality of τi=2Sϕi∈ Z

� �
follows

gi; τ
2kgi

� � ¼ φ; τ�kφ
� � ¼ δk,0 (38)

where the left-hand side scalar product is the usual scalar product in ℓ2 Zð Þ.
Remark 3.3.
Note that starting from a ϕ that satisfies a two-scale equation like (37), it is

possible to recover a full multiresolution analysis. Indeed, one defines V0 according
to (36) and Vn by repeated applications of (35). Two-scale Eq. (37) grants that the
nesting axiom (32) is satisfied.

Note also that (37) shows that ϕ is the fixed point of operator

O≔ ∑
i∈ Z

gi τi=2S (39)

This suggests that maybe one could start from a sequence gi and apply repeat-
edly O to a vector of L2 IRð Þ in order to obtain ϕ. This is indeed possible, but the
theoretical details are out of scope here; see [5].

Since Vnþ1 ⊃Vn one can consider the orthogonal complement of Vn in Vnþ1; call
it Wn, that is,

Vnþ1 ¼ Vn⊕Wn (40)

It is possible to find, starting from the two-scale Eq. (37), a function ψ such that
τiψ
� �

i∈ Z is an orthonormal basis of W0. This implies that it must be for all

ψ ¼ ∑
i∈ Z

hi τi=2Sϕ ψ ∈ V1 (41)

ψ ; τiψ
� � ¼ δi orthonormal basis (42)

τjψ ; τiϕ
� � ¼ 0 ∀i, j∈ Z W0 orthogonal to V0 (43)

By using (41) and the orthonormality of τi=2Sϕ, it is possible to rewrite (42) and
(43) as conditions on hi, namely,

τ2khi; hi
� � ¼ δk,0 (44)

τ2khi; gi
� � ¼ 0 (45)

It is easy to verify that, given gi, a possible hi that satisfies (44) and (45) is

hi ¼ �1ð Þig�nþ1 (46)

This shows that sequences hi and gi are the impulse responses of a two-channel
orthogonal filter bank. Moreover, if gi and ϕ are known, one can obtain ψ by
choosing hi according to (46) and computing ψ according to (41). Function ψ is
known as wavelet, and it generates the whole L2 IRð Þ with its translations and
dilations.
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�
(28)
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It is easy to verify that, given gi, a possible hi that satisfies (44) and (45) is
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This has also another interesting consequence. Suppose f ∈ L2 IRð Þ and that

γ 1ð Þ
i ¼ τi=2Sϕ; f

D E
¼ Sτiϕ; f
� �

(47)

are the coefficients of its projection on V1. Suppose we need the coefficients
γ 0ð Þ
k ¼ τkϕ; f

� �
of the projection on V0. It is possible to exploit the two-scale

equation

γ 0ð Þ
k ¼ τkϕ; f

� � ¼ τk ∑
i∈ Z

giSτ
iϕ; f

� �

¼ ∑
i∈ Z

gi Sτiþ2kϕ; f
� �

¼ ∑
i∈ Z

giγ
1ð Þ
iþ2k ¼ g�

∗γ 1ð Þ
i

h i
2k

(48)

where g� is the time-reversed version of gi. Eq. (48) shows that it is possible to
go to the space at lower resolution by means of a filtering by g� and a decimation by

a factor of two. Similarly, by calling η 0ð Þ
k ¼ τkψ ; f

� �
the coefficients relative to the

projection of f on W0, one can obtain

η 0ð Þ
k ¼ ∑

i∈ Z
hiγ

1ð Þ
iþ2k ¼ h�

∗γ 1ð Þ
i

h i
2k

(49)

Figure 1a shows this idea: the sequence of high-resolution coefficients are
processed with a two-channel orthogonal filter bank, and the coefficients relative to
the lower resolution space Vn exit from one branch, and the coefficients relative to
the “missing details” space Wn exit from the other. The idea can be iterated several
times; see Figure 1b. This is the basis of the well-known fast algorithm to compute
wavelet coefficients and also the origin of the minor, and very common, misnomer
in calling Figure 1b a “discrete-time wavelet transform.”

An interesting characteristic of wavelets is that they can be used to detect the
local regularity of a function. This is similar to what happened with Fourier trans-
form where a function that is discontinuous has a Fourier transform that decays as
1=ω; if the function is continuous but not derivable, its Fourier transform decays as
1=ω2 and so on. With the wavelet transform happens something similar, with the
scale playing the role of frequency. The interesting difference is that while a Fourier
transform that decays as 1=ω tells us that there is at least one discontinuity, but not
where, with the wavelet transform the slow decay with the scale is localized around
the discontinuity. The precise claim of this property requires the introduction of the
concept of Lipschitz regularity and would take us too far; see [6]. This suggests that
when approximating the unknown function in a PDE, we can keep high-resolution
coefficients only in the neighborhood of singularities, saving on computational
effort.

We will say that wavelet ψ has ℓ vanishing moments if

Z

IR
xkψ xð Þdx ¼ 0 k ¼ 0, 1,…,ℓ� 1 (50)

An interesting property of compactly supported wavelets with ℓ vanishing
moments is that the corresponding scaling function (not the wavelet itself) can repro-
duce polynomials of degree at most ℓ� 1 in the sense that if P xð Þ is a polynomial
with degree less than ℓ, there exist coefficients ci such that
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P xð Þ ¼ ∑
i∈ Z

ciτiϕ
� �

xð Þ (51)

In other words, V0 contains all the polynomials of degree less than ℓ.
Example 3.1. (Haar wavelet).
The simplest example of wavelet is the Haar wavelet whose scaling function is

ϕH xð Þ ¼ 1 if x∈ 0; 1½ �
0 else

�
(52)

It is immediate to verify that ϕH satisfies a two-scale equation

ϕH ¼ 1ffiffiffi
2

p SϕH þ τ1=2SϕH

� �
(53)

with coefficients g0 ¼ g1 ¼ 1=
ffiffiffi
2

p
. Note that trivially τ2kϕH;ϕH

� � ¼ δk. In order

to create the corresponding wavelet, use prescription hi ¼ �1ð Þig�iþ1 to get

ϕH ¼ 1ffiffiffi
2

p SϕH � τ1=2SϕH

� �
(54)

Note that the Haar wavelet is compactly supported, but it is discontinuous. This
makes it not well suited to approximate smooth functions.

Example 3.2 (Sinc wavelet).
An example in some sense opposite to the Haar wavelet is the Sinc wavelet. In

this case V0 is the space of “low-pass” functions, that is, functions whose Fourier
transform is zero outside interval �π; π½ �. As well known, V0 is generated by the
Sinc function

Figure 1.
(a) Splitting coefficient sequence into a low-resolution and a high-resolution one using a two-channel filter
bank. (b) Iteration of structure (a) makes a fast algorithm for computing the wavelet coefficients.
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This has also another interesting consequence. Suppose f ∈ L2 IRð Þ and that

γ 1ð Þ
i ¼ τi=2Sϕ; f

D E
¼ Sτiϕ; f
� �

(47)

are the coefficients of its projection on V1. Suppose we need the coefficients
γ 0ð Þ
k ¼ τkϕ; f

� �
of the projection on V0. It is possible to exploit the two-scale

equation

γ 0ð Þ
k ¼ τkϕ; f

� � ¼ τk ∑
i∈ Z

giSτ
iϕ; f

� �

¼ ∑
i∈ Z

gi Sτiþ2kϕ; f
� �

¼ ∑
i∈ Z

giγ
1ð Þ
iþ2k ¼ g�

∗γ 1ð Þ
i

h i
2k

(48)

where g� is the time-reversed version of gi. Eq. (48) shows that it is possible to
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k ¼ τkψ ; f

� �
the coefficients relative to the

projection of f on W0, one can obtain

η 0ð Þ
k ¼ ∑

i∈ Z
hiγ

1ð Þ
iþ2k ¼ h�

∗γ 1ð Þ
i

h i
2k

(49)

Figure 1a shows this idea: the sequence of high-resolution coefficients are
processed with a two-channel orthogonal filter bank, and the coefficients relative to
the lower resolution space Vn exit from one branch, and the coefficients relative to
the “missing details” space Wn exit from the other. The idea can be iterated several
times; see Figure 1b. This is the basis of the well-known fast algorithm to compute
wavelet coefficients and also the origin of the minor, and very common, misnomer
in calling Figure 1b a “discrete-time wavelet transform.”

An interesting characteristic of wavelets is that they can be used to detect the
local regularity of a function. This is similar to what happened with Fourier trans-
form where a function that is discontinuous has a Fourier transform that decays as
1=ω; if the function is continuous but not derivable, its Fourier transform decays as
1=ω2 and so on. With the wavelet transform happens something similar, with the
scale playing the role of frequency. The interesting difference is that while a Fourier
transform that decays as 1=ω tells us that there is at least one discontinuity, but not
where, with the wavelet transform the slow decay with the scale is localized around
the discontinuity. The precise claim of this property requires the introduction of the
concept of Lipschitz regularity and would take us too far; see [6]. This suggests that
when approximating the unknown function in a PDE, we can keep high-resolution
coefficients only in the neighborhood of singularities, saving on computational
effort.

We will say that wavelet ψ has ℓ vanishing moments if

Z

IR
xkψ xð Þdx ¼ 0 k ¼ 0, 1,…,ℓ� 1 (50)

An interesting property of compactly supported wavelets with ℓ vanishing
moments is that the corresponding scaling function (not the wavelet itself) can repro-
duce polynomials of degree at most ℓ� 1 in the sense that if P xð Þ is a polynomial
with degree less than ℓ, there exist coefficients ci such that

44

Wavelet Transform and Complexity

P xð Þ ¼ ∑
i∈ Z

ciτiϕ
� �

xð Þ (51)

In other words, V0 contains all the polynomials of degree less than ℓ.
Example 3.1. (Haar wavelet).
The simplest example of wavelet is the Haar wavelet whose scaling function is

ϕH xð Þ ¼ 1 if x∈ 0; 1½ �
0 else

�
(52)

It is immediate to verify that ϕH satisfies a two-scale equation

ϕH ¼ 1ffiffiffi
2

p SϕH þ τ1=2SϕH

� �
(53)

with coefficients g0 ¼ g1 ¼ 1=
ffiffiffi
2

p
. Note that trivially τ2kϕH;ϕH

� � ¼ δk. In order

to create the corresponding wavelet, use prescription hi ¼ �1ð Þig�iþ1 to get

ϕH ¼ 1ffiffiffi
2

p SϕH � τ1=2SϕH

� �
(54)

Note that the Haar wavelet is compactly supported, but it is discontinuous. This
makes it not well suited to approximate smooth functions.

Example 3.2 (Sinc wavelet).
An example in some sense opposite to the Haar wavelet is the Sinc wavelet. In

this case V0 is the space of “low-pass” functions, that is, functions whose Fourier
transform is zero outside interval �π; π½ �. As well known, V0 is generated by the
Sinc function

Figure 1.
(a) Splitting coefficient sequence into a low-resolution and a high-resolution one using a two-channel filter
bank. (b) Iteration of structure (a) makes a fast algorithm for computing the wavelet coefficients.

45

Wavelets for Differential Equations and Numerical Operator Calculus
DOI: http://dx.doi.org/10.5772/intechopen.82820



sinc xð Þ ¼ sin πxð Þ
πx

(55)

and its translations, that is,

V0 ¼ span τksinc
� �

k∈ Z (56)

This suggests to use ϕS ¼ sinc as scaling function. The fact that a two-scale
equation is satisfied is easily checked in frequency since V1 is the space of functions
whose Fourier transform is zero outside �2π; 2π½ �; therefore, every function of V0 is
contained in V1, as desired.

The corresponding wavelet ψS is easily characterized in frequency as the func-
tion whose Fourier transform is

ΨS ωð Þ ¼ 1 if π, ∣ω∣, 2π

0 otherwise

�
(57)

It is easy to verify that ψS ∈ V1, ψS⊥V1, and τ2kψS;ψS
� � ¼ δk.

As said above, the Sinc example is somehow the opposite of Haar wavelet: it is
arbitrarily differentiable, but it has infinite support; actually, it decays very slowly
(as O 1=xð Þ), and this introduces several practical issues. Moreover, sequences gi and
hi are of infinite length, and they decay slowly too (they do not even have a z-
transform), making it difficult to implement it.

Example 3.3 (spline wavelet).
An example intermediate between Haar and Sinc wavelet is represented by

spline spaces of degree d. In this case V dð Þ
0 is defined as the space of piecewise

polynomial functions that are d times differentiable (with continuous derivative),
with the “breaking points” on the integer, more precisely

V dð Þ
0 ¼ f ∈ L2 IRð Þ∩Cd�1; f

� ��
k;kþ1½ � ¼ polynomial degree d∀k∈ Z

o
(58)

It is easy to see that V dð Þ
1 ¼ SV dð Þ

0 is a similar space of piecewise polynomial
functions but with the breaking points in half integers. It follows that every func-

tion in V dð Þ
0 also belongs to V dð Þ

1 , giving rise to a multiresolution analysis.

A generator for V dð Þ
0 can easily be obtained as a suitable translation (necessary to

align the breaking points) of

rect∗ dð Þ xð Þ ¼ rect xð Þ ¼
1 if ∣x∣, 1=2

0 otherwise

(
if d ¼ 0

rect∗ d�1ð Þ∗rect xð Þ if d.0

8><
>:

, (59)

that is, the rect convolved with itself d times. Function rect∗ dð Þ has compact
support but it is not, however, orthogonal to its own translations. It can be orthog-
onalized with the Fourier trick, but the result has no compact support. For more
details about this case, see [3].

3.1 Compactly supported wavelets: Daubechies’ wavelets

In the examples above, we found multiresolution analysis whose scaling func-
tion had at most two out of the following three desirable characteristics: orthogo-
nality, smoothness, and compact support. Is it possible to find a wavelet that has all
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these three characteristics? The answer was given by Daubechies. It turns out that
imposing all the three characteristics is very demanding and only a small family of
wavelets exists.

An easy observation is that if ϕ is orthogonal to its own translations, the coeffi-
cients gi in the two-scale equation can be obtained as

gi ¼ ϕ; τi=2Sϕ
D E

(60)

According to (60) if ϕ has compact support, then gi has a finite number of
coefficients that are different from zero. Since gi needs to be orthogonal to its even
translations, its length (i.e., the number of nonzero coefficients) must be necessar-
ily even [3].

Moreover, if the iteration of operator O in (39) converges, it is easy to see that gi
has a finite number of coefficients, and then the limit function has compact support.
This suggests that it “suffices” to find a finite length sequence gi that is orthogonal
to its own even translation and iterates operator O to obtain the desired scaling
functions. It actually turns out that this can be done, although there are lots of
technical details to be taken care of (e.g., about convergence of Ok and smoothness
of the resulting ϕ); see [5] for details.

Every member of the Daubechies family is identified by the length 2N of the
sequence gi (remember that the length of gi is necessarily even). It can be proven
that the resulting scaling function has N vanishing moments and its smoothness
grows with N; see Table 1. See also Figure 2 that shows the results of the first three
iterations of O (first row), the final scaling function (second row), and the wavelet
(third row) of three different Daubechies wavelets.

3.2 Extensions

The construction given above is the original idea of multiresolution analysis.
Since the early 1990s, many researchers worked in this field, and many variations
and extensions have been introduced. Here we briefly recall those that have more
interest in the field of differential equation solutions.

3.2.1 Multiwavelets

Multiwavelets are a generalization of standard multiresolution analysis in the
sense that now scaling functions and wavelets are vectors of functions. This means
that Vn is not generated by the translations of a single function but from the trans-
lations of many functions. Every idea of standard multiresolution analysis can be
reformulated without much difficulty in this case, with the most notable difference
that the two-scale equation now has vector function and coefficients that are
matrices. Multiwavelets can accommodate scaling factors different from two and
there is a larger choice for compact support wavelets. See [7] for more details.

N 2 3 4 5 6 7 8 9 10

βS 1 1.415 1.775 2.096 2.388 2.658 2.914 3.161 3.402

βH 0.550 0.915 1.275 1.596 1.888 2.158 2.415 2.661 2.902

Table 1.
Hölder βH and Sobolev βS regularity exponent of Daubechies’ wavelets as function of length 2 N of gi.
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these three characteristics? The answer was given by Daubechies. It turns out that
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iterations of O (first row), the final scaling function (second row), and the wavelet
(third row) of three different Daubechies wavelets.
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Since the early 1990s, many researchers worked in this field, and many variations
and extensions have been introduced. Here we briefly recall those that have more
interest in the field of differential equation solutions.
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Multiwavelets are a generalization of standard multiresolution analysis in the
sense that now scaling functions and wavelets are vectors of functions. This means
that Vn is not generated by the translations of a single function but from the trans-
lations of many functions. Every idea of standard multiresolution analysis can be
reformulated without much difficulty in this case, with the most notable difference
that the two-scale equation now has vector function and coefficients that are
matrices. Multiwavelets can accommodate scaling factors different from two and
there is a larger choice for compact support wavelets. See [7] for more details.
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3.2.2 Second-generation wavelets

Two-scale Eq. (37) and the resulting filter bank-based procedure work well
when the data are sampled on a regular grid and/or the functions of interest are
defined on IRd. Since there are many applications that do not satisfy this require-
ment (e.g., differential equations on general manifolds), the idea of second-
generation wavelet has been introduced.

The starting point is the so-called lifting form of filter bank (Figure 1). It is
possible to show that any two-channel filter bank (Figure 1) can be implemented as
shown in Figure 3. In the lifting approach, the input signal is split into odd and even
samples by a serial-to-parallel converter. The first branch is filtered, and the result
combined with the other branch; the result of this operation is filtered again and
combined with the first branch, and this iterated as long as necessary. Filter P is

Figure 2.
Daubechies’ wavelets. First three iterations of O (first row), the final scaling function (second row), and the
wavelet (third row) of three different Daubechies’ wavelets.

Figure 3.
Lifting implementation of the two-channel filter banks associated with a wavelet analysis.
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sometimes called the prediction step, and it is interpreted as a filter that predicts the
odd samples from the even ones; filter U is sometimes called update.

The advantage of this form is that, being similar to the Feistel structure used in
cryptography [8], it is exactly invertible even if operations are implemented in
fixed-point arithmetic. Actually, the invertibility does not depend on the detail of Pi
and Ui; that can be anything, even nonlinear. Another interesting advantage of this
predict/update idea is that it does not require a regular domain, allowing to bring
the wavelet concept to more general contexts. For example, [9] uses this idea to
solve differential equations on the sphere.

4. Some examples of application of wavelets to PDE

By now it should be clear how multiresolution analysis can be applied to differ-
ential equation solution: by using scaling functions and/or wavelets as basis func-
tions in approximation (6). All the approaches described in Section 2 can be used
with wavelet: collocation, Galerkin PDE method, weighted residual method,
meshless methods, etc. Before describing some details of few approaches described
in the literature, it is worth to do some general remarks.

What makes wavelet interesting is their multiresolution property and the fact
that a wisely chosen wavelet (smooth and/or with many vanishing gradients) has
interesting “singularity sensing” properties: in the neighborhood of a singularity
(discontinuity, nondifferentiability, etc.), the coefficients decay as a function of
scale with a speed that depends on the singularity involved (similar to what Fourier
transform does, only on a local level), but away from the singularity, they decade
fast [3]. This implies that good approximations can be obtained with few coeffi-
cients, using high-resolution decomposition only where it is necessary, reducing the
size of the matrices involved in the solution of the PDE. A similar effect can be
obtained, for example, in FEM by using a finer mesh around points of large varia-
tion. However, using this approach in an adaptive way would require to adjust at
running time the mesh, a potentially heavy operation. Wavelets have the potential
of employing an adaptive resolution in an easier way. See, for example, [10] for few
examples of adaptive techniques employing wavelets.

While orthogonality is considered an important feature in many theoretically
wavelet papers, in the context of differential equation solution, it plays a smaller
role. The reason is that basis functions enter in the scalar products associated with
the various methods via the differential operator D, and it is not guaranteed that D
will preserve orthogonality (that would give rise to many zero entries, that is,
sparser matrices).

Actually, orthogonality is preserved if the two basis functions have disjoint
support in space (since differential operators do not extend the support) or in
frequency (since differential operators are translation-invariant and in frequency
they become a product). This suggests that in the context of differential equations,
compact support and well-localization in frequency are more important than just
orthogonality. In a sense, they represent a “robust” orthogonality condition.

Remark 4.1.
It is true that true compact support in frequency is less common than compact

support in space. With the exception of few very special and theoretical cases (e.g.,
Sinc), the best we can get is a rapid decay in frequency. This means that the scalar
product of two basis functions separated in frequency will be maybe very small, but
not zero. Nevertheless, even this kind of “almost sparseness” can be exploited.

A general issue with wavelets is that it can be difficult to impose boundary
conditions since they have no natural interpolation property that would make
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sometimes called the prediction step, and it is interpreted as a filter that predicts the
odd samples from the even ones; filter U is sometimes called update.

The advantage of this form is that, being similar to the Feistel structure used in
cryptography [8], it is exactly invertible even if operations are implemented in
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and Ui; that can be anything, even nonlinear. Another interesting advantage of this
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meshless methods, etc. Before describing some details of few approaches described
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fast [3]. This implies that good approximations can be obtained with few coeffi-
cients, using high-resolution decomposition only where it is necessary, reducing the
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obtained, for example, in FEM by using a finer mesh around points of large varia-
tion. However, using this approach in an adaptive way would require to adjust at
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of employing an adaptive resolution in an easier way. See, for example, [10] for few
examples of adaptive techniques employing wavelets.

While orthogonality is considered an important feature in many theoretically
wavelet papers, in the context of differential equation solution, it plays a smaller
role. The reason is that basis functions enter in the scalar products associated with
the various methods via the differential operator D, and it is not guaranteed that D
will preserve orthogonality (that would give rise to many zero entries, that is,
sparser matrices).

Actually, orthogonality is preserved if the two basis functions have disjoint
support in space (since differential operators do not extend the support) or in
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they become a product). This suggests that in the context of differential equations,
compact support and well-localization in frequency are more important than just
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conditions since they have no natural interpolation property that would make
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boundary condition handling simpler. Another problem that can arise is that many
wavelets have no closed-form description, for example, Daubechies wavelets that
are described as the result of the iteration of operator O in (39). This can make their
application to PDE more difficult, for example, when computing scalar products
involved in weighted residual and other methods.

Finally, another common issue is that most of the known wavelets are defined
on a one-dimensional domain, while many physical systems are on a
multidimensional domain. The easiest way to create a multidimensional
multiresolution analysis by a one-dimensional one is the separable (or tensor product
or Kronecker product) approach that create a multidimensional function by the
product of several one-dimensional ones, e.g.,

ϕ3D x; y; zð Þ ¼ ϕ xð Þϕ yð Þϕ zð Þ (61)

This kind of approach, however, produces “cube-like” wavelets, and their
application to FEM schemes based on triangular elements can be difficult.

4.1 Some schemes from the literature

In this section we briefly summarize some interesting wavelet-based schemes
that can be found in the literature. As said above, wavelets and scaling functions can
be used as basis in the approximation used in collocation, weighted residuals, and
other methods.

Wavelets in Galerkin and weighted residual methods bring the advantage of
their multiresolution and localization properties while, however, suffering from
difficulties in handling complex boundary conditions. Moreover, nonlinear equa-
tions can turn out to be difficult to handle. Nevertheless, there have been many
successful examples in the application to elliptic, hyperbolic, and parabolic PDE
[11–27]. Wavelet-based collocation methods, where wavelet functions are used as
shape functions, also registered some success. The advantage of collocation methods
is that they are more easily applicable in nonlinear cases [28, 29] and irregular
boundary conditions [30]. A collocation method based on second-generation wave-
let and lifting is applied to a nonlinear vibration problem in [30, 31].

Much more popular seems to be the application of wavelets to FEM techniques.
In this case wavelets or scaling functions are used as shape functions instead of the
more traditional polynomials. Daubechies wavelets are particularly popular most
probably because of their compact support property. Also of interest is the fact that
Daubechies’ wavelets can have any number of null moments, making possible the
perfect interpolation of polynomials. Some examples of successful application
Daubechies wavelets to PDE (mostly mechanical problems) are [32–36]. Of special
interest is the proposal of Mitra [37] where wavelet-based FEM is used to transform
a wave propagation problem into ordinary differential equations that are succes-
sively solved.

Another popular solution for wavelet-based FEM is the wavelets based on spline
spaces. Although spline bases cannot have both compact support and orthogonality,
in differential equations, as explained above, we gladly give up on orthogonality if
we can get compact support and smoothness. Another important advantage of
splines is that a simple closed-form expression is known. Examples of spline appli-
cations can be found in [38–40]. Of special interest is the application of Hermite
cubic splines (HCS), a kind of multiwavelet [41] that shows promise in handling in
a numerically robust way boundary conditions. The HCS is a multiwavelet with four
smooth (twice differentiable) components defined on interval 0; 1½ �. Some examples
of application can be found in [42–44]. A problem with the application of wavelets
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to FEM techniques is the difficulty to adapt the wavelet construction to complex
meshes. In this case the use of second-generation wavelet based on an extension of
the lifting idea has attracted some attention [45–47].

Wavelets have attracted some interest also in the context of meshless methods
[9, 48, 49]. Of some interest for the special problem is [9] that uses a wavelet
approach to implement a meshless solver for differential equations defined on the
sphere. A problem with applying wavelets to generic manifolds like a sphere is that
it is not clear what a “rescaling by 2” should mean for a manifold that is not a
Euclidean space. The idea used in [9] is to use a so-called diffusion wavelet where the
dilation is replaced by a diffusion operator that looks like a kind of “low-pass filter-
ing” that smear out the details; see [9] for the precise definition.

5. Conclusions

This chapter introduced the reader to the field of applying wavelets to the
numerical solution of differential equations. Both wavelets and differential equa-
tions are research fields with many applications, contributions, and results. Their
combination gives rise to wide varieties of methods, each one suited for specific
applications. By looking at the literature, we can see that wavelets can be a very
powerful tool for solving PDE especially because of their multiresolution nature that
allows to optimize the level of detail where it is needed. Wavelets, however, are not
a silver bullet for all problems either, since they can have some characteristics
(multidimensional construction via tensor product, nonexistence of a closed-form
expression, difficulty in handling some boundary conditions, etc.) that can make
their application not trivial in some cases. We can say that this is a field where, more
than ever, no single solution fits all and that every practitioner needs to find the
solution specific for the problem at hand using knowledge in both fields and some
ingenuity.
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Chapter 4

DWT-Based Data Hiding
Technique for Videos Ownership
Protection
Farhan Al-Enizi and Awad Al-Asmari

Abstract

This chapter proposes a wavelet data hiding scheme for video authentication and
ownership protection. A watermark in the shape of a logo image will be hidden. In
this research, a discrete wavelet transform (DWT) process is implemented using
orthonormal filter banks, where the Y components of the YUV color space of the
video frames are decomposed using DWT, and a watermark is inserted in one or
more of the resulting sub-bands in a way that is fully controlled by the owner. Then,
the watermarked video is reconstructed. The filters used for the DWT decomposi-
tions are randomly generated to increase the security of the algorithm. An enhanced
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reliable, secure, and robust data hiding methods [2, 3]. Various watermarking
schemes that use different techniques have been proposed over the years [4–9]. To
be effective, a watermark must be imperceptible within its host, extracted with
ease by the owner, and robust in the face of both intentional and unintentional
distortions [7, 10, 11]. In specific, discrete wavelet transform (DWT) has wide
applications in the different areas of image and video processes such as compres-
sion, noise reduction, and watermarking [12]; this is attributed to its characteristics
in space-frequency localization, multi-resolution representation, and superior
human visual system (HVS) modeling [5]. The robustness is a very important
aspect in data hiding or watermarking. To achieve the highest levels of robustness,
new methods and techniques should be introduced and optimized at both the
sender and receiver sides. Furthermore, the detection process should be enhanced
to meet these requirements.

In this research, a video watermarking process that depends on the discrete
wavelet decompositions will be developed. Moreover, the detection process will be
enhanced through statistical derivations. The security will be maintained through
the adoption of random filter banks, the study of the motion and motionless scenes
in the video frames, and the spread spectrum generation of the watermarks. The
overall technique has to meet the requirements of visual quality, security,
robustness, and computational complexity.

2. Proposed watermarking technique

In this section, we introduce our digital video watermarking technique for the
purpose of authentication and ownership protection. The proposed technique is
aimed at achieving reasonable degrees of robustness, visual quality, and security.
The embedding technique involves two stages: first, a decomposition process and
then a hiding process. The watermark can be any binary sequence; normally a
binary image of a specific size is used. The encoded videos can be in any color space;
in our case, YUV space is used. It is possible to perform the hiding process in any
of the three components: Y, U, and V. In this work, the luminance Y frames are used
as host images for the data hiding process; that is, the hiding of the watermark
will be performed in one or more of the sub-bands that result from the discrete
wavelet analysis process. Choosing the wavelet filters is an important aspect in the
efficiency of the reconstruction process; special types of filters are the randomly
generated orthonormal filter banks [13]. These filter banks can be generated ran-
domly depending on the generating polynomials; hence, by generating random
numbers for the polynomial coefficients, it is possible to build multiple filter banks
that are used for the different stages of our decomposition processes. The ortho-
normal analysis and synthesis filters can be generated in different ways; for our
technique, having large side-lobes is preferred. This enables us to hide more energy
in the medium frequencies of the image; in doing so, we construct a more robust
way that can counteract the effects of different image processes, which take place
intentionally or unintentionally over the course of the handling process. Each filter
bank that is generated is used for one level of the DWT analysis and synthesis
processes. Moreover, the number of the levels and the structure that is followed
during the analysis process are controlled by the owner. It is well known to the
image processing community that the medium-frequency bands are preferred for
hiding. This will avoid hiding in the lower-frequency bands where most of the
energy is concentrated and the higher-frequency bands where the possibility of
losing the data is high due to compression processes. Furthermore, the possibility of
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using more than one sub-band rather than a single sub-band is there; this method is
useful in having a robust method against the nonlinear collusion attack.

There are many scenarios that can be followed for the embedding process; one of
them is to embed the data which is our binary watermark using a generated pseu-
dorandom sequence [14]. This method depends mainly on doing the watermarking
process by converting the original binary watermark image Q to some sort of a
binary sequence S of a specific length M; in this case, the data pixels are given the
value +1, whereas the background pixels are given the value �1. Furthermore, a
pseudorandom sequence P of the same length M as our watermark sequence is
generated using a secret key; likewise, this sequence is represented by values that
are either +1 or�1. The DWT coefficients of the decomposed sub-bands that will be
used for the hiding process are represented as a matrix Q1 of the same size as our
watermark. Moreover, it can be written as a vector T of length M. The binary
watermark is hidden into this vector T, and that will result in a new vector that is
called T0 according to the rule that is shown in this equation:

t0i ¼ ti þ α ∗ pi ∗ si, for i ¼ 1, 2…M (1)

where α is a numerical factor which represents a weighting constant that deter-
mines the strength of the processed watermark. This number is chosen in such a
way to offer a trade-off between the required robustness and the acceptable visual
quality. Moreover, choosing this weighting factor should take into consideration
many elements in image processing techniques such as the compression standard
that is used and its intensity, the smooth features or the textures that are there in the
image, and the algorithm that is followed when doing the detection process. Fur-
thermore, how much energy content is there in the wavelet sub-bands must be
considered at the hiding stage. One way to get the numerical magnitude factor is to
have a comparison process between the energy of the original coefficients of the
host DWT sub-band Q1 and energy content of the original watermark image Q
elements according to this empirical formula:

α ¼ 2 ∗

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E Q1ð Þ
E Qð Þ

s
(2)

where E(Q 1) represents the energy content of the original wavelet coefficients,
while E(Q) represents the energy content of the watermark image Q ; the energy
was computed by taking the sum of the squared elements. The manipulated wavelet
coefficients according to our hiding process are used then depending on their
respective locations to reconstruct and build the watermarked image frame. The
overall hiding process of a binary watermark for a Y frame is shown in Figure 1. It is
clear from this figure, and this, in fact, depends on the decomposition structure that
is followed that the low-low (LL) frequency area of the decomposed image is not
used for our embedding process. This area or band is called the decimated image
normally, and it results in both the pyramidal and DWT decompositions. It is clear
that this band or image has most of the information or energy of the original image
frame; the other images in other bands are normally called the error images, and
they have lower energy content. In fact, they represent other bands depending on
the analysis filters which are the low-high (LH), high-low (HL), and high-high
(HH) bands. These bands offer better places for the hiding process.

The watermark, which is primarily a binary image, can be embedded in any of
the frames of the host video; moreover, the frames can be chosen in a fully con-
trolled selective way. The degree of randomness that is achieved is up to the user
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There are many scenarios that can be followed for the embedding process; one of
them is to embed the data which is our binary watermark using a generated pseu-
dorandom sequence [14]. This method depends mainly on doing the watermarking
process by converting the original binary watermark image Q to some sort of a
binary sequence S of a specific length M; in this case, the data pixels are given the
value +1, whereas the background pixels are given the value �1. Furthermore, a
pseudorandom sequence P of the same length M as our watermark sequence is
generated using a secret key; likewise, this sequence is represented by values that
are either +1 or�1. The DWT coefficients of the decomposed sub-bands that will be
used for the hiding process are represented as a matrix Q1 of the same size as our
watermark. Moreover, it can be written as a vector T of length M. The binary
watermark is hidden into this vector T, and that will result in a new vector that is
called T0 according to the rule that is shown in this equation:
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where α is a numerical factor which represents a weighting constant that deter-
mines the strength of the processed watermark. This number is chosen in such a
way to offer a trade-off between the required robustness and the acceptable visual
quality. Moreover, choosing this weighting factor should take into consideration
many elements in image processing techniques such as the compression standard
that is used and its intensity, the smooth features or the textures that are there in the
image, and the algorithm that is followed when doing the detection process. Fur-
thermore, how much energy content is there in the wavelet sub-bands must be
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where E(Q 1) represents the energy content of the original wavelet coefficients,
while E(Q) represents the energy content of the watermark image Q ; the energy
was computed by taking the sum of the squared elements. The manipulated wavelet
coefficients according to our hiding process are used then depending on their
respective locations to reconstruct and build the watermarked image frame. The
overall hiding process of a binary watermark for a Y frame is shown in Figure 1. It is
clear from this figure, and this, in fact, depends on the decomposition structure that
is followed that the low-low (LL) frequency area of the decomposed image is not
used for our embedding process. This area or band is called the decimated image
normally, and it results in both the pyramidal and DWT decompositions. It is clear
that this band or image has most of the information or energy of the original image
frame; the other images in other bands are normally called the error images, and
they have lower energy content. In fact, they represent other bands depending on
the analysis filters which are the low-high (LH), high-low (HL), and high-high
(HH) bands. These bands offer better places for the hiding process.

The watermark, which is primarily a binary image, can be embedded in any of
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who is the sole owner. Furthermore, the security of the system depends partially as
well on the degree of the randomness of the pseudorandom sequence that is used in
the encoding process. On the other hand, the Y components of the color space were
chosen intentionally because they have higher resolution and therefore higher hid-
ing capacity, but we have to keep in mind the fact that the U and V components
likewise can be used. As we mentioned in the introduction, our techniques will be
used when the HEVC process is applied; Figure 2 shows the proposed hiding
process when the HEVC or H.265 process is applied to the video that is
watermarked.

2.1 1D discrete Fourier transform

When designing a robust and dependable embedding system, security concerns
always come to the forefront. Hiding the same watermark in a repetitive manner to
each and every frame of the host video may cause a problem of maintaining the

Figure 1.
The block diagram of the proposed watermarking method.

Figure 2.
The block diagram of the watermarking process with the application of HEVC process.
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statistical invisibility, which is an important condition of every security system [15].
Moreover, applying independent watermarks to each and every of these frames also
causes a security problem if these frames have few or no motion areas inside them;
these motionless regions in successive video frames may be statistically compared
or averaged to remove independent watermarks. Attacks of such kinds are normally
called collusion attacks. The inter-frame collusion attacks, for instance, exploit the
repetition in the video frames and their scenes or in the watermarks themselves to
produce a false copy of the video that does not have any watermarks; these attacks
can be divided into watermark estimation remodulation (WER) attack and frame
temporal filtering (FTF) attack [16]. Classifying the video frames according to the
amount of motion in them is useful in this regard. The motion in videos is a relative
one, since most of the videos have motion, but what interest us here are the amount
of this motion, how fast this motion is, the relative motion with respect to the
surroundings, and the distribution of this motion across the frames. Most of the
video compression techniques use inter-frame motion estimations to encode the
frames; however, there are other methods that can be used to detect static and
dynamic scenes in videos. One method can be built depending on the 1D discrete
Fourier transform (DFT). The 1D DFT in temporal direction performs a transfor-
mation process of a group of pictures (GOPs) into a temporal frequency domain; in
the resulting domain, both the video frames spatial and temporal frequency infor-
mation exist in the same resulting frame. Higher frequencies are a reflection of the
fast motion from one frame to other frames [17]. The 1D DFT of a video f(x,y,t) that
has a specific size of MxNxT, in which MxN is the size of each of the video frames
and T is the number of the video frames that are grouped in one GOP, is given by

F u; v; τð Þ ¼ ∑
T�1

t¼0
f x; y; tð Þe�j 2Π tτ=Tð Þ (3)

where u and v represent the spatial domain of the video frames, while τ repre-
sents the temporal domain of these frames. Normally the GOPs are taken as five
frames or a close number. Depending on that, a group of the so-called spatiotem-
poral frames can be constructed for the Foreman video. Twenty-five frames of the
Foreman video were transformed using this method of the 1D DFT, and since the
DFT is a symmetric process in one GOP, so it is logical to show only the first
spatiotemporal frame of each of those groups of pictures. Figure 3 shows the first
frame of the Foreman video, while Figure 4 shows the 5 temporal frames of this

Figure 3.
The first frame of the Foreman video.
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dynamic scenes in videos. One method can be built depending on the 1D discrete
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video that were evaluated from the original 25 frames; their norms are shown as
well. The edges that are seen in these frames correspond to high frequencies which
reflect the motion in temporal domain and how this motion in each frame is
distributed; furthermore, the values of the evaluated norms reflect how much and
how fast the motion in each GOP is. For instance, the intensity of the edges shows
the movement of the head and the relative motion with respect to the building; it
can be seen that the background has some motion that corresponds to a moving
camera which is exactly the case here.

Depending on the previous analysis of the videos using the 1D DFT and the
classification of the video frames into dynamic and static frames, a significant
enhancement can be added to the hiding process in terms of both security and
reliability. Using this analysis, different binary watermarks will be embedded in
motion frames, and the same binary watermark will be embedded in motionless
ones. In fact, since we need to have some repetition of the watermark to enhance
the detection process, this method helps us without weakening our algorithm due to
statistical estimation methods that are used in steganalysis, for instance; moreover
repeating the watermark in motionless frames increases the cohesion of the
watermarked video sequence. Furthermore, the bands being used are not confined
to the high-frequency ones; the effect of averaging and collusion attacks is reduced
as well. Using 1D DFT to establish motion information is not the only way that can
be used; 3D DWT, for instance, can be used to construct spatiotemporal compo-
nents of videos frames. Choosing the proper method to determine motion in frames
depends in the first place on the application and other elements such as computa-
tional complexity. Since we are only looking for a method to estimate motion but
not in a strict and precise way, using 1D DFT meets our needs at this stage.

3. Watermark detection process

The extraction process depends mainly on the hiding process, and so we are
performing a reverse process. This is a blind watermarking method; hence, knowing
the original watermark image is not a requirement, but, still, knowing the recon-
struction synthesis filter banks and the generated pseudorandom sequence is
required to extract our hidden watermark. To get the hidden watermark, a predic-
tion and estimation process of the original values of the pixels is required [14]. This
process should also take into account that different types of processing will take

Figure 4.
The 1D DFT of 5 GOPs of 25 frames of Foreman video and their corresponding norms.
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place such as the lossy compression, the additive noise, and the geometrical
operations; this, in turn, renders the detection process a challenging one. Further-
more, security concerns arise as a critical point; this is reflected in the attempts of
attackers to know or destroy the hidden watermark. To cope with these difficulties,
an enhanced detection and estimation process is developed.

A noise elimination method can be developed to estimate the original pixels; to
do that, the extracted coefficients can be smoothened using a spatial convolution
mask of size 5x5. In fact the 5x5 mask gave higher performance than the 3x3 mask
when our videos were subjected to noise and compression. Moreover, the selective
denoising filter which is presented in Section 4 gave good results in removing the
noise and smoothening the extracted image. Using a subtraction operation as
opposed to the additional one in Section 2 and setting the positive and negative
values to +1 and �1, respectively, a coarse version of the watermark can be
extracted. The enhanced detection process is then set to use multiple extracted
watermarks, which were embedded randomly in different video frames in the first
place, for our final estimation process. It was shown in the previous section that
either the same watermark or multiple watermarks can be used depending on the
changes in the scenes; moreover it was shown that the 1D DFT is helpful in deter-
mining these changes. This means that we are not sacrificing the security when
using the same watermark in a random manner; on the contrary we are increasing
robustness against detection or manipulating attempts. Let us assume that the
extracted watermarks are grouped in a set W ¼ w1, w2,…wn. To choose the set of
watermarks that can be used in the final estimation process, cross-correlation test
can be performed between every two extracted watermarks wi and wj. The normal-
ized cross-correlation coefficient between two matrices A and B is given according
to the following equation:

R ¼ ∑m∑n Amn � A
� �

Bmn � B
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m∑n Amn � A

� �2� �
∑m∑n Bmn � B

� �2� �r (4)

where A and B are the means of A and B, respectively. The attacks that the
videos are subjected to are of different natures and scopes; they can be divided into
geometrical, statistical, additive noise, etc. Hence, the watermarks that are
extracted can be talked about as noisy versions of the originally hidden ones or,
equivalently, noisy signals. The cross-correlation test gives good indication of the
similarity between two signals, and this can be applied to our extracted watermarks
which are expected to have some sort of similarity. Depending on this statistical
analysis, it is possible to establish a new set of extracted watermarks W1.

Depending on the resulting cross-correlation value, it is possible to get the set of
coefficients that can be used in our final decision-making process. Hence, the final
watermark set W1 can be established. On the other side, if the correlation value was
low, that means that the coefficients are so corrupted, and therefore they will be
excluded from our final set. This cross-correlation process can be seen in Figure 5
where Figure 5(a) shows a plot of the cross-correlation matrix between two sets
of coefficients that are highly correlated, and that means they can be included in
our final set, while Figure 5(b) shows the opposite of that, where these coefficients
are corrupted. To establish a good estimation process, a threshold value should be
defined for the cross-correlation value, and the decision can be done accordingly.

Since the cross-correlation between binary images is a measure of similarity
between these images, this tells us that flipping the value of any pixel will reduce
this similarity. If wi ∈W, then a cross-correlation process is performed between wi
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video that were evaluated from the original 25 frames; their norms are shown as
well. The edges that are seen in these frames correspond to high frequencies which
reflect the motion in temporal domain and how this motion in each frame is
distributed; furthermore, the values of the evaluated norms reflect how much and
how fast the motion in each GOP is. For instance, the intensity of the edges shows
the movement of the head and the relative motion with respect to the building; it
can be seen that the background has some motion that corresponds to a moving
camera which is exactly the case here.

Depending on the previous analysis of the videos using the 1D DFT and the
classification of the video frames into dynamic and static frames, a significant
enhancement can be added to the hiding process in terms of both security and
reliability. Using this analysis, different binary watermarks will be embedded in
motion frames, and the same binary watermark will be embedded in motionless
ones. In fact, since we need to have some repetition of the watermark to enhance
the detection process, this method helps us without weakening our algorithm due to
statistical estimation methods that are used in steganalysis, for instance; moreover
repeating the watermark in motionless frames increases the cohesion of the
watermarked video sequence. Furthermore, the bands being used are not confined
to the high-frequency ones; the effect of averaging and collusion attacks is reduced
as well. Using 1D DFT to establish motion information is not the only way that can
be used; 3D DWT, for instance, can be used to construct spatiotemporal compo-
nents of videos frames. Choosing the proper method to determine motion in frames
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not in a strict and precise way, using 1D DFT meets our needs at this stage.

3. Watermark detection process

The extraction process depends mainly on the hiding process, and so we are
performing a reverse process. This is a blind watermarking method; hence, knowing
the original watermark image is not a requirement, but, still, knowing the recon-
struction synthesis filter banks and the generated pseudorandom sequence is
required to extract our hidden watermark. To get the hidden watermark, a predic-
tion and estimation process of the original values of the pixels is required [14]. This
process should also take into account that different types of processing will take

Figure 4.
The 1D DFT of 5 GOPs of 25 frames of Foreman video and their corresponding norms.
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place such as the lossy compression, the additive noise, and the geometrical
operations; this, in turn, renders the detection process a challenging one. Further-
more, security concerns arise as a critical point; this is reflected in the attempts of
attackers to know or destroy the hidden watermark. To cope with these difficulties,
an enhanced detection and estimation process is developed.

A noise elimination method can be developed to estimate the original pixels; to
do that, the extracted coefficients can be smoothened using a spatial convolution
mask of size 5x5. In fact the 5x5 mask gave higher performance than the 3x3 mask
when our videos were subjected to noise and compression. Moreover, the selective
denoising filter which is presented in Section 4 gave good results in removing the
noise and smoothening the extracted image. Using a subtraction operation as
opposed to the additional one in Section 2 and setting the positive and negative
values to +1 and �1, respectively, a coarse version of the watermark can be
extracted. The enhanced detection process is then set to use multiple extracted
watermarks, which were embedded randomly in different video frames in the first
place, for our final estimation process. It was shown in the previous section that
either the same watermark or multiple watermarks can be used depending on the
changes in the scenes; moreover it was shown that the 1D DFT is helpful in deter-
mining these changes. This means that we are not sacrificing the security when
using the same watermark in a random manner; on the contrary we are increasing
robustness against detection or manipulating attempts. Let us assume that the
extracted watermarks are grouped in a set W ¼ w1, w2,…wn. To choose the set of
watermarks that can be used in the final estimation process, cross-correlation test
can be performed between every two extracted watermarks wi and wj. The normal-
ized cross-correlation coefficient between two matrices A and B is given according
to the following equation:

R ¼ ∑m∑n Amn � A
� �

Bmn � B
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m∑n Amn � A

� �2� �
∑m∑n Bmn � B

� �2� �r (4)

where A and B are the means of A and B, respectively. The attacks that the
videos are subjected to are of different natures and scopes; they can be divided into
geometrical, statistical, additive noise, etc. Hence, the watermarks that are
extracted can be talked about as noisy versions of the originally hidden ones or,
equivalently, noisy signals. The cross-correlation test gives good indication of the
similarity between two signals, and this can be applied to our extracted watermarks
which are expected to have some sort of similarity. Depending on this statistical
analysis, it is possible to establish a new set of extracted watermarks W1.

Depending on the resulting cross-correlation value, it is possible to get the set of
coefficients that can be used in our final decision-making process. Hence, the final
watermark set W1 can be established. On the other side, if the correlation value was
low, that means that the coefficients are so corrupted, and therefore they will be
excluded from our final set. This cross-correlation process can be seen in Figure 5
where Figure 5(a) shows a plot of the cross-correlation matrix between two sets
of coefficients that are highly correlated, and that means they can be included in
our final set, while Figure 5(b) shows the opposite of that, where these coefficients
are corrupted. To establish a good estimation process, a threshold value should be
defined for the cross-correlation value, and the decision can be done accordingly.

Since the cross-correlation between binary images is a measure of similarity
between these images, this tells us that flipping the value of any pixel will reduce
this similarity. If wi ∈W, then a cross-correlation process is performed between wi
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and all the other extracted watermarks in the set; then the average cross-correlation
parameter is evaluated. The same process is done for all the watermarks in the set.
A set that includes each extracted watermark and its corresponding average
correlation value is established. Then, by establishing a threshold value h for the
average cross-correlations, the extracted watermarks that do not achieve the
threshold test are excluded from the new set W1. The final extracted watermark we

can be evaluated by performing an averaging process on the watermarks in the set
W1, where

we ¼ Ave W1f g (5)

Doing an averaging process is attributed to the fact that binary sets follow
specific statistical pattern. The correlation coefficient R between any two arbitrary
matrices A and B is given in Equation 4; the mean value of a binary image A is at the
same time the expected value of A or E(A). Assuming that at the input, the proba-
bility of 1 is p1 and that the probability of flipping of the value is p as shown in
Figure 6, then

A ¼ E Að Þ ¼ p1 (6)

Moreover, the probability of having 1 at the output B ¼ p1 ∗ 1� pð Þþ 1� p1
� �

∗ p
and by taking Equation 6 into consideration, this equation can be rewritten as

B ¼ E Bð Þ ¼ E Að Þ þ 1� 2 ∗E Að Þð Þ ∗ p (7)

Figure 6.
Expected values of the input and output binary images.

Figure 5.
3D plots of the cross-correlation matrices of two extracted watermarks.
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Assuming that we are using a specific binary watermark, then the input matrix
A is constant during our watermarking process. This means that in the above
equation, the flipping probability of the pixels p is the sole variable. Moreover, by
having a comparison between Eqs. (4) and (7), it can be seen that the correlation
between the two matrices A and B is dependent on the flipping probability of the
pixels; hence, the flipping effect is reduced somehow by doing the averaging pro-
cess of the extracted watermarks. An enhanced version can be built as far as p is not
equal to the value 0.5 which corresponds to a unity entropy value. To demonstrate
this analogy, Figure 7 shows the changes in these parameters when a random binary
watermark is subjected to Gaussian noise with zero mean and different variances; in
this figure, the variance of noise is represented by the term density for the illustra-
tion and clarification purposes.

4. Noise removal selective filter

One of the challenging aspects in video encoding and watermarking is the
additive noise that results in distorted video streams. The nature of the additive
noise depends primarily on the source of this noise. Not only the additive noise
tends to distort the visual quality of the video in question, but it also has its
noticeable impacts on the watermarking process. One type of noises that is common
in video processing techniques is the salt-and-pepper (S&P) noise. This type of
noise could be added to the video frames during the transmission process when the
communication channels, in a sense, are noisy, or it could be a result of the
hardware-generated errors during the encoding and decoding processes. Removing
the noise without disturbing the watermarking process on the one hand and pre-
serving the visual qualities on the other hand is a challenging process. As far as the
watermarking process is concerned, it is useful to check the effects of both the
additive noise and the removal process on our data hiding process. Many methods
were proposed to eliminate the noise or enhance the visual appearance of the images
[18, 19]; these methods depend mainly on the idea of median filters. The normal
median filters, for example, which are used to eliminate the salt-and-pepper noise
in images, do in fact filter the whole image regardless of the presence or absence of
the noise in a certain area. This process reduces the original resolution of the image
to a great extent in such a way that the qualities of high-definition (HD) videos are
lost. This means that our watermarking process would not achieve the visual quality

Figure 7.
The enhanced correlations vs. noise density.
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Assuming that we are using a specific binary watermark, then the input matrix
A is constant during our watermarking process. This means that in the above
equation, the flipping probability of the pixels p is the sole variable. Moreover, by
having a comparison between Eqs. (4) and (7), it can be seen that the correlation
between the two matrices A and B is dependent on the flipping probability of the
pixels; hence, the flipping effect is reduced somehow by doing the averaging pro-
cess of the extracted watermarks. An enhanced version can be built as far as p is not
equal to the value 0.5 which corresponds to a unity entropy value. To demonstrate
this analogy, Figure 7 shows the changes in these parameters when a random binary
watermark is subjected to Gaussian noise with zero mean and different variances; in
this figure, the variance of noise is represented by the term density for the illustra-
tion and clarification purposes.

4. Noise removal selective filter

One of the challenging aspects in video encoding and watermarking is the
additive noise that results in distorted video streams. The nature of the additive
noise depends primarily on the source of this noise. Not only the additive noise
tends to distort the visual quality of the video in question, but it also has its
noticeable impacts on the watermarking process. One type of noises that is common
in video processing techniques is the salt-and-pepper (S&P) noise. This type of
noise could be added to the video frames during the transmission process when the
communication channels, in a sense, are noisy, or it could be a result of the
hardware-generated errors during the encoding and decoding processes. Removing
the noise without disturbing the watermarking process on the one hand and pre-
serving the visual qualities on the other hand is a challenging process. As far as the
watermarking process is concerned, it is useful to check the effects of both the
additive noise and the removal process on our data hiding process. Many methods
were proposed to eliminate the noise or enhance the visual appearance of the images
[18, 19]; these methods depend mainly on the idea of median filters. The normal
median filters, for example, which are used to eliminate the salt-and-pepper noise
in images, do in fact filter the whole image regardless of the presence or absence of
the noise in a certain area. This process reduces the original resolution of the image
to a great extent in such a way that the qualities of high-definition (HD) videos are
lost. This means that our watermarking process would not achieve the visual quality
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condition. In this research, a noise detection process that depends on the absolute
differences between a pixel aij and its surrounding pixels is proposed. In order to
enhance the detection process, the variance of the pixels in the surrounding
window is calculated. This step is important because of false detections, especially
at edged and textured details of the image where the absolute difference value could
be high, while the region is noise-free. This method takes into account the fact
that such variances are dramatically high at these locations. However, this is not
the case around noisy pixels in general where some sort of consistency is there. The
proposed method for noise detection and elimination process involves the
following steps:

1. For each pixel aij, a sub-window of size 3x3 around this pixel is taken.

2. The absolute differences between the pixel aij and the surrounding pixels are
calculated.

3. The arithmetic mean (AM) of the calculated differences for a given pixel aij is
computed. The AM is then compared with a threshold value t to detect
whether the pixel aij is informative or corruptive.

4.The 3x3 pixel window is converted to an array, and then it will be arranged in
an ascending order. The largest and the smallest values will be eliminated. This
will help in removing other noisy pixels in the surrounding window. The
resulting array will be denoted L. The variance of the pixels in the array L is
computed and denoted as V.

5. A comparison will be performed between AM and V on one side and their
respective thresholds on the other side:

Figure 8.
(a) Original Akiyo frame; (b) 2% S&P noisy Akiyo frame; and (c) the denoised frame.
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• If AM is greater than t and V is less than the variance threshold, then do
the elimination process by replacing the noisy pixel by the median of the
surrounding pixels in the window.

• Otherwise, do nothing. In this case, either there is no noise, or the pixel in
question is on one of the edges of the image, and nothing should be done
accordingly. Smooth and textured images perform differently with
respect to noise; it is easier to remove noise, specifically salt-and-pepper
noise from smooth images.

The arithmetic mean (AM) threshold is a user-defined value between the mini-
mum and maximum pixel values (0.255) which are used to distinguish an informa-
tive pixel from a noisy one. On the other hand, the variance V can take larger
values, and its threshold value can be determined accordingly. In fact, its value
depends on the images themselves whether they were textured or smooth ones. The
original Akiyo frame, a noisy version of this frame with salt-and-pepper noise of 2%
density, and the same frame after the denoising process are shown in Figure 8.
Figure 9 shows the peak signal-to-noise ratio (PSNR) values of the noisy and
denoised versions of the standard videos: Foreman, Akiyo, Football, BasketballDrill,
and BasketballDrive.

5. Experimental results

In this section we demonstrate the performance of our algorithm using our
proposed method on different standard videos with and without HEVC process,
under different attacks. Furthermore, it will be compared with the method in [20].
Watermarked and unwatermarked versions of a frame of BasketballDrill video
(832 � 480 pixels) are shown in Figure 10. The embedded and extracted water-
marks of size 15 � 26 are shown in Figure 11; in fact, they are enlarged for
illustration purposes.

Our algorithm performance will be evaluated in terms of PSNR between the
original and the watermarked videos and the normalized correlation (NC) between
the original and the extracted watermarks for the standard videos: Foreman, Akiyo,
Football, BasketballDrill, and BasketballDrive. For the CIF (352 � 288) videos, a
9 � 11 watermark was used, while for the other two videos, the watermark in
Figure 11(a) was used. In these tests, 100 frames were watermarked. Figure 12
shows the NC of the extraction process; moreover, Figure 13 shows the enhanced

Figure 9.
PSNRs of standard videos before and after denoising process.
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• If AM is greater than t and V is less than the variance threshold, then do
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• Otherwise, do nothing. In this case, either there is no noise, or the pixel in
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accordingly. Smooth and textured images perform differently with
respect to noise; it is easier to remove noise, specifically salt-and-pepper
noise from smooth images.
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mum and maximum pixel values (0.255) which are used to distinguish an informa-
tive pixel from a noisy one. On the other hand, the variance V can take larger
values, and its threshold value can be determined accordingly. In fact, its value
depends on the images themselves whether they were textured or smooth ones. The
original Akiyo frame, a noisy version of this frame with salt-and-pepper noise of 2%
density, and the same frame after the denoising process are shown in Figure 8.
Figure 9 shows the peak signal-to-noise ratio (PSNR) values of the noisy and
denoised versions of the standard videos: Foreman, Akiyo, Football, BasketballDrill,
and BasketballDrive.

5. Experimental results

In this section we demonstrate the performance of our algorithm using our
proposed method on different standard videos with and without HEVC process,
under different attacks. Furthermore, it will be compared with the method in [20].
Watermarked and unwatermarked versions of a frame of BasketballDrill video
(832 � 480 pixels) are shown in Figure 10. The embedded and extracted water-
marks of size 15 � 26 are shown in Figure 11; in fact, they are enlarged for
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Our algorithm performance will be evaluated in terms of PSNR between the
original and the watermarked videos and the normalized correlation (NC) between
the original and the extracted watermarks for the standard videos: Foreman, Akiyo,
Football, BasketballDrill, and BasketballDrive. For the CIF (352 � 288) videos, a
9 � 11 watermark was used, while for the other two videos, the watermark in
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Figure 10.
The first frame of (a) original BasketballDrill frame and (b) watermarked BasketballDrill frame.

Figure 11.
(a) Original watermark and (b) recovered watermark.

Figure 12.
Normalized correlations of the proposed watermarking process.

Figure 13.
Correlation values of the extracted watermarks using our detection process.
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correlation values using our detection algorithm, while Figure 14 shows the PSNRs
of the reconstructed frames. Figure 15 shows the PSNRs for the proposed
watermarking method and the method of [20] when different numbers of frames of
Football video were used. The method of [20] gives a maximum PSNR of 30 dB for
the Football video, while our method gives an average of 42 dB; moreover, the
performance in terms of NCs for the Football video stream using our method and
the method in [20] was evaluated. The NC of method in [20] has an average value
of 0.73, while our method gave a smooth performance with an average value of
0.99; this was shown as well in Figure 13.

For further investigation and evaluation of the robustness of our technique, the
test videos will be subjected to some familiar attacks. These include additive noise,
cropping, sharpening, rotating, frame averaging process, and HEVC compression.
The attacks have the following characteristics:

• The additive noise will be Gaussian with a mean of 0 and a variance of 0.01.

• The salt-and-pepper noise has 1% noise density.

• Twenty-five percent of the even frames will be cropped.

• All the frames will be sharpened.

• The even frames will be rotated 1 degree counterclockwise.

• Ten random frames will be averaged with their respective successors.

Figure 14.
PSNRs of the test videos when the proposed watermarking process is used.

Figure 15.
PSNRs of the proposed method (the blue line) and method of [20] (the green line) when different numbers of
frames of the video sequence Football are used.
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The results for each attack for the different standard videos are shown
in Figure 16.

To ensure the robustness of the algorithm, it was tested with the application of
HEVC process. HEVC process with a quantization parameter (QP) value of 20 was
applied to 100 frames of the test videos. Different compression ratios will result
depending on each input video when this quantization factor is used. First, the
watermarking process was applied to the test video frames and without applying
the enhancement process. The PSNRs are shown in Figure 17, and the NCs at the
watermarked frames are shown in Figure 18. A significant observation here is that
lower values will result in the frames between 80 and 90 for the Football video, and

Figure 16.
Performance of the watermarking process under common aggressive attacks.

Figure 17.
PSNRs of the proposed watermarking method when HEVC process is applied.

Figure 18.
Normalized correlations of the proposed watermarking method when HEVC process is applied.
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this can be attributed to the blurring effects in these frames as a result of the fast
panning of the camera. This, in turn, would result in lower energy in the DWT
coefficients, and it is possible to overcome this phenomenon by our enhanced
detection process as we will see later.

The correlations, moreover, were evaluated when the proposed detection pro-
cess was applied. The watermarks were embedded randomly in multiple frames;
then they were extracted and processed according to the method in Section 3. A
number of frames being used for embedding process are 20%, 50%, and ultimately
100% of the 100 test frames of the proposed standard videos. Figure 19 shows the
performance under these circumstances. It can be shown that the detection process
was enhanced dramatically when comparing with Figure 18. The system can per-
form well even with only 20% of the frames being watermarked. To evaluate our
algorithm under different compression ratios, the standard test videos were
watermarked and compressed using HEVC with different QPs: 15, 20, and 25. The
value of 20 is a typical value for compression. Figure 20 shows the performance of
our system under these compression values. As QP becomes larger than 25, the
video qualities go through noticeable degradation in terms of resolutions; in fact,
the system performs well for QP values of 20 or less, and as QP values reach 25, the
detection process starts to lose its efficiency for some videos. This is due to the
aggressive quantization process of the discrete cosine transform (DCT) coefficients
in the HEVC process.

Our selective denoising filter which was introduced in Section 4 was tested for
the watermarked videos. The standard videos were watermarked according to the
proposed embedding process; then they were subjected to salt-and-pepper noise

Figure 19.
Correlations vs. number of frames being watermarked when our detection method is used.

Figure 20.
Watermarking process performance under different quantization parameters.
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this can be attributed to the blurring effects in these frames as a result of the fast
panning of the camera. This, in turn, would result in lower energy in the DWT
coefficients, and it is possible to overcome this phenomenon by our enhanced
detection process as we will see later.

The correlations, moreover, were evaluated when the proposed detection pro-
cess was applied. The watermarks were embedded randomly in multiple frames;
then they were extracted and processed according to the method in Section 3. A
number of frames being used for embedding process are 20%, 50%, and ultimately
100% of the 100 test frames of the proposed standard videos. Figure 19 shows the
performance under these circumstances. It can be shown that the detection process
was enhanced dramatically when comparing with Figure 18. The system can per-
form well even with only 20% of the frames being watermarked. To evaluate our
algorithm under different compression ratios, the standard test videos were
watermarked and compressed using HEVC with different QPs: 15, 20, and 25. The
value of 20 is a typical value for compression. Figure 20 shows the performance of
our system under these compression values. As QP becomes larger than 25, the
video qualities go through noticeable degradation in terms of resolutions; in fact,
the system performs well for QP values of 20 or less, and as QP values reach 25, the
detection process starts to lose its efficiency for some videos. This is due to the
aggressive quantization process of the discrete cosine transform (DCT) coefficients
in the HEVC process.

Our selective denoising filter which was introduced in Section 4 was tested for
the watermarked videos. The standard videos were watermarked according to the
proposed embedding process; then they were subjected to salt-and-pepper noise

Figure 19.
Correlations vs. number of frames being watermarked when our detection method is used.

Figure 20.
Watermarking process performance under different quantization parameters.
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with 1% density. At the receiving side, the videos were denoised using the selective
filter; then the watermarks were extracted. Figure 21 shows the normalized corre-
lations and the PSNRs under these conditions. It is clear that the selective filtering
scheme enhanced the visual appearance by eliminating the noise without significant
effects on the efficiency of the watermarking process. Furthermore, Figure 22
shows the results when 2D median filter is used. It can be seen that our selective
denoising filter outperformed the 2D median filter in terms of the correlation

Figure 21.
The performance of the watermarking process with the use of the proposed selective filter where the blue line is
the correlation and the green line is the PSNR.

Figure 22.
The performance of the watermarking process with the use of a 2D median filter where the blue line is the
correlation and the green line is the PSNR.

Figure 23.
The watermarking process response to false alarm test, the right watermark is the 350th with different videos:
(a) Akiyo, (b) Foreman, (c) Football, (d) BasketballDrill, and (e) BasketballDrive.
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values. The PSNR values are almost comparable, even though when assessing the
quality of the images, the metric parameters are not the only factor that should be
taken into consideration. The perceptual quality is another factor which was better
with our own filter due to the selectivity process.

Since the security is an important aspect for our algorithm and any data hiding
technique, false alarm attacks were studied for our test videos. That happens when
no hiding process was done or a false watermark was hidden and still the system
indicates the existence of our watermark. To do that, we generate 500 different
random watermarks and hide them in the test videos according to our proposed
algorithm, and the right watermark was one of them and it was set to be the 350th
one. Figure 23 shows the results. It can be seen that the response of our system was
low to the false watermarks, and only the right watermark resulted in high
response. This is an indication of good reliability of our system.

6. Conclusions and future work

This work proposes a DWT-based watermarking process using randomly gener-
ated orthonormal filter banks. An enhanced detection process was proposed to add
to the robustness of the system. Moreover, a selective filtering process was devel-
oped to eliminate the noise. A good deal of the security of the system was achieved
by the randomness in the filter banks, the pseudorandom sequence that was used to
encode the watermark, and the regions of hidings. It was shown that the proposed
technique performs well with and without HEVC. The compression ratio that was
used is typical. Further investigation of the efficiency of the watermarking process
under other aggressive attacks will be discussed and researched in future work.
Moreover, an integration process of the data hiding process inside videos and the
HEVC process will be studied and investigated.
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Chapter 5

Wavelet Transform Analysis
to Applications in Electric
Power Systems
Mario Orlando Oliveira, José Horacio Reversat
and Lucas Alberto Reynoso

Abstract

The wavelet transform has received great importance in the last years on the
power system analysis because the multi-resolution analysis presents proprieties
good for the transient signal analysis. This chapter presents a review on main
application of wavelet transform in electric power systems. The study areas have
been classified as power system protection, power quality disturbances, power
system transient, partial discharge, load forecasting, faults detection, and power
system measurement. The areas in which more works have been developed are the
power quality and protections field, where both cover 51% of the articles analyzed.

Keywords: electric power systems, wavelet transform, signal processing,
transient events

1. Introduction

Electromagnetics transients in electric power systems (EPS) are generally caused
by lightning discharges and/or certain operating conditions, such as faults in equip-
ment and transmission lines, switching of electric power system devices, voltage
sags, capacitor switching, and transmission line energization and de-energization.
Faulted EPS signals are associated with fast electromagnetic transients and are
typically nonperiodic with high-frequency oscillations. These characteristics pre-
sent a problem for traditional Fourier analysis because it assumes a periodic signal
and a wide-band signal that require denser sampling and longer time periods to
maintain good resolution in low frequencies. Wavelet transform (WT), on the other
hand, is a powerful tool in the analysis of transient phenomena in power systems. It
has the ability to extract information from the transient signals simultaneously in
both time and frequency domains and has replaced the Fourier analysis in many
applications. This ability to tailor the frequency resolution can greatly facilitate the
detection of signal features that may be useful in characterizing the transient cause
or the state of the postdisturbance electrical system.

On the other hand, the waveforms associated with fast electromagnetic tran-
sients are typically nonperiodic and contain both high frequency oscillations and
localized superimposed impulses on power frequency and its harmonics. These
characteristics present problems for traditional Fourier analysis because the latter
assumes a periodic signal that needs longer time periods to maintain good resolution
in the low frequency. In this sense, WT has received great attention in power
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community in the last years because they are better suited for the analysis of certain
types of transient waveforms than the other transform approaches.

Many books and papers have been written that explain WT of signals and can be
read for further understanding of the basics of wavelet theory. The first recorded
mention of what we now call a “wavelet” seems to be in 1909, in a thesis by A. Haar.
The concept of wavelets in its present theoretical form was first proposed by
J. Morlet, a Geophysicist, and the team at the Marseille Theoretical Physics Center
working under A. Grossmann, a theoretical physicist, in France. They provided a
way of thinking for wavelets based on physical intuition. In other words, the
transform of a signal does not change the information content presented in the
signal [1].

Thus, in the first part, this chapter presents an overview of the main character-
istic of wavelet transform for the transient signal analysis and the application on
electric power system. The property of multiresolution in time and frequency
provided by wavelets allows accurate time location of transient components while
simultaneously retaining information about the fundamental frequency and its low-
order harmonics. This property of the wavelet transform facilitates the detection of
physically relevant features in transient signal to characterize the source of the
transient or the state of the postdisturbance system.

Initially, we will discuss the performance, advantages, and limitations of the WT
in electric power system application, where the basic wavelet theory is presented.
Additionally, the main publications carried out in this field will be analyzed and
classified by the next areas: power system protection, power quality disturbances,
power system transient, partial discharge, load forecasting, faults detection, and
power system measurement. Finally, a comprehensive analysis related to the
advantages and disadvantages of the WT in relation to other tools is performed.

2. Wavelet transform (WT)

The wavelet transform theory is based on analysis of signal using varying scales
in the time domain and frequency. Formalization was carried out in the 1980s,
based on the generalization of familiar concepts. The wavelet term was introduced
by French geophysicist Jean Morlet. The seismic data analyzed by Morlet exhibit
frequency component that changed rapidly over time, for which the Fourier Trans-
form (FT) is not appropriate as an analysis tool. Thus, with the help of theoretical
physicist Croatian Alex Grossmann, Morlet introduced a new transform which
allows the location of high-frequency events with a better temporal resolution [2].

Faulted EPS signals are associated with fast electromagnetic transients and are
typically nonperiodic and with high-frequency oscillations. This characteristic pre-
sents a problem for traditional Fourier analysis because it assumes a periodic signal
and a wide-band signal that require more dense sampling and longer time periods to
maintain good resolution in the low frequencies [3]. The WT is a powerful tool in
the analysis of transient phenomena in power system. It has the ability to extract
information from the transient signals simultaneously in both time and frequency
domains and has replaced the Fourier analysis in many applications [4].

2.1 Continuous wavelet transform (CWT)

The short-time Fourier transform (STFT) of the continuous signal x(t) can be
seen as the Fourier Transform (FT) of the signal with windowed x(t).g(t� τ) or also
as a signal decomposition x(t) into basis functions g(t � τ).e�jwt. The functions
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based term refers to a complete set of functions that, when combined on the sum
with specific weight can be used to then construct a certain sign [5].

In the FT case, the base functions are complex sinusoid e�jwt with a windows
centered on the τ time. The WT is described in terms of its basic functions,
called wavelet or mother wavelet, and variable frequency w is replaced by an
ever-escalating variable factor a (which represents the swelling) and, generally, to
variable displacement in time τ, is represented by b.

The main characteristic of the WT is that it uses a variable window to scan the
frequency spectrum, increasing the temporal resolution of the analysis. The wave-
lets are represented by:

ψa,b tð Þ ¼ 1ffiffiffi
a

p � ψ t� b
a

� �
(1)

In Eq. (1), the constant 1=
ffiffiffi
a

p
is used to normalize the energy and ensure that the

energy of ψ a,b(t) is independent of the dilation level [6]. The wavelet is derived
from operations such as dilating and translating the mother wavelet, ψ, which must
satisfy the admissibility criterion given by [7]:

Cψ ¼
ðþ∞

�∞

ψ
_ yð Þ�� ��2

yj j dy≤∞ (2)

where ψ_ yð Þ is the FT of the ψ (t). This means that if ψ_ is a continuous function,
then Cψ is finite only ifψ (0) = 0, i.e., [7]:

ðþ∞

�∞

ψ tð Þdt ¼ 0 (3)

Thus, it is evident that WT has a zero rating property that increases the degrees
of freedom, allowing the introduction of the dilation parameter of the window [8].

The continuous wavelet transform (CWT) of the continuous signal x(t) is
defined as:

CWTð Þ a; bð Þ ¼
ðþ∞

�∞

x tð Þ � ψa:b tð Þdt ¼ 1ffiffiffi
a

p
ðþ∞

�∞

x tð Þ � ψ t� b
a

� �
dt (4)

where the scale factor a and the translation factor b are continuous variables.
The WT coefficient is an expansion and a particular shift represents how

well the original signal x(t) corresponds to the translated and dilated mother wave-
let. Thus, the coefficient group of CWT(a,b) associated with a particular signal is
the wavelet representation of the original signal x(t) in relation to the mother
wavelet [9].

2.2 Discrete wavelet transform (DWT)

2.2.1 DWT definition

The redundancy of information and the enormous computational effort to
calculate all possible translations and scales of CWT restricts its use. An alternative
to this analysis is the discretization of the scale and translation factors, leading to the
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called wavelet or mother wavelet, and variable frequency w is replaced by an
ever-escalating variable factor a (which represents the swelling) and, generally, to
variable displacement in time τ, is represented by b.

The main characteristic of the WT is that it uses a variable window to scan the
frequency spectrum, increasing the temporal resolution of the analysis. The wave-
lets are represented by:

ψa,b tð Þ ¼ 1ffiffiffi
a

p � ψ t� b
a

� �
(1)

In Eq. (1), the constant 1=
ffiffiffi
a

p
is used to normalize the energy and ensure that the

energy of ψ a,b(t) is independent of the dilation level [6]. The wavelet is derived
from operations such as dilating and translating the mother wavelet, ψ, which must
satisfy the admissibility criterion given by [7]:

Cψ ¼
ðþ∞

�∞

ψ
_ yð Þ�� ��2

yj j dy≤∞ (2)

where ψ_ yð Þ is the FT of the ψ (t). This means that if ψ_ is a continuous function,
then Cψ is finite only ifψ (0) = 0, i.e., [7]:

ðþ∞

�∞

ψ tð Þdt ¼ 0 (3)

Thus, it is evident that WT has a zero rating property that increases the degrees
of freedom, allowing the introduction of the dilation parameter of the window [8].

The continuous wavelet transform (CWT) of the continuous signal x(t) is
defined as:

CWTð Þ a; bð Þ ¼
ðþ∞

�∞

x tð Þ � ψa:b tð Þdt ¼ 1ffiffiffi
a

p
ðþ∞

�∞

x tð Þ � ψ t� b
a

� �
dt (4)

where the scale factor a and the translation factor b are continuous variables.
The WT coefficient is an expansion and a particular shift represents how

well the original signal x(t) corresponds to the translated and dilated mother wave-
let. Thus, the coefficient group of CWT(a,b) associated with a particular signal is
the wavelet representation of the original signal x(t) in relation to the mother
wavelet [9].

2.2 Discrete wavelet transform (DWT)

2.2.1 DWT definition

The redundancy of information and the enormous computational effort to
calculate all possible translations and scales of CWT restricts its use. An alternative
to this analysis is the discretization of the scale and translation factors, leading to the
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DWT. There are several ways to introduce the concept of DWT, the main are the
decomposition bands and the decomposition pyramid (or Multi-Resolution Analysis
-MRA), developed in the late 1970s [10]. The DWT of the continuous signal x(t)
is given by:

DWTð Þ m; pð Þ ¼
ðþ∞

�∞

x tð Þ � ψm,p dt (5)

where ψm,p form bases of wavelet functions, created from a translated and
dilated of the mother wavelet using the dilation m and translation p parameters,
respectively.

Thus, ψm,p is defined as:

ψm,p ¼
1ffiffiffiffiffiffi
am0

p ψ
t� pb0a

m
0

am0

� �
(6)

The DWT of a discrete signal x[n] is derived from CWT and defined as [9]:

DWTð Þ m; kð Þ ¼ 1ffiffiffi
a

p ∑
n
x n½ � � g k� nb0am0

am0

� �
(7)

where g(*) is the mother wavelets and x[n] is the discretized signal function.
The mother wavelets may be dilated and translated discretely by selecting the

scaling and translation parameters a = a0
m and b = nb0a0

m respectively (with fixed
constants a0>1, b0>1, m and n belonging the set of positive integers).

2.2.2 Multi-resolution analysis (MRA)

The problems of temporal resolution and frequency found in the analysis of
signals with the STFT (best resolution in time at the expense of a lower resolution in
frequency and vice-versa) can be reduced through a multi-resolution analysis
(MRA) provided by WT. The temporal resolutions, Δt, and frequency, Δf, indicate
the precision time and frequency in the analysis of the signal. Both parameters vary
in terms of time and frequency, respectively, in signal analysis using WT. In the
STFT, a higher temporal resolution could be achieved at the expense of frequency
resolution. Intuitively, when the analysis is done from the point of view of filters
series, the temporal resolution should increase increasing the center frequency of
the filters bank. Thus, tax is that Δf is proportional to f, i.e.,

Δf
f

¼ c (8)

where c is constant.
The main difference between DWT and STFT is the time-scaling parameter. The

result is geometric scaling, i.e., 1, 1/a, 1/a2, …; and translation by 0, n, 2n, and so on.
This scaling gives the DWT logarithmic frequency coverage in contrast to the
uniform frequency coverage of the STFT, as compared in Figure 1.

The CWT follows exactly these concepts and adds the simplification of the scale,
where all the impulse responses of the filter bank are defined as dilated versions of
a mother wavelet [10]. The CWT is a correlation between a wavelet at different
scales and the signal with the scale (or the frequency) being used as a measure of
similarity. The CWT is computed by changing the scale of the analysis window,
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shifting the window in time, multiplying by the signal, and integrating over all
times. In the discrete case, filters of different cut-off frequencies are used to analyze
the signal at different scales. The signal is passed through a series of high-pass filters
to analyze the high frequencies, and it is passed through a series of low-pass filters
to analyze the low frequencies. Thus, the DWT can be implemented by multistage
filter bank named MRA [11], as illustrated on Figure 2. The Mallat algorithm
consists of series of high-pass and the low-pass filters that decompose the original
signal x[n] into approximation a(n) and detail d(n) coefficient, each one
corresponding to a frequency bandwidth.

The resolution of the signal, which is a measure of the amount of detail infor-
mation in the signal, is changed by the filtering operations, and the scale is changed
by up-sampling and down-sampling (sub-sampling) operations. Sub-sampling a
signal corresponds to reducing the sampling rate or removing some of the samples
of the signal. For other hand, up-sampling a signal corresponds to increasing the
sampling rate of a signal by adding new samples to the signal.

Figure 1.
Comparison of (a) the STFT uniform frequency coverage to (b) the logarithmic coverage of the DWT.

Figure 2.
DWT filter bank framework.
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shifting the window in time, multiplying by the signal, and integrating over all
times. In the discrete case, filters of different cut-off frequencies are used to analyze
the signal at different scales. The signal is passed through a series of high-pass filters
to analyze the high frequencies, and it is passed through a series of low-pass filters
to analyze the low frequencies. Thus, the DWT can be implemented by multistage
filter bank named MRA [11], as illustrated on Figure 2. The Mallat algorithm
consists of series of high-pass and the low-pass filters that decompose the original
signal x[n] into approximation a(n) and detail d(n) coefficient, each one
corresponding to a frequency bandwidth.

The resolution of the signal, which is a measure of the amount of detail infor-
mation in the signal, is changed by the filtering operations, and the scale is changed
by up-sampling and down-sampling (sub-sampling) operations. Sub-sampling a
signal corresponds to reducing the sampling rate or removing some of the samples
of the signal. For other hand, up-sampling a signal corresponds to increasing the
sampling rate of a signal by adding new samples to the signal.

Figure 1.
Comparison of (a) the STFT uniform frequency coverage to (b) the logarithmic coverage of the DWT.
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The procedure starts with passing this signal x[n] through a half band
digital low-pass filter with impulse response h[n]. Filtering a signal corresponds to
the mathematical operation of convolution of the signal with the impulse response
of the filter. The convolution operation in discrete time is defined as follows [2]:

x n½ � ∗ h n½ � ¼ ∑
∞

k¼�∞
x k½ � � h n� k½ � (9)

A half band low-pass filter removes all frequencies that are above half of the
highest frequency in the signal. For example, if a signal has a maximum of 1000 Hz
component, then half band low-pass filtering removes all the frequencies above
500 Hz. However, it should always be remembered that the unit of frequency for
discrete time signals is radians.

After passing the signal through a half band low-pass filter, half of the samples
can be eliminated according to the Nyquist’s rule. Simply discarding every other
sample will subsample the signal by two, and the signal will then have half the
number of points. The scale of the signal is now doubled. Note that the low-pass
filtering removes the high frequency information but leaves the scale unchanged.
Only the sub-sampling process changes the scale. Resolution, on the other hand, is
related to the amount of information in the signal, and therefore, it is affected by
the filtering operations. Half band low-pass filtering removes half of the frequen-
cies, which can be interpreted as losing half of the information. Therefore, the
resolution is halved after the filtering operation. Note, however, the sub-sampling
operation after filtering does not affect the resolution, since removing half of the
spectral components from the signal makes half the number of samples redundant
anyway. Half of the samples can be discarded without any loss of information.

This procedure can mathematically be expressed as [2]:

y n½ � ¼ ∑
∞

k¼�∞
h k½ � � x n� k½ � (10)

The decomposition of the signal into different frequency bands is simply
obtained by successive high-pass and low-pass filtering of the time domain signal.
The original signal x[n] is first passed through a half band high-pass filter g[n] and
a low-pass filter h[n]. After the filtering, half of the samples can be eliminated
according to the Nyquist’s rule, since the signal now has a highest frequency of p/2
radians instead of p. The signal can therefore be sub-sampled by 2, simply by
discarding every other sample. This constitutes one level of decomposition and can
mathematically be expressed as follows [2]:

yhigh k½ � ¼ ∑
n
x n½ � � g 2k� n½ � (11)

ylow k½ � ¼ ∑
n
x n½ � � h 2k� n½ � (12)

where yhigh[k] and ylow[k] are the outputs of the high-pass and low-pass filters,
respectively, after sub-sampling by 2.

3. Wavelets theory advantage

In [12], an application of WT and its advantages compared to Fourier transform
is presented. One of the main advantages of wavelets is that they offer a
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simultaneous localization in time and frequency domain. The second main advan-
tage of wavelets is that, using fast wavelet transform, it is computationally very fast.
Wavelets have the great advantage of being able to separate the fine details in a
signal. Very small wavelets can be used to isolate very fine details in a signal, while
very large wavelets can identify coarse details. A wavelet transform can be used to
decompose a signal into component wavelets. In wavelet theory, it is often possible
to obtain a good approximation of the given function f by using only a few
coefficients, which is a great achievement when compared to Fourier transform.
Wavelet theory is capable of revealing aspects of data that other signal analysis
techniques miss like trends, breakdown points, and discontinuities in higher
derivatives and self-similarity. It can often compress or de-noise a signal without
appreciable degradation [12].

The Fourier transform shows up in a remarkable number of areas outside classic
signal processing. Even taking this into account, we think that it is safe to say that
the mathematics of wavelets is much larger than that of the Fourier transform. In
fact, the mathematics of wavelets encompasses the Fourier transform. The size of
wavelet theory is matched by the size of the application area. Initial wavelet appli-
cations involved signal processing and filtering. However, wavelets have been
applied in many other areas including nonlinear regression and compression. An
offshoot of wavelet compression allows the amount of determinism in a time series
to be estimated [12].

4. Wavelets transform application in electric power system

Refs. [1, 13, 14] conducted studies related to this chapter. These authors also
present a literature review on the application of WT in power electrical systems.

By means of the bibliographic review, it is possible to highlight certain topics
of interest for researchers:

• Power quality

• Partial discharges

• Transient in electrical systems

• Power system protection

• Load forecasting

• Power system measurement

Figure 3 shows the percentage of publications in each area. The areas in
which more works have been developed are the power quality and protection field.
The next section presents a general description of wavelet application in the
selected areas of power systems. There are more works in these areas; however, no
details will be entered due to space issues and that the approach to the topic used
WT is similar.

4.1 Partial discharges

Partial discharges are difficult to detect because of their short duration, high
frequency, and low amplitude. However, the use of WT can not only detect them
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but also isolate them by frequency bands for their study, performing a multi-
resolution analysis. An important study is the filtering of noise in PD signals. In this
sense, [15, 16] propose the recognition and categorization of PDs, for the study of
transformer failures.

In [15], an adaptive filter is used to obtain PD without noise or interference for
online studies. In [16], it is posed by means of a sophisticated equipment to obtain
the currents and through WT to filter the PD and to be able to carry out its later
study. If we follow the line of online monitoring, it can be seen in [17] that using a
high-frequency transducer, the PD can be extracted to obtain analysis in trans-
formers in service. We talked about how to get them and how to remove the
noise in the signals, we just need to locate them. Ref. [18] proposes a PD injection
method in preestablished nodes to obtain the plant model to measure at
separate points.

4.2 Transient in electrical system

This section could be assembled considering different places of application of
the WT, from generation to service transformers. In the generation, [19] shows us a
study in the transients of the generation turbines where they perform an exhaustive
analysis using a wavelet neural network to obtain the output values to adjust the
turbine and obtain a correct operation.

Works [20–22] propose the use of WT for applications in high voltage lines
(EHV) and the power system. In [20], WT used for the study of the electric field in
the conductors can obtain the waveform of the current and voltage that facilitates
the study of faults with which a filter for the study of harmonics can be designed. In
[21], using the entropy energy, it is possible to obtain parameters of systems that
change with certain sensitivity and design a protection that can reduce the capaci-
tive effects in the bars and in the high-frequency traps. Ref. [22] proposes to use
several scales of different frequencies to decompose the harmonics for the detec-
tion, localization, and segmentation of them. With this, we can estimate the energy
and overvoltage caused and discern between impulsive and oscillatory transients.
Ref. [23] presents an analysis on which is the best wavelet mother for the measure-
ment of harmonics in electrical systems. Ref. [24] proposes an empirical wavelet
transform for harmonic detector under dynamism conditions of the system. Ref.
[25] presents a method for detecting and classifying faults in transmission lines by
combining DWT and neural networks.

Figure 3.
Wavelet publication percentage in different power system areas.
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Finally, the characteristic impedance of a transformer can be obtained through
its transient response [26]. With this, we can easily make a verification of the state
of the transformer using the WT coefficients.

4.3 Power system protection

In the search for shorter downtimes and the maximization of the life time of the
energy system equipment, it repeats itself to increasingly finer methods for analysis.
In the recent years, we have begun to analyze the protections of voltage trans-
formers (TT) and current transformers (CT) by WT [27]. This was done previously
in the use of the Fourier Transform (FFT) and the current protections of the
internal fault current. Refs. [28–31] study the differentiation of these currents by
theoretical methods. This means that the test in the field is not done but the results
of the simulations give positive results, an exception of [31] where the methods are
applied to a test TT. For the development of differential protections, [30, 32–34]
analyze the transients and extract the predominant signal from the internal fault;
the method has been tested with different faults and an efficient algorithm for
online analysis has been obtained. In [33–41], WT is used for fault diagnostic and
transient event identification in transformer operation.

There has been a great effort in different works to evaluate the different mother
wavelet. Thus, [33, 34] present a comprehensive analysis involving an important
number of wavelets to prove the efficiency in power transformer protection.

Another important part is between disruptive currents and fault currents in the
earth, where the results were analyzed with computer programs [42, 43].

The bus zone protection scheme is considered for the detection of transient
current in [44]. In the electric machine area, [45] proposed the use of the WT for
fault diagnostic using current signal. The transmission line fault detection with WT
in the presence of wind power generation is studied in [46, 47] approach, a study on
fault detection in compensated transmission line (TCSC technology). In [48],
wavelet analysis is used for fault detection in hybrid energy source.

4.4 Power quality

With the increase of the use of electronic equipment, it has become a necessity
to study the quality of energy. The loads, having a stationary or non-stationary
state, are no longer easily analyzed, so we resort to mathematical tools capable of
classifying and characterizing these states. In this network, transient disturbance
occurring in the network can be classified as voltage drops, voltage increases,
momentary interruptions, harmonics, and transients, among others.

The main topics of study are the harmonics; these are present in the waves and
are common to see in the electrical networks, and so the first step would be to
identify them and isolate their behavior in order to eliminate these disturbances.
Ref. [49–51], using WPT, perform a method in which the fundamental harmonic
and higher order harmonics can be extracted, which is a method applicable to
energy networks for monitoring them. For the same application [52], they have
formulated using CWT, an algorithm used to identify the variations of frequency,
harmonics, sub harmonics, and inter harmonics.

A practical application of the CWT is the real-time monitoring of voltage and
current signals for the rapid detection and elimination of transient events that may
worsen the quality of the electric service. Previously, the first subject of study in
terms of energy quality was established, but this is only a small part of the faults
found in the energy system. Faults must be identified in order to perform an
efficient analysis and be able to act on them as soon as they occur.
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Finally, the characteristic impedance of a transformer can be obtained through
its transient response [26]. With this, we can easily make a verification of the state
of the transformer using the WT coefficients.

4.3 Power system protection

In the search for shorter downtimes and the maximization of the life time of the
energy system equipment, it repeats itself to increasingly finer methods for analysis.
In the recent years, we have begun to analyze the protections of voltage trans-
formers (TT) and current transformers (CT) by WT [27]. This was done previously
in the use of the Fourier Transform (FFT) and the current protections of the
internal fault current. Refs. [28–31] study the differentiation of these currents by
theoretical methods. This means that the test in the field is not done but the results
of the simulations give positive results, an exception of [31] where the methods are
applied to a test TT. For the development of differential protections, [30, 32–34]
analyze the transients and extract the predominant signal from the internal fault;
the method has been tested with different faults and an efficient algorithm for
online analysis has been obtained. In [33–41], WT is used for fault diagnostic and
transient event identification in transformer operation.

There has been a great effort in different works to evaluate the different mother
wavelet. Thus, [33, 34] present a comprehensive analysis involving an important
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momentary interruptions, harmonics, and transients, among others.

The main topics of study are the harmonics; these are present in the waves and
are common to see in the electrical networks, and so the first step would be to
identify them and isolate their behavior in order to eliminate these disturbances.
Ref. [49–51], using WPT, perform a method in which the fundamental harmonic
and higher order harmonics can be extracted, which is a method applicable to
energy networks for monitoring them. For the same application [52], they have
formulated using CWT, an algorithm used to identify the variations of frequency,
harmonics, sub harmonics, and inter harmonics.

A practical application of the CWT is the real-time monitoring of voltage and
current signals for the rapid detection and elimination of transient events that may
worsen the quality of the electric service. Previously, the first subject of study in
terms of energy quality was established, but this is only a small part of the faults
found in the energy system. Faults must be identified in order to perform an
efficient analysis and be able to act on them as soon as they occur.
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In the papers presented in [42, 53–61], their main theme coincides and is to
classify the faults that can be obtained from the analysis of the voltage wave
through WT. Broadly speaking, it can be highlighted that they obtain the range of
frequency, amplitude, time of action, waveform, etc. Although their methods differ
in the application of the WT, the essence of the study is the same. One step beyond
performing fault classification studies is to achieve a practical application for the in-
service power network. In [62], it implements a DSP for the continuous study of
energy. Ref. [63] uses an FPGA for continuous analysis of system disturbances. In
[42], through a wavelet neural network and a self-organizing arrangement system,
it obtains automatic equipment for the detection and suppression of multiple faults
in the network.

Other areas of power quality are studied using theWT characteristic. In [64, 65],
the power quality events are characterized and classified using wavelet transforma-
tion. The power quality disturbance detection in grid-connected wind energy
system is development with wavelet and S-transform. In [66] is presented a com-
parative analysis of power quality event using wavelet for real time implementation
and [67] tested measurement system to electric energy quality together digital
signal processor.

The voltage variation is a usual problem in electric system which affects the
quality power. Ref. [68] addresses this problem from distributed energy resources.

4.5 Load forecasting

This analysis is the key to a correct distribution of energy in the electricity grid.
Basically, a prediction is made of how the loads will behave in short- or medium-
term horizons. In this sense, the behavior of the load can refer to disconnections of
large equipment, circuits that have transients in start, devices with low power
factor, etc. This analysis can be done through WT and some complement to make
the prediction.

We have cases like [69] that use a linear correlation for the load forecast. This is
a more conventional method compared to the other two. In recent years, there is
much talk of NN and machine learning to such a point that [70–79] use machine
learning to train aWT-based neural network. The load forecasting in the short-term
used WT theory is presented in [80, 81]. Thus, it can be observed that this applica-
tion is widely studied.

From another point of view, we have a prediction system based on fuzzy logic in
[82], and finally, in the current year, a neural network with fuzzy logic based on
WT is launched for the short-term study, which may be the foot to what is coming
to the future.

4.6 Power system measurements

Mainly, the WT is used in power systems and RMS measurements, both voltage
and current. As for the measurement systems of active, reactive, or apparent power,
a decomposition and classification of those waves present in the fundamental are
achieved. In [83], it analyzes how the variations of the loads influence the tension,
as much as it falls as in descents or in blinking. Then in [23], it approximates the
RMS value of the harmonics present in the voltage and current waves by means of
statistics; with this purpose, the improvement of harmonic detection and measure-
ment systems is sought. In [84], a method for determination and correction of
measurement anomaly based in WT is proposed.
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5. Conclusion

Wavelet transform is a powerful signal processing tool that transforms a time-
domain waveform into time-frequency domain and estimates the signal in the time
and frequency domains simultaneously. So, it is mostly used in electric power
systems analysis.

This chapter carries out an approach on the WT application in EPS in order to
facilitate the search for information in this area. Therefore, a classification of the
different fields of EPS applications was made. A summary description for each WT
application area is presented with the main objective of showing the applications of
this tool in the resolution of typical problems of the energy system.

The works analyzed show that the Daubechies family was used in most of the
applications in power systems analysis, especially in protection area. However, the
type of mother wavelet and the decomposition level number may be changed and
therefore may not be generalized to all the cases.

The use of WT together with artificial intelligence tools (neural networks, fuzzy
logic, genetic algorithms, etc.) was presented as a promising methodology to diag-
nose faults in electrical systems.

Most of the works analyzed results of computational simulations. It is expected
that in the short term, the functionality of WT it is will comprobed in real
situations.
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Chapter 6

Wavelet Transform Applied to 
Internal Defect Detection by 
Means of Laser Ultrasound
Hossam Selim, Fernando Piñal Moctezuma,  
Miguel Delgado Prieto, José Francisco Trull, Luis Romeral Martínez 
and Crina Cojocaru

Abstract

Laser-generated ultrasound represents an interesting nondestructive testing 
technique that is being investigated in the last years as performative alternative 
to classical ultrasonic-based approaches. The greatest difficulty in analyzing the 
acoustic emission response is that an in-depth knowledge of how acoustic waves 
propagate through the tested composite is required. In this regard, different signal 
processing approaches are being applied in order to assess the significance of 
features extracted from the resulting analysis. In this study, the detection capabili-
ties of internal defects in a metallic sample are proposed to be studied by means of 
the time-frequency analysis of the ultrasonic waves resulting from laser-induced 
thermal mechanism. In the proposed study, the use of the wavelet transform 
considering different wavelet variants is considered due to its multi-resolution 
time-frequency characteristics. Also, a significant time-frequency technique widely 
applied in other fields of research is applied, the synchrosqueezed transform.

Keywords: laser ultrasound, internal defect detection, wavelet transform, 
synchrosqueezed transform, time of flight, nondestructive testing

1. Introduction

Structural damage is a typical defect in metallic structures and components that 
are exposed to deformations during the manufacturing process. Such undesired 
physical discontinuities imply quality level affectation of the final products and 
even the posterior performances when subjected to complex and cyclic loadings 
during their service. Thus, in the last years, a more comprehensive attention 
has been taken to nondestructive testing (NDT) methods in order to inspect the 
internal characteristics of metallic components for looking for internal defects or 
discontinuities.

In this regard, the use of conventional Acoustic Emission (AE) transducers has 
the advantages of moderate cost and easy implementation, and it allows the gen-
eration of specific waveforms with a known pulse shape. Although these methods 
provide satisfactory results, AE transducers also show some drawbacks including 
the low output power, that prevents such systems from being used remotely, low 
frequency bandwidth range, that makes necessary the use of arrays or ultrasonic 
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scanners increasing the system overall cost, small surface area, that prevents 
covering large object areas at once, and low spatial resolution in the excited volume. 
Ultrasonic transducers use waves with central frequencies ranging from fractions to 
multiples of MHz. AE analysis commonly relies on either of two schemes, pulse-
echo mode or pitch-catch mode. Pulse-echo mode is more useful in applications 
where it is required to use only one sensor for the send/receive signals. This has 
some limitations on some data acquisition speed and sensor’s sensitivity and size. 
It is also hard to recognize the location of the defects at an angle. Hence, the defect 
should be vertically aligned with the sensor in order to catch it. The pitch-catch 
mode offers more flexibility to work in both transmission and reflection modes 
where it is possible to more deeply investigate the ultrasonic-material interaction at 
different levels inside the material and extract more data concerning the defect by 
taking measurements at different angles. However, this technique is more expensive 
as it requires the use of many sensors, and the data processing is slower [1–3]. The 
frequency of the ultrasonic signal used affects the sensitivity and resolution of the 
measured defect dimensions. At higher frequencies, smaller defects can be detected 
more accurately. However, increasing the frequency has a negative impact on wave 
propagation inside the material. In other words, higher frequencies travel closer to 
the surface. So, the portion of the waves that penetrate to the depth of the material 
is reduced, thus leading to weaker possibilities to catch deeply embedded defects. 
Most of the available ultrasonic NDT instruments use these types of conventional 
AE transducers. Typically, they analyze the ultrasonic pulse’s Time of Flight (TOF) 
through the material under test (from the transducer to the receiver) in order to 
identify discontinuities in the structure corresponding to potential defects.

As an alternative, photonic approaches based on laser-induced ultrasonic and 
optical detection showed up as valuable competitors to the conventional ultrasonic 
techniques in the NDT field. These techniques offer the possibility of remote 
transmission and detection at a much higher resolution [4, 5]. The energy carried 
by a laser pulse incident on an isotropic specimen is rapidly absorbed into a shallow 
volume of the material and creates a localized heating, which results in a thermo- 
elastic expansion of the material, inducing a stress wave that generates an acoustic 
pulse [2]. Such thermoelastic effect plays an important role in ultrasonic wave 
generation when the power density of the pulsed laser is lower than the ablation 
 threshold of material. Ultrasonic waves mainly include longitudinal waves, shear 
waves, surface acoustic waves, and Lamb waves. Optical systems based on the laser 
technology can be used as well for the detection of transmitted and/or reflected 
acoustic waves. Several methods are implemented for this purpose. The vibration 
created by the acoustic wave at the surface can be optically detected using several 
approaches. They include optical interference techniques where a laser beam, 
reflected by the object surface, interferes with a reference beam. The interference 
fringes provide information about the crack’s position and size. A Mach-Zehnder 
interferometer is the simplest example for how interference fringes are generated. 
The holographic interferometry technique is most commonly used for crack local-
ization and flaw size determination [6]. It can detect very small details of the object 
under test. The optical approaches have important advantages such as the remote 
noncontact application, remote control, and generation of broadband frequency 
waves from kHz to GHz, high output power and the possibility to easily scan a 
larger object area at once. As an example of this performance, the work presented 
by Zhao et al. used this method for fatigue and subsurface crack detection [7]. 
Also, Erdahl discussed a valuable example of this approach to inspect multi-layered 
ceramic capacitors [8]. The main drawbacks of optical detection methods are their 
critical stability and the need for an anti-vibration setup in order to obtain reliable 
results, which make them very expensive and hard to apply to certain related fields. 
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On the other side, it is difficult to control the acoustic pulse shape as this mainly 
depends on the optical beam absorption properties at the material surface.

In this regard, a third approach represented by a hybrid scheme, composed by 
laser-ultrasonics, is considered a good trade-off in order to take advantage of both 
strategies, that is, the advantages of the optical system for generating artificial 
acoustic emission waves, as well as using a conventional ultrasonic transducer for 
detection. This significantly shows interesting results that overcome the draw-
back of the other schemes. Laser-ultrasonics offers an alternative to conventional 
ultrasonic techniques in the field of NDT evaluation. It allows inspection at a far 
distance from the object allowing the remote investigation of the test specimen 
without the need for a direct contact. Additionally, this technique features a broader 
frequency bandwidth compared with the limited bandwidth of the conventional 
ultrasonic transducers. Practically speaking, laser-ultrasonics covers the majority 
of the ultrasonic bandwidth which is important for various applications involving 
material characterization [2]. Indeed, the potential of this hybrid sensing scheme, 
combined with performative signal processing techniques, results in a promising 
field of study. Many researchers have made efforts to investigate the features of 
laser-generated acoustic waves and got substantial research achievements. For 
example, Zhang et al. studied empirical mode decomposition (EMD) to analyze 
the ultrasonic signals captured from an object that suffers from a certain defect 
which is followed by the Fourier transform of the selected intrinsic mode functions 
(IMFs) extracted from the EMD [9]. Also, Li et al. studied the laser-generated 
ultrasonic wave frequency characteristics in order to analyze crack effects and 
extract them from their generated frequency components [2]. Dixon et al. used 
pulsed laser-generated ultrasonics and EMAT for detecting the crack position using 
the B-scan study in time and frequency domains [10]. Lee discussed the ultrasonic 
flaw signal and technique to extract features using the fast Fourier transform and 
discrete wavelet transform [11]. All these studies conclude that broadband fre-
quency components appear in the ultrasonic waves generated by the laser impulse. 
The Fourier Transform (FT) is the simplest and most straight forward topology for 
separating the frequency’s components and studying their responses individually. 
However, it has some drawbacks since it does not allow the visualization of the 
temporal fingerprints of those individual frequencies. This makes it harder to figure 
out which frequency component corresponds to the defect. That necessitates the use 
of a stronger technique as the Wavelet Transform (WT) in order to analyze these 
frequency components and extract only those that correspond to the defect under 
investigation. Thus, the WT shows what frequencies are present and their impact on 
the time domain. Hence, it is possible to distinguish temporal and spectral behav-
iors, both at a time. This property helps to get more specific information about the 
TOF of possible reflected signals from the material with defects. Higher frequencies 
travel faster and closer to the surface of the object under test, compared with the 
lower frequencies. The wavelet technique helps to visualize the propagated frequen-
cies at certain time instants in the ultrasonic signal life time.

Considering the nature of the acoustic emission waves generated by the laser 
excitation, the detection of the TOF represents a challenge that is being currently 
attended to by the scientific community [12]. Although some studies have exhibited 
the potential of the WT to analyze acoustic emission signals, the analysis and inter-
pretation of the resulting time-frequency maps under a laser-ultrasonic scheme is 
still a challenge, mainly with respect to the determination of the TOF, where the 
error minimization is highly important. In fact, the error in determining the TOF, 
due to the presence of defects in the material under inspection, could become a 
challenge due to inconsistencies in the analysis. In this regard, the wavelet trans-
form capabilities and some of the most recent variants exported from other fields of 
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scanners increasing the system overall cost, small surface area, that prevents 
covering large object areas at once, and low spatial resolution in the excited volume. 
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As an alternative, photonic approaches based on laser-induced ultrasonic and 
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generation when the power density of the pulsed laser is lower than the ablation 
 threshold of material. Ultrasonic waves mainly include longitudinal waves, shear 
waves, surface acoustic waves, and Lamb waves. Optical systems based on the laser 
technology can be used as well for the detection of transmitted and/or reflected 
acoustic waves. Several methods are implemented for this purpose. The vibration 
created by the acoustic wave at the surface can be optically detected using several 
approaches. They include optical interference techniques where a laser beam, 
reflected by the object surface, interferes with a reference beam. The interference 
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On the other side, it is difficult to control the acoustic pulse shape as this mainly 
depends on the optical beam absorption properties at the material surface.

In this regard, a third approach represented by a hybrid scheme, composed by 
laser-ultrasonics, is considered a good trade-off in order to take advantage of both 
strategies, that is, the advantages of the optical system for generating artificial 
acoustic emission waves, as well as using a conventional ultrasonic transducer for 
detection. This significantly shows interesting results that overcome the draw-
back of the other schemes. Laser-ultrasonics offers an alternative to conventional 
ultrasonic techniques in the field of NDT evaluation. It allows inspection at a far 
distance from the object allowing the remote investigation of the test specimen 
without the need for a direct contact. Additionally, this technique features a broader 
frequency bandwidth compared with the limited bandwidth of the conventional 
ultrasonic transducers. Practically speaking, laser-ultrasonics covers the majority 
of the ultrasonic bandwidth which is important for various applications involving 
material characterization [2]. Indeed, the potential of this hybrid sensing scheme, 
combined with performative signal processing techniques, results in a promising 
field of study. Many researchers have made efforts to investigate the features of 
laser-generated acoustic waves and got substantial research achievements. For 
example, Zhang et al. studied empirical mode decomposition (EMD) to analyze 
the ultrasonic signals captured from an object that suffers from a certain defect 
which is followed by the Fourier transform of the selected intrinsic mode functions 
(IMFs) extracted from the EMD [9]. Also, Li et al. studied the laser-generated 
ultrasonic wave frequency characteristics in order to analyze crack effects and 
extract them from their generated frequency components [2]. Dixon et al. used 
pulsed laser-generated ultrasonics and EMAT for detecting the crack position using 
the B-scan study in time and frequency domains [10]. Lee discussed the ultrasonic 
flaw signal and technique to extract features using the fast Fourier transform and 
discrete wavelet transform [11]. All these studies conclude that broadband fre-
quency components appear in the ultrasonic waves generated by the laser impulse. 
The Fourier Transform (FT) is the simplest and most straight forward topology for 
separating the frequency’s components and studying their responses individually. 
However, it has some drawbacks since it does not allow the visualization of the 
temporal fingerprints of those individual frequencies. This makes it harder to figure 
out which frequency component corresponds to the defect. That necessitates the use 
of a stronger technique as the Wavelet Transform (WT) in order to analyze these 
frequency components and extract only those that correspond to the defect under 
investigation. Thus, the WT shows what frequencies are present and their impact on 
the time domain. Hence, it is possible to distinguish temporal and spectral behav-
iors, both at a time. This property helps to get more specific information about the 
TOF of possible reflected signals from the material with defects. Higher frequencies 
travel faster and closer to the surface of the object under test, compared with the 
lower frequencies. The wavelet technique helps to visualize the propagated frequen-
cies at certain time instants in the ultrasonic signal life time.

Considering the nature of the acoustic emission waves generated by the laser 
excitation, the detection of the TOF represents a challenge that is being currently 
attended to by the scientific community [12]. Although some studies have exhibited 
the potential of the WT to analyze acoustic emission signals, the analysis and inter-
pretation of the resulting time-frequency maps under a laser-ultrasonic scheme is 
still a challenge, mainly with respect to the determination of the TOF, where the 
error minimization is highly important. In fact, the error in determining the TOF, 
due to the presence of defects in the material under inspection, could become a 
challenge due to inconsistencies in the analysis. In this regard, the wavelet trans-
form capabilities and some of the most recent variants exported from other fields of 
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investigation, as the Synchrosqueezed Transform (ST), are considered. Thus, in this 
chapter, a defective metallic component for damage detection and visualization, 
through a laser-ultrasonic approach and detection of AE waves TOF, is studied. For 
this objective, the wavelet transform performance, as a time-frequency processing 
tool, and its results, are studied, compared with a promising variant called synch-
rosqueezed transform. This chapter is organized as follows: The theoretical basis 
and its suitability for the ultrasound processing of the wavelet transform and the 
synchrosqueezed transform are presented in Section 2. The materials and method, 
including the experimental setup, are explained in Section 3. The competency of the 
techniques and the experimental results are presented and discussed in Section 4.  
Finally, this chapter shows the conclusion dissemination in Section 5.

2. Theoretical considerations

2.1 Wavelet transform

The conventional Fourier series representation gives the information of fre-
quency components in a periodic signal (inability to provide frequency information 
over a period of time). The simplest solution, then, is to apply the FT within a 
limited time interval. Thus, the time window is shifted, and frequency components 
are obtained using the FT. This is the principal idea of the Short Time Fourier 
Transform (STFT). However, due to its fixed time window, its capabilities in front 
of complex nonstationary signals, where frequency components vary widely over 
a short time interval, are reduced. The wavelet transform overcomes such limita-
tions by introducing a scaling function, which gives a variable time window. The 
WT provides a variable frequency resolution unlike the FT and STFT which have a 
constant resolution [13].

The selection of the mother wavelet provides different characteristics of the 
input signal set that can emphasize certain features at the output. The flexibility 
of choosing the optimal mother wavelet is one of the advantages of using the WT, 
since the choice of the mother wavelet for a particular problem improves the signal 
processing capability of the technique. If the shape of the signal to be detected is 
known a priori, a replica of the set can be utilized as the mother wavelet function, 
or the mother wavelet can be chosen from a set of theoretical signals. The Mexican 
hat, Morlet and Daubechies4 (db4) wavelets have been proven to be efficient 
in improving the signal strength and reducing the noise, making the WT-based 
technique extremely useful for flaw detection (Figure 1).

The wavelet transform employs a sliding window function that is used to 
decompose the signal into a sum of wavelets added together. Each wavelet has finite 
propagation in time determined by the window size. These wavelets are limited in 
time, whereas sinusoidal functions, which are used for the Fourier series and Fourier 
transform, are continuous in the whole time range. Hence, we can use these wavelets 

Figure 1. 
Examples of wavelets used for acoustic emission processing. (a) Mexican hat. (b) Daubechies. (c) Morlet.
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that can be stretched/compressed in frequency and shifted in time to correlate them 
with the original signal under analysis in order to determine the set of frequencies 
propagating at any instantaneous time to a certain level of accuracy that is still not 
completely accurate due to the uncertainty principle, but this accuracy is sufficient to 
acquire enough information about both time and frequency composition of the signal.

Assuming that a multicomponent time series signal of interest v(t) can be 
expressed in the general form (Eq. 1):

  v (t)  =  ∑ 
k=1

  
K
     a  k   (t) expcos (2𝜋𝜋i  ϕ  k   (t) )   (1)

where ak(t) are the time-dependent instantaneous amplitudes, ϕk(t) denotes 
the instantaneous phases, and consequently, ϕ’k(t) represents its instantaneous 
frequencies. The wavelet transform can be represented Eq. (2), where the wavelet 
transform Wv from the v(t) signal is obtained:

   W  v   (a, b)  =   1 ___  √ 
___

  |a|       ∫ 
−∞

  
∞

    v (t)   ψ   ∗  (  t − b ___ a  ) dt  (2)

where ψ* is the complex conjugation of the mother wavelet (a continuous func-
tion in both the time domain and the frequency domain). A scale factor a either 
stretches (a is large), or compresses (a is small) the signal, where a = ωo/ω, ω is the 
angular frequency and ωo is the angular frequency shift, while b is the signal’s time 
shift [14–16]. The main purpose of the mother wavelet is to provide a source func-
tion to generate the daughter wavelets which are simply the translated and scaled 
versions of the mother wavelet.

2.2 Synchrosqueezed transform

Although, in comparison with the time-dependent Fourier transform (i.e., STFT), 
the achieved resolution of the time-frequency representation (TFR) by means of the 
wavelet analysis is certainly improved, its use still entails uncertainties on the distri-
bution of energy for the said representation. This becomes particularly evident for 
nonstationary signals with a higher multimodal complexity. While it is true that these 
inaccuracies somehow respond to the Heisenberg-Gabor uncertainty principle [17], 
the fact is that they are heavily related to the choice of the wavelet function with regard 
to the phenomenon of the application.

In order to overcome this drawback, alternative TFR strategies have been devel-
oped. As is the case of the Wigner-Ville distribution (and their modified alterna-
tives, e.g., Gabor-Wigner, Choi-Williams, Cohen’s class, Zhao-Atlas marks, among 
others), despite accomplishing high resolution TFRs, their use results in additional 
difficulties as in the case of high computational load and artificial frequency com-
ponents due to the interference between actual ones (cross-term property).

An additional TFR technique is the Hilbert-Huang Transform (HHT); by means 
of an Empirical Mode Decomposition (EMD) of the analyzed signal, a collection of 
Intrinsic Mode Functions (IMFs) is obtained, which, along with the Hilbert spectral 
analysis, will lead to a time-frequency depiction. Although having been success-
fully applied in a wide range of fields due to adaptively decomposing the signal of 
interest, its use also carries some drawbacks. Such is the case of a high computation 
load, the requirement of a stopping criterion for the EMD, the difficulty for dis-
cerning separate frequency components in narrow-band signals and a mix of modal 
components.

A more recent TFR framework inspired, by the adaptive approach of the HHT 
and the redistribution concept of the Wigner-class analysis, is the Synchrosqueezing 
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Figure 1. 
Examples of wavelets used for acoustic emission processing. (a) Mexican hat. (b) Daubechies. (c) Morlet.
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that can be stretched/compressed in frequency and shifted in time to correlate them 
with the original signal under analysis in order to determine the set of frequencies 
propagating at any instantaneous time to a certain level of accuracy that is still not 
completely accurate due to the uncertainty principle, but this accuracy is sufficient to 
acquire enough information about both time and frequency composition of the signal.

Assuming that a multicomponent time series signal of interest v(t) can be 
expressed in the general form (Eq. 1):
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k=1
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where ak(t) are the time-dependent instantaneous amplitudes, ϕk(t) denotes 
the instantaneous phases, and consequently, ϕ’k(t) represents its instantaneous 
frequencies. The wavelet transform can be represented Eq. (2), where the wavelet 
transform Wv from the v(t) signal is obtained:
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  |a|       ∫ 
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where ψ* is the complex conjugation of the mother wavelet (a continuous func-
tion in both the time domain and the frequency domain). A scale factor a either 
stretches (a is large), or compresses (a is small) the signal, where a = ωo/ω, ω is the 
angular frequency and ωo is the angular frequency shift, while b is the signal’s time 
shift [14–16]. The main purpose of the mother wavelet is to provide a source func-
tion to generate the daughter wavelets which are simply the translated and scaled 
versions of the mother wavelet.

2.2 Synchrosqueezed transform

Although, in comparison with the time-dependent Fourier transform (i.e., STFT), 
the achieved resolution of the time-frequency representation (TFR) by means of the 
wavelet analysis is certainly improved, its use still entails uncertainties on the distri-
bution of energy for the said representation. This becomes particularly evident for 
nonstationary signals with a higher multimodal complexity. While it is true that these 
inaccuracies somehow respond to the Heisenberg-Gabor uncertainty principle [17], 
the fact is that they are heavily related to the choice of the wavelet function with regard 
to the phenomenon of the application.

In order to overcome this drawback, alternative TFR strategies have been devel-
oped. As is the case of the Wigner-Ville distribution (and their modified alterna-
tives, e.g., Gabor-Wigner, Choi-Williams, Cohen’s class, Zhao-Atlas marks, among 
others), despite accomplishing high resolution TFRs, their use results in additional 
difficulties as in the case of high computational load and artificial frequency com-
ponents due to the interference between actual ones (cross-term property).

An additional TFR technique is the Hilbert-Huang Transform (HHT); by means 
of an Empirical Mode Decomposition (EMD) of the analyzed signal, a collection of 
Intrinsic Mode Functions (IMFs) is obtained, which, along with the Hilbert spectral 
analysis, will lead to a time-frequency depiction. Although having been success-
fully applied in a wide range of fields due to adaptively decomposing the signal of 
interest, its use also carries some drawbacks. Such is the case of a high computation 
load, the requirement of a stopping criterion for the EMD, the difficulty for dis-
cerning separate frequency components in narrow-band signals and a mix of modal 
components.

A more recent TFR framework inspired, by the adaptive approach of the HHT 
and the redistribution concept of the Wigner-class analysis, is the Synchrosqueezing 
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Transform (ST). This framework was developed with the aim to eliminate distorted 
interference terms while concentrating the energy on their corresponding modal 
components. This method, belonging to the family of the time-frequency energy 
reassignment, has arisen with the advantages of offering a better adaptability with 
regard to the signal, lesser deformation for the IF profiles, and by preserving the time, 
it admits an exact reconstruction formula for the constituent modal components  
(i.e., existence of an inverse transformation). Originally proposed for Daubechies 
[18] for an auditory application and revised for several authors [19–23], it works by 
redistributing the misallocated energy on the scale axis (due to the mother wavelet).

As aforementioned, the wavelet analysis leads to a depiction of the instantaneous 
frequencies ϕ’k(t) of each existing component in the signal v(t) by a correlation 
between said signal and a chosen atom (mother-wavelet), thus using a scaled and 
translated version of the mother-wavelet over v(t). Nevertheless, under this frame-
work is presented energy spreading over the TFR associated due to the selection 
of the mother-wavelet as well as for the Heisenberg-Gabor uncertainty principle, 
affecting the intelligibility of the analysis. The aim of the synchrosqueezed wavelet 
transform is to partially reassign the spread energy that occurred during the wavelet 
analysis for the frequency dimension only, by analyzing each component of the 
TFR. Therefore, it is necessary that the modal components are intrinsic mode type 
functions (IMT). Hence, by preserving the time dimension, it is possible to enable 
an inverse transformation of the obtained signal toward a time series. The wavelet 
synchrosqueezed transform (WST) involves the following steps. First, obtaining a 
wavelet transform Wv from the v(t) signal following Eq. (2). Thus, ψ represents the 
analytic mother wavelet existing only for positive frequencies, that is, the Fourier 
transform of the mother-wavelet F[ψ] given by:

   ψ ̂   (ξ)  =   1 ____ 2π  √ 
__

 a      ∫ 
−∞

  
∞

   ψ (t)  exp  (− i𝜉𝜉t) dt = 0  (3)

for frequencies ξ < 0. By Plancherel’s theorem, Eq. 2 can be rewritten as:

   W  v   (a, b)  =   1 ____ 2π  √ 
__

 a      ∫ 
−∞

  
∞

    v ̂   (ξ)    ψ ̂     ∗  (a𝜉𝜉)  exp  (ib𝜉𝜉) d𝜉𝜉 =   A ____ 4π  √ 
__

 a       ψ ̂     ∗  (a  ω  0  )  exp  (ib  ω  0  )   (4)

where ω0 = 2πf0 is the angular frequency of v(t).
Second, extracting the IF from the wavelet transform. As each scale a of Eq. (5) 

corresponds to a natural frequency ξ/ω0, satisfying the relation a = c/ξ where c is the 
center frequency of the mother-wavelet ψ*; it concentrates the energy of the transfor-
mation around this frequency. By supposing that the shift time b is fixed, and if ξ = c/a 
is close, but not exactly located at the instantaneous frequency ϕ’k(t), the coefficient 
Wv(a,b) will contain some residual nonzero energy (i.e., |Wv(a,b)|2 > 0), smearing 
the TFR. The aim of the synchrosqueezing is to remove this residual energy centered 
around ξ and reallocating it to a frequency location closer to its corresponding instan-
taneous frequency ϕ’k(t). So, it is necessary to compute the instantaneous frequency of 
the wavelet analysis for which Wv(a,b) ≠ 0, by the phase transformation:

   ω  v   (a, b)  =   1 ________ 
i  W  v   (a, b) 

     ∂ ( W  v   (a, b) )  __________ 
∂ b    (5)

Third, “squeezing” the wavelet transform over the regions where the phase 
transformation is constant.

During the scale-frequency mapping, that is, (a,b) → (ωv(a,b),b), the synch-
rosqueezing is applied to reassign the time-scale representation of the TF. Thus, for 
a fixed shift time b, the frequency reassignment ωv(a,b) is carried out for all a scale 
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values by means of Eq. (5), to then, for each frequency of interest ωl, compute the 
synchrosqueezing by adding all values Wv(a,b), where the reassigned frequency 
ωv(a,b) is equal to ωl. This is achieved by means of the mapping (for discrete values):

   T  v   ( ω  l  , b)  =   1 ___ ∆ ω     ∑ 
 a  k  : |ω ( a  k  ,b) − ω  l  | ≤  ∆ω ___ 2  

     W  v   ( a  k  , b)   a  k  −3/2    (Δa)   k    (6)

where Δω = ωl − ω(l−1), (Δa)k = ak − a(k−1), ωl is the lth discrete angular fre-
quency, and ak is the kth discrete scale point. Finally, the instantaneous angular 
frequency can be normalized by 2π as the IF f = ω/2π.

In general, the modal components from the synchrosqueezed analysis are 
separated well enough in the TF plane. For a given signal, if this condition is actu-
ally met, their modal components could be treated as intrinsic mode function types 
and their trajectories (known as wavelet ridges) can be tracked over the TF plane as 
their energy varies in terms of the function of time, enabling their transformation 
into the time domain.

3. Method and material

In order to analyze the suitability of the wavelet transform and the synchrosqueez-
ing to extract a proper TOF related to defect location, a specific experimental bench has 
been arranged. The procedure is based on five steps. The first step consists of the cap-
tion of the ultrasonic signals received by the ultrasonic sensors from all considered laser 
scan points. These acquired signals are then processed by a noise filtering algorithm 
and an interpolation and bandpass filter to remove any unimportant components. The 
resulting A-scan signals are then ready for the next step of applying the wavelet or the 
synchrosqueezed transform. These transforms will generate the time frequency maps 
that are useful for detecting the most important propagating frequencies with respect to 
their times of flight. In order to further clean the signal, it is proposed to apply a signal 
contouring algorithm. This will help to identify the areas with uniform intensities, and 
the signal distribution will become clearer. It should be noted that the most important 
feature in this kind of algorithm is the expected time of flight for the signal. This time of 
flight is used later on detecting the distance between the sensor and the defect based on 
the speed of propagation of the ultrasonic waves (Figure 2).

The distance between the individual laser scan points and the receiving sensor is 
known a priori. In addition, the dimensions of the object under test are also known. In 
this regard, the time of flight of the main echoes should be equal to, or greater than, 
either the distance of the path from the laser direct to the sensor, or from the laser to 
any object boundary and reflecting back to the sensor whichever found shorter. Thus, 
the distance between the laser and the object boundaries is larger than the direct dis-
tance between the laser and the sensor. In addition, if there is any existing defect inside 
the material, this would create an internal deflection with a distance shorter than that 
of the object’s boundaries. Hence, it is expected that the first main echo received in the 
analysis is due to the laser’s direct propagation toward the sensor, and the second main 
echo, in this case, should be due to the deflections from any existing defect.

Figure 2. 
The sequence flow chart of the signal processing procedure for the analysis.
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Transform (ST). This framework was developed with the aim to eliminate distorted 
interference terms while concentrating the energy on their corresponding modal 
components. This method, belonging to the family of the time-frequency energy 
reassignment, has arisen with the advantages of offering a better adaptability with 
regard to the signal, lesser deformation for the IF profiles, and by preserving the time, 
it admits an exact reconstruction formula for the constituent modal components  
(i.e., existence of an inverse transformation). Originally proposed for Daubechies 
[18] for an auditory application and revised for several authors [19–23], it works by 
redistributing the misallocated energy on the scale axis (due to the mother wavelet).

As aforementioned, the wavelet analysis leads to a depiction of the instantaneous 
frequencies ϕ’k(t) of each existing component in the signal v(t) by a correlation 
between said signal and a chosen atom (mother-wavelet), thus using a scaled and 
translated version of the mother-wavelet over v(t). Nevertheless, under this frame-
work is presented energy spreading over the TFR associated due to the selection 
of the mother-wavelet as well as for the Heisenberg-Gabor uncertainty principle, 
affecting the intelligibility of the analysis. The aim of the synchrosqueezed wavelet 
transform is to partially reassign the spread energy that occurred during the wavelet 
analysis for the frequency dimension only, by analyzing each component of the 
TFR. Therefore, it is necessary that the modal components are intrinsic mode type 
functions (IMT). Hence, by preserving the time dimension, it is possible to enable 
an inverse transformation of the obtained signal toward a time series. The wavelet 
synchrosqueezed transform (WST) involves the following steps. First, obtaining a 
wavelet transform Wv from the v(t) signal following Eq. (2). Thus, ψ represents the 
analytic mother wavelet existing only for positive frequencies, that is, the Fourier 
transform of the mother-wavelet F[ψ] given by:

   ψ ̂   (ξ)  =   1 ____ 2π  √ 
__

 a      ∫ 
−∞

  
∞

   ψ (t)  exp  (− i𝜉𝜉t) dt = 0  (3)

for frequencies ξ < 0. By Plancherel’s theorem, Eq. 2 can be rewritten as:

   W  v   (a, b)  =   1 ____ 2π  √ 
__

 a      ∫ 
−∞

  
∞

    v ̂   (ξ)    ψ ̂     ∗  (a𝜉𝜉)  exp  (ib𝜉𝜉) d𝜉𝜉 =   A ____ 4π  √ 
__

 a       ψ ̂     ∗  (a  ω  0  )  exp  (ib  ω  0  )   (4)
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the speed of propagation of the ultrasonic waves (Figure 2).

The distance between the individual laser scan points and the receiving sensor is 
known a priori. In addition, the dimensions of the object under test are also known. In 
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The TOF corresponding to the presence of the defect will be equal to the sum of 
TOF from source of excitation to the defect scatterer and the TOF from the defect 
scatterer to the receiving sensor. IF this TOF is converted to distance by multiplying 
by the longitudinal velocity of sound in the material, we can see that the position of 
the defect scatter would be any point at the surface of a locus ellipsoid whose two 
foci are the exciter and sensor positions [24].

An aluminum cube, with dimensions of 200 mm3, and with an embedded cylin-
drical defect is considered to investigate the detection capabilities of the wavelet 
and synchrosqueezed transforms. The sample’s structure and the position of the 
defect are shown in the next figure. The hole under investigation is the one on the 
top around the scan area of the laser-generated ultrasound (Figure 3).

4. Experimental results

This section shows the wavelet analysis of each A-scan signals detected by the 
sensor at positions indicated in Table 1. Three different types of mother wavelets 
are used to analyze the signal, namely the Mexican hat, Morlet, and db4. The three 
mother wavelets are very popular for ultrasound wave analysis due to their high 
correlation with the ultrasound wave form.

Figure 4 shows the cross section front view at XY plane of the cylindrical defect 
embedded at depth of the object. The position of the three scan points at the surface 
of the object are superimposed on same Figure for clarification the horizontal and 

Figure 3. 
Aluminum specimen, internal damage, and laser scan area. All dimensions are in millimeters. (a) Isometric view. 
(b) Front view. (c) Top view.
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vertical spacing from cylindrical defect. The exact data of the position of each scan 
point is represented in Table 1.

Figure 5 shows the absolute position of the defect cylinder represented by top 
view for the three scanning points. In addition, the locus ellipsoid estimation based 
on distance corresponding to TOF from exciter to defect point scatter and back to 
the receiving sensor for the three scanning points. It can be seen that the intersec-
tion between the ellipsoid and the cylinder happens at the point of back scattering 
from the defect to the sensor.

It is shown in Figure 6 the wavelet contour map generated using Morlet WT. It 
is clear that the WT analysis resulted in clustering the signal into groups of segre-
gated echoes. Each echo is governed by its intensity level, time duration, and scale 
levels. Scale levels are inversely proportional to the frequency spectrum. Hence, 
we can see at the top of the WT spectrum lies the echoes with low frequencies, 
while the echoes at the bottom correspond to high frequency components. Each of 
these echoes starts at a certain time shift, and it is clear that the start of the echo is 
occurring at lower frequencies with less intensity, and later the higher frequency 
components start to appear with their intensity level increasing. TOF of the first 
echo is corresponding to the direct surface propagation of the signal from the 
excitation point to the receiving sensor position, while TOF of the second large 
echo signal is corresponding to the reflected signal from the defect. It is possible to 
estimate the corresponding TOF based on that conclusion to be 20, 19, and 18.5 μs 

Scan point X position Y position True time of flight

R1 11 51 19.65

2 31 51 18.30

3 81 51 17.10

Table 1. 
Scan points considered for samples inspection.

Figure 4. 
Scan points considered for sample inspection and synthetic defect location.
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vertical spacing from cylindrical defect. The exact data of the position of each scan 
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Figure 5. 
Ellipsoid locus of defect position based on true time of Flight estimation resulting from the scan point and 
acoustic transducer positions. (a) Scan point 1. (b) Scan point 2. (c) Scan point 3.

Figure 6. 
Resulting wavelet contour maps with Morlet wavelet. (a) Scan point 1. (b) Scan point 2. (c) Scan point 3.
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Figure 7. 
Resulting wavelet contour maps with Mexican hat wavelet. (a) Scan point 1. (b) Scan point 2. (c) Scan point 3.

Figure 8. 
Resulting wavelet contour maps with db24 wavelet. (a) Scan point 1. (b) Scan point 2. (c) Scan point 3.
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Figure 9. 
Synchrosqueezing wavelet transform contour map of the scan point 1. (a) Time-based signal.  
(b) Synchrosqueezing transform contour map. (c) Detail of the time-based signal. (d) Detail of the synchrosqueezing 
transform contour map with an initial presence of acoustic activity at 21.08 μs, 2.87 MHz @−80.31 dB.

Figure 10. 
Synchrosqueezing wavelet transform contour map of the scan point 2. (a) Time-based signal. (b) Synchrosqueezing 
transform contour map. (c) Detail of the time-based signal. (d) Detail of the synchrosqueezing transform contour 
map with an initial presence of acoustic activity at 23.56 μs, 2.15 MHz @−84.04 dB.
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Figure 11. 
Synchrosqueezing wavelet transform contour map of the scan point 3. (a) Time-based signal. (b) Synchrosqueezing 
transform contour map. (c) Detail of the time-based signal. (d) Detail of the synchrosqueezing transform contour 
map with an initial presence of acoustic activity at 20.244 μs, 2.57 MHz @−89.64 dB.

Wavelet Scan point 1 Scan point 2 Scan point 3

Morlet 20.22 18.58 18.28

Mexican hat 23.05 19.98 20.98

Db4 21.65 18.95 18.50

Table 2. 
Resulting time of flight from the internal defect in microseconds.

Wavelet Scan point 1 Scan point 2 Scan point 3

Morlet 0.57 0.28 1.18

Mexican hat 3.40 1.68 3.88

Db4 2.00 0.65 1.40

Table 3. 
Resulting time of flight error compared with the true time of flight, in microseconds.

Scan point 1 Scan point 2 Scan point 3

Synchrosqueezing transform 21.08 23.56 20.24

Table 4. 
Resulting time of flight from the internal defect in microseconds.
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for Figure 6a–c, respectively.  Figure 7 and  Figure 8 represent the same wavelet 
echo analysis for Mexican hat and db4 mother wavelets respectively. Table 2 show 
the resulting TOF from the internal defects at three scan points with reference to 
the different mother wavelets while Table 3 shows the error of the resulting TOF 
compared to the calculated true TOF for each of the cases in (Table 2). It is found 
that the use of the Morlet mother wavelet gives the least estimation error and it is 
apparently the most accurate mother wavelet to use for this kind of analysis.

For the case of the TFR that results from the application of the SSWT, it can be 
observed that by the accurate redistribution of the energy that compose to the signal, 
the obtained images achieve an improved depiction of their modal frequencies in 
comparison with the conventional CWT, aiding to superiorly identify the behavior of 
the phenomenon. Moreover, for the scope of application of this study, by identifying 
the first instant of time when the bi-dimensional manifold created by means of the 
contour mapping of the SSWT apparently becomes closed by connecting all the modal 
frequencies of the signal of interest, it is possible to determine the onset of said signal.

As is well known, the accurate determination of this instant of time is critical 
for the TOF-related methods; hence, by means of this methodology, the required 
precision for the onset pick is achieved when only the signal waveform is used for 
this purpose. Synchrosqueezing wavelet transform contour map for the scan points 
of interest and TOF estimation are calculated Figures 9–11.  Tables 4–5. show the 
resulting TOF for the three scan points and Table 5 shows the corresponding error 
with comparison to the true TOF.

Nevertheless, considerations must be taken in order to not analyze a very small 
signal, this with the aim to avoid the negative effects of the Cone of Influence (COI) 
of the CWT, since the SSWT still leads to inaccuracies for these areas.

5. Conclusion

Indeed, the acoustic emission phenomena have been utilized as a powerful tool with 
the purpose to either detect, locate or assess damage for a wide range of applications. 
Derived from its monitoring, one of the major challenges in analyzing the resulting 
wavelet or synchrosqueezing transform signal is to identify and extract each generated 
AE event. Typically, this event detection is carried out by a thresholding approach over 
the raw signal. In this regard, the wavelet algorithm has resulted in a very useful and 
successful technique in detecting the time of flight of the acoustic emission echoes gen-
erated by defects at their corresponding frequencies. The accuracy of the algorithm was 
investigated experimentally using metallic structure. This algorithm is more powerful 
than the conventional Fourier transform algorithm. Various mother wavelets have been 
used to compare the correlation between the mother wavelet and the acquired A-scan 
signals. A mother wavelet with higher correlation would provide more accurate results. 
Thus, it is important to select the mother wavelet carefully to avoid misleading results. 
In regard with the synchrosqueezing transform, although improved resolution capabili-
ties, the error in regard with the time of flight determination is not reduced. The Morlet 
wavelet is revealed as the most suitable wavelet dealing with such acoustic emission 
waves generated by means of LASER excitation.

Scan point 1 Scan point 2 Scan point 3

Synchrosqueezing transform 1.43 5.26 3.14

Table 5. 
Resulting time of flight error compared with the true time of flight, in microseconds.
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the obtained images achieve an improved depiction of their modal frequencies in 
comparison with the conventional CWT, aiding to superiorly identify the behavior of 
the phenomenon. Moreover, for the scope of application of this study, by identifying 
the first instant of time when the bi-dimensional manifold created by means of the 
contour mapping of the SSWT apparently becomes closed by connecting all the modal 
frequencies of the signal of interest, it is possible to determine the onset of said signal.

As is well known, the accurate determination of this instant of time is critical 
for the TOF-related methods; hence, by means of this methodology, the required 
precision for the onset pick is achieved when only the signal waveform is used for 
this purpose. Synchrosqueezing wavelet transform contour map for the scan points 
of interest and TOF estimation are calculated Figures 9–11.  Tables 4–5. show the 
resulting TOF for the three scan points and Table 5 shows the corresponding error 
with comparison to the true TOF.

Nevertheless, considerations must be taken in order to not analyze a very small 
signal, this with the aim to avoid the negative effects of the Cone of Influence (COI) 
of the CWT, since the SSWT still leads to inaccuracies for these areas.

5. Conclusion

Indeed, the acoustic emission phenomena have been utilized as a powerful tool with 
the purpose to either detect, locate or assess damage for a wide range of applications. 
Derived from its monitoring, one of the major challenges in analyzing the resulting 
wavelet or synchrosqueezing transform signal is to identify and extract each generated 
AE event. Typically, this event detection is carried out by a thresholding approach over 
the raw signal. In this regard, the wavelet algorithm has resulted in a very useful and 
successful technique in detecting the time of flight of the acoustic emission echoes gen-
erated by defects at their corresponding frequencies. The accuracy of the algorithm was 
investigated experimentally using metallic structure. This algorithm is more powerful 
than the conventional Fourier transform algorithm. Various mother wavelets have been 
used to compare the correlation between the mother wavelet and the acquired A-scan 
signals. A mother wavelet with higher correlation would provide more accurate results. 
Thus, it is important to select the mother wavelet carefully to avoid misleading results. 
In regard with the synchrosqueezing transform, although improved resolution capabili-
ties, the error in regard with the time of flight determination is not reduced. The Morlet 
wavelet is revealed as the most suitable wavelet dealing with such acoustic emission 
waves generated by means of LASER excitation.

Scan point 1 Scan point 2 Scan point 3

Synchrosqueezing transform 1.43 5.26 3.14

Table 5. 
Resulting time of flight error compared with the true time of flight, in microseconds.
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