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Preface

Genomic variations are the basis for phenotypic variations of individual organisms 
of the same species. These phenotypic variations could be of clinical importance in 
humans and medically relevant organisms. Therefore detection of genomic varia-
tions, and interpretation of their phenotypic effects and pathogenic potentials, has 
become a growing field in both biomedical research and clinical medicine.

Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations is 
an up-to-date compilation of chapters on application of data analysis and mining 
tools for identification of clinically important genomic variations.

Chapter 1 discusses the application of non-decimated wavelet transform (NDWT) 
coupled with elastic net domains and Hurst exponent in identification of genetic 
diversity. Chapter 2 describes a comprehensive workflow for analysis of whole 
exome and whole genome sequencing data. It also presents the steps needed for 
variant discovery workflow with a particular focus on germline short variants and 
germline short insertion and deletion events. Additionally, this chapter outlines 
methods for analysis of somatic and structural variations.

Chapter 3 discusses local ancestry deconvolution and dating admixture events and 
the possible gaps in the knowledge that lead to the current challenges. Chapter 4 
addresses the value of multiomics-based molecular patterns and the concept of 
pattern recognition and pattern biomarkers in cancer diagnosis and prognosis. It 
also explores the application of these concepts in personalized medicine. Chapter 5 
addresses the genetic diversity of the hepatitis C virus and discusses its genotyping 
and concurrent variant profiling, as identification of resistance-associated variants 
of this virus determines the choice of anti-viral regimes in infected patients.

We would like to thank all the authors for their contributions and time in prepar-
ing this valuable collection. Also, we would like to extend our thanks to Mr. Luka 
Cvjetković for his great help during the editing of this book and to IntechOpen for 
their commitment and support.

Ali Samadikuchaksaraei, MD, PhD 
Departments of Medical Biotechnology and Tissue Engineering

& Regenerative Medicine,
Iran University of Medical Sciences, 

Tehran, Iran 

Morteza Seifi, PhD 
Alberta Children’s Research Institute (ACRI), 

Calgary, Alberta,
Canada 
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Chapter 1

The Bioinformatics Tools for 
Discovery of Genetic Diversity by 
Means of Elastic Net and Hurst 
Exponent
Leila Maria Ferreira, Thelma Sáfadi,  
Tesfahun Alemu Setotaw and Juliano Lino Ferreira

Abstract

The genome era allowed us to evaluate different aspects on genetic varia-
tion, with a precise manner followed by a valuable tip to guide the improvement 
of knowledge and direct to upgrade to human life. In order to scrutinize these 
treasured resources, some bioinformatics tools permit us a deep exploration of 
these data. Among them, we show the importance of the discrete non-decimated 
wavelet transform (NDWT). The wavelets have a better ability to capture hidden 
components of biological data and an efficient link between biological systems and 
the mathematical objects used to describe them. The decomposition of signals/
sequences at different levels of resolution allows obtaining distinct characteristics in 
each level. The analysis using technique of wavelets has been growing increasingly 
in the study of genomes. One of the great advantages associated to this method cor-
responds to the computational gain, that is, the analyses are processed almost in real 
time. The applicability is in several areas of science, such as physics, mathematics, 
engineering, and genetics, among others. In this context, we believe that using R 
software and applied NDWT coupled with elastic net domains and Hurst exponent 
will be of valuable guideline to researchers of genetics in the investigation of the 
genetic variability.

Keywords: wavelet, genome, NDWT, elastic net, Hurst exponent

1. Introduction

The genome era allowed us to evaluate different aspects on genetic variation, 
with a precise manner followed with a valuable tip to guide the improvement of 
knowledge and direct to upgrade to human life. In order to scrutinize these trea-
sured resources, some bioinformatics tools permit us a deep exploration of these 
data. Among them, we display the significance of the discrete non-decimated 
wavelet transform (NDWT). The wavelets they possess improved capability to 
identify occult constituents of biological data and do a well-organized connec-
tion amid biological systems and the mathematical items used to designate them. 
The decomposition of signals/sequences at diverse stages of resolution allows 
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obtaining different characteristics in each level. The analysis using technique of 
wavelets has been growing increasingly in the study of genomes. One of the great 
advantages associated to this method corresponds to the computational gain, that 
is, the analyses are processed almost in real time. The applicability is in numerous 
themes of science, as physics, mathematics, engineering, genetics, meteorology, 
and oceanography, among others. The wavelet transform comprehends a technique 
of see and represents a signal. This signal is decomposed in resolution intensities, 
where each level brings a detailing. Mathematically, it is embodied by a function 
oscillating in time or space. As characteristic, it has sliding windows that expand 
or compress to capture low- and high-frequency signals. Its starting point arose in 
the field of seismic training to designate the instabilities ascending from a seismic 
impulse. Among the wavelets techniques, we have the discrete non-decimated 
wavelet transform (NDWT), whose main characteristic is that it can work with any 
size of signals/sequences. In this procedure, the inductance is paraphrase invari-
ants, to be exact; the selection of origin is irrelevant, provided all the observations 
are used in the analysis, a condition that does not happen in the discrete decimated 
wavelet transform (DWT). The technique of discrete wavelet transforms is being 
used to find gene locations in genomic sequences, detecting long-range correlations, 
discovering periodicities in sequences of DNA and analysis of G + C patterns. The 
NDWT technique may be applied in any genome type, increasing the promptness 
of the analysis, because the analyses with this method are processed almost in real 
time. The wavelets have demonstrated to be an efficient method in the analysis of 
DNA sequences. This tool is imperative to be applied to elastic net. The main feature 
of the elastic net technique is the grouping of correlated variables where the quan-
tity of predictors is greater than the quantity of remarks. Furthermore, the Hurst 
exponent allows the evaluation of genome similarities. In the same way, the NDWT 
is crucial to evaluate the Hurst exponent. Strictly speaking, the bioinformatics 
tool NDWT is a fundamental step to allow the examination of genomic variation 
through the other subsequent bioinformatics tools, like elastic net and Hurst expo-
nent, which allow us to understand, interpret, and identify the genome variation in 
a certain species.

2. Wavelet

Wavelet analysis, nowadays, is used widely in subjects such as signal processing, 
engineering, physics, genetics, mathematics, medical sciences, economics, astron-
omy, etc. The genetic approach of this tool appears to be a valuable and interesting 
possibility in science.

Wavelet is miniature wave. Whatsoever their form has a distinct number of 
oscillations and lasts through a definite period of time or space. Wavelets hold 
countless appropriate properties. Wavelets possess gender categories: there are 
father wavelets φ and mother wavelets ψ. The father wavelet fits to 1, and the 
mother wavelet fits to 0. Wavelets also arise in different shapes. There are the 
discrete ones, the symmetric, the nearly symmetric, and the asymmetric. The key 
aspect of wavelet investigation is that it allows the researcher to separate out a vari-
able or signal into its essential multiresolution components [1].

In the last 21 years, more than 2000 articles were published with wavelet tech-
nique in wide-ranging subjects.

Wavelet theory delivers an integrated background for number methods which 
had been established autonomously for several signal processing applications [2]. 
Wavelet concept is established on Fourier analysis [3], in which all function may be 
denoted as the sum of sine and cosine functions.
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Non-decimal wavelet transform (NDWT) possesses ample spectra of applica-
tion, including mammographic imaginings, geology, genomes, applied math-
ematics, applied physics, atmospheric sciences, and economics, among other 
applications. In our specific case, we will approach the genomic approach.

When working with the complete genome, which is all the heritable information 
of an organism that is set in DNA or, in some viruses, in RNA, this includes both the 
genes and the noncoding sequences of a specific species; the main feature we find 
is the large volume of data. To elucidate this problem, the technique called wavelets 
has emerged as an efficient alternative in data compression, owning one of the main 
advantages that this technique offers. However, wavelet functions are also com-
manding apparatuses in signal processing, noise elimination, separation of compo-
nents in the signal, identification of singularities, and detection of self-similarity, 
among others.

The goals of this examination address to show how wavelets possibly will be 
used in the analysis of genome clustering using the energy and interaction of wave-
let functions with data grouping techniques (elastic net and Hurst exponent).

Structure of the analysis: first it is required to acquire the signal of the genome 
that will be analyzed; for this purpose, it is used to the tool called GC content. The 
signal if is required to apply a wavelet transform, in this case the NDWT will be 
used, working with the Daubechies wavelet with a certain number of null moments. 
The amount of decomposition levels will depend on the size of the genome. The 
scalogram is calculated using the detail coefficients obtained through the decom-
position levels. The clustering analysis is done using the dendrogram with medium 
binding and applying the Mahalanobis distance.

In order to apply the elastic net technique in wavelet transform (NDWT), all 
levels of decomposition are used; as a characteristic of this interaction, it is possible 
to see the groupings at each of the decomposition levels.

Applying the Hurst exponent technique on the levels of signal decomposition, 
each level brings information regarding the amount degree of Hurst exponent 
index. All values found for the Hurst exponent are used in the dendrogram with 
the mean binding and the distance of Mahalanobis. There are several methods of 
estimation of Hurst exponent; the most commonly used is the R/S method.

3. Wavelet transform

Wavelet analysis has arisen as a possible device for spectral investigation owing 
to the interval incidence localization which makes it appropriate for multifaceted 
and motionless signals. The wavelet transform has added meaningfully in the train-
ing of many processes/signals in virtually all areas of earth science [4].

Wavelet is mathematical function. To be considered a wavelet, it must have the 
total area on the function curve equals to zero. The energy of the behavior must be 
limited (regularity and well located). Another need in the art is the speed and ease 
of calculating the wavelet transform and the inverse transform.

Among various application areas of wavelets are computer vision, data compres-
sion, fingerprint compression at the FBI, data recovery affected by noise, similar 
behavior detection, musical tones, astronomy, meteorology, numerical image 
processing, and many others.

The wavelet transform rots a function demarcated in the period domain into 
another function, well-defined in time domain and frequency domain. It is defined as

  W (a, b)  =  ∫  ∞   ∞    f (t)    1 ___  √ 
___

  |a|       ψ   ∗  (  t − b ___ a  ) dt,  (1)
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which is a behavior function of two real parameters, a and b. If we define   ψ  a,b   (t)   as

   ψ  a,b   (t)  =   1 ___  √ 
___

  |a|       ψ   ∗  (  t − b ___ a  ) ,  (2)

we may put another way the transform as the inner output of the functions  f (t)   
and   ψ  a,b   (t)  :

  W (a, b)  =  〈 f (t) ,  ψ  a,b   (t) 〉  =  ∫  -∞   ∞    f (t)   ψ  a,b  ∗   (t) dt.  (3)

The function  ψ (t)   which equals   ψ  1,0   (t)   is entitled the mother wavelet, while the 
other functions   ψ  a,b   (t)   stay called daughter wavelets. The parameter b designates that 
the function  ψ (t)   has been translated on the t axis of a distance equivalent to b, being 
then a translation parameter. The parameter causes a change of scale, increasing (if  
 a > 1 ) or decreasing (if  a < 1 ) the wavelet formed by the function. Consequently, the 
parameter “a” remains known as the scaling parameter.

4. Wavelet analysis

There are abundant types of wavelet transform. Rely on the procedure one can 
be desired that others. The wavelet analysis is prepared by the successive procedure 
of wavelet transform with several values for the criterion a and b, representing the 
decomposition of the signal components located in period and the agreeing to these 
parameters. Each wavelet has a better or worse location in the domains of frequency 
and of the time, so the analysis can be done with wavelets according to the desired 
result. Wavelet analysis brings with it an analysis of where the resolution level is set 
by the index a.

Discrete wavelets: among them are the Daubechies wavelet, wavelet of Cohen-
Daubechies-Feauveau (occasionally mentioned as CDF N/P or Daubechies bior-
thogonal wavelets), Beylkin [5], BNC wavelets, Coiflet, Mathieu wavelet, Haar 
wavelet, binomial-QMF, Villasenor wavelet, Legendre wavelet, and symlet.

Continuous wavelets: (1) the real-valued wavelets are Mexican hat wavelet, 
Hermitian wavelet, beta wavelet, Hermitian hat wavelet, and Shannon wavelet, and 
the (2) complex-valued wavelets are Shannon wavelet, Morlet wavelet, complex 
Mexican hat wavelet, and modified Morlet wavelet.

In the latest decades, the investigation using method of wavelets has been rising 
progressively. One of the great rewards related with this method links to the compu-
tational improvement, that is, the analyses are treated virtually in real time. The 
applicability is in numerous areas of science, like physics, mathematics, engineer-
ing, and genetics, among others.

The wavelet transform is a method of sighted and characterizes a signal. 
Mathematically, it is characterized by a function wavering in time or space. As a 
characteristic, it has sliding windows that increase or bandage to capture low- and 
high-frequency signals, respectively [2]. Its origin arose in the field of seismic study 
to define the instabilities ascending from a seismic impulse [6].

Among the wavelet techniques, we have the discrete non-decimated wavelet 
transform (NDWT), whose main characteristic is that it may work with any extent 
of signals/sequences.

In this procedure, the coefficients are translation invariants, that is, the selec-
tion of source is unrelated since all the annotations are done in the investigation, 
a condition that does not happen in the discrete decimated wavelet transform 
(DWT).
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In recent period, the discrete wavelet transforms were worn to find gene sites in 
sequences of the genome [7], finding long-range correlations, finding periodicities 
in sequences of the DNA molecule [8], and also in the scrutiny of G + C patterns [9].

The clustering analysis is often assumed to deal with DNA sequences profi-
ciently. A wavelet-based element vector model was anticipated for grouping of DNA 
sequences [10].

The distinction of the discrete NDWT is to retain the similar extent of data in even 
and odd decimations on each measure and remain to do the identical on each subse-
quent scale, being D0 the dyadic decimation, D1 the odd decimation, H the high-pass 
filter, and L the low-pass filter. Consider, for example, an input path   ( y  1  , … ,  y  n  )  . Then, 
put on and preserve both   D  0    H  y    and   D  1    H  y   , even and odd indexed of the observation-
filtered wavelets. Each of these sequences is length n/2. Consequently, in whole, the 
amount of wavelet coefficients in both decimals on the better scale is 2 × n/2 = n [11].

5. GC content

An important parameter in genetics is the GC content. They are referred as 
the percentage of each bases of nitrogen composition of the molecule of DNA 
or RNA. We own the adenine, cytosine, guanine, thymine, and uracil. They are 
called by the acronyms A, C, G, T, and U, respectively. The last one belongs to RNA 
molecule replacing thymine. They are applied to the complete genome or deter-
mined fragment. This concept may be applied in coding or noncoding molecule seg-
ment. The adenine has the same quantity of thymine (DNA) or uracil (RNA). The 
cytosine has the same sum of guanine in either RNA or DNA. The amount of GC is 
related to high-stability one which value is less than AT or AU. In the opposite is low 
stability when this quantity is relatively small compared with AT or AU. This detail 
is because GC has three hydrogen bonds, although AU or AT has two of them.

The GC proportion inside a genome is established to be evidently variable. The 
DNA coding section is straight proportional to stand-up G + G.

In varied organisms, GC content is found to be too variable, which donate the 
dissimilarities in recombination pattern, including association with DNA repair, 
selection, and in the alteration of mutational bias patterns. Due to the essence of the 
genetic coding, it is nearly incredible for an organism to have a genome with a GC 
content pending either 0 or 100%. An organism species with an exceptionally low 
GC content is Plasmodium falciparum having about 20% of GC amount, published 
at NCBI—available at https://www.ncbi.nlm.nih.gov/bioproject?cmd=Retrieve&do
pt=Overview&list_uids=148.

The GC percentage is the largely used systematic approaches in many pro-
karyotic organisms mainly in bacteria species. Actinobacteria are one example of 
uppermost GC bacterial content. Another example is Streptomyces coelicolor being 
72% of G + G amount.

Interestingly, the software apparatuses GCSpeciesSorter [12] and TopSort [13] 
are used for categorizing species centered on their GC contents.

6. Daubechies wavelet

The Daubechies wavelets, established on the study done by Ingrid Daubechies, 
comprise of a series of orthogonal wavelets determining a discrete wavelet transform 
and categorized by a greatest amount of disappearing moments for certain given pro-
vision. With every wavelet assembly of this category lies in a scaling function (enti-
tled the father wavelet) that produces an orthogonal multiresolution investigation. 
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Ingrid Daubechies is a Belgian physicist and mathematician. Daubechies was the first 
female to be chair of the International Mathematical Union (2011–2014). She is very 
well acknowledged for her study using wavelets in image compression.

Daubechies earned the Louis Empain Prize for Physics in 1984, conferred once 
every 5 years to a Belgian scientist on the basis of a study done before the age of 29. 
In the middle of 1992 and 1997, she stood a partner of the MacArthur Foundation, 
in addition in 1993, she was designated to the American Academy of Arts and 
Sciences. In 1994, she earned the American Mathematical Society Steele Prize for 
explanation for her book Ten Lectures on Wavelets and was requested to provide an 
entire talk in Zurich at the International Congress of Mathematicians. In 1997, she 
stood granted the AMS Ruth Lyttle Satter Prize available at http://www.ams.org/
profession/prizes-awards/pabrowse#year=1997. In 1998, she was selected to the 
United States National Academy of Sciences, which can be visualized at http://nas.
nasonline.org/site/Dir/1753239219?pg=vprof&mbr=1001102&returl=http%3A%
2F%2Fwww.nasonline.org%2Fsite%2FDir%2F1753239219%3Fpg%3Dsrch%26vie
w%3Dbasic&retmk=search_again_link and acquired the Golden Jubilee Award for 
Technological Innovation from the IEEE Information Theory Society (https://www.
itsoc.org/honors/golden-jubilee-awards-for-technological-innovation). She turns 
into an overseas fellow of the Royal Netherlands Academy of Arts and Sciences in 
1999 accessible at https://www.knaw.nl/en/members/foreign-members/4013.

In 2000, Daubechies turns out to be the pioneer lady to obtain the National 
Academy of Sciences Award in Mathematics, stated every 4 years for excellence 
in published mathematical investigation. The prize honored her for important 
findings on wavelets and wavelet growths and designed for her accomplishment in 
building wavelet methods a constructive elementary apparatus of applied math-
ematics. This achievement is presented on https://www.knaw.nl/en/members/
foreign-members/4013. She was also conferred the Basic Research Award, German 
Eduard Rhein Foundation, which could be visualized on https://web.archive.org/
web/20110718233021/http://www.eduard-rhein-stiftung.de/html/Preistraeger_e.
html and https://web.archive.org/web/20110718234059/http://www.eduard-
rhein-stiftung.de/html/2000/G00_e.html and the NAS Prize in Mathematics 
https://web.archive.org/web/20101229195210/http://www.nasonline.org/site/
PageServer?pagename=AWARDS_mathematics.

Generally, the Daubechies wavelet properties stay preferred to have the maxi-
mum sum A of vanishing moments (this does not make sure of indicating the 
preeminent levelness) on behalf of assumed provision measurement 2A-1 [3]. It is 
present in two designation patterns in routine, DN via the extent or total of blows 
and dbA stating to the quantity of vanishing moments. Thus db2 and D4 stand the 
equivalent wavelet transform.

Among the 2A-1 thinkable resolution of the arithmetical calculations for the 
moment and orthogonal circumstances, the one is elected whose scaling filter has 
extreme phase. Wavelet transform remains too easy to place hooked on training 
through the debauched wavelet transform. Daubechies wavelets are broadly used 
in answering wide-ranging problems, for example, self-homology assets of sign or 
fractal difficulties and sign cutoffs, among others.

Daubechies wavelets remain not demarcated in footings of the subsequent 
scaling and wavelet functions; actually, they are not probable to inscribe down 
in locked procedure.

In the production of a wavelet scaling arrangement, low-pass filter and the 
wavelet sequence band-pass filter will standardized to ensure entirety unenliven 2 
and summation of squares unenliven 2. In particular requests, they are standardized 
to require sum  √ 

__
 2   ; thus one and other arrangements and entirely changes of them by 

an even sum of coefficients are orthonormal to each other.
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The employment of Daubechies wavelets though software such as Mathematica 
rope straight mode is available at https://reference.wolfram.com/language/ref/
DaubechiesWavelet.html, a basic execution is humble in MATLAB. This applica-
tion routines periodization to grip the problematic of limited measurement signals. 
Other, further refined devices are accessible, but habitually it is not required to use 
these as it merely touches the many split ends of the converted signal. The peri-
odization is fulfilled in the onward transform straight in MATLAB vector system 
and the inverse transform by means of the circshift() function.

7. Non-decimal wavelet transform

Non-decimal wavelet transform (NDWT) has the benefits of period invariance 
and redundancy, paralleled to the typical orthogonal wavelet transformations. 
NDWT owns properties beneficial in various wavelet applications. Furthermore, 
NDWT matrix is capable to powerfully map a signal arising from an acquirement 
field to the wavelet sphere with humble matrix multiplication and deprived of the 
prerequisite of the whole quantity of the signal [14].

A widespread version of wavelet transform is a NDWT, which can overwhelm 
sensitivity to translations in time and change found in typical [15] orthogonal 
wavelet transform. Initially in the 1990s, NDWT arose in scientific literature using 
several names for a figure of applications and purposes [16].

A process that approaches nonstop wavelet transform with an iterative algo-
rithm, which evicted to be corresponding to a shift-invariant representation, was 
put forward by [17]. Furthermore, a resourceful algorithm was defined with  
O(n log2 (n)) complexity for scheming wavelet coefficients that stand shift-
invariant, to be exact, humble repetitious wavelet coefficients at wholly N circulant 
shift for an input signal size of N [5, 18]. In addition, a wavelet packet decomposi-
tion for time invariance and applied it to estimation and detection problems was 
proposed by Pesquet and collaborators [19] and lengthy finished in the study [20], 
uses an over ample wavelet decomposition, which is stated to as discrete wavelet 
frame, for arrangement of texture. After that, two other studies [21, 22] tested 
translation-invariant transform to verge for noise reduction. Then, the study of 
stationary wavelet transform with example applications for local spectra estimation 
was published [23]. Finally, an examination of applied translation-invariant wavelet 
algorithm for data compression was done [24].

The time-invariance property of NDWT generates a reduced mean square error 
and also reduces the Gibbs phenomenon in d-noising applications [21]. Conversely, 
the defilement of variance maintenance in NDWT embarrasses the signal restora-
tion [16].

Major benefits of a NDWT matrix are squeezability, calculation promptness, 
and tractability in magnitude of an input signal. We previously deliberated the 
superior compressibility when NDWT matrices are well-worn for 2-D scale-mixing 
transforms.

NDWT possess ample spectra of application, including mammographic imagin-
ings, geology, genomes, physics, atmospheric sciences, and economics, among 
other applications.

8. Scalogram

Spectrogram is an ample prevalent tool in signal analysis because it provides 
a scattering of signal energy in time-frequency plane. The wavelet spectrogram 
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is broadly known like scalogram [25]. Comprehend a distribution of energy in 
timescale plane. The scalogram yields a more or less simply intelligible visual in 
two-dimensional representations of signals [26].

The scalogram is a valuable device for the understanding of the wavelet signal 
represented. It is like a graph of the square sum of the wavelet coefficients in 
different levels. In the occurrence of discrete transformation, it embodies a decom-
position of function energy without timescale. One of its features is the aptitude 
to detect periodic components of the signal; either apparatuses will result in peaks 
in the scalogram. These apparatuses may be mined from the signal by dividing the 
ripple coefficients into different sets, where each of these sets is at the same peak. 
High- and low-frequency apparatuses of a signal might be restored by applying a 
reverse loop transformation to separate sets [27].

The energy E (j) aimed at the wavelet d coefficients in each level j, which cor-
responds to the scalogram, is represented by

  E ( j)  =   ∑ 
k=0

  
n
     d  j,k  2   para j = 1, … , J  (4)

9. Cluster analysis

Cluster analysis also known as unsupervised classification is a grouping of items 
into diverse groups, each of which requisite be assembled rendering to the rules 
of programming. This assembly must be handled computationally, without user 
intervention.

The term clustering analysis, early termed by [15], actually contains an assort-
ment of different grouping algorithms, all of which address an important issue in 
several areas of research: how to organize observed data into structures that make 
sense or how to develop taxonomies capable of classifying data observed in differ-
ent classes. Important is to even consider that these assembly must be classes that 
occur naturally in the dataset.

Clustering analysis is the designation given to the group of computational 
techniques whose purpose is to separate objects into groups, based on the charac-
teristics that these objects have. The basic idea is to put objects in the same group 
that are similar in some predetermined criteria. The criterion is usually based on a 
dissimilarity function, which function receives two objects and returns the distance 
between them. The groups determined by a quality metric should have high internal 
and high homogeneity separation (external heterogeneity). This implies that the 
elements of a given set should be mutually similar and, preferably, have a high 
amount of differences from the elements of other sets [28].

Biologists, for instance, have to organize data observed in structures that make 
sense, that is, develop taxonomies. Microbiologists confronted with a variety range 
of species of a certain type, for example, must be capable to classify the observed 
specimens into clusters before it has been possible to describe these microorganisms 
in detail in ways to detach in detail the differences between species and subspecies.

Grouping procedures have been practiced in a huge range of areas. Ref. [29] 
already provides a broad overview of several published studies on the use of group-
ing analysis techniques. In the medical field, for example, grouping of diseases by 
symptom or cures can lead to very useful taxonomies. In areas of psychiatry, for 
example, clustering of syndrome, for instance, paranoia, schizophrenia, and others, 
is considered essential for proper therapy. In archeology, conversely, one has also 
tried to group civilizations or times of civilizations based on tools of stone, funerary 
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objects, etc. In general, whenever a “mountain” of unknown data is required to be 
classified into manageable cells, grouping methods are used.

10. Elastic net

In statistics and specifically in the suitable of linear or logistic regression models, 
the elastic net is a standardized regression method that linearly couples the L1 and 
L2 punishments of the lasso and ridge approaches. Figure 1 shows the elastic net 
typical design.

Lasso is a regression method broadly worn in domains with huge datasets, 
such as genomic data, where proficient and agile algorithms are vital [30]. Ridge 
regression is a procedure for investigating manifold regression data that arise out 
of multicollinearity. When multicollinearity arises, least squares estimates are 
unbiased, but their variances are huge so they might be outlying from the accurate 
value. In 1970, the investigation of [31] published an article about ridge regression, 
approaching the tendentious appraisal for nonorthogonal issues. In 2009, [32] 
study examined the ridge regression and their extensions applied to genome-wide 
selection into Zea mays L.

R software, available at https://www.r-project.org/, has the packing necessary 
to do a wavelet and elastic net based on genome sequence. Furthermore, the elastic 
net may be also used with microsatellite (SSR) data. This tool could be used in any 
genetic data of all organisms.

The most relevant article about elastic net was published in 2005 [33]. They say 
that elastic net is of pronounced interest especially when the predictors’ number is 
considerably higher than the sum of observations. This might be useful in real or in 
simulation data.

The recent evolution of science brought a fast deeper understanding of the 
genome. In this sense, through several methods with varying levels of complexity 
added to the computational efficiency at the present days, we may easily compare 
organisms based on their genetic dissimilarity. Along these lines, we used accurate 

Figure 1. 
Elastic net standard scheme.
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genomic selection methods dropping the penalties of each approaches like in elastic 
net, enabling the fitting of a certain statistical model. Therefore, an outstanding 
methodology to analyze genome is elastic net domain used in several study, like 
[33–36].

Recently, the tuberculosis strain’s differences were evaluated using the elastic 
net domain [34]. In that examination, 10 genome sequences of Mycobacterium 
tuberculosis with a window size of 10,000 bp were assessed combining the NDWT 
and elastic net domain. This study encompasses 10 strains: 2 from drug resistant, 
6 from drug susceptible, 1 from multidrug resistant, and finally 1 from exten-
sively drug resistant. The clustering detected on that analysis indicated to be real 
adequate.

11. Hurst exponent

Hurst exponent is applied as a degree of long-standing memory of time series. 
It associates to the autocorrelations of time series and the degree at which these 
decline as the lag between pairs of values intensifications. This coefficient has 
started to be established in hydrology, used to understand the variation level of dam 
size at Nile River over a long cycle of time. Harold Edwin Hurst was a British engi-
neer that worked with hydrology; for this reason the coefficient has his surname. 
Later, this exponent was used in several areas, including fractal geometry, storage 
process, trends in financial market analyzing economic time series, mechanics, 
physics, mathematics, computation, and finally to the long-ranging dependency in 
DNA. Figure 2 displays the values of Hurst exponent and their interpretation in a 
long-standing.

Using the genetic data, the Hurst exponent approach is able to build genetic 
cluster based on genome sequence. There are a lot of estimation methods of Hurst 
exponent: the original and best-known is the alleged rescaled range (R/S) analysis 
promoted by [37, 38] and based on previous hydrological findings [39]. Alternatives 
include DFA, periodogram regression [40] aggregated variances [41], local Whittle’s 
estimator [42], and wavelet analysis [43, 44] both in the time domain and frequency 
domain.

In our case, we performed a Hurst exponent in the bacterial strains used 
in article [34]. We did many methods of Hurst exponent. Interestingly, the 
R/S methodology was the most similar to the cluster obtained on elastic net 
domain approach. This data is not shown due to being in a review process to an 
International journal currently. Our data agree with the majority of scientific 
papers published approaching the Hurst exponent, which so far applying the R/S 
method.

Figure 2. 
Hurst exponent pattern interpretation of the index value.
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12. Conclusion

We strongly believe that exploring the genetic variability of any organism using 
wavelet coupled with elastic net domain and/or Hurst exponent will be a valuable 
and interesting tool. It is not difficult and the free R software could solve easily the 
approach. In this way, it gives reliability and robustness in your results. Therefore, 
these bioinformatics apparatuses provide more possibility to scrutinize the genetic 
divergence of living organisms.
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Bioinformatics Workflows for
Genomic Variant Discovery,
Interpretation and Prioritization
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and Ilknur Melis Durasi

Abstract

Next-generation sequencing (NGS) techniques allow high-throughput detection
of a vast amount of variations in a cost-efficient manner. However, there still are
inconsistencies and debates about how to process and analyse this ‘big data’. To
accurately extract clinically relevant information from genomics data, choosing
appropriate tools, knowing how to best utilize them and interpreting the results
correctly is crucial. This chapter reviews state-of-the-art bioinformatics approaches
in clinically relevant genomic variant detection. Best practices of reads-to-variant
discovery workflows for germline and somatic short genomic variants are presented
along with the most commonly utilized tools for each step. Additionally, methods
for detecting structural variations are overviewed. Finally, approaches and current
guidelines for clinical interpretation of genomic variants are discussed. As empha-
sized in this chapter, data processing and variant discovery steps are relatively well-
understood. The differences in prioritization algorithms on the other hand can be
perplexing, thus creating a bottleneck during interpretation. This review aims to
shed light on the pros and cons of these differences to help experts give more
informed decisions.

Keywords: genomics, NGS, variant discovery

1. Introduction

Whole genome sequencing (WGS) and whole exome sequencing are next-
generation sequencing (NGS) technologies that determine the full and protein-
coding genomic sequence of an organism, respectively. Deep sequencing of
genomes improves understanding of clinical interpretation of genomic variations.
Analyzing NGS data with the aim of understanding the impact and the importance
of genomic variations in health and disease conditions is crucial for carrying the
personalized medicine applications one step further.

One of the main obstacles for reaching the full potential of WES/WGS in
personalized medicine is bioinformatics analysis, which mostly requires strong
computational power. Analysis of WES/WGS data with publicly or commercially
available algorithms and tools require a proper computational infrastructure in
addition to an at least basic understanding of NGS technologies. Second, almost all
publicly available algorithms and tools focus on a single aspect of the entire process
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and do not provide a workflow that can aid the researcher from start to finish.
Lastly, there are no gold standards for translating WES/WGS into clinical knowl-
edge, since different diseases need different strategies for the basic analysis to
obtain the genomic variants as well as further analyses, including disease-specific
interpretation and prioritization of the variants.

A comprehensive workflow that can be applied for WES/WGS data analysis is
composed of the following steps:

a. Quality control

• Evaluation of the quality of FASTQ data

• Trimming of the low-quality reads and removal of adaptors (if necessary)

b.Sequence alignment

c. Post-alignment processing

• Marking PCR duplicates

• Base quality score recalibration (BQSR)

d.Variant discovery

e. Downstream analyses

• Filtration of genomic variations

Figure 1.
An example single-sample variant discovery workflow. Each step is labelled in the black rectangles. The most
widely used tools for each operation are also presented.
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• Annotation via a variant annotation tool

• Interpretation/prioritization of genomic variations

An example reads-to-variants workflow is visualized in Figure 1, highlighting
the input and output, a brief description, and the tools that can be utilized in each
step. While we present the most widely used tools, we would like to emphasize that
there are a great variety of tools/algorithms that can be utilized for each process.

Through the rest of this chapter, we give a brief outline of the purpose of each
step and try to provide a basic understanding of a state-of-the-art workflow for the
detection and interpretation of genomic variations. While there are countless
experimental designs, including WES/WGS and targeted (gene panel) sequencing,
the workflow presented here is applicable for all designs, occasionally requiring
slight modifications. We particularly focus on the detection and interpretation of
germline short variants, namely, single nucleotide variations (SNVs) and germline
short insertion or deletion events (indels). However, outlines of analyses for
somatic variants and for structural variations (SVs) are also presented. Finally,
current approaches and tools for clinical interpretation of genomic variations are
discussed.

2. Detection of genomic variations

Detection of genomic variations beginning from raw read data is a multistep task
that can be executed using numerous tools and resources. The workflow outlined in
the introduction section is laid out in detail in this section, including the best
practice recommendations and common pitfalls.

2.1 Acquisition of raw read data: the FASTQ file format

The raw data from a sequencing machine are most widely provided as FASTQ
files, which include sequence information, similar to FASTA files, but additionally
contain further information, including sequence quality information.

A FASTQ file consists of blocks, corresponding to reads, and each block consists
of four elements in four lines (Figure 2).

The first line contains a sequence identifier and includes an optional description
of sequencing information (such as machine ID, lane, tile, etc.). The raw sequence
letters are presented in line 2. The third line begins with a “+” sign and optionally
contains the same sequence identifier. The last line encodes the quality score for the
sequence in line 2 in the form of ASCII characters. While specific scoring measures
might differ among platforms, Phred Score (Qphred = -10log10P, where P being the
probability of misreading any given base) is the most widely used.

2.2 Quality control

In general, the raw sequence data acquired from a sequencing provider is not
immediately ready to be used for variant discovery. The first and most important

Figure 2.
Example FASTQ file format.
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step of the WES/WGS analysis workflow following data acquisition is the quality
control (QC) step. QC is the process of improving raw data by removing any
identifiable errors from it. By performing QC at the beginning of the analysis,
chances encountering any contamination, bias, error, and missing data are
minimized.

The QC process is a cyclical process, in which (i) the quality is evaluated, (ii) QC
is stopped if the quality is adequate, and (iii) a data altering step (e.g., trimming of
low-quality reads, removal of adapters, etc.) is performed, and then the QC is
repeated beginning from step (i).

The most commonly used tool for evaluating and visualizing the quality of
FASTQ data is FastQC (Babraham Bioinformatics, n.d.), which provides compre-
hensive information about data quality, including but not limited to per base
sequence quality scores, GC content information, sequence duplication levels, and
overrepresented sequences (Figure 3). Alternatives to FastQC include, but are not
limited to, fastqp, NGS QC Toolkit, PRINSEQ, and QC-Chain.

Below, QC approaches for the most commonly encountered data quality issues
are discussed: adapter contamination and low-quality measurements toward the 50

and 30 ends of reads.
Adapters are ligated to the 50 and 30 ends of each single DNA molecule during

sequencing. These adapter sequences hold barcoding sequences, forward/reverse
primers, and the binding sequences to immobilize the fragments to the flow cell and
allow bridge amplification. Since the adapter sequences are synthetic and are not
seen in any genomic sequence, adapter contamination often leads to NGS alignment
errors and an increased number of unaligned reads. Hence, any adapter sequences
need to be removed before mapping. In addition to adapter removal, trimming can
be performed to discard any low-quality reads, which generally occur at the 50 and
30 ends.

There is an abundance of tools for QC, namely, Trimmomatic [1], CutAdapt [2],
AlienTrimmer [3], Skewer [4], BBDuk [5], Fastx Toolkit [6], and Trim Galore [7].

Figure 3.
An example FastQC result.
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In addition to these stand-alone tools, R packages for QC, such as PIQA and
ShortRead, are also available.

While QC is the most important step of NGS analysis, one must keep in mind
that once basic corrections (such as the ones described above) are made, no amount
of further QC can produce a radically better outcome. QC cannot simply turn bad
data into good data. Moreover, it is also important to remember that because QC
may also introduce error that can affect the analysis, it is vital never to perform
error correction on data that does not need it.

2.3 Sequence alignment

In order to find the exact locations of reads, each must be aligned to a reference
genome. Efficiency and accuracy are crucial in this step because large quantities of
reads could take days to align and a low-accuracy alignment would cause inade-
quate analyses. For humans, the most current and widely used reference sequences
are GRCh37 (hg19) and GRCh38 (hg38). Similar to any bioinformatics problem,
there are a great number of tools for alignment of sequences to the reference
genome, to name a few, BWA [8], Bowtie2 [9], novoalign [10], and mummer [11].

After aligning, a Sequence Alignment Map (SAM) file is produced. This file
contains the reads aligned to the reference. The binary version of a SAM file is
termed a Binary Alignment Map (BAM) file, and BAM files are utilized for random-
access purposes. The SAM/BAM file consists of a header and an alignment section.
The header section contains contigs of aligned reference sequence, read groups
(carrying platform, library, and sample information), and (optionally) data
processing tools applied to the reads. The alignment section includes information on
the alignments of reads.

2.4 Post-alignment processing

One of the key steps in any reads-to-variants workflow is post-alignment data
processing to produce analysis-ready BAM files. This step includes data clean-up
operations to correct for technical biases: marking duplicates and recalibration of
base quality scores.

During the preparation of samples for sequencing, PCR duplicates arise at the
step of PCR amplification of fragments. Since they share the same sequence and the
same alignment position, they can lead to problems in variant detection. For exam-
ple, during SNV calling, false-positive variants may arise as some alleles may be
overrepresented due to amplification biases. To overcome this issue, PCR duplicates
are marked with a certain tag using an algorithm (MarkDuplicates) available in the
tool Picard [12]. Marking duplicates constitutes a major bottleneck since it involves
making a large number of comparisons between all the read pairs. Thus, the major-
ity of the effort in optimizing the runtime of reads-to-variants workflows is focused
on this step.

As aforementioned, NGS platforms provide information on the quality of each
base that they measure in the Phred Score format. The relationship of a Phred Score
with accuracy is straightforward: a Phred Score of 10 represents 90% accuracy, 20
equals 99%, 30 equals 99.9%, and so on. The raw scores produced by the sequencing
machine are prone to technical errors, leading to over- or underestimated base
quality scores. Base quality score recalibration (BQSR) is a machine learning
approach that models these errors empirically and readjusts the base quality scores
accordingly. Through this recalibration, more accurate and reliable base quality
scores are achieved, which in turn improves the reliability of the downstream steps
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in further analyses. The most widely used tool for BQSR is provided by the Genome
Analysis Toolkit (GATK) [13].

After these post-alignment data processing operations, an analysis-ready BAM
file is obtained.

2.5 Short variant discovery

In this section, approaches for the discovery of germline SNV and indels are
discussed. In the following sections, approaches for the discovery of somatic short
variants and of structural variations are outlined.

Following data processing steps, the reads are ready for downstream analyses,
and the following step is most frequently variant calling. Variant calling is the
process of identifying differences between the sequencing reads, resulting from
NGS experiments and a reference genome. Countless variant callers have been and
are being developed for accomplishing this challenging task as alignment and
sequencing artifacts complicate the process of variant calling. For recent studies
comparing different variant callers, see [14–16]. Methods for detecting short vari-
ants can be broadly categorized into “probabilistic methods” and “heuristic-based
algorithms.” In probabilistic methods, the distribution of the observed data is
modeled, and then Bayesian statistics is utilized to calculate genotype probabilities.
In contrast, in heuristic-based algorithms, variant calls are made based on a number
of heuristic factors, such as read quality cutoffs, minimum allele counts, and bounds
on read depth. Whereas heuristic-based algorithms are not as widely used, they can
be robust to outlying data that violate the assumptions of probabilistic models.

The most widely used state-of-the-art variant callers include, but are not limited
to, GATK-HaplotypeCaller [13], SOAPsnp [17], SAMTools [18], bcftools [18],
Strelka [19], FreeBayes [20], Platypus [21], and DeepVariant [22]. We would like to
emphasize that for WES/WGS, a combination of different variant callers outper-
forms any single method [23].

2.6 Filtration of variants

Following the variant calling step, raw SNV and indels in the Variant Call
Format (VCF) are obtained. These should then be filtered either through applying
hard filters to the data or through a more complex approach such as GATK’s Variant
Quality Score Recalibration (VQSR).

Hard filtering is applied by filtering via thresholds for metrics such as
QualByDepth, FisherStrand, RMSMappingQuality, MappingQualityRankSumTest,
ReadPosRankSumTest, and StrandOddsRatio.

VQSR, on the other hand, relies on machine learning to identify annotation
profiles of variants that are likely to be real. It requires a large training dataset
(minimum 30WES data, at least one WGS data if possible) and well-curated sets of
known variants. The aim is to assign a well-calibrated probability to each variant
call to create accurate variant quality scores that are then used for filtering.

The accuracy of variant calling is also affected by coverage. Coverage can be
broadly defined as the number of unique reads that include a given nucleotide.
Coverage is affected by the accuracy of alignment algorithms and by the
“mappability” of reads. Coverage can be utilized for both the filtration of variants
and for a general evaluation of the sequencing experiment. Tools for assessing
coverage information include GATK [13], BEDTools [24], Sambamba [25], and
RefCov [26].
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For validation of variants and for detecting sequencing artifacts, Integrative
Genomics Viewer (IGV) [27] can be used to visualize the processed reads. In
addition to this in silico evaluation, Sanger sequencing can be performed.

2.7 Variant annotation

Variant annotation is yet another critical step in the WES/WGS analysis
workflow. The aim of all functional annotation tools is to annotate information of
the variant effects/consequences, including but not limited to (i) listing which gene
(s)/transcript(s) are affected, (ii) determination of the consequence on protein
sequence, (iii) correlation of the variant with known genomic annotations (e.g.,
coding sequence, intronic sequence, noncoding RNA, regulatory regions, etc.), and
(iv) matching known variants found in variant databases (e.g., dbSNP [28], 1000
Genomes Project [29], ExAc [30], gnomAD [31], COSMIC [32], ClinVar [33], etc.).
The consequence of each variant is expressed through Sequence Ontology (SO)
terms. The severity and impact of these consequences are often indicated using
qualifiers (e.g., low, moderate, high).

Many annotation tools utilize the predictions of SNV/indel deleteriousness pre-
diction methods, to name a few, SIFT [34], PolyPhen-2 [35], LRT [36],
MutationTaster [37], MutationAssessor [38], FATHMM [39], GERP++ [40], PhyloP
[41], SiPhy [42], PANTHER-PSEP [43], CONDEL [44], CADD [45], CHASM [46],
CanDrA [47], and VEST [48].

Annotation can have a strong influence on the ultimate conclusions during
interpretation of genomic variations as incomplete or incorrect annotation
information will result in the researcher/clinician to overlook potentially relevant
findings.

Once the analysis-ready VCF is produced, the genomic variants can then be
annotated using a variety of tools and a variety of transcript sets. Both the choice of
annotation software and transcript set (e.g., RefSeq transcript set [49], Ensembl
transcript set [50]) have been shown to be important for variant annotation [51].
The most widely used functional annotation tools include but are not limited to
AnnoVar [52], SnpEff [53], Variant Effect Predictor (VEP) [54], GEMINI [55],
VarAFT [56], VAAST [57], TransVar [58], MAGI [59], SNPnexus [60], and
VarMatch [61]. Below some of the popular tools are briefly described:

AnnoVar: AnnoVar is one of the most popular tools for annotation of SNV and
indels. AnnoVar takes a simple text-based format that includes chr, start, end, ref,
alt, and optional field(s) as an input. To use AnnoVar, one must convert VCF file
format to the AnnoVar input file format. The tool returns a single annotation for
each variant. If there exists more than one transcript for a specific variant resulting
in different consequences, AnnoVar chooses the transcript according to the gene
definition set by the user.

SnpEff: SnpEff is an open-source tool that annotates variants and predicts their
effects on genes by using an interval forest approach. SnpEff annotates variants
based on their genomic locations such as intronic, untranslated region, upstream,
downstream, splice site, or intergenic regions and predicts coding effects. snpEff
also generates extensive report files and is easily customizable.

VEP:VEP is an open-source, free-to-use toolset for the analysis, annotation, and
prioritization of genomic variants in coding and noncoding regions. VEP is one of
the few annotation tools that annotates variants in regulatory regions.

GEnome MINIng (GEMINI): GEMINI is a flexible software package for
exploring all forms of human genetic variations. Different from most other annota-
tion tools, GEMINI integrates genetic variation with a set of genome annotations.
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While the abovementioned are all variant annotation tools, it might be wise to put
GEMINI in a different category as it has other built-in tools to make further analysis
of the variants easier.

2.8 Somatic genomic variations

The workflow for identifying somatic short variants (somatic SNV/indels) is
nearly identical to the germline short variant discovery workflow (Figure 4).
However, several differences exist. Firstly, for the discovery of somatic genomic
variations, sequencing both tumor tissue and a matched normal sample (blood,
adjacent normal tissue, etc.) is mostly (but not necessarily) preferred. The QC,
alignment, and post-alignment data processing steps are identical and are
performed for both the tumor and normal data, separately. The main difference is
the variant calling step, where both the tumor and normal processed read data are
utilized to identify somatic SNV/indels, i.e., short variants that are present in the
tumor but not in the normal. Some tools (such as GATK-MuTect2) can utilize
additional information from a panel of normals, a collection of normal samples
(typically larger than 40) that are believed to have no somatic variants, processed in
the same manner at each step and the purpose of which is to capture recurrent
technical artifacts.

Several tools exist for tumor-normal somatic variant calling, to name a few,
GATK - MuTect2 [13], VarScan2 [62], Strelka [19], SomaticSniper [63], SAMtools
[18], SomaticSeq [64], FreeBayes [65], CaVEMan [66], and FaSD-somatic [67]. For
further information on somatic variant calling, we encourage the reader to refer to a
recent and comprehensive review on somatic variant calling algorithms [16].

Filtration of the raw SNV and indels also differs for the somatic workflow.
Several different approaches exist for the filtration of raw somatic variants. Most

Figure 4.
An example somatic variant discovery workflow. Each step is labelled in the black rectangles. Most widely used
tools for each operation are also presented. As can be seen in the diagram, the processing steps until the variant
calling step are performed for both the normal and tumor data, separately.
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frequently, tumor-specific metrics including the estimation of tumor heterogeneity
and cross-sample contamination are used in addition to the aforementioned metrics
for detection of sequencing/alignment artifacts.

While all the annotation tools, presented in the “variant annotation” section, can
be used to annotate somatic variants, a number of tools that provide cancer-specific
annotation in addition to general annotation are available. Two popular examples
are Oncotator [68] and CRAVAT [69]. Oncotator, a widely used cancer-specific
annotation tool, is often preferred for the annotation of somatic short variants.
Oncotator provides variant- and gene-centric information relevant to cancer
researchers, utilizing resources including but not limited to the Catalogue of
Somatic Mutations in Cancer (COSMIC) [70], the Cancer Gene Census [71], Cancer
Cell Line Encyclopedia [72], The Cancer Genome Atlas (TCGA), and Familial
Cancer Database [73].

2.9 Structural variations

So far, we focused only on the discovery of small-scale genomic variations
(SNVs and indels). There also exist large-scale (1 kb and larger) genomic variations,
which either be copy number variations (CNV) or chromosomal rearrangement
events (including translocations, inversions, and duplications).

2.9.1 Copy number variations

CNV is a frequent form of critical genetic variation that results in an abnormal
number of copies of large genomic regions (either gain or loss events). CNV is
clinically relevant, as they may play vital roles in disease processes, especially
during oncogenesis. It is possible to detect CNVs using WES/WGS data. Several
different approaches exist for this purpose [74]:

i. Paired-end mapping strategy detects CNVs through discordantly mapped
reads. Tools utilizing this approach include BreakDancer, PEMer,
VariationHunter, commonLAW, GASV, and Spanner.

ii. Split read-based methods use the incompletely mapped read from each read
pair to identify small CNVs. Split read-based tools include AGE, Pindel,
SLOPE, and SRiC.

iii.Read depth-based approach detects CNV by counting the number of reads
mapped to each genomic region. Tools using this approach include GATK,
SegSeq, CNV-seq, RDXplorer, BIC-seq, CNAseq, cn.MOPS, jointSLM,
ReadDepth, rSW-seq, CNVnator, CNVnorm, CMDS, mrCaNaVar, CNVeM,
and cnvHMM.

iv.Assembly-based approach detects CNVs by mapping contigs to the reference
genome. Tools using this approach include Magnolya, Cortex assembler, and
TIGRA-SV.

v.Combinatorial approach combines read depth and paired-end mapping
information to detect CNVs. Tools using this approach include NovelSeq,
HYDRA, CNVer, GASVPro, Genome STRiP, SVDetect, inGAP-sv, and SVseq.

In addition to the noise and artifacts caused by WES/WGS, tumor complexity
(the strongest factor being tumor heterogeneity) makes the detection of somatic
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CNVs more challenging. To overcome this challenge, numerous tools have been
developed. Widely used tools for detecting specifically somatic CNVs include
ADTEx [75], CONTRA [76], cn.MOPS [77], ExomeCNV [78], VarScan2 [62],
SynthEx [79], Control-FREEC [80], GATK [13], and CloneCNA [81].

2.9.2 Chromosomal rearrangements

Chromosomal rearrangements are variations in chromosome structure whose
impact on genetic diversity and disease susceptibility has become increasingly evi-
dent [82]. Per SO, numerous types of rearrangements exist: duplication, deletion,
insertion, mobile element insertion, novel sequence insertion, tandem duplication,
inversion, intrachromosomal breakpoint, interchromosomal breakpoint, transloca-
tion, and complex SVs. Similar to CNV detection, there are multiple approaches for
rearrangement detection: read-pair, split-read, read-depth, and assembly
approaches. The underlying aims of each of these approaches are very similar to
those for CNV detection. As for CNV detection, countless tools have been devel-
oped for the detection of rearrangement variations, including but not limited to
Breakdancer [83], GRIMM [84], LUMPY [85], BreaKmer [86], BreakSeek [87],
CREST [88], DELLY [89], HYDRA [90], MultiBreak-SV [91], Pindel [92],
SoftSearch [93], SVdetect [94], and TIGRA-SV [95].

Lastly, we would like to point out that long reads (enabled by the emergence of
so-called third-generation sequencing technologies) allow for more accurate and
reliable determination of SVs with the development of novel algorithms that spe-
cifically exploits these long reads [96].

3. Clinical interpretation of genomic variations

Perhaps the most challenging process in WES/WGS analysis is the clinical inter-
pretation of genomic variations. While WES/WGS is rapidly becoming a routine
approach for the diagnosis of monogenic and complex disorders and personalized
treatment of such disorders, it is still challenging to interpret the vast amount of
genomic variation data detected through WES/WGS [97].

There exist numerous standardized widely accepted guidelines for the evalua-
tion of genomic variations obtained through NGS such as the American College of
Medical Genetics and Genomics (ACMG), the EuroGentest, and the European
Society of Human Genetics guidelines. These provide standards and guidelines for
the interpretation of genomic variations and include evidence-based recommenda-
tions on aspects including the use of literature and database and the use of in silico
predictors, criteria for variant interpretation, and reporting.

In addition to variant-dependent annotation such as allele frequency (e.g., in
1000 Genomes [29], ExAc [30], gnomAD [31]), the predicted effect on protein and
evolutionary conservation, disease-dependent inquiries such as mode of inheri-
tance, co-segregation of variant with disease within families, prior association of the
variant/gene with disease, investigation of clinical actionability, and pathway-based
analysis are required for the interpretation of genomic variants.

Databases such as ClinVar [33], HGV databases [98], OMIM [99], COSMIC
[100], and CIViC [101] are excellent resources that can aid interpretations of
clinical significance of germline and somatic variants for reported conditions. The
availability of shared genetic data in such databases makes it possible to identify
patients with similar conditions and aid the clinician to make a conclusive diagnosis.

While one may perform interpretation of genomic variations completely manu-
ally after annotation and filtering of variants, there are several tools to aid in
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interpretation and prioritization of these variants, including Ingenuity Variant Anal-
ysis [102], BaseSpace Variant Interpreter [103], VariantStudio [104], KGGSeq [105],
PhenoTips [106], VarElect [107], PhenoVar [108], InterVar [109], VarSifter [110],
eXtasy [111], VAAST [57], and Exomiser [112]. For personalized oncology purposes,
numerous cancer-specific tools exist, specifically developed to determine driver
genes/mutations as well as to aid in interpretation of somatic variants. Some of the
most widely used somatic interpretation tools are PHIAL, PCGR, and HitWalker2.

Pathway analysis is another powerful component that can enhance the interpre-
tation of genomic variations. Pathway analysis can be broadly defined as a group of
methods incorporating biological information from public databases to simplify
analysis by grouping long lists of genes into smaller sets of related genes (for a
comprehensive review on pathway analysis, see [113]). Pathway analysis improves
the detection of causal variants by incorporating biologic insight. The clinician can
gain a better understanding of the functions of rare genetic variants of unknown
clinical significance in the context of biological pathways. While the gene carrying
the variant may not be related to the phenotype, its associated genes in the pathway
might be causally related to the phenotype at hand. Moreover, through pathway
analysis, the role of multiple variants and their interaction on disease formation can
be discovered.

Countless tools for pathway analysis exist. Some of the widely used pathway
analysis tools are GSEA [114], DAVID [115], IPA [116], SPIA [117], pathfindR
[118], enrichr [119], reactomePA [120], MetaCore [121], and PathVisio [122].
Additionally, many different pathway resources exist, the most popular of which
are Kyoto Encyclopedia of Genes and Genomes [123], Reactome [124],
WikiPathways [125], MSigDb [126], STRINGDB [127], Pathway Commons [128],
Ingenuity Knowledge Base [129], and Pathway Studio [130].

In silico interpretation often fails to provide conclusive evidence for pathoge-
nicity of genomic variations [131]. Furthermore, these in silico interpretations are
mostly only well-supported predictions (this is especially true for VUS). It is there-
fore vital to perform functional validation to understand the functional conse-
quences of genetic variants, provide a conclusive diagnosis, and inform the patient
on the disease course. Functional validation can be performed using different model
systems (e.g., patient cells, model cell lines, model organisms, induced pluripotent
stem cells) and performing the suitable type of assay (e.g., genetic rescue,
overexpression, biomarker analysis).

4. Conclusion

The advancements in NGS, the increasing availability and applicability of WES/
WGS analysis due to decrease in cost, and the development of countless bioinfor-
matics methods and resources enabled the usage of WES/WGS to detect, interpret,
and validate genomic variations in the clinical setting.

As we attempted to describe in this chapter, WES/WGS analysis is challenging,
and there are a great number of tools for each step of variation discovery. There-
fore, one must carefully evaluate the advantages and disadvantages and suitability
of different tools (depending on the specific application) before adapting the “opti-
mal” one into the variation discovery workflow. An optimal and coordinated com-
bination of tools is required to identify the different types of genomic variants,
described here. On the one hand, an efficient analysis strategy needs to adopt one or
more methods for the detection of each type of variant and, on the other hand,
needs to integrate results for the different types of variants into a single compre-
hensive solution.
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Perhaps the most challenging process in WES/WGS analysis is the clinical inter-
pretation of genomic variations. While WES/WGS is rapidly becoming a routine
approach for the diagnosis of monogenic and complex disorders and personalized
treatment of such disorders, it is still challenging to interpret the vast amount of
genomic variation data detected through WES/WGS [97].

There exist numerous standardized widely accepted guidelines for the evalua-
tion of genomic variations obtained through NGS such as the American College of
Medical Genetics and Genomics (ACMG), the EuroGentest, and the European
Society of Human Genetics guidelines. These provide standards and guidelines for
the interpretation of genomic variations and include evidence-based recommenda-
tions on aspects including the use of literature and database and the use of in silico
predictors, criteria for variant interpretation, and reporting.

In addition to variant-dependent annotation such as allele frequency (e.g., in
1000 Genomes [29], ExAc [30], gnomAD [31]), the predicted effect on protein and
evolutionary conservation, disease-dependent inquiries such as mode of inheri-
tance, co-segregation of variant with disease within families, prior association of the
variant/gene with disease, investigation of clinical actionability, and pathway-based
analysis are required for the interpretation of genomic variants.

Databases such as ClinVar [33], HGV databases [98], OMIM [99], COSMIC
[100], and CIViC [101] are excellent resources that can aid interpretations of
clinical significance of germline and somatic variants for reported conditions. The
availability of shared genetic data in such databases makes it possible to identify
patients with similar conditions and aid the clinician to make a conclusive diagnosis.

While one may perform interpretation of genomic variations completely manu-
ally after annotation and filtering of variants, there are several tools to aid in
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interpretation and prioritization of these variants, including Ingenuity Variant Anal-
ysis [102], BaseSpace Variant Interpreter [103], VariantStudio [104], KGGSeq [105],
PhenoTips [106], VarElect [107], PhenoVar [108], InterVar [109], VarSifter [110],
eXtasy [111], VAAST [57], and Exomiser [112]. For personalized oncology purposes,
numerous cancer-specific tools exist, specifically developed to determine driver
genes/mutations as well as to aid in interpretation of somatic variants. Some of the
most widely used somatic interpretation tools are PHIAL, PCGR, and HitWalker2.

Pathway analysis is another powerful component that can enhance the interpre-
tation of genomic variations. Pathway analysis can be broadly defined as a group of
methods incorporating biological information from public databases to simplify
analysis by grouping long lists of genes into smaller sets of related genes (for a
comprehensive review on pathway analysis, see [113]). Pathway analysis improves
the detection of causal variants by incorporating biologic insight. The clinician can
gain a better understanding of the functions of rare genetic variants of unknown
clinical significance in the context of biological pathways. While the gene carrying
the variant may not be related to the phenotype, its associated genes in the pathway
might be causally related to the phenotype at hand. Moreover, through pathway
analysis, the role of multiple variants and their interaction on disease formation can
be discovered.

Countless tools for pathway analysis exist. Some of the widely used pathway
analysis tools are GSEA [114], DAVID [115], IPA [116], SPIA [117], pathfindR
[118], enrichr [119], reactomePA [120], MetaCore [121], and PathVisio [122].
Additionally, many different pathway resources exist, the most popular of which
are Kyoto Encyclopedia of Genes and Genomes [123], Reactome [124],
WikiPathways [125], MSigDb [126], STRINGDB [127], Pathway Commons [128],
Ingenuity Knowledge Base [129], and Pathway Studio [130].

In silico interpretation often fails to provide conclusive evidence for pathoge-
nicity of genomic variations [131]. Furthermore, these in silico interpretations are
mostly only well-supported predictions (this is especially true for VUS). It is there-
fore vital to perform functional validation to understand the functional conse-
quences of genetic variants, provide a conclusive diagnosis, and inform the patient
on the disease course. Functional validation can be performed using different model
systems (e.g., patient cells, model cell lines, model organisms, induced pluripotent
stem cells) and performing the suitable type of assay (e.g., genetic rescue,
overexpression, biomarker analysis).

4. Conclusion

The advancements in NGS, the increasing availability and applicability of WES/
WGS analysis due to decrease in cost, and the development of countless bioinfor-
matics methods and resources enabled the usage of WES/WGS to detect, interpret,
and validate genomic variations in the clinical setting.

As we attempted to describe in this chapter, WES/WGS analysis is challenging,
and there are a great number of tools for each step of variation discovery. There-
fore, one must carefully evaluate the advantages and disadvantages and suitability
of different tools (depending on the specific application) before adapting the “opti-
mal” one into the variation discovery workflow. An optimal and coordinated com-
bination of tools is required to identify the different types of genomic variants,
described here. On the one hand, an efficient analysis strategy needs to adopt one or
more methods for the detection of each type of variant and, on the other hand,
needs to integrate results for the different types of variants into a single compre-
hensive solution.
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We attempted to describe the best practices for variant discovery, outlining the
fundamental aspects. We hope to have provided a basic understanding of WES/
WGS analysis as we believe awareness of the steps involved as well as the challenges
involved at each step is important to understand how each piece may affect the
downstream steps (and eventually affect interpretation). As emphasized through-
out the chapter, substantial (or even minor) changes at any step can fundamentally
alter the outcomes in the later stages.

While there is no definite gold standard for the interpretation of genomic vari-
ations, we attempted to briefly describe the currently available and widely used
guidelines, tools, and resources for clinical evaluation of genomic variations.

In the following years, with the advancements in bioinformatics, increasing
cooperation between the clinician and bioinformatician and large-scale efforts
(such as IRDiRC [132], TCGA [133], and ICGC [134]), we expect that a greater
focus will be on developing novel tools for clinical interpretation of genomic varia-
tions. Cooperation between multiple disciplines is vital to improve the existing
approaches as well as to develop novel approaches and resources.
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Abstract

Rapid advances in sequencing and genotyping technologies have significantly
contributed to shaping the area of medical and population genetics. Several thou-
sand genomes are completed with millions of variants identified in the human
deoxyribonucleic acid (DNA) sequences. These genomic variations highly influence
changes in phenotypic manifestations and physiological functions of different indi-
viduals or population groups. Of particular importance are variations introduced by
admixture event, contributing significantly to a remarkable phenotypic variability
with medical and/or evolutionary implications. In this case, knowledge of local
ancestry estimates and date of admixture is of utmost importance for a better
understanding of genomic variation patterns throughout modern human evolution
and adaptive processes. In this chapter, we survey existing local ancestry
deconvolution and dating admixture event models to identify possible gaps that still
need to be filled and orient future trends in designing more effective models, which
account for current challenges and produce more accurate and biological relevant
estimates.

Keywords: genomic variations, admixture, local ancestry, dating admixture event,
linkage disequilibrium

1. Introduction

Today, advances in high-throughput technologies have generated huge amounts
of human genomics data in public domains. These data are useful for medical and
population genetics to understand the population history, human evolution and
demographics, susceptibility to disease, and response to drug. Over time, humanity
has experienced the exchange of genetic materials across populations, mainly due to
population migrations [1], which have led to wide human genetic variations as
results of interbreeding or mating between different populations previously iso-
lated. These genetic variations observed in the human deoxyribonucleic acid (DNA)
sequences are caused by inheritance processes, such as mutation and recombina-
tion. Generally, the mating process yields the genetic recombination break points,
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tion. Generally, the mating process yields the genetic recombination break points,
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introduces some variations, and creates mixed DNA segments. As a consequence,
current human populations are admixed [2, 3] with specific genomes displaying a
mosaic of segments originating from different ancestral populations [1, 2, 4], wide
phenotypic variations, divergent genetic ancestry, and different traits observed
among individuals in worldwide population groups. Thus, it is critical to understand
the dynamics related to the origin of these variations, the evolution process, and its
consequences in human heredity and health.

Studying admixture patterns in human populations consists of characterization
of admixture features in human populations, including admixture mapping and
date to admixture events. Admixture mapping combines both the identification of
genetic variants underlying the ethnic difference in disease risk and inference of
ancestry estimates associated with these genetic variants. Estimation of ancestry is
commonly known as genetic ancestry inference, which is either global or local
ancestry inference. Global ancestry inference estimates the overall proportion con-
tributed by each ancestral population to the admixed genome; while, local ancestry
deconvolution (local ancestry inference) estimates the number of copies from a
particular population at a given site [5]. Together, admixture mapping and date to
admixture events provide a better understanding of the genetic variation features
throughout modern human evolution, the demographics, and adaptive processes of
human populations. Currently, analyzing admixture patterns has become central to
genomics research, contributing to a wide range of biomedical applications. Current
advance in technologies is facilitating the movement of people worldwide, thus
influencing the complexity of population admixture dynamics and leading to multi-
faceted admixture events. On the other hand, the determination of local ancestry
through genotyping and microarray datasets has empowered the approaches for
dating mutation, selection, and admixture events [6, 7].

The significance of the local ancestry inference topic is viewed through the
research interests it has raised over the last two decades. Several models exist for
local ancestry deconvolution, including ANCESTRYMAP [8], ADMIXMAP [9],
SABER [10], LAMP [11], LAMPLD/LAMPHAP [12], SUPPORTMIX [13], EILA
[14], LOTER [15], etc. Figure 1 displays the implementation dynamics of different
local ancestry deconvolution models graphically, indicating the time each model
was introduced. Local ancestry inference is relevant in personalizing medicines,
understanding complex diseases, localizing missing sequences in reference genomes
and understanding the population history and demographics. Subsequently, several
studies have particularly been focusing on dating past admixture events, relevant to
population migrations, heritable genes associated to some diseases, and responses to

Figure 1.
The evolution of local ancestry deconvolution since 2003 to 2017.
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treatment [16]. The date of admixture in a given population can be predicted by
analyzing the ancestral track, break-points, and linkage disequilibrium (LD) [17].
Also, distinction between date of admixture events is made with the use of LD and
ancestral tracts in the admixed genomes [17]. Nowadays, there are several models
for predicting the age of an admixture event, which are classified into two main
groups: LD-based approaches and haplotype-based approaches [17, 18]. These
models use information from genomes of several population groups around the
world as representative or equivalent ancient populations known to influence the
migration and/or admixture processes, yielding observed admixed population pat-
terns worldwide (Figure 2).

In this chapter, we survey current models for deconvoluting local ancestry and
dating admixture events and explore computational techniques used in these
models. We highlight advances made so far in this genomic era and opportunities
behind these models and challenges or gaps that still need to be addressed. This
informs users and researchers on the current state of research, and orient future
trends in designing more effective models, which account for current challenges
and produce more accurate and biological relevant estimates. In the subsequent
sections, we provide an overview of existing methods used for inferring local
ancestry estimates and dating admixture events.

2. Overview of admixture feature inference models

In this section, we survey current models used to elucidate admixture patterns,
including local ancestry estimates (deconvolution) and dating admixture events.
These models assume that the T genotyped sites are biallelic and the genotype infor-
mation of the K reference candidate ancestral and admixed populations are considered
known. Ancestry at different sites or windows follows a Markov chain. Recombina-
tion is assumed to occur at every generation resulting in Poison recombination points
with a rate which depends on both the recombination rate, r, and number of genera-
tions since admixture, g, and individuals are independent of each other.

Figure 2.
A partial worldwide admixture painting map. The figure shows several worldwide admixed populations
with patterns identified through published paper on population structure from 2008 to 2018. The population
migrations within and between continents have resulted in different admixed populations ranging from one-
to five-way admixtures.
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2.1 Local ancestry inference models

As pointed out previously, existing local ancestry inference models can be cate-
gorized into two main groups based on whether the model makes use of admixture/
background linkage disequilibrium (LD) or not.

2.1.1 LD-based models for local ancestry inference

LD-based models account for LD in local ancestry deconvolution, and due to the
importance of LD in disease mapping, the first local ancestry methods fall into this
category. They assume that ancestry along an admixed individual genome follows a
first order Markov chain. This means that the immediate past state captures all the
information on past states [19]. As a result, LD-based models assume that, at every
site, the observed admixed genotypes are generated by the unobserved ancestry,
and hence, Hidden Markov Model (HMM) and its extensions are used to infer the
unobserved (hidden) states. Thus, to deconvolute ancestry along the admixed
genome, these models have three model parameters, namely the initial, transition
and observation, or emission probability models. Due to uncertainty and the num-
ber of parameters involved, LD-based methods use Markov Chain Monte Carlo
(MCMC), forward-backward, or Viterbi algorithms to determine the hidden ances-
try sequence for a given individual. Falush et al. and Patterson et al. modeled
ancestry switch between ancestry populations at a given site, Xt∈ 1;…;Kf g, by

P X1 ¼ kjq; rð Þ ¼ qk, (1)

P Xt ¼ kjXt�1 ¼ k
0
; q; r

� �
¼ δ k

0 ¼ k
� �

e�dtr þ 1� e�dtr
� �

qk for 1 < t≤T (2)

representing the first marker, and the transition probability between consecutive

markers with δ k ¼ k
0� �

is the indicator function and dt the genetic distance

between sites t and t� 1, above and qk the proportion of ancestry contributed by
candidate ancestral population k such that q ¼ q1;…; qk

� �
is a vector of ancestry

inherited from each ancestral population. On haploid data, the probability of a
recombination event is 1� e�dtr, meaning that the probability of no recombination
is e�dtr [8, 20]. LD-based methods can be subdivided into admixture LD-based and
admixture and background LD methods. Note that admixture LD occurs when
ancestry at nearby markers is inherited together and background LD is the LD
within ancestral populations, and it depends highly on population history
(i.e, generated by genetic drift and population bottlenecks).

2.1.1.1 Admixture LD-based models

Admixture LD-based methods are models that account for LD that resulted from
the admixture process. They do not model background LD. Admixture LD-based
methods include the early methods, for example, STRUCTURE V2 [20],
ANCESTRYMAP [8], and ADMIXMAP [9], which are based on the Bayesian
framework. Early methods rely on markers that show significant difference in
frequency between ancestral populations (AIMs). Admixture LD-based models
assume that markers are independent and the global and ancestral allele frequencies
are known. They integrate HMM with MCMC, and their switch model and initial
and transition models are as in Eqs. (1) and (2), respectively. Since LD-based
methods do not model background LD, their observation model depends on only
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the allele frequency of the ancestry at that site. For instance, assuming K = 2,
Patterson et al. defined the emission probability by

P Yt ¼ yjXt ¼ nað Þ ¼

2

na

 !
pnak 1� pk
� �2�na if na ¼ 0 or 1

2 1� p1
� �

1� p2
� �

p2 1� p2
� �þ p1 1� p2

� �

p1 p2

0
BB@

1
CCA if na ¼ 2

8>>>>>>>><
>>>>>>>>:

(3)

where y and na∈ 0; 1f g are numbers of reference alleles of an admixed individual at
t, and that of alleles from population 1, respectively. pk is the allele frequency of
population k∈ 1; 2f g at the site t, such that when na ¼ 0, pk ¼ p1 while pk ¼ p2 when
na ¼ 2. Nowadays, technological, statistical, and computational advances avail
enormous amounts of high density SNP data. Although high density SNPs violate
the independence assumption due to background LD [21], they contain more infor-
mation than in AIMs [22]. To loosen the independence assumption and minimize
noise and systematic biases from unmodelled LD, more advanced local ancestry
inference methods emerged [22]. These methods include SEQMIX [23], PCADMIX
[24], and SUPPORTMIX [13].

SUPPORTMIX [11] models only admixture LD by combining support vector
machines (SVMs) and HMM. It was proposed in 2012 to improve on the computa-
tional time and address the challenge of a few typed or nonexistent reference
panels, which overall improve multi-way local ancestry deconvolution.
SUPPORTMIX is the first model to allow the learning of ancestral surrogates given a
pool of reference panels. As a result, it is capable to train ancestral populations that
are bigger in size than those that are mixed. Since SVMs can handle huge datasets,
SUPPORTMIX is faster than early methods. It uses the rich haplotype information.
Also proposed in 2012, PCADMIX [24] divides the genome into contiguous win-
dows of SNPs as in SUPPORTMIX. It leverages principal component analysis from
proxy ancestral haplotypes to model admixture LD under a standard HMM. Similar
to SUPPORTMIX, PCADMIX is fast and requires phased data. Nevertheless,
SUPPORTMIX and PCADMIX do not model phase switch errors, and as a result, in
2013, SEQMIX [23] was proposed. Unlike all other admixture LD-based methods,
SEQMIX is based on exome sequence, reads data, and uses HMM. SEQMIX models
only admixture LD and prunes SNPs in background LD. As a result, to reduce noise
and systematic biases from using all SNPs [10] whilst not fully modeling LD (back-
ground), admixture and background LD methods emerged [22].

2.1.1.2 Admixture and background LD models

Since the biological data often have some dependences that violate the indepen-
dence assumption in standard HMM, admixture LD-based methods are often not
realistic. To relax the independence assumption, the HMM is extended to either
Markov HMM, factorial HMM, hierarchical HMM, or two-layer HMM or other
multivariate statistical models such as multivariate normal distribution (MVN) and
a rich ancestral haplotype data are used unlike early methods. This is the case for
SABER [10], SWITCH [25], HAPAA [26], HAPMIX [4], MULTIMIX [27], ALLOY
[28], and ELAI [29]. MHMMs were the first HMM extension in local ancestry. They
were first implemented in SABER and later in SWITCH. SABER was the first
method to model background LD in the genetic ancestry inference. MHMM
assumes that the current observed haplotype depends on both the current ancestry
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Also proposed in 2012, PCADMIX [24] divides the genome into contiguous win-
dows of SNPs as in SUPPORTMIX. It leverages principal component analysis from
proxy ancestral haplotypes to model admixture LD under a standard HMM. Similar
to SUPPORTMIX, PCADMIX is fast and requires phased data. Nevertheless,
SUPPORTMIX and PCADMIX do not model phase switch errors, and as a result, in
2013, SEQMIX [23] was proposed. Unlike all other admixture LD-based methods,
SEQMIX is based on exome sequence, reads data, and uses HMM. SEQMIX models
only admixture LD and prunes SNPs in background LD. As a result, to reduce noise
and systematic biases from using all SNPs [10] whilst not fully modeling LD (back-
ground), admixture and background LD methods emerged [22].

2.1.1.2 Admixture and background LD models

Since the biological data often have some dependences that violate the indepen-
dence assumption in standard HMM, admixture LD-based methods are often not
realistic. To relax the independence assumption, the HMM is extended to either
Markov HMM, factorial HMM, hierarchical HMM, or two-layer HMM or other
multivariate statistical models such as multivariate normal distribution (MVN) and
a rich ancestral haplotype data are used unlike early methods. This is the case for
SABER [10], SWITCH [25], HAPAA [26], HAPMIX [4], MULTIMIX [27], ALLOY
[28], and ELAI [29]. MHMMs were the first HMM extension in local ancestry. They
were first implemented in SABER and later in SWITCH. SABER was the first
method to model background LD in the genetic ancestry inference. MHMM
assumes that the current observed haplotype depends on both the current ancestry
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and the immediate past observation. The difference in the MHMM and admixture
LD HMM-based is that when ancestry switches between sites t � 1 and t, then the
MHMM observation model depends on the joint distribution of allele frequencies at
the two sites [6, 30], defined as follows [10]:

P Yt ¼ cjYt�1 ¼ d;Xt ¼ k;Xt0 ¼ k
0� �

¼ Bt c; d; k
0
; k

� �
,

P Yt ¼ cjYt�1 ¼ d;Xt ¼ k;Xt0 ¼ k
0� �

¼
~Bk0, t c; dð Þ for k

0 ¼ k

Bk0, t cð Þ otherwise

8<
:

(4)

where ~Bk, t c; dð Þ is the probability of having alleles at marker t provided there was
allele d at t � 1 and Bk, t cð Þ the allele frequency of alleles at marker t have for origins
the population k. However, if the ancestry does not switch, then the observation
model is like that of models in Section 2.1.1.1. The transition model of the SABER
model accounts for the differences in admixture times that are in the real case of
continuous gene flow where populations contribute their genetic material to the
admixture in different generations [10]. Tang et al. defined the probability of
switching from ancestry k at t to k at t as

Aij ¼
qi

g2i
∑K

k¼1qk gk
� gi, for i ¼ j,

qj
gi gj

∑K
k¼1qk gk

, otherwise

8>>><
>>>:

(5)

where gk is the admixture time when population k started to contribute to the
admixture.

However, SABER has a large parameter set, and does not explicitly model back-
ground LD as it models background LD using first order Markov chain [22]; other
methods such as SWITCH were proposed. SWITCH takes into recombination even
if it does not result in an ancestry switch, emerged. In contrast to SABER, SWITCH
conditions the MHMM on recombination. Similar to early methods, probability of
recombination depends on the admixture generations, genetic distance between
consecutive SNPs, and the recombination rate. Thus, if the transition probability
model in SWITCH is marginalized over recombination, then it is similar to Eq. (2)
for two-way and Eq. (5) for multi-way. Although SWITCH models background LD
and estimates recombination rates, the authors recommended richer MHMM or
other different models that would outperform the SWITCH and SABER pairwise
models [25]. As a result, methods that use both large- and small-scale HMM,
referred to as the HHMM, were introduced.

2.1.2 Non-LD-based local ancestry inference models

Non-LD methods neither model background nor admixture LD. They either
remove SNPs in LD which is the case for LAMP [11] and WINPOP [31], or use all
SNPs (linked and unlinked SNPs) without modeling LD; this is the case for EILA
[14], RFMIX [32], and LOTER [15]. Since MHMMs have a large number of param-
eters and do not model LD explicitly, an algorithmic approach that divides genome
into windows of SNPs, LAMP [11], emerged in 2008. LAMP is fast and robust, and
can infer local ancestry even without proxy ancestral genotypes. This is the case for
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two-way admixtures. It uses the naive Bayes classifier and a clustering algorithm
known as the iterative conditional modes. LAMP estimates the most probable
ancestry at a site by applying the majority vote for each SNP [11]. Although accu-
racy is comprised, LAMP does not suffer from challenges of HMM and extension.
As a result, LAMP underperforms in closely related populations, and hence it was
extended to WINPOP [31], a dynamic programming algorithm. Unlike LAMP,
WINPOP assumes at least one recombination event within each window and varies
the window length depending on the genetic distance between populations. Hence,
WINPOP and LAMP outperform other methods in closely and distantly related
populations, respectively. Both LAMP and WINPOP assume unlinked markers and
discards SNPs in LD.

As the admixed sequence data availability increases, Maples et al. proposed a
discriminative approach to estimate local ancestry, RFMIX [32]. A discriminative
approach estimates the posterior probability directly and not via the joint probabil-
ity distribution. In contrast to generative ancestry inference models, RFMIX uses
the information contained in admixed individuals. This is advantageous in cases of
genotyped few reference panels. This is the case for Native Americans [32]. RFMIX
uses conditional random fields (CRFs) parametrized on random forests. It outper-
forms in multi-way admixtures maybe due to modeling phase switch errors. In
2013, EILA [14], a multivariate statistic based method, was proposed particularly to
increase inference power through addressing three common challenges in local
ancestry. Addressed challenges are the independence of SNP assumption, difficul-
ties in identifying break points, and the use of three genotype values. Instead of raw
genotypes, EILA uses a numerical value between 0 and 1. The score determines how
close SNPs are to the ancestral populations. Breakpoints are a challenge to identify,
but EILA identifies them by fused quantile regression facilitating the use of esti-
mates in admixture dating. Finally, k-means classifiers are used to infer ancestry
using all genotyped SNPs [14].

Recently, a software package that deconvolves local ancestry in multi-way
admixtures for a wide range of species, LOTER [15], was proposed. LOTER can
account for phase errors in two-way admixture only. It facilitates the local ancestry
inference process and its application in non-model species [15]. Unlike other
methods, LOTER needs no biological such as admixture time and recombination
rate or statistical parameters such as, number of hidden states and misfit probabil-
ities to deconvolve ancestry [15]. Although it uses the Li and Stephen’s copying
model [33] as in LAMPLD/LAMPHAP, LOTER is a nonprobabilistic approach for-
mulated from an optimization problem. Its solution is obtained through dynamic
programming.

Finally, different existing LD and non-LD-based local ancestry inference models
are summarized in Table 1 extracted from Geza et al. [34].

2.2 Models for dating admixture events in a genome

Several models are now available to determine the date of admixture events in
a given admixed genome. Breakpoints of haplotypes are used by some models
while others focus on the ancestry blocks. Models based on ancestry blocks for
dating admixture are formulated using either an empirical criteria or variants
associated with a specific population. In order to determine the average length of
the admixture block, these methods then assign ancestry on predefined windows
using either wavelet transformation or conditional random fields [35]. On the
other hand, there are models requiring rapid decrease in haplotype block sizes to
estimate the date of the admixture event [36]. This suggests that, in general,

41

Orienting Future Trends in Local Ancestry Deconvolution Models to Optimally Decipher…
DOI: http://dx.doi.org/10.5772/intechopen.82764



and the immediate past observation. The difference in the MHMM and admixture
LD HMM-based is that when ancestry switches between sites t � 1 and t, then the
MHMM observation model depends on the joint distribution of allele frequencies at
the two sites [6, 30], defined as follows [10]:

P Yt ¼ cjYt�1 ¼ d;Xt ¼ k;Xt0 ¼ k
0� �

¼ Bt c; d; k
0
; k

� �
,

P Yt ¼ cjYt�1 ¼ d;Xt ¼ k;Xt0 ¼ k
0� �

¼
~Bk0, t c; dð Þ for k

0 ¼ k

Bk0, t cð Þ otherwise

8<
:

(4)

where ~Bk, t c; dð Þ is the probability of having alleles at marker t provided there was
allele d at t � 1 and Bk, t cð Þ the allele frequency of alleles at marker t have for origins
the population k. However, if the ancestry does not switch, then the observation
model is like that of models in Section 2.1.1.1. The transition model of the SABER
model accounts for the differences in admixture times that are in the real case of
continuous gene flow where populations contribute their genetic material to the
admixture in different generations [10]. Tang et al. defined the probability of
switching from ancestry k at t to k at t as

Aij ¼
qi

g2i
∑K

k¼1qk gk
� gi, for i ¼ j,

qj
gi gj

∑K
k¼1qk gk

, otherwise

8>>><
>>>:

(5)
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admixture.

However, SABER has a large parameter set, and does not explicitly model back-
ground LD as it models background LD using first order Markov chain [22]; other
methods such as SWITCH were proposed. SWITCH takes into recombination even
if it does not result in an ancestry switch, emerged. In contrast to SABER, SWITCH
conditions the MHMM on recombination. Similar to early methods, probability of
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consecutive SNPs, and the recombination rate. Thus, if the transition probability
model in SWITCH is marginalized over recombination, then it is similar to Eq. (2)
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referred to as the HHMM, were introduced.
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Non-LD methods neither model background nor admixture LD. They either
remove SNPs in LD which is the case for LAMP [11] and WINPOP [31], or use all
SNPs (linked and unlinked SNPs) without modeling LD; this is the case for EILA
[14], RFMIX [32], and LOTER [15]. Since MHMMs have a large number of param-
eters and do not model LD explicitly, an algorithmic approach that divides genome
into windows of SNPs, LAMP [11], emerged in 2008. LAMP is fast and robust, and
can infer local ancestry even without proxy ancestral genotypes. This is the case for
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two-way admixtures. It uses the naive Bayes classifier and a clustering algorithm
known as the iterative conditional modes. LAMP estimates the most probable
ancestry at a site by applying the majority vote for each SNP [11]. Although accu-
racy is comprised, LAMP does not suffer from challenges of HMM and extension.
As a result, LAMP underperforms in closely related populations, and hence it was
extended to WINPOP [31], a dynamic programming algorithm. Unlike LAMP,
WINPOP assumes at least one recombination event within each window and varies
the window length depending on the genetic distance between populations. Hence,
WINPOP and LAMP outperform other methods in closely and distantly related
populations, respectively. Both LAMP and WINPOP assume unlinked markers and
discards SNPs in LD.

As the admixed sequence data availability increases, Maples et al. proposed a
discriminative approach to estimate local ancestry, RFMIX [32]. A discriminative
approach estimates the posterior probability directly and not via the joint probabil-
ity distribution. In contrast to generative ancestry inference models, RFMIX uses
the information contained in admixed individuals. This is advantageous in cases of
genotyped few reference panels. This is the case for Native Americans [32]. RFMIX
uses conditional random fields (CRFs) parametrized on random forests. It outper-
forms in multi-way admixtures maybe due to modeling phase switch errors. In
2013, EILA [14], a multivariate statistic based method, was proposed particularly to
increase inference power through addressing three common challenges in local
ancestry. Addressed challenges are the independence of SNP assumption, difficul-
ties in identifying break points, and the use of three genotype values. Instead of raw
genotypes, EILA uses a numerical value between 0 and 1. The score determines how
close SNPs are to the ancestral populations. Breakpoints are a challenge to identify,
but EILA identifies them by fused quantile regression facilitating the use of esti-
mates in admixture dating. Finally, k-means classifiers are used to infer ancestry
using all genotyped SNPs [14].

Recently, a software package that deconvolves local ancestry in multi-way
admixtures for a wide range of species, LOTER [15], was proposed. LOTER can
account for phase errors in two-way admixture only. It facilitates the local ancestry
inference process and its application in non-model species [15]. Unlike other
methods, LOTER needs no biological such as admixture time and recombination
rate or statistical parameters such as, number of hidden states and misfit probabil-
ities to deconvolve ancestry [15]. Although it uses the Li and Stephen’s copying
model [33] as in LAMPLD/LAMPHAP, LOTER is a nonprobabilistic approach for-
mulated from an optimization problem. Its solution is obtained through dynamic
programming.

Finally, different existing LD and non-LD-based local ancestry inference models
are summarized in Table 1 extracted from Geza et al. [34].

2.2 Models for dating admixture events in a genome

Several models are now available to determine the date of admixture events in
a given admixed genome. Breakpoints of haplotypes are used by some models
while others focus on the ancestry blocks. Models based on ancestry blocks for
dating admixture are formulated using either an empirical criteria or variants
associated with a specific population. In order to determine the average length of
the admixture block, these methods then assign ancestry on predefined windows
using either wavelet transformation or conditional random fields [35]. On the
other hand, there are models requiring rapid decrease in haplotype block sizes to
estimate the date of the admixture event [36]. This suggests that, in general,
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models used for dating admixture events can be subdivided in two main classes
[17, 18], namely those based on LD and those based on the haplotype distribution,
as mentioned earlier.

2.2.1 LD-based models for dating admixture events

An admixture event is mainly characterized by the transfer of genes from
the ancestral populations to the admixed ones. This leads to the appearance of
linkage disequilibrium with regard to the ancestral populations. However, this
LD formed often decreases with time. Also, the rate of decay of LD is a
function of recombination and the proportion of the admixture [35]. Inversely,
many methods employ this rate to calculate the time since the admixture
event occurs.

In 2011, Moorjani et al. introduced a method to determine the weighted correla-
tion for a pair of SNPs [36]. This correlation coefficient is further used to measure
the LD with ancestral populations [37]. The time of admixture is then determined
by analyzing the correlation with respect to the genetic distance, and also fitting
using a least squares method the decay of the correlation [35]. This method got
improved in 2011 by Loh et al. [18]. The major improvements are in terms of
computation. Loh et al. employed instead a fast Fourier transform and other faster
techniques to determine the optimal distance to the fitting curve. This method has
another advantage that it reduces considerable biases in the estimation of the time
of admixture [18, 36]. Later, Loh et al.’s method was improved by Pickrell et al. [38]
by introducing the notion of mixture exponential decay in order to take into
account the admixture events in the given admixed population history. It mainly
focuses on the decay of the LD.

2.2.1.1 Multiple weighted correlation coefficient

Let us consider three ancestral populations k1, k2, and k3, and Q the admixed
population. Let us denote by ω1�2, ω1�3, and ω2�3 three weighted linkage disequi-
librium scores computed based on all possible pairs of SNPs between the three
ancestral populations: k1 � k2, k1 � k3, and k2 � k3, respectively, in the admixed
population Q calculated using the method proposed by Loh et al. According to
Prickrell et al., the multiple weighted correlation coefficient is [38],

Ck1�k2, k1�k2, k2�k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
2�3 þ ω2

1 � 2ω2�3ω1�2ω1�3

1� ω2
2�3

s
: (6)

The date of admixture between population k1 and k3 is

Dk1, k2,k1k2�k2k3 ¼
w0 þ w1e�n1

δn
100, for one admixture event�D 1ð Þ,

w0 þ w1e�n1 δn
100 þ w2e�n2 δn

100, in the case of two admixture events�D 2ð Þ,

(
(7)

with n1 and n1 the number of generations; δn the genetic distance; w1 and w2
stand for the value of the multiple weighted LD; and w0 the affine term. D 1ð Þ is the
date of admixture of population Q in the case of admixture either between k1 � k2
or k2 � k3. On the other hand, if it is assumed that two admixture events took place
between k1 � k3 and either k1 � k2 or k2 � k3, the date of the admixed population is
given by D 2ð Þ.

44

Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations

2.2.2 Haplotype distribution-based models for dating admixture events

Among the haplotype-based approaches, there is the likelihood method intro-
duced in 2009 by Price et al. [4]. It basically determines the number of breakpoints
using Hidden Markov Model. It is also able to determine the number of alleles at a
particular site inherited from a given ancestor in a population. This is done in two
steps. First, the method consists in identifying haplotype from the proxy ancestry
populations, and secondly, the origin of each haplotype bock is identified by com-
paring their likelihood for one ancestral population versus the others. Considering
an admixed genome, the likelihood of an observed allele is given by

Huvw hð Þ ¼ θuP tvw ¼ 0ð Þ þ 1� θuð ÞP tvw ¼ 1ð Þ, if u ¼ v,
θ3P tvw ¼ 0ð Þ þ 1� θ3ð ÞP tvw ¼ 1ð Þ, otherwise

�
(8)

with θu, u∈ 1; 2; 3f g the mutation parameter is; h represents the haplotype site in the
chromosomal offspring; the function tvw is an indicator function. It takes the value 1
if individual w coming from offspring x has the same haplotype with the ancestral
population v and 0 otherwise; and P is the probability to inherit a pair of haplotype
[4]. The number of generations since admixture is given by

G ¼ C
4γ 1� γð Þζ (9)

where ζ is the total Morgan length, γ the proportion of admixture, and C the
observed number of breakpoints [4].

On the other hand, Pugach et al. [17] employed the wavelet transform to design
a haplotype block approach. The aim of this method is to derive the time of admix-
ture of a given population using the simple hybrid isolation model. It proceeds in
two main steps. First, it obtains a signal of admixture from the admixed data using
the principal component technique. The second step consists in deriving the date of
admixture using the signal obtained in the first step [17].

Pool and Nielsen also built a haplotype-based approach. It used precautionary
ancestral populations to infer the date of admixture from the genome of an admixed
population [39]. It assumed that after a number of generation g, the distribution of
the ancestral haplotypes follows exponential distribution given by

f λ; gð Þ ¼ ge�λg (10)

where λ is the length of haplotypes. Also, the mean of this distribution is known and
is equal to 1

g.
Further methods include that of Gravel developed in 2012 for the identification

of multiple ancestral populations in a given admixture dataset [40]. Also, Jin et al.
[41] came up with a similar method to explain admixture dynamics. The method
incorporates several models including gradual admixture (GA), hybrid isolated
(HI), and continuous gene flow (CGF) models [41], which can be extended to
GA-Isolation (GA-I) and CGF-Isolation (CGF-I) by considering isolation after
admixture [42]. Hellenthal et al. [43] on the other hand built up on the work of
Lawson et al. [44] on dating admixture. This method particularly considers the
genome of an admixed individual to be a set chunk DNA coming from other
individuals. The scheme of this method is mainly made of two stages. The first stage
consists in dividing the genome into chunks and matching each of them to the
proper ancestral individual. This stage is achieved with the help of Hidden Markov
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duced in 2009 by Price et al. [4]. It basically determines the number of breakpoints
using Hidden Markov Model. It is also able to determine the number of alleles at a
particular site inherited from a given ancestor in a population. This is done in two
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chromosomal offspring; the function tvw is an indicator function. It takes the value 1
if individual w coming from offspring x has the same haplotype with the ancestral
population v and 0 otherwise; and P is the probability to inherit a pair of haplotype
[4]. The number of generations since admixture is given by
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4γ 1� γð Þζ (9)

where ζ is the total Morgan length, γ the proportion of admixture, and C the
observed number of breakpoints [4].

On the other hand, Pugach et al. [17] employed the wavelet transform to design
a haplotype block approach. The aim of this method is to derive the time of admix-
ture of a given population using the simple hybrid isolation model. It proceeds in
two main steps. First, it obtains a signal of admixture from the admixed data using
the principal component technique. The second step consists in deriving the date of
admixture using the signal obtained in the first step [17].

Pool and Nielsen also built a haplotype-based approach. It used precautionary
ancestral populations to infer the date of admixture from the genome of an admixed
population [39]. It assumed that after a number of generation g, the distribution of
the ancestral haplotypes follows exponential distribution given by

f λ; gð Þ ¼ ge�λg (10)

where λ is the length of haplotypes. Also, the mean of this distribution is known and
is equal to 1

g.
Further methods include that of Gravel developed in 2012 for the identification

of multiple ancestral populations in a given admixture dataset [40]. Also, Jin et al.
[41] came up with a similar method to explain admixture dynamics. The method
incorporates several models including gradual admixture (GA), hybrid isolated
(HI), and continuous gene flow (CGF) models [41], which can be extended to
GA-Isolation (GA-I) and CGF-Isolation (CGF-I) by considering isolation after
admixture [42]. Hellenthal et al. [43] on the other hand built up on the work of
Lawson et al. [44] on dating admixture. This method particularly considers the
genome of an admixed individual to be a set chunk DNA coming from other
individuals. The scheme of this method is mainly made of two stages. The first stage
consists in dividing the genome into chunks and matching each of them to the
proper ancestral individual. This stage is achieved with the help of Hidden Markov
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Model. The second stage consists in identifying haplotypes and determining their
respective ancestral population [43, 44]. Moreover, the admixture event and its
date are derived by fitting the decay of the ancestral haplotype with an exponential
distribution curve. Moreover, Ni et al. developed a method based on the observation
that the date of admixture events is related to the model used. Their method
consists in using the likelihood ratio test to identify the best model for the inference
of the date of admixture. Furthermore, they are able to estimate several admixture
events with the given optimal model [35].

Finally, different existing models and tools for dating admixture events are
summarized in Table 2 extracted from Chimusa et al. [35].

Tool Category Admixture
model

Priori
proxy
ancestral
raw data

Multi-
way
events

Online link

ROLLOFF LD-based model HI Yes No https://github.com/
DReichLab/Ad
mixTools/

ALDER HI Yes No http://cb.csail.mit.edu/
cb/alder/

MALDER HI Yes Yes https://github.com/joe
pickrell/malder/

CAMer HI, GA,
CGF, GA-I,
CGF-I

Yes Yes https://github.com/da
vid940408/CAMer

IMAAPs HI, GA,
CGF, GA-I,
CGF-I

Yes Yes http://www.picb.ac.c
n/PGG/resource.php

StepPCO Haplotype/
ancestry block size
distribution-based
model

HI Yes Yes https://bioinf.eva.mpg.
de/download/Ste
pPCO/

Adware HI, Dual-
admixture

Yes Yes https://cran.r-project.
org/web/packages/ad
wave/index.html

HAPMIX HI Yes Yes http://genetics.med.ha
rvard.edu/reichlab/Re
ich_Lab/Software.h
tml/

MultiWaveIner HI Yes Yes https://github.com/
xyang619/MultiWave
Infer/ or
http://www.picb.ac.c
n/PGG/resource.php

GLOBBERTROTTER HI, GA,
CGF

No Yes https://github.com/
maarjalepamets/huma
n-admixture/

Tracts HI, GA,
CGF

No Yes https://github.com/sg
ravel/tracts/

Ancestry_HMM HI No No https://github.com/
russcd/

Table 2.
Existing dating admixture genomic tools.
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3. Challenges and perspectives

3.1 Case of local ancestry inference models

Although several models exist to deconvolve local ancestry, most studies that
evaluate such models showed that deviations in local ancestry estimates still exist in
multi-way admixtures. Deviations in local ancestry also result from genetic drift,
miscalling true ancestry, and genotyping errors. However, the signals from these
factors affect the whole genome while that of unmodelled natural selection affects
particular regions. For example, Chen et al. using four local ancestry inference
models to scan for disease-related loci through admixture mapping showed that
although all of them are LD based and divide the genome into windows of contin-
uous SNPs, MULTIMIX and LAMPLD estimates differed in almost 20% of the
analyzed SNPs. This results from the differences in the biological and statistical
parameters they require and the mathematical approaches they use. Another asso-
ciation study by Chimusa et al. [45] also pointed out that admixture mapping is still
limited by inaccuracies in multi-way local ancestry deconvolution when they eval-
uated one LD-based and one non-LD-based local ancestry models, WINPOP and
LAMPLD.

Inaccuracies in local ancestry estimates may result from the use of statistical or
biological parameters in the estimation process, which are not always accurate when
provided. It could also be due to the dependence of models on reference panels
which for some populations are few or even not sampled for others. This is the case
for the Native Americans. More so for other admixed populations, their history is
not well known. When applied to ancient admixtures, existing methods may yield
spurious estimates as they were designed for recent admixtures. Existing methods
do not account for natural selection; hence, some deviations exist in regions that are
under selection [45]. Also, most of them are benchmarked for three-way
admixtures.

Since each model was introduced to address a particular challenge that models
before it faced, it is clearly expected that no model or tool can achieve the best
performance in all admixture scenarios and not trading estimate accuracy with
computational speed. Using existing studies by Geza et al. [34], more than 50% of
studies that either introduced a model or evaluated methods for association map-
ping showed that LAMPLD/LAMPHAP outperforms most LD-based methods. And
the only LD-based method than outperformed LAMPLD is ELAI; however, this is
the only study that assessed ELAI with other models. In cases where LD-based
models were compared to non-LD-based models, RFMIX outperformed LAMPLD
in three cases highlighted in [34], while another separate study aiming to determine
the place of admixture of an admixed population RFMIX also outperformed. This
could be because RFMIX can deconvolve ancestry in closely related populations
[46]. However, a recent assessment between RFMIX and LOTER resulted in LOTER
outperforming in ancient admixtures [15].

Generally, each model is implemented as a tool in local ancestry deconvolution,
existing as individual scripts requiring unique inputs and producing unique outputs.
This challenges researchers with a limited computational background; thus, there
is lack of a unified framework which can require a standard easy to manipulate
input files and output results in a way that is easy to process for further application.
In conclusion, for informed decisions on models and algorithms, existing models or
tools should be assessed within a unified framework. This will allow them to be
tested on different admixture scenarios and also incorporating most state-of-the-art
LD and non-LD based models.

47

Orienting Future Trends in Local Ancestry Deconvolution Models to Optimally Decipher…
DOI: http://dx.doi.org/10.5772/intechopen.82764



Model. The second stage consists in identifying haplotypes and determining their
respective ancestral population [43, 44]. Moreover, the admixture event and its
date are derived by fitting the decay of the ancestral haplotype with an exponential
distribution curve. Moreover, Ni et al. developed a method based on the observation
that the date of admixture events is related to the model used. Their method
consists in using the likelihood ratio test to identify the best model for the inference
of the date of admixture. Furthermore, they are able to estimate several admixture
events with the given optimal model [35].

Finally, different existing models and tools for dating admixture events are
summarized in Table 2 extracted from Chimusa et al. [35].

Tool Category Admixture
model

Priori
proxy
ancestral
raw data

Multi-
way
events

Online link

ROLLOFF LD-based model HI Yes No https://github.com/
DReichLab/Ad
mixTools/

ALDER HI Yes No http://cb.csail.mit.edu/
cb/alder/

MALDER HI Yes Yes https://github.com/joe
pickrell/malder/

CAMer HI, GA,
CGF, GA-I,
CGF-I

Yes Yes https://github.com/da
vid940408/CAMer

IMAAPs HI, GA,
CGF, GA-I,
CGF-I

Yes Yes http://www.picb.ac.c
n/PGG/resource.php

StepPCO Haplotype/
ancestry block size
distribution-based
model

HI Yes Yes https://bioinf.eva.mpg.
de/download/Ste
pPCO/

Adware HI, Dual-
admixture

Yes Yes https://cran.r-project.
org/web/packages/ad
wave/index.html

HAPMIX HI Yes Yes http://genetics.med.ha
rvard.edu/reichlab/Re
ich_Lab/Software.h
tml/

MultiWaveIner HI Yes Yes https://github.com/
xyang619/MultiWave
Infer/ or
http://www.picb.ac.c
n/PGG/resource.php

GLOBBERTROTTER HI, GA,
CGF

No Yes https://github.com/
maarjalepamets/huma
n-admixture/

Tracts HI, GA,
CGF

No Yes https://github.com/sg
ravel/tracts/

Ancestry_HMM HI No No https://github.com/
russcd/

Table 2.
Existing dating admixture genomic tools.
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3. Challenges and perspectives

3.1 Case of local ancestry inference models

Although several models exist to deconvolve local ancestry, most studies that
evaluate such models showed that deviations in local ancestry estimates still exist in
multi-way admixtures. Deviations in local ancestry also result from genetic drift,
miscalling true ancestry, and genotyping errors. However, the signals from these
factors affect the whole genome while that of unmodelled natural selection affects
particular regions. For example, Chen et al. using four local ancestry inference
models to scan for disease-related loci through admixture mapping showed that
although all of them are LD based and divide the genome into windows of contin-
uous SNPs, MULTIMIX and LAMPLD estimates differed in almost 20% of the
analyzed SNPs. This results from the differences in the biological and statistical
parameters they require and the mathematical approaches they use. Another asso-
ciation study by Chimusa et al. [45] also pointed out that admixture mapping is still
limited by inaccuracies in multi-way local ancestry deconvolution when they eval-
uated one LD-based and one non-LD-based local ancestry models, WINPOP and
LAMPLD.

Inaccuracies in local ancestry estimates may result from the use of statistical or
biological parameters in the estimation process, which are not always accurate when
provided. It could also be due to the dependence of models on reference panels
which for some populations are few or even not sampled for others. This is the case
for the Native Americans. More so for other admixed populations, their history is
not well known. When applied to ancient admixtures, existing methods may yield
spurious estimates as they were designed for recent admixtures. Existing methods
do not account for natural selection; hence, some deviations exist in regions that are
under selection [45]. Also, most of them are benchmarked for three-way
admixtures.

Since each model was introduced to address a particular challenge that models
before it faced, it is clearly expected that no model or tool can achieve the best
performance in all admixture scenarios and not trading estimate accuracy with
computational speed. Using existing studies by Geza et al. [34], more than 50% of
studies that either introduced a model or evaluated methods for association map-
ping showed that LAMPLD/LAMPHAP outperforms most LD-based methods. And
the only LD-based method than outperformed LAMPLD is ELAI; however, this is
the only study that assessed ELAI with other models. In cases where LD-based
models were compared to non-LD-based models, RFMIX outperformed LAMPLD
in three cases highlighted in [34], while another separate study aiming to determine
the place of admixture of an admixed population RFMIX also outperformed. This
could be because RFMIX can deconvolve ancestry in closely related populations
[46]. However, a recent assessment between RFMIX and LOTER resulted in LOTER
outperforming in ancient admixtures [15].

Generally, each model is implemented as a tool in local ancestry deconvolution,
existing as individual scripts requiring unique inputs and producing unique outputs.
This challenges researchers with a limited computational background; thus, there
is lack of a unified framework which can require a standard easy to manipulate
input files and output results in a way that is easy to process for further application.
In conclusion, for informed decisions on models and algorithms, existing models or
tools should be assessed within a unified framework. This will allow them to be
tested on different admixture scenarios and also incorporating most state-of-the-art
LD and non-LD based models.

47

Orienting Future Trends in Local Ancestry Deconvolution Models to Optimally Decipher…
DOI: http://dx.doi.org/10.5772/intechopen.82764



3.2 Case of the dating admixture models

The evolution of human populations and the history of the mixture of these
populations have been deciphered using statistical and computational methods.
These methods have been found to perform well when dealing with single point
admixture event in two-way admixed populations [35]. However, as any method,
they not only have advantages but also pitfalls regarding the estimation of admix-
ture dates in some cases. It is challenging to fit to real admixed populations (for
more than 3-way admixture context) in the existing models dating admixture
events due to several reasons, including reliance to optimal local ancestry estimates
and accurate ancestry breakpoints. This suggests that there is still a need for
designing an integrative or a new model to dating admixture events for current
multi-way admixed populations to further advance our understanding of human
demographics and movement, and facilitate admixture mapping and estimation of
the age of a disease locus contributing to disease risk.

In addition, it have been discovered that the mixture exponential decay model
over-estimates the date of older admixture events [35] and was suggested to detect
at most three admixture events. As mentioned earlier, Ni et al. [47] dealt with the
optimization of the method used in dating admixture estimation. They took into
account several models but the evaluation of their technique is not effective in the
estimation of ancient and multi admixture events [35, 47]. On the other hand,
several practical considerations can further limit these approaches including the use
of proxy ancestry populations in the estimations which could bias the accuracy of
the result. This is the case when dealing for instance with low sample size and
inappropriate proxy ancestral populations [35]; the requirement of having accurate
LD patterns, ancestry haplotypes distribution, and a big sample size of the
admixed population. Thus, there is a need for an adequate model for inferring
different dates of admixture events and matching real admixture history using
proxy ancestry-based methods [35].

4. Conclusions

Currently, more than 20 models exist and are implemented as software to
deconvolve local ancestry and 12 tools for dating admixture events. In this chapter,
we discussed in detail and summarized the most commonly used models, the model
assumptions, statistical and biological parameters they require, and existing chal-
lenges. This discussion highlights the need for designing more effective models,
which account for current challenges and produce more accurate and biologically
relevant estimates. Furthermore, it provides useful information for the implemen-
tation of practical tools, which consider current medical and population genetic
demands. More importantly, this may guide users in the choice of appropriate tools
for specific applications and can assist software developers in designing more
advanced tools for local ancestry deconvolution and dating admixture events.
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Chapter 4

Recognition of Multiomics-Based 
Molecule-Pattern Biomarker for 
Precise Prediction, Diagnosis, and 
Prognostic Assessment in Cancer
Xanquan Zhan, Tian Zhou, Tingting Cheng and Miaolong Lu

Abstract

Cancer is a complex whole-body chronic disease, is involved in multiple causes, 
multiple processes, and multiple consequences, which are associated with a series 
of molecular alterations in the different levels of genome, transcriptome, proteome, 
metabolome, and radiome, with between-molecule mutual interactions. Those 
molecule-panels are the important resources to recognize the reliable molecular 
pattern biomarkers for precise prediction, diagnosis, and prognostic assessment in 
cancer. Pattern recognition is an effective methodology to identify those molecule-
panels. The rapid development of computation biology, systems biology, and 
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Abstract
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cancer. Pattern recognition is an effective methodology to identify those molecule-
panels. The rapid development of computation biology, systems biology, and 
multiomics is driving the development of pattern recognition to discover reliable 
molecular pattern biomarkers for cancer treatment. This book chapter addresses the 
concept of pattern recognition and pattern biomarkers, status of multiomics-based 
molecular patterns, and future perspective in prediction, diagnosis, and prognostic 
assessment of a cancer.
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Alterations or mutations of genetic substance of the cells are the main cause of 
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in multiple genes expression and leading to an imbalance between cell replication 
and cell death, which is beneficial for growth of tumor cell population [2, 3]. With 
cancer progresses, the genetic drift of the cell population generates cell hetero-
geneity with characteristics involved in cell antigenicity, invasiveness, metastatic 
potential, rate of cell proliferation, differentiation state and response to chemo-
therapeutic agents [4–6]. A study showed that the mutation of two to eight driver 
genes is sufficient for an emblematical cancer occurrence. The passenger genes are 
not oncogenic and mutation of passenger genes is unable to cause occurrence of a 
cancer [7, 8]. Therefore, attention should be paid to a panel of genetic mutations, 
named gene pattern mutation. Depending on the genetic central dogma, gene 
pattern mutation may lead to a series of alterations of messenger RNA (mRNA) and 
protein expressions. With the use of this pattern, the condition of low sensitivity 
of a single-tumor marker or low specificity of a large number of samples is reduced 
when diagnosis models are set based on differentially expressed proteins or peptides 
between tumor tissues and normal tissues [9].

A cancer biomarker is defined as a substance or biological process that can 
indicate the presence of cancer in the body, which is important for people to monitor 
personal health [10]. Physical examinations (e.g., blood pressure), biological and 
genetic tests, along with others that can be objectively detected and used as indica-
tors of pathogenic processes and alterations which may present as a result of treat-
ment, are regarded as biomarkers [11, 12]. All the alterations in the levels of DNA, 
RNA, protein, and metabolite between cancer patients and healthy people could be 
called biomarkers, and therefore in terms of source, biomarkers usually are assorted 
into different categories including genetic biomarker, epigenetic biomarker, protein 
biomarker, metabolite biomarker and immunological biomarker and so on [13]. 
Generally, biomarkers used in clinic survey and diagnosis are from the four ways:  
(i) metabolites of tumor cells, (ii) abnormal differentiation of cellular gene 
products, (iii) tumor necrosis and exfoliation of tumor cells release into the blood 
circulation, and (iv) cell reactive products of tumor host cells [9]. Most of cancer 
biomarkers are detected in the tumor tissue or in blood. In order to maximize 
usefulness and minimize cost of screening or early detection, it is advantageous to 
be able to measure biomarkers in body fluid, which can be obtained using minimally 
invasive samples, such as blood, urine, sputum or stool [10]. Biomarkers play an 
important role in cancer for precise prediction, diagnosis and prognostic assessment. 
Thereby, with the development of biomarkers, they have far-reaching significances 
for people to recognize and treat cancer as follows: (i) the understanding of molecu-
lar mechanisms of diseases, (ii) identification of possible new disease pathways, (iii) 
prediction models of complex diseases, (iv) the determination of the level of biologi-
cal activity of the disease, (v) refinement of disease phenotypes that may respond 
differently to specific treatments, (vi) the monitoring of treatment responses, 
and (vii) the potential application of precision medicine [14, 15]. However, it still 
remains a problem that biomarkers were detected after occurrence of cancer. With 
the fast development of image technology, radiomics is generated and can well solve 
that above problem. Quantitative analysis of imaging characteristics provides not 
only the tumor phenotype but also the underlying genotype information so that 
one can better diagnose and prognostic assessment for cancer patients [16]. A single 
tumor biomarker is insufficient and unreliable for precise prediction, diagnosis 
and prognostic assessment in cancer. The multi-parameter systematic strategies for 
predictive, preventive, and personalized medicine (PPPM) in cancer [4] emphasized 
that those molecule-panels, all of the differences and molecular alterations in the 
genome, transcriptome, proteome, metabolome, and radiome, with between-
molecule mutual interactions, are the important resources to identify and recognize 
the reliable molecular pattern biomarkers for precise prediction, diagnosis, and 
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prognostic assessment in cancer. Pattern recognition is an effective methodology to 
identify those molecule-panels. In fact, pattern recognition means that recognize 
molecule-pattern biomarkers, in other words, to use a set of patterns that consist of 
several biomarkers to improve the accuracy and specificity of prediction, preven-
tion, diagnosis, treatment, and prognostic assessment of tumor [9].

The rapid development of computation biology, systems biology, and mul-
tiomics is driving the development of pattern recognition to discover reliable 
molecular pattern biomarkers for cancer treatment. This book chapter addresses the 
concept of pattern recognition and pattern biomarkers, status of multiomics-based 
molecular patterns, and future perspective in prediction, diagnosis, and prognostic 
assessment of a cancer.

2. Pathophysiological basis of molecule-pattern biomarker in cancer

Cancer is a complex whole-body chronic disease, which results in a series of 
molecular alterations and associated with signal transduction system, cell cycle, 
proliferation, differentiation and apoptosis [17, 18]. Many factors are related to 
occurrence and development of a cancer.

Genomic instability plays a key role in cancer development and progression. It 
provides a way to make a cell or subset of cells gain an ability of selective advantage 
than adjacent cells, achieving outgrowth and advantages in the tissue microenviron-
ment. Genomic instability can generate aneuploid cells. Aneuploidy influences 
on the transcriptome and proteome and further results in proteotoxic stress and 
activation of the endoplasmic reticulum stress response. Consequently, aneuploidy 
can regulate features of the cells and the microenvironment [19]. In normal cells, 
the quality of reproduction of the genome at each stage of the cell cycle is protected 
by checkpoints. The existence of aneuploid cells in cancer exactly suggested one 
or more checkpoints are failed. The genomic heterogeneity might provide growth 
advantages for cancer “tissue” under selection pressure, such as hypoxia, immunity, 
and treatment-related challenges [1]. Genomic instability in cancer causes a serious 
challenge for cancer treatment.

Genetic mutations that cause cell dysfunction in most of cases support the 
development and progression of cancer. Moreover, the interaction between cancer 
cells and their environment, known as the tumor microenvironment, and their 
mutually interacted regulatory factors, can affect disease initiation and progres-
sion. The tumor microenvironment is composed of stromal cells, extracellular 
matrix (ECM), and signaling molecules that communicate with cancer cells. The 
stromal cells including endothelial cells, pericytes, fibroblasts, and immune cells, 
along with the surrounding ECM, constitute a supporting matrix for the tumor and 
regulate the tumor microenvironment. Angiogenesis and metastasis, two pivotal 
hallmarks of cancer, are modulated by the composition of the tumor microenviron-
ment. Furthermore, the tumor microenvironment is not only affected by signals 
from tumor cells, but also stromal components through influencing cancer cell 
function to promote tumor progression and metastasis [20, 21]. Therefore, tumor 
microenvironment also is an important aspect for cancer therapy.

Tumor heterogeneity is another momentous feature of malignant tumor and 
plays a vital role in development, progression, and treatment of cancer [22–26]. On 
the one hand, in most of cancer cases, heterogeneity is found that not only from 
same kind of tumor among different patients, but also in all tumor progression 
phases of the identical individual patients [27]. The genetic instability of tumor cell 
is tightly related to tumor progression and heterogeneity and leads to the presence 
of variations [28, 29]. On the other hand, tumor heterogeneity is relevant to the 
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biomarkers are detected in the tumor tissue or in blood. In order to maximize 
usefulness and minimize cost of screening or early detection, it is advantageous to 
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cal activity of the disease, (v) refinement of disease phenotypes that may respond 
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remains a problem that biomarkers were detected after occurrence of cancer. With 
the fast development of image technology, radiomics is generated and can well solve 
that above problem. Quantitative analysis of imaging characteristics provides not 
only the tumor phenotype but also the underlying genotype information so that 
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and prognostic assessment in cancer. The multi-parameter systematic strategies for 
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prognostic assessment in cancer. Pattern recognition is an effective methodology to 
identify those molecule-panels. In fact, pattern recognition means that recognize 
molecule-pattern biomarkers, in other words, to use a set of patterns that consist of 
several biomarkers to improve the accuracy and specificity of prediction, preven-
tion, diagnosis, treatment, and prognostic assessment of tumor [9].

The rapid development of computation biology, systems biology, and mul-
tiomics is driving the development of pattern recognition to discover reliable 
molecular pattern biomarkers for cancer treatment. This book chapter addresses the 
concept of pattern recognition and pattern biomarkers, status of multiomics-based 
molecular patterns, and future perspective in prediction, diagnosis, and prognostic 
assessment of a cancer.

2. Pathophysiological basis of molecule-pattern biomarker in cancer

Cancer is a complex whole-body chronic disease, which results in a series of 
molecular alterations and associated with signal transduction system, cell cycle, 
proliferation, differentiation and apoptosis [17, 18]. Many factors are related to 
occurrence and development of a cancer.

Genomic instability plays a key role in cancer development and progression. It 
provides a way to make a cell or subset of cells gain an ability of selective advantage 
than adjacent cells, achieving outgrowth and advantages in the tissue microenviron-
ment. Genomic instability can generate aneuploid cells. Aneuploidy influences 
on the transcriptome and proteome and further results in proteotoxic stress and 
activation of the endoplasmic reticulum stress response. Consequently, aneuploidy 
can regulate features of the cells and the microenvironment [19]. In normal cells, 
the quality of reproduction of the genome at each stage of the cell cycle is protected 
by checkpoints. The existence of aneuploid cells in cancer exactly suggested one 
or more checkpoints are failed. The genomic heterogeneity might provide growth 
advantages for cancer “tissue” under selection pressure, such as hypoxia, immunity, 
and treatment-related challenges [1]. Genomic instability in cancer causes a serious 
challenge for cancer treatment.

Genetic mutations that cause cell dysfunction in most of cases support the 
development and progression of cancer. Moreover, the interaction between cancer 
cells and their environment, known as the tumor microenvironment, and their 
mutually interacted regulatory factors, can affect disease initiation and progres-
sion. The tumor microenvironment is composed of stromal cells, extracellular 
matrix (ECM), and signaling molecules that communicate with cancer cells. The 
stromal cells including endothelial cells, pericytes, fibroblasts, and immune cells, 
along with the surrounding ECM, constitute a supporting matrix for the tumor and 
regulate the tumor microenvironment. Angiogenesis and metastasis, two pivotal 
hallmarks of cancer, are modulated by the composition of the tumor microenviron-
ment. Furthermore, the tumor microenvironment is not only affected by signals 
from tumor cells, but also stromal components through influencing cancer cell 
function to promote tumor progression and metastasis [20, 21]. Therefore, tumor 
microenvironment also is an important aspect for cancer therapy.

Tumor heterogeneity is another momentous feature of malignant tumor and 
plays a vital role in development, progression, and treatment of cancer [22–26]. On 
the one hand, in most of cancer cases, heterogeneity is found that not only from 
same kind of tumor among different patients, but also in all tumor progression 
phases of the identical individual patients [27]. The genetic instability of tumor cell 
is tightly related to tumor progression and heterogeneity and leads to the presence 
of variations [28, 29]. On the other hand, tumor heterogeneity is relevant to the 
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individual differences between tumor patients. For example, the function of liver 
and kidney, age, physical condition, psychological status and personal lifestyle 
factors, are also another important factors which affect on the tumor progres-
sion and treatment [30]. A number of treatment plans of patients were designed 
according to the doctor’s experiences and adopted same therapy model for different 
cancer patients in clinic. Due to ignore tumor heterogeneity, the “one-size-fits-all” 
therapeutic model resulted in the expected curative effect could not completely 
be achieved [4]. Thereby, tumor heterogeneity is becoming an important factor to 
hinder the effective treatment and cancer research.

Molecular mechanisms of initiation and progression of a cancer do not just exist 
one kind of intracellular signal pathway [31]. Several researches have indicated that 
phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), mitogen-activated protein 
kinase (MAPK) and signal transducer, and activator of transcription 3 (STAT3) 
pathways were activated in obesity-associated colon cancer. Mammalian target 
of rapamycin (mTOR) as a down-stream of both PI3K/Akt and MAPK is highly 
activated [32]. Activated mTOR in proper order inhibits the PI3K/Akt pathway 
and further activates the STAT3 pathway [33]. In case that mTOR is inhibited, the 
activity of PI3K/Akt may obviously increase owing to the feedback inhibition of 
mTOR on PI3K activity [34]. Therefore, it is necessary to simultaneously suppress 
the expressions of mTOR and PI3K for the treatment of obesity-related cancer [4]. 
Hence one can see that the interaction and interrelationship of multiple signaling 
pathways is essential to pay more attention to study, and a single signaling molecule 
or biomarker is unreliable for the prediction, diagnosis, and treatment of cancer.

So far, there are many kinds of treatments for cancer including surgery, radio-
therapy, and systemic treatments including cytotoxic chemotherapy, hormonal 
therapy, immunotherapy, and targeted therapies [35]. Personalized or individual-
ized variations are related to human healthcare, and the relationship is shown 
(Figure 1). Three primary stages, prediction/prevention, early-stage diagnosis/
early-stage therapy, and late-stage diagnosis/late-stage therapy are involved 
in human healthcare. Personalized or individualized variations can be used as 
biomarkers for prediction, and further the assessment of preventive response 
reflects the results of preventive treatments. Personalized or individualized 
variations also can be regarded as diagnostic biomarkers and further for cancer 
therapy. The assessment of therapeutic response, known as prognostic assessment, 
consists in early-stage therapy and late-stage therapy, and reveals the influence of 
therapeutic intervention. Of the three stages, prediction/prevention is the most 
significant part due to make people keep on a healthy condition and be treated in 
time once cancer occurs. Early-stage diagnosis/therapy also is better approach to 
block and repress the progression of cancer while the preventive strategy failed. 
Late-stage diagnosis/therapy is also named clinical diagnosis and treatment of a 
cancer. Unluckily, most of cancer cases were found in late stage. In order to avoid 
aforementioned problem and improve people’s health level, many researchers 
concentrate on exploration of biomarkers on prediction/prevention and early-
stage diagnosis/therapy for cancer [4]. According to functional classification, 
biomarkers are divided into two categories (Table 1): (i) serving for the mecha-
nism and therapeutic targets, and (ii) devoting to prediction, diagnostic test, and 
prognosis assessment. The first kind of biomarkers is relevant to the initiation and 
development of disease, and directly indicates the mechanism and pathogenesis of 
the disease. Commonly, it is pivotal site in cell signal pathways, like P53 in naso-
pharyngeal carcinoma (NPC) [36]. Another kind of biomarkers does not need to 
be causal to the occurrence and development of the disease, but requires to be pro-
vided with specificity and a certain number of changes to be easily detected. Based 
on Bayes’ rule, three or more key molecules can form molecule-pattern biomarker 
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to improve the accuracy of cancer diagnosis and therapy [9, 37]. In summary, due 
to the complex pathophysiological basis of cancer, recognition of molecule-pattern 
biomarker for precise prediction, diagnosis, and prognostic assessment in cancer 
is an urgent demand to study and further close to realize precision medicine (PM) 
and PPPM.

3.  Methodology of recognition of multiomics-based pattern biomarkers 
in cancer

Based on central dogma, genetic changes influence the RNA expression, and 
cause the alterations of proteins, along with taken into account the changes of 
metabolite and tumor heterogeneity, all above variations in genome, transcrip-
tome, proteome, metabolome, and radiome are measured with corresponding 
omics methodology including genomics, transcriptomics, proteomics, metabolo-
mics, and radiomics. Multiomics-generated biomarkers can make up integrative 
molecule-pattern biomarkers and pattern recognition for cancer treatment. This 
section mainly addresses the previous mentioned five omics approaches com-
bined with computation biology and systems biology contribute to the develop-
ment of cancer precise medicine (Figure 2) [9].

Types Definition Application

Type I This type of biomarker exist a causal relationship with disease, 
associate with the initiation and development of disease, and 
can directly address the pathogenesis of disease.

Contribute to the 
mechanism and therapeutic 
targets of disease.

Type II This type of biomarker does not need a causal relationship 
with the occurrence and development of disease, but requires 
specificity and a certain amount of change to be easily detected.

Contribute to the 
prediction, diagnosis, and 
prognostic assessment.

Table 1. 
Concept and categories of biomarkers [9].

Figure 1. 
Variations involved in each aspect of healthcare. Reproduced from Hu et al. [4], with permission from BioMed 
Central open access article, copyright 2013.
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to improve the accuracy of cancer diagnosis and therapy [9, 37]. In summary, due 
to the complex pathophysiological basis of cancer, recognition of molecule-pattern 
biomarker for precise prediction, diagnosis, and prognostic assessment in cancer 
is an urgent demand to study and further close to realize precision medicine (PM) 
and PPPM.
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in cancer
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associate with the initiation and development of disease, and 
can directly address the pathogenesis of disease.

Contribute to the 
mechanism and therapeutic 
targets of disease.

Type II This type of biomarker does not need a causal relationship 
with the occurrence and development of disease, but requires 
specificity and a certain amount of change to be easily detected.

Contribute to the 
prediction, diagnosis, and 
prognostic assessment.

Table 1. 
Concept and categories of biomarkers [9].

Figure 1. 
Variations involved in each aspect of healthcare. Reproduced from Hu et al. [4], with permission from BioMed 
Central open access article, copyright 2013.
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3.1 Genomics

The development of genomics drives the understanding and cognition of 
cancer. The development of gene sequencing technology is a significant advance-
ment in the field of scientific research. First, based on the method of the previous 
“plus and minus,” Sanger modified and invented the “dideoxy method” for DNA 
sequencing in 1977 [38–40]. Sanger sequencing acquired many achievements and 
completed a great work “Human Genome Project.” Nevertheless, high cost and low 
throughput are disadvantages of Sanger sequencing technology [41, 42]. The limit 
of Sanger sequencing promotes the progression and generation of new sequencing 
technology. The second-generation sequencing technology has many advantages 
including higher speed and throughput, higher degree of parallelism, effective uti-
lization of reagents and so on. However, problems still exist, such as the reduction 
of accuracy of sequencing and relatively higher cost [43, 44]. Due to the presence 
of shortcomings of the second-generation sequencing technology, the next-
generation sequencing (NGS) requires to be discovered. The third-generation of 
sequencing technology is found to make up for the deficiency of second-generation. 
For example, PacBio RS and Oxford Nanopore sequencing not only possess funda-
mental character of the single molecule sequencing, do not need any polymerase 
chain reaction (PCR) process, availably avoid the PCR bias caused by the system 
error, and well improve the read length, but also keep the high-throughput and low 
cost of the second-generation technology [45]. Research demonstrates that accu-
mulation of genomic alternations leads to the occurrence of cancer, which involves 
small insertions and deletions, base substitutions, copy number alterations (CNA), 
chromosomal rearrangements, and microbial infections [46]. Besides, a number of 
polymorphic CNAs have been discovered in the human genome [47]. DNA micro-
arrays, also named as “gene chip” or “DNA chip,” obtained a great success that 
could monitor tens of thousands of one time expression and hundreds of thou-
sands of genes. Single nucleotide polymorphisms (SNPs) are the most common 
form of DNA variation in the human genome, approximately occurring one time 
every 100–300 bases [48]. Many studies suggested SNPs might affect the activity 

Figure 2. 
Different levels of omics-based pattern biomarkers. Modified from Cheng and Zhan [9], with permission from 
Springer open access article, copyright 2017.
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of metabolism-related key enzyme, therefore generating effects on tumor progres-
sion and drug efficacy. However, with in-depth research, scientists indicated one 
SNP or a simple CNA could not influence the whole development of the individual 
process of cancer. The occurrence of a cancer is a result of changes of multiple 
sites, thus current study is shifting towards several genetic mutation patterns 
[9]. In addition, breakthrough progress has been made in strategies for obtaining 
DNA information of tumor tissues. Currently, a novel method found to collect 
DNA information of tumor tissue is called circulating tumor cell (CTC), which 
is a general term for all tumor cells in peripheral blood [49]. Compared to tumor 
tissue samples, blood specimens possess more advantages such as less invasive, easy 
to acquire, and can be collected repeatedly. It is a typical source of specimens and 
convenient to operate in clinical practice, so that significantly improves the value 
of aforementioned method [9]. Circulating tumor DNA (ctDNA) means a tumor 
cell body that is apoptotic by shedding or released into the circulatory system, 
and rapid development of gene sequencing results in that it is able to detect in the 
blood [50]. Therefore, ctDNAs are possible to find key mutation sites and served as 
biomarkers. Over the past few years, liquid biopsy combined with ctDNA analysis 
is helpful and beneficial for the molecular diagnosis and monitoring of cancer. 
Moreover, BEAMing (emulsion, amplification, beads, and magnetics) and CAPP-
seq (cancer personalized profiling by deep sequencing) are discovered and used to 
quantify ctDNA in blood [51, 52]. Furthermore, there are several unknown things 
about ctDNA including its size, existing form, mechanisms of released into blood 
stream, and its degradation rate in blood [53]. In summary, the development of 
genomics provides the method, important information about genome, and impact-
ful biomarkers for diagnosis of cancer and drives the progress of cancer genomics.

3.2 Transcriptomics

Based on the genetic central rule, DNA through self-replication and transcripts 
to form the mRNAs, and finally translates to be a protein. The mRNA is served as a 
bridge between gene and protein in biological process and linked genome and phe-
notype. Once variation of gene sequence of mRNA occurs, the amino acid sequence 
of the protein will be correspondingly altered. Therefore, the understanding of 
transcriptomics is important for addressing functional elements of the genome and 
cognizing the development of cancer. The key goal of transcriptomics is to classify 
all types of transcripts, reveal the transcriptional structure of the genes, and quan-
tify the expression levels of each transcript during development and under different 
conditions. Nowadays, many methods are generated to be used for the study of tran-
scriptome, such as hybridization-or sequence-based approaches [54]. In general, the 
way of nucleic acids with hybridization-based is incubation of fluorescently labeled-
complementary DNA (cDNA) from reverse transcription of different mRNAs with 
a microarray contained genes of interest, then digitized with a dedicated scanner 
and image analysis and finally gene name, clone identifier, and intensity values are 
acquired [55]. Furthermore, genomic tiling microarrays are found to provide a more 
unerring opinion of the transcriptional activities within a genome [56]. Howbeit, 
there are some disadvantages, like relying on the current knowledge of genome 
sequence, high background levels owing to cross-hybridization, and both back-
ground and saturation of signals resulted in a limited dynamic range of detection 
[57, 58]. Sequence-based strategy is able to detect cDNA sequence but not depend on 
the probes. With the development of high-throughput DNA sequencing technique of 
NGS, a new method used for mapping and quantifying transcriptome is occurred, 
named RNA-seq. It possesses a lot of advantages, for instance, high throughput, 
high sensitivity, high resolution, and no reconstructions. RNA-seq is able to analyze 
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of metabolism-related key enzyme, therefore generating effects on tumor progres-
sion and drug efficacy. However, with in-depth research, scientists indicated one 
SNP or a simple CNA could not influence the whole development of the individual 
process of cancer. The occurrence of a cancer is a result of changes of multiple 
sites, thus current study is shifting towards several genetic mutation patterns 
[9]. In addition, breakthrough progress has been made in strategies for obtaining 
DNA information of tumor tissues. Currently, a novel method found to collect 
DNA information of tumor tissue is called circulating tumor cell (CTC), which 
is a general term for all tumor cells in peripheral blood [49]. Compared to tumor 
tissue samples, blood specimens possess more advantages such as less invasive, easy 
to acquire, and can be collected repeatedly. It is a typical source of specimens and 
convenient to operate in clinical practice, so that significantly improves the value 
of aforementioned method [9]. Circulating tumor DNA (ctDNA) means a tumor 
cell body that is apoptotic by shedding or released into the circulatory system, 
and rapid development of gene sequencing results in that it is able to detect in the 
blood [50]. Therefore, ctDNAs are possible to find key mutation sites and served as 
biomarkers. Over the past few years, liquid biopsy combined with ctDNA analysis 
is helpful and beneficial for the molecular diagnosis and monitoring of cancer. 
Moreover, BEAMing (emulsion, amplification, beads, and magnetics) and CAPP-
seq (cancer personalized profiling by deep sequencing) are discovered and used to 
quantify ctDNA in blood [51, 52]. Furthermore, there are several unknown things 
about ctDNA including its size, existing form, mechanisms of released into blood 
stream, and its degradation rate in blood [53]. In summary, the development of 
genomics provides the method, important information about genome, and impact-
ful biomarkers for diagnosis of cancer and drives the progress of cancer genomics.

3.2 Transcriptomics

Based on the genetic central rule, DNA through self-replication and transcripts 
to form the mRNAs, and finally translates to be a protein. The mRNA is served as a 
bridge between gene and protein in biological process and linked genome and phe-
notype. Once variation of gene sequence of mRNA occurs, the amino acid sequence 
of the protein will be correspondingly altered. Therefore, the understanding of 
transcriptomics is important for addressing functional elements of the genome and 
cognizing the development of cancer. The key goal of transcriptomics is to classify 
all types of transcripts, reveal the transcriptional structure of the genes, and quan-
tify the expression levels of each transcript during development and under different 
conditions. Nowadays, many methods are generated to be used for the study of tran-
scriptome, such as hybridization-or sequence-based approaches [54]. In general, the 
way of nucleic acids with hybridization-based is incubation of fluorescently labeled-
complementary DNA (cDNA) from reverse transcription of different mRNAs with 
a microarray contained genes of interest, then digitized with a dedicated scanner 
and image analysis and finally gene name, clone identifier, and intensity values are 
acquired [55]. Furthermore, genomic tiling microarrays are found to provide a more 
unerring opinion of the transcriptional activities within a genome [56]. Howbeit, 
there are some disadvantages, like relying on the current knowledge of genome 
sequence, high background levels owing to cross-hybridization, and both back-
ground and saturation of signals resulted in a limited dynamic range of detection 
[57, 58]. Sequence-based strategy is able to detect cDNA sequence but not depend on 
the probes. With the development of high-throughput DNA sequencing technique of 
NGS, a new method used for mapping and quantifying transcriptome is occurred, 
named RNA-seq. It possesses a lot of advantages, for instance, high throughput, 
high sensitivity, high resolution, and no reconstructions. RNA-seq is able to analyze 
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the whole transcriptome of any species, including detection of unknown genes or 
transcripts, exact identification of the cleavage site, and a variable SNP or untrans-
lated region (UTR region) [16]. In another hand, the research field of noncoding 
RNA (ncRNA) should be paid more attention. The ncRNAs consist of tRNA, rRNA, 
snoRNA, snRNA, piRNA, miRNA, and lncRNA [59]. Of them, miRNA and lncRNA 
are familiar and studied more. MicroRNAs, with a sequence of approximately 
21 bp, are a kind of small ncRNAs, which take part in multiple cellular functions 
including proliferation, differentiation, metabolism and apoptosis [60]. In general, 
TaqMan-based real-time quantitative PCR (RT-qPCR) with separate microRNA-
specific primers and probes is used to detect the expression levels of microRNAs. 
The expression of microRNAs is frequently dysregulated in a cancer-specific manner 
so that microRNAs are potential to be biomarkers for cancer detection. Many studies 
demonstrated the microRNAs as biomarkers for prediction, diagnosis, and prog-
nosis for cancer [9]. However, current studies on the function of miRNAs have not 
yet been fully understood, previous studies of miRNAs have found different types 
of miRNAs and their effects on oncogenesis and gene expression level of miRNA as 
antioncogene. In addition, it is predicted that about 30% of protein-encoding genes 
are regulated by miRNAs [61, 62]. lncRNAs execute multiple functions in cells and 
are reported as biomarkers in many types of cancers, like breast, lung, gastric, liver, 
and prostate cancers [63]. The lncRNAs play a vital role in recognition and treatment 
of cancer. Up to now, the biological effects of lncRNAs are still incompletely clear, 
but they have already been found to be prolific regulators of many cell processes. 
Several lncRNAs overlap with gene promoters, thus transcription of these lncRNAs 
might interfere with nucleosome-deleted regions and histone modifications of 
nucleosomes in those promoters [64, 65]. Moreover, detection of lncRNA is easily 
influenced by anticoagulant such as EDTA, and lncRNA is lightly degraded by other 
substance of the blood so that it cannot be preserved for a long time. More researches 
are necessary to solve these problems in the future [9].

3.3 Proteomics

Proteins are most direct phenotype characteristics of DNA in biological system. 
Proteins are related to multiple cellular mechanisms including cell motility, cell 
growth, cell signaling, and protein metabolic process [66]. The study of proteome 
is beneficial to the understanding of cancer. The aim of proteomics is to identify 
proteins and construct protein pathways and networks to characterize information 
and ultimately understand the functional relevance of proteins in cells or organisms 
[67]. The proteome is one of the most complex omes among genome, transcriptome, 
and proteome. The amount of human proteins and their variants or protein species 
are approximately reached to billions [4]. Furthermore, one gene is corresponded 
to multiple proteins, known as one gene-multiple proteins model, not one gene-one 
protein model so that the complexity of proteome is conceivable [68, 69]. So far, 
only the sequence and copy number of DNAs and RNAs in a genome are able to 
measure with current technologies. However, a lot of information can be acquired 
in a proteome, including amino acid sequence, copy number, splicing, variants, 
post-translational modifications (PTMs), spatial conformation, and spatial re-
distribution [16]. Proteomics mainly applies to the detection, identification, and 
quantification of the protein in a defined system (cell, tissue, organ, and organelles). 
Of detection technologies, gel and gel-free methods are used [68, 69]. Two-
dimensional gel electrophoresis (2DGE), two-dimensional difference in gel electro-
phoresis (2D DIGE), and one-dimensional gel electrophoresis (1DGE) are mainly 
involved in gel-based methods [69, 70]. When ones want to detect a certain variants 
of a given protein or a kind of PTM with gel-based methods, a specific antibody is 
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necessary to be used [70–72]. Gel-free methods primarily have hydrophobic interac-
tion chromatography (HIC) to separate large bio-molecules, like proteins, C4 or C5 
reverse phase liquid chromatography (RPLC) with 300 Å pore-size particles, capil-
lary electrophoresis (CE)-electrospray ionization-mass spectrometry (CE-ESI-MS), 
multiplexed gel-eluted liquid fraction entrapment electrophoresis (mGELFrEE; 
size-based separation) with 8 parallel glass gel column, and weak-cation exchange 
chromatography (WCX) in combination with HIC in a single column with a single 
phase (2D-LC; from WCX to HIC mode) [73–80]. Mass spectrometry (MS) plays 
an important role in identification of protein variants and PTMs, because the amino 
acid sequence of complete proteins, splicing sites and PTM-sites are able to be deter-
mined with MS [69, 71, 81, 82]. Tandem mass spectrometry (MS/MS) can detect 
amino acid sequence of a protein, and directly authenticate the errors of amino 
acid sequence, variations, and modifications, which causes character of PTMs and 
protein variants with different types of mass spectrometers, for instance, matrix-
assisted laser desorption ionization-time of flight-time of flight (MALDI-TOF-TOF), 
LTQ Orbitrap system, triple TOF 5600 or 6600 systems and Fourier transform ion 
cyclotron resonance (FTICR) with different types of ion fragmentation models 
including electron capture dissociation (ECD), electron transfer dissociation (ETD) 
and collision induced dissociation (CID). Different types of samples and research 
objectives should use identification techniques that are appropriate for them [80]. 
Quantification of protein is necessary to clarify their biological significance, which 
is detected with three main methods, including 2DGE-based quantitative methods, 
label-free quantitative techniques like sequential window acquisition of all theo-
retical mass spectra (SWATH) and selected/multiple reaction monitoring (SRM/
MRM), and stable isotope-labeled quantitative approaches including isobaric tags 
for relative and absolute quantification iTRAQ [80]. Furthermore, combined with 
structural proteomics maybe is better for understanding the biological functions 
in biological systems [83, 84]. Also, the study of the protein-protein interaction 
analysis and cell signal pathways has become a hot topic. The identification of 
protein-protein interactions is meaningful for understanding signal transduction 
mechanisms and establishing intracellular signaling networks [4]. Under patho-
logical conditions, the body can secrete several special proteins owing to the other 
mRNA synthesis and alternative chromosomal genetic variations involved cancer, 
diabetes and Alzheimer disease [85]. Therefore, protein is able to be a biomarker and 
proteomics is an important strategy for the study of cancer.

3.4 Metabolomics

Metabolites and proteins are equally important to understand cancer. Metabolites 
are small molecules (<1 KDa) produced by metabolism, which can provide func-
tional information that is not directly available from the genome and proteome 
in cellular and tissue states [86, 87]. Metabolites are derived from lipids, sugars, 
proteins, and nucleic acids in a given biological system, cell, tissue, or body-fluid 
[88–90]. The alteration in metabolites is relevant to multiple factors, such as genetic, 
environment, internal, external, drug, and dietary factors. These metabolic profiles 
are related to the whole biochemical processes that are the starting, intermediate 
or final products and provide complex interactions information between the genes 
and the environment of a given condition [91, 92]. Metabolites may be capable of 
reflecting physiological and pathological processes and monitoring the progres-
sion of a disease, and are helpful to predict, diagnose, and treat [93]. Therefore, 
metabolomics is a methodology used to study metabolome, refers to identification 
of biochemical and molecular features of metabolome, among different metabo-
lite interactions between genetic/environmental factors and metabolites, and to 
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LTQ Orbitrap system, triple TOF 5600 or 6600 systems and Fourier transform ion 
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or final products and provide complex interactions information between the genes 
and the environment of a given condition [91, 92]. Metabolites may be capable of 
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metabolomics is a methodology used to study metabolome, refers to identification 
of biochemical and molecular features of metabolome, among different metabo-
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assessment of biochemical mechanisms associated with a given conditions like 
different pathophysiological processes [94]. Generally, two strategies, targeted and 
untargeted methods, are mainly employed to detect variations in a metabolome [95, 96]. 
Targeted metabolomics method concentrates on quantification of the variations of 
the hypothesis-driven known metabolite profiling (like metabolites that are pro-
duced from one or more unknown pathways) between or among groups, followed 
by multivariate statistical analysis and establishment of mathematical model [95, 
97]. Up to now, the familiar techniques used for targeted metabolomics are the triple 
quadrupole mass spectrometry (QqQ-MS) in the SRM/MRM modes with optimized 
sample extraction and liquid chromatography-mass spectrometry (LC-MS) condi-
tions [98, 99]. The untargeted metabolomics is different from targeted method, 
which shows in these aspects, such as no hypothesis-driven strategy, and the whole 
comprehensive study variations of metabolome in a biological system without bias 
for exploration of metabolite biomarkers for impactful prediction, diagnosis, and 
prognostic assessment [80, 96]. The current techniques used to qualify and quantify 
the metabolomic variations are nuclear magnetic resonance (NMR)-based methods 
and mass spectrometry (MS)-based methods [88, 100–102]. NMR-based methods 
involve one-dimensional NMR (1D-NMR), two-dimensional NMR (2D-NMR), and 
three-dimensional NMR (3D-NMR). The way to provide chemical structural and 
molecular environment information is utilizing the interaction of spin active nuclei 
(13C, 1H, 31P, 19F) with electromagnetic fields [100, 101]. NMR-based methods pos-
sess many advantages, including nondestruction of sample, minimal sample prepa-
ration, high reproducibility, relative high throughput, availability of databases, and 
availability of molecular dynamic and compartmental information with diffusional 
methods. However, overlapping of metabolites, low sensitivity, and high instrumen-
tation cost are its disadvantages [103]. MS-based methods include direct injection 
coupled with MS (DIMS), LC-MS, gas chromatography coupled with MS (GC-MS), 
capillary electrophoresis coupled with MS (CE-MS), and ion mobility coupled with 
MS (IM-MS) [80]. Aforementioned five MS-based methods have its advantages and 
limitations, and proper combination helps ones to better study. In clinic, in order to 
measure variations in a metabolome, the biological samples are extremely complex, 
including cell, tissue extracts and body-fluid. Serum/plasma and urine are com-
monly used body-fluid for metabolomics analysis in all diseases because they are 
very easily acquired and prepared, and almost no injury for patients [88, 104, 105]. 
Additionally, many researches have reported that cerebrospinal fluid (CSF), saliva, 
exhaled air, tears, and synovial fluid are likely to be regarded as biomarkers for a 
specific disease [80]. Metabolites are important source of biomarkers, and metabo-
lomics methods reasonably adopted are beneficial to predict, diagnose, and evaluate 
for cancer.

3.5 Radiomics

Medical imaging technologies, including computed tomography (CT), positron 
emission tomography (PET), and magnetic resonance imaging (MRI), are vital to 
diagnose and check after treatment for cancer. Medical images provide ones with a 
number of information about tumors, which include location and volume of tumor, 
probable measurements of diameter, the overall and marginal morphology of the 
lesion, the relationship with surrounding tissues, internal heterogeneity, CT and 
PET/CT values, MRI signal height and other values. This information is instructive 
for the diagnosis of tumors and the decision-making of clinical treatment. However, 
it is not able to accurately reflect the morphological and behavioral complexities of 
a tumor, with limitation in the assessment of treatment sensitivity and prognosis 
[106]. With the rapid development of technology, emerging discipline- radiomics 
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has occurred. Based on excellent computer technology and advanced statistical 
methods, radiomics achieves high-throughput extraction and conversion of quanti-
tative features of medical data, and make it serve for clinic decision of cancer [16]. 
Radiomics has enabled medical imaging to achieve a qualitative to quantitative 
transition and provides guidance for clinical treatment, and a large amount of data 
has the potential to develop into biomarkers that contribute to further research in 
cancer.

4. Application of pattern biomarker for PPPM or PM in cancer

Based on the development of multiomics technology, a series of molecular 
alterations in the levels of genome, transcriptome, proteome, metabolome, and 
radiome are possible to be detected and measured, which also offer many kinds 
of potential biomarkers to ones and are beneficial to well understand and study 
for cancer. In order to improve the treatment effect and approach PPPM or PM in 
cancer, the methodology of recognition of multiomics-based molecule-pattern 
biomarker is presented. The concept “pattern biomarker” refers to several biomark-
ers make up a pattern for precise prediction, diagnosis, and prognostic assessment 
in cancer, which can be derived from genome, transcriptome, proteome, metabo-
lome, or radiome, and each pattern biomarker is able to be used as a biomarker 
for recognition, therapy, and other-related research of cancer. Many researches 
prove that the use of more biomarkers can increase the accuracy of understand-
ing for cancer. For instance, based on somatic cell gene copy number aberrations, 
the alterations of gene expression analyzed with genomic and transcriptomic data 
and long-term clinical outcomes indicated several potentially important targeted 
therapeutic response-related events and mentioned a novel molecular classification 
of breast cancer patients [107]. Genomic combined with proteomic data analysis 
revealed that PI3K pathway aberrations are popular in hormone receptor-positive 
breast cancer, which provides new idea for clinically targeted therapy [108]. Tissue 
transcriptomics and urine metabolomics integrated analysis identified four urinary 
biomarkers that are more reliable compared to biomarkers derived from single omics 

Figure 3. 
Application of pattern biomarker in personalized medicine or precision medicine.
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[109]. Comprehensive analysis of transcriptomic and proteomic data suggested a 
highly significant enrichment of gonadotropin-releasing hormone (GnRH) signal-
ing pathway that was not deciphered with single omics dataset in glioblastomas, 
which proved the necessity of multiomics research [110]. In addition, the failure of 
sorafenib-treated HCCs was employed with an integrated quantitative proteomics 
and phosphoproteomics analysis, and found that the targeted drug can effectively 
inhibit its target kinase in Raf-Erk-Rsk pathway, but the downstream targets of 
Rsk-2 (eIF4B, filamin-A, and so on) were not affected, suggesting that they may be 
replaced by another active pathway and lead to treatment failure [111]. However, 
there are also many challenges needed to be faced. Considering the tumor heteroge-
neity, individual difference, different stages of tumor development, the recurrence 
of tumor, and so on, one designs an ideal model for prediction, prognosis, and 
prognostic assessment of cancer in order to further realize PPPM or PM (Figure 3).

5. Conclusion

Cancer is a complex whole-body chronic disease, is involved in multiple causes, 
multiple processes, and multiple consequences. On the contrary, the complexity of 
cancer exactly provides ones with more opportunities for PPPM or PM in cancer. 
The rapid development of genomics, transcriptomics, proteomics, metabolomics, 
and radiomics in combination with advanced computation biology and systems 
biology drives the development of pattern recognition to find reliable and effective 
molecular pattern biomarkers for cancer treatment, and further achieves PPPM or 
PM. Multiomics integration analysis is beneficial to better understand cell malig-
nant transformation and tumor progression, clarify molecular mechanisms of a 
cancer, discover novel biomarkers and targeted drugs, and improve the effect of 
targeted therapies.
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SRM/MRM  selected/multiple reaction monitoring
1D-NMR  one-dimensional NMR
2D-NMR  two-dimensional NMR
3D-NMR  three-dimensional NMR
2DGE  two-dimensional gel electrophoresis
2D DIGE  two-dimensional difference in gel electrophoresis
MS/MS  Tandem mass spectrometry
UTR region  untranslated region
WCX  weak-cation exchange chromatography
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Abstract

Determination of viral characteristics including genotype (GT), subtype 
(ST) and resistance-associated variants (RAVs) profile is important in assigning 
direct-acting antivirals regimes in HCV patients. To help achieve the best clini-
cal management of HCV patients, a routine diagnostic laboratory should aim at 
reporting accurate viral GT/ST and RAVs using a reliable diagnostic platform of 
choice. A laboratory study was conducted to evaluate performance characteristics 
of a new commercial next-generation sequencing (NGS)-based HCV genotyping 
assay in comparison to another widely used commercial line probe assay for HCV 
genotyping. Information on RAVs from deeply sequenced NS3, NS5A and NS5B 
regions in samples classified as HCV 1a and 1b was harnessed from the fully auto-
mated software. Perfect (100%) concordance at HCV genotype level was achieved 
in GT2 (N = 13), GT3 (N = 55) and GT5 (N = 7). NGS refined the ST assignment in 
GTs 1, 4 and 6, and resolved previously indeterminate GTs reported by line probe 
assay. NGS was found to have consistent intra- and inter-run reproducibility in 
terms of genotyping, subtyping and RAVs identification. Detection of infections 
with multiple HCV GTs or STs is feasible by NGS. Deep sequencing allows sensitive 
identification of RAVs in the GT 1a and 1b NS3, NS5A and NS5B regions, but the list 
of target RAVs is not exhaustive.

Keywords: resistance-associated variants, next-generation sequencing,  
hepatitis C, HCV genotyping, NGS

1. Introduction

Due to the genetic diversity of the hepatitis C virus (HCV), its accurate genotyp-
ing is still currently challenging despite the use of modern molecular techniques. In 
addition to the six widely-recognised HCV genotypes, a newly identified genotype 
(GT) 7 was reported in 2015 [1]. Molecular methods including reverse hybridization, 
real-time PCR and Sanger sequencing are commonly utilised for HCV genotyping and 
subtyping in clinical laboratories. HCV genotype and subtype (ST) have been the crit-
ical factors in decision-making for administering interferon-based therapies for the 
past decade [2]. According to the latest AASLD guidelines [3], determination of viral 
characteristics including GT, ST and resistance-associated variants (RAVs) profile is 
important in assigning direct-acting antivirals (DAAs) regimes in HCV patients.
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To help achieve the best clinical management of HCV patients, a routine diag-
nostic laboratory should aim at minimising reporting out non-informative HCV 
genotyping results which are due to inherent limitations of the diagnostic platform 
of choice. In general, about 2–8.5% of HCV positive samples have been reported to 
carry “indeterminate” GTs by several commercial assays [4–9]. To tackle uncertain-
ties in determining HCV GT and ST, Sanger sequencing could be utilised to resolve 
indeterminate or discordant GTs or ST results produced by commercial assays 
[10, 11]. Despite the ability to provide definitive genotyping information most of 
the time, unfavourable features of Sanger sequencing including low throughput, 
time-consuming procedures and relatively high costs, pose a barrier to it becoming 
routinely adopted as a first-line genotyping method. With the advent of next-gener-
ation sequencing (NGS), limitations of probe-based genotyping assays and Sanger 
sequencing for HCV genotyping can be overcome. NGS provides a high-resolution 
means for direct sequence-based interrogation of the HCV genome. Moreover, NGS 
also allows concurrent profiling of RAVs where such value-added feature is highly 
relevant for the clinical management of HCV infection with appropriate use of DAAs.

In the present study, the Sentosa SQ HCV genotyping assay (hereinafter referred 
to as Vela NGS) (Vela Diagnostics, Singapore) which primarily interrogates the 
NS5B region of HCV GTs 1–6 by ion torrent-based NGS technology, was evaluated 
in comparison to the VERSANT HCV Genotype 2.0 Assay (hereinafter referred 
to as LiPA) (Siemens Healthineers, Erlangen, Germany). HCV indeterminate GTs 
previously reported in clinical samples by LiPA were resolved using Vela NGS assay 
with further confirmation by Sanger sequencing. Information on RAVs was also 
harnessed from deeply sequenced NS3, NS5A and NS5B regions in samples classi-
fied as HCV 1a and 1b using Vela NGS.

2. Study design

2.1 Clinical samples

This study was performed on residual sera or plasma from 222 clinical specimens 
previously received for routine genotyping using the VERSANT HCV Genotype 2.0 
Line Probe Assay (Siemens Healthineers, Erlangen, Germany). All samples were stored 
at -80°C post-LiPA analysis and were only thawed prior to re-analysis by NGS and 
Sanger sequencing. All samples were de-identified for anonymisation purposes, and 
hence, the treatment histories remain unknown and cannot be traced. These were all 
residual samples, which would otherwise be discarded, and were used for the purposes 
of assay validation only. In such situations, ethics approval is not normally required, as 
all samples could not be linked back to the original patients after anonymisation.

2.2 NGS by Sentosa SQ HCV genotyping assay

In this study, NGS was performed using Sentosa SQ HCV Genotyping Assay 
(4 × 16) (Vela Diagnostics, Singapore) according to the manufacturer’s instruc-
tions. The workflow started with automated extraction of total nucleic acids from 
530 μL of sera or plasma using Sentosa SX Virus Total Nucleic Acid Plus II kit (Vela 
Diagnostics) on Sentosa SX101 (Vela Diagnostics). PCR amplification of the HCV 
NS3, NS5A and NS5B regions was performed on Veriti 96-Well Thermal Cycler 
(Applied Biosystems, CA, USA). In every individual run, a pooled library containing 
barcoded amplicons of 15 clinical samples and one system control, was prepared by 
Sentosa SX101. The pooled library was subject to sequencing template preparation 
and enrichment on Sentosa ST401 (Vela Diagnostics). Sequencing data generated 
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by Sentosa SQ301 (Vela Diagnostics) was automatically channelled for primary 
and subsequent secondary analyses using Sentosa SQ Suite (Vela Diagnostics) and 
Sentosa SQ Reporter (Vela Diagnostics), respectively. Auto-generated quality con-
trol and pathology reports containing technical information, viral typing, and RAVs 
(available only for GTs 1a and 1b) results were manually reviewed, respectively.

2.3 VERSANT HCV Genotype 2.0 Line Probe Assay

Total nucleic acids were extracted from 200 μL sera or plasma using EZ1 Virus 
Mini Kit v2.0 (QIAGEN, Hilden, Germany) on Biorobot EZ1 (QIAGEN). Using 
VERSANT HCV Genotype 2.0 Line Probe Assay (LiPA) (Siemens Healthineers), a 
one-step reverse transcription-polymerase chain reaction (RT-PCR) amplifying the 
5’UTR and core regions was performed on GeneAmp PCR System 9700 (Applied 
Biosystems). Reverse hybridisation, washing and colour development steps were 
performed on Autoblot 3000H (Fujirebio Europe, Gent, Belgium). For GT and ST 
determination, band patterns were manually scored by aligning the strips to an 
interpretation chart provided by the manufacturer.

2.4 Sanger sequencing

Sanger sequencing was performed on samples previously reported by LiPA as 
indeterminate genotype. A primary PCR amplification of a 454 bp fragment of the 
NS5B region was initially attempted using primers 5Bo8254 and 5Bo8707 [12]. In 
samples with PCR failure using the above-mentioned primers, a secondary PCR 
amplifying a 446 bp fragment of the 5’UTR/core regions was subsequently per-
formed using primers UTR45 and Cor490 [12]. PCR products from the amplifiable 
gene segments were subjected to direct sequencing with BigDye Terminator v3.1 
Cycle Sequencing kit (Applied Biosystems) using the respective PCR primers on a 
3130XL Genetic Analyzer (Applied Biosystems).

2.5 Sequence analysis

Sequence analysis was performed by querying the nucleotide sequences obtained 
from Sanger sequencing in the Los Alamos hepatitis C sequence database [13]. For Vela 
NGS, assembled contigs were downloaded from the Sentosa SQ Reporter software. In 
samples with discordant results between LiPA and Vela NGS, NGS contigs were uploaded 
to the Los Alamos hepatitis C sequence database [13] to verify Vela NGS results.

3. Results

3.1  Concordance between results generated by the Vela NGS and Versant 
platforms at GT and ST levels

The Vela NGS results at both GT and ST levels were tabulated in Table 1 for 
170 clinical samples with GT and/or ST results from LiPA. Perfect (100%) con-
cordance at HCV genotype level was achieved in GT 2 (N = 13), GT 3 (N = 55) and 
GT 5 (N = 7). For samples reported by LiPA as GT 1 (N = 40), 20% (N = 8) gave 
discrepant results when compared to Vela NGS. These samples had been previ-
ously classified by LiPA as either GT 1a with core inconclusive, GT 1b with 96.1% 
homology, GT 1b with core inconclusive, or GT 1b with core not available, due to 
their unconventional band patterns. There was no discrepancy between samples 
firmly reported as GT 1a and GT 1b by LiPA. In samples reported as GT 4 (N = 16) 
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To help achieve the best clinical management of HCV patients, a routine diag-
nostic laboratory should aim at minimising reporting out non-informative HCV 
genotyping results which are due to inherent limitations of the diagnostic platform 
of choice. In general, about 2–8.5% of HCV positive samples have been reported to 
carry “indeterminate” GTs by several commercial assays [4–9]. To tackle uncertain-
ties in determining HCV GT and ST, Sanger sequencing could be utilised to resolve 
indeterminate or discordant GTs or ST results produced by commercial assays 
[10, 11]. Despite the ability to provide definitive genotyping information most of 
the time, unfavourable features of Sanger sequencing including low throughput, 
time-consuming procedures and relatively high costs, pose a barrier to it becoming 
routinely adopted as a first-line genotyping method. With the advent of next-gener-
ation sequencing (NGS), limitations of probe-based genotyping assays and Sanger 
sequencing for HCV genotyping can be overcome. NGS provides a high-resolution 
means for direct sequence-based interrogation of the HCV genome. Moreover, NGS 
also allows concurrent profiling of RAVs where such value-added feature is highly 
relevant for the clinical management of HCV infection with appropriate use of DAAs.

In the present study, the Sentosa SQ HCV genotyping assay (hereinafter referred 
to as Vela NGS) (Vela Diagnostics, Singapore) which primarily interrogates the 
NS5B region of HCV GTs 1–6 by ion torrent-based NGS technology, was evaluated 
in comparison to the VERSANT HCV Genotype 2.0 Assay (hereinafter referred 
to as LiPA) (Siemens Healthineers, Erlangen, Germany). HCV indeterminate GTs 
previously reported in clinical samples by LiPA were resolved using Vela NGS assay 
with further confirmation by Sanger sequencing. Information on RAVs was also 
harnessed from deeply sequenced NS3, NS5A and NS5B regions in samples classi-
fied as HCV 1a and 1b using Vela NGS.

2. Study design

2.1 Clinical samples

This study was performed on residual sera or plasma from 222 clinical specimens 
previously received for routine genotyping using the VERSANT HCV Genotype 2.0 
Line Probe Assay (Siemens Healthineers, Erlangen, Germany). All samples were stored 
at -80°C post-LiPA analysis and were only thawed prior to re-analysis by NGS and 
Sanger sequencing. All samples were de-identified for anonymisation purposes, and 
hence, the treatment histories remain unknown and cannot be traced. These were all 
residual samples, which would otherwise be discarded, and were used for the purposes 
of assay validation only. In such situations, ethics approval is not normally required, as 
all samples could not be linked back to the original patients after anonymisation.

2.2 NGS by Sentosa SQ HCV genotyping assay

In this study, NGS was performed using Sentosa SQ HCV Genotyping Assay 
(4 × 16) (Vela Diagnostics, Singapore) according to the manufacturer’s instruc-
tions. The workflow started with automated extraction of total nucleic acids from 
530 μL of sera or plasma using Sentosa SX Virus Total Nucleic Acid Plus II kit (Vela 
Diagnostics) on Sentosa SX101 (Vela Diagnostics). PCR amplification of the HCV 
NS3, NS5A and NS5B regions was performed on Veriti 96-Well Thermal Cycler 
(Applied Biosystems, CA, USA). In every individual run, a pooled library containing 
barcoded amplicons of 15 clinical samples and one system control, was prepared by 
Sentosa SX101. The pooled library was subject to sequencing template preparation 
and enrichment on Sentosa ST401 (Vela Diagnostics). Sequencing data generated 
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by Sentosa SQ301 (Vela Diagnostics) was automatically channelled for primary 
and subsequent secondary analyses using Sentosa SQ Suite (Vela Diagnostics) and 
Sentosa SQ Reporter (Vela Diagnostics), respectively. Auto-generated quality con-
trol and pathology reports containing technical information, viral typing, and RAVs 
(available only for GTs 1a and 1b) results were manually reviewed, respectively.

2.3 VERSANT HCV Genotype 2.0 Line Probe Assay

Total nucleic acids were extracted from 200 μL sera or plasma using EZ1 Virus 
Mini Kit v2.0 (QIAGEN, Hilden, Germany) on Biorobot EZ1 (QIAGEN). Using 
VERSANT HCV Genotype 2.0 Line Probe Assay (LiPA) (Siemens Healthineers), a 
one-step reverse transcription-polymerase chain reaction (RT-PCR) amplifying the 
5’UTR and core regions was performed on GeneAmp PCR System 9700 (Applied 
Biosystems). Reverse hybridisation, washing and colour development steps were 
performed on Autoblot 3000H (Fujirebio Europe, Gent, Belgium). For GT and ST 
determination, band patterns were manually scored by aligning the strips to an 
interpretation chart provided by the manufacturer.

2.4 Sanger sequencing

Sanger sequencing was performed on samples previously reported by LiPA as 
indeterminate genotype. A primary PCR amplification of a 454 bp fragment of the 
NS5B region was initially attempted using primers 5Bo8254 and 5Bo8707 [12]. In 
samples with PCR failure using the above-mentioned primers, a secondary PCR 
amplifying a 446 bp fragment of the 5’UTR/core regions was subsequently per-
formed using primers UTR45 and Cor490 [12]. PCR products from the amplifiable 
gene segments were subjected to direct sequencing with BigDye Terminator v3.1 
Cycle Sequencing kit (Applied Biosystems) using the respective PCR primers on a 
3130XL Genetic Analyzer (Applied Biosystems).

2.5 Sequence analysis

Sequence analysis was performed by querying the nucleotide sequences obtained 
from Sanger sequencing in the Los Alamos hepatitis C sequence database [13]. For Vela 
NGS, assembled contigs were downloaded from the Sentosa SQ Reporter software. In 
samples with discordant results between LiPA and Vela NGS, NGS contigs were uploaded 
to the Los Alamos hepatitis C sequence database [13] to verify Vela NGS results.

3. Results

3.1  Concordance between results generated by the Vela NGS and Versant 
platforms at GT and ST levels

The Vela NGS results at both GT and ST levels were tabulated in Table 1 for 
170 clinical samples with GT and/or ST results from LiPA. Perfect (100%) con-
cordance at HCV genotype level was achieved in GT 2 (N = 13), GT 3 (N = 55) and 
GT 5 (N = 7). For samples reported by LiPA as GT 1 (N = 40), 20% (N = 8) gave 
discrepant results when compared to Vela NGS. These samples had been previ-
ously classified by LiPA as either GT 1a with core inconclusive, GT 1b with 96.1% 
homology, GT 1b with core inconclusive, or GT 1b with core not available, due to 
their unconventional band patterns. There was no discrepancy between samples 
firmly reported as GT 1a and GT 1b by LiPA. In samples reported as GT 4 (N = 16) 
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by LiPA, 43.8% (N = 7) were found to be GT 3 by Vela NGS. Two samples (5.1%) 
originally reported by LiPA as GT 3 were classified by Vela NGS as GT 6 samples.

At ST level, Vela NGS reclassified 1 sample previously assigned as HCV 1a with 
core inconclusive by LiPA as 1c. Two samples each reported as 4a/4c/4d and 4e by 
LiPA, respectively, were reclassified as 4n and 4o by Vela NGS. Another 29 GT 6 
(ST c-l) samples reported by LiPA were reassigned by Vela NGS as 6e/6u (N = 1), 
6j (N = 1), 6m (N = 9), and 6n (N = 18), respectively. One sample with LiPA 6m 
(77.9% homology) was reassigned as 6u by Vela NGS.

3.2  Verification of contig sequences generated by the Vela NGS in samples with 
discordant results

Of the 170 samples tested, there were 104 agreements at both GT and ST levels, 
49 partial agreements at genotype but not the subtype levels, and 117 discordant 
results generated by LiPA and Vela NGS (Table 1). At GT level, the calculated 
Cohen’s Kappa is 0.869 (95% confidence interval: 0.810–0.928), suggesting good 
strength of agreement between the two assays. The 66 NGS contig sequences of 
samples with partial agreement or discordant results were submitted to the online 
analysis in the Los Alamos hepatitis C sequence database. HCV GT and ST called by 
Vela NGS were verified in all 66 contigs.

3.3  Intra-run and inter-run reproducibility on GT and ST calling by Vela NGS

HCV genotyping and subtyping results were found to be reproducible for a panel 
of 5 samples with different HCV GT/ST including 1a, 1b, 2a, 3a and 3b tested in 
triplicates within a single run on the Vela NGS platform (Figure 1a). For inter-run 
reproducibility testing (Figure 1b), GT and ST results were consistently reported in 
another panel of 7 samples including 1a, 1b, 2b, 3a, 4d, 5a and 6n, which were repeat-
edly tested in three separate runs on different days. Details of viral load and median 
coverage of the targeted NS5B region are depicted in Figure 1a and b, respectively.

3.4 RAV analysis in GT 1 samples reported by the Vela NGS platform

In the current Vela NGS assay, a list of variants differing from the wild-type codons 
are detectable for HCV 1a and 1b. The 16 target codons in the NS3 gene are 36, 41, 43, 54, 
55, 80, 109, 122, 132 (1a only), 138, 155, 156, 158, 168, 170 (1b only) and 175 (1b only). 
For NS5A, variants at nine codons including 28 (1a only), 30 (1a only), 31, 32, 54 (1b 
only), 58, 62 (1b only), 92 and 93, are detectable. Eight codons in the NS5B gene includ-
ing 414, 419, 422, 423, 495, 499 (1b only), 554 and 559, are also covered in this assay.

Of 13 GT 1a samples (Table 2), five were found to carry at least one target variant 
in the NS3 gene. Notably, two samples carried the Q80K RAV. For NS5A, the M28A 
variant was detected in one sample in which NS3 Q80K was also present. None of the 
GT 1a samples was found to carry any of target variants in the NS5B gene.

Of 18 HCV 1b samples (Table 2), five were detected with at least one target vari-
ant in the NS3 gene. Twelve samples were identified with at least one target variant 
in the NS5A gene. For NS5B, the P495A and V499A variants were detected in one 
and eight samples, respectively. Notably, there were four samples detected with at 
least one target variant in each of the NS3, NS5A and NS5B genes.

3.5 Intra-run and inter-run reproducibility on variant calling and frequency

In intra-run reproducibility analysis, the Q80K variant was reproducibly 
detected in the NS3 gene of the GT 1a samples. Another two variants, namely Q54H 
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by LiPA, 43.8% (N = 7) were found to be GT 3 by Vela NGS. Two samples (5.1%) 
originally reported by LiPA as GT 3 were classified by Vela NGS as GT 6 samples.

At ST level, Vela NGS reclassified 1 sample previously assigned as HCV 1a with 
core inconclusive by LiPA as 1c. Two samples each reported as 4a/4c/4d and 4e by 
LiPA, respectively, were reclassified as 4n and 4o by Vela NGS. Another 29 GT 6 
(ST c-l) samples reported by LiPA were reassigned by Vela NGS as 6e/6u (N = 1), 
6j (N = 1), 6m (N = 9), and 6n (N = 18), respectively. One sample with LiPA 6m 
(77.9% homology) was reassigned as 6u by Vela NGS.

3.2  Verification of contig sequences generated by the Vela NGS in samples with 
discordant results

Of the 170 samples tested, there were 104 agreements at both GT and ST levels, 
49 partial agreements at genotype but not the subtype levels, and 117 discordant 
results generated by LiPA and Vela NGS (Table 1). At GT level, the calculated 
Cohen’s Kappa is 0.869 (95% confidence interval: 0.810–0.928), suggesting good 
strength of agreement between the two assays. The 66 NGS contig sequences of 
samples with partial agreement or discordant results were submitted to the online 
analysis in the Los Alamos hepatitis C sequence database. HCV GT and ST called by 
Vela NGS were verified in all 66 contigs.

3.3  Intra-run and inter-run reproducibility on GT and ST calling by Vela NGS

HCV genotyping and subtyping results were found to be reproducible for a panel 
of 5 samples with different HCV GT/ST including 1a, 1b, 2a, 3a and 3b tested in 
triplicates within a single run on the Vela NGS platform (Figure 1a). For inter-run 
reproducibility testing (Figure 1b), GT and ST results were consistently reported in 
another panel of 7 samples including 1a, 1b, 2b, 3a, 4d, 5a and 6n, which were repeat-
edly tested in three separate runs on different days. Details of viral load and median 
coverage of the targeted NS5B region are depicted in Figure 1a and b, respectively.

3.4 RAV analysis in GT 1 samples reported by the Vela NGS platform

In the current Vela NGS assay, a list of variants differing from the wild-type codons 
are detectable for HCV 1a and 1b. The 16 target codons in the NS3 gene are 36, 41, 43, 54, 
55, 80, 109, 122, 132 (1a only), 138, 155, 156, 158, 168, 170 (1b only) and 175 (1b only). 
For NS5A, variants at nine codons including 28 (1a only), 30 (1a only), 31, 32, 54 (1b 
only), 58, 62 (1b only), 92 and 93, are detectable. Eight codons in the NS5B gene includ-
ing 414, 419, 422, 423, 495, 499 (1b only), 554 and 559, are also covered in this assay.

Of 13 GT 1a samples (Table 2), five were found to carry at least one target variant 
in the NS3 gene. Notably, two samples carried the Q80K RAV. For NS5A, the M28A 
variant was detected in one sample in which NS3 Q80K was also present. None of the 
GT 1a samples was found to carry any of target variants in the NS5B gene.

Of 18 HCV 1b samples (Table 2), five were detected with at least one target vari-
ant in the NS3 gene. Twelve samples were identified with at least one target variant 
in the NS5A gene. For NS5B, the P495A and V499A variants were detected in one 
and eight samples, respectively. Notably, there were four samples detected with at 
least one target variant in each of the NS3, NS5A and NS5B genes.

3.5 Intra-run and inter-run reproducibility on variant calling and frequency

In intra-run reproducibility analysis, the Q80K variant was reproducibly 
detected in the NS3 gene of the GT 1a samples. Another two variants, namely Q54H 
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Figure 1. 
Precision studies on the Vela NGS. (a) Intra-run and (b) inter-run reproducibility on median read depth 
were tested on 5 and 7 clinical specimens, respectively. For RAV analysis, variants were called with reproducible 
frequency (c) within a run (intra-run) and (d) between runs (inter-run).

No ID GT1 
STs

RAVs (variant frequency)

NS3 NS5A NS5B

1 R02-BC02 1a S122G (99.21%), D168E 
(97.07%)

– –

2 R02-BC03 1a V55A (91.44%) – –

3 R02-BC04 1a Q80K (25.63%) M28V (99.47%) –

4 R02-BC05 1a Q80K (4.84%) – –

5 R13-BC13 1a D168E (51.43%) – –

6 R01-BC02 1b Q80K (55.29%)
M175L (87.81%)

– V499A (98.15%)

7 R01-BC03 1b – – V499A (97.03%)

8 R01-BC04 1b – L31M (22.03%), Q54H 
(98.82%)

V499A (33.65%)

9 R01-BC05 1b – Q54H (99.11%), Y93H 
(99.73%)

–

10 R01-BC06 1b Q80L (99.52%), S122G 
(9.99%)

Q54H (99.05%) V499A (97.91%)

11 R01-BC07 1b – Q54H (98.76%), Y93H 
(99.61%)

–

12 R01-BC08 1b – Q54H (99.22%), Q62E 
(99.04%)

–

13 R01-BC09 1b S122G (97.69%) Q54H (99.21%), Q62E 
(51.64%)

P495A 8.83%

14 R01-BC11 1b – Y93H (99.24%) –
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No ID GT1 
STs

RAVs (variant frequency)

NS3 NS5A NS5B

15 R02-BC07 1b – Q54H (99.37%) V499A 98.9%

16 R02-BC-11 1b Q80R (92.29%) Q62E (5.61%) V499A 95.15%

17 R11-BC14 1b M175L (99.97%) Y93H (99.8%) V499A 98.7%

18 R12-BC14 1b – Q54H (80.35%), Y93H 
(8.07%)

–

19 R12-BC15 1b – Q54H (98.82%), Q62R 
(99.79%)

–

In this study, RAVs with variant frequency less than 1% are not shown.

Table 2. 
List of resistance-associated variants (RAVs) identified in GT 1a and 1b samples by Vela NGS.

No LiPA results (bands) Vela 
NGS

Sanger sequencing Concordance at 
GT or ST level

NS5B 5‘UTR/core

1 Indeterminate (3,6,16,24) 6n Not amplified 6n GT & ST

2 Indeterminate (3,6,16,24) 6n Not amplified 6n GT & ST

3 Indeterminate (3,6,16,24) 6n Not amplified 6n GT & ST

4 Indeterminate (6,7,24) 3b 3b Not done GT & ST

5 Indeterminate (6,7,24) 6m/6u Not amplified 6e/6d GT only

6 Indeterminate (6,7) 6u 6u/6n Not done GT & ST

7 Indeterminate (6,7) 6u 6m/6n Not done GT only

8 Indeterminate (6,7) 6u 6n/6a Not done GT only

9 Indeterminate (6) 6m/6l 6d/6e Not done GT only

10 Indeterminate (17,24) 3b 3b Not done GT & ST

11 Indeterminate (17,18,24) 3b 3b Not done GT & ST

12 Indeterminate (6,17,24) 3b 3b Not done GT & ST

13 Indeterminate (7,8,14,15,24) 3a 3a Not done GT & ST

14 Indeterminate (7,13,17,18) 3b 3b Not done GT & ST

15 Indeterminate (7,13,17,18,24) 3b 3b Not done GT & ST

16 Indeterminate (13,16,17,18,24) 3b 3b Not done GT & ST

17 Indeterminate (13,14,15,18,24) 3b 3b Not done GT & ST

18 Indeterminate (3,4,13,25) 1a 1a Not done GT & ST

19 Indeterminate (3,4,7,13,25) 1a 1a Not done GT & ST

20 Indeterminate (3,4,7,13,24) 6e 6e Not done GT & ST

21 Indeterminate (3,4,6,7,13,24) 6e Not amplified 6e/6d GT & ST

22 Indeterminate (5,9,21,24) 6a Not amplified 6a GT & ST

23 Indeterminate (5,6,9,17,18) 4a Not amplified 4a GT & ST

24 Indeterminate (5,9,10,13,14,15,24) 2a & 
3a

Two mixed 
sequences

Not done Likely mixed 
infections

25 Indeterminate (5,8,9,11) 2a 2a Not done GT & ST

26 Indeterminate (24) 3b 3b Not done GT & ST
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Figure 1. 
Precision studies on the Vela NGS. (a) Intra-run and (b) inter-run reproducibility on median read depth 
were tested on 5 and 7 clinical specimens, respectively. For RAV analysis, variants were called with reproducible 
frequency (c) within a run (intra-run) and (d) between runs (inter-run).

No ID GT1 
STs

RAVs (variant frequency)

NS3 NS5A NS5B

1 R02-BC02 1a S122G (99.21%), D168E 
(97.07%)

– –

2 R02-BC03 1a V55A (91.44%) – –

3 R02-BC04 1a Q80K (25.63%) M28V (99.47%) –

4 R02-BC05 1a Q80K (4.84%) – –

5 R13-BC13 1a D168E (51.43%) – –

6 R01-BC02 1b Q80K (55.29%)
M175L (87.81%)

– V499A (98.15%)

7 R01-BC03 1b – – V499A (97.03%)

8 R01-BC04 1b – L31M (22.03%), Q54H 
(98.82%)

V499A (33.65%)

9 R01-BC05 1b – Q54H (99.11%), Y93H 
(99.73%)

–

10 R01-BC06 1b Q80L (99.52%), S122G 
(9.99%)

Q54H (99.05%) V499A (97.91%)

11 R01-BC07 1b – Q54H (98.76%), Y93H 
(99.61%)

–

12 R01-BC08 1b – Q54H (99.22%), Q62E 
(99.04%)

–

13 R01-BC09 1b S122G (97.69%) Q54H (99.21%), Q62E 
(51.64%)

P495A 8.83%

14 R01-BC11 1b – Y93H (99.24%) –
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No ID GT1 
STs

RAVs (variant frequency)

NS3 NS5A NS5B

15 R02-BC07 1b – Q54H (99.37%) V499A 98.9%

16 R02-BC-11 1b Q80R (92.29%) Q62E (5.61%) V499A 95.15%

17 R11-BC14 1b M175L (99.97%) Y93H (99.8%) V499A 98.7%

18 R12-BC14 1b – Q54H (80.35%), Y93H 
(8.07%)

–

19 R12-BC15 1b – Q54H (98.82%), Q62R 
(99.79%)

–

In this study, RAVs with variant frequency less than 1% are not shown.

Table 2. 
List of resistance-associated variants (RAVs) identified in GT 1a and 1b samples by Vela NGS.

No LiPA results (bands) Vela 
NGS

Sanger sequencing Concordance at 
GT or ST level

NS5B 5‘UTR/core

1 Indeterminate (3,6,16,24) 6n Not amplified 6n GT & ST

2 Indeterminate (3,6,16,24) 6n Not amplified 6n GT & ST

3 Indeterminate (3,6,16,24) 6n Not amplified 6n GT & ST

4 Indeterminate (6,7,24) 3b 3b Not done GT & ST

5 Indeterminate (6,7,24) 6m/6u Not amplified 6e/6d GT only

6 Indeterminate (6,7) 6u 6u/6n Not done GT & ST

7 Indeterminate (6,7) 6u 6m/6n Not done GT only

8 Indeterminate (6,7) 6u 6n/6a Not done GT only

9 Indeterminate (6) 6m/6l 6d/6e Not done GT only

10 Indeterminate (17,24) 3b 3b Not done GT & ST

11 Indeterminate (17,18,24) 3b 3b Not done GT & ST

12 Indeterminate (6,17,24) 3b 3b Not done GT & ST

13 Indeterminate (7,8,14,15,24) 3a 3a Not done GT & ST

14 Indeterminate (7,13,17,18) 3b 3b Not done GT & ST

15 Indeterminate (7,13,17,18,24) 3b 3b Not done GT & ST

16 Indeterminate (13,16,17,18,24) 3b 3b Not done GT & ST

17 Indeterminate (13,14,15,18,24) 3b 3b Not done GT & ST

18 Indeterminate (3,4,13,25) 1a 1a Not done GT & ST

19 Indeterminate (3,4,7,13,25) 1a 1a Not done GT & ST

20 Indeterminate (3,4,7,13,24) 6e 6e Not done GT & ST

21 Indeterminate (3,4,6,7,13,24) 6e Not amplified 6e/6d GT & ST

22 Indeterminate (5,9,21,24) 6a Not amplified 6a GT & ST

23 Indeterminate (5,6,9,17,18) 4a Not amplified 4a GT & ST

24 Indeterminate (5,9,10,13,14,15,24) 2a & 
3a

Two mixed 
sequences

Not done Likely mixed 
infections

25 Indeterminate (5,8,9,11) 2a 2a Not done GT & ST

26 Indeterminate (24) 3b 3b Not done GT & ST
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and V499A were also repeatedly identified in the NS5A and NS5B genes of the GT 1b 
sample, respectively. Variant frequencies of the three variants were highly repro-
ducible within run (Figure 1c).

In the inter-run reproducibility study, NS3 S122G and NS5B V499A variants were 
tested. Variant frequencies of the two variants were found to be highly reproducible 
among the three separate runs (Figure 1d).

3.6  Vela NGS assigned HCV GT and ST to samples with indeterminate  
LiPA results

Forty specimens, which were previously reported as HCV indeterminate GT by 
LiPA, were subject to Vela NGS analysis. Sanger sequencing were successfully per-
formed on NS5b (N = 30) or 5’UTR/core (N = 10) regions in 40 samples (Table 3). 
Of the 40 samples with Sanger sequencing results, Vela NGS results were confirmed 
at GT level in 39 samples (97.5%). In a sample with LiPA complex band patterns (5, 
9, 10, 13, 14, 15 & 24), a mixed genotypes of GT 2a and GT 3a were assigned by Vela 
NGS. Sanger sequencing on NS5B showed overlapping nucleotide base calls in the 
overall sequences, in which putative mixed infection with two different HCV GTs 
was likely inferred.

4. Discussion

The application of NGS assays to analyse quasispecies HCV genomes has been 
increasing in recent years. Several laboratory-developed NGS assays had been 

No LiPA results (bands) Vela 
NGS

Sanger sequencing Concordance at 
GT or ST level

NS5B 5‘UTR/core

27 Indeterminate (24) 3b 3b Not done GT & ST

28 Indeterminate (4,5,9,16,21,24) 6a 6a Not done GT & ST

29 Indeterminate (4,9,21) 6a Not amplified 6a GT & ST

30 Indeterminate 
(3,4,6,13,17,18,24,26)

3b 3b Not done GT & ST

31 Indeterminate (6) 6n/6a 6d/6u Not done GT only

32 Indeterminate (3,4,13,25) 1a 1a Not done GT & ST

33 Indeterminate (6) 6u 6u Not done GT & ST

34 Indeterminate (13,16,24) 3b 3b Not done GT & ST

35 Indeterminate (7) 6u Not amplified 6v/6l/6d/6k GT only

36 Indeterminate (17,18,24) 3b 3b Not done GT & ST

37 Indeterminate (3,4,5,16,25) 1a Not amplified 1a GT & ST

38 Indeterminate (5,6,18,24) 3k 3k Not done GT & ST

39 Indeterminate (8,9,21,24) 6a 6a Not done GT & ST

40 Indeterminate (3,4,6,16,24) 6q 6q Not done GT & ST

PCR amplification for NS5B was first attempted in all 40 specimens. A secondary PCR amplifying 5'UTR/core 
regions were performed in samples with unsuccessful amplification of NS5B. Sanger sequencing was performed on 
PCR amplicon obtained.

Table 3. 
Comparison of genotyping results produced by the Vela NGS and Sanger sequencing methods in 40 specimens 
with indeterminate genotypes by LiPA.
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previously described in the literature for phylogenetic studies [14], outbreak inves-
tigation [15, 16], characterisation of HCV full genome [17, 18] and identification 
of HCV GT and ST in clinical samples [19, 20]. However, there are fewer reports 
of adoption of NGS assays in routine HCV genotyping. In 2016, Vela NGS became 
available as a CE-IVD certified commercial kit for diagnostic use in the clinical 
laboratories. In this study, we report the performance characteristics of Vela NGS in 
comparison to the widely used LiPA assay for HCV genotyping.

The performance of Vela NGS in determining the HCV GT and ST in the clinical 
specimens had been discussed in several previous studies [21–23]. Perfect agree-
ment at GT level was observed between Vela NGS and LiPA in a study by Manee 
et al. [21]. Samples with unclear ST results in GTs 2, 3, 4 and 6 reported by LiPA 
were each assigned with a specific subtype after subject to Vela NGS analysis. Dirani 
et al. [22] also performed a direct comparison of GT and ST calling between Vela 
NGS and LiPA for samples from patients infected with HCV GTs including GT 1, 2, 
3 and 4, and found a high concordance (>99%) at GT level between the two tests. 
Vela NGS was also found to have better performance in assigning HCV STs among 
the four GTs when compared to LiPA [22]. In another study by Rodriguez et al. [23], 
Vela NGS achieved high concordance rates with Sanger sequencing in assigning GTs 
1 to 6, 1a and 1b STs, and other STs for GTs 4, 5 and 6. Discrepant calls at ST level 
was mainly found among HCV GTs 1 and 2 between Vela NGS and Sanger sequenc-
ing; the latter was used as the reference method to sequence the 286 bp segment of 
NS5B for which phylogenetic analysis was performed.

In the present study, discrepancy in results was mainly observed in samples with 
LiPA GT 1b with incomplete or missing bands at the core region. In this particular 
result group, GT 6 with different STs were assigned by Vela NGS. This observation 
was not unexpected as it has been specified in the LiPA interpretation chart that GT 
6 (STs c-1) cannot be differentiated from ST 1a and 1b without additional informa-
tion from the core region sequence. Among LiPA GT 4 samples, all ST 4h were 
reassigned as GT 3 by Vela NGS. Some geographical regions, for example, Southeast 
Asia, where GT 6 is highly prevalent [24], could thus be impacted more by this mis-
classification with the use of LiPA method.

In contrast to LiPA which utilises primarily the 5’UTR in GTs 1-6 and core regions 
for the discrimination of GT 6 STs c-l from 1a and 1b, Vela NGS targets the non-
structural genes implicated in both accurate genotyping/subtyping and resistance to 
DAAs. The LiPA is known to be poor at detecting and identifying recombinant forms 
of HCV [25]. Due to the assay design of Vela NGS, this may also pose a problem for 
this platform, despite the application of NGS technology. The HCV recombinant 
forms can be accurately detected via sequencing of recombination breakpoint 
junctions or the whole HCV genome [26]. For example, in our study, one previously 
LiPA-indeterminate sample was reported by the Vela NGS to have mixed HCV infec-
tions with HCV 2a and 3a. This NGS finding was confirmed by Sanger sequencing in 
which overlapping Sanger electropherograms were observed for NS5B.

The Vela NGS offers information on RAVs in HCV 1a or 1b positive samples, 
where such profiling will be useful when prescribing DAA regimes, and detecting 
of baseline or emerging RAVs. Targeted assays had been previously developed to 
identify a specific RAV [27, 28]. RAVs which are found at levels with at least 15% 
variant frequency, at baseline, are known to confer resistance to certain DAAs [29], 
and therefore may impact on the effectiveness of DAA treatment [30]. Vela NGS tar-
gets relevant RAVs in three non-structural gene segments (NS3, NS5A and NS5B) of 
HCV 1a and 1b, and although the RAV profiling is comprehensive but not exhaustive 
due to the assay design, any baseline RAVs present in any of these DAA target genes, 
can affect the therapeutic effectiveness [31]. In our study, four HCV 1b samples were 
found to harbour variants in all three NS3, NS5A and NS5B genes concurrently.
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and V499A were also repeatedly identified in the NS5A and NS5B genes of the GT 1b 
sample, respectively. Variant frequencies of the three variants were highly repro-
ducible within run (Figure 1c).

In the inter-run reproducibility study, NS3 S122G and NS5B V499A variants were 
tested. Variant frequencies of the two variants were found to be highly reproducible 
among the three separate runs (Figure 1d).

3.6  Vela NGS assigned HCV GT and ST to samples with indeterminate  
LiPA results

Forty specimens, which were previously reported as HCV indeterminate GT by 
LiPA, were subject to Vela NGS analysis. Sanger sequencing were successfully per-
formed on NS5b (N = 30) or 5’UTR/core (N = 10) regions in 40 samples (Table 3). 
Of the 40 samples with Sanger sequencing results, Vela NGS results were confirmed 
at GT level in 39 samples (97.5%). In a sample with LiPA complex band patterns (5, 
9, 10, 13, 14, 15 & 24), a mixed genotypes of GT 2a and GT 3a were assigned by Vela 
NGS. Sanger sequencing on NS5B showed overlapping nucleotide base calls in the 
overall sequences, in which putative mixed infection with two different HCV GTs 
was likely inferred.

4. Discussion

The application of NGS assays to analyse quasispecies HCV genomes has been 
increasing in recent years. Several laboratory-developed NGS assays had been 

No LiPA results (bands) Vela 
NGS

Sanger sequencing Concordance at 
GT or ST level

NS5B 5‘UTR/core

27 Indeterminate (24) 3b 3b Not done GT & ST

28 Indeterminate (4,5,9,16,21,24) 6a 6a Not done GT & ST

29 Indeterminate (4,9,21) 6a Not amplified 6a GT & ST

30 Indeterminate 
(3,4,6,13,17,18,24,26)

3b 3b Not done GT & ST

31 Indeterminate (6) 6n/6a 6d/6u Not done GT only

32 Indeterminate (3,4,13,25) 1a 1a Not done GT & ST

33 Indeterminate (6) 6u 6u Not done GT & ST

34 Indeterminate (13,16,24) 3b 3b Not done GT & ST

35 Indeterminate (7) 6u Not amplified 6v/6l/6d/6k GT only

36 Indeterminate (17,18,24) 3b 3b Not done GT & ST

37 Indeterminate (3,4,5,16,25) 1a Not amplified 1a GT & ST

38 Indeterminate (5,6,18,24) 3k 3k Not done GT & ST

39 Indeterminate (8,9,21,24) 6a 6a Not done GT & ST

40 Indeterminate (3,4,6,16,24) 6q 6q Not done GT & ST

PCR amplification for NS5B was first attempted in all 40 specimens. A secondary PCR amplifying 5'UTR/core 
regions were performed in samples with unsuccessful amplification of NS5B. Sanger sequencing was performed on 
PCR amplicon obtained.

Table 3. 
Comparison of genotyping results produced by the Vela NGS and Sanger sequencing methods in 40 specimens 
with indeterminate genotypes by LiPA.
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of HCV GT and ST in clinical samples [19, 20]. However, there are fewer reports 
of adoption of NGS assays in routine HCV genotyping. In 2016, Vela NGS became 
available as a CE-IVD certified commercial kit for diagnostic use in the clinical 
laboratories. In this study, we report the performance characteristics of Vela NGS in 
comparison to the widely used LiPA assay for HCV genotyping.

The performance of Vela NGS in determining the HCV GT and ST in the clinical 
specimens had been discussed in several previous studies [21–23]. Perfect agree-
ment at GT level was observed between Vela NGS and LiPA in a study by Manee 
et al. [21]. Samples with unclear ST results in GTs 2, 3, 4 and 6 reported by LiPA 
were each assigned with a specific subtype after subject to Vela NGS analysis. Dirani 
et al. [22] also performed a direct comparison of GT and ST calling between Vela 
NGS and LiPA for samples from patients infected with HCV GTs including GT 1, 2, 
3 and 4, and found a high concordance (>99%) at GT level between the two tests. 
Vela NGS was also found to have better performance in assigning HCV STs among 
the four GTs when compared to LiPA [22]. In another study by Rodriguez et al. [23], 
Vela NGS achieved high concordance rates with Sanger sequencing in assigning GTs 
1 to 6, 1a and 1b STs, and other STs for GTs 4, 5 and 6. Discrepant calls at ST level 
was mainly found among HCV GTs 1 and 2 between Vela NGS and Sanger sequenc-
ing; the latter was used as the reference method to sequence the 286 bp segment of 
NS5B for which phylogenetic analysis was performed.

In the present study, discrepancy in results was mainly observed in samples with 
LiPA GT 1b with incomplete or missing bands at the core region. In this particular 
result group, GT 6 with different STs were assigned by Vela NGS. This observation 
was not unexpected as it has been specified in the LiPA interpretation chart that GT 
6 (STs c-1) cannot be differentiated from ST 1a and 1b without additional informa-
tion from the core region sequence. Among LiPA GT 4 samples, all ST 4h were 
reassigned as GT 3 by Vela NGS. Some geographical regions, for example, Southeast 
Asia, where GT 6 is highly prevalent [24], could thus be impacted more by this mis-
classification with the use of LiPA method.

In contrast to LiPA which utilises primarily the 5’UTR in GTs 1-6 and core regions 
for the discrimination of GT 6 STs c-l from 1a and 1b, Vela NGS targets the non-
structural genes implicated in both accurate genotyping/subtyping and resistance to 
DAAs. The LiPA is known to be poor at detecting and identifying recombinant forms 
of HCV [25]. Due to the assay design of Vela NGS, this may also pose a problem for 
this platform, despite the application of NGS technology. The HCV recombinant 
forms can be accurately detected via sequencing of recombination breakpoint 
junctions or the whole HCV genome [26]. For example, in our study, one previously 
LiPA-indeterminate sample was reported by the Vela NGS to have mixed HCV infec-
tions with HCV 2a and 3a. This NGS finding was confirmed by Sanger sequencing in 
which overlapping Sanger electropherograms were observed for NS5B.

The Vela NGS offers information on RAVs in HCV 1a or 1b positive samples, 
where such profiling will be useful when prescribing DAA regimes, and detecting 
of baseline or emerging RAVs. Targeted assays had been previously developed to 
identify a specific RAV [27, 28]. RAVs which are found at levels with at least 15% 
variant frequency, at baseline, are known to confer resistance to certain DAAs [29], 
and therefore may impact on the effectiveness of DAA treatment [30]. Vela NGS tar-
gets relevant RAVs in three non-structural gene segments (NS3, NS5A and NS5B) of 
HCV 1a and 1b, and although the RAV profiling is comprehensive but not exhaustive 
due to the assay design, any baseline RAVs present in any of these DAA target genes, 
can affect the therapeutic effectiveness [31]. In our study, four HCV 1b samples were 
found to harbour variants in all three NS3, NS5A and NS5B genes concurrently.
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5. Conclusions

In conclusion, the genotyping results of the Vela NGS were found to be highly 
concordant with those of the LiPA method. Vela NGS refined the ST assignment in 
GT 6 and resolved previously indeterminate GTs reported by LiPA. Technically, the 
HCV Vela NGS was found to have consistent intra- and inter-run reproducibility in 
terms of GT and ST calling and RAVs identification. Detection of infections with 
multiple HCV GTs or STs is feasible by Vela NGS. Due to the assay design which 
relies on investigating the HCV sub-genomic regions, HCV recombinant strains 
may still be potentially missed. Deep sequencing allows sensitive identification of 
RAVs in the GT1a and 1b NS3, NS5A and NS5B regions, but the list of target RAVs 
is not exhaustive. We would also suggest the RAVs detection spectrum should be 
extended to cover GTs other than HCV 1a and 1b, namely GTs 2-6.
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5. Conclusions

In conclusion, the genotyping results of the Vela NGS were found to be highly 
concordant with those of the LiPA method. Vela NGS refined the ST assignment in 
GT 6 and resolved previously indeterminate GTs reported by LiPA. Technically, the 
HCV Vela NGS was found to have consistent intra- and inter-run reproducibility in 
terms of GT and ST calling and RAVs identification. Detection of infections with 
multiple HCV GTs or STs is feasible by Vela NGS. Due to the assay design which 
relies on investigating the HCV sub-genomic regions, HCV recombinant strains 
may still be potentially missed. Deep sequencing allows sensitive identification of 
RAVs in the GT1a and 1b NS3, NS5A and NS5B regions, but the list of target RAVs 
is not exhaustive. We would also suggest the RAVs detection spectrum should be 
extended to cover GTs other than HCV 1a and 1b, namely GTs 2-6.

Acknowledgements

We thank Cui-Wen Chua, Mui-Joo Khoo and Lily Chiu of the Department of 
Laboratory Medicine at the National University Hospital, Singapore, for their 
technical assistance in performing the NGS and LiPA analysis. We also thank Vela 
Diagnostics Singapore for funding the NGS reagents in this study.

Conflict of interest

The authors have no conflict of interest to declare.

Author details

Kok-Siong Poon1, Julian Wei-Tze Tang2 and Evelyn Siew-Chuan Koay1,3*

1 Department of Laboratory Medicine, National University Hospital, Singapore

2 University Hospitals of Leicester NHS, Leicester, United Kingdom

3 Department of Pathology, Yong Loo Lin School of Medicine, National University 
of Singapore, Singapore

*Address all correspondence to: evelyn_koay@nuhs.edu.sg

85

HCV Genotyping with Concurrent Profiling of Resistance-Associated Variants by NGS Analysis
DOI: http://dx.doi.org/10.5772/intechopen.84577

[1] Murphy DG, Sablon E, Chamberland J,  
Fournier E, Dandavino R, et al. 
Hepatitis C virus genotype 7, a new 
genotype originating from central 
Africa. Journal of Clinical Microbiology. 
2015;53:967-972

[2] Ghany MG, Strader DB, Thomas DL, 
Seeff LB. Diagnosis, management, and 
treatment of hepatitis C: An update. 
Hepatology. 2009;49:1335-1374

[3] ASLD-IDSA HCV Guidance Panel. 
Hepatitis C guidance 2018 update: 
AASLD-IDSA recommendations 
for testing, managing, and treating 
hepatitis C virus infection. Clinical 
Infectious Diseases. 2018

[4] Germer JJ, Majewski DW, Rosser M,  
Thompson A, Mitchell PS, et al. 
Evaluation of the TRUGENE HCV 
5'NC genotyping kit with the new 
GeneLibrarian module 312 for 
genotyping of hepatitis C virus from 
clinical specimens. Journal of Clinical 
Microbiology. 2003;41:4855-4857

[5] Verbeeck J, Stanley MJ, Shieh J, Celis L,  
Huyck E, et al. Evaluation of Versant 
hepatitis C virus genotype assay (LiPA) 
2.0. Journal of Clinical Microbiology. 
2008;46:1901-1906

[6] González V, Gomes-Fernandes M, 
Bascuñana E, Casanovas S, Saludes V,  
et al. Accuracy of a commercially 
available assay for HCV genotyping 
and subtyping in the clinical 
practice. Journal of Clinical Virology. 
2013;58:249-253

[7] Némoz B, Roger L, Leroy V, Poveda JD,  
Morand P, et al. Evaluation of the 
cobas® GT hepatitis C virus genotyping 
assay in G1-6 viruses including low 
viral loads and LiPA failures. PLoS One. 
2018;13:e0194396

[8] Fernández-Caballero JA, Alvarez M,  
Chueca N, Pérez AB, García F. The 

cobas® HCV GT is a new tool that 
accurately identifies Hepatitis C virus 
genotypes for clinical practice. PLoS 
One. 2017;12:e0175564

[9] Benedet M, Adachi D, Wong A, 
Wong S, Pabbaraju K, Tellier R, et al. 
The need for a sequencing-based assay 
to supplement the Abbott m2000 
RealTime HCV Genotype II assay: 
A 1 year analysis. Journal of Clinical 
Virology. 2014;60:301-304

[10] Larrat S, Poveda JD, Coudret C, 
Fusillier K, Magnat N, et al. Sequencing 
assays for failed genotyping with the 
versant hepatitis C virus genotype assay 
(LiPA), version 2.0. Journal of Clinical 
Microbiology. 2013;51:2815-2821

[11] Chueca N, Rivadulla I, Lovatti R,  
Reina G, Blanco A, et al. Using NS5B 
sequencing for hepatitis C virus 
genotyping reveals discordances with 
commercial platforms. PLoS One. 
2016;11:e0153754

[12] Quer J, Gregori J, Rodríguez-
Frias F, Buti M, Madejon A, et al. 
High-resolution hepatitis C virus 
subtyping using NS5B deep sequencing 
and phylogeny, an alternative to 
current methods. Journal of Clinical 
Microbiology. 2015;53:219-226

[13] Kuiken C, Yusim K, Boykin L, 
Richardson R. The Los Alamos hepatitis 
C sequence database. Bioinformatics. 
2005;1:379-384

[14] Gonçalves Rossi LM, Escobar-
Gutierrez A, Rahal P. Multiregion 
deep sequencing of hepatitis C virus: 
An improved approach for genetic 
relatedness studies. Infection, Genetics 
and Evolution. 2016;38:138-145

[15] Escobar-Gutiérrez A, Vazquez-
Pichardo M, Cruz-Rivera M, Rivera-
Osorio P, Carpio-Pedroza JC, et al. 
Identification of hepatitis C virus 

References



Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations

86

transmission using a next-generation 
sequencing approach. Journal of Clinical 
Microbiology. 2012;50:1461-1463

[16] Caraballo Cortes K, Rosińska M, 
Janiak M, Stępień M, Zagordi O, et al. 
Next-generation sequencing analysis of 
a cluster of hepatitis C virus infections 
in a haematology and oncology center. 
PLoS One. 2018;13:e0194816

[17] Salmona M, Caporossi A, Simmonds 
P, Thélu MA, Fusillier K, et al. First 
next-generation sequencing full-
genome characterization of a hepatitis 
C virus genotype 7 divergent subtype. 
Clinical Microbiology and Infection. 
2016;22:e1-e947

[18] Thomson E, Ip CL, Badhan A, 
Christiansen MT, Adamson W, et al. 
Comparison of next-generation 
sequencing technologies for 
comprehensive assessment of full-length 
hepatitis C viral genomes. Journal of 
Clinical Microbiology. 2016;54:2470-2484

[19] Pedersen MS, Fahnøe U, Hansen TA,  
Pedersen AG, Jenssen H, et al. A 
near full-length open reading frame 
next generation sequencing assay 
for genotyping and identification 
of resistance-associated variants in 
hepatitis C virus. Journal of Clinical 
Virology. 2018;195:49-56

[20] Del Campo JA, Parra-Sánchez M, 
Figueruela B, García-Rey S, Quer J, et al. 
Hepatitis C virus deep sequencing for 
sub-genotype identification in mixed 
infections: A real-life experience. 
International Journal of Infectious 
Diseases. 2018;67:114-117

[21] Manee N, Thongbaiphet N, 
Pasomsub E, Chantratita W. Clinical 
evaluation of a newly developed 
automated massively parallel 
sequencing assay for hepatitis C virus 
genotyping and detection of resistance-
association variants Comparison with a 
line probe assay. Journal of Virological 
Methods. 2017;249:31-37

[22] Dirani G, Paesini E, Mascetra 
E, Farabegoli P, Dalmo B, et al. A 
novel next generation sequencing 
assay as an alternative to currently 
available methods for hepatitis C virus 
genotyping. Journal of Virological 
Methods. 2018;251:88-91

[23] Rodriguez C, Soulier A, Demontant V,  
Poiteau L, Mercier-Darty M, et al. A 
novel standardized deep sequencing-
based assay for hepatitis C virus 
genotype determination. Scientific 
Reports. 2018;8:4180

[24] Bunchorntavakul C, 
Chavalitdhamrong D, Tanwandee T.  
Hepatitis C genotype 6: A concise 
review and response-guided therapy 
proposal. World Journal of Hepatology. 
2013;5:496-504

[25] Schuermans W, Orlent H, 
Desombere I, Descheemaeker P, Van 
Vlierberghe H, et al. Heads or tails: 
Genotyping of hepatitis C virus 
concerning the 2k/1b circulating 
recombinant form. International Journal 
of Molecular Sciences. 2016;17

[26] Iles JC, Njouom R, 
Foupouapouognigni Y, Bonsall D, 
Bowden R, et al. Characterization 
of hepatitis c virus recombination 
in Cameroon by use of nonspecific 
next-generation sequencing. 
Journal of Clinical Microbiology. 
2015;53:3155-3164

[27] Chui CK, Dong WW, Joy JB, Poon 
AF, Dong WY, et al. Development 
and validation of two screening assays 
for the hepatitis C virus NS3 Q80K 
polymorphism associated with reduced 
response to combination treatment 
regimens containing simeprevir. 
Journal of Clinical Microbiology. 
2015;53:2942-2950

[28] Vicenti I, Falasca F, Sticchi L, 
Bruzzone B, Turriziani O, et al. 
Evaluation of a commercial real-time 
PCR kit for the detection of the Q80K 

87

HCV Genotyping with Concurrent Profiling of Resistance-Associated Variants by NGS Analysis
DOI: http://dx.doi.org/10.5772/intechopen.84577

polymorphism in plasma from HCV 
genotype 1a infected patients. Journal of 
Clinical Virology. 2016;76:20-23

[29] Pawlotsky JM. Hepatitis C virus 
resistance to direct-acting antiviral 
drugs in interferon-free regimens. 
Gastroenterology. 2016;151:70-86

[30] Yoshida K, Hai TA, Teranishi Y, 
Kozuka R, et al. Long-term follow-up 
of resistance-associated substitutions 
in hepatitis C virus in patients in 
which direct acting antiviral-based 
therapy failed. International Journal of 
Molecular Sciences. 2017;18

[31] Mawatari S, Oda K, Tabu K, 
Ijuin S, Kumagai K. New resistance-
associated substitutions and failure 
of dual oral therapy with daclatasvir 
and asunaprevir. Journal of 
Gastroenterology. 2017;52:855-867



Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations

86

transmission using a next-generation 
sequencing approach. Journal of Clinical 
Microbiology. 2012;50:1461-1463

[16] Caraballo Cortes K, Rosińska M, 
Janiak M, Stępień M, Zagordi O, et al. 
Next-generation sequencing analysis of 
a cluster of hepatitis C virus infections 
in a haematology and oncology center. 
PLoS One. 2018;13:e0194816

[17] Salmona M, Caporossi A, Simmonds 
P, Thélu MA, Fusillier K, et al. First 
next-generation sequencing full-
genome characterization of a hepatitis 
C virus genotype 7 divergent subtype. 
Clinical Microbiology and Infection. 
2016;22:e1-e947

[18] Thomson E, Ip CL, Badhan A, 
Christiansen MT, Adamson W, et al. 
Comparison of next-generation 
sequencing technologies for 
comprehensive assessment of full-length 
hepatitis C viral genomes. Journal of 
Clinical Microbiology. 2016;54:2470-2484

[19] Pedersen MS, Fahnøe U, Hansen TA,  
Pedersen AG, Jenssen H, et al. A 
near full-length open reading frame 
next generation sequencing assay 
for genotyping and identification 
of resistance-associated variants in 
hepatitis C virus. Journal of Clinical 
Virology. 2018;195:49-56

[20] Del Campo JA, Parra-Sánchez M, 
Figueruela B, García-Rey S, Quer J, et al. 
Hepatitis C virus deep sequencing for 
sub-genotype identification in mixed 
infections: A real-life experience. 
International Journal of Infectious 
Diseases. 2018;67:114-117

[21] Manee N, Thongbaiphet N, 
Pasomsub E, Chantratita W. Clinical 
evaluation of a newly developed 
automated massively parallel 
sequencing assay for hepatitis C virus 
genotyping and detection of resistance-
association variants Comparison with a 
line probe assay. Journal of Virological 
Methods. 2017;249:31-37

[22] Dirani G, Paesini E, Mascetra 
E, Farabegoli P, Dalmo B, et al. A 
novel next generation sequencing 
assay as an alternative to currently 
available methods for hepatitis C virus 
genotyping. Journal of Virological 
Methods. 2018;251:88-91

[23] Rodriguez C, Soulier A, Demontant V,  
Poiteau L, Mercier-Darty M, et al. A 
novel standardized deep sequencing-
based assay for hepatitis C virus 
genotype determination. Scientific 
Reports. 2018;8:4180

[24] Bunchorntavakul C, 
Chavalitdhamrong D, Tanwandee T.  
Hepatitis C genotype 6: A concise 
review and response-guided therapy 
proposal. World Journal of Hepatology. 
2013;5:496-504

[25] Schuermans W, Orlent H, 
Desombere I, Descheemaeker P, Van 
Vlierberghe H, et al. Heads or tails: 
Genotyping of hepatitis C virus 
concerning the 2k/1b circulating 
recombinant form. International Journal 
of Molecular Sciences. 2016;17

[26] Iles JC, Njouom R, 
Foupouapouognigni Y, Bonsall D, 
Bowden R, et al. Characterization 
of hepatitis c virus recombination 
in Cameroon by use of nonspecific 
next-generation sequencing. 
Journal of Clinical Microbiology. 
2015;53:3155-3164

[27] Chui CK, Dong WW, Joy JB, Poon 
AF, Dong WY, et al. Development 
and validation of two screening assays 
for the hepatitis C virus NS3 Q80K 
polymorphism associated with reduced 
response to combination treatment 
regimens containing simeprevir. 
Journal of Clinical Microbiology. 
2015;53:2942-2950

[28] Vicenti I, Falasca F, Sticchi L, 
Bruzzone B, Turriziani O, et al. 
Evaluation of a commercial real-time 
PCR kit for the detection of the Q80K 

87

HCV Genotyping with Concurrent Profiling of Resistance-Associated Variants by NGS Analysis
DOI: http://dx.doi.org/10.5772/intechopen.84577

polymorphism in plasma from HCV 
genotype 1a infected patients. Journal of 
Clinical Virology. 2016;76:20-23

[29] Pawlotsky JM. Hepatitis C virus 
resistance to direct-acting antiviral 
drugs in interferon-free regimens. 
Gastroenterology. 2016;151:70-86

[30] Yoshida K, Hai TA, Teranishi Y, 
Kozuka R, et al. Long-term follow-up 
of resistance-associated substitutions 
in hepatitis C virus in patients in 
which direct acting antiviral-based 
therapy failed. International Journal of 
Molecular Sciences. 2017;18

[31] Mawatari S, Oda K, Tabu K, 
Ijuin S, Kumagai K. New resistance-
associated substitutions and failure 
of dual oral therapy with daclatasvir 
and asunaprevir. Journal of 
Gastroenterology. 2017;52:855-867



Bioinformatics Tools for 
Detection and Clinical 

Interpretation of Genomic 
Variations

Edited by Ali Samadikuchaksaraei and Morteza Seifi

Edited by Ali Samadikuchaksaraei and Morteza Seifi

Genomic variations and phenotypic diversity are closely linked and form the 
underlying mechanism for development of many human diseases. This book addresses 

the methods of detection, analysis, and interpretation of genomic variations in 
clinically relevant scenarios. If your research or clinical practice involves handling 
of genomic sequencing data, this book is for you. Topics covered include: methods 

for identifying genetic diversity, the workflow for analyzing whole exome and whole 
genome sequencing data, local ancestry deconvolution models, the value of molecular 

patterns and pattern biomarkers in cancer diagnosis and prognosis, and genotyping 
and profiling resistance-associated variants of hepatitis C. If your research or clinical 

practice involves handling of genomic sequencing data, this book is for you.

Published in London, UK 

©  2019 IntechOpen 
©  Bilge Yurtsever / iStock

ISBN 978-1-78923-799-3

Bioinform
atics Tools for D

etection and C
linical Interpretation of G

enom
ic Variations

ISBN 978-1-83881-844-9

DBF_eBook (PDF) ISBN

	Bioinformatics Tools for Detection and Clinical Interpretation of Genomic Variations
	Contents
	Preface
	Chapter1
The BioinformaticsTools for Discovery of Genetic Diversity by Means of Elastic Net and Hurst Exponent
	Chapter2
BioinformaticsWorkflows for GenomicVariant Discovery, Interpretation and Prioritization
	Chapter3
Orienting FutureTrends in Local Ancestry Deconvolution Models to Optimally Decipher Admixed Individual GenomeVariations
	Chapter4
Recognition of Multiomics-Based Molecule-Pattern Biomarker for Precise Prediction, Diagnosis, and Prognostic Assessment in Cancer
	Chapter5
HCV Genotyping with Concurrent Profiling of Resistance-Associated Variants by NGS Analysis

