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Preface

Nonlinear optics is one of the most important and rapidly developing fields of
modern physics related to the nonlinear interaction between light and matter. 
Generally, all media are optically nonlinear. However, these nonlinearities are very
weak. For this reason, nonlinear optical phenomena had been first observed experi-
mentally in the early 1960s after the invention of the laser as a source of coherent
and sufficiently strong optical radiation. Typical nonlinear optical effects are sum
and difference frequency harmonics generation, higher harmonic generation, 
self-focusing of light beams, self-phase modulation of optical pulses, soliton forma-
tion and propagation, stimulated light scattering, four-wave mixing, nonlinear
dynamics of lasers and optical amplifiers, etc. The theoretical analysis of nonlinear
optical effects is based on the simultaneous solution of Maxwell’s equations and the
equations of motion of a medium excited by optical waves. Such an approach results
in a system of nonlinear differential equations, which is typically solved by using 
the slowly varying envelope approximation (SVEA). Nonlinear optical effects are
widely used in modern optical communications and optical signal processing. These
applications require novel theoretical and experimental investigations in nonlinear
optics.

The objective of this book is to discuss novel results concerning both theoretical 
analysis and experimental observation of optical pulse generation and stimulated 
light scattering in optical fibers and nanostructures.

The book consists of eight chapters divided into four sections. Section 1 is an intro-
duction. In Chapter 1, the basic equations and theoretical approach to the analysis
of nonlinear optical phenomena are summarized. Essential nonlinear optical effects
are briefly reviewed. The contents of Chapter 1 should facilitate an understanding 
of the following sections.

Section 2 consists of three chapters. In this section, novel results in mathematical 
methods of nonlinear optical effects analysis are presented. In Chapter 2, novel 
methods of the nonlinear Schrödinger equation (NLSE) solution for optical pulse
propagation in optical fibers are presented. Fiber losses, higher-order dispersion
coefficients, noise, and different modulation formats are taken into account. In
Chapter 3, three novel solutions of NLSE are introduced. They represent the nonlin-
ear superposition of real and complex exponential and trigonometric functions. In
Chapter 4, a new theory of Vavilov–Cherenkov radiation (VCR) is presented.

Section 3 consists of two chapters. In this section, nonlinear effects related to opti-
cal pulse generation are discussed. In Chapter 5, nonlinear effects that accompany
nanosecond pulse generation in optical fibers are investigated theoretically and 
experimentally. In Chapter 6, methods of nonlinear optical generation efficiency
enhancement are demonstrated experimentally.
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XIV

Section 4 consists of two chapters where the peculiarities of nonlinear optical phe-
nomena in micro- and nanostructures are studied. In Chapter 7, the design of the 
tunable quantum well (QW) laser based on waveguide heterostructure is proposed. 
In Chapter 8, experimental results for stimulated Raman scattering (SRS) in micro- 
and nanophotonics are reviewed.

Dr. Boris I. Lembrikov
Holon Institute of Technology (HIT), Holon, Israel
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Chapter 1

Introductory Chapter: Nonlinear
Optical Phenomena
Boris I. Lembrikov

1. Introduction

The number of publications concerning different aspects of nonlinear optics is
enormous and hardly observable. We briefly discuss in this chapter the fundamen-
tal nonlinear optical phenomena and methods of their analysis. Nonlinear optics is
related to the analysis of the nonlinear interaction between light and matter when
the light-induced changes of the medium optical properties occur [1, 2]. The
nonlinear optical effects are weak, and their observation became possible only after
the invention of lasers which provide a highly coherent and intense radiation [2]. A
typical nonlinear optical process consists of two stages. First, the intense coherent
light induces a nonlinear response of the medium, and then the modified medium
influences the optical radiation in a nonlinear way [1]. The nonlinear medium is
described by a system of the dynamic equations including the optical field. The
optical field itself is described by Maxwell’s equations including the nonlinear
polarization of the medium [1, 2]. All media are essentially nonlinear; however, the
nonlinear coupling coefficients are usually very small and can be enhanced by the
sufficiently strong optical radiation [1, 2]. For this reason, to a first approximation,
light and matter can be considered as a system of uncoupled oscillators, and the
nonlinear terms are some orders of magnitude smaller than the linear ones [2].
Nevertheless, the nonlinear effects can be important in the long-time and long-
distance limits [2]. Generally, the light can be considered as a superposition of plane

waves A exp i k
! � r!
� �

� ωt
h i

where k
!
,ω, r!, t are the wave vector, angular fre-

quency, radius vector in the space, and time, respectively [1, 2]. The medium
oscillators can be electronic transitions, molecular vibrations and rotations, and
acoustic waves [2]. Typically, only a small number of linear and nonlinear oscillator
modes are important that satisfy the resonance conditions [1–3]. In such a case, the

optical fields can be represented by a finite sum of discrete wave packets E
!

z; tð Þ
given by [1–3]

E
!

z; tð Þ ¼ 1
2
A z; tð Þ exp i kz� ωtð Þ þ c:c:½ � (1)

where c:c: stands for the complex conjugate and A z; tð Þ is the slowly varying
envelope (SVE) such that [1–3]

∂
2A
∂z2

����
����≪ k

∂A
∂z

����
����;

∂
2A
∂t2

����
����≪ ω

∂A
∂t

����
���� (2)

Here we for the sake of definiteness consider the one-dimensional case. The
evolution of the waves (1) is described by the system of the coupled equations in the
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so-called SVE approximation (SVEA) when the higher-order derivatives of the SVE
can be neglected according to conditions (2) [1–3]. The typical nonlinear optical
phenomena are self-focusing, self-trapping, sum- and difference-frequency gener-
ation, harmonic generation, parametric amplification and oscillation, stimulated
light scattering (SLS), and four-wave mixing (FWM) [1].

During the last decades, optical communications and optical signal processing
have been rapidly developing [1–4]. In particular, the nonlinear optical effects in
optical waveguides and fibers became especially important and attracted a wide
interest [1–4]. The nonlinear optical interactions in the waveguide devices have
been investigated in detail in Ref. [3]. Nonlinear fiber optics as a separate field of
nonlinear optics has been reviewed in Ref. [4]. The self-phase modulation (SPM),
cross-phase modulation (XPM), FWM, stimulated Raman scattering (SRS), stimu-
lated Brillouin scattering (SBS), pulse propagation, and optical solitons in optical
fibers have been considered in detail [4]. Silicon photonics, i.e., integrated optics in
silicon, also attracted a wide interest due to the highly developed silicon technology
which permits the combination of the photonic and electronic devices on the same
Si platform [5]. The nonlinear optical phenomena in Si nanostructures such as
quantum dots (QD), quantum wells (QW), and superlattices had been discussed
[6]. It has been shown that the second harmonic generation (SHG) in silicon
nanostructures is possible despite the centrosymmetric structure of Si crystals [6].

Nonlinear dynamics in complex optical systems such as solid-state lasers, CO2

lasers, and semiconductor lasers is caused by the light-matter interaction [7]. Under
certain conditions, the nonlinear optical processes in such optical complex systems
result in instabilities and transition to chaos [7].

In this chapter we briefly describe the basic nonlinear optical phenomena. The
detailed analysis of these phenomena may be found in [1–7] and references therein.
The chapter is constructed as follows. Maxwell’s equations for a nonlinear medium
and nonlinear optical susceptibilities are considered in Section 2. The mechanisms
and peculiarities of the basic nonlinear effects mentioned above are discussed in
Section 3. Conclusions are presented in Section 4.

2. Maxwell’s equations for a nonlinear medium and nonlinear optical
susceptibilities

All electromagnetic phenomena are described by macroscopic Maxwell’s

equations for the electric and magnetic fields E
!

r!; t
� �

and H
!

r!; t
� �

[1–8]. They

have the form [4]

∇� B! ¼ 0 (3)

∇� D! ¼ ρfree (4)

∇� E
! ¼ � ∂B

!

∂t
(5)

∇� H
! ¼ J

! þ ∂D
!

∂t
(6)

Here ρfree is the free charge density consisting of all charges except the bound

charges inside atoms and molecules; J
!
is the current density; the electric induction

is given by D
! ¼ ε0 E

! þ P
!
; the magnetic induction (magnetic flux density) has the
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form B
! ¼ μ0 H

! þ M
!
; ε0, μ0 are the free space permittivity and permeability,

respectively; and P
!
, M

!
are the induced electric and magnetic polarizations,

respectively. For nonmagnetic media M
! ¼ 0. Equations (3)–(6) describe the vec-

tors averaged over the volumes which contain many atoms but have linear dimen-
sions smaller than substantial variations of the applied electric field [8]. Combining
Eqs. (3)–(6) we obtain the wave equation for the light propagation in a medium. It
has the form [1–8]

∇� ∇� E
! þ 1

c2
∂
2 E
!

∂t2
¼ �μ0

∂
2 P
!

∂t2
(7)

Here c is the free space light velocity. The polarization P
!
is a complicated

nonlinear function of E
!
[1]. In the general nonlinear case, the polarization P

!
as a

function of the electric field E
!
can be expanded into a power series of E

!
as follows

[1, 2]:

1
ε0

Pj r!; t
� �

¼
ð∞

�∞

χ 1ð Þ
jk r! �r0

!
; t� t0

� �
Ek r0

!
; t0

� �
d r0

!
dt0

þ
ð∞

�∞

χ 2ð Þ
jkl r! �r1

!
; t� t1; r

! �r2
!
; t� t2

� �
Ek r1

!
; t1

� �
El r2

!
; t2

� �
dr1
! dt1dr2

! dt2

þ
ð∞

�∞

χ 3ð Þ
jklm r! �r1

!
; t� t1; r

! �r2
!
; t� t2; r

! �r3
!
; t� t3

� �
Ek r1

!
; t1

� �
El r2

!
; t2

� �

� Emdr1
! dt1dr2

! dt2dr3
! dt3 þ…

(8)

Here, χ 1ð Þ r!; t
� �

is the linear susceptibility; χ nð Þ r!; t
� �

, n. 1 is nth-order

nonlinear susceptibility [1]. Suppose that the electric field is a group of monochro-
matic plane waves given by [1]

E
!

r!; t
� �

¼ ∑
n
E0n
!

kn
!
;ωn

� �
exp i kn

! � r!
� �

� iωnt
h i

(9)

Then, the Fourier transform of the nonlinear polarization (1) yields [1]

P
!

k
!
;ω

� �
¼ P

! 1ð Þ
k
!
;ω

� �
þ P

! 2ð Þ
k
!
;ω

� �
þ P

! 3ð Þ
k
!
;ω

� �
þ… (10)

where

P 1ð Þ
j k

!
;ω

� �
¼ χ 1ð Þ

jk k
!
;ω

� �
Ek k

!
;ω

� �
;

P 2ð Þ
j k

!
;ω

� �
¼ χ 2ð Þ

jkl k
!¼ kn þ km;ω ¼ ωn þ ωm

� �
Ek kn

!
;ωn

� �
El km

!
;ωm

� �
;

P 3ð Þ
j k

!
;ω

� �
¼ χ 3ð Þ

jkls k
!¼ kn þ km þ kp;ω ¼ ωn þ ωm þ ωp

� �

� Ek kn
!
;ωn

� �
El km

!
;ωm

� �
Es kp

!
;ωp

� �

(11)
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Here, χ 1ð Þ r!; t
� �

is the linear susceptibility; χ nð Þ r!; t
� �

, n. 1 is nth-order

nonlinear susceptibility [1]. Suppose that the electric field is a group of monochro-
matic plane waves given by [1]
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� �
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� �
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(9)

Then, the Fourier transform of the nonlinear polarization (1) yields [1]
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and

χ nð Þ k
!¼ k1

! þk2
! þ…þ kn

!
;ω ¼ ω1 þ ω2 þ…þ ωn

� �

¼
ð∞

�∞

χ nð Þ r! �r1
!
; t� t1;…; r! �rn

!
; t� tn

� �

� exp �i k1
! � r! �r1
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(12)

The linear and nonlinear optical properties of a medium are described by the
linear and nonlinear susceptibilities (12), and the nth-order nonlinear optical
effects in such a medium can be obtained theoretically from Maxwell’s Eqs. (3)–(6)
with the polarization determined by Eq. (8) [1]. We do not present here the
analytical properties of the nonlinear susceptibilities which are discussed in
detail in Ref. [1].

In some simple cases, the nonlinear susceptibilities can be evaluated by using the
anharmonic oscillator model [1, 8]. It is assumed that a medium consists of N
classical anharmonic oscillators per unit volume [1]. Such an oscillator may describe
an electron bound to a core or an infrared-active molecular vibration [1]. The
equation of motion of the oscillator in the presence of an applied electric field with
the Fourier components at frequencies �ω1, � ω2 is given by [1]

d2x
dt2

þ Γ
dx
dt

þ ω2
0xþ ax2 ¼ q

m
E1 e�iω1t þ eiω1t
� �þ E2 e�iω2t þ eiω2t

� �� �
(13)

Here x is the oscillator displacement; Γ is the decay factor; ω0 is the oscillator
frequency; q,m are the oscillator charge and mass, respectively; and the anharmonic
term ax2 is small and can be considered as a perturbation in the successive approx-
imation series given by [1, 8]

x ¼ x 1ð Þ þ x 2ð Þ þ x 3ð Þ þ… (14)

The nonlinear terms become essential when the electromagnetic power is large
enough in such a way that a medium response cannot be considered linear anymore
[8]. We limit our analysis with quadratic and cubic nonlinearities proportional to x2

and x3, respectively [1–8]. The induced electric polarization P can be expressed by
using the solutions (13) and (14) as follows: P ¼ Nqx [1]. In general case, the
microscopic expressions for nonlinear susceptibilities of a medium are calculated by
using the quantum mechanical approach. In particular, the density matrix formal-
ism is a powerful and convenient tool for such calculations [1, 2, 7, 8].

3. Nonlinear optical effects

Electromagnetic waves in a medium interact through the nonlinear polarization
(8) [1]. Typically, a nonlinear optical effect that occurs due to such an interaction is
described by the coupled wave equations of the type (7) with the nonlinear suscep-
tibilities (12) as the coupling coefficients [1]. In general case, the coupled wave
method can also include waves other than electromagnetic [1]. For instance, in the
case of SBS process, the acoustic waves are taken into account, and in the case of
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SRS process, the molecular vibrations are typically considered [1, 2, 4]. The coupled
wave equations are usually solved by using SVEA (2) [1]. In this section, we discuss
some important nonlinear optical phenomena caused by the quadratic and cubic
susceptibilities χ 2ð Þ and χ 3ð Þ, respectively. It should be noted that χ 2ð Þ ¼ 0 in the
electric dipole approximation for a medium with inversion symmetry [1].

We start with the sum-frequency, difference-frequency, and second harmonic
generation. These phenomena are based on the wave mixing by means of the

quadratic susceptibility χ 2ð Þ. The three coupled waves are E
!

ω1ð Þ, E
!

ω2ð Þ, and
E
!

ω3ð Þ where ω3 ¼ ω1 þ ω2 in the cases of sum-frequency [1]. The second-order
nonlinear polarization with a sum-frequency ω3 in such a case has the form [1]

Pj
2ð Þ ω3 ¼ ω1 þ ω2ð Þ ¼ ε0χ

2ð Þ
jkl ω3 ¼ ω1 þ ω2ð ÞEk ω1ð ÞEl ω2ð Þ (15)

Similarly, in the case of the difference-frequency generation, we obtain [1]

Pj
2ð Þ ω2 ¼ ω3 � ω1ð Þ ¼ ε0χ

2ð Þ
jkl ω2 ¼ ω3 � ω1ð ÞEk ω3ð ÞEl

∗ ω2ð Þ (16)

where the asterisk means the complex conjugation. Consider the particular case
of equal frequencies ω1 ¼ ω2 ¼ ω. In such a case, the nonlinear polarization (15) has
the form P 2ð Þ

j ω3 ¼ 2ωð Þ, and the second harmonic generation (SHG) takes place [1].
The efficient nonlinear wave mixing can occur only under the phase-matching
conditions. The phase mismatch Δk between the coupled waves is caused by the
refractive index dispersion n ωið Þ. The collinear phase matching Δk ¼ 0 can be
realized in the medium with an anomalous dispersion or in the birefringent crystals
[1]. The detailed analysis of the sum-frequency generation, difference-frequency
generation, and SHG in different configurations may be found in [1, 3, 6]. It can be
shown that the efficient sum-frequency generation can be realized under the fol-
lowing conditions [1]. The nonlinear optical crystal without the inversion symmetry
or with the broken inversion symmetry should have low absorption at the interac-
tion frequencies ω1,2,3 and a sufficiently large quadratic susceptibility χ 2ð Þ and
should allow the collinear phase matching. The particular phase-matching direction
and the coupled wave polarizations should be chosen in order to optimize the
effective nonlinear susceptibility χ 2ð Þ

eff . The length of the nonlinear crystal must
provide the required conversion efficiency. The efficient SHG can be realized with
the single-mode laser beams focused into the nonlinear optical crystal [1].

Sum-frequency generation, difference-frequency generation, and SHG can be
also carried out in the waveguide nonlinear optical devices [3]. Typically, a thin film
of a nonlinear material such as ZnO and ZnS, ferroelectric materials LiNbO3 and
LiTaO3, and III-V semiconductor materials GaAs and AlAs can be used as a
waveguiding layer [3]. The output power P 2ωð Þ Lð Þ of the second harmonic (SH)
mode under the no-pump depletion approximation is given by [3]

P 2ωð Þ Lð Þ ¼ P ωð Þ
0

� �2
k2L2 sinΔL

ΔL

� �2

(17)

where 2Δ ¼ β 2ωð Þ � 2β ωð Þ þ K
� �

; K ¼ 2π=λ; P ωð Þ
0 is the input pump power; k is the

coupling constant; L is the device length; Δ is the phase mismatch; λ is the pump
wavelength; β ωð Þ, β 2ωð Þ are the propagation constants of the pump and SH waves,
respectively; and Λ is the period of the quasi-phase matching (QPM) grating.
Waveguide SHG devices can be used in optical signal processing such as laser
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The linear and nonlinear optical properties of a medium are described by the
linear and nonlinear susceptibilities (12), and the nth-order nonlinear optical
effects in such a medium can be obtained theoretically from Maxwell’s Eqs. (3)–(6)
with the polarization determined by Eq. (8) [1]. We do not present here the
analytical properties of the nonlinear susceptibilities which are discussed in
detail in Ref. [1].

In some simple cases, the nonlinear susceptibilities can be evaluated by using the
anharmonic oscillator model [1, 8]. It is assumed that a medium consists of N
classical anharmonic oscillators per unit volume [1]. Such an oscillator may describe
an electron bound to a core or an infrared-active molecular vibration [1]. The
equation of motion of the oscillator in the presence of an applied electric field with
the Fourier components at frequencies �ω1, � ω2 is given by [1]
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Here x is the oscillator displacement; Γ is the decay factor; ω0 is the oscillator
frequency; q,m are the oscillator charge and mass, respectively; and the anharmonic
term ax2 is small and can be considered as a perturbation in the successive approx-
imation series given by [1, 8]

x ¼ x 1ð Þ þ x 2ð Þ þ x 3ð Þ þ… (14)

The nonlinear terms become essential when the electromagnetic power is large
enough in such a way that a medium response cannot be considered linear anymore
[8]. We limit our analysis with quadratic and cubic nonlinearities proportional to x2

and x3, respectively [1–8]. The induced electric polarization P can be expressed by
using the solutions (13) and (14) as follows: P ¼ Nqx [1]. In general case, the
microscopic expressions for nonlinear susceptibilities of a medium are calculated by
using the quantum mechanical approach. In particular, the density matrix formal-
ism is a powerful and convenient tool for such calculations [1, 2, 7, 8].

3. Nonlinear optical effects

Electromagnetic waves in a medium interact through the nonlinear polarization
(8) [1]. Typically, a nonlinear optical effect that occurs due to such an interaction is
described by the coupled wave equations of the type (7) with the nonlinear suscep-
tibilities (12) as the coupling coefficients [1]. In general case, the coupled wave
method can also include waves other than electromagnetic [1]. For instance, in the
case of SBS process, the acoustic waves are taken into account, and in the case of
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SRS process, the molecular vibrations are typically considered [1, 2, 4]. The coupled
wave equations are usually solved by using SVEA (2) [1]. In this section, we discuss
some important nonlinear optical phenomena caused by the quadratic and cubic
susceptibilities χ 2ð Þ and χ 3ð Þ, respectively. It should be noted that χ 2ð Þ ¼ 0 in the
electric dipole approximation for a medium with inversion symmetry [1].

We start with the sum-frequency, difference-frequency, and second harmonic
generation. These phenomena are based on the wave mixing by means of the

quadratic susceptibility χ 2ð Þ. The three coupled waves are E
!

ω1ð Þ, E
!

ω2ð Þ, and
E
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ω3ð Þ where ω3 ¼ ω1 þ ω2 in the cases of sum-frequency [1]. The second-order
nonlinear polarization with a sum-frequency ω3 in such a case has the form [1]
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where the asterisk means the complex conjugation. Consider the particular case
of equal frequencies ω1 ¼ ω2 ¼ ω. In such a case, the nonlinear polarization (15) has
the form P 2ð Þ

j ω3 ¼ 2ωð Þ, and the second harmonic generation (SHG) takes place [1].
The efficient nonlinear wave mixing can occur only under the phase-matching
conditions. The phase mismatch Δk between the coupled waves is caused by the
refractive index dispersion n ωið Þ. The collinear phase matching Δk ¼ 0 can be
realized in the medium with an anomalous dispersion or in the birefringent crystals
[1]. The detailed analysis of the sum-frequency generation, difference-frequency
generation, and SHG in different configurations may be found in [1, 3, 6]. It can be
shown that the efficient sum-frequency generation can be realized under the fol-
lowing conditions [1]. The nonlinear optical crystal without the inversion symmetry
or with the broken inversion symmetry should have low absorption at the interac-
tion frequencies ω1,2,3 and a sufficiently large quadratic susceptibility χ 2ð Þ and
should allow the collinear phase matching. The particular phase-matching direction
and the coupled wave polarizations should be chosen in order to optimize the
effective nonlinear susceptibility χ 2ð Þ

eff . The length of the nonlinear crystal must
provide the required conversion efficiency. The efficient SHG can be realized with
the single-mode laser beams focused into the nonlinear optical crystal [1].

Sum-frequency generation, difference-frequency generation, and SHG can be
also carried out in the waveguide nonlinear optical devices [3]. Typically, a thin film
of a nonlinear material such as ZnO and ZnS, ferroelectric materials LiNbO3 and
LiTaO3, and III-V semiconductor materials GaAs and AlAs can be used as a
waveguiding layer [3]. The output power P 2ωð Þ Lð Þ of the second harmonic (SH)
mode under the no-pump depletion approximation is given by [3]

P 2ωð Þ Lð Þ ¼ P ωð Þ
0
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k2L2 sinΔL

ΔL
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(17)

where 2Δ ¼ β 2ωð Þ � 2β ωð Þ þ K
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; K ¼ 2π=λ; P ωð Þ
0 is the input pump power; k is the

coupling constant; L is the device length; Δ is the phase mismatch; λ is the pump
wavelength; β ωð Þ, β 2ωð Þ are the propagation constants of the pump and SH waves,
respectively; and Λ is the period of the quasi-phase matching (QPM) grating.
Waveguide SHG devices can be used in optical signal processing such as laser
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printer, laser display, optical memory, short pulse, multicolor, and ultraviolet light
generation [3].

Consider the nonlinear optical effects related to the cubic susceptibility χ 3ð Þ.
These phenomena are much weaker than the second-order ones. However, they can
exist in centrosymmetric media where χ 2ð Þ ¼ 0 and may be strongly pronounced
under the high enough optical intensity pumping. We briefly discuss self-focusing,
SPM, third harmonic generation (THG), SBS, SRS, and FWM.

Self-focusing is an induced lens effects caused by the self-induced wavefront
distortion of the optical beam propagating in the nonlinear medium [1]. In such a
medium, a refractive index n has the form [1]

n ¼ n0 þ Δn Ej j2
� �

(18)

Here n0 is the refractive index of the unperturbed medium, Δn Ej j2
� �

is the

optical field-induced refractive index change, and E is the optical beam electric
field. Typically, the field-induced refractive index change can be described as
Δn ¼ n2 Ej j2 like in the case of the so-called Kerr nonlinearity [1, 3]. If Δn.0, the
central part of the optical beam with a higher intensity has a larger refractive index
than the beam edge. Consequently, the central part of the beam travels at a smaller
velocity than the beam edge. As a result, the gradual distortion of the original plane
wavefront of the beam occurs, and the beam appears to focus by itself [1]. The self-
focusing results in the local increase of the optical power in the central part of the
beam and possible optical damage of transparent materials limiting the high-power
laser performance [1].

SPM is also caused by the positive refractive index change (18). It is the tempo-
ral analog of self-focusing which leads to the spectral broadening of optical pulses
[4]. In optical fibers, for short pulses and sufficiently large fiber length Lf , the
combined effect of the group velocity dispersion (GVD) and SPM should be taken
into account [4]. The GVD parameter β2 is given by [4]

β2 ¼
1
c

2
dn
dω

þ ω
d2n
dω2

 !
(19)

In the normal-dispersion regime when β2 .0, the combined effect of the SPM
and GVD leads to a pulse compression. In the opposite case of the anomalous-
dispersion regime β2 ,0, SPM and GVD under certain conditions can be mutually
compensated [4]. In such a case, the pulse propagates in the optical fiber as an
optical soliton, i.e., a solitary wave which does not change after mutual collisions
[4]. The solitons are described with the nonlinear Schrödinger equation (NLS)
which can be solved with the inverse scattering method [4]. The fundamental
soliton solution u ξ; τð Þ has the form [4]

u ξ; τð Þ ¼ η cosh ητð Þ½ ��1 exp iη2ξ=2
� �

(20)

Here η is the soliton amplitude; τ ¼ t� β1zð Þ=T0; ξ ¼ z=LD; β1 ¼ 1=vg; vg is the
light group velocity in the optical fiber; LD is the dispersion length; and T0 is the
initial width of the incident pulse. The optical solitons can propagate undistorted
over long distances, and they can be applied in fiber-optic communications [4].

Consider now THG. Unlike SHG, it is always allowed [1]. The third harmonic

E
!

3ωð Þ is caused by the third-order nonlinear polarization given by [1, 2]
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Pj
3ð Þ 3ωð Þ ¼ ε0χ

3ð Þ
jklm 3ωð ÞEk ωð ÞEl ωð ÞEm ωð Þ (21)

The cubic susceptibility χ 3ð Þ�� �� is usually small compared to the χ 2ð Þ�� �� [1]. For this
reason, the laser intensity required for the efficient THG is limited by the optical
damage in crystals [1]. The phase matching for the THG is difficult to achieve which
results in low efficiency of the THG process [1, 4]. THG can be realized in highly
nonlinear optical fibers where the phase matching can be accomplished [4].

SBS is a nonlinear optical effect related to parametric coupling between light and
acoustic waves [1]. It is described by the coupled wave equation (7) for the coupled

counterpropagating light waves E
!
1,2 ω1,2ð Þ and the acoustic wave equation for the

mass density variation Δρ ωa ¼ ω1 � ω2ð Þ [1, 2, 4]. The nonlinear coupling between
light and acoustic waves is caused by the electrostrictive pressure

p � ρ0
∂εr
∂ρ E1

!
ω1ð Þ � E!

∗

2 ω2ð Þ
� �

where ρ0, εr are the equilibrium medium mass density

and permittivity, respectively. The acoustic wave enhanced by the interacting
pump and signal (Stokes) wave modulates the mass density of the medium which in
turn modulates the refractive index [1, 3, 4]. For the typical values of the attenua-
tion coefficient and the acoustic frequency shift of about 5 GHz, the acoustic wave

excitation is overdamped, and the signal Stokes wave E2
!

ω2ð Þ would grow in the
backward direction �z under the conditions that Im χ 3ð Þ

B .0, ω1 ≫ωa ¼
ω1 � ω2 .0, and the optical gain is larger than the optical wave damping constant

[1]. The pumping wave E1
!

ω1ð Þ is decaying in the forward direction z [1]. SBS has
been successfully demonstrated in optical fibers, and the SBS gain in a fiber can be
used for the amplification of the weak signal with the frequency shift equal to the
acoustic frequency ωa [4]. Brillouin fiber amplifiers may be used for applications
where the selective amplification is needed [4].

Consider now the SRS process. SRS can be described in the framework of the
quantum mechanics as a two-photon process where one photon with energy

ℏω1 k1
!Þ
�

is absorbed by the system and another photon with energy ℏω2 k2
!Þ
�

is

emitted [1]. The system itself makes a transition from the initial state with the
energy Ei to the final state with the energy Ef , and the energy conservation takes
place: ℏ ω1 � ω2ð Þ ¼ Ef � Ei [1].

In the framework of the coupled wave description, SRS is a third-order para-

metric generation process where the optical pump wave E1
!

ω1ð Þ generates a Stokes
wave E2

!
ω2ð Þ and a material excitation wave [1]. The nonlinear polarization

P
! 3ð Þ

ω1,2ð Þ related to SRS in such a case takes the form [1, 2]

P
! 3ð Þ

ω1ð Þ ¼ ε0χ
3ð Þ
R1 E2j j2E1

!
ω1ð Þ, P

! 3ð Þ
ω2ð Þ ¼ ε0χ

3ð Þ
R2 E1j j2E2

!
ω2ð Þ (22)

where χ 3ð Þ
R1,2 are the third-order Raman susceptibilities coupling the optical waves

and providing SRS process [1]. They can be evaluated by using the quantum
mechanical methods [1]. Typically, the material excitation wave in the SRS process
is considered as molecular vibrations or optical phonons [1, 2, 4]. The specific
feature of SRS is the so-called Stokes-anti-Stokes coupling [1, 2]. Indeed, the mixing
of the pump wave with the frequency ω1 and the Stokes wave with the frequency ω2

results in the generation of the anti-Stokes wave Ea
!

ωa ¼ 2ω1 � ω2ð Þ at the anti-
Stokes frequency ωa ¼ 2ω1 � ω2 .ω1 [1]. Consequently, the coupled wave analysis
of SRS should include the equations for the pump wave, Stokes wave, anti-Stokes
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printer, laser display, optical memory, short pulse, multicolor, and ultraviolet light
generation [3].

Consider the nonlinear optical effects related to the cubic susceptibility χ 3ð Þ.
These phenomena are much weaker than the second-order ones. However, they can
exist in centrosymmetric media where χ 2ð Þ ¼ 0 and may be strongly pronounced
under the high enough optical intensity pumping. We briefly discuss self-focusing,
SPM, third harmonic generation (THG), SBS, SRS, and FWM.

Self-focusing is an induced lens effects caused by the self-induced wavefront
distortion of the optical beam propagating in the nonlinear medium [1]. In such a
medium, a refractive index n has the form [1]
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(18)

Here n0 is the refractive index of the unperturbed medium, Δn Ej j2
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is the

optical field-induced refractive index change, and E is the optical beam electric
field. Typically, the field-induced refractive index change can be described as
Δn ¼ n2 Ej j2 like in the case of the so-called Kerr nonlinearity [1, 3]. If Δn.0, the
central part of the optical beam with a higher intensity has a larger refractive index
than the beam edge. Consequently, the central part of the beam travels at a smaller
velocity than the beam edge. As a result, the gradual distortion of the original plane
wavefront of the beam occurs, and the beam appears to focus by itself [1]. The self-
focusing results in the local increase of the optical power in the central part of the
beam and possible optical damage of transparent materials limiting the high-power
laser performance [1].

SPM is also caused by the positive refractive index change (18). It is the tempo-
ral analog of self-focusing which leads to the spectral broadening of optical pulses
[4]. In optical fibers, for short pulses and sufficiently large fiber length Lf , the
combined effect of the group velocity dispersion (GVD) and SPM should be taken
into account [4]. The GVD parameter β2 is given by [4]

β2 ¼
1
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In the normal-dispersion regime when β2 .0, the combined effect of the SPM
and GVD leads to a pulse compression. In the opposite case of the anomalous-
dispersion regime β2 ,0, SPM and GVD under certain conditions can be mutually
compensated [4]. In such a case, the pulse propagates in the optical fiber as an
optical soliton, i.e., a solitary wave which does not change after mutual collisions
[4]. The solitons are described with the nonlinear Schrödinger equation (NLS)
which can be solved with the inverse scattering method [4]. The fundamental
soliton solution u ξ; τð Þ has the form [4]

u ξ; τð Þ ¼ η cosh ητð Þ½ ��1 exp iη2ξ=2
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(20)

Here η is the soliton amplitude; τ ¼ t� β1zð Þ=T0; ξ ¼ z=LD; β1 ¼ 1=vg; vg is the
light group velocity in the optical fiber; LD is the dispersion length; and T0 is the
initial width of the incident pulse. The optical solitons can propagate undistorted
over long distances, and they can be applied in fiber-optic communications [4].

Consider now THG. Unlike SHG, it is always allowed [1]. The third harmonic

E
!

3ωð Þ is caused by the third-order nonlinear polarization given by [1, 2]
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The cubic susceptibility χ 3ð Þ�� �� is usually small compared to the χ 2ð Þ�� �� [1]. For this
reason, the laser intensity required for the efficient THG is limited by the optical
damage in crystals [1]. The phase matching for the THG is difficult to achieve which
results in low efficiency of the THG process [1, 4]. THG can be realized in highly
nonlinear optical fibers where the phase matching can be accomplished [4].

SBS is a nonlinear optical effect related to parametric coupling between light and
acoustic waves [1]. It is described by the coupled wave equation (7) for the coupled

counterpropagating light waves E
!
1,2 ω1,2ð Þ and the acoustic wave equation for the

mass density variation Δρ ωa ¼ ω1 � ω2ð Þ [1, 2, 4]. The nonlinear coupling between
light and acoustic waves is caused by the electrostrictive pressure
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∂εr
∂ρ E1
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2 ω2ð Þ
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where ρ0, εr are the equilibrium medium mass density

and permittivity, respectively. The acoustic wave enhanced by the interacting
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!
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!
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�
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�
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!
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!
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where χ 3ð Þ
R1,2 are the third-order Raman susceptibilities coupling the optical waves

and providing SRS process [1]. They can be evaluated by using the quantum
mechanical methods [1]. Typically, the material excitation wave in the SRS process
is considered as molecular vibrations or optical phonons [1, 2, 4]. The specific
feature of SRS is the so-called Stokes-anti-Stokes coupling [1, 2]. Indeed, the mixing
of the pump wave with the frequency ω1 and the Stokes wave with the frequency ω2

results in the generation of the anti-Stokes wave Ea
!

ωa ¼ 2ω1 � ω2ð Þ at the anti-
Stokes frequency ωa ¼ 2ω1 � ω2 .ω1 [1]. Consequently, the coupled wave analysis
of SRS should include the equations for the pump wave, Stokes wave, anti-Stokes
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wave, and the material excitation wave [1, 2]. The analysis of this problem can be
found in Refs. [1, 2]. Usually, the anti-Stokes wave is attenuated [2]. SRS in optical
fibers can be used for the development of Raman fiber lasers and Raman fiber
amplifiers [4].

FWM is the nonlinear process with four interacting electromagnetic waves [1].
FWM is a third-order process caused by the third-order nonlinear susceptibility χ 3ð Þ.
It can be easily observed by using the high-intensity lasers, and it has been demon-
strated experimentally [1]. FWM is a complicated nonlinear phenomenon because it
exhibits different nonlinear effects for different combinations of the coupled wave
frequencies, wave vectors, and polarizations. The analysis of FWM is based on the
general theory of optical wave mixing [1, 2, 4]. For three input pump waves with
frequencies ω1,2,3, the singly resonant, doubly resonant, and triply resonant cases
can occur [1]. They correspond to the situations when one, two, or three input
frequencies or their algebraic sums approach medium transition frequencies [1]. In
such cases the third-order susceptibility χ 3ð Þ can be divided into a resonant part χ 3ð Þ

R

and a nonresonant part χ 3ð Þ
NR [1]. The FWM process has some important applications.

Due to the wide range of the mixed frequencies, FWM can be used for the genera-
tion of the waves from the infrared up to ultraviolet range [1]. For instance, the
parametric amplification can be realized when two strong pump waves amplify two
counterpropagating weak waves [1]. The frequency degenerate FWM occurs when
the frequencies of the four waves are the same. It is used for the creation of a phase-
conjugated wave with respect to one of the coupled waves [2]. In such a case, the
phase of the output wave is complex conjugate to the phase of the input wave [1, 2].
FWM in optical fibers can be used for signal amplification, phase conjugation,
wavelength conversion, pulse generation, and high-speed optical switching [4].

4. Conclusions

We briefly discussed the fundamentals of nonlinear optics. The nonlinear optical
phenomena are caused by the interaction between light and matter. Generally, all
media are nonlinear. However, optical nonlinearity is extremely weak, and the
observation of the nonlinear optical effects became possible only after invention
of lasers as the sources of the strong enough coherent optical radiation. The
nonlinear optical processes are described by Maxwell’s equations with the nonlinear
polarization of the medium. The coupled equations for the interacting electromag-
netic and material waves are usually solved by using SVEA. Typically, the second-
and third-order polarizations are considered. The nonlinear polarization and the
optical field in the medium are related by the nonlinear susceptibilities which in
general case can be evaluated by the quantum mechanical methods. In some simple
cases, the classical model of anharmonic oscillator also can be used. We briefly
discussed the fundamental nonlinear phenomena related to the second- and third-
order susceptibilities. The former exists only in the media without the inversion
symmetry, while the latter exists in any medium.

The typical nonlinear optical phenomena related to the second-order suscepti-
bility are the sum-frequency generation, difference-frequency generation, and
SHG. The typical nonlinear optical phenomena related to the third-order suscepti-
bility are self-focusing, SPM, optical soliton formation and propagation, different
types of SLS such as SBS and SRS, and FWM. SBS involves the acoustic waves. SRS
involves the material excitations such as molecular vibrations. We also discussed
some peculiarities of nonlinear optical processes in optical fibers. The nonlinear
optical effects are widely used in optical communications and optical signal
processing.
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Chapter 2

Nonlinear Schrödinger Equation
Jing Huang

Abstract

Firstly, based on the small-signal analysis theory, the nonlinear Schrodinger
equation (NLSE) with fiber loss is solved. It is also adapted to the NLSE with the
high-order dispersion terms. Furthermore, a general theory on cross-phase modu-
lation (XPM) intensity fluctuation which adapted to all kinds of modulation for-
mats (continuous wave, non-return-to-zero wave, and return-zero pulse wave) is
presented. Secondly, by the Green function method, the NLSE is directly solved in
the time domain. It does not bring any spurious effect compared with the split-step
method in which the step size has to be carefully controlled. Additionally, the
fourth-order dispersion coefficient of fibers can be estimated by the Green function
solution of NLSE. The fourth-order dispersion coefficient varies with distance
slightly and is about 0.002 ps4/km, 0.003 ps4/nm, and 0.00032 ps4/nm for SMF,
NZDSF, and DCF, respectively. In the zero-dispersion regime, the higher-order
nonlinear effect (higher than self-steepening) has a strong impact on the short pulse
shape, but this effect degrades rapidly with the increase of β2. Finally, based on the
traveling wave solution of NLSE for ASE noise, the probability density function of
ASE by solving the Fokker-Planck equation including the dispersion effect is
presented.

Keywords: small-signal analysis, Green function, traveling wave solution,
Fokker-Planck equation, nonlinear Schrodinger equation

1. Introduction

The numerical simulation and analytical models of nonlinear Schrödinger equa-
tion (NLSE) play important roles in the design optimization of optical communica-
tion systems. They help to understand the underlying physics phenomena of the
ultrashort pulses in the nonlinear and dispersion medium.

The inverse scattering [1], variation, and perturbation methods [2] could obtain
the analytical solutions under some special conditions. These included the inverse
scattering method for classical solitons [3], the dam-break approximation for the
non-return-to-zero pulses with the extremely small chromatic dispersion [4], and
the perturbation theory for the multidimensional NLSE in the field of molecular
physics [5]. When a large nonlinear phase was accumulated, the Volterra series
approach was adopted [6]. With the assumption of the perturbations, the NLSE
with varying dispersion, nonlinearity, and gain or absorption parameters was solved
in [7]. In [8], the generalized Kantorovitch method was introduced in the extended
NLSE. By introducing Rayleigh’s dissipation function in Euler-Lagrange equation,
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the algebraic modification projected the extended NLSE as a frictional problem and
successfully solved the soliton transmission problems [9].

Since the numerical computation of solving NLSE is a huge time-consuming
process, the fast algorithms and efficient implementations, focusing on (i) an accu-
rate numerical integration scheme and (ii) an intelligent control of the longitudinal
spatial step size, are required.

The finite differential method [10] and the pseudo-spectral method [11] were
adopted to increase accuracy and efficiency and suppress numerically induced
spurious effects. The adaptive spatial step size-controlling method [12] and the
predictor-corrector method [13] were proposed to speed up the implementation of
split-step Fourier method (SSFM). The cubic (or higher order) B-splines were used
to handle nonuniformly sampled optical pulse profiles in the time domain [14]. The
Runge-Kutta method in the interaction picture was applied to calculate the effective
refractive index, effective area, dispersion, and nonlinear coefficients [15].

Recently, the generalized NLSE, taking into account the dispersion of the trans-
verse field distribution, is derived [16]. By an inhomogeneous quasi-linear first-
order hyperbolic system, the accurate simulations of the intensity and phase for the
Schrödinger-type pulse propagation were obtained [17]. It has been demonstrated
that modulation instability (MI) can exist in the normal GVD regime in the higher-
order NLSE in the presence of non-Kerr quintic nonlinearities [18].

In this chapter, several methods to solve the NLSE will be presented: (1) The
small-signal analysis theory and split-step Fourier method to solve the coupled
NLSE problem, the MI intensity fluctuation caused by SPM and XPM, can be
derived. Furthermore, this procedure is also adapted to NLSE with high-order
dispersion terms. The impacts of fiber loss on MI gain spectrum can be discussed.
The initial stage of MI can be described, and then the whole evolution of MI can also
be discussed in this way; (2) the Green function to solve NLSE in the time domain.
By this solution, the second-, third-, and fourth-order dispersion coefficients is
discussed; and (3) the traveling wave solution to solve NLSE for ASE noise and its
probability density function.

2. Small-signal analysis solution of NLSE for MI generation

2.1 Theory for continuous wave

The NLSE governing the field in nonlinear and dispersion medium is

∂u
∂z

þ β1
∂u
∂t

þ i
2
β2

∂
2u
∂t2

þ a
2
u ¼ iγ uj j2 þ 2 u0j j2

h i
u (1)

where β1 and β2 are the dispersions, γ is the nonlinear coefficient, and α is the
fiber loss. In the frequency domain, the solution is

u zþ dz;ωð Þ ¼ exp dzD̂
� �

exp dzN̂
� �

u z;ωð Þ (2)

where D̂ ¼ i
2ω

2β2 þ iωβ1 � a
2 and N̂ ¼ iγ uj j2 þ i2 u0j j2

h i
[19] (Figure 1).

Usually, the field amplitudes can be written as

u z;ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P z;ωð Þ

p
exp iϕ z;ωð Þ½ � (3)
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ϕ z;ωð Þ is caused by the nonlinear effect, and ϕ z;ωð Þ ¼ Ð z0 γ P z;ωð Þ þ 2P0 z;ωð Þ½ �dz
[3].

u zþ dz;ωð Þ (is)

u zþ dz;ωð Þ ¼ exp dzD̂
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P z;ωð Þ
p

exp iφ z;ωð Þ þ iγ Pþ 2P0½ �dzf g
¼ e�adz=2 exp β1ωdzð Þ exp β2=2ω

2dz
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P z;ωð Þ
p

eiφ zþdz;ωð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P zþ dz;ωð Þ

p
exp iφ zþ dz:ωð Þ½ �

(4)

Assuming: P z;ωð Þ ¼ P zð Þh i þ ΔP z;ωð Þ
P zð Þh i is the average signal intensity. ΔP z;ωð Þ is the noise or modulation term.

There is [20] P zð Þh iΔP z;ωð Þ
The amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P z;ωð Þp

can be regarded as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P z;ωð Þ

p
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P zð Þh i

p
1þ ΔP z;ωð Þ

2P zð Þ
� �

(5)

The small-signal theory implies that the frequency modulation or noise
_φ zþ dz;ωð Þ ¼ d _φ zþdz;ωð Þ

dt is small enough. Finally ([21])

P zþ dz;ωð Þ ¼ P zð Þh i þ 2e�adz=2�

Re P zð Þh i exp iωβ1dzþ iω2β2dz
� � ΔP z;ωð Þ

2 P zð Þh i þ iφ zþ dz;ωð Þ
� �� �

(6)

The operation exp iωβ1dzþ iω2β2dzð Þ can be split into its real and imaginary
parts:

exp iωβ1dzþ iω2β2dz
� � ¼ cos ωβ1dzþ ω2β2dz

� �þ i sin ωβ1dzþ ω2β2dz
� �

(7)

The modulation or noise ΔP zþ dz;ωð Þ is ΔP zþ dz;ωð Þ≈P zþ dz;ωð Þ � P zð Þh i
So

P zþ dz;ωð Þ ¼ e�adz=2�iωβ1dz

cos
1
2
β2ω

2dz
� �

ΔP z;ωð Þ þ sin
1
2
β2ω

2dz
� �

2 P zð Þh iφðzþ dz;ωÞ
� �

(8)

And

Figure 1.
Schematic illustration of medium. u(z, t) and u(z + dz, t) correspond to the field amplitudes at z and z + dz,
respectively.
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� �
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And

Figure 1.
Schematic illustration of medium. u(z, t) and u(z + dz, t) correspond to the field amplitudes at z and z + dz,
respectively.
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When only intensity modulation is present and no phase modulation exists, the
transfer function cos 1

2 β2ω
2dz

� �
is obtained. The 3 dB cutoff frequency corresponds

to 1
2 β2ω

2dz ¼ π=4 in [22, 23]. This treatment is also adaptable to the case that only
the nonlinear phase (frequency) modulation is present; then, the intensity modula-
tion ΔP zþ dz;ωð Þ due to FM-IM conversion is given as

ΔP zþ dz;ωð Þ ¼ 2 P zð Þh ie�adz=2�iωβ1dz sin
1
2
β2dzω

2
� �

φ zþ dz;ωð Þ (10)

This is in very good agreement with [24] for small-phase modulation index.
Even for large modulation index 1

2 β2ω
2dz ¼ π=2, the difference is within 0.5 dB.

Eq. (10) does not include a Bessel function, so it is simpler than that in [24].
Obviously, the above process can be used to treat NLSE with higher-order

dispersion (β3, β4) [25]. Similarly, the result in Eq. (10) will include ω3 and ω4.
The corresponding MI gain gMI in the side bands of ω0 (the frequency of signal) is

given by

gMI z;ωð Þ ¼ ΔP zþ dz;ωð Þ � ΔPðz;ωÞj j
P zð Þh idz

¼ 2e�adz=2�iωβ1dz sin
1
2
β2dzω

2
� �

γ

ðzþdz

z
P z;ωð Þ þ 2P0 z;ωð Þ½ �dz

� �.
dz

(11)

Figure 2.
MI gain spectra. +++ result of small-signal analysis. –––– result of perturbation approach. The parameters are
P0 = 10 dBm, β2 = 15 ps2/km, λ = 1550 nm, a = 0.21 dB/km, γ = 0.015W�1/m, and z = 0 m.
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Figure 2 shows a comparison of the gain spectra between Eq. (11) and [6]
for the case P zð Þh i= P0 zð Þh i ¼ 1. The maximum frequency modulation index
caused by dispersion corresponds to 1

2 β2ω
2dz ¼ π [22, 23], and the maximum

value of the sideband is ωc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4γ P zð Þh i= β2j jp

, so the choice of dz satisfies
1
2 β2ω

2dz ¼ π, which makes Eq. (11) have the same frequency regime as [26]. In
Figure 2, the curves are different but have the same maximum value of gMI. In
practice, researchers generally utilize the maximum value of gMI to estimate the
amplified noises and SNR [3]. The result of small-signal analysis in Figure 2
has a phase delay of around ω0. Compared with the experiment result of [27],
the reason is taking the fiber loss into account, the gain spectrum exhibits a
phase delay close to ω0, and the curve descends a little [27]. Fiber loss results
in the difference of gMI between the small-signal analysis method and the
perturbation approach.

2.2 The general theory on cross-phase modulation (XPM) intensity fluctuation

For the general case of two channels, the input optical powers are denoted by
P tð Þ, P0 tð Þ, respectively [28]. Only in the first walk-off length, the nonlinear inter-
action (XPM) is taken into account; in the remaining fibers, signals are propagated
linearly along the fibers, and dispersion acts on the phase-modulated signal
resulting in intensity fluctuation. According to [4], the whole length L is separated
into two parts 0 < z < Lwo and Lwo < z < L; Lwo is the walk-off length,
Lwo ¼ Δt= DΔλð Þ. Δt is the edge duration of the carrier wave, D is the dispersion
coefficient, and Δλ is the wavelength spacing between the channels. By the small-
signal analysis, the phase modulation in channel 1 originating in dz at z can be
expressed as

dϕXPM z; tð Þ ¼ γ2P0 z; t� zβ01
� �

e�azdz (12)

This phase shift is converted to an intensity fluctuation through the
group velocity dispersion (GVD) from z to the receiver. So, at the fiber
output, the intensity fluctuation originating in dz in the frequency domain is
given by [29].

dPXPM z;ωð Þ ¼ 2 eiωzβ1P z;ωð Þ� �
⊗ e�a L�zð Þ � eiωβ1 L�zð Þ sin b L� zð Þ½ �dφXPM z;ωð Þ
n o

¼ 4γ eiωzβ1P z;ωð Þ� �
⊗ e�a L�zð Þ � e�az � eiωβ01z � eiωβ1 L�zð ÞP0 z;ωð Þ sin b L� zð Þ½ �
n o

dz

(13)

⊗ representing the convolution operation b ¼ ω2Dλ2= 4πcð Þ, where c is the speed
of light. At the fiber output, the XPM-induced intensity fluctuation is the integral of
Eq. (13) with z ranging from 0 to L:

PXPM ¼
ðL
0
dPXPM z;ωð Þdz

¼
ðL
0
4γ eiωzβ1P z;ωð Þ� �

⊗ e�a L�zð Þ � e�az � eiωβ01z � eiωβ1 L�zð ÞP0 z;ωð Þ sin b L� zð Þ½ �
n o

dz

(14)

The walk-off between co-propagating waves is regulated by the convolution
operation.
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For the general case of two channels, the input optical powers are denoted by
P tð Þ, P0 tð Þ, respectively [28]. Only in the first walk-off length, the nonlinear inter-
action (XPM) is taken into account; in the remaining fibers, signals are propagated
linearly along the fibers, and dispersion acts on the phase-modulated signal
resulting in intensity fluctuation. According to [4], the whole length L is separated
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Lwo ¼ Δt= DΔλð Þ. Δt is the edge duration of the carrier wave, D is the dispersion
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signal analysis, the phase modulation in channel 1 originating in dz at z can be
expressed as
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This phase shift is converted to an intensity fluctuation through the
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of light. At the fiber output, the XPM-induced intensity fluctuation is the integral of
Eq. (13) with z ranging from 0 to L:
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3. Green function method for the time domain solution of NLSE

3.1 NLSE including the resonant and nonresonant cubic susceptibility tensors

From Maxwell’s equation, the field in fibers satisfies

∇2 E
! � 1

c2
∂
2 E
!

∂t2
¼ �u0

∂
2PL
!

∂t2
� u0

∂
2PNL

!

∂t2
(15)

PL
!

r!; t
� �

¼ ε0

ðþ∞

�∞
χ 1ð Þ t� t0ð Þ E! r!; t0

� �
dt0

¼ ε0

ðþ∞

�∞
χ 1ð Þ ωð Þ E! r!;ω

� �
exp iωtð Þdω

(16)

χ 1ð Þ ωð Þ ¼
ðþ∞

�∞
dτχ 1ð Þ τð Þ exp �jωτð Þ (17)

where E
!
is the vector field and χ 1ð Þ is the linear susceptibility. PL

!
and PNL

!

represent the linear and nonlinear induced fields, respectively [30]. The cubic
susceptibility tensor including the resonant and nonresonant terms is

χ 3ð Þ ωð Þ ¼ χ 3ð Þ
NR þ χ 3ð Þ

R ωð Þ (18)

There are

P
!
NL,NR r!; t

� �
¼ ε0 ∭

∞
dt1dt2dt3χ

3ð Þ
NR t1; t2; t3ð Þ⋮ E

!
r!; t� t1
� �

� E! r!; t� t2
� �

� E! r!; t� t3
� �

¼ ε0 ∭
∞

dω1dω2dω3χ
3ð Þ
NR �ω1 � ω2 � ω3;ω1 þ ω2 þ ω3ð Þ

E
!

r!; t1
� �

� E! r!; t2
� �

� E! r!; t3
� �

exp jωtð Þδ ω� ω1 � ω2 � ω3ð Þ
(19)

χ 3ð Þ
NR �ω1 � ω2 � ω3;ω1 þ ω2 þ ω3ð Þ ¼ ∭

∞
dt1dt2dt3χ

3ð Þ
NR t1; t2; t3ð Þ

exp �jω1t1 � jω2t2 � jω3t3ð Þ
(20)

P
!

NL,R r!; t
� �

¼ ε0 ∭
∞

dt1dt2dt3χ
3ð Þ
R t; t1; t2; t3ð Þ⋮ E

!
r!; t� t1
� �

� E! r!; t� t2
� �

� E! r!; t� t3
� �

¼ ε0 ∭
∞

dω1dω2dω3χ
3ð Þ
R t;�ω1 � ω2 � ω3;ω1 þ ω2 þ ω3ð Þ

E
!

r!; t1
� �

� E! r!; t2
� �

� E! r!; t3
� �

exp jωtð Þδ ω� ω1 � ω2 � ω3ð Þ
(21)

χ 3ð Þ
R tð Þ ¼ 1ffiffiffiffiffi

2π
p

ðþ∞

�∞

a
ω� ω1 þ ω2 þ ω3ð Þ þ iΓ

e�iωtdω

¼ �
ffiffiffi
π

2

r
a 1þ Γ

Γj j
� �

e� Γj jtþi ω1þω2þω3ð Þt�iπ2

(22)

Γ and a are the attenuation and absorption coefficients, respectively [31].
Repeating the process of [3]
E ¼ F x; yð ÞA z; tð Þ exp iβzð Þ, there is
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∂A
∂z

þ i
2
β2

∂
2A
∂t2

� 1
6
β3

∂
3A
∂t3

¼ � a
2
Aþ i

3k0
8nAeff

χ 3ð Þ
NR Aj j2Aþ ik0g ω0ð Þ 1� if ω0ð Þ½ �

2nAeff

A
Ð t
�∞ χ 3ð Þ

R t� τð Þ A τð Þj j2dτ
(23)

k0 ¼ ω0=c, where ω0 is the center frequency. Aeff is the effective core area. n is
the refractive index. The last term is responsible for the Raman scattering, self-
frequency shift, and self-steepening originating from the delayed response:

f ω1 þ ω2 þ ω3ð Þ ¼ 2 ω1 þ ω2 þ ω3ð Þ 1� Γj jð Þ
�2 ω1 þ ω2 þ ω3ð Þ2 � 2 Γj j þ Γj j2 (24)

g ω1 þ ω2 þ ω3ð Þ ¼ �2 ω1 þ ω2 þ ω3ð Þ2 � 2 Γj j þ Γj j2
h i

(25)

where g ω1 þ ω2 þ ω3ð Þ is the Raman gain and f ω1 þ ω2 þ ω3ð Þ is the Raman non-
gain coefficients.

3.2 The solution by Green function

The solution has the form

A z; tð Þ ¼ φ tð Þe�iEz (26)

Then, there is

1
2
β2

∂
2ϕ

∂t2
þ i
6
β3

∂
3ϕ

∂t3
� 3k0
8nAeff

χ 3ð Þ
NR ϕj j2ϕ� k0g ωsð Þ 1� if ωsð Þ½ �

2nAeff
ϕ

ðþ∞

�∞
χ 3ð Þ
R t� τð Þ ϕ τð Þj j2dτ ¼ Eϕ

(27)

Let

Ĥ0 tð Þ ¼ 1
2
β2

∂
2

∂t2
þ i
6
β3

∂
3

∂t3
(28)

V̂ tð Þ ¼ �3k0
8nAeff

χ 3ð Þ
NR ϕj j � k0g ωsð Þ 1� if ωsð Þ½ �

2nAeff

ðþ∞

�∞
χ 3ð Þ
R t� τð Þ ϕ τð Þj j2dτ (29)

and taking the operator V̂ tð Þ as a perturbation item, we first solve the eigen
equation �∑k

n¼2
in
n! βn

∂
nφ

∂Tn ¼ Eφ.

1
2
β2

∂
2ϕ

∂T2 þ
i
6
β3

∂
3ϕ

∂T3 ¼ Eϕ (30)

Assuming E ¼ 1, we get the corresponding characteristic equation:

� 1
2
β2r

2 þ β3
6
r3 ¼ E (31)

Its characteristic roots are r1, r2, r3. The solution can be represented as

ϕ ¼ c1ϕ1 þ c2ϕ2 þ c3ϕ3 (32)
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gain coefficients.

3.2 The solution by Green function

The solution has the form

A z; tð Þ ¼ φ tð Þe�iEz (26)

Then, there is

1
2
β2

∂
2ϕ

∂t2
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6
β3

∂
3ϕ

∂t3
� 3k0
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χ 3ð Þ
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ϕ
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�∞
χ 3ð Þ
R t� τð Þ ϕ τð Þj j2dτ ¼ Eϕ

(27)

Let

Ĥ0 tð Þ ¼ 1
2
β2

∂
2

∂t2
þ i
6
β3

∂
3

∂t3
(28)

V̂ tð Þ ¼ �3k0
8nAeff

χ 3ð Þ
NR ϕj j � k0g ωsð Þ 1� if ωsð Þ½ �

2nAeff

ðþ∞

�∞
χ 3ð Þ
R t� τð Þ ϕ τð Þj j2dτ (29)

and taking the operator V̂ tð Þ as a perturbation item, we first solve the eigen
equation �∑k

n¼2
in
n! βn

∂
nφ

∂Tn ¼ Eφ.

1
2
β2

∂
2ϕ

∂T2 þ
i
6
β3

∂
3ϕ

∂T3 ¼ Eϕ (30)

Assuming E ¼ 1, we get the corresponding characteristic equation:

� 1
2
β2r

2 þ β3
6
r3 ¼ E (31)

Its characteristic roots are r1, r2, r3. The solution can be represented as

ϕ ¼ c1ϕ1 þ c2ϕ2 þ c3ϕ3 (32)

21

Nonlinear Schrödinger Equation
DOI: http://dx.doi.org/10.5772/intechopen.81093



where ϕm ¼ exp irmtð Þ, m ¼ 1, 2, 3 and c1, c2, c3 are determined by the initial
pulse. The Green function of (30) is

E� Ĥ0 tð Þ� �
G0 t; t0ð Þ ¼ δ t� t0ð Þ (33)

By the construction method, it is

G0 t; t0ð Þ ¼ a1φ1 þ a2φ2 þ a3φ3, t>t0

b1φ1 þ b2φ2 þ b3φ3, t < t0

�
(34)

At the point t ¼ t0, there are

a1ϕ1 t0ð Þ þ a2ϕ2 t0ð Þ þ a3ϕ3 t0ð Þ ¼ b1ϕ1 t0ð Þ þ b2ϕ2 t0ð Þ þ b3ϕ3 t0ð Þ (35)

a1ϕ0
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3 t0ð Þ (36)

a1ϕ″
1 t0ð Þ þ a2ϕ″

2 t0ð Þ þ a3ϕ″
3 t0ð Þ � b1ϕ″

1 t0ð Þ � b2ϕ″
2 t0ð Þ � b3ϕ″

3 t0ð Þ ¼ �6i=β3 (37)

Let b1 ¼ b2 ¼ b3 ¼ 0, then

a1 ¼ φ2 _φ3 � _φ2φ3

W t0ð Þ , a2 ¼ φ3 _φ1 � _φ3φ1

W t0ð Þ , a3 ¼ φ1 _φ2 � _φ1φ2

W t0ð Þ (38)
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ϕ1 ϕ2 ϕ3
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2 ϕ 1ð Þ
3

ϕ 2ð Þ
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3

�������

�������
(39)

Finally, the solution of (27) can be written with the eigen function and Green
function:

φ tð Þ ¼ ϕ tð Þ þ
ð
G0 t; t0ð ÞV t0ð Þφ t0ð Þdt0

¼ ϕ tð Þ þ
ð
G0 t; t0;Eð ÞV t0ð Þϕ t0ð Þdt0 þ

ð
dt0G0 t; t0;Eð ÞV t0ð Þ

ð
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� �
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� �

φ t″
� �

dt″
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ð
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dt″ þ⋯
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ð
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ð
G0 t0; t″
� �

V t″
� �

dt″⋯
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

times l

ð
G0 tl; tlþ1� �

V tlþ1� �
φ tlþ1� �

dtlþ1

(40)

The accuracy can be estimated by the last item of (40). The algorithm is plotted
in Figure 3.

3.3 Estimation of the fourth-order dispersion coefficient β4

The NLSE governing the wave’s transmission in fibers is

∂u
∂z

þ i
2
β2

∂
2u
∂t2

� 1
6
β3

∂
3u
∂t3

� iγ exp �2αzð Þ uj j2uþ is
∂ uj j2
∂t

uþ is uj j2 ∂u
∂t

" #
¼ 0 (41)

where s is the self-steepening parameter. In the frequency domain, its solution is
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u zþ dz;ωð Þ ¼ exp dzD̂
� �

exp dzN̂
� �

u z;ωð Þ (42)

where D̂ ¼ i
2ω

2β2 � i
6ω

3β3, N̂ ¼ Γ iγ exp �2αzð Þ uj j2 þ is ∂ uj j2
∂t þ is uj j2 ∂

∂t

h in o
, and Γ

represents the Fourier transform [32]. Let L̂ ¼ ∂

∂z � D̂ � N̂ and
L̂G z; z

0
;ω

� � ¼ δ z� z
0� �
; we obtain the Green function

G z; z
0
;ω

� �
¼ 1

2π

ðþ∞

�∞

exp �ik z� z
0� �� �

ik� D̂ � N̂
dk (43)

Constructing the iteration β3 ¼ β03 þ δβ3, u z;ωð Þ ¼ u0 z;ωð Þ þ δu z;ωð Þ, then
there is

δu z;ωð Þ ¼
ð
G z; z

0
;ω

� �
Z z

0
;ω; δβ3 z

0
� �

; u0 z
0
;ω

� �� �
dz

0
(44)

where Z z
0
;ω; δβ3 z
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; u0 z
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� �� � ¼ � i
6 δβ3 z

0� �
ω3u0 z

0
;ω

� �
and u0 z

0
;ω; β03

� �
is

determined by (42).
Theminimumvalue of δu z;ωð Þ satisfies ∂δu z;ωð Þ=∂ω ¼ 0, R ∂

2δu z;ωð Þ=∂ω2
� �

>0, so

δβ3 ¼ exp
ðþ∞

�∞
� 1
G
∂G
∂ω

� 3
ω
� 1
u0

∂u0

∂ω

� �
dω

� �
(45)

Figure 3.
The Green algorithm for solving NLSE.
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Finally, the solution of (27) can be written with the eigen function and Green
function:
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times l
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(40)

The accuracy can be estimated by the last item of (40). The algorithm is plotted
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3.3 Estimation of the fourth-order dispersion coefficient β4

The NLSE governing the wave’s transmission in fibers is
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where s is the self-steepening parameter. In the frequency domain, its solution is
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Next, we take the higher-order nonlinear effect into account. Constructing
another iteration related to δγ : γ ¼ γ0 þ δγ, u z;ωð Þ ¼ u0 z;ωð Þ þ δu z;ωð Þ and
repeating the above process, we get

δγ≈ exp
ðþ∞

�∞
� 1
G
∂G
∂ω

� 3is
1� 3isω

� 1
u0

∂u0

∂ω

� �
dω

� �
(46)

Now, we can simulate the pulse shape affected by high-order dispersive and
nonlinear effects. Assume LD ¼ t20=∣β2∣ and
u 0; tð Þ ¼ Ðþ∞

�∞ u 0;ωð Þ exp �iωtð Þdω ¼ u0 exp �t2=t20=2
� �

.

Firstly, we see what will be induced by the above items δβ3 and δγ. To extrude
their impact, we choose the other parameters to be small values in Figures 4 and 5.
The deviation between the red and the black lines in Figure 4(a) indicates the
impact of δβ3 and δγ; that is, they induce the pulse’s symmetrical split. This split
does not belong to the SPM-induced broadening oscillation spectral or β3-induced
oscillation in the tailing edge of the pulse, because here γ is very small and β3 ¼ 0

[3]. The self-steepening effect attributing to is ∂ uj j2u
� �

=∂t is also shown explicitly in

the black line. When we reduce the s value to 0.0001 in (b), the split pulse’s
symmetry is improved.

Is the pulse split in Figure 4(a) caused by δβ3 or δγ? The red lines in Figure 5
describe the evolution of pulse affected by the very small second-order dispersion
and nonlinear (including self-steepening) coefficients. Here, δβ3 induces the pulse’s
symmetrical split, and the maximum peaks of split pulse alter and vary from the
spectral central to the edge and to the central again. Therefore, its effect is equal to
that of the fourth-order dispersion β4 [33, 34, 3].

From the deviation between the red and black lines in Figure 5, we can also
detect the impact of δγ. It only accelerates the pulse’s split when the self-steepening
effect is ignored (s = 0 in Figure 5(a)). This is similar to the self-phase modulation-
broadening spectral and oscillation. The high nonlinear γ accelerating pulse’s split is
validated in [35, 36]. If s 6¼ 0 (Figure 5(b)), δγ simultaneously leads to the split
pulse’s redshift.

Generally, we do not take δγ into account, so we should clarify in which case it
creates impact. Compared (c) with (b) in Figure 5, the red lines change little means
that δβ3 has a tiny relationship with γ. But with the increase of γ (Figure 5(c)), the

Figure 4.
The pulse shapes with and without δβ3 and δγ. The red line: without δβ3 and δγ; the black line: with δβ3 and
δγ. ν ¼ ω=2=π, β03 ¼ 0 ps3=kmð Þ, γ ¼ 1:3� 10�2 =km=Wð Þ, t0 ¼ 80 fsð Þ, z ¼ 3:7 � t20= β2j j,
β2 ¼ �21:7=150 ps2=kmð Þ, u0 ¼ β2j j=γ=t20. (a) s = 0.01 and (b) s = 0.0001.
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split pulse’s redshift is strengthened, so δγ has a relationship with γ. In Figure 6, the
pulse is not split until z = 9 LD, and the black line with δγ is completely overlapped
by the red line without δγ, so the high second-order dispersion β2 results in the
impact of δγ covered and the impact of δβ3 weakened. Therefore, only in the zero-
dispersion regime, δγ should be taken into account in the simulation of pulse shape.

So, we can utilize δβ3 to determine the fourth-order dispersion coefficient β4.
Fiber parameters are listed in Table 1. The process is shown in Figure 7, and the
dispersion operator including β4 is D̂ ¼ i

2ω
2β2 � i

6ω
3β3 þ i

24ω
4β4.

Table 2 is the average of β4. They are different from those determined by FWM
or MI where β4 is related to power and broadening frequency [35, 36]. By our
method, the fourth-order dispersion is also a function of distance, and every type of

Figure 5.
The evolutions of pulse. The red line: without δγ; the black line: with δβ3 and δγ. (a) s ¼ 0,
γ ¼ 1:3� 10�4 =km=Wð Þ; (b) s ¼ 0:01, γ ¼ 1:3� 10�4 =km=Wð Þ; (c) s ¼ 0:01, γ ¼ 1:3 =km=Wð Þ. Other
parameters are the same as Figure 4.
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Next, we take the higher-order nonlinear effect into account. Constructing
another iteration related to δγ : γ ¼ γ0 þ δγ, u z;ωð Þ ¼ u0 z;ωð Þ þ δu z;ωð Þ and
repeating the above process, we get
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Now, we can simulate the pulse shape affected by high-order dispersive and
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impact of δβ3 and δγ; that is, they induce the pulse’s symmetrical split. This split
does not belong to the SPM-induced broadening oscillation spectral or β3-induced
oscillation in the tailing edge of the pulse, because here γ is very small and β3 ¼ 0
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=∂t is also shown explicitly in

the black line. When we reduce the s value to 0.0001 in (b), the split pulse’s
symmetry is improved.

Is the pulse split in Figure 4(a) caused by δβ3 or δγ? The red lines in Figure 5
describe the evolution of pulse affected by the very small second-order dispersion
and nonlinear (including self-steepening) coefficients. Here, δβ3 induces the pulse’s
symmetrical split, and the maximum peaks of split pulse alter and vary from the
spectral central to the edge and to the central again. Therefore, its effect is equal to
that of the fourth-order dispersion β4 [33, 34, 3].

From the deviation between the red and black lines in Figure 5, we can also
detect the impact of δγ. It only accelerates the pulse’s split when the self-steepening
effect is ignored (s = 0 in Figure 5(a)). This is similar to the self-phase modulation-
broadening spectral and oscillation. The high nonlinear γ accelerating pulse’s split is
validated in [35, 36]. If s 6¼ 0 (Figure 5(b)), δγ simultaneously leads to the split
pulse’s redshift.

Generally, we do not take δγ into account, so we should clarify in which case it
creates impact. Compared (c) with (b) in Figure 5, the red lines change little means
that δβ3 has a tiny relationship with γ. But with the increase of γ (Figure 5(c)), the
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The pulse shapes with and without δβ3 and δγ. The red line: without δβ3 and δγ; the black line: with δβ3 and
δγ. ν ¼ ω=2=π, β03 ¼ 0 ps3=kmð Þ, γ ¼ 1:3� 10�2 =km=Wð Þ, t0 ¼ 80 fsð Þ, z ¼ 3:7 � t20= β2j j,
β2 ¼ �21:7=150 ps2=kmð Þ, u0 ¼ β2j j=γ=t20. (a) s = 0.01 and (b) s = 0.0001.
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split pulse’s redshift is strengthened, so δγ has a relationship with γ. In Figure 6, the
pulse is not split until z = 9 LD, and the black line with δγ is completely overlapped
by the red line without δγ, so the high second-order dispersion β2 results in the
impact of δγ covered and the impact of δβ3 weakened. Therefore, only in the zero-
dispersion regime, δγ should be taken into account in the simulation of pulse shape.

So, we can utilize δβ3 to determine the fourth-order dispersion coefficient β4.
Fiber parameters are listed in Table 1. The process is shown in Figure 7, and the
dispersion operator including β4 is D̂ ¼ i

2ω
2β2 � i
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3β3 þ i

24ω
4β4.

Table 2 is the average of β4. They are different from those determined by FWM
or MI where β4 is related to power and broadening frequency [35, 36]. By our
method, the fourth-order dispersion is also a function of distance, and every type of

Figure 5.
The evolutions of pulse. The red line: without δγ; the black line: with δβ3 and δγ. (a) s ¼ 0,
γ ¼ 1:3� 10�4 =km=Wð Þ; (b) s ¼ 0:01, γ ¼ 1:3� 10�4 =km=Wð Þ; (c) s ¼ 0:01, γ ¼ 1:3 =km=Wð Þ. Other
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Figure 6.
The pulse shapes with and without δγ. β2 ¼ �21:7 ps2=kmð Þ, s ¼ 0:01, γ ¼ 1:3 =km=Wð Þ. Other parameters
are the same as Figure 5.

a (dB/km) γ (/km/W) s β2 (ps
2/km) β3 (ps

3/km)

DCF 0.59 5.5 0.01 110 0.1381

NZDSF 0.21 2.2 0.01 �5.6 0.115

SMF 0.21 1.3 0.01 �21.7 �0.5

Table 1.
Fiber parameters.

Figure 7.
The process of calculating β4.

Z = 1.5LD Z = 5LD Z = 50LD

DCF 0.0003 0.00035 0.00032

NZDSF 0.0022 0.003 0.0032

SMF 0.0012 0.002 0.0025

Units (ps4/km).

Table 2.
The average.
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fibers has its special average β4 which reveals the characteristic of fibers. These
values are similar to those experiment results in highly nonlinear fibers [35, 36].
Although we take the higher-order nonlinear effect δγ into account which upgrades

the pulse’s symmetrical split and redshift, the items is ∂ uj j2u
� �

=∂t and

iδγ exp �2αzð Þ uj j2u have a very tiny contribution to β4, only 10�26 ps4/km quantity
order for the typical SMF. Here, the impact of δγ is hidden by the relative strong β2.

4. Traveling wave solution of NLSE for ASE noise

4.1 The in-phase and quadrature components of ASE noise

The field including the complex envelopes of signal and ASE noise is:

U z; tð Þ ¼ ∑
N

l¼1
ul z; tð Þ þ Al z; tð Þ½ � exp �iωltð Þ (47)

where ul z; tð Þ and Al z; tð Þ are the complex envelopes of signal and ASE noise,
respectively [37, 38].N is the channel number. ASE noise generated in erbium-doped
fiber amplifiers (EDFAs) is Al 0; tð Þ ¼ AlR 0; tð Þ þ iAlI 0; tð Þ, AlR 0; tð Þ and AlI 0; tð Þ are
statistically real independent stationary white Gaussian processes, and
AlR 0; tþ τð ÞA∗

lR 0; tð Þ� � ¼ AlI 0; tþ τð ÞA∗
lI 0; tð Þ� � ¼ nsphvl Gl � 1ð ÞΔvlδ τð Þ. In the com-

plete inversion case, nsp ¼ 1. h is the Planck constant. Gl is the gain for channel l.
Substituting Eq. (47) into (1), we can get the equation that Al z; tð Þ satisfies:

i
∂Al z; tð Þ

∂z
¼ β2

2
�ω2

l þ
∂
2

∂t2
� i2ωl

∂

∂t

� �
Al z; tð Þ�

γ zð Þ exp �2αzð Þ ∑
N
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�����
2

Al z; tð Þ
(48)

So, the in-phase and quadrature components of ASE noise obey:
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(50)

We now seek their traveling wave solution by taking [37] AlR ¼ ϕ ξð Þ,
AlI ¼ φ ξð Þ, and ξ ¼ t� cz.

Then, (49) and (50) are converted into

ϕ0 β2ωl � cð Þ ¼ � 1
2
β2ω

2
l þ γ exp �2αzð Þ ∑
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Figure 6.
The pulse shapes with and without δγ. β2 ¼ �21:7 ps2=kmð Þ, s ¼ 0:01, γ ¼ 1:3 =km=Wð Þ. Other parameters
are the same as Figure 5.

a (dB/km) γ (/km/W) s β2 (ps
2/km) β3 (ps

3/km)

DCF 0.59 5.5 0.01 110 0.1381

NZDSF 0.21 2.2 0.01 �5.6 0.115

SMF 0.21 1.3 0.01 �21.7 �0.5

Table 1.
Fiber parameters.

Figure 7.
The process of calculating β4.

Z = 1.5LD Z = 5LD Z = 50LD

DCF 0.0003 0.00035 0.00032

NZDSF 0.0022 0.003 0.0032

SMF 0.0012 0.002 0.0025

Units (ps4/km).

Table 2.
The average.
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fibers has its special average β4 which reveals the characteristic of fibers. These
values are similar to those experiment results in highly nonlinear fibers [35, 36].
Although we take the higher-order nonlinear effect δγ into account which upgrades

the pulse’s symmetrical split and redshift, the items is ∂ uj j2u
� �

=∂t and

iδγ exp �2αzð Þ uj j2u have a very tiny contribution to β4, only 10�26 ps4/km quantity
order for the typical SMF. Here, the impact of δγ is hidden by the relative strong β2.

4. Traveling wave solution of NLSE for ASE noise

4.1 The in-phase and quadrature components of ASE noise

The field including the complex envelopes of signal and ASE noise is:

U z; tð Þ ¼ ∑
N

l¼1
ul z; tð Þ þ Al z; tð Þ½ � exp �iωltð Þ (47)

where ul z; tð Þ and Al z; tð Þ are the complex envelopes of signal and ASE noise,
respectively [37, 38].N is the channel number. ASE noise generated in erbium-doped
fiber amplifiers (EDFAs) is Al 0; tð Þ ¼ AlR 0; tð Þ þ iAlI 0; tð Þ, AlR 0; tð Þ and AlI 0; tð Þ are
statistically real independent stationary white Gaussian processes, and
AlR 0; tþ τð ÞA∗

lR 0; tð Þ� � ¼ AlI 0; tþ τð ÞA∗
lI 0; tð Þ� � ¼ nsphvl Gl � 1ð ÞΔvlδ τð Þ. In the com-

plete inversion case, nsp ¼ 1. h is the Planck constant. Gl is the gain for channel l.
Substituting Eq. (47) into (1), we can get the equation that Al z; tð Þ satisfies:

i
∂Al z; tð Þ

∂z
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2
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(48)

So, the in-phase and quadrature components of ASE noise obey:
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2

AlR

(50)

We now seek their traveling wave solution by taking [37] AlR ¼ ϕ ξð Þ,
AlI ¼ φ ξð Þ, and ξ ¼ t� cz.

Then, (49) and (50) are converted into

ϕ0 β2ωl � cð Þ ¼ � 1
2
β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�����

�����
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φ0 β2ωl � cð Þ ¼ 1
2
β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�����

�����
2

2
4

3
5ϕ� 1

2
β2ϕ

00 (52)

(52) is differentiated to ξ

φ00 β2ωl � cð Þ ¼ 1
2
β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�����

�����
2

2
4

3
5ϕ0 � 1

2
β2ϕ

000 (53)

Replacing ϕ0 and ϕ000 in (53) with (51) and the differential of (51), there are

ϕ00 β2ωl � cð Þ2 ¼ � 1
2 β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�����

�����
2

2
4

3
5
2

ϕþ

β2
1
2
β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�����

�����
2

2
4

3
5ϕ″þ 1

4
β22ϕ

4ð Þ

(54)

From (51) and (54), we can easily obtain

φ ¼ B β2ω
2
l =2þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�����

�����
2

2
4

3
5 cos kξþ β2k

2=2 � cos kξ
8<
:

9=
;= β2ωl � cð Þ=k

(55)

φ ¼ B sin kξ (56)

and

B ¼ AlR 0; tð Þ β2ωl � cð Þk=

β2ω
2
l =2þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�����

�����
2

2
4

3
5 cos ktþ β2k

2=2 � cos kt
8<
:

9=
;
(57)

c ¼ � β22k
2=4þ β2ω

2
l =2þ γ exp �2αzð Þ2 ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�����

�����
2

2
4

3
5=k2 þ β22ω

2
l =2þ

8<
:

γβ2 exp �2αzð Þ ∑
N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�����

�����
2
9=
;

1=2

þ β2ωl (58)

k ¼ arcsin AlI 0; tð Þ=Bð Þ=t (59)

In the above calculation process, B, c, and k should be regarded as constants, and
AlR, AlI are the functions of the solo variable ξ, respectively.

4.2 Probability density function of ASE noise

Because AlR and AlI have been solved, the time differentials of (49) and (50) can
be calculated. Thus, the stochastic differential equations (ITO forms) around AlR
and AlI are

28

Nonlinear Optics ‐ Novel Results in Theory and Applications

∂AlR z; tð Þ
∂z

¼ f AlR z; tð Þð Þ þ g AlR z; tð Þð ÞAlR,z¼0 (60)

∂AlI z; tð Þ
∂z

¼ f
0
AlI z; tð Þð Þ þ g

0
AlI z; tð Þð ÞAlI,z¼0 (61)

Here,

f AlR z; tð Þð Þ ¼ β2kωlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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β2ω
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uj z; tð Þ þ Ajðz; tÞ

�����

�����
2

þβ2k
2=2

β2ωl�cð Þk

2
66664

3
77775

2

� A2
lR z; tð Þ

vuuuuuuut
(62)

g AlR z; tð Þð Þ ¼ � β2ωl � cð Þk
AlR,z¼0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B

β2ω
2
l =2þγ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�����

�����
2

þβ2k
2=2

β2ωl�cð Þk

2
66664

3
77775

2

� A2
lR z; tð Þ

vuuuuuuut

(63)

f
0
AlI z; tð Þð Þ ¼ �β2kωl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A2

lI z; tð Þ
q

(64)

g0 AlI z; tð Þð Þ ¼ B

β2ω
2
l =2þγ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�����

�����
2

þβ2k
2=2

β2ωl�cð Þk

2
66664

3
77775

2

β2ωl � cð Þk
BAlI, z¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A2

lI z; tð Þ
q

(65)

Now, they can be regarded as the stationary equations, and we can gain their
probabilities according to Sections (7.3) and (7.4) in [39]. By solving the
corresponding Fokker-Planck equations of (60) and (61), the probabilities of ASE
noise are

plR ¼ C

g AlRð Þ½ �2 exp 2
ðAlR

�∞

f sð Þ
g sð Þ½ �2 ds

" #
(66)

plI ¼
C0

g0 AlIð Þ½ �2 exp 2
ðAlI

�∞

f 0 sð Þ
g0 sð Þ½ �2 ds

" #
(67)

C,C0 are determined by
Ðþ∞
�∞ pdp ¼ 1. Compared with [40], these probabilities of

ASE noise take dispersion effect into account. This is the first time that the p.d.f. of
ASE noise simultaneously including dispersion and nonlinear effects is presented.

(66) and (67) are efficient in the models of Gaussian and correlated non-
Gaussian processes as our (49) and (50). Obviously, the Gaussian distribution has
been distorted. They are no longer symmetrical distributions, and both have phase
shifts consistent with [40], and as its authors have expected that “if the dispersion
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φ0 β2ωl � cð Þ ¼ 1
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(52) is differentiated to ξ
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Replacing ϕ0 and ϕ000 in (53) with (51) and the differential of (51), there are
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From (51) and (54), we can easily obtain

φ ¼ B β2ω
2
l =2þ γ exp �2αzð Þ ∑
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j¼1
uj z; tð Þ þ Aj z; tð Þ
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φ ¼ B sin kξ (56)

and
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;
(57)

c ¼ � β22k
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;
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þ β2ωl (58)

k ¼ arcsin AlI 0; tð Þ=Bð Þ=t (59)

In the above calculation process, B, c, and k should be regarded as constants, and
AlR, AlI are the functions of the solo variable ξ, respectively.

4.2 Probability density function of ASE noise

Because AlR and AlI have been solved, the time differentials of (49) and (50) can
be calculated. Thus, the stochastic differential equations (ITO forms) around AlR
and AlI are
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∂AlR z; tð Þ
∂z

¼ f AlR z; tð Þð Þ þ g AlR z; tð Þð ÞAlR,z¼0 (60)

∂AlI z; tð Þ
∂z

¼ f
0
AlI z; tð Þð Þ þ g

0
AlI z; tð Þð ÞAlI,z¼0 (61)

Here,
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f
0
AlI z; tð Þð Þ ¼ �β2kωl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Now, they can be regarded as the stationary equations, and we can gain their
probabilities according to Sections (7.3) and (7.4) in [39]. By solving the
corresponding Fokker-Planck equations of (60) and (61), the probabilities of ASE
noise are

plR ¼ C

g AlRð Þ½ �2 exp 2
ðAlR

�∞

f sð Þ
g sð Þ½ �2 ds

" #
(66)

plI ¼
C0

g0 AlIð Þ½ �2 exp 2
ðAlI

�∞

f 0 sð Þ
g0 sð Þ½ �2 ds

" #
(67)

C,C0 are determined by
Ðþ∞
�∞ pdp ¼ 1. Compared with [40], these probabilities of

ASE noise take dispersion effect into account. This is the first time that the p.d.f. of
ASE noise simultaneously including dispersion and nonlinear effects is presented.

(66) and (67) are efficient in the models of Gaussian and correlated non-
Gaussian processes as our (49) and (50). Obviously, the Gaussian distribution has
been distorted. They are no longer symmetrical distributions, and both have phase
shifts consistent with [40], and as its authors have expected that “if the dispersion
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effect was taken into account, the asymmetric modulation side bands occur.” The
reasons are that item �iβ2ωl

∂

∂t Al z; tð Þ in (48) brings the phase shift and item
β2
2

∂
2

∂t2 Al z; tð Þ brings the expansion and induces the side bands, the self-phase modu-
lation effects, and the cross-phase modulation effects. Their synthesis impact is
amplified by (66) and (67) and results in the complete non-Gaussian distributions.

5. Conclusion

NLSE is solved with small-signal analyses for the analyses of MI, and it can be
broadened to all signal formats. The equation can be solved by introducing the
Green function in the time domain, and it is used as the tool for the estimations of
high-order dispersion and nonlinear coefficients. For the conventional fibers, SMF,
NZDSF, and DCF, the higher-order nonlinear effect contribution to β4 can be
neglected. This can be deduced that each effect has less impact for another coeffi-
cient’s estimation. The Green function can also be used for the solving of 3 + 1
dimension NLSE.

By the traveling wave methods, the p.d.f. of ASE noise can be obtained, and it
provides a method for the calculation of ASE noise in WDM systems. So, the
properties of MI, pulse fission, coefficient value, and ASE noise’s probability density
function are also discussed for demonstrations of the theories.

Author details

Jing Huang
Physics Department, South China University of Technology, Guangzhou, China

*Address all correspondence to: jhuang@scut.edu.cn

©2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

30

Nonlinear Optics ‐ Novel Results in Theory and Applications

References

[1] Hasegawa A, Matsumoto M, Kattan
PI. Optical Solitons in Fibers. 3rd ed.
New York: Springer-Verlag; 2000

[2] Brandt-Pearce M, Jacobs I, Shaw JK.
Optimal input Gaussian pulse width for
transmission in dispersive nonlinear
fiber. Journal of the Optical Society of
America B. 1999;16:1189-1196. DOI:
10.1364/JOSAB.16.001189

[3] Agrawal GP. Nonlinear Fiber Optics.
4th ed. San Diego, CA: Academic; 2007

[4] Kodama Y, Wabnitz S. Analytical
theory of guiding center nonreturn to
zero and return to zero signal
transmission in normally dispersive
nonlinear optical fibers. Optics Letters.
1995;20:2291-2293. DOI: 10.1364/
OL.20.002291

[5] Surján PR, Ángyán J. Perturbation
theory for nonlinear time-independent
Schrödinger equations. Physical Review
A–Physical Review Journals. 1983;28:
45-48. DOI: 10.1103/PhysRevA.28.45

[6] Peddanarappagari KV, Brandt-
Pearce M. Volterra series transfer
function of single-mode fibers. Journal
of Lightwave Technology. 1997;15:
2232-2241. DOI: 10.1109/50.643545

[7] Serkin VN, Hasegawa A. Novel
soliton solutions of the nonlinear
Schrödinger equation model. Physical
Review Letters. 2000;85:4502-4505.
DOI: 10.1103/PhysRevLett.85.4502

[8] Cerda SC, Cavalcanti SB, Hickmann
JM. A variational approach of nonlinear
dissipative pulse propagation. European
Physical Journal D. 1998;1:313-316. DOI:
10.1007/s100530050

[9] Roy S, Bhadra SK. Solving soliton
perturbation problems by introducing
Rayleigh’s dissipation function. Journal
of Lightwave Technology. 2008;26:

2301-2322. DOI: 10.1109/
JLT.2008.922305

[10] Chang Q, Jia E, Suny W. Difference
schemes for solving the generalized
nonlinear Schrodinger equation. Journal
of Computational Physics. 1999;148:
397-415. DOI: 10.1006/jcph.1998.6120

[11] Bosco G, Carena A, Curri V,
Gaudino R, Poggiolini P, Bendedetto S.
Suppression of spurious tones induced
by the split-step method in fiber
systems simulation. IEEE Photonics
Technology Letters. 2000;12:489-491.
DOI: 10.1109/68.841262

[12] Sinkin V, Holzlohner R, Zweck J,
Menyuk CR. Optimization of the split-
step Fourier method in modeling
optical-fiber communication systems.
Journal of Lightwave Technology. 2003;
21:61-68. DOI: 10.1109/
JLT.2003.808628

[13] Liu X, Lee B. A fast method for
nonlinear Schrodinger equation. IEEE
Photonics Technology Letters. 2003;15:
1549-1551. DOI: 10.1109/
LPT.2003.818679

[14] Premaratne M. Numerical
simulation of nonuniformly time-
sampled pulse propagation in nonlinear
fiber. Journal of Lightwave Technology.
2005;23:2434-2442. DOI: 10.1109/
JLT.2005.850770

[15] Dabas B, Kaushal J, Rajput M, Sinha
RK. Nonlinear pulse propagation in
chalcogenide As2Se3 glass photonic
crystal fiber using RK4IP method.
Applied Optics. 2011;50:5803-5811. DOI:
10.1364/AO.50.005803

[16] Pedersen MEV, Ji C, Chris X,
Rottwitt K. Transverse field dispersion
in the generalized nonlinear
Schrodinger equation: Four wave
mixing in a higher order mode fiber.

31

Nonlinear Schrödinger Equation
DOI: http://dx.doi.org/10.5772/intechopen.81093



effect was taken into account, the asymmetric modulation side bands occur.” The
reasons are that item �iβ2ωl

∂

∂t Al z; tð Þ in (48) brings the phase shift and item
β2
2

∂
2

∂t2 Al z; tð Þ brings the expansion and induces the side bands, the self-phase modu-
lation effects, and the cross-phase modulation effects. Their synthesis impact is
amplified by (66) and (67) and results in the complete non-Gaussian distributions.

5. Conclusion

NLSE is solved with small-signal analyses for the analyses of MI, and it can be
broadened to all signal formats. The equation can be solved by introducing the
Green function in the time domain, and it is used as the tool for the estimations of
high-order dispersion and nonlinear coefficients. For the conventional fibers, SMF,
NZDSF, and DCF, the higher-order nonlinear effect contribution to β4 can be
neglected. This can be deduced that each effect has less impact for another coeffi-
cient’s estimation. The Green function can also be used for the solving of 3 + 1
dimension NLSE.

By the traveling wave methods, the p.d.f. of ASE noise can be obtained, and it
provides a method for the calculation of ASE noise in WDM systems. So, the
properties of MI, pulse fission, coefficient value, and ASE noise’s probability density
function are also discussed for demonstrations of the theories.

Author details

Jing Huang
Physics Department, South China University of Technology, Guangzhou, China

*Address all correspondence to: jhuang@scut.edu.cn

©2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

30

Nonlinear Optics ‐ Novel Results in Theory and Applications

References

[1] Hasegawa A, Matsumoto M, Kattan
PI. Optical Solitons in Fibers. 3rd ed.
New York: Springer-Verlag; 2000

[2] Brandt-Pearce M, Jacobs I, Shaw JK.
Optimal input Gaussian pulse width for
transmission in dispersive nonlinear
fiber. Journal of the Optical Society of
America B. 1999;16:1189-1196. DOI:
10.1364/JOSAB.16.001189

[3] Agrawal GP. Nonlinear Fiber Optics.
4th ed. San Diego, CA: Academic; 2007

[4] Kodama Y, Wabnitz S. Analytical
theory of guiding center nonreturn to
zero and return to zero signal
transmission in normally dispersive
nonlinear optical fibers. Optics Letters.
1995;20:2291-2293. DOI: 10.1364/
OL.20.002291

[5] Surján PR, Ángyán J. Perturbation
theory for nonlinear time-independent
Schrödinger equations. Physical Review
A–Physical Review Journals. 1983;28:
45-48. DOI: 10.1103/PhysRevA.28.45

[6] Peddanarappagari KV, Brandt-
Pearce M. Volterra series transfer
function of single-mode fibers. Journal
of Lightwave Technology. 1997;15:
2232-2241. DOI: 10.1109/50.643545

[7] Serkin VN, Hasegawa A. Novel
soliton solutions of the nonlinear
Schrödinger equation model. Physical
Review Letters. 2000;85:4502-4505.
DOI: 10.1103/PhysRevLett.85.4502

[8] Cerda SC, Cavalcanti SB, Hickmann
JM. A variational approach of nonlinear
dissipative pulse propagation. European
Physical Journal D. 1998;1:313-316. DOI:
10.1007/s100530050

[9] Roy S, Bhadra SK. Solving soliton
perturbation problems by introducing
Rayleigh’s dissipation function. Journal
of Lightwave Technology. 2008;26:

2301-2322. DOI: 10.1109/
JLT.2008.922305

[10] Chang Q, Jia E, Suny W. Difference
schemes for solving the generalized
nonlinear Schrodinger equation. Journal
of Computational Physics. 1999;148:
397-415. DOI: 10.1006/jcph.1998.6120

[11] Bosco G, Carena A, Curri V,
Gaudino R, Poggiolini P, Bendedetto S.
Suppression of spurious tones induced
by the split-step method in fiber
systems simulation. IEEE Photonics
Technology Letters. 2000;12:489-491.
DOI: 10.1109/68.841262

[12] Sinkin V, Holzlohner R, Zweck J,
Menyuk CR. Optimization of the split-
step Fourier method in modeling
optical-fiber communication systems.
Journal of Lightwave Technology. 2003;
21:61-68. DOI: 10.1109/
JLT.2003.808628

[13] Liu X, Lee B. A fast method for
nonlinear Schrodinger equation. IEEE
Photonics Technology Letters. 2003;15:
1549-1551. DOI: 10.1109/
LPT.2003.818679

[14] Premaratne M. Numerical
simulation of nonuniformly time-
sampled pulse propagation in nonlinear
fiber. Journal of Lightwave Technology.
2005;23:2434-2442. DOI: 10.1109/
JLT.2005.850770

[15] Dabas B, Kaushal J, Rajput M, Sinha
RK. Nonlinear pulse propagation in
chalcogenide As2Se3 glass photonic
crystal fiber using RK4IP method.
Applied Optics. 2011;50:5803-5811. DOI:
10.1364/AO.50.005803

[16] Pedersen MEV, Ji C, Chris X,
Rottwitt K. Transverse field dispersion
in the generalized nonlinear
Schrodinger equation: Four wave
mixing in a higher order mode fiber.

31

Nonlinear Schrödinger Equation
DOI: http://dx.doi.org/10.5772/intechopen.81093



Journal of Lightwave Technology. 2013;
31:3425-3431. DOI: 10.1109/
JLT.2013.2283423

[17] Deiterding R, Glowinski R, Oliver
H, Poole S. A reliable split-step Fourier
method for the propagation equation of
ultra-fast pulses in single-mode optical
fibers. Journal of Lightwave
Technology. 2013;31:2008-2017. DOI:
10.1109/JLT.2013.2262654

[18] Choudhuri A, Porsezian K. Impact
of dispersion and non-Kerr nonlinearity
on the modulational instability of the
higher-order nonlinear Schrodinger
equation. Physical Review A. 2012;85:
033820. DOI: 10.1103/
PhysRevA.85.033820

[19] Huang J, Yao J. Small-signal analysis
of cross-phase modulation instability in
lossy fibres. Journal of Modern Optics.
2005;52:1947-1955. DOI: 10.1080/
09500340500106717

[20] Wang J, Petermann K. Small signal
analysis for dispersive optical fiber
communication systems. Journal of
Lightwave Technology. 1992;10:96.
DOI: 10.1109/50.108743

[21] Huang W, Hong J. A coupled-mode
analysis of modulation instability in
optical fibers. Journal of Lightwave
Technology. 1992;10:156-162. DOI:
10.1109/50.120570

[22] Meslener GJ. Chromatic dispersion
induced distortion of modulated
monochromatic light employing direct
detection. IEEE Journal of Quantum
Electronics. 1984. DOI: QE-20:
1208-1216. DOI:10.1109/
JQE.1984.1072286

[23] Koyama F, Suematsu Y. Analysis of
dynamic spectral width of dynamic-
single-mode (DSM) lasers and related
transmission bandwidth of single-mode
fibers. IEEE Journal of Quantum
Electronics. 1985. DOI: QE-21:292-297.
DOI:10.1109/JQE.1985.1072653

[24] Rchraplyvy A, Tkach RW, Buhl LL,
Alferness RC. Phase modulation to
amplitude modulation conversion of
CW laser light in optical fibres.
Electronics Letters. 1988;22:409-412.
DOI: 10.1049/el:19860279

[25] Grudihin AB, Dianov EM, Korobkin
DV, Prokhorov AM, Serkin VN. Decay
of femtosecond pulses in single-mode
fiber-optic waveguides. JETP Letters.
1987;46:221-225

[26] Agrawal GP, Baldeck PL, Alfano RR.
Modulation instability induced by cross-
phase modulation in optical fibers.
Physical Review A. 1989;39:3406-3413.
DOI: 10.1103/PhysRevA.39.3406

[27] Ciaramella E, Tamburrini M.
Modulation instability in long amplified
links with strong dispersion
compensation. IEEE Photonics
Technology Letters. 1999;11:1608-1610.
DOI: 10.1109/ 68.806862

[28] Huang J, Yao J. Analysis of cross-
phase modulation in WDM systems.
Journal of Modern Optics. 2005;52:
1819-1825. DOI: 10.1080/
09500340500092016

[29] Cartaxo AVT. Impact of modulation
frequency on crossphase modulation
effect in intensity modulation-direct
detection WDM systems. IEEE
Photonics Technology Letters. 1998;10:
1268-1270. DOI: 10.1109/68.705612

[30] Huang J, Yao J, Degang X. Green
function method for the time domain
simulation of pulse propagation.
Applied Optics. 2014;53(16):-20

[31] Shen YR. The Principles of
Nonlinear Optics. Hoboken, NJ: John
Wiley & Sons, Inc; 1984

[32] Huang J, Yao J. Estimation of the
fourth-order dispersion coefficient β4.
Chinese Optics Letters. 2012;10:
101903-101903. DOI: 10.3788/
COL201210.101903

32

Nonlinear Optics ‐ Novel Results in Theory and Applications

[33] Capmany J, Pastor D, Sales S,
Ortega B. Effects of fourth-order
dispersion in very high-speed optical
time-division multiplexed transmission.
Optics Letters. 2002;27:960-962. DOI:
10.1364/OL.27.000960

[34] Igarashi K, Saito S, Kishi M,
Tsuchiya M. Broad-band and extremely
flat super-continuum generation via
optical parametric gain extended
spectrally by fourth-order dispersion in
anomalous-dispersion-flattened fibers.
IEEE Journal of Selected Topics in
Quantum Electronics. 2002;8:521-526.
DOI: 10.1109/JSTQE.2002.1016355

[35] Gholami F, Chavez Boggio JM, Moro
S, Alic N, Radic S. Measurement of
ultra-low fourth order dispersion
coefficient of nonlinear fiber by distant
low-power FWM. IEEE Photonics
Society Summer Topical Meeting Series.
2010;2010:162-163. DOI: 10.1109/
PHOSST.2010.5553630

[36] Marhic ME, Wong KK-Y, Kazovsky
LG. Wide-band tuning of the gain
spectra of one-pump fiber optical
parametric amplifiers. IEEE Journal of
Selected Topics in Quantum Electronics.
2004;10:1133-1141. DOI: 10.1109/
JSTQE.2004.835298

[37] Gui M, Jing H. Statistical analyses of
ASE noise. Optics and Photonics
Journal. 2017;7:160-169. DOI: 10.4236/
opj.2017.710016

[38] Nichel J, Schurmann HW, Serov VS.
Some elliptic travelling wave solution to
the Nonikov-Vesela equation. In:
Proceedings of the International
Conference on Days on Diffraction,
DD2005; 2005, 28–01; 2005. pp. 177-186

[39] Primak S, Kontorovich V, Lyandres
V. Stochastic Method and Their
Applications to Communications.
Chichester, UK: John Wiley & Sons;
2004. Chap. 7. DOI:10.1002/
0470021187

[40] Dlubek MP, Phillips AJ, Larkins EC.
Nonlinear evolution of Gaussian ASE
noise in ZMNL fiber. Journal of
Lightwave Technology. 2008;26:
891-898. DOI: 10.1109/JLT.2008.917373

33

Nonlinear Schrödinger Equation
DOI: http://dx.doi.org/10.5772/intechopen.81093



Journal of Lightwave Technology. 2013;
31:3425-3431. DOI: 10.1109/
JLT.2013.2283423

[17] Deiterding R, Glowinski R, Oliver
H, Poole S. A reliable split-step Fourier
method for the propagation equation of
ultra-fast pulses in single-mode optical
fibers. Journal of Lightwave
Technology. 2013;31:2008-2017. DOI:
10.1109/JLT.2013.2262654

[18] Choudhuri A, Porsezian K. Impact
of dispersion and non-Kerr nonlinearity
on the modulational instability of the
higher-order nonlinear Schrodinger
equation. Physical Review A. 2012;85:
033820. DOI: 10.1103/
PhysRevA.85.033820

[19] Huang J, Yao J. Small-signal analysis
of cross-phase modulation instability in
lossy fibres. Journal of Modern Optics.
2005;52:1947-1955. DOI: 10.1080/
09500340500106717

[20] Wang J, Petermann K. Small signal
analysis for dispersive optical fiber
communication systems. Journal of
Lightwave Technology. 1992;10:96.
DOI: 10.1109/50.108743

[21] Huang W, Hong J. A coupled-mode
analysis of modulation instability in
optical fibers. Journal of Lightwave
Technology. 1992;10:156-162. DOI:
10.1109/50.120570

[22] Meslener GJ. Chromatic dispersion
induced distortion of modulated
monochromatic light employing direct
detection. IEEE Journal of Quantum
Electronics. 1984. DOI: QE-20:
1208-1216. DOI:10.1109/
JQE.1984.1072286

[23] Koyama F, Suematsu Y. Analysis of
dynamic spectral width of dynamic-
single-mode (DSM) lasers and related
transmission bandwidth of single-mode
fibers. IEEE Journal of Quantum
Electronics. 1985. DOI: QE-21:292-297.
DOI:10.1109/JQE.1985.1072653

[24] Rchraplyvy A, Tkach RW, Buhl LL,
Alferness RC. Phase modulation to
amplitude modulation conversion of
CW laser light in optical fibres.
Electronics Letters. 1988;22:409-412.
DOI: 10.1049/el:19860279

[25] Grudihin AB, Dianov EM, Korobkin
DV, Prokhorov AM, Serkin VN. Decay
of femtosecond pulses in single-mode
fiber-optic waveguides. JETP Letters.
1987;46:221-225

[26] Agrawal GP, Baldeck PL, Alfano RR.
Modulation instability induced by cross-
phase modulation in optical fibers.
Physical Review A. 1989;39:3406-3413.
DOI: 10.1103/PhysRevA.39.3406

[27] Ciaramella E, Tamburrini M.
Modulation instability in long amplified
links with strong dispersion
compensation. IEEE Photonics
Technology Letters. 1999;11:1608-1610.
DOI: 10.1109/ 68.806862

[28] Huang J, Yao J. Analysis of cross-
phase modulation in WDM systems.
Journal of Modern Optics. 2005;52:
1819-1825. DOI: 10.1080/
09500340500092016

[29] Cartaxo AVT. Impact of modulation
frequency on crossphase modulation
effect in intensity modulation-direct
detection WDM systems. IEEE
Photonics Technology Letters. 1998;10:
1268-1270. DOI: 10.1109/68.705612

[30] Huang J, Yao J, Degang X. Green
function method for the time domain
simulation of pulse propagation.
Applied Optics. 2014;53(16):-20

[31] Shen YR. The Principles of
Nonlinear Optics. Hoboken, NJ: John
Wiley & Sons, Inc; 1984

[32] Huang J, Yao J. Estimation of the
fourth-order dispersion coefficient β4.
Chinese Optics Letters. 2012;10:
101903-101903. DOI: 10.3788/
COL201210.101903

32

Nonlinear Optics ‐ Novel Results in Theory and Applications

[33] Capmany J, Pastor D, Sales S,
Ortega B. Effects of fourth-order
dispersion in very high-speed optical
time-division multiplexed transmission.
Optics Letters. 2002;27:960-962. DOI:
10.1364/OL.27.000960

[34] Igarashi K, Saito S, Kishi M,
Tsuchiya M. Broad-band and extremely
flat super-continuum generation via
optical parametric gain extended
spectrally by fourth-order dispersion in
anomalous-dispersion-flattened fibers.
IEEE Journal of Selected Topics in
Quantum Electronics. 2002;8:521-526.
DOI: 10.1109/JSTQE.2002.1016355

[35] Gholami F, Chavez Boggio JM, Moro
S, Alic N, Radic S. Measurement of
ultra-low fourth order dispersion
coefficient of nonlinear fiber by distant
low-power FWM. IEEE Photonics
Society Summer Topical Meeting Series.
2010;2010:162-163. DOI: 10.1109/
PHOSST.2010.5553630

[36] Marhic ME, Wong KK-Y, Kazovsky
LG. Wide-band tuning of the gain
spectra of one-pump fiber optical
parametric amplifiers. IEEE Journal of
Selected Topics in Quantum Electronics.
2004;10:1133-1141. DOI: 10.1109/
JSTQE.2004.835298

[37] Gui M, Jing H. Statistical analyses of
ASE noise. Optics and Photonics
Journal. 2017;7:160-169. DOI: 10.4236/
opj.2017.710016

[38] Nichel J, Schurmann HW, Serov VS.
Some elliptic travelling wave solution to
the Nonikov-Vesela equation. In:
Proceedings of the International
Conference on Days on Diffraction,
DD2005; 2005, 28–01; 2005. pp. 177-186

[39] Primak S, Kontorovich V, Lyandres
V. Stochastic Method and Their
Applications to Communications.
Chichester, UK: John Wiley & Sons;
2004. Chap. 7. DOI:10.1002/
0470021187

[40] Dlubek MP, Phillips AJ, Larkins EC.
Nonlinear evolution of Gaussian ASE
noise in ZMNL fiber. Journal of
Lightwave Technology. 2008;26:
891-898. DOI: 10.1109/JLT.2008.917373

33

Nonlinear Schrödinger Equation
DOI: http://dx.doi.org/10.5772/intechopen.81093



Chapter 3

Three Solutions to the Nonlinear
Schrödinger Equation for a
Constant Potential
Gabino Torres Vega

Abstract

We introduce three sets of solutions to the nonlinear Schrödinger equation for
the free particle case. A well-known solution is written in terms of Jacobi elliptic
functions, which are the nonlinear versions of the trigonometric functions sin, cos,
tan, cot, sec, and csc. The nonlinear versions of the other related functions like the
real and complex exponential functions and the linear combinations of them is the
subject of this chapter. We also illustrate the use of these functions in Quantum
Mechanics as well as in nonlinear optics.

Keywords: new nonlinear exponential-like functions, superpositions of nonlinear
functions, nonlinear optics, nonlinear quantum mechanics

1. Introduction

Since the nonlinear Schrödinger equation appears in many fields of physics,
including nonlinear optics, thus, there is interest in finding its solutions, in particu-
lar, its eigenfunctions. A set of eigenfunctions, for the free particle, is given in terms
of Jacobi’s elliptic functions [1–4], which are real periodic functions, and they have
been used in order to find the eigenstates of the particle in a box [5, 6] and in a
double square well [7].

Jacobi’s elliptic functions are needed in subjects like the description of pulse
narrowing nonlinear transmission lines [8].

Interestingly, there is a way to linearly superpose Jacobi’s elliptic functions
by means of adding constant terms to their arguments [3]. So, we ask
ourselves if there are other ways to achieve nonlinear superposition of
nonlinear functions.

Besides, the linear equation has complex solutions with a current density flux
different from zero, and we expect that the nonlinear equation should also have this
type of solutions at least for small nonlinear interaction.

In this chapter, we introduce three other sets of functions which are also solu-
tions to the Gross-Pitaevskii equation; they all are nonlinear superpositions of
functions. The modification of the elliptic functions allows us to consider the
nonlinear equivalent of the linear superposition of exponential, real and complex,
and trigonometric functions found in nonrelativistic linear quantum mechanics.
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The functions we are about to introduce can be used, for instance, in the case of
a free Bose-Einstein condensate reflected by a potential barrier. One might be able
to further analyze nonlinear tunneling [7] and nonlinear optics phenomena with the
help of these functions.

2. Nonlinear complex exponential functions

The definitions of the functions and their properties are similar to those used in
Jacobi’s elliptic functions [1, 2, 4]. Let us start with the definition of our complex
exponential nonlinear functions:

cnc u; αð Þ ¼ a eix þ b e�ix, snc u; αð Þ ¼ a eix � b e�ix, (1)

dnc u; αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α cnc uð Þj j2

q
, ncc u; αð Þ ¼ 1

cnc u; αð Þ , (2)

nsc u; αð Þ ¼ 1
snc u; αð Þ , ndc u; αð Þ ¼ 1

dnc u; αð Þ , (3)

tac u; αð Þ ¼ snc u; αð Þ
cnc u; αð Þ , coc u; αð Þ ¼ cnc u; αð Þ

snc u; αð Þ : (4)

where α, a, b∈R, and they are such that α < 1=max a� bð Þ2
h i

. With these choices,

the function dnc is always positive, and we do not have to worry about branch
points in the relation between the variables x and u. The variables u and x are
related as

u ¼
ðx
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α cnc t; αð Þj j2

q : (5)

A plot of these functions is found in Figure 1 for a particular set of values of
the parameters. These functions behave like the usual superposition of complex
exponential functions (α ¼ 0), changing behavior as the value of α increases until

Figure 1.
Nonlinear complex exponential functions with a ¼ 0:1, b ¼ 0:9, and α ¼ 0:9. The curves correspond to 1,
cnc u; αð Þj j2; 2, snc u; αð Þj j2; and 3, dnc u; αð Þ.
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it reaches the soliton value, α ¼ 1=max a� bð Þ2
h i

. The functions become concen-

trated around the origin for the soliton value of α.
The quarter period of these functions is defined as

Kc ¼
ðπ=2
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α cnc t; αð Þj j2

q : (6)

If we call

n0 ¼ a2 þ b2, n1 ¼ 1� 2α a2 þ b2
� �

, (7)

n2 ¼ 1� 3
2
α a2 þ b2
� �

, n3 ¼ 1� α a2 þ b2
� �

, (8)

n4 ¼ 1� α

2
a2 þ b2
� �

, n5 ¼ 1þ α

2
a2 þ b2
� �

, (9)

n6 ¼ 1þ α a2 þ b2
� �

, n7 ¼ 1þ 3
2
α a2 þ b2
� �

, (10)

the squares of the nonlinear functions are written as

cnc2 u; αð Þ � snc2 u; αð Þ ¼ 4ab, (11)

cnc u; αð Þj j2 þ snc u; αð Þj j2 ¼ 2n0, (12)

dnc2 u; αð Þ ¼ 1� α cnc u; αð Þj j2 (13)

¼ n1 þ α snc u; αð Þj j2, (14)

tac2 u; αð Þ ¼ 1� 4ab ncc2 u; αð Þ, (15)

coc2 u; αð Þ ¼ 1þ 4abnsc2 u; αð Þ: (16)

Some derivatives of these functions are

cnc0 u; αð Þ ¼ i snc u; αð Þ dnc u; αð Þ, (17)

snc0 u; αð Þ ¼ i cnc u; αð Þ dnc u; αð Þ, (18)

dnc0 u; αð Þ ¼ αℑ cnc∗ u; αð Þ snc u; αð Þf g, (19)

ncc0 u; αð Þ ¼ �itac u; αð Þ ncc u; αð Þ dnc u; αð Þ, (20)

nsc0 u; αð Þ ¼ �icoc u; αð Þ nsc u; αð Þ dnc u; αð Þ, (21)

ndc0 u; αð Þ ¼ �α ndc2 u; αð Þ ℑ cnc∗ u; αð Þ snc u; αð Þf g, (22)

tac0 u; αð Þ ¼ i 1þ tac2 u; αð Þ� �
dnc u; αð Þ (23)

coc0 u; αð Þ ¼ �i4abnsc2 u; αð Þdnc u; αð Þ, (24)

where ℑ indicates to take the imaginary part of the quantity.
We also have that the derivative of the inverse functions is given by

d
dy

cnc�1 yð Þ ¼ � iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 4abð Þ 1� α yj j2

� �r , (25)
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to further analyze nonlinear tunneling [7] and nonlinear optics phenomena with the
help of these functions.

2. Nonlinear complex exponential functions

The definitions of the functions and their properties are similar to those used in
Jacobi’s elliptic functions [1, 2, 4]. Let us start with the definition of our complex
exponential nonlinear functions:

cnc u; αð Þ ¼ a eix þ b e�ix, snc u; αð Þ ¼ a eix � b e�ix, (1)

dnc u; αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α cnc uð Þj j2

q
, ncc u; αð Þ ¼ 1

cnc u; αð Þ , (2)

nsc u; αð Þ ¼ 1
snc u; αð Þ , ndc u; αð Þ ¼ 1

dnc u; αð Þ , (3)

tac u; αð Þ ¼ snc u; αð Þ
cnc u; αð Þ , coc u; αð Þ ¼ cnc u; αð Þ

snc u; αð Þ : (4)

where α, a, b∈R, and they are such that α < 1=max a� bð Þ2
h i

. With these choices,

the function dnc is always positive, and we do not have to worry about branch
points in the relation between the variables x and u. The variables u and x are
related as

u ¼
ðx
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α cnc t; αð Þj j2

q : (5)

A plot of these functions is found in Figure 1 for a particular set of values of
the parameters. These functions behave like the usual superposition of complex
exponential functions (α ¼ 0), changing behavior as the value of α increases until

Figure 1.
Nonlinear complex exponential functions with a ¼ 0:1, b ¼ 0:9, and α ¼ 0:9. The curves correspond to 1,
cnc u; αð Þj j2; 2, snc u; αð Þj j2; and 3, dnc u; αð Þ.
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it reaches the soliton value, α ¼ 1=max a� bð Þ2
h i

. The functions become concen-

trated around the origin for the soliton value of α.
The quarter period of these functions is defined as

Kc ¼
ðπ=2
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α cnc t; αð Þj j2

q : (6)

If we call

n0 ¼ a2 þ b2, n1 ¼ 1� 2α a2 þ b2
� �

, (7)

n2 ¼ 1� 3
2
α a2 þ b2
� �

, n3 ¼ 1� α a2 þ b2
� �

, (8)

n4 ¼ 1� α

2
a2 þ b2
� �

, n5 ¼ 1þ α

2
a2 þ b2
� �

, (9)

n6 ¼ 1þ α a2 þ b2
� �

, n7 ¼ 1þ 3
2
α a2 þ b2
� �

, (10)

the squares of the nonlinear functions are written as

cnc2 u; αð Þ � snc2 u; αð Þ ¼ 4ab, (11)

cnc u; αð Þj j2 þ snc u; αð Þj j2 ¼ 2n0, (12)

dnc2 u; αð Þ ¼ 1� α cnc u; αð Þj j2 (13)

¼ n1 þ α snc u; αð Þj j2, (14)

tac2 u; αð Þ ¼ 1� 4ab ncc2 u; αð Þ, (15)

coc2 u; αð Þ ¼ 1þ 4abnsc2 u; αð Þ: (16)

Some derivatives of these functions are

cnc0 u; αð Þ ¼ i snc u; αð Þ dnc u; αð Þ, (17)

snc0 u; αð Þ ¼ i cnc u; αð Þ dnc u; αð Þ, (18)

dnc0 u; αð Þ ¼ αℑ cnc∗ u; αð Þ snc u; αð Þf g, (19)

ncc0 u; αð Þ ¼ �itac u; αð Þ ncc u; αð Þ dnc u; αð Þ, (20)

nsc0 u; αð Þ ¼ �icoc u; αð Þ nsc u; αð Þ dnc u; αð Þ, (21)

ndc0 u; αð Þ ¼ �α ndc2 u; αð Þ ℑ cnc∗ u; αð Þ snc u; αð Þf g, (22)

tac0 u; αð Þ ¼ i 1þ tac2 u; αð Þ� �
dnc u; αð Þ (23)

coc0 u; αð Þ ¼ �i4abnsc2 u; αð Þdnc u; αð Þ, (24)

where ℑ indicates to take the imaginary part of the quantity.
We also have that the derivative of the inverse functions is given by

d
dy

cnc�1 yð Þ ¼ � iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 4abð Þ 1� α yj j2

� �r , (25)
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d
dy

snc�1 yð Þ ¼ � iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4abþ y2ð Þ n1 þ α yj j2

� �r , (26)

d
dy

ncc�1 yð Þ ¼ � i

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4aby2ð Þ 1� α= yj j2

� �r , (27)

d
dy

nsc�1 yð Þ ¼ � i

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4aby2ð Þ n1 þ α= yj j2

� �r : (28)

Now, the second derivatives are as follows

cnc00 u; αð Þ ¼ 2α cnc u; αð Þj j2 � n6 cnc u; αð Þ � 2αab cnc∗ u; αð Þ,
h

(29)

snc00 u; αð Þ ¼ 3α a2 þ b2
� �� 1

� �� 2α snc u; αð Þj j2
� �

snc u; αð Þ � 2αab snc∗ u; αð Þ,
(30)

dnc00 u; αð Þ ¼ 2 dnc2 u; αð Þ � αn0
� �

dnc u; αð Þ, (31)

ncc00 u; αð Þ ¼ n6ncc u; αð Þ � 2αcnc∗ u; αð Þ þ 2αabncc2 u; αð Þcnc∗ u; αð Þ, (32)

nsc00 u; αð Þ ¼ n3 þ 8abn1nsc2 u; αð Þð Þnsc u; αð Þ
� α 1þ 10abnsc2 u; αð Þ½ �snc∗ u; αð Þ, (33)

ndc00 u; αð Þ ¼ 2α2 ndc3 u; αð Þ ℑcnc u; αð Þsncðu; αÞð Þ2
þ 2α a2 þ b2

� �
ndc u; αð Þ, (34)

tac00 u; αð Þ ¼ 1þ tac2 u; αð Þ½ �
α 2tac u; αð Þ þ iℑtacðu; αÞ½ � cnc u; αð Þj j2 � 2tac u; αð Þ
n o

,
(35)

coc00 u; αð Þ ¼ 2 1� coc2 u; αð Þ½ �coc u; αð Þdnc2 u; αð Þ
� 2αab

cnc∗ u; αð Þ
cnc u; αð Þ � snc∗ u; αð Þ

snc u; αð Þ
� �

coc u; αð Þ: (36)

The first three of the above equations can be thought of as modifications of the
Gross-Pitaevskii equation, which allows for solutions of the form cnc u; αð Þ, snc u; αð Þ,
and dnc u; αð Þ. However, when a or b vanishes, we get the Gross-Pitaevskii form.

With these results at hand, we can see that the probability current densities
associated with cnc u; αð Þ and snc u; αð Þ are given by

jc uð Þ ¼ Re cnc∗ u; αð Þ �i
d
du

cnc u; αð Þ
� �� �

¼ a2 � b2
� �

dnc u; αð Þ,
(37)

js uð Þ ¼ Re snc∗ u; αð Þ �i
d
du

snc u; αð Þ
� �� �

¼ a2 � b2
� �

dnc u; αð Þ,
(38)

respectively. The nonlinear term causes that the quantum flux be no longer
constant (as is the case for linear interaction) but modulated by dnc u; αð Þ instead.
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The differential equations for cnc u; αð Þ and snc u; αð Þ would have the Gross-
Pitaevskii equation form if any of α, a, or b becomes zero or when a ¼ b (which is
the case of real functions, i.e., Jacobi’s functions). The case of α, a, or b zero
corresponds to the cases when there is no nonlinear interaction or when there is
total reflection or only transmission in a quantum system.

2.1 The potential step

A straight forward application of the functions introduced in this section is the
finding of the eigenfunctions of the Gross-Pitaevskii equation for a step potential:

V uð Þ ¼ 0, when u <0,
V0, when u≥0,

�
(39)

and a chemical potential μ larger than the potential height V0. The Gross-
Pitaevskii equation is written as

d2ψ uð Þ
du2

þ 2ML2

ћ2
μ� V0ð Þ ψ uð Þ � 2ML2

ћ2A2 NU0 ψ uð Þj j2ψ uð Þ ¼ 0, (40)

where ψ uð Þ is the unnormalized eigenfunction for the Bose-Einstein condensate
(BEC), M is the mass of a single atom, N is the number of atoms in the condensate,
U0 ¼ 4πћ2a=M characterizes the atom-atom interaction, a is the scattering length, L
is a scaling length, A is the integral of the magnitude squared of the wave function,
u is a dimensionless length, μ is the chemical potential, and V0 is an external
constant potential.

For u<0 (we call it the region I, V0 ¼ 0), we use the cnc function with a ¼ 1, i.e.,

ψ I u; αð Þ ¼ cnc kIu; αIð Þ, (41)

with parameters

k2I ¼
2ML2μ

ћ2 1þ αI a2 þ b2
� �� � , (42)

αI ¼ ML2NU0

ћ2A2k2I
(43)

From these equations, we obtain

αI ¼ NU0

2μA2 �NU0 a2 þ b2
� � , (44)

and

μ ¼ ћ2k2I
2ML2 þ

NU0

2A2 a2 þ b2
� �

: (45)

This last result for μ is in agreement with the conjecture formulated by D’Agosta
et al. in Ref. [9], with the last term being the self-energy of the condensate, which is
independent of kI.

For u>0, we use the nonlinear plane wave (a ¼ T, b ¼ 0)

ψ II uð Þ ¼ cnc kIIu; αIIð Þ, (46)
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d
dy
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dy
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� �r : (28)

Now, the second derivatives are as follows

cnc00 u; αð Þ ¼ 2α cnc u; αð Þj j2 � n6 cnc u; αð Þ � 2αab cnc∗ u; αð Þ,
h

(29)
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� �� 2α snc u; αð Þj j2
� �

snc u; αð Þ � 2αab snc∗ u; αð Þ,
(30)

dnc00 u; αð Þ ¼ 2 dnc2 u; αð Þ � αn0
� �
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ncc00 u; αð Þ ¼ n6ncc u; αð Þ � 2αcnc∗ u; αð Þ þ 2αabncc2 u; αð Þcnc∗ u; αð Þ, (32)

nsc00 u; αð Þ ¼ n3 þ 8abn1nsc2 u; αð Þð Þnsc u; αð Þ
� α 1þ 10abnsc2 u; αð Þ½ �snc∗ u; αð Þ, (33)

ndc00 u; αð Þ ¼ 2α2 ndc3 u; αð Þ ℑcnc u; αð Þsncðu; αÞð Þ2
þ 2α a2 þ b2

� �
ndc u; αð Þ, (34)

tac00 u; αð Þ ¼ 1þ tac2 u; αð Þ½ �
α 2tac u; αð Þ þ iℑtacðu; αÞ½ � cnc u; αð Þj j2 � 2tac u; αð Þ
n o

,
(35)

coc00 u; αð Þ ¼ 2 1� coc2 u; αð Þ½ �coc u; αð Þdnc2 u; αð Þ
� 2αab

cnc∗ u; αð Þ
cnc u; αð Þ � snc∗ u; αð Þ

snc u; αð Þ
� �

coc u; αð Þ: (36)

The first three of the above equations can be thought of as modifications of the
Gross-Pitaevskii equation, which allows for solutions of the form cnc u; αð Þ, snc u; αð Þ,
and dnc u; αð Þ. However, when a or b vanishes, we get the Gross-Pitaevskii form.

With these results at hand, we can see that the probability current densities
associated with cnc u; αð Þ and snc u; αð Þ are given by

jc uð Þ ¼ Re cnc∗ u; αð Þ �i
d
du

cnc u; αð Þ
� �� �

¼ a2 � b2
� �

dnc u; αð Þ,
(37)

js uð Þ ¼ Re snc∗ u; αð Þ �i
d
du

snc u; αð Þ
� �� �

¼ a2 � b2
� �

dnc u; αð Þ,
(38)

respectively. The nonlinear term causes that the quantum flux be no longer
constant (as is the case for linear interaction) but modulated by dnc u; αð Þ instead.
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The differential equations for cnc u; αð Þ and snc u; αð Þ would have the Gross-
Pitaevskii equation form if any of α, a, or b becomes zero or when a ¼ b (which is
the case of real functions, i.e., Jacobi’s functions). The case of α, a, or b zero
corresponds to the cases when there is no nonlinear interaction or when there is
total reflection or only transmission in a quantum system.

2.1 The potential step

A straight forward application of the functions introduced in this section is the
finding of the eigenfunctions of the Gross-Pitaevskii equation for a step potential:

V uð Þ ¼ 0, when u <0,
V0, when u≥0,

�
(39)

and a chemical potential μ larger than the potential height V0. The Gross-
Pitaevskii equation is written as

d2ψ uð Þ
du2

þ 2ML2

ћ2
μ� V0ð Þ ψ uð Þ � 2ML2

ћ2A2 NU0 ψ uð Þj j2ψ uð Þ ¼ 0, (40)

where ψ uð Þ is the unnormalized eigenfunction for the Bose-Einstein condensate
(BEC), M is the mass of a single atom, N is the number of atoms in the condensate,
U0 ¼ 4πћ2a=M characterizes the atom-atom interaction, a is the scattering length, L
is a scaling length, A is the integral of the magnitude squared of the wave function,
u is a dimensionless length, μ is the chemical potential, and V0 is an external
constant potential.

For u<0 (we call it the region I, V0 ¼ 0), we use the cnc function with a ¼ 1, i.e.,

ψ I u; αð Þ ¼ cnc kIu; αIð Þ, (41)

with parameters

k2I ¼
2ML2μ

ћ2 1þ αI a2 þ b2
� �� � , (42)

αI ¼ ML2NU0

ћ2A2k2I
(43)

From these equations, we obtain

αI ¼ NU0

2μA2 �NU0 a2 þ b2
� � , (44)

and

μ ¼ ћ2k2I
2ML2 þ

NU0

2A2 a2 þ b2
� �

: (45)

This last result for μ is in agreement with the conjecture formulated by D’Agosta
et al. in Ref. [9], with the last term being the self-energy of the condensate, which is
independent of kI.

For u>0, we use the nonlinear plane wave (a ¼ T, b ¼ 0)

ψ II uð Þ ¼ cnc kIIu; αIIð Þ, (46)
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with

1þ αIIT2 ¼ 2ML2

ћ2k2II
μ� V0ð Þ, 2ML2NU0

ћ2A2k2II
¼ 2αII, (47)

i.e.,

μ ¼ V0 þ ћ2k2II
2ML2 þ

NU0

2A2 T2, k2II ¼
2ML2 μ� V0ð Þ
ћ2 1þ αIIT2� � : (48)

By combining the expressions for the αs in both regions, we find that

αIk
2
I ¼ αIIk

2
II, (49)

and since the chemical potential should be the same on both regions, we also get

V0 ¼ ћ2 k2I � k2II
� �

2ML2 þNU0

2A2 a2 þ b2 � T2� �
: (50)

The equal flux condition results in

kI a2 � b2
� � ¼ kIIT2: (51)

Now, equating the functions and their derivatives at u ¼ 0, we find two relations
for the parameters:

aþ b ¼ T, (52)

a� bð ÞkI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αI aþ bð Þ2

q
¼ TkII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αIIT2

q
, (53)

i.e.,

kII
kI

¼ a� bð Þ
aþ bð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� αI aþ bð Þ2

1� αI aþ bð Þ2k2I=k2II

s
: (54)

We show these values in Figure 2. We observe a behavior similar to the linear
system; when μ≫V0 (kII ! kI), which means very high energies, the step is just a
small perturbation on the evolution of the wave.

Figure 2.
A three-dimensional plot of the values of kII=kI for the potential step. Dimensionless units.
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3. Nonlinear superposition of trigonometric functions

A second set of nonlinear functions is the nonlinear version of the superposition
of trigonometric functions, which is the subject of this section. We only mention
some results; more details are found in Ref. [10].

Let us consider the change of variable from θ to u defined by the Jacobian

dna uð Þ ¼ dθ
du

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α

2
a2 � b2
� �

cos 2θð Þ þ αab sin 2θð Þ
r

, (55)

where α:a, b∈R, and ∣α∣ <4∣ab∣= a2 þ b2
� �2

, a plot of 4∣ab∣= a2 þ b2
� �2

, is shown in
Figure 3. Thus, the relationship between θ and u is

u ¼
ðθ
0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α

2 a2 � b2
� �

cos 2θð Þ þ αab sin 2θð Þ
q : (56)

We also define the nonlinear functions

sna uð Þ≔a sin θð Þ � b cos θð Þ, (57)

cna uð Þ≔a cos θð Þ þ b sin θð Þ, (58)

osa uð Þ≔ 1
sna uð Þ , oca uð Þ≔ 1

cna uð Þ , oda uð Þ≔ 1
dna uð Þ , (59)

csa uð Þ≔ cna uð Þ
sna uð Þ , sca uð Þ≔ sna uð Þ

cna uð Þ , dsa uð Þ≔dna uð Þ
sna uð Þ , (60)

dca uð Þ≔dna uð Þ
cna uð Þ , sda uð Þ≔ sna uð Þ

dna uð Þ , cda uð Þ≔ cna uð Þ
dna uð Þ : (61)

A plot of these functions can be found in Figure 4, for a set of values of α, a, b.
The algebraic relationships between the above functions are

Figure 3.
Three-dimensional plot of 4∣ab∣= a2 þ b2

� �2
.
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We show these values in Figure 2. We observe a behavior similar to the linear
system; when μ≫V0 (kII ! kI), which means very high energies, the step is just a
small perturbation on the evolution of the wave.
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3. Nonlinear superposition of trigonometric functions

A second set of nonlinear functions is the nonlinear version of the superposition
of trigonometric functions, which is the subject of this section. We only mention
some results; more details are found in Ref. [10].

Let us consider the change of variable from θ to u defined by the Jacobian

dna uð Þ ¼ dθ
du

¼
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where α:a, b∈R, and ∣α∣ <4∣ab∣= a2 þ b2
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Figure 3. Thus, the relationship between θ and u is

u ¼
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1þ α

2 a2 � b2
� �

cos 2θð Þ þ αab sin 2θð Þ
q : (56)

We also define the nonlinear functions

sna uð Þ≔a sin θð Þ � b cos θð Þ, (57)

cna uð Þ≔a cos θð Þ þ b sin θð Þ, (58)

osa uð Þ≔ 1
sna uð Þ , oca uð Þ≔ 1

cna uð Þ , oda uð Þ≔ 1
dna uð Þ , (59)

csa uð Þ≔ cna uð Þ
sna uð Þ , sca uð Þ≔ sna uð Þ

cna uð Þ , dsa uð Þ≔dna uð Þ
sna uð Þ , (60)

dca uð Þ≔dna uð Þ
cna uð Þ , sda uð Þ≔ sna uð Þ

dna uð Þ , cda uð Þ≔ cna uð Þ
dna uð Þ : (61)

A plot of these functions can be found in Figure 4, for a set of values of α, a, b.
The algebraic relationships between the above functions are

Figure 3.
Three-dimensional plot of 4∣ab∣= a2 þ b2

� �2
.
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a2 þ b2 ¼ sna2 uð Þ þ cna2 uð Þ, (62)

dna2 uð Þ ¼ 1� α

2
sna2 uð Þ � cna2 uð Þ� �

(63)

¼ n4 þ α cna2 uð Þ (64)

¼ n5 � α sna2 uð Þ, (65)

sda2 uð Þ ¼ n0 oda
2 uð Þ � cda2 uð Þ, (66)

1� oda2 uð Þ ¼ α

2
cda2 uð Þ � sda2 uð Þ� �

, (67)

1þ αsda2 uð Þ ¼ n5 oda
2 uð Þ, (68)

1� αcda2 uð Þ ¼ n4 oda
2 uð Þ, (69)

sca2 uð Þ ¼ n0 oca2 uð Þ � 1, (70)

dca2 uð Þ ¼ n4 oca2 uð Þ þ α, (71)

csa2 uð Þ ¼ n0 osa2 uð Þ � 1: (72)

The derivatives of these functions are

sna0 uð Þ ¼ cna uð Þ dna uð Þ, (73)

cna0 uð Þ ¼ �sna uð Þ dna uð Þ, (74)

dna0 uð Þ ¼ �αsna uð Þcna uð Þ, (75)

osa0 uð Þ ¼ �cna uð Þ dna uð Þosa2 uð Þ, (76)

oca0 uð Þ ¼ sna uð Þ dna uð Þoca2 uð Þ, (77)

oda0 uð Þ ¼ α cna uð Þ sna uð Þoda2 uð Þ: (78)

Figure 4.
Plots of the nonlinear functions for a ¼ 0:1, b ¼ 0:9, and α ¼ 1:2. Note that the functions cna and sna have
different shapes, and, thus, they are not just the other function shifted by some amount.
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Another property is the eliminant equation, also known as energy or Liapunov
function,

sna0 uð Þ½ �2 þ n7 sna2 uð Þ � α sna4 uð Þ ¼ n0n5, (79)

½cna0 uð Þ�2 þ n2 cna2 uð Þ þ α cna4 uð Þ ¼ n0n4, (80)

½dna0 uð Þ�2 � 2dna2 uð Þ þ dna4 uð Þ ¼ �n4n5, (81)

½osa0 uð Þ�2 þ n7 osa2 uð Þ � n0n5osa4 uð Þ ¼ α, (82)

½oca0 uð Þ�2 þ n2 oca2 uð Þ � n0n4 oca4 uð Þ ¼ �α, (83)

½oda0 uð Þ�2 � 2oda2 uð Þ þ n4n5 oda
4 uð Þ ¼ �1: (84)

Second derivatives of the functions lead to the differential equations similar to the
Gross-Pitaevskii nonlinear differential equation. For sna, cna, and dna, we have that

sna00 uð Þ þ n7 sna uð Þ � 2α sna3 uð Þ ¼ 0, (85)

cna00 uð Þ þ n2 cna uð Þ þ 2α cna3 uð Þ ¼ 0, (86)

dna00 uð Þ þ 2 dna uð Þ dna2 uð Þ � 1
� � ¼ 0, (87)

osa00 uð Þ þ n7 osa uð Þ � 2n0n5 osa3 uð Þ ¼ 0, (88)

oca00 uð Þ þ n2 oca uð Þ � 2n0n4 oca3 uð Þ ¼ 0, (89)

oda00 uð Þ � 2 oda uð Þ þ 2n4n5 oda
3 uð Þ ¼ 0: (90)

Quarter period of these functions is defined as

Ka α; a; bð Þ ¼
ðπ=2
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α a2 � b2

� �
cos 2tð Þ=2þ αab sin 2tð Þ

q : (91)

A plot of Ka α; a; bð Þ can be found in Figure 5 for α ¼ 1:2.

Figure 5.
Some of the values of nonlinear quarter period Ka α; a; bð Þ, for α ¼ 1:2.

43

Three Solutions to the Nonlinear Schrödinger Equation for a Constant Potential
DOI: http://dx.doi.org/10.5772/intechopen.80938



a2 þ b2 ¼ sna2 uð Þ þ cna2 uð Þ, (62)

dna2 uð Þ ¼ 1� α

2
sna2 uð Þ � cna2 uð Þ� �

(63)

¼ n4 þ α cna2 uð Þ (64)

¼ n5 � α sna2 uð Þ, (65)

sda2 uð Þ ¼ n0 oda
2 uð Þ � cda2 uð Þ, (66)

1� oda2 uð Þ ¼ α

2
cda2 uð Þ � sda2 uð Þ� �

, (67)

1þ αsda2 uð Þ ¼ n5 oda
2 uð Þ, (68)

1� αcda2 uð Þ ¼ n4 oda
2 uð Þ, (69)

sca2 uð Þ ¼ n0 oca2 uð Þ � 1, (70)

dca2 uð Þ ¼ n4 oca2 uð Þ þ α, (71)

csa2 uð Þ ¼ n0 osa2 uð Þ � 1: (72)

The derivatives of these functions are

sna0 uð Þ ¼ cna uð Þ dna uð Þ, (73)

cna0 uð Þ ¼ �sna uð Þ dna uð Þ, (74)

dna0 uð Þ ¼ �αsna uð Þcna uð Þ, (75)

osa0 uð Þ ¼ �cna uð Þ dna uð Þosa2 uð Þ, (76)

oca0 uð Þ ¼ sna uð Þ dna uð Þoca2 uð Þ, (77)

oda0 uð Þ ¼ α cna uð Þ sna uð Þoda2 uð Þ: (78)

Figure 4.
Plots of the nonlinear functions for a ¼ 0:1, b ¼ 0:9, and α ¼ 1:2. Note that the functions cna and sna have
different shapes, and, thus, they are not just the other function shifted by some amount.

42

Nonlinear Optics ‐ Novel Results in Theory and Applications
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The derivatives of the inverse functions are

d
dy

sna�1 yð Þ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 � y2ð Þ n5 � αy2ð Þp , (92)

d
dy

cna�1 yð Þ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 � y2ð Þ n4 þ αy2ð Þp , (93)

d
dy

dna�1 yð Þ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n5 � y2ð Þ y2 � n4ð Þp , (94)

d
dy

osa�1 yð Þ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 y2 � 1ð Þ n5 y2 � αð Þp , (95)

d
dy

oca�1 yð Þ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 y2 � 1ð Þ n4 y2 þ αð Þp , (96)

d
dy

oda�1 yð Þ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n5 y2 � 1ð Þ 1� n4 y2ð Þp : (97)

Then, as expected, we can see that these functions also invert the same integrals
that Jacobi’s functions invert.

We also introduce the integral

Ea uð Þ ¼
ðu
0
dv dna2 vð Þ (98)

¼ n5u� α

ðu
0
dv sna2 vð Þ (99)

¼ n4uþ α

ðu
0
dv cna2 vð Þ, (100)

which resembles Jacobi’s elliptic integral of the second kind. This function is
shown in Figure 6, for a set of values of the parameters.

This is the minimum set of properties for these functions. Fortunately, we can
still introduce another set of nonlinear functions.

Figure 6.
Plot of Ea uð Þ for A ¼ 0:1, B ¼ 0:9, and α ¼ 1:2.
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4. Nonlinear exponential-like functions

It is possible to define still another set of nonlinear functions inspired on Jacobi’s
elliptic functions [11]. Let us consider the following set of nonlinear functions of
exponential type:

pn uð Þ ¼ ex, mn uð Þ ¼ e�x, fn uð Þ ¼ a ex þ b e�x, (101)

gn uð Þ ¼ a ex � b e�x, rn uð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm a ex � b e�xð Þ2

q
, (102)

nf uð Þ ¼ 1
fn uð Þ , ng uð Þ ¼ 1

gn uð Þ , nr uð Þ ¼ 1
rn uð Þ , (103)

with u and x related as

u ¼
ðx
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm a et � b e�tð Þ2

q , (104)

where a, b∈R and m>0. The required values of a, b,m causes that the radical is
positive and then there is no need to consider branching points.

Note that rn uð Þ 6¼, rn �uð Þ, and, then, mn uð Þ is not the mirror image of pn uð Þ,
i.e., mn uð Þ 6¼ pn �uð Þ unless a ¼ b. A plot of these functions is found in Figure 7 for
a set of values of the parameters a, b, and m. The values of a and b are related to the
mirror symmetry between the functions pn uð Þ and mn uð Þ, being b ¼ a the more
symmetric case (which would be the case of Jacobi’s elliptic functions with complex
arguments). The value of m causes that these functions decay or increase more
rapidly with respect to the regular exponential functions. The domain of these
functions is finite unless m ¼ 0; in fact, increasing the magnitude of x beyond, for
instance, ln 104=2a

ffiffiffiffi
m

p� �
, does not increase the magnitude of u significantly. One

can extend the domain of these functions by setting the value of the function to zero

Figure 7.
Nonlinear exponential-like functions for m ¼ 1, a ¼ 0:1, and b ¼ 0:9.
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or infinity for larger ∣u∣, making them nonperiodic functions on the real axes. We
also note that some of these functions are actually bounded.

We can verify easily the following properties which are similar to those for the
elliptic functions. The square of these functions are related as

4ab ¼ fn2 uð Þ � gn2 uð Þ, (105)

rn2 uð Þ � 1 ¼ m gn2 uð Þ ¼ m fn2 uð Þ � 4ab
� �

(106)

fn uð Þgn uð Þ ¼ a2pn2 uð Þ � b2mn2 uð Þ, (107)

fn2 uð Þ þ gn2 uð Þ ¼ 2 b2 mn2 uð Þ þ a2 pn2 uð Þ� �
, (108)

whereas the derivatives of them are

pn0 uð Þ ¼ pn uð Þ rn uð Þ, mn0 uð Þ ¼ �mn uð Þ rn uð Þ, (109)

fn0 uð Þ ¼ gn uð Þ rn uð Þ, gn0 uð Þ ¼ fn uð Þ rn uð Þ, (110)

rn0 uð Þ ¼ m fn uð Þ gn uð Þ, nf 0 uð Þ ¼ �gn uð Þ nf2 uð Þ rn uð Þ, (111)

ng0 uð Þ ¼ �fn uð Þ ng2 uð Þ rn uð Þ, nr0 uð Þ ¼ �m fn uð Þ gn uð Þ nr2 uð Þ: (112)

As we can see from these derivatives, the rate of increase or decrease of the
functions is modulated by the rn function; it would be the same as that for the usual
exponential functions for the case m ¼ 0.

We also have that

d pn�1 yð Þ
dy

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þm a y2 � bð Þ2

q , (113)

d mn�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þm a� b y2ð Þ2

q , (114)

d fn�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 4abð Þ c2 þm y2ð Þp , (115)

d gn�1 yð Þ
dy

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4abð Þ 1þm y2ð Þp , (116)

d rn�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2ð Þ c2 � y2ð Þp , (117)

d nf�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ab y2ð Þ c2y2 þm½ �p , (118)

d ng�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ab y2ð Þ y2 þmð Þp , (119)

d nr�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2ð Þ 1� c2y2ð Þp : (120)

As expected, from these derivatives, we can see that these functions also invert
the same integral functions that Jacobi was interested on [1, 4].
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The second derivatives are

pn00 uð Þ � pn uð Þ c3 þ 2ma2 pn2 uð Þ� � ¼ 0, (121)

mn00 uð Þ �mn uð Þ c3 þ 2mb2 mn2 uð Þ� � ¼ 0, (122)

fn00 uð Þ � fn uð Þ c1 þ 2m fn2 uð Þ� � ¼ 0, (123)

gn00 uð Þ � gn uð Þ c4 þ 2m gn2 uð Þ� � ¼ 0, (124)

rn00 uð Þ þ 2rn uð Þ c3 � rn2 uð Þ� � ¼ 0, (125)

nf 00 uð Þ � nf uð Þ c1 � 8abc2nf
2 uð Þ� � ¼ 0, (126)

ng00 uð Þ � ng uð Þ c4 þ 8ab ng2 uð Þ� � ¼ 0, (127)

nr00 uð Þ � 2nr uð Þ c2 nr2 uð Þ � c3
� � ¼ 0: (128)

where

c1 ¼ 1� 8mab, c2 ¼ 1� 4mab, c3 ¼ 1� 2mab, (129)

c4 ¼ 1þ 4mab: (130)

Then, the functions that we have just introduced are solutions of nonlinear
second-order differential equations with the one-dimensional Gross-Pitaevskii
equation form, for a constant potential and real functions.

Additionally, the energy or Liapunov functions are given by

pn0 uð Þ2 � pn uð Þ2 c3 þma2 pn2 uð Þ� � ¼ mb2, (131)

mn0 uð Þ2 �mn uð Þ2 c3 þmb2 mn2 uð Þ� � ¼ ma2, (132)

fn0 uð Þ2 � fn uð Þ2 c1 þm fn2 uð Þ� � ¼ �4abc2, (133)

gn0 uð Þ2 � gn uð Þ2 c4 þm gn2 uð Þ� � ¼ 4ab, (134)

rn0 uð Þ2 þ 2rn uð Þ2 c3 � rn2 uð Þ� � ¼ c2, (135)

nf 0 uð Þ2 � nf uð Þ2 c1 � 4abc2nf
2 uð Þ� � ¼ m, (136)

ng0 uð Þ2 � ng uð Þ2 c4 þ 4ab ng2 uð Þ� � ¼ m, (137)

nr0 uð Þ2 � nr uð Þ2 �2c3 þ c2 nr2 uð Þ� � ¼ 1, (138)

where we have made use of the relationships between the squares of the func-
tions. Note that, the functions nf and ng have the same energy, whereas that the
functions pn uð Þ and mn uð Þ would have the same energy if b ¼ a.

Some particular cases are the following. When 4mab ¼ 1 or 2mab ¼ 1, we can
write down explicit expressions of u in terms of trigonometric, hypergeometric, and
exponential functions of x. When 4mab ¼ 1, we get

u ¼
ðx
0

ffiffiffiffiffiffiffiffi
4ab

p
dx

ae2t þ be�2tð Þ ¼ 2 tan �1

ffiffiffi
a
b

r
ex

� �
� tan �1

ffiffiffi
a
b

r� �� �
, (139)

and when 2mab ¼ 1, we obtain
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or infinity for larger ∣u∣, making them nonperiodic functions on the real axes. We
also note that some of these functions are actually bounded.
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4ab ¼ fn2 uð Þ � gn2 uð Þ, (105)

rn2 uð Þ � 1 ¼ m gn2 uð Þ ¼ m fn2 uð Þ � 4ab
� �

(106)

fn uð Þgn uð Þ ¼ a2pn2 uð Þ � b2mn2 uð Þ, (107)

fn2 uð Þ þ gn2 uð Þ ¼ 2 b2 mn2 uð Þ þ a2 pn2 uð Þ� �
, (108)

whereas the derivatives of them are

pn0 uð Þ ¼ pn uð Þ rn uð Þ, mn0 uð Þ ¼ �mn uð Þ rn uð Þ, (109)
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functions is modulated by the rn function; it would be the same as that for the usual
exponential functions for the case m ¼ 0.

We also have that

d pn�1 yð Þ
dy

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þm a y2 � bð Þ2

q , (113)

d mn�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þm a� b y2ð Þ2

q , (114)

d fn�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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d gn�1 yð Þ
dy

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4abð Þ 1þm y2ð Þp , (116)

d rn�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2ð Þ c2 � y2ð Þp , (117)

d nf�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ab y2ð Þ c2y2 þm½ �p , (118)

d ng�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ab y2ð Þ y2 þmð Þp , (119)

d nr�1 yð Þ
dy

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2ð Þ 1� c2y2ð Þp : (120)

As expected, from these derivatives, we can see that these functions also invert
the same integral functions that Jacobi was interested on [1, 4].
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The second derivatives are

pn00 uð Þ � pn uð Þ c3 þ 2ma2 pn2 uð Þ� � ¼ 0, (121)

mn00 uð Þ �mn uð Þ c3 þ 2mb2 mn2 uð Þ� � ¼ 0, (122)

fn00 uð Þ � fn uð Þ c1 þ 2m fn2 uð Þ� � ¼ 0, (123)

gn00 uð Þ � gn uð Þ c4 þ 2m gn2 uð Þ� � ¼ 0, (124)

rn00 uð Þ þ 2rn uð Þ c3 � rn2 uð Þ� � ¼ 0, (125)

nf 00 uð Þ � nf uð Þ c1 � 8abc2nf
2 uð Þ� � ¼ 0, (126)

ng00 uð Þ � ng uð Þ c4 þ 8ab ng2 uð Þ� � ¼ 0, (127)

nr00 uð Þ � 2nr uð Þ c2 nr2 uð Þ � c3
� � ¼ 0: (128)

where

c1 ¼ 1� 8mab, c2 ¼ 1� 4mab, c3 ¼ 1� 2mab, (129)

c4 ¼ 1þ 4mab: (130)

Then, the functions that we have just introduced are solutions of nonlinear
second-order differential equations with the one-dimensional Gross-Pitaevskii
equation form, for a constant potential and real functions.
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u ¼
ffiffiffiffiffiffiffiffi
2ab

p ðx
0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2e2t þ b2e�2t

p

¼ 1ffiffiffiffiffiffiffiffi
2ab

p
ab

� e�2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2e�2x þ a2e2x

p
b2 � e2x b2e�2x þ a2e2x

� �
2F1

3
4
; 1;

1
4
;� a2e4x

b2

� �� ��

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
b2 � a2 þ b2

� �
2F1

3
4
; 1;

1
4
;� a2

b2

� �� ��
, (140)

where 2F1 is the hypergeometric function.
When a ¼ b ¼ 1, the nonlinear functions reduce to Jacobi’s elliptic functions

with complex argument:

u ¼
ðx
0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m sin h2 tð Þ

q dt ¼ �iF ixj4mð Þ, (141)

where F is elliptic integral of the first kind.
This is the minimum set of properties of the exponential-type nonlinear

functions.

5. Remarks

Thus, we were able to obtain three sets of nonlinear functions which are
solutions to the Gross-Pitaevskii equation. With these functions, we have the
nonlinear versions of the trigonometric, real, and complex exponential functions
and their linear combinations, and a complete set of functions as in the linear
counterpart.

Due to the method of solution, which makes use of elliptic functions, these
functions will expand the set of solutions that can be given to polynomial nonlinear
equations, in general [8, 12–25].

For instance, a well-known optical phenomenon is the nonlinear dispersion in
parabolic law medium with Kerr law nonlinearity [24]. This system is described by
a nonlinear Schrödinger equation:

iΨt þ aΨxx þ b Ψj j2Ψþ c Ψj j4Ψþ d Ψj j2
� �

xx
Ψ ¼ 0, (142)

where a subindex indicates a derivative with respect to that index. The second
term of the above equation represents the group velocity dispersion, the third and
fourth terms are the parabolic law nonlinearity, and the last term is the nonlinear
dispersion. Some solutions of Eq. (142) were found in Ref. [24]. A solution is the
traveling wave, with Jacobi’s sn function profile, given by

Ψ x; tð Þ ¼ A sn B x� vtð Þ;m½ �eiϕ, (143)

B ¼ �bA2

am 1þmð Þ � 2d m2 þmþ 2ð ÞA2

 !1=2

, (144)

ω ¼ B2 2dA2 � a 1þmð Þ� �
: (145)
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where v ¼ �2ak is the velocity, k is the soliton frequency, ω is the soliton wave
number, θ is the phase constant, and 0 <m< 1 is the modulus of Jacobi’s elliptic
function.

A second solution was given as

Ψ x; tð Þ ¼ Acn B x� vtð Þ; l½ �eiϕ, (146)

B ¼ b
4d

� �1=2

, (147)

ω ¼ B2 2dA2 � a
� �� ak2: (148)

Since the functions that we have introduced in these chapters comply with
differential and algebraic equations similar to the ones for Jacobi’s elliptic functions,
we can give additional solutions in terms of these new functions, giving rise to new
sets of soliton waves.
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Chapter 4

Hydrodynamic Methods and Exact
Solutions in Application to the
Electromagnetic Field Theory in
Medium
Sergey G. Chefranov and Artem S. Chefranov

Abstract

The new Vavilov-Cherenkov radiation theory which is based on the relativistic
generalization of the Landau theory for superfluid threshold velocity and Abraham
theory of the electromagnetic field (EMF) in medium is represented. The new
exact solution of the Cauchy problem in unbounded space is obtained for the
n-dimensional Euler-Helmholtz (EH) equation in the case of a nonzero-divergence
velocity field for an ideal compressible medium. The solution obtained describes the
inertial vortex motion and coincides with the exact solution to the n-dimensional
Hopf equation which simulates turbulence without pressure. Due to the introduc-
tion of a fairly large external friction or by introducing an arbitrary small effective
volume viscosity, a new analytic solution of the Cauchy problem for the three-
dimensional Navier-Stokes (NS) equation is obtained for compressible flows. This
gives the positive solution to the Clay problem (www.clamath.org) generalization
on the compressible NS equation. This solution also gives the possibility to obtain a
new class of regular solutions to the n-dimensional modification of the Kuramoto-
Sivashinsky equation, which is ordinarily used for the description of the nonlinear
propagation of fronts in active media. The example for potential application of
the new exact solution to the Hopf equation is considered in the connection of
nonlinear geometrical optics with weak nonlinear medium at the nonlocality
of the small action radii.

Keywords: hydrodynamics, compressibility, viscosity, turbulence, vorticity, EMF
waves, Abraham theory, photon in medium

1. Introduction

The main subject of the nonlinear optic theory is a nonlinear activity of a
medium where electromagnetic field (EMF) is propagated.

In this connection, the analogy between electromagnetic and hydrodynamic
phenomena, which was noted yet by Helmholtz and Maxwell [1], is considered. In
more recent papers, also different types of this analogy are used [2–4] and give
possibility to open new ways for the solution of some nonlinear hydrodynamic
problems on the basis of this analogy.
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However up to now, there are only a few examples of the direct mathematical
correspondence between hydrodynamics and EMF theory, which gives resolution
of the EMF problems on the basis of hydrodynamics [5, 6].

Thus in [5] there is an exact mathematical correspondence between the solutions
for the point electric dipole potential and velocity potential obtaining for the rigid
sphere moving with constant speed in the ideal incompressible fluid.

In [6] an exact correspondence is established between the mathematical
description of the single vortex velocity on the sphere and the Dirac magnetic
monopole (DMM) [7] vector potential. Similar analogy with DMM was noted also
for the vortices in quantum superfluid He-3A [8–11].

Moreover, in [6], it was proved that the hydrodynamic equations do not allow
the existence of a solution in the form of a single isolated vortex on sphere, but
allow the exact solution in the form of two antipodal point vortices (which have the
same value but different signs of circulation and located on the sphere on the
maximal possible distance from each other). This result gives the first theoretical
base for the proposition that DMM also cannot exist in the single form, but they
must be included in the structure of point magnetic dipole, which is confirmed by
all observations and experiment data.

Here we consider some examples of the application of hydrodynamic methods
for the problems of EMF interaction with medium which may be important in the
field of nonlinear optics.

In Part 1 of the chapter, we give the example for demonstration of the new
mechanism of the Vavilov-Cherenkov radiation (VCR), which is obtained only
on the basis of relativistic generalization to the Landau theory of superfluid
threshold velocity [12]. In analogy with the Landau criterion its relativistic
generalization is deduced for the determination of threshold conversion of medium
Bose-condensed excitation into Cherenkov’s photon. Thus, the VCR arises only due
to the reaction of medium on the electric charge moving with super threshold
velocity [13–15]:

V0 > Vth ¼ c=n∗; n∗ ¼ nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
, n > 1; n∗ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p� �
=n, n < 1 (1)

In (1), с is the light speed in vacuum and n is the medium refractive index.
In contraposition to the classic VCR theory [16–18], the new VCR theory in

[13–15] and (1) admits the conditions for effective and direct VCR realization
even for high-frequency transverse waves of EMF in isotropic plasma when
n < 1 in (1). This is possible in the new VCR theory only because it is based on the
Abraham theory for EMF in a medium where photons have nonzero real mass
of rest, which determines necessary (in energy balance equation) energy
difference for the medium when the medium emits photon VCR only for the
condition (1).

In the second part of this chapter, we consider a new exact solution of nonlinear
hydrodynamic equations. This gives corresponding possibility of its application to
the problems of nonlinear EMF and other wave propagation in active and dissipa-
tive medium, where the Kuramoto-Sivashinsky equation [19–21] is used, giving the
generalization of the Korteweg-de Vries (KdV) equation. Indeed, in nonlinear optic
the KdF equation may describe the EMF wave propagation (for the case when
electric wave E is propagating along axis x):

∂E
∂t

þ σE
∂E
∂x

þ σ0
∂
3E
∂x3

¼ 0 (2)
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On the other side, the problem of the propagation of a flame front (generated by
a self-sustained exothermal chemical reaction) may be considered on the basis of
the simplified version of the Sivashinsky equation ∇ [21]:

∂f
∂t

� 1
2
Us r

!
f

� �2

¼ γ0 f (3)

In the one-dimensional case, (3) is the same as (2) if E ¼ ∂f=∂x;Us ¼ �σ and if
we replace (for the case γ0 < 0) σ0∂3E=∂x3 ! �γ0E.

In Eq. (3), the function x3 ¼ f x1; x2; tð Þ determines the flame front which repre-
sents the interface between a combustible matter (x3 > 0) and the combustion
products (x3 < 0); Us and γ0 are constant positive quantities which characterize the
front velocity and the combustion intensity, respectively. For γ0 ¼ 0 Eq. (3) coin-
cides with the Hamilton-Jacobi equation for a free nonrelativistic particle. In the
two-dimensional case (more exactly, in its modification with account for the exter-
nal friction with the coefficient μ when μ ¼ �γ0), the exact solution of the n-
dimensional Hopf equation modification with μ 6¼ 0

∂ui
∂t

þ uk
∂ui
∂xk

¼ �μui; i, k ¼ 1, ::, n (4)

(for the inertial motion of compressible medium with velocity ui) gives also the

exact solution of Eq. (3) when the velocity of compressible medium u!¼ �Usr
!
f .

The common solution of 1D, 2D, and 3D equations (4) in Euler variables is first
time obtained in [22–26]. On the basis of this solution, we give the positive answer
to the generalization of the Clay problem [27] on the case of compressible medium
motion with nonzero divergence of velocity field [23–26]. The existence and
smoothness of this solution for all time may take place only for super threshold
friction μ > μth ¼ 1=t0 (here t0 is the minimal finite time of singularity realization
for solution of the Hopf equation (4)) or for any finite volume viscosity [22–26].
This gives the possibility to obtain also exact solutions in nonlinear optic when
equations of Kuramoto-Sivashinsky type are used for EMF wave propagation in
nonlinear medium.

1.1 New theory of the Vavilov-Cherenkov radiation (VCR)

The Vavilov-Cherenkov radiation (VCR) phenomenon has justly become an
inherent part of modern physics. The VCR in a refractive medium was experimen-
tally discovered by Cherenkov and Vavilov [28] more than half a century ago. This
was also the time when Tamm and Frank [16, 17] developed the electromagnetic
macroscopical theory of this phenomenon, which, as well as the VCR discovery,
was marked later by a Nobel Prize. The Tamm-Frank theory appeared to be very
similar to the Heaviside theory, which had been forgotten for a century [29].

The Heaviside-Tamm-Frank (HTF) theory demonstrated that the cylindrically
symmetrical EMF, created in a medium by an electron, which moves rectilinearly
with the constant velocity V0, does not exponentially reduce only in the case of the
super threshold electron velocity V0≥c=n. According to the HTF theory, this field
must be identical to the VCR field, observed in the experiment [28].

However, such direct identification is not in agreement with the basic micro-
scopical conception that VCR photons are radiated by a medium and not by an
electron itself [16, 30]. The latter can serve only for the initiation of such radiation
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by the medium. The phenomenological quantum theory of the VCR, developed by
Ginzburg [18] on the basis of the Minkowski EMF theory in medium, still does not
take into consideration the changes of the radiating medium energy state, which
might be necessary for the VCR realization. As we show the latter, this is so because,
in contrast to the Abraham EMF theory, for the momentum of photon in the
Minkowski EMF theory, the corresponding photon mass of rest in medium always
has only exact imaginary (with zero real part) value and cannot be taken into
account in the energy balance equation for the VCR.

Thus, the classic theory of the VCR phenomenon leaves a question of the energy
mechanism of the VCR effect open. Indeed, to elaborate this mechanism, we need
to find out the necessary possible changes of the energy state of the medium itself,
which ensure the VCR effect realization.

The suggested theory is based on directly using the Abraham momentum of
photon:

p!A ¼ εph
cn

k
!
, n > 1; pA

!¼ εphn
c

k
!
, n < 1; k

!¼ V
!

ph

V
!

ph

���
���

(5)

In (5) εph is the photon energy and V
!

ph its velocity in medium.
For the Minkowski EMF theory, the momentum of photon in medium with n > 1

has the form: p!M ¼ εphn
c k

!

For (5), the real nonzero photon rest mass mph is determined from the known

relativistic equation m2
phc

2 ¼ ε2ph
c2 � p2A, and from (5), we have

mph ¼
εph
c2n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
, n > 1; mph ¼

εph
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
, n < 1 (6)

In the new VCR quantum theory [13–15], the energy ΔEm ¼ mphc2 may corre-
spond to the energy of a medium long-wave Bose excitation which can transform
into the VCR photon only when the super threshold condition (1) takes place. Thus,
the value ΔEm must be taken into account in the energy balance equation for VCR
realization possibility (when mediummust lose this energy when the VCR photon is
arising from it), and this new VCR theory is provided in [13, 14]. In [15] we also
give examples where it is easy to obtain experimental and observational evidence of
the difference between Abraham’s and Minkowski’s EMF theories when the VCR
may be observed during the electron beam transfer through the medium which is
the light of intense laser or when high-energy cosmic rays go through the relict
background radiation.

To obtain a relativistic generalization of the Landau criterion [12] for the VCR
realization, it is necessary to use the energy balance equation for the VCR (includ-
ing in it the value of medium energy loss ΔEm ¼ mphc2, where mph may be taken

from (6)) in the coordinate system moving with the initial electron velocity V
!

0
[13, 14]:

mec2 1� Γ0Γ1 1�
V
!

0V
!

1

� �

c2

0
@

1
A

2
4

3
5 ¼ εphΓ0 1�

V
!

0V
!

ph

� �

c2
�mphc2

εph

2
4

3
5 (7)

where V
!

1 is the velocity of electron after VCR photon arising. In (7)

Γα ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

α
c2

q
, where α ¼ 0 or α ¼ 1 and mphc2=εph ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

ph

c2

q
according to (6).
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For example, in the case n > 1 in (7), we have Vph ¼ c=n and in the right-hand side

of (7) A ¼ 1�
V
!

0V
!

ph

� �

c2 � mphc2

εph
¼ 1� V0

c cos θ �
ffiffiffiffiffiffiffiffi
n2�1

p
n .

The left-hand side of (7) is always negative (it is zero only for the case when the

initial and finite velocity of the electron are the same V
!

0 ¼ V
!

1).
In the nonrelativistic limit when V0≪c; Vph≪c from (7) for εp > 0, the Landau

criterion [12] may be obtained: εV � p! V
!

0

� �
< 0; εV ¼ εp 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p

c2

q� �
ffi εpV2

p

2c2 .

Then εV ¼ Vpp
2 is the only kinetic energy of excitation (in [12] these are vorton

elementary excitations).
Thus for the possibility of arising VCR photon with positive energy εph > 0, it is

necessary to have in the right-hand side of (7) the negative value of A < 0 or
inequality:

cos θ >
c

V0n∗
(8)

where the value n∗ nð Þ > 1 for any cases of n > 1 or n < 1 as it shown in (1). From
the condition cos θj j ≤ 1 in (8), the value of threshold velocity in (1) is obtained.

The conditions (8) and (1) give the necessary condition for arising VCR, and
from (8) it is possible to obtain the maximal angle of the VCR cone of rays. The
classic VCR theory gives good correspondence to experiment only in the determi-
nation of position for the maximum of intensity in the VCR cone of rays, but not to
the maximal angle of this cone. In [13, 14] it is shown that the new VCR theory
gives a better agreement with the experiment [28] than classical VCR theory when
describing the threshold edge of the VCR cone of rays.

According to [28] the VCR effect is observed in the whole region of angles
0 ≤ θ ≤ θA,Bmax with the maximum of radiation intensity I θð Þ at the angle
θ ¼ θA,B0 < θA,Bmax. Here Index A corresponds to gamma rays of ThC″, and the Index B
corresponds to the VCR induced by Ra. Thus, I θð Þ ¼ 0 when θ > θA,Bmax. In the [31]
the same result was also obtained for VCR realization through the direct use of high-
energy electron beam.

In the classic VCR theory in (1) and (8), the value n∗ must be replaced with the
value n for the case with n > 1.

Let us introduce the values βA∗ ; β
B
∗ which correspond to θA,Bmax of experiment [28]

when (8) is used for evaluation of parameter β ¼ V0=c and the analogy values βA; βB

for the classic VCR theory.
For example, when the medium where the VCR arising is water (H2O), where

n ¼ 1:333, n∗ ¼ 2:247, and for the values cos θAmax ¼ 0:6691; cos θBmax ¼ 0:7431 from
(8), we obtain βA∗ ¼ 0:6718; βB∗ ¼ 0:6049 which are smaller than 1, as they need
from the relativity theory. For the classic VCR theory, the result is not
corresponding to the inequality β ¼ V0=c < 1 of the relativity theory because from
the classic VCR theory, βA ¼ 1:1177; βB ¼ 1:0064 may be obtained. The same results
obtained for all other media are considered in the experiment [28, 31] (see [13, 14]).

Thus, the classic VCR theory gives good correspondence with experiment [28]
only in the determination of angle θA,B0 , but not of the angle θA,Bmax. In this connection
the classic VCR theory tied only with interference maximum at θ ¼ θA,B0 and does
not consider at all the energetic base for threshold arising of this coherent VCR.
Actually, this is clearer for the case of plasma with n < 1, where the classic VCR
theory total excludes the possibility of the VCR in the form of transverse

57

Hydrodynamic Methods and Exact Solutions in Application to the Electromagnetic Field Theory…
DOI: http://dx.doi.org/10.5772/intechopen.80813



by the medium. The phenomenological quantum theory of the VCR, developed by
Ginzburg [18] on the basis of the Minkowski EMF theory in medium, still does not
take into consideration the changes of the radiating medium energy state, which
might be necessary for the VCR realization. As we show the latter, this is so because,
in contrast to the Abraham EMF theory, for the momentum of photon in the
Minkowski EMF theory, the corresponding photon mass of rest in medium always
has only exact imaginary (with zero real part) value and cannot be taken into
account in the energy balance equation for the VCR.

Thus, the classic theory of the VCR phenomenon leaves a question of the energy
mechanism of the VCR effect open. Indeed, to elaborate this mechanism, we need
to find out the necessary possible changes of the energy state of the medium itself,
which ensure the VCR effect realization.

The suggested theory is based on directly using the Abraham momentum of
photon:

p!A ¼ εph
cn

k
!
, n > 1; pA

!¼ εphn
c

k
!
, n < 1; k

!¼ V
!

ph

V
!

ph

���
���

(5)

In (5) εph is the photon energy and V
!

ph its velocity in medium.
For the Minkowski EMF theory, the momentum of photon in medium with n > 1

has the form: p!M ¼ εphn
c k

!

For (5), the real nonzero photon rest mass mph is determined from the known

relativistic equation m2
phc

2 ¼ ε2ph
c2 � p2A, and from (5), we have

mph ¼
εph
c2n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
, n > 1; mph ¼

εph
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
, n < 1 (6)

In the new VCR quantum theory [13–15], the energy ΔEm ¼ mphc2 may corre-
spond to the energy of a medium long-wave Bose excitation which can transform
into the VCR photon only when the super threshold condition (1) takes place. Thus,
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ffiffiffiffiffiffiffiffi
n2�1

p
n .

The left-hand side of (7) is always negative (it is zero only for the case when the

initial and finite velocity of the electron are the same V
!

0 ¼ V
!

1).
In the nonrelativistic limit when V0≪c; Vph≪c from (7) for εp > 0, the Landau

criterion [12] may be obtained: εV � p! V
!

0

� �
< 0; εV ¼ εp 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

p

c2

q� �
ffi εpV2

p

2c2 .

Then εV ¼ Vpp
2 is the only kinetic energy of excitation (in [12] these are vorton

elementary excitations).
Thus for the possibility of arising VCR photon with positive energy εph > 0, it is

necessary to have in the right-hand side of (7) the negative value of A < 0 or
inequality:

cos θ >
c

V0n∗
(8)

where the value n∗ nð Þ > 1 for any cases of n > 1 or n < 1 as it shown in (1). From
the condition cos θj j ≤ 1 in (8), the value of threshold velocity in (1) is obtained.

The conditions (8) and (1) give the necessary condition for arising VCR, and
from (8) it is possible to obtain the maximal angle of the VCR cone of rays. The
classic VCR theory gives good correspondence to experiment only in the determi-
nation of position for the maximum of intensity in the VCR cone of rays, but not to
the maximal angle of this cone. In [13, 14] it is shown that the new VCR theory
gives a better agreement with the experiment [28] than classical VCR theory when
describing the threshold edge of the VCR cone of rays.

According to [28] the VCR effect is observed in the whole region of angles
0 ≤ θ ≤ θA,Bmax with the maximum of radiation intensity I θð Þ at the angle
θ ¼ θA,B0 < θA,Bmax. Here Index A corresponds to gamma rays of ThC″, and the Index B
corresponds to the VCR induced by Ra. Thus, I θð Þ ¼ 0 when θ > θA,Bmax. In the [31]
the same result was also obtained for VCR realization through the direct use of high-
energy electron beam.

In the classic VCR theory in (1) and (8), the value n∗ must be replaced with the
value n for the case with n > 1.

Let us introduce the values βA∗ ; β
B
∗ which correspond to θA,Bmax of experiment [28]

when (8) is used for evaluation of parameter β ¼ V0=c and the analogy values βA; βB

for the classic VCR theory.
For example, when the medium where the VCR arising is water (H2O), where

n ¼ 1:333, n∗ ¼ 2:247, and for the values cos θAmax ¼ 0:6691; cos θBmax ¼ 0:7431 from
(8), we obtain βA∗ ¼ 0:6718; βB∗ ¼ 0:6049 which are smaller than 1, as they need
from the relativity theory. For the classic VCR theory, the result is not
corresponding to the inequality β ¼ V0=c < 1 of the relativity theory because from
the classic VCR theory, βA ¼ 1:1177; βB ¼ 1:0064 may be obtained. The same results
obtained for all other media are considered in the experiment [28, 31] (see [13, 14]).

Thus, the classic VCR theory gives good correspondence with experiment [28]
only in the determination of angle θA,B0 , but not of the angle θA,Bmax. In this connection
the classic VCR theory tied only with interference maximum at θ ¼ θA,B0 and does
not consider at all the energetic base for threshold arising of this coherent VCR.
Actually, this is clearer for the case of plasma with n < 1, where the classic VCR
theory total excludes the possibility of the VCR in the form of transverse
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high-frequency EMF waves. The present new VCR theory gives this possibility due
to the transformation of a longitudinal Bose-condensed plasmon into transverse
VCR photon, during the scattering of a plasmon on the relativistic electron [14, 37].

Moreover in this new VCR theory, the VCR phenomenon has the same nature as
for numerous physical systems where dissipative instability is realized when
corresponding excitations in a medium become energetically favorable at some
super threshold conditions [12, 32–36].

1.2 Exact solution of hydrodynamic equations

Fundamental turbulence problem was unsolved during many years by virtue of
the absence of analytical, time-dependent, smooth-at-all-time solutions of the
nonlinear hydrodynamic equations. A few exact solutions are known in hydrody-
namics, but none of these solutions is time-dependent and defined in unbounded
space or in space with periodic boundary conditions [38–40].

The importance of this problem is determined by stability and predictability
problems in all fields of science where solutions and methods of hydrodynamics are
used. In this connection in 2000, the problem of the existence of smooth time-
dependent hydrodynamic solutions was stated as one of the seven Millennium Prize
Problems (MPPs) by the Clay Institute of Mathematics [27]. MPPs relate only to
incompressible flows “since it is well known that the behavior of compressible flows
is abominable” [41].

Here we show that even for a compressible case, it is possible to obtain exact
analytical, time-dependent, smooth-at-all-time solutions of Hopf equation (4)
(which gives also new class solution also for vortex typ. 2D and 3D Euler equation)
when any viscosity of super threshold friction is taken into account [22–26].

With the aim to introduce effective volume viscosity (in addition to external
friction in (4)), let us consider the n-dimensional Hopf equation (4) in the moving
with velocity Vi tð Þ coordinate system, where Vi tð Þ is a random Gaussian delta-
correlated in-time velocity field for which the relations hold:

Vi tð ÞVj τð Þ� � ¼ 2νδijδ t� τð Þ
Vi tð Þh i ¼ 0

(9)

In (9) δij is the Kronecker delta, δ is Dirac-Heaviside delta function, and the
coefficient ν characterizes the action of the viscosity forces. In the general case, the
coefficient ν can be a function of time when describing the effective turbulent vis-
cosity, but also it can coincide with the constant kinematic viscosity coefficient when
the random velocity field considered corresponds to molecular fluctuations. We will
restrict our attention to the consideration of the case of constant coefficient ν in (9).

Thus, the initial equation (4) (for the case μ ¼ 0) takes the form:

∂ui
∂t

þ uj þ Vj tð Þ
� � ∂ui

∂xj
¼ 0 (10)

As shown in Appendix, in the case of an arbitrary dimensionality of the space
(n = 1, 2, 3, etc.), Eq. (10) has the following exact solution (see also [22–26]):

ui x!; t
� �

¼
ð
dnξu0i ξ

!� �
δ ξ

! � x! þ B
!

tð Þ þ tu0
!

ξ
!� �� �

det Â (11)

where Bi tð Þ ¼
Ðt
0
dt1Vi t1ð Þ, Â � Anm ¼ δnm þ t ∂u0n

∂ξm
, det Â is the determinant of the

matrix Â, and u0i x!
� �

is an arbitrary smooth initial velocity field. The solution (11)
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satisfies Eq. (10) only at such times for which the determinant of the matrix Â is
positive for any values of the spatial coordinates det Â > 0.

In the case of the potential initial velocity field, the solution (11) is potential for
all successive instants of time, corresponding to a zero-vortex field. On the con-
trary, in the case of nonzero initial vortex field, the solution also determines the
evolution of velocity with a nonzero vortex field. In [42] the potential solution to

the two-dimensional Hopf equation (4) (or when B
!¼ 0 in (12)) was obtained only

in the Lagrangian representation which also exactly follows from (11) for n = 2. It is
important to understand that here in (11) we have a solution in Euler variables,
which is firstly obtained in [22] for n = 2 and n = 3. From the solution of (10) or (4)
in Lagrangian variables, it is unreal to obtain a solution of (4) or (10) in Euler
variables. From the other side, it is easy to obtain a solution in Lagrangian variables
if we have a solution in Euler variables as in (11).

For example, in the one-dimensional case (n = 1) in (11), we have
det Â ¼ 1þ t du01dξ1

, and the solution (11) coincides exactly with the solutions
obtained in [43, 44]. The solution (11) can be obtained if we use the integral
representation for the implicit solution of Eq. (10) in the form

uk x!; t
� �

¼ u0k x! � B
!

tð Þ � t u! x!; t
� �� �

with the use of the Dirac delta function (see

Appendix or [22, 23]).
After averaging over the random field Bi tð Þ (with the Gaussian probability

density), from (11) we can obtain the exact solution in the form:

uih i ¼
ð
dnξu0i ξ

!� �
det Â
�� �� 1

2
ffiffiffiffiffiffiffi
πνt

p� �n exp �
x! � ξ

! �tu0
!

ξ
!� �� �2

4νt

2
64

3
75 (12)

As distinct from (11), the average solution (12) of Eq. (10) is already arbitrarily
smooth on any unbounded time interval and not only providing the positiveness of
the determinant of the matrix Â.

If, on the other side, we neglect the viscosity forces when B
!

tð Þ ¼ 0 in (11), the
smooth solution (11) is defined, as was already noted, only under the condition
det Â > 0 [22–26] (see Appendix). This condition corresponds to a bounded time
interval 0 ≤ t < t0, where the minimum limiting time t0 of existence of the solution
can be determined from the solution to the following nth-order algebraic equation
(and successive minimization of the expression obtained, which depends on the
spatial coordinates, with respect to these coordinates):

det Â tð Þ ¼ 1þ t
du01 x1ð Þ

dx1
¼ 0, n ¼ 1

det Â tð Þ ¼ 1þ tdivu0
! þt2 det Û012 ¼ 0, n ¼ 2

det Â tð Þ ¼ 1þ tdivu0
! þt2 det Û012 þ det Û013 þ det Û023

� �þ t3 det Û0 ¼ 0, n ¼ 3

(13)

where det Û0 is the determinant of the 3 � 3 matrix U0nm ¼ ∂u0n
∂xm

, and

det Û012 ¼ ∂u01
∂x1

∂u02
∂x2

� ∂u01
∂x2

∂u02
∂x1

is the determinant of a similar matrix in the two-

dimensional case for the variables x1; x2ð Þ. In this case det Û013, det Û023 are the
determinants of the matrices in the two-dimensional case for the variables x1; x3ð Þ
and x2; x3ð Þ, respectively.
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analytical, time-dependent, smooth-at-all-time solutions of Hopf equation (4)
(which gives also new class solution also for vortex typ. 2D and 3D Euler equation)
when any viscosity of super threshold friction is taken into account [22–26].

With the aim to introduce effective volume viscosity (in addition to external
friction in (4)), let us consider the n-dimensional Hopf equation (4) in the moving
with velocity Vi tð Þ coordinate system, where Vi tð Þ is a random Gaussian delta-
correlated in-time velocity field for which the relations hold:

Vi tð ÞVj τð Þ� � ¼ 2νδijδ t� τð Þ
Vi tð Þh i ¼ 0

(9)

In (9) δij is the Kronecker delta, δ is Dirac-Heaviside delta function, and the
coefficient ν characterizes the action of the viscosity forces. In the general case, the
coefficient ν can be a function of time when describing the effective turbulent vis-
cosity, but also it can coincide with the constant kinematic viscosity coefficient when
the random velocity field considered corresponds to molecular fluctuations. We will
restrict our attention to the consideration of the case of constant coefficient ν in (9).

Thus, the initial equation (4) (for the case μ ¼ 0) takes the form:

∂ui
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þ uj þ Vj tð Þ
� � ∂ui

∂xj
¼ 0 (10)

As shown in Appendix, in the case of an arbitrary dimensionality of the space
(n = 1, 2, 3, etc.), Eq. (10) has the following exact solution (see also [22–26]):
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matrix Â, and u0i x!
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is an arbitrary smooth initial velocity field. The solution (11)
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satisfies Eq. (10) only at such times for which the determinant of the matrix Â is
positive for any values of the spatial coordinates det Â > 0.

In the case of the potential initial velocity field, the solution (11) is potential for
all successive instants of time, corresponding to a zero-vortex field. On the con-
trary, in the case of nonzero initial vortex field, the solution also determines the
evolution of velocity with a nonzero vortex field. In [42] the potential solution to

the two-dimensional Hopf equation (4) (or when B
!¼ 0 in (12)) was obtained only

in the Lagrangian representation which also exactly follows from (11) for n = 2. It is
important to understand that here in (11) we have a solution in Euler variables,
which is firstly obtained in [22] for n = 2 and n = 3. From the solution of (10) or (4)
in Lagrangian variables, it is unreal to obtain a solution of (4) or (10) in Euler
variables. From the other side, it is easy to obtain a solution in Lagrangian variables
if we have a solution in Euler variables as in (11).

For example, in the one-dimensional case (n = 1) in (11), we have
det Â ¼ 1þ t du01dξ1

, and the solution (11) coincides exactly with the solutions
obtained in [43, 44]. The solution (11) can be obtained if we use the integral
representation for the implicit solution of Eq. (10) in the form

uk x!; t
� �

¼ u0k x! � B
!

tð Þ � t u! x!; t
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with the use of the Dirac delta function (see

Appendix or [22, 23]).
After averaging over the random field Bi tð Þ (with the Gaussian probability

density), from (11) we can obtain the exact solution in the form:
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det Â
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4νt
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3
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As distinct from (11), the average solution (12) of Eq. (10) is already arbitrarily
smooth on any unbounded time interval and not only providing the positiveness of
the determinant of the matrix Â.

If, on the other side, we neglect the viscosity forces when B
!

tð Þ ¼ 0 in (11), the
smooth solution (11) is defined, as was already noted, only under the condition
det Â > 0 [22–26] (see Appendix). This condition corresponds to a bounded time
interval 0 ≤ t < t0, where the minimum limiting time t0 of existence of the solution
can be determined from the solution to the following nth-order algebraic equation
(and successive minimization of the expression obtained, which depends on the
spatial coordinates, with respect to these coordinates):

det Â tð Þ ¼ 1þ t
du01 x1ð Þ

dx1
¼ 0, n ¼ 1

det Â tð Þ ¼ 1þ tdivu0
! þt2 det Û012 ¼ 0, n ¼ 2

det Â tð Þ ¼ 1þ tdivu0
! þt2 det Û012 þ det Û013 þ det Û023

� �þ t3 det Û0 ¼ 0, n ¼ 3
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where det Û0 is the determinant of the 3 � 3 matrix U0nm ¼ ∂u0n
∂xm

, and

det Û012 ¼ ∂u01
∂x1

∂u02
∂x2

� ∂u01
∂x2

∂u02
∂x1

is the determinant of a similar matrix in the two-

dimensional case for the variables x1; x2ð Þ. In this case det Û013, det Û023 are the
determinants of the matrices in the two-dimensional case for the variables x1; x3ð Þ
and x2; x3ð Þ, respectively.
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In the two-dimensional case, the condition in the form of Eq. (13) exactly
coincides with the collapse condition obtained in [42] in connection with the prob-
lem of propagation of a flame front investigated on the basis of the Kuramoto-
Sivashinsky Eq. (3). In this case for exact coincidence, it is necessary to replace
t ! b tð Þ ¼ Us exp γ0tð Þ�1ð Þ

γ0
in (13).

In the one-dimensional case, when n = 1, from Eq. (13) we can obtain the
minimum time of appearance of the singularity t0 ¼ 1

max
du01 x1ð Þ

dx1

���
���
> 0. In particular,

for the initial distribution u01 x1ð Þ ¼ a exp � x21
L2

� �
, a > 0, it follows that t0 ¼ L

a

ffiffie
2

p

obtained for the value x1 ¼ x1max ¼ Lffiffi
2

p . In this case the singularity itself can be
implemented only for positive values of the coordinate x1 > 0 when Eq. (13) has a
positive solution for time.

This means that the singularity (collapse) of the smooth solution can never occur
when the initial velocity field is nonzero only for negative values of the spatial
coordinate x1 < 0.

Similarly, we can also determine the vortex wave burst time t0 for n > 1. For (13)
in the two-dimensional case (when the initial velocity field is divergence-free) for

the initial stream function in the form ψ0 x1; x2ð Þ ¼ a
ffiffiffiffiffiffiffiffiffiffi
L1L2

p
exp � x21

L2
1
� x22

L2
2

� �
, a > 0,

we obtain that the minimum time of existence of the smooth solution is equal to
t0 ¼ e

ffiffiffiffiffiffiffi
L1L2

p
2a .

In the example considered, this minimum time of existence of the smooth
solution is implemented for the spatial variables corresponding to points on the

ellipse x21
L2
1
þ x22

L2
2
¼ 1.

In accordance with (13), the necessary condition of implementation of the
singularity is the condition of existence of a real positive solution to a quadratic
(when n = 2) or cubic (when n = 3) equation for the time variable t. For example, in
the case of two-dimensional flow with the initial divergence-free velocity field
div u0

!¼ 0, in accordance with (13), the necessary and sufficient condition of
implementation of the singularity (collapse) of the solution in finite time is the
condition:

detU012 < 0 (14)

For the example considered above from (14), there follows the inequality
x21
L2
1
þ x21

L2
2
> 1

2. When this inequality is satisfied, for n = 2 there exists a real positive

solution to the quadratic equation in (13) for which the minimum collapse time
t0 ¼ e

ffiffiffiffiffiffiffi
L1L2

p
2a > 0 given above is obtained.

On the contrary, if the initial velocity field is defined in the form of a finite

function which is nonzero only in the domain x21
L2
1
þ x22

L2
2
≤ 1

2, then the inequality (14) is

violated, and the development of the singularity in a finite time turns out already to
be impossible, and the solution remains smooth in unbounded time even regardless
of the viscosity effects.

The condition of existence of a real positive solution of Eq. (13) (e.g., see (14))
is the necessary and sufficient condition of implementation of the singularity
(collapse) of the solution, as distinct from the sufficient but not necessary
integral criterion which was proposed in [45] (see formula (38) in [45]) and has
the form:
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dI
dt

� �

t¼0
¼ �

ð
d3x div u0

! det 2Û0 > 0; I ¼
ð
d3xdet 2Û (15)

In fact, in accordance with this criterion proposed in [45], the collapse of the
solution is not possible in the case of the initial divergence-free velocity field, i.e.,
when div u0

!¼ 0. However, in this case the violation of criterion (15) does not
exclude the possibility of the collapse of the solution by virtue of the fact that the
criterion (15) does not determine the necessary condition of implementation of the
collapse. Actually, in the example considered above (in determination of the mini-
mum time of implementation of the collapse t0 ¼ e

ffiffiffiffiffiffiffi
L1L2

p
2a ) for two-dimensional com-

pressible flow, the initial condition corresponded just to the initial velocity field
with div u0

!¼ 0 in (13) when n = 2.
On the basis of the solution (11), using (13) and the Lagrangian variables a!

(where x!¼ x! t; a!
� �

¼ a! þtu0
! a!
� �

), we can represent the expression for the

matrix of the first derivatives of the velocity Û im ¼ ∂ui
∂xm

in the form:

Û im a!; t
� �

¼ Û0ik a!
� �

A�1
km a!; t
� �

(16)

In this case the expression (16) exactly coincides with the formula (30)
given in [45] for the Lagrangian time evolution of the matrix of the first derivatives
of the velocity which must satisfy the three-dimensional Hopf equation (10) (when

B
!

tð Þ ¼ 0 in (10)). In particular, in the one-dimensional case when n = 1, in the
Lagrangian representation from (11) and (13), we obtain a particular case of the
formula (16):

∂u x; tð Þ
∂x

� �

x¼x a;tð Þ
¼

du0 að Þ
da

1þ t du0 að Þ
da

(17)

where a is the coordinate of a fluid particle at the initial time t ¼ 0.
The solution (17) also coincides with the formula (14) in [45] and describes the

catastrophic process of collapse of a simple wave in a finite time t0 whose estimate is
given above on the basis of the solution to Eq. (13) in the case n ¼ 1 with the use of
the Euler variables.

Let us take into account only the external friction. For this purpose it is neces-
sary to consider the case with μ > 0 in Eq. (4). In this case we can also obtain the

exact solution from the expression (11) (for the case when in (11) B
!¼ 0) changing

in them the time variable t by the variable τ ¼ 1� exp �tμð Þ
μ (see (31) in Appendix and

[22, 23]). The new time variable τ now varies within the finite limits from τ ¼ 0
(when t ¼ 0) to τ ¼ 1

μ (as t ! ∞). This leads to the fact that in the case of fulfillment
of the inequality

μ >
1
t0

(18)

for given initial conditions, the quantity det Â > 0 for all times since the
necessary and sufficient condition of implementation of the singularity (13)
will be not satisfied because the change t ! τ tð Þ must also be carried out in the
condition (13).
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On the contrary, if the initial velocity field is defined in the form of a finite

function which is nonzero only in the domain x21
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2, then the inequality (14) is

violated, and the development of the singularity in a finite time turns out already to
be impossible, and the solution remains smooth in unbounded time even regardless
of the viscosity effects.

The condition of existence of a real positive solution of Eq. (13) (e.g., see (14))
is the necessary and sufficient condition of implementation of the singularity
(collapse) of the solution, as distinct from the sufficient but not necessary
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dI
dt
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solution is not possible in the case of the initial divergence-free velocity field, i.e.,
when div u0

!¼ 0. However, in this case the violation of criterion (15) does not
exclude the possibility of the collapse of the solution by virtue of the fact that the
criterion (15) does not determine the necessary condition of implementation of the
collapse. Actually, in the example considered above (in determination of the mini-
mum time of implementation of the collapse t0 ¼ e

ffiffiffiffiffiffiffi
L1L2

p
2a ) for two-dimensional com-

pressible flow, the initial condition corresponded just to the initial velocity field
with div u0

!¼ 0 in (13) when n = 2.
On the basis of the solution (11), using (13) and the Lagrangian variables a!

(where x!¼ x! t; a!
� �

¼ a! þtu0
! a!
� �

), we can represent the expression for the

matrix of the first derivatives of the velocity Û im ¼ ∂ui
∂xm

in the form:

Û im a!; t
� �

¼ Û0ik a!
� �

A�1
km a!; t
� �

(16)

In this case the expression (16) exactly coincides with the formula (30)
given in [45] for the Lagrangian time evolution of the matrix of the first derivatives
of the velocity which must satisfy the three-dimensional Hopf equation (10) (when

B
!

tð Þ ¼ 0 in (10)). In particular, in the one-dimensional case when n = 1, in the
Lagrangian representation from (11) and (13), we obtain a particular case of the
formula (16):

∂u x; tð Þ
∂x

� �

x¼x a;tð Þ
¼

du0 að Þ
da

1þ t du0 að Þ
da

(17)

where a is the coordinate of a fluid particle at the initial time t ¼ 0.
The solution (17) also coincides with the formula (14) in [45] and describes the

catastrophic process of collapse of a simple wave in a finite time t0 whose estimate is
given above on the basis of the solution to Eq. (13) in the case n ¼ 1 with the use of
the Euler variables.

Let us take into account only the external friction. For this purpose it is neces-
sary to consider the case with μ > 0 in Eq. (4). In this case we can also obtain the

exact solution from the expression (11) (for the case when in (11) B
!¼ 0) changing

in them the time variable t by the variable τ ¼ 1� exp �tμð Þ
μ (see (31) in Appendix and

[22, 23]). The new time variable τ now varies within the finite limits from τ ¼ 0
(when t ¼ 0) to τ ¼ 1

μ (as t ! ∞). This leads to the fact that in the case of fulfillment
of the inequality

μ >
1
t0

(18)

for given initial conditions, the quantity det Â > 0 for all times since the
necessary and sufficient condition of implementation of the singularity (13)
will be not satisfied because the change t ! τ tð Þ must also be carried out in the
condition (13).
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Providing (18), the solution to the n-dimensional EH equation is smooth on an
unbounded interval of time t. The corresponding analytic vortical solution to the
three-dimensional Navier–Stokes equation also remains smooth for any t≥0 if the
condition (18) is satisfied [22–26].

Note that under the formal coincidence of the parameters μ ¼ �γ0 (see the
Sivashinsky equation (3) in Introduction), the equality τ tð Þ ¼ b tð Þ takes place
providing the implementation of the singularity (13) when n = 2 and in
accordance with the solution of the Kuramoto-Sivashinsky equation in [42] and
the regularization of this solution for all times if (18) takes place.

Moreover the example of interesting prosperity for the direct application for
solution (11) (see also (12)–(18)) may be done in the connection of the results [46],
where the description of light propagation in a nonlinear medium on the basis of the
Burgers-Hopf equation is done.

Indeed, in [46], the model of light propagation in weak nonlinear 3D Coul-Coul’s
medium with small action radii of nonlocality is represented. In [46], it was stated
that in the geometric optic approach, this model is integrated and described by
the Veselov-Novikov equation which has a 1D reduction in the form of the
Burgers-Hopf equation. The last equation is considered in connection with
nonlinear geometrical optics when 1D reduction is made for the case when the
refractive index has no dependence on one of the space coordinates. It is
important when the property of nonlinear wave finite-time breakdown for
Burgers-Hopf solutions is considered in the application to the case of nonlinear
geometrical optics. These solutions are useful for modeling of dielectrics which
have impurities which induced sharp variations of the refractive index.
Indeed, in the points of breakdown, the curvature of the light rays obtained
discontinues property as it takes place at the boundary between different
media [46].

In [46], the only hodograph method is used for the Burgers-Hopf (or Hopf
equation which is obtained from the Burgers’ equation in the limit of zero
viscosity) equation solution in this connection. Thus the direct analytical
description of the 1D–3D solutions to the Hopf equation in the form (11) gives
the new possibility also for the nonlinear optic problem which is considered in
[46]. For example, according to this solution, it is possible to obtain the impor-
tant effect of avoidance of finite-time singularities when viscosity or friction
forces are taken into account (when condition (18) takes place for the case of
external friction).

2. Conclusions

Here we represent some examples where hydrodynamic methods and solutions
may be useful for different problems in nonlinear optics. In these examples, the
medium itself has the first degree of importance in realization of all mentioned
phenomena. Indeed, the main future of the Vavilov-Cherenkov radiation is that
the medium is the source of this radiation instead of any kinds of bremsstrahlung
radiations by moving charged particles. The VCR theory presented here for the first
time takes into account the real mechanism of VCR by the medium itself, excited by
a sufficiently fast electron. It can also be shown only from the microscopic theory,
but not from the macroscopic one stated in [16]. The first step in this direction was
made in [47] also on the basis of the Abraham theory where it is proposed that the
Vavilov-Cherenkov radiation is emitted by the medium in a nonequilibrium polar-
ization state which is arising due to the parametric resonance interaction of the
medium with a fast-charged particle.
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The second example, which is represented here, also gives new perspectives
on the basis of the new exact solution (in the Euler variables) for n-dimensional
Hopf equation because this equation is known as the possible model for weak
nonlinear optic problems [46]. The importance of the new solution is connected
with its Euler form in dependence from space variables, which are not represented
in the solution of the Burgers-Hopf equation well known before (see [45] and
others).

A. Exact solution of n-D Hopf equation (n = 1, 2, 3)

The Appendix presents a procedure for deriving the exact solution of the 3D
Hopf equation.

The Hopf equation in the n-dimensional space (n = 1..3) is as follows:

∂ui
∂t

þ ul
∂ui
∂xl

¼ 0 (19)

When the external friction coefficient tends to zero in Eq. (4), μ ! 0, Eq. (4)
also coincides with the Hopf equation (19).

In the unbounded space, the general Cauchy problem solution for Eq. (19) under

arbitrary smooth initial conditions u!0 x!
� �

may be obtained as follows (see also in

[22, 23]):
Eq. (19) may be represented in an implicit form as follows:

ui x!; t
� �

¼ u0i x! � t u! x!; t
� �� �

¼
ð
dnξu0i ξ

!� �
δ ξ

! � x! þt u! x!; t
� �� �

(20)

In (20), δ is the Dirac delta function. Using known (see farther) properties of the
delta function, it is possible to express the delta function in (20) with the help of an
identity true for the very velocity field meeting Eq. (19):

δ ξ
! � x! þt u! x!; t

� �� �
� δ ξ

! � x! þtu0
!

ξ
!� �� �

det Â
�� �� (21)

In (21), the matrix Â depends only on the initial velocity field and is as follows:

Â � Akm ¼ δkm þ t
∂u0k ξ

!� �

∂ξm
(22)

To infer (21), it is necessary to use the following delta-function property that is

true for any smooth function Φ
!

ξ
!� �

:

δ Φ
!

ξ
!� �� �

¼
δ ξ

! �ξ0
!� �

det ∂Φk
∂ξm

� �
ξ
!¼ξ0

!

����
����

(23)

In (23), the values ξ0
!

are defined from the solution of the equation

Φ
!

ξ0
!� �

¼ 0 (24)
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Providing (18), the solution to the n-dimensional EH equation is smooth on an
unbounded interval of time t. The corresponding analytic vortical solution to the
three-dimensional Navier–Stokes equation also remains smooth for any t≥0 if the
condition (18) is satisfied [22–26].

Note that under the formal coincidence of the parameters μ ¼ �γ0 (see the
Sivashinsky equation (3) in Introduction), the equality τ tð Þ ¼ b tð Þ takes place
providing the implementation of the singularity (13) when n = 2 and in
accordance with the solution of the Kuramoto-Sivashinsky equation in [42] and
the regularization of this solution for all times if (18) takes place.

Moreover the example of interesting prosperity for the direct application for
solution (11) (see also (12)–(18)) may be done in the connection of the results [46],
where the description of light propagation in a nonlinear medium on the basis of the
Burgers-Hopf equation is done.

Indeed, in [46], the model of light propagation in weak nonlinear 3D Coul-Coul’s
medium with small action radii of nonlocality is represented. In [46], it was stated
that in the geometric optic approach, this model is integrated and described by
the Veselov-Novikov equation which has a 1D reduction in the form of the
Burgers-Hopf equation. The last equation is considered in connection with
nonlinear geometrical optics when 1D reduction is made for the case when the
refractive index has no dependence on one of the space coordinates. It is
important when the property of nonlinear wave finite-time breakdown for
Burgers-Hopf solutions is considered in the application to the case of nonlinear
geometrical optics. These solutions are useful for modeling of dielectrics which
have impurities which induced sharp variations of the refractive index.
Indeed, in the points of breakdown, the curvature of the light rays obtained
discontinues property as it takes place at the boundary between different
media [46].

In [46], the only hodograph method is used for the Burgers-Hopf (or Hopf
equation which is obtained from the Burgers’ equation in the limit of zero
viscosity) equation solution in this connection. Thus the direct analytical
description of the 1D–3D solutions to the Hopf equation in the form (11) gives
the new possibility also for the nonlinear optic problem which is considered in
[46]. For example, according to this solution, it is possible to obtain the impor-
tant effect of avoidance of finite-time singularities when viscosity or friction
forces are taken into account (when condition (18) takes place for the case of
external friction).

2. Conclusions

Here we represent some examples where hydrodynamic methods and solutions
may be useful for different problems in nonlinear optics. In these examples, the
medium itself has the first degree of importance in realization of all mentioned
phenomena. Indeed, the main future of the Vavilov-Cherenkov radiation is that
the medium is the source of this radiation instead of any kinds of bremsstrahlung
radiations by moving charged particles. The VCR theory presented here for the first
time takes into account the real mechanism of VCR by the medium itself, excited by
a sufficiently fast electron. It can also be shown only from the microscopic theory,
but not from the macroscopic one stated in [16]. The first step in this direction was
made in [47] also on the basis of the Abraham theory where it is proposed that the
Vavilov-Cherenkov radiation is emitted by the medium in a nonequilibrium polar-
ization state which is arising due to the parametric resonance interaction of the
medium with a fast-charged particle.
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The second example, which is represented here, also gives new perspectives
on the basis of the new exact solution (in the Euler variables) for n-dimensional
Hopf equation because this equation is known as the possible model for weak
nonlinear optic problems [46]. The importance of the new solution is connected
with its Euler form in dependence from space variables, which are not represented
in the solution of the Burgers-Hopf equation well known before (see [45] and
others).

A. Exact solution of n-D Hopf equation (n = 1, 2, 3)

The Appendix presents a procedure for deriving the exact solution of the 3D
Hopf equation.

The Hopf equation in the n-dimensional space (n = 1..3) is as follows:

∂ui
∂t

þ ul
∂ui
∂xl

¼ 0 (19)

When the external friction coefficient tends to zero in Eq. (4), μ ! 0, Eq. (4)
also coincides with the Hopf equation (19).

In the unbounded space, the general Cauchy problem solution for Eq. (19) under

arbitrary smooth initial conditions u!0 x!
� �

may be obtained as follows (see also in

[22, 23]):
Eq. (19) may be represented in an implicit form as follows:

ui x!; t
� �

¼ u0i x! � t u! x!; t
� �� �

¼
ð
dnξu0i ξ

!� �
δ ξ

! � x! þt u! x!; t
� �� �

(20)

In (20), δ is the Dirac delta function. Using known (see farther) properties of the
delta function, it is possible to express the delta function in (20) with the help of an
identity true for the very velocity field meeting Eq. (19):

δ ξ
! � x! þt u! x!; t

� �� �
� δ ξ

! � x! þtu0
!

ξ
!� �� �

det Â
�� �� (21)

In (21), the matrix Â depends only on the initial velocity field and is as follows:

Â � Akm ¼ δkm þ t
∂u0k ξ

!� �

∂ξm
(22)

To infer (21), it is necessary to use the following delta-function property that is

true for any smooth function Φ
!

ξ
!� �

:

δ Φ
!

ξ
!� �� �

¼
δ ξ

! �ξ0
!� �

det ∂Φk
∂ξm

� �
ξ
!¼ξ0

!

����
����

(23)

In (23), the values ξ0
!

are defined from the solution of the equation

Φ
!

ξ0
!� �

¼ 0 (24)
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To prove (23), it is necessary to use Taylor series decomposition wrt ξ
!
near

ξ
!¼ ξ0

!
for the argument of the delta function Φ

!
ξ
!� �

when in the limit ξ
!! ξ0

!
taking

into account (24), we get

δ Φk ξ
!

0

� �
þ ∂Φk

∂ξm

� �

ξ
!

¼ξ
!

0

ξm � ξ0mð Þ þ O ξ
! � ξ

!
0

� �2 !
¼ δ

∂Φk

∂ξm

� �

ξ
!
¼ξ
!

0

ξm � ξ0mð Þ
 !

(25)

Using variable substitution in the argument of the right-hand side of (25) (of the

type Âx!¼y! and taking into account that d x!¼ dy!

det Âj j [48]), we get from the right-

hand side of (25) the right-hand side of (23).

When in (23), Φ
!

ξ
!� �

�ξ
! � x! þ tu0

!
ξ
!� �

and det ∂Φk
∂ξm

¼ detAkm where Akm is

from (22); then Eq. (24) is reduced to the following equation:

ξ0
! � x! þ tu0

!
ξ0
!� �

¼ 0 (26)

The solution of Eq. (26) is as follows:

ξ0
! ¼ x! � tu! x!; t

� �
(27)

This can be verified substituting (27) into (26) and taking into account that the
general implicit solution of the equation (19) can be represented as

u! x!; t
� �

¼ u0
! x! � t u! x; tð Þ
� �

that is used in (20).

Let us use a known property of the delta function that for any smooth function

f
!

x!
� �

, the following equality f
!

x!
� �

δ x! � x!0

� �
¼ f

!
x!0

� �
δ x! � x0

!� �
holds. That is

why, in the general case, it is possible to multiply both sides of (23) by det
∂Φk ξ

!� �
∂ξm

����
����

getting the following:

δ ξ
! � ξ0

!� �
¼ δ Φ

!
ξ
!� �� �

det
∂Φk ξ

!� �

∂ξm

������

������
(28)

From (28) and (27), identical holding of the equality (21) follows.
Taking into account (21), from (20), we get an exact general (for any smooth

initial velocity fields) solution of the Cauchy problem for Eq. (19) as

ui x!; t
� �

¼
ð
dnξu0i ξ

!� �
δ ξ

! � x! þ tu0
!

ξ
!� �� �

det Â, (29)

where det Â ¼ det δmk þ t
∂u0m ξ

!� �
∂ξk

� �
. That solution of Eq. (19) is considered

under the following condition:

det Â > 0 (30)

That is why, sign of det Â is absent in (29). The condition (30) provides
smoothness of the solution only on the finite-time interval defined above from (13).
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We can check that the very (29) under condition (30) exactly satisfies Eq. (19)
by direct substitution of (29) in (19). The solution (29) describes not only potential
but also vortex solutions of Eq. (19) in two- and three-dimensional cases for any

smooth initial velocity field u0
! x!
� �

that was not known earlier for the solutions of

Eq. (19) [22–26].
The solution (29) of Eq. (19) allows getting an exact solution of Eq. (10) if in (29)

to make a substitution: x!!x! � B
!

tð Þ that yields Eq. (10) representation as in (11).
The solution (29) also can be described as an exact solution of Eq. (4) for μ > 0

if in (29) to substitute:

t ! 1� exp �tμð Þ
μ

(31)

A.1 The direct validation of the solution

To verify the solution (29) satisfies Eq. (19), let us substitute (29) in Eq. (19).
Then we get from (19):

ð
dnξ u0i ξ

!� �
∂det Â

∂t
δ ξ

! � x! þ tu0
!

ξ
!� �� �

� u0iu0m det Â
∂δ ξ

! � x! þtu0
!

ξ
!� �� �

∂xm

2
4

3
5

þ
ð
dnξ

ð
dnξ1F ¼ 0

(32)

where

F � u0m ξ1
!� �

det Â ξ1
!� �

δ ξ1
! � x! þ tu0

!
ξ1
!� �� �

u0i ξ
!� �

det Â ξ
!� �

∂δ ξ
!�x!þtu0

!
ξ
!� �� �

∂xm
.

To transform sub-integral expression in (32), the following identities shall be
used:

∂δ ξ
! � x! þ tu0

!
ξ
!� �� �

∂xm
¼ �A�1

km

∂δ ξ
! � x! þ tu0

!
ξ
!� �� �

∂ξk
(33)

∂ det Â
∂t

� ∂u0m
∂ξk

A�1
km det Â (34)

∂

∂ξk
A�1

km det Â
� �

� 0 (35)

The identity (33) is obtained from the relationship (obtained by differentiating

the delta function having argument as a given function of ξ
!
)

∂δ ξ
!�x!þ tu0

!
ξ
!� �� �

∂ξk
¼ � ∂δ ξ

!�x!þ tu0
!

ξ
!� �� �

∂xl
Alk after multiplying it both sides by the inverse

matrix A�1
km (where AlkA�1

km ¼ δlmи and δlm is the unity matrix or the Kronecker
delta).

The validity of the identities (34) and (35) is proved by the direct checking. In

the one-dimensional case, when Â ¼ 1þ t du01dξ1
¼ det Â; Â

�1 ¼ det Â
� ��1

, it obvi-

ously follows directly from (34) and (35). Further, in Item 3, the proof of the
identities (34) and (35) of the two- and three-dimensional cases is given.
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To prove (23), it is necessary to use Taylor series decomposition wrt ξ
!
near

ξ
!¼ ξ0

!
for the argument of the delta function Φ

!
ξ
!� �

when in the limit ξ
!! ξ0

!
taking

into account (24), we get

δ Φk ξ
!

0

� �
þ ∂Φk

∂ξm

� �

ξ
!

¼ξ
!

0

ξm � ξ0mð Þ þ O ξ
! � ξ

!
0

� �2 !
¼ δ

∂Φk

∂ξm

� �

ξ
!
¼ξ
!

0

ξm � ξ0mð Þ
 !

(25)

Using variable substitution in the argument of the right-hand side of (25) (of the

type Âx!¼y! and taking into account that d x!¼ dy!

det Âj j [48]), we get from the right-

hand side of (25) the right-hand side of (23).

When in (23), Φ
!

ξ
!� �

�ξ
! � x! þ tu0

!
ξ
!� �

and det ∂Φk
∂ξm

¼ detAkm where Akm is

from (22); then Eq. (24) is reduced to the following equation:

ξ0
! � x! þ tu0

!
ξ0
!� �

¼ 0 (26)

The solution of Eq. (26) is as follows:

ξ0
! ¼ x! � tu! x!; t

� �
(27)

This can be verified substituting (27) into (26) and taking into account that the
general implicit solution of the equation (19) can be represented as

u! x!; t
� �

¼ u0
! x! � t u! x; tð Þ
� �

that is used in (20).

Let us use a known property of the delta function that for any smooth function

f
!

x!
� �

, the following equality f
!

x!
� �

δ x! � x!0

� �
¼ f

!
x!0

� �
δ x! � x0

!� �
holds. That is

why, in the general case, it is possible to multiply both sides of (23) by det
∂Φk ξ

!� �
∂ξm

����
����

getting the following:

δ ξ
! � ξ0

!� �
¼ δ Φ

!
ξ
!� �� �

det
∂Φk ξ

!� �

∂ξm

������

������
(28)

From (28) and (27), identical holding of the equality (21) follows.
Taking into account (21), from (20), we get an exact general (for any smooth

initial velocity fields) solution of the Cauchy problem for Eq. (19) as

ui x!; t
� �

¼
ð
dnξu0i ξ

!� �
δ ξ

! � x! þ tu0
!

ξ
!� �� �

det Â, (29)

where det Â ¼ det δmk þ t
∂u0m ξ

!� �
∂ξk

� �
. That solution of Eq. (19) is considered

under the following condition:

det Â > 0 (30)

That is why, sign of det Â is absent in (29). The condition (30) provides
smoothness of the solution only on the finite-time interval defined above from (13).
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We can check that the very (29) under condition (30) exactly satisfies Eq. (19)
by direct substitution of (29) in (19). The solution (29) describes not only potential
but also vortex solutions of Eq. (19) in two- and three-dimensional cases for any

smooth initial velocity field u0
! x!
� �

that was not known earlier for the solutions of

Eq. (19) [22–26].
The solution (29) of Eq. (19) allows getting an exact solution of Eq. (10) if in (29)

to make a substitution: x!!x! � B
!

tð Þ that yields Eq. (10) representation as in (11).
The solution (29) also can be described as an exact solution of Eq. (4) for μ > 0

if in (29) to substitute:

t ! 1� exp �tμð Þ
μ

(31)

A.1 The direct validation of the solution

To verify the solution (29) satisfies Eq. (19), let us substitute (29) in Eq. (19).
Then we get from (19):

ð
dnξ u0i ξ

!� �
∂det Â

∂t
δ ξ

! � x! þ tu0
!

ξ
!� �� �

� u0iu0m det Â
∂δ ξ

! � x! þtu0
!

ξ
!� �� �

∂xm

2
4

3
5

þ
ð
dnξ

ð
dnξ1F ¼ 0

(32)

where

F � u0m ξ1
!� �

det Â ξ1
!� �

δ ξ1
! � x! þ tu0

!
ξ1
!� �� �

u0i ξ
!� �

det Â ξ
!� �

∂δ ξ
!�x!þtu0

!
ξ
!� �� �

∂xm
.

To transform sub-integral expression in (32), the following identities shall be
used:

∂δ ξ
! � x! þ tu0

!
ξ
!� �� �

∂xm
¼ �A�1

km

∂δ ξ
! � x! þ tu0

!
ξ
!� �� �

∂ξk
(33)

∂ det Â
∂t

� ∂u0m
∂ξk

A�1
km det Â (34)

∂

∂ξk
A�1

km det Â
� �

� 0 (35)

The identity (33) is obtained from the relationship (obtained by differentiating

the delta function having argument as a given function of ξ
!
)

∂δ ξ
!�x!þ tu0

!
ξ
!� �� �

∂ξk
¼ � ∂δ ξ

!�x!þ tu0
!

ξ
!� �� �

∂xl
Alk after multiplying it both sides by the inverse

matrix A�1
km (where AlkA�1

km ¼ δlmи and δlm is the unity matrix or the Kronecker
delta).

The validity of the identities (34) and (35) is proved by the direct checking. In

the one-dimensional case, when Â ¼ 1þ t du01dξ1
¼ det Â; Â

�1 ¼ det Â
� ��1

, it obvi-

ously follows directly from (34) and (35). Further, in Item 3, the proof of the
identities (34) and (35) of the two- and three-dimensional cases is given.
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Taking into account (33)–(35), from (32), we get

ð
dnξδ ξ

! � x! þ  tu0
!

ξ
!� �� �

A�1
km det Â u0i

∂u0m
∂ξk

� ∂

∂ξk
u0iu0mð Þ

� �
þ
ð
dnξ

ð
dnξ1F1 ¼ 0

(36)

where the sub-integral expression in the second term of the left-hand side of
(36) is as follows:

F1 ¼ u0m ξ1
!� � ∂u0i ξ

!� �

∂ξk
det Â ξ1

!� �
det Â ξ

!� �
A�1

km ξ
!� �

δ ξ
!� x! þ tu0

!
ξ
!� �� �

δ ξ1
! � x! þ tu0

!
ξ1
!Þ
� ��

(37)

To transform (37), it is necessary to use the following identities:

δ ξ
! � x! þ tu0

!
ξ
!� �� �

δ ξ1
! � x! þ tu0

!
ξ1
!� �� �

� δ ξ
! � x! þ tu0

!
ξ
!� �� �

δ ξ1
! � ξ

! þ t u0
!

ξ1
!� �

� u0
!

ξ
!� �� �� � (38)

δ ξ1
! � ξ

! þ t u0
!

ξ1
!� �

� u0
!

ξ
!� �� �� �

�
δ ξ1

! � ξ
!� �

det Â
(39)

In (39), as it is noted above, det Â > 0, and that is why the sign is not used in the
denominator of (39).

The identity (38) is a consequence of the noted above property of the delta
function (see discussion before the formula (28)).

To infer the identity (39), it is necessary to consider in the argument of the delta
function a Taylor series decomposition of the function

u0k ξ
!
1

� �
¼ u0k ξ

!� �
þ ∂u0k

ξ1
!Þ
∂ξ1m

� �

ξ1
!¼ξ

! ξ1m � ξmð Þ þ O ξ
!
1� ξ

!� �2 
near the point

ξ1
!¼ξ

!
. Then the left-hand side of (39) has the form δ Â ξ1

! �ξ
!� �� �

similar to that of

the right-hand side of (25), and according to (23), we get from here the identity
(39).

After the application of the identity (39) to the expression (37), defining the
form of the second term in (36), from (36), we get

ð
dnξδ ξ

!� x! þ tu0
!

ξ
!� �� �

A�1
km det Â u0i

∂u0m
∂ξk

� ∂

∂ξk
u0iu0mð Þ þ u0m

∂u0i
∂ξk

� �
¼ 0 (40)

Equality (40) holds identically due to the identical equality to zero of the
expression in the brackets in the sub-integral expression in (40).

Thus, we have proved that (29) exactly satisfies the Hopf equation (19) for any
smooth initial velocity fields on the finite-time interval under condition det Â > 0
in (13).

A.2 The validation of identities (34) and (35)

In the two-dimensional case, the elements of the inverse matrix A�1
km and the

determinant of the matrix Â are
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A�1
11 ¼ 1þ t∂u02=∂ξ2

det Â
; A�1

12 ¼ � t∂u01=∂ξ2
det Â

; A�1
21 ¼ � t∂u02=∂ξ1

det Â
; A�1

22 ¼ 1þ t∂u01=∂ξ1
det Â

(41)

det Â ¼ 1þ t
∂u01
∂ξ1

þ ∂u02
∂ξ2

� �
þ t2

∂u01
∂ξ1

∂u02
∂ξ2

� ∂u01
∂ξ2

∂u02
∂ξ1

� �
(42)

Here, (42) corresponds to the formula (13) for n = 2.
Using (41), it is possible to show that the following equality holds (in the left-

hand side of (43), summation is assumed on the repeating indices from 1 to 2):

∂u0m
∂ξk

A�1
km det Â ¼ ∂u01

∂ξ1
þ ∂u02

∂ξ2
þ 2t

∂u01
∂ξ1

∂u02
∂ξ2

� ∂u01
∂ξ2

∂u02
∂ξ1

� �
(43)

From (42), it follows that the right-hand side of (43) exactly matches ∂det Â
∂t

obtained when differentiating over time in (42). This proves the identity of (34) in
the two-dimensional case.

To prove the identity (35), let us introduce

Bm ¼ ∂

∂ξk
A�1

km det Â
� �

(44)

Using (41), one gets from (44)

B1 ¼ ∂

∂ξ1
1þ t

∂u02
∂ξ2

� �
� ∂

∂ξ2
t
∂u02
∂ξ1

� �
� 0 (45)

B2 ¼ ∂

∂ξ1
�t

∂u01
∂ξ2

� �
þ ∂

∂ξ2
1þ t

∂u01
∂ξ1

� �
� 0 (46)

The identities (45) and (46) confirm the truth of the identity (35) in the two-
dimensional case.

Similarly, the identity (35) is proved in the three-dimensional case. For that, we

need the following representation of the entries of the inverse matrix Â
�1

[49]:

A�1
11 ¼ 1

det Â
1þ t

∂u02
∂ξ2

� �
1þ t

∂u03
∂ξ3

� �
� t2

∂u02
∂ξ3

∂u03
∂ξ2

� �
;

A�1
12 ¼ 1

det Â
t2
∂u01
∂ξ3

∂u03
∂ξ2

� t 1þ t
∂u03
∂ξ3

� �
∂u01
∂ξ2

� �
;

A�1
13 ¼ 1

det Â
t2
∂u01
∂ξ2

∂u02
∂ξ3

� t 1þ t
∂u02
∂ξ2

� �
∂u01
∂ξ3

� �
;

A�1
21 ¼ 1

det Â
t2
∂u02
∂ξ3

∂u03
∂ξ1

� t 1þ t
∂u03
∂ξ3

� �
∂u02
∂ξ1

� �
;

A�1
22 ¼ 1

det Â
1þ t

∂u01
∂ξ1

� �
1þ t

∂u03
∂ξ3

� �
� t2

∂u01
∂ξ3

∂u03
∂ξ1

� �
;

A�1
23 ¼ 1

det Â
t2
∂u01
∂ξ3

∂u02
∂ξ1

� t 1þ t
∂u01
∂ξ1

� �
∂u02
∂ξ3

� �
;

A�1
31 ¼ 1

det Â
t2
∂u02
∂ξ1

∂u03
∂ξ2

� t 1þ t
∂u02
∂ξ2

� �
∂u03
∂ξ1

� �
;

A�1
32 ¼ 1

det Â
t2
∂u01
∂ξ2

∂u03
∂ξ1

� t 1þ t
∂u01
∂ξ1

� �
∂u03
∂ξ2

� �

A�1
33 ¼ 1

det Â
1þ t

∂u01
∂ξ1

� �
1þ t

∂u02
∂ξ2

� �
� t2

∂u01
∂ξ2

∂u02
∂ξ1

� �

(47)
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Taking into account (33)–(35), from (32), we get

ð
dnξδ ξ

! � x! þ  tu0
!

ξ
!� �� �

A�1
km det Â u0i

∂u0m
∂ξk

� ∂

∂ξk
u0iu0mð Þ

� �
þ
ð
dnξ

ð
dnξ1F1 ¼ 0

(36)

where the sub-integral expression in the second term of the left-hand side of
(36) is as follows:

F1 ¼ u0m ξ1
!� � ∂u0i ξ

!� �

∂ξk
det Â ξ1

!� �
det Â ξ

!� �
A�1

km ξ
!� �

δ ξ
!� x! þ tu0

!
ξ
!� �� �

δ ξ1
! � x! þ tu0

!
ξ1
!Þ
� ��

(37)

To transform (37), it is necessary to use the following identities:

δ ξ
! � x! þ tu0

!
ξ
!� �� �

δ ξ1
! � x! þ tu0

!
ξ1
!� �� �

� δ ξ
! � x! þ tu0

!
ξ
!� �� �

δ ξ1
! � ξ

! þ t u0
!

ξ1
!� �

� u0
!

ξ
!� �� �� � (38)

δ ξ1
! � ξ

! þ t u0
!

ξ1
!� �

� u0
!

ξ
!� �� �� �

�
δ ξ1

! � ξ
!� �

det Â
(39)

In (39), as it is noted above, det Â > 0, and that is why the sign is not used in the
denominator of (39).

The identity (38) is a consequence of the noted above property of the delta
function (see discussion before the formula (28)).

To infer the identity (39), it is necessary to consider in the argument of the delta
function a Taylor series decomposition of the function

u0k ξ
!
1

� �
¼ u0k ξ

!� �
þ ∂u0k

ξ1
!Þ
∂ξ1m

� �

ξ1
!¼ξ

! ξ1m � ξmð Þ þ O ξ
!
1� ξ

!� �2 
near the point

ξ1
!¼ξ

!
. Then the left-hand side of (39) has the form δ Â ξ1

! �ξ
!� �� �

similar to that of

the right-hand side of (25), and according to (23), we get from here the identity
(39).

After the application of the identity (39) to the expression (37), defining the
form of the second term in (36), from (36), we get

ð
dnξδ ξ

!� x! þ tu0
!

ξ
!� �� �

A�1
km det Â u0i

∂u0m
∂ξk

� ∂

∂ξk
u0iu0mð Þ þ u0m

∂u0i
∂ξk

� �
¼ 0 (40)

Equality (40) holds identically due to the identical equality to zero of the
expression in the brackets in the sub-integral expression in (40).

Thus, we have proved that (29) exactly satisfies the Hopf equation (19) for any
smooth initial velocity fields on the finite-time interval under condition det Â > 0
in (13).

A.2 The validation of identities (34) and (35)

In the two-dimensional case, the elements of the inverse matrix A�1
km and the

determinant of the matrix Â are
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A�1
11 ¼ 1þ t∂u02=∂ξ2

det Â
; A�1

12 ¼ � t∂u01=∂ξ2
det Â

; A�1
21 ¼ � t∂u02=∂ξ1

det Â
; A�1

22 ¼ 1þ t∂u01=∂ξ1
det Â

(41)

det Â ¼ 1þ t
∂u01
∂ξ1

þ ∂u02
∂ξ2

� �
þ t2

∂u01
∂ξ1

∂u02
∂ξ2

� ∂u01
∂ξ2

∂u02
∂ξ1

� �
(42)

Here, (42) corresponds to the formula (13) for n = 2.
Using (41), it is possible to show that the following equality holds (in the left-

hand side of (43), summation is assumed on the repeating indices from 1 to 2):

∂u0m
∂ξk

A�1
km det Â ¼ ∂u01

∂ξ1
þ ∂u02

∂ξ2
þ 2t

∂u01
∂ξ1

∂u02
∂ξ2

� ∂u01
∂ξ2

∂u02
∂ξ1

� �
(43)

From (42), it follows that the right-hand side of (43) exactly matches ∂det Â
∂t

obtained when differentiating over time in (42). This proves the identity of (34) in
the two-dimensional case.

To prove the identity (35), let us introduce

Bm ¼ ∂

∂ξk
A�1

km det Â
� �

(44)

Using (41), one gets from (44)

B1 ¼ ∂

∂ξ1
1þ t

∂u02
∂ξ2

� �
� ∂

∂ξ2
t
∂u02
∂ξ1

� �
� 0 (45)

B2 ¼ ∂

∂ξ1
�t

∂u01
∂ξ2

� �
þ ∂

∂ξ2
1þ t

∂u01
∂ξ1

� �
� 0 (46)

The identities (45) and (46) confirm the truth of the identity (35) in the two-
dimensional case.

Similarly, the identity (35) is proved in the three-dimensional case. For that, we

need the following representation of the entries of the inverse matrix Â
�1

[49]:

A�1
11 ¼ 1

det Â
1þ t

∂u02
∂ξ2

� �
1þ t

∂u03
∂ξ3

� �
� t2

∂u02
∂ξ3

∂u03
∂ξ2

� �
;

A�1
12 ¼ 1

det Â
t2
∂u01
∂ξ3

∂u03
∂ξ2

� t 1þ t
∂u03
∂ξ3

� �
∂u01
∂ξ2

� �
;

A�1
13 ¼ 1

det Â
t2
∂u01
∂ξ2

∂u02
∂ξ3

� t 1þ t
∂u02
∂ξ2

� �
∂u01
∂ξ3

� �
;

A�1
21 ¼ 1

det Â
t2
∂u02
∂ξ3

∂u03
∂ξ1

� t 1þ t
∂u03
∂ξ3

� �
∂u02
∂ξ1

� �
;

A�1
22 ¼ 1

det Â
1þ t

∂u01
∂ξ1

� �
1þ t

∂u03
∂ξ3

� �
� t2

∂u01
∂ξ3

∂u03
∂ξ1

� �
;

A�1
23 ¼ 1

det Â
t2
∂u01
∂ξ3

∂u02
∂ξ1

� t 1þ t
∂u01
∂ξ1

� �
∂u02
∂ξ3

� �
;

A�1
31 ¼ 1

det Â
t2
∂u02
∂ξ1

∂u03
∂ξ2

� t 1þ t
∂u02
∂ξ2

� �
∂u03
∂ξ1

� �
;

A�1
32 ¼ 1

det Â
t2
∂u01
∂ξ2

∂u03
∂ξ1

� t 1þ t
∂u01
∂ξ1

� �
∂u03
∂ξ2

� �

A�1
33 ¼ 1

det Â
1þ t

∂u01
∂ξ1

� �
1þ t

∂u02
∂ξ2

� �
� t2

∂u01
∂ξ2

∂u02
∂ξ1

� �

(47)
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From (44), in the three-dimensional case, we get on the basis of (47) that all
three components of the vector Bm � 0. For each m ¼ 1, 2, 3, we get identical
zeroing separately for the sum of terms proportional to t and separately for the sum
of the terms proportional to t2.

For example, in the expression for B1 the sum of terms proportional to the first

degree of time has the form t ∂

∂ξ1
∂u02
∂ξ2

þ ∂u03
∂ξ3

� �
� ∂

2u02
∂ξ2∂ξ1

� ∂
2u03

∂ξ3∂ξ1

h i
� 0, and similarly we

can show the vanishing of the sum of twelve terms proportional to the square of
time. Thus, the identity (35) is also proved in the three-dimensional case.

Proof of the identity (34) also is possible in the 3D case on the basis of (47) and
(13) but is related to the cumbersome transformations.

Author details

Sergey G. Chefranov1,2* and Artem S. Chefranov1

1 Obukhov Institute of Atmospheric Physics of Russian Academy of Sciences,
Moscow, Russia

2 Plasma Physics and Pulse Power Research Laboratory, Technion-Israel Institute of
Technology, Haifa, Israel

*Address all correspondence to: schefranov@mail.ru; csergei@technion.ac.il

© 2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

68

Nonlinear Optics ‐ Novel Results in Theory and Applications

References

[1] Maxwell G. Selected Works on the
Electro-Magnetic Field Theory.
Moscow, Mir, 1952

[2] Kambe T. Fluid Dynamics Research.
2010;42:055502

[3] Kuznetsov AP, Kuznetsov SP,
Trubetskov DI. Isvestia Vusov, PND.
2015;23:5

[4] Kambe T. New scenario of
turbulence theory and wall-bounded
turbulence: Theoretical significance.
arXiv. Jun 2017. 1610.05975v2 (Physics
> Fluid Dynamics)

[5] Feinman R, Leiton R, Sands M.
Feinman Lectures in Physics. Vol. 5.
Moscow, Mir, 1964

[6] Chefranov SG, Mokhov II,
Chefranov AG. The hydrodynamic
singular vortex on the sphere and the
Dirac monopole. arXiv. 2017.
1711.04124v1 (Physics > Fluid
Dynamics )

[7] PAM D. Proceedings of the Royal
Society A. 1931;133:60

[8] Blaha S. Physical Review Letters.
1976;36:874

[9] Volovik GE, Mineev VP. Soviet
Physics. JETP Letters. 1976;23:647

[10] Volovik GE et al. arXiv. 1999.
cond-mat/9911486v2

[11] Volovik GE. Proceedings of the
National Academy of Sciences of the
United States of America. 2000;97:2431

[12] Landau LD. Soviet Physics. JETP
Letters. 1941;11:592

[13] Chefranov SG. Physical Review
Letters. 2004;93:254801

[14] Chefranov SG. JETP. 2004;99:296

[15] Chefranov SG. JETP. 2016;123:12

[16] Tamm IM. Journal de Physique.
1939;1:139

[17] Frank IM. Physics Review. 1943;75:
1862

[18] Ginzburg VL. Journal de Physique.
1940;2:441

[19] Kuramoto Y, Tsuzuki T. Progress in
Theoretical Physics. 1976;55:356

[20] Sivashinsky GI. Physica D:
Nonlinear Phenomena. 1982;4:227

[21] Sivashinsky GI. Annual Review of
Fluid Mechanics. 1983;15:179

[22] Chefranov SG. Soviet Physics –
Doklady. 1991;36(4):286

[23] Chefranov SG, Chefranov AG. Exact
time dependent solution to the 3D
Euler-Helmholtz and Riemann-Hopf
equations for the vortex flow of
compressible medium and the Sixth
Millennium Prize Problem. arXiv. 2017.
1703.07239v3 (Physics > Fluid
Dynamics)

[24] Chefranov SG, Chefranov AG.
Cardiometry. 2017. 10 www.
cardiometry.net

[25] Chefranov SG, Chefranov AG. The
6th International Conference 10th
Anniversary Program “Turbulent
Mixing and Beyond”. Abdus Salam
International Centre for Theoretical
Physics; 14–18 August 2017; Trieste,
Italy

[26] Chefranov SG, Chefranov AG.
Proceedings of Euromech/Ercoftac
Colloquium 589 “Turbulent Cascades

69

Hydrodynamic Methods and Exact Solutions in Application to the Electromagnetic Field Theory…
DOI: http://dx.doi.org/10.5772/intechopen.80813



From (44), in the three-dimensional case, we get on the basis of (47) that all
three components of the vector Bm � 0. For each m ¼ 1, 2, 3, we get identical
zeroing separately for the sum of terms proportional to t and separately for the sum
of the terms proportional to t2.
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� �
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can show the vanishing of the sum of twelve terms proportional to the square of
time. Thus, the identity (35) is also proved in the three-dimensional case.

Proof of the identity (34) also is possible in the 3D case on the basis of (47) and
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Chapter 5

Polarization Properties of the
Solitons Generated in the Process
of Pulse Breakup in Twisted Fiber
Pumped by ns Pulses
Ariel Flores Rosas, Orlando Díaz Hernández, Roberto Arceo,
Gerardo J. Escalera Santos, Sergio Mendoza Vázquez,
Elizeth Ramírez Álvarez, Christian I. Enriquez Flores
and Evgeny Kuzin

Abstract

Common optical fibers are randomly birefringent, and solitons formatting and
traveling in them are randomly polarized. However, it is desirable to have solitons
with a well-defined polarization. With pump relatively long pulses, the nonlinear
effects of modulation instability (MI) and stimulated Raman scattering (SRS) are
dominant at the initial stage of the process of supercontinuum (SC) generation;
modulation instability results in pulse breakup and formation of short pulses that
evolve finally to a bunch of solitons and dispersive waves. We do the research of the
polarization of solitons formed by the pulse breakup process by the effect of modu-
lation instability with pump pulses of nanoseconds in standard fiber (SMF-28) with
circular birefringence introduced by fiber twist, and the twisted fiber mitigates the
random linear birefringence. In this work, we found that polarization ellipticity of
solitons is distributed randomly; nevertheless, the average polarization ellipticity is
closer to the circular than the polarization ellipticity of the input pulse. In the exper-
imental setup. 200 m of SMF-28 fiber twisted by 6 turns/m was used. We used 1 ns
pulse to pump the fiber. The results showed that at circular polarization of the input
pulse solitons at the fiber output have polarizations close to the circular, while in the
fiber without twist, the soliton polarization was random.

Keywords: fiber optic, nonlinear optics, pulse propagation and temporal solitons,
birefringence and polarization, stimulated Raman scattering

1. Introduction

One of the important mechanisms for the generation of supercontinuum (SC) is
the formation of solitons by the nonlinear effect of modulation instability. One
feature of the common optical fibers is that they are randomly birefringent, and
therefore the generation of solitons and the transition of them by these fibers gener-
ated by the nonlinear effects are randomly polarized. Solitons with a well-defined
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polarization are necessary for some applications like supercontinuum generation. The
propagation of a pulse in a low birefringence fiber using coupled nonlinear
Schrödinger equations was considered in [1–3]. In these works, the investigation
concludes that the fractional pulses in each of the two polarizations trap each other
and move together as one unit which is called a vector soliton. The frequency of each
pulse is shifted to compensate the difference in group velocities caused by birefrin-
gence. It has been reported the experimental observation of vector solitons [4]. The
vector solitons have attracted more attention in applications with linearly birefrin-
gent fibers. For the case of fibers with circular birefringence, a special case is when
circular birefringence is induced when the fibers are twisted. These twisted fibers can
present special advantages for some laser applications. The especial characteristic of
twisted fiber is that it induces circular birefringence and eliminates the random linear
birefringence [5]. An important consequence of this result is that twisted fiber is less
sensitive to environmental conditions and with this we can find new useful features
for nonlinear applications [6]. This helps us make the twisted fiber less sensitive to
environmental conditions and provides new useful features for nonlinear applications
[6]. In [7], it has been analyzed the polarization behavior of vector solitons in a
circularly birefringent fiber. In this work, for analysis, we used the two coupled
propagation equations in a circularly birefringent fiber that include self-phase modu-
lation, cross phase modulation, and the soliton self-frequency shift [8]. We consider
the polarization dependence of the Raman amplification unlike the previously
published works [9]. We work on the equations to make a transformation to reduce
them to a form of perturbed Manakov task. For our case, the equations were consid-
ered as a perturbation unlike the Manakov integrable case. For the case of the
perturbation method, we can get the equations for the analysis of the development of
evolution of the polarization state of pulses. An important result when analyzing the
equations shows that for circularly birefringent fiber (twisted fiber), the cross-
polarization Raman term leads to unidirectional energy transfer from the slow circu-
larly polarized component to the fast one. The product of the birefringence and the
amplitudes of both polarization components determine the importance of this effect.
From all of the above, we can conclude that solitons with any initial polarization state
will eventually develop circularly stable polarized solitons.

The split-step Fourier method was used for the numerical analysis of the two
coupled nonlinear Schrödinger equations. The parameters of a standard fiber
(SMF-28) were used with delay between left- and right-circular polarizations of
1 ps/km that corresponds to circular birefringence in a twisted fiber by 6 turns/m.
Furthermore, by the numerical analysis, it is possible to analyze the polarization of
solitons generated by the modulation instability effect. An input pulse of 30 ps with
40W of power was used with a noise imposed which was launched to the fiber input.
The input pulses had different polarization ellipticity from circular to linear. From the
results, it was found that polarization ellipticity of solitons does not coincide with the
polarization of the input pulses. An important result that was also found is that
polarization ellipticity of solitons is distributed randomly, but the average polariza-
tion ellipticity is mostly circular compared to polarization ellipticity of the input
pulse. In the experimental and numerical analysis, SMF-28 standard fiber twisted
with 60 y 200 m of length with a pump pulse of 1–10 ns in a wavelength of about
1550 nmwas used. The output signal at the fiber end is separated in circular-right and
circular-left polarization. The ellipticity of the pulses is calculated with the ratio
between the output pulses. The experimental results show that circularly polarized
pulses in a fiber with circular birefringence (twisted fiber) are promising for the
generation of supercontinuum with stable polarization and confirm the principal
conclusions of the modeling propose in [8]; the polarization properties of
supercontinuum are also an important issue for application [9–13].
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2. Equations to analyze

The equations that describe self-frequency shift of picosecond pulses with linear
polarization can be written as follows [14]:

∂zAx ¼ iγ TR∂T Axj j2
h i

Ax (1)

the terms Ax, γ, and TR in Eq. (1) are the envelope of the pulse with linear
polarization on the x-axis, the nonlinearity, and the Raman response time, respec-
tively. If the pulse has elliptical polarization, two polarization components have to be
included if the input pulse has elliptical polarization, for this case the nonlinear effect
of self-frequency shift is considered as dependent on the sum of the powers of the
orthogonal components [9]. From the above, it can be said that the value of the
parallel Raman gain is equal to the orthogonal Raman gain; the parallel Raman gain is
when the pump and Stokes have the same linear polarization, and the orthogonal
Raman gain is when the pump and Stokes are polarized orthogonally. The experi-
mental results show that the Raman gain caused by the perpendicular component has
a value of 0.3 of the Raman gain for parallel component for a small Stokes shift [15].
For this reason, we used the following equations for the self-frequency shift effect:

∂zAx ¼ iγ TR∂T Axj j2
h i

Ax þ iαγ TR∂T Ay
�� ��2h i

Ax (2)

∂zAx ¼ iγ TR∂T Axj j2
h i

Ax þ iαγ TR∂T Ay
�� ��2h i

Ax (3)

here α ¼ α⊥=α∥, where α⊥ and α∥ denote, respectively, the perpendicular and
parallel Raman gains.

Using circularly polarized components, we can obtain the equation for the
right- and left-circularly polarized state as follows:

∂zAþ ¼ iγTR

2
1þ α

2
∂t Aþj j2 þ A�j j2
� �

Aþ þ 1� αð Þ∂t Re AþA∗
�

� �� �
A�

� �
(4)

∂zA� ¼ iγTR

2
1þ α

2
∂t Aþj j2 þ A�j j2
� �

A� þ 1� αð Þ∂t Re AþA∗
�

� �� �
Aþ

� �
(5)

Eqs. (4) and (5) are the coupling equations describing the self-frequency shift.
Adding group velocity dispersion (GVD) and walk-off between circularly polarized
components, self-phase modulation (SPM), and cross-phase modulation (XPM)
terms to these equations, we have coupling equations that we analyzed analytically
and numerically:

∂zAþ þ β1∂tAþ þ iβ2
2

∂tAþ ¼ 2iγ
3

Aþj j2 þ 2 A�j j2
� �

Aþ

� iγTR

2
1þ α

2
∂t Aþj j2 þ A�j j2
� �

Aþ þ 1� αð Þ∂t Re AþA∗
�

� �� �
A�

� � (6)

∂zA� � β1∂tA� þ iβ2
2

∂tA� ¼ 2iγ
3

A�j j2 þ 2 Aþj j2
� �

A�

� iγTR

2
1þ α

2
∂t Aþj j2 þ A�j j2
� �

A� þ 1� αð Þ∂t Re AþA∗
�

� �� �
Aþ

� � (7)

To describe the above equations, the last two terms on the left side are the
effects of Walk-off and Group Velocity Dispersion (GVD) respectively, the terms
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in parenthesis of right side are the effects of Self Phase Modulation (SPM) and Cross
Phase Modulation (XPM), and finally the terms in key of right side are the Stimu-
lated Raman Scattering effect.

The vector soliton can be approximated by the next equations (not taking into
account phases),

Aþ zð Þj j ¼ Acos θð Þsech A t� t0ð Þ=
ffiffiffiffiffiffiffi
β2j j

ph �
�, (8)

A� zð Þj j ¼ Acos θð Þsech A t� t0ð Þ=
ffiffiffiffiffiffiffi
β2j j

ph �
�: (9)

And finally applying the perturbation method [16] to Eqs. (6) and (7), we can
define the ratio between powers of circularly left- and right-polarized components
as follows [7]:

A� zð Þj j
Aþ zð Þj j ¼ tan θ 0ð Þð Þ exp 2 1� αð Þ

3
γA2 TRβ1

β2j j z
� �

: (10)

From Eq. (10), we can see that the change of the polarization ellipticity of the
vector soliton along the fiber may occur only in the presence of circular birefrin-
gence (twisted fiber, β1 is not equal to 0).

3. Numerical results

The split-step Fourier method is used for solving Eqs. (6) and (7) [14]. The
values of using parameters are the following: β1 = 1, β1 = �1 ps/km; β1 = 0;
β2 = �25 ps2/km, α = 0.3, γ = 1.6 1/(W-km), TR = 3 fs. The value of β1 = 1 corre-
sponds to the twisted fiber with 6 turns/m. The meaning of the change of the sign of
the constant β is for representing the change of the twist direction. For simulations,
the 30 ps input pulse with 40 W power in the input fiber was used, and the
Gaussian noise was added on the pulse. Modulation instability (MI) effect breaks up
the pulse generating a set of solitons; the highest soliton were traced in this set [8].

When a linearly polarized pulse is introduced to the fiber input, we can see the
influence of the walk-off effect between circularly right- and left-polarized compo-
nents on ellipticity, see Figure 1. The fiber optic length used varies from 1 to 1.5 km.
The results for the simulations are present in Figure 1, the result for β1 = 1 is shown
by open circles, for β1 = �1 is shown by closed circles, and for β1 = 0 is shown by
squared. The important result for the dependence of polarization behavior can be
observed clearly. The polarization behavior with β1 = 1, but in this special case, we
consider α = 1, that is, the parallel Raman gain is equal to the perpendicular, α = 1,
see Figure 2. It can be seen that in this case, the effect of the ellipticity change of the
soliton along the fiber is not presented. The results obtained are based on Eq. (10),
and these results show that some ellipticity change must be presented on the
circular birefringence and difference between Raman parallel and perpendicular
gain. It can be observed that the ellipticity of the highest soliton does not coincide
with the ellipticity of the input pulse (there is an exception for the case where
β1 = 0).

For the special case when using elliptical input polarization, the results show a
similar behavior of the polarization ellipticity to make the energy transform from
the slow to fast circularly polarized component. With these results, it can be said
that the soliton with a fast circular polarization component propagates in the fiber
with stable polarization. From the case of Eq. (10), we can say that this equation
describes the polarization evolution of the soliton, but it is not applicable for
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development of the process of the soliton formation. As we can see from the
previous results, the polarization of the soliton at the end of the soliton formation
process does not coincide with the polarization of the input pulse. The process of
generation of solitons by the effect of modulation instability is complex, and the
stochastic process depends on the noise. It was calculated by the ellipticity of
solitons generated in the process of the effect of modulation instability for different
noise imposed on the input pulse. The ellipticity of the highest solitons was found to
be randomly distributed. In Figure 3, the number of solitons that were generated
with different ellipticity when linearly polarized input pulse was used is showed;
the total of number of calculation was 150. As you can see, the polarizations of
solitons are mostly concentrated close to the linear one; however, solitons with a
wide range of the polarization ellipticity can also appear. Figure 3 shows that the

Figure 2.
Ellipticity vs. fiber length for linear input pulse, particularly for the case when parallel Raman gain is equal to
perpendicular Raman gain.

Figure 1.
Ellipticity vs. fiber length for a soliton with linearly polarized pulse at the entrance for β1 = 1 (closed circles),
β1 = �1 (open circles), and β1 = 0 (squared).
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in parenthesis of right side are the effects of Self Phase Modulation (SPM) and Cross
Phase Modulation (XPM), and finally the terms in key of right side are the Stimu-
lated Raman Scattering effect.

The vector soliton can be approximated by the next equations (not taking into
account phases),

Aþ zð Þj j ¼ Acos θð Þsech A t� t0ð Þ=
ffiffiffiffiffiffiffi
β2j j

ph �
�, (8)

A� zð Þj j ¼ Acos θð Þsech A t� t0ð Þ=
ffiffiffiffiffiffiffi
β2j j

ph �
�: (9)

And finally applying the perturbation method [16] to Eqs. (6) and (7), we can
define the ratio between powers of circularly left- and right-polarized components
as follows [7]:

A� zð Þj j
Aþ zð Þj j ¼ tan θ 0ð Þð Þ exp 2 1� αð Þ

3
γA2 TRβ1

β2j j z
� �

: (10)

From Eq. (10), we can see that the change of the polarization ellipticity of the
vector soliton along the fiber may occur only in the presence of circular birefrin-
gence (twisted fiber, β1 is not equal to 0).

3. Numerical results
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β2 = �25 ps2/km, α = 0.3, γ = 1.6 1/(W-km), TR = 3 fs. The value of β1 = 1 corre-
sponds to the twisted fiber with 6 turns/m. The meaning of the change of the sign of
the constant β is for representing the change of the twist direction. For simulations,
the 30 ps input pulse with 40 W power in the input fiber was used, and the
Gaussian noise was added on the pulse. Modulation instability (MI) effect breaks up
the pulse generating a set of solitons; the highest soliton were traced in this set [8].

When a linearly polarized pulse is introduced to the fiber input, we can see the
influence of the walk-off effect between circularly right- and left-polarized compo-
nents on ellipticity, see Figure 1. The fiber optic length used varies from 1 to 1.5 km.
The results for the simulations are present in Figure 1, the result for β1 = 1 is shown
by open circles, for β1 = �1 is shown by closed circles, and for β1 = 0 is shown by
squared. The important result for the dependence of polarization behavior can be
observed clearly. The polarization behavior with β1 = 1, but in this special case, we
consider α = 1, that is, the parallel Raman gain is equal to the perpendicular, α = 1,
see Figure 2. It can be seen that in this case, the effect of the ellipticity change of the
soliton along the fiber is not presented. The results obtained are based on Eq. (10),
and these results show that some ellipticity change must be presented on the
circular birefringence and difference between Raman parallel and perpendicular
gain. It can be observed that the ellipticity of the highest soliton does not coincide
with the ellipticity of the input pulse (there is an exception for the case where
β1 = 0).

For the special case when using elliptical input polarization, the results show a
similar behavior of the polarization ellipticity to make the energy transform from
the slow to fast circularly polarized component. With these results, it can be said
that the soliton with a fast circular polarization component propagates in the fiber
with stable polarization. From the case of Eq. (10), we can say that this equation
describes the polarization evolution of the soliton, but it is not applicable for
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development of the process of the soliton formation. As we can see from the
previous results, the polarization of the soliton at the end of the soliton formation
process does not coincide with the polarization of the input pulse. The process of
generation of solitons by the effect of modulation instability is complex, and the
stochastic process depends on the noise. It was calculated by the ellipticity of
solitons generated in the process of the effect of modulation instability for different
noise imposed on the input pulse. The ellipticity of the highest solitons was found to
be randomly distributed. In Figure 3, the number of solitons that were generated
with different ellipticity when linearly polarized input pulse was used is showed;
the total of number of calculation was 150. As you can see, the polarizations of
solitons are mostly concentrated close to the linear one; however, solitons with a
wide range of the polarization ellipticity can also appear. Figure 3 shows that the

Figure 2.
Ellipticity vs. fiber length for linear input pulse, particularly for the case when parallel Raman gain is equal to
perpendicular Raman gain.

Figure 1.
Ellipticity vs. fiber length for a soliton with linearly polarized pulse at the entrance for β1 = 1 (closed circles),
β1 = �1 (open circles), and β1 = 0 (squared).
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average polarization ellipticity of solitons is �0.02. The maximum ellipticity found
in this set of calculations was 0.3.

The distribution of polarization of solitons when the input pulse has ellipticity of
0.82 is showed in Figure 4. From Figure 4, it can be observed that the average
soliton polarization moves toward circular polarization. For the case when the
polarization of the input pulse is close to the circular polarization, the dispersion of
the polarization ellipticity of solitons becomes much less, see Figure 5. For Figure 5,
the polarization ellipticity of the input pulse used was equal to 0.906 and �0.906. It

Figure 3.
The number of solitons with different ellipticity generated by the effect of modulation instability at linear
polarization of the input pulse.

Figure 4.
The number of solitons with different ellipticity generated by modulation instability at polarization of the input
pulse of 0.82 and �0.82.

78

Nonlinear Optics ‐ Novel Results in Theory and Applications

can be seen that most of the solitons have the ellipticity closer to the circular
polarization than the input pulse. Average ellipticity of solitons in this case was
found to be about 0.95.

4. Experimental setup

In Figure 6, the experimental setup is showed. For the source of signal, a
continuous wave distributed feedback semiconductor laser with a wavelength of
1550 nm was used. The continuous wave signal was gated and amplified by the
erbium doped fiber amplifier (EDFA) from which you can get pulses with 1–10 ns
duration and a maximum peak power of about 150 W. To assure the stable polari-
zation state, the pulses from the EDFA pass through a polarization controller (PC)
and a polarizer. With the rotation of quarter wave retarder (QWR1), we can change
the polarization ellipticity to be able to control the input polarization on the fiber.
The output of the fiber under the test (twisted fiber) is connected to a quarter wave
retarder (QWR2) and polarization beam splitter (PBS). The QWR2 and PSB convert
the right and left circularly polarized component at the output fiber to orthogonally
polarized linear components at the output PBS. The output of PSB (linearly polar-
ized component) is separated in time by a delay line (10 m of SMF-28 fiber), and
they come together using a 50/50 coupler to launch the same monochromator input.
The output pulses are detected and monitored by an oscilloscope. A typical

Figure 5.
The number of solitons with different ellipticity generated by modulation instability at polarization of the input
pulse of 0.906 and �0.906.

Figure 6.
Experimental setup.
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oscilloscope trace is shown in Figure 7. The first pulse is that traveling from a port 1
of the polarization beam splitter, and second pulse travels from a port 2 of the
polarization beam splitter through the delay line (10 m of SMF-28 fiber). With this
experimental setup, we can measure the amplitudes of left and right circularly
polarized component at any wavelength using one single shot in the oscilloscope
[17]. The ellipticity is calculated using the next equation:

ρ ¼ tan �1
ffiffiffiffiffiffi
Pþ

p � ffiffiffiffiffiffi
P�

p
ffiffiffiffiffiffi
Pþ

p þ ffiffiffiffiffiffi
P�

p
� �

(11)

where P+ and P� are the pulse amplitudes at the monochromator output. A
disadvantage of this method is that we measure the average ellipticity of the bundle
of solitons.

We used span of SMF-28 fiber with different lengths, twisted, and without twist.
To calibrate the ellipticity measurement system, the ellipticity was measured at the
polarizer output. The results of measurements are presented in Figure 8. The angle
0 on the position of the QWR1 corresponds to linearly polarized signal at the QWR1
output. Taken into account that the ellipticity of the signal at the QWR1 output is
equal to the angle of the rotation of QWR1 in the range �45° + 45° [18]. The
maximum ellipticity measured was 35°. At this ellipticity, 97% of the power is in one
circularly polarized component and only 3% is in orthogonal component. In our
setup, the measurement of the higher ellipticity is restricted by the possibility of the
measurement of low power pulse. In the experiment, it was used 1-ns pump pulse
with a maximum power of 150 W and a wavelength of 1550 nm. Linearly polarized
pump pulses passed through QWR1. The angle of QWR1 defined the polarization
state of the input pulse that is launched to the fiber. In the experiment, the span of
SMF-28 fibers was used with lengths of 65 and 218 m. The fibers under the test were
twisted with a twist of 6 turn/m and they were put on the cylinder with diameters
of 25 and 50 cm. From the experimental results, it can be observed that both fibers
conserved the polarization ellipticity along the fiber at low powers. Figure 8 shows
the ellipticity of the low power continuous wave (CW) radiation at the output of

Figure 7.
A typical oscilloscope trace.
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the 65-m SMF-28 fiber. It can be observed that the dependence is the same as the
dependence of the ellipticity on the QWR1 angle at the fiber input.

Next step was the measurements of the ellipticity at the fiber output at low
power. These measurements show the effect of residual linear birefringence in the
fiber. In Figure 9, we show the ellipticity at the output of the 218-m fiber without
twist. As another example, Figure 10 shows the ellipticity at the output of the 218-
m twisted fiber wounded on the cylinder with a diameter of 25 cm (squares);
Figure 10 shows the ellipticity at the output of the same fiber however wounded on
the cylinder with a diameter of 50 cm (circles). Figure 10 (for fiber wounded on the

Figure 8.
Ellipticity at the QWR1 output measured by our setup.

Figure 9.
The ellipticity at the output of the 218-m fiber without twist.

81

Polarization Properties of the Solitons Generated in the Process of Pulse Breakup in Twisted Fiber…
DOI: http://dx.doi.org/10.5772/intechopen.81574



oscilloscope trace is shown in Figure 7. The first pulse is that traveling from a port 1
of the polarization beam splitter, and second pulse travels from a port 2 of the
polarization beam splitter through the delay line (10 m of SMF-28 fiber). With this
experimental setup, we can measure the amplitudes of left and right circularly
polarized component at any wavelength using one single shot in the oscilloscope
[17]. The ellipticity is calculated using the next equation:

ρ ¼ tan �1
ffiffiffiffiffiffi
Pþ

p � ffiffiffiffiffiffi
P�

p
ffiffiffiffiffiffi
Pþ

p þ ffiffiffiffiffiffi
P�

p
� �

(11)

where P+ and P� are the pulse amplitudes at the monochromator output. A
disadvantage of this method is that we measure the average ellipticity of the bundle
of solitons.

We used span of SMF-28 fiber with different lengths, twisted, and without twist.
To calibrate the ellipticity measurement system, the ellipticity was measured at the
polarizer output. The results of measurements are presented in Figure 8. The angle
0 on the position of the QWR1 corresponds to linearly polarized signal at the QWR1
output. Taken into account that the ellipticity of the signal at the QWR1 output is
equal to the angle of the rotation of QWR1 in the range �45° + 45° [18]. The
maximum ellipticity measured was 35°. At this ellipticity, 97% of the power is in one
circularly polarized component and only 3% is in orthogonal component. In our
setup, the measurement of the higher ellipticity is restricted by the possibility of the
measurement of low power pulse. In the experiment, it was used 1-ns pump pulse
with a maximum power of 150 W and a wavelength of 1550 nm. Linearly polarized
pump pulses passed through QWR1. The angle of QWR1 defined the polarization
state of the input pulse that is launched to the fiber. In the experiment, the span of
SMF-28 fibers was used with lengths of 65 and 218 m. The fibers under the test were
twisted with a twist of 6 turn/m and they were put on the cylinder with diameters
of 25 and 50 cm. From the experimental results, it can be observed that both fibers
conserved the polarization ellipticity along the fiber at low powers. Figure 8 shows
the ellipticity of the low power continuous wave (CW) radiation at the output of

Figure 7.
A typical oscilloscope trace.

80

Nonlinear Optics ‐ Novel Results in Theory and Applications

the 65-m SMF-28 fiber. It can be observed that the dependence is the same as the
dependence of the ellipticity on the QWR1 angle at the fiber input.

Next step was the measurements of the ellipticity at the fiber output at low
power. These measurements show the effect of residual linear birefringence in the
fiber. In Figure 9, we show the ellipticity at the output of the 218-m fiber without
twist. As another example, Figure 10 shows the ellipticity at the output of the 218-
m twisted fiber wounded on the cylinder with a diameter of 25 cm (squares);
Figure 10 shows the ellipticity at the output of the same fiber however wounded on
the cylinder with a diameter of 50 cm (circles). Figure 10 (for fiber wounded on the
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cylinder with a diameter of 50 cm) shows the ellipticity at the fiber output is the
same as at the fiber input. It means that there is no effect of linear birefringence.
However, for the 25-cm diameter cylinder, the effect of the linear birefringence can
be clearly seen.

When the pulses with the power of 150 W were launched to the input fiber, the
pulse breakup occurred followed by the soliton formation and soliton self-
frequency shift; see Figure 11. The polarization ellipticity was measured at the
output of the 218-m twisted fiber on the 50-cm cylinder and also at the output fiber
with the same length but without twist. The measurements were done for high
power wavelengths of 1560, 1570, and 1580 nm. The results for these wavelengths
are presented in Figures 12–14, for 1560, 1570, and 1580 nm, respectively. For these
results, it can be seen that solitons at the output of twisted fiber present a high grade
of polarization at least when the input polarization has circular polarization, for the
angle of QWR1 of about 50°. We can use Eq. (11) to calculate that about 90% of
output power is in the same circular polarization as in the output and only about
10% in the orthogonal polarization. With this technique used, we can measure the
averaged polarization, and so if measured ellipticity is close to 0, it does not imply
that solitons have linear polarization, it just means that powers of all solitons in the
selected spectral range in both circularly polarized components are equal. For the
case of the fibers without twist, the polarization is chaotic. It can be seen that for the
wavelengths of 1570 and 1580 nm, where the measured ellipticity is very close to 0
[17]. There are no physical reasons for the linear polarization at any input polariza-
tion; so we can think that the polarization ellipticity of solitons most probably is
random.

The slope of the dependencies of the output ellipticity on the input at the input
ellipticity equal to 0 is equal to 1.9 for wavelengths 1570 and 1580 nm and 0.9 for
1560 nm. The fact that the slope is higher than in 1570 and 1580 nm can show that
the output ellipticity tends to be higher than the input ellipticity. The ellipticity of the
highest soliton generated in the process of pulse breakup at different noise imposed
on the pulse was also calculated. The equations and the procedure described before
were used [7]. The equations are taken into account the difference of group velocity
of orthogonal circularly polarized components and vectorial nature of the Raman

Figure 10.
The ellipticity at the output of the 218-m fiber: squares—on 25-cm cylinder and circles—on the 50-cm cylinder.
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Figure 11.
The process of the pulse breakup.

Figure 12.
The ellipticity at the output of the 218-m fiber for 1560 nm: squares for the twisted fiber and circles for the fiber
without twist on the 50 cm cylinder.
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effect in the optical fiber. Like in Figure 15, we have examples of the 50 calculations
with 30 ps input pulse with 40 W of power. For the numerical calculation, the
following parameters were used: β1 = 0.2 ps/km and β2 = 25 ps2/km. The input
polarizations were equal to 0.4 (equal to 21.8°) and 0.9 (equal to 42°). As we can see
in most of the realizations, the output ellipticity of the solitons was greater than the
ellipticity of the input pulse. For the case when input ellipticity is equal to 0.4, the

Figure 13.
The ellipticity at the output of the 218-m fiber for 1570 nm: squares for the twisted fiber and circles for the fiber
without twist on the 50 cm cylinder.

Figure 14.
The ellipticity at the output of the 218-m fiber for 1580 nm: squares for the twisted fiber and circles for the fiber
without twist on the 50-cm cylinder.
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average output ellipticity is equal to 0.54, and the case for input ellipticity is equal to
0.9, the average output ellipticity is equal to 0.95, see Figure 15 [18].

Numerical calculations were done for different input polarizations. The depen-
dence of the average output soliton ellipticity on the input ellipticity is showed in
Figure 16. The simulations corroborate the measured tendency of soliton to have
the higher ellipticity than the input pulse. Simulations show that the fluctuations of
the soliton polarization get to be smaller when the input polarization approaches to
the circular. We also made calculations for β1 = 0, that is, for ideal fiber without any
birefringence and found similar statistic for the polarization of solitons.

Figure 15.
Statistics of the ellipticity of the highest soliton.

Figure 16.
Average output polarization vs. input polarization.
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5. Conclusions

Finally, it can be concluded that the solitons generated in the nonlinear process
of pulse breakup for the special case when the twisted standard fiber is used can
present a high degree of polarization for the case when the polarization of the input
pulse is circular. The numerical calculations agree with the experimental results
show that the polarization ellipticity of solitons tends to be greater than the polari-
zation of the input pulse (for the case when the polarization of the input pulse is
circular). We can say that according to the results, this effect does not depend on
the circular birefringence, so, in this particular case, the twisted fiber plays a role of
the ideal fiber without birefringence.
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5. Conclusions

Finally, it can be concluded that the solitons generated in the nonlinear process
of pulse breakup for the special case when the twisted standard fiber is used can
present a high degree of polarization for the case when the polarization of the input
pulse is circular. The numerical calculations agree with the experimental results
show that the polarization ellipticity of solitons tends to be greater than the polari-
zation of the input pulse (for the case when the polarization of the input pulse is
circular). We can say that according to the results, this effect does not depend on
the circular birefringence, so, in this particular case, the twisted fiber plays a role of
the ideal fiber without birefringence.
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Chapter 6

Towards Enhancing the Efficiency 
of Nonlinear Optical Generation
Padma Nilaya J. and Dhruba J. Biswas

Abstract

The chapter dwells on two novel approaches towards enhancing the efficiency of 
nonlinear optical generation. The former is to enable the unabsorbed pump beam to 
pass through the crystal repeatedly. Integration of an unstable cavity containing the 
crystal with the stable pump cavity made this possible. The Q of the unstable cavity 
could be maintained high as the output coupler of the pump laser, itself served as 
the entrance mirror of this cavity. The unstable nature of the cavity kept the crystal 
from being exposed to high flux while ensuring longer interaction length. Although 
this scheme demonstrated in mid-IR region its advantage should persist across 
UV, visible, and near-IR regions too. The enhancement of conversion efficiency is 
effected in the second scheme by way of illuminating the crystal with alternate high 
and low regions of intensity along its length as against the uniform illumination 
case maintaining the same average intensity as in the conventional operation. The 
advantage is attributed to the square dependence of the second harmonic on the 
intensity of the pump. A simple modification of the existing experimental setup 
involving integration of an additional optical element with the pump cavity allowed 
exploitation of interference effect to realise such a non-uniform illumination 
condition.

Keywords: non-linear optical conversion, unstable cavity, interference, CO2 laser, 
dichroic optics

1. Introduction

There has been a constant endeavour to increase the number of available coher-
ent sources allowing wider coverage of the electromagnetic spectrum. To this 
end, nonlinear optical conversion of the emission of a laser inside an appropriate 
nonlinear crystal by ensuring that the fundamental and generated waves are phase 
matched has emerged as one of the most attractive methods across UV [1], visible 
[2], infrared [3], and mid-infrared [4] regions of the electromagnetic spectrum. 
As the non-linearity of the crystal is responsible for effecting this conversion, an 
increase in the intensity of the pump radiation to which the crystal is subjected to 
increases the conversion efficiency too albeit in a non-linear fashion. Single crystals, 
specifically grown to provide a reasonable interaction length, invariably suffer from 
low optical damage threshold. This thus puts an upper limit on the pump intensity 
to which the crystal can be exposed to causing a corresponding reduction in the 
conversion efficiency. A significant under-utilisation of the pump beam is thus the 
end result. The crystals employed for the conversion in the mid infrared region have 
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inherently high refractive index and the problem thus gets further compounded as 
the entrance and the exit faces of the crystals need to be essentially anti-reflection 
coated to arrest losses due to Fresnel reflection. The pump intensity therefore, 
needs to be further reduced as the optical damage threshold of dielectric coatings is 
usually lower than the crystal bulk. This drawback can be surmounted by increasing 
the interaction length of the pump beam with the nonlinear medium giving due 
consideration to the thermal de-phasing effect that occurs along the length of the 
crystal [5]. Increasing the length of the crystal brings about a steep rise in its cost 
and therefore is not an economically viable option. Attempts have been made to use 
a number of crystals instead, either in tandem [6] or in parallel [7] to circumvent 
this problem. These schemes however, suffer from an inherent disadvantage as 
they present too many crystal surfaces off which the pump photons escape through 
Fresnel reflections. To be noted here that the same crystal has also been used in the 
past to enhance the interaction length by allowing the pump beam to make two [8] 
or multiple passes [9] through it. These methods have not gained much popularity 
as the cavity configuration employed in the former case limited the operation to a 
non-collinear phase matched mode while in the latter case it resulted in enhancing 
the second harmonic (SH) conversion of the SH wave itself. In case of frequency 
doubling of near infrared cw pump to the visible, the schemes that have gained 
importance use the crystal in the intra-cavity mode [10] or external cavity resonant 
enhancement mode [11]. Ring cavity configuration that has an inherent advantage 
of blocking any feedback into the pump cavity has generally been employed here. 
The applicability of these schemes for pulsed second harmonic conversion (SHG) 
is challenging due to the high intra-cavity flux that prevails in a pulsed laser. 
Literature on similar schemes for SHG in the mid infrared region is scanty primarily 
due to the possibility of thermal lensing effect that may lead to crystal damage. This 
has restricted the operation to quasi-cw regime with adequate precautions to forbid 
Q-switched lasing [12] while in the case of pulsed operation, the intra-cavity flux 
has been brought down by using appropriate attenuators [13].

Another approach has been to increase the intensity of the pump beam itself. 
That the generated SH output increases in a non-linear fashion with the intensity 
of the pump radiation to which the crystal is exposed is a fact known since the 
time SHG was reported more than half a century ago [14]. A direct consequence 
of this fact is that if the crystal can in some way be subjected to alternate high and 
low regions of pump intensity along its conversion length that results in an average 
intensity Iav, there would be a net gain with respect to SHG as compared to the con-
ventional situation where the same crystal is subjected to a uniform pump intensity 
of Iav. These two cases are illustrated in Figure 1. In the first case (Figure 1a) the 
crystal of length ‘l’ is illuminated by a pump beam of uniform intensity ‘I’ along its 
length. In the second case the incident pump intensity ‘I’ is redistributed as alternate 
periodic intensity packets of ‘2I’ and ‘0’ longitudinally along the crystal thus main-
taining the same average intensity ‘I’ as before (Figure 1b). The square dependence 
of second harmonic conversion on the incident pump intensity can be represented 
mathematically for the two cases as follows:

For the case of Figure 1a: SH(output) ∝  l × I2.
For the case of Figure 1b: SH(output) ∝  [[(l/2) × 0] + [(l/2) × (2I)2]]  ∝  2 l × I2.
This clearly suggests that the generated SH, in the second case, is enhanced by a 

neat 100% as against the first case when the crystal is illuminated uniformly. A non-
linear crystal placed inside a Fabry-Perot or a bidirectional ring cavity experiences 
flux from both ends and therefore is one of the most obvious ways of creating such a 
situation of non-uniform illumination. The interference of the forward and reverse 
beams creates alternate high (anti-nodal) and low (nodal) regions of intensity in 
the crystal and therefore should result in an enhancement of the SHG.
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This chapter dwells on the recent advances made by our group in these two areas 
viz., enhancing the conversion efficiency by way of (a) increasing the interaction 
length between the pump and the non-linear medium and, (b) exploiting the effect 
of non-uniform illumination of the non-linear medium.

2. Enhancing the SH conversion efficiency by increasing the interaction 
length between the pump and the non-linear medium

By way of constructing a coupled plano-convex cavity external to the pump laser 
(Figure 2) that allowed to and fro passes of the unabsorbed pump through the crys-
tal, we conceived a novel way to increase the effective interaction length between 
the non-linear medium and the pump beam [15]. An ideal situation demands that 
the coupling optics offers high transmission at the pump wavelength and high 
reflection too at the same wavelength to enable multiple passes through the crys-
tal; a conflicting requirement indeed that is inherently taken care of in the above 

Figure 1. 
A non-linear crystal exposed to the pump radiation. (a) Uniform illumination of intensity ‘I’. (b) Periodic 
illumination with intensity packets of ‘2I’ and ‘0’ thus maintaining the same average intensity ‘I’ as before.

Figure 2. 
Schematic diagram of the experimental setup for second harmonic conversion of the emission of a CO2 laser in a 
AgGaSe2 crystal. G: Plane blazed grating, A1 and A2: Adjustable apertures, B1 and B2: ZnSe Brewster plates, M1: 
70% R ZnSe concave mirror, D1 and D2: Energy/power detectors, M2: Dichroic mirror. (a) In case of single pass 
second harmonic generation, dichroic mirror M2 is absent. (b) In case of multi-pass second harmonic generation, 
dichroic mirror M2 in conjunction with pump laser output coupler M1 forms the unstable external cavity.
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Figure 1. 
A non-linear crystal exposed to the pump radiation. (a) Uniform illumination of intensity ‘I’. (b) Periodic 
illumination with intensity packets of ‘2I’ and ‘0’ thus maintaining the same average intensity ‘I’ as before.

Figure 2. 
Schematic diagram of the experimental setup for second harmonic conversion of the emission of a CO2 laser in a 
AgGaSe2 crystal. G: Plane blazed grating, A1 and A2: Adjustable apertures, B1 and B2: ZnSe Brewster plates, M1: 
70% R ZnSe concave mirror, D1 and D2: Energy/power detectors, M2: Dichroic mirror. (a) In case of single pass 
second harmonic generation, dichroic mirror M2 is absent. (b) In case of multi-pass second harmonic generation, 
dichroic mirror M2 in conjunction with pump laser output coupler M1 forms the unstable external cavity.
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scheme. As the output coupler of the pump laser itself functioned as the entrance 
mirror of the external cavity, its quality factor could be maintained high allowing at 
the same time, efficient transportation of the pump beam into it. Further, the intra-
cavity photon flux could be maintained within acceptable level due to the unstable 
nature of the external cavity. This reduced the risk of optical flux induced crystal 
damage besides eliminating the possibility of feed back into the pump cavity.

2.1 Experimental

The experimental demonstration of this scheme was effected in the second 
harmonic generation of the 10 micron emission of a pulsed CO2 laser. A commercial 
uncoated 17 mm thick AgGaSe2 crystal served as the non-linear medium for this 
conversion process. A rise in the energy conversion efficiency by ~300% and even 
higher peak power conversion efficiency has been achieved by making the uncon-
verted pump go through the crystal time and again. The increase in the effective 
length of the crystal should in principle, allow the performance of a thin crystal 
in such a cavity configuration to match that of a thick crystal in the conventional 
operation although at a lower level of optical flux, that in turn, precludes the pos-
sibility of its damage even in the pulsed operation.

The schematic of the experimental lay out is depicted in Figure 2. In the first set 
of experiments (Figure 2a), the pulsed emission of a commercial multi-atmosphere 
TE-CO2 laser was made use of to affect SHG in an uncoated AgGaSe2 crystal (cross-
section 10 × 10 mm and length 17 mm). A plane master grating (150 lines/mm) and 
a concave (7 m ROC) 70%R ZnSe output coupler separated by 105 cm formed the 
passively stabilised pump laser cavity. For this experiment, the laser was operated 
on 10P (34) line for which the second harmonic phase matching occurred at an 
external angle of incidence of ~34ᵒ. Usage of an intra-cavity adjustable aperture A1 
allowed the operation of the pump laser on the TEM00 mode. The energy incident 
on the crystal was controlled by varying the charging voltage of the laser. An 
external adjustable aperture ‘A2’ allowed maintaining the pump beam cross-section 
on the crystal entrance to ~4.5 mm diameter so as to ensure its clear passage through 
the non-linear medium. Monitoring of both the energy and the power of the 
incident pump pulse was possible by probing its Fresnel reflection off the incident 
face of the crystal. The energy and power profile of the generated SH beam were 
measured after blocking the unconverted pump beam that also emerged along with 
the SH beam through the crystal by means of a sapphire plate. The CO2 laser, by 
virtue of its multi-atmosphere operation, possessed inherently very high gain and 
thus emitted pulses of relatively short duration (FWHM ~110 nsec, Figure 3). In 
the present experiment, the maximum intensity was restricted to ~2.5 MW/cm2.

2.2 Results and discussion

In order to find the efficiency of the single pass non-linear conversion process as 
a function of the input pump energy, we gradually increased the input and measured 
the corresponding SH energy and the dependence is as shown in Figure 4. The 
parabolic nature of this dependence clearly reveals the square proportionality of 
the SH intensity on the pump intensity. As would be seen, ~8.46% is the maximum 
internal SH energy conversion efficiency that was obtained maintaining the pump 
intensity below the damage threshold of the crystal. Understandably therefore, 
significant fraction of the pump photons stays unconverted and emerge together with 
the SH beam and the same was measured using detector D2 when the sapphire plate 
is removed. Effective utilisation of the pump beam is possible by making it to pass 
through the crystal time and again. To this end, a Fabry-Perot cavity was constructed 
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that contained the crystal and comprised of the output coupler (M1) of the pump 
laser of plano-concave geometry [plane surface AR coated @ 10.6 μm and the concave 

Figure 3. 
Typical temporal profile of the emission of the pump CO2 laser. FWHM value of ~110 ns is evident from the 
upper trace. The beating of two longitudinal modes at a period of ~7 ns is apparent from the lower trace. 
Absence of any beat at a longer period indicates operation on multi-longitudinal modes belonging to the same 
transverse family.

Figure 4. 
Dependence of single-pass SH output on the energy of the pump pulse.
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on the crystal entrance to ~4.5 mm diameter so as to ensure its clear passage through 
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measured after blocking the unconverted pump beam that also emerged along with 
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virtue of its multi-atmosphere operation, possessed inherently very high gain and 
thus emitted pulses of relatively short duration (FWHM ~110 nsec, Figure 3). In 
the present experiment, the maximum intensity was restricted to ~2.5 MW/cm2.

2.2 Results and discussion

In order to find the efficiency of the single pass non-linear conversion process as 
a function of the input pump energy, we gradually increased the input and measured 
the corresponding SH energy and the dependence is as shown in Figure 4. The 
parabolic nature of this dependence clearly reveals the square proportionality of 
the SH intensity on the pump intensity. As would be seen, ~8.46% is the maximum 
internal SH energy conversion efficiency that was obtained maintaining the pump 
intensity below the damage threshold of the crystal. Understandably therefore, 
significant fraction of the pump photons stays unconverted and emerge together with 
the SH beam and the same was measured using detector D2 when the sapphire plate 
is removed. Effective utilisation of the pump beam is possible by making it to pass 
through the crystal time and again. To this end, a Fabry-Perot cavity was constructed 
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that contained the crystal and comprised of the output coupler (M1) of the pump 
laser of plano-concave geometry [plane surface AR coated @ 10.6 μm and the concave 

Figure 3. 
Typical temporal profile of the emission of the pump CO2 laser. FWHM value of ~110 ns is evident from the 
upper trace. The beating of two longitudinal modes at a period of ~7 ns is apparent from the lower trace. 
Absence of any beat at a longer period indicates operation on multi-longitudinal modes belonging to the same 
transverse family.

Figure 4. 
Dependence of single-pass SH output on the energy of the pump pulse.
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surface (7 m ROC) dielectric coated for 70% R @ 10.6 μm] and a plane ZnSe dichroic 
mirror M2 (R > 90%@10.74 μm, T > 90%@5.37 μm) (refer to Figure 2b). The length 
of this external cavity (~1.21 m) was such as to push the g1 × g2 value viz., 1.17 beyond 
the region of stability. There was a remarkable enhancement in the generation of SH 
output when M2 was fine tuned to ascertain its parallelism with the convex face of 
mirror ‘M1’. Performance of this multi-pass cavity with respect to the generation of SH 
was characterised by varying the pump energy incident on the crystal and measur-
ing the corresponding energy of the SH beam emerging through ‘M2’ (Figure 5). 
When the cavity is perfectly aligned, the pump photons coming through the Mirror 
M1 are in phase, at every instant, with the fraction of the unconverted pump that is 
reflected off it. This increases the effective energy input to the crystal and that, in 
turn, results in a correspondingly increased SH output. This fact is amply clear from 
Figure 4 in conjunction with Figure 5. It is apparent that for a maximum input pump 
energy of ~6.5 mJ, the single pass SH output is ~0.55 mJ (Figure 4) while according to 
Figure 5, the same input of 6.5 mJ gets enhanced to ~9.2 mJ due to cavity effect. The 
corresponding SH multi pass output is ~1.625 mJ, almost a three-fold increase when 
compared to the single pass case. Considering 9.2 mJ as the input energy, the SHG 
efficiency can be estimated to be ~17.66% - a clear ~209% improvement as against the 
single pass case. To be noted here that the pump energy has actually been maintained 
at ~6.5 mJ and therefore the conversion efficiency has risen by ~295% as a matter of 
fact. In these experiments, both pump and SH beams suffered significant Fresnel 
reflection losses during their repeated back and forth passage through the crystal that 
was not anti-reflection coated. Further, as the pump laser output coupler M1 is only 
23% reflective at 5.35 μm, a major part of the SH generated in the reverse direction 
escapes through this mirror. The dramatic improvement in the SH conversion effi-
ciency that has been obtained in the multi-pass case is thus by no means an optimised 
one. Increasing the reflectivity of the rear mirror at the SH wavelength in addition to 
employing a crystal with broadband anti reflection coating on both its entrance and 
exit faces should be able to fully exploit the decided advantage of a multi-pass case. 
We also note here that this scheme does not suffer from the conventional single pass 
walk off [16] between the pump and the SH beams as mirror M2 is almost transparent 
to the SH beam thereby providing feedback only to the pump beam. As the second 

Figure 5. 
Dependence of multi-pass second harmonic output on the effective input pump energy following cavity effect.
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harmonic beam generated in the forward direction alone is extracted in this configu-
ration, its spatial quality is practically same as that of a single pass case. Therefore no 
special effort was expended to monitor the spatial quality of the SH beam. However, 
the visual observation of a clear well defined spot when the generated beam was 
focussed by a 10 cm focal length CaF2 lens on a graphite plate bore testimony to its 
satisfactory spatial character.

Towards comparing the SH power conversion efficiency in the single and multi-
pass cases, we monitored the temporal profiles of the pump and the corresponding 
SH pulses with the external cavity in aligned and misaligned conditions. In order 
to obtain smooth temporal profiles devoid of mode beating, we captured the power 
profiles in all the four cases with oscilloscope set in bandwidth limited mode and 
the same are displayed in the traces of Figure 6 from where the single pass internal 
peak power SH conversion efficiency can be readily estimated to be ~10.48%. The 
power conversion efficiency is thus greater than the energy conversion efficiency 
(8.45%) of the SHG process. This is because the peak power always exceeds the 
average intra-pulse power of the pump beam and higher is the intensity at the pump 
wavelength, better is the SH conversion. This observation is in general concurrence 
with the finding of several researchers [13, 17, 18]. When the cavity is perfectly 
aligned, the photon flux at the entrance face of the crystal comprises of two com-
ponents at any point of time; (i) the photons constituting the output of the pump 
laser and (ii) the photons constituting the fraction of the unconverted pump beam 
that is reflected off the convex surface of the output coupler of the pump laser. 
When the cavity is aligned, these two components fall in step and an overall rise in 
the power level of the input pulse is thus the end result. A comparison of the input 
power profile traces for aligned and misaligned conditions as recorded in Figure 6 
clearly substantiates this fact. The rise in the input power level, in turn, leads to an 
enhanced SH conversion yielding a peak power conversion efficiency of ~22.36%, 
more than twice that is possible by single-pass conversion. Actually though, since 
the pump laser output has remained the same for both the aligned and misaligned 
cases, the effective SH peak power conversion efficiency stands at 35.8%, a neat 
enhancement of 341% due to the cavity effect.

In the next set of experiments, we captured the temporal profiles of the pump 
and the corresponding cavity enhanced second harmonic pulses by setting the 
oscilloscope at its highest bandwidth (Tektronix MSO 3054) and the same are 
depicted in Figure 7a. That the emission of the pump laser is on multimode is 
evidenced by the rich modulation present in the temporal profile of the pump as 
well as the corresponding SH pulses. The lower trace of Figure 7b depicts the time 
expanded temporal profile of the pump pulse where an oscillation of period ~7 ns 
arising out of the beating of two longitudinal modes, matching with the round trip 

Figure 6. 
Temporal profiles of the fundamental (bottom trace) and the corresponding second harmonic (top trace) 
captured in bandwidth limited mode; a: Single pass conversion, b: Multi-pass conversion.
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reflected off it. This increases the effective energy input to the crystal and that, in 
turn, results in a correspondingly increased SH output. This fact is amply clear from 
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energy of ~6.5 mJ, the single pass SH output is ~0.55 mJ (Figure 4) while according to 
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corresponding SH multi pass output is ~1.625 mJ, almost a three-fold increase when 
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efficiency can be estimated to be ~17.66% - a clear ~209% improvement as against the 
single pass case. To be noted here that the pump energy has actually been maintained 
at ~6.5 mJ and therefore the conversion efficiency has risen by ~295% as a matter of 
fact. In these experiments, both pump and SH beams suffered significant Fresnel 
reflection losses during their repeated back and forth passage through the crystal that 
was not anti-reflection coated. Further, as the pump laser output coupler M1 is only 
23% reflective at 5.35 μm, a major part of the SH generated in the reverse direction 
escapes through this mirror. The dramatic improvement in the SH conversion effi-
ciency that has been obtained in the multi-pass case is thus by no means an optimised 
one. Increasing the reflectivity of the rear mirror at the SH wavelength in addition to 
employing a crystal with broadband anti reflection coating on both its entrance and 
exit faces should be able to fully exploit the decided advantage of a multi-pass case. 
We also note here that this scheme does not suffer from the conventional single pass 
walk off [16] between the pump and the SH beams as mirror M2 is almost transparent 
to the SH beam thereby providing feedback only to the pump beam. As the second 
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harmonic beam generated in the forward direction alone is extracted in this configu-
ration, its spatial quality is practically same as that of a single pass case. Therefore no 
special effort was expended to monitor the spatial quality of the SH beam. However, 
the visual observation of a clear well defined spot when the generated beam was 
focussed by a 10 cm focal length CaF2 lens on a graphite plate bore testimony to its 
satisfactory spatial character.

Towards comparing the SH power conversion efficiency in the single and multi-
pass cases, we monitored the temporal profiles of the pump and the corresponding 
SH pulses with the external cavity in aligned and misaligned conditions. In order 
to obtain smooth temporal profiles devoid of mode beating, we captured the power 
profiles in all the four cases with oscilloscope set in bandwidth limited mode and 
the same are displayed in the traces of Figure 6 from where the single pass internal 
peak power SH conversion efficiency can be readily estimated to be ~10.48%. The 
power conversion efficiency is thus greater than the energy conversion efficiency 
(8.45%) of the SHG process. This is because the peak power always exceeds the 
average intra-pulse power of the pump beam and higher is the intensity at the pump 
wavelength, better is the SH conversion. This observation is in general concurrence 
with the finding of several researchers [13, 17, 18]. When the cavity is perfectly 
aligned, the photon flux at the entrance face of the crystal comprises of two com-
ponents at any point of time; (i) the photons constituting the output of the pump 
laser and (ii) the photons constituting the fraction of the unconverted pump beam 
that is reflected off the convex surface of the output coupler of the pump laser. 
When the cavity is aligned, these two components fall in step and an overall rise in 
the power level of the input pulse is thus the end result. A comparison of the input 
power profile traces for aligned and misaligned conditions as recorded in Figure 6 
clearly substantiates this fact. The rise in the input power level, in turn, leads to an 
enhanced SH conversion yielding a peak power conversion efficiency of ~22.36%, 
more than twice that is possible by single-pass conversion. Actually though, since 
the pump laser output has remained the same for both the aligned and misaligned 
cases, the effective SH peak power conversion efficiency stands at 35.8%, a neat 
enhancement of 341% due to the cavity effect.

In the next set of experiments, we captured the temporal profiles of the pump 
and the corresponding cavity enhanced second harmonic pulses by setting the 
oscilloscope at its highest bandwidth (Tektronix MSO 3054) and the same are 
depicted in Figure 7a. That the emission of the pump laser is on multimode is 
evidenced by the rich modulation present in the temporal profile of the pump as 
well as the corresponding SH pulses. The lower trace of Figure 7b depicts the time 
expanded temporal profile of the pump pulse where an oscillation of period ~7 ns 
arising out of the beating of two longitudinal modes, matching with the round trip 

Figure 6. 
Temporal profiles of the fundamental (bottom trace) and the corresponding second harmonic (top trace) 
captured in bandwidth limited mode; a: Single pass conversion, b: Multi-pass conversion.
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of 105 cm long cavity, is seen. Upon comparison with the typical temporal profile of 
the emission of the pump laser (Figure 3), it becomes obvious that the integration 
of the pump laser with this external unstable cavity does in no way bring in any new 
feature in its temporal profile or alter the beat period. This clearly implies that the 
coupling of the external cavity with the pump cavity has no effect on the dynamics 
of the pump laser. A comparison of the time expanded second harmonic temporal 
profile (upper trace of Figure 7b) with that of the temporal profile of the pump 
(lower trace of Figure 7b) readily establishes their phase and amplitude synchroni-
sation: a signature of the instantaneous nature of the SHG process.

2.3 Conclusion

A thoughtful integration of a stable pump cavity with an unstable external Fabry-
Perot cavity has resulted in remarkable enhancement in the SH conversion efficiency 

Figure 7. 
(a) Temporal profiles of the pump (lower trace) and the cavity enhanced SH (upper trace). Mode beating 
is reflected in the SH emission also. (b) 7 ns beat period indicates operation of the pump laser on two 
longitudinal modes (lower trace), the same is also reflected in the SH pulse (upper trace).
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even in case of pulsed operation of the laser. Although coupled external resonant 
enhancement has found application for the non-linear conversion process in the cw 
operation of the pump laser over visible region, it has not gained popularity in the 
mid-infrared (MIR) region owing to the possibility of damage to the MIR crystals 
that are not only expensive but also scarce. An unstable cavity that has the intrinsic 
ability to limit the intra-cavity flux there by safe-guarding the crystal from optical 
damage even in case of pulsed operation has been shown to offer a practical solution 
to this problem. We note here that the performance of this scheme can be further 
improved by employing a crystal with its end faces broad band AR coated, appropri-
ate choice of the cavity parameters and control of cavity lengths. Although feasibility 
of this scheme has been demonstrated in the case of SHG in the MIR region, the same 
should, in principle, be valid for application across the near IR, visible and the UV 
regions of the electromagnetic spectrum as well for both cw and pulse operations.

3. Enhancing the SH conversion efficiency by non-uniform illumination 
of the non-linear medium

As explained in the introduction to this chapter, if a non-linear crystal can in 
some way be subjected to alternate high and low regions of pump intensity along 
its conversion length the conversion efficiency can be shown to increase 100% as 
against the case of conventional uniform illumination maintaining the same average 
intensity. We provide experimental validation of this hypothesis wherein a signifi-
cant enhancement in the SH conversion efficiency has been achieved by subjecting 
the crystal to non-uniform illumination. Such a situation could be realised by 
shining the crystal from both ends as against the conventional operation of illu-
minating it from one end. This was readily possible by placing the crystal inside a 
Fabry Perot cavity wherein the interference of the forward and the reverse beams 
creates a periodic intensity modulation along its length. The coherent input beam 
was derived from the emission of a high pressure CO2 laser while an AgGaSe2 crystal 
was made use of to affect its frequency doubling. Subjecting the crystal to alternate 
high and low intensity of coherent pump radiation requires placing it inside a high 
‘Q’ cavity that, at the same time, should allow significant transport of the pump 
energy into it. As in the previous case, integration of the pump laser cavity with 
the external Fabry-Perot cavity allowed efficient transport of the pump beam into 
the crystal while at the same time maintaining high Q of the external cavity at the 
pump wavelength. The only work that we came across and that explicitly connects 
SHG with cavity interference, albeit with a totally different central theme, is of Wu 
and Kimble [19] wherein two fundamental beams generate one or two SH coher-
ent beams under non-collinear phase matched condition and the focus has been to 
study the phase dependence of the pump and the generated waves.

3.1 Experimental

The experimental system utilised here is identical to the one used towards 
increasing the interaction length between the pump and the non-linear medium 
and the same would therefore, not be repeated here, and the reader may refer to 
Figure 2 of Section 2.1 and its description therein instead. To be noted here that 
Figure 2a depicts the case of uniform illumination while Figure 2b represents the 
case of non-uniform illumination. The CO2 laser was tuned to the 10P(32) line 
giving rise to emission at 10.72 μm and consequently phase matching for frequency 
doubling was found to occur for an external angle of incidence of ~36ᵒ. The cross-
section of the pump beam on the crystal entrance face was restricted to ~5.0 mm 
diameter that allowed its clear passage through the crystal. Although the crystal 
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of 105 cm long cavity, is seen. Upon comparison with the typical temporal profile of 
the emission of the pump laser (Figure 3), it becomes obvious that the integration 
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profile (upper trace of Figure 7b) with that of the temporal profile of the pump 
(lower trace of Figure 7b) readily establishes their phase and amplitude synchroni-
sation: a signature of the instantaneous nature of the SHG process.
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A thoughtful integration of a stable pump cavity with an unstable external Fabry-
Perot cavity has resulted in remarkable enhancement in the SH conversion efficiency 

Figure 7. 
(a) Temporal profiles of the pump (lower trace) and the cavity enhanced SH (upper trace). Mode beating 
is reflected in the SH emission also. (b) 7 ns beat period indicates operation of the pump laser on two 
longitudinal modes (lower trace), the same is also reflected in the SH pulse (upper trace).
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even in case of pulsed operation of the laser. Although coupled external resonant 
enhancement has found application for the non-linear conversion process in the cw 
operation of the pump laser over visible region, it has not gained popularity in the 
mid-infrared (MIR) region owing to the possibility of damage to the MIR crystals 
that are not only expensive but also scarce. An unstable cavity that has the intrinsic 
ability to limit the intra-cavity flux there by safe-guarding the crystal from optical 
damage even in case of pulsed operation has been shown to offer a practical solution 
to this problem. We note here that the performance of this scheme can be further 
improved by employing a crystal with its end faces broad band AR coated, appropri-
ate choice of the cavity parameters and control of cavity lengths. Although feasibility 
of this scheme has been demonstrated in the case of SHG in the MIR region, the same 
should, in principle, be valid for application across the near IR, visible and the UV 
regions of the electromagnetic spectrum as well for both cw and pulse operations.

3. Enhancing the SH conversion efficiency by non-uniform illumination 
of the non-linear medium

As explained in the introduction to this chapter, if a non-linear crystal can in 
some way be subjected to alternate high and low regions of pump intensity along 
its conversion length the conversion efficiency can be shown to increase 100% as 
against the case of conventional uniform illumination maintaining the same average 
intensity. We provide experimental validation of this hypothesis wherein a signifi-
cant enhancement in the SH conversion efficiency has been achieved by subjecting 
the crystal to non-uniform illumination. Such a situation could be realised by 
shining the crystal from both ends as against the conventional operation of illu-
minating it from one end. This was readily possible by placing the crystal inside a 
Fabry Perot cavity wherein the interference of the forward and the reverse beams 
creates a periodic intensity modulation along its length. The coherent input beam 
was derived from the emission of a high pressure CO2 laser while an AgGaSe2 crystal 
was made use of to affect its frequency doubling. Subjecting the crystal to alternate 
high and low intensity of coherent pump radiation requires placing it inside a high 
‘Q’ cavity that, at the same time, should allow significant transport of the pump 
energy into it. As in the previous case, integration of the pump laser cavity with 
the external Fabry-Perot cavity allowed efficient transport of the pump beam into 
the crystal while at the same time maintaining high Q of the external cavity at the 
pump wavelength. The only work that we came across and that explicitly connects 
SHG with cavity interference, albeit with a totally different central theme, is of Wu 
and Kimble [19] wherein two fundamental beams generate one or two SH coher-
ent beams under non-collinear phase matched condition and the focus has been to 
study the phase dependence of the pump and the generated waves.

3.1 Experimental

The experimental system utilised here is identical to the one used towards 
increasing the interaction length between the pump and the non-linear medium 
and the same would therefore, not be repeated here, and the reader may refer to 
Figure 2 of Section 2.1 and its description therein instead. To be noted here that 
Figure 2a depicts the case of uniform illumination while Figure 2b represents the 
case of non-uniform illumination. The CO2 laser was tuned to the 10P(32) line 
giving rise to emission at 10.72 μm and consequently phase matching for frequency 
doubling was found to occur for an external angle of incidence of ~36ᵒ. The cross-
section of the pump beam on the crystal entrance face was restricted to ~5.0 mm 
diameter that allowed its clear passage through the crystal. Although the crystal 



Nonlinear Optics - Novel Results in Theory and Applications

98

was AR coated over broad range covering 5–10 micron on both input and exit faces 
for normal angle of incidence (AOI), the small Fresnel reflection from the entrance 
face of the crystal, that was inevitable at oblique AOI, was utilised to monitor both 
energy and temporal profile of the pump pulse. The energy and temporal profile 
of the SH beam were monitored after blocking the residual pump beam, that also 
emerged with it through the exit face of the crystal, by a sapphire plate. By virtue of 
its multi-atmosphere operation, the CO2 laser possessed intrinsically very high gain 
and thus delivered a pulse of relatively short duration (FWHM ~110 nsec).

3.2 Results and discussion

Towards finding the efficiency of the SHG process as a function of the pump 
energy for the conventional case of uniform illumination (Figure 2a), we gradually 
increased the input and monitored the corresponding SH energy and the depen-
dence is as shown in Figure 8. The maximum SH energy conversion efficiency can 
be estimated from this figure as ~8.0%.

In the next set of experiments we subjected the crystal to alternate regions of 
high and low intensities along its length. This was readily possible by construct-
ing a Fabry-Perot cavity comprising of the output coupler of the pump laser 
‘M1’ (R ~80%@10.72 μm, T ~20%@5.36 μm) and a plane dichroic mirror ‘M2’ 
(R > 90%@10.72 μm, T > 90%@5.36 μm) located at the exit end of the crystal (refer 
to Figure 2b). The pump energy incident on the crystal, as measured by Detector 
D1, showed a dramatic increase as ‘M2’ was fine tuned to establish its parallelism 
with ‘M1’, resulting, in turn, in a corresponding improvement in the measured SH 
output. In effect, there are now two inputs to the crystal; (a) Forward Input: the 
actual input on the entrance face in the forward direction that comes directly from 
the pump laser and (b) Reverse Input: the pump, that stays unconverted after its 
passage through the crystal, gets reflected off ‘M2’ and shines on the exit face of 
the crystal from the opposite direction. When the cavity is perfectly aligned, the 
interference of these two components creates alternating nodal and anti-nodal 
intensity regions inside the cavity and partly contributes towards the observed 
dramatic enhancement of SH conversion by the crystal. At every instant, the reverse 

Figure 8. 
Second harmonic output as a function of the input pump energy in the conventional operation wherein the 
crystal is uniformly illuminated by the pump beam along its conversion length.
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component, after traversing through the crystal, is reflected off M1 and falls in step 
with the pump photons emerging through it resulting in an effective increase in the 
energy incident on the entrance face of the crystal as measured by the detector D1. 
At this point, towards gaining a deeper insight into this process, we gradually varied 
the pump (forward) input and measured both, the corresponding reverse input and 
the generated SH. The difference in the energy measured by D1 with M1 aligned and 
misaligned gives the measure of the reverse input. Figure 9 depicts the dependence 
of the reverse input on the forward input to the crystal while Figure 10 shows the SH 
output as a function of the total effective input to the crystal which is now the sum 
total of the forward and the corresponding reverse components. It is apparent from 
Figure 9 that the reverse input does not exactly bear a linear relationship with the 
forward input and this behaviour owes its origin to the square dependence of the SH 
output on the intensity of the input at the fundamental wavelength as is evident from 
Figure 8. The square dependence basically means that as the pump intensity rises, 
increasingly higher fraction of it gets converted into SH and thus less of it is left to 
constitute the reverse input to the crystal. This explains the observed departure from 
the linear dependence of the reverse input on the forward input to the crystal.

The increase in the effective input to the crystal in case of an aligned cavity due 
to addition of forward and reverse components leads to the generation of higher SH 
output as revealed in Figure 10. For instance, the maximum pump input of 6.5 mJ 
in case of uniform illumination (Figure 8) gets enhanced to 10.34 mJ (Figure 10) in 
the aligned cavity condition giving rise to almost 2.54 fold increase in the SH con-
version efficiency. However a closer examination of Figure 10, in conjunction with 
Figure 8, reveals a wealth of information, hitherto unexplored, that constitutes the 
central theme of this study and is captured in the traces of Figure 11. It is clearly 
evident from this figure that SH output in case of non-uniform illumination of 
the crystal is significantly higher compared to the case of its uniform illumination 
even when the total input to the crystal is maintained the same. Let us consider a 
typical input of 4.1 mJ that in case of uniform illumination generates 0.22 mJ (refer 
to Figure 8) of SH at a conversion efficiency of ~5.36%. It can be readily estimated 
from Figure 9 that this input of 4.1 mJ in case of non-uniform illumination com-
prises of a forward component of 2.5 mJ and a reverse component of 1.6 mJ. Thus, 

Figure 9. 
Dependence of the reverse input to the crystal as a function of the forward component.
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was AR coated over broad range covering 5–10 micron on both input and exit faces 
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(R > 90%@10.72 μm, T > 90%@5.36 μm) located at the exit end of the crystal (refer 
to Figure 2b). The pump energy incident on the crystal, as measured by Detector 
D1, showed a dramatic increase as ‘M2’ was fine tuned to establish its parallelism 
with ‘M1’, resulting, in turn, in a corresponding improvement in the measured SH 
output. In effect, there are now two inputs to the crystal; (a) Forward Input: the 
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intensity regions inside the cavity and partly contributes towards the observed 
dramatic enhancement of SH conversion by the crystal. At every instant, the reverse 

Figure 8. 
Second harmonic output as a function of the input pump energy in the conventional operation wherein the 
crystal is uniformly illuminated by the pump beam along its conversion length.
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component, after traversing through the crystal, is reflected off M1 and falls in step 
with the pump photons emerging through it resulting in an effective increase in the 
energy incident on the entrance face of the crystal as measured by the detector D1. 
At this point, towards gaining a deeper insight into this process, we gradually varied 
the pump (forward) input and measured both, the corresponding reverse input and 
the generated SH. The difference in the energy measured by D1 with M1 aligned and 
misaligned gives the measure of the reverse input. Figure 9 depicts the dependence 
of the reverse input on the forward input to the crystal while Figure 10 shows the SH 
output as a function of the total effective input to the crystal which is now the sum 
total of the forward and the corresponding reverse components. It is apparent from 
Figure 9 that the reverse input does not exactly bear a linear relationship with the 
forward input and this behaviour owes its origin to the square dependence of the SH 
output on the intensity of the input at the fundamental wavelength as is evident from 
Figure 8. The square dependence basically means that as the pump intensity rises, 
increasingly higher fraction of it gets converted into SH and thus less of it is left to 
constitute the reverse input to the crystal. This explains the observed departure from 
the linear dependence of the reverse input on the forward input to the crystal.

The increase in the effective input to the crystal in case of an aligned cavity due 
to addition of forward and reverse components leads to the generation of higher SH 
output as revealed in Figure 10. For instance, the maximum pump input of 6.5 mJ 
in case of uniform illumination (Figure 8) gets enhanced to 10.34 mJ (Figure 10) in 
the aligned cavity condition giving rise to almost 2.54 fold increase in the SH con-
version efficiency. However a closer examination of Figure 10, in conjunction with 
Figure 8, reveals a wealth of information, hitherto unexplored, that constitutes the 
central theme of this study and is captured in the traces of Figure 11. It is clearly 
evident from this figure that SH output in case of non-uniform illumination of 
the crystal is significantly higher compared to the case of its uniform illumination 
even when the total input to the crystal is maintained the same. Let us consider a 
typical input of 4.1 mJ that in case of uniform illumination generates 0.22 mJ (refer 
to Figure 8) of SH at a conversion efficiency of ~5.36%. It can be readily estimated 
from Figure 9 that this input of 4.1 mJ in case of non-uniform illumination com-
prises of a forward component of 2.5 mJ and a reverse component of 1.6 mJ. Thus, 

Figure 9. 
Dependence of the reverse input to the crystal as a function of the forward component.
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when the same total input of 4.1 mJ is made to shine on the crystal as two separate 
beams of 2.5 and 1.6 mJ from opposite directions by taking advantage of a cavity, a 
SH output of 0.325 mJ (refer to Figure 10) is generated at an efficiency of 7.93%; a 
clear advantage of ~48% in the SH conversion efficiency by going for non-uniform 
illumination. As discussed before this is attributed to the alternate high and low 
intensity regions seen by the crystal as a result of the interference of the forward 
and reverse beams travelling through the crystal in the latter case.

In order to estimate the expected advantage of the situation when the crystal 
is non-uniformly illuminated over the case of uniform illumination, we used the 

Figure 10. 
Dependence of second harmonic output on the effective input pump energy in case of non-uniform illumination.

Figure 11. 
Experimental SH conversion efficiency as a function of the total input to the crystal is shown for both uniform 
and non-uniform illumination cases. The % gain of SH conversion in case of non-uniform illumination over 
the uniform illumination case, defined as [(SHNUI-EFF−SHUI-EFF)/SHUI-EFF] × 100, is also shown here as a 
function of the overall input to the crystal.
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when the same total input of 4.1 mJ is made to shine on the crystal as two separate 
beams of 2.5 and 1.6 mJ from opposite directions by taking advantage of a cavity, a 
SH output of 0.325 mJ (refer to Figure 10) is generated at an efficiency of 7.93%; a 
clear advantage of ~48% in the SH conversion efficiency by going for non-uniform 
illumination. As discussed before this is attributed to the alternate high and low 
intensity regions seen by the crystal as a result of the interference of the forward 
and reverse beams travelling through the crystal in the latter case.

In order to estimate the expected advantage of the situation when the crystal 
is non-uniformly illuminated over the case of uniform illumination, we used the 

Figure 10. 
Dependence of second harmonic output on the effective input pump energy in case of non-uniform illumination.

Figure 11. 
Experimental SH conversion efficiency as a function of the total input to the crystal is shown for both uniform 
and non-uniform illumination cases. The % gain of SH conversion in case of non-uniform illumination over 
the uniform illumination case, defined as [(SHNUI-EFF−SHUI-EFF)/SHUI-EFF] × 100, is also shown here as a 
function of the overall input to the crystal.
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data available from Figures 8 and 10 in conjunction with the dependence of reverse 
input on forward input (Figure 9) for the reconstruction of the standing wave 
parameters. This is recorded in the Table 1 above. It would be seen from this table 
that the advantage expected for the non-uniform illumination shows a definite 
reduction, although very marginal, with increasing input intensity. This reduc-
tion is because, with increasing intensity, ER/EF gradually reduces as is evident 
from Figure 9 and discussed earlier. The experimentally measured advantage also 
recorded in Figure 11 as a function of input intensity shows the same trend. The 
experimentally measured advantage of the non-uniform illumination, however, is 
seen to be considerably lower than the estimated value. This is due to the fact that 
a major fraction of the SH generated in the reverse direction escapes through the 
output coupler ‘M1’ of the pump laser. Usage of a coupler that offers high reflectivity 
at both fundamental and generated wavelengths will help square the full advantage 
of the non-uniform illumination case.

To be noted here that the enhancement in the second harmonic conversion 
efficiency achieved by way of placing the non-linear medium inside a cavity, basi-
cally comprises of two components arising out of: (i) increased effective length of 
interaction between the pump and the non-linear medium and, (ii) non-uniform 
illumination of the non-linear medium. The above study helps decouple these two 
components. In the above example where the input was maintained at 4.1 mJ for both 
uniform illumination (meaning EF = 4.1 mJ and ER = 0) and non-uniform illumination 
(meaning EF = 2.5 mJ and ER = 1.6 mJ), the added advantage arising out of increased 
interaction length has been annulled. Thus the enhancement in the SH conversion 
efficiency (viz., ~70%) is entirely attributable to the modulation of intensity arising 
out of interference of forward and reverse beams. In case of a non-uniform illumina-
tion with EF = 4.1 mJ, the corresponding ER = 2.6 mJ as evident from Figure 9. The SH 
output now is 0.85 mJ as against 0.22 mJ for uniform illumination and the advantage 
gained here comprises of both the above components. From the discussion above it is 
amply clear that the component of gain due to increase in interaction length between 
the pump beam and the non-linear medium is ~126%. The modest gain obtained due 
to non-uniform illumination of the active medium is attributable to the inequality of 
the forward and the reverse components in the present study.

4. Conclusion

In conclusion, we conceived the advantage in SH generation by a nonlinear 
crystal when it is illuminated with alternate high and low regions of intensity along 
its length as against the conventional case of its uniform illumination with the same 
average intensity. Exploitation of interference effect by placing the crystal inside a 
Fabry Perot cavity has allowed the imposition of such a non-uniform illumination 
condition on to the crystal along its conversion length. The decided advantage of 
the non-uniform illumination over uniform illumination has been experimen-
tally established under conditions of equal intensity exposure in the two cases. 
We believe that this advantage was always present in intra-cavity or resonantly 
enhanced frequency doubling generation processes but stayed unrecognised as the 
motivation of these works was to enhance the conversion efficiency by increasing 
the effective interaction length of the crystal and the advantage gained was thus 
automatically attributed in totality to this. Carefully planned experiment here has 
allowed us to decouple the advantage due to interference (as seen in Figure 11) 
from the total advantage as recorded in the data of Figure 10 that also included the 
gain due to increased interaction length. While we have achieved the spatial varia-
tion of intensity by the exploitation of interference effect, we do not rule out the 
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possibility of achieving the same effect by some other means, e.g., a train of ps or 
fs mode locked pulses will manifest as spatial intensity variations in the sub mm to 
sub-micron scale appropriate to derive this advantage in a crystal of finite length. 
Advantage can be derived from even chaotic pulse trains wherein the temporal 
oscillations occur in the similar time scales as above. However, it is to be noted that 
the restriction on the maximum period of the spatial variation of the intensity 
is imposed by the crystal thickness while there is no restriction on the minimum 
period. As a matter of fact smaller is the periodicity of bright and dark intensity 
regions, better will be the heat diffusion and thus will be preferred from the point 
of view of handling higher intensity.
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Widely Tunable Quantum-Well 
Laser: OPO Diode Around 2 μm 
Based on a Coupled Waveguide 
Heterostructure
Alice Bernard, Jean-Michel Gérard,  
Ivan Favero and Giuseppe Leo

Abstract

We present the design of a widely tunable monolithic source on GaAs/AlGaAs. 
It consists of a quantum-well distributed feedback (DFB) laser vertically coupled 
with a waveguide engineered for nonlinear frequency conversion. No regrowth or 
alignment is necessary, and all the structure stems from a single epitaxy step. Light 
is emitted by the 0.98 μm DFB laser and transmitted to the underlying waveguide 
by an adiabatic taper, where it can undergo parametric down-conversion, providing 
signal and idler beams around 2 μm. Transfer rates and tolerances for transfer and 
conversion efficiency are calculated to be compatible with the tolerances of current 
fabrication processes. We estimate that an OPO threshold can be reached in the 
underlying waveguide for a laser emitted power of 20–100 mW, if high-reflectivity 
distributed Bragg reflectors (DBRs) are used.

Keywords: quantum well, laser diode, near infrared, AlGaAs, tunable source, optical 
parametric oscillator (OPO), active-passive integration, adiabatic coupling, vertical 
coupling

1. Introduction

Five decades after the first demonstrations of a laser diode [1, 2], current inte-
grated laser sources include diodes, quantum cascade lasers, and interband cascade 
lasers. These sources span a wide range from the visible spectrum to the far infra-
red. However, they present to this day a limited tunability, up to a few tens of nm 
at the most excluding external cavity setups. This is a limitation in particular in the 
field of spectroscopy, in demand of coherent and widely tunable sources. In parallel 
to the development of integrated lasers, optical parametric oscillators (OPOs) have 
undergone a wide progress, spanning the electromagnetic spectrum from ultravio-
let to infrared and providing largely tunable outputs, but they are not yet widely 
adopted on integrated platforms. This is mostly due to the difficulty of adjusting 
the phase mismatch in situ and historically to the lack of nonlinear materials in 
semiconductor platforms. However, GaAs/AlGaAs provides high nonlinear conver-
sion efficiencies, and fabrication efforts have resulted in a diminution of losses 
in this material system [3, 4]. Optically, pumped OPOs have been demonstrated 
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in micrometric GaAs/AlGaAs waveguides through orientation patterning [5] and 
artificial birefringence [6].

In addition to providing high nonlinear conversion efficiencies, AlGaAs are also 
a mature platform for laser diodes. As a consequence, a few proposals of all-in-one 
laser diode/OPO have been made [7, 8], without experimental demonstration to this 
day. In these proposals, the laser and OPO cavity are one and the same. This con-
figuration reduces fabrication complexity and allows one to harness high intracavity 
fields. However, the best design parameters for efficient laser behavior tend to 
degrade nonlinear light conversion and vice versa. More precisely, the main bottle-
neck in this case is related to the dopant-induced FCA propagation losses. Indeed, in 
order to achieve an efficient electric injection in the laser, the dopant concentration 
should be high in the cladding layers. But this introduces FCA losses for the signal 
and idler beams, hence reducing the conversion efficiency and generated power. As 
a result, dopant-induced losses are an obstacle to reach the OPO threshold. Another 
limitation of this configuration is the adjustment of phase mismatch, as the only 
available in situ tool is temperature, which may degrade laser efficiency if high 
temperatures are needed.

The main alternative to this approach is heterogeneous integration, a cumber-
some and time-intensive method. We propose here an original approach where laser 
and OPO cavities are distinct but grown on the same wafer. No subsequent align-
ment or epitaxy regrowth is necessary. This device is based on vertical coupling: 
laser and OPO cavities are grown on vertically separated layers and coupled so that 
light can pass from one to the other. Vertical couplers have been widely described 
for the integration of lasers or detectors on an underlying chip [9]. At the upper 
level, a material of smaller gap is used for light generation or detection, while the 
lower levels comprise a material of higher gap for light transmission and analysis. 
This scheme is also used for the integration of III–V laser on silicon chips [10]. Both 
systems are analogous to our proposal: a laser is coupled to another waveguide, 
which provides a secondary function (light modulation, transmission, or in our case 
conversion). Here, however, design is not straightforward since the fundamental 
laser mode needs to be coupled to a higher order mode in the underlying waveguide. 
The use of this higher order mode enables modal phase matching in the buried 
waveguide, which is optimized for parametric conversion.

We base our design on the growth sheet of a 0.98-μm AlGaAs laser and engineer 
the OPO cavity to provide down-conversion toward a signal/idler range between 1.8 
and 2.2 μm. We rely on modal phase matching between a TE-polarized higher order 
mode at the pump wavelength and fundamental cross polarized modes at signal/
idler wavelengths. As a consequence, the fundamental mode in the laser cavity 
is transferred to a higher order mode in the OPO cavity. In situ adjustment of the 
phase mismatch can be achieved through modifications of laser wavelength and 
temperature of the OPO cavity.

2. General description of the device

In order to provide the best fabrication tolerance, we base our design on an 
adiabatic taper (instead of, e.g., a resonant coupler that would provide a shorter 
transfer length). Before detailing the device, we single out here some points critical 
to its operation. These aspects dictate design choices for the rest of the device.

The first “hard point” is spectral stability. To achieve a lower OPO threshold, 
we choose a doubly resonant OPO (DR-OPO) configuration. Concerning the 
laser, to avoid mode competition and instability, the pump should not return into 
the laser cavity after having explored the OPO region. This requires DBR with 
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high reflectivities at signal/idler wavelengths and low reflectivities at the pump 
wavelength, as present, for example, in [6]. Furthermore, stability of the device is 
improved by in situ control of the phase mismatch, through shift of the pump wave-
length or of the OPO cavity temperature. These two factors can be tuned indepen-
dently if the laser and OPO temperatures are set separately. This is possible if the 
two areas are separated by at least 100 μm and are controlled by individual heaters.

Thermal behavior and contact geometry are also expected to be critical. III/V on Si 
laser typically emits powers in the 10 mW range [11], while the pump power for OPO 
threshold is a few tens of mW in our case. The laser should be single mode for stable OPO 
operation, which imposes a maximal ridge width and thus a minimum optical power 
density. Furthermore, high-power single-mode lasers are usually shallowly etched (for 
single-mode operation) and mounted epi-down to limit thermal resistance [12]. In our 
case, these two aspects cannot be implemented at the same time. Indeed, if the laser is 
grown on top, the insulating section between laser and doped substrate makes it neces-
sary to use lateral contacts, which requires deep lateral etching and compromises laterally 
monomode operation. On the opposite, if the laser is grown under the nonlinear (NL) 
waveguide, shallow etches are possible but epi-down mounting is impossible.

We also carefully examine fabrication tolerances in the region of parametric 
conversion and assess their impact on conversion efficiency.

2.1 Choice of geometry

To reduce fabrication complexity, we limit ourselves to a single level of etching. 
This implies that the bottom waveguide geometry is invariant in the direction of 
propagation and that the top waveguide is narrowed. Keeping in mind the points 
presented in the previous section, we summarize the advantages of different geom-
etries in Table 1. The waveguide where parametric light conversion takes places is 
called “NL waveguide” (for nonlinear).

We explore the range of possibilities opened by the GaAs/AlAs/InAs system, and 
we base the design of the laser part on already-existing, high-performance AlGaAs 
lasers at 1 μm [13]. The detail of layer’s thickness and composition is not shown here 
for confidentiality reasons. In this structure, the fundamental mode at 0.98 μm has 
an effective index of about 3.36. Regarding the waveguide where parametric conver-
sion is to take place, modal phase matching is more readily achieved if the pump 
mode is of order 2 in the vertical direction. Additionally, high conversion efficiency 
is favored by high cladding/core index contrasts. This, coupled with the fact that we 
have to work with a higher order mode, sets the maximum value of effective index 
in the waveguide at approximately 3.2. We therefore choose the “laser on top” geom-
etry for its compatibility with effective indices in our project.

This choice has two important consequences. To keep the underlying waveguide 
undoped, contact for the bottom part of the laser must be taken laterally instead 
of under the substrate. This implies that the gain region should be deeply etched 
to clear access to the contacts. This is obviously at odds with a single-mode laser 
operation, since the important index contrast between air and semiconductor (in 
the absence of a regrowth step) will cause the laser to oscillate on several transverse 
modes, unless it is extremely narrow, which is not desirable given the target optical 
power. As a solution, we propose to etch deeply only one side of the ridge. Single-
mode operation can then be achieved with a contact on one side.

2.2 Proposed design

Given the constraints presented earlier, we propose a general design. A general 
view of the structure is shown in Figure 1. On the left, we choose a DFB cavity for the 
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laser in order to provide longitudinal as well as transversal single-mode operation. The 
upper waveguide narrows in the transfer region, where the mode moves to the bottom 
waveguide. On the right, parametric conversion takes place in the bottom waveguide, 
where distributed Bragg reflectors (DBRs) provide a high reflectivity at the signal 
and idler wavelengths. We will describe the device step-by-step, starting from the 
end because the zone of parametric conversion is the most sensitive to geometry 
variations.

2.3 Choice of material

To reach phase matching and a high conversion efficiency, we simulated vari-
ous waveguide geometries before settling on high index contrasts and a pump 
of order 2 in the direction of growth. To maximize index contrast in the vertical 
direction, the waveguide is surrounded by Al0.8Ga0.2As in the bottom cladding and 
by air above. However, in the region of transfer, the top cladding will be provided 
by whatever material separates laser and underlying waveguide core. We set this 
material to be Al0.3Ga0.7As, since it is already used as cladding in GaAs lasers. This 
layer structure is summarized in Table 2. It is identical to a standard laser data 
sheet, apart from the modified separation layer and added nonlinear waveguide and 
cladding. In the region of frequency conversion, all layers are etched, except for the 
last three: nonlinear waveguide, bottom cladding, and substrate.

Figure 1. 
General view of the proposed coupled-cavity design.

Layer type Material

Top cladding AlGaAs

Optical confinement (laser core) InGaAsP

Quantum well InGaAs

Optical confinement (laser core) InGaAsP

Separation layer Al0.3Ga0.7As

Nonlinear waveguide GaAs

Bottom cladding Al0.8Ga0.2As

Substrate GaAs

Table 2. 
Layer structure proposed for the coupled-cavity design. In the region of conversion, all layers are etched except 
the last three.
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laser in order to provide longitudinal as well as transversal single-mode operation. The 
upper waveguide narrows in the transfer region, where the mode moves to the bottom 
waveguide. On the right, parametric conversion takes place in the bottom waveguide, 
where distributed Bragg reflectors (DBRs) provide a high reflectivity at the signal 
and idler wavelengths. We will describe the device step-by-step, starting from the 
end because the zone of parametric conversion is the most sensitive to geometry 
variations.

2.3 Choice of material

To reach phase matching and a high conversion efficiency, we simulated vari-
ous waveguide geometries before settling on high index contrasts and a pump 
of order 2 in the direction of growth. To maximize index contrast in the vertical 
direction, the waveguide is surrounded by Al0.8Ga0.2As in the bottom cladding and 
by air above. However, in the region of transfer, the top cladding will be provided 
by whatever material separates laser and underlying waveguide core. We set this 
material to be Al0.3Ga0.7As, since it is already used as cladding in GaAs lasers. This 
layer structure is summarized in Table 2. It is identical to a standard laser data 
sheet, apart from the modified separation layer and added nonlinear waveguide and 
cladding. In the region of frequency conversion, all layers are etched, except for the 
last three: nonlinear waveguide, bottom cladding, and substrate.

Figure 1. 
General view of the proposed coupled-cavity design.

Layer type Material

Top cladding AlGaAs

Optical confinement (laser core) InGaAsP

Quantum well InGaAs

Optical confinement (laser core) InGaAsP

Separation layer Al0.3Ga0.7As

Nonlinear waveguide GaAs

Bottom cladding Al0.8Ga0.2As

Substrate GaAs

Table 2. 
Layer structure proposed for the coupled-cavity design. In the region of conversion, all layers are etched except 
the last three.
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The waveguide core should hold as little aluminum as possible in order to 
increase its nonlinear susceptibility. We set the exact Al fraction by comparing the 
effective index of guided modes in the upper waveguide to the effective index of 
the lower waveguide as taper width is reduced (Figure 2). For 10% Al composition, 
the laser mode index crosses the index of TE1 in the buried waveguide. We can thus 
expect the mode to couple to TE1. Using pure GaAs, the laser mode crosses only 
the TE2 index, which is the desired configuration. Absorption in GaAs at 1 μm is 
expected to be negligible [14]. Setting a pure GaAs waveguide has another advan-
tage: it eliminates the uncertainty on the Al fraction.

3. Nonlinear characteristics

3.1 Conversion efficiency and OPO threshold

We calculate conversion efficiencies with a code developed in the team, based 
on the work presented in [15]. Table 3 shows the nonlinear conversion efficiency 
at several ridge widths for a waveguide of thickness 0.95 μm surrounded by 
Al0.8Ga0.2As and air. The corresponding pump powers necessary for an OPO thresh-
old are presented in Figure 3. Propagation losses are assumed to be 0.1 cm−1. The 
threshold pump power lies in the 10–100 mW range.

3.2 Tolerances

Figure 4 shows the SPDC normalized efficiency as a function of ridge width 
and thickness. The FWHM of efficiency is 200 nm for a variation in width, a value 
compatible with the current state of fabrication technology. The FWHM for a 
variation in thickness is much smaller, around 3 nm. The typical precision of thick-
ness achieved by molecular beam epitaxy is approximately 2%, corresponding to a 
variation of 2 nm in a 0.95 μm waveguide. Depending on growth systems, this value 
can be further increased by inhomogeneities along the wafer.

Figure 2. 
Effective indices of guided modes in the structure. (Red) Index of the laser mode as a function of guide width. 
(Orange) Indices of guided modes in the buried waveguide, assuming a planar waveguide of Al0.1Ga0.9As (left) 
or GaAs (right) surrounded by Al0.3Ga0.7As on one side and Al0.8Ga0.2As on the other.

Ridge width (μm) Conversion efficiency
(W−1 cm−2)

2 600

3 380

4 230

Table 3. 
SPDC efficiency vs. ridge width in a 0.95-μm-thick waveguide surrounded by Al0.8Ga0.2As and air.
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Fortunately, two tools allow us to shift the efficiency curve: temperature 
and pump wavelength. Figure 5 shows the normalized SPDC efficiency as a 
function of ridge width and thickness, for waveguide temperatures of 20 and 
50°C. A temperature shift of 30°C can compensate for a 10-nm variation of the 
waveguide core thickness. We stress here that the temperatures of laser and 
parametric conversion regions can be set separately and that an increase of 30°C 
in the SPDC area has a negligible impact on the laser temperature, assuming 
that the two regions are separated by 300 μm (a typical distance for adiabatic 
transfer).

Figure 3. 
OPO pump power threshold for a ridge width of 4 μm (left) and 2 μm (right) as a function of length and 
signal/idler reflectivity. Guide thickness is 0.95 μm.

Figure 4. 
Normalized SPDC efficiency as a function of ridge width and thickness.

Figure 5. 
Normalized SPDC efficiency as a function of ridge width and thickness, for a waveguide temperature of 20°C 
(left) and 50°C (left). Pump wavelength is 1 μm in both cases.
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Figure 6 presents the normalized spontaneous down-conversion (SPDC) 
efficiency as a function of ridge width and thickness, at pump wavelengths of 990 
and 1010 nm. A wavelength shift of + − 10 nm can compensate for a variation of 
40 nm of the waveguide core thickness. This variation is typically accessible to a 
single-mode DFB laser.

As a conclusion, while efficient parametric down-conversion is only encoun-
tered in a narrow window of parameters, it can realistically be achieved by 
compensating variations in fabrication with a shift in temperature and pump 
wavelength.

3.3 DBR design

The DBRs should provide a reflectivity above 95% at both signal and idler 
wavelengths (see Figure 3) and nearly null reflectivity at pump wavelength. 
As mentioned earlier, this has already been demonstrated with dielectric stacks 
deposited on the waveguide facets [6]. While the outer mirror can be fabricated 
in this fashion, the inner one needs to be etched at an interface. Let us estimate 
now the DBR coupling constants in the approximation of weak perturbations. 
For a DBR length of 100 μm, the coupling constant should be 220 cm−1 in order 
to achieve 95% reflectivity. Table 4 presents the coupling constants of the fun-
damental TE and TM modes at 2 μm for a grating depth of 200 nm. The grating 
is supposed to be perfectly rectangular, with a filling factor of one-half. Whether 
the grating is formed by etching the top interface (air/GaAs) or by etching the 
underlying cladding and restarting epitaxy (GaAs/Al0.8Ga0.2As interface), an etch 
depth of at least 200 nm is necessary to achieve reflectivity over 95% with a DBR 
smaller than 100 μm.

Figure 6. 
Normalized SPDC efficiency as a function of ridge width and thickness, for pump wavelengths of 990 nm 
(left) and 1010 nm (right). Temperature is 20°C in both cases.

Grating at the top interface (air/
GaAs)

Grating at the lower interface (GaAs/
Al0.8Ga0.2As)

Grating depth 
(nm)

κTE

(cm−1)
κTM

(cm−1)
κTE

(cm−1)
κTM

(cm−1)

200 214.5 242.5 277 180.9

Table 4. 
Coupling constants for fundamental TE and TM modes at 2 μm, given a rectangular grating of depth 200 nm 
and duty cycle 50%.
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3.4 Tunability

We show in Figure 7 the tunability curves of the waveguide at temperatures 
20 and 40°C. Outside of degeneracy, a signal/idler wavelength range of 300 nm is 
accessible for a pump wavelength variation of a few nm.

4. Waveguide coupling

4.1 2D approximation for the effective index

A transverse view of the structure is shown in Figure 8. The two waveguides are 
separated by 300 nm of Al0.3Ga0.7As. Figure 9 presents a simulation of light propaga-
tion along the structure by a beam propagation method (BPM), which has been car-
ried out with the commercial software RSoft. To reduce calculation time and quickly 
converge on an intuitive model, we first make a 2D effective-index approximation, 
whose validity will be checked in the next section. The injected mode, visible on the 
right-end side of Figure 9a, is the eigenmode presenting the highest overlap with the 
active region. As is visible from Figure 9b, 90% of the guided power is contained in 
the laser core layer at Z = 0, that is, before the taper. Thus, modal gain is expected to 
not suffer from the presence of the underlying GaAs layer. From Z = 0 to Z = 300 μm, 
the two top layer widths are reduced from 4 μm to 0. From Z = 300 μm to Z = 500 μm, 
the separation layer (Al0.3Ga0.7As) width is reduced in the same way. Over 95% of the 
power is transferred to the GaAs waveguide. To estimate the robustness of the design 
to a limited resolution in lithography, we simulate the same transfer with widths 
ending at 0.4 μm instead of 0: the transfer of power to the underlying waveguide is 
85%. While a more detailed set of tests would be necessary to account for fabrication-
induced deviations, these results are encouraging.

In order to find out if the power in the slab is in the desired TE2 mode, we calcu-
late the overlap of the BPM-simulated field with the GaAs waveguide eigenmodes. 
The result, reported in Figure 10, is that 97% of the power is in the TE2 mode after 
one transfer length.

4.2 3D simulations

In the 2D-effective index approximation made in the previous section, we 
assumed single-mode behavior in the lateral direction. The geometry chosen in 3D 

Figure 7. 
Tunability curves of the waveguide supporting frequency conversion.
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Figure 9. 
(a) BPM simulation of light propagation in the structure. (b) Normalized guided power along z, in the upper 
(laser, blue) and the lower (OPO, green) waveguide.

must balance two conditions in order to give a high transfer to the TE20 mode. On 
the one hand, the lateral confinement of the buried waveguide should be minimal 
so that the single-mode approximation is satisfied, and coupling to higher order 
modes in the lateral direction is minimized. On the other hand, the buried wave-
guide should be confined enough to prevent the field from escaping.

Figure 11 shows the proposed taper design. From Z = 0 to Z = 300 μm, the 
width of laser cladding, top half of the laser core and QW, is reduced from 4 μm to 

Figure 8. 
Transverse view of the structure. The fundamental mode of the top waveguide is shown in blue. Second-order 
mode of the lower waveguide is shown in red. The three top layers (laser cladding, laser core, and Al0.3Ga0.7As 
separation) have widths varying from 4 to 0 μm. The GaAs waveguide and inferior cladding have infinite 
width.
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Figure 10. 
Modal decomposition of the BPM-simulated field in Figure 9 on the eigenmodes of the GaAs waveguide.

Figure 11. 
Side (a) and top (b) view of the proposed taper geometry. Green, Al0.3Ga0.7As; orange, laser core layer; dark 
blue, GaAs; red, quantum well. Dimensions are not to scale.

Figure 12. 
Power transmitted to the eigenmodes in Figure 13. (Left) Triangular tapers. (Right) Quadratic tapers.
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Power transmitted to the eigenmodes in Figure 13. (Left) Triangular tapers. (Right) Quadratic tapers.
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Figure 13. 
Four eigenmodes of the ridge GaAs waveguide of width 2 μm. The pump mode for SPDC is TE20 (bottom left). 
Only half of the waveguide is represented in the lateral direction for symmetry reasons.

0. From Z = 300 μm to Z = 600 μm, the width of the bottom half of laser core and 
separation layer (Al0.3Ga0.7As) is reduced in the same way. The width of the final 
GaAs waveguide is 2 μm. For this design, the calculated transfer efficiency into the 
TE20 mode is as large as 80%.

Figure 12 shows the power transmitted to the eigenmodes of the 2 μm wide and 
air clad GaAs ridge waveguide that are plotted in Figure 13. For the sake of clarity, 
among all the eigenmodes supported by the waveguide, we only show those that are 
the most likely to sustain a transfer (because they have a similar effective index, the 
same polarization, and the same horizontal parity as the laser mode).

Modifying the taper shape affects the effective index and thus the position of 
transfer. A − 0.02 shift in the laser core and cladding refractive indices accelerates 
the transfer without affecting the total transmission. An opposite shift (+0.02), 
which can be caused by a 30°C temperature increase, makes the transfer drop to 
30–40% depending on the taper shape.

These values must be compared to the estimated OPO thresholds (Figure 3): 
depending on the OPO cavity length and mirror reflectivity, its threshold can range 
from 20 to 100 mW. Transmission of 30–80% thus sets the target optical power 
at 25–300 mW. Since AlGaAs laser diodes at 980 nm can emit powers in excess of 
10 W in broad area configurations [13] and 700–1500 mW in narrow, laterally 
single-mode configurations [12], our target power seems within reach.
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5. Laser

We propose here a preliminary description of the laser cavity. While the laser 
design is unconventional, we show that its key parameters (confinement in the 
QW, reflectivity, estimated differential efficiency) fall in a typical range of values 
for AlGaAs lasers. Active properties are not investigated, although they could be 
undertaken in the future on the basis of this work.

5.1 Thermal behavior

As mentioned earlier, thermal behavior is a critical point for the operation of the 
DOPO source. Given a maximal ridge width for single-mode operation, an epi-up 
geometry, and a target optical power, we can estimate the temperature rise in the laser.

The laser ridge width is taken to be 5 μm, as this size provides single-mode 
operation for an index contrast of 0.005 [12]. Assuming a target optical power of 
100 mW and a wall-plug efficiency of 16%, the emitted power in the form of heat 
is 500 mW. We simulate a crude model of the temperature rise with the software 
COMSOL. The heat is assumed to escape fully from the junction of size 5 μm × 0.1 μm 
× L (1, 2, or 3 mm) (Figure 14). The latter is set inside 10 μm of Al0.3Ga0.7As, and the 
underlying material is GaAs. Figure 15 shows the junction temperature calculated as a 
function of the substrate thickness for three different lengths (L = 1, 2, or 3 mm).

To stay under 40°C, we find that the laser should be at least 2 mm long and the 
wall-plug efficiency should be over 16% at the target power.

Figure 14. 
Model used to estimate the laser temperature rise.

Figure 15. 
Junction temperature as a function substrate thickness, for three laser lengths.
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Figure 13. 
Four eigenmodes of the ridge GaAs waveguide of width 2 μm. The pump mode for SPDC is TE20 (bottom left). 
Only half of the waveguide is represented in the lateral direction for symmetry reasons.
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5. Laser

We propose here a preliminary description of the laser cavity. While the laser 
design is unconventional, we show that its key parameters (confinement in the 
QW, reflectivity, estimated differential efficiency) fall in a typical range of values 
for AlGaAs lasers. Active properties are not investigated, although they could be 
undertaken in the future on the basis of this work.

5.1 Thermal behavior

As mentioned earlier, thermal behavior is a critical point for the operation of the 
DOPO source. Given a maximal ridge width for single-mode operation, an epi-up 
geometry, and a target optical power, we can estimate the temperature rise in the laser.

The laser ridge width is taken to be 5 μm, as this size provides single-mode 
operation for an index contrast of 0.005 [12]. Assuming a target optical power of 
100 mW and a wall-plug efficiency of 16%, the emitted power in the form of heat 
is 500 mW. We simulate a crude model of the temperature rise with the software 
COMSOL. The heat is assumed to escape fully from the junction of size 5 μm × 0.1 μm 
× L (1, 2, or 3 mm) (Figure 14). The latter is set inside 10 μm of Al0.3Ga0.7As, and the 
underlying material is GaAs. Figure 15 shows the junction temperature calculated as a 
function of the substrate thickness for three different lengths (L = 1, 2, or 3 mm).

To stay under 40°C, we find that the laser should be at least 2 mm long and the 
wall-plug efficiency should be over 16% at the target power.

Figure 14. 
Model used to estimate the laser temperature rise.

Figure 15. 
Junction temperature as a function substrate thickness, for three laser lengths.
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5.2 Key parameters

To limit its temperature rise, the laser should be at the least 2 mm long. This 
size is above the average for common sources in integrated optics, which often 
favor compactness. Large DFB grating lengths increase modal reflectivity, not only 
lowering threshold but also degrading differential efficiency. Furthermore, the 
laser mode is only partially confined before the taper, so we estimate the impact of 
confinement on the modal gain.

In order to achieve high optical powers and single-mode operation, we propose 
a DFB laser with low grating reflectivity and high reflectivity (HR) coating on the 
external facet. We assume that the DFB grating is etched at the interface between 
laser core and top cladding. To avoid regrowth, gratings can also be etched on the 
surface [16]. However, optimization of surface gratings depends on the top contact 
geometry, which has not been defined yet. Therefore, we present only the buried 
grating case.

If the laser is 1–2 mm long to limit temperature rise, an etch depth of 10–20 nm 
is necessary to provide a κL product of ∼0.5 (where κ is the coupling constant of the 
fundamental mode). This value is realistically achievable with a shallow etch and 
epitaxy regrowth.

For a laser of length 2 mm with a coating of reflectivity 90% on the external 
facet, assuming a κL product of 0.5, total output coupling losses are 9 cm−1 [17]. 
If parasitic losses are 10 cm−1 and internal efficiency is 80%, external differen-
tial efficiency is 0.38. The modal gain needed to reach laser oscillation is 19 cm−1 
[17]. QW lasers at 980 nm commonly achieve modal gains in excess of this value 
[18]; however, the threshold is also affected by the confinement factor. For a 
single QW of thickness (10 nm), we find that the confinement of lasing mode 
in the well is 1.2%, which corresponds to a material gain of 1600 cm−1 at thresh-
old. This is achieved under a carrier density of 2.5 × 1018 cm−3 in the well [19]. 
Assuming a recombination time of 3 ns, the threshold current density is then 
expected to be 130 A/cm2, comparable to the range of 120–150 A/cm2 measured 
in similar lasers [13, 18].

In conclusion, we have shown that the key parameters (threshold and efficiency) 
of this laser are not affected by its unusual design and that they are compatible with 
operation in excess of 100 mW.

6. Conclusion

We have defined the main conditions required for a diode-OPO structure 
based on a vertical coupler, and we have described the passive properties of this 
source. Phase matching can be dynamically controlled through wavelength and 
temperature tuning. We achieve transfer to a higher order mode of the structure, 
with sufficient efficiency. The taper layout can still be improved via further 
optimization.

Overall, this design predicts promising results for the fabrication of an inte-
grated diode-OPO based on GaAs. Unlike all-in-one DOPO configurations, this 
device does not require record-low propagation losses in the laser diode.

While fabrication of this device is complex, epitaxy regrowth can be avoided 
completely if the laser DFB grating can be defined at the surface. Most of the 
technological complexity occurs in the various etching levels necessary to define the 
structure, from tapers to DFB grating to DBRs.

To ensure feasibility of this project, future work should focus on laser design, 
particularly on expected optical power and impact of doping on the transfer.
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Chapter 8

Stimulated Raman Scattering in 
Micro- and Nanophotonics
Maria Antonietta Ferrara and Luigi Sirleto

Abstract

Micro- and nanophotonics explore behavior of light on the micro-/nanoscale 
and the interaction of micro-/nanoobjects with light. The driving force for 
their development is the aim to go beyond the limit of photonics. Because of 
the diffraction limit, photonics components are not able to confine light to the 
microscale or nanoscale dimension; therefore, one of the key challenges for 
micro- and nanophotonics is a reduction in the size of integrated optical devices, 
while maintaining a high level of performance. As far as light amplifiers and laser 
sources based on stimulated Raman scattering (SRS) are concerned, important 
accomplishments have been achieved in the fields of fiber optics amplification 
and integrated photonics devices. In this chapter, the most interesting investiga-
tions in the field of stimulated Raman scattering in micro- and nanophotonics are 
reviewed. These findings provide promising perspectives for integrated micro-/
nano-Raman lasers.

Keywords: nonlinear optics, stimulated Raman scattering, Raman laser, 
microphotonics, nanomaterials, nanophotonics

1. Introduction

Spontaneous Raman is an inelastic light scattering by which a fraction of the 
light incident upon a transparent material is shifted in frequency. Linear Raman 
scattering is a weak process (approximately 1 in 107 photons) involving the col-
lective behavior of many atoms, behaving independently (see Figure 1(a)) and 
leading to nearly isotropic emission. Raman spectra, given by the superposition of 
stochastic totally independent vibrations from individual molecules, are unique to 
the material [1].

Stimulated Raman scattering (SRS) phenomenon occurs when there is a transfer 
of energy from a high power pump beam to a probe beam (copropagating or coun-
terpropagating) through SRS. In particular, this energy exchange occurs when the 
frequency difference between the pump and the Stokes laser beams matches a given 
molecular vibrational frequency of the sample under test; the SRS effect occurs in 
the form of a gain of the Stokes beam power (stimulated Raman gain, SRG) and a 
loss of the pump beam power (stimulated Raman loss, SRL. See Figure 1(b)) [2]. 
Because of its coherent nature, the molecular bonds oscillate in phase and interfere 
constructively inside the focus area of the laser beam. As a consequence a SRS signal, 
which is orders of magnitude bigger than spontaneous Raman scattering, is gener-
ated (about 20–30% of the incident laser radiation can efficiently be converted into 
SRS) (see Figure 1(c)).
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Due to its Raman-shifted output, SRS is a workable method for generating 
coherent radiation at new frequencies. SRS permits, in principle, the amplifica-
tion in a wide interval of wavelengths, from the ultraviolet to the infrared. Since 
the Raman frequency of a medium is usually fixed, the tunability can be achieved 
by using a tunable pump laser. Raman lasing occurs when the Raman-active gain 
medium is placed between mirrors, reflecting the first Stokes wavelength. This 
is analogous to lasers, where the gain medium must be placed inside a cavity to 
achieve laser threshold. Raman lasers and traditional lasers differ in the wavelength 
of light required for pumping. In the case of Raman laser, it does not depend on the 
electronic structure of the medium, so the wavelength of pump laser can be chosen 
to minimize absorption.

In order to tailor Raman laser characteristics and performances, there are two 
main basic configurations. The first one, external-resonator Raman laser, the Raman 
crystal is placed inside a cavity, resonating the Stokes field (Figure 2(a)). This 
configuration is used for pump pulses that are longer than the transit time through 
the Raman crystal. The second one, the intracavity Raman laser (Figure 2(b)) 
combines both a Raman medium and the laser medium inside a single cavity, so that 
the fundamental and Stokes fields are both resonating within the cavity [3].

Raman amplification, demonstrated in the early 1970s, is a feasible approach 
for fiber optics amplification, being only restricted by the pump wavelength and 
Raman active modes of the gain medium [4]. In this case, optical fiber is used 
as Raman gain medium and both pump and signal waves are launched into it 
(Figure 2(c)). In the past century, fused silica has been the main material used 
for transmission of optical signals, because of its good optical properties and 
attractive trade-off between Raman gain and losses. The main disadvantage of 
the current silica fiber amplifiers is the limited usable bandwidth for Raman 
amplification (5 THz, approx. 150 cm−1). A development in fiber optics com-
munications was achieved opening the communication range to span from 1270 
to 1650 nm, corresponding to about 50 THz bandwidth [5]. For future ampli-
fication requirements, due to this significant increase in bandwidth, the use of 
existing Er-doped fiber amplifiers is kept out, while Raman gain becomes the key 
mechanism.

Figure 1. 
(a) Spontaneous Raman scattering: incident photons inelastically scatter off spontaneously from vibrationally 
excited molecules, behaving independently. (b) Stimulated Raman scattering: two incident lights, a pump and 
a Stokes laser beams, whose energy difference matches a particular vibrational energy, drive the molecule at 
ων = ωS − ωP, producing coherent Raman signals at ωS = ωP + ων. SRS modalities are: SRG, stimulated Raman 
gain; SRL, stimulated Raman loss. (c) Stimulated Raman scattering: inelastic scattering of probe photons off 
from vibrationally excited molecules that interfere coherently.
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Silicon photonics is an important player in the low-cost optical interconnect 
technology, as silicon-based optical components could be manufactured using the 
existing silicon fabrication techniques [6]. Silicon on insulator (SOI) waveguides 
allows to limit the optical field into an area 100 times smaller than the modal area 
of a typical single-mode optical fiber. In addition, the Raman gain in silicon is much 
stronger than in glass (≈10,000 times), therefore allowing to reduce the length 
required from kilometers of fiber to centimeters of silicon waveguides [2]. The 
waveguide approach, schematically reported in Figure 2(d), led to the demon-
stration of pulsed Raman silicon laser [7] and continuous-wave (CW) lasing [8]. 
The merit of this approach is the ability to use pure silicon without the need for 
Er doping; i.e. it is fully compatible with silicon microelectronics manufacturing. 
On the other hand, there are three main limitations. The first, Raman laser cannot 
be electrically excited and it requires an off-chip pump. The second, the narrow-
band (105 GHz) of stimulated Raman gain makes it unsuitable for its use in WDM 
applications, unless expensive multi-pump schemes are implemented. The third, 

Figure 2. 
Basic configurations of Raman laser: (a) external-resonator Raman laser; (b) intracavity Raman laser;  
(c) fiber Raman amplifiers; and (d) silicon on insulator waveguide Raman laser.
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Figure 1. 
(a) Spontaneous Raman scattering: incident photons inelastically scatter off spontaneously from vibrationally 
excited molecules, behaving independently. (b) Stimulated Raman scattering: two incident lights, a pump and 
a Stokes laser beams, whose energy difference matches a particular vibrational energy, drive the molecule at 
ων = ωS − ωP, producing coherent Raman signals at ωS = ωP + ων. SRS modalities are: SRG, stimulated Raman 
gain; SRL, stimulated Raman loss. (c) Stimulated Raman scattering: inelastic scattering of probe photons off 
from vibrationally excited molecules that interfere coherently.
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Raman gain in Si at the wavelength of interest for telecommunications is reduced by 
two-photon absorption (TPA).

We note that as a general rule, in all laser gain bulk materials there is a tradeoff 
between gain and bandwidth: linewidth may be increased at the expense of peak gain. 
In nature, we have material with high Raman gain and small bandwidth (for example, 
silicon), and others with a large bandwidth but with small Raman gain (for example, 
silica). This trade-off is a fundamental limitation toward the realization of sources 
with high efficiency and large emission spectra. In this book chapter, a review of the 
most significant accomplishments in the field of SRS in micro- and nanophotonics is 
reported. From a theoretical point of view, the difference between micro- and nano-
structures is significant. In microstructures, the measured SRS enhancement can be 
related to photons confinements effect and it can be quantified by a corresponding 
gain (gmicro), given by: gmicro = f*gbulk, where f is the optical field enhancement due to 
the presence of microstructures and gbulk is the gain of bulk material, making up the 
microstructures [2]. According to this formula, photonics microstructures allow 
an enhancement of Raman gain, but the bandwidth does not change, therefore the 
fundamental trade-off between gain and bandwidth of bulk materials cannot be over-
come using microstructures. Concerning SRS in nanostructures, although a general 
theory on the relation between nanostructuring and Raman gain is not established, 
we expect that the Raman gain of nanomaterials gnano should be related to the intrinsic 
properties of materials and for this reason different from bulk. Therefore, the funda-
mental trade-off between gain and bandwidth should be overcome, too.

The chapter is organized as follows. In Section 2, some the most successful 
applications areas of SRS in microstructures are described. In Section 3, a number 
of investigations concerning SRS in nanostructures are described. Finally, in the 
appendix, for the sake of completeness, the basic theory of SRS and experimental 
methods for measuring Raman gain are reported.

2. SRS in microphotonics

In this section, in order to describe stimulated Raman scattering investigations 
in microstructures, two crucial parameters have been individuated: dimension of 
microstructure and order/disorder degree of microstructure distribution. As to 
regard dimension of microstructure, in order to point out its role, in Section 2.1, 
SRS investigations in microcavities are reported. Concerning the order/disorder 
degree of microstructure distribution, we note that interesting developments have 
been recently demonstrated, which point out that it is possible to make use of the 
intrinsic order/disorder in photonic materials to create useful optical functionality 
[9]. In order to highlight the role of order/disorder degree of microstructure distri-
bution, we describe two limit cases: in Section 2.2 SRS in photonics crystals, i.e. in a 
completely ordered structure, is reported, while in Section 2.3 SRS in random laser, 
i.e. in a disordered structure is described.

2.1 SRS in microcavities

In nonlinear optics devices, the use of microcavities allows to take advantage 
of both the micrometers dimension and the increasing of the local field, combin-
ing small modal volume with high optical quality-factors (Q ). One of the most 
important consequences for nonlinear optics applications is that strong resonant 
increase of energy in microscale volumes significantly reduces the power threshold 
at which nonlinear optical effects occur [10]. In the case of SRS, in agreement 
with the observed SRS for high-Q cavities experimental results [10], the explicit 
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expression of the cavity-enhanced Raman gain shows that the improvement is 
inversely proportional both to the square of the radius of the spherical cavity and to 
the linewidth of the Raman process.

In Ref. [11], SRS from spherical droplets and microspheres, with diameters 
of the order of tens of micrometers and optically coupled by the use of a tapered 
optical fiber, has been observed. The threshold was measured whereas the cou-
pling air gap between the taper and microsphere was changed, allowing to obtain 
a micrometer-scale, nonlinear Raman source with a pump threshold approxi-
mately 1000 times lower than reported before and a pump-signal conversion 
higher than 35% [2, 11].

Diamond as a possible material for compact, on-chip Raman lasers over a wide 
spectrum was introduced in Ref. [12]. A CW, low-threshold, tunable Raman laser 
operating at ∼2 μm wavelengths based on waveguide-integrated diamond racetrack 
microresonators embedded in silica on a silicon chip was demonstrated.

2.2 SRS in photonics crystals

A high-quality-factor nanocavity using a photonic crystal with a triangular lat-
tice structure realized by circular air holes in a suspended silicon membrane and 
without any p-i-n diodes, yielding a device with a cavity size of less than 10 μm, 
has been demonstrated in Ref. [13]. The heterostructure nanocavity is obtained 
by introducing a line defect waveguide with two kinds of propagation modes 
inside the photonic bandgap, an odd-waveguide mode and an even-waveguide 
mode, which were used to confine pump light and Stokes-Raman-scattered light, 
respectively. A continuous-wave Raman silicon laser with an extraordinary low 
lasing threshold of 1 μW was demonstrated. In fact, an optimized nanocavity 
design allows to produce a net Raman gain in the low-excitation range before 
TPA-induced free carrier absorption (FCA) becomes dominant, permitting a low 
lasing threshold [2, 13].

2.3 SRS in random laser

Multiple scattering is a well-known phenomenon, occurring in nearly all optical 
opaque materials. Random walk of light waves in disordered materials could carry 
out to a multiple scattering with a consequent strong localization of electric field. 
Wave character of multiply scattered light is not lost and the wave can interfere 
both during and after the scattering process. Considering that the scattering is 
elastic, optical information does not change. Furthermore, due to reciprocity, 
multiple scattering is, in theory, fully reversible [2]. Reciprocity means that waves 
following the same path in opposite directions can interfere. Interference between 
such counter-propagating waves is always constructive, which gives rise to the 
incredibly robust interference phenomenon of coherent backscattering (also called 
weak localization). The combination of weak localization together with reciprocity, 
leads to a series of interesting physical effects and to an enormous potential for new 
disorder-based optical applications [14].

The first experimental evidence of lasing via a Raman interaction in a bulk 
three-dimensional random medium was demonstrated taking advantage of barium 
sulfate (BaSO4) powder with particle diameters of 1–5 μm. The pump energy 
threshold was 1.05 mJ; at higher values, gain is stronger than losses and SRS domi-
nates the conversion process, allowing to obtain random Raman lasing. A Raman 
signal of 2.0 mJ was measured at a maximum of 11.5 mJ of pump energy [2, 15]. The 
complicated dynamics of nonlinear pulse propagation in a turbid medium make a 
theoretical approach to describing this problem very challenging.
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To have a rapid idea of the Raman enhancement reported by the different 
approaches in microstructures described in this section, in Figure 3 we summarized 
them.

3. SRS in nanophotonics

In order to control a signal light, its intensity or phase has to be modified by 
a control signal. In a nonlinear optics device, a control light-wave is employed 
to modify the optical proprieties of the medium as seen by a signal light-wave. 
Of course, higher nonlinearity requires shorter interaction length L. In order to 
reduce L in a nonlinear device with physical dimensions greater than the wave-
length, the efficiency of nonlinear effects can be enhanced taking advantage of 
optical resonators (see Section 2.1 for examples) [2]. In nanoscale devices, which 
should be able to control light with light in a nanoscale layer or in a nanoparticle 
of nonlinear material, the trick of using optical resonators cannot be used. 
Therefore, we have to develop nanostructured materials having enough large 
nonlinearities [16].

The search for new materials, from an experimental point of view, should satisfy 
a number of technological and economical requirements, while, from a theoretical 
point of view, it should be combined with a deep understanding of nonlinear polar-
ization mechanisms, elucidating their relation to the structure of nanostructures 
(average radius, volume fraction and size dispersions) [17]. In the past few decades, 
a number of nanomaterials proved remarkable nonlinear optical (NLO) properties, 
which encourage the fabrication of ultra-compact, low-loss and high-performance 
nanoscale photonic devices [18].

Figure 3. 
SRS enhancement reported in different kind of microstructures.
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Recent interest in the optical responses of metal nanoparticles and metama-
terials is focused on enhancing local electromagnetic fields [19]. The significant 
enhancement factors of 103–106, predicted at a flat metal surface, are significant 
for nonlinear optical processes [19]. However, although plasmonics structures and 
metamaterials can provide substantial size reduction for optical components, their 
optical losses are often undesired [20]. Therefore, in order to control the flow of 
light, an all-dielectric platform is highly attractive. Although resonant nonlinearities 
are significant, they are not appealing for applications, due to their long response 
times. In addition, at resonance the incident radiation is absorbed by materials [17]. 
On the other hand, nonresonant nonlinearities take place at frequencies below the 
absorption edge (i.e. when the light linear absorption is negligible) and they are 
very fast (typical recovery times are of the order of picoseconds). Recently, third-
order NLO properties of Si-nc have been widely investigated and a large variation 
of the nonlinear refractive index (n2) values has been reported, complicating the 
interpretation of experimental results [21].

As far as the investigation of SRS at the nanoscale is concerned, there have been 
a few number of fundamental investigations, both experimental and theoretical. 
In Ref. [22], a large Raman gain, measured by resonant Raman spectra excited at 
632.8 nm, was obtained from individual single-walled carbon nanotubes. The theo-
retical interpretation takes in to account both the exceptional nonlinear properties 
and the efficient electron-phonon interaction in single-walled carbon nanotubes. 
In Ref. [23], SRS from GaP nanowires was measured by Raman spectra in backscat-
tering configuration, using CW laser excitation (514.5 nm). Strong nonlinear SRS, 
obtained by crystalline nanowires with a diameter of 210 nm and with length of 
about 1 micron, were discussed in terms of theoretical results developed for dielec-
tric cavities.

In the following, the observation of SRS in nanostructured silica-based materials 
(Section 3.1) and nanostructured silicon-based materials (Section 3.2) are reported 
and discussed.

3.1 SRS in nanocomposities silica-based materials

Among the innovative materials for Raman amplification, one of the most inter-
esting classes is oxide glasses, above all silicon dioxide-based glasses due to their 
compatibility with the current optical fibers technology. To try to improve their SRS 
efficiency, a useful strategy is to add suitable dopants (heavy metal oxides as Ta2O5, 
Bi2O3, and Nb2O5) to silica [24–27]. We note that in other systems, such as niobium-
phosphate glasses, characterized by a high concentration of niobium, a higher peak 
Raman gain (but in the best case of ≈ 10 times) and a broadening of the bandwidth 
with respect to silica glass has been demonstrated [28, 29].

In this paragraph, in order to increase SRS optical features of silica-based 
glasses, we propose an alternative approach: instead of to investigate new glass 
compositions, we change the glass arrangement. We note that a glass structural 
variations can be obtained as a result of an appropriate heat treatments made in 
the glass transition range, generating glass-ceramics with nanocrystals uniformly 
dispersed in the glass matrix (glass-crystals nanocomposites) [30]. We consider 
glasses, belonging to the K2O-Nb2O5-SiO2 (KNS) system, forming transparent and 
stable glasses and showing interesting non-linear optical properties. For glasses in 
the class of the KNS glass-forming system, an interesting glass nanostructuring pro-
cess has been considered. The process contains two partially overlapped processes, 
namely, phase separation and crystallization [31]. We note that a clear relationship 
between glass nanostructuring and Raman gain has not been proven yet, although, 
in our previous paper, a connection between local structure and SRS in bulk 
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nanostructured 30K2O·30Nb2O5·40SiO2 (KNS 30-30-40) glass was found [31]. It is 
worth noting that an appropriate choice of the annealing parameters, therefore of 
the degree of crystallization, can allow to obtain the best compromise between the 
highest Raman gain and the highest nonlinear coefficients for third order effects.

Moreover, Raman spectroscopy characterization of nanostructured 
20K2O·25Nb2O5·55SiO2 (KNS 20-25-55) glasses are also reported. The optical and 
structural characteristics of the samples have been measured by the Raman set up 
reported in Ref. [31]. Due to dependence of the intensity of the Raman active modes 
on both the temperature and the frequency of the vibrational modes, the measured 
Stokes Raman intensity was reduced according to the procedure also described in 
our previous papers [28–32]. Then, in order to properly compare the Raman spectra 
of KNS glasses with the silica glass standard, the measured Raman spectra were 
modified also for the differences in reflection and angle of collection by using the 
procedure reported in Refs. [28–32]. Usually, due to the more extended electronic 
clouds, elements with high atomic number yields highest intensity Raman bands, 
making the polarizability more sensitive to bonds stretching. Adding niobium oxide 
to silica-based glasses induces an enhancement of Raman cross section respect to 
silica glass, being the polarizability of Nb-O bonds higher than Si-O bonds. In the 
studied glasses, niobium enters in the glass network creating NbO6 octahedra more 
or less distorted, namely with different NbO bond length, and produces several 
Raman bands over a wide wavenumbers range. Due to the typical glass disorder, 
a broadening of all Raman bands occurs and, therefore, Raman spectra of KNS 
glasses outcome from the strong overlapping of several broad bands.

In Figure 4 the Raman gain respect to the Raman gain of silica is reported as a 
function of the Raman bandwidth for different materials. Inter alia, in Figure 4 
is evident that glasses at initial and at different times of heat-treatment show the 
same bandwidth, but different gain. Hence, the nanostructuring process is nearly 
complete in glasses at a time between 2 and 10 h and produces nanocrystalline 
inhomogeneities distributed in the glass matrix [30, 32].

Figure 4. 
Raman gain coefficients and their bandwidth are reported for different material: silicon and silica (as ‘bulk 
material’), nanocomposite glasses (KNS) in different phases of the thermal treatment for the initial glass 
composition 20-25-55, silicon micro- and nano-particles (amorphous and crystalline). Features for ‘ideal 
materials’ for Raman amplification are reported, too.
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3.2 SRS in nanostructured silicon-based materials

In our previous papers [2, 33–35] experimental results of spontaneous Raman 
scattering measurements in silicon nanostructures at the wavelength of interest 
for telecommunications (1.54 μm), were showed. Due to the phonon confinement 
model, two significant enhancements of the Raman spectra in silicon quantum dots 
respect to silicon were obtained: the broadening of spontaneous Raman emission 
and the tuning of the Stokes shift. In detail, in silicon quantum dots with a crystal 
size of 2 nm an important broadening of about 65 cm−1 and a peak shift of about 
19 cm−1 were demonstrated. Taking into account that the width of C-band telecom-
munication is 146 cm−1, we have that more than the half of C-band could be cov-
ered using silicon quantum dots, without implementing the multi-pump scheme.

In this paragraph, comparison among experimental investigations of SRS in 
amorphous silicon nanoparticles and in silicon micro- and nano-crystals, at the 
wavelengths of interest for telecommunications, are reported. We considered three 
different samples:

1. Silicon nanocomposites dispersed in SiO2 matrix. The mean radius of the 
silicon dots and the dot density were of 49 nm and 1.62 × 108 dots/cm2,  
respectively [36, 37].

2. Amorphous silicon nanoclusters embedded in Si-rich nitride/silicon super-
lattice structures (SRN/Si-SLs). The structure of the sample consists of 10 
SRN layers and 9 amorphous Si (a-Si) layers for a total thickness of 450 nm. 
Amorphous silicon nanoclusters size was 2 nm [38–40].

3. Silicon nanocrystals (Si-nc) with a size of about 4 nm embedded in a silica 
matrix layer about 7 cm long. The sample was realized with an increasing con-
centration of Si-nc varying along the longer dimension of the sample, allowing 
to distinguish seven areas.

Results obtained can be summarized as follows:

I. In silicon nanocomposites, an amplification of Stokes signal up to 1.4 dB/cm 
at 1542.2 nm using a 1427 nm continuous-wavelength (CW) pump laser was 
reported. This result demonstrates a five-fold improvement of the Raman 
gain respect to bulk silicon. Furthermore, a threshold power reduction of 
about 60% is also reported [36, 37, 40, 41].

II. In SRN/Si-SLs, a magnification of Stokes signal up to 0.87 dB/cm at 1540.6 nm 
by means of a 1427  nm CW pump laser was reported. This result demon-
strates a four-fold enhancement of the Raman gain with respect to bulk sili-
con. Additionally, a threshold power reduction of about 40% is also reported 
[38–41].

III. In Si-nc an enhancement of the Raman gain by increasing their concentration 
was measured, and, a remarkable improvement of the Raman gain in Si-nc 
respect to bulk silicon, by three to four orders of magnitude depending on the 
Si concentration, was proven. The amplification was carried out by using a 
probe signal at 1541.3 nm and a pump signal at 1427 nm [2, 42, 43].

The obtained results are summarized in Figure 4 where the Raman gain is 
plotted as a function of the Raman bandwidth for the considered nanostructured 
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silicon-based materials. By combining our earlier results on the broadening of the 
Raman gain spectra [33–35] with the observation of higher Raman gain [2, 36–42], 
bring us to state that the traditional trade-off between gain and bandwidth is 
overcome in low dimensional materials [30].

4. Conclusion(s)

In this book chapter, some of the most significant experimental investigations 
of SRS in micro- and nano-photonics are reported. The focuses are microstructures 
and nanostructures, which are able to enhance nonlinear interaction between light 
and matter based on SRS.

We try to highlight how the nonlinear interaction based on SRS can take advan-
tage of micro- and nanostructure with respect to bulk structure in order to improve 
SRS efficiency. In addition, we try to discuss new perspectives for the realization 
of Raman lasers with ultra small sizes, which would increase the synergy between 
electronic and photonic devices.

A.Appendix

We note that pulsed lasers are often used in SRS experiment; therefore, we have 
to consider the time dependence of the output. If the pulsewidth is much longer 
than the relation time of the Raman excitation and the time required for light toi 
traverse the medium, we can expect from physical argument that the output pulse 
will follow the temporal variation of the input pulse. This is the quasi-steady-state 
case. Otherwise, the output should exhibit a transient behavior. The transient 
effects are out of the scope of this chapter [44–46].

A.1 Theory: the classical approach

The wave equations for pump and Stokes laser pulses with electromagnetic field 
amplitude    E 

→
    P    and    E 

→
    S     at frequencies ωP and ωS (  ω  P   >  ω  S   ), are:
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where    P 
→

     
 (3) 

   is the nonlinear polarizations,  𝝐𝝐  is the dielectric constants and c is the 
light velocity.

In the case of SRS, the material interaction is classically treated through a third-
order nonlinear susceptibility tensor χ(3) given by:

   χ    (3)   =  χ    (3) NR  +  χ    (3) R   (2)

which defines both electronic (χ(3)NR, ‘non-resonant’) and vibrational (χ(3)R, 
‘resonant’) responses. When input laser pulse frequencies are different from 
electronic resonances, the first term χ(3)NR does not depend on frequency, i.e. it is 
linked to a flat spectral background that changes immediately with the excitation 
change; thus, it is a real quantity. The second term, the complex quantity χ(3)R, 
characterizes the nuclear response of the molecules and yields the intrinsic vibra-
tional mechanism of SRS [2].
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In order to simplify, we study the special case of an isotropic medium with EP 
and ES with the same polarization direction and propagation along z. The whole 
field amplitude is:  E (z, t)  =  E  P    e   i ( ω  P  t− k  P  z)   +  E  S    e   i ( ω  S  t− k  S  z)   . According to Eq. (2), the nonlinear 
polarizations take the form:

   
  P    (3)   ( ω  P  )  =  [ χ  P   (3) NR    | E  P  |    2  +  χ  P   (3) R    | E  S  |    2 ]   E  P  
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    (3)

The    χ  P   
(3) NR    and   χ  S   

(3) NR   terms in P(3) only act to modify the dielectric constant   ϵ  P    
and   ϵ  S     in Eq. (1). They are responsible for the field induced birefringence, self-
focusing, etc., but have no direct effect on SRS. Therefore, in the following discus-
sion, we neglect them. The χ(3)R terms in P(3), instead, effectively couple EP and ES 
in Eq. (1) and is the reason of energy transfer between the two fields. They are the 
cause of the stimulated Raman process and are called Raman susceptibilities. Eq. 
(1) can be solved with Eq. (3) by knowing χ(3)R.

A molecular vibration or optical phonon is the most common case of SRS. The 
optical radiation is assumed interacting with a vibrational mode of a molecule and 
this vibrational mode can be defined as a simple harmonic oscillator of resonance 
frequency ωυ, damping constant γ. The analysis is one-dimensional, thus, each oscil-
lator can be distinguished by its position z and normal vibrational coordinate q [2].

The key assumption of the theory is that the optical polarizability of the mol-
ecule (which is typically predominantly electronic in origin) is not constant, but 
depends on the internuclear distance according to the equation:

  α (t)  =  α  0   +   (  ∂ α ___ ∂ q  )   
0
   q (t)   (4)

This quantity is a tensor, but to simplify the discussion we will consider it as a 
scalar. Here α0 is the polarizability of a molecule in which the internuclear distance 
is held at its equilibrium value.

Starting from Eqs. (4) and (5), we obtain

  −  ω   2  q (Ω)  − 2i𝜔𝜔𝜔𝜔q (Ω)  +  ω  υ  2   q (Ω)  =   1 __ m     (  ∂ α ___ ∂ t  )   
0
    E  P    E  S  ∗   (5)

where m represents the reduced nuclear mass and  Ω =  ω  P   −  ω  s   . This equation shows 
explicity  q (Ω)   as a material excitation resonantly driven by optical mixing   E  P    E  S  ∗  . SRS by 
phonons can therefore be considered a result of coupling three waves   E  P   ,   E  S    and  q (Ω)   
governated by the wave equations (3) and (6). This system is essentially the wave equa-
tion coupled to an oscillator equation. Starting from Eq. (6) it is possible to calculate the 
resonant Raman susceptibility, which, for the steady-state case, is related to the Raman 
gain by the following relation:

  g = −   4π  ω  2  2  ____ 
 c   2   k   2 

   (Im  ( χ  S   (3) R ) )   (6)

When the depletion of the pump field    ⌈ E  P  ⌉    2   is negligible, being the Raman 
susceptibility χ(3)R a negative imaginary, we find that the evolution of the intensity 
of Stokes field is given by the exponentially growing solution of

    ⌈ E  S  ⌉    2  =   ⌈ E  S   (0) ⌉    2  exp  (g ∗   ⌈ E  P  ⌉    2  ∗ z − α ∗ z)   (7)

The Stokes wave is amplified if the gain exceeds the losses. We note that Raman 
amplification is a process for which the phase matching condition is automatically 
satisfied. In other words, Raman amplification is a pure gain process.
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bring us to state that the traditional trade-off between gain and bandwidth is 
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Figure 5. 
A typical trend of SRS signal plotted as a function of the effective pump power.

A.2 Experiment: measurements of Raman gain

A.2.1 Direct measurement

The theory developed in previous paragraph is a theory of Raman amplification. 
This means that to measure Raman gain, we should perform experiments on Raman 
amplifiers [47, 48]. Several materials, such as silicon, allow a direct measurement of SRS 
[49, 50]. In this case the Raman gain can be evaluated by measuring the Stokes amplifi-
cation in a Raman amplifier having as active medium the material under test [2].

In the steady-state (no pump depletion) regime of SRS, assuming no losses at the 
Stokes frequency, the value of the gain coefficient  g  can be obtained by fitting Eq. (8), 
which is readily transformed into:

  SRS Gain = 10  ∗ log  10   (   I  S   (L)  _____  I  S   (0)   )  = 4.34 ∗ g ∗ L ∗  I  P   (0)   (8)

where   I  S   (0)   is the intensity of the input Stokes radiation (Stokes seed), IS(L) is the 
intensity of the output Stokes radiation,   I  P   (0)  =   P __ 

A
    is the intensity of the input pump 

radiation, P is the power incident onto the sample, A as the effective area of pump 
beam and L is the effective length. Since the sample is transparent to the incident light, 
L is taken to be equal to the thickness of the sample along the path of the incident light.

As an example, in Figure 5 a typical trend of the maxima of the signal power 
plotted as a function of the effective pump power at the exit of Raman amplifier 
is reported. As the laser power increases, the SRS gain is first constant and then 
grows approximately linear when the power is greater than the threshold value and 
so stimulated scattering begins to prevail. The threshold is usually defined as the 
power at which the linear behavior starts, while the slope of the line is proportional 
to the Raman gain coefficient g. The estimation of the Raman gain coefficient g is 
not straightforward due to the uncertainty in the effective focal volume inside the 
sample [36, 39, 42].
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A.2.2 Indirect measurement

If Raman gain is weak and the length of sample is small, Raman amplifica-
tion is difficult to measure and an indirect measurement should be implemented. 
Frequently, this happens for glasses, for which the spontaneous Raman spectra is 
firstly measured by a standard Raman set up, then the Raman gain is estimated by a 
numerical procedure [2].

In order to eliminate in the measured Stokes Raman intensity I(ω) its depen-
dence on both the temperature and the frequency of the vibrational modes [51, 52], 
the following relation can be used:

  R ( ω  S  )  =    ω  S   ________________  
 [N ( ω  S  , T)  + 1]    ( ω  P   − ω)    4 

   I ( ω  S  )   (9)

where ωS is the Stokes Raman shift (in cm−1 units), ωP is the laser excitation 
frequency, N(ωS,T) is the Bose-Einstein mean occupation number and T is the 
temperature [31]. Afterwards, with the aim to properly relate the Raman spectra of 
investigated glasses with the standard silica glass, the measured Raman spectra can 
be adjusted also for the differences in reflection and angle of collection [26, 27, 31]. 
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Figure 5. 
A typical trend of SRS signal plotted as a function of the effective pump power.
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A.2.2 Indirect measurement

If Raman gain is weak and the length of sample is small, Raman amplifica-
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firstly measured by a standard Raman set up, then the Raman gain is estimated by a 
numerical procedure [2].
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