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PrefacePreface 

The first stage of satellite information classification and interpretation is data 
collection using remote sensing. Space technology includes both satellite and aerial 
remote sensing applications. In general, these applications operate at different 
spectra of the electromagnetic radiation, as energy from the Sun reaches Earth’s 
surface and is again reflected, transmitted, or absorbed by the objects that collected 
it via satellite sensors or recorded it in the satellite’s memory. 

The next stage of classifying and interpreting data is making a finer interpretation 
of spectra for identifying Earth’s features. Significant advances in sensor technol-
ogy stemmed from subdividing the spectral ranges of electromagnetic radiation 
into several bands, thus allowing sensors across these bands to form multispectral 
images, opening up opportunities for bringing into sharp relief Earth’s features at 
high accuracy and increased segments of processing. In general, there are three dif-
ferent types of data products: black and white photograph or panchromatic image 
(single band), normal color, and false color composite (multichannel). Single band 
images display as grayscale, but a combination of three bands at a time generates 
color composite images. 

Interpretation of satellite information may be visual or digital, or it may integrate 
both modes, containing the line of the processes of detection, identification, 
description, and assessment of the detected object. 

Visible imagery is due to radiation in the electromagnetic wave range of 0.4–0.7 µ; 
it is available during daylight hours and when atmospheric transparence is good. 
Some satellites can sense low-intensity visible light at night, but these data are not 
routinely used by operational meteorologists. In general, visible imagery is black 
and white. White is used for the brightest and most reflective energy received by the 
sensor, whereas black displays the least reflective values. Low brightness is associ-
ated with oceans, lakes, and the background of Earth;  medium brightness values 
come from land, including forests and deserts. Clouds produce high brightness, 
displayed in white or light gray. 

Atmospheric windows are generally used for signal detection from Earth. One such 
is near infrared, covering wavelengths of 0.75–1.4 µm. Infrared (or thermal infra-
red, IR) imagery is derived from terrestrial radiation emitted by Earth, cloud tops, 
and the atmosphere in the range of 10–12 µ. This portion of the spectrum is avail-
able 24 hours a day and does not depend on atmospheric conditions. IR values are a 
measure of the temperature of the emitting surface, with some modifications due to 
absorption and reemission as the radiation passes through the atmosphere. 

A complication of interpreting IR images is due to their lower resolution (relative to 
wavelengths of the visible spectrum). Healthy vegetation reflects infrared radia-
tion much more strongly than it reflects green energy, appearing very bright in the 
image. A simple example is the light tone appearance given by vegetation species 
and the dark tone given by water. Particularly, in thermal infrared images, bright-
ness represents the warmest temperature and darkness the coolest. 



 
  

 

  

 

 

 

 
 

  
 

  

 
 

 
 

In radar imagery, smooth surfaces reflect highly, whereas areas blocked from radar 
signals appear dark. Bridges and cities appear very bright, while calm water, pave-
ment, and dry lake beds appear very dark. 

The basic elements of radar image interpretation are the following: 

• Shape—The external form, outline, or configuration of the object revealing its 
natural features; 

• Size—A property that depends on the scale and resolution of the image/photo. 
Smaller features are easily apparent in a large-scale image/photo; 

• Pattern—The spatial arrangement of an object into distinctive recurring forms, 
as is illustrated in the pattern of a road or railway line; 

• Shadow—This indicates the outline of an object and its length, which is useful 
in measuring the height of an object; 

• Tone—It is a feature that refers to the color or relative brightness of an object; 
tonal variation is due to the reflection, emittance, transmission, or absorption 
character of an object, which may vary from one object to another and may 
change with reference to different bands; 

• Resolution—It includes spectral and spatial resolutions and depends on 
the photographic/imaging device used, namely, whether camera or sensor. 
Spectral resolution helps identify features seen in specific spectral bands. 
Advances in sensor development have helped bring about high-resolution 
imagery, which assists planners and professionals to produce large-scale maps 
and improve their planning and monitoring. High spatial resolution imagery/ 
photographs are useful in identifying small objects. A map’s scale and the 
classification level of information it can provide are mainly determined by the 
spatial resolution of the image/photograph. 

Rustam B. Rustamov 
Khazar University, 

Azerbaijan 

IV 



 
Section 1 

Aerospace Image
Processing 

1 



3

Chapter 1

Introductory Chapter: Aerospace
Information Classification
Rustam B. Rustamov

1. Introduction

1.1 Classification of space images

Classification of the aerospace image is the process of creating an environ-
ment systemizing the image pixel values into meaningful segments of the Earth
features. There are a number of methods and facilities for classification of
aerospace images. Aerospace image classification methods can be formed into
three categories:

• Automatic

• Manual

• Hybrid

The methods indicated above can be used independently depending on task and 
available technological maintenance. There is no doubt that each of the methods has
advantages and disadvantages. In general, automatic image classification method is
the most preferable one used in spatial data classification [1].

It is obvious that aerospace image classification takes a vital place from the first
stage of line of image processing up to producing final electronic or hard produc-
tion. Figure 1 demonstrates a flowchart of the processes as the required actions in
the aerospace image classification.

Based on the above approach, we can describe standard approach as:

• Spatial data

• Extract information for an application

• Visual and digital image interpretation

• Field survey

• Integration spatial data into field survey

• Thematic map creation

• Decision-making
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Satellite Information Classification and Interpretation 

Figure 1. 
Aerospace image processing classification flowchart. 

1.2 Aerospace images 

During the work with aerospace images, first of all, the spectral wavelength of 
shooting is important for researchers which defines: 

• Biogeophysical characteristics of objects transferred by images and technology 
of achieving the image 

which depend on 

• Visualization, radiometric, and geometrical properties of images 

These two characteristics represent a basis of the classification of aerospace 
images considering possibilities of their processing. 

Spectral wavelength of shooting defines the first, fundamental, level of this 
classification considering the reflective and radiating characteristics of the objects 
reproduced in the image. From this point of view, three main types of aerospace 
images are defined: 

• In visible, near and middle to the infrared wavelength 

• In a thermal infrared wavelength 

• In radio frequency wavelength 

As the general understanding of the classification is the procedure of related 
to the object belonging to one of Q-classes. The relation to the object comes and 
defines on the basis of presence on an object of some features. Classifications are 
result the objects divided into the classes [2, 3]. 

Classification process of aerospace images in general provides the following stages: 

• Identification of the main distinctive features (characteristics) reflecting from 
different objects with different classes 

• Creation of spatial features 

4 
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• Definition (calculation) at the studied object of feature(s) on which bases 
expected to classified of feature(s) 

• Decision-making about object belonging to one of the classes with application 
of the decisive rule 

1.3 Remote sensing data processing 

Classification of remote sensing data is the process which is used for receiving 
aerospace images of the maps of the land surface and any other information sources 
which depends on task solution. Subjects of the map can be contained in a variety of 
segments from enough general categories, such as: 

• Soil 

• Vegetation 

• Surface water 

and up to thinner structures, for example: 

• Various types of soils 

• Species of vegetation 

• Depth of reservoirs 

The subject of classification in such tasks is the image pixel, the features of 
which conducts definition of the classes such as brightness of this pixel. It is neces-
sary to indicate that in general, aerospace images consist of several layers corre-
sponding to different spectral channels. From this point of view, brightness is the 
vector value. Coordinates of the vector define the provision/location of the pixel 
in the spatial of feature. The value of the field in the same point of coordinate is 
defined by the quantity of the pixels which is located into this point. 

1.4 Aerospace image processing 

The computer algorithm analysis realizing various procedures of classification is 
subdivided into two types: 

• Autonomous classification 

• Classification with training 

Computer processing of the aerospace images presented in the digital form 
opens new technical capabilities for image processing. Special software packages 
used for the preparation of this subject, such as ERDAS Imagine, allow to display 
the images for monitoring, improve quality of the images (e.g., to remove influ-
ence of an atmospheric impact), synthesize color images, carry out the automated 
processing, and obtain quantitative data (coordinates, distances, the areas, etc.). 
Results of computer processing form a basis for creation of maps which can be writ-
ten in a digital form or printed on the paper [4–6]. 
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Satellite Information Classification and Interpretation 

Receive the aerospace images when shooting the scanning systems from dif-
ferent aero- and satellite systems; for instance, the French SPOT or the American 
Landsat is used for processing. By means of high-precision scanners, they can be 
transferred to a digital format and images. 

The digital images consist of the segments, pixels forming a grid of lines, and 
columns. Each pixel has the coordinates and characterized by brightness which is 
designated in conventional units. The value of brightness is connected with ability 
of terrestrial objects to reflect solar radiation. From this aspect it shows how signifi-
cantly performed in the images of differences in brightness of objects and depends 
the result of processing that is: 

• Objects brightness characteristics 

• Use of multichannel images 

• Synthesis of the color image 

• The automated processing with use of appropriate software application 

• Measurements according to the images 

Aerospace image classification has a variety of applications such as remote 
sensing, image and data storage for transmission in business applications, etc. It is 
important to use advances of spatial data classification in wide areas, particularly in 
Earth studies. 

Author details 
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Chapter 2

Pan-sharpening Using
Spatial-frequency Method
Upendra Kumar

Abstract

Over the years, researchers have formulated various techniques for pan sharpen-
ing that attempt to minimize the spectral distortion, i.e., retain the maximum spectral
fidelity of the MS images. On the other hand, if the use of the PAN-sharpened image
is just to produce maps for better visual interpretation, then the spectral distortion is
not of much concern, as the goal is to produce images with high contrast. To solve the
color distortion problem, methods based on spatial frequency domain have been
introduced and have demonstrated superior performance in terms of producing high
spectral fidelity pan-sharpened images over spatial-scale methods.

Keywords: pan sharpening, spatial scale, spatial frequency analysis, discrete
wavelet transform, non–subsampled contourlet transform, pseudo-Wigner
distribution, urban planning

1. Introduction

Earth resource satellites provide data covering different parts of the electro-
magnetic spectrum at different spatial, spectral, and temporal resolutions. To utilize
these different types of image data effectively, a number of pan-sharpening tech-
niques have been developed [1].

Further, in order to benchmark different image fusion techniques, image quality
metrics have been used. There are two types of metrics used to evaluate image
quality, namely, subjective (qualitative) and objective (quantitative). The objective
of this chapter is to discuss the methodology of some of the prevalent existing
techniques, as well as the mathematical representation of some of the standard
existing evaluation indicators.

2. Pan-sharpening techniques

Pan sharpening is also known as image fusion, image integration, and
multisensor data fusion. Over the years, a large number of pan-sharpening tech-
niques have been developed and have placed into different categorizes. In this
study, multiscale transform (MST)-based techniques have been discussed.
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2.1 Multiscale transform-based pan-sharpening techniques 

In recent years, multiscale transform (MST)-based pan-sharpening techniques 
have received a lot of attention, since they preserve the spectral fidelity in the pan-
sharpened images. Further, it is more suitable for information representation, 
interpretation, and analysis [2, 3]. 

Many variations of the multiscale transform-based techniques exist, such as 
discrete wavelet transform (DWT), stationary wavelet transform (SWT), curvelet 
transform (CVT), contourlet transform (CT), and Non–subsampled contourlet 
transform (NSCT) [4]. The next subsections give a descriptive overview and 
methodology of MST-based pan-sharpening techniques which are selected for this 
study. 

2.1.1 Discrete wavelet transform (DWT) 

Before discussing about discrete wavelet transform, first of all, it would be 
appropriate to discuss in general regarding Fourier transform (FT). 

Fourier transform (FT) was first invented by French mathematician and physi-
cist Jean Baptiste Joseph Fourier in 1822. Fourier stated that any periodical function 
can be represented as a sum of sine and cosine of different frequencies, each 
multiplied by a different coefficient [5, 6]. Fourier transform converts a signal from 
the time-amplitude domain to the frequency-amplitude domain. Images are con-
sidered as 2-D discrete functions. To use Fourier transform to analyze images, 
discrete Fourier transform (DFT) is used. FT is a reversible transform, which means 
the original signal can be recovered through the inverse discrete Fourier transform 
(IDFT) [7, 8]. 

However, FT has a drawback, i.e., it does not provide the information about the 
time at which the particular frequency exists in the signal. Fourier transform only 
captures the different frequencies in a signal and cannot detect when those fre-
quencies occurred. To overcome this drawback, wavelet transform (WT) was 
introduced. Wavelet transform (WT) can be more useful than Fourier transform, 
since it is based on functions that are localized in both space and frequency/scale 
[9]. Wavelet transform brings a multiresolution framework. With this setting, the 
signal can be decomposed into components that collect the information at a speci-
fied scale, i.e., different frequencies are analyzed with different resolutions [2–6]. 
The WT has numerous applications in remote sensing such as image registration, 
spatial and spectral fusion, feature extraction, speckle reduction, texture classifica-
tion, and crop phenology detection [7]. 

Wavelet transform can be broadly classified into two main groups, i.e., contin-
uous wavelet transform (CWT) and discrete wavelet transform (DWT). Since 
CWT is continuous, as a result, there are an infinite number of scale and translation 
parameters which leads to an infinite number of possible wavelet functions. To 
overcome the shortcoming of CWT, DWT was introduced. 

In the DWT algorithm, an image can be analyzed by passing it through an 
analysis filter bank followed by decimation operation. The analysis filter bank 
consists of low pass and high pass filter at each decomposition stage. When a signal 
passes through these filters, it splits in to two signals. The low pass filter, which 
corresponds to an averaging operation, extracts the coarse (average) information of 
the signal. The high pass filter, which corresponds to a differencing operation, 
extracts the detail information of the signal such as edges, points, and lines. The 
output of the filtering operation is then decimated by two, i.e., a 2-D transform is 
accomplished by performing two separate one-dimensional transform [9–12]. First 
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of all, the image is filtered along the row and decimated by two, and it is then 
followed by filtering the subimage along the column and decimated by two. 

This operation splits the image into four bands namely one approximation band, 
which contains coarse information and three detail bands, horizontal, vertical, and 
diagonal, respectively, which contain information about the salient features of the 
image such as edges, points, and lines [5, 8]. A J-level decomposition can be 
performed resulting in ð3j þ 1Þ different frequency bands. At each level of decom-
position, the image is split into high and low frequency components; the low-
frequency components can be further decomposed until the desired resolution is 
reached [13–15]. The pan-sharpening procedure for the pan sharpening of pan-
chromatic (PAN) and multispectral (MS) images using DWT has been explained in 
Section 3.1 (Figure 1). 

2.1.2 Stationary wavelet transform (SWT) 

It is observed that discrete wavelet transform (DWT) is not a shift-invariant 
transform. Therefore, in order to get rid of this problem, stationary wavelet trans-
form (SWT)-based fusion technique, an extension of DWT scheme, also known as 
“à trous” algorithm, has been introduced [10, 11]. In the “à trous” algorithm, the 
downsampling step is suppressed and instead the filter is upsampled by inserting 
zeros between the filter coefficients (Figure 2). 

In the SWT algorithm, it uses a two-dimensional filter derived from the scaling 
function. This produces two images, of which one is an approximation image while 
the other is a detailed image called the wavelet plane. A wavelet plane represents the 

horizontal, vertical, and diagonal detail between 2j and 2j�1 resolution and is 

Figure 1. 
Decomposition of an image using DWT. 

Figure 2. 
Structure of “à trous” filters. 
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computed as the difference between two consecutive approximations Il˜1 and Il 
levels. All the approximation images obtained, by applying this decomposition, 
have the same number of columns and rows as the original image, since filters at 
each level are upsampled by inserting zeros between the filter coefficients and make 
the size of the image same [16–19]. 

This is a consequence of the fact that the “à trous” algorithm is a nonorthogonal, 
redundant oversampled transform [19–21]. The “à trous” decomposition process is 
shown in Figure 2. 

The procedure for the pan sharpening of PAN and MS images using SWT can be 
summarized as follows (Figure 3): 

i. To generate new panchromatic images, match histograms of PAN image to 
their corresponding MS image. 

ii. Perform the second-level wavelet transform only on the modified PAN image. 

iii. The resulting wavelet planes of PAN are added directly to each MS images. 

The SWT eliminates the shift sensitivity problem at the cost of an overcomplete 
signal representation. However, it does not resolve the problem of feature orienta-
tion. In addition, the discrete wavelet transform (DWT), and stationary wavelet 
transform (SWT), cannot capture curves and edges of images well. Wavelets per-
form well only at representing point singularities, i.e., appropriate to represent 
linear edges, since they ignore the geometric properties of structures and do not 
exploit the regularity of edges. 

For curved edges, the accuracy of edge localization in the wavelet transform is 
low. So, there is a need for an alternative approach, which has the potential or 
capability to detect, represent, and process high-dimensional data. In order to solve 
this problem, multiscale geometric analysis has been further investigated. As a result, 
Candès and Donoho [22] have proposed the concept of curvelet transform (CVT). 

Further, in order to solve the problem of curvelet transform, which is first 
developed in continuous domain and then does discretization of images or signals of 
interest, Yang et al. [23] and Do and Vetterli [24] presented a flexible 
multiresolution, local, and directional image expansion using contour segments, 
named contourlet transform. However, due to the downsampling and upsampling, 
the CT lacks shift invariance and thus results in ringing artifacts [16]. To overcome 
the weakness of wavelets, curvelets, and contourlets, Cunha et al. [25] proposed 

Figure 3. 
Methodology adopted for SWT-based pan-sharpening. 
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non–subsampled contourlet transform (NSCT), based on non–subsampled pyramid 
decomposition (NSPD) and non–subsampled filter bank (NSFB). 

2.1.3 Non–subsampled contourlet transform (NSCT) technique 

In order to reduce the frequency aliasing of contourlets and enhance direc-
tional selectivity and shift invariance, Holschneider and Tchamitchian [17] pro-
posed non–subsampled contourlet transform. This is based on the non– 
subsampled pyramid filter banks (NSPFBs) and the non–subsampled directional 
filter banks (NSDFBs) structure. The former provides multiscale decomposition 
using two-channel non–subsampled 2-D filter banks, while the later provides 
directional decomposition, i.e., it is used to split band pass subbands in each scale 
into different directions [25, 26]. 

As a result, NSCT is shift invariant and leads to have better frequency selectivity 
and regularity than CT [25–28]. The scheme of NSCT structure is shown in Figure 4 
(a). The NSCT structure classifies two-dimensional frequency domain into wedge-
shaped directional subband as shown in Figure 4(b). 

In order to provide more practical and flexible solution to the existing problem 
as stated above, there is a need for an improved or a new fusion technique, which is 
superior among all the existing pan-sharpening techniques. A new pan-sharpening 
technique should ideally possess properties of shift invariance, directionality, low 
computational complexity, and low computational time, applicable to real-time 
image processing tool, and is also efficient in capturing intrinsic geometrical struc-
tures of the natural image along the smooth contours. Moreover, it should perform 
efficiently under all categories of datasets, such as very high, high, and medium 
resolution satellite datasets. A spatial frequency-based technique should ideally 
possess properties, such as shift invariance, directionality, low computational com-
plexity, and low computational time, applicable to real-time image processing tool, 
and is also efficient in capturing intrinsic geometrical structures of the natural 
image along the smooth contours [27, 28]. Thus, in order to resolve the existing 
problems, pan-sharpening method based on joint spatial frequency domain such as 
pseudo-Wigner distribution has been introduced. 

3. Spatial-frequency based pan-sharpening technique 

Analysis of non-stationary 2-D signals (image) is a challenging job, as their 
spectral properties change with time. Such signals cannot be analyzed well by pure 
spatial domain and frequency domain representations. The joint spatial frequency 
domain-based image analysis methods, such as Wigner Ville distribution (WVD) 

Figure 4. 
Two level NSCT decomposition. (a) NSFB structure that implements the NSCT and (b) the corresponding 
frequency partition. 
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and pseudo-Wigner distribution (PWD), have been proven to be a powerful tool 
for analyzing, understanding, and detection of spatial frequency characteristics of 
non-stationary images in a more comprehensive manner. 

The use of Wigner Ville distribution for image processing was first suggested by 
[18]. It was shown that WVD is a very efficient and powerful tool for capturing the 
essential non-stationary image structures [29] and appears as a new promising 
method for the characterization of local spectral properties of images. The Wigner 
Ville distribution has many interesting properties related to translation, modula-
tion, scaling, convolution, and localization in spatial frequency space, real-valued 
function and contains phase information, which motivates its use in the field of 
image analysis applications. Since WVD suffers with the serious problem of inter-
ference that makes the interpretation impossible, thus to resolve the limitation of 
WVD, pseudo-Wigner distribution (PWD) was introduced. 

3.1 Pseudo-Wigner Distribution (PWD) technique 

Spatial frequency information of a non-stationary image can be effectively 
extracted with one of the well-known spatial frequency technique known as 
pseudo-Wigner distribution (PWD). PWD is ideally suited for representing a 
nonstationary image in the spatial frequency domain and is carried out by adapting 
the fast Fourier transform (FFT) algorithm. The significant properties of PWD 
motivate its use in the field of image processing, especially for the fusion of satellite 
images [30, 31]. These properties are as follows: 

i. PWD provides a pixel-wise analysis, efficient and powerful tool for capturing 
the essential nonstationary image structures, as well as for the characterization 
of local spectral properties of images, which is indispensable for image fusion. 

ii. PWD is shift-invariant technique. Shift-invariant property is necessary for a 
high-quality and effective image fusion. In the absence of shift invariance, 
artifacts, such as aliasing effect, loss of linear continuity in spatial features, 
become prevalent in the resulting fused image (Figure 5). 

iii. Multidirection, i.e., the window can be tilted in any direction to obtain a 
directional distribution. 

iv. Computation time for PWD is generally small. 

With reference to Table 1, pseudo-Wigner distribution (PWD) overcomes the 
shortcomings of the traditional Fourier-based methods, discrete wavelet transform 
(DWT), stationary wavelet transform (SWT), curvelet transform (CT), contourlet 

Figure 5. 
Concept of shift variant and shift invariant. 
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Method Shortcoming 

DWT Poor directionality, lack of shift invariance 

SWT Limited directional selectivity 

NSCT Time-consuming, blocking artifacts 

Table 1. 
Shortcomings of existing pan-sharpening methods. 

transform (CT), and non–subsampled contourlet transform (NSCT). Consequently, it 
is not based on a multiscale decomposition procedure as wavelets and contourlets are. 
Further, one of the most challenging applications that comes across by the remote 
sensing experts is to fuse MS and PAN images collected from different or same satellite 
sensor with each other to achieve a pan-sharpened image, without introducing arti-
facts or inconsistencies; otherwise it may damage the quality of the fused image. 

Thus, the goal of pan-sharpening is to produce pan-sharpened images with the 
highest spectral fidelity possible, as the importance of such images in various appli-
cations, ranging from land use/land cover classification to road extraction. There-
fore, preserving the spectral information of the original MS images in the pan-
sharpened images is of great importance [31–33]. Therefore, an attempt to utilize 
the concept of pseudo-Wigner distribution (PWD) for the pan-sharpening of high-
resolution PAN image with a low-resolution MS image has been introduced. 

3.1.1 Mathematical background of pseudo-Wigner distribution 

Let us consider an arbitrary 1-D discrete function v nð Þ. The PWD of a given 
array v nð Þ of N pixels is given by Eq. (1). 

N ˜ ˜ ° ° �1 2 2πk ∗ Wðn; mÞ ¼ 2 ∑ v nð þ kÞv ðn � kÞ � exp �2i m (1) 
N N k¼� 2 

where n and m represent the spatial and frequency discrete variables, respectively, 
and k is a shifting parameter. Eq. (1) can be interpreted as the discrete Fourier transform 
(DFT) of the product v nð þ kÞv∗ðn � kÞ. Here, v ∗ indicates the complex conjugate of 
1-D sequence, v. Wðn; mÞ is a matrix where every row represents the pixel-wise PWD of 
the pixel at position n. Further, v n½ � is a 1-D sequence of data from the image, containing 
the gray values of N pixels, aligned in the desired direction. By scanning the image with a 
1-D window of N pixels, i.e., shifting the window to all possible positions over the full 
image, the full pixel-wise PWD of the image is produced. The window can be tilted in 
any direction to obtain a directional distribution [34, 35]. Further, the reasons for 
selecting short 1-D window for PWD analysis are as follows: 

i. It greatly decreases the computational cost. 

ii. It allows to obtain a pixel-wise spectral analysis of the data. 

The general pan-sharpening procedure adopted for the pan sharpening of PAN 
and MS images using DWT, NSCT, and PWD [35] techniques can be summarized as 
follows (Figure 6): 

i. Coregister both the source images and resample the multispectral image to 
make its pixel size equal to that of the PAN, in order to avoid the problem of 
misregistration. 
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Figure 6. 
General methodology adopted for DWT-, NSCT-, and PWD-based pan-sharpening. 

ii. Apply DWT/NSCT/PWD to all input coregistered images, one by one, to get 
their respective coefficients according to the mathematical decomposition 
procedure related to each one of the techniques, along with upsampling and 
histogram matching. 

iii. The obtained coefficients generated in step (i) from the different input 
images, i.e., MS and histogram-matched PAN image, are combined 
according to defined fusion rules to get the fused coefficients. 

iv. The fused coefficients are subject to an inverse DWT/NSCT/PWD to 
construct the fused image. As a result, a new MS image with higher spatial 
resolution is obtained. 

As a result, a new multispectral image with higher spatial resolution is obtained. 
This process is repeated for each individual MS and PAN band pair. Finally, all the 
new fused bands are concatenated to form a new fused multispectral image. 
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Grade Absolute measure Relative measure 

1 Excellent The best in group 

2 Good Better than the average in group 

3 Average Average level in group 

4 Poor Lower than the average level 

5 Very poor The lowest in the group 

Table 2. 
Assessment of image quality by qualitative method. 

It may be noted that each MST technique (DWT, NSCT, and PWD) has its 
unique mathematical properties, which leads to different image decomposition 
procedure of an image. 

3.2 Comparative assessment of various pan-sharpening techniques 

Pan-sharpening techniques, belonging to color, statistical, and multiscale 

˜ 

transform-based techniques, have been evaluated in terms of certain parameters, 
such as spectral distortion, shift invariance, directionality, and computational com-
plexity. Comparative assessment of various pan-sharpening techniques has been 
shown in Table 2. 

4. Fusion rules 

There are various fusion rules to combine the fused coefficients. Let WP ðx; yÞ A 

and WMSðx; yÞ denote the coefficients for higher spatial resolution PAN image and B 

for the lower spatial resolution MS image, and WFðx; yÞ denotes the coefficient of 
the fused image. Using these notations, following fusion rules can be summarized as 
follows: 

i. Average fusion rule 

The average fusion rule takes the average of the coefficients of the WP ðx; yÞ, A 

PAN, and WMSðx; yÞ, MS images, which is given by Eq. (2). B 

° 
WF Þ þWMSðx; yÞ =2 (2) B Þ ¼  WPAN ð ð x; y x; y A 

ii. Maximum fusion rule 

The maximum fusion rule compares the coefficients from the WPANðx; yÞ, PAN, A 

and WMSðx; yÞ, MS images, and picks the larger magnitudes as the fused B 
coefficients, which is given by Eq. (3). 

˝ 
WPAN 

A 

˛̨
 

˛̨
 

˛̨
 ð Þ, if ð Þ ð Þ x; y x; y x; y 

WF ðx; yÞ ¼  
WMS 

B 

˛̨
 
WP 

A 

˛̨
 ˛̨

 
> WMS 

B ˛̨
 (3) 

WP 
A ðx; yÞ, if ð Þ ð Þ x; y x; y 

˛̨
≤ WMS 

B 

Here, both the fusion rules are chosen as the basic fusion rule throughout this 
study, which are explained by Eqs. (2) and (3). 
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5. Assessment of accuracy for pan-sharpening techniques 

Pan-sharpening algorithms are designed to produce good-quality pan-
sharpened images. A fused image would be considered perfect quality if the 
spatial detail missing in the MS image is transferred from the panchromatic 
image without distorting the spectral content of the multispectral image [26]. 
Unfortunately, this is not possible. There is a trade-off between enhancement of 
spatial detail and spectral distortion. A fully spatially enhanced fused image 
would be the panchromatic (PAN) image itself, while an image free of spectral 
distortion would be the original multispectral (MS) image [36]. 

The diversity of datasets has contributed to the development of different 
types of techniques and procedures for the implementation of image fusion. In 
order to benchmark different pan-sharpening techniques, image quality metrics 
have been used, i.e., quality metrics are required to evaluate the quality of the 
fused images [37, 38]. There are two types of metrics used to evaluate image 
quality: 

i. Subjective (qualitative) 

ii. Objective (quantitative) 

5.1 Qualitative evaluation 

Qualitative analysis deals with the visual comparison of the original PAN and 
MS images with that of the fused image, in terms of spectral and spatial distor-
tion. The evaluation results vary depending on the intensity, sharpness, exis-
tence of noisy areas, missing spatial detail, and distortions in the geometry of 
the objects and display conditions of the image. A number of viewers will be 
shown the images and asked to judge the image quality. These may also vary 
from observer to observer, i.e., interpretation of image quality may be 
influenced or varied by personal preference [39, 40]. Therefore, an exact deci-
sion cannot be given. Further, these methods are time-consuming, inconve-
nient, and expensive. 

On the basis of expert/observer personal preference, quality of fused image has 
been ranked in terms of “Grade,” “Absolute Measure,” and “Relative Measure” 
[41], as shown in Table 2. 

5.2 Quantitative evaluation metrics 

It is evident that, in most cases, there is slight difference among fusion 
results, i.e., quantitative evaluation methods sometimes produce results that 
cannot be sustained by visual inspection. However, there is no universally 
accepted metric to objectively evaluate the image fusion results. The generated 
pan-sharpened images are compared from diverse perspectives of image visual-
ization, coherence, structural similarity, and spectral information content. 

The well-known full-reference objective metrics are correlation coefficient 
(CC), root mean square error, peak signal-to-noise ratio [41]. The reason 
behind selecting these evaluation indicators is that they measure the statistical, 
structural similarity, and spectral distortion introduced by the pan-sharpening 
process. The quantitative metrics that are used in this study, as well as the 
mathematical representation of these measures, have been discussed below. 
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5.2.1 Root mean square error 

Root mean square error (RMSE) is a frequently used measure of the differences 
between the fused and the original images. RMSE is a good measure of accuracy 
[41]. Smaller RMSE value represents a greater accuracy measure and is explained by 
Eq. (4). 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
2 m n ðF ið ; jÞ � Roð Þi; j Þ 

RMSE ¼ ∑ ∑ (4) 
c i¼1 j¼1 

where m � n indicates size of the image and F ið Þ; j and Ro i; jð Þ indicate the fused 
image and the original image, respectively. 

5.2.2 Peak signal-to-noise ratio 

Peak signal-to-noise ratio (PSNR) indices reveal that the radiometric distortion 
of the fused image is compared to the original image. PSNR can reflect the quality of 
reconstruction. The larger value of PSNR indicates less amount of image distortion 

RMSE 

[41] and is given by Eq. (5). 

� 

PSNR ¼ 10 log 
L 

�2 

(5) 

where L is related to the radiometric resolution of the sensor; for example, L is 
255 for an 8-bit sensor and 2047 for a 16-bit sensor. 

5.2.3 Correlation coefficient 

The correlation coefficient (CC) of two images is often used to indicate their 
degree of correlation. If the correlation coefficient of two images approaches one, it 
indicates that the fused image and original image match perfectly [40, 41]. High 
value of the correlation shows that the spectral characteristic of the multispectral 
image has been preserved well. The correlation coefficient is represented by Eq. (6) 

∑m
i¼1∑

n
j¼1ðx ið ; jÞ � xÞðy ið ; jÞ � yÞ 

corrðx; yÞ ¼  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi (6) 
2 ∑m

i¼1∑
n
j¼1ðx ið ; jÞ � xÞ2∑m

i¼1∑
n
j¼1ðy ið ; jÞ � yÞ 

where x i; j ð Þ  are the elements of the images x and y, respectively, and ð Þ and y i; j 
x and y stand for their mean values. 

5.2.4 Spatial correlation coefficient 

In order to assess the spatial quality of the fused image quantitatively, procedure 
proposed by [42] has been adopted. This approach is used to measure the amount of 
edge information from the PAN image, which is transferred into the fused images. 
The high spatial resolution information missing in the MS image is present in the 
high frequencies of the PAN image. The pan-sharpening process inserts the higher 
frequencies from the PAN image into the MS image. Therefore, the CC between the 
high pass filtered PAN and the fused images would indicate how much spatial 
information from the PAN image has been incorporated into the MS image. A 
higher correlation between the two high pass filtered images implies that the spatial 
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Metric Ideal value Error value 

Root mean square error (RMSE) 0 >0 

Peak signal-to-noise ratio (PSNR) NA >1 

Correlation coefficient (CC) 1 > � 1 and <1 

Spatial correlation coefficient (SCC) 1 > � 1 and <1 

Table 3. 
The ideal and error value of different quantitative indicators. 

information has been retained faithfully. This CC is called the spatial correlation 
coefficient (SCC). In order to extract the spatial detail of the images to be com-
pared, following Laplacian filter has been used and is represented by Eq. (7). 

3 2 �1 �1 �1 

Mask ¼ 64 �1 8 �1 75 (7) 

�1 �1 �1 

The pan-sharpened image which will best preserve the spectral and structural 
information of the original low resolution MS image is the one that has satisfied the 
following conditions (Table 3). 

6. Summary 

This chapter provides the methodology of the proposed approaches for the pan-
sharpening of satellite images, along with the discussion of some prevalent existing 
multisensor pan-sharpening techniques and well-known evaluation indicators. 
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Chapter 3

Lossy Compression of Remote
Sensing Images with Controllable
Distortions
Vladimir Lukin, Alexander Zemliachenko, Sergey Krivenko,
Benoit Vozel and Kacem Chehdi

Abstract

In this chapter, approaches to provide a desired quality of remote sensing images
compressed in a lossy manner are considered. It is shown that, under certain con-
ditions, this can be done automatically and quickly using prediction of coder per-
formance parameters. The main parameters (metrics) are mean square error (MSE)
or peak signal-to-noise ratio (PSNR) of introduced losses (distortions) although
prediction of other important metrics is also possible. Having such a prediction, it
becomes possible to set a quantization step of a coder in a proper manner to provide
distortions of a desired level or less without compression/decompression iterations
for single-channel image. It is shown that this approach can be also exploited in
three-dimensional (3D) compression of multichannel images to produce a larger
compression ratio (CR) for the same or less introduced distortions as for
component-wise compression of multichannel data. The proposed methods are
verified for test and real life images.

Keywords: lossy compression, remote sensing, image processing, performance
prediction

1. Introduction

A huge amount of data is provided nowadays by existing remote sensing (RS)
sensors, both spaceborne and airborne [1, 2]. Data volume is especially large if
images are hyperspectral (i.e., having hundreds sub-band images) and/or high
resolution ones. Note that both tendencies (to create and exploit multichannel
systems as well as to produce high resolution data) are typical for recent years.
Volume of acquired data additionally increases due to more frequent observations
of sensed terrains [2]—it has become a usual practice to monitor a territory quite
often, e.g., each week.

The obtained RS data have to be transferred, stored and/or disseminated. For
each of this operation, data compression can be desirable [1, 3, 4]. Meanwhile, there
are several obstacles that can prevent efficient execution of these operations.
Concerning data transferring: bandwidth of a communication channel used to
transfer data can be limited, time for transferring can be restricted, time and power
for compression can be limited as well [1, 3]. The same can relate to data dissemi-
nation although the limitations are usually less strict compared to downlink data
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transferring. Memory for RS data storage can be a problem too despite of rapid 
development of new facilities in recent years [2]. 

Therefore, it is often desired to compress RS images [4, 5]. As known, there are 
lossless and lossy image compression techniques [1]. Limits attainable by lossless 
compression are practically reached [1]. Compression ratio (CR) for the existing 
methods rarely reaches 5 even for compressing hyperspectral data when inter-band 
correlation is exploited in full extent [4]. However, larger CR values are required 
often. Then, lossy compression of acquired RS data has to be applied. 

The main peculiarity of lossy compression is that it introduces losses (distor-
tions, degradations) into RS images. Then, it can be useful only under condition that 
introduced losses do not sufficiently negatively influence the goals the acquired RS 
data are intended for (terrain classification and/or parameter estimation, specific 
object detection, etc.). One assumption is that introduced losses have to be of the 
same level or smaller than degradations due to noise in original data [6]. Therefore, 
noise characteristics have to be taken into consideration and, thus, they should be 
known in advance or pre-estimated [7–11]. This also means that it is necessary to be 
able to control introduced distortions and/or to provide a desired level of losses. 
Moreover, often this should be done automatically, e.g., in on-board compression 
[3, 12]. 

A slightly other assumption is possible if compressed images are subject to visual 
inspection and analysis. Then, introduced distortions should be such that they do 
not degrade image visual quality [13]. Then, one has to take into account both 
specific properties of component images, e.g., variations of their dynamic range 
[7, 14, 15] and peculiarities of human vision system (HVS). 

Finally, one more assumption is that introduced distortions should be such that 
they do not have (noticeable) negative impact on classification accuracy or perfor-
mance of other operations of RS data processing at final stages. Note that classifica-
tion accuracy reduction is connected with metrics characterizing introduced 
distortions [16]. 

Thus, introduced distortions should be controlled for all aforementioned strate-
gies. Here by “controlled” we mean several aspects. First, distortions have to be 
measured or estimated or predicted to ensure that they are not larger than allowed 
threshold according to a certain metric (criterion) [17, 18]. Second, introduced 
distortions can be accurately measured only if compression and decompression are 
already done. Then, if distortion level has to be changed, coder parameters have to 
be changed and metric calculation has to be done after next iteration of compres-
sion/decompression [18]. This is often impractical, especially on-board. Then, it is 
more reasonable to talk about distortion estimation or prediction without compres-
sion and decompression but with approximate providing of a desired quality of 
compressed data. 

Certainly, CR can be important as well. Then, an appropriate compromise has to 
be provided between CR and introduced losses. Note that CR also depends upon a 
used coder and a way data redundancy is exploited. In this sense, it is worth 
incorporating inter-channel correlation inherent for multichannel RS data that can 
be done in different ways [19–21]. It is possible to apply different transforms 
[11, 22–24] or to carry out different groupings of component images [11, 25, 26]. 

Lossy compression of images with taking into account noise type [27] and 
characteristics has been paid considerable attention [28–30]. Possible existence of 
optimal operation point (OOP) and its prediction have been claimed and studied 
[13, 18]. Problems of CR prediction and its providing for coders based on discrete 
cosine transform (DCT) have been considered [18, 31]. Meanwhile, problems of 
prediction of compressed image quality and providing a desired quality have not 
been thoroughly analyzed yet. 
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In this direction, a certain work has been done. In particular, an approach to 
quality prediction for wavelet based compression of remote sensing images has 
been put forward [32]. Prediction of mean square error (MSE) of introduced losses 
for JPEG has been done [33]. However, control and prediction of metric values for 
more advanced coders as AGU [34] and ADCT [35] that outperform JPEG consid-
erably [36] were not developed till last 2 years. Since providing of a desired metric 
value using iterative (multiple) compression/decompression requires sufficient 
time and resources [36], it was decided to design a new approach without iterations 
[37]. Later this approach has been further advanced [38–40], mainly for single-
component (grayscale) images in 8-bit representation and with taking into account 
possible presence of noise. 

In this chapter, we consider application of the designed approach to RS images 
including multichannel data and keeping in mind the following: (1) dynamic range 
of component images in multichannel data varies in wide limits and 16-bit repre-
sentation is often used for them; (2) in many component images of multichannel 
(e.g., hyperspectral) data, input peak signal-to-noise ratio (PSNR) is high and noise 
influence is negligible; (3) there is essential correlation of signal component in 
neighbor sub-band images of multichannel images. We show that by taking into 
account these properties, it is possible to carry out efficient compression of 
multichannel RS data with controllable quality. 

2. Peculiarities of RS image lossy compression 

To understand the problem of lossy compression, some preliminaries are 
needed. 

First, lossy compression introduces distortions due to which a decompressed 
image differs from the corresponding original one (subject to compression). These 
distortions are introduced at the stage of quantization of coefficients of a used 
orthogonal transform: wavelet, DCT or some other [34, 35, 41]. If DCT serves as the 
basis of lossy compression, quantization step (QS) or scaling factor (SF) serve as 
parameter that controls compression (PCC). A larger QS or SF leads, in general, to 
greater introduced distortions and a larger CR [34, 35] but MSE of introduced losses 
and attained CR values considerably depend upon complexity of a compressed 
image and noise presence. 

Figure 1 presents three images: noise-free image Frisco of low complexity, the 
same image corrupted with additive white Gaussian noise with zero mean and 
variance 100, and noise-free image Airfield of quite high complexity (it contains a 
lot of edges and fine details). 

Figure 1. 
Noise-free and noisy (σ = 10) test images Frisco and the test image airfield. 
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Figure 2 shows dependences of mean square error MSEout between original and 
compressed images on QS for the case the advanced DCT (ADCT) coder [42] is 
applied. It is seen well that smaller distortions are introduced if an image is noise-
free and has a simpler structure. The values of MSEoutðQSÞ for the same QS can 
differ by several times and, thus, i.e., QS itself does not determine MSEoutðQSÞ. 

Dependences CRðQSÞ for the same images are presented in Figure 3. It is seen 
that the simple structure noise-free image Frisco is compressed in the best way 
whilst the complex structure image Airfield is compressed with the smallest CR. 
The reason is that the percentage of DCT coefficients that are assigned zero values 
after quantization increases if image complexity is lower, noise intensity is less, and 
QS is larger [31, 43]. Thus, the rate/distortion curve is individual for each particular 
image and QS has to be adapted to image and noise properties to provide a desired 
compromise or to satisfy imposed requirements. 

We have already mentioned that compression of noisy images has several pecu-
liarities. Suppose that an acquired (noisy) image in a k-th component is image is 
represented as [8, 10] 

˜ ° 
Inoisy ¼ Itrue Itrue þ nkij , i ¼ 1, … , I, j ¼ 1, … , J, k ¼ 1, … , K (1) kij kij kij 

where Inoisy is the ijth sample of the kth component image, nkij is the ijth value of kij 

the in the kth component image supposed dependent on Itrue - the true value for the kij 

kijth voxel, I and J define the image size, K is the number of components. One can 
determine input MSE for each component image as 

Figure 2. 
Dependences MSE vs QS for noise-free and noisy images Frisco and noise-free image airfield. 

Figure 3. 
Dependences CR vs QS for noise-free and noisy images Frisco and noise-free image airfield. 
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I J ˜ ° 2 
MSEinp Inoisy Itrue ¼ ∑ ∑ � =ð Þ  k ¼ 1, … , K (2) IJ , k kij kij 

i¼1 j¼1 

and, respectively, input PSNR 

˜ ° 
PSNRinp ¼ 10 log 10 D2

k =MSEinp , k ¼ 1, … , K, (3) k k 

where Dk is image dynamic range assumed individual for each component image 
(Dk ¼ Imax Imin � where Imax and Imin are maximal and minimal values in the kth k k k k 
image, respectively). 

Earlier analysis [7, 44] has shown that MSEinp , k ¼ 1, …, K and PSNRinp , k ¼ 1, k k 
… , K in very wide limits for such typical examples of multichannel RS data as 
images provided by hyperspectral sensors AVIRIS [45] and Hyperion [46]. For 
more than 80% of component images, input PSNR exceeds 40 dB. This means that, 
most probably [42], OOPs for these component images do not exist, i.e.˜ ° 2 

Ic Itrue MSEc 
k ¼ ∑I

i¼ j¼1 kij � kij =ð Þ steadily increases if QS becomes larger 1∑
J IJ 

(fIc 1, … , I, j ¼ 1, … , J, k ¼ 1, … , Kg denotes compressed image in a k-th kij, i ¼ 

channel; OOP exists for a k-th component image if MSEc ðQSÞ) has one minimum). k 
If so, i.e. if quality of the compressed noisy image steadily decreases with QS 

growth, there should be some reasonable strategy to carry out compression for such 
an image or a group of images with similar properties. Here it is worth recalling the 
following. Analysis done in the paper [16] has shown that lossy compression has 
practically no negative impact on image classification accuracy if the metric PSNR-
HVS-M [47] is not less than 42–44 dB. 

k =MSEHVSM The metric PSNR-HVS-M (PSNR �HVS �Mc
k ¼ 10 log 10 

˛ 
D2 

˝ 
, k 

k ¼ 1, …, K, MSEHVSM is MSE with taking into consideration specific features of k 
human vision system (HVS)) takes into account two important peculiarities of 
human vision system: less sensitivity to degradations in high spatial frequencies and 
masking effect of textures. One can be surprised that visual quality metric has 
been used in analysis. This can be explained by the fact that the required values of 
PSNR-HVS-M > 42 dB mean that quality of a compressed image is such that 
introduced distortions are invisible. According to PSNR, this happens if PSNRc 

k 
exceeds 35–37 dB [48]. 

Thus, we need to provide a desired (controlled) quality of compressed images. 
This should be done quickly (desirably, without iterative compression/decompres-
sion), rather accurately, and with producing a large CR. We expect that CR increase 
can be gained due to grouping of component images. 

3. An approach to providing controlled losses 

Let us start from considering lossy compression of a single-channel noise-free 
image in 8-bit representation. After compression, one obtains fIc 1, … , I, j ¼ 1, kij, i ¼ 

… , J, k ¼ 1, … , Kg where quality of this image becomes worse for a larger CR or 
smaller bpp that takes place for larger QS or SF if a DCT-based coder is applied. Let 
us see how this happens for JPEG with uniform quantization of DCT coefficients. 
Suppose that an image to be compressed is divided into N=IJ/4 non-overlapping 
blocks of the size 8 � 8 pixels. Then, in each block, we have DCT coefficients 
fD nð ; k; lÞ; n ¼ 1; …; N; k ¼ 1; …; 7; l ¼ 1; …; 7g . After quantization, we have 

31 

http://dx.doi.org/10.5772/intechopen.82361


� � 

Satellite Information Classification and Interpretation 

Dqðn; k; lÞ; n ¼ 1; …; N; k ¼ 1; …; 7; l ¼ 1; …; 7 . Then, MSE of losses can be 
determined as 

1 N N 7 7 � �2 MSE ¼ ∑ MSEn ¼ ∑ ∑ ∑ ð Þ ΔDq n; k; l (4) 
N n¼1 n¼1 k¼0 l¼0 

where 

Dqðn; k; lÞ ¼  ½D n; k; lÞ=QS� ð , k ¼ 0, …, 7, l ¼ 0, …, 7, 

ΔDqðn; k; lÞ ¼ QS � Dqðn; k; lÞ �D n; k; lÞ ð , k ¼ 0, …, 7, l ¼ 0, …, 7: 

and [] denotes rounding-off to the nearest integer, n denotes the block index. 
A usual assumption concerning distribution of quantization errors is that it is 

uniform or close to uniform. Then, MSE is about QS2 =12: This is true for quite small 
QS (see data in Figure 2) but, for larger QS, MSE becomes smaller than QS2 =12: The 
main reason is that distributions of alternating current (AC) DCT coefficients differ 
a lot depending upon an image. Figure 4 presents these distributions using the same 
scale for the three considered images (Figure 1). Obviously, these distributions 
differ from Gaussian and from Laplacian (assumed in the paper [33]) as well. For 
the simple structure image, the distribution is quite narrow and it has heavy tails. If 
noise is present, the distribution “widens” and becomes closer to Gaussian. 

It is seen from analysis of distribution in Figure 4a that if QS is about 10, most of 
AC DCT coefficients become zeros after quantization. Thus, we have decided to 
analyze quantization errors more in detail. Histograms of these errors for four cases 
are given in Figure 5. The histogram in Figure 5a shows that error distribution is 
close to uniform for the noise-free image Airfield that has wide distribution of AC 
DCT coefficients (Figure 4c). The distribution is also practically uniform for noisy 
image Frisco (noise standard deviation equals to 5, Figure 5d). Then, MSE of 
introduced losses is really close to QS2 =12 (see data in Figure 2). In other cases 
(Figure 5b and c), the distributions sufficiently differ from uniform. This happens 
for noise-free image Frisco. Thus, introduced losses MSE is less than QS2 =12: 

Hence, MSE ≈ QS2 =12 can be treated as the upper limit of introduced losses. 
Note that this is valid not only for JPEG but for the coders AGU and ADCT [38–40]. 
This means that having a desired (threshold) MSEdes, it is possible to easily calculate pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
QS as 12 MSEdes. A question is when the approximation MSE ≈ QS2 =12 is valid? 
Note that if MSE is smaller than QS2 =12, one can benefit from using a larger QS and 
providing a larger CR. Clearly, that if a desired PSNRdes has to be provided, it has to 
be recalculated to MSEdes taking into account dynamic range for a given image as 

ð PSNRdes=10Þ MSEdes ¼ D2 =10 . 
Our idea [38–40] is that MSE can be predicted in one of two ways. 
The first way is determined as 

R R 7 7 � 1 1 �2 Þ MSEpred ¼ ∑ MSEr ¼ ∑ ∑ ∑ ΔDq n; k; l ð (5) 
R 64R r¼1 r¼1 k¼0 l¼0 

ΔDqðr; k; lÞ ¼ QS � Dqðr; k; lÞ �D rð ; k; lÞ, k ¼ 0, …, 7, l ¼ 0, …, 7, r ¼ 1, …, R (6) 

where R is the number of analyzed blocks (R ≪ N), C is a correcting factor used 
for a given coder. In other words, we employ statistics of DCT coefficients calcu-
lated in a limited number R of analyzed blocks of size 8x8 pixels. According to our 
studies [38, 40], it is enough to have R about 500 where analyzed blocks are 
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Figure 4. 
Distributions of AC DCT coefficients for the noise-free image Frisco (a), noise-free image airfield (b) and noisy 
image airfield (c), all in the same limits from �200 to 200. 

randomly distributed over area of an image to be compressed to have prediction 
accurate enough. Taking into account that number of 8 � 8 pixel blocks in com-
pressed images usually exceeds several thousands, prediction occurs to be much 
faster than even compression by JPEG. Certainly, prediction is much faster than 
compression by AGU (uses 32 � 32 blocks, efficient coding and deblocking after 
decompression) and, especially, ADCT (exploits partition scheme optimization). 

Expressions (5 and 6) allow predicting MSE for a given QS. But they do not allow 
direct setting of QS. One has to apply an iterative procedure that starts pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
from QS ¼ 12 MSEdes. If the predicted MSEpred (5) occurs to be considerably 
(e.g., by 15–20% or more) smaller than MSEdes, then a larger QS has to be tried with 
calculating (6) for all analyzed blocks and (5) again. Since the already calculated 
DCT coefficients are available, the procedure is quite fast. 
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Figure 5. 
Examples of histograms of quantization error for AC DCT coefficients (see comments under each histogram). 

The second way is the following. Suppose that the predicted MSE can be 
presented as 

˜ ° 
MSEpred ¼ QS2 =12 f0 X (7) ð Þ  

where f0 X is a function of one or two parameters X that can be easily and ð Þ  
quickly calculated for DCT coefficients determined in analyzed blocks. Then one 
has to find such parameter(s) and the function. To solve this task, we have 
exploited our earlier experience in predicting filtering efficiency [49] and compres-
sion ratio [18] by simple analysis of DCT statistics in 8x8 pixel blocks and regression 
analysis [50, 51]. 

The prediction strategy is the following. We suppose that there is an input 
parameter (or a few parameters) that can characterize a compressed image. It is also 
assumed that output (predicted) parameter (MSE, PSNR, CR, or another metric) is 
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strictly connected with this (these) input parameter(s). This connection (prediction 
approximation) is available to the moment to carry out prediction, i.e., in our case, 
the function f0 X has been obtained in advance (in off-line mode). Then, one has ð Þ  
to calculate input parameter(s) for a given QS and insert it (them) into f0 X . ð Þ  

It has been shown in [52] that a good parameter integrally characterizing an 
image (its complexity) is probability P0 that AC DCT coefficients after quantization 
become equal to zero (this parameter can be also treated as probability that AC DCT 
coefficient absolute values are smaller than QS/2). It is obvious that P0 can be very 
easily calculated. Keeping these properties of P0 in mind, we have obtained scatter 
plots of 12MSE=QS2 to estimate f0ð Þ. A wide set of test noise-free images has P0 

been used that included standard optical images, test RS images and test medical 
image (this was done to understand does the image nature (origin) influence per-
formance of lossy compression; in fact, very similar results have been obtained for 
test images of different origin; the main factor is image complexity). Each point of 
the scatter plot corresponds to one test image compressed with some QS where 
vertical coordinate is P0 determined for this case). 

Figure 6 presents scatter plots obtained for AGU and ADCT coders with exam-
ples of fitted curves. The main and very important observation is that the scatter 
plots behave in a compact manner, i.e. points that have approximately the same 
arguments have close values of 12MSE=QS2. Another observation is that the scatter 
plots for two considered coders behave in a very similar manner, i.e. there is a 
tendency to monotonous decreasing of 12MSE=QS2 if P0 increases. Finally, the 
scatter plots confirm that, in many practical situations, MSE ≈ QS2 =12. At least, this 
is true for P0 , 0:6. 

It is worth recalling here that P0 , 0:6 corresponds to rather small QS. To prove 
this, Figure 7 presents the scatter plot from [48] and the fitted curve. As it is seen, 
for P0 , 0:6, CR does not exceed 5. If P0 ≥ 0:6, there is the tendency of reduction of 
f0 P0 . The scatter plot points are placed not so compactly here. Thus, prediction ð Þ  
using only f0ð Þ becomes less accurate. Nevertheless, the following prediction P0 

procedure can be proposed: 

Figure 6. 
Scatter plots for AGU (a) and ADCT (b) coders. 
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Figure 7. 
The scatter plot of CR on P0 and the fitted curve for the coder AGU. 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
1. Determine QS ¼ 12 MSEdes, obtain AC DCT coefficients for analyzed blocks 
and calculate P0 for this QS. 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
2. If P0 , 0:6, use QS ¼ 12 MSEdes and stop the procedure. 

3. Otherwise, increase QS by about 5%, calculate P0 and compare 
QS2 =12 P0 to MSEdes; if QS2 =12 P0 ≈ MSEdes then stop; otherwise f0ð Þ  f0ð Þ  
continue till satisfying this condition. 

As it is seen, all the operations are very easy and fast since they are performed 
for a limited number of AC DCT coefficients. Moreover, using the same parameter, 
it is possible to predict both MSE and CR. Then, it is easy to find a proper compro-
mise depending upon priority of requirements and imposed restrictions. 

One question is what curves to fit and what are criteria of fitting quality to be 
used. There are different approaches but we employed goodness-of-the-fit R2 and 
RMSE [50] as two main criteria (the former one has to be maximized and the latter 
one minimized for a given scatter plot). Without going to details, we can state the 
following. For each scatter plot, usually there are several functions able to provide 
approximately the same R2 and RMSE. Sums of two exponentials (see an example in 
Figure 7), polynomials of low order, Fourier series, power functions are good 
candidates to be tested. Using the corresponding tools of Matlab or Excel, it is 
possible to quickly find optimal or, at least, appropriately good solution. 

4. Peculiarities of compression 

4.1 Visual quality metrics 

We have already mentioned that it is often desirable to predict visual quality 
metrics. To check whether or not this is possible, the scatter plot was got for 
MSEHVS�M= QS2 =12 vs. P0 (Figure 8). As it is seen, this ratio is about 0.05 for 
small P0 (this happens for small QS and/or complex structure images), i.e. PSNR-
HVS-M is by about 13 dB larger than PSNR. This means that introduced losses are 
masked by image content well and, most probably, they cannot be noticed visually. 

36 



Lossy Compression of Remote Sensing Images with Controllable Distortions 
DOI: http://dx.doi.org/10.5772/intechopen.82361 

Figure 8. ˜ ° 
The scatter plot MSEHVS�M= QS2 =12 vs. P0 and the fitted curve, AGU coder. 

The difference in PSNR-HVS-M and PSNR decreases to 5–7 dB for P0 . 0:5, i.e. 
typical conditions of lossy compression. The scatter plot and the fitted curve show 
that MSEHVS�M can be predicted well for a given QS. In other words, visual metrics 
can be predicted too using the proposed approach. Again, the sum of two exponen-
tials (just this case is presented in Figure 8) can serve well as approximation curve 
with quite small number of varied parameters. 

4.2 Experimental data for component-wise compression 

Let us present the results of applying the proposed approach to real-life 
hyperspectral data. Images of Hyperion sensor dataset EO1H1800252002116110KZ 
have been compressed. Hyperion sensor produces data of bad quality (very noisy) 
in sub-bands with indices k = 1,…,12 and k = 58,…,76. The images in these sub-bands 
are often discarded in analysis, so we have not compressed them. 

Then, two approaches to compression have been compared. Both presume 
component-wise compression. The first one has been proposed earlier [11]. Images 
are compressed after applying variance stabilizing transform that takes into account 
signal-dependent noise properties and converts this noise to additive with variance 
approximately equal to unity. Then, the recommended QS = 3.5 (this notation is 
used in figures below). Inverse transform is applied component-wise after decom-
pression. For the proposed method, the component-wise images have been 
transformed to the interval from 0 to 255. Then, for each of them, AGU coder has 
been applied with QS = 17 that approximately corresponds to PSNRdes ¼ 34:5 dB 
(MSEdes ≈ 24 ≈ 17 � 17=12Þ. The notation QS = 17 is used for the corresponding data. 

The obtained PSNR values calculated between compressed and original compo-
nent images are presented in Figure 9. As it is seen, PSNR for the method [11] in 
most sub-bands occurs to be considerably larger than PSNRdes set by us. Only in 
some sub-bands (indices 165–185) where input PSNR is quite small the determined 
PSNR values are about 40 dB (i.e., the introduced losses are invisible in 
decompressed images). For the proposed approach, PSNR for the introduced losses 
is considerably smaller but, for all sub-band images, PSNR anyway exceeds 35 dB. 
As it follows from analysis of data in Figure 10, CR for all sub-bands exceeds 5 (a 
more detailed study shows that P0 . 0:6 in all cases). Thus, MSE is smaller than 
QS2 =12 (see data in Figure 6) and the provided PSNR is larger than expected. 

The main observation for data in Figure 10 is that CR for the proposed method is 
by several times larger than for the prototype method for almost all sub-bands 
except the bands with small input PSNR. Thus, we have gained essential benefit in 
CR sense while introduced distortions remained invisible. 
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Figure 9. 
PSNR for component-wise compression by the method ([11], QS = 3.5), the proposed component-wise 
approach (QS = 17), and the proposed 3D compression method (QS = 17, bl = 4). 

Figure 10. 
CR for component-wise compression by the method ([11], QS = 3.5), the proposed approach (QS = 17), and 
the proposed 3D compression method (QS = 17, bl = 4). 

We do not present examples of original and compressed component images 
because visually they are identical. Note that setting a larger PSNRdes leads to larger 
PSNR of introduced losses and smaller CR for each component image, respectively. 
By setting a larger PSNRdes one can ensure that classification accuracy does not 
make worse. 

4.3 3D compression 

Consider now possibilities of 3D compression in groups. There are many differ-
ent options [11]. We have analyzed one of the simplest ones where component 
images have been transformed to the 8-bit representation limits, then combined in 
4-band groups, and then compressed by 3D version of AGU coder. After decom-
pression the images have to be “stretched” to original limits. 
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As previously in Section 4.2, we have employed QS = 17. For convenience of 
comparison, the obtained data are also presented in Figures 9 and 10, for 3D 
compression they are denoted as QS = 17, bl = 4. CR values for the 3D case are 
shown the same for all components of the same group. As it is seen, CR values for 
3D compression are about two times larger than for the proposed component-wise 
compression. This is an obvious advantage of 3D compression. Meanwhile, there 
are also very interesting observations stemming from analysis of data for PSNR 
(Figure 9). As it is seen, there are many sub-bands for which PSNR for 3D com-
pression is considerably larger (and the introduced losses are sufficiently smaller) 
than for component-wise compression. PSNR values are almost the same if sub-
bands with small input PSNR are compressed. This is one more positive feature of 
3D compression that should be studied more in detail in the future. 

5. Conclusions 

We have considered the task of lossy compression of RS images with controlla-
ble quality characterized by traditional metrics. It is shown that MSE and PSNR can 
be predicted for DCT-based coders and, due to this, it is possible to provide a 
desired MSE or PSNR without compression/decompression iterations quite quickly 
and accurately. Being applied to compress RS images without visible distortions, 
this approach allows providing CR considerably larger than for approach based on 
taking noise properties into account. 

Moreover, it is demonstrated that prediction of some visual quality metrics is 
also possible. It is also shown that 3D compression of images collected into groups 
provides considerably better results. However, additional studies are needed to 
predict distortion parameters in this case. Examples for real-life data as 
hyperspectral image are presented. 
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Chapter 4

Reverse Satellite Transionospheric
Sounding: Advantages and 
Prospects
Igor Ivanov, Olga Maltseva, Vladimir Sotskii, 
Alexandr Теrtyshnikov and Gennadii Zhbankov

Abstract

This chapter includes four sections. The first introduction section provides a
brief review of the existing methods of transionospheric sounding and the results
obtained, and the shortcomings of each are noted. The second section describes the
proposed principle based on the installation of a receiver on the GLONASS plat-
form. The advantages and technical characteristics of the proposed system are justi-
fied. The main area of use is the polar region. The third section presents the most
modern modeling methods and models used. To calculate the propagation of radio
waves, this is a method of ray tracing taking into account the large- and small-scale
inhomogeneities of the ionosphere. To describe the state of the ionosphere, it is pro-
posed to use the IRI2016 model, which includes adaptation to the current diagnostic
data provided by ground ionosondes, and the IRI-Plas model, which not only can be
adapted to ground ionosonde data, but also to values of the total electronic content, 
the measurement of which is an additional advantage of the proposed system. The
fourth sectionincludes areas of application, the main of which is the monitoring of
the polar region, and the least provided with ionospheric information.

Keywords: satellite, satellite information, transionospheric sounding, modeling,
radio wave propagation

1. Introduction: a brief review of existing methods of transionospheric 
sounding

The role of the ionosphere in providing human life is difficult to overestimate. 
This role was great in the pre-satellite era and multiplied after the launch of an
artificial Earth satellite. This role is most fully represented in [1], in which various
technological systems are divided into two categories: (1) systems which cannot
exist without the ionosphere (VLF-LF communication and navigation, MF com-
munication, HF communication, “short-wave” listening, OTH radar surveillance, 
HFDF and HF SIGINT), and systems on which the ionosphere makes the big impact
(a satellite communication, satellite navigation (i.e., GPS & GLONASS, etc.), space-
based radar and imaging, terrestrial radar surveillance and tracking, and others). 
This shows how it is important to study the ionosphere. Classical methods of study-
ing the ionosphere from the Earth’s surface are the pulsed sounding—the sending 
of radio pulses and the observation of their reflections from various ionospheric
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layers with the measurement of the delay time and the study of the intensity and 
shape of the reflected signals. Measuring the reflection height of radio pulses at 
different frequencies, determining the critical frequencies of different regions, that 
is, frequencies for which the given area of the ionosphere becomes transparent, it is 
possible to determine the value of the electron density in the layers and the virtual 
altitudes for the given frequencies, hence to select the optimum frequencies for the 
specified radio paths. This is the principle of work of the main device namely of 
ionosonde. Its use for many years in many parts of the globe has made it possible to 
obtain a huge array of data and develop predictive models of various parameters. 
The breakthrough occurred with the advent of satellites, in particular, with the 
installation of ionosondes on satellites [2]. Here, there is a wide variety of methods. 
Let us list some of them with a brief description. The first is external (topside) 
sounding (TS, f < foF2, where foF2 is the critical frequency of the basic layer of the 
ionosphere F2). An example is the on-board ionosonde “IS-338,” in future proj-
ects, the on-board ionosonde “LAERT” [3]. The second is direct transionospheric 
sounding (TIS) (f > foF2). In this case, the signal is emitted from the spacecraft, 
and the reception is on the Earth. The third option is reverse transionospheric 
sounding (RTS) (f > foF2). In this case, the signals emitted by the transmitter from 
the Earth are received by the receiver on the satellite. All of these methods were 
implemented in a variety of experiments on spacecraft series Alouette, Arial, ISIS, 
Intercosmos-19 and Kosmos-1809, IC Bulgaria 1300, and others. An example of 
ionograms of TS (the left curve) and RTS (the right curve) of “Kosmos-1809” is 
shown in Figure 1. 

A detailed analysis of the current state of the TS method is given in [4]. The RTS 
method is presented in [5]. In all cases, a number of important tasks were solved. 
One of them is the mathematical support of methods [6]. The second problem is the 
synchronization of airborne and ground ionosondes [7]. Figure 2 shows a system 
for synchronous ionospheric sounding using all methods of radio pulse sounding. 
The features of synchronous operation of the terrestrial-satellite system are pre-
sented in the examples of synchronization schemes for previously launched Russian 
ionosondes. 

As to scientific results, it is difficult to select something from hundreds of, if not 
from thousands of, the publications based on processing of millions of ionograms. 
As examples, it is possible to note the first publications [8] and the detailed review 
of results from Alouette1, Explorer 20, Alouette2, Explorer 31 [9]. Data of topside 
sounding have played a big role in improvement of various models of the iono-
sphere with the use of data of Intercosmos-19 and Cosmos 1809 [10], Alouette1-2, 
ISIS-1-2 [11] and later satellites [12]. In the paper [13], application of ionospheric 

Figure 1. 
Example of ionograms of TS and RTS sounding. 
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Figure 2. 
Scheme of system sounding of the ionosphere. 

topside-sounding results to magnetospheric physics and astrophysics is presented. 
From the latest publications, it is possible to specify the study of behavior of high-
latitude N(h)-profiles during strong magnetic storms with use of huge database of 
digital topside ionograms [14]. It is underlined in [4] that the interest in the modi-
fication and the use of TIS has increased recently in connection with the need to 
monitor the polar region. On the one hand, this is due to the fact that high-latitude 
regions were always problematic zones because of the small number of ionosondes 
and the enormous spatial and temporal variability of the ionosphere due to the 
magnetospheric influence. On the other hand, interest increased due to increased 
scientific and economic activities in these regions. 

In this chapter, the main emphasis is also on the study of the polar region, that is 
why we consider the existing proposals. In [15], the authors, noting such shortcom-
ings of the TIS method, using low-altitude satellites, associated with the high speed 
of the satellite and its projection to the Earth’s surface, as impossibility of exact 
separation of the spatiotemporal characteristics of the variability in a diagnosed 
region and large time delay between the measurements of the ionospheric param-
eters and the processing and analysis of the measurement data, have proposed the 
use of satellites in the geostationary orbit. Since it is proposed to install a trans-
mitter on a satellite, the main attention in [15] is given to the energy problem. A 
calculation of ray trajectories is carried out in a two-dimensional plane of propaga-
tion from a satellite to a receiver point formed by combined vertical profiles of the 
electron density. Up to a height of 2000 km, Ne(h) is taken from the IRI model and 
then is “sewed” to the NeQuick model [16] in such a way that the electron density 
becomes zero at a height of 36,000 km. Calculations were made for the transmitting 
antennas as weakly directed vertical or horizontal dipoles. Of the three types of 
signals: simple smooth pulses, linearly frequency modulated (LFM) and phase and 
code manipulated (PCM) used for sounding the ionosphere, estimates are made 
for the first and second types for signal-to-noise ratio (S/N) of 20 dB. For the first 
type, the field strength at the receiver was ~6 μB/m for radiated power of 1 kW. The 
use of LFM signals of ~100 μs duration is intended to reduce the radiated power 
due to the complexity and broadband of the signals. At S/N = 20 dB, the radiated 
power can be 100 W. An example of the model transionogram and the received field 
strength is shown in Figure 3. 

The paper [17] is a definite addition to [15], of which deserves an attention 
remark about another disadvantage of this method TIS and RTS, namely, that 
these techniques only determine two parameters: the critical frequency (foF2) 
and the height of the maximum of the F2 layer (hmF2) in the sub-satellite point, 
without defining N(h)-profile, and that to date conducted only one successful 
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Figure 3. 
Illustration of the sounding method from a geostationary satellite at the point of reception 55° N during the 
daytime (UT = 12). 

experiment about reconstruction of a bottom Ne(h)-profile of the F2 layer using 
them [18]. It is possible that namely for this reason, the methods of TIS and RTS 
have not been developed in the world. Explanation was made for differences of 
the proposed methods of TS, TIS and RTS: (a) a source of information is not a 
traditional ionogram and ionogram, retaining only radio sounding signals; (b) 
ionosonde becomes a measuring tool, and the system of a single-board broad-
band transmitter module (BTM) and a network of ground receiving k modules 
(GRM) with the tuning frequency tunable synchronously with the on-board 
BTM. Therefore, the method is called as multifrequency ionospheric radioscopy 
method. The difference between [17] and [15] is information on experimental 
data confirming the possibility of implementing the proposed method, but 
these data are indirect. The approach described in [19] is based on real experi-
ments in the Arctic using external sounding [20]. These experiments revealed a 
shortcoming of use of circular low orbit, namely the inability to determine the 
dynamics of the ionospheric irregularities; therefore, the use of space satellites 
with highly elliptical orbits with an apogee over the North Pole was proposed. 
However, it was immediately noted the complexity of using such orbits, consist-
ing in the difficulty of choosing the time of ionosonde location over the investi-
gated area. To overcome this difficulty, it is proposed to use solar-synchronous 
orbits. It is shown that there is a number of such orbits for monitoring Arctic of 
Russia: the first orbit has an apogee of 40,000 km (the North Pole) and a perigee 
of 500 km (above the South Pole) during one revolution of 12 h, a second orbit 
has an apogee of 20,343 km, perigee 485 km, the time of one revolution is 6 h, 
the third orbit has apogee 11,829 km, perigee 500 km. The choice of the orbit 
is mainly influenced by the significant energy loss of the probing signal for 
propagation in free space. For example, the difference in signal power loss from 
reflection from the Earth between a high-orbit and low-orbit ionosondes can be 
about 100 dB, and the transmitter power is limited. As a solution, signals with 
phase-code modulation are selected. Calculation of the sounding parameters has 
shown that a power of 600 W will not suppress the remaining experiments on 
the satellite, and at the same time, this power will be enough to assure confident 
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reception of signals reflected from the ionosphere of the Earth on a high-altitude 
apogee satellite. All these proposals indicate the relevance and prospects of such 
methods. 

2. The proposed principle 

The main element of the methods [15, 17, 19] is the installation of an ionosonde 
on the spacecraft, but as noted in [21], an ionosonde for TS [19] or a powerful on-
board transmitter for TIS [22] not yet created. Even more important is the problem 
of electromagnetic compatibility on board of a satellite. The proposed principle 
is a kind of RTS and consists of the use of an on-board receiver and a terrestrial 
transmitter, which makes it possible to increase the energy potential of the sound-
ing channel due to a more powerful ground-based transmitter. The author of [21] 
showed the possibility of RTS from highly elliptical orbits up to 40,000 km. The 
details are as follows. It is proposed to use a terrestrial ionosonde of the “Parus” type 
with a typical rhombic antenna, only an ionosonde receiver with shortened anten-
nas should be installed on board (the upper part of the frequency range is used). 
For comparison, the calculation is performed for the orbits proposed in [19], and 
the characteristics of which are given in Table 1. The orbital number, apogee and 
perigee, eccentricity and period of revolution are given. 

The possibility of successful sounding of the ionosphere by means of satellites is 
largely determined by the energy potential of the Pv channel of the satellite-Earth. 
The parameter Pv is estimated in [19] for TS and in [17] for TIS. To assess Pv, in 
the case of RTS, ground and airborne antennas are used, the directional patterns 
and gain factors are shown in Figures 4 and 5. The tables, included in the form of 
frames, give an idea of the quantitative evaluations: Freq—frequency, R—active 
resistance, jX—reactive resistance, Ga—gain, F/B—ratio of direct radiation and 
reverse power, and ON—auxiliary symbol. 

The characteristics of the assumed on-board receiver and ground transmitter are 
given in Table 2. 

The energy potential of Pv with RTS for orbits with a height of 10–40,000 km 
was calculated according to the known relation from [23]. The results are shown in 
Figure 6. The red line presents the calculation results for the frequency of 5 MHz, 
green—10 MHz, blue—15 MHz, dark blue—20 MHz. 

In the paper [22], the calculation of the power of the communication chan-
nel was carried out for TIS in the circumpolar region, and it is shown that “the 
main source of background noise is the radiation of powerful radio stations on 
the Earth’s surface.” That is why, for comparison, Figure 5, the dashed curve 
shows the level of interference from a 21-m broadcast transmitter with a power 
of 50 kW at the altitudes of the satellite. The peculiarity of the on-board iono-
sonde “Laert” is a two-channel polarization reception, which allows reducing to 
a minimum the losses from the polarization mismatch. Losses in antenna feeders 

Orbital Apogee (km) above the Perigee Eccentricity Circulation period (h) 
number North Pole (km) 

1 40,000 500 0.74 12 

2 20,343 485 0.591 6 

3 11,829 500 0.468 4 

Table 1. 
Characteristics of the supposed orbits of satellites. 
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Figure 4. 
The calculated radiation patterns and gain factors for on-board orthogonal antennas of 15 m length analogous 
to the ionosonde antennas of Cosmos-1809. 

Figure 5. 
The directional pattern and the amplification factor of the terrestrial vertical orthorhombic antenna of the VS 
ionosondes. 

and filters are assumed to be 3–6 dB. The obtained values of Pv show the excess 
of the signal above the interference to 6–10 dB even for distances exceeding 
40,000 km. The worst reception conditions are near the cutoff frequency. In the 
case under consideration, this frequency of 5 MHz corresponds to foF2, and it is 
possible to use a corresponding estimation of absorption. However, in this case 
too, at a low signal-to-noise ratio (S/N), the transionograms can be recorded, as 
was shown in the experiments “Intercosmos-19” and RTS—with “Cosmos-1809.” 
The RTS sounding mode, in which one pulse is emitted at each frequency, 
ensures maximum diagnostic efficiency, but the “Parus-A” and “Laert” iono-
sondes are potentially designed to work with complex signals, which can be used 
to increase the S/N ratio during a significant increase of the absorption in the 
polar ionosphere during different disturbances. Thus, the RTS mode is energeti-
cally favorable for the sounding channel, and it does not require, as with the TIS 
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Parameter Receiver of the Transmitter Notes 
ionosonde “Laert” ionosonde 

“Parus-A” 

Range of sounding 0.1–20 0.5–20 Installed programmatically 
frequencies (MHz) 

Pulse power of the Up to 20 Lamp version 
transmitter (kW) 

Pulse width (μs) 100 20–200 

Pulse repetition 60 50–100 Installed programmatically 
frequency (Hz) 

Bandwidth (kHz) 15 (−3 dB) 

Sensitivity (μV) Not less than 5 With S/N 10 dB 

Dynamic range (dB) Not less than 100 Up to 120 

Number of discrete 400 Not less than 400 Changes programmatically 
frequencies 

The law of adjustment Logarithmic Linear Changes programmatically 
in the range 

Instability of reference Not worse than 10−8 Not worse than 10−8 

frequency 

Table 2. 
Characteristics of prospective receiving and transmitting devices. 

Figure 6. 
The energy potential of the Pv communication channel at the RTS for orbits with a height of 10–40,000 km. 
Red line shows results for frequency 5 MHz, green―for 10 MHz, blue―for 15 MHz, dark blue—for 20 MHz. 

in [22], to install on the satellite a powerful transmitter that affects the operation 
of other on-board systems to ensure the requirements of the electromagnetic 
compatibility. Obviously, working with complex signals, with the accumulation 
of signals at each sampling frequency [19], significantly reduces the resolution 
concerning space. The synchronization problem can be solved with the “bind-
ing” of the chronographs of the ground and airborne ionosondes to the exact 
time of GLONASS or GPS [17, 21], taking into account the ephemerides of the 
satellite. 
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These results allow us to propose a somewhat different scheme of the RTS 
method, namely, the use of the GLONASS platform to install the receiver (an 
application of this method is given in Section 4). 

3. Used modeling methods and models 

3.1 Ionospheric models 

Among large number of empirical models of the ionosphere, the International 
Reference Ionosphere (IRI) is the most widely used, tested by huge scientific com-
munity and constantly modified. The development of this model was started in the 
late 1960s and was carried out under the umbrella of Committee on Space Research 
COSPAR and International Union of Radio Science URSI. Currently, it is an interna-
tional standard for the determination of ionospheric parameters [24]. This is a statisti-
cal average model based on a huge amount of data from both terrestrial and satellite 
measurements. For the propagation problems, its most important parameters are: the 
critical frequency foF2 of the F2 layer (or the maximum density NmF2 bound by the 
linear ratio with the square of the critical frequency), the height hmF2 of the maxi-
mum of the F2 layer, the propagation coefficient M3000F2 determining the maximum 
applicable MUF frequency for the 3000 km path, the altitude profile of the electron 
density N(h), the total electron content TEC of the ionosphere. The parameters are 
determined using the coefficients of CCIR and URSI, obtained by the Fourier expan-
sion according to the data of the 1960s and the 1980s. The driving parameters are the 
solar activity indices. The input parameters are the date, latitude and longitude of the 
point on the globe. The shape of the N(h)-profile of the lower part of the ionosphere 
is determined by parameters B0 and B1, for which there are two options: tabular and 
Gulyaeva data, but they do not have advantages over each other, although the tabular 
variant is most often used. There are several basic versions of the model, reflecting 
the most significant stages of its modification: IRI79, IRI90, IRI95, IRI2001, and 
IRI2007. The latest modifications of the IRI2016 model are presented in [25]. They 
include two new options for hmF2. The review of the last steps for the transition from 
climatological character of the model to the description of ionospheric conditions in 
real time by adaptation to the current diagnostic data is presented. At present, there is 
a new version of IRI-Plas [26]. The main distinguishing features of this model are: (1) 
introduction of a new height scale for the upper ionosphere, (2) taking into account 
the plasma sphere part of the profile and (3) adapting the profile to the experimental 
value of TEC. The advantages provided by these features are indicated in [27]. 

3.2 Trajectory calculation method 

Like a situation with ionospheric modeling, there is a number of methods of 
radiowave propagation calculation in the model ionosphere. In this chapter, the 
most theoretically developed method of trajectory calculations is used. Briefly, it 
consists of the following. In general, the calculation of trajectories follows the classi-
cal ray tracing procedure [28]. A numerical solution of the local dispersion equation 
is found by transforming it to a system of differential characteristic equations with 
respect to spatial and ray coordinates in the model ionosphere as the sum of the 
basic unperturbed part and the additional perturbation: Ne = N0 ⋅ (1 + δL + δT) where N0 
is the unperturbed “base” part described by the international model IRI-2016, with 
allowance for the possibility of correction in the presence of experimental verti-
cal sounding data, δL and δT are the perturbations created by traveling ionospheric 
disturbances (TID). 
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3.3 Determination of the parameters of inhomogeneities 

Using the proposed method, RTS allows to study in detail not only the large-
scale structure in the form of layers, but also to determine the parameters of quasi-
wave disturbances, including traveling ionospheric disturbances (TIDs) in the outer 
ionosphere. The technique was proposed and tested according to the data of RTS on 
the Intercosmos-1809 satellite. Details of the method are presented in [29]. It is the 
singular spectrum analysis (SSA) method [30], which is modified to select a one-
dimensional latitudinal series of observations of the quasi-harmonic TID compo-
nent at a fixed height. The investigated series are the values of the electron density 
at a fixed height in the function of the geomagnetic co-latitude. These series are 
decomposed into a sum of series, each of which corresponds to a trend, a periodic 
component and, possibly, noise. The basic algorithm of the SSA method includes 
four steps: embedding, singular decomposition, grouping, and diagonal averaging. 
Modification of the basic SSA method consists of removing the trend and analyzing 
the remaining term characterizing the disturbance. The main contribution is given 
by decomposition [31]. The method was applied to the case of ionospheric sounding 
from the Kosmos-1809 satellite on 06.03.1987, pass 1079, UT = 8.82–8.92 h along 
geomagnetic longitude ~128° E. The geomagnetic situation during the experiment 
was characterized by the planetary index Kp = 2+. The spatial distribution of the 
normalized values of the electron density in the altitude range of 300–400 km is 
shown in Figure 7. 

Figures 8 and 9 show the results of the determination of the electron density 
perturbation at an altitude of 350 km. 

Figure 8 shows that the disturbance is a fragment of a wave train, not a har-
monic. This clearly manifests itself when considering the spatial picture of the 
disturbance depicted in Figure 9. In this particular case, we are dealing with a weak 
perturbation with a wavelength of L ≈ 500 km, damped in the vertical and horizon-
tal directions. 

Figure 7. 
Spatial distribution of normalized values of the electron density from topside radio sounding of the ionosphere 
from the satellite Kosmos-1809. 
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Figure 8. 
The results of the analysis of experimental data for the height of 350 km: a quasi-harmonic component of the 
transformed normalized number (solid line) and its approximation damped sinusoid (dotted line). 

Figure 9. 
The spatial pattern of quasi-wave perturbations obtaining in the application of the modified SSA method 
to the analysis of experimental data of the topside radio sounding ionosphere on board of the satellite 
“Cosmos-1809” 1987.03.06, at 8.82–8.92 UT. 

3.4 Use of TEC 

TEC measurements by means of signals from satellites began literally with the 
launch of the first satellite [32]. Since the mid-1960s, continuous measurements 
of the rotation of the Faraday polarization plane at one point with the help of 
geostationary satellites have been carried out. Since the mid-1970s, measurements 
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have been carried out using differential group delays and Doppler shifts. As noted 
by many researchers, the TEC parameter, like the critical frequency foF2, has 
become the main parameter for describing the behavior of the ionosphere. A huge 
number of GPS receivers around the globe, the availability of data on the Internet 
has allowed and allow scientists to study the local, regional, global characteristics 
of the ionosphere independently, quickly and simultaneously. The results are pre-
sented both on the basis of the data of local networks of GPS receivers, and data 
of global maps. In this chapter, the TEC values are calculated from the IONEX 
file data (site ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex/) for the global 
JPL map. 

3.5 Examples of using models 

Since any empirical model is problematic for the high latitude region, it is neces-
sary to obtain quantitative estimates of the accuracy of the model in the investigated 
region. In our case, it is the European part of Russia. Figure 10 gives an example of 
a comparison of the model and experimental ionospheric parameters for the highest 
latitude Longyearbuen station (78.2° N, 15.9° E). Its results are compared with the 
results of the mid-latitude station Juliusruh, which is a reference station. Results are 
given for mean solar activity from those vertical sounding data that were available 
for the Longyearbuen station (2011–2014). Absolute |ΔfoF2| (in MHz) and relative 
deviations σ (in %) are compared for three options: (1) model values and experi-
mental medians (“med” icon), (2) model values and monthly average experimental 
instantaneous values (“ins”), and (3) values calculated using experimental TEC 
and equivalent slab thickness of the ionosphere τ (“τ” icon). The latter should be 
compared with option 2. 

The values averaged over the year during the data availability period of 
Longyearbuen station are given in Table 3. Each result column contains |ΔfoF2| 
and σ. Figure 9 and Table 3 show that the average deviations for options 1 and 2 for 
both stations are not much different. This indicates that the IRI model can provide 
foF2 with accuracy close to mid-latitude values. Using TEC improves the correspon-
dence between calculated and experimental values in 1.5–2 times; however, here, 
the results for Longyearbuen station are worse than for Juliusruh. The reason lies in 
the small number of stations contributing to the construction of global TEC maps, 
and at large angles of slant TECs associated with the boundary latitude of naviga-
tion satellites. 

An interesting result was obtained by the author of the model SDMF2 
(Satellite and Digisonde Data Model of the F2 layer) for quiet geomagnetic condi-
tions [33] when compared with the IRI model [34]. A comparison was made using 
data from eight ionosondes in various regions of the globe to evaluate the effects 
of different solar-ionospheric indices [34]. Of all the stations, the best fit of the 
model and experimental values of foF2 were obtained for the Salekhard station 
(66.5 °N, 66.5 °E). 

Figure 10. 
Comparison of the accuracy of the model for the high-latitude station Longyearbuen and the reference mid-
latitude Juliusruh. 
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Longyearbuen Juliusruh 

med ins τ med ins τ 

2011 

2012 

2013 

2014 

0.42, 11.90 

0.36, 9.82 

0.48, 11.40 

0.70, 13.72 

0.64, 17.73 

0.62, 17.18 

0.69, 16.54 

0.85, 17.34 

0.38, 11.73 

0.43, 12.70 

0.40, 10.71 

0.42, 9.64 

0.44, 10.35 

0.76, 17.95 

0.32, 6.83 

0.62, 11.47 

0.65, 14.96 

0.99, 23.87 

0.65, 13.98 

0.83, 15.65 

0.28, 6.94 

0.38, 9.13 

0.31, 7.29 

0.30, 6.22 

Table 3. 
Comparison of the accuracy of the IRI model from the data of high-latitude and mid-latitude stations. 

The most important is the use of the model to specify propagation conditions 
on oblique paths. In [35], the calculated and experimental ionograms of oblique 
sounding were compared on 17 high-latitude HF paths of AARI during the period 
of quiet conditions on February 13–14, 2014 using the IRI-2012 model. It is shown 
that the IRI model without correction based on current diagnostic data, even under 
quiet conditions, underestimates the experimental values. Correction according to 
the current diagnostic data allows us to substantially approach the calculated values 
to the experimental ones. As the current diagnostics data, the critical frequencies 
measured by ionosondes located near the paths or calculated using the experimen-
tal values of TEC were used. It was obtained that the relative error of the initial IRI 
model in obtaining the values of the maximum useable frequency MUF averaged 
over all cases and the provided 23.6% for one hop was reduced by 4% when using 
the TEC and by 6% when using foF2. Analysis of experimental data showed that on 
high-latitude paths, there are a number of unpredictable features that occur even 
in quiet conditions. These include TID, M and N-modes, lateral modes, triplets and 
diffusivity. Below, the results of additional comparisons, including for disturbed 
days on September 6–8, 2017 are presented for ionograms of two oblique paths 
Cyprus-Lovozero (path length 3600 km) and Gorkovskaya-Lovozero (path length 
900 km). It should be noted that the IRI model, like any statistical model, provides 
median (mean) values, so the model values should be compared with the experi-
mental medians of the parameters. However, very often, model values are used 
as daily values, that is, instant, for the lack of others. In this case, the error can be 
large, especially during disturbances. In this case, such disturbance was observed 
from September 6 to 8, 2017. This fact is illustrated in Figures 11 and 12. 

For this case, Table 4 gives mean monthly (Δ), absolute (|Δ|) deviations and 
estimates of absolute and relative errors. 

Relative errors lie in the range of 6–10%. Of course, this is a very small statis-
tic, but it coincides with the results of [36] and allows us to confirm on the new 
data an important conclusion about the possibility of using the IRI model in high 
latitudes. Figure 12 shows the difference in the disturbed values of foF2 from the 
medians. We see a significant positive disturbance in foF2 on September 7 and a 
negative perturbation in the behavior of both parameters on September 8. As it was 
noted earlier, a feature of the IRI model is its ability to be adapted to the current 
diagnostic data. This plays a big role in the calculation of oblique ionograms, which 
is illustrated in Figure 13. This figure shows the experimental MOF values for one 
and two hops, as well as the experimental value of foF2 in the center of the path. 
The black dots show the Dst index reduced in five times in absolute value. The right 
graph shows the values calculated by the numerical method. Red triangles refer to 
the experiment, black dots describe the curve for the original IRI model, and blue 
circles represent the results for model adaptation. 
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Figure 11. 
Comparison of the model foF2 and hmF2 with experimental medians. 

Figure 12. 
Comparison of the model and experimental values of the parameters foF2 and hmF2 during the disturbed 
period September 6–8, 2017. 

Δ |Δ| RMS RMS (%) 

foF2 0.064 MHz 0.22 MHz 0.25 MHz 6.24 

hmF2 18.9 km 19.5 km 26.7 km 10.4 

Table 4. 
Quantitative estimates of the correspondence between model and experimental medians. 

Figure 13. 
Measured and model values of MUF from September 6 to 8 on the path Cyprus-Lovozero. 

This allows us to conclude that the comparison of the parameters of HF propaga-
tion testifies that the model can be used in the high latitude region as yet, especially 
at adaptation to the data of the current diagnostics. 
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4. Areas of application of the proposed principle 

Since the main area of application of the proposed principle is the polar region, 
it is necessary to point to an important result of [37]. It is shown that when recalcu-
lating a slant TEC into a vertical one, the traditional assumption of the ionosphere 
in the form of a thin layer is admissible. The height of this layer is associated with 
the position of the sub-ionospheric point. The calculated positions of this point are 
shown in Figure 14. The vertical axis represents the maximum latitude of the sub-
ionospheric points in degrees, along the horizontal axis the latitude of the receiver 
in degrees is postponed. 

This indicates that in high latitudes, there is no restriction on the visibility of 
the satellite, that is, on sounding the high-latitude ionosphere according to GNSS 
signals, and allows solving such tasks as tracking the position of high-latitude 
structures: mid latitude ionospheric trough (MIT) and auroral oval. The situation 
with the study of these structures is as follows. The trough generally consists of 
three parts: an equator wall, a trough minimum and a pole wall. Because of the 
large electron density, gradient on either side of the trough affects radio wave 
propagation, the exact position of the trough is very important for solving some 
problems, such as trans-ionospheric communication and navigation [38]. The main 
regularities of the behavior are obtained, and the MIT model is developed using 
foF2 [12] for night winter conditions—the period of the most probable occurrence 
of a trough. The corresponding behavior of the TEC shows that TEC can be used to 
identify the position of the dip [39]. It is shown that TEC always shows the presence 
of the trough. 

The auroral oval in the high-latitude ionosphere is the boundary of the polar cap 
and is defined as the region of the ionosphere, which is the projection of the plasma 
layer and cusp along the lines of force of the geomagnetic field. The position of the 
auroral oval zone is projected onto the boundary of the outer radiation belt of the 
Earth. During magnetic storms, it shifts toward the mid-latitude, following a shift in 
the outer radiation belt. The displacement is almost linear and can reach 10 degrees 
with the growth of the Kp index to 5. With greater growth of Kp, the auroral oval 
boundary can jump discontinuously in the middle latitudes due to a significant dis-
tortion in the structure of the magnetosphere. In the auroral oval zone, the frequency 
of failures and refusals of radio communication and navigation equipment increases 
[37], so it is important to monitor its position. The possibility of such tracking not 
only in the meridional but also in the longitude directions is shown in [40]. 

Figure 14. 
Position of the maximum latitude of the sub-ionospheric point, depending on the latitude of the receiver. 
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An additional advantage of using the GLONASS platform for implement-
ing the RTS method is associated with the ability to determine the N(h) profile 
from the initial height of the ionosphere to the height of the platform. This is 
due to the possibility of determining the critical frequency that can be used to 
adapt the model. The simulation results are shown in Figure 15 for conditions 
of February 21, 2014, UT = 12, the satellite’s altitude is 20,000 km, the satellite’s 
latitude is 68.96°, longitude is 33.0°, the transmitter’s latitude is 68.56°, longitude 
is 33.08°. The left panel of Figure 15 shows the N(h)-profile as Fn(h)-curve (N is 
proportional to Fn2), the middle—trajectories of waves, and the right panel shows 
the transionogram. 

It can be seen that foF2 can be determined with an accuracy of 0.25 MHz. In 
experiments, it is possible to use the basic advantage of the model IRI-Plas, namely, 
its adaptation to measured value of ТЕС, which allows modifying plasmaspheric 
part of N(h)-profiles. 

One more important possible application of the RTS method can be an instal-
lation of the receiver on low-flying mini satellites. The launch of such satellites 
is carried out constantly. It is possible to point out the results presented at the 
conference [41]. The micro-satellite “Chibis-M” was launched into a near-Earth 
orbit with parameters close to those of the ISS (513 km altitude, inclination 51°) 
on January 25, 2012 as a passing load on the cargo spacecraft Progress. It suc-
cessfully operated for more than 2.5 years. The Vernov satellite was launched on 
July 8, 2014 to a solar-synchronous orbit with a small eccentricity—the height of 
the pericenter is 640 km, the altitude of the apocentre is 830 km, the inclination 
is 98.4°, and the period of revolution is 100 min. The Lomonosov satellite was 
launched on April 28, 2016 also to the solar synchronous orbit, circular with a 
height of 490 km, an inclination of 98.4° and a period of 90 min. The realization 
of these microsatellites has shown that with their help, it is possible to successfully 
carry out electromagnetic monitoring of the surrounding space environment. A 
new space project of the Moscow State University is being discussed (Lomonosov 
“Universal-SOKRAT”) to create a grouping of satellites for real-time monitoring in 
near-Earth space. Methodological aspects of the spatiotemporal resolution of the 
plasma-wave parameters of the ionosphere with the help of two copies of Trabant 
MC (2020–2024), simultaneously deduced into an orbit with a height of ~500 km 
are considered. They intended for investigation of: (a) the mechanisms of occur-
rence and dynamics of ionospheric inhomogeneities of different scale depending 
on the active processes on the Sun and on Earth; (b) regularities of changes in 
plasma-wave and electromagnetic parameters in the ionosphere of natural and 
technogenic character in a wide dynamic and frequency ranges; (c) applied 
aspects, consisting in conducting diagnostics of ionospheric manifestations of 
space weather. 

Figure 15. 
Illustration of the possibility to obtain foF2. 
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5. Conclusions 

The long-term use of satellite sounding data has made it possible to obtain the 
most important knowledge about near-Earth space. Climatological models of iono-
spheric parameters have been developed, which have found the widest application 
in various technological systems. However, at the present stage, it is necessary to 
provide operational support for these systems with ionospheric information. Here, 
it is necessary to look for ways of modifying different methods. In the ionospheric 
models, it is an adaptation to the parameters of the current diagnosis and the use 
of the total electron content for this diagnosis. A modification is also required in 
transionospheric sounding methods. It is shown that the main role can be played 
by the method of reverse transionospheric sounding, combined with the measure-
ment of TEC. The installation of an on-board ionosonde receiver on the GLONASS 
platform helps to solve much problems. First, there is no need to develop a new 
platform for the polar high-apogee experiment, and second, the installation of the 
ionosonde receiver does not violate the electromagnetic compatibility requirements, 
the “timing” of the ionosonde to the exact time and the ephemerides of the satellite 
is simplified, and the transionogramms of the RTS can be transmitted through the 
service channels, besides, sizes of the reception aerial decrease at restriction of a 
frequency range [21]. 
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Chapter 5

High-Resolution Satellite Imagery
Classification for Urban Form
Detection
Juan Manuel Núñez, Sandra Medina, Gerardo Ávila 
and Jorge Montejano

Abstract

Mapping urban form at regional and local scales is a crucial task for discerning 
the influence of urban expansion upon the ecosystem and the surrounding environ-
ment. Remotely sensed imagery is ideally used to monitor and detect urban areas
that occur frequently as a consequence of incessant urbanization. It is a lengthy
process to convert satellite imagery into urban form map using the existing methods
of manual interpretation and parametric image classification digitally. In this work, 
classification techniques of high-resolution satellite imagery were used to map 50 
selected cities of study of the National Urban System in Mexico, during 2015–2016. 
In order to process the information, 140 RapidEye Ortho Tile multispectral satellite
imageries with a pixel size of 5 m were downloaded, divided into 5 × 5 km tiles and 
then 639 tiles were generated. In each (imagery or tile), classification methods were
tested, such as: artificial neural networks (RNA), support vector machines (MSV), 
decision trees (AD), and maximum likelihood (MV); after tests, urban and non-
urban categories were obtained. The result is validated with an accuracy method 
that follows a stratified random sampling of 16 points for each tile. It is expected 
that these results can be used in the construction of spatial metrics that explain the
differences in the Mexican urban areas.

Keywords: urban form, remote sensing, high-resolution satellite imagery,
advanced classification methods, GIS integration

1. Introduction

Urbanization, as a process that manifests itself through the concentration of
population in cities, is considered one of the most powerful and visible anthro-
pogenic forces on the planet. Its influence is manifested on topics ranging from
environmental changes on a global, regional, and local scale [1, 2], socioeconomic
problems [3] to urban planning [4]. Thereby, several investigations use maps of
urban areas to assess the influence of urbanization on natural and human environ-
ments and to estimate some important aspects of urbanization, such as its composi-
tion [5], size, scale, and form [6].

The urban form is the most visible result of the economic, social, cultural, and
environmental driving forces of urban development [1]. Therefore, it is a spatial
reflection of different processes across the evolution of a city and its characterization
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is a valuable source of information for urban planning. Ultimately, urban form is 
the result of the symbiotic interactions of infrastructures, people, and economic 
activities in a city that is constantly evolving in response to social, environmental, 
economic, and technological development [7]. 

In the cities, urban form is materialized by the heterogeneous physical align-
ment and characteristics of buildings, streets, and open spaces at different levels of 
spatial resolution. This high heterogeneity of materials and urban objects in terms 
of size, forms, and urban fabric morphology of the cities can be detected through 
the use of remote sensing imagery. This type of research provides very important 
information in relation to urban issues on planning, housing, health, transporta-
tion, and economic policies; especially for regions in developing countries that are 
less documented. 

Most of the research efforts have been made for mapping urban landscapes 
at various scales and on the spatial resolution requirements of such mapping [8]. 
Different remote sensing techniques have already shown their value in mapping 
urban areas with different spatial, geometric, spectral, and temporal resolutions for 
different purposes. Therefore, the selection of an appropriate estimation method 
based on remotely sensed data characteristics is important. 

Traditional remote sensing literature review suggests that major approaches 
include pixel-based image classification [9, 10], spectral index [11, 12], object-
oriented algorithms [13, 14], and machine learning like artificial neural networks 
[15] and decision tree classification algorithm [16]. Techniques, such as data/image 
fusion, have also been explored [17]. Recent research has used high and very high 
spatial resolution remote sensing imagery to quantitatively describe the spatial struc-
ture of urban environments and characterize patterns of urban morphology [18]. 

Remote sensing approach compared with traditional methods for mapping the 
urban form provides certain advantages due to its convenience, efficiency, and 
coverage [19]. For this reason, the study of the detection of the urban form and 
its corresponding derived attributes through different types of satellite images is 
becoming of more interest [16, 20–23]. 

Regardless of the satellite imagery classification method employed for urban form 
detection, they can be divided into two categories: supervised and unsupervised 
methods. Those results obtained by the first ones usually produce a greater reliability, 
nevertheless they require more processing steps for the construction of training data. 

For the supervised methods, the classifiers based on support vector machines 
(SVM) are very popular due to their good performance and robustness [24, 25]. 
Additionally, the methods based on the artificial neural networks (ANN) are also 
widely used for the classification of urban areas [26]. For example, Dridi et al. [27] 
combine multiple SVM for the mapping of urban extensions in the city of Algeria 
and compare them with ANN to support the experimental analysis to monitoring 
the spatiotemporal phenomenon of urban sprawl. Other supervised classification 
methods, such as decision tree (DT), regression model (RM), and maximum likeli-
hood (ML), can also provide plausible results in the mapping of urban areas [28]. 

In this work, we evaluated four supervised classification methods (SVM, ANN, 
DT, and ML) using satellite images of earth observation, to integrate with a GIS 
approach the mapping of the urban form in 50 Mexican cities. The rest of this 
document is organized as follows: in Section 2, the context of the cities selected 
for the test and the dataset used are briefly presented; in Section 3, it is described 
the methodology with the proposed classification strategy for urban mapping that 
includes the preprocessing of RapidEye images, the collection of training samples, 
the classification methods evaluating the validation strategy, and the postprocessing 
GIS approach. The experimental results obtained and their discussions are presented 
in Section 4. Finally, the conclusions of the work are expressed in Section 5. 
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2. Context 

2.1 Study area 

In Mexico, urbanization has been associated with increased prosperity and 
improvements in quality of life. Urban areas, lead in expanding coverage of basic 
and social services, also offer better access to other services and amenities, includ-
ing health care and education. Moreover, Mexico’s growing middle class and declin-
ing inequality in recent decades seem to be definitely urban phenomena [29]. 

There have been important changes on the spatial form of Mexican cities over 
the past 30 years: most notably urban growth is characterized as distant, dispersed, 
and disconnected. Between 1980 and 2010, the built-up area of Mexican cities 
expanded on average by a factor of seven and the urbanized area of the 11 biggest 
metropolitan areas with more than 1 million inhabitants in 2010 has even grown 
by a factor of nine (SEDESOL 2012). This rapid spatial transformation of most 
Mexican cities presents important challenges for their potential to promote green 
and inclusive growth. To solve these problems, different initiatives have made 
significant efforts to put in place measurement systems and to broaden information 
about urban dynamics. 

An ambitious national initiative, the National Urban System (NUS) is a uni-
fied platform to support decision-making for urban and housing policies. The 
NUS, launched by Mexican federal agencies in 2012, exemplifies a significant 
effort to broaden information and understanding about urban dynamics and 
has been recognized as innovative among Latin American urban initiatives. 
This system is a reference to analyze spatial patterns of Mexican cities, their 
causes, and their impact and to provide an analytical basis to understand urban 
phenomenon. 

The National Population Council (Consejo Nacional de Población, CONAPO) and 
the Secretariat of Social Development (Secretaria de Desarrollo Social, SEDESOL) 
put together the NUS on the basis of data from the Population and Housing Census 
(2010) with the objective of creating a system to support strategic planning and 
decision-making in urban areas and to provide all sectors (state governments, munici-
palities, academia, private sector, and general users) with integrated metropolitan 
and urban information on demographic and socioeconomic variables. The NUS com-
prises 384 cities with over 15,000 inhabitants each, out of which 59 are metropolitan 
areas, 78 conurbations (suburban centers), and 247 urban centers. About 81.2 million 
people or 72.3% of the country’s population live in these 384 cities. 

The study area corresponds to a 50 cities sample of the NUS that include three 
types of cities, classified on the basis of geographical delimitations defined by the 
NUS (Figure 1). 

These 50 urban areas include: 

i. 12 metropolitan areas defined as a group of municipalities that share a cen-
tral city and are highly integrated with more than 250,000 residents: (1) 
Aguascalientes, (2) Monclova-Frontera, (3) Juárez, (4) San Francisco del 
Rincón, (5) Moroleón-Uriangato, (6) Tula, (7) Tehuacán, (8) Rioverde Ciudad 
Fernández, (9) Nuevo Laredo, (10) Coatzacoalcos, (11) Tianguistenco, and 
(12) Teziutlán. 

ii. 16 urban conurbations that extend across more than one locality and have 
more than 15,000 residents: (13) Ensenada, (14) Campeche, 
(15) Manzanillo, (16) Tapachula de Córdova y Ordóñez, (17) 
Guanajuato, (18) Irapuato, (19) Chilpancingo de los Bravo, (20) Ciudad 
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Lázaro Cárdenas, (21) Uruapan, (22) Zitácuaro, (23) San Juan Bautista 
Tuxtepec, (24) Chetumal, (25) Ciudad Obregón, (26) Cárdenas, 
(27) Túxpam de Rodríguez Cano,and (28) Fresnillo. 

iii. 22 urban centers that have more than 15,000 residents and that do not extend 
beyond the boundaries of their locality: (29) La Paz, (30) Ciudad del Carmen, 
(31) Ciudad Acuña, (32) Comitán de Domínguez, (33) San Cristóbal de las 
Casas, (34) Cuauhtémoc, (35) Delicias, (36) Hidalgo del Parral, (37) Victoria 
de Durango, (38) Salamanca, (39) Iguala de la Independencia, (40) Ciudad 
Guzmán, (41) Lagos de Moreno, (42) Apatzingán, (43) San Juan del Río, 
(44) Ciudad Valles, (45) Los Mochis, (46) Culiacán Rosales, (47) Mazatlán, 
(48) Navojoa, (49) Heroica Nogales, and (50) Ciudad Victoria. 

2.2 Materials 

Urban areas were identified by looking at the layer of urban polygons of 
the geostatistical framework, version 5.0 of the National Institute of Statistics 
and Geography (Instituto Nacional de Estadística y Geografía, INEGI). Later, 
satellite images were obtained for the binary classification between urban and 
nonurban areas that covered the 50 study cities, for which 140 RapidEye images 
of the period 2015–2016 were acquired, through the Planet platform (www. 
planet.com). 

The main characteristics of these images are: (a) spatial resolution of 5 m and 
covered area per image of 25 km2; (b) 5-band spectral resolution (blue 440–510 nm, 
green 520–590 nm, red 630–685 nm, red edge 690–730 nm, and near-infrared 
760–850 nm); (c) 12-bit radiometric resolution, and (d) Universal Transverse 
Mercator (UTM) and WGS84 Horizontal Datum. 

Additionally, a digital elevation model (DEM) of the Mexican territory was 
downloaded to perform the radiometric and atmospheric corrections. Finally, for 
the collection of training samples, a Web Map Service (WMS) of a SPOT satellite 

Figure 1. 
Selected cities of study, National Urban System and classification of city types. Source: Own elaboration based 
on data from the secretariat of social development (Secretaría de Desarrollo Social, SEDESOL). 
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images mosaic provided by the Mexico Reception Station (Estación de Recepción 
México, ERMEX) was used, at a resolution of 1.5 m in true color. 

3. Methodology 

The methodology is split into five main steps as follows: strategy for satellite 
imagery download and preprocessing, training and validation sample selection, 
classification methods, GIS integration, and results evaluation. 

3.1 Strategy for satellite imagery download and preprocessing 

In the first step, the entire Mexican territory was divided into nonoverlapping 
5 × 5 km blocks, with the purpose of selecting blocks that cover the mosaics of 
the images related to the urban areas selected. A total of 639 blocks were selected 
to cover the 50 urban areas. Then, 140 RapidEye Ortho Tile multispectral scenes 
were downloaded through the Planet platform (www.planet.com) to cover all cities 
within the project. The satellite images were selected for the period 2015–2016, 
obtaining a homogeneous selection of acquisition dates and conditions of zero or 
little cloudiness. 

Radiometric and atmospheric corrections were conducted to retrieve surface 
reflectance values by means of the atmospheric and topographic corrections 
software (ATCOR3) implemented in the ENVI virtual IDL machine [30]. Finally, 
mosaics by blocks were prepared for each of the 50 cities. 

3.2 Training and validation sample selection 

To obtain training and validation samples, the generated blocks in the previous 
stage were used to cover the mosaics of the satellite imagery that corresponds to the 
selected. Training and validation data should be representative of the study area 
and of the classification scheme. Because urban is often a relatively rare class that 
covers only a small proportion of the landscape, spatial stratification with propor-
tional class allocation (SpatialProp) was selected to be able to obtain high user’s 
accuracy of urban class [31]. 

In the SpatialProp strategy, the sample size is allocated to each class proportional 
to the areal coverage in the reference set, with the constraint that each spatial 
stratum receives an equal total sample size. For example, if the urban and nonurban 
classes comprised 25 and 75% of the area of the entire region, respectively, the 
sample allocation in each spatial stratum would be 25% urban and 75% nonurban. 
According to Jin et al. [31] in each 5 × 5 km block, 16 random samples are assigned 
to the urban and nonurban strata proportional allocation. For example, in our 
hypothetical situation, nonurban occupies 75% of the area and urban occupies 25%. 
Given the total sample size of 16, 12 nonurban pixels and 4 urban pixels will be 
selected following the designs of SpatialProp. 

For the 639 blocks employed for the 50 selected urban areas, 20,448 sampling 
and validation points were assigned. Later, each of the data points were verified 
with the related category based on the RapidEye mosaic and the Web Map Service 
(WMS) of a SPOT Image. 

3.3 Classification methods 

Machine-learning classification has become a major focus of the remote-sensing 
literature since it is generally able to model complex class signatures without 
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making assumptions about the data distribution, i.e., it is nonparametric [25]. A 
wide range of studies have generally found that these methods tend to produce 
higher accuracy compared to traditional parametric classifiers, especially for 
complex data with a high-dimensional feature space [32, 33]. 

However, parametric maximum likelihood (ML) classifier method is the most 
commonly used remote-sensing classification method [34]. In this work, we evalu-
ate the classification methods of artificial neural networks (ANN), support vector 
machines (SVM), decision tree (DT), and maximum likelihood (ML) for each city. 
For each of this classifier, we can measure the accuracy based on the use of an error 
matrix. Below, there is a brief description of each referred methods. 

3.3.1 Artificial neural networks (ANN) 

An artificial neural network is a massive parallel distributed processor made up 
of simple processing units, which has a natural propensity for storing experiential 
knowledge and can make it available for use [35]. The model is formed by artificial 
neurons that emulate biological neurons and the synaptic connections among them; 
it regulates them through the process of solving problem [36]. 

The network needs to be “trained” with a sufficiently large number of examples 
in order to be able to make the appropriate inferences. The procedure of training 
involves groups of input data together with the expected output data. Once the 
system of neurons has been trained, the network allows the processing of imprecise 
information, the generalization of known responses to new situations, and the 
prediction of outcomes. They are appropriate models for dealing with a large set 
of variables and their nonlinearity is convenient for the assessment of complex 
systems [37]. 

The links with the neurons located in the so-called hidden neuron layer take 
then different weights and are educated depending on the required output, thus 
they can model complex relationships among variables. The system requires feed-
forward and backpropagation processes to allow the network to get trained [38]. 
The visualization of this stage is accomplished through error analysis. If the error 
becomes smaller and asymptotic, the network will be ready to receive new input 
data and to predict an output [37]. 

The ANN models used in this study are of the multilayer perceptron ANN type, 
a model in which all neurons are fully connected to adjacent layers while layers 
are not connected to each other at all [39, 40]. There are three types of layers in a 
typical multilayer perceptron network: input layer, hidden layer, and output layer. 
This architecture is shown in Figure 2. In each case, the training of the proposed 
network was performed with a backpropagation algorithm which is a supervised 
learning procedure [41]. 

Figure 2. 
Artificial neural networks classifier. Source: adapted from [39]. 
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The main tasks of remote sensing data analysis in which the application of ANN 
standard backpropagation for supervised learning is reported are classification, 
more commonly land cover classification [42, 43], unmixing [44, 45], and retrieval 
of biophysical parameters of cover [46]. Other applications of ANNs are also 
reported in change detection, data fusion, forecasting, preprocessing, georeferenc-
ing, and object recognition. 

3.3.2 Support vector machines (SVMs) 

Support vector machines are a supervised nonparametric statistical learn-
ing technique that has no assumption made on the underlying data distribution 
[47]. Initially, the method is presented with a set of labeled data instances and the 
SVM training algorithm aims to find a hyperplane that separates the dataset into 
a discrete predefined number of classes in a fashion consistent with the training 
examples [48]. Where, optimal separation hyperplane term is used to refer to the 
decision boundary that minimizes misclassifications, obtained in the training step 
and learning refers to the iterative process of finding a classifier with optimal deci-
sion boundary to separate the training patterns (in potentially high-dimensional 
space) and then to separate simulation data under the same configurations (dimen-
sions) [49]. 

In its simplest form, SVM are linear binary classifiers that assign a given test 
sample a class from one of the two possible labels [47]. Figure 3 illustrates a simple 
scenario of a two-class separable classification problem in a two-dimensional input 
space where the solution for a typical two-dimensional case where the subset of 
points that lies on the margin (called support vectors) is the only one that defines 
the hyperplane of maximum margin. 

An important generalization aspect of SVMs is that frequently not all the avail-
able training examples are used in the description and specification of the separat-
ing hyperplane. The subset of points that lie on the margin (called support vectors) 
is the only one that defines the hyperplane of maximum margin. If the two classes 
are not linearly separable, the SVM tries to find the hyperplane that maximizes the 
margin while, at the same time, minimizing a quantity proportional to the number 
of misclassification errors [50]. The tradeoff between margin and misclassification 
error is controlled by a user-defined constant [51]. SVM can also be extended to 
handle nonlinear decision surfaces. Boser et al. [52] propose a method of projecting 

Figure 3. 
Linear support vector machine classifier. Source: adapted from [47]. 
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the input data onto a high-dimensional feature space using kernel functions and 
formulating a linear classification problem in that feature space [53]. 

In case of nonlinear classification, SVM can perform the classification by using 
various types of kernels which turn nonlinear boundaries to linear ones in the 
high-dimensional space to define optimal hyperplane [54]. In this study, four types 
of kernels (linear, polynomial, radial basis function, and sigmoid) were used for the 
SVM classification. 

3.3.3 Decision tree (DT) 

A decision tree is a flow chart like tree structure, defined as a classification 
procedure that recursively partitions a dataset into smaller subdivisions on the basis 
of a set of tests defined at each branch (or node) in the tree [55]. Figure 4 illustrates 
a tree composed of a root node (formed from all of the data), a set of internal nodes 
(splits), and a set of terminal nodes (leaves). Each circle is a node at which tests (T) 
are applied recursively, in order to split the data into smaller groups. The labels 
(A, B, C) at each leaf node refer to the class label assigned to each observation. 

In this framework, a DT classifier performs multistage classifications by using 
a series of binary decisions to place pixels into classes. Each decision divides the 
pixels in a set of images into two classes based on an expression. It is possible to 
divide each new class into two more classes based on another expression and defines 
as many decision nodes as needed. Decision trees have significant intuitive appeal 
because the classification structure is explicit and therefore easily interpretable 
since the results of the decisions are always classes. Furthermore, it is possible to use 
data from many different sources and files together to make a single DT classifier. 

The construction of decision tree classifier does not require any domain 
knowledge of parameter setting, and therefore, is appropriate for satellite imagery 
classification [56]. The learning and classification steps of decision tree induction 
are simple and fast. In general, decision tree classifier has good accuracy. Decision 
tree induction algorithms have been used for classification in many applications 
areas, including remote sensing [57]. Decision trees have several advantages over 
traditional supervised classification procedures used in remote sensing such as 
l ISODATA clustering and maximum likelihood classifier algorithms [58]. In 

Figure 4. 
Decision tree classifier. Source: adapted from [55]. 
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particular, decision trees are strictly nonparametric and do not require assumptions 
regarding the distributions of the input data. In addition, they handle nonlinear 
relations between features and classes, they verify missing values and are capable of 
handling both numeric and categorical inputs in a natural manner [55]. 

3.3.4 Maximum likelihood (ML) 

Into the classic remote sensing image classification techniques, maximum likeli-
hood (ML) classifier, widely implemented in commercial image-processing software 
packages, is the most frequently method used to pixel-wise classification [34]. ML 
classifier assumes that the statistics for each class in each band is normally distributed 
and calculates the probability that a given pixel belongs to a specific class. Unless the 
algorithm selects a probability threshold, all pixels are classified. Each pixel is assigned 
to the class that has the highest probability, that is, the maximum likelihood [41]. 

Statistical techniques such as ML estimation usually assume that data distribu-
tion is known a priori [59]. The ML algorithm in remote sensing classification 
is parametric and depends on each class and is represented by a Gaussian prob-
ability density function, which is completely described by the mean vector and 
variance–covariance matrix using all available spectral bands, and if possible, 
ancillary information (Figure 5). The maximum likelihood classifier is based on 
an estimated probability density function for each of the reference classes under 
consideration, where the class statistics is obtained from the training data. Given 
these parameters, it is possible to compute the statistical likelihood of a pixel vec-
tor as a member of each spectral class [60]. 

The maximum likelihood classifier is simple and robust enough to accommodate 
modifications. With the advent of commercial high and very high spatial resolution 
sensor data, the ML classifier is appropriate for many urban applications [61]. In the 
context of the new generation of very high spatial resolution commercial satellite 
sensors, data from these sensors are high volume and they measure large spectral 
variations in urban land cover, so that in the absence of classifiers designed to deal 
with such data, simplicity in the maximum likelihood can accommodate large 
datasets, and the modifications outlined [62]. 

Figure 5. 
Maximum likelihood classifier. Source: adapted from [59]. 
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3.4 Validation strategy 

In this step, the overall classification accuracies were determined from the 
error matrix by calculating the total percentage of pixels correctly classified for the 
classification methods of: (i) artificial neural networks (ANN); (ii) support vector 
machines (SVM) for linear (ML), polynomial (MP), radial basis function (MRBF), 
and sigmoid (MS) kernels; (iii) decision tree (DT); and (iv) maximum likelihood 
(ML). Since this assessment takes only the diagonal of the matrix into account, the 
Kappa coefficient, which is based on all the elements in the confusion matrix, was 
also calculated [63]. The overall accuracy and kappa values were determined using 
test datasets, obtained with the SpatialProp strategy for training and validation 
samples developed in Section 3.2. 

With the approach of more advanced digital satellite remote sensing techniques, 
the necessity of performing an accuracy assessment has received renewed inter-
est [64]. Accurate assessment or validation is an important step in the processing 
of remote sensing data. At present, the geographic information systems and 
remote sensing communities are becoming more interested on accurate topics. 
Technological developments in the area of data processing offer more and more 
possibilities. In this work, the collection of training samples collected from a Web 
Map Service (WMS) of a SPOT satellite images mosaic at a resolution of 1.5 m in 
true color is used. The data collected by this method are comparable to the field data 
employed to assess the accuracy of these remote sensing products. 

3.5 GIS integration 

The different nonparametric classifiers implemented in this work, such as an 
artificial neural network, decision tree, support vector machines, and the tradi-
tional maximum likelihood classifier, have their own strengths and limitations. 
For example, when sufficient training samples are available and the feature of 
land covers in a dataset is normally distributed, a maximum likelihood classifier 
may yield an accurate classification result. In contrast, when an image data are 
anomalously distributed, neural network and decision tree classifiers may demon-
strate a better classification result [65, 66]. Some other times, machine-learning 
approaches provide a better classification result than ML, although some tradeoffs 
exist in classification accuracy, time consumption, and computing resources [67]. 

Previous research has indicated that the integration of two or more classifiers 
provides improved classification accuracy compared to the use of a single clas-
sifier [67–69]. A critical step is to develop suitable rules to combine the clas-
sification results from different classifiers. Some previous research has explored 
different techniques, such as a production rule, a sum rule, stacked regression 
methods, majority voting, and thresholds, to combine multiple classification 
results [69, 70]. 

In this step, we have employed a GIS approach to integrate the results of the 
ANN, SVM, DT, and ML classifiers to produce a better final map of urban form. 
Different urban mapping hybrid approaches have already been combined to 
achieve better results [71, 72]. In our approach, the matching results of two or more 
methods evaluated are combined by the superposition function with the results of 
the best evaluated method. Subsequently, through a selection of these attributes, 
the pixels of the urban and nonurban uses that were identified as the best results 
of the combination within a GIS environment are extracted. The resulting map 
was validated again, revealing that the most likely characteristics of urban and 
nonurban uses were present in the combined pixels. This integration GIS approach 
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has allowed the improvement of the results of the urban area classification for 
the selected cities of study. We suggested that this integration approach can be 
economically and immediately implemented in a standard GIS software package to 
produce urban form maps with higher accuracy from satellite images of high spatial 
resolution for the Mexican National Urban System. 

4. Results and discussion 

In this study, four different supervised classification methods were integrated 
to map urban forms of 50 selected cities of study in the National Urban System 
in Mexico. Maximum likelihood classifier which is a conventional classification 
method and the advanced classification methods: artificial neural networks, 
decision tree, and support vector machines for linear (ML), polynomial (MP), RBF 
(MR), sigmoid (MS) kernels. We found that the artificial neural network classifier 
(overall accuracy of 92.2%) turned out to be the better single classification method. 
Support vector machine (overall accuracy of 89.8%) and maximum likelihood 
(overall accuracy of 89.2%) had similar results. Decision tree classification method 
(overall accuracy of 87.8%) was the lower classification method. The results we 
obtained were evaluated by the overall accuracy which is computed by dividing 
the total number of correct pixels (i.e., the sum of the major diagonal) by the total 
number of pixels in the error matrix. Overall accuracy for ANN, DT, selected SVM 
models, and ML classifiers is summarized in Figure 6. 

After integrating the results obtained by city, using GIS approach, each evaluated 
method produces a result that has an impact on the spatial extent of the urban form, 
this is an important result. GIS approach showed an overall accuracy above the average 
of global reliabilities for each of the 50 selected cities of study; the average reliability 
for the methods evaluated in all the cities was 89.8%; when using GIS approach, this 
average reached 91.2%; this number is higher in 38 of the 50 cities evaluated. The 
approach used in this work has shown good results, although all the classifiers showed 

Figure 6. 
Overall accuracy for ANN, DT, selected SVM models, and ML classifiers. Source: own elaboration. 
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Figure 7. 
(a) Metropolitan areas. Source: own elaboration. (b) Urban conurbations. Source: own elaboration. (c-1) 
Urban centers 29–38. Source: own elaboration. (c-2) Urban centers 40–50. Source: own elaboration. 

81 

http://dx.doi.org/10.5772/intechopen.82729


 
 

 

 
 

  

 
 

 
 

  

 
           

 
 

 
 

 
 

 

  
 

 

Satellite Information Classification and Interpretation 

very little differences in the spatial extent (within ±4%) of the urban class. The result 
for the 50 selected cities of study is shown as follows. Figure 7a shows the metropolitan 
areas, Figure 7b the urban conurbations, and Figure 7c the urban centers. 

5. Conclusions 

Information about urban form maping is essential for proper planning and to 
examine how the recent urban growth has affected the economic performance and 
livability of cities. This methodological approach offers a spatially explicit inputs for 
adjusting urban policy frameworks and instruments in ways that support sustain-
able spatial development and make cities more productive and inclusive. 

In this work, different advance classification methods have been tested for the 
high-resolution satellite imagery classification for urban form detection. SVM 
method proved to be better for classification problems of two classes. Its major 
advantage is the less parameters to make it operational and reach high accuracy 
rates. The employed methodology shows a great potential for the urban form 
mapping, which could help urban planners to understand and interpret complex 
urban characteristics with greater precision, where problems are often cited about 
satellite-based remotely sensed imagery [73]. 

Furthermore, the proposed approach used to integrate results through GIS environ-
ment indicates a robust framework for addressing integrated classification problems in 
the field of remote sensing. This proposed approach allows to obtain better results when 
is used to integrate, on the basis that each of the integrated classification methods pro-
vides the best of its results to the benefit of a more accurate urban form classification. 

Therefore, we believe this proposed approach has great practical value for several 
remote sensing problems and could be improved and applied to various urban applica-
tions in the near future. In this respect, this integration approach can be strengthened 
through the implementation of learning methods to manage the integration of the data 
and therefore obtain more and better reliable results. Finally, we are also interested 
in plainly analyzing the morphological characteristics of the urban form through the 
application of metrics that have, as primary input, the results obtained with this work. 

Acknowledgements 

The authors thank the anonymous reviewers for their comments and sugges-
tions. We also thank the financial support granted by the Fondo Sectorial INEGI-
CONACYT (278953-S0025-2016-1) project. Throughout the project we had the 
technical assistance of the Centro de Investigación en Ciencias de Información
Geoespacial. For the technical support, we thank Sandra Medina and Gerardo Ávila, 
and specially we thank Gabriela Quiroz for the mapping making and visual design. 

82 



 

High-Resolution Satellite Imagery Classification for Urban Form Detection 
DOI: http://dx.doi.org/10.5772/intechopen.82729 

Author details 

Juan Manuel Núñez*, Sandra Medina, Gerardo Ávila and Jorge Montejano 
Centro de Investigación en Ciencias de Información Geoespacial AC (CentroGeo), 
Mexico City, Mexico 

*Address all correspondence to: jnunez@centrogeo.edu.mx 

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/ 
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

83 

http://creativecommons.org/licenses
http://dx.doi.org/10.5772/intechopen.82729


 

 

 
 

 
 

  
  

 

  
 

 
 

 
  

 
  

  

 

 
  

 

 

  
 

 
  

  

  

   
 

 
 

 
 

  

 
 

  
 
 

 
 

  

 
 

 
 

 

Satellite Information Classification and Interpretation 

References 

[1] Seto KC, Satterthwaite D. 
Interactions between urbanization and 
global environmental change. Current 
Opinion in Environment Sustainability. 
2010;2(3):127-128 

[2] Núñez JM, Corona N, Ocampo P, 
Mohar A. Conectando el frente de agua 
marítimo de la zona costera norte de 
Yucatán con la zona metropolitana 
de Mérida. In: Iracheta A, Pedrotti C, 
Patricia R, editors. Suelo Urbano y 
Frentes de Agua: Debates y Propuestas 
en Iberoamérica. México: El Colegio 
Mexiquense, A.C.; 2017 

[3] Caudillo C, Flores S. Tendencias 
espacio-temporales en la segregación. 
In: Tendencias territoriales 
determinantes del futuro de la 
Ciudad de México. México: Consejo 
Económico y Social de la Ciudad de 
México/Consejo Nacional de Ciencia 
y Tecnología/CentroGeo; 2016. 
pp. 153-175 

[4] Mohar A. Tendencias territoriales 
determinantes del futuro de la Ciudad 
de México. Consejo Económico y Social 
de la Ciudad de México; 2016 

[5] Núñez JM. Mapeo de la composición 
urbana, contraste entre dispersión y 
formas compactas en el sur de la Ciudad 
de México. In: Rothe HQ , editor. Ciudad 
Compacta: Del concepto a la práctica. 
Universidad Nacional Autónoma de 
México, Ciudad de México; 2015 

[6] Batty M. The size, scale, and shape of 
cities. Science. 2008;319(5864):769-771 

[7] Besussi E, Chin N, Batty M, Longley P. 
The structure and form of urban 
settlements. In: Remote Sensing of Urban 
and Suburban Areas. Berlin, Heidelberg, 
New York: Springer-Verlag; 2010. 
pp. 13-31 

[8] Weng QH. Remote sensing of 
impervious surfaces in the urban areas: 

Requirements, methods, and trends. 
Remote Sensing of Environment. 
2012;117:34-49 

[9] Guindon B, Zhang Y, Dillabaugh C. 
Landsat urban mapping based on a 
combined spectral-spatial methodology. 
Remote Sensing of Environment. 
2004;92(2):218-232 

[10] Schneider A, Friedl MA, Potere D. A 
new map of global urban extent from 
MODIS satellite data. Environmental 
Research Letters. 2009;4(4):11 

[11] Ridd MK. Exploring a V-I-S 
(vegetation-impervious surface-soil) 
model for urban ecosystem analysis 
through remote sensing: Comparative 
anatomy for cities. International 
Journal of Remote Sensing. 
1995;16(12):2165-2185 

[12] Deng CB, Wu CS. BCI: A biophysical 
composition index for remote sensing of 
urban environments. Remote Sensing of 
Environment. 2012;127:247-259 

[13] Bhaskaran S, Paramananda S, 
Ramnarayan M. Per-pixel and object-
oriented classification methods for 
mapping urban features using Ikonos 
satellite data. Applied Geography. 
2010;30(4):650-665 

[14] Zhou W, Troy A. An object-
oriented approach for analysing and 
characterizing urban landscape at the 
parcel level. International Journal of 
Remote Sensing. 2008;29(11):3119-3135 

[15] Zhang J, Foody GM. Fully-fuzzy 
supervised classification of sub-urban 
land cover from remotely sensed 
imagery: Statistical and artificial neural 
network approaches. International 
Journal of Remote Sensing. 
2001;22(4):615-628 

[16] Schneider A, Friedl MA, Potere D. 
Mapping global urban areas using 

84 



 

   
 

 
  

 
 

 

   

   

 
 

 

 

 

 
 

  

   

 

 
 

 

 
 

  
  

 
 

 

  

 
 

 

 
 

 

 
 

  

 

 
 

 
 

   

 
 

 

High-Resolution Satellite Imagery Classification for Urban Form Detection 
DOI: http://dx.doi.org/10.5772/intechopen.82729 

MODIS 500-m data: New methods and 
datasets based on ‘urban ecoregions’. 
Remote Sensing of Environment. 
2010;114(8):1733-1746 

[17] Byun Y, Choi J, Han Y. An area-
based image fusion scheme for the 
integration of SAR and optical satellite 
imagery. IEEE Journal of Selected Topics 
in Applied Earth Observations and 
Remote Sensing. 2013;6(5):2212-2220 

[18] Puissant A, Zhang W, Skupinski G, 
editors. Urban morphology analysis by 
high and very high spatial resolution 
remote sensing. In: International 
Conference on Geographic Object-Based 
Image Analysis. 2012 

[19] Duan YL, Shao XW, Shi Y, 
Miyazaki H, Iwao K, Shibasaki R. 
Unsupervised global urban area 
mapping via automatic labeling from 
ASTER and PALSAR satellite images. 
Remote Sensing. 2015;7(2):2171-2192 

[20] Bartholome E, Belward AS. 
GLC2000: A new approach to global 
land cover mapping from earth 
observation data. International 
Journal of Remote Sensing. 
2005;26(9):1959-1977 

[21] Gao F, De Colstoun EB, Ma RH, 
Weng QH, Masek JG, Chen J, et al. 
Mapping impervious surface expansion 
using medium-resolution satellite image 
time series: A case study in the Yangtze 
River Delta, China. International 
Journal of Remote Sensing. 
2012;33(24):7609-7628 

[22] Esch T, Marconcini M, Marmanis D, 
Zeidler J, Elsayed S, Metz A, et al. 
Dimensioning urbanization—An 
advanced procedure for characterizing 
human settlement properties and 
patterns using spatial network analysis. 
Applied Geography. 2014;55:212-228 

[23] Sandoval H, Núñez JM. 
Cuantificación de la composición 
biofísica de los ambientes urbanos de 

la ciudad de Mérida, Yucatán basada 
en el análisis de imágenes Landsat TM/ 
ETM+/OLI (1986-2014). In: LCA C, 
LCB P, LCW Q, MET O, MIU C, MOG 
L, editors. Estudios Territoriales en 
México: Percepción Remota y Sistemas 
de Información Espacial. México: 
Universidad Autónoma de Ciudad 
Juárez; 2016 

[24] Xian GZ. Remote Sensing 
Applications for the Urban 
Environment. Boca Raton, FL: CRC 
Press; 2015 

[25] Maxwell AE, Warner TA, Fang 
F. Implementation of machine-
learning classification in remote 
sensing: An applied review. 
International Journal of Remote 
Sensing. 2018;39(9):2784-2817 

[26] Mas JF, Flores JJ. The application 
of artificial neural networks to the 
analysis of remotely sensed data. 
International Journal of Remote 
Sensing. 2008;29(3):617-663 

[27] Dridi H, Bendib A, Kalla M. 
Analysis of urban sprawl phenomenon 
in Batna city (Algeria) by remote 
sensing technique. Analele Universităţii 
din Oradea, Seria Geografie. 
2015;2:211-220 

[28] Bhatta B. Analysis of Urban Growth 
and Sprawl from Remote Sensing Data. 
Berlin, Heidelberg, New York: Springer-
Verlag; 2010. 170 p 

[29] Ferreira FH, Messina J, Rigolini 
J, López-Calva L-F, Lugo MA, Vakis 
R. Economic Mobility and the Rise 
of the Latin American Middle Class. 
Washington, DC: The World Bank; 
2012 

[30] Richter R, Schlapfer D. Geo-
atmospheric processing of airborne 
imaging spectrometry data. Part 2: 
Atmospheric/topographic correction. 
International Journal of Remote 
Sensing. 2002;23(13):2631-2649 

85 

http://dx.doi.org/10.5772/intechopen.82729


 
 

 

 

 
 

 
 

 
 
 

 

  
 

  

 
 

 
 

  

 

 

  

 

  

 

 
 

 

 

 
 
 

   

 

    
 

 

 

 
  

 

   
 

 

 

Satellite Information Classification and Interpretation 

[31] Jin HR, Stehman SV, Mountrakis G. 
Assessing the impact of training sample 
selection on accuracy of an urban 
classification: A case study in Denver, 
Colorado. International Journal of 
Remote Sensing. 2014;35(6):2067-2081 

[32] Ghimire B, Rogan J, Galiano VR, 
Panday P, Neeti N. An evaluation of 
bagging, boosting, and random forests 
for land-cover classification in Cape 
Cod, Massachusetts, USA. GIScience & 
Remote Sensing. 2012;49(5):623-643 

[33] Homer C, Huang CQ, Yang LM, 
Wylie B, Coan M. Development of a 
2001 National Land-Cover Database 
for the United States. Photogrammetric 
Engineering and Remote Sensing. 
2004;70(7):829-840 

[34] Yu L, Liang L, Wang J, Zhao Y, 
Cheng Q, Hu L, et al. Meta-discoveries 
from a synthesis of satellite-based land-
cover mapping research. International 
Journal of Remote Sensing. 
2014;35(13):4573-4588 

[35] Haykin S. Neural Networks: A 
Comprehensive Foundation. India: 
Prentice Hall PTR; 1994 

[36] Atkinson PM, Tatnall A. 
Introduction neural networks in remote 
sensing. International Journal of Remote 
Sensing. 1997;18(4):699-709 

[37] Canziani G, Ferrati R, Marinelli C, 
Dukatz F. Artificial neural networks 
and remote sensing in the analysis of 
the highly variable Pampean shallow 
lakes. Mathematical Biosciences and 
Engineering. 2008;5(4):691-711 

[38] Basheer IA, Hajmeer M. Artificial 
neural networks: Fundamentals, 
computing, design, and application. 
Journal of Microbiological Methods. 
2000;43(1):3-31 

[39] Minsky M, Papert S. Perceptron 
Expanded Edition. Cambridge, MA: 
MIT Press; 1969 

[40] Rosenblatt F. Principles of 
Neurodynamics: Perceptrons and 
the Theory of Brain Mechanisms. 
Washington, DC: Spartan; 1962 

[41] Richards JA, Richards J. Remote 
Sensing Digital Image Analysis. Berlin, 
Heidelberg, New York: Springer-Verlag; 
1999 

[42] Fuller DO. Remote detection of 
invasive Melaleuca trees (Melaleuca 
quinquenervia) in South Florida 
with multispectral IKONOS imagery. 
International Journal of Remote 
Sensing. 2005;26(5):1057-1063 

[43] Augusteijn MF, Folkert BA. Neural 
network classification and novelty 
detection. International Journal of 
Remote Sensing. 2002;23(14):2891-2902 

[44] Liu WG, Wu EY. Comparison of 
non-linear mixture models: Sub-pixel 
classification. Remote Sensing of 
Environment. 2005;94(2):145-154 

[45] Mertens KC, Verbeke LPC, Westra T, 
De Wulf RR. Sub-pixel mapping and 
sub-pixel sharpening using neural 
network predicted wavelet coefficients. 
Remote Sensing of Environment. 
2004;91(2):225-236 

[46] Lafont D, Guillemet B. Beam-filling 
effect correction with subpixel cloud 
fraction using a neural network. IEEE 
Transactions on Geoscience and Remote 
Sensing. 2005;43(5):1070-1077 

[47] Mountrakis G, Im J, Ogole C. 
Support vector machines in remote 
sensing: A review. ISPRS Journal of 
Photogrammetry and Remote Sensing. 
2011;66(3):247-259 

[48] Vapnik V. Estimation of 
Dependences Based on Empirical Data. 
USA: Springer Science & Business 
Media; 2006 

[49] Zhu GB, Blumberg DG. 
Classification using ASTER data and 

86 



 
 

   
 

 

  

 
  

 
 

  
  

  
  

 
 

 
 

 
 

 
 

 
 

 
 

 

  

 

  
 

 
 

 

  

  
 

   
 

 

 
 

   
 

 
 

  

 
 

 

 
 

High-Resolution Satellite Imagery Classification for Urban Form Detection 
DOI: http://dx.doi.org/10.5772/intechopen.82729 

SVM algorithms; the case study of 
Beer Sheva, Israel. Remote Sensing of 
Environment. 2002;80(2):233-240 

[50] Pal M, Mather PM. Support vector 
machines for classification in remote 
sensing. International Journal of Remote 
Sensing. 2005;26(5):1007-1011 

[51] Cortes C, Vapnik V. Support-
vector networks. Machine Learning. 
1995;20(3):273-297 

[52] Boser BE, Guyon IM, Vapnik VN, 
editors. A training algorithm for optimal 
margin classifiers. In: Proceedings 
of the Fifth Annual Workshop on 
Computational Learning Theory. ACM; 
1992 

[53] Vapnik V. The Nature of Statistical 
Learning Theory. New York: Springer 
Science & Business Media; 2013 

[54] Ustuner M, Sanli FB, Dixon 
B. Application of support vector 
machines for land use classification 
using high-resolution RapidEye 
images: A sensitivity analysis. 
European Journal of Remote Sensing. 
2015;48:403-422 

[55] Friedl MA, Brodley CE. Decision 
tree classification of land cover from 
remotely sensed data. Remote Sensing 
of Environment. 1997;61(3):399-409 

[56] De Fries R, Hansen M, Townshend 
J, Sohlberg R. Global land cover 
classifications at 8 km spatial 
resolution: The use of training data 
derived from Landsat imagery in 
decision tree classifiers. International 
Journal of Remote Sensing. 
1998;19(16):3141-3168 

[57] Pal M. Random forest classifier 
for remote sensing classification. 
International Journal of Remote 
Sensing. 2005;26(1):217-222 

[58] Sharma R, Ghosh A, Joshi 
PK. Decision tree approach for 

classification of remotely sensed 
satellite data using open source 
support. Journal of Earth System 
Science. 2013;122(5):1237-1247 

[59] Burges CJC. A tutorial on support 
vector machines for pattern recognition. 
Data Mining and Knowledge Discovery. 
1998;2(2):121-167 

[60] Besag J. On the statistical analysis 
of dirty pictures. Journal of the 
Royal Statistical Society: Series B: 
Methodological. 1986;48(5-6):259-302 

[61] Mesev V. Modified maximum 
likelihood classifications of urban 
land use: Spatial segmentation of prior 
probabilities. Geocarto International. 
2001;16(4):41-48 

[62] Majd MS, Simonetto E, Polidori 
L. Maximum likelihood classification 
of single high-resolution polarimetric 
SAR images in urban areas. 
Photogrammetrie, Fernerkundung, 
Geoinformation. 2012;(4):395-407 

[63] Lucas I, Janssen F, van der Wel FJ. 
Accuracy assessment of satellite 
derived land cover data: A review. 
Photogrammetric Engineering and 
Remote Sensing. 1994;60(4):479-426 

[64] Bharatkar PS, Patel R. 
Approach to accuracy assessment tor 
RS image classification techniques. 
International Journal of Scientific 
and Engineering Research. 
2013;4(12):79-86 

[65] Lu DS, Mausel P, Batistella M, 
Moran E. Comparison of land-cover 
classification methods in the Brazilian 
Amazon Basin. Photogrammetric 
Engineering and Remote Sensing. 
2004;70(6):723-731 

[66] Pal M, Mather PM. An assessment 
of the effectiveness of decision tree 
methods for land cover classification. 
Remote Sensing of Environment. 
2003;86(4):554-565 

87 

http://dx.doi.org/10.5772/intechopen.82729


  

 
 

 

  

 

 

 

 

 

  
 
 

  

  

Satellite Information Classification and Interpretation 

[67] Lu D, Weng Q. A survey of 
image classification methods and 
techniques for improving classification 
performance. International 
Journal of Remote Sensing. 
2007;28(5):823-870 

[68] Huang Z, Lees BG. Combining 
non-parametric models for 
multisource predictive forest mapping. 
Photogrammetric Engineering and 
Remote Sensing. 2004;70(4):415-425 

[69] Steele BM. Combining multiple 
classifiers: An application using spatial 
and remotely sensed information 
for land cover type mapping. 
Remote Sensing of Environment. 
2000;74(3):545-556 

[70] Liu W, Gopal S, Woodcock CE. 
Uncertainty and confidence in land 
cover classification using a hybrid 
classifier approach. Photogrammetric 
Engineering and Remote Sensing. 
2004;70(8):963-971 

[71] Lo CP, Choi J. A hybrid approach 
to urban land use/cover mapping using 
landsat 7 enhanced thematic mapper 
plus (ETM+) images. International 
Journal of Remote Sensing. 
2004;25(14):2687-2700 

[72] Kuemmerle T, Radeloff VC, 
Perzanowski K, Hostert P. Cross-border 
comparison of land cover and landscape 
pattern in Eastern Europe using a hybrid 
classification technique. Remote Sensing 
of Environment. 2006;103(4):449-464 

[73] Carlson T. Preface—Applications 
of remote sensing to urban problems. 
Remote Sensing of Environment. 
2003;86(3):273-274 

88 



 
 

 

 
 

  
       

 
  
  

 
 
 

  
  

 
 

 

  

   
 

  
 

  
   

 

     

 

Chapter 6 

Water Management in Irrigation 
Systems by Using Satellite 
Information 
Gema Marco Dos Santos, Ignacio Meléndez Pastor, 
Jose Navarro Pedreño and Ignacio Gómez Lucas 

Abstract 

Changes in agriculture are associated to the availability of resources and the 
economic and social demands. One of the more important transformations is to 
change rainfed into irrigated crops to increase the yield. In most of the cases, water 
resource and irrigation reservoirs are needed to maintain the yield. However, evapo-
ration from ponds can be an important economic loss and an unsustainable strategy 
for water management, especially in arid and semiarid regions. Efficient methods 
for water storage should be established. In this study, a selected area located close to 
the city of Cartagena (Murcia) and the south of Alicante (Spain) has been studied, 
where there was an important transformation from rainfed to irrigated crops. 
Because of the high temperatures and insolation, the increment of the number of 
reservoirs detected by using remote sensing data and GIS tools may be inefficient 
for water management. The characterization of these reservoirs, to quantify the 
potential loss of water due to evaporation, has been done. The use of these tools 
for analysis could be interesting to find more efficient storage solutions (i.e., better 
spatial distribution of reservoirs, an increment of depth, and reduction of surface 
exposure) for improving the water storage and management. 

Keywords: arid environments, evaporation, irrigated agriculture, 
spatial distribution, water storage 

1. Introduction 

Water management is one of the most important problems for future decades. 
Although there are areas of the planet where the water availability is naturally 
scarce due to the rain and temperature patterns, human pressure on this resource is 
accentuating the problem of scarcity. As reflected in the World Water Assessment 
Program published by UNESCO [1], there are three types of pressures or “drivers” 
on water systems: demographic, economic, and social. Population growth increases 
not only water consumption but also pollution, which is another way to decrease 
water availability. Furthermore, land occupation and urbanization affect the 
dynamics of the ecosystem due to soil sealing, and consequently, the hydrological 
cycle is altered (infiltration processes, aquifer recharge, etc.). Protecting ecosystems 
is highly important to maintain the goods and services they offer us, and it is so nec-
essary for life. Economic growth has allowed the development of modern extraction 
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and production techniques that aggravate water scarcity. Natural dynamics of water 
is affected; i.e., river flows are altered or the water table is reduced. The building of 
infrastructures that benefits the commerce of both products and services associated 
to water management has been increased. The change in the lifestyle of many coun-
tries is reflected in the amount of water consumed, principally in those in which 
access to drinking water is easy and immediate. In contrast, in developing countries 
where there is scarcity and water pollution, it is a great challenge. Therefore, there is 
a social inequality that must be resolved. 

For example, in the case of arid and semiarid areas [2], in which the amount 
of available water is limited due to the shortage and irregularity of rainfall, the 
development of irrigated agriculture has caused an increase in pressure on water 
resources. This affects highly negatively the agriculture, which is one of the 
biggest users of water with respect to the total demand of water (almost 80%) 
[3]. In these areas, where water is a limited resource, population growth exerts a 
great negative pressure on it. Agriculture must be able to supply the population 
even though the availability of water is the limiting factor for food production 
[4]. To guarantee the continuous supply of water for irrigation, small ponds 
are built to store the water and manage it according to their needs [5]. These 
ponds are usually shallow constructions located near the crops that will supply. 
However, it seems that the management of these small reservoirs is based on the 
experience of the farmer and not on contrasted technical criteria [6]. Water is a 
limited and essential resource for life that has to be managed efficiently, equi-
tably, and allow future generations to have access to it. Therefore, the current 
management model should be changed to make sustainable use of available 
water resources and develop strategies that promote savings and minimize losses 
in irrigation [7]. 

Evaporation is defined as a process by which liquid water turns to vapor 
state by heating it (energy breaks the bonds of the molecules) [8]. The main 
factors that influence evaporation are local climatic conditions such as air and 
water temperature, solar radiation, relative humidity, wind speed [9], and the 
geometry of the ponds, for example, evaporation is greater if the relationship 
between area and volume is large [10]. In areas with high insolation, the evapora-
tion from the sheet of water represents a significant loss from the environmental 
and also economic point of view [11]. Different methods are being developed 
to avoid evaporation: there are chemical methods such as stearyl alcohol [12], 
floating modular systems that have different shapes and materials [13], floating 
photovoltaic panels [14], canvas, or suspended coverages [15]. Each method 
may be appropriate depending on the characteristics of the place where it will 
be installed (amount of water stored, area, costs, etc.) [16]. Therefore, it is 
necessary to study tools and develop management strategies that improve the 
efficiency of water consumption and obtain the potential evaporation from the 
ponds and reservoirs. 

The use of Geographic Information Systems (GIS) in the study of water 
resources allows us to know the dynamics of them, and therefore, models with 
different scenarios of water availability or demands can be developed [17]. With 
these models, different projections can be made in order to develop management 
scenarios more suited to the state of resources. This technology, GIS, is very suitable 
due to the amount of information that can be incorporated into the models, and 
the possibility of viewing the information in the form of maps [18]. In developing 
countries, this tool can help the management of its resources with a relative low 
cost and the large number of free images obtained over many years from remote 
sensing. Moreover, in those countries in which it is not possible to collect data in situ 
because of the cost, time, or access due to legal causes or because of war conflicts. 
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GIS combining remote sensing help to solve many problems related to resources 
management. 

Remote sensing is being a very useful method to delimit and study water 
bodies, especially due to the difficulty of obtaining continuous information. 
Due to the contrast between the reflectance of the sheet of water and that of the 
earth surface [10], it is possible, through satellite images, to study and monitor 
the water storage [19], to observe the changes in the surface of water bodies over 
time, study the evolution of the irrigation reservoirs of an area [20], estimate 
its evaporation (important in arid and semiarid zones) and volume. The water 
absorbs the energy in wavelengths of the near and medium infrared; therefore, 
the reflected energy of these is low and the water bodies appear in dark color in 
both the multispectral images and the grayscale images [21]. Moreover, satellite 
images facilitate the composition of RGB or false color images where water sheets 
can be detected and analyzed. 

Facing of future scenarios of climate change [22], in which the availability and 
quality of water can be seriously affected [23], it is necessary to improve the use 
of water resources through the incorporation of new techniques and the modern-
ization of infrastructures. This includes the application of regulations [24] that 
support integrated management techniques that guarantee a better resource quality 
and also promote citizen participation [25]. 

In this work, the combined use of remote sensing data and GIS tools, dem-
onstrated with the example, the possibilities of managing and controlling water 
infrastructures and the evaporation of water in agriculture, is one of the major 
consumers of water. 

2. A study case: Campo de Cartagena, southeast of the Iberian Peninsula 

2.1 Study area 

The study area is located beside the Mar Menor in Murcia and south of Alicante 
(Figure 1), Spain. This basin is a sedimentary plain formed by conglomerates, 
marls, sandstones, and clays [26] with approximately 152,000 ha. The Mar Menor 
is the biggest coastal lagoon of Spain that is included in the RAMSAR convention. 
It is in serious danger of pollution as a result of nitrogen and phosphate contribu-
tions from agriculture that cause the loss of its water’s quality, the decrease of the 
diversity and elimination of autochthonous species, and induce the proliferation of 
algae blooms. The two factors that most affect this wetland are tourism (population 
growth) and agriculture; both generate polluting inputs that reach the Mar Menor 
through the different watercourses and infiltration processes. The climate is Bsh 
according to the Köppen classification, with low rainfalls (around 300 mm per 
year) of torrential type especially during the autumn. The average annual tempera-
ture is about 18°C, with hot summer (about 32–35°C in August) and mild winters 
(the temperature usually does not drop below 5°C) [27]. Precisely, the weather is 
one of the main reasons why so many tourists (both Spanish and foreign) come 
every year to visit the Region of Murcia (more than 1 million people in 2015–2016) 
[28], especially near the coast. 

Different improvements, mainly since the second half of the twentieth cen-
tury in the region of Murcia and Alicante province, have favored the growth of 
population, principally located in coastal areas. This increase may be due to the 
improvement of communication channels (roads) and greater availability of water 
resources, which has allowed the development of agriculture. Agriculture is very 
important in the Region of Murcia, because of the good climate and a fertile soil 
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Figure 1. 
Location of study area (Campo de Cartagena, Mar Menor watershed) in the region of Murcia and the south of 
the province of Alicante. 

in many river basins that allows suitable growth of crops, but the lack of water has 
limited the production. Therefore, the change of rainfed crops to irrigated crops 
was benefited by the capital investment (the Tajo-Segura water transfer in 1979, 
the exploitation of the aquifers and the obtaining of desalinated water), which 
increases the availability of water; the productivity of the crops has improved in 
spite of the severe shortage suffered by the area. La Pedrera reservoir (built in 
1985), located in the province of Alicante, is responsible for regulating the water, 
which comes from the Tajo-Segura transfer canal (agricultural and urban supply). 
This reservoir maintains adequate water availability despite the severe scarcity 
suffered in the area [29]. In fact, Murcia exports between 20 and 30% of fruits and 
vegetables in Spain, especially to the European Union [30]. Even with the external 
contributions of water, it is not enough to supply the water needs of the area that 
often suffers serious droughts that cause cuts back not only for agriculture but 
also for urban supply. In addition, during the summer, the demand for water for 
agriculture is higher because of the large water deficit and high temperatures. This 
situation also coincides with the period of greatest urban demand in the area due to 
tourism [31], especially in some areas closer to the coast. For example, it is esti-
mated that on the Costa Cálida, there were almost 4 million visitors in 2016 [28]. 

2.2 Methodology 

The data were obtained from the National Geographic Institute (IGN). We used 
the geodesic reference system ETRS89 and UTM projection zone 30 [32]. 

The Mar Menor watershed was delimited with the Digital Terrain Model 
(MDT25 CC-BY 4.0 scne.es) and the GRASS software using the flow lines that run 
along the maximum slope. The basin covers 151,641 ha and is located mainly in the 
Region of Murcia and a part in the province of Alicante. All the reservoirs of the 
basin were digitized, one by one by, using high-quality orthophotos from the Plan 
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Figure 2. 
Old mills and the new irrigation systems in the Campo de Cartagena. 

Nacional de Ortofotografía Aérea (PNOA) (FotoPNOA 2004–2016 CC-BY 4.0 scne. 
es, pixel size of 25 cm). The same process was followed with old photographs taken 
from a photogrammetric flight along the period from 1973 to 1986 (Fotol 1973–1986 
CC-BY 4.0 scne.es, scale 1: 18,000, pixel size between 27 and 45 cm). The digitiza-
tion process was done with QGIS v.3.2. The ponds and reservoirs were marked with 
points to locate them, and then, they were digitalized to determine their surface 
taking into account the limits of the structure, when they were at maximum capac-
ity. A field trip was also done to compare the results obtained from the images with 
the disposition in fact, checking close to a hundred elements (old mills, ponds, and 
small reservoirs) (Figure 2). 

A heat map was developed from the density of points that identify the location of 
each irrigation ponds/reservoirs to better understand their distribution. Point interpola-
tion aids to visualize in a map the concentration of these in a continuous surface. Three 
parameters are used to create a heat map: the cell size, the bandwidth, and the type of 
calculation used in the interpolation. The cell size will determine the degree of detail on 
the surface. The larger the cell size, the less continuous the color gradient that represents 
the concentration of points will be. The bandwidth (or search radius) is the area around 
each point that the GIS will take into account for density calculation. The type of cal-
culation used in the most common interpolation is inverse distance weighting (IDW), 
which assigns more importance to the functions that are closer than to those that are 
furthest away [33]. In this case, we used a search radius of 5 km and 15 pixels of cell size. 

To estimate annual evaporation losses in the study area, we have used as reference 
the evaporation values published in the article“Regional assessment of evaporation 
from agricultural irrigation reservoirs in a semiarid climate” by Martínez Alvarez et al. 
[34]. They use measures done in the 2003 for the entire Segura River basin (located in 
the southeast of Spain, including the study area). In this article, authors estimate the 
evaporation losses using daily, monthly, and annual data on temperature, precipitation, 
relative humidity, wind speed, wind direction, and solar radiation of 74 agro-meteoro-
logical stations for the period 2000–2006. In addition, some of them have class-A pan 
evaporometer in which evaporation was calculated by a sensor that determinate the 
difference in water level. The class-A pan evaporometer standardized by the US National 
Weather Service is a 120.7-cm diameter and 15-cm-deep cylinder made of galvanized 
iron. It is elevated about 15 cm from the ground by a wooden platform. It must be located 
where the air circulates freely so that it does not affect the measurements [35]. They use 
14,145 irrigation reservoirs for the entire Segura basin, which occupied 4901 ha. They 
obtain as a result the annual evaporation loss in the Segura basin taking into account the 
maximum surface area, which was 68.8 hm3. Based upon this value and considering the 
surface, the evaporation value of water used as a reference is 0.014 hm3 year/ha. This 
helps us to estimate the evaporation loss estimation in our study area. 
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3. Results and discussion 

Figure 3 presents the digitized points that indicate the location of the irrigation 
ponds for both periods. There is a clear increase in the number of points currently 
with respect to the previous period. 

In the image a (Figure 3), the points do not appear distributed following any 
regular pattern; they are dispersed throughout the basin but especially near the 
coast and the urban cores, some of them forming small groups. In the top of the 
basin (NW), in the foothills of the Sierra de Carrascoy and El Valle, there are no 
irrigation ponds because at that time, mechanization and cultivation techniques 
did not allow working the land in areas with steep slopes. In the image b, there is a 
greater increase of irrigation ponds and small reservoirs. Grouping of points can be 
observed mainly in the center of the basin, which is quite flat, and in the top near La 
Pedrera reservoir. There is also a tendency for a high density of points near the coast 
as in the first image. In this case, due to the modern techniques, the irrigated crops 
occupy the foothills of the mountains. 

In order to understand and visualize better the irrigation ponds distribution 
patterns in the area and compare them between two periods, a heat map (Figure 4) 
was created from the density of points. These maps confirm in a very clear way the 
changes produced in the area. 

Figure 3. 
Points marking the location of irrigation ponds in the Mar Menor basin in the 1973–1986 period (a) and 
nowadays (2016–2017) (b). 
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Figure 4. 
Heat maps from dot density of the identified ponds with old photographs (a) and those with current ones (b). 

In the first image (Figure 4a), high density of points (in green) is observed in 
the lower part of the basin and following the coastline. This location may be associ-
ated with the extraction of water from the subsurface aquifers, following the pat-
tern of the traditional systems such as windmills. (A pond was situated near the mill 
so that the water could fall into it.) Moreover, extraction that is more efficient with 
pumps made possible to obtain water from the aquifers at a larger depth coming to 
cause an overexploitation of aquifers. 

The arrival of water from the Tajo-Segura transfer in 1979 increased the avail-
ability of water and relieved the pressure on groundwater [36]. This situation 
benefited production and the expansion of intensive agriculture (with the corre-
sponding construction of small reservoirs to store and supply water). 

In the second image (Figure 4b), there is a generalized increment near the coast and 
a great increase in the upper part of the basin (NE). This difference could be explained 
by the construction in 1985 of the La Pedrera reservoir. It has 1272 ha and can store 
246 hm3. This reservoir receives water from the Tajo-Segura transfer and distributed to 
the Campo de Cartagena by a great canal and others supplied conductions. 

La Pedrera reservoir is also used for urban water supply through the Taibilla 
canal. Therefore, it is easier to supply the crop fields closest to the reservoir. 
Consequently, it has favored a greater development of greenhouses (Figure 5). 
They are grouped near the towns of San Pedro del Pinatar (Murcia) and Pilar de la 
Horadada in the south of Alicante. 
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Figure 5. 
Group of greenhouses near San Pedro del Pinatar in the study area (source: derived from FotoPNOA 2004–2016 
CC-BY 4.0 scne.es). 

Number of 
ponds 

Total area 
occupied (m2) 

Mean area per 
pond (m2) 

Estimated evaporation 
(hm3/year) 

1973–1986 
period 

971 886,349 318 1.24 

2016–2017 
period 

3846 12,013,189 1631 16.82 

Table 1. 
Values obtained from the irrigation pond digitalization and estimated values of evaporation in the study area 
for both periods. 

After the analysis of the data and the digitalization of the irrigation ponds 
from the images in both periods, Table 1 shows a summary of them. A total of 971 
reservoirs were digitized from the data of the period 1973–1986. The sheet of water, 
according to the sum of the surface of all them, accounted to 88.63 ha. The average 
surface area of the reservoir/pond was 318 m2. 

In the second period (2016–2017), 3846 irrigation ponds were digitized from 
PNOA images. The total water surfaces were 1201.32 ha. The average surface area of 
the reservoirs increased to 1631 m2. 

These values indicate that the number of reservoirs in this area has almost incre-
mented four times. For the average surface of ponds, the size at present is five times 
higher than before, however not necessarily deeper than the oldest. Therefore, the 
total area occupied by the reservoirs has increased fourteen times and the size of the 
surface of the reservoirs only five times for the last four decades. 

To estimate the possible evaporation losses from the sheet of water of the 
small reservoirs/ponds, we took as reference the value given for the area of 
0.014 hm3 year/ha [34]. Considering all the reservoirs to their maximum capacity, 
the values estimated for each period were as follows: 

• For the 971 ponds in the first period (determined from the images obtained 
between 1973 and 1986), the annual losses would be close to 1.24 hm3/year, 

• and forthesecond one(magesof PNOA 2016–2017), itwould becloseto16.82 hm3/ 
year. 
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This means that there is a difference of approximately 15.62 hm3/year, parallel 
to the increment of the surface exposure of reservoirs and ponds. This amount of 
water that can be lost is equal to that needed for the supply of a city of 300,000 
inhabitants for a year considering the average water consumption in Spain for 
inhabitants [37]. 

Water scarcity in this area has always been a main concern for agricultural 
production. However, with the transfer from other river basins (i.e., Tajo river), 
water availability has been increased and along with the population growth and 
agricultural yield. This was reflected in the construction of reservoirs/ponds 
in the last years, which has been increased. With this increment, the potential 
evaporation of water from reservoirs and ponds has been dramatically increased 
by the way. 

According to a report managed by the Ministry of Agriculture and Water of the 
Region of Murcia with data from the Space Agency of Meteorology (AEMET), and 
with the collaboration of different universities and institutions, the evolution of 
rainfall does not follow a clear trend, which is a normal situation in that area with 
such irregularities. For temperatures, a slight tendency to increase is observed. In 
fact, according to this report from 1971 to 2009, the average annual temperature 
of the entire Region of Murcia increased from 15.5 to 17°C [38]. Therefore, the 
evaporation loss could be aggravated considering the scenarios based on the climate 
change and the increase in temperature. In this sense, evaporation can be over the 
values estimated in this work. 

In this line, it is important to study and develop measures to avoid water evapo-
ration and improve the efficiency of the irrigation system. For this reason, it is con-
venient to study a better spatial distribution of reservoirs and reduce the number of 
them. Moreover, an increment of depth in their construction can facilitate to store 
the same amount of water with less surface exposure to evaporation. Finally, the use 
of some techniques to cover the ponds can reduce the water surface exposure. 

4. Conclusions 

Remote sensing data are very useful to study and analyze the amount of water 
stored and the management of irrigation systems. The use of these technologies, 
both GIS and remote sensing, can help in the management of decision-making 
about water resources. 

The example given shows that the amount of water that could evaporate rep-
resents a significant loss. In this case, the amount of water that could evaporate 
is almost 14 times higher now. This matches with the increase in the total surface 
occupied by the irrigation ponds. With only a four-time increment in the number of 
reservoirs, the amount of water that could evaporate increases by 350%. Although it 
is an estimation, it is clear that water losses due to evaporation represent a high cost, 
especially in areas where this resource is scarce. 

Despite the water limitations of the area, in the Mar Menor basin, there are 
many agricultural fields that generate tons of fruits and vegetables that provide 
a great social and economic benefit to region. Even with the different sources of 
water, there is still a water deficit that generates (especially during droughts peri-
ods) economic, social, and environmental instability. 

In addition, with the possible effects of climate change that indicates less 
precipitation and higher temperatures, it is expected that the amount of water 
resources available can be seriously affected especially in arid and semiarid areas 
such as Murcia and Alicante, which already suffer the effects of scarcity. Efforts 

97 

http://dx.doi.org/10.5772/intechopen.82368


 

 

 

 
 

Satellite Information Classification and Interpretation 

should be done applying techniques to reduce the evaporation. Therefore, saving 
the resource to avoid losses as much as possible and be able to supply a growing 
population is a priority. 
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Chapter 7

Validation of Satellite (TMPA and 
IMERG) Rainfall Products with
the IMD Gridded Data Sets over
Monsoon Core Region of India
Tumuluru Venkata Lakshmi Kumar, Humberto Alves Barbosa, 
Manoj Kumar Thakur and Franklin Paredes-Trejo

Abstract

This work presents the validation of satellite (TMPA and IMERG) rainfall prod-
ucts against the India Meteorological Department (IMD) gridded data sets (0.25° ×
0.25°) of dense network of rain gauges distributed over the monsoon core region of
India. The validation uses the data sets covering the 20 years (1998–2017) and detects
the time series bias; inter annual variations and Intra Seasonal Oscillations (ISO).
The bias in the two data sets is found to be very less over the core region compared
to whole India. The correlation between daily rainfall IMD and satellite is found to
be +0.88 which is of 99% confidence level. The dominant periodicities in the rainfall
patterns of IMD and satellite are Madden Julie Oscillation (30–60 days) and local
oscillations (less than 20 days) are conspicuous and the normalized power varies from
year to year. During the El Niño and La Niña years, the normalized power of rainfall
pattern is low and high in satellite data sets which infer the suppressed and strongest
activity of MJO over Indian Ocean that modulates the rainfall pattern over India.

Keywords: TMPA, IMERG, IMD gridded rainfall, ISO, validation

1. Introduction

During the recent decades, a number of remotely sensed rainfall products have
been developed from satellites and are being used widely for different applications
such as weather forecasting, hydrology and water resource management. The satel-
lite rainfall data is also useful in assessing the large scale droughts [1] and to monitor
the extreme weather events which is increasing due to climate change [2, 3]. The
estimation of rainfall from satellites mainly depends upon the relationship between
rain rate and the cloud top temperature, observed from the infrared sensors and the
influence of rain drops on microwave radiation. The IR based techniques apply the
empirical methods to obtain the rainfall from the cloud top brightness temperature,
assuming the rainfall originates from the convective clouds [4, 5]. On the other way,
microwave techniques directly sense the radiation emission and scattering occurring
due to presence of hydrometeors and provide the rainfall estimates. The lacuna in
the two methods are IR technique fails in the case of warm clouds and MW measure-
ments are with less frequency compared to IR passes [6]. However, the combination
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assuming the rainfall originates from the convective clouds [4, 5]. On the other way, 
microwave techniques directly sense the radiation emission and scattering occurring 
due to presence of hydrometeors and provide the rainfall estimates. The lacuna in 
the two methods are IR technique fails in the case of warm clouds and MW measure-
ments are with less frequency compared to IR passes [6]. However, the combination 
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of the two aforementioned techniques provide the best estimates of rainfall, which 
was employed in the retrieval algorithms of TRMM Multi-satellite Precipitation 
Analysis (TMPA) and Climate Prediction Centre (CPC) morphing technique 
(CMORPH). The TRMM was launched as the joint effort of National Aeronautics 
and Space Agency (NASA), USA and Japan Aerospace Exploration Agency (JAXA), 
Japan to monitor and assess the tropical rainfall and associated latent heating [7]. 
The main TRMM sensors are a TRMM Microwave Imager (TMI)], precipitation 
radar (PR) and a visible and infrared scanner (VIRS). These are combined variously 
with other IR and gauge-based products [8]. The unique advantage with TRMM that 
it passes through all hours, thus the diurnal variation of rainfall can be studied. The 
3-hourly data records of TRMM rainfall with 0.25 grid resolution are made available 
from the year 1998 to till 2013 and thereafter, the Global Precipitation Measurement 
(GPM), the improved version of TRMM which allowed to better link the data sets 
were been launched [9]. Arrival of GPM brought revolutionary changes in the 
studying the rainfall characteristics of the convective systems, storms etc. Having 
with the high spatiotemporal resolution of 0.10 degree and half hourly precipitation 
products, the GPM rainfall estimates are proven to be more reliable to study the 
characteristics of tropical cyclones and other rainfall induced hazardous events [10]. 

Nevertheless, the satellite rainfall products cannot accurately estimate the rainfall. 
They are much helpful over large areas when there is a limited coverage of rain gauges 
which of their average may not represent the whole areal rainfall picture in terms of 
its variability and magnitude. Over small scale areas, the satellites show inability to 
capture the localized variations. Hence, it ought to validate the satellite rainfall with 
the ground based measurements of any area before is being used. Several studies 
focuses globally to validate the TMPA rainfall products not only with the ground 
based measurements but also with the existing reanalysis products and reported 
various issues among the comparison results. A study over Caspian Sea Region of 
Iran by Duan et al. [11] showed that the TRMM 3B42 version rainfall data replicates 
the monthly and annual variations as gauge data. They also reported that TRMM 
underestimates the heavy rainfall events over Iran. Nair et al. [12] showed that TRMM 
3B42 V6 rainfall products were unable to estimate the accurate amount of orographic 
rainfall (over Western Ghats of India) and it was underestimated over the rain shadow 
regions. But the satellite is able to capture the rainfall gradient from west to east of 
Western Ghats region. It is also reported that the TRMM algorithm was unable to 
pick the average high and low daily rainfall over India [13]. Uma et al. [14] compared 
the TRMM 3B42 V6 rainfall data with the India Meteorological Department (IMD) 
gridded data developed by [15] from 1998 to 2007 and found that at 5° × 5° scales and 
beyond, both products are compatible to each other. The temporal scale assessment 
of them showed the pentads of TRMM rainfall (TMPA) are in good agreement with 
the IMD gridded rainfall data over India. Cao et al. [16] performed the evaluation of 
3B43 TRMM data with the ground measurements of rainfall over Yangtze River Delta 
of China during the period 1998–2016. The results of their study infer that 3B43 data 
overestimates the actual precipitation but maintained the consistency in terms of cor-
relation and bias. The GPM which is the successor of TRMM offering half hourly rain-
fall products were also been validated over different regional scales. The comparison 
of GPM rainfall product IMERG (Integrated Multi satellite Retrievals for GPM) with 
TRMM 3B42 V7 products over southern Tibetan Plateau indicates the GPM outper-
forms the TRMM in all spatial scales [17]. GPM shows better detecting capacity than 
TRMM during light rainy days. Preliminary results of assessment of GPM over India 
show the difficulties in detecting the rainfall events over south east peninsular and 
north eastern parts of India [18]. Though there are numerous studies on the validation 
and comparison of TRMM, GPM rainfall amounts, studies on how satellite rainfall is 
able to capture the dominant periodicities and interannual variability caused by the 
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global teleconnections such as El Niño and La Niña are sparse. The present work has 
been mainly focused on the consistency and ability of satellite (TRMM and GPM) in 
picking the interannual variations and dominant periodicities of Indian south west 
monsoon. The study on the periodical features of rainfall derived from the satellites 
are very important in understanding the large scale circulation patterns and have 
implications on the soil erosion where ground data is not available [19]. Henceforth, 
we focus on the inter-annual variations and prevailing seasonal oscillations of Indian 
summer monsoon rainfall obtained from the TRMM/GPM and IMD gridded data sets 
for the period 1998–2017. 

2. Data and methods 

The daily rainfall data from TRMM 3B42 V7 for the period 1998–2013 has been 
used in the present study along with the IMERG data from 2014 to 2017. The TRMM 
data is available at 0.25° × 0.25° degree spatial resolution published by the Goddard 
Space Flight Centre Distributed Active Archive Centre (GSFC DAAC). IMERG half 
hourly data is available with 0.1° × 0.1° spatial resolutions and the same is consid-
ered from 2014 to 2017. Both the data sets have been averaged to 0.25° × 0.25° degree 
spatial resolution and used in the present study for the period from 1998 to 2017. 
The rainfall data has been extracted to the monsoon core region of India [20] on 
daily basis and converted to monthly scales by cumulating the daily rainfall for the 
months of south west monsoon (June, July, August and September) for the period 
1998–2017. Before the onset of southwest monsoon, the core monsoon region is 
characterized by a heat low and thereafter, establishment of a tropical convergence 
zone takes place in this region [21]. The boundary from the heat low areas over 
the northwestern part of India to the moist convective parts of the eastern part of 
the monsoon zone also exhibit significant variation from year to year. The region 
has different characteristics during a poor and good monsoon years. The monsoon 
core region of India is shown in the Figure 1 and the rainfall data pertaining to this 
region is used for the present analysis. 

IMD gridded data with 0.25° × 0.25° spatial resolution spread over Indian land 
mass has been used as the ground validation in the present study. These data sets were 
developed by Pai et al. [22] based on the rainfall record from 6955 rain gauges located 
in India. Out of 6955 rain gauges, 547 are from IMD; 494 from hydro-meteorology; 74 
from agromet and remaining from the stations maintained by the state government 
India. The average number of stations used to obtain 1 day rainfall is about 3100. This 
version of data is known as IMD4 whereas the earlier versions of this data, IMD3, 
IMD3 and IMD1 are developed for the periods 1971–2005, 1901–2004 and 1951–2007 
0.5° × 0.5° and 1° × 1° spatial resolutions over Indian landmass and 6076, 1380 and 
2140 number of rain gauges were used. The dense network of rain gauge locations 
are depicted in the Figure 1 [22]. After collecting the station rainfall data, Shepard 
interpolation technique has been applied to prepare the gridded data sets and the 
detailed procedure of processing the data can be found from Pai et al. [22]. 

The rainfall data from the TRMM and GPM have been downloaded from the 
website http://mirador.gsfc.nasa.gov. The data sets are available in nc4 data format 
and are processed using the MATLAB as suggested in the http://disc.gsfc.nasa.gov. 
Table 1 gives the complete information on the details of rainfall data sets used from 
TMPA and IMERG including their algorithms. 

In the present work, we combine the two satellites rainfall data of TRMM and 
IMERG covering the period from 1998 to 2017. TMPA 3B42 V7 data sets for the period 
1998–2013 and IMERG rainfall products for the period 2014–2017 were used. Each grid 
value of rainfall over the monsoon core region of India is averaged with the number of 
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grid points and is allotted as the rainfall of the region for the day. Likewise, we com-
puted the daily rainfall over the study region for the southwest monsoon months of 
June to September for the year from 1998 to 2017. The flow chart given below illustrates 
the data retrieval methods used to obtain the daily satellite data (Figure 2). 

Figure 1. 
Monsoon core region of India and density of rain gauges over Indian land mass (source: [20, 22]). 

Algorithm TRMM multi-satellite precipitation Integrated multi-satellite retrievals for GPM 
analysis 

Basic acronym TMPA IMERG 

Data set • 3B42Daily production multisatellite- • 3B-DAY.MS.MRG.3IMERG production 
gauge combination (precipitation) multisatellite-gauge combination 
recommended for general use (precipitationCal) recommended for general 

use 

Spatial grid; 0.25°×0.25° lat/lon; 50°N-S 0.1°×0.1° lat/lon; 60°N-S 
coverage 

Current version 7 5 

Time interval; • 3 h centered at 00, 03, …, 21 UTC; • 30 min centered at 0000, 0030, …, 2330 
span 1998–2013 UTC; 2014–present 

• Other value-added products in data centers • Other value-added products in data centers 

Native format • nc4 (production) • nc4 
• Other value-added products in data centers • Other value-added products in data centers 
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Algorithm TRMM multi-satellite precipitation Integrated multi-satellite retrievals for GPM 
analysis 

Algorithm 
summary 

• Calibrate microwave precip rates to 
TRMM combined instrument 

• Merge microwave (HQ ), giving 
preference to conical-scanners 

• Compute VAR microwave-calibrated IR 
precip rates 

• Fill holes in HQ merged microwave with 
IR estimates 

• Include gauge data by 

• computing monthly satellite-gauge 
and then scaling 3 h data to sum 
to the monthly in each grid box 
(production) 

• scaling 3 h to 3B42 with climatologi-
cal coefficients (RT) 

• Calibrate microwave precip rates to GPM 
combined instrument 

• Merge microwave (HQ ), giving preference 
to conical-scanners 

• Compute PERSIANN-CCS microwave-
calibrated IR precip rates 

• Use CMORPH-style IR motion vectors to 
forward/backward propagate microwave 
maps, then use a Kalman filter to combine 
these and the IR estimates into a weighted 
estimate (early is forward-only) 

• Include gauge data by 

• computing monthly satellite-gauge and 
then scaling 30 min data to sum to the 
monthly in each grid box (final) 

• scaling 30 min to final with climatologi-
cal coefficients (late and early) 

Input • GPROF versions 2010v2 and 2004v for • GPROF2014v2 
microwave various conical scanners 
algorithms • NOAA MSPPS for cross-track scanners 

Source: https://pmm.nasa.gov/resources/documents/home 

Table 1. 
Details on the TMPA and IMERG  data sets. 

Figure 2. 
Flow chart of data retrieval procedure from the satellite (TMPA and IMERG). 

109 

https://pmm.nasa.gov/resources/documents/home
http://dx.doi.org/10.5772/intechopen.84999


 

 
 

  
 

 
  

 

 
 

Satellite Information Classification and Interpretation 

3. Discussion 

3.1 Time series analysis of IMD and satellite (TMPA and IMERG) 

Figure 3 is the daily rainfall averaged over monsoon core region for the period 
1998–2017 from IMD and satellite data sets. The average daily rainfall for the season 
is 6.89 and 7.64 mm for IMD and satellite data sets with mean bias of 0.74 mm. Both 
the data sets show the monsoon characteristics such as less rainfall during the onset of 
monsoon, establishment of monsoon during July and August months and weakening 
of monsoon during the end of September. The daily variability in satellite rainfall is 
found to be higher than IMD indicated by the respective standard deviations (2.14 mm 

Figure 3. 
Mean daily rainfall of IMD and Satellite (TMPA and IMERG) for the period 1998–2017 over monsoon core region 
of India during the SW monsoon season. 

Figure 4. 
Interannual variability of SW monsoon rainfall from IMD and Satellite data over monsoon core region of India. 
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for IMD and 2.29 mm for satellite). It is also observed that satellite is slightly over 
estimated the IMD rainfall. The linear association of both data sets was significant at 
0.01 level with a correlation coefficient of 0.88. However, the correlation coefficient 
between IMD and satellite data sets varied year to year which is the indication of 
degree of good agreement in their magnitudes. The seasonal bias between IMD and 
satellite data sets over monsoon core region varied from −2.6% (2001) to a maximum 
of 28% (2004) which shows the less bias when whole Indian land mass is considered. 
The study of Uma et al. [14] on the validation of TMPA and IMD data sets report that 
TMPA under estimated the Indian rainfall about 100 mm for the period 1998–2007 
(10 year mean rainfall for IMD and TMPA are 939 and 832 mm respectively). But over 
the core region, the satellite data over estimated the IMD of about 90 mm (20 year 
mean rainfall for IMD and satellite are 841 and 932 mm respectively). The percentage 
departures of IMD and satellite rainfall with respect to their long term averages are 
given in Figure 4. By and large, the satellite is able to pick up the monsoon rainfall 
which is evidenced by its negative anomalies during the El Niño years of 2009–2010 
and 2015–2016 and positive anomalies during the La Niña year 2010–2011 respectively. 

3.2 Lomb Scargle Periodogram of IMD and satellite rainfall to study ISO features 

Lomb Scargle Periodogram (LSP) is a well known technique used to detect the 
periodic signals of given data by generating the power spectrum. The advantage of 
LSP is that can be applied for non-uniform and uniform data sets. When the data 
sets are uniform, the LSP turns to classical and in the case of non-uniform samples, 
it takes the Scargle generalized form of periodogram [23]. The expression for the 
classical periodogram can be written as 

2 
__1 N −2πiftn P(f) = gn e N (∑ ) n=1 

The LSP is being used to detect the periodicities of Indian rainfall. Kishore et al. 
[24] studied the precipitation of IMD for a period of 107 years from 1901 to 2007 
using LSP and found different periodicities of 10, 15.7, 23 and 33 years with different 
confidence intervals. The LSP of northeast monsoon rainfall (October to December) 
over peninsular Indian region indicating the 20 and 30–40 days periodicity [25]. 
Since, the LSP is most useful in portraying the periodicities of a season; the applica-
bility of LSP during the south west monsoon season of Indian region will give more 
insight to understand the dominant ISO of southwest monsoon. In the present work, 
we have performed the LSP for the daily rainfall data averaged over monsoon core 
region of India (Figure 1) for the period 1998–2017 for IMD as well as for satellite 
rainfall data sets respectively (Figure 5). From the Figure 5, we see the peaks of nor-
malized power for different periodicities during the SW monsoon season. Wherever, 
the dominant periodicities are captured by IMD as well as satellite. It is well known 
that the dominant periodicities of Indian SW monsoon are (i) a 30–60 days oscil-
lation, known as Madden Julian Oscillation (MJO). It is one of the tropical weather 
phenomena moves eastward and changes the rainfall pattern over Indian latitudes 
based on its arrival, (ii) oscillations having periodicity less than 20, viz., monsoon 
trough, tropical easterly jet, moist static stability, monsoon cloud cover, break and wet 
spells [26]. The overall observation of Figure 5 suggests that the normalized power is 
high for the higher periodicities and is depicted by the both data sets. Two major peaks 
were observed during the 30–60 days MJO oscillations, one is at 40 (slightly less than) 
and the other is in between 50 and 60. These peaks are the representatives of strong 
cycles of MJO which has great impact on Indian summer monsoon. When comes to 
periodicities less than 20 days which are mainly known to be localized variations were 

111 

http://dx.doi.org/10.5772/intechopen.84999


 

  
 

  
 

 
 

 
   

  
  

  
 

 

 

Satellite Information Classification and Interpretation 

Figure 5. 
LSP of daily SW monsoon rainfall of IMD and satellite for the period 1998–2017. 

Figure 6. 
(a and b) LSP of daily SW monsoon rainfall of IMD and satellite for the La Nino year 2011 and for the El 
Nina year 2015. 

also captured by both IMD and satellites. Here we find the dominant periodicities at 
20 and 7 days. However, the magnitude of normalized power during the individual 
years varies from satellite to IMD data sets. For this purpose, we show the LSP for the 2 
years 2010 (La Niña) and 2015 (El Niño) where the monsoon core region experienced 
15 and −11% of its normal seasonal rainfall (1998–2017) (Figure 6a and b). Satellite 
rainfall also show the similar fluctuations as IMD rainfall showed. The LSPs of 2011 
and 2015 show different features though both capture the dominant periodicities. 
The normalized power of IMD rainfall did not vary much when compared with the 
satellite derived rainfall for the years 2011 and 2015. The magnitudes of normalized 
power of satellite show the suppressed activity of MJO in the year and 2015 and the 
pronounced activity during the year 2011. It is reported that the suppressed phase of 
MJO in the Indian Ocean causes the lower rainfall amounts when there is no deep con-
vection [27]. Also, when the MJO is strong, higher temperature anomalies observed 
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over lower troposphere altitudes and cooler air prevails in the upper troposphere 
which brings the more instability. During the presence of El Niño, the easterlies of the 
equatorial north Indian Ocean weakens the monsoon westerlies and in the case of La 
Niña, the westerly anomalies strengthen the monsoon winds. Hence, one may expect 
higher power of MJO in the rainfall pattern during the La Niña and lower power in the 
El Niño [28]. The same features were picked better by the satellite rainfall compared 
to IMD rainfall. As the MJO is the combination of cloud and precipitation processes, 
the satellite is being advantageous as it measures rainfall from the cloud properties 
whereas the IMD measurements are based on the ground measurements. However, as 
mentioned earlier, the dominant features of ISO are well captured by the satellite as 
the ground observations. 

4. Conclusions 

Main features of Indian south west monsoon were studied using the IMD and 
Satellite rainfall data sets. Satellite rainfall data sets show very less bias with relation 
to the IMD over the monsoon core region of India for the period 1998–2017. The 
interannual variability of satellite derived rainfall could show the impact of global 
teleconnections such as El Niño and La Niña evidenced by the negative and positive 
anomalies of rainfall from their respective means respectively. The LSP of averaged 
daily rainfall of IMD and satellite pick up the similar features of ISO such as Madden 
Julian Oscillation (30–60 days) and localized periodicities (less than 20 days). The 
normalized power of LSP varies from year to year from IMD to satellite rainfall, 
which shows the different behavior of satellite in detecting the ISO. During the El 
Niño and La Niña years, satellite rainfall could show better features than IMD when 
the normalized power is being considered. Overall, the satellite rainfall data sets over 
monsoon core region offer a valuable data sets with less bias and good agreement. 
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Chapter 8

Near- and Middle-Infrared 
Monitoring of Burned Areas from
Space
Carlos C. DaCamara, Renata Libonati, Miguel M. Pinto
and Alexandra Hurduc

Abstract

We describe a methodology to discriminate burned areas and date burning 
events that use a burn-sensitive (V, W) index system defined in near-/mid-infrared 
space. Discrimination of burned areas relies on a monthly composite of minimum
of W and on the difference between this composite and that of the previous month. 
The rationale is to identify pixels with high confidence of having burned and aggre-
gate new burned pixels on a contextual basis. Dating of burning events is based on
the analysis of time series of W, and searching for the day before maximum tem-
poral separability is achieved. The procedure is applied to the fire of Monchique, a
large event that took place in the southwest of Portugal in August 2018. When the
obtained pattern of burned pixels is compared against a reference map, the overall 
accuracy is larger than 99%; the commission and omission errors are lower than 5 
and 10%, respectively; and the bias and the Dice coefficient are above 0.95 and 0.9, 
respectively. Differences between estimated dates of burning and reference dates
derived from remote-sensed observations of active fires show a bias of 0.03 day and 
a root mean square difference of 0.24 day.

Keywords: burned area, dates of burning, (V, W) index system, VIIRS sensor,
Monchique fire (Portugal)

1. Introduction

Vegetation fires have significant direct and indirect impacts on all components
of the Earth system, including the anthroposphere. They are a source of greenhouse
gases, aerosols, and trace gases to the atmosphere [1–3]; they induce modifications
in most radiative forcing terms [4, 5] and disturb the radiative budget and cloud 
microphysics [6, 7]; they lead to changes in soil properties [8] and in the hydrologi-
cal cycle [9–11]; they play a key role in biodiversity reduction, loss of genetic diver-
sity, forest ecosystem functioning [12, 13], and land use/cover dynamics [14–16]; 
and they cause damages to human health [17, 18] and have adverse effects on public
health and economy [19].

A thorough understanding of spatial and temporal patterns of burned area (BA) 
by wildfires is therefore of fundamental importance when assessing either climate
or anthropogenic influences on the Earth system [20, 21]; when addressing a very
wide range of subjects that include the fields of atmospheric physics and chemistry, 
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ecology, agriculture and forestry, hydrology, biology, sociology, and economy; and 
when defining climate, environment, and health policies [22–26]. When specifically 
focusing on fire management that comprises fire prevention, fire presuppression, 
and fire suppression measures, reliable information about the extent, location, 
and time of occurrence of BA is of high added value [25]. Accurate BA information 
is also crucial to land and fire decision-makers, as well as to research groups and 
ecologists, government agencies, and NGOs when implementing environmental 
policies aiming to reduce socioeconomic impacts from vegetation fires on ecosys-
tems and people [27]. 

The use of remotely sensed information for BA detection is well established, and 
there is a consensus about its usefulness from global down to regional levels [28–32]. 
Spaceborne sensors are a cost-effective way to map vegetation fires and the unique 
source of information for large areas with limited access at regional and global 
scales and for continuous monitoring over time [33, 34]. Over the last decades, 
several initiatives have been carried out to generate global and regional long-term 
maps of BA using remote sensing. These include, among others, (1) the 1-km L3JRC 
product, covering the period from April 2000 to March 2007, produced from SPOT 
VEGETATION data [35]; (2) the 1-km GLOBCARBON BA product, spanning the 
period April 1998–December 2007, derived from SPOT VEGETATION, Along Track 
Scanning Radiometer (ATSR-2), and Advanced ATSR (AATSR) imagery using a 
combination of mapping algorithms [36]; (3) the MCD45 [37] and MCD64A1 [30] 
BA products derived by NASA using data collected by the Moderate Resolution 
Imaging Spectroradiometer (MODIS); (4) the Global Fire Emissions Database 
(GEFD) initiative that consists in monthly BA estimates aggregated at 0.5° spatial 
resolution, covering the period from July 1996 to mid-2009 using four satellite 
data sets [38]; (5) the AQM-MODIS product [39] that was derived for Brazil and 
consists in monthly maps of BA at 1 km spatial resolution from 2000 up to the 
present; (6) the global burned area algorithm based on Medium Resolution Imaging 
Spectrometer (MERIS) reflectance and MODIS hotspots from 2006 to 2008 [29]; 
and (7) the recent global burned area product based on MODIS bands with a spatial 
resolution of 250 m [40]. 

Remote-sensed detection of burned vegetation makes use of spectral bands that 
are sensitive to spectral changes induced by fire events [41], namely, those associ-
ated to the deposit of char and ash on the surface and the change or destruction of 
vegetation structure [33]. Spectral indices have revealed to be the most appropriate 
to uncover changes in the radiometric signals of surfaces in operational applica-
tions [42], and a large variety of spectral indices for burned area discrimination 
have been developed in the last decades using a variety of techniques and different 
spectral bands, such as the red (R, about 0.6–0.7 μm), the near infrared (NIR, 
about 0.7–1.3 μm), the shorter short-wave infrared (SSWIR, about 1.3–1.9 μm), and 
the longer short-wave infrared (LSWIR, about 1.9–2.5 μm). Developed approaches 
include, among others, the Burned Area Index (BAI) [43] based on R and NIR and 
its improved version BAIM [44] based on NIR and LSWIR, the NIR and LSWIR-
based Normalized Burn Index (NBI) [45], the Normalized Burn Ratio (NBR) [46] 
and derived indices from the latter [47–51], and the Mid-Infrared Burned Index 
(MIRBI) [52] based on SSWIR and LSWIR. 

A burn-sensitive vegetation index system, the so-called (V, W) system, has 
also been defined on the NIR/MIR space with the aim of optimally discriminating 
burned vegetation [53, 54]. Here we present and discuss the use of the (V, W) index 
system to design an automated algorithm aiming at both mapping burned area and 
dating the associated burning events. As an example of application, the procedure 
is applied to the fire of Monchique, a large event that took place in the southwest of 
Portugal in August 2018 (Figure 1). 
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Figure 1. 
Land cover map of the Iberian Peninsula showing the geographical location (shaded rectangular area) and a 
zoom (top right box) of the study area near the southern coast of Portugal (source of land cover data: Modis 
collection 6 global land cover, https://lpdaac.usgs.gov/sites/default/files/public/product_documentation/ 
mcd12_user_guide_v6.pdf). 

The fire of Monchique started on August 3 about noon and was not dominated 
until August 9. The fire resulted in about 27,000 hectares of burned area, 41 people 
injured and millions of euros in economic losses. By the second day of the event, 
about 700 firefighters and 11 aerial resources were fighting the fire, and this num-
ber kept increasing up to about 1400 firefighters and 14 aerial resources. The fire 
occurred within a context of very high temperatures and intense and highly variable 
winds in terrain with difficult access and high accumulation of biomass. 

2. Data and pre-processing 

Input data to the algorithms to compute (V, W) consist of top-of-the-atmosphere 
(TOA) values of middle-infrared (MIR) and thermal-infrared (TIR) radiances and 
of near-infrared (NIR) reflectance, as acquired by the Visible Infrared Imaging 
Radiometer Suite (VIIRS) instrument on board of the joint NASA/NOAA Suomi 
National Polar-Orbiting Partnership (Suomi-NPP) satellite [55]. VIIRS data were 
reprojected onto a geographical grid of 0.0045° in latitude by 0.0059° in longitude, 
corresponding to about 500 m in spatial resolution. Data over Portugal, covering the 
period of July and August 2018, were extracted from the VIIRS/NPP Level 1B 375 m 
product [56] and correspond to bands I2 (NIR, centered at 0.865 μm), I4 (MIR, 
centered at 3.74 μm), and I5 (TIR, centered at 11.45 μm). 

Geolocation data, as well as land/sea mask and solar and view angle infor-
mation for each VIIRS tile, were obtained from the VIIRS geolocation product 
(VIIRS/NPP Imagery Resolution Terrain-Corrected Geolocation). Values of MIR 
reflectance were then computed using VIIRS bands I4 (MIR) and I5 (TIR) radi-
ances [57]. All images acquired at solar zenith angles (SZA) greater than 55° were 
rejected, and, when more than one image was available for the same day, the image 
selected was the one with the lowest solar zenith angle (SZA). Images used as input 
to the algorithm for burned area discrimination were further restricted to those 
with view zenith angles (VZA) not exceeding 45° in order to prevent large distor-
tions in pixel size [53]. 
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Information about active fire data was obtained from the VIIRS 375 m Active 
Fire product [58]. Finally, radiative power data were obtained from the fire radiative 
power (FRP) product developed by the Land Surface Analysis Satellite Application 
Facility (LSA SAF); this product is derived from data acquired by the Spinning 
Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second 
Generation (MSG) series of EUMETSAT geostationary satellites [59]. 

A reference map of burned area in the study region was derived from geo-
spatial information provided by the Rapid Mapping products of the Copernicus 
Emergency Management Service (EMS) [60]. The Copernicus EMS service was 
activated by the Portugal National Authority for Civil Protection on August 5 at 
16:11 UTC (reference code EMSR303). We used the Delineation Map provided as 
of August 10 that has an estimated geometric accuracy of 5 m or better, derived by 
visual interpretation from Sentinel-2 and SPOT satellite observations. 

3. Methods 

3.1 Simplified (V, W) 

Specially designed to discriminate burned areas, the (V, W) burn-sensitive 
vegetation index system is defined in a transformed MIR/NIR space that allows 
enhancing the spectral information about burned vegetation [53]. The transformed 
space is framed by the following two coordinates: (1) the distance, η, of each point 
in MIR/NIR space to a predefined convergence point, representative of a given 
target (e.g., a totally burned surface) and (2) the difference, ξ, between the respec-
tive MIR and NIR reflectance of each point. The coordinates η and ξ are accordingly 
defined as 

η = √(ρMIR − ρ 0 
MIR)2 + (ρNIR − ρ 0 

NIR)² (1) 

ξ = ρMIR − ρNIR (2) 

where ρMIR and ρNIR represent values of reflectance in MIR and NIR and(ρ0 
MIR,ρ0 

NIR) 
are the coordinates of an ideally totally burned pixel. 

Values of ρMIR 
0  and ρ0 

NIR for a given sensor may be estimated by the upper (lower) 
bound of reflectivity in MIR (NIR) for a large sample of recently burned pixels. To 
estimate these values for the VIIRS sensor, we used a sample of burned regions for 

0 several fires in central Portugal that occurred in 2017. Obtained estimates are ρMIR = 0.29 
0 and ρNIR = 0.06. 

The coordinate system (V, W) is then defined in the MIR/NIR space such that 
the following properties are met: (1) the V coordinate has a very small dispersion 
for pixels associated to surfaces containing organic matter and (2) the W coordinate 
increases with increasing water content of vegetated surfaces. Burned vegetation is 
characterized by very low values of W and by a sharp decrease of W following a fire 
event [53], both characteristics being especially conspicuous in monthly minimum 
composites of W and of differences of W between a given month and the previous 
one (Figure 2). In turn, non-vegetated surfaces like clouds and water bodies are 
characterized by low values of V. 

Unlike VI3 [57] and GEMI3 [33], the (V, W) index system has the advantage 
of not having been heuristically derived; however, unlike traditional indices 
that rely on simple algebraic expressions and are easy to implement by users, the 
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Figure 2. 
Spatial distribution over the study area of the minimum composite of Wmin for August 2018 (left panel) and of 
the difference of minimum composites of Wmin between August and July 2018 (right panel). 

computation of (V, W) is laborious, involving iterative methods and numerical 
computation of line integrals [53]. This disadvantage is circumvented by using the 
following approximation that is valid in a subdomain of the MIR/NIR space where 
the majority of observed values are located [54]: 

(0.16 − 0.71ξ) V = (3) η 

W = 1.1η (4) 

3.2 Discrimination of burned areas 

Discrimination of burned areas for a given month is based on a procedure that 
uses as inputs a monthly composite of minimum of W and the difference between 
this minimum composite and that of the previous month together with locations of 
all identified hotspots during the considered month [39]. 

The rationale is first to identify burned pixels with high confidence of being 
burned and then use these points as seeds in a growing algorithm that will identify 
other burned pixels on a contextual basis and aggregate them as new seed points. 
Several studies [39, 61] have pointed out that the vast majority of hotspots are 
located inside or in the neighborhood of a burned area and that the number of 
burned pixels that are not close to a hotspot is low. 

As suggested by results shown in Figure 2, the first seed points are therefore 
pixels characterized by (1) a low value of the monthly minimum composite of index 
W and (2) a sharp decrease in that minimum compared to the previous month. 

Burned pixels are also expected to be outliers in respect to the statistical distri-
bution pixels where no hotspots were identified. Commonly used in classification 
problems, the Mahalanobis distance is a measure of the distance of a point to a given 
distribution in units of the standard deviation in the direction to the point to the 
mean [62]. The square of the Mahalanobis distance in a p-dimensional space has a 
chi-square distribution with p degrees of freedom, a result that may be used to find 
outliers in a dataset [63]. 

Identification of burned pixels is accordingly performed in the following three 
steps: 

• First step: Let W min and Δ W min be the values for a given pixel of the 
monthly composite of minimum W and of the difference between this 
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composite and that of the previous month; the pixel is considered as burned if 
all three following conditions are met: 

○ W min ≤ T 1, where T 1 is a predefined threshold. 

○ Δ W min ≤ T 2, where T 2 is a predefined threshold. 

○ The pixel lies outside the ellipse defined in the two-dimensional space (Wmin, ΔWmin) 
that corresponds to a predefined percentile of the Mahalanobis distance computed 
using pixels where no hotspots were identified; given that only pixels in the quadrant 
with lower W min and ΔW min should be considered as burned, a given pixel is 
considered as burned if the Mahalanobis distance is above the predefined percentile 
(e.g., percentile 95) and values of W min and ΔW min are sufficiently low, that is, below 
another predefined percentile (e.g., percentile 10, for both quantities). 

• Second step: Let each pixel classified as burned in the previous step be con-
sidered as a seed point. For each seed point, a 5 × 5 buffer matrix is defined 
centered on it, and let N be the number of seed points inside it. If N ≥ 3, let 
Ŵ min and δ Wmin be the mean and the mean absolute deviation of W for these 

∗ ∗ pixels. Let Wmin and ΔWmin be the values of Wmin and Δ Wmin for a pixel inside 
the 5 × 5 buffer matrix that is not a seed point. This pixel is classified as burned 
and becomes a new seed point if all two following conditions are met: 

○ Δ W min ∗ < 0 

̂ ○ Δ W min ∗ ≤ Wmin + δWmin 

• Third step: The previous step is repeated until no more seed points are generated. 

3.3 Dating burned events 

For each burned pixel identified by the algorithm above-described, the date of 
burning is estimated by analyzing the time series of W for that pixel and searching 
for the day where maximum temporal separability is achieved [64]. For most cases, 
time series of W present daily fluctuations of rather small amplitude (Figure 3) 
which allows identifying the day when the burning event took place by the significant 
decrease in W following the event. The day of burning may accordingly be identified 
as the one that maximizes the following index of temporal separability [65]: 

2(μb − μa) S = (5) σa + σb 

where μa(σa) are the values of the mean (standard deviation) of index W of 
that pixel for a pre-specified number k of images starting at a given instant in 
time and μb(σb) are the respective values for the same k number of images before 
that instant in time. The time series of W is scanned by two juxtaposed windows 
of fixed length k, and index S is computed for every available day (Figure 3). The 
burning event is considered to have taken place in the day prior to the date when S 
is maximized. 

3.4 Validation procedures 

3.4.1 Discrimination of burned areas 

The Monchique BA was validated against the data obtained from the Copernicus 
Emergency Management Service (EMSR303) that is used as the reference map. The 
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Figure 3. 
Time series of indices W (blue dots, left vertical scale) and S (red dots, right vertical scale) for a pixel located 
inside the burned scar. The vertical black dashed line indicates the day of maximum S (Eq. (5)). 

Classification map Reference map 

Burned Unburned 

Burned a b a + b 

Unburned c d c + d 

a + c b + d a + b + c + d 

Table 1. 
Contingency table for pixels classified as burned versus unburned. 

OA OE CE B DC 
a + d c b a + b 2a_______ 

a + b + c + d 
___ a + c ____ 

a + d 
____ a + c ______

2a + b + c 

Table 2. 
Accuracy (OA), omission error (OE), commission error (CE), bias (B), and dice coefficient (DC), with a, b, c, 
and d as defined in Table 1. 

quality of the classification map was assessed based on five verification measures 
derived from contingency tables [39]: overall accuracy (OA), omission error (OE), 
commission error (CE), bias (B), and Dice coefficient (DC). These verification 
measures are defined in Table 2. The agreement between the BA scar and the refer-
ence map is measured by the OA, a high value of OA reflecting a high accuracy in 
the classification. OE and CE are used to assess the discriminative power of the clas-
sifier. The bias should be close to one when burning events are not overestimated/ 
underestimated. Finally, DC measures the similarity between the reference and the 
classification maps by overlapping the classified burned pixels to the “truly burned” 
pixels in the reference map. 

Since the reference map has a higher resolution than the classification map, the 
former was projected onto the 500 m resolution grid of the latter by computing the 
burned fraction inside each coarser pixel. The pixel was then considered as burned 
if the fraction of burned area was greater than 0.5. 

3.4.2 Dating burned events 

Validation of estimated dates of burning was made against data of radiative 
power from the FRP product developed by the LSA SAF [59]. This product, together 
with three other active fire products derived from SEVIRI imagery, was compared 
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against active fire data collected by the MODIS sensor, and results obtained showed 
a higher detection rate of active fire pixels than the other products [66]. Albeit 
presenting a coarser resolution of about 4 km in the study region, the repeat cycle of 
15 min by the SEVIRI instrument allows for a much better temporal resolution than 
when comparing against VIIRS or MODIS active fires that have only two samples 
per day. Furthermore, the VIIRS active fires at 375 m resolution were already used 
in the algorithm to discriminate burned areas and therefore should not be used for 
validation purposes. The estimated date of each pixel classified as burned was com-
pared to the date of observation of the nearest SEVIRI pixel where a hotspot was 
identified. Obtained differences between the dates of the burning of the classified 
burned pixels and the dates of hotspots identified by the SEVIRI instrument were 
then used to assess the performance of the dating methodology. 

4. Example of application 

The above-described procedure was applied to the study region in the south-
west of Portugal in order to discriminate burned pixels during the Monchique fire 
episode and then estimate the respective date of burning. 

As described in Sections 3.1 and 3.2, the identification of burned areas in the 
study region relies on monthly minimum composites of W for August (Figure 2, 
left panel) and of differences between the minimum composite of August and that 
of July (Figure 2, right panel), hereby referred to as Wmin and Δ Wmin, respectively. 
Both composites were obtained from daily values of W as derived from reflectance 
values of MIR and NIR from all available VIIRS images with SZA not exceeding 55° 
and VZA not exceeding 45°. 

When values of Wmin and ΔWmin for all pixels over the study region are represented 
in a scatter plot (Figure 4), two clusters may be identified: (1) one that is formed by a 
dense cloud with a large number of points that mostly spread over the subarea of the 
plot that is lower bounded by percentile 10 of the distribution of Wmin (identified in 
the plot by the orange-dashed horizontal line) and left bounded by percentile 10 of the 
distribution of ΔWmin (identified by the orange-dashed vertical line) and (2) a second 
cluster that is composed of a less dense cloud with a lower number of points that 
occupy the subarea that is upper bounded by percentile 10 of the distribution of Wmin 

and right bounded by percentile 10 of the distribution of ΔWmin. 
The second cluster, formed by points with low values of both Wmin and ΔWmin, is 

therefore likely to be associated to burned pixels. Moreover, also as to be expected 
in case of burned surfaces, the second cluster contains a very large fraction of pixels 
where hotspots were identified from the VIIRS Active Fire product (plotted as red 
dots). However, there are points (plotted as green dots) in the second cluster that 
are not associated to any hotspot, and there are also points in the first cluster that are 
associated to a hotspot, despite the fact that the large values of both Wmin and ΔWmin 

are not consistent with the characteristic signature of a burned pixel. Both situations 
are to be expected, since (1) a pixel may burn with no active fire having been spotted 
by VIIRS (e.g., because of cloud or smoke screening, or because the burning took 
place between passages of the satellite) and (2) an identified active fire may have 
originated a burned area that represents a small fraction of the area of the pixel, and 
therefore the radiometric signature is not strong enough to be detected. Both diffi-
culties may be circumvented in part by selecting a set of pixels with high confidence 
of being burned as seed points to feed into a growing algorithm. 

As discussed in Section 3.2 (first step of the algorithm), seed points are defined 
as pixels belonging to a region of the space (Wmin,ΔWmin) where there is a high 
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Figure 4. 
W min (August 2018) versus Δ W min (difference between August and July 2018). Red (green) dots indicate pixels 
with (without) hotspots associated. The orange ellipse represents percentile 95 of the Mahalanobis distance, and 
the horizontal (vertical) orange-dashed line represents percentile 10 of the distribution of W min (ΔW min). 

confidence that points are associated to burned pixels. Taking into account the 
above-discussed features presented by the distribution of points in the scatter plot 
(Figure 4), seed points were defined according to the following criteria: 

• Wmin < percentile 10 of Wmin. 

• Δ Wmin < percentile 10 of ΔWmin. 

• Points (W min, Δ W min) must lie outside the ellipse representing percentile 
95 of the Mahalanobis distance computed with all pixels not associated to any 
hotspot. 

Once seed points were identified, new burned pixels were then iteratively 
aggregated following the procedure described in Section 3.2 (second and third steps 
of the algorithm). 

Results obtained are shown in Figure 5 that also provides a comparison 
with the reference map that was obtained from information derived from the 
Copernicus EMS (EMSR303). There is an overall agreement between the down-
scaled higher-resolution reference map and the map generated by the proposed 
algorithm. Deviations from the reference map, either in the form of commission 
or omission errors, are located along the borders of the scar and are likely to be 
due to small errors in geolocation or of partially burned pixels that were dif-
ferently classified (as burned or unburned) by the proposed algorithm and the 
downscaled reference map. 

The overall quality of the proposed algorithm in discriminating the burned 
pixels associated to the Monchique fire episode reflects on values of the con-
tingency table that compares results from the proposed algorithm with those 
from the reference map from Copernicus EMS (Table 3) as well as on the five 
verification measures derived from the obtained contingency table (Table 4). 
The number of commission errors (45) and the number of omission errors (94) 
are one order of magnitude lower than the number of match ups (979). In turn, 
the overall accuracy is larger than 99%, the commission error is lower than 5%, 
and the omission error is lower than 10%; the bias is above 0.95, and the Dice 
coefficient is above 0.9. 
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Figure 5. 
Burned pixels (left panel) from the proposed algorithm and reference map (right panel) from Copernicus 
EMS (EMSR303). True positives, commission errors, and omission errors are colored in green, red, and blue, 
respectively. 

BA scar Reference map 

Burned Unburned 

Burned 979 45 1026 

Unburned 94 21,357 21,451 

1073 21,404 22,477 

Table 3. 
As in Table 1 but with values obtained for the scar that resulted from the Monchique fire event of August 2018. 

OA OE CE B DC 

99.4% 8.8% 4.6% 0.96 0.93 

Table 4. 
As in Table 2 but with the metrics derived from Table 3. 

Following the procedure described in Section 3.3, estimates were obtained of the 
date of burning for all pixels that were classified as burned within the study region. 
Results obtained (Figure 6, left panel) show a propagation from NW to SE, form-
ing a pattern that is very similar to the one derived from the dates of detection of 
hotspots by the SEVIRI instrument (Figure 6, right panel). The agreement between 
the latter dates and the estimates by the proposed dating algorithm reflects on the 
obtained histogram of differences that has the null value of differences as the modal 
frequency, closely followed by a delay of 1 day in the estimates, such that about 70% 
of the pixels classified as burned have differences in the dates of less than ±1 day. 
When considering the distribution of differences as a whole, there is a bias of 
−0.03 day and a root mean square difference of 0.24 day, both values pointing out 
the very good overall agreement between estimates from the proposed algorithm 
and the reference dates derived from SEVIRI (Figure 7). 

Results obtained using a similar procedure over the whole territory of Portugal 
for August and September 2005, one of the worst severe years in terms of burned 
area, [64] present an overall accuracy of 95.6% and commission and omission 
errors of 66.5 and 37.1%, respectively. However, the study encompasses a period of 
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Figure 6. 
Dates of burning as obtained from the proposed dating algorithm (left panel) and as derived from dates of 
observation of hotspots by the SEVIRI instrument (right panel). 

Figure 7. 
Histogram of difference between dates assigned by the proposed methodology and dates derived from hotspots 
identified by the SEVIRI instrument. 

2 months and a much wider area, covering a very large number of scars, and not a 
single one as in the present study. Regarding the estimated days of burning, 75% of 
estimated dates in the same study [64] presented deviations less than ±5 days from 
dates derived from hotspots identified by MODIS. 

5. Conclusions 

Using TOA values of MIR and TIR radiances and NIR reflectance from VIIRS 
375m imagery, a set of optimal indices, V and W, were used to discriminate 
burned areas and to assign dates to every burned pixel. The ability of V to dis-
criminate between vegetated and non-vegetated surfaces may be used to build up 
composites of W free from contamination by clouds, whereas the low values of W 
associated to burned surfaces suggest generating composites of minimum values 
of W to discriminate burned areas. Adopting this rationale, and in line with 
previous work [39, 64], discrimination of burned areas was performed using 
values (Wmin) of a monthly composite of minimum of W and values (ΔWmin) of 
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differences between that composite and the one of the previous month. First seed 
points are identified as the pixels that (1) are outliers in respect to pixel where no 
hotspots were identified, (2) present low values of Wmin characteristic of burning 
event, and (3) are associated to negative values of ΔWmin, indicating a decrease of 
Wmin that is expected to occur after a burning event. New burned pixels are then 
successively aggregated using a seeded region-growing algorithm that starts with 
the previously identified seed points. 

The algorithm was applied to the Monchique fire episode, a large event that 
occurred in southwestern Portugal during August 2018. The discriminative 
power of the algorithm was validated against the scar identified by Copernicus 
EMS303. Results obtained show that the (V, W) algorithm is suited to discrimi-
nate burned area over a mainland Portugal, supported by the good agreement, 
with a Dice coefficient of 0.933, between the burned area scar and the reference 
map. The commission and omission errors have values of 9 and 5%, respectively. 
Estimated dates of burning, obtained through analysis of time series of values of 
W, were compared against times of observation of hotspots obtained from the 
SEVIRI FRP product. About 70% of the estimated dates presented deviations of 
1 day or less. 

The development of reliable algorithms to discriminate and date burned areas 
is crucial for a better understanding of the biosphere-atmosphere interactions, 
for estimating burning emissions, for future projections of fire regime, and for 
mitigation and adaptation actions in Portugal, which is recurrently affected by 
severe fire events. In particular, accurate estimates of the date of burning are 
crucial when considering fire regime modeling, due to the constraint imposed by 
biomass availability into the spread of fire, and are also important for reducing 
uncertainties in biomass burning emissions [34]. The recent VIIRS sensor will 
allow the development of new burned area products at high spatial resolution, 
continuing and enhancing the imaging of the Earth initiated by the Advanced Very 
High-Resolution Radiometer (AVHRR) and the MODIS instruments. The present 
work represents a first attempt to assess the potential of using VIIRS imagery to 
identify burnt scars in Portugal. Results obtained in this work and in related previ-
ous ones pave the way to the generation of a long-term series of burned area maps 
containing accurate information about the extent, location, and time of occurrence 
of vegetation fires. 
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The Use of Visible Geostationary 
Operational Meteorological 
Satellite Imagery in Mapping the 
Water Balance over Puerto Rico 
for Water Resource Management 
John R. Mecikalski and Eric W. Harmsen 

Abstract 

A solar insolation satellite remote sensing product for Puerto Rico, the US Virgin 
Islands (USVI), Dominican Republic, Haiti, Jamaica, and Cuba became available in 
2009 through a collaboration between the University of Puerto Rico-Mayagüez 
Campus and the University of Alabama in Huntsville. Solar insolation data are 
available at 1 km resolution for Puerto Rico and the USVI and 2 km resolution for 
the other islands, as derived from 500 m resolution GOES-16 visible imagery. The 
insolation data demonstrate the powerful utility of satellite-derived fields for water 
resource applications, specifically the routine production of potential and reference 
evapotranspiration. This chapter describes the theoretical background and technical 
approach for estimating components of the daily water and energy balance in 
Puerto Rico. Useful information can be obtained from the model, which benefits 
disaster and emergency management, agriculture, human health, ecology, coastal 
water management, and renewable energy development at the island scale. 

Keywords: incoming solar radiation, insolation, GOES, Puerto Rico, Caribbean, 
evapotranspiration, remote sensing, water resource management, reference 
evapotranspiration, potential evapotranspiration 

1. Introduction 

Estimates of incoming solar radiation (also known as “insolation”) have been 
made from geostationary satellite data for many years, since the early to mid-1970s 
[1]. Related to the present effort, Geostationary Operational Environmental Satel-
lite (GOES) visible channel (˜0.64 μm) data have been processed within a scalable 
and flexible insolation model, which is well documented and described in detail 
below. For ongoing water management support over Puerto Rico and the broader 
Caribbean, the Diak-Gautier insolation model [2] has been specifically structured to 
provide daily integrated, gridded solar insolation at 1–2 km spatial resolution. The 
insolation model has been rigorously tested and validated and operates on GOES 
imagery from GOES–4/–5 through the present day GOES–16/–17. Geostationary 
satellites are optimal for providing spatially and temporally continuous fields across 
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all regions in their ˜55° latitude field of view, which as noted is a significant 
advantage over the use of only ground-based instrumentation. The use of a satellite-
based insolation algorithm also ensures that a consistent algorithm is applied across 
an entire region, one which relies on data from only one instrument, specifically, 
the GOES Imager. 

Over Puerto Rico (PR) and the Caribbean, as well as in other subtropical and 
tropical regions, evapotranspiration (ET) is a critical variable for water manage-
ment, both in hydrologic flow simulations involving potential ET (PET) and water 
allocation and agricultural water use involving reference ET (RET or ETo). Impor-
tantly, solar insolation is a large, yet often unknown, determinant for temporal variation 
in PET and RET. Solar insolation is a primary determinant of spatial variation, partic-
ularly in areas with heterogeneous cloud cover, as common to subtropical and tropical 
regions where small cumulus clouds dominate the regional cloud climatology. 

For an ET product to be desirable, it must be spatially continuous, rather than 
consisting of only point values derived from local weather station networks. Thus, 
mapping of ET is greatly facilitated by satellite-derived estimates that contain the 
actual spatial variability and distribution of solar insolation. Prior to 2009, regions 
across Puerto Rico and the Caribbean did not had access to a consistent, spatially 
continuous method of computing RET and PET. The original motivation for devel-
opment of the Geostationary Operational Environmental Satellite-Water and 
Energy Balance (GOESWEB) model was to develop a robust insolation calibration 
framework coupled to a satellite-based insolation model, to provide a key radiative 
dataset that can grow over time toward 10-year and longer timeframes, thus 
forming an ET climatology that can be extended indefinitely. 

The GOES-based insolation datasets are used in conjunction with other infor-
mation, including net radiation (Rn), air temperature, relative humidity, wind 
speed, and land cover information, in the formulation of daily, 1- and 2-km esti-
mates of RET across the Caribbean. RET is valuable for farm- and city-based water 
management, as well as irrigation scheduling; PET can be used as input into surface 
and groundwater hydrological models, whereas the solar insolation data themselves 
may be used as data input in certain ecosystem models. 

2. GOES solar insolation data 

The use of geostationary satellite visible data has been used for estimating solar 
insolation for over 30 years. The main methods used for such estimation range from 
statistical-empirical relationships, such as [3], to varying complex physical models 
[2, 4–12]. Studies such as [13, 14] proved the utility and feasibility of satellite-
estimated solar insolation methods, demonstrating that fairly accurate results can 
be produced from such models; hourly insolation estimates obtained from the most 
current models are within 5–10% of ground-based pyranometer data, during clear-
sky conditions (15–30% for all sky conditions), while daily estimates are found to be 
within 10–15% [15]. Studies by [16, 17] have further highlighted the overall utility 
of these methods. 

The main advantages of using satellite-estimated insolation, over those collected 
by pyranometer networks, include wide-area spatial coverage, high spatial resolu-
tion (1–2 km), and the ability to produce useful data in remote, inaccessible, or in 
potentially hazardous areas, over large water bodies and oceans (e.g., [18]), and in 
locations where the installation of a ground-based pyranometer network is prohib-
itive. As an alternative to the methods used in this study, [19, 20] describe the use of 
the Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Bud-
get (SRB) downward solar flux [11], as used within the North American Land Data 
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Assimilation project. Error statistics for the SRB product are comparable to 
those shown in [21], as used in this study, yet SRB resolutions are at best 0.5° and 
3 hourly [22]. 

Related to the PRWEB applications to be developed here, the solar insolation 
product is derived from National Oceanic and Atmospheric Administration 
(NOAA) GOES-East satellite visible (0.64 μm) imagery. These data were processed 
using [4] methods to produce daily integrated solar insolation throughout Puerto 
Rico at 1-km horizontal spatial resolution. This 1-km resolution is chosen as it pro-
vides solar insolation observations between cumulus clouds, which comprise a 
significant component of the cloud climatology in subtropical regions. 

2.1 Details of the GOES solar insolation model 

The GOES solar insolation model is developed by [4], which was later modified 
by [2] and updated by [23], and most recently by [24], which is the 2017 version of 
the solar insolation model employed in this study. This model will be referred to as 
the “GD” model from this point forward and employs a simple physical model that 
represents cloud and atmosphere radiative processes. The GD model was shown to 
perform even better than more complex solar insolation methods over a variety of 
land-surface and climatic conditions [5, 17, 18, 23, 26]. When comparing with 
pyranometer data, these prior studies list root mean square errors in hourly and 
daily insolation estimates as a percentage of the mean pyranometer observed value, 
which range from 17–28% to 9–10%, respectively. In [24, 25] the higher magnitudes 
of these errors were reported (˜28 and ˜10%, respectively) in a study over north-
ern central Florida using GOES–12 data. However, the GD model has been proven 
to be valuable in operational use of near-real-time, regional-, and continental-scale 
insolation estimates for several main applications, including land-surface carbon 
and water flux assessments [27–29], the generation of agricultural forecasting 
products [30, 31], and subsurface hydrologic modeling. 

The GD model is based on conservation of radiant energy in the Earth-
atmosphere column, with two modes for estimating solar insolation received at 
Earth’s surface: (1) clear and (2) cloudy conditions. These modes are determined 
based on satellite-derived, visible channel surface albedo data. A reference albedo 
grid representative of clear-sky conditions per satellite pixel is developed within the 
GD algorithm, which captures the temporal changes in land-surface characteristics 
over time and season. This running 2-week minimum of this albedo data, reassessed 
at solar noon daily, is stored for each GOES satellite visible data pixel. This approach 
is considered representative of the true land-surface albedo, which is more accurate 
than using the daily estimated value as the latter may be corrupted by high albedo 
values when even low-cloud amounts are present during a given day. Note that this 
minimum albedo is wavelength-specific, is unique to the GOES Imager visible 
sensor (which includes some near-infrared contribution), and is not a true surface 
albedo. 

As the GD algorithm runs across a series of GOES images per day, the digital 
brightness at each image pixel is compared to that of the stored clear-sky reference 
2-week minimum albedo for that pixel. If the brightness exceeds that threshold, the 
pixel is deemed partly or completely cloudy. Based on this determination per GOES 
pixel, either the clear or cloudy model of atmospheric radiation processes (within 
the GD model) is used to calculate surface solar insolation received. Both clear and 
cloudy models incorporate parameterizations for Raleigh scattering, ozone absorp-
tion, and water vapor absorption within the atmospheric column, using simple bulk 
relationships, such as fixed ozone and aerosol contents. This rough parameteriza-
tion works because these produce secondary sources of error to the instantaneous 
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surface solar insolation. The cloudy GD component estimates a cloud-top albedo 
and separately accounts for atmospheric effects above and below the cloud. 

For the water vapor absorption parameterization, a fixed, approximate annual 
median value of precipitable water (PW) of 3.0 cm was used, which is considered 
appropriate for Puerto Rico. This annual median value helps to estimate atmospheric 
column-integrated PW during the initial processing. [PW is defined as the amount of 
water that would precipitate out of a vertical column of the atmosphere if all the water 
vapor were condensed into liquid]. PW data are used to calculate the slantwise path and 
subsequently the absorption coefficients [4]. Real-time PW data from numerical fore-
cast model output may also be used in the GD model, versus setting a constant value. 

2.2 GOES data processing and quality control 

The GOES-East series of satellites (the most recent additions being GOES–13 
and –16) are in geostationary orbit above the Earth’s equator at ˜75° W, which 
provides continuous, 5–15-minute resolution observations in visible and infrared 
radiation channels at high spatial (500 m to 1 km). GOES data are thus ideal for 
high-resolution estimates of solar insolation as used in GOESWEB, to be described 
below. Although the GOES visible sensors have a nadir (the point directly below the 
satellite) spatial resolution of 1 km (GOES–13 and prior) or 500 m (GOES–16), this 
resolution decreases the further from nadir the instrument scans: for Puerto Rico, 
the highest resolution attainable is about 1.25 km and 525 m, respectively, for 
GOES–13 and –16. All solar insolation data used for this study were provided at 1-
km resolution. A simple method for computing sunrise and sunset times per pixel 
across the domain was used, as a means of determining daytime conditions. 

Potential significant GOES data issues that may impact the error in the solar 
insolation product include (1) sensor degradation with time and (2) sun glint 
effects. The effects of the latter are small. In general, GOES satellite data are 
available on a continual basis with high reliability (>99%). As an example, Figure 1 
shows the daily integrated solar radiation for October 16, 2018, for Puerto Rico, the 
USVI, Hispaniola, Jamaica, and Cuba. 

3. The GOESWEB modeling framework 

GOESWEB performs daily water and energy balance calculations for the island 
of Puerto Rico. Twenty-seven hydro-agro-climate variables are available to the 
public for download (Table 1). Downloadable formats are available as images (jpg) 
or in comma-separated values (csv) and Matlab® formats. The variables in Table 1 
are also available as monthly and annual averages or totals. Simplified versions of 
the algorithm have been developed for estimating reference ET on the islands of the 
USVI, Hispaniola, Jamaica, and Cuba. 

ETo is estimated by three methods: Penman-Monteith [32, 33], Priestley-Taylor 
[34], and Hargreaves-Samani [35]. In [36], they described the methodology used to 
estimate ETo in the earliest version of the algorithm. Tavg, Tmin, and Tmax values 
were estimated from a lapse rate method developed by [37]. Td was assumed to be 
equal to the minimum daily Tmin [38]. Wind speed was assumed to be the world-
wide average 2-m wind speed of 2 m(s)˜1 [32]. The algorithms for Hispaniola, 
Jamaica, Cuba, and the USVI continue to use these simplified methods for estimat-
ing daily values of ETo. 

Water and energy balances were added to the algorithm for Puerto Rico. The 
daily meteorological data used are described below. Table 2 summarizes the 
GOESWEB input data sources. 
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• Solar radiation 

i. Solar radiation (Rs) is derived from the GOES satellite using the 
methodology described above. 

ii. The ground level, 1-km resolution Rs product became available in 
Puerto Rico in March of 2009 and has been validated at two locations in 
Puerto Rico by [39]. 

iii. Occasionally the satellite-derived solar radiation is not available, in 
which case the previous days’ Rs values are used. 

iv. Prior to GOES–16, 1 km GOES–12 and –13 visible channel 1 data were 
used over Puerto Rico and the USVI and 2 km data over the other islands. 

Figure 1. 
Daily solar insolation for (a) Puerto Rico, (b) Hispaniola, (c) Jamaica, (d) Cuba, and (e) St. Croix USVI, 
(f) St. Thomas, and (g) St. John (USVI) on October 16, 2018. 
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1 ET Actual evapotranspiration (mm) 

2 ETo Reference evapotranspiration (mm); three methods 

3 Tavg Average air temperature (°C) 

4 Tmin Minimum air Temperature (°C) 

5 Tmax Maximum air Temperature (°C) 

6 Td Dew point temperature (°C) 

7 Ts Effective surface temperature (°C) 

8 ea Actual vapor pressure (kPa) 

9 es Saturated vapor pressure (kPa) 

10 RH Relative humidity (%) 

11 u Wind speed (m s˜1) 

12 Rs Solar radiation (MJ m˜2 day˜1) 

13 Rn Net radiation (MJ m˜2 day˜1) 

14 PAR ˜2 Photosynthetically active radiation (micromoles m sec˜1) 

15 Ks Water stress coefficient (unitless) 

16 Kc,eff Effective crop coefficient (unitless) 

17 Precip Rainfall (mm) 

18 Precipeff Effective rainfall (mm) 

19 RO Surface runoff (mm) 

20 DP Deep percolation (mm) 

21 θ ˜3) Soil moisture content (m˜3 m

22 Sat Soil moisture saturation (unitless) 

23 rs Surface resistance (s m˜1) 

24 ra 
˜1) Aerodynamic resistance (s m

25 LE Latent heat flux (MJ m˜2 day˜1) 

26 H Sensible heat flux MJ m˜2 day-1) 

27 β Bowen ratio (unitless) 

Table 1. 
Hydro-agro-climate variables produced daily by GOESWEB. 

Model input ETo ETa Source 

Solar radiation X X GOES 

Air temperature X X NOAA/NDFD, CariCOOS/WRF 

Dew point temperature X X NOAA/NDFD, CariCOOS/WRF 

Wind speed (2-m height) X X NOAA/NDFD, CariCOOS/WRF 

Albedo1 
, root depth, roughness length, X ATMET, 2005 

zero-plane displacement 

Soil texture X USDA/SSURGO 

1Albedo is 0.23 for calculating ETo. 

Table 2. 
Summary table of required GOESWEB input data sources. 
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• Air temperatures 

i. Tavg, Tmin, Tmax, and Td data were obtained from the National Digital 
Forecast Database (NDFD) website [40] from January 1, 2009, to 
December 31, 2016. 

ii. Temperatures were obtained from the CariCOOS operational gridded 
Weather Research and Forecasting (WRF) model starting on January 1, 
2017. 

iii. On occasion, weather parameters from the WRF model are not 
available. NDFD air temperatures and wind speed are used in those 
cases. As a final resort, the lapse rate method of [37] is used. 

• Wind speed 

i. During the period January 1, 2009, through September 30, 2015, daily 
average wind speed was obtained from the average of eight NDFD 3-
hour values [40]. 

ii. From October 1, 2015, to the present, daily average wind speed was 
obtained from the average of 24-hourly wind speed values obtained 
from the Caribbean Coastal Ocean Observing System (CariCOOS) 
WRF. 

iii. For the reference ET calculation, 10-m wind speeds are adjusted to 2 
meters [32]. 

iv. If wind speed is not available, then the previous day’s data are used. 

3.1 Net radiation calculations 

Net radiation (Rn) is estimated using the methodology described by [32] and 
used by [41]. 

Rn ¼ Rns þ Rnl (1) 

where Rn is net radiation, Rns is net shortwave radiation, and Rnl is net long wave 
radiation. 

Rns ¼ ð1 � αÞRs (2) 

where α is albedo and Rs solar radiation. α is defined as 0.23 for estimating RET, 
and values are derived from a lookup table associated with 32 land cover classes [42] 
for estimating actual ET (ETa). Rs is derived from the GOES satellite. The net 
long wave radiation is estimated from the equation 

4 Tmax,K
4 � Tmin, K pffiffiffiffiffi Rs Rnl ¼ σ ð0:34 � 0:14 eaÞ 1:35 � 0:35 (3) 
2 Rso 

where σ is the Stefan-Boltzmann constant, Tmax is maximum absolute temperate 
during the 24-hour period, Tmin is minimum absolute temperature during the 
24-hour period, ea is actual vapor pressure, Rs/Rso is relative shortwave radiation 
(limited to ≤1.0), and Rso calculated clear-sky radiation. Actual vapor pressure is 
estimated by 
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ð17:27TdÞ ea ¼ 0:6108 exp (4) ðTd þ 237:3Þ 

where Td is dew point temperature. The calculated clear-sky radiation is estimated 
by 

˜ ° 5 Rso ¼ 0:75 þ 2 10� z Ra (5) 

where z is elevation above mean sea level and Ra is extraterrestrial radiation. 

12 60ð Þ  
Ra ¼ Gscdr½ðω2 � ω1Þ sin φ ð Þ þ cos ð Þ cos δ ð ð ÞÞ� ð Þ sin δ φ ð Þ sin ðω2Þ � sin ω1 π 

(6) 

where Gsc is the solar constant = 0.0820 and dr is the relative distance Earth-Sun, 
defined as 

˛ ˝ 
2π 

dr ¼ 1 þ 0:33 cos J (7) 
365 

where J is Julian day (e.g., January 1 is 1 and December 31 is 365). ω1 in Eq. (6) is 
solar time angle at the beginning of the period and ω2 solar time angle at end of 
period, generally expressed as 

˙ ˆ 
π � tan φ tan ð Þ  ð Þ  δ 

ωs ¼ � arctan (8) 
X0:5 2 

where φ is latitude and δ solar declination expressed as 

˛ ˝ 
2π 

δ ¼ 0:409 sin J � 1:39 
365 

(9) 

and X is defined as 

2 2 X ¼ 1 � tan ½ φð  Þ  � ½ tan δð Þ  � (10) 

and X = 0.00001 if X ≤ 0. 

3.2 Reference evapotranspiration estimates 

The Penman-Monteith (PM) equation is given by Eq. 1 [32], which applies 
specifically to a hypothetical reference crop with an assumed crop height of 0.12 m, 
an albedo of 0.23, a fixed surface resistance of 70 sec m�1, and an aerodynamic 
resistance equal to 208/u2, where u2 is wind speed at 2 m height: 

ˇ ˘ 
900 0:408ΔðRn � GÞ þ γ u2ðes � eaÞ Tþ273 

ETo ¼ (11) 
Δ þ γð1 þ 0:34u2Þ 

where Δ is the slope of the vapor pressure curve, G is soil heat flux, γ is the 
psychrometric constant, T is mean daily temperature at 2 m height, es is the satura-
tion vapor pressure, and ea is the actual vapor pressure. 
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The second method used to estimate ETo is the Priestly-Taylor Equation [34], a 
simplification of the Penman Equation [43, 44]: 

ΔðRn �GÞ 
ETo ¼ α (12) 

Δ þ γ 

where α is the Priestly-Taylor constant. Values in the literature for α range from 
1.26 [34] to 1.32 [45]. In this study we use a value of α equal to 1.3. 

The third method used to estimate ETo is the Hargreaves-Samani ETo Equation 
[35] given by 

ETo ¼ 0:408 0½ :0135Rs�ðT þ 17:8Þ (13) 

The value 0.0135 is a constant and 0.408 converts the result from MJ m�2 day to 
mm (day)�1. In [38] they showed that this method produces comparable results 
with the PM method in PR. 

The PM method is considered superior to the other two methods because it 
accounts for the major variables that control ET (Rn, T, VPD and u), and the PM 
method has been rigorously validated [33]. 

3.3 Energy balance 

In GOESWEB, an energy balance approach is used similar to [46]. The basic 
energy balance equation is given as 

Rn � LE �H �G ¼ 0 (14) 

Rn is obtained from the calculation procedure presented above. Albedo, which is 
used in the Rn calculation, is obtained from a lookup table [42], which assigns 
values of the parameters to 32 different land covers. 

LE, H, and G are the latent, sensible, and soil heat fluxes, respectively. LE is 
estimated using the following Equation [47]: 

ρCpðeoðTsÞ � e Tað ÞÞ 
LE ¼ (15) 

γðra þ rsÞ 
where ρ is mean air density, Cp is specific heat, ra is aerodynamic resistance, and rs 
is surface resistance. G is the soil heat flux, assumed to be zero for the daily analysis. 
H is estimated using the following equation: 

ρCpðTs � TaÞ H ¼ (16) 
ra 

The effective surface temperature is difficult to obtain from remote sensing 
under cloudy conditions. Therefore, Ts is obtained by an implicit approach similar 
to that described by [48]. When Eq. (14) is expanded using Eqs. (1), (15), and (16), 
Ts is the only unknown variable, which is obtained using the recursive root function 
fzero in MatLab® (http://www.mathworks.com). 

The aerodynamic resistance (ra) is calculated with the following Equation [46]: 

ra ¼ raoϕ þ rbh (17) 

where rao is the aerodynamic resistance under conditions of neutral atmospheric 
stability and rbh is the excessive resistance. rao is expressed as 
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h i h i 
z�zdisp z�zdisp ln ln zo ð0:1Þzo rao ¼ (18) 

k2u 

where z is the virtual height at which meteorological measurements are taken. In 
this study z is assumed to be within the inertial sublayer and equal to 1.5(zo/0.13) 
[47], which is equivalent to the canopy height (h). The NDFD or WRF model-
derived wind speeds at 10 m height are adjusted to the “virtual instrument height,” 
depending on the height of the vegetation. Roughness length (zo) and the zero-
plane displacement (zdisp) are derived from a lookup table for various land use/ 
vegetation categories [42]. k is Von Karman’s constant (k = 0.41). u is the wind 
velocity at height z. 

From [46], the atmospheric stability coefficient is 

η z � zdisp g Ts � TaÞ ð 
ϕ ¼ 1 � (19) 

Tou2 

where g is the gravitational constant and the coefficient η is taken as 5 [46]. The 
temperature, To, is the average of the values of Ts and Ta. Other variables and 
parameters were previously defined. 

The excess resistance in Eq. (17) is given by the equation 

4 
rbh ¼ � � (20) 

ku 
ln½ðz�zdisp Þ=zo� 

Bulk surface resistance (rs) is estimated using the equation of [49]: 

� ��1 ρCpVPD θ � θWP rs ¼ (21) 
ΔðRn � GÞCf θFC � θWP 

where VPD is the vapor pressure deficit, Cf is a calibration coefficient equal to 1 for 
root depth <1 m and 5 for root depth >1 m, and θFC and θWP are the volumetric soil 
moisture content (θ) at field capacity and wilting point, respectively. Field capacity 
and wilting point were obtained from regression equations of [50] based on percent 
sand, silt, and clay. Soil properties for sand, silt, and clay for Puerto Rico were 
obtained from the USDA Natural Resource Conservation Service (NRCS) and Soil 
Survey Geographic (SSURGO) database. 

3.4 Water balance 

The water balance is estimated from the equation 

SMD2 ¼ Precip � ETa � RO � DP þ SMD1 (22) 

where SMD1 and SMD2 are the depths of soil moisture in the root zone (Rdepth) at 
times 1 and 2, respectively. In GOESWEB the time step is 1 day. Precip is rainfall, 
RO is surface runoff, and DP is deep percolation below the root zone. The daily ETa 

is obtained by converting LE to an equivalent depth of water by dividing by the 
latent heat of vaporization (2.45 MJ kg�1). Root depths for various land use/vege-
tation categories are obtained from [42] lookup table. Twenty-four-hour rainfall is 
obtained from NOAA’s Advanced Hydrologic Prediction Service (AHPS). In PR, 
AHPS rainfall is bias-corrected radar rainfall using rain gauge data. 
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Surface runoff is estimated using the curve number (CN) method of the NRCS [51]: 

2 ðPrecip � 0:2SÞ 
RO ¼ (23) ðPrecip þ 0:8SÞ 

˛˜ ° ˝ 
25400 

S ¼ � 254 (24) 
CN 

where S is the maximum potential difference between rainfall and runoff at the 
moment of rainfall initiation and CN is a proportion of rainfall converted to runoff, 
adjusted for antecedent rainfall conditions. CN values were derived for Puerto Rico 
using the method described by [51], based on land use, hydrologic soil group, and 
antecedent rainfall conditions. 

To estimate DP, the following procedure is followed: SMD2i = Precip – ETa – 
RO + SMD1. If the value of SMD2i is larger than the depth of water in the soil profile 
at field capacity (FCD), then DP = SMD2i – FCD, and the value of SMD2 is equal to 
FCD. If SMD2i < FCD, then DP = 0 and SMD2 = SMD2i. 

3.5 GOESWEB model accuracy and validation 

In this section accuracy and validation data are presented for remotely sensed 
solar radiation, RET, soil moisture, and stream flow. Solar radiation is a critically 
important variable in the estimation of ET. Figures 2 and 3 show comparisons of the 
daily integrated solar radiation at the University of Puerto Rico (UPR) Fortuna 
Agricultural Experimental near Juana Diaz, PR, and the UPR-Mayaguez Campus 
(UPRM) in Mayaguez, PR, respectively [39]. The figures show a high degree of 
correlation between the remote sensing solar radiation and the measured solar 
radiation. The coefficients of determination (r2) for the UPRM and experimental 
station data were 0.88 and 0.83, respectively. (From [39]). 

Figure 4 shows a comparison of the ETo computed by the GOESWEB algorithm 
and from weather station data from the UPR Fortuna Agricultural Experiment 
Station, near Juana Diaz, PR. The ETo data covers the period from December 12, 
2013 to April 20, 2016 (858 days). Although the vast majority of data pairs fall close 
to the 1:1 line, indicating close agreement between the two methods, a smaller 
number of data pairs fall relatively far from the 1:1 line, producing the scatter in the 

Figure 2. 
Comparison of remote sensing and pyranometer-measured daily integrated solar radiation at the UPR Fortuna 
Agricultural Experiment Station, near Juana Diaz, PR (From [39]). The r2 value for this comparison is 0.88. 
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Figure 3. 
Comparison of remote sensing and pyranometer-measured daily integrated solar radiation at UPRM (From 
[39]). The r2 value for this comparison is 0.83. 

Figure 4. 
Comparison of observed and simulated ETo at the UPR Fortuna Agricultural Experiment Station, near Juana 
Diaz, PR. The data cover the period December 12, 2013 through April 20, 2016. The r2 value for this 
comparison is 0.31. 

data set. For this comparison, the coefficient of determination (r2) was 0.31. The 
average GOESWEB and weather station ETo were 4.6 mm and 4.14 mm, respec-
tively, and the average calculated error was 11.2%. It should be noted that the 
weather station at this location does not comply with the required “reference con-
ditions” for computing ETo. Reference conditions refer to a grass-type vegetation 
with an approximate height of 0.12 m, an albedo of 0.23, and a fixed surface 
resistance of 70 sec m˜1, receiving adequate water. The climate of southern PR is 
semiarid, and there are frequent times when there was no vegetation at all on the 
ground surrounding the weather station. 

Figure 5 shows a time series comparison of soil moisture from GOESWEB and 
soil moisture from a weather station located at the UPR Fortuna Agricultural 
Experiment Station. The weather station soil moisture is an average of five sensors 
positioned at depths of 0.0508 m (2 in.), 0.1016 m (4 in.), 0.2032 m (8 in.), 
0.508 m (20 in.), and 1.016 m (40 in.). Immediately after rainfalls the weather 
station soil moisture tended to rise to higher soil moisture values than the soil 
moisture from the model. It is important to know that maximum soil moisture 
values in GOESWEB are limited to the field capacity, as excess water is routed 
below the root zone as deep percolation. Furthermore, the sensor soil moisture 
represent a single point (approximately 1 m2), whereas the model represents an 
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Figure 5. 
Comparison of the GOESWEB and weather station soil moisture at the UPR Fortuna Agricultural Experiment 
Station, near Juana Diaz, PR. The data covers the period January 1, 2014–December 31, 2016. The r2 value 
for this comparison is 0.73. 

Figure 6. 
Comparison of observed and simulated stream flow for two watersheds in southwest Puerto Rico. The data cover 
the 36-month period during 2010–2012. The r2 value for this comparison is 0.72 for all data. 

area of 1 km2 (1,000, 000 m2), and therefore, complete agreement between the 
two methods would not be expected. 

Figure 6 compares the monthly stream flow values for two watersheds in 
southwest Puerto Rico. Observed stream flow values were obtained from the US 
Geological Survey (USGS). The results are presented as a depth of water in milli-
meters (i.e., monthly stream volume/watershed area). The total stream flow for the 
model was assumed to be the surface runoff plus the deep percolation (or aquifer 
recharge). The latter term represents the stream base flow. To obtain the monthly 
value of stream flow in the model, the surface runoff and deep percolation were 
averaged for every 1 km2 pixel within the watershed. The model does a reasonably 
good job of simulating monthly stream flow. 

4. High-resolution products for Puerto Rico 

Figure 7 shows an example of selected water and energy balance components for 
Puerto Rico on October 16, 2018. Rainfall, surface runoff, percolation below the 
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Figure 7. 
Example of water and energy balance components from the GOESWEB algorithm for November 24, 2015. 

Figure 8. 
NOAA’s Drought Monitor for Puerto Rico, October 18, 2018. The municipalities of Aibonito, Cayey, and 
Cidra are experiencing abnormally dry conditions. 

root zone, soil moisture content, actual ET, Rn, LE, and H are included. Approxi-
mately 60 mm of rain fell along the northern coast of the island. High values of 
surface runoff occurred in the rainy area where soil textures have high clay content. 
High values of percolation below the root zone occurred in small areas where the 
soil sand content approaches 90%. The soil moisture map indicates a lobe of dry 
area in Salinas, Cayey, Aibonito, and Cidra. Figure 8 shows the NOAA Drought 
Monitor for Puerto Rico for October 18, 2018, indicating abnormally dry conditions 
for Cayey, Aibonito, Cidra, and a portion of Barranquitas. The figure also shows LE 
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Figure 9. 
Rainfall over Puerto Rico during the week of Hurricane Maria, during September 2017. 

and H fluxes, which sum to the Rn (i.e., Eq. (14)). ETa is the LE flux divided the 
latent heat of vaporization constant equal to 2.45 MJ kg˜1. 

Figure 9 shows the rainfall during the week of September 17, 2017, the same 
week Hurricane Maria occurred. The maximum rainfall for the week was nearly 
1300 mm (51 in.) in southeast Puerto Rico. The rainfall data were derived from rain 
gauge data, since the Doppler radar in Cayey, PR, was severely damaged during the 
hurricane. The National Weather Service (NWS) combined the gauge rainfall for 
September 20 and 21. The maximum rainfall during the 2-day period was 950 mm 

Figure 10. 
Rainfall over Puerto Rico on September 20, the day that Hurricane Maria made landfall on Puerto Rico. The 
gauge rainfall reported by the NWS was for the 20th and 21st; therefore the rainfall for September 20 was 
assumed to be half the amount. 

Figure 11. 
Estimated surface runoff over Puerto Rico on September 20, the day that Hurricane Maria made landfall on 
Puerto Rico. 
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Figure 12. 
Root zone soil moisture saturation for September 19, 2018, 1 day before Hurricane Maria made landfall on 
Puerto Rico. 

Figure 13. 
ETo for October 16, 2018, for (a) Puerto Rico, (b) Hispaniola, (c) Jamaica, (d) Cuba, and (e) St. Croix, 
(f) St. Thomas, and (g) St. John (USVI). 
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(37.5 in.) in southeast Puerto Rico. To simulate the daily hydrology, rainfall was 
evenly divided between the 2 days. Figures 9 and 10 show the rainfall and surface 
runoff for September 20, respectively. Note that the surface runoff is almost iden-
tical to the rainfall, as seen in Figure 11. Nearly 100% of the rainfall was converted 
to surface runoff because the soils were already saturated the day before Hurricane 
Maria arrived (September 19), as shown in Figure 12. 

5. High-resolution ETo products across the Caribbean 

GOESWEB provides daily values of ETo for Puerto Rico, the USVI, Hispaniola, 
Jamaica, and Cuba. As an example, the ETo for each of the islands for October 16, 
2018, are presented in Figure 13. In the study by [52], they describe a web-based 
method for determining irrigation requirements using the GOESWEB ETo maps. 

6. Conclusions 

The above study demonstrates the operational utility of incorporating spatially 
continuous, high spatial resolution (1 km) GOES–16-derived solar insolation, using 
the model described by [24], into the water balance model GOESWEB, to then 
estimate the complete water budget. In this demonstration, applications of water 
balance were performed over the US territory of Puerto Rico, a subtropical location 
that is very sensitive to high rates of ET, relative to various crop types and vegeta-
tion characteristics, and that also receives high amounts of rainfall. High rainfall 
causes significant runoff, for which the GOESWEB water balance model can help 
identify related to actual rainfall events. Expanding GOESWEB to other island 
regions would be a future avenue for the research and algorithm development 
activities described here. 
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Nomenclature 

B (unitless) Bowen ratio 
Cf (dimensionless) calibration coefficient 
CN (dimensionless) curve number, proportion of rainfall converted to 

runoff 
DP (mm) deep percolation or the soil water that passes 

below the root zone 
dr (dimensionless) relative distance Earth-Sun 
ETa (mm) actual evapotranspiration 
ETo (mm) reference evapotranspiration 
ea [kPa] actual vapor pressure 
es (kPa) saturated vapor pressure 

˜2) g (m s gravitational constant 
G (MJ m˜2 day˜1) soil heat flux density 
Gsc (MJ m˜2 min˜1) solar constant = 0.0820 
h (m) canopy height 
H (MJ m˜2 day˜1) sensible heat flux 
J Julian day (e.g., January 1 is 1 and December 31 is 

365) 
k (dimensionless) Von Karman’s constant (0.41) 
Kc,eff (unitless) effective crop coefficient 
Ks (unitless) water stress coefficient 
LE (MJ m˜2 day˜1) latent heat flux 

˜1) PAR (micromoles m˜2 sec photosynthetically active radiation 
Precip (mm) rainfall precipitation 
Precipeff (mm) effective rainfall 
Ra (MJ m˜2 day˜1) extraterrestrial radiation 
ra (s m

˜1) aerodynamic resistance 
˜1) rao (s m aerodynamic resistance under conditions of neu-

tral atmospheric stability 
˜1) rbh (s m excess resistance 

Rdepth (mm) root depth 
RH (%) relative humidity 
Rn (MJ m˜2 day˜1) net radiation 
Rnl (MJ m˜2 day˜1) net long wave radiation 
Rns (MJ m˜2 day˜1) net shortwave radiation 
RO (mm) surface runoff 
Rs (MJ m˜2 day˜1) solar radiation 

˜1) rs (s m surface resistance 
Rs/Rso relative shortwave radiation 
Rso (MJ m˜2 day˜1) clear-sky radiation 
S (mm) maximum potential difference between rainfall 

and runoff at the moment of rainfall initiation 
Sat (unitless) soil moisture saturation 
SMD1 (mm) depths of water in the soil profile beginning of 

the day (24 hours) 
SMD2 (mm) depths of water in the soil profile end of the day 

(24 hours) 
Ta (°C) air temperature 
Tavg [°C] mean daily air temperature 
Td (°C) dew point temperature 
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Tmax (K) maximum absolute temperate during the 24-hour 
period 

Tmax (°C) maximum air temperature 
Tmin (°C) minimum air temperature 
Tmin (K) minimum absolute temperature during the 

24-hour period 
To (°C) average of the values of Ts and Tavg 

Ts (°C) effective surface temperature 
˜1) U (m s wind speed 
˜1) u2 (m s wind speed at 2 m height 

VPD (kPa) vapor pressure deficit 
z (m) elevation above mean sea level 
zdisp (m) zero-plane displacement 
zo (m) roughness length 
α Albedo and Priestly-Taylor constant 
δ (rad) solar declination 
Δ [kPa °C˜1] slope of the vapor pressure curve 
η (dimensionless) coefficient, commonly taken as 5 
φ (rad) latitude 
σ (MJ K˜4 m˜2 day˜1) Stefan-Boltzmann constant (4.903 

10˜9 MJ K˜4 m˜2 day˜1) 
γ (kPa °C˜1) psychrometric constant 
ω1 (rad) solar time angle at beginning of period 
ω2 (rad) solar time angle at end of period 

˜3) θ (m˜3 m soil moisture content 
θFC (m

3/m3) θ values at field capacity 
θWP (m

3/m3) θ values at wilting point 
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