
Density Functional Theory
Edited by Daniel Glossman-Mitnik

Edited by Daniel Glossman-Mitnik

Density Functional Theory (or DFT for short) is a potent methodology useful for 
calculating and understanding the molecular and electronic structure of atoms, 

molecules, clusters, and solids. Its use relies not only in the ability to calculate the 
molecular properties of the species of interest but also provides interesting concepts 
that allow a better comprehension of the chemical reactivity of the studied systems.

This book represents an attempt to present examples on the utility of DFT for the 
understanding of the chemical reactivity through descriptors that constitute the 

basis of the so called Conceptual DFT (sometimes also named as Chemical Reactivity 
Theory) as well as the application of the theory and its related computational 

procedures in the determination of the molecular properties of different systems of 
academic and industrial interest.

Published in London, UK 

©  2019 IntechOpen 
©  Alexandre Ostyanko / iStock

ISBN 978-1-78985-167-0

D
ensity Functional Th

eory



DENSITY FUNCTIONAL
THEORY

Edited by Daniel Glossman-Mitnik



DENSITY FUNCTIONAL
THEORY

Edited by Daniel Glossman-Mitnik



Density Functional Theory
http://dx.doi.org/10.5772/intechopen.76822
Edited by Daniel Glossman-Mitnik

Contributors

Paul Geerlings, Paul Ayers, Stijn Fias, Thijs Stuyver, Frank De Proft, Robert Balawender, Francisco Colmenero, Sergio 
Ricardo De Lazaro, Renan Augusto Pontes Ribeiro, Luis Henrique Da Silveira Lacerda, Rafael Ribadeneira, Alejandro 
Pérez-Mendoza, Pierre Millet, Manuel Antuch, Sareeya Bureekaew, Sarawoot Impeng, Siwarut Siwaipram, Philippe A. 
Bopp, Ruby Srivastava, Mohamad Fakhrul Ridhwan Samsudin, Suriati Sufian, Thien Duc Nguyen V.

© The Editor(s) and the Author(s) 2019
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and 
Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole 
(compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without 
INTECHOPEN LIMITED’s written permission. Enquiries concerning the use of the book should be directed to 
INTECHOPEN LIMITED rights and permissions department (permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in London, United Kingdom, 2019 by IntechOpen
eBook (PDF) Published by IntechOpen, 2019
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, registration number: 
11086078, The Shard, 25th floor, 32 London Bridge Street  
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Density Functional Theory
Edited by Daniel Glossman-Mitnik

p. cm.

Print ISBN 978-1-78985-167-0

Online ISBN 978-1-78985-168-7

eBook (PDF) ISBN 978-1-83881-836-4



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,000+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International  authors and editors

120M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Dr. Daniel Glossman-Mitnik is now a Titular Researcher 
at the Centro de Investigación en Materiales Avanzados 
(CIMAV), Chihuahua, Mexico as well as a National Re-
searcher of Level III of the Consejo Nacional de Ciencia 
y Tecnología, Mexico. His research interest focuses on 
Computational Chemistry and Molecular Modeling 
of molecular systems of pharmacological, food, and 

alternative energy interests by resorting to DFT and Conceptual DFT. He 
has authored and coauthored more than 200 peer-reviewed papers and 10 
book chapters. He has delivered speeches at many international and do-
mestic conferences. He serves as the referee for more than 60 international 
journals, books, and research proposals.



Contents

Preface VII

Section 1 Concepts    1

Chapter 1 New Insights and Horizons from the Linear Response Function
in Conceptual DFT   3
Paul Geerlings, Stijn Fias, Thijs Stuyver, Paul Ayers, Robert
Balawender and Frank De Proft

Section 2 Applications    31

Chapter 2 Modeling with DFT and Chemical Descriptors Approach for the
Development of Catalytic Alloys for PEMFCs   33
Alejandro E. Pérez and Rafael Ribadeneira

Chapter 3 Density Functional Theory Studies of Catalytic Sites in Metal-
Organic Frameworks   55
Siwarut Siwaipram, Sarawoot Impeng, Philippe A. Bopp and
Sareeya Bureekaew

Chapter 4 The Use of Density Functional Theory to Decipher the
Electrochemical Activity of Metal Clathrochelates with Regard
to the Hydrogen Evolution Reaction in the
Homogeneous Phase   75
Manuel Antuch and Pierre Millet

Chapter 5 The Application of Periodic Density Functional Theory to the
Study of Uranyl-Containing Materials: Thermodynamic
Properties and Stability   91
Francisco Colmenero Ruiz



Contents

Preface XI

Section 1 Concepts    1

Chapter 1 New Insights and Horizons from the Linear Response Function
in Conceptual DFT   3
Paul Geerlings, Stijn Fias, Thijs Stuyver, Paul Ayers, Robert
Balawender and Frank De Proft

Section 2 Applications    31

Chapter 2 Modeling with DFT and Chemical Descriptors Approach for the
Development of Catalytic Alloys for PEMFCs   33
Alejandro E. Pérez and Rafael Ribadeneira

Chapter 3 Density Functional Theory Studies of Catalytic Sites in Metal-
Organic Frameworks   55
Siwarut Siwaipram, Sarawoot Impeng, Philippe A. Bopp and
Sareeya Bureekaew

Chapter 4 The Use of Density Functional Theory to Decipher the
Electrochemical Activity of Metal Clathrochelates with Regard
to the Hydrogen Evolution Reaction in the
Homogeneous Phase   75
Manuel Antuch and Pierre Millet

Chapter 5 The Application of Periodic Density Functional Theory to the
Study of Uranyl-Containing Materials: Thermodynamic
Properties and Stability   91
Francisco Colmenero Ruiz



Chapter 6 Magnetic Ordering in Ilmenites and Corundum-Ordered
Structures   123
Sergio Ricardo De Lazaro, Luis Henrique Da Silveira Lacerda and
Renan Augusto Pontes Ribeiro

Chapter 7 Role of Density Functional Theory in “Ribocomputing
Devices”   141
Ruby Srivastava

X Contents

Preface

Density Functional Theory (or DFT for short) is a potent methodology useful for calculating
and understanding the molecular and electronic structure of atoms, molecules, clusters, and
solids. Its use relies not only in the ability to calculate the molecular properties of the species
of interest but also provides interesting concepts that allow a better comprehension of the
chemical reactivity of the studied systems.

This book represents an attempt to present examples on the utility of DFT for the under‐
standing of the chemical reactivity through descriptors that constitute the basis of the so
called Conceptual DFT (sometimes also named as Chemical Reactivity Theory). These de‐
scriptors provide a qualitative and quantitative view of the problem and an updated review
of this is presented in the first chapter within the Concepts section.

The Applications section contains chapters showing the application of the theory and its re‐
lated computational procedures in the determination of the molecular properties of different
systems of academic and industrial interest.

I would like to express my sincere gratitude to all authors who contributed to this book:
Paul Geerlings, Stijn Fias, Thijs Stuyver, Paul Ayers, Robert Balawender, Frank De Proft,
Alejandro E. Pérez, Rafael Ribadeneira, Siwarut Siwaipram, Sarawoot Impeng, Philippe A.
Bopp, Sareeya Bureekaew, Manuel Antuch, Pierre Millet, Francisco Colmenero, Sergio Ri‐
cardo De Lázaro and Ruby Srivastava.

Finally, my warmest thanks go to my beloved wife Carmen and to the memories of my late
parents, Sofía and Miguel. I am also grateful for the financial support from the Consejo Na‐
cional de Ciencia y Tecnología (CONACYT), Mexico.

Dr. Daniel Glossman-Mitnik
Laboratorio Virtual NANOCOSMOS

Departamento de Medio Ambiente y Energía
Centro de Investigación en Materiales Avanzados

Chihuahua, Mexico



Chapter 6 Magnetic Ordering in Ilmenites and Corundum-Ordered
Structures   123
Sergio Ricardo De Lazaro, Luis Henrique Da Silveira Lacerda and
Renan Augusto Pontes Ribeiro

Chapter 7 Role of Density Functional Theory in “Ribocomputing
Devices”   141
Ruby Srivastava

ContentsVI

Preface

Density Functional Theory (or DFT for short) is a potent methodology useful for calculating
and understanding the molecular and electronic structure of atoms, molecules, clusters, and
solids. Its use relies not only in the ability to calculate the molecular properties of the species
of interest but also provides interesting concepts that allow a better comprehension of the
chemical reactivity of the studied systems.

This book represents an attempt to present examples on the utility of DFT for the under‐
standing of the chemical reactivity through descriptors that constitute the basis of the so
called Conceptual DFT (sometimes also named as Chemical Reactivity Theory). These de‐
scriptors provide a qualitative and quantitative view of the problem and an updated review
of this is presented in the first chapter within the Concepts section.

The Applications section contains chapters showing the application of the theory and its re‐
lated computational procedures in the determination of the molecular properties of different
systems of academic and industrial interest.

I would like to express my sincere gratitude to all authors who contributed to this book:
Paul Geerlings, Stijn Fias, Thijs Stuyver, Paul Ayers, Robert Balawender, Frank De Proft,
Alejandro E. Pérez, Rafael Ribadeneira, Siwarut Siwaipram, Sarawoot Impeng, Philippe A.
Bopp, Sareeya Bureekaew, Manuel Antuch, Pierre Millet, Francisco Colmenero, Sergio Ri‐
cardo De Lázaro and Ruby Srivastava.

Finally, my warmest thanks go to my beloved wife Carmen and to the memories of my late
parents, Sofía and Miguel. I am also grateful for the financial support from the Consejo Na‐
cional de Ciencia y Tecnología (CONACYT), Mexico.

Dr. Daniel Glossman-Mitnik
Laboratorio Virtual NANOCOSMOS

Departamento de Medio Ambiente y Energía
Centro de Investigación en Materiales Avanzados

Chihuahua, Mexico



Section 1

Concepts



Section 1

Concepts



Chapter 1

New Insights and Horizons from the Linear Response
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Abstract

An overview is given of our recent work on the linear response function (LRF) χ r; r0ð Þ and
its congener, the softness kernel s r; r0ð Þ, the second functional derivatives of the energy E
and the grand potential Ω with respect to the external potential at constant N and μ,
respectively. In a first section on new insights into the LRF in the context of conceptual
DFT, the mathematical and physical properties of these kernels are scrutinized through
the concavity of the E ¼ E N; v½ � andΩ ¼ Ω μ; v

� �
functionals in v rð Þ resulting, for example,

in the negative semidefiniteness of χ. As an example of the analogy between the CDFT
functionals and thermodynamic state functions, the analogy between the stability condi-
tions of the macroscopic Gibbs free energy function and the concavity conditions for Ω is
established, yielding a relationship between the global and local softness and the softness
kernel. The role of LRF and especially the softness kernel in Kohn’s nearsightedness of
electronic matter (NEM) principle is highlighted. The first numerical results on the soft-
ness kernel for molecules are reported and scrutinized for their nearsightedness, reconcil-
ing the physicists’NEM view and the chemists’ transferability paradigm. The extension of
LRF in the context of spin polarized conceptual DFT is presented. Finally, two sections are
devoted to ‘new horizons’ for the LRF. The role of LRF in (evaluating) alchemical deriva-
tives is stressed, the latter playing a promising role in exploring the chemical compound
space. Examples for the transmutation of N2 and the CC ! BN substitution pattern in 2D
and 3D carbocyclic systems illustrate the computational efficiency of the use of alchemical
derivatives in exploring nearest neighbours in the chemical compound space. As a second
perspective, the role of LRF in evaluating and interpreting molecular conductivity is
described. Returning to its forerunner, Coulson’s atom-atom polarizability, it is shown
how in conjugated π systems (and within certain approximations) a remarkable integral-
integrand relationship between the atom-atom polarizability and the transmission proba-
bility between the atoms/contacts exists, leading to similar trends in both properties. A
simple selection rule for transmission probability in alternating hydrocarbons is derived
based on the sign of the atom-atom polarizability.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.
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1. Introduction

A continuous challenge for theoretical and quantum chemists is to see if ‘classical’ chemical
concepts describing bonding, structure and reactivity—the common language of all chemists
—can still be retrieved from the nowadays extensive and complex computational results
obtained at different levels of complexity with wave function or density functional theory.
Conceptual density functional theory (CDFT) [1–6] has played an important role in this
endeavour in the past decades. CDFT is a branch of DFT [7, 8] aiming to give precision to
often well-known but sometimes vaguely defined chemical concepts (e.g. electronegativity,
hardness and softness), affording their numerical evaluation, and to use them either as such
or in the context of principles such as Sanderson’s electronegativity equalization principle [9]
or Pearson’s hard and soft acids and bases principle [10]. ‘Chemical’ DFT or even ‘chemical
reactivity’ DFT would have been a better name for the obvious reason that concepts are
essential for all branches of DFT (especially the fundamentals) and that chemical reactivity is
one of the main issues addressed in conceptual DFT.

When looking at the basics of CDFT, the energy functional, E ¼ E N; v½ �, stands out [8]. Why? It
is the key ingredient to get (qualitative and quantitative) insight into the eagerness of an atom,
or a molecule, to adapt itself to changes in the number of electrons, N, and/or the external
potential, v rð Þ, that is, the potential felt by the electrons due to the nuclei. These changes are
essential in describing (the onset of) a chemical reaction, hence chemical reactivity. The readi-
ness of a system to adapt itself to these new conditions is quantified through response functions,
δm ∂nE=∂Nnð Þ=δv r1ð Þ…δv rmð Þ, which are the cornerstones of CDFT. Literature on these response
functions is abundant, especially on the first-order responses (electronic chemical potential μ
[11] n ¼ 1;m ¼ 0ð Þ and the electron density r rð Þ n ¼ 0;m ¼ 1ð Þ, the cornerstone of DFT itself)
and two of the second-order responses (chemical hardness η n ¼ 2;m ¼ 0ð Þ and its inverse, the
chemical softness S [12], and the electronic Fukui function f rð Þ n ¼ 1;m ¼ 1ð Þ [13]). The most

prominent of the third-order response functions [14] is the dual descriptor f 2ð Þ rð Þ [15], the
N-derivative of the Fukui function n ¼ 1;m ¼ 1ð Þ. Remarkably, response functions diagonal
in v rð Þ n ¼ 0;m ¼ 2� 3ð Þ were nearly absent in the CDFT literature until about 10 years ago
(see [16] for an overview of this early work). The reasons are obvious; here we concentrate on
its simplest member n ¼ 0;m ¼ 2ð Þ, the linear response function (LRF).

χ r; r0ð Þ ¼ δ2E=δv rð Þδv r0ð Þ� �
N (1)

The calculation of this kernel turns out to be far from trivial, as is the representation of this
quantity, a function of six Cartesian coordinates, and by extension its link to ‘chemical’ concepts.

Density Functional Theory4

Note that in the context of time-dependent DFT [17–19], the LRF has made its appearance
many years ago as it was realized that the poles of its frequency-dependent form are nothing
other than the electronic excitation energies. Thanks to Casida’s elegant matrix formalism [20],
electronic transition frequencies, intensities and assignments are nowadays routinely performed,
implemented as they are in standard quantum chemistry packages. However, this evolution was
not accompanied by a parallel endeavour on the evaluation, representation and chemical inter-
pretation of the frequency-independent or static LRF.

In the past decade, the ALGC group, in collaboration with colleagues from different countries
(Canada (Ayers), US (Yang), Spain (Sola), Poland (Balawender), etc.), set out a program aiming
at the systematic evaluation, representation and interpretation of the LRF with the following
results obtained until 2013, summarized in a review paper in Chemical Society Reviews [16]
(no explicit reference to each of the individual constituting studies will be given).

1. The LRF can now be routinely calculated at several levels of approximation for which the
coupled perturbed Kohn-Sham perturbational approach turns out to be the most attractive
approach, also permitting different levels of sophistication depending on the treatment of
the exchange correlation potential (vxc) term in the perturbation equations. In its simplest
form (neglecting the influence of the external potential variation on the Coulomb and
exchange-correlation terms in the perturbational equations), the independent particle
expression, already presented by Ayers and Parr [8, 21], is retrieved.

2. The representation can be done via contour diagrams (fixing, e.g. r0) as demonstrated for
atoms and molecules, or in the case of molecules, after condensation, via a simple atom-
atom matrix, reminiscent of reporting the results of a population analysis.

3. An abundance of chemical information was shown to be present in the LRF ranging from
the shell structure of atoms, to inductive and mesomeric effects, electron (de)localization
and (anti)aromaticity in molecules.

In the present chapter, a synopsis is given of the progress made since then by the ALGC group
in collaboration with other groups as witnessed by two of the authors (P.A and R. B.), both on
fundamental and applied aspects, that is, on new insights into the properties of the LRF and on
new areas where the LRF is at stake. In Section 2 the mathematical/physical properties of the
LRF are revised together with those of its congener, the softness kernel s r; r0ð Þ, the latter
playing a fundamental role in scrutinizing Kohn’s nearsightedness of electronic matter
(NEM) principle. The extension of LRF in the context of spin polarized DFT is also addressed.
In Section 3, we highlight the importance of the LRF in the emerging field of alchemical
derivatives when exploring the chemical compound space. We illustrate the potential of
alchemical derivatives in exploring the CC ! BN isoelectronic substitution in 2D and 3D
unsaturated carbocyclic molecules: benzene and the C60 fullerenes. Finally, in Section 4 we
show how the LRF (in fact its forerunner, Coulson’s atom-atom polarizability) can be used to
predict/interpret the conductivity behaviour of unsaturated hydrocarbons, thus entering the
vibrant field of molecular electronics.

New Insights and Horizons from the Linear Response Function in Conceptual DFT
http://dx.doi.org/10.5772/intechopen.80280
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2. Theoretical developments

2.1. On the negative and positive semidefiniteness of the LRF and the softness kernel and
thermodynamic analogies

The properties of the LRF χ r; r0ð Þ are intimately related to the concavity/convexity properties of
E N; v½ � that we addressed in recent years [22, 23]. Where E N; v½ � is convex with respect to (w.r.t.)
N [24], it is well established that E N; v½ � is concave w.r.t. v rð Þ following the Jensen’s inequality.

E N;λv1 þ 1� λð Þv2½ � ≥ λE N; v1½ � þ 1� λð ÞE N; v2½ � ∧ λ∈ 0; 1½ � (2)

(see for example Lieb [25], Eschrig [26], and Helgaker et al. [27]). In Figure 1 (after Helgaker
[28]) we illustrate the physical interpretation of this concavity property. For a given potential
v1, the associated ground state energy is given by the expectation value ψ1 H v1½ �j jψ1

� �
, with

ground state wave function ψ1, the red point in the figure. Changing v1 to v2, with constant ψ,
induces changes in energy linear in δv rð Þ as a consequence of the term

Ð
r rð Þv rð Þdr in the DFT

energy expression. Relaxing the wave function yields an energy lowering (blue arrow) until
the energy obtained by applying the variational principle with v ¼ v2 is reached (with associ-
ated wave function ψ2). Consequently, the true energy (black line) will always be found below
the tangent line ensuring concavity.

Figure 1. Illustration of the concavity of the E ¼ E v½ � functional (after Helgaker [28]) (Reprinted by permission from
Springer Nature, Copyright 2016 [22]).
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A direct consequence is that the LRF is negative semidefinite.
ðð

χ r; r0ð Þθ rð Þθ r0ð Þdrdr0 ≤ 0 (3)

where θ rð Þ is any continuous function [23]. This inequality shows up when considering the
second-order variation of the energy

δE 2ð Þ ¼ 1=2

ðð
δ2E=δv rð Þδv r0ð Þ� �

Nδv rð Þδv r0ð Þdrdr0 (4)

When adopting the δv rð Þ ¼ V0δ r� r00ð Þ choice for δv rð Þ, where V0 is a constant one gets

δE 2ð Þ ¼ 1=2V2
0χ r00; r00ð Þ ≤ 0 (5)

showing that the diagonal elements of the linear response function χ r; r0ð Þ should be negative
or zero. This result links the concavity of the E N; v½ � functional to the diagonal elements of the
linear response function defined on R3 � R3. This negativity was retrieved in all our numerical
results (non-integrated and condensed) (see for example [29, 30]). Its physical interpretation is
straightforward through the definition of χ r; r0ð Þ as δr rð Þ=δv r0ð Þð ÞN: if the potential at a given
point r is increased (made less negative), this electron-unfavourable situation will lead to
electron depletion at that point, yielding a negative χ r; rð Þ.
In Section 4, we will point out that Coulson’s atom-atom polarizability πAB [31] can be
considered as a Hückel-theory forerunner of the LRF and exploit its properties in discussing
molecular conductivity. Defined as

πAB ¼ ∂qA=∂αB ¼ ∂2E=∂αA∂αB ¼ πBA (6)

the analogy emerges as qA is the π-electron charge on atom A, whereas (the change in) the
Coulomb integral αB is equivalent to a change in the external potential. The case A ¼ B was
explored by Coulson using his complex integral formalism for Hückel’s π energy and its
derivatives, proving that πAA can be written as

πAA ¼ 1=πð Þ
ðþ∞

�∞

ΔAA iyð Þ=Δ iyð Þð Þ2dy (7)

Here, Δ represents the Hückel secular determinant (or characteristic function) and ΔAA is its
counterpart with row A and column A deleted. It turns out that ΔAA iyð Þ=Δ iyð Þ is imaginary and
therefore πAA is negative (see also Section 4).

When introducing the E ¼ E N; v½ � functional, it was stressed that in the LRF the second
functional derivative is taken at constant N. In the remaining part of this chapter, it turns out
that no less important role in CDFT is played by the softness kernel, which is the second
functional derivative with respect to v rð Þ of the Ω ¼ Ω μ; v

� �
functional (the grand potential)
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at constant μ. Here, we switch from the canonical ensemble to the grand canonical ensemble
[32] connecting two ways of specifying the same physics via functionals of each time two
variables differing in one pair that is connected through a Legendre transformation (see for
example [33]).

Ω μ; v
� � ¼ E ~N μ; v

� �
; v� � μ~N μ; v

� ��
(8)

where μ and N are conjugate variables which are related by identities ~N μ; v
� � ¼ N and

~μ N; v½ � ¼ μ. Its apparent analogy with classical thermodynamics will be addressed later.

In [23], we pointed out that Ω μ; v
� �

just as E N; v½ � is concave w.r.t. v rð Þ, implying that its
second functional derivative at constant μ, the softness kernel (note the negative sign in the
definition) [34].

s r; r0ð Þ ¼ � δ2Ω=δv rð Þδv r0ð Þ� �
μ (9)

is positive semidefinite. This property fits the well-known Berkowitz-Parr relationship [33]
linking χ r; r0ð Þ and s r; r0ð Þ (vide infra).

s r; r0ð Þ ¼ �χ r; r0ð Þ þ f rð Þf r0ð Þ=η (10)

where f rð Þ is the Fukui function and η is the hardness. Indeed,

ðð
s r; r0ð Þθ rð Þθ r0ð Þdrdr0 ¼

ðð
�χ r; r0ð Þ þ f rð Þf r0ð Þ=ηð Þθ rð Þθ r0ð Þdrdr0

¼ �
ðð

χ r; r0ð Þθ rð Þθ r0ð Þdrdr0 þ 1=η
ð

f rð Þθ rð Þð Þ2dr ≥ 0
(11)

since the hardness is nonnegative and χ r; r0ð Þ was shown to be negative semidefinite.

The properties of χ r; r0ð Þ and s r; r0ð Þ incited us to reconsider the analogy between the DFT
functionals E and Ω [32] on the one hand and the macroscopic thermodynamic state functions
U ¼ U S;V½ �, F ¼ F T;V½ �, H ¼ H S;P½ � and G ¼ G T;P½ � on the other hand (internal energy,
Helmholtz free energy, enthalpy and Gibbs free energy written as functions of volume (V),
temperature (T), pressure (P) and entropy (S)). Parr and Nalewajski extended the notion of
intensive and extensive variables T;Pð Þ and S;Vð Þ, respectively, in thermodynamics to the
variables in DFT functionals by classifying external variables as properties additive with
respect to any partitioning of the electron density r rð Þ ¼ rA rð Þ þ rB rð Þ [32]. In this way, r rð Þ
and N are clearly extensive, and μ and v rð Þ are intensive. The analogy between G T;P½ � and
Ω μ; v
� �

can now be stressed: both the state function G and the DFT functional Ω contain two
intensive variables. This situation leads to a remarkable property when formulating a DFT
analogue of the stability analysis in macroscopic thermodynamics [33, 35, 36]. Concavity for
G T;P½ � in all directions then implies that

d2G ¼ GTT ΔTð Þ2 þ 2GTPΔTΔPþ GPP ΔPð Þ2 ≤ 0, (12)

Density Functional Theory8

where GTT , GTP and GPP are the second derivatives of Gibbs free energy, GXY ¼ ∂2G=∂X∂Y
� �

.
This stability condition implies the negative semidefiniteness of the Hessian matrix. It yields

GPP ¼ ∂V=∂Pð ÞT ¼ �κTV ≤ 0 (13)

GTT ¼ � ∂S=∂Tð ÞP ¼ �CP=T ≤ 0 (14)

that is, the isothermal compressibility κT and the heat capacity at constant pressure CP should
be positive, and the condition that

GTTGPP � G2
PT

� � ¼ κTVCP=T � α2V2� �
≥ 0 ⇔ κTCP=T ≥α2V (15)

where α ¼ ∂V=∂Tð ÞP=V is the coefficient of thermal expansion. Another classical example of
such stability analysis is the entropy written as S U;V½ � (at constant number of particles) where
both variables are now extensive [33].

Let us now consider the analogy with Ω μ; v
� �

. It is well known that

∂2Ω=∂μ2� �
v ¼ �S μ; v

� �
, (16)

where S is the global softness [3]. As the r.h.s. of (16) is negative, concavity for Ω μ; v
� �

in μ
shows up. As discussed above, Ω is also concave in v rð Þ, leading to the positive semidefi-
niteness of s r; r0ð Þ (these expressions being the counterparts of (13) and (14)). The condition for
concavity in all directions leads after some algebra (see [23]) to the condition

∂2Ω=∂μ2
� �

vΔμþ Ð
∂ δΩ=δv rð Þð Þμ=∂μ

� �
v
Δv rð Þdr

� �2
þ ÐÐ

∂2Ω=∂μ2
� �

v δ2Ω=δv rð Þδv r0ð Þ� �
μ

�

� ∂ δΩ=δv rð Þð Þμ=∂μ
� �

v
∂ δΩ=δv r0ð Þð Þμ=∂μ

� �
v
ÞΔv rð ÞdrΔv r0ð Þdr0 ≥ 0 (17)

and finally to
ðð

s r; r0ð ÞS� s rð Þs r0ð Þð ÞΔv rð ÞdrΔv r0ð Þdr0 ≥ 0, (18)

the analogue of (15) where the local softness

s rð Þ ¼ ∂ δΩ=δv rð Þð Þμ=∂μ
� �

v
¼ ∂r rð Þ=∂μ� �

v (19)

has been introduced [37]. Taking again for Δv rð Þ and Δv r0ð Þ Dirac delta functions δ r� r00ð Þ and
δ r0 � r00ð Þ, one obtains the condition

s r; rð ÞS ≥ s rð Þð Þ2 ≥ 0: (20)

This inequality shows that the diagonal elements s r; rð Þ should be positive, as could be inferred
from the concavity of Ω μ; v

� �
but, more importantly, they impose a restriction on the relative
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values of the three softness descriptors s r; r0ð Þ,S and s rð Þ in analogy to the thermodynamic
relationship between κT, CP and α at given T and P (V ¼ V T;P½ �). This result is compatible
with the aforementioned Berkowitz-Parr relationship. Indeed, starting from their expression
for r0 ¼ r (see (10), the relations s rð Þ ¼ f rð Þ=η)

s r; rð Þ ¼ �χ r; rð Þ þ s rð Þs rð Þ=S (21)

and knowing that χ r; rð Þ ≤ 0 (vide supra) one obtains

s r; rð Þ � s rð Þs rð Þ=S ≥ 0, (22)

retrieving our conclusions above.

2.2. Kohn’s nearsightedness of electronic matter revisited

We now report on our recent explorations [38] on Kohn’s NEM principle. Kohn introduced the
NEM concept in 1996 [39] and elaborated on it in 2005 with Prodan et al. [40]. In his own
words, it can be viewed as ‘underlying such important ideas as Pauling’s chemical bond,
transferability, and Yang’s computational principle of divide and conquer’ [40]. Certainly in
view of the two former issues, this principle, formulated by a physicist, touches the very heart
of chemistry and so, in our opinion, it was tempting to look at it with a chemist’s eye. Why
however is this issue addressed in this chapter; in other words, what is the link between the
LRF and nearsightedness?

The quintessence of the NEM principle is as follows (Figure 2): consider a (many) electron
system characterized by an electron density function r rð Þ with a given electronic chemical
potential μ. Now, concentrate on a point r0 and perturb the system in its external potential v rð Þ
at point r0, outside a sphere with radius R around r0 at constant electronic potential μ. Then, the
NEM principle states that the absolute value of the density change at r0, Δr r0ð Þj j, will be lower
than a finite maximum value Δr, which depends on r0 and R, whatever the magnitude of the
perturbation. As stated by Kohn, anthropomorphically the particle density r rð Þcannot ‘see’ any
perturbation v rð Þ beyond the distance R r0;Δr

� �
within an accuracy Δr, that is, the density shows

nearsightedness. Kohn offered evidence that in the case of 1D ‘gapped’ systems (i.e. with
hardness η larger than zero) the decay of Δr as a function of R (i.e. upon increasing r� r0j j) is
exponential and that for gapless systems it follows a power law. This suggests that in the
molecular world, where η is observed to be always positive, the electron density should only be
sensitive to nearby changes in the external potential. In [38], we provided the first numerical
confirmation of this nearsightedness principle for real, 3D, molecules.

Again, why address this issue in this LRF chapter? Going back to Kohn’s formulation quintes-
sentially a change in density at a given point Δr r0ð Þ in response to a change in external
potential Δv r0ð Þ at different points is analysed. These are the typical ingredients of the LRF
(change in v produces a change in r), and in this case the process is considered at constant
electronic chemical potential μ, in order words δr rð Þ=δv r0ð Þð Þμ is the key quantity. This is

nothing else than the softness kernel s r; r0ð Þ with a minus sign in front. Indeed,

Density Functional Theory10

δr rð Þ=δv r0ð Þð Þμ ¼ �s r; r0ð Þ ¼ δ2Ω=δv rð Þδv r0ð Þ� �
μ (23)

The Berkowitz-Parr relationship [34] can then be written as

δr rð Þ=δv r0ð Þð ÞN ¼ δr rð Þ=δv r0ð Þð Þμ � ∂r rð Þ=∂μ� �
v δμ=δv r0ð Þ� �

N (24)

an equation transforming conditions of constant N into constant μ, for taking the functional
derivative of r rð Þ w.r.t. δv rð Þ in analogy with this type of equation for partial derivatives in
macroscopic thermodynamics [33]. As ∂r rð Þ=∂μ� �

v equals the local softness s rð Þ and δμ=δv r0ð Þ� �
N

is an alternative way, as compared to ∂r rð Þ=∂Nð Þv to write the Fukui function f(r), one retrieves
from (28)

s r; r0ð Þ ¼ �χ r; r0ð Þ þ f rð Þf r0ð Þ=η (25)

which will be the key equation in this section. As analytical methods are available to evaluate
χ r; r0ð Þ, f rð Þ and η on equal footing [41], s r; r0ð Þ can be evaluated, and its difference with χ r; r0ð Þ
analysed, in order to scrutinize nearsightedness.

Figure 2. Pictorial representation of the nearsightedness of electronic matter principle: when δv r0ð Þ ≥ δv2 r0ð Þ, with r0

outside a sphere with radius R around r0, δr0 r0ð Þ no longer increases—δr0 r0ð Þ ¼ Δr r0;Rð Þ no matter how large δv r0ð Þ.
The intensity of the red and blue regions represents the magnitude of v r0ð Þ and r rð Þ, respectively.
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� �
within an accuracy Δr, that is, the density shows
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electronic chemical potential μ, in order words δr rð Þ=δv r0ð Þð Þμ is the key quantity. This is

nothing else than the softness kernel s r; r0ð Þ with a minus sign in front. Indeed,
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δr rð Þ=δv r0ð Þð Þμ ¼ �s r; r0ð Þ ¼ δ2Ω=δv rð Þδv r0ð Þ� �
μ (23)

The Berkowitz-Parr relationship [34] can then be written as

δr rð Þ=δv r0ð Þð ÞN ¼ δr rð Þ=δv r0ð Þð Þμ � ∂r rð Þ=∂μ� �
v δμ=δv r0ð Þ� �

N (24)

an equation transforming conditions of constant N into constant μ, for taking the functional
derivative of r rð Þ w.r.t. δv rð Þ in analogy with this type of equation for partial derivatives in
macroscopic thermodynamics [33]. As ∂r rð Þ=∂μ� �

v equals the local softness s rð Þ and δμ=δv r0ð Þ� �
N

is an alternative way, as compared to ∂r rð Þ=∂Nð Þv to write the Fukui function f(r), one retrieves
from (28)

s r; r0ð Þ ¼ �χ r; r0ð Þ þ f rð Þf r0ð Þ=η (25)

which will be the key equation in this section. As analytical methods are available to evaluate
χ r; r0ð Þ, f rð Þ and η on equal footing [41], s r; r0ð Þ can be evaluated, and its difference with χ r; r0ð Þ
analysed, in order to scrutinize nearsightedness.

Figure 2. Pictorial representation of the nearsightedness of electronic matter principle: when δv r0ð Þ ≥ δv2 r0ð Þ, with r0

outside a sphere with radius R around r0, δr0 r0ð Þ no longer increases—δr0 r0ð Þ ¼ Δr r0;Rð Þ no matter how large δv r0ð Þ.
The intensity of the red and blue regions represents the magnitude of v r0ð Þ and r rð Þ, respectively.
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In Figure 3, we depict the atom condensed linear response function and the softness kernel, the
matrices χAB and sAB, of 1,3,5-hexatriene. Condensation was performed by integrating the
kernels over the domains of atoms A and B, represented by VA and VA, that is,

sAB ¼
ð

VA

ð

VB

s r; r0ð Þdrdr0 (26)

From our previous work on polyenes [42], the χAB matrix elements are known to show an
alternating behaviour with maxima on mesomeric active atoms (C2,C4 and C6) and minima for
mesomeric passive atoms (C3 and C5), with the change in v rð Þ taking place at C1.The picture
illustrates that the softness kernel is more nearsighted than the LRF (all its values are lower)
and that s1,5 and s1,6 are very close to zero; the effect of the perturbation has died off completely,
confirming the nearsightedness of the softness kernel. This effect can be traced back to a cancel-
lation of the LRF, which is non-nearsighted, by the second term in Eq. (25), and accounts for the
density changes induced by charge transfer from the electron reservoir to keep the chemical
potential constant. Note that this condition, at first sight somewhat strange, is an often more
realistic perspective when considering for example the reactivity of molecules in solution where
the chemical potential is fixed by the solvent allowing (partial) charge transfer to or from the
molecule while keeping its chemical potential constant [43, 44].

As a second example, we show in Figure 4 the change in density of the 1,3,5-heptatrienyl
cation when the C atom of one of the terminal CH2 atoms was alchemically replaced by an N
atom. The corresponding density difference was evaluated through the alchemical derivatives
approach (Section 3) where the carbon atom of the CH2 group was annihilated and replaced by
a nitrogen atom at constant geometry and constant number of electrons. It is clear that the

Figure 3. Atom condensed linear response function and softness kernel of 1,3,5-hexatriene. The curves of the softness
kernels using f+ and f� are overlapping [38].
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effect of functionalization dies off much more quickly under constant μ conditions. In fact, the
third carbon atom is hardly affected in this—it should be stressed—unsaturated system, offering
the possibility for mesomerism. In the LRF, the decay is slow and effects are still relatively important
five bonds away from the perturbation.

Further case studies on ‘3D’ systems (e.g. alchemically changing methylcubane to fluorocubane
and on functionalized neopentane) yield similar results. All together, the results on the near-
sightedness of the softness kernel found for all systems discussed in [38] are the first and a firm
numerical confirmation of Kohn’s NEM principle in the molecular world. To put it in chemical
terms, these findings provide computational evidence for the transferability of functional
groups: molecular systems can be divided into locally interacting subgroups retaining a similar
functionality and reactivity that can only be influenced by changes in the direct environment of
the functional group. Thus, the physicist’s NEM principle and the chemist’s transferability
principle [45]—at the heart of, for example, the whole of organic chemistry [46]—are reconciled.

2.3. Extension of χ r; r0ð Þ in the context of spin polarized CDFT

As a natural extension of CDFT to the case where spin polarization is included [47–49], spin
polarized conceptual DFTwas introduced by Galvan et al. [50, 51] (see also Ghanty and Ghosh

Figure 4. Alchemical change in density using the linear response (top) and softness kernel (bottom) for the heptatrienyl
cation to 1,3,5-hexatriene-1-amine [38].
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[52] and for a review see [53]). In the so-called Nα;Nβ
� �

representation, the response of the
electronic energy to perturbations in the number of α electrons, Nα, the number of β electrons,
Nβ, the external potential acting on the α electrons, vα rð Þ, and the external potential acting on
the β electrons, vβ rð Þ, is studied. In this representation, the E ¼ E N; v½ � functional from Section

2.1 is generalized to the E ¼ E Nα;Nβ; vα; vβ
� �

functional. In the second, equivalent, N;NSð Þ
representation, in fact the one introduced by Galvan, the E ¼ E N; v½ � functional is generalized
to E ¼ E N;NS; v; vS½ � or E ¼ E N;NS; v;B½ � where NS denotes the electron spin number defined
as the difference between the number of α and β electrons, NS ¼ Nα �Nβ, whereas vs is given

by vS rð Þ ¼ vα rð Þ � vβ rð Þ� �
=2.

v rð Þ is equal to vα rð Þ þ vβ rð Þ� �
=2 and B represents an external magnetic field. If the magnetic

field is static and uniform along the z axis, one has vα rð Þ ¼ v rð Þ þ μBBZ and vβ rð Þ ¼ v rð Þ � μBBZ,
v rð Þ is the usual external spin-free potential (as used in CDFT without spin polarization),
whereas vS rð Þ is related to the magnetic field B rð Þ. In this context, and sticking to the N;NSð Þ
representation, three linear response functions can now be defined:

χNN r; r0ð Þ ¼ δ2E=δv rð Þδv r0ð Þ� �
N,NS, vS

(27)

χSS r; r0ð Þ ¼ δ2E=δvS rð ÞδvS r0ð Þ� �
N,NS, v

(28)

χNS r; r0ð Þ ¼ δ2E=δv rð ÞδvS r0ð Þ� �
N,NS

¼ δrN rð Þ=δvS r0ð Þð ÞN,NS, v

¼ δrS r0ð Þ=δv rð Þð ÞN,NS, v ¼ δ2E=δvS r0ð Þδv rð Þ� �
N,NS

¼ χSN r0; rð Þ
(29)

where rN rð Þ ¼ rα rð Þ þ rβ rð Þ and rS rð Þ ¼ rα rð Þ � rβ rð Þ are the total and spin densities, respec-

tively. χNN r; r0ð Þ is the analogue of the spin-independent CDFT expression for the LRF χ r; r0ð Þ
(Eq. (1)).

Space limitations prevent us to go in detail on the results reported in [47, 48]. We only depict in
Figure 5 the SPCDFT analogue of the contour plots for χ r; r0ð Þ for closed shell atoms as
discussed in [47] and the Chem Soc Rev paper [16]. In Figure 5, we plot the LRF, in the
Nα;Nβ
� �

representation, for the ground state of Li ((1s)2 (2s)1). The structure of χαα r; r0ð Þ and
χββ r; r0ð Þ is similar to the χ r; r0ð Þ plots for closed shell atoms: a negative diagonal part (cfr [47]
and Section 2.1) and alternating positive and negative parts for r or r0 = constant in order to
obey the trivial equation (cf. [47])

ð
χ r; r0ð Þdr ¼

ð
δrN rð Þ=δv r0ð Þð ÞNdr ¼ δN=δv r0ð Þð ÞN ¼ 0 (30)

χαα extends further away from the nucleus than χββ in line with the extra α electron with the
higher principal quantum number (n = 2) extending farther away from the nucleus than
the n = 1 β electron. χββ looks similar to the χββ plot for He (insert) but contracted more to the
origin (due to higher nuclear charge). The χαβ and χαβ plots show some evident symmetry,
χαβ r; r0ð Þ ¼ χβα r0; rð Þ, and show positive regions along the diagonal. A positive perturbation in
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Figure 5. Contour plots of the radial distribution function of the spin polarized linear response function of Lithium in the [Nα,
Nβ] representation. r is represented on the horizontal axis, r0 on the vertical axis [(a) Lithium χαα, (b) Lithium χαβ, (c) Lithium
χαα, (d) Lithium χββ. In the insert, the χββ plot for He (see text) (Reprinted from [48] with the permission of AIP Publishing)].
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the α external potential δvα rð Þ will cause a depletion of electrons in the vicinity of the pertur-
bation, the β electrons are not affected directly. However, the depletion in α electrons will
influence the Coulomb potential and due to the lower electron-electron repulsion, an accumu-
lation in β electrons in the region considered will occur resulting in a positive diagonal χβα r; rð Þ
value. The concentration of the χαβ and χαβ isocontours along the r and r0 axes can be
interpreted when referring to the χαα and χββ plots: perturbing vβ rð Þ at a distance r0 larger than
3 a.u. clearly has no effect on the β density, the Coulomb potential, the overall density and
consequently on the α density. This results in δrα rð Þ=δvβ r0ð Þ� � ¼ χaβ r; r0ð Þ having zero values
for r0 larger than 3 a.u. On the other hand, perturbing vβ rð Þ close to the nucleus induces a
change in the β density, with repercussion on the Coulomb potential and so on the α density
farther away from the nucleus (on the r axis) even in regions where the β density is no longer
affected. All these features account for the ‘partial plane filling’ of the χαβ and χαβ plots with a
‘demarcation’ line at 3 a.u.

To close this section, we mention that once χ r; r0ð Þ (or its counterparts in SPCDFT) is known, a
local version of the polarizability tensor components, say αxy, namely αxy rð Þ can be obtained by
straightforward integration:

αxy rð Þ ¼ �
ð
x rð Þχ r; r0ð Þy r0ð Þdr0 (31)

An example is given in Figure 6 [48] where for the atoms Li through Ne the trend of the
spherically averaged α rð Þ 1

3 αxx rð Þ þ αyy rð Þ þ αzz rð Þ� �� �
is given. From 2 a.u. on, the trends in

α rð Þ for Li up to Ne parallel the global polarizability, known to decrease along a period of the
periodic table. At lower distances (preceding the valence region), inversions with even negative
values occur. The present results are evidently important when, for example, disentangling
reaction mechanisms where local polarizabilities, that is, in certain regions of the reagents, are

Figure 6. Plot of the local polarizability α(r) of the atoms Li through Ne via CPKS (see text) (Reprinted by permission of
the publisher (Taylor and Francis Ltd.) [48]).
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at stake and not the overall polarizability. The parallel between the relationship between local
and global softness (Section 2.1) is obvious.

3. The role of the LRF in alchemical derivatives and exploring chemical
compound space

3.1. Context

The LRF has recently been exploited when investigating Chemical Compound Space [54–56].
Chemists are continuously exploring chemical compound space (CCS) [57, 58], the space popu-
lated by all imaginable chemicals with natural nuclear charges and realistic interatomic distances
for which chemical interactions exist. Navigating through this space is costly, obviously for
synthetic-experimental chemists and also for theoretical and computational chemists who might
and should be guides for indicating relevant domains in CCS to their experimental colleagues.
Doing even a simple single-point SCF calculation at every imaginable point leads to prohibitively
large computing times (not to speak about bookkeeping aspects and manipulation of the com-
puted data). A very promising ansatzwas initiated byVon Lilienfeld et al. [59–63] in his alchemical
coupling approach where two, isoelectronic molecules in CCS are coupled ‘alchemically’ through
the interpolation of their external potentials (see also the work by Yang and co-workers on
designing molecules by optimizing potentials [64]). At the heart of this ansatz are the alchemical
derivatives, partial derivatives of the energyw.r.t. one or more nuclear charges at constant number
of electrons and geometry. The simplest members of this new family of response functions are:

the alchemical potential

μal
A N;Z;R½ � � ∂W=∂ZAð ÞN ,R ¼ ∂E=∂ZAð ÞN ,R þ ∂Vnn=∂ZAð ÞN ,R ¼ μal,el

A þ μal,nuc
A (32)

and the alchemical hardness

ηalAB N;Z;R½ � � ∂2W=∂ZA∂ZB
� �

N ,R ¼ ∂2E=∂ZA∂ZB
� �

N ,R þ ∂2Vnn=∂ZA∂ZB
� �

N ,R ¼ ηal,elAB þ ηal,nucAB ¼ ηalBA, (33)

where W N;Z;R½ � � E N; v Z;R½ �½ � þ Vnn Z;R½ � is the total energy of a system,R ¼ RA;RB;…ð Þ
denotes constant geometry and Z ¼ ZA;ZB;…;ð Þdenotes the nuclear charges vector. The anal-
ogy with the electronic chemical potential and hardness (see Section 1) is striking. Some years
ago, one of the present authors (R.B.) presented a strategy to calculate these derivatives for any
atom or atom-atom combination analytically and to use them, starting from a single SCF
calculation on the parent or reference molecule, to explore the CCS of first neighbours, imply-
ing changes of nuclear charges of +1 or �1 [65]. In this way, simple arithmetic can be used,
starting from a Taylor expansion

ΔW dZ½ � ¼ W N;Zþ dZ;R½ � �W N;Z;R½ � ¼
X
A

μal
AdZA þ 1=2

X
A

X
B

ηalABdZAdZB (34)

instead of a new SCF calculation for each transmutant.

New Insights and Horizons from the Linear Response Function in Conceptual DFT
http://dx.doi.org/10.5772/intechopen.80280

17



the α external potential δvα rð Þ will cause a depletion of electrons in the vicinity of the pertur-
bation, the β electrons are not affected directly. However, the depletion in α electrons will
influence the Coulomb potential and due to the lower electron-electron repulsion, an accumu-
lation in β electrons in the region considered will occur resulting in a positive diagonal χβα r; rð Þ
value. The concentration of the χαβ and χαβ isocontours along the r and r0 axes can be
interpreted when referring to the χαα and χββ plots: perturbing vβ rð Þ at a distance r0 larger than
3 a.u. clearly has no effect on the β density, the Coulomb potential, the overall density and
consequently on the α density. This results in δrα rð Þ=δvβ r0ð Þ� � ¼ χaβ r; r0ð Þ having zero values
for r0 larger than 3 a.u. On the other hand, perturbing vβ rð Þ close to the nucleus induces a
change in the β density, with repercussion on the Coulomb potential and so on the α density
farther away from the nucleus (on the r axis) even in regions where the β density is no longer
affected. All these features account for the ‘partial plane filling’ of the χαβ and χαβ plots with a
‘demarcation’ line at 3 a.u.

To close this section, we mention that once χ r; r0ð Þ (or its counterparts in SPCDFT) is known, a
local version of the polarizability tensor components, say αxy, namely αxy rð Þ can be obtained by
straightforward integration:

αxy rð Þ ¼ �
ð
x rð Þχ r; r0ð Þy r0ð Þdr0 (31)

An example is given in Figure 6 [48] where for the atoms Li through Ne the trend of the
spherically averaged α rð Þ 1

3 αxx rð Þ þ αyy rð Þ þ αzz rð Þ� �� �
is given. From 2 a.u. on, the trends in

α rð Þ for Li up to Ne parallel the global polarizability, known to decrease along a period of the
periodic table. At lower distances (preceding the valence region), inversions with even negative
values occur. The present results are evidently important when, for example, disentangling
reaction mechanisms where local polarizabilities, that is, in certain regions of the reagents, are

Figure 6. Plot of the local polarizability α(r) of the atoms Li through Ne via CPKS (see text) (Reprinted by permission of
the publisher (Taylor and Francis Ltd.) [48]).
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at stake and not the overall polarizability. The parallel between the relationship between local
and global softness (Section 2.1) is obvious.

3. The role of the LRF in alchemical derivatives and exploring chemical
compound space

3.1. Context

The LRF has recently been exploited when investigating Chemical Compound Space [54–56].
Chemists are continuously exploring chemical compound space (CCS) [57, 58], the space popu-
lated by all imaginable chemicals with natural nuclear charges and realistic interatomic distances
for which chemical interactions exist. Navigating through this space is costly, obviously for
synthetic-experimental chemists and also for theoretical and computational chemists who might
and should be guides for indicating relevant domains in CCS to their experimental colleagues.
Doing even a simple single-point SCF calculation at every imaginable point leads to prohibitively
large computing times (not to speak about bookkeeping aspects and manipulation of the com-
puted data). A very promising ansatzwas initiated byVon Lilienfeld et al. [59–63] in his alchemical
coupling approach where two, isoelectronic molecules in CCS are coupled ‘alchemically’ through
the interpolation of their external potentials (see also the work by Yang and co-workers on
designing molecules by optimizing potentials [64]). At the heart of this ansatz are the alchemical
derivatives, partial derivatives of the energyw.r.t. one or more nuclear charges at constant number
of electrons and geometry. The simplest members of this new family of response functions are:

the alchemical potential

μal
A N;Z;R½ � � ∂W=∂ZAð ÞN ,R ¼ ∂E=∂ZAð ÞN ,R þ ∂Vnn=∂ZAð ÞN ,R ¼ μal,el

A þ μal,nuc
A (32)

and the alchemical hardness

ηalAB N;Z;R½ � � ∂2W=∂ZA∂ZB
� �

N ,R ¼ ∂2E=∂ZA∂ZB
� �

N ,R þ ∂2Vnn=∂ZA∂ZB
� �

N ,R ¼ ηal,elAB þ ηal,nucAB ¼ ηalBA, (33)

where W N;Z;R½ � � E N; v Z;R½ �½ � þ Vnn Z;R½ � is the total energy of a system,R ¼ RA;RB;…ð Þ
denotes constant geometry and Z ¼ ZA;ZB;…;ð Þdenotes the nuclear charges vector. The anal-
ogy with the electronic chemical potential and hardness (see Section 1) is striking. Some years
ago, one of the present authors (R.B.) presented a strategy to calculate these derivatives for any
atom or atom-atom combination analytically and to use them, starting from a single SCF
calculation on the parent or reference molecule, to explore the CCS of first neighbours, imply-
ing changes of nuclear charges of +1 or �1 [65]. In this way, simple arithmetic can be used,
starting from a Taylor expansion

ΔW dZ½ � ¼ W N;Zþ dZ;R½ � �W N;Z;R½ � ¼
X
A

μal
AdZA þ 1=2

X
A

X
B

ηalABdZAdZB (34)

instead of a new SCF calculation for each transmutant.

New Insights and Horizons from the Linear Response Function in Conceptual DFT
http://dx.doi.org/10.5772/intechopen.80280

17



The position of the alchemical derivatives in CDFT was already mentioned: they are response
functions, now related to a particular charge in external potential, namely the charge in one or
more nuclear charges. As the second derivatives are ‘diagonal’ in these particular external
potential changes, a direct link with the LRF can be expected. Using the chain rule, one easily
writes

ηal,elAB ¼ ∂2E N; v Z;R½ �½ �=∂ZA∂ZB
� �

N,R¼
ð ð

δr rð Þ=δv r0ð Þð ÞN ∂v rð Þ=∂ZAð ÞN ,R ∂v r0ð Þ=∂ZBð ÞN ,Rdrdr
0

¼
ð ð

χ r; r0ð Þ 1= r� RAj jð Þ 1= r0 � RBj jð Þdrdr0
(35)

indicating that the alchemical hardness is obtained by integration of the LRF after multiplica-
tion by 1= r� RAj j and 1= r0 � RBj j. The basic relationship of the alchemical derivatives and the
LRF shows how, again, the LRF makes its appearance in sometimes unexpected areas (see also
Section 4). In the case of the first derivative, the δE=δv rð Þð ÞN factor in the integrand simplifies to
r rð Þ(see Section 1), yielding.

μal,el
A ¼

ð
r rð Þ= r� RAj jdr (36)

the electronic potential at the nucleus, well known as the electronic part of the molecular
electrostatic potential [66].

3.2. Applications

As a very simple example, we consider the transmutation of the nitrogen molecule. Five chem-
ically relevant mutants can be generated (see Figure 7) as nearest neighbours in CCS (ΔZ = �1)
and at constant number of electrons: CO, NOþ, O2þ

2 , CN� and C2�
2 . The differences between

‘vertical’ (i.e. exact, via two SCF calculations) and alchemical transmutation energies were
evaluated at the B3LYP/cc-pCVTZ level (note the inclusion of additional tight functions ‘C in

Figure 7. Transmutation of the nitrogen molecule to its nearest neighbours in chemical compound space (Reprinted with
permission from [54]. Copyright (2017) American Chemical Society).
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order to recover the (changes in) core-core and core-valence correlation). The mean absolute
error was only 0.034 a.u., the N2 ! COtransmutation being particularly successful with a
difference in energy of only 0.004 a.u., that is, 2 kcal mol �1

. The transmutation into a neutral
system results in the cancellation of the odd terms in the Taylor expansion. Of course, we do
not claim ‘chemical accuracy’, yet the ordering of the energy of all transmutants came out
correctly, indicating that the alchemical procedure (even when stopped at second order) is a
simple, straightforward road to explore CCS for neighbouring structures.

Similar conclusions could be drawn for transmutation of benzene, for example, by the substi-
tution of CC units by their isoelectronic BN units. The replacement of a CC unit in an aromatic
molecule by an isoelectronic unit BN has been shown to impart important, interesting elec-
tronic, photophysical and chemical properties, often distinct from the parent hydrocarbon [67].
An in-depth study of all azoborines (Figure 8) C6H6 ! C6-2nH6 BNð Þn (n ¼ 1, 2, 3) turned out
to reproduce correctly the stability of all possible isomers for a given n value (3,11,3 for
n ¼ 1, 2, 3), which is of importance for applications in graphene chemistry where the
CCð Þn ! BNð Þn substitution is a topic that has received great interest in recent years [68].

As a computational ‘tour de force’ , and passing from ‘2D’ benzene to ‘3D’ fullerenes, we
recently explored the alchemical approach to study the complete CCð Þn ! BNð Þn substitution
pattern of C60, all the way down to BNð Þ30. C60 ! C60-2n BNð Þn, n ¼ 1, 2,…, 30, predicting and
interpreting via ‘alchemical rules’ the most stable isomers for each value of n. This study is
based on a single SCF calculation on C60 and its alchemical derivatives up to second order,
enabling each possible transmutation energy to be evaluated by simple arithmetic (the diago-
nal elements of the alchemical hardness matrix are equal)

ΔWn N ¼ N1;…;Nnð Þ;B ¼ B1;…;Bnð Þ½ � ¼ nηal11 þ
X
i¼1

X
j>i

ηalNiNj þ ηalBiBj
� �

�
X
i¼1

X
j¼1

ηalNiBj, (37)

where ΔWn is the transmutation energy from C60 to C60-2n BNð Þn and N=B is a vector of the
carbon atoms replaced by the nitrogen/boron atoms.

Figure 8. CC-BN Substitutions in 2D and 3D unsaturated carbocyclic systems (number of isomers for the 2D case in
parentheses).
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difference in energy of only 0.004 a.u., that is, 2 kcal mol �1

. The transmutation into a neutral
system results in the cancellation of the odd terms in the Taylor expansion. Of course, we do
not claim ‘chemical accuracy’, yet the ordering of the energy of all transmutants came out
correctly, indicating that the alchemical procedure (even when stopped at second order) is a
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tution of CC units by their isoelectronic BN units. The replacement of a CC unit in an aromatic
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An in-depth study of all azoborines (Figure 8) C6H6 ! C6-2nH6 BNð Þn (n ¼ 1, 2, 3) turned out
to reproduce correctly the stability of all possible isomers for a given n value (3,11,3 for
n ¼ 1, 2, 3), which is of importance for applications in graphene chemistry where the
CCð Þn ! BNð Þn substitution is a topic that has received great interest in recent years [68].

As a computational ‘tour de force’ , and passing from ‘2D’ benzene to ‘3D’ fullerenes, we
recently explored the alchemical approach to study the complete CCð Þn ! BNð Þn substitution
pattern of C60, all the way down to BNð Þ30. C60 ! C60-2n BNð Þn, n ¼ 1, 2,…, 30, predicting and
interpreting via ‘alchemical rules’ the most stable isomers for each value of n. This study is
based on a single SCF calculation on C60 and its alchemical derivatives up to second order,
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nal elements of the alchemical hardness matrix are equal)
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In (37), it is seen that the linear term drops as μi is unique by symmetry for all atoms in C60 and
because Σ ΔZ i = 0 for any transmutation. The alchemical hardness matrix η thus completely
determines the substitution energy and pattern. To summarize the results (for an in-depth
discussion see [55]), the study reveals that the correct sequence of stabilization energies for
each n is retrieved by adopting an approach in which for each n value the problem is looked
upon without prejudice of the n � 1 result (called the ‘simultaneous’ approach). The other,
simpler method (we called it the ‘successive’ approach) was shown to fail already after n = 13,
be it that at some n values identical values were obtained with both approaches, for example,
for the Belt structure (n = 20). Needless to say that even the ‘successive’ approach might
already be prohibitively demanding for standard ab initio or DFT calculations, let it be for the
simultaneous method. The sequence of substitutions could be interpreted in terms of a number
of ‘alchemical’ rules of which the two most important are when (referring to earlier work by
Kar et al. [69]): (1�) hexagon-hexagon junctions are preferably substituted, in a way that
minimizes the homonuclear (BB,NN) bonds and (2�) the higher stability is created by maxi-
mizing the number of filled hexagons. For the subsequent, more intricate, rules we refer to [55].

Shortage of space prevents us to comment on our recent results on the evaluation of isolated atom
alchemical derivatives up to third order with different techniques, from numerical differentiation
(not discussed hitherto in this chapter), via the coupled perturbed Kohn-Sham approach as

discussed before, to the March and Parr combined 1=Z and N�1=3E N;Z½ � expansion ansatz [70],
permitting a walk through the periodic table on the road to scrutinize periodicity effects [56].

4. The role of the LRF (or its forerunner, the atom-atom polarizability) in
evaluating and interpreting molecular electronics

4.1. Context

In this section the role of the LRF in molecular electronics is highlighted [72] has been a vibrant
area of research in recent years. An ever-increasing number of papers (both experimental and
theoretical) studied the transport properties of typically organic molecules containing π-conju-
gated systems and considering possible applications for incorporation in molecular electronic
devices (MED) [73]. Most of these theoretical studies have been performed at a high level of theory,
but this type of calculation does not always lead to simple insights into why some molecules will
conduct and which will insulate, and how the positions of the contacts influence this behaviour.

We therefore adopted a simple ansatz based on Ernzerhof’s source and sink potential (for
details see [74, 75]) in Fowler’s tight-binding Hückel approach [76]. One thereby considers
only the π electrons of the molecule and cuts the resonance effects between the contact and the
molecule after the molecule’s nearest neighbour in the contact. In the so-called weak interac-
tion limit (see details in [71]), the transmission probability at the Fermi level T 0ð Þ, which is
directly proportional to the conductance, can then be written as

T 0ð Þ ¼ 4β2Δ2
AB=Δ

2 (38)
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Here, as in Section 2.1, Δ is the Hückel determinant for the isolated molecule, from which in
ΔAB its A-th row and B-th column are deleted and β is a measure of the interaction between the
contact atom and its molecular neighbour. Again, what is the role of the LRF in this road to
calculating/understanding molecular conductivity?

4.2. The atom-atom polarizability as a conductivity indicator

Going back to expression (7) for the diagonal elements of Coulson’s atom-atom polarizability,
a general element πAB of this forerunner of the LRF can be written as

πAB ¼ 1=πð Þ
ðþ∞

�∞
ΔAB iyð Þ=Δ iyð Þð Þ2dy (39)

(the contour integral in the complex plane in Coulson’s formalism [31] is hereby reduced to an
integral along the imaginary axis). The integrand of πAB thus turns out to be related to the
transition probability at the Fermi level Tr TAB 0ð Þ when the contacts are placed at atoms A and
B of the molecule. An intimate relation between πAB and TAB 0ð Þ thus exists; the precise
connection was evaluated by explicit calculation of πAB and TAB 0ð Þ, some results being visual-
ized in Figure 9. There, we depict both the πAB and TAB 0ð Þ values for some linear acenes
(benzene, naphthalene, anthracene and tetracene), taking always one atom as the reference
atom. For the atom-atom polarizability, the reference atom is denoted by a green circle with its
area proportional to the self-polarizability of that atom which is as pointed out in Section 2.1 as
always negative. Black and red circles on the other atoms denote the atom-atom polarizability
values corresponding to a perturbation on the reference atom (varying αA) on the (charge of
the) considered atom B(qB). Black circles correspond to πAB > 0, red circles to πAB < 0. For
TAB 0ð Þ, a similar approach is followed. The empty green circle denotes the position of the
first contact ‘A’ (zero ‘ipso’ transmission [71]), the magnitude of the black circles on the other
atoms ‘B’ denotes the magnitude of the transmission when the second contact is placed at
position B; note that no red circles arise as TAB 0ð Þ, the transmission probability, always lies
between 0 and 1.

Figure 9 shows that the pattern in the two plots is completely analogous and leads to the
conjecture that a positive atom-atom polarizability seems to be a necessary condition in these
Kekulean benzenoids in order to have transmission for a certain configuration of the contacts
on the molecule. If the areas of the circles are considered, no exact proportionality between πAB

and TAB 0ð Þ can be inferred, but they are correlated.

This issue was further investigated in the next linear acene and pentacene (Figure 10), by
varying the position of the first contact. For a fixed first contact, the highest transmission
occurs when the second contact is at the atom with the highest πAB value involving the first
atom. From that atom on, a monotonously decreasing probability is noticed in either direc-
tions. The sharpest decline in T is in the direction of the neighbour that exhibits the lowest
atom-atom polarizability. On the basis of these results, it can indeed be conjectured that a
positive atom-atom polarizability is a necessary condition for transmission and that the ten-
dencies between the two series of values are similar.
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Further analysis of the behaviour of the ΔAB=Δð Þ2 function in the complex plane was done in
the case of alternant non-singular hydrocarbons (for details see [71]). Coulson’s and Longuet
Higgins’ pairing theorem shows that if A and B are drawn from the same partite set (all

‘starred’ or ‘unstarred’ atoms, respectively) Δ2
AB ƶð Þ=Δ ƶð Þ2 is odd and if A and B are taken from

Figure 9. The atom-atom polarizability (left) and transmission probability at the Fermi level (right) for a single reference
atom for benzene, naphthalene, anthracene and tetracene (Reprinted from [71] with permission of AIP Publishing).

Figure 10. The atom-atom polarizability (left) and transmission probability at the Fermi level (right) for pentacene for
variable reference atom (Reprinted from [71] with permission of AIP Publishing).
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a different set this function is even. It is then easily seen that the odd function has no real part

along the imaginary axis, leading to a negative ΔAB=Δð Þ2 value along the y axis and zero at the
origin, yielding a negative atom-atom polarizability and zero transmission at the Fermi level
(T 0ð Þ). On the other hand, when A and B are drawn from opposite sets, ΔAB=Δ is an even
function yielding real values along the y axis. A positive πAB value results with either insula-
tion or transmission, depending on whether ΔAB 0ð Þ is zero or not. Note that the analysis for
A ¼ B leads to the same result as for A 6¼ B but belonging to the same set yielding a negative
πAA value. The following overall conclusion, formulated as a selection rule, can be drawn:
negative atom-atom polarizabilities for non-singular alternant hydrocarbons correspond to
devices with insulation at the Fermi level. Conduction at the Fermi level requires, but is not
guaranteed by, a positive atom-atom polarizability.

The aforementioned properties were used as guiding principle in our later studies towards a
chemical interpretation of molecular electronic conductivity [77] leading to a simple, back-
of-the-envelope determination of quantum interference [78], thus bridging the gap between
chemical reactivity theory and molecular electronics.

5. Conclusions

The LRF and its congener, the softness kernel, are now in a stage where many of their
mathematical and physical properties are well understood. The possibility to evaluate, repre-
sent and interpret them puts them on equal footing for their use in conceptual DFT with their
already more traditional second-order companions, the chemical hardness and the Fukui
function. In view of the ‘chemistry’ contained in the LRF kernel as shown some years ago, it
is not unexpected, but it still remains to be unravelled whether they are major players in very
fundamental issues pertaining to the electronic structure of matter as in Kohn’s nearsighted-
ness of electronic matter principle, as well as in more applied fields where they are shown to be
of great use to explore chemical compound space (through the alchemical derivatives) and to
predict/interpret molecular conductivity.
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atom for benzene, naphthalene, anthracene and tetracene (Reprinted from [71] with permission of AIP Publishing).

Figure 10. The atom-atom polarizability (left) and transmission probability at the Fermi level (right) for pentacene for
variable reference atom (Reprinted from [71] with permission of AIP Publishing).
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a different set this function is even. It is then easily seen that the odd function has no real part

along the imaginary axis, leading to a negative ΔAB=Δð Þ2 value along the y axis and zero at the
origin, yielding a negative atom-atom polarizability and zero transmission at the Fermi level
(T 0ð Þ). On the other hand, when A and B are drawn from opposite sets, ΔAB=Δ is an even
function yielding real values along the y axis. A positive πAB value results with either insula-
tion or transmission, depending on whether ΔAB 0ð Þ is zero or not. Note that the analysis for
A ¼ B leads to the same result as for A 6¼ B but belonging to the same set yielding a negative
πAA value. The following overall conclusion, formulated as a selection rule, can be drawn:
negative atom-atom polarizabilities for non-singular alternant hydrocarbons correspond to
devices with insulation at the Fermi level. Conduction at the Fermi level requires, but is not
guaranteed by, a positive atom-atom polarizability.

The aforementioned properties were used as guiding principle in our later studies towards a
chemical interpretation of molecular electronic conductivity [77] leading to a simple, back-
of-the-envelope determination of quantum interference [78], thus bridging the gap between
chemical reactivity theory and molecular electronics.

5. Conclusions

The LRF and its congener, the softness kernel, are now in a stage where many of their
mathematical and physical properties are well understood. The possibility to evaluate, repre-
sent and interpret them puts them on equal footing for their use in conceptual DFT with their
already more traditional second-order companions, the chemical hardness and the Fukui
function. In view of the ‘chemistry’ contained in the LRF kernel as shown some years ago, it
is not unexpected, but it still remains to be unravelled whether they are major players in very
fundamental issues pertaining to the electronic structure of matter as in Kohn’s nearsighted-
ness of electronic matter principle, as well as in more applied fields where they are shown to be
of great use to explore chemical compound space (through the alchemical derivatives) and to
predict/interpret molecular conductivity.
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Abstract

Material properties and process modeling with density functional theory (DFT) is an 
accurate method to facilitate the study and the design of materials computationally for 
the development of different electrochemical technologies such as fuel cells, solar cells, 
and batteries, among others, mainly to achieve alternative ways for energy conversion 
and storage. Considering the relevance of DFT in the development of these alternative 
technologies for energy generation and storage, in this chapter, the application of DFT 
to study catalytic alloys and their reactivity processes to develop polymer membrane 
fuel cells (PEMFCs) is presented. In this sense, firstly, a brief review of the application 
of DFT to develop catalysts for PEMFCs and the relation with the concept of chemi-
cal descriptors is presented. Secondly, the main chemical descriptors for this task are 
presented and discussed. Finally, a summary of the main findings of the modeling with 
DFT and chemical descriptors approach of catalytic alloys for PEMFCs is presented and 
analyzed.

Keywords: DFT, chemical descriptors, catalytic alloys, PEMFCs

1. Introduction

The rational design of materials is an important and challenging task, which implies the in-
depth understanding of determining factors for the desired properties of the materials. These 
properties emerge from the material chemistry (atoms involved and its electronic structure) 
and material structure (organization at nano and microscale) [1, 2], for which the under-
standing at atomistic level is key and could enable the tailoring of materials that improve the 
efficiency of almost any technology. Particularly, catalyst development is crucial for efficient 
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chemical production and clean energy generation and storage technologies such as photoelec-
trochemical cells, fuel cells, and batteries, which are required for an environmentally respon-
sible economic growth [3].

In the last few decades, density functional theory (DFT) has been successfully used to study 
heterogeneous catalysis process and the properties of the catalysts, achieving an under-
standing of reaction mechanisms and the determining factors in the catalytic activity of the 
materials. For example, it has been found that the electronic structure of the catalytic surface 
determines its properties [4–6]. Also, some general relations between these factors and the 
catalytic activity have been developed and used for the search and design of catalytic materi-
als for different applications [7–14].

In the next sections, the application of DFT to study catalytic materials and their reactivity 
to develop polymer membrane fuel cells (PEMFCs) is presented. The first section is devoted 
to review briefly and in a general way, the different works, where DFT is applied for study-
ing catalysts for the electrodes of PEMFCs and some determining factors on catalysis found 
in some of these works are drawn. Secondly, the main factors used for the development of 
catalysts through the concept of chemical descriptors are presented and discussed. Finally, a 
summary of the main findings of the modeling with DFT and chemical descriptors approach 
of catalytic alloys for PEMFCs is presented and analyzed.

2. Using DFT to study heterogeneous catalysis in PEMFCs

Fuel cells are devices that convert chemical energy of supplied fuel and oxidant into electri-
cal energy. Their operation involves two electrodes, an anode and a cathode, separated by 
an electrolyte. The anode fuel, such as hydrogen, methanol, and ethanol, which have been 
proposed for PEMFCs, is oxidized and donates electrons. Electrons travel through the extern 
circuit, where they perform work and reach the cathode, where oxidant, generally oxygen, is 
reduced combining with electrons. The electrolyte, which in the case of PEMFCs is a conduct-
ing polymer, conducts electricity through the movement of ions, completing the circuit. A 
schematic representation of a unit cell, illustrating the operation principle explained above is 
shown in Figure 1.

The PEMFCs require the improvement of their performance and the decreasing cost. A prin-
cipal factor for their performance and its cost are the electrodes, where Pt catalysts are com-
monly used. So, it required the development of low-cost catalysts, mainly for the oxygen 
reduction reaction (ORR) at the cathode and hydrogen, methanol or ethanol oxidation reac-
tion (EOR) at anode. The catalysts should reduce the Pt content increasing the rates of the 
corresponding reactions. Looking for better catalysts is an important challenge, which should 
be addressed with a comprehensive approach that involves the understanding of the reasons 
for which a material is an efficient catalyst for a given reaction; in this way, materials can be 
designed with a “scientific” base.

In this sense, the use of simulations to study catalysis is a great tool, particularly, with the 
use of atomistic models based on DFT and molecular dynamics. DFT is suited to study 

Density Functional Theory34

adsorbate-catalyst interactions, which allow determining the potential energy surface and 
thus the energy barrier of the chemical transformations, also allows calculating the electronic 
structure of materials, which can help to understand bond-breaking and bond-making pro-
cess. Also DFT, through thermodynamics approach, facilitates to describe reaction process and 
energetics of intermediates, reactants, and products under realistic conditions. Additionally, 
the information from atomistic scale can be used to compute reaction rates. In the next para-
graphs, some works about catalysts for PEMFCs are presented.

Heterogeneous catalytic reactions in PEMFCs involve adsorption of reactants, different bond 
breaking and/or bond making processes and some electron transfer processes, and desorption 
of products. The reaction follows the path with minimal energy to go from reactants to prod-
uct configuration, so this path depends, essentially, on the energetics of the possible elemen-
tary steps. So, many studies of catalysts applying DFT is focused in considering each possible 
reaction step to calculate energetics of reactants and products of each step from which energy 
barrier for each step can be calculated with different methods such as nudged elastic band 
[15–17], synchronous transit-guided quasi Newton (STQN) methods [18], among others. With 
this method, a free-energy diagram for different process can be drawn, an example for dis-
sociative mechanism of oxygen on Pt is shown in Figure 2.

The above described approach was used to study EOR or the ethanol decomposition in other 
processes on Pt [19, 20], Rh [21], Pd [22], Au [23], and some Pt alloys as PtRh, PtRe, PtRu, PtSn, 
and PtPd [24]. In some of these works, only some steps or the complete reaction network was 
considered. For example, it was calculated by Alcalá et al., the transition states for C-C and C-O 

Figure 1. Schematic of a fuel cell.
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bond cleavage on Pt using constrained optimization, where the length of the bond representing 
the reaction coordinate is constrained; they identified the steps with lowest activation energy 
for these bond cleavage reactions. The evaluation of complete reaction network is a formidable 
task due to the higher quantity of possible intermediate derivatives, but in the ethanol oxida-
tion, reaction network is explored thoroughly identifying key steps for the selectivity on etha-
nol oxidation and the intermediates, which can lead to C-C bond cleavage in some surfaces.

Also, the mechanistic details of ORR on Pt and Pt-based alloys were investigated using DFT 
to calculate the intermediate energies and to estimate reaction and barrier energy of each 
step considered in the reaction pathway [25–33]. Different pathways are considered such as 
the O2 dissociation mechanism, and the associative mechanism implying the addition of H 
to the O2-containing species. Also, it considered two different ways for hydrogen transfer 
reaction within each of these pathways: the direct addition of H from the electrolyte (Eley-
Rideal type) or the H adsorption and subsequent transfer to O2-containing species (Langmuir-
Hinshelwood type) [27]. For example, in [30], the dissociative mechanism finding that the 
high stability of oxygen and hydroxyl can imply kinetic limitations in proton/electron trans-
fer to adsorbed oxygen or hydroxyl was studied. In other study, different mechanisms were 
considered and it is found that under determined conditions, the determining step is the O2 
dissociation, so the associative mechanism is preferred [27].

One of the challenges in the study of electrochemical reactions is considering the effects of the 
solvation of molecules, the electric field in the interface electrolyte-electrode, and the other 
adsorbed molecules, nonetheless, some developments have successfully addressed those 
issues. It is widely accepted that the water layers between the polymer and the catalysts are 
very important in ORR. It was intended to study the effects of solvation using nine water 
molecules and one hydronium ion in an ab initio molecular dynamic study [34]. Also, in 
other studies, adsorption energies of intermediates were calculated adding water adsorbed 
to the surface or water on top of the adsorbed intermediates [30, 35]. The solvent can be also 

Figure 2. Potential energy surface diagram of dissociative mechanism for oxygen reduction reaction on Pt (1 0 0).
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described in averaged manner as dielectric continuum characterized by a dielectric constant, 
which is used to estimate free energy of solute-solvent interactions [36–38]; this approach is 
named implicit solvation method.

As it is envisioned above, significant progress for the accurate description of electrochemical 
reactions have been achieved. However, it also can be noted that the complete kinetic  description 
of a given system is quite a demanding task. But, different works show that enough knowledge 
about catalytic activity could be gained studying some properties of the system at the atomic 
scale, which can be calculated in a simpler way. These properties are named descriptors, that 
is, an observable that can be directly linked to a fundamental property [10, 14]; in this case, the 
catalytic activity. For example, Nørskov et al. show that the oxygen binding energy on metal 
electrodes is related to the turnover frequency of the oxygen reduction reaction [30].

ORR involves two key steps, the H transfer to adsorbed O2 to form adsorbed OOH before the 
O-O bond breaking and the H transfer to adsorbed OH to form H2O. The activation energy 
of each step is related with the energy change in each process, which in turn is related with 
stability of adsorbed OOH and OH, respectively. These adsorbed species will be more stable 
if O binding to the surface is stronger; therefore, the O binding energy can be related with the 
reaction rates of these two key steps. The reasoning for this relation is as follows: If O binding 
is stronger, it is difficult to destabilize the Pt-OH bond to form H2O; if it is weak, it is difficult 
to stabilize the OOH to allow the O-O bond to break, so the O binding energy should be 
moderated. Precisely, in different works, bimetallic Pt and Pd alloys promising as catalysts for 
ORR looking for materials with moderated oxygen binding energy were identified [39, 40].

The descriptor approach also was used to search materials for hydrogen oxidation reaction 
on anode of PEMFC. For this reaction, the binding energy of H atom is a key, and according 
to Sabatier principle, optimal catalytic activity can be achieved on surfaces with moderated 
 binding energies [9, 41]. Sabatier principle states that the bond between the catalyst and the key 
adsorbate should not be too weak, such that the reactants do not bind, and are not too strong, 
since this leads to catalyst poisoning [42]. Similarly, in other work, the CO binding energy is 
considered along the H binding energy to find active catalysts tolerant to CO poisoning [11].

Other property that can be used as a descriptor of catalytic activity is the d-band center 
of the transition metal surfaces, that is, the average energy of the d states. As is proposed 
by the d-band model [6, 43], the d-band center is correlated with the binding energy of 
adsorbates to the surface. The d-band model is fulfilled for bonding of several atoms and 
molecules, then, as is shown in several works, tuning the electronic structure of a metal by 
the addition of alloying atom can lead to a better catalyst for ORR [44–46] or catalysts more 
tolerant to CO [47]. Also, it identified other electronic structure factors, such as transition 
metal, e.g., band filling and covalency, that can be used as descriptors for ORR on metal 
oxide catalysts [13].

It is worth to mention that the review presented is very brief and there are other extensive 
reviews that should be consulted [48, 49]. Besides, from the works reviewed above, it should 
be remarked that it seems that one key property for catalytic activity is the adsorption energy 
of key intermediate molecules, which can be used to search better catalysts for a determined 
reaction. Next section reviews the principal concepts in catalysis used for the identification of 
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Figure 2. Potential energy surface diagram of dissociative mechanism for oxygen reduction reaction on Pt (1 0 0).
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described in averaged manner as dielectric continuum characterized by a dielectric constant, 
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of the transition metal surfaces, that is, the average energy of the d states. As is proposed 
by the d-band model [6, 43], the d-band center is correlated with the binding energy of 
adsorbates to the surface. The d-band model is fulfilled for bonding of several atoms and 
molecules, then, as is shown in several works, tuning the electronic structure of a metal by 
the addition of alloying atom can lead to a better catalyst for ORR [44–46] or catalysts more 
tolerant to CO [47]. Also, it identified other electronic structure factors, such as transition 
metal, e.g., band filling and covalency, that can be used as descriptors for ORR on metal 
oxide catalysts [13].

It is worth to mention that the review presented is very brief and there are other extensive 
reviews that should be consulted [48, 49]. Besides, from the works reviewed above, it should 
be remarked that it seems that one key property for catalytic activity is the adsorption energy 
of key intermediate molecules, which can be used to search better catalysts for a determined 
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Figure 3. Potential energy surface of a chemical reaction process.

appropriate descriptor, in this sense scaling relations between activation energies and binding 
energies, Sabatier principle and d-band model are reviewed.

3. Development of catalysts using chemical descriptors

In the last section, different properties of a material that can be related with its catalytic activ-
ity were observed. For instance, binding energies of atoms and molecules can be related with 
activation energies, so with reaction rates. Sabatier principle shows that a determined value 
of the adsorption energy of intermediates will lead to higher catalytic activity. Finally, it is 
mentioned that modification of the electronic structure changes the catalytic activity.

3.1. Correlations between adsorption and activation energies and Sabatier principle

The central issue in catalysis is the effect of the catalyst on the rate of a chemical reaction, the 
rate constant of an elementary reaction can be calculated using an Arrhenius expression in 
terms of a pre-factor ( v ) and an activation energy (  E  

a
   )as follows:

  k =  ve    − E  a    ⁄  k  B  T     (1)

The activation energy is an important quantity, which varies with the change of catalyst, so 
reviewing the origin of activation energy is useful to understand the effect of catalyst on the 
reaction rate.

As it is illustrated in Figure 3, any chemical reaction can be described as a transition between 
two local minima on the potential energy surface of the system as a function of the spatial 
coordinates of all the involved atoms. The reaction path is defined as the minimum energy 
path, which connects the configuration of the reactants with minimum energy (R) to the 
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configuration of the products with minimum energy (P) along the reaction path; there is a 
configuration with the highest energy, which is called transition state (TS). The difference 
between the TS and R energies is the activation energy (  E  

a
   ) [50–52]. The configurations of R, P, 

and TS in a catalytic process involve adsorbed molecules, then the energy of these configura-
tions, and hence activation energy, depends on each surface.

   E  a   =  E  TS   −  E  R    (2)

Also, it is worth to remark that as transition states have the same basic physics as adsorbed 
species, then the transition state energy (  E  

TS
   ) is correlated with adsorption energies (  E  

ads
   ). In 

fact, linear correlations between transition state and adsorption energies have been found 
[53–56]. This type of relationship is a well-established approach in the understanding of 
trends in chemical reactions that dates back to Brønsted in 1928, also Evans and Polanyi in 
1938 [57], who stated a linear relationship between activation energies and reaction energies, 
named Brønsted-Evans-Polanyi (BEP) relationship.

The linear relationship between   E  
TS

    of a chemical reaction and a particular   E  
ads

    relevant for that 
reaction can be understood thinking that TS is an absorbed specie with a configuration rela-
tively close to the adsorption configuration of the molecule X with which is correlated. Then, 
it is reasonable to express the   E  

TS
    as the sum of two contributions, the first is part of adsorption 

energy of the molecule X ( α  E  
ads−X

   ), which accounts, mainly, for the interaction energy between 
the surface and the molecule. The second is the quantity of energy ( β ), which accounts for 
the reorganization of the molecule X to transform into the transition state molecule. So, the 
general form of linear relationship is:

   E  TS   = α  E  ads   + β  (3)

It is common to use   E  
ads

    as the energy of products configuration. In this case, parameter  α  is a 
value between 0 and 1, which indicates the position of the transition state along the reaction 
coordinate. If alpha is close to 1, the transition state has a configuration similar to the products 
(late transition state) [56], whereas  β  is a part of the energy involved in the reverse reaction 
(energy to transform products into transition state molecule) [56].

Using DFT calculations to calculate transition state energies and product energies, it has been 
possible to establish transition state scaling relations with sufficient statistical significance. 
This linear relationship provides a straightforward way to study the effect of the surface on 
the activity for a given reaction, as it enables the estimation of activation energies from adsorp-
tion energies, which could be calculated in a simpler way using computational calculations.

Transition state scaling relationship implies that the activation energies are lower in surfaces, 
where the products are more stable (more negative adsorption energies of products) and 
hence the reaction rate is higher. However, the very strong adsorption of products leads to 
poison the surface, since the desorption of products is more difficult, hence the rate of desorp-
tion is lower. On the other hand, if adsorption of products is very weak, the reaction rate 
would be lower and the desorption rate higher. Therefore, the adsorption energy of products 
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mentioned that modification of the electronic structure changes the catalytic activity.
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The central issue in catalysis is the effect of the catalyst on the rate of a chemical reaction, the 
rate constant of an elementary reaction can be calculated using an Arrhenius expression in 
terms of a pre-factor ( v ) and an activation energy (  E  

a
   )as follows:

  k =  ve    − E  a    ⁄  k  B  T     (1)

The activation energy is an important quantity, which varies with the change of catalyst, so 
reviewing the origin of activation energy is useful to understand the effect of catalyst on the 
reaction rate.

As it is illustrated in Figure 3, any chemical reaction can be described as a transition between 
two local minima on the potential energy surface of the system as a function of the spatial 
coordinates of all the involved atoms. The reaction path is defined as the minimum energy 
path, which connects the configuration of the reactants with minimum energy (R) to the 
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configuration of the products with minimum energy (P) along the reaction path; there is a 
configuration with the highest energy, which is called transition state (TS). The difference 
between the TS and R energies is the activation energy (  E  

a
   ) [50–52]. The configurations of R, P, 

and TS in a catalytic process involve adsorbed molecules, then the energy of these configura-
tions, and hence activation energy, depends on each surface.

   E  a   =  E  TS   −  E  R    (2)

Also, it is worth to remark that as transition states have the same basic physics as adsorbed 
species, then the transition state energy (  E  

TS
   ) is correlated with adsorption energies (  E  

ads
   ). In 

fact, linear correlations between transition state and adsorption energies have been found 
[53–56]. This type of relationship is a well-established approach in the understanding of 
trends in chemical reactions that dates back to Brønsted in 1928, also Evans and Polanyi in 
1938 [57], who stated a linear relationship between activation energies and reaction energies, 
named Brønsted-Evans-Polanyi (BEP) relationship.

The linear relationship between   E  
TS

    of a chemical reaction and a particular   E  
ads

    relevant for that 
reaction can be understood thinking that TS is an absorbed specie with a configuration rela-
tively close to the adsorption configuration of the molecule X with which is correlated. Then, 
it is reasonable to express the   E  

TS
    as the sum of two contributions, the first is part of adsorption 

energy of the molecule X ( α  E  
ads−X

   ), which accounts, mainly, for the interaction energy between 
the surface and the molecule. The second is the quantity of energy ( β ), which accounts for 
the reorganization of the molecule X to transform into the transition state molecule. So, the 
general form of linear relationship is:

   E  TS   = α  E  ads   + β  (3)

It is common to use   E  
ads

    as the energy of products configuration. In this case, parameter  α  is a 
value between 0 and 1, which indicates the position of the transition state along the reaction 
coordinate. If alpha is close to 1, the transition state has a configuration similar to the products 
(late transition state) [56], whereas  β  is a part of the energy involved in the reverse reaction 
(energy to transform products into transition state molecule) [56].

Using DFT calculations to calculate transition state energies and product energies, it has been 
possible to establish transition state scaling relations with sufficient statistical significance. 
This linear relationship provides a straightforward way to study the effect of the surface on 
the activity for a given reaction, as it enables the estimation of activation energies from adsorp-
tion energies, which could be calculated in a simpler way using computational calculations.

Transition state scaling relationship implies that the activation energies are lower in surfaces, 
where the products are more stable (more negative adsorption energies of products) and 
hence the reaction rate is higher. However, the very strong adsorption of products leads to 
poison the surface, since the desorption of products is more difficult, hence the rate of desorp-
tion is lower. On the other hand, if adsorption of products is very weak, the reaction rate 
would be lower and the desorption rate higher. Therefore, the adsorption energy of products 
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should not be too weak, such that the reaction does not happens, and not too strong since this 
leads to catalyst poisoning [42]. The above mentioned is precisely the Sabatier principle, a 
valuable statement for catalyst design.

It allows an explanation of volcano curves, which show the catalytic activity for a given 
elementary reaction as function of the adsorption energy. As shown in Figure 4, at low values 
of adsorption energy (more positive values), the reaction is slow because the rate of the reac-
tion is rate-limiting, whereas at high values of adsorption energy, desorption becomes the 
rate-limiting step. Then, the intermediate values of adsorption energies are required in order 
to obtain the highest activity (top of the volcano) [42, 58–60]. The volcano plot in the figure 
was obtained from a theoretical calculation, where the rate constants for temperature value 
of 298 K are obtained from Eq. (1) ( k =  ve    − E  

a 
  ⁄  k  

B
  T   ), the activation energy for the reaction is obtained 

from Eqs. (2) and (3) (  E  a   =  E  
TS

   −  E  
R
  ,  E  TS   = α  E  

ads
   + β ) with  α  and  β  equal to 1, and   E  

R
    equal to −1.2. The 

activation energy for desorption process is the negative of   E  
ads

   .

As mentioned above, a key issue in catalysis is chemisorption, the bond formed between 
surface and adsorbate can be described in terms of electronic structure of the surface. For 
transition metals, it is described in terms of d-bands of metals, as is proposed in the “d-band 
model,” which is presented in the next subsection.

3.2. d-band model

The electronic structure of transition metals involves a broad s-band and narrow d-band. The 
interaction of the adsorbate valence electrons with s-band electrons can be assumed to be 
similar for all the different transition metals; hence, the principal differences in the interaction 
emerge from d-band electrons [4, 5, 43]. The interaction between the adsorbate and surface 
d-electrons can be represented with molecular orbitals theory, as illustrated in Figure 5, the 
interaction causes the formation of new shared states, which can be classified into bonding 

Figure 4. Volcano plot obtained from simple model.
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and antibonding states; the antibonding states are higher in energy and its filling leads to the 
weakening of the bond between adsorbate and surface [4, 5, 43, 61].

If more of antibonding states are empty, then the surface bonds strongly the molecule. Since 
electrons fill up all states located below the Fermi energy, in order to estimate the strength of 
the bond is enough to know how many antibonding states are higher in energy than Fermi 
energy (EF). It has been found that if d-bands of clean surface shifts up in energy, the anti-
bonding states also would shift up in energy and probably would be emptier. In this sense, 
the “orange surface” of Figure 5 should bind the adsorbate stronger than blue surface, since it 
has d-states with higher energy and so the antibonding states would be above Fermi energy 
(emptier antibonding states).

The average is a representative value for a group the values or a statistical distribution is the 
average. In this case, energy average of d-states can be used to indicate the energy of all metal 
d-states, and it is calculated using Eq. (4) [51]. The difference between this value and Fermi 
energy can be used to compare in an effective way the d-states energy of different metals. 
This value is named d-band center (  ε  

d
   ), if it is higher (less negative), then more antibonding 

states would be above Fermi energy and the bond would be stronger. This is the called d-band 
model proposed by Hammer and Nørskov [6, 43].

   ε  d   =   
 ∫ 
−∞

  +∞     n  d (E) EdE  
 _________  ∫ −∞  +∞     n  d   (E) dE    (4)

Figure 5. Illustration of the d-band model. The interaction of adsorbate states (green) with metal d-states (blue and 
orange) forms bonding and anti-bonding states. As the d-band center of metal shift down in energy (blue), more 
antibonding states are below EF (dotted line) and hence bond is weaker.
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should not be too weak, such that the reaction does not happens, and not too strong since this 
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d-electrons can be represented with molecular orbitals theory, as illustrated in Figure 5, the 
interaction causes the formation of new shared states, which can be classified into bonding 
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and antibonding states; the antibonding states are higher in energy and its filling leads to the 
weakening of the bond between adsorbate and surface [4, 5, 43, 61].

If more of antibonding states are empty, then the surface bonds strongly the molecule. Since 
electrons fill up all states located below the Fermi energy, in order to estimate the strength of 
the bond is enough to know how many antibonding states are higher in energy than Fermi 
energy (EF). It has been found that if d-bands of clean surface shifts up in energy, the anti-
bonding states also would shift up in energy and probably would be emptier. In this sense, 
the “orange surface” of Figure 5 should bind the adsorbate stronger than blue surface, since it 
has d-states with higher energy and so the antibonding states would be above Fermi energy 
(emptier antibonding states).

The average is a representative value for a group the values or a statistical distribution is the 
average. In this case, energy average of d-states can be used to indicate the energy of all metal 
d-states, and it is calculated using Eq. (4) [51]. The difference between this value and Fermi 
energy can be used to compare in an effective way the d-states energy of different metals. 
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   ), if it is higher (less negative), then more antibonding 

states would be above Fermi energy and the bond would be stronger. This is the called d-band 
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The concepts above presented represent the basic theoretical instruments used to investigate 
catalytic chemical reactions and to provide satisfactory descriptions with a reduced set of 
properties compared to complete kinetic description.

3.3. Summarizing the descriptors approach

As remarked in the above sections, the descriptor approach is based on the linking of catalytic 
activity with a limited set of properties, named descriptors. The main step of this approach is 
to find a suitable reactivity descriptor and the other is to calculate it. As it was remarked, the 
adsorption energies of key intermediates can be used as descriptors, the identification of par-
ticular adsorption energies that are descriptors can be achieved considering the underlying 
reaction mechanism in order to identify the rate limiting step, also a Sabatier analysis and the 
known BEP relations can be used to identify the key adsorption energy. Also, an adsorption 
energy descriptor can be found through an educated guess, resulting in the knowledge on 
similar reactions [4, 5, 14].

Since adsorbate-surface interaction is a phenomenon originated by electronic interaction, the 
electronic structure of the systems can be related with adsorption energies, and some charac-
teristics of this electronic structure can be used as descriptor, one of them is the d-band center. 
But additional research is required to identify more reliable properties, which can be used in 
other systems different to transition metals. The next section shows the main results of the 
modeling with chemical descriptors approach of catalytic carbon-carbon bond cleavage in the 
ethanol oxidation, reaction important for PEMFCs.

4. Analysis of C-C bond cleavage using chemical descriptors

The catalytic cleavage of the C-C bond in ethanol is fundamental for improving the proton 
exchange membrane fuel cells fueled with ethanol, whose efficiency is still far from obtained 
with hydrogen fuel cells, which can be partly attributed to the incomplete oxidation of ethanol 
to   CO  

2
   , so energy from ethanol is not totally exploited [62–67]. Catalysts actually used only 

promotes partial ethanol oxidation to acetic acid, the limiting step for total oxidation to   CO  
2
    is, 

precisely, the C-C bond cleavage. Some works suggest that addition of metals as Ni [68], Rh 
[69], Ir [70], and Re [71] to Pt helps in C-C breakage at temperatures below 100°C. So, it is of 
interest to model this reaction step on Pt-based catalysts in order to clarify the effect of differ-
ent co-catalysts on the C-C bond cleavage and to understand the conditions under which the 
C-C bond can be broken. It can be achieved using the descriptor approach above presented.

4.1. Reactivity descriptor for C-C bond cleavage

The C-C cleavage in molecules with more hydrogen atoms attached to the carbon atoms, as 
ethanol molecule (CH3CH2OH) or acetaldehyde (CH3CHO), has higher activation energies 
[19, 21, 22]. It is attributed to the high directionality of C-C bond σ-orbital in these molecules, 
which is constrained along the bond axis, and the several substituents (hydrogen and oxygen 
atoms) on both carbon atoms constraining sterically this bond, which makes the interaction 

Density Functional Theory42

of the metal with this bond more difficult than with C-H single bond [72]. Probably, break-
ing of C-H bonds prior to C-C bond cleavage is required, thus the metal could interact with 
π-orbitals of double C-C bond, which are oriented sideway and have less steric constrains [72]. 
In fact, it is found that in hydrocarbon reaction on metal surfaces, molecules dehydrogenate 
before the cleaving of C-C bond [73].

Experimental works on ethanol oxidation reaction [62, 74–76] shows that ethanol oxidation 
involves dehydrogenation reactions, forming acetyl CH3CO; this molecule could be further 
dehydrogenated forming CH2CO and CHCO. In all the molecules, the C-C bond cleavage is 
more feasible, so it is worth to focus on them. The reaction for C-C bond cleavage in these 
CHXCO molecules is written as follows

   CH  x    CO   (ads)    →  CH  x (ads)    +  CO   (ads)     (5)

Linear relationship between products energy and transition state energy has been previously 
developed for this reaction [19, 22, 53, 77]. So, the activation energy would be related with 
the interaction of the surface with CHX and CO molecules. It is expected that the trends in 
the reactivity do not changes with the molecule CHXCO chosen, since the adsorption energy 
of the CHX molecules is expected to be similar [53], that is, if rhodium has higher adsorption 
of CH than Ru, it would have higher adsorption energy of CH2 and CH3 than Ru. So, in this 
work, to study the C-C bond cleavage in the simplest molecule CHCO, also this step, accord-
ing to previous works [19, 22], has the lowest activation energy for the C-C bond cleavage on 
different transition metals. The linear relationship [77], which will be used, is shown in Eq. (6).

   E  TS   = α  E  P   + β with α = 0.88 β = 1.07  (6)

  E  
TS

    and   E  
P
    are, respectively, the transition state and product energies respect to the energy of 

reactants in gas phase and the clean slab. So,   E  
P
    is the energy involved to go from CHCO and 

the surface far apart to the CH and CO adsorbed on the surface that is expressed in Eq. (7)

   E  P   =  E  ads−CO   +  E  ads−CH   +  E  diss−CHCO    (7)

Activation energy is expressed as in Eq. (2), in this case,   E  
R
    is the energy of  CHCO  adsorbed 

respect to the energy of reactants (CHCO) in gas phase and the clean slab, that is, the adsorp-
tion energy of CHCO. So, the final expression for activation energy, which states the relation-
ship between catalytic activity and adsorption energy, is:

   E  a   = α ( E  ads−CO   +  E  ads−CH   +  E  diss−CHCO  )  + β −  E  ads−CHCO    (8)

Considering that CO2, which desorbs from surface easily, can be readily obtained from CO 
oxidation by OH, which is available in alkaline media and in acidic media can be obtained 
from water activation facilitated by oxyphilic atoms as Sn, Ru, and Mo [20, 75, 78, 79]. So, it 
seems reasonable to expect that in the appropriated conditions (alkaline media or oxyphilic 
metal as co-catalyst), the surfaces with higher CO formation also have higher CO2 formation. 
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The concepts above presented represent the basic theoretical instruments used to investigate 
catalytic chemical reactions and to provide satisfactory descriptions with a reduced set of 
properties compared to complete kinetic description.

3.3. Summarizing the descriptors approach

As remarked in the above sections, the descriptor approach is based on the linking of catalytic 
activity with a limited set of properties, named descriptors. The main step of this approach is 
to find a suitable reactivity descriptor and the other is to calculate it. As it was remarked, the 
adsorption energies of key intermediates can be used as descriptors, the identification of par-
ticular adsorption energies that are descriptors can be achieved considering the underlying 
reaction mechanism in order to identify the rate limiting step, also a Sabatier analysis and the 
known BEP relations can be used to identify the key adsorption energy. Also, an adsorption 
energy descriptor can be found through an educated guess, resulting in the knowledge on 
similar reactions [4, 5, 14].

Since adsorbate-surface interaction is a phenomenon originated by electronic interaction, the 
electronic structure of the systems can be related with adsorption energies, and some charac-
teristics of this electronic structure can be used as descriptor, one of them is the d-band center. 
But additional research is required to identify more reliable properties, which can be used in 
other systems different to transition metals. The next section shows the main results of the 
modeling with chemical descriptors approach of catalytic carbon-carbon bond cleavage in the 
ethanol oxidation, reaction important for PEMFCs.

4. Analysis of C-C bond cleavage using chemical descriptors

The catalytic cleavage of the C-C bond in ethanol is fundamental for improving the proton 
exchange membrane fuel cells fueled with ethanol, whose efficiency is still far from obtained 
with hydrogen fuel cells, which can be partly attributed to the incomplete oxidation of ethanol 
to   CO  

2
   , so energy from ethanol is not totally exploited [62–67]. Catalysts actually used only 

promotes partial ethanol oxidation to acetic acid, the limiting step for total oxidation to   CO  
2
    is, 

precisely, the C-C bond cleavage. Some works suggest that addition of metals as Ni [68], Rh 
[69], Ir [70], and Re [71] to Pt helps in C-C breakage at temperatures below 100°C. So, it is of 
interest to model this reaction step on Pt-based catalysts in order to clarify the effect of differ-
ent co-catalysts on the C-C bond cleavage and to understand the conditions under which the 
C-C bond can be broken. It can be achieved using the descriptor approach above presented.

4.1. Reactivity descriptor for C-C bond cleavage

The C-C cleavage in molecules with more hydrogen atoms attached to the carbon atoms, as 
ethanol molecule (CH3CH2OH) or acetaldehyde (CH3CHO), has higher activation energies 
[19, 21, 22]. It is attributed to the high directionality of C-C bond σ-orbital in these molecules, 
which is constrained along the bond axis, and the several substituents (hydrogen and oxygen 
atoms) on both carbon atoms constraining sterically this bond, which makes the interaction 
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of the metal with this bond more difficult than with C-H single bond [72]. Probably, break-
ing of C-H bonds prior to C-C bond cleavage is required, thus the metal could interact with 
π-orbitals of double C-C bond, which are oriented sideway and have less steric constrains [72]. 
In fact, it is found that in hydrocarbon reaction on metal surfaces, molecules dehydrogenate 
before the cleaving of C-C bond [73].

Experimental works on ethanol oxidation reaction [62, 74–76] shows that ethanol oxidation 
involves dehydrogenation reactions, forming acetyl CH3CO; this molecule could be further 
dehydrogenated forming CH2CO and CHCO. In all the molecules, the C-C bond cleavage is 
more feasible, so it is worth to focus on them. The reaction for C-C bond cleavage in these 
CHXCO molecules is written as follows

   CH  x    CO   (ads)    →  CH  x (ads)    +  CO   (ads)     (5)

Linear relationship between products energy and transition state energy has been previously 
developed for this reaction [19, 22, 53, 77]. So, the activation energy would be related with 
the interaction of the surface with CHX and CO molecules. It is expected that the trends in 
the reactivity do not changes with the molecule CHXCO chosen, since the adsorption energy 
of the CHX molecules is expected to be similar [53], that is, if rhodium has higher adsorption 
of CH than Ru, it would have higher adsorption energy of CH2 and CH3 than Ru. So, in this 
work, to study the C-C bond cleavage in the simplest molecule CHCO, also this step, accord-
ing to previous works [19, 22], has the lowest activation energy for the C-C bond cleavage on 
different transition metals. The linear relationship [77], which will be used, is shown in Eq. (6).

   E  TS   = α  E  P   + β with α = 0.88 β = 1.07  (6)

  E  
TS

    and   E  
P
    are, respectively, the transition state and product energies respect to the energy of 

reactants in gas phase and the clean slab. So,   E  
P
    is the energy involved to go from CHCO and 

the surface far apart to the CH and CO adsorbed on the surface that is expressed in Eq. (7)

   E  P   =  E  ads−CO   +  E  ads−CH   +  E  diss−CHCO    (7)

Activation energy is expressed as in Eq. (2), in this case,   E  
R
    is the energy of  CHCO  adsorbed 

respect to the energy of reactants (CHCO) in gas phase and the clean slab, that is, the adsorp-
tion energy of CHCO. So, the final expression for activation energy, which states the relation-
ship between catalytic activity and adsorption energy, is:

   E  a   = α ( E  ads−CO   +  E  ads−CH   +  E  diss−CHCO  )  + β −  E  ads−CHCO    (8)

Considering that CO2, which desorbs from surface easily, can be readily obtained from CO 
oxidation by OH, which is available in alkaline media and in acidic media can be obtained 
from water activation facilitated by oxyphilic atoms as Sn, Ru, and Mo [20, 75, 78, 79]. So, it 
seems reasonable to expect that in the appropriated conditions (alkaline media or oxyphilic 
metal as co-catalyst), the surfaces with higher CO formation also have higher CO2 formation. 
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Therefore, the study of the C-C bond cleavage step can give enough information about which 
catalysts can helps to obtain higher CO2. The reactivity of the surfaces for C-C bond cleavage 
is studied through DFT modeling of adsorption of CH, CO, and CHCO.

The adsorption energies of these molecules were calculated for different Pt3M alloys (M = Sn, 
Re, Ru, Rh, and Ni). Since the alloys with this composition or lower content of M are com-
monly proposed as a convenient composition to improve the catalytic activity to ethanol oxi-
dation in experimental studies [68, 69, 71, 80–82].

4.2. Calculation of reactivity descriptors

The adsorption energies of CH, CO, and CHCO are calculated using the slab model to rep-
resent the (111) facet of the face-centered cubic metals (Pt3M) and DFT as is implemented 
in Quantum Espresso [83]. It used plane waves, exchange correlation energy described by 
Perdew and Wang (PW91) [84], and ultra-soft pseudopotentials [85]. Convergence was tested 
with respect to total energy for the Brillouin sampling and for the kinetic energy cut-off in the 
plane wave expansion, so 3 × 3 × 1 Monkhorst-Pack k-mesh [86] and the kinetic energy cut-off 
for the plane waves of 544 eV was used.

For slab construction, the lattice parameters obtained from geometric optimization with DFT 
was used. The effect of the size of the supercell has also been carefully tested for the adsorp-
tion energy. Increasing the supercell size from 2 × 2, which we have used, to 4 × 4 changes the 
adsorption energy by only 0.008 eV, so the description with 2 × 2 is considered good enough 
considering the computational cost of the simulation of large systems. Five layers of atoms were 
employed for representing the portion of solid and empty space of 9.00 Å was left above of the 
atomic surface to avoid self-interaction of the slab. With this empty space, the adsorption ener-
gies changed just 0.02 eV compared to the adsorption energies obtained using an empty space 
of 15.00 Å, indicating that the top of one slab has essentially no effect on the bottom of the next.

The adsorption energy was calculated as total energy of the slab with the i-species adsorbed   
E  

i/s
    minus the total energy of clean slab   E  

s
    and the i-species in gas phase   E  

i
   .

   E  ads−i   =  E  i/s   −  E  s   −  E  i    (9)

Adsorption of  CH ,  CO , and  CHCO  were tested on several sites, atop sites (A-Pt and A-M), bridge 
sites (B-Pt and B-M), and hollow sites with and without an atom directly below in the subsequent 
layer, which are called HCP and FCC hollow sites (HCP-Pt, HCP-M, FCC-Pt, and FCC-M).

The most stable adsorption configuration for CO adsorption on Pt3M is at atop site with 
molecular axis of CO normal to the surface and C atom bonded to the surface in agreement 
with the experimental findings for Pt-based catalysts [87]. The CO adsorption energies on 
A-Pt and A-M for the different surfaces are shown in Figure 6. It is found that CO adsorption 
energy on A-Pt sites in the alloys is reduced respect to pure Pt (dotted line) and it is more 
reduced when the metal atom adsorbs more strongly the CO molecule. Also it is remarkable 
that adsorption energy on tin atom is only −0.08 eV. It is in agreement with other works, 
which points out that Pt-CO binding is weakened in the PtM alloy [88–90], whereas the M-CO 
bond is strengthened with the presence of Pt and CO adsorption on tin is not stable [91–93].
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The most stable adsorption configuration for CH adsorption on Pt3M is at hollow site (both 
hollow sites have similar adsorption energy) with molecular axis of CH normal to the sur-
face and C atom bonded to an atom on the surface in agreement with other theoretical 
studies [94–96]. It is noted in Figure 6, a trend similar to CO adsorption, adsorption on 
sites with only Pt in the alloy is weaker than pure Pt, whereas the sites with metal atoms 
have higher or similar adsorption energy than pure Pt with the exception of Pt3Sn, which is 
significantly lower.

The most stable adsorption configuration for CHCO on the alloys (except for Pt3Sn) and pure 
Pt is shown in Figure 7. In this geometry, the CH part is located at bridge position between M 
and Pt atom (B-M), whereas the CO part is located close to a Pt atom in a Pt-atop-like position 
(A-Pt). For both groups, the C atom is closer to the surface. This configuration is like other 
found in theoretical studies for transition metals [77, 97]. Other adsorption configuration is 
found when CHCO is close to hollow-Pt sites, except for Pt3Rh, whose Pt sites have an adsorp-
tion configuration as the above described. In this configuration, the carbon atom linked to 
the hydrogen atom is bound to the surface in a bridge position between two Pt atoms (B-Pt), 
whereas the carbon atom linked to oxygen is far from the surface as is shown in Figure 7. This 
configuration was found in other work for metals considered inactive [97].

Adsorption energies of former configuration with CH and CO parts bonded to the surface 
ranges from −3.66 to −3.98 and C-C bond length is stretched by 0.20 ± 0.01 Ǻ, whereas adsorp-
tion energies of last configuration ranges from −2.68 to −3.24 eV and C-C bond length is only 

Figure 6. CO and CH and CHCO adsorption energies on Pt(111) and Pt3M(111) surfaces.

Figure 7. Geometric configurations found for CHCO adsorption on Pt3M(111) surfaces.
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Therefore, the study of the C-C bond cleavage step can give enough information about which 
catalysts can helps to obtain higher CO2. The reactivity of the surfaces for C-C bond cleavage 
is studied through DFT modeling of adsorption of CH, CO, and CHCO.

The adsorption energies of these molecules were calculated for different Pt3M alloys (M = Sn, 
Re, Ru, Rh, and Ni). Since the alloys with this composition or lower content of M are com-
monly proposed as a convenient composition to improve the catalytic activity to ethanol oxi-
dation in experimental studies [68, 69, 71, 80–82].

4.2. Calculation of reactivity descriptors

The adsorption energies of CH, CO, and CHCO are calculated using the slab model to rep-
resent the (111) facet of the face-centered cubic metals (Pt3M) and DFT as is implemented 
in Quantum Espresso [83]. It used plane waves, exchange correlation energy described by 
Perdew and Wang (PW91) [84], and ultra-soft pseudopotentials [85]. Convergence was tested 
with respect to total energy for the Brillouin sampling and for the kinetic energy cut-off in the 
plane wave expansion, so 3 × 3 × 1 Monkhorst-Pack k-mesh [86] and the kinetic energy cut-off 
for the plane waves of 544 eV was used.

For slab construction, the lattice parameters obtained from geometric optimization with DFT 
was used. The effect of the size of the supercell has also been carefully tested for the adsorp-
tion energy. Increasing the supercell size from 2 × 2, which we have used, to 4 × 4 changes the 
adsorption energy by only 0.008 eV, so the description with 2 × 2 is considered good enough 
considering the computational cost of the simulation of large systems. Five layers of atoms were 
employed for representing the portion of solid and empty space of 9.00 Å was left above of the 
atomic surface to avoid self-interaction of the slab. With this empty space, the adsorption ener-
gies changed just 0.02 eV compared to the adsorption energies obtained using an empty space 
of 15.00 Å, indicating that the top of one slab has essentially no effect on the bottom of the next.

The adsorption energy was calculated as total energy of the slab with the i-species adsorbed   
E  

i/s
    minus the total energy of clean slab   E  

s
    and the i-species in gas phase   E  

i
   .

   E  ads−i   =  E  i/s   −  E  s   −  E  i    (9)

Adsorption of  CH ,  CO , and  CHCO  were tested on several sites, atop sites (A-Pt and A-M), bridge 
sites (B-Pt and B-M), and hollow sites with and without an atom directly below in the subsequent 
layer, which are called HCP and FCC hollow sites (HCP-Pt, HCP-M, FCC-Pt, and FCC-M).

The most stable adsorption configuration for CO adsorption on Pt3M is at atop site with 
molecular axis of CO normal to the surface and C atom bonded to the surface in agreement 
with the experimental findings for Pt-based catalysts [87]. The CO adsorption energies on 
A-Pt and A-M for the different surfaces are shown in Figure 6. It is found that CO adsorption 
energy on A-Pt sites in the alloys is reduced respect to pure Pt (dotted line) and it is more 
reduced when the metal atom adsorbs more strongly the CO molecule. Also it is remarkable 
that adsorption energy on tin atom is only −0.08 eV. It is in agreement with other works, 
which points out that Pt-CO binding is weakened in the PtM alloy [88–90], whereas the M-CO 
bond is strengthened with the presence of Pt and CO adsorption on tin is not stable [91–93].
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The most stable adsorption configuration for CH adsorption on Pt3M is at hollow site (both 
hollow sites have similar adsorption energy) with molecular axis of CH normal to the sur-
face and C atom bonded to an atom on the surface in agreement with other theoretical 
studies [94–96]. It is noted in Figure 6, a trend similar to CO adsorption, adsorption on 
sites with only Pt in the alloy is weaker than pure Pt, whereas the sites with metal atoms 
have higher or similar adsorption energy than pure Pt with the exception of Pt3Sn, which is 
significantly lower.

The most stable adsorption configuration for CHCO on the alloys (except for Pt3Sn) and pure 
Pt is shown in Figure 7. In this geometry, the CH part is located at bridge position between M 
and Pt atom (B-M), whereas the CO part is located close to a Pt atom in a Pt-atop-like position 
(A-Pt). For both groups, the C atom is closer to the surface. This configuration is like other 
found in theoretical studies for transition metals [77, 97]. Other adsorption configuration is 
found when CHCO is close to hollow-Pt sites, except for Pt3Rh, whose Pt sites have an adsorp-
tion configuration as the above described. In this configuration, the carbon atom linked to 
the hydrogen atom is bound to the surface in a bridge position between two Pt atoms (B-Pt), 
whereas the carbon atom linked to oxygen is far from the surface as is shown in Figure 7. This 
configuration was found in other work for metals considered inactive [97].

Adsorption energies of former configuration with CH and CO parts bonded to the surface 
ranges from −3.66 to −3.98 and C-C bond length is stretched by 0.20 ± 0.01 Ǻ, whereas adsorp-
tion energies of last configuration ranges from −2.68 to −3.24 eV and C-C bond length is only 

Figure 6. CO and CH and CHCO adsorption energies on Pt(111) and Pt3M(111) surfaces.

Figure 7. Geometric configurations found for CHCO adsorption on Pt3M(111) surfaces.
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stretched slightly by 0.08 ± 0.01 Ǻ. So, the ensembles with only Pt atoms in Pt3M (with excep-
tion of Pt3Rh) have adsorption energies significantly lower than pure Pt and do not stretch 
significantly the C-C bond, whereas the ensembles with M atom have adsorption energies 
similar to Pt and stretch significantly the C-C bond. Indicating that the addition of M to Pt 
decreases the ability of Pt for interacting with CHCO and hence part of the alloy is inactive, 
except for Pt3Rh.

Summarizing, the adsorption of CH, CO, and CHCO shows that the addition of M (M = Re, 
Rh, Ni, Ru, or Sn) to Pt leads to obtain two active sites with different reactivities. The Pt atoms 
in all these alloys form bonds with the described molecules weaker than Pt atoms in pure Pt, 
whereas the Re, Rh, and Ru atoms in the alloys have a stronger interaction with CH, CO, and 
CHCO than pure Pt. This difference explains that adsorption energies of CO on metal atoms 
in Pt3M (M = Rh, Re, and Ru) are higher than Pt (111), whereas the adsorption energies of CH 
on sites with M atoms in Pt3M (M = Rh, Re, and Ru) are similar to Pt (111), since CH interacts 
with two Pt and one M atom at hollow site. Then, the stronger interaction of mentioned M 
atoms should compensate the weaker interaction of Pt in these alloys.

Besides, Ni and Pt atoms in Pt3Ni have slightly weaker interaction than pure Pt (111), so the 
adsorption energies at different sites in this alloy are slightly lower than pure Pt. On the other 
hand, Sn and Pt atoms in Pt3Sn have a weaker interaction with the molecules than pure Pt 
(111), suggesting that Pt3Sn has low catalytic activity toward C-C bond cleavage, confirming 
previous experimental and theoretical works that affirms that PtSn alloys have lower catalytic 
activity for C-C bond cleavage, but they increase the catalytic activity for EOR by promoting 
bifunctional mechanism and the pathway toward acetic acid [70, 98]. Other remarkable find-
ing is the two configurations for CHCO adsorption, one of them destabilizes the molecule 
binding it strongly and stretching significantly the C-C bond (around to 0.20 Ǻ) and the other 
is found in metals inactive, it suggests that part of alloy is inactive, except for Pt3Rh.

The adsorption energies obtained can be related with activation energy for C-C bond cleav-
age through Eq. (8), only the active sites are considered since the linear relationship between 
ETS and Eads only have sense for them. As is can be expected from Eq. (8), the surfaces with 
higher adsorption energies of CH and CO have lower activation energy, that is the sites with 
Re, Rh, and Ru atoms, it can be observed in Figure 8, which shows the product energies Ep 
(see Eq. (7)) and activation energies for the different active sites.

These results indicate that Pt3Sn is the catalyst with the lowest activity for C-C bond cleavage, 
since in this alloy Sn has a weak interaction with all molecules studied and Pt atoms have 
a weaker interaction than Pt atoms in pure Pt (111). Also, it is expected that Pt3Rh alloy has 
higher reactivity for C-C bond cleavage since all sites, sites with only Pt, and sites with Rh 
atoms have similar or higher reactivity than pure Pt. Whereas Pt3Re and Pt3Ru have a nonsig-
nificant improvement of the reactivity with respect to pure Pt, since they have one site with 
higher reactivity (site with M atom) and other with lesser reactivity (site with only Pt atoms); 
between these ones, Pt3Re has the most reactive site. Pt3Ni has slightly weaker interaction 
with molecules than Pt. Consequently, the ranking from high to low reactivity for C-C bond 
cleavage is Pt3Rh, Pt3Re, Pt3Ru, Pt, Pt3Ni, and Pt3Sn.
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This trend agrees with previous experimental results, where it is reported that Pt-based alloys 
with rhodium (PtRh and PtSnRh) show a production of CO2 higher than Pt and Pt alloys [69, 99]. 
In contrast, addition of Rhenium to Pt improves performance for C-C cleavage, but this improve-
ment is not much higher, it is reported that Re addition to Pt improves the acetaldehyde decom-
position, increasing the produced CO (product of C-C bond cleavage) from 10 to 18% [100]. On 
the contrary, it is reported that Sn addition to Pt decreases the CO2 product respect to Pt [70, 98]. 
But the PtSn alloys are recognized as the better catalyst for EOR, where the enhancement of the 
activity with this alloy is attributed to the promotion of bifunctional mechanism promoting the 
acetic acid production.

Due to mentioned issues, different authors propose materials with Pt, Sn, and Rh as effec-
tive catalysts in splitting the C-C bond and oxidizing intermediates molecules of EOR via 
bifunctional mechanism. This mix in the appropriate composition will provide high overall 
conversion of ethanol and higher selectivity to CO2 than Pt. However, the selectivity can be 
considered low and the total conversion to CO2 remains elusive. It can be attributed to the 
presence of oxidants as OH, which should promote the oxidation of intermediates to acetic 
acid and decreases the C-C bond cleavage rate [101]. But the unavailability of oxidants limits 
the conversion of CO to CO2, poisoning the surface. Finding a better catalyst for EOR requires 
considering, in addition of C-C cleavage, the step of oxidation to produce acetic acid and the 
dehydrogenation step.
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stretched slightly by 0.08 ± 0.01 Ǻ. So, the ensembles with only Pt atoms in Pt3M (with excep-
tion of Pt3Rh) have adsorption energies significantly lower than pure Pt and do not stretch 
significantly the C-C bond, whereas the ensembles with M atom have adsorption energies 
similar to Pt and stretch significantly the C-C bond. Indicating that the addition of M to Pt 
decreases the ability of Pt for interacting with CHCO and hence part of the alloy is inactive, 
except for Pt3Rh.

Summarizing, the adsorption of CH, CO, and CHCO shows that the addition of M (M = Re, 
Rh, Ni, Ru, or Sn) to Pt leads to obtain two active sites with different reactivities. The Pt atoms 
in all these alloys form bonds with the described molecules weaker than Pt atoms in pure Pt, 
whereas the Re, Rh, and Ru atoms in the alloys have a stronger interaction with CH, CO, and 
CHCO than pure Pt. This difference explains that adsorption energies of CO on metal atoms 
in Pt3M (M = Rh, Re, and Ru) are higher than Pt (111), whereas the adsorption energies of CH 
on sites with M atoms in Pt3M (M = Rh, Re, and Ru) are similar to Pt (111), since CH interacts 
with two Pt and one M atom at hollow site. Then, the stronger interaction of mentioned M 
atoms should compensate the weaker interaction of Pt in these alloys.

Besides, Ni and Pt atoms in Pt3Ni have slightly weaker interaction than pure Pt (111), so the 
adsorption energies at different sites in this alloy are slightly lower than pure Pt. On the other 
hand, Sn and Pt atoms in Pt3Sn have a weaker interaction with the molecules than pure Pt 
(111), suggesting that Pt3Sn has low catalytic activity toward C-C bond cleavage, confirming 
previous experimental and theoretical works that affirms that PtSn alloys have lower catalytic 
activity for C-C bond cleavage, but they increase the catalytic activity for EOR by promoting 
bifunctional mechanism and the pathway toward acetic acid [70, 98]. Other remarkable find-
ing is the two configurations for CHCO adsorption, one of them destabilizes the molecule 
binding it strongly and stretching significantly the C-C bond (around to 0.20 Ǻ) and the other 
is found in metals inactive, it suggests that part of alloy is inactive, except for Pt3Rh.

The adsorption energies obtained can be related with activation energy for C-C bond cleav-
age through Eq. (8), only the active sites are considered since the linear relationship between 
ETS and Eads only have sense for them. As is can be expected from Eq. (8), the surfaces with 
higher adsorption energies of CH and CO have lower activation energy, that is the sites with 
Re, Rh, and Ru atoms, it can be observed in Figure 8, which shows the product energies Ep 
(see Eq. (7)) and activation energies for the different active sites.

These results indicate that Pt3Sn is the catalyst with the lowest activity for C-C bond cleavage, 
since in this alloy Sn has a weak interaction with all molecules studied and Pt atoms have 
a weaker interaction than Pt atoms in pure Pt (111). Also, it is expected that Pt3Rh alloy has 
higher reactivity for C-C bond cleavage since all sites, sites with only Pt, and sites with Rh 
atoms have similar or higher reactivity than pure Pt. Whereas Pt3Re and Pt3Ru have a nonsig-
nificant improvement of the reactivity with respect to pure Pt, since they have one site with 
higher reactivity (site with M atom) and other with lesser reactivity (site with only Pt atoms); 
between these ones, Pt3Re has the most reactive site. Pt3Ni has slightly weaker interaction 
with molecules than Pt. Consequently, the ranking from high to low reactivity for C-C bond 
cleavage is Pt3Rh, Pt3Re, Pt3Ru, Pt, Pt3Ni, and Pt3Sn.
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This trend agrees with previous experimental results, where it is reported that Pt-based alloys 
with rhodium (PtRh and PtSnRh) show a production of CO2 higher than Pt and Pt alloys [69, 99]. 
In contrast, addition of Rhenium to Pt improves performance for C-C cleavage, but this improve-
ment is not much higher, it is reported that Re addition to Pt improves the acetaldehyde decom-
position, increasing the produced CO (product of C-C bond cleavage) from 10 to 18% [100]. On 
the contrary, it is reported that Sn addition to Pt decreases the CO2 product respect to Pt [70, 98]. 
But the PtSn alloys are recognized as the better catalyst for EOR, where the enhancement of the 
activity with this alloy is attributed to the promotion of bifunctional mechanism promoting the 
acetic acid production.

Due to mentioned issues, different authors propose materials with Pt, Sn, and Rh as effec-
tive catalysts in splitting the C-C bond and oxidizing intermediates molecules of EOR via 
bifunctional mechanism. This mix in the appropriate composition will provide high overall 
conversion of ethanol and higher selectivity to CO2 than Pt. However, the selectivity can be 
considered low and the total conversion to CO2 remains elusive. It can be attributed to the 
presence of oxidants as OH, which should promote the oxidation of intermediates to acetic 
acid and decreases the C-C bond cleavage rate [101]. But the unavailability of oxidants limits 
the conversion of CO to CO2, poisoning the surface. Finding a better catalyst for EOR requires 
considering, in addition of C-C cleavage, the step of oxidation to produce acetic acid and the 
dehydrogenation step.
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and competitive tool to describe chemical phenomena [2]. This field is broadly known as 
“modeling.” In “molecular modeling,” the premise is that the interatomic and intermolecular 
interactions can be known [3]. DFT has become the dominant tool for the purpose of deter-
mining such interactions [4]. In particular, in solid-state chemistry and physics, it has become 
increasingly popular since appropriate functionals and basis sets [5] were designed to provide 
a viable balance between the reliability of the numerical results and the computational costs.

Metal-organic frameworks (MOFs), also known as porous coordination polymers (PCPs) 
[6–8], are a class of hybrid organic-inorganic materials with high surface area, a permanent 
porosity with large internal pore volume and tunable pore sizes. They have a wide range of 
potential applications such as gas storage [9] and separation [10], catalysis [11], and many 
others [12–14]. MOFs are constructed by interlinking metal ions or, more generally, metal-
containing units with organic moieties (carboxylates, azolates, imidazolates, pyridyl, etc.) 
through coordination bonds, thus creating crystalline frameworks. Due to the variety of the 
structural and chemical elements, some MOFs show unexpected characteristics, which some-
times cannot be fully assessed experimentally. Theoretical approaches have been intensively 
employed in this particular case to investigate the systems at the atomic level. Beyond the 
analysis of observed phenomena, the prediction of unknown attributes has been attempted.

In this book-chapter, we review and discuss the current status and challenges of DFT studies 
of MOFs. We focus in particular on aspects relevant to catalysis at the metal centers found in 
these structures.

2. DFT calculations on MOFs

One of the main issues of DFT calculations is that a compromise between the dependability of  
the results and computational costs must be found, especially for large and complex systems [15]. 
A primary issue is how to select a functional suitable for the investigated system [16]. Different 
functionals, based on different approximations, may give different (even opposite) results. It is 
thus important to choose the functionals wisely. No functional devised up to now has proven to 
be suitable for all systems. Therefore, the validation of any selected functional is crucial.

MOFs are crystalline materials with extended frameworks. This needs, in some instances, to be 
taken into account when, for catalytic applications of MOFs, DFT is used to investigate the reac-
tion mechanism. The reaction enthalpy can be obtained approximately from the energy at 0 K by 
including a zero-point energy correction calculated from (possibly scaled) vibrational frequencies. 
To compute the entropy, harmonic or anharmonic low-frequency modes can be used. The tem-
perature-dependent free and activation energies can be calculated by adding thermal enthalpic 
and entropic effects. The so-obtained free energies of reaction are used to calculate temperature-
dependent equilibrium constants. Note that the kinetics of a reaction can also be investigated, e.g., 
by transition state theory (TST) [17]. However, this is beyond the scope of this chapter.

Since the properties of MOFs depend not only on their chemical composition but also their 
structures, atomistic structural characterization is essentials. Generally, the structure of a 
newly synthesized MOF is characterized by single-crystal X-ray diffraction (SC-XRD). If the 
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quality of the single crystals is not sufficient, the structure can be inferred from powder dif-
fraction patterns [18] which often remains incomplete because of the complicated molecular 
system, large unit cell, and low symmetry. Molecular modeling methods must thus comple-
ment these experiments [19].

The periodic structure of an MOF can be studied by DFT: properties such as cell parameters 
and elastic properties can be obtained from periodic calculations. However, such calculations 
consume large amounts of computational resources due to the typically large unit cell of 
MOFs. Simple functionals such as local-density approximation (LDA) or generalized gradient 
approximations (GGA) are, however, often sufficient in this case [20]. Studying catalytic effects 
requires more advanced “hybrid” functionals, e.g., BP86 [21], B3-LYP [22], or M06 series [23].

Molecular mechanics (MM) is a much cheaper computational method to study large systems. 
The reliability of these calculations depends on the quality of the force fields used to describe 
the interactions between the atoms in the investigated system. Some high-accuracy force 
fields for MOFs, such as BTW-FF [24], MOF-FF [25], Quick-FF [26], and others [27, 28], were 
parametrized from DFT calculations. They were successfully used to determine and predict 
the periodic structures [29, 30], as well as to examine phase transformations [31–33], guest 
diffusion in the pores and other mechanical properties such as bulk moduli [34], elastic con-
stants [35] and mechanical stability [36]. Note that MM calculations cannot describe electronic 
structures. Bond breaking and forming cannot be accounted for in such calculations. Thus, it 
is not possible to study reaction mechanisms using conventional MM methods [37].

In summary, for structurally well-defined and small enough systems, DFT calculations are a 
cogent approach especially in the field of localized catalytic reactions. We aim here to outline 
the suitability of DFT techniques to study catalysis in MOFs materials through examples from 
the recent literature.

3. Catalytic MOFs

MOFs have well-defined crystal structures with high concentrations of metal centers orga-
nized at topical distances, and large pore volumes between these centers. Even though MOFs 
are less able to withstand high temperatures compared to some other catalytic porous materi-
als, their undeniable qualities such as large internal surface areas and uniform pore and cavity 
sizes make them attractive for various applications [38]. The pore size/shape in the framework 
can be tuned for selectivity for a particular reaction. In contrast, the small pore windows of 
other nanoporous materials, such as zeolites, commonly limit the catalytic transformation of 
large molecules [39].

In principle, various types of active sites can be incorporated into MOFs. Coordinatively 
unsaturated metal sites (CUSs) and functional groups on the organic linkers (usually acid/
base sites) are the main catalytic sites. In addition, even though the MOF framework itself 
does not contain active sites, the catalytic reactivity can be enhanced by (a) postsynthetic func-
tionalized modification [40] and (b) encapsulation of catalytic species [41]. The pore volume of 
MOFs is able to accommodate organic molecules, inorganic nanoparticles, metal complexes, 
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thus important to choose the functionals wisely. No functional devised up to now has proven to 
be suitable for all systems. Therefore, the validation of any selected functional is crucial.
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taken into account when, for catalytic applications of MOFs, DFT is used to investigate the reac-
tion mechanism. The reaction enthalpy can be obtained approximately from the energy at 0 K by 
including a zero-point energy correction calculated from (possibly scaled) vibrational frequencies. 
To compute the entropy, harmonic or anharmonic low-frequency modes can be used. The tem-
perature-dependent free and activation energies can be calculated by adding thermal enthalpic 
and entropic effects. The so-obtained free energies of reaction are used to calculate temperature-
dependent equilibrium constants. Note that the kinetics of a reaction can also be investigated, e.g., 
by transition state theory (TST) [17]. However, this is beyond the scope of this chapter.

Since the properties of MOFs depend not only on their chemical composition but also their 
structures, atomistic structural characterization is essentials. Generally, the structure of a 
newly synthesized MOF is characterized by single-crystal X-ray diffraction (SC-XRD). If the 
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quality of the single crystals is not sufficient, the structure can be inferred from powder dif-
fraction patterns [18] which often remains incomplete because of the complicated molecular 
system, large unit cell, and low symmetry. Molecular modeling methods must thus comple-
ment these experiments [19].

The periodic structure of an MOF can be studied by DFT: properties such as cell parameters 
and elastic properties can be obtained from periodic calculations. However, such calculations 
consume large amounts of computational resources due to the typically large unit cell of 
MOFs. Simple functionals such as local-density approximation (LDA) or generalized gradient 
approximations (GGA) are, however, often sufficient in this case [20]. Studying catalytic effects 
requires more advanced “hybrid” functionals, e.g., BP86 [21], B3-LYP [22], or M06 series [23].
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the recent literature.

3. Catalytic MOFs

MOFs have well-defined crystal structures with high concentrations of metal centers orga-
nized at topical distances, and large pore volumes between these centers. Even though MOFs 
are less able to withstand high temperatures compared to some other catalytic porous materi-
als, their undeniable qualities such as large internal surface areas and uniform pore and cavity 
sizes make them attractive for various applications [38]. The pore size/shape in the framework 
can be tuned for selectivity for a particular reaction. In contrast, the small pore windows of 
other nanoporous materials, such as zeolites, commonly limit the catalytic transformation of 
large molecules [39].

In principle, various types of active sites can be incorporated into MOFs. Coordinatively 
unsaturated metal sites (CUSs) and functional groups on the organic linkers (usually acid/
base sites) are the main catalytic sites. In addition, even though the MOF framework itself 
does not contain active sites, the catalytic reactivity can be enhanced by (a) postsynthetic func-
tionalized modification [40] and (b) encapsulation of catalytic species [41]. The pore volume of 
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and enzymes to conduct catalytic reactions. Here, we focus only catalytic reactions taking 
place on one CUS.

It is because of these functionalities [39] that MOFs were originally proposed for applications in 
catalysis. From this point of view, one tends to focus on the design and synthesis of MOFs with 
large pore sizes. The purpose is to allow the reactant to diffuse easily into the framework reach-
ing the catalytic centers. Suitable synthetic techniques make it possible to choose the linkers 
and the metal-containing nodes to construct MOF suitable for particular reaction. Such a well-
designed MOF catalyst should be highly reactive, selective, and stable. In order to approach this 
goal, some understanding of the reaction mechanisms is essential. In many cases, the reactants 
and resulting products tend to be well localized, for a sufficiently long time, in the framework 
due to host-guest interaction. The catalytic site can thus often be separated from the framework 
and investigated independently, making it easier to follow the reaction mechanisms [42].

We focus in this brief overview, mostly through a series of examples, on such local analyses of 
the activity of single-site catalysts. Selected examples of work based on cluster, or truncated, 
models of reactions catalyzed by metal centers, metal substitutions, and deposited metal com-
plexes are succinctly reviewed.

4. Catalytically reactive metal nodes

As mentioned above, MOFs are built up from metal ions or metal-containing clusters as the 
inorganic building node and organic ligands as linkers. In some MOFs, coordinatively unsat-
urated metal sites (CUSs) have a catalytic effect. The sites are spatially well separated and, 
ideally, structurally identical. Thus, to investigate the reaction mechanism with DFT methods, 
truncated structures can often be used to represent the entire MOFs.

4.1. Reactivity of coordinatively unsaturated metal sites

MOFs with CUSs provide identical active metal sites, which are spatially isolated from each 
another. The sites are structurally well-characterized, without coupling to their neighbors. In 
typical dense heterogeneous catalyst, the reaction takes place on the outer surface [43]. One way 
to enhance the catalytic effect is to increase the accessible surface area. In MOFs, reactions occur 
not only on the outer surface, easily accessible active sites inside the framework also contribute.

Maihom et al. investigated the epoxidations of ethylene over Fe3(BTC)2 (BTC = 1,3,5-benzen-
etricarboxylate) using N2O as oxidant [44]. A truncated model [Fe2(H2BTC)4] (Figure 1a) was 
used. The reaction mechanism started with the N2O decomposition over Fe to generate an active 
Fe-oxo moiety, requiring an activation energy of 23.7 kcal/mol. An ethylenoxy intermediate, and 
eventually, ethylene oxide, were obtained as final products rather than acetaldehyde (Figure 1b).

An investigation of the epoxidation of propylene using Cu3(BTC)2 and Fe3(BTC)2 was recently 
carried out by the same group [45]. As mentioned, truncated clusters, [Cu2(H2BTC)4] and 
[Fe2(H2BTC)4], are suitable for these calculations, carried out at the M06-L/6-31G(d,p) level. 
As expected, the calculations showed that Fe3(BTC)2 is more active than Cu3(BTC)2 due to a 
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larger charge transfer from the CUS to the oxidant O2. It was found that the production of 
propylene oxide is favored over that of carbonylic products (propanal and acetone). Propanal 
and acetone were formed on the Fe-MOF cluster via the formation of a C▬O bond. Then, the 
propyleneoxy intermediates and acetone are formed via a 1,2-hydride shift.

The M-MOF-74 series (M2(DOBDC), where DOBDC = 2,5-dioxidoterephthalate and M = Mg, 
Ni, Co, Cu, and Zn) has been proposed as good catalysts for several reactions, owing to their 
reactive CUSs and large 1D channels, beneficial for the reactants’ access to the active site. They 
are also thermally and chemically very stable [46–48]. Valvekens et al. [49] used MOF-74 with 
various metal ions, i.e., Mg (II), Ni (II), Co (II), Cu (II), and Zn (II) as Lewis acid catalysts to 
promote Knoevenagel condensations and Michael additions.

DFT calculations were performed on truncated models cut from the periodic geometries 
(Figure 2) optimized at the PBE-D2 level. The catalytic activities of M2(DOBDC) systems with 
respect to the Knoevenagel condensation and Michael additions were examined. The calcula-
tions at the B3LYP level with a 6–31 g(d) basis showed that Ni-MOF-74 is the most active catalyst 
for both reactions. In addition, it was found that the phenolate groups coordinated with the CUSs 
substantially increase the catalytic performance. The phenolate oxygen proved to be a stronger 
base than the carboxylate oxygen, resulting in more acidic CUSs, enhancing the catalytic activity.

Llabrés i Xamena et al. [50] demonstrated that Cu(2-pymo)2 and Co(PhIM)2 (2-pymo and PhIM 
are 2-hydroxypyrimidinolat and phenylimidazolate, respectively) promote the aerobic oxida-
tion reaction converting tetralin hydrocarbon to ketone and alcohol derivatives. The tetralin 
was first oxidized to hydroperoxides under oxygen condition and then decomposed to ketone 
and alcohol under the influence of the Lewis acid sites Cu(II) and Co(II). Ryan et al. [51] 
studied the mechanism of the hydroperoxide decomposition over three different complexes 

Figure 1. (a) Truncated model of [Fe2(H2BTC)4] and (b) energy profile of reactants, intermediates, and transition states 
involved in the formation of ethylene oxide (solid line) and the acetaldehyde (dash line) over the Fe paddle wheel. 
Adapted from Ref. [44] with permission of Wiley, copyright 2016.
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and enzymes to conduct catalytic reactions. Here, we focus only catalytic reactions taking 
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due to host-guest interaction. The catalytic site can thus often be separated from the framework 
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urated metal sites (CUSs) have a catalytic effect. The sites are spatially well separated and, 
ideally, structurally identical. Thus, to investigate the reaction mechanism with DFT methods, 
truncated structures can often be used to represent the entire MOFs.

4.1. Reactivity of coordinatively unsaturated metal sites

MOFs with CUSs provide identical active metal sites, which are spatially isolated from each 
another. The sites are structurally well-characterized, without coupling to their neighbors. In 
typical dense heterogeneous catalyst, the reaction takes place on the outer surface [43]. One way 
to enhance the catalytic effect is to increase the accessible surface area. In MOFs, reactions occur 
not only on the outer surface, easily accessible active sites inside the framework also contribute.

Maihom et al. investigated the epoxidations of ethylene over Fe3(BTC)2 (BTC = 1,3,5-benzen-
etricarboxylate) using N2O as oxidant [44]. A truncated model [Fe2(H2BTC)4] (Figure 1a) was 
used. The reaction mechanism started with the N2O decomposition over Fe to generate an active 
Fe-oxo moiety, requiring an activation energy of 23.7 kcal/mol. An ethylenoxy intermediate, and 
eventually, ethylene oxide, were obtained as final products rather than acetaldehyde (Figure 1b).

An investigation of the epoxidation of propylene using Cu3(BTC)2 and Fe3(BTC)2 was recently 
carried out by the same group [45]. As mentioned, truncated clusters, [Cu2(H2BTC)4] and 
[Fe2(H2BTC)4], are suitable for these calculations, carried out at the M06-L/6-31G(d,p) level. 
As expected, the calculations showed that Fe3(BTC)2 is more active than Cu3(BTC)2 due to a 
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larger charge transfer from the CUS to the oxidant O2. It was found that the production of 
propylene oxide is favored over that of carbonylic products (propanal and acetone). Propanal 
and acetone were formed on the Fe-MOF cluster via the formation of a C▬O bond. Then, the 
propyleneoxy intermediates and acetone are formed via a 1,2-hydride shift.

The M-MOF-74 series (M2(DOBDC), where DOBDC = 2,5-dioxidoterephthalate and M = Mg, 
Ni, Co, Cu, and Zn) has been proposed as good catalysts for several reactions, owing to their 
reactive CUSs and large 1D channels, beneficial for the reactants’ access to the active site. They 
are also thermally and chemically very stable [46–48]. Valvekens et al. [49] used MOF-74 with 
various metal ions, i.e., Mg (II), Ni (II), Co (II), Cu (II), and Zn (II) as Lewis acid catalysts to 
promote Knoevenagel condensations and Michael additions.

DFT calculations were performed on truncated models cut from the periodic geometries 
(Figure 2) optimized at the PBE-D2 level. The catalytic activities of M2(DOBDC) systems with 
respect to the Knoevenagel condensation and Michael additions were examined. The calcula-
tions at the B3LYP level with a 6–31 g(d) basis showed that Ni-MOF-74 is the most active catalyst 
for both reactions. In addition, it was found that the phenolate groups coordinated with the CUSs 
substantially increase the catalytic performance. The phenolate oxygen proved to be a stronger 
base than the carboxylate oxygen, resulting in more acidic CUSs, enhancing the catalytic activity.

Llabrés i Xamena et al. [50] demonstrated that Cu(2-pymo)2 and Co(PhIM)2 (2-pymo and PhIM 
are 2-hydroxypyrimidinolat and phenylimidazolate, respectively) promote the aerobic oxida-
tion reaction converting tetralin hydrocarbon to ketone and alcohol derivatives. The tetralin 
was first oxidized to hydroperoxides under oxygen condition and then decomposed to ketone 
and alcohol under the influence of the Lewis acid sites Cu(II) and Co(II). Ryan et al. [51] 
studied the mechanism of the hydroperoxide decomposition over three different complexes 

Figure 1. (a) Truncated model of [Fe2(H2BTC)4] and (b) energy profile of reactants, intermediates, and transition states 
involved in the formation of ethylene oxide (solid line) and the acetaldehyde (dash line) over the Fe paddle wheel. 
Adapted from Ref. [44] with permission of Wiley, copyright 2016.
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possessing copper or cobalt CUSs, i.e., Co(imidazolate)4, Cu2(2-hydroxypyrimidinolat)4, and 
Cu2(acetate)4, as illustrated in Figure 3.

From DFT calculations (B3LYP/TZVP/6-31G(d,p)), the access of hydroperoxide to the CUSs of 
Cu2(2-hydroxypyrimidinolat)4 and of Co(imidazolate)4 was found to be blocked by this bulky 
ligand. As a consequence, no decomposition of hydroperoxide was observed for the two sys-
tems. On the other hand, for Cu2(acetate)4, i.e., without the bulky ligands, the decomposition 
should occur. However, the calculations revealed that Cu2(acetate)4 was not active for the 
decomposition of tetralin. The energy barrier of the O▬O bond cleavage over Cu2(acetate)4 
(35.6–36.8 kcal/mol) was almost identical with that of the cleavage in the gas phase without 
catalyst (36.0–36.7 kcal/mol). The external surface was then considered as the active sites.

A complex consisting of Cu coordinated by three organic linkers and one water molecule was 
modeled representing the edge or outer surface of the framework (Figure 4a). The energy bar-
rier of the hydroperoxide decomposition on the new model complex decreased to 25.3 kcal/mol,  
which was considerably lower than the value of the gas-phase reaction without MOFs as 
shown in Figure 4b.

Vanadium-based MIL-47(V), [VO(BDC)] (BDC = benzene-1,4-dicarboxylate), is an active 
catalyst for the liquid-phase cyclohexene oxidation-reaction using tert-butyl hydroperoxide 
(TBHP) as an oxidant [52]. MIL-47(V) is built up from linear V-(μ2-O)-V chains interconnected 

Figure 2. Periodic structure of M2(DOBDC) optimized at the PBE-D2 level of theory (left), and the cluster model 
M9(DOBDC)9, truncated from the periodic structure (right). Adapted from Ref. [49] with permission of Elsevier, 
copyright 2014.

Figure 3. The metal cluster models taken from (a) Co(imidazolate)4, (b) Cu2(2-hydroxypyrimidinolat)4, and (c) 
Cu2(acetate)4.
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by terephthalate linkers to form a 3D framework possessing 1D rhombic channels. Each 
V(IV)-center in this chain coordinates to six oxygen atoms—four from carboxylate and two 
from μ2O. Typically, MIL-47(V) does not provide CUSs. However, CUSs can be created from 
structural defects obtained by partially breaking the V▬OCOO bonds and from the hydrolysis 
of the V▬OCOO bonds.

The main products of the cyclohexene oxidation reaction are cyclohexene oxide, cyclohexane-
1,2-diol, tert-butyl-2-cyclohexenyl-1-peroxide, and 2-cyclohexen-1-one with a conversion of 
about 80%. It was found that the catalytic performance of MIL-47(V) was comparable with 
that of typical homogeneous catalyst, VO(acac)2. Note that no leaching of V(IV) was observed 
when the oxidant was dissolved in the solution. The structures of the MIL-47(V) were main-
tained intact until the end of reaction. Leus and Vandichel et al. [52] proposed a reaction 
pathway from DFT calculations on finite clusters of MIL-47(V) (Figure 5).

The results were in good agreement with EPR and NMR measurement that are interpreted in 
terms of the existence of (at least) two different catalytic pathways, described as the “direct” 
and “radical” pathways [52]. The first step of both pathways was the formation of a vana-
dium hydroperoxide species from TBHP. For the direct pathway, cyclohexene was directly 
converted to cyclohexene oxide, while the oxidation state of vanadium (V(IV)) did not change 
during the reaction. In the case of the radical pathway, V(IV) was oxidized to V(V), which fur-
ther reacted with the oxidant TBHP to give an active species of the cyclohexene epoxidation. 
Finally, the catalyst was regenerated by interacting with TBHP again. At the B3LYP-D3 and 
311 + g(3df,2p) level of theory, the reaction free energy for epoxidation reaction was 37 kJ/mol  
for the more favorable radical route.

Moreover, Matthias et al. [53] studied the cyclohexene oxidation using MIL-47(V)-function-
alized linkers (with the functional groups ▬OH, ▬F, ▬Cl, ▬Br, ▬CH3, and ▬NH2) by means 
of experimental and theoretical works. Different catalytic conversions were observed depend-
ing on the functionalization of the linkers. DFT calculations on truncated clusters of MIL-
47(V) and its derivatives were performed as in the abovementioned example for the radical 

Figure 4. (a) Model of a cluster representing the exterior of a Cu2(2-hydroxypyrimidinolat)3 with one water molecule, (b) 
Gibbs free energy along the reaction coordinate for the proposed reaction cycle over the Cu2(2-hydroxypyrimidinolat)3 
with one water molecule (blue) and oxygen▬oxygen bond cleavage without catalyst (green). All energies are in kcal/mol.  
Figure adapted from Ref. [51] with permission of Elsevier, copyright 2012.
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possessing copper or cobalt CUSs, i.e., Co(imidazolate)4, Cu2(2-hydroxypyrimidinolat)4, and 
Cu2(acetate)4, as illustrated in Figure 3.

From DFT calculations (B3LYP/TZVP/6-31G(d,p)), the access of hydroperoxide to the CUSs of 
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should occur. However, the calculations revealed that Cu2(acetate)4 was not active for the 
decomposition of tetralin. The energy barrier of the O▬O bond cleavage over Cu2(acetate)4 
(35.6–36.8 kcal/mol) was almost identical with that of the cleavage in the gas phase without 
catalyst (36.0–36.7 kcal/mol). The external surface was then considered as the active sites.

A complex consisting of Cu coordinated by three organic linkers and one water molecule was 
modeled representing the edge or outer surface of the framework (Figure 4a). The energy bar-
rier of the hydroperoxide decomposition on the new model complex decreased to 25.3 kcal/mol,  
which was considerably lower than the value of the gas-phase reaction without MOFs as 
shown in Figure 4b.

Vanadium-based MIL-47(V), [VO(BDC)] (BDC = benzene-1,4-dicarboxylate), is an active 
catalyst for the liquid-phase cyclohexene oxidation-reaction using tert-butyl hydroperoxide 
(TBHP) as an oxidant [52]. MIL-47(V) is built up from linear V-(μ2-O)-V chains interconnected 

Figure 2. Periodic structure of M2(DOBDC) optimized at the PBE-D2 level of theory (left), and the cluster model 
M9(DOBDC)9, truncated from the periodic structure (right). Adapted from Ref. [49] with permission of Elsevier, 
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Figure 3. The metal cluster models taken from (a) Co(imidazolate)4, (b) Cu2(2-hydroxypyrimidinolat)4, and (c) 
Cu2(acetate)4.
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by terephthalate linkers to form a 3D framework possessing 1D rhombic channels. Each 
V(IV)-center in this chain coordinates to six oxygen atoms—four from carboxylate and two 
from μ2O. Typically, MIL-47(V) does not provide CUSs. However, CUSs can be created from 
structural defects obtained by partially breaking the V▬OCOO bonds and from the hydrolysis 
of the V▬OCOO bonds.

The main products of the cyclohexene oxidation reaction are cyclohexene oxide, cyclohexane-
1,2-diol, tert-butyl-2-cyclohexenyl-1-peroxide, and 2-cyclohexen-1-one with a conversion of 
about 80%. It was found that the catalytic performance of MIL-47(V) was comparable with 
that of typical homogeneous catalyst, VO(acac)2. Note that no leaching of V(IV) was observed 
when the oxidant was dissolved in the solution. The structures of the MIL-47(V) were main-
tained intact until the end of reaction. Leus and Vandichel et al. [52] proposed a reaction 
pathway from DFT calculations on finite clusters of MIL-47(V) (Figure 5).

The results were in good agreement with EPR and NMR measurement that are interpreted in 
terms of the existence of (at least) two different catalytic pathways, described as the “direct” 
and “radical” pathways [52]. The first step of both pathways was the formation of a vana-
dium hydroperoxide species from TBHP. For the direct pathway, cyclohexene was directly 
converted to cyclohexene oxide, while the oxidation state of vanadium (V(IV)) did not change 
during the reaction. In the case of the radical pathway, V(IV) was oxidized to V(V), which fur-
ther reacted with the oxidant TBHP to give an active species of the cyclohexene epoxidation. 
Finally, the catalyst was regenerated by interacting with TBHP again. At the B3LYP-D3 and 
311 + g(3df,2p) level of theory, the reaction free energy for epoxidation reaction was 37 kJ/mol  
for the more favorable radical route.

Moreover, Matthias et al. [53] studied the cyclohexene oxidation using MIL-47(V)-function-
alized linkers (with the functional groups ▬OH, ▬F, ▬Cl, ▬Br, ▬CH3, and ▬NH2) by means 
of experimental and theoretical works. Different catalytic conversions were observed depend-
ing on the functionalization of the linkers. DFT calculations on truncated clusters of MIL-
47(V) and its derivatives were performed as in the abovementioned example for the radical 

Figure 4. (a) Model of a cluster representing the exterior of a Cu2(2-hydroxypyrimidinolat)3 with one water molecule, (b) 
Gibbs free energy along the reaction coordinate for the proposed reaction cycle over the Cu2(2-hydroxypyrimidinolat)3 
with one water molecule (blue) and oxygen▬oxygen bond cleavage without catalyst (green). All energies are in kcal/mol.  
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pathway. The results showed that, compared to the parent MIL-47(V), the catalytic efficiency 
significantly increased due to the functional groups. Among these, the ▬OH-functionalized 
structure showed the largest improvement (lowest activation energy), which was in good 
agreement with the experimental results. This is because of a strong hydrogen bond between 
the ▬OH and the alkylperoxo group possibly stabilizing the transition state.

4.2. Reactivity of substituted metal centers as single-site catalysts

Partial substitution of metal ions while maintaining the structural integrity and the porosity is 
a promising strategy enabling some otherwise inactive MOFs to show a catalytic activity [54]. 
The metal substitution usually involves the cleavage and regeneration of coordination bonds 
between metal ions and organic ligands. The atomic-level understanding of this process is dif-
ficult, making room for molecular modeling. Here, we show examples of theoretical studies 
on the catalytic activity of metal-substituted MOFs.

Xiao et al. [55] reported the oxidation reaction of ethane to ethanol over magnesium-diluted 
Fe0.1Mg1.9(DOBDC), MOF-74, in which 5% of the redox-inactive Mg(II) were substituted by 
the active Fe(II). This framework provides wide hexagonal channels beneficial for an easy 
access of the reactants to the site-isolated open Fe-CUSs. Nitrous oxide (N2O) was used as the 
oxidant, generating highly reactive Fe(IV)-oxo intermediates, which could further activate 
strong C▬H bonds of alkanes, yielding ethanol and acetaldehyde. Owing to the short lifetime 
of Fe(IV)-oxo, it could neither be isolated nor characterized by conventional experiments.

Shortly afterward, Verma el al. [56] applied DFT calculations to confirm whether the Fe(IV)-
oxo species are formed and act as active centers for ethane hydroxylation to ethanol. They 
modeled the Fe sites in magnesium-diluted Fe2(DOBDC) by replacing 1 Mg atom with Fe atom 
in cluster models comprising 88 atoms of Mg-MOF-74. The oxidation of ethane to ethanol over 

Figure 5. Simulated model of V-MIL-47.

Density Functional Theory62

this magnesium-diluted MOFs using N2O as oxidant was proposed to proceed via a two-step 
consecutive reaction (Figure 6): the formation of the Fe(IV)-oxo unit via N2O decomposition 
and the hydroxylation of ethane to ethanol over the Fe(IV)-oxo complex. It is found that the 
first step is the rate-determining step with an activation energy of 82 kJ/mol. Compared to the 
uncatalyzed reaction, where nitrous oxide directly oxidizes the ethane to ethanol, it was found 
that the reaction requires an activation barrier of 280 kJ/mol. This suggests that the Fe(IV)-oxo 
species is indeed an active center for the oxidation of ethane to ethanol.

In the meantime, Hirrao et al. [57] also carried out combined quantum and molecular mechan-
ics (QM/MM) calculations for the hydroxylation of ethane, in analogy to Mg-MOF-74. This 
methodology treats the active site by QM and the rest of the system is treated by MM. The 
accuracy of QM/MM methods certainly depends on the choice of the QM theory level and 
the set of MM parameters, also on the treatment of electrostatics at the interface between the 
QM and MM regions. One of three Mg(II) ions was substituted by Fe(II) in the QM region, as 
in the model suggested by Verma et al. [56]. In the ONIOM [58] scheme, the MM region was 
treated at the B3LYP/[SDD(Fe),6-31G(d)(others)] level while the UFF interaction model [59] 
was used for the MM region. The 6–311 + G(df,p) basis set was used for single-point reference 
calculations. This work also suggested that the spin state (S = 2) of the Fe(IV)-oxo species does 
not change during the reaction.

Interestingly, Liao et al. [60] then improved based on Verma et al. model [56] the understand-
ing on the activity of Fe open sites for the oxidation of ethane reaction. They studied MOF-74 
with different linkers, in particular, ▬CH3, NH2, ▬COOH, ▬CN, ▬OH, ▬OCH3, ▬N(CH3)2, 

Figure 6. Enthalpy profile, ΔH298.15 (in kJ/mol), for the intermediates and transition states of the catalytic cycle. The key 
bond distances are given in Å (color code: orange = Fe, red = O, blue = N, gray = C, and white = H). Reproduced from Ref. 
[56] with permission of the American Chemical Society, copyright 2015.
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pathway. The results showed that, compared to the parent MIL-47(V), the catalytic efficiency 
significantly increased due to the functional groups. Among these, the ▬OH-functionalized 
structure showed the largest improvement (lowest activation energy), which was in good 
agreement with the experimental results. This is because of a strong hydrogen bond between 
the ▬OH and the alkylperoxo group possibly stabilizing the transition state.

4.2. Reactivity of substituted metal centers as single-site catalysts

Partial substitution of metal ions while maintaining the structural integrity and the porosity is 
a promising strategy enabling some otherwise inactive MOFs to show a catalytic activity [54]. 
The metal substitution usually involves the cleavage and regeneration of coordination bonds 
between metal ions and organic ligands. The atomic-level understanding of this process is dif-
ficult, making room for molecular modeling. Here, we show examples of theoretical studies 
on the catalytic activity of metal-substituted MOFs.

Xiao et al. [55] reported the oxidation reaction of ethane to ethanol over magnesium-diluted 
Fe0.1Mg1.9(DOBDC), MOF-74, in which 5% of the redox-inactive Mg(II) were substituted by 
the active Fe(II). This framework provides wide hexagonal channels beneficial for an easy 
access of the reactants to the site-isolated open Fe-CUSs. Nitrous oxide (N2O) was used as the 
oxidant, generating highly reactive Fe(IV)-oxo intermediates, which could further activate 
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Figure 5. Simulated model of V-MIL-47.
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and 4-pyridyl functionalized groups on different linkers such as using methanol, pyridine, 
formate, benzoate anion, and the imidazole anion. The authors concluded that the population 
of the d-orbital was significantly influenced by the coordination ligand field. The 3d orbital 
energy of Fe correlated with the electron-donating strength of the functional groups on the 
linkers. The results reveal that linkers with ▬NH2 groups reduce the enthalpic barrier for 
the most endothermic step in the ethane oxidation pathway. This study illustrates the use of 
simple models to understand complicated and computationally intensive systems. The activ-
ity of CUSs thus might be optimized by selecting suitable ligand environments, which might 
be useful for upgrading certain hydrocarbon process.

The design of Fe(IV)-oxo complexes in MOFs was further reported by Impeng et al. [61]. In this 
work, we demonstrated the possibility of designing Fe-oxo complexes in MOFs for the activa-
tion of alkane C▬H bond by incorporating an Fe ion into a Zn-based cluster derived from 
Zn4O(BDC)6, known as MOF-5 [62], and generating the Fe-O unit through N2O dissociation 
on an Fe-substituted Zn-based cluster (Fe-Zn3O(pyrazole)6). The calculations with B3LYP-D3 
showed that both steps are feasible and that the catalytic activity of Fe-Zn3O(pyrazole)6 for N2O 
decomposition is on a par with the Fe sites in magnesium-diluted Fe2(DOBDC). Concerning 
ethane C▬H bond activation, in addition to σ and π pathways on triplet and quintet surfaces, 
an alternative unusual pathway, called δ, is also observed on the triplet surface. The σ pathway 
on the quintet surface   ( TS  

σ
  5  )   has the lowest activation energy owing to less steric hindrance and 

favorable d-d interactions on the Fe active site at the transition state, as illustrated in Figure 7.

Figure 7. Reaction profile for ethane C▬H bond activation over the FeO-Zn3O(pyrazole)6 cluster. The inserted numbers 
are the relative energies ΔE, together with the enthalpies ΔH298K in parentheses. Energies are given in kcal/mol and 
distances are expressed in Å. The notations ADS, TS, and INT refer to the adsorption, transition, and intermediate steps, 
respectively. Superscripts 3 and 5 refer to the triplet and quintet spin states, respectively.
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5. Reactivity of metal nodes deposited as single-site catalysts

In this section, we discuss systems possessing metal-complexes/ions anchored on the inor-
ganic building nodes of the framework, which can be achieved by postsynthetic techniques 
such as metalation [63], cation exchange [64], or atomic layer deposition [65]. Zr-based MOFs 
consist of Zr6O8 as a primary node linked with carboxylate linkers. The Zr6O8 nodes con-
nected by 12 linkers result in the UiO-66 series, while the partial connection with 8 and 6 
carboxylates produces NU-1000 and MOF-808, respectively. The catalytic reactivity can be 
enhanced through such modifications. This was often employed for Zr-based MOFs, which 
are remarkable because of their appealing chemical and thermal stability [40]. Well-known 
Zr-based MOFs such as MOF-808 [Zr6(μ3-O)4(μ3-OH)4(OH)6(H2O)6(BTC)2], NU-1000 [Zr6(μ3-
O)4(μ3-OH)4(OH)4(H2O)4(TBAPy)2] (TBAPy = tetratopic 1,3,6,8-tetrakis(p-benzoate)pyrene) 
and UiO-66, known as NU-1000 and [Zr6(μ3-O)4(μ3-OH)4(BDC)6], known as UiO-66 have been 
studied intensively [66, 67].

Ortuño et al. [68] reported on a computational screening of the first row of divalent transi-
tion metals (i.e., Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)) supported on NU-1000 (Figure 8) for 
acceptorless alcohol dehydrogenation. The author proposed the reaction taking place via a 
three-step reaction mechanism, composed of (i) a proton transfer, (ii) β-hydride elimination, 
and (iii) H▬H bond formation. The Fe(II), Co(II), and Ni(II) complexes, consistent with weak-
field oxide ligands, had high-spin ground electronic states as quintet, quartet, and triplet, 
respectively. The Cu(II) and Zn(II) species were predicted to have doublet and singlet ground 
states, respectively. It was found that the Co(II) and Ni(II) supported NU-1000 were the two 
most promising catalysts for the acceptorless alcohol dehydrogenation with an activation free 
energy of 28.5 and 26.5 kcal/mol, respectively.

Later, the same group also studied Ni(II) and Co(II) deposited on Zr-NU-1000 as a catalyst for 
ethylene dimerization, which converts ethylene to 1-butene and 2-butene [69]. For the struc-
ture optimization, the DFT level of theory (M06-L) and def2-TZVPP basis set were employed, 
whereas complete active space self-consistent field (CASSCF) and second-order perturbation 
theory (CASPT2) were used for the electronic structure characterization of the reactive spe-
cies. The NU-1000 models were used as the same as in the previous example (Figure 8). The 
grafted Ni and Co were terminated with active ▬OH and ▬OH2 groups.

The Cossee-Arlman mechanism was found as the energetically preferable pathway. Ethylene 
insertion into the existing metal-ethyl bond was the rate-determining step. Concerning the 
spin state of the two catalysts, the Co(II) species can have doublet or quartet states and the 
Ni(II) can have singlet or triplet states. Based on these calculations, Ni(II)-modified NU-1000 
(with an activation energy of 15.6 kcal/mol) presents a greater reactivity than the Co(II)-
modified system (with an activation energy of 24.1 kcal/mol) for the ethylene insertion into 
the metal-carbon bond. The energetics of ethylene dimerization for the Ni(II) and Co(II) com-
plexes are shown in Figure 9. From the most relevant CASSCF molecular orbitals (MOs), the 
3d orbitals of the low-spin Ni(II) complex hybridized with the 2p orbitals of the active carbon 
atom because of the empty fifth orbital. In contrast to the high-spin Co(II) complex, the degree 
of hybridization in the Ni-case is less able to stabilize the TS structure due to the half-filled 3d 
orbital, leading to a lower catalytic activity.
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Figure 9. Reaction coordinate and calculated enthalpy ΔH298.15K for stationary points along the reaction coordinates for 
ethylene dimerization catalyzed by M(II)-NU-1000 (M = Co and Ni). Reproduced from Ref. [69] with permission of the 
American Chemical Society, copyright 2016.

The oxidative dehydrogenation mechanism of propane on an active Co(II)-oxygen cluster 
anchored on the inorganic node of Zr-NU-1000 [70] was also explored by DFT with the M06-L 
functional and def2-TZVPP. A highly selective propane dehydrogenation at low temperature 
(230°C) has been found in experiments. Li et al. [70] found a computed propene formation 

Figure 8. The “top” and “side” views of a 12-, 8-, and 6-connected Zr6 oxide node. The arrows indicate the unsaturated 
8- and 6-connected nodes, which have potential anchoring points. Reproduced from Ref. [66] with permission of Wiley, 
copyright 2016.
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in line with experimental results. DFT cluster calculations allowed to study the reaction and 
showed the influence on the reaction of adding Co(II) cations as a secondary metal. The com-
puted enthalpies for the equilibrium structures are shown in Figure 10.

In more detail, the reactive Co(III)▬O˙ moiety was generated by the catalyst regeneration 
reaction with O2 having a strong interaction with the propane molecules, promotes the pro-
pane dehydrogenation, and forms isopropyl at the Co(III) active site. The abstraction of the 
terminal C-H bond by the Co(III)▬O˙ intermediate is the rate-determining step, yielding 

Figure 10. Computed enthalpies, ΔH503K (kcal/mol), for propane oxidative dehydrogenation. Reproduced from Ref. [70] 
with permission of the American Chemical Society, copyright 2017.

Figure 11. Calculated enthalpy, ΔH298.15K (kcal/mol), for ethylene hydrogenation to ethane and dimerization to 1-butene 
catalyzed by supported metal complexes initially present as Rh(C2H4)2 on NU-1000, UiO-67, or DAY zeolites. Reproduced 
from Ref. [71] with permission of the American Chemical Society, copyright 2017.
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Co(II)▬OH and isopropyl radicals, which are converted into propene. The energy required 
for the H abstraction producing propene (15.8 kcal/mol) was significantly lower than that for 
the isopropyl migration (23.1 kcal/mol), the propene formation path is thus preferable.

Gates et al. [71] showed that Rh(I) and Ir(I) diethylene complexes can be anchored on the 
Zr-NU-1000, Hf-NU-1000, and Zr-UiO-67 to catalyze ethylene hydrogenation and dimeriza-
tion. They also used DAY zeolite as supporting material to compare the catalytic performance. 
DFT calculations with M06-L and def2-TZVPP were employed. The optimized geometries 
were in good agreement with the data analyzed from IR spectra and X-ray absorption fine 
structure (EXAFS) results. The ethylene insertion to the ethyl▬Rh bond (rate-determining 
step) significantly depended on the nature of the supporting MOF. The catalytic activity was 
compared between Zr- and Hf-nodes and DAY zeolites. The calculated enthalpies for the 
ethylene hydrogenation and dimerization were shown in Figure 11. The calculations reveal 
a lower energy barrier of the DAY zeolite as supporting material than Zr-NU-1000, Hf-NU-
1000, and Zr-UiO-67 for the hydrogenation and dimerization. This is opposite to the experi-
ments which show a better catalytic activity of the DAY zeolite than the MOFs materials. 
The authors proposed that this might be because of the spillover effect rather than a direct 
electronic effect on the Rh(I) complex.

6. Outlook

We focus in this brief overview on theoretical studies of the catalytic activity of single-site 
catalytic MOFs. DFT-based approaches can provide a detailed, if only local, description of the 
chemistry occurring in various environments encountered in such MOFs. This not only helps 
in the interpretation of experiment data; the abilities of DFT calculations are a crucial char-
acterization method toward a deeper molecular perspective. This technique is now powerful 
and reliable enough to predict and guide the synthesis of materials.

There are, however, several problems which need to be overcome:

I. To find a link between a predicted structure and its syntheses still a challenge.

II. Sometime nonlocal phenomena such as a stimulus-responsive behavior of the catalytic 
site itself must be taken into account. Many works[ref] attempt to simulate larger models 
in order to describe such systems. This seems to require improved methodologies to limit 
the computational requirements.

III. The functionals: Since there is no “universal functional” DFT must be always used with 
a lot of caution. A lot of experience has been accumulated on the suitability of various 
approximations to investigate MOFs. Yet new, and costly, validations are still required 
whenever a “new” system is to be studied.

IV. Last but not least, in some cases, a local view as described in this chapter may not be 
sufficient to catch the main features of a particular process. The overall outcome of the 
process under study may depend on many factors, in the worst case, none of which 
dominant. Various “local views” that may have been obtained could be combined as 
building blocks (e.g., by understanding the molecular motions between “sites”). This 
remains largely a task for theoretical improvements in the future.
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1. Introduction

Clathrochelate is a term used in coordination chemistry to denote the ligands that can encap-
sulate metal ions. The word is specifically used here as a generic term to designate a family 
of macrocyclic organometallic compounds that contain tris-glyoximate ligands, forming a 
cage that is strongly bound to a central metal atom (typically Fe [1] or Co [2]; (Figure 1). 
Interestingly, such clathrochelates form a wide family of compounds since their apical and 
ribbed substituents may be varied with ease. Electron donor (such as alkyl) or electron-with-
drawing substituents (such as halogens) can be used in the structure to adjust the electronic 
properties of the metallic center. The XRD structure of the cobalt clathrochelates in their 
resting state (i.e., neutral molecule with the metal ion in a 2+ oxidation state) shows four N 
atoms of two glyoximate groups closer to Co, typically at a distance between 1.88 to 1.99 Å, 
and two other N atoms of the third glyoximate group more elongated at a distance of 2.10 to 
2.17 Å [2, 3], reflecting a Jahn-Teller distortion. Another structural parameter employed for 
their description is the dihedral angle (θ) between the atoms B'N'NB (where the apostrophe 
distinguishes the two apical extremes of the complex), which expresses the rotation between 
the two N′··N′··N′ and N··N··N triangles, as illustrated in Figure 1. Both Co―N distances and 
θ depend on the oxidation state of the molecule, reflecting structural variations occurring 
upon electron gain or loss.

The relevant property of these clathrochelates that motivates this chapter is their electrocata-
lytic activity for hydrogen production from protons in the homogeneous phase (i.e., when the 
compound is dissolved in solution) [2] known as the hydrogen evolution reaction (HER). The 
versatility of these molecules makes them further suitable for their incorporation in hetero-
geneous systems for light harvesting [4] or as precursors for the deposition of Co-containing 
nanoparticles [5], which are also active for the HER.

Figure 1. General Lewis structure of a Co clathrochelate. These molecules are versatile since they may bear various apical 
and ribbed substituents.
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Herein, we illustrate the use of DFT to study the electrochemical properties of these clathro-
chelates with regard to the HER. First, we provide a concise overview of the theoretical meth-
ods currently employed to address these complexes and the typical procedures employed 
to aid and stabilize self-consistent field (SCF) and geometry optimization convergence. 
Subsequently, we provide examples of the computation of common spectroscopies, such as 
infrared (IR) or ultraviolet-visible (UV-Vis). The core of this chapter is then devoted to the 
computation of electron transfer processes and to unravel the HER electrocatalytic mecha-
nism with a model Co clathrochelate. Finally, we provide an overall conclusion of the state of 
the art regarding the application of DFT methods to clathrochelates, along with conceivable 
perspectives for future work on the topic.

2. Comments on the selection of the calculation methodology

The choice of the theoretical method is the cornerstone requirement for a successful com-
putation leading to results of predictive value. However, there is no established and unique 
approach to select the appropriate method for solving a particular problem. Despite this, 
some general guidelines may be set in order to select the suitable tools.

For example, DFT studies of organic molecules have overwhelmingly been performed 
with the B3LYP exchange-correlation functional [6], which is currently a standard proce-
dure joined to Pople’s basis sets (the family of 6-31G and so on). At the present time, there 
are no huge problems with the theoretical treatment of relatively small organic molecules. 
Conversely, organometallic complexes in general, and clathrochelates in particular, are much 
more challenging, because of the plethora of functionals and basis sets available. Ultimately, 
it is the comparison with an experimental quantity that tells whether a theoretical method 
is satisfactory or not. Typically, the initial manner is to skim the literature to find similar 
systems which have been treated before and to use such methodology. In the case of Co 
clathrochelates, the literature is dominated by the use of the B3LYP exchange-correlation 
functional. We have successfully used the B3LYP functional for geometry optimizations, with 
excellent agreement to experiment [2]; however, all attempts to use other functionals (M06-L, 
TPSS, BP86, PBE, or PBE0) yielded unreasonable geometries [7]. Regarding the selection of 
the basis set, the LANL2DZ with effective core potentials for heavy atoms predicts well the 
geometry of Co clathrochelates; on the other hand, the use of a more complete and more 
expensive all-electron basis set cc-pVTZ for Co and cc-pVDZ for all other atoms did not 
improve significantly the results [7].

Regarding geometry optimization convergence, it is reasonable to be generous on the 
allowed iteration steps; for instance, we have always employed 100 iterations for these kind 
of problems. Another frequent issue is SCF convergence. We recommend the use of Pulay’s 
direct inversion in the iterative subspace (DIIS) and the damping of the Fock matrix, with 
the purpose to accelerate and stabilize convergence; alternatively to DIIS, the second-order 
SCF orbital optimization (SOSCF) method may be used as well. Finally, the computation of 
SCF may be performed directly or not. This has an impact mostly on the calculation time, 
and the choice depends on the hardware available for work. In the case of direct SCF, the 
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integrals are calculated each time whenever necessary; on the other hand, if direct SCF is not 
chosen, integrals are calculated only once and then stored in memory. For computers that 
have mechanical-based hard disks, it is advisable to use direct SCF, because the calculation 
of integrals by the processor is generally faster than their search in memory. The time spent 
for the calculation of clathrochelates may be high, of course depending on the functional, the 
basis set, and the substituents of the molecule. As an illustrative example, by running a paral-
lelized version of GAMESS [8] on 29 processors, it took 1 week for a complete optimization 
and Hessian computation of complex CoBd3(B―nC4H9)2 which possesses n-butyl and phenyl 
substituents in the apical and ribbed positions, respectively, using the B3LYP functional and 
the LANL2DZ basis set with effective core potentials for Co.

3. Computation of typical spectroscopic properties of a model 
clathrochelate

A major goal of theoretical chemistry is to be able to predict measurable properties and 
therefore to provide insights into the behavior of molecular systems. Two of the most ubiq-
uitous techniques available are infrared (IR) and ultraviolet-visible (UV-Vis) spectroscopies, 
which provide information on the normal modes of vibration (IR) and electronic excitations 
(UV-Vis). At the end of any geometry optimization, a Hessian calculation should be per-
formed, giving access to the normal modes of the molecule; indeed, all calculated frequencies 
must be positive in order to verify that the identified stationary point is a true minimum. 
A typical example of Hessian calculation for the Co(Cl2Gm)3(B―PhF5)2 molecule (where 
Gm and PhF5 stand for the glyoximate and the pentafluorophenyl moieties, respectively) is 
depicted in Figure 2a, along with a comparison to the experimental IR spectrum. The calcula-
tion was performed with the B3LYP exchange-correlation functional and using the LANL2DZ 
basis set for all atoms, including effective core potentials for Co and Cl. Note the excellent 
agreement between experiment and calculation, showing that most signals observed in the 
experimental spectrum are not pure normal modes but a complex convolution of multiple 
vibrations that are close in frequency. In particular, the absorption band highlighted with 
a (1) is essentially composed by a single normal mode. However, such mode is not located 
in a small part of the molecule but comprises the whole molecular structure, with coupled 
vibrations from the ligand cage, and the pentafluorophenyl rings, as depicted on the right 
side of Figure 2b.

Another important property of these molecules that may be described is their optical absorp-
tion. In order to calculate the UV-Vis characteristics, time-dependent density functional theory 
(TDDFT) formalism has to be employed. The use of the B3LYP functional for the calculation of 
these kind of spectra has been shown to be an adequate choice [3].

However, the basis function should be chosen to be more complete than for geometry opti-
mizations and Hessian calculations. In particular, it is desirable to include diffuse functions 
in the basis set, because the optical excitations may occur to nonbonding, unfilled orbitals 
which develop farther away from the molecule. Previous predictions of optical spectros-
copy of clathrochelates have employed a mixture of basis sets, such as the triple-ζ with a 
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polarization function (TZVP) for Co and double-ζ split valence for all other atoms [3]. For our 
calculations (Figure 2c and d), we have employed the augmented version of the correlation-
consistent polarized valence triple-ζ (aug-cc-pVTZ) basis set for Co and the correlation-con-
sistent polarized valence double-ζ (cc-pVDZ) for all other atoms, and we have computed the 
first 40 excited states. It should be noted that, for the calculation of UV-Vis spectra of usual 
small organic molecules, it is often sufficient to calculate only four excited states [6], in open 
contrast to organometallic compounds, where a large number has to be computed in order 
to adequately reproduce the spectrum. As for IR spectra, these complex molecules exhibit 
complex UV-Vis spectra, and the assignment of the different contributions is not straight-
forward because each transition is composed of several contributions from different orbitals. 
In particular, two transitions occurring in the visible region are highlighted with numbers 
(2) and (3) in Figure 2c. The main orbitals involved in such transition are depicted on the 
right side of Figure 2d. Certainly, these transitions cannot be classified simply into metal-to-
ligand charge transfer (MLCT) or ligand-to-metal charge transfer (LMCT), because all orbitals 
involved in the transition have important contributions from the d orbitals of cobalt and from 
the glyoxime moieties of the ligand.

Figure 2. (a) Comparison of the experimental IR spectrum (blue lines) of the Co(Cl2Gm)3(B―PhF5)2 molecule and the 
hessian calculation (red sticks); (b) illustration of the normal mode highlighted with number (1) in item (a), functional 
B3LYP, and basis set LANL2DZ with ECP for Co and Cl; (c) experimental UV-Vis spectrum superimposed to the 
theoretical spectrum calculated by TDDFT. Functional B3LYP and aug-cc-pVTZ basis set for Co and cc-pVDZ for all 
other atoms.
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4. Computation of electrochemical properties

4.1. Estimation of redox potentials with DFT

DFT calculations can also be used to analyze the redox properties of molecules. Electron 
transfer reactions may take place between chemical species dissolved in solution or between 
a molecule in solution and a solid-state electrode or photoelectrode. In particular, electro-
chemistry is the science that studies matter transformation upon the passage of electric cur-
rent. Species that gain electrons decrease their oxidation state (and are said to be reduced), 
while species providing electrons to others increase their oxidation sate (and are said to 
be oxidized). These oxidation-reduction reactions, which necessarily involve the exchange 
of electrons but may involve chemical steps as well, are referred with the shorthand term 
“redox.” Certain molecules may exist in two (or more) oxidation states, and these pairs are 
known as redox couples, represented as O|R, where O stands for the oxidized form, and R 
represents the reduced form. The redox reaction O + e− = R occurs at a certain electrode poten-
tial (E°), which is mainly observable in electrochemistry. The redox potential is important 
because the more positive it is, the more oxidizing is O; likewise, the more negative it is, the 
more reducing is R. Essentially, the redox potential is a thermodynamic quantity that allows 
to predict the feasibility of redox reactions. Absolute redox potentials for molecules are not 
measurable, and therefore a proper reference electrode is employed. Arbitrarily, the standard 
hydrogen electrode (SHE) has been adopted as zero in the potential scale [9]. This relative 
scale is quantitatively related to the absolute energy scale used in physics, i.e., the electron in 
a vacuum [10].

DFT may provide an estimation of the absolute redox potential of molecules, following two 
main methodologies. The first method consists in the calculation of a Born-Haber process, by 
optimizing all relevant species both in gas phase and in the solvent. This procedure is rela-
tively lengthy and therefore shall not receive further attention in this chapter, but the interested 
reader is referred to the specialized literature [11–14]. Conversely, the full calculation of the 
Born-Haber process may be bypassed, and the optimization and Hessian calculation of the 
relevant redox species, i.e., O and R, in the desired solvent may be undertaken directly [7, 15]. 
The calculation of the absolute redox potential of the species is found according to Eq. (1):

    E   °   abs   = −  (  ΔG   °   abs   / nF)   (1)

where F and n represent Faraday’s constant and the number of exchanged electrons, respec-
tively, and   ΔG  

abs
  0    is the difference in free energy of the reaction O + e− = R. The value of   ΔG  

abs
  0    con-

tains (i) the total electronic energy of the molecule (i.e., electron-electron and nucleus-nucleus 
repulsions plus electron-nucleus attraction), (ii) zero-point energy (ZPE) corrections, (iii) vibra-
tional corrections to the free energy, and (iv) thermal corrections. We note that the electronic 
energy of the molecule is obtained by a single-point calculation, but all other thermodynamic 
corrections are only accessible after a Hessian calculation.

This calculated absolute potential may be referred to an estimated value of the absolute 
potential of the SHE. Unfortunately, the literature is plenty of different values, for example, 
4.2 ± 0.4 V [16] to 4.29 ± 0.02 V [17], 4.05 V [18], and 4.44 V [19], which makes it difficult to 
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assess precision in the calculation, given that all authors provide arguments for their abso-
lute values of the SHE. In order to overcome this drawback, the choice of a reference redox 
reaction is a safer option. The most commonly used reference reaction is that of the Fc1+|Fc 
(i.e., ferrocenium|ferrocene) redox couple. When this procedure is used, the optimization and 
Hessian calculation of both Fc1+ and Fc at exactly the same theoretical level than the O|R cou-
ple under study are performed (Figure 3a). Then, the absolute potential of Fc1+|Fc is obtained 
using Eq. (1). Obviously, this is a sort of “redox calibration” of the computational method. The 
theoretical estimation of the redox potential of the O|R couple vs. the Fc1+|Fc couple is just the 
difference between the absolute potentials these two redox pairs.

Current DFT methods provide estimates of redox potentials with an error of at most 200 mV 
[11, 12, 20], which is nowadays tacitly considered as the limit for a reasonable estimation. 
There are several causes for such discrepancies with experimental observations, such as the 
fact that (i) the exact functional linking the electron density and the electronic energy is not 
known, (ii) the use of an incomplete basis set, (iii) the consideration of only one conforma-
tion of the molecule for the computation, (iv) the treatment of the solvent as an electrostatic 
continuum, and (v) the harmonic oscillator approximation to estimate thermodynamic quan-
tities. Despite these sources of errors, DFT is powerful in predicting reactivity trends while 
giving reasonable estimations for observable properties.

Figure 3. (a) Optimized structures for ferrocene redox chemistry, which is the reference reaction allowing the calculation 
of redox potentials; (b) optimized geometries of the Co(Cl2Gm)3(B―PhF5)2 in Co(II) and Co(I) oxidation states. Geometries 
were optimized with the B3LYP functional and the LANL2DZ basis set, with effective core potentials for Co and Cl in 
dimethylformamide (DMF). The number in the upper left represents the spin multiplicity.
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The comparison between theoretical and experimental redox potentials has another subtlety. 
Indeed, when an aqueous reference electrode, such as the saturated calomel electrode (SCE) or 
the silver-silver chloride (Ag|AgCl|Cl−), is used in a nonaqueous environment, there is an inher-
ent liquid junction potential (LJP) [21] which depends on electrolyte composition and biases the 
measurement. Hence, in order to compare theoretical results with experimental values, the first 
issue to pay attention to is that an aqueous reference had not been used to make the measurement 
in a nonaqueous environment. If an aqueous reference has been used in a nonaqueous solvent 
the Co atom moves to one side, it is still possible to make the comparison with theory, by finding 
a literature value for the Fc1+|Fc couple and converting the potential scale of the aqueous refer-
ence (which was used in a nonaqueous solvent) to the Fc1+|Fc scale. Literature values for Fc1+|Fc 
have been reported as +0.50 V vs. Ag|AgCl|Cl− [22] or + 0.46 V vs. SCE [2], comprising the LJP.

Finally, it is worth to stress that the redox potential and the energy of molecular orbitals 
are different things and cannot be equated. Certainly, when representing electron transfer 
reactions, the educational literature often depicts electrons as being transferred from fron-
tier orbitals [23]. However, such representations might induce to think that the energy of 
orbitals is somehow linked to redox potentials. As a matter of fact, molecular orbitals are 
mathematical functions that describe the electron motion in a molecule and are certainly not 
observable [24], in contrast to the redox potential which is an observable thermodynamic 
quantity. Despite this, the energetic trend in orbital energies may be commonly paralleled to 
the oxidizing/reducing power of molecules. For example, with all other things being equal, 
the more electronegative the substituents in the ligand of a complex, the lower the energy 
of the molecular orbitals. Hence, the complex will be more likely to gain an electron in the 
lowest unoccupied molecular orbital (LUMO) than to give it from the highest occupied 
molecular orbital (HOMO); this is equivalent to say that the complex shall be a better oxidant 
and its redox potential should be more positive. This kind of trends, linking the energy of 
molecular orbitals and redox potentials, has been presented several times in the literature 
[25, 26]. Though we have shown that the CoIII|CoII couple in a series of clathrochelates com-
plies with it, the CoII|CoI redox pair does not follow the orbital trends. Further details may 
be found in Ref. [2].

4.2. Mechanistic investigation of the electrocatalytic hydrogen evolution reaction 
and ligand noninnocence

The origin of the catalytic activity of metal-containing clathrochelates is currently under 
debate [1]. It is likely that the role of the ligand is essential to electrocatalysis, since it may 
stabilize low oxidation states in the metal to enable electron transfer or may participate in 
protonation reactions that may help bring protons together and evolve H2. That is why the 
term “ligand non-innocence” has been coined to refer to organometallic complexes in which 
the organic ligand has a major participation in its redox behavior to account for high reactivity 
involving small species, such as CO2 or H+ [27–29].

For example, upon the one-electron reduction process depicted in Figure 3b, we have predicted 
interesting structural modifications within the molecule. The asymmetry inside the Co―N cage 
is calculated to be reinforced, with four Co―N distances being at around 1.88 Å and the two 
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other N lying farther apart at 2.45 Å; consequently, the Co atom moves to one side of the cage, 
thus decoordinating from two N atoms and resulting in a square planar geometry for the reduced 
complex; furthermore, there is a slight shortening of N―C(sp2) bonds from 1.30 to 1.28 Å.

Ligand non-innocence in the case of clathrochelates may be further investigated because their 
chemical structure invites to think on multiple sites as putative candidates for protonation. 
Previous theoretical studies have addressed only protonation on the iminic C(sp2) [30], but we 
have extended such approach by further exploring other protonation sites. Indeed, the basic 
character of N and the wide evidence of metal hydrides as intermediates in the HER have led 
us to explore such alternative protonation sites.

Until now, the most complete theoretical study of hydrogen evolution involving clathroche-
lates is found in Ref. [7]. The work was performed on a clathrochelate having chlorine and 
methyl moieties as the ribbed and apical substituents, respectively. Henceforward, this epi-
graph presents those results in a concise manner.

Optimized structures for three protonation possibilities are illustrated in Figure 4; the inves-
tigated protonation sites are highlighted with a red square (C), blue circle (N), and an orange 
triangle (Co). The insets on the right side of Figure 4 show a magnification of the coordination 
position of H+. Protonation of the iminic C(sp2) brings a hybridization change to (sp3) with 
the concomitant change in the geometry of such C from planar to tetrahedral. Protonation of 
N has a similar effect on the local geometry of the ligand, which is modified from planar to 
tetrahedral as well. Direct protonation of Co might seem unlikely at the first sight because 
the metal appears buried inside the organic cage. However, the movement of Co inside the 

Figure 4. Magnification of the organic cage surrounding the Co-containing hexachloride clathrochelate Co(Cl2Gm)3(B―
CH3)2 and the different protonation sites available. Geometries were optimized with the B3LYP functional and the 
LANL2DZ basis set, with effective core potentials for Co and Cl in dimethylformamide (DMF).
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ligand cage upon the one-electron reductive activation and the associated decoordination 
from two N makes the metal accessible for protonation as well. The calculated X-H distances 
(where X stands for Co, N, or Csp2) for these three species are 1.09 Å for Csp2-H, 1.45 Å for 
Co―H, and 1.03 Å for N―H. Such bond distances show that proton binding to N or C results 
in the formation of a strong bond, in contrast to the binding to the metal center, where a much 
more elongated Co(III)―H bond is created, indicating a weaker binding and therefore a more 
labile H+.

An energetic analysis of this initial part of the mechanism is illustrated in Figure 5a. Indeed, 
there is an energetic gain upon the reductive activation of the [2CoL]0 to yield the catalytically 
active [CoL]1− intermediate. Then, protonation of N or C(sp2) is likely, but the most favored 
protonation site was predicted to be the Co central ion.

We have also addressed the possibility of double protonation in two adjacent N; in a C(sp2) 
and a N; in two adjacent C(sp2); in Co and N; and in Co, for both high-spin and low-spin 
species. However, most optimized structures were largely distorted due to heavy structural 
changes caused by the sp2 to sp3 hybridization changes that should occur after protonation. As 
a consequence, the calculated energy of doubly protonated intermediates was prohibitively 
high, and these species are unlikely to be formed. The most stable doubly protonated species 
was the one with protons coordinated in two adjacent N atoms. However, it seems unlikely 
that the mechanism of hydrogen evolution involved initially a mono-protonated species that 
is a cobalt hydride and that the subsequent species in the mechanism is a double-protonated 
intermediate with protons in adjacent N atoms.

The Co(III)―H intermediate is interesting and deserved closer attention. In particular, such 
species may undergo a further one-electron reduction to yield Co(II)―H, which may also 
have a role in the mechanism. Certainly, we have predicted that such reduction brings an 
important energetic gain, but the search for doubly protonated intermediates and the search 
for a transition state to explain hydrogen evolution were unsuccessful. We were able to locate 
a transition state of the η2―Co(III)―(HH) type, but again this was far too energetic to be a 
plausible candidate to explain hydrogen evolution (Figure 6b).

Figure 5. (a) Energetic diagram of the first electron transfer to produce the catalytically active [CoI]1− species and its 
further protonation at different sites of the ligand, as depicted in figure X; (b) representation of the second part of 
the mechanism, showing the unfeasibility of hydrogen evolution through a transition state of high energy and the 
alternative possibility of concerted proton-electron transfer.
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Considering that the hydrogen production step is of key importance, we have devoted wide 
efforts to explain how it happens. When the calculations on a mechanism yield high energy 
intermediates, it is possible that a concerted electron-proton transfer process occurred, in order 
to avoid energy-demanding paths [15, 20]. Thus, potential energy surface (PES) scans were 
performed with the Co(II)―(HH) and Co(III)―HH) species at different (fixed) Co―H dis-
tances, while the rest of the structure was allowed to optimize freely. These results are summa-
rized in Figure 6a and b. Interestingly, in the case of Co(II)―(HH), the increase in the Co―H 
bond distance was linked to a decrease in the H―H distance, approaching the equilibrium 
bond distance for H2, which is 0.74 Å. At the same time, the energy of the system gradually 
decreased to approach the final energy level of the reaction (observe the blue scale on the right 
side of Figure 6a), which is depicted in Figure 5b as [2CoL]0 + H2. These calculations show a 
nice picture of two protons that come together in the nearby of Co(II) and bind to one another 
to form H2 while going away from the metal, with the concomitant decrease in total energy. 
Conversely, the same calculations on the Co(III) species gave the same bond-breaking (Co―H) 
bond-formation (H―H) sequence as just described for Co(II). However, at the same Co―H 
distance, the H―H separation was consistently higher in the case of Co(III), thus indicating 
that Co(III) was less effective than Co(II) to promote the reduction and binding of two protons. 
Moreover, the total energy of the system for the Co(III) ion did not decrease smoothly as in 
the case of Co(II) (Figure 6b). Instead, it was excessively high, and therefore such intermediate 
was definitively ruled out as a possibility to explain the catalytic activity of this clathrochelate.

5. Conclusions and perspectives

The clathrochelate family has received attention due to its multiple applications. In this chap-
ter, we have illustrated the use of density functional theory to describe several properties of 

Figure 6. Main results from potential energy surface scans showing the relation between the Co―(HH) and the H―H 
bond distance along with the relative energy involved during the separation of H2 from the complex, (a) Co(II) and (b) 
Co(III). These calculations were performed in the complex Co(Cl2Gm)3(B―CH3)2 at the B3LYP level and the LANL2DZ 
basis set, with effective core potentials for Co and Cl. The energy was further refined with the more complete all-electron 
basis set cc-pVTZ for Co and cc-pVDZ for all other atoms in dimethylformamide (DMF). The zero in the energy scale is 
the [2CoL]0 species.
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have a role in the mechanism. Certainly, we have predicted that such reduction brings an 
important energetic gain, but the search for doubly protonated intermediates and the search 
for a transition state to explain hydrogen evolution were unsuccessful. We were able to locate 
a transition state of the η2―Co(III)―(HH) type, but again this was far too energetic to be a 
plausible candidate to explain hydrogen evolution (Figure 6b).
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clathrochelates. We began the presentation by providing tips on the choice of the calcula-
tion methodology to address these complex molecules. Then, the spectroscopic properties 
(IR and UV-Vis) have been reproduced. The possibility to accurately predict spectroscopic 
properties gives an adequate degree of confidence on the theoretical procedures employed. 
Subsequently, we have illustrated the procedures to predict the redox potentials of molecules, 
and we have highlighted some structural changes underwent during the electron transfer 
process. This chapter has introduced the concept of “ligand non-innocence,” which is relevant 
in complex electrocatalytic reactions involving complexes of transition metals, where the 
ligand has a major role to play, not only to stabilize unusually low oxidation states but also to 
act cooperatively to bind small species, such as H+. Finally, a methodology has been presented 
to address the complex mechanism of hydrogen evolution. Certainly, the hydrogen produc-
tion step was particularly intriguing for the Co(Cl2Gm)3(B―CH3)2 complex, given that neither 
doubly protonated intermediates nor plausible transition states could be found. Therefore, 
a concerted proton-electron transfer step was envisaged, with the Co(II)―(HH) hydride 
intermediate playing the most relevant role. The calculation of potential energy surface scans 
fixing the Co(II)―(HH) bond distance showed that the simultaneous elongation of Co―H 
bond leads to the decrease in H―H distance and the smooth decrease in energy, which nicely 
explained hydrogen evolution from this complex in the homogeneous phase. Overall, results 
reported in this chapter could contribute to stimulate theoretical and experimentalist chem-
ists to explore the influence of different substituents in the organic cage on the HER activity, 
thereby providing new insights to researchers that try to develop and optimize alternative 
electrocatalysts for the HER. Clearly, the formal theoretical understanding of clathrochelate’s 
electrochemistry is still in its early stages, and the missing piece in this scientific challenge 
is to apply the theoretical methodology outlined in this chapter to other clathrochelates in 
order to justify the distinct reactivity observed experimentally among different complexes. 
Moreover, the approach proposed here should provide guidelines to synthetic chemists in 
the search for more active compounds. Thus, we foresee that the future theoretical research 
shall be performed in such direction. This is a stimulating moment to conduct research aiming 
to find novel and efficient catalysts for hydrogen production, and transition metal clathro-
chelates are perhaps the family of complexes that has received the least attention from the 
chemical community.
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Abstract

With the advent of increased computer capacities, improved computational resources,
and easier access to large-scale computer facilities, the use of density functional theory
methods has become nowadays a frequently used and highly successful approach for the
research of solid-state materials. However, the study of solid materials containing heavy
elements as lanthanide and actinide elements is very complex due to the large size of these
atoms and the requirement of including relativistic effects. These features impose the
availability of large computational resources and the use of high quality relativistic
pseudopotentials for the description of the electrons localized in the inner shells of these
atoms. The important case of the description of uranyl-containing materials and their
properties has been faced recently. The study of these materials is very important in the
energetic and environmental disciplines. Uranyl-containing materials are fundamental
components of the paragenetic sequence of secondary phases that results from the
weathering of uraninite ore deposits and are also prominent phases appearing from the
alteration of the spent nuclear fuel. The development of a new norm-conserving relativis-
tic pseudopotential for uranium, the use of energy density functionals specific for solids,
and the inclusion of empirical dispersion corrections for describing the long-range inter-
actions present in the structures of these materials have allowed the study of the proper-
ties of these materials with an unprecedented accuracy level. This feature is very relevant
because these methods provide a safe, accurate, and cheap manner of obtaining these
properties for uranium-containing materials which are highly radiotoxic, and their exper-
imental studies demand a careful handling of the samples used. In this work, the results of
recent applications of theoretical solid state methods based on density functional theory
using plane waves and pseudopotentials to the determination of the thermodynamic
properties and stability of uranyl-containing materials are reviewed. The knowledge of
these thermodynamic properties is indispensable to model the dynamical behavior of
nuclear materials under diverse geochemical conditions. The theoretical methods provide
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a profound understanding of the thermodynamic stability of these mineral phases and
represent a powerful predictive tool to determine their thermodynamic properties.

Keywords: uranyl-containing minerals, spent nuclear fuel, density functional theory,
thermodynamic stability, heat capacities, entropies, enthalpies, Gibbs free energies,
thermodynamic properties of formation, Gibbs free energies of reaction

1. Introduction

The basis of thermodynamic theory [1] is known since the end of the nineteenth century, and
the fundamental developments carried out in the twentieth century have established this
theory as a self-contained system of knowledge. The thermodynamic calculations are mainly
used for the description of the changes of state associated with the transfer of matter and
energy and are an indispensable part of technical and scientific investigations in various fields
such as chemistry, metallurgy, chemical engineering, and the energy and environmental tech-
nologies. The reliability of the results of thermochemical calculations depends, in the first
instance, on the accuracy of the thermochemical data used and the inclusion of the most
important species involved, which are often quite numerous if one desires to obtain a fair
description of real systems.

There are different sources of data available for establishing thermodynamic information such
as calorimetric and solubility measurements [2, 3], phase equilibrium data [4], experimental
data on solid solutions [5], and heat capacities and entropies estimated from lattice vibrational
models [6–8]. Reasonably complete sets of basic data needed for the calculation of thermo-
chemical functions are available only for a relatively small number of substances [9], and
frequently these sets must be completed with empirical data of lower accuracy obtained by
analyzing values from different sources as well as by performing estimations before they can
be used for actual calculations.

The data listed in the thermochemical tables generally form databases [10–18, 4]. An internally
consistent database is one which permits the computation of phase equilibrium relations as
established by experimental studies, and it is at the same time compatible with calorimetric
and other measurements of thermochemical properties of the phases involved. The generation
of such databases is very complex due to the large uncertainties associated with phase equilib-
rium studies at high temperature and pressure and because many experiments may be irre-
versible. The CALPHAD method (CALculation of PHAse Diagrams) [19, 20] may be used in
the derivation and assessment of this kind of databases [21].

These databases can be used to carry out thermodynamic multi-component, multi-phase,
multi-reaction equilibrium calculations on systems made up of any of the substances present
in the database. These calculations are best performed by adopting the method of minimiza-
tion of the total Gibbs free energy of the closed system [22–28]. A detailed description of the
principles and techniques used in the computation of equilibrium assemblages of a closed
system can be found in the work of Smith and Missen [24]. Thus, these databases are the basis
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for the software packages for the calculation of equilibria in multi-component systems [12, 13,
18, 19, 22, 23, 29–32]. Examples of successful applications of thermodynamic techniques to the
computation of equilibrium phase assemblages in geological and planetary systems have been
reported [33–36].

In the field of nuclear technology, the thermodynamic information is indispensable in order to
predict the chemical behavior and dynamics of nuclear materials under diverse environmental
conditions. The knowledge of precise thermodynamic data is fundamental for the develop-
ment of geochemical models for nuclear fuel degradation, to evaluate the origin and evolution
of uranium ore bodies, in developing programs for the solution mining of uranium deposits or
mine dumps, in the study of spent nuclear fuel (SNF) radioactive waste and in the containment
of such waste, and may also be of importance in reactions within breeder reactors [37–41].

The behavior of a deep geologic repository (DGR) of high level radioactive waste (HLWR) will
depend mainly on the interaction between the SNF and their surroundings. The hydration and
corrosion of the SNF under oxidizing conditions will result in the dissolution of the uranium
dioxide composing the SNF matrix and the formation of uranyl secondary mineral phases
[42–54]. Therefore, the formation and stability of uranyl minerals will determine the release of
U(VI) and other actinide elements from the HLWR container and subsequently from the
repository to the biosphere [55–70].

The stabilities and dissolution rates of uranyl minerals are functions of the solution composi-
tion, temperature, and local conditions (mainly pH and electrochemical potential), and their
prediction requires the knowledge of the Gibbs free energy, enthalpy, and entropy thermody-
namic functions of formation for each phase of interest and their variation with temperature.
The simulation of the release of uranium from DGRs under oxidizing conditions and the
mobility of uranium in the environment can be only performed if the thermodynamic proper-
ties of the secondary uranyl minerals that may form in the DGR are available. Consequently,
the knowledge of the thermodynamic parameters is crucial for predicting DGR performance
[71–73]. However, reliable temperature-dependent thermodynamic data are completely
lacking, except for the simplest uranyl-containing materials. Therefore, the development of a
complete thermodynamic database for these minerals is mandatory.

The rapid development of the nuclear technology strongly encouraged the research on the
field of thermodynamics of nuclear materials and the development of nuclear thermodynamic
databases [74, 75]. The great significance of the thermodynamic information of materials
containing uranium and related elements in the assessment of the safety of DGRs is reflected
by the large number of recent experimental works leading to large reviews and updates of
thermodynamic properties of materials [72–77]. Among these studies, we may remark the
recent experimental measurements by means of solubility and calorimetry techniques of the
thermodynamic properties of uranyl peroxide hydrates [51–54], uranyl carbonate minerals
[78], uranyl phosphate and orthophosphate minerals [79], and uranyl silicates [71, 80–84].

Despite of the fast progress in the generation of the nuclear thermodynamic database, there are
many uranium-containing materials for which the corresponding data are unreliable due to
the large experimental uncertainties [38]. A large amount of effort has been dedicated to the
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assignment and correction of these uncertainties by means of the implementation of new
statistical methods for hypothesis testing and the improvement of the techniques used for
measuring the thermodynamic properties of these systems [73]. The need to make available a
comprehensive, internationally recognized and quality assured chemical thermodynamic
database that meets the modeling requirements for the safety assessment of radioactive waste
disposal systems prompted the Radioactive Waste Management Committee (RWMC) of the
Organization for Economic Co-operation and Development (OECD) Nuclear Energy Agency
(NEA) to launch the Thermochemical Database Project (NEA TDB). The RWMC assigned a
high priority to the critical review of relevant chemical thermodynamic data of inorganic
species, actinide compounds, and fission products [72, 73]. Besides, the range of conditions of
temperature and pressure for which the thermodynamic parameters are available for most
nuclear materials is rather limited.

While the knowledge of the temperature dependence of these properties for anhydrous ura-
nium oxides is very complete [73–75], the corresponding data for the secondary phases which
arise from alteration of SNF under final DGR conditions are surprisingly scarce. For these
secondary phases, the thermodynamic parameters are known only for the standard state
(298.15 K and 1 bar). The lack of temperature-dependent information for these phases rules
out the possibility of performing reliable thermodynamic modeling studies for the perfor-
mance assessment of DGRs for SNF. Because the corresponding information is available for
anhydrous species, thermodynamic computations have been performed for the uranium-
oxygen and sodium-uranium-oxygen system [85–95]. A detailed analysis of previous studies
[41, 96–105] suggests that first principles methodology is an excellent complement to experi-
mental methodology for determining the thermodynamic functions of these materials.

In this work, the computation of the thermodynamic properties of a large set of uranyl-
containing materials is reviewed [99–105]. This set includes the uranyl peroxide studtite [(UO2)
O2�4H2O] and metastudtite [(UO2)O2�2H2O], the uranyl hydroxide dehydrated schoepite
[UO2(OH)2], the uranyl oxyhydroxide schoepite [(UO2)8O2(OH)12�12H2O], metaschoepite
[(UO2)8O2(OH)12�10H2O] and becquerelite [Ca(UO2)6O4(OH)6�8H2O], the uranyl silicate
soddyite [(UO2)2(SiO4)�2H2O], the uranyl carbonate rutherfordine [UO2CO3], and gamma ura-
nium trioxide [γ-UO3]. The first eight materials have been identified to be basic components of
the paragenetic sequence of secondary phases arising from the alteration of uraninite ore
deposits and corrosion of SNF under the final DGR conditions [42–54], and gamma uranium
trioxide is the main oxide of hexavalent uranium [100, 106, 107]. Uranyl peroxides appear in the
earlier stages of this paragenetic sequence [50–54, 108–111] due to the production of hydrogen
peroxide and other oxidants resulting from the radiolysis of water due to the ionizing radiation
of the SNF. The uranyl oxyhydroxides also begin to appear soon from the alteration of uranium
dioxide [42–48]. Studtite, schoepite, metaschoepite, and becquerelite phases have been observed
as alteration products of spent fuel in cooling basins at the Hanford Site (Washington) [112–116]
and on Chernobyl “lava” formed during the nuclear accident that occurred in 1986 [117]. The
next mineral phases appearing in this sequence are uranyl silicates and, less frequently, uranyl
phosphates [42–48]. Uranyl carbonates may precipitate where the evaporation is significant, and
the carbon dioxide partial pressure is large [49, 118]. The main ingredients of this paragenetic
sequence were inferred by Frondel already in 1956 [42, 43]. The sequence is still widely accepted
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today [44–48, 118, 119]. However, our knowledge of this sequence is only qualitative, and the
performance assessment of the DGRs for HLRW and many other applications in nuclear tech-
nology require its quantitative specification.

The crystal structures of these materials [100, 102, 105, 120–123] were successfully determined
by means of density functional theory using plane waves and pseudopotentials [124]. A new
norm-conserving relativistic pseudopotential specific for uranium atom was generated from
first principles with this purpose [101, 121]. Then, using these optimized structures, the ther-
modynamic properties of these materials were determined including specific heats, entropies,
enthalpies, and Gibbs free energies [99–105]. The computed thermodynamic properties were
combined with those of the corresponding elements in order to determine the enthalpy and
free energy of formation of these materials and its variation with temperature [102, 104, 105].
The methods used in the computation of these thermodynamic functions are briefly described
in Section 2. Additionally, the calculation of the Gibbs free energies of reaction and associated
reaction constants is also described in this section. The main results obtained are described in
Section 3, including a study of the thermodynamic stability of the secondary phases of SNF
[102, 104, 105]. Finally, the main conclusions are given in Section 4.

2. Methods

2.1. Computational methodology

The generalized gradient approximation (GGA) together with PBE functional [125] supplemented
with Grimme empirical dispersion correction [126] was used to study the uranyl-containing
materials such as studtite, metastudtite, dehydrated schoepite, schoepite, metaschoepite,
becquerelite, soddyite, rutherfordine, and gamma uranium trioxide [99–105, 120–123]. The intro-
duction of dispersion corrections improved significantly the computed structural, vibrational,
mechanic and thermodynamic properties of studtite, metastudtite, dehydrated schoepite,
schoepite, metaschoepite, becquerelite, and soddyite as a consequence of the better description of
the hydrogen bonding present in the crystal structures of thesematerials. However, for the case of
rutherfordine and gamma uranium trioxide phases, the specialized version of PBE functional for
solid materials, PBEsol [127], provided much better results [99, 100, 121]. The improved descrip-
tion of the structure of properties of anhydrous materials using this functional over the one
obtained using PBEwas observed in recent calculations [99, 100, 121] and later confirmed by other
research groups [128, 129]. This justifies the great amount of effort made in developing density
functionals specific for solid materials [130] and emphasizes the need of determining empirical
dispersion parameters specific for these functionals. These functionals are implemented in
CASTEP program [131], a module of the Materials Studio package [132], which was employed to
model the structures of the materials considered. The pseudopotentials used for H, C, O, Si, and
Ca atoms in the unit cells of these minerals were standard norm-conserving pseudopotentials
[133] given in CASTEP code (00PBE-OP type). The norm-conserving relativistic pseudopotential
for U atom was generated from first principles as shown in the previous works [101, 121].
While our uranium atom pseudopotential includes scalar relativistic effects, the corresponding
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dispersion parameters specific for these functionals. These functionals are implemented in
CASTEP program [131], a module of the Materials Studio package [132], which was employed to
model the structures of the materials considered. The pseudopotentials used for H, C, O, Si, and
Ca atoms in the unit cells of these minerals were standard norm-conserving pseudopotentials
[133] given in CASTEP code (00PBE-OP type). The norm-conserving relativistic pseudopotential
for U atom was generated from first principles as shown in the previous works [101, 121].
While our uranium atom pseudopotential includes scalar relativistic effects, the corresponding
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pseudopotentials used for H, C, O, Si, and Ca atoms do not include them. This pseudopotential
has been used extensively in the research of uranyl-containingmaterials [99–105, 120–123].

The atomic positions and cell parameters were optimized using the Broyden-Fletcher--
Goldfarb-Shanno method [124, 134] with a convergence threshold on atomic forces of
0.01 eV/Å. The kinetic energy cut-off and K-point mesh [135] were chosen to ensure good
convergence for computed structures and energies. The structures of the materials considered
in this work were optimized in calculations with augmented complexity by increasing these
parameters. The precise calculation parameters used to determine the final results may be
found in the corresponding articles [99–105, 120–123]. The flow diagram associated to the
theoretical treatment used to study a given crystalline material is shown in Figure 1 [101].
The crystal structure is first optimized starting from an initial atomistic model of the
corresponding unit cell (lattice parameters and atomic positions) employing trial values of the
calculation parameters (kinetic energy cut-off and K-point mesh). The crystal structure is then
updated and the initial values of the kinetic cutoff and K-point density (number of k-points
divided by the k-point separation) are systematically increased. The geometry optimization is
performed again until the variation of the energy is below a given threshold. The variation of
the crystal unit cell is then analyzed, and the structure is reoptimized until this variation is
small enough. Once the convergence in the computed energy and structure is met, the

Figure 1. Flow diagram associated to the theoretical solid state treatment used to study the uranyl-containing materials
considered in this work.
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corresponding X-ray powder pattern is determined [136] and compared with the experimental
one. Only if the comparison is satisfactory, the crystal structure is accepted in order to obtain
the final vibrational, mechanic, thermodynamic, and optic properties of the material under
study. Otherwise, the calculation parameters are made more stringent and the structural
optimization starts again. The convergence of this procedure depends on the proximity of the
initial input used to the final solution. If it does not converge or converges towards a structure
yielding an X-ray powder pattern which does not agree with the experimental one, the proce-
dure should be restarted from a different initial input (atomic positions and cell parameters).

2.2. Thermodynamic properties

The methods employed for the calculation of thermodynamic properties of these materials
were described in the previous papers [99–105]. The phonon spectrum at the different points of
Brillouin zone can be determined by density functional perturbation theory (DFPT) [137–139]
as second-order derivatives of the total energy [137]. Phonon dispersion curves and density of
states were calculated, and from them, several important thermodynamic quantities in the
quasi-harmonic approximation, such as Gibbs free energy, enthalpy, entropy, and specific heat,
were evaluated [140].

2.3. Enthalpy and Gibbs free energy of formation in terms of the elements

The thermodynamic functions of formation at the different temperatures were determined
[102] from the calculated enthalpy and entropy functions of the material being considered,
[HT-H298]

calc and ST
calc, the experimental value of its standard enthalpy of formation, ΔfH

0, and
the experimental enthalpy and entropy functions of the elements forming part of the material.
The enthalpy and entropy functions for the elements were taken from JANAF tables [11], and
the corresponding functions for uranium atom were taken from Barin [12]. The equilibrium
constants for the formation reactions were determined in terms of the corresponding calcu-
lated Gibbs free energies of formation using the well-known relationship [11], Δf G(T) = � R T
Ln Kf.

2.4. Enthalpies and free energies of reaction

The enthalpies and Gibbs free energies of a given reaction at the different temperatures, ΔrH(T)
and ΔrG(T), were determined [103] from the Gibbs free energy of formation and entropy
functions of the materials entering in the reaction, ΔfG

i(T) and Si(T), i = 1,…,Nmat. The specific
values used of these properties for studtite, metastudtite, dehydrated schoepite, schoepite,
metaschoepite, becquerelite, soddyite, rutherfordine, and gamma uranium trioxide were
determined in our previous works [102, 104, 105]. The corresponding data for the remaining
materials, which do not contain the uranyl ion, SiO2(cr), H2O(l), CO2(g), O2(g), and H2(g), were
taken from JANAF tables [11] and the data for H2O2(l) were taken from Barin [12]. The reaction
equilibrium constants were determined in terms of the corresponding Gibbs free energies of
reaction, ΔrG(T) = � R T Ln Kr.
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3. Results and discussion

3.1. Thermodynamic properties

The computed isobaric heats and entropies at 298.15 K for all the uranyl-containing materials
considered in this work [99, 100, 102, 104, 105] are given in Table 1. In this table, the values
obtained for rutherfordine, gamma uranium trioxide, and metaschoepite [99, 100, 104] are
compared with the corresponding experimental values. For the rest of the materials, there are
not experimental values to compare with. As it can be seen, the computed values agree very
well with their experimental counterparts. In fact, the differences between the computed and
experimental values of these and other thermodynamic properties are frequently smaller than
the difference among several different experimental values. From the analysis of the results
obtained, the expected accuracy in the computed-specific heats and entropies of studtite,
metastudtite, dehydrated schoepite, schoepite, and soddyite is better than 3–5%.

The calculated isobaric specific heat, entropy, and Gibbs free energy functions of rutherfordine,
gamma uranium trioxide, and metaschoepite are displayed in Figure 2, where they are com-
pared with the experimental functions of Hemingway [37], Cordfunke andWestrum [143], and
Barin [12], respectively. For rutherfordine, the computed thermodynamic functions are com-
pared with those of Hemingway [37] in the temperature range of 298–700 K, and as it can be
appreciated, the calculated and experimental curves are nearly parallel. The computed value of
Cp at 700 K, near the limit of thermal stability of rutherfordine [37], Cp = 153.3 J K�1 mol�1,
differs from the experimental value at this temperature, 147.6 J � K�1 mol�1, by only 3.9%.

Material Source Cp S

Rutherfordine Calc. [99] 115.02 143.11

Exp. 106.5 [37] (8.0%), 120.1 [141] (�5.1%) 142.70 [37] (0.3%), 139 [142] (3.0%)

γ-UO3 Calc. [100] 77.36 92.96

Exp. 81.67 [143] (�5.3%), 84.72 [37] (�8.7%) 96.11 [143] (�3.3%), 98.6 [144] (�5.7%)

Metaschoepite Calc. [104] 142.01 166.24

Exp. 154.40 [12] (�8.0%) 167.00 [12] (�0.5%)

Studtite Calc. [102] 219.97, 211.17 [41] 232.12

Metastudtite Calc. [102] 163.14, 155.81 [41] 179.27

Dehydrated schoepite Calc. [102] 103.85 125.18

Schoepite Calc. [104] 150.62 168.75

Soddyite Calc. [102] 275.15 315.95

Becquerelite Calc. [105] 148.40 172.34

All the values are given in units of J K�1 mol�1. The percent difference of the theoretical and experimental results is given
in parenthesis for the specific heats and entropies of rutherfordine, gamma uranium trioxide, and metaschoepite.

Table 1. Specific heats and entropies at 298.15 K for the uranyl-containing material studied in this work.
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Similarly, the differences of the computed entropy and Gibbs free energy with respect to
Hemingway’s experimental values at 700 K are only 2.3 and 1.3%, respectively. Our theoretical
calculations allowed to obtain the values of the thermodynamic functions for the low and high
temperature ranges 0–300 and 700–1000 K, which were unknown so far and, consequently,
extended the range in which the thermodynamic functions were known to 0–1000 K.

The computed thermodynamic properties of uranium trioxide are also in excellent agreement
with the experimental data of Cordfunke and Westrum [143] in the full range of temperatures
considered 0–1000 K. The differences in the specific heat, entropy, and Gibbs free energy
functions are 3.9, 1.8, and 0.1% at 100 K and 6.1, 3.6, and 3.5% at 1000 K. The comparison
reveals that the low temperature calculated thermodynamic data are also very accurate. It
must be emphasized that while the experimental isobaric heat capacity function of gamma
uranium trioxide at 1000 K is above the asymptotic Dulong-Petit limit, our computed function
satisfies properly the requirement of being below this limit [100].

Figure 2. Calculated and experimental isobaric specific heat entropies and Gibbs free energies of rutherfordine, gamma
uranium trioxide, and metaschoepite as a function of temperature. The experimental thermodynamic functions of
rutherfordine, uranium trioxide, and metaschoepite are from Hemingway [37], Cordfunke and Westrum [143], and Barin
[12], respectively.
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Finally, the theoretical results for metaschoepite mineral phase agree very well with the
experimental thermodynamic properties reported by Barin [12] even at temperatures of
the order of 800 K, the percent differences of the calculated specific heat, entropy, and
Gibbs energy with respect to the corresponding experimental values being 5.4%, 3.2%,
and 2.0% at 800 K. The present theoretical data have permitted to discriminate between
the experimental thermodynamic functions of metaschoepite reported up to date because
the experimental functions reported by Tasker et al. [145] deviate from those of Barin [12]
and from our theoretical results already at moderate temperatures [104].

The comparisons performed in the previous paragraph have shown that the variation of the
computed thermodynamic functions with temperature is excellent. Hence, it may be
expected that the theoretical functions obtained for studtite, metastudtite, dehydrated scho-
epite, soddyite, schoepite, and becquerelite [102, 104, 105] will also be reliable even at low
and high temperatures. For rutherfordine and metaschoepite [99, 104], the calculated ther-
modynamic properties are recommended instead of the experimental functions because
they cover the full temperature range going from 0 to 1000 K and they should provide a
uniform accuracy at all temperatures. For gamma uranium trioxide, both sets of data are
considered to be equally accurate, but the theoretical specific heat function satisfies prop-
erly the asymptotic conditions [100].

3.2. Enthalpies and free energies of formation in terms of the elements

The enthalpies and free energies of formation in terms of the elements of the considered
mineral phases as a function or temperature were determined [102, 104, 105] from the calcu-
lated thermodynamic data, the experimental or estimated [104] standard enthalpy of forma-
tion, and the thermodynamic functions of the corresponding elements [11–12]. The calculated
Gibbs free energies of formation of rutherfordine, gamma uranium trioxide, and metasch-
oepite [102, 104] are shown in Figure 3 together with the corresponding experimental data
[12, 37, 143].

As it may be observed in Figure 3, and as it occurred with the thermodynamic functions of
the pure substances reported in Section 3.1, the calculated thermodynamic properties of
formation agree with the experimental functions in an excellent manner. For these three
materials, the differences of the calculated and experimental values are lower than 1%
at ambient temperature and the differences remain very small at high temperatures.
The differences become 1.6%, 1.0%, and 2.0% at 700, 900, and 800 K for rutherfordine, γ-
UO3, and metaschoepite, respectively [102, 104]. Since the theoretical solid state treatments
used for studtite, metastudtite, dehydrated schoepite, soddyite, schoepite, and becquerelite
were essentially the same as those used for these three materials, we expect a similar
accuracy level for their calculated thermodynamic parameters of formation. An example of
these calculated parameters for a material in which there are no experimental data to
compare with is the case of the schoepite mineral phase, and the corresponding results are
also shown in Figure 3. The combination of the results for schoepite and metaschoepite
allowed to study the thermodynamics of the dehydration transformation of schoepite into
metaschoepite [104].
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3.3. Enthalpies and free energies of reaction

3.3.1. Reactions of formation in terms of oxides

Let us first consider the following reactions:

Studtite : UO3 crð Þ þ 4 H2O lð Þ þ 1=2O2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ (I)

Metastudtite : UO3 crð Þ þ 2 H2O lð Þ þ 1=2O2 gð Þ ! UO2ð ÞO2 � 2H2O crð Þ (II)

Dehydrated schoepite : UO3 crð Þ þH2O lð Þ ! UO2 OHð Þ2 crð Þ (III)

Becquerelite : UO3 crð Þ þ 1=6 CaO crð Þ þ 11=6H2O lð Þ ! 1=6 Ca UO2ð Þ6O4 OHð Þ6 � 8H2O crð Þ (IV)

Schoepite : UO3 crð Þ þ 9=4 H2O lð Þ ! 1=8 UO2ð Þ8O2 OHð Þ12
� � � 12H2O crð Þ (V)

Metaschoepite : UO3 crð Þ þ 2 H2O lð Þ ! 1=8 UO2ð Þ8O2 OHð Þ12
� � � 10 H2O crð Þ (VI)

Rutherfordine : UO3 crð Þ þ CO2 gð Þ ! UO2CO3 crð Þ (VII)

Soddyite : 2UO3 crð Þ þ SiO2 crð Þ þ 2H2O lð Þ ! UO2ð Þ2 SiO4ð Þ � 2H2O crð Þ (VIII)

Figure 3. Calculated Gibbs free energies of formation of rutherfordine, gamma uranium trioxide, and metaschoepite in
terms of the elements as a function of temperature. The experimental Gibbs free energies of formation of rutherfordine,
uranium trioxide, and metaschoepite are from Hemingway [37], Cordfunke and Westrum [143], and Barin [12], respec-
tively. For schoepite, there are no experimental data to compare with.
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terms of the elements as a function of temperature. The experimental Gibbs free energies of formation of rutherfordine,
uranium trioxide, and metaschoepite are from Hemingway [37], Cordfunke and Westrum [143], and Barin [12], respec-
tively. For schoepite, there are no experimental data to compare with.
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These important reactions represent the formation of the considered uranyl-containing mate-
rials in terms of the corresponding oxides. By combining the calculated thermodynamic prop-
erties of formation of these materials in terms of the elements [102, 104, 105] with those of the
non-uranyl-bearing materials [11] present in reactions (I)–(VIII), we obtained the Gibbs free
energies and associated reaction constants displayed in Figure 4 [103–105].

Figure 4 shows that studtite and metastudtite are unstable with respect to the corresponding
oxides at the full range of temperatures studied, 250–500 K, since the corresponding Gibbs free
energies of reaction are positive everywhere. Therefore, they are metastable phases at normal
conditions. The opposite is true for soddyite mineral phase, which is stable at all the tempera-
tures. However, dehydrated schoepite, becquerelite, schoepite, metaschoepite, and rutherfordine
mineral phases are stable at ambient temperature and become unstable at the temperatures of
462, 491, 383, 352, and 514 K, respectively, because the Gibbs free energy of reaction becomes
positive at these temperatures. The observation of changes of stability for these phases at these
relatively low temperatures was unexpected and highlights the great relevance of the availability
of accurate temperature-dependent thermodynamic functions [102, 103].

3.3.2. Reactions of transformation of uranyl-containing materials into studtite in the presence of high
hydrogen peroxide concentrations

We will now study the thermodynamic properties of the following set of reactions:

UO2 OHð Þ2 crð Þ þ 2 H2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ (IX)

1=2 UO2ð Þ2 SiO4ð Þ � 2H2O crð Þ þ 2 H2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ 1=2 SiO2 crð Þ (X)

UO3 crð Þ þ 3 H2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ 1=2 O2 gð Þ (XI)

UO2CO3 crð Þ þ 3 H2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ CO2 gð Þ þ 1=2O2 gð Þ (XII)

UO2ð ÞO2 � 2H2O crð Þ þH2O2 lð Þ þH2 gð Þ ! UO2ð ÞO2 � 4H2O crð Þ (XIII)

1=6 Ca UO2ð Þ6O4 OHð Þ6 � 8H2O crð Þ þ 13=6 H2O2 lð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ 1=16 CaO crð Þ
þ 7=12 O2 gð Þ

(XIV)

1=8 UO2ð Þ8O2 OHð Þ12
� � � 12H2O crð Þ þ 7=4 H2O2 lð Þ ! UO2ð ÞO2 � 4H2O crð Þ þ 3=8 O2 gð Þ (XV)

1=8 UO2ð Þ8O2 OHð Þ12
� � � 12H2O crð Þ þ 1=8 O2 gð Þ ! 1=8 UO2ð Þ8O2 OHð Þ12

� � � 10 H2O crð Þ
þ 1=4 H2O2 lð Þ

(XVI)

Reactions (IX) to (XV) are the reactions of transformation of dehydrated schoepite, soddyite,
uranium trioxide, rutherfordine, metastudtite, becquerelite, and schoepite into studtite in the
presence of high hydrogen peroxide concentrations (and absence of water) [103–105]. Reaction
(XVI) represents the conversion of schoepite into metaschoepite at these conditions. The com-
puted Gibbs free energies of these reactions are shown in Figure 5. As it can be observed, all
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Figure 4. Calculated Gibbs free energies of formation of studtite, metastudtite, dehydrated schoepite, becquerelite,
schoepite, metaschoepite, rutherfordine, and soddyite in terms of the corresponding oxides as a function of temperature
[103–105].
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These important reactions represent the formation of the considered uranyl-containing mate-
rials in terms of the corresponding oxides. By combining the calculated thermodynamic prop-
erties of formation of these materials in terms of the elements [102, 104, 105] with those of the
non-uranyl-bearing materials [11] present in reactions (I)–(VIII), we obtained the Gibbs free
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Figure 4. Calculated Gibbs free energies of formation of studtite, metastudtite, dehydrated schoepite, becquerelite,
schoepite, metaschoepite, rutherfordine, and soddyite in terms of the corresponding oxides as a function of temperature
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Figure 5. Calculated Gibbs free energies of the reactions of transformation of dehydrated schoepite, soddyite, gamma
uranium trioxide, rutherfordine, metastudtite, becquerelite, and schoepite into studtite and of metaschoepite into
schoepite in the presence of high hydrogen peroxide concentrations as a function of temperature [103–105].
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these phases will transform spontaneously into studtite in the presence of high hydrogen
peroxide concentrations, since the Gibbs free energy of all these reactions are negative for the
full range of temperatures considered, 300–500 K. In the case of metaschoepite, the thermody-
namics of reaction (XVI) shows that it will convert into schoepite mineral phase, but according
to reaction (XV) the last phase also transforms spontaneously into studtite [104].

Forbes et al. [110] investigated experimentally the transformation of dehydrated schoepite and
soddyite into studtite phase in solutions with large concentrations of hydrogen peroxide. They
observed that, at ambient temperature, these materials transform into studtite following the
reaction stoichiometry. The results of our calculations [103] for the conversion of dehydrated
schoepite and soddyite under high hydrogen peroxide concentrations into studtite agree
completely with this experimental study. However, our results extend this study because it
shows that the same will happen not only at 298.15 K but also at temperature as high as 500 K.
The study performed by Kubatko et al. [146] showed that becquerelite mineral phase also
transforms into studtite within 8 hours under high hydrogen peroxide concentrations. The
thermodynamics of the conversion of becquerelite into studtite under variable concentrations
of hydrogen peroxide was studied by our group in a recent paper [105]. The results displayed
in Figure 4 [103–105] show that the same will happen for gamma uranium trioxide,
rutherfordine, metastudtite, schoepite, and metaschoepite phases. In fact, because the stability
of studtite under these conditions is very high, it is likely that the same will happen for most of
the other secondary phases of SNF, as it was suggested in 2017 [101].

Our study of the thermodynamics of these reactions also permits to comprehend why uranyl
peroxide hydrates were the unique phases found in a 2-year corrosion experiment of SNF in
deionized water [109]. These phases should be the unique phases found not only in deionized
water but also in water containing silicate ions, since studtite is much more stable than
soddyite and probably more stable than most other uranyl silicate phases under high hydro-
gen peroxide concentrations.

3.4. Thermodynamic stability

From the thermodynamic data reported in our previous papers [103–105], the order of ther-
modynamic stability of the uranyl-containing materials considered in this work was evaluated
as a function of temperature under three different conditions: (A) under high concentrations of
hydrogen peroxide; (B) in the presence of water and hydrogen peroxide; and (C) in the absence
of hydrogen peroxide. The stability of these phases at these conditions in the range of temper-
atures from 300 to 500 K is displayed in Figures 5A and 6B and C. In these three figures, the
relative stabilities are given with respect to studtite, metastudtite, and gamma uranium triox-
ide, respectively.

Figure 6 provides a very clear idea of the temporal evolution of the paragenetic sequence of
secondary phases appearing as a result of the corrosion of SNF under final DGR conditions.
Uranyl peroxide phase studtite will appear as the prominent phase at the earlier stages of this
paragenetic sequence (see Figure 6A) due to the presence of high hydrogen peroxide concen-
trations caused by the radiolysis of most of the water reaching the surface of SNF. If the
hydrogen peroxide concentration diminishes with time, as expected from the decrease of the
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schoepite in the presence of high hydrogen peroxide concentrations as a function of temperature [103–105].
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soddyite into studtite phase in solutions with large concentrations of hydrogen peroxide. They
observed that, at ambient temperature, these materials transform into studtite following the
reaction stoichiometry. The results of our calculations [103] for the conversion of dehydrated
schoepite and soddyite under high hydrogen peroxide concentrations into studtite agree
completely with this experimental study. However, our results extend this study because it
shows that the same will happen not only at 298.15 K but also at temperature as high as 500 K.
The study performed by Kubatko et al. [146] showed that becquerelite mineral phase also
transforms into studtite within 8 hours under high hydrogen peroxide concentrations. The
thermodynamics of the conversion of becquerelite into studtite under variable concentrations
of hydrogen peroxide was studied by our group in a recent paper [105]. The results displayed
in Figure 4 [103–105] show that the same will happen for gamma uranium trioxide,
rutherfordine, metastudtite, schoepite, and metaschoepite phases. In fact, because the stability
of studtite under these conditions is very high, it is likely that the same will happen for most of
the other secondary phases of SNF, as it was suggested in 2017 [101].

Our study of the thermodynamics of these reactions also permits to comprehend why uranyl
peroxide hydrates were the unique phases found in a 2-year corrosion experiment of SNF in
deionized water [109]. These phases should be the unique phases found not only in deionized
water but also in water containing silicate ions, since studtite is much more stable than
soddyite and probably more stable than most other uranyl silicate phases under high hydro-
gen peroxide concentrations.

3.4. Thermodynamic stability

From the thermodynamic data reported in our previous papers [103–105], the order of ther-
modynamic stability of the uranyl-containing materials considered in this work was evaluated
as a function of temperature under three different conditions: (A) under high concentrations of
hydrogen peroxide; (B) in the presence of water and hydrogen peroxide; and (C) in the absence
of hydrogen peroxide. The stability of these phases at these conditions in the range of temper-
atures from 300 to 500 K is displayed in Figures 5A and 6B and C. In these three figures, the
relative stabilities are given with respect to studtite, metastudtite, and gamma uranium triox-
ide, respectively.

Figure 6 provides a very clear idea of the temporal evolution of the paragenetic sequence of
secondary phases appearing as a result of the corrosion of SNF under final DGR conditions.
Uranyl peroxide phase studtite will appear as the prominent phase at the earlier stages of this
paragenetic sequence (see Figure 6A) due to the presence of high hydrogen peroxide concen-
trations caused by the radiolysis of most of the water reaching the surface of SNF. If the
hydrogen peroxide concentration diminishes with time, as expected from the decrease of the
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intensity of radiation fields over time in a DGR [147], the studtite stability will decrease and the
formation of other secondary phases will occur. In the presence of water and hydrogen
peroxide (see Figure 6B), the uranyl oxyhydroxide phases (schoepite, metaschoepite, and
becquerelite) appear to be the most stable ones. Finally, in the absence of hydrogen peroxide,
soddyite is the most stable phase and rutherfordine is also more stable than becquerelite for
temperatures lower than 492 K (Figure 6C). Thus, at hydrogen peroxide free conditions,
uranyl silicates and carbonates must be the most prominent phases of the SNF.

A full evaluation and understanding of the number and relative amount of the secondary
phases of spent nuclear fuel present at the conditions of a final geological disposal over time
require the realization of complete thermodynamic calculations employing thermochemical
data for a significant number of materials, including the most important secondary phases,
amorphous phases, and aqueous species, at a wide range of temperature and pressure condi-
tions [103]. The determination of these thermodynamic data, the evaluation of their tempera-
ture and pressure dependence, and the realization of the corresponding thermodynamic
computations are one of the main objectives of our current research.

3.5. Solubility constants

The important solubility reactions of schoepite, metaschoepite, rutherfordine, and becquerelite
may be written, respectively, as follows:

1=8 UO2ð Þ8O2 OHð Þ12
� � � 12H2O crð Þ þ 2 Hþ aq

� � ! UO2
2þ aq
� �þ 13=4 H2O lð Þ (XVII)

1=8 UO2ð Þ8O2 OHð Þ12
� � � 10H2O crð Þ þ 2 Hþ aq

� � ! UO2
2þ aq
� �þ 3 H2O lð Þ (XVIII)

Ca UO2ð Þ6O4 OHð Þ6 � 8H2O crð Þ þ 14 Hþ aq
� � ! Ca2þ aq

� �þ 6 UO2
2þ aq
� �þ 16 H2O lð Þ (XIX)

UO2CO3 crð Þ ! UO2
2þ aq
� �þ CO3

2� aq
� �

(XX)

Using the computed values of the Gibbs free energies of formation of schoepite, metaschoepite,
becquerelite, and rutherfordine and theGibbs free energies of formation of aqueous ions,UO2

2+(aq),

Figure 6. Relative thermodynamic stability of a selected set of secondary phases of SNF: (A) under high hydrogen
peroxide concentrations; (B) under the presence of water and hydrogen peroxide; and (C) under the absence of hydrogen
peroxide.
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UO2þ
2 aq
� �

, CO3
2�(aq), Ca2+(aq), and H+(aq), and liquid water at 298.15 K [148], one obtains the

Gibbs free energies and associated reaction constants of solubility given inTable 2.

The calculated solubility products, LogKcalc
sp of metaschoepite, becquerelite, and rutherfordine

5.98, 50.38, and �16.96 respectively, are in very good agreement with the most recent experi-
mental values (LogKexp

sp = 5.6 � 0.2 [149], 40.5 � 1.4 [149], �14.91 � 0.10 [153]). Since there

solubility constant of schoepite has not been determined experimentally, its value was
predicted [104]. Schoepite is shown to be more insoluble than metaschoepite.

4. Conclusions

It has been demonstrated [99–105, 120–123] that Periodic Density Functional Theory methods
are an extremely powerful tool in the research of uranium-containing compounds. The use of
the new relativistic norm-conserving pseudopotential [101, 121] permitted the computation of
the structural properties, X-ray powder patterns, vibrational Raman spectra, and mechanical
and thermodynamic properties of these materials. These methods are free of the problems
involved in the experimental methods associated to the radiotoxicity of these compounds.

The first principles methodology allowed the safe, accurate, and cheap study of secondary
phases of SNF definitive geological disposal conditions. The theoretical methods may be used,
in conjunction with experimental techniques, as an interpretative tool of the experimental data
or as a predictive tool to determine the structural, vibrational, mechanic, and thermodynamic
properties of these substances. One of the most successful applications of this methodology
has been achieved when studying their fundamental thermodynamic properties [99–105].

The development of empirical dispersion corrections [126] and the development of density
functionals specific for solid materials [130] have improved extraordinarily the reliability of the
calculated thermodynamic functions and their temperature dependence. The results were

Material ΔspG (calc.) Log Ksp (calc.) Log Ksp (exp.)

Schoepite �26.11 4.57 —

Metaschoepite �34.14 5.98 5.6 � 0.2 [149], 5.52 � 0.04 [150],
6.23 � 0.14 [151], 5.9 � 0.1 [152],
5.14 � 0.05 [153], 5.72 � 0.19 [154],
5.79 � 0.19 [155]

Becquerelite �287.55 50.38 40.5 � 1.4 [149], 41.2 � 0.52 [156],
43.2 [157], 29 � 1 [158],
41.89 � 0.52 [159], 43.70 � 0.47 [159]

Rutherfordine 96.83 �16.96 �14.91 � 0.10 [153], �13.89 � 0.11 [154],
�13.29 � 0.01 [155]

The values of ΔspG ΔrG are in units of kJ�mol�1.

Table 2. Calculated and experimental Gibbs free energies (ΔspG) and associated reaction constants (Log Ksp) of the
solubility reactions of schoepite, metaschoepite, becquerelite, and rutherfordine.
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intensity of radiation fields over time in a DGR [147], the studtite stability will decrease and the
formation of other secondary phases will occur. In the presence of water and hydrogen
peroxide (see Figure 6B), the uranyl oxyhydroxide phases (schoepite, metaschoepite, and
becquerelite) appear to be the most stable ones. Finally, in the absence of hydrogen peroxide,
soddyite is the most stable phase and rutherfordine is also more stable than becquerelite for
temperatures lower than 492 K (Figure 6C). Thus, at hydrogen peroxide free conditions,
uranyl silicates and carbonates must be the most prominent phases of the SNF.

A full evaluation and understanding of the number and relative amount of the secondary
phases of spent nuclear fuel present at the conditions of a final geological disposal over time
require the realization of complete thermodynamic calculations employing thermochemical
data for a significant number of materials, including the most important secondary phases,
amorphous phases, and aqueous species, at a wide range of temperature and pressure condi-
tions [103]. The determination of these thermodynamic data, the evaluation of their tempera-
ture and pressure dependence, and the realization of the corresponding thermodynamic
computations are one of the main objectives of our current research.

3.5. Solubility constants
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It has been demonstrated [99–105, 120–123] that Periodic Density Functional Theory methods
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the new relativistic norm-conserving pseudopotential [101, 121] permitted the computation of
the structural properties, X-ray powder patterns, vibrational Raman spectra, and mechanical
and thermodynamic properties of these materials. These methods are free of the problems
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phases of SNF definitive geological disposal conditions. The theoretical methods may be used,
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shown to be accurate at very low and high temperatures [99–105]. The description of the
temperature dependence of these functions is very difficult from the experimental point of
view. The theoretical approach has permitted in some cases, as those of the rutherfordine [99]
and metaschoepite [104] mineral phases, to extend the range of temperatures in which the
thermodynamic properties were known and to determine the variation with temperature of
these properties for a large series of important phases in which it was completely unknown:
studtite, metastudtite, dehydrated schoepite, becquerelite, schoepite, and soddyite. Further-
more, the calculated thermodynamic functions satisfy properly the Dulong-Petit asymptotic
constraints.

The comparison of the computed heat capacities and entropies with experimental data was very
satisfactory in those cases in which there ware experimental data to compare with. The calcu-
lated Gibbs free energies of formation of rutherfordine, γ-UO3, and metaschoepite [102, 104]
were in good agreement with experiment at ambient temperature, and the differences with the
corresponding experimental values were only 1.6%, 1.0%, and 2.0% at 700, 900, and 800 K,
respectively. Because the theoretical treatments used for studtite, metastudtite, dehydrated
schoepite, soddyite, schoepite, and becquerelite were essentially the same as those used for
these three materials, we expect a similar accuracy level for their calculated thermodynamic
parameters of formation [102, 104, 105].

As an application of the calculated thermodynamic properties of the considered uranyl
materials, the Gibbs free energies and associated reaction constants of a large number of
reactions involving these materials were determined. The results provided a deep and
clear understanding of the temporal evolution of the paragenetic sequence of secondary
phases appearing at the surface of SNF as a result of its corrosion under final DGR
conditions [103–105]. Additional work is now in progress to determine the thermody-
namic properties of a significant number of additional phases. The use of these thermo-
dynamic parameters in detailed multi-component thermodynamic computations should be
pursued in a near future.
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technologies are based on the capability of control not only the electrical degree of freedom of 
electrons (charge) but also the magnetic nature associated with the intrinsic angular momen-
tum of a given particle so-called spin [1].

For instance, in recent years, the scientific interest on the development of devices in the field 
of spintronic has been intensified. The performance of these devices depends on the spin 
polarization of the current used for information storage; i. e. the development of spintronic 
devices requires an effective way of control charge-based electronic properties by magnetic 
field, as well as of controlling the magnetic properties by electric currents [2–4].

In this context, multiferroic materials are essentially the best candidates due to the intrinsic 
multifunctional features associated with such class of compounds. In a general view, the 
most complete definition for these materials is based on two or more ferroic ordering (i.e. 
ferroelectricity, ferroelasticity, ferromagnetism, ferrotoroidicity) coupled in a single crystalline 
phase. Nowadays, the majority of studies are strictly focused on candidates that combine a 
magnetic order (ferromagnetism, antiferromagnetism) with ferroelectricity and are known as 
magnetoelectric multiferroics. The interest on multiferroic materials was rebirthed by theoreti-
cal reports about the scarcity of such compounds, which are also responsible for explain the 
unusual phenomena and successfully predict new candidates. The main advances addressed 
to such kind of materials are novel devices such as actuators, transducers and storage devices, 
as well as other potential applications including multiple state memories and novel memory 
media [5–9].

In order to clarify the unusual phenomena’s commonly observed in such complex materials, 
as well as to design new candidates with feasible properties, the understanding of magnetism 
in solid state materials plays a fundamental role due to the complexity of the so-called itiner-
ant electrons commonly founded in transition metals.

In this chapter, we propose a theoretical point of view about the magnetism of Ilmenite 
and Corundum-ordered structures—widespread candidates for multiferroic and spintronic 
applications—focusing on the relation between crystalline and electronic structure associated 
with the ground state magnetic ordering attributed to the materials. The following sections 
are dedicated to explain the (i) magnetism in solid state materials, (ii) the magnetic ordering 
of Ilmenite and Corundum-ordered materials, and (iii) theoretical approaches to investigate 
magnetic solid state materials.

1.1. Magnetism in solid state materials: a fundamental tool for new technologies

Magnetic materials are the ideal candidates for the consolidation of spintronic technology 
due to the high degree of freedom of the spin in these materials. Magnetism is one of the 
oldest and most fundamental scientific problems not completely clear until now. Numerous 
theories are proposed to explain the magnetic behavior of materials, as the well-known 
classical formalism where all substances have small magnets that align in certain directions 
depending on the chemical environment. Another theory is domain-based, where a magnetic 
domain represents a region with uniform magnetization, separated from other domains by 
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well-defined boundaries. This theory allowed the observation of the Curie temperature (TC) 
above which the ferromagnetic domains become paramagnetic and the magnetism disap-
pears [10, 11].

In the Quantum Theory of magnetism, the formalism is based on the quantum angular 
momentum of electron, so-called spin, associated with open-shell orbitals commonly founded 
in Transition Metals. In this way, the microscopic origin of the magnetism is the strong elec-
tron-electron interaction that arises from the chemical bond inside the crystalline structure. 
Moreover, the itinerant character associated with the magnetic moments can be localized 
or delocalized that originates dia- or paramagnetism in solid state materials. However, the 
collective magnetism in the perspective of ferromagnetism, antiferromagnetism and ferri-
magnetism are the fundamental keys to overcome the main questions behind the solid state 
magnetic ordering [11] . A schematic overview about this kind of magnetic ordering is given 
in Figure 1.

A ferromagnetic (FM—Figure 1a) material is characterized by a spontaneous magnetization 
even in the absence of a magnetic field. At T = 0 K all magnetic moments are parallel ordered 
due to the stronger exchange interaction between them, differently of paramagnetic species 
that exhibit non-interacting magnetic moments. The conventional magnetic transition metal 
elements with ferromagnetic ordering are Mn, Fe, Ni and Co, where Mn and Fe can also show 
antiferromagnetic order depending upon the crystalline structure. In addition, the thermal 
energy eventually overcomes the exchange the electronic exchange in ferromagnets, produc-
ing a randomizing effect where the saturation magnetization goes to zero due to the disorder 

Figure 1. Different collective arrangements of magnetic moments for ordered magnetic systems: (a) ferromagnets, (b) 
antiferromagnets, (c) ferrimagnets.
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associated with the magnetic moments. This occurs at a particular temperature called the 
Curie temperature (TC) [1].

On the other hand, antiferromagnetic materials (AFM—Figure 1b) show an antiparallel 
arrangement between neighboring magnetic moments. In this case, this ordering can be 
attributed to the existence of negative exchange interaction between the nearest neighbors, as 
well as for some lattices that can be divided in two ferromagnetic sublattices, which exhibit 
an antiferromagnetic ordering between them. This class of compounds is the most common 
magnetic materials in the nature and shows good perspectives regarding the technological 
applications. In this class, both metals (Mn2Au, FexMny and others) and semiconductors/insu-
lators (NiO, Cr2O3, CoO, BiFeO3, MnF2 and others) are founded [12].

Ferrimagnetism represents an intermediate position between FM and AFM orderings. In 
this case, the simplest picture related to solid state materials can be understood by the 
assumption of two magnetic sublattices with antiparallel orientation but with different 
magnitude of each magnetization, resulting that the total magnetization does not van-
ish as for the antiferromagnetic case, as represented in Figure 1c. Magnetite (Fe3O4) is a 
well-known ferrimagnetic material, where the spins on the tetrahedral Fe A-sublattice are 
antiparallel to those on the octahedral Fe B-sublattice, resulting in a net magnetic moment 
for the B-site [11].

Let us now briefly introduce the concept of magnetic interactions, which are responsible 
for the collective ordering presented in Figure 1. In magnetic solid state materials different 
types of magnetic interaction can be observed, being responsible for intriguing properties 
associated to the fact that magnetic moments interact between them, enabling the long range 
magnetic ordering. In a general point of view, two main interactions are founded in solid 
state materials: direct and indirect. In the first case, the electrons of neighboring magnetic 
atoms directly interact through an overlap between atomic wave-functions called “direct 
exchange”. On the other hand, if the overlap of the involved wave functions is only small 
the direct exchange does not represent the dominating mechanism for magnetic properties 
because an additional atom act as a bridge between the magnetic centers, resulting in an 
indirect exchange interaction is responsible for magnetism. The representation of differ-
ent kinds of magnetic interactions commonly founded in magnetic solid state materials is 
depicted in Figure 2.

1.1.1. Direct coupling

This type of coupling occurs when a direct overlap between the orbitals of adjacent magnetic 
sites is observed. The collective arrangement associated with the signal of direct coupling 
depends of the distance between species. At short distance the electrons tend to spend most of 
the time between the atoms giving rise to an antiparallel coupling due to the Pauli Exclusion 
Principle. However, at long distances the overlap between the orbital is reduced, inducing 
a minimization of potential energy for this interaction. This variation was named of Bethe-
Slater curve, due to the elucidation of the behavior by these researchers. The representation of 
this curve is shown in Figure 2a [1, 11].
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1.1.2. Indirect coupling

In this case the electrons located in the partially occupied orbitals are separated from the 
neighboring electrons by an atom or non-magnetic ligand. The coupling force is dependent 
on the amount of energy transferred between the levels and the Coulomb repulsion between 
these particles. Another important feature of this model is that the oxidation numbers for the 
magnetic cations must be equal or have a difference equal to two, so that there is no move-
ment between the levels. This model is present in several materials, such as the MnO shown 
in Figure 2b [1, 11].

1.1.3. Double-exchange indirect coupling

This coupling is quite similar to that previously mentioned; however the main difference lies 
in the movement of the electrons between the orbitals. As the oxidation numbers of the metals 
are different, in this case, the mismatched electrons of the A site can move to the B site, since it 
is possible to find unoccupied levels with the same spin orientation (Figure 2c) [1, 11].

1.1.4. RKKY coupling

The RKKY coupling was discovered by Ruderman, Kittel, Kasuya and Yosida (RKKY) and 
characterized as a long-range interaction. This type of coupling is very common in metals 
where the overlap between orbitals is minimal or zero, causing a polarized spin ion to induce 
a field on the conducting electrons of the neighboring atoms allowing a magnetic influence 
on a second polarized neighbor. As well as direct coupling, the orientation of neighbors is 
dependent on the distance between them as shown in Figure 2d. Another important feature 

Figure 2. Representation of magnetic interactions in solid state materials. (a) Bethe-Slater curve for direct coupling. (b) 
Indirect coupling between Mn3+ mediated by oxygen atoms in MnO. (c) Oxygen-mediated indirect double-exchange 
coupling for cations with distinct orbital occupations. (d) RKKY coupling and its dependence with the distance between 
the magnetic centers.

Magnetic Ordering in Ilmenites and Corundum-Ordered Structures
http://dx.doi.org/10.5772/intechopen.81772

127
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sites is observed. The collective arrangement associated with the signal of direct coupling 
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1.1.2. Indirect coupling

In this case the electrons located in the partially occupied orbitals are separated from the 
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on the amount of energy transferred between the levels and the Coulomb repulsion between 
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1.1.3. Double-exchange indirect coupling

This coupling is quite similar to that previously mentioned; however the main difference lies 
in the movement of the electrons between the orbitals. As the oxidation numbers of the metals 
are different, in this case, the mismatched electrons of the A site can move to the B site, since it 
is possible to find unoccupied levels with the same spin orientation (Figure 2c) [1, 11].

1.1.4. RKKY coupling

The RKKY coupling was discovered by Ruderman, Kittel, Kasuya and Yosida (RKKY) and 
characterized as a long-range interaction. This type of coupling is very common in metals 
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Figure 2. Representation of magnetic interactions in solid state materials. (a) Bethe-Slater curve for direct coupling. (b) 
Indirect coupling between Mn3+ mediated by oxygen atoms in MnO. (c) Oxygen-mediated indirect double-exchange 
coupling for cations with distinct orbital occupations. (d) RKKY coupling and its dependence with the distance between 
the magnetic centers.
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of this class of magnetic couplings is the existence of effects such as Giant Magnetoresistance 
and Spin Tunneling that can be explained by the use of RKKY Hamiltonian [1, 11, 13–15].

1.1.5. GKA rules

The Goodenough-Kanamori-Anderson (GKA) rule describe the interatomic spin-spin interac-
tions between two atoms considering the existence of a virtual electron transfers between 
them (superexchange) and/or between a shared anion (so-called “bridge”) and the two atoms. 
As consequence, in this rule atoms with orthogonal orbitals do not overlap reducing the 
repulsion between the electrons, following the Hund’s rule. Therefore, the exchange interac-
tion between spins is positive and a ferromagnetic ordering arises.

In addition, the GKA rule predicts some interactions that depend on the occupation of inter-
acting orbitals. In the first case, an antiferromagnetic interaction occurs when the virtual 
electron transfer is between half-filled orbitals. In opposition, they are ferromagnetic once the 
virtual electron transfer is from a half-filled to an empty/filled orbital.

The GKA rules are important due to the introduction of bond character in the evaluation 
of the magnetic interactions. It is important to point out that the net spin does not change 
with the covalent component associated with the chemical bonds; however this component 
can extends the cation wave function out because the interaction between the orbitals is 
large, resulting in chemical dependent ferromagnetic/antiferromagnetic couplings associ-
ated the superexchange electron transfer [16].

1.1.6. Dzyaloshinskii-Moriya rule

The Dzyaloshinskii-Moriya [17–20] rule states that a low magnetic resultant is observed in 
antiferromagnetic material due to a long range interaction between magnetic atoms in disor-
dered crystalline structures. This particular behavior is called weak-Ferromagnetism.

1.2. FeBO3 (B = Ti, Zr, Hf, Si, Ge, Sn) materials: insights into interatomic distance 
and orbital overlap

Perovskites oxides, which have the general formula ABO3, are widely studied by theoretical 
or experimental efforts because of the large variety of intriguing properties, such as ferroelec-
tricity, piezoelectricity, multiferroism and others [21–23]. The interest in this kind of structure 
arise from the possibility of to control the existence of different properties from chemical 
substitution or doping on A- and B-sites [24]. For instance, a very common mineral on earth 
surface (FeTiO3) presents the ilmenite structure can shelter a high compositional diversity 
of A2+ and B4+ cations that occupy alternate basal-planes along the [001] hexagonal axis of a 
ordered corundum structure (R3) [25]. The most investigated ilmenite materials are based on 
Ti atoms in B sites with different atoms in A2+ (A = Mn, Fe, Ni, Co) cations; however, other 
materials were known in this structure [26–29].

Goodenough and Stickler proved that the magnetic ordering of ilmenite materials, mainly 
ATiO3 (A = Mn, Fe, Ni, Co), are antiferromagnetic insulators and have two different magnetic 
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couplings constants: Intralayer (J1) and Interlayers (J2), as shown in Figure 1. J1 refers to the 
magnetic exchange that happens between A-O-A atoms and is dominated by the coupling 
of a t2g orbital in one cation with an eg orbital in other. Therefore, the signal for exchange 
parameter depends upon the occupancies of the interacting orbitals making MnTiO3 antifer-
romagnetic and FeTiO3, CoTiO3, NiTiO3 ferromagnetic for intralayer coupling (J1). In turn, 
J2 interactions are mediated by the BO6 clusters in the intermetallic connection A-O-B-O-A, 
having less contribution of a direct overlap in [001] direction because of the vacancy in cat-
ionic sublattice (Figure 3) with opposite magnetization directions between adjacent A layers 
(antiferromagnetic) [25, 30].

In Fe-based ilmenite materials the long-range exchange coupling (J2) stabilizes the antifer-
romagnetism; since J2 depends of intermetallic connection Fe-O-B-O-Fe, the non-magnetic 
B-site replacement can control such magnetic ordering. As previously discussed, the 
ilmenite structure arrangement creates vacancies between adjacent Fe2+ layers that are 
separated each other by a B-site plane. So, the interlayer magnetic coupling integral can be 
visualized as a direct coupling between 3d orbitals of adjacent Fe2+ cations. Furthermore, 
other evidence that the non-magnetic B-site substitution affects the magnetic ordering is: 
the vacancy formation occurs in this cationic sublattice and the direct exchange coupling 
depends on the distance.

This behavior was confirmed investigating the magnetic ground-state of FeBO3 (B = Ti, Zr, 
Hf, Si, Ge, Sn) materials by means of Density Functional Theory (DFT) calculations [31, 32]. 
Figure 4 shows the relative Energy between AFM and FM structures as function of ionic radii 
of B4+ site cations.

From these results, it was observed that the FEM state is stabilized for ilmenite materials with 
large B-site metals (Sn, Hf, Zr); whereas, ilmenite cells contracted (Si, Ge, Ti) exhibit an AFM 
behavior. This result can be discussed as function of electronic repulsion between Fe2+ atoms 
3d orbitals in different layers. In this case, we use the c-axis oriented to 3dz

2 orbital, once 
the cationic vacancy induces a coupling in such direction. Therefore, the B-cation volume 
control the distance among different Fe2+ layers from an angular distortion in O-B-O bonds 
in axial plane, which causes an increase/decrease in B-O bond distances allowing a higher/

Figure 3. Ilmenite-type conventional unit cell and their exchange coupling constants. Black, orange and red balls 
represent A2+, B4+ and O2− ions, respectively.
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Ti atoms in B sites with different atoms in A2+ (A = Mn, Fe, Ni, Co) cations; however, other 
materials were known in this structure [26–29].
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lower interlayer distance between adjacent Fe2+ layers, affecting the signal of J, as represented 
in Figure 5.

In addition, the interlayer coupling has an additional degree of freedom associated with 
the Fe-O-B-O-Fe intermetallic connection, which is the responsible to originate a long-range 
coupling. This behavior can be related to the large overlap between valence orbitals from 
transition metals and 2p oxygen orbitals, which strengthen the intermetallic connection and, 
consequently, it induces a large electronic repulsion among unpaired electrons stabilizing the 
AFM configuration from Pauli Exclusion Principle. In case of the moving from Ti to Hf, it was 
noted that only FeTiO3 shows a large contribution of 3d overlapped with O 2p orbital suggest-
ing a higher overlap between these states providing strengthens in intermetallic connection 
that stabilizes AFM ground-state. In contrast, the smaller overlap between Zr(4d)/Hf(5d) and 
O(2p) orbitals allied to large Zr-O and Hf-O bond distances creates a smaller interlayer elec-
tronic repulsion responsible by FEM ordering.

Likewise, for FeBO3 (B = Si, Ge, Sn) ilmenite materials is expected a FM ordering due to 
the absence of d valence orbitals. Nevertheless, only Sn-based ilmenite has this configura-
tion indicating a big effect of ionic radius and interlayer distance of the FeO6 clusters. The 

Figure 4. Energy difference (in meV) between AFM and FM configuration as function of B-site cation ionic radii (in Å).

Figure 5. Representation of electronic repulsion between adjacent Fe2+ layer in FeBO3 (B = Ti, Zr, Hf, Si, Ge, Sn) as 
function of ionic radius of B-site cation and its influence on magnetic ordering.
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analysis of ionic radius and bond distance for FeBO3 (B = Si, Ge, Sn) materials shows that the 
increase in ionic radius from Si4+ to Sn4+ results entails on a large distancing among Fe2+ layers 
in intermetallic connection that drastically reduce the electronic repulsion and stabilize the 
FM configuration. The information obtained by these theoretical results demonstrates that 
the control of magnetic ordering in ilmenite materials is based on a complex relation between 
ionic radius and valence orbitals of the B-site non-magnetic metals.

1.3. Magnetism in corundum-ordered structure (LiNbO3-type structure): magnetic 
properties in ferroelectric XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf and Pb) materials

The corundum ordered structure is most commonly called LiNbO3-type since this is the first 
material to present such crystalline phase. R3c materials are largely employed in develop-
ment of memory devices, holographic data storage, electronic, electro-optical and optical 
devices, photo-induced devices and photocatalytic application due to a unique set of elec-
tronic, optical and ferroelectric properties usually observed for these materials. The first work 
on LiNbO3 (LNO) structure were reported in 1949 and discuss this new structure as a ilmenite 
type; [33] however, in 1952 such information were refuted by Bailey [34, 35] that obtained 
results proving that, at room conditions, the LNO crystallizes in a R3c group instead of a R3 
group characteristic of ilmenite. In particular, LNO structure has an ABO3 general formula, 
lattice parameters a = b ≠ c and angles α = β = 90° and γ = 120°; the A and B cations are both 
surrounded by six O atoms forming two distorted octahedra. Some features of LiNbO3-type 
structure are: (i) high distortion degree for octahedra within structure (Figure 6a); (ii) alterna-
tion between the cations A and B cation and vacancies along the c axis (Figure 6b); (iii) highly 
compacted layer composed by O atoms; (iv) the presence of intrinsic ordering vacancies 
[36–38]. These features are the responsible for the high ferroelectric properties characteristic 
of this type of structure.

The magnetism in this structure arises from unpaired electron from atoms occupying A 
or B sites within structure. In particular, the ground state spin ordering for materials in 
LiNbO3-type structure is determined by collinear interaction between layers in the struc-
ture and presents only one magnetic coupling constant (J) that refers to intralayer interac-
tion (J) that occurs between M-O-M in the structure, where M is the magnetic cation in 
the structure (as observed in Figure 6c). At general, the magnetism in Solid State materials 
can be successfully described by Direct or Indirect interactions, Exchange interactions 
and Super Exchange interactions or Goodenough-Kanamori-Anderson (GKA) Rule; all of 
them, considers the unit cell magnetic resultant to determine the magnetism. However, 
the structural disorder makes such approaches not enough to predict the magnetism in 
R3c structures.

The magnetic properties for XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf and Pb) in R3c structures 
were evaluated by computational methodologies based on DFT [39, 40]. The obtained results 
for J for such materials were presented in Figure 7; as observed, TiNiO3, GeNiO3, ZrNiO3, 
PbNiO3, NiTiO3 and NiHfO3 are AFM and, as predicted by DMI interaction, are weak-
ferromagnetic; whereas, the other materials are FM. The evaluation of structural properties 
for such materials evidences a connection between structural regularity and magnetic phase 
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analysis of ionic radius and bond distance for FeBO3 (B = Si, Ge, Sn) materials shows that the 
increase in ionic radius from Si4+ to Sn4+ results entails on a large distancing among Fe2+ layers 
in intermetallic connection that drastically reduce the electronic repulsion and stabilize the 
FM configuration. The information obtained by these theoretical results demonstrates that 
the control of magnetic ordering in ilmenite materials is based on a complex relation between 
ionic radius and valence orbitals of the B-site non-magnetic metals.

1.3. Magnetism in corundum-ordered structure (LiNbO3-type structure): magnetic 
properties in ferroelectric XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf and Pb) materials

The corundum ordered structure is most commonly called LiNbO3-type since this is the first 
material to present such crystalline phase. R3c materials are largely employed in develop-
ment of memory devices, holographic data storage, electronic, electro-optical and optical 
devices, photo-induced devices and photocatalytic application due to a unique set of elec-
tronic, optical and ferroelectric properties usually observed for these materials. The first work 
on LiNbO3 (LNO) structure were reported in 1949 and discuss this new structure as a ilmenite 
type; [33] however, in 1952 such information were refuted by Bailey [34, 35] that obtained 
results proving that, at room conditions, the LNO crystallizes in a R3c group instead of a R3 
group characteristic of ilmenite. In particular, LNO structure has an ABO3 general formula, 
lattice parameters a = b ≠ c and angles α = β = 90° and γ = 120°; the A and B cations are both 
surrounded by six O atoms forming two distorted octahedra. Some features of LiNbO3-type 
structure are: (i) high distortion degree for octahedra within structure (Figure 6a); (ii) alterna-
tion between the cations A and B cation and vacancies along the c axis (Figure 6b); (iii) highly 
compacted layer composed by O atoms; (iv) the presence of intrinsic ordering vacancies 
[36–38]. These features are the responsible for the high ferroelectric properties characteristic 
of this type of structure.

The magnetism in this structure arises from unpaired electron from atoms occupying A 
or B sites within structure. In particular, the ground state spin ordering for materials in 
LiNbO3-type structure is determined by collinear interaction between layers in the struc-
ture and presents only one magnetic coupling constant (J) that refers to intralayer interac-
tion (J) that occurs between M-O-M in the structure, where M is the magnetic cation in 
the structure (as observed in Figure 6c). At general, the magnetism in Solid State materials 
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the structural disorder makes such approaches not enough to predict the magnetism in 
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PbNiO3, NiTiO3 and NiHfO3 are AFM and, as predicted by DMI interaction, are weak-
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stability, according to the relation between the distortion degree (δ) between [AO6] and [BO6], 
as expressed by   δ  

 [A O  
6
  ] 
   /  δ  

 [Ni O  
6
  ] 
   . Thus, for materials where the value of the equation is less than 

1.5, the FM phase is more stable, whereas the AFM phase is more stable for materials with 
disorder ratio higher than 2.

Moreover, the theoretical investigation also provides information regarding to electronic levels 
of magnetic cations in XNiO3 and NiXO3. In these materials, FM and AFM ordering are origi-
nated from eg and t2g energy levels of Ni2+ cations localized on [NiO6] clusters. Furthermore, 
projected Density of States (DOS) clarifies why magnetic ordering is changed from chemical 
modifications. In particular, for AFM materials there are [NiO6] clusters magnetically ordered 
as α and β spins (Figure 8); structurally, these clusters are distributed by adjacent layers being 
each one oriented as one spin channel. Henceforth, α and β spins localized on eg energy levels 
are responsible to stabilize the AFM state.

However, how to understand the origin of the FM ordering in these materials? The exis-
tence of the FM ordering in materials is dependent on the spin orientation being in the same 
direction on all magnetic clusters. Thus, it is necessary to discuss the electronic configuration 

Figure 6. Crystalline structures of R3c structure showing the alternation between B, A and vacancies along z axis (a), 
[AO6] and [BO6] octahedra within structure (b) and magnetic coupling constant (J) for R3c structures (c).
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of the eg and t2g energy levels of Ni2+. The projected DOS prove that in FM materials were 
observed a displacement on degenerated t2g energy levels that creates two new groups of non- 
degenerated t2g energy levels (Figure 8). In particular, the lowest t2g energy levels and highest 
t2g energy levels are occupied by α and β spins, respectively. For all NiXO3 and XNiO3 materi-
als the [NiO6] clusters have the same electronic configuration, i.e., five α spins and three β 
spins giving rise to FM state, where all magnetic clusters are clearly at same orientation.

Figure 7. Magnetic coupling constant (J) for XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf, Pb) materials. The red region refers 
to the AFM materials, while the blue range represents the FM systems.

Figure 8. DOS projected results for eg and t2g energy levels localized on Ni2+ in AFM and FM materials. The gray region 
represents the broken on degeneration of t2g energy levels.
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Figure 8. DOS projected results for eg and t2g energy levels localized on Ni2+ in AFM and FM materials. The gray region 
represents the broken on degeneration of t2g energy levels.
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Moreover, magnetic LNO-type materials have attracted the interest of materials scientist 
around the world in the last years as promising alternatives as smart and functional materials, 
mainly as multiferroic (MF) materials. The multiferroism consists on the coupling between 
magnetic ordering and some ferroic property in the same crystalline phase, but the main form 
of multiferroism is called of magnetoelectric (ME) coupling and are obtained by coupling 
between the magnetic ordering and ferroelectric properties. Consequently, electric polariza-
tion can be induced by a magnetic field or vice-versa.

The ME coupling was first reported in the first years of 1960s decade; thus, the study of this 
effect keep stable until that, in 2003, a strong coupling between ferroelectric and magnetic 
properties was observed for TbMnO3 and TbMn2O5 materials as well as a high ferroelectric-
ity for BiFeO3 (BFO) films. Thenceforth, the study of MF materials increases drastically so 
that a fast search on Web of Science indicates at least 970 manuscripts focused in this class 
of material only in 2017. The investigation of multiferroic materials aims its application 
at development of several devices such as actuators, magnetic readers, sensors, tunnel-
ing and data storage devices. Moreover, MF materials are also potential alternatives for 
spintronics. The main representative of this class is the BFO; this material exhibits antifer-
romagnetic ordering as well as Magnetoelectric coupling at room conditions allied to a 
unique set of electronic, optical, magnetic and ferroelectric properties. In addition, other 
multiferroic materials were investigated by means of theoretical and experimental efforts, 
such as YMnO3, BiMnO3, PbNiO3 (PNO), FeTiO3; PbVO3, TbMnO3, TbMn2O5, Ca3CoMnO6, 
LuFe2O4, BaNiF4 and others [41].

Even that many multiferroic materials are currently known, the development of MF material 
is this kind of material is delayed by crystalline structure and low Curie temperature (TC); 
the first due to the fact that only 13 symmetry groups are able to exhibit multiferroic cou-
pling, while the last makes its application impossible in technological purposes [42]. In a very 
restrict group of crystalline structures and, among then, are observed structures with lower 
and higher symmetry, such as P2/c, P-1, perovskite, ilmenite (R3) and LiNbO3-type struc-
tures (R3c). It is important to highlight that the R3c structure is the most common structure 
observed in known multiferroic materials, such as BFO, PNO, YMnO3, BiMnO3 and TbMnO3.

2. Theoretical approaches to investigate magnetic solid state 
materials

Historically, the investigation of new materials aiming technological applications was a hard 
task that needed a long time of study. In this period, the theoretical-computational method 
was seen only as tool to study of materials already discovered. Front of the fact that the 
technological advance is extremely dependent on development of new materials, theoretical 
methods helped materials chemists and physicist on development materials at higher speed. 
Ever since, theoretical methods based on quantum mechanical simulations are an important 
tool to evaluate material properties, mainly at the molecular level [43].

Nowadays, innumerous theoretical methods are available; however, in the last 30 years the 
Density Functional Theory (DFT) changes the world offering the best relation between the 
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results precision and study time [44]. Another factor responsible for wide use of this theory is 
the high versatility, once presents good results to investigation of magnetic materials, semi-
conductors, proteins, organic compounds and others [45].

2.1. Density Functional Theory

Several computational approaches can be applied to evaluation of materials properties; for 
instance: Molecular Dynamics (MD), ab initio methods and Semi-Empirical Methods. The MD 
analyzes the system properties based on the behavior of ball-and-springs models under appli-
cation of an Force external field to atoms representation, while ab initio and Semi-empirical 
methodologies uses different approaches to solve the Schrödinger Equation and to obtain the 
system Wave-function (Ψ). In turn, DFT assumes that the system Total Energy is a unique 
functional of electronic density; this methodology can be simplified in two postulates: [46].

i. The ground state properties for a system can be exactly and completely determined by 
the Density Functional (ρ), which is only dependent of three variables that determines the 
position (x, y and z).

ii. Any try function for electronic density will have energy greater or equal than the ground 
state energy for a real system.

However, the analytical function for electronic density is not known; thus, the electronic den-
sity is obtained by Hartree-Fock Equations (HF) for achievement of ρ by a Self Consistent Field 
(SCF) Method. Although this similarity was observed, the DFT shows a highest precision and 
computational cost in relation to HF simulations due to smaller number of variable. The HF and 
Semi-Empirical methods employ a number of variables in the 4n order, where n refers to the 
number of electrons in the system; whereas, the DFT is dependent on three variables [43, 44].

The DFT formulism was proposed by Kohn and Shan (KS) in 1965 and consists in two equa-
tions applied on two different systems; such systems consider that there are no or there are 
interactions between electrons, respectively. The results for both systems show a significant 
difference of energy between then, and, aiming to correct this difference, the Exchange-
correlation Term (EXC) was inserted in DFT proposed. The EXC is the sum of kinetic and poten-
tial energy difference between both systems. The physical meaning of EXC is the interaction 
between electrons in the investigated system and refers to 1% of system Total Energy; due to 
this, DFT describes 100% of system Total Energy.

The description of EXC terms changes according to employed exchange-correlation functional and, 
hence, the choice of a functional has a giant effect on materials properties evaluation, as offering 
better results as offering a reduction in computational cost. Among the EXC functional stands out 
local (LDA and LSDA), non-local (pure GGA, PBE) and hybrid (PBE0, B3PW91, B3LYP, HSE06) 
types; the last represents the most powerful alternative to predict materials project.

2.2. Magnetic materials modeling based on DFT

The DFT is widely used on materials modeling since offers an excellent relation time x effi-
ciency, as denoted by results precision on prevision of materials properties in a short time. 
For instance, a DFT methodology provides thermodynamic properties for bulk or surfaces of 
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was seen only as tool to study of materials already discovered. Front of the fact that the 
technological advance is extremely dependent on development of new materials, theoretical 
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Ever since, theoretical methods based on quantum mechanical simulations are an important 
tool to evaluate material properties, mainly at the molecular level [43].
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Density Functional Theory (DFT) changes the world offering the best relation between the 
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results precision and study time [44]. Another factor responsible for wide use of this theory is 
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Several computational approaches can be applied to evaluation of materials properties; for 
instance: Molecular Dynamics (MD), ab initio methods and Semi-Empirical Methods. The MD 
analyzes the system properties based on the behavior of ball-and-springs models under appli-
cation of an Force external field to atoms representation, while ab initio and Semi-empirical 
methodologies uses different approaches to solve the Schrödinger Equation and to obtain the 
system Wave-function (Ψ). In turn, DFT assumes that the system Total Energy is a unique 
functional of electronic density; this methodology can be simplified in two postulates: [46].

i. The ground state properties for a system can be exactly and completely determined by 
the Density Functional (ρ), which is only dependent of three variables that determines the 
position (x, y and z).

ii. Any try function for electronic density will have energy greater or equal than the ground 
state energy for a real system.

However, the analytical function for electronic density is not known; thus, the electronic den-
sity is obtained by Hartree-Fock Equations (HF) for achievement of ρ by a Self Consistent Field 
(SCF) Method. Although this similarity was observed, the DFT shows a highest precision and 
computational cost in relation to HF simulations due to smaller number of variable. The HF and 
Semi-Empirical methods employ a number of variables in the 4n order, where n refers to the 
number of electrons in the system; whereas, the DFT is dependent on three variables [43, 44].

The DFT formulism was proposed by Kohn and Shan (KS) in 1965 and consists in two equa-
tions applied on two different systems; such systems consider that there are no or there are 
interactions between electrons, respectively. The results for both systems show a significant 
difference of energy between then, and, aiming to correct this difference, the Exchange-
correlation Term (EXC) was inserted in DFT proposed. The EXC is the sum of kinetic and poten-
tial energy difference between both systems. The physical meaning of EXC is the interaction 
between electrons in the investigated system and refers to 1% of system Total Energy; due to 
this, DFT describes 100% of system Total Energy.

The description of EXC terms changes according to employed exchange-correlation functional and, 
hence, the choice of a functional has a giant effect on materials properties evaluation, as offering 
better results as offering a reduction in computational cost. Among the EXC functional stands out 
local (LDA and LSDA), non-local (pure GGA, PBE) and hybrid (PBE0, B3PW91, B3LYP, HSE06) 
types; the last represents the most powerful alternative to predict materials project.

2.2. Magnetic materials modeling based on DFT

The DFT is widely used on materials modeling since offers an excellent relation time x effi-
ciency, as denoted by results precision on prevision of materials properties in a short time. 
For instance, a DFT methodology provides thermodynamic properties for bulk or surfaces of 
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materials directly or using some additional approach as Berry Phase [47, 48] or Bulk Modulus 
[49, 50]. In turn, in Solid State materials the magnetic interactions are usually described by 
the Heisenberg Hamiltonian; however, in computer simulations this approach cannot be used 
because later determinant is not an eigenstate of such Hamiltonian. Thus, it is necessary the 
application of the Ising model which possibilities the evaluation of J magnetic coupling con-
stant and ground-state magnetic ordering for simple and complex magnetic structure since 
using the energy difference between AFM and FM magnetic states since the unpaired elec-
trons are well defined in the model Eq. (1). The Ising Model is described by Eq. (2), where N 
refers to number of magnetic cations in unit cell, Z is the number of magnetic neighbors and 
Sx represents the spin charge for each magnetic atom in unit cell. Both Eqs. (1) and (2) are 
combined in Eq. (3). The application of Ising Model was performed after the structural opti-
mization of magnetic materials and requires that the spin orientation of unpaired electrons 
is well defined in the model. The Ising Model is described by Eqs. (1) and (2), where N refers 
to number of magnetic cations in unit cell, Z is the number of magnetic neighbors and Sx 
represents the spin charge for each magnetic atom in unit cell. The application of Ising Model 
was performed after the structural optimization of magnetic materials and requires that the 
spin orientation of unpaired electrons is well defined in the model. Plus, in materials with 
more than one magnetic and not reproductive site, the Ising model should be applied to each 
magnetic ordering and thus, applied to ground-state model.

   𝛥𝛥E  T   =  E   T  AFM     −  E   T  FM      (1)

    H ̂    Ising   = − N . Z .  S  1   .  S  2.   . J  (2)

   E   T  AFM     −  E   T  FM     = − N . Z .  S  1   .  S  2.   . J  (3)

The Ising Model methodology to prevision of magnetic properties of Solid State materials was 
employed by Ribeiro and coauthors [51], Chartier and coauthors [52], Feng and Harrison [53] 
and Lacerda and de Lazaro [39] to investigate materials and different crystalline structures 
proving the efficiency of this approach. The high efficiency and almost direct measurement 
offered by Ising Model indicates it as the best theoretical approach to investigation of mag-
netic solid state materials.

3. Conclusion

In this chapter, the role of Density Functional Theory calculations for strongly correlated 
materials was summarized, focusing in the description of the ground-state magnetic ordering 
for solid state materials, in particular ATiO3 (A = Ti, Zr, Hf, Si, Ge, Sn) ilmenite derivatives and 
corundum ordered XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf and Pb) materials. A review about 
the theories behind the magnetism in solid state materials was presented in order to clarify 
the contribution of collective magnetic ordering, local structure and exchange interactions.
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In case of ilmenite ATiO3 derivatives, the local structure associated with the magnetic order-
ing of Fe2+ layers was systematic investigated from theoretical calculations, resulting in chemi-
cal dependent interactions depending upon the interlayer distance (B-site cation volume) 
and orbital-resolved electron transfer. The summation between this analysis was helpful to 
predict new ferromagnetic materials such as FeSnO3, FeZrO3 and FeHfO3.

Additionally, for corundum ordered XNiO3 and NiXO3 (X = Ti, Ge, Zr, Sn, Hf and Pb) materi-
als the theoretical results indicates that the magnetic ordering is: (i) dependent on structural 
distortion in [XO6] and [NiO6] clusters; (ii) arise from Ni t2g and eg not conventional energy 
degeneration and (iii) even antiferromagnetic materials presents a magnetic resultant in con-
sequence of structural distortion characteristic of R3c structure. The employment of theo-
retical approaches based on DFT possibilities the proposal of new material to technological 
purpose based in the magnetism as well as provides a complete description of magnetic, 
structural and electronic properties in a short time period.

Despite the challenge dealing with magnetic materials, theoretical simulations, mainly DFT-
based, can be used to clarify the unusual phenomena’s commonly observed in such materials, 
as well as to predict new candidates with singular properties, improving the perspective of 
materials design.
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Abstract

Molecular computing devices composed of biological substances, such as nucleic acid 
and ribonucleic acid plays a key role for the logical processing of a variety of inputs and 
viable outputs in the cellular machinery of all living organisms. These devices are directly 
dependent on the advancement in DNA and RNA technology. RNA nanoparticles can 
be engineered into a programmable and logically acting “Ribocomputing Devices”; a 
breakthrough at the interface of nanotechnology and synthetic biology. It opens a new 
path to the synthetic biologists to design reliable synthetic biological circuits which can 
be useful as the electronic circuits. In this emerging field, a number of challenges persist; 
as how to translate a variety of nucleic acid based logic gates developed by numerous 
research laboratories into the realm of silicon-based computing. So in this chapter we 
will discuss the advances in ribonucleic acid (RNA) based computing and it’s potential 
to serve as an alternative to revolutionize silicon-based technology by theoretical means. 
Also the results of the calculated parameters with computational tools using Density 
functional theory and the designed device circuits will be analyzed.

Keywords: genetic information, logic gates, toehold switches, energy landscapes,  
RNA nanoparticles

1. Introduction

RNA nanotechnology is the modern and recent field of science which applies the applica-
tion of top-down or bottom-up approaches to build the artificial architectures of RNA at 
the nanoscale. The pioneer work on “RNA nanotechnology” was carried out by eminent 
Scientist Prof. Dr. P. Guo et al. [1–4] RNA nanotechnology involves the characterization of the 
physical, chemical and biological properties of artificial RNA scaffolds in computing devices. 
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These molecular computers are natural and/or artificial devices in which macromolecules, 
including proteins and nucleic acids mediate necessary functions. The three basic operations 
are similar to the computer operations as: sensing inputs, processing the inputs and gen-
erating specific outputs. The schematic representation of RNA nanoparticles with different 
constructed motifs are given in Figure 1.

Nature has given us the best computer in the form of living cell. These cells generate enor-
mous amount of signals (inputs) using a broad range of environmental factors, example: tem-
perature, pH, pressure, nutrients, signaling chemicals, macromolecules, etc. [5–7]. Biological 
systems have the ability to adapt to new information from an altered environment. They 
can be self-assemble and self-reproduce, which might provide some economic advantages. 
Recently Eminent Prof. Alexander A. Green group has designed the ribocomputing devices in 
which RNA molecules were used as input signals and protein as the output signal. AND, OR, 
and NOT logic results were obtained from the self-assembly of input and gate RNAs in the 

Figure 1. Schematic representation of RNA nanoparticles with different constructed motifs. Adapted with permission 
from Ref. [96].
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device. Gate RNA was used to carry out the signal processing. These devices were operated 
at the post-transcriptional level and used an extended RNA transcript to co-localize all circuit 
sensing, computation, signal transduction, and output elements in the same self-assembled 
molecular complex. The advantage of these systems was the reduction in diffusion-mediated 
signal losses, lowered metabolic cost and improved circuit reliability. These devices utilized 
programmable RNA molecules, allowed effective in silico designs, composed of precisely 
designed synthetic RNAs networks, worked at the post-transcriptional level, minimized 
delays and improve the reliability of signal transduction. Further these circuits co-localized to 
integrate multiple circuit functions within a single transcript gate RNA [8]. The input RNAs 
can interact cooperatively with one another to activate the gate RNA for AND logic or they 
can prevent for NOT logic. Toehold switch designs, which translate an output gene only if a 
cognate trigger RNA is expressed in the cell, were also optimized to evaluate the AND logic 
gate for the ribocomputing devices [9].

Now the question arises why there is a need to replace the silicon based technology?

The capabilities of digital electronic devices have increased in lock-step with Moore’s Law, 
which states that the number of transistors in a microchip will double approximately every 2 
years [10]. This will also end up reaching a limit, as the unending quest to miniaturize transis-
tors, which also come to a halt due to the quantum tunneling effect [11]. When the distance of 
a gate is scaled down about 10 nm, its electrons will jump spontaneously from source to drain, 
and the control over the flow of electricity will be lost. To overcome this problem, it is possible 
to either increase the size of microchips or fabricate them as stacking microchips. Even then it 
will only delay the stalemate.

Further, there are few critical challenges to make a transistor at the atomic level: (i) the accu-
racy of computing will be affected, because the wires in the circuit will become too close and 
they will affect each other; (ii) the heat generated in such a small area with too many concen-
trated transistors will greatly affect the functions of the transistors; (iii) the energy consump-
tion to cool the circuit board would be too high to be a burden. Also the chip temperature will 
impact the circuit reliability, energy consumption and system cost.

So the next option is to use the biomolecules, including DNA, RNA and proteins as the major 
elements in logic gate operations. The enzymatic selectivity (processing of specific chemical 
function) of biomolecules give them an advantage over silicon-based computing with both 
specificity and usability in an intracellular environment. As most of the biological reactions 
controlled by specific enzymes are interconnected with other functional inputs, it is possible 
to fabricate DNase- and/or RNase-based informational processing units. These units can be 
scaled-up to fabricate artificial biocomputing networks possessing variety of logic functions.

Replacing the silicon computing devices with the molecular computers has the following 
other advantages: these devices are subjected to the universal physical laws, have a small 
mass-to-volume ratio and move in viscous media rather than in a vacuum or air. Though they 
cannot store momentum, kinetic energy or thermal energy for a significant period of time 
due to their extremely small size, and must operate isothermally. Molecular computing has 
an enhanced ability to provide parallel computation. These systems can self-assemble and 
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self-reproduce, which might provide some economic advantages. Moreover, cells can be engi-
neered to sense and respond to environmental signals, even under extreme conditions such 
as: high temperature, high pressure, radioactivity or toxic chemicals, and have the ability to 
adapt to new information for a changed environment. The ultimate goals of biocomputing are 
the monitoring and control of biological systems. The diagnosis of diseases, drug screening 
and to understand the experimental systems can be done by monitoring. It is also necessary to 
observe the environment to detect multiple disease indicators [11, 12], and cell based biosen-
sors using logic gates to detect arsenic, mercury and copper ion levels [13]. Another utility 
is to control development, cell differentiation and re-programming, which mainly depends 
on gene regulatory networks [14, 15], tissue engineering and tissue regeneration [16], and 
to control the immune system and malign growth. Logic based biological devices are also 
executed to detect cancer cells (e.g. small-cell lung cancer, prostate cancer, HeLa cells), and to 
induce selective apoptosis of these cells [11, 17, 18].

The concept of DNA molecular computation was demonstrated by Prof. Leonard Adleman, 
in which the ability of synthetic DNA oligonucleotides were used to solve a seven-point 
Hamiltonian path problem by performing a sequence of logical operations [19]. Since then, the 
possibility of developing a new generation of molecular logic gates and molecular computers 
based on the advantages of DNA molecules has started [20–29]. The DNA molecules were cho-
sen as they are amenable to well-regulated, programmable folding, and have the unique ability 
to store genetic information. The massive parallel computation power and colossal memory 
capacity [30, 31] were also the salient features of DNA technology, though improvement in 
specificity of interaction and chemical stability is still to be taken into account. DNA self-
assembly properties through WC base interactions can also lead to the formation of a variety 
of structures (tiles) [32–34]. The studies have also been carried out on the nucleobase stacking 
pairs and coinage metal clusters to observe the Boolean operations [35]. However, the limita-
tions in the application of DNA-based computation is the intolerable level of execution time 
in performing logic gates operation and in some circuits, it require more time to reach a stable 
state to achieve the final value (three-layer see-saw circuits). Another challenge is the limitation 
of functional proteins required for catalyzing the reactions. So the field of RNA technology has 
been explored. RNA can be served as the polymeric material to build varieties of structures 
which included nanoparticles, polygons, bundles, membranes, micro sponges and arrays. The 
different modifications for stable RNA nanoparticles are shown in Figure 2. The vital signifi-
cance of RNA nanotechnology relies on application of RNA biopolymers at the atomic level. In 
RNA, the base pairing of nucleotides can be canonical as well as non-canonical and the tertiary 
interactions of RNA mediate multi-way junctions, bulges and internal hairpin loops. Apart 
from that RNA is thermodynamically more stable due to relatively low in energy. Now RNA 
is considered as a subdivision of nucleic acid nanotechnology due to its diverse functions.

The reason for taking the RNA is twofold: RNA (i) possesses the structural properties of 
DNA and (ii) mimics the functional properties of proteins [36–40]. Interestingly the device 
design and the role of DFT used for DNA technology can implement to RNA nanoparticles 
also due to some similar structural properties. So here we will discuss the role of DFT in 
RNA technology based on the previous studies being carried out on the DNA technology. 
RNA nanoparticles also include the following properties based on these factors: introducing 

Density Functional Theory144

chemical modification into nucleotides without significant alteration of the RNA property in 
folding and self-assembly; tuning the immunogenic properties of synthetic RNA constructs 
for in vivo applications; role of 2D, 3D, 4D structure and intermolecular interaction of RNA 
molecules; developing methods to control shape, size, and stoichiometry of RNA nanopar-
ticles; regulation and processing functions of RNA in cells; cost in RNA production by bio-
chemical synthesis; and safety of using RNA due to its therapeutic modality for cancer and 
other diseases without affecting the other organs.

RNA molecules have main role of passing information from genome to proteome in all living 
creatures. The discovery of non-coding RNAs revealed that RNA performs more versatile 
functions, including gene expression and regulation. The pictorial representation of beacons 
and resistive biomemory in RNA nanotechnology applications is given in Figure 3. The RNA 
molecules are involved in computational algorithmic processes, including RNA editing (RNA 
sequence alternation) [36] and RNA-based regulatory networks [35, 36]. In previous studies 
carried out on RNA computational systems, the inputs were small RNA elements or motifs, 
and the output was the mRNA [35–37].

There are various classes of RNA functional molecules, such as ribozymes, RNA aptamers, 
riboswitches, miRNA and siRNA, orthogonal ribosomes [38, –39] that enable the fabrication 
of RNA-based nanoparticles to advance the modern nanotechnology [40–42]. The recent 
advances are endonuclease CRISPR (Clustered regularly interspaced short palindromic 
repeats) associated Cas9 [43] and the bacterial CRISPR pathway [44], which enables predict-
able programming of gene expression. Recent efforts in genome mining and programmable 
RNA based switches have increased the number of parts which further enable predictable 
design of deeply layered logic circuits. These biological circuits required digital-like charac-
teristics as Boolean logic gates with all or nothing responses.

Figure 2. Different modifications for stable RNA nanoparticles (A) sugar modifications (B) backbone modifications 
(C) nucleic acid analogs (D) thermodynamic and (E) serum stability. Adapted with permission from Ref. [96].
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2. Application of RNA nanotechnology in computation (in vivo)

RNA nanotechnology emphasizes its critical role in the process of catalysis in cell signaling 
and sensing functions. RNAs use the concentrations of specific chemical species as signals 
to implement the functions of logic to build up the network of multiple layers Boolean net-
works. Then these molecular computers were able to operate and communicate directly in a 
biological environment [45, 46] or work inside a living cell [47]. A plasmid with a specifically 
encoded DNA was inserted and external program was used to control the computation inside 
the host cell. The mRNA was used to encode a fluorescent protein and the target sequences 
for small interfering RNA (siRNA) with control level of fluorescence exhibited by the cell. 
Another in vivo computation programming was observed by a response to both endogenous 
and exogenous molecular signals. In this work, combination of ribozymes and RNA aptamers 
were used [48, 49].

The concept to utilize the cleaving ability of ribozyme to a specific molecule with the compu-
tational work was carried out using the concentrations of two proteins as input and output, 
implemented by studying the mechanism of ribozyme-aptamer molecules using yeast. In 
another study it was shown that the individual mammalian cells were capable of executing 
the basic arithmetic functions in a robust manner. A memory module (toggle switch) was 
designed [50] and a scalable factor (transcriptional/post transcriptional) was used to construct 
a synthetic regulatory circuit with a HeLa cancer cell ‘classifier’ to sense the expression levels 
of a customizable set of endogenous microRNAs to trigger a cellular response that matches 
the predetermined profile of interest [51]. In gene circuit engineering, RNA mediated regu-
lation employs three major mechanisms, cis-acting RNA structure related modulation of 
translation, catalytic RNA or ribozyme-mediated cleavage of target transcripts and trans act-
ing antisense small RNAs-mediated regulation of translation [52]. The experimental design 

Figure 3. RNA nanotechnology applications in beacons (A) and resistive biomemory (B). Adapted with permission from 
Ref. [96].
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method for the QD/STVQD/STV/Bio-3WJ chimera nanoparticle is given in Figure 4. RNA 
bioelectronics can lead to bio computer devices; as information storage devices, logic gates, 
field effect transistors and computation systems. An autonomous bio molecular system has 
been suggested to logically regulate the gene system. The system has been used for prostate 
cancer state detection. The basic diagnostic rule is that if the specific gene related to prostate 
cancer is over expressed, then ssDNA bind to their mRNA and exhibits the protein synthesis. 
The logical output is the release of ssDNA with modulation of gene expression, defined by 
the two states “positive and negative” [12]. An RNAi logical evaluator has also been used to 
perform Boolean operations for human kidney cells [47] and intracellular device in single 
mammalian cell.

3. Role of DFT in RNA nanotechnology

The RNA junction database [53], NanoTiler [54], RNA2D3D algorithms [55], RNA dynamics 
[56, 57] are used to build RNA nanoparticles that incorporate individual RNA motifs to defined 
user specifications. The energy landscape perspective of bio molecular dynamics provides a 
quantitative framework to consistently integrate theoretical concepts and experimental obser-
vations. Recognizing the potential of this approach, there has been decades of investigation 

Figure 4. Schematic diagram of the experimental design method for the QD/STVQD/STV/Bio-3WJ chimera nanoparticle 
(a) site-specification, (b) constitution, (c) expected structure, and (d) function. Adapted with permission from Ref. [96].
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into the character of protein folding landscapes and now the recent developments occur in 
the field of bionics. At theoretical level, the objective is to construct appropriate potential 
energy functions in order to explore the thermodynamic and kinetic behavior of the system. 
The discrete path sampling (DPS) procedure [58, 59] was employed to explore the energy 
landscape of the DNA G-quadruplex by HiRE-RNA force field. In order to fold proteins on 
physiological timescales, the energy landscape associated with folding should possess only 
small traps, relative to the energetic gap between the folded and unfolded ensembles. So, 
these landscapes should be minimally frustrated. These software’s can demonstrate the bio-
physical and biochemical activities and also able to answer the complex analytical questions. 
The designed hybrid systems as (RNA–RNA, RNA–DNA, RNA–PS DNA etc.) are optimized 
and the reaction pathways, triggering and charge transfer mechanism can be carried out by 
DFT and TDDFT methods. NUPACK program [60] is used to calculate the thermodynamic 
analysis of inputs. Generally, three different theories can be used to analyze the results: den-
sity functional theory (DFT), and moving on to many-electron GW [61] methods as well as 
GW-inspired DFT + Ʃ [62] calculations. Further complex band structure (CBS) calculations are 
used to estimate the tunneling decay constant Ʃ, and Landauer-Buttiker transport calculations 
are used to compute the transmission spectra directly. Various effects such as device contact 
geometry, metal/molecule interfaces, molecular anchoring and side groups, inelastic effects, 
molecular conformation, and stochastic fluctuations are responsible for the results. So the 
parameters related to these effects are also taken into account. It is anticipated that the lowest 
conductance histogram peak correspond to single molecular junctions, while higher conduc-
tance peaks are attributed to junctions having multiple molecules linking the gold electrodes.

Electron transport mechanisms can be categorized as: coherent tunneling and incoherent hop-
ping [63]. Along with these parameters, thermal transport and thermoelectric properties are 
also important [64, 65]. The transport properties estimated by GW formalism are calculated 
in previous studies [66, 67]. The transmission is based on two parameters Seebeck coefficient 
and thermo-electric figure of merit; and is very sensitive to energy and k-resolution of the 
calculations. The DFT + Σ method is considered to be more appropriate method to calculate 
the conductance, but is only applicable to system with small polarizability of molecule and 
broadened resonance [68, 69]. Another promising method time dependent density functional 
theory (TDDFT) is used to measure the wavelengths (absorption and emission) for fluores-
cence, and time dependent current-density functional theory (TDCDFT) for the measurement 
of the current–voltage characteristics. The conductance of systems is analyzed with the help 
of dynamical exchange−correlation correction [70–72]. The software tools TranSIESTA [73] 
and SMEAGOL [74] are used to calculate the electron transmission spectrum using the non-
equilibrium Green’s function (NEGF) method and SCARLET [75, 76] for the scattering-state 
method.

The complex band structure calculations are used to investigate tunneling in DNA strands 
[77]. Further studies were carried out for pyridine-gold junctions, which show less variation 
in conductance values [78–80]. These studies can provide us useful insights for the RNA-Au 
junctions also.

Single-molecular junctions are also the potential candidates for thermoelectric applications 
due to large phonon mode mismatch at the metal molecular interface and tunable electronic 
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conductance properties [81–83]. The thermopower S, a derivative of the electron transmission 
at the Fermi level EF, and proportional to the logarithmic F is another important transport 
property which measures the charge carrier type and thermoelectric responses. The transport 
of electron spin in molecular wires, and the effects of solvent properties can also studied using 
DFT [84–86] and DFT + Σ [87] calculations. Few calculations have also been carried out on 
the charge transfer in short duplexes DNA/DNA and DNA/RNA with virtually equivalent 
sequences [84–86]. G09 [88] and Turbomole [89] software’s can been used to carried out the 
calculations using the implicit water solving model (COSMO) (the Conductor like screen-
ing model) [90] or PCM (polarizable continuum model) [91]. The DFT method can also be 
used to study the charge transfer mechanisms, delocalization nature of orbitals, base stacking, 
electronic coupling and conformational flexibility. Tersoff potential is preferred for carbon 
nanotubes-nucleotides-metal cluster interactions [92].

4. Conclusion

Scientists have demonstrated how living cells can be induced to carry out computations in 
the form of tiny robots or computers. Synthetic gene networks have been used to construct a 
wide range of biological devices, including molecular counters, oscillators, toggle switches, 
logic gates, cell classifiers and analog signal processors [93–95]. On a long-term scale, we 
believe that merging the research activities with a focus on the RNA as crucial molecular 
machinery for the cell will provide unprecedented insights into central molecular aspects of 
the RNA function and dynamics, ultimately enabling us to generate an integrated view of the 
molecular picture of the processes tuned by the RNA nanoparticles. Many natural limitations 
to the engineering of biological computers still remain. How do we eliminate or reduce noise 
in nucleic-acid based computing? An increase in the number of elements in RNA- and DNA-
based logic operations is accompanied by a drastic increase in noise [96, 97]. The common 
approaches for noise reduction may include following: (i) better optimization of individual 
logic gates, (ii) utilization of network topology [98, 99] and (iii) for even larger networks, the 
introduction of new network elements to suppress the redundancy of the elements, thereby 
improving the signal-to-noise ratio. Also, the biochemical reaction time is also a critical aspect 
in working with a scalable circuit, which needs to be solved. With continued technological 
advances, it is now time to establish the rigorous physical and chemical understanding of 
RNA dynamics. Using the theoretical infrastructure developed in the context of protein fold-
ing, the field is positioned to extend the application of energy landscape techniques to the 
study of the large assemblies. Through close integration of computation and experimentation, 
it will be possible to dissect the complex interplay of structure and energetics during RNA 
function. We anticipate that such endeavors may ultimately reveal physical principles that 
govern biological dynamics. Finally we have a long way to go to understand nano-molecular 
computers in sufficient detail to be able to “reverse engineer” an existing molecular computer 
or design a relatively new one.
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