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Preface

Modern neuroimaging technologies allow not only for the visualization of anatomi-
cal structures but also for reaching their functional characteristics and monitoring 
their dynamics. Both structural and functional imaging have a long tradition in
neuroscience and are widely used in basic research and clinical settings. The novel 
generations of neuroimaging tools include innovative methods in computed tomog-
raphy (CT), magnetic resonance imaging (MRI), positron emission tomography, 
near-infrared spectroscopy (NIRS), electroencephalography, and magnetoencepha-
lography (MEG). Both scientists and technologists are joining forces to find a way to
improve technology, data analysis, and the application of neuroimaging in the wide
spectra of scientific and clinical research, including the study of topography and 
dynamics of neural networks, sensory processing, and investigations of neurode-
velopment, neurological diseases, neuropsychological disorders, and aging. Recent
achievements of neuroimaging techniques suggest that they are essential for the
identification of biological markers of the earliest stages of neurodiseases and the
development of new therapies.

This book does not intend to provide the reader with a comprehensive overview of
neuroimaging techniques and methods, but offers a narrow overview of processing 
and application advances in the current state-of-the-art imaging modalities and 
their utility. The first part of the book addresses the current advances of methods
for analyzing brain imaging data. In the chapter “Supervised Sparse Component
Analysis with Application to Brain Imaging Data,” the author provides strong 
evidence that supervised multiblock sparse component analysis identifies the asso-
ciation between brain areas at the voxel level, enabling more reliable interpretation
of neuroimaging results. The chapter “Vector-Based Approach for the Detection of
Initial Dips Using Functional Near-Infrared Spectroscopy” follows the progress in
functional NIRS detection of local brain dynamics from its beginnings, discusses
problems with single index analysis, and introduces a novel vector-based method, 
which could provide information on neural dynamics with a better temporal 
resolution. Finally, the chapter “Application of ICA and Dynamic Mixture Model to
Identify Microvasculature Activation in fMRI” provides a comprehensive descrip-
tion of a novel method for improving the quality of the functional MRI signal, 
which comprises a complex mixture of neuronal, metabolic, and vascular process
signals, and is additionally corrupted by multiple nonneuronal artifacts of instru-
mental, physiological, or subject-specific origin. The author presents both simula-
tions and experimental testing of the novel method, pointing out the advantages
and limitations of the proposed approach.

The second part of the book focuses on functional brain imaging, essential for
understanding spontaneous neural activity and brain mechanisms engaged in the
processing of external inputs, memory formation, and cognition. The chapter
“Simultaneous Smelling an Incense Odor and Putting the Hands Together to
Activate Specific Brain Areas” provides an example of the usefulness of MEG, a
high temporal and spatial resolution neuroimaging technique, for investigating the
changes in topology and dynamics of sensory processing evoked by multimodal 
inputs. In the chapter “Neuroimaging Reveals the Heterogeneous Neural Correlates
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of Reading Deficit in Individuals with Developmental Dyslexia,” the author pres-
ents a unique approach utilizing the functional MRI technique and multiple case 
approach for testing the prediction of the main dyslexia theories, including the 
Phonological Deficit Theory, Magnocellular Deficit Theory, and Cerebral Deficit 
Theory.

The third part of the book focuses on the role of structural imaging techniques as 
diagnostic tools in the evaluation of disease processes that affect the airway. The 
advanced imaging modalities, including CT, ultrasonography, and MRI, are dis-
cussed as indispensable tools in head and neck cancer evaluation. The fourth part 
of the book provides an example of the possible synergy between psychology, art 
(music), and neuroimaging in an attempt to reach the integrated mind and brain 
constructs.

Dr. Sanja Josef Golubić
Department of Physics,

Faculty of Science,
University of Zagreb,

Croatia Section 1
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Chapter 1

Supervised Sparse Components
Analysis with Application to Brain
Imaging Data†

Atsushi Kawaguchi

Abstract

We propose a dimension-reduction method using supervised (multi-block)
sparse (principal) component analysis. The method is first implemented through
basis expansion of spatial brain images, and the scores are then reduced through
regularized matrix decomposition to produce simultaneous data-driven selections
of related brain regions, supervised by univariate composite scores representing
linear combinations of covariates. Two advantages of the proposed method are that
it identifies the associations between brain regions at the voxel level and that
supervision is helpful for interpretation. The proposed method was applied to a
study on Alzheimer’s disease (AD) that involved using multimodal whole-brain
magnetic resonance imaging (MRI) and positron emission tomography (PET). For
illustrative purposes, we demonstrate cases of both single- and multimodal brain
imaging and longitudinal measurements.

Keywords: data-driven approach, dimension reduction, principal component
analysis, multimodal, multi-measurement

1. Introduction

Recently, multiple neuroimaging data sets per subject have become obtainable
due to the remarkable development of imaging techniques such as magnetic reso-
nance imaging (MRI) and positron emission tomography (PET), as well as com-
puter resources and technologies. Vandenberghe and Marsden [1] provide a review
on the use of PET and MRI integration technology, such as integrated scanning
devices, rather than data analysis. Other modalities such as diffusion MRIs (dMRIs)
and functional MRIs (fMRIs) are also useful in collecting brain-related information.
These multimodal imaging data sets have the potential to provide rich information
about human health and behavior, such as brain function and structure, from
different perspectives. From multiple measurements of a single-modal (or multi-
modal) technique, longitudinal changes in the status and combination of neuro

†Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed

to the design and implementation of ADNI and/or provided data but did not participate in analysis or

writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/

wp-content/uploads/how_to_apply/ ADNI_Acknowledgement_List.pdf
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biomarkers can be observed to support the prediction and early diagnosis of disease
and the classification of disease subtypes.

Multimodal brain imaging analysis is important in brain-related disease studies.
Arbabshirani et al. [2] provide many reviews on the subject. Imaging data analysis
makes a substantial contribution to the study of mental disorders. Most single-
modal or multimodal imaging studies concern dementia leading to Alzheimer’s
disease (AD) [3] (around 300 of the AD imaging studies searched in Ref. [2]).
Modalities considered in there are structural MRIs (sMRIs), fMRIs, dMRIs,
fluorodeoxyglucose PETs, and Amyloid/Tau PETs. In a recent study, Ref. [4]
examined sMRI and cerebrospinal fluid (CSF) markers. Magnetoencephalography
(MEG) is also useful as AD biomarker, and its localization using sMRI has high
accuracy [5]. Schizophrenia is the second most studied disorder after dementia.
Shah et al. [6] provide an example of multimodal meta-analysis. For Huntington’s
disease, white matter is evaluated using dMRI [7]. For mood disorders (depressive
disorder and bipolar disorder), Refs. [8, 9] provide a review of the machine learning
method. Moeller and Paulus [10] studied the longitudinal prediction of relapse for
substance-related disorders using MRI, fMRI, EEG, and PET. Moser et al. [11]
studied schizophrenia and bipolar disorder using multimodal imaging data analysis.
dMRI is also effective for analyzing these conditions [12]. For developmental dis-
abilities, Ref. [13] investigated volume reductions in attention-deficit hyperactivity
disorder (ADHD) with 1713 participants. Aoki et al. [14] reviewed dMRI studies
and conducted meta-analysis for ADHD. Li et al. [15] provide a review of imaging
studies in autism spectrum disorder. For anxiety disorder, Ref. [16] applied support
vector machine (SVM) to multimodal data. They used clinical questionnaires and
measured cortisol release, and gray and white matter volumes in subjects with
generalized anxiety disorder and major depression and in healthy subjects. Steiger
et al. [17] investigated cortical volume, diffusion tensor imaging, and network-
based statistics using multimodal analysis for social anxiety disorder. For borderline
personality disorder, Ref. [18] conducted an imaging-based meta-analysis of 10
studies. In cancer research, especially that on glioblastoma multiforme, multimodal
imaging analysis is useful for identifying some types of tumors and evaluating
patient prognosis (for more details, see [19]). Genome-related data can be regarded
as a modality and called imaging genetics when analyzed in combination with
imaging data [20].

One important technique for single- and multimodal imaging analysis is predic-
tion, which is useful for the support of disease diagnosis and the selection of
treatments [21]. SVM is the most used method not only in neuroimaging but also in
the life sciences in high-dimensional data analysis. The random forest method is also
useful due to their capability for complex interactions based on the tree model
[22, 23]. For multimodal analysis, multiple kernel learning [24] and (multimodal)
deep learning [25, 26] have been developed. Janssen et al. [27] reviewed machine
learning methods for psychiatric prognosis. Related statistical methodology
appeared as multi-omics in bioinformatics, and Ref. [28] reviewed these methods
while introducing an R package, mixOmics.

Analysis for such discovery and evaluation is based on the detection of the
buried signal in the noise (irrelevant information). Statistical analysis is useful for
this purpose; however, it suffers from the ultrahigh dimensional and complex
structure of this data, and appropriate dimension reduction is therefore required.
Even if a machine learning method is used, appropriate input (feature) should be
specified to obtain interpretable results because the method is feasible for high-
dimensional procedures but not ultrahigh dimensional ones. A region-of-interest-
based analysis was the leading approach. In contrast, whole-brain analysis is more
informative, and if it is combined with a data-driven approach, it can potentially
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obtain undiscovered knowledge. In [29], by using ReliefF [30], features such as the
fractional amplitude of low-frequency fluctuations from resting-state fMRIs, seg-
mented gray matter from sMRIs, and fractional anisotropy from dMRIs were
extracted. Component analysis based on low-rank approximation is a successful
data-driven approach in the fields of not only neuroimaging but also other biologi-
cal and medical big data analyses, including principal component analysis, partial
lease squares, canonical correlation analysis (CCA), independent component anal-
ysis (ICA), and nonnegative matrix factorization. These methods are organized into
a matrix decomposition framework consisting of score and loading (weight) matri-
ces. The score matrix, with same row length as the number of subjects, is regarded
as dimension-reduced data and is suitable for application to statistical models. The
weight matrix, with the same column length as the number of features in the
imaging data, is regarded as the basis images. All these methods, except for ICA,
have a derivation sparse approach with a regularized matrix decomposition to pose
small weights to zeros, which helps estimation by avoiding irrelevant information.
In addition, the resulting weights can be interpreted to mean that the corresponding
features with nonzero weights contribute to the basis image, specifically to produce
data-driven selections of brain regions related to that component.

These methods also consider another direction in which the application of mul-
timodal imaging data can be extended. Supplementary information from another
data set can also be useful for the interpretation of the output. For this purpose,
appropriate data fusion or integration techniques are required and are useful for
multisite studies. In neuroimaging data analysis, multimodal CCA (mCCA) [31] and
mCCA + joint ICA [32] have been developed on the schizophrenia study. Multivar-
iate data fusion approaches were categorized by [33] into asymmetric or symmetric
data and blind or semi-blind data in symmetric approach. The asymmetric approach
is a regression-type approach and includes specific modalities such as dMRI and
electroencephalography. The symmetric approach is a correlation-type approach
and allows relationships in both directions. Kawaguchi [19] constructed a risk score
for glioblastomas based on MRI data and proposed a two-step dimension-reduction
method using a radial basis function-supervised multi-block sparse principal com-
ponent analysis (SMS-PCA) method. Kawaguchi and Yamashita [34] proposed a
more general case including a PLS or CCA framework and applied it to MRI, PET,
and SNP data sets. Yoshida et al. [4] analyze imaging and non-imaging data with
network structure by using the PLS.

In this chapter, we applied SMS-PCA to MRI and PET data sets and a longitudi-
nal MRI data set. One of the key features in the analysis is a multi-block technique
which can achieve structural dimension reduction with interpretable parameters
(weights for each data set and the possibility of combining them). Although it is not
the focus of this chapter, the dimension reduction prior to SMS-PCA is conducted
using 3D basis functions. Specifically, our dimension reduction takes place in two
steps, and, as described in [35] which applied these techniques to longitudinal
study, this two-step approach yields a composite basis function expression with a
flexible shape. The organization of this chapter is as follows. Section 2 describes the
methodology of the SMS-PCA, which is applied to real data in Section 3. The
characteristics of the method, found through its application, are discussed in
Section 4.

2. Methods

We describe the proposed method in this section. The contents are similar to
Ref. [19].
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small weights to zeros, which helps estimation by avoiding irrelevant information.
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In this chapter, we applied SMS-PCA to MRI and PET data sets and a longitudi-
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which can achieve structural dimension reduction with interpretable parameters
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the focus of this chapter, the dimension reduction prior to SMS-PCA is conducted
using 3D basis functions. Specifically, our dimension reduction takes place in two
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study, this two-step approach yields a composite basis function expression with a
flexible shape. The organization of this chapter is as follows. Section 2 describes the
methodology of the SMS-PCA, which is applied to real data in Section 3. The
characteristics of the method, found through its application, are discussed in
Section 4.

2. Methods

We describe the proposed method in this section. The contents are similar to
Ref. [19].
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2.1 Priory dimension reduction

S ¼ sαf gα¼1,…,n is the n�N matrix whose column corresponds to the vectorized
original image data. As the dimensions for each mth image are the same, we use the
same basis function to reduce the dimension from N to q. X ¼ SB is the n� q
matrix, where B is theN � qmatrix whose jth column corresponds to the vectorized
basis function with the jth knot being the center. Note that knots are pre-specified
to span the space equally, as shown in Figure 1. In this example, four-pixel equal
spanning knots are applied.

2.2 Objective function

Dimension reduction using the basis function is then followed by the SMS-PCA
method, considering (sample) correlations based on data values. We consider
score t for n� q matrices Xm, where m ¼ 1, 2,…,M with the following multi-block
structure:

t ¼ ∑
M

m¼1
bmXmwm ¼ ∑

M

m¼1
bmtm, (1)

wherewm is the weight vector for themth sub-blockXm and bm is the weight for
the superblock. Here, it should be noted that the scores in Eq. (1) are referred to as
the super scores, whereas tm ¼ Xmwm is referred to as the block score. Figure 2
schematically describes the score structure for the case of M ¼ 2.

Thus, the super score has a hierarchical structure for each individual and can be
used in an application such as the construction of a diagnosis score.

When matrix Xm is normalized by its columns, the weights
w ¼ w1;w2;…;wMð Þ⊤ and b ¼ b1; b2;…; bMð Þ⊤ are estimated by maximizing the
function

L b;wð Þ ¼ 1� μð Þ t⊤t þ μ t⊤Z �∑M
m¼1Pλm wmð Þ (2)

Figure 1.
Dimension reduction via basis function.
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subject to wmk k22 ¼ 1 and bk k22 ¼ 1 with �k k2 as the L2 norm, where 0≤μ≤1 is the
proportion of the supervision, Pλ xð Þ is the penalty function, [Pλ xð Þ ¼ 2λ xj j is used in
this study], and λ>0 is the regularized parameter that is used to control the sparsity.
The larger value of the regularization parameter λm has many nonzero elements
in wm.

2.3 Optimization

The algorithm given in Table 1 is used to estimate the weights in Eq. (1) by
maximizing L in Eq. (2). The rationality behind this approach is provided in [19].

Note that the deflation step yields multiple components and has several alterna-
tives; that is, through K time iteration for step. 1 to 3 of the algorithm, we can obtain

K component super scores t 1ð Þ; …; t Kð Þ with t kð Þ¼ t kð Þ
1 ;…; t kð Þ

M

� �
⊤

.

2.4 Parameter selection

The optimal value for λ ¼ λ1;…; λMð Þ⊤ is selected by minimizing the Bayesian
information criterion (BIC):

Figure 2.
Score structure.

1. Initialize t with tk k2 ¼ 1.
2. Repeat until convergence:

2.1. Set ewm ¼ hλm bmX⊤
m 1� μð Þt þ μZf g� �

, where hλ yð Þ ¼ sign yð Þ yj j>λð Þþ, and normalize as
ŵm ¼ ewm= ewmk k2 m ¼ 1; 2;…;Mð Þ.

2.2. Set tm ¼ Xmŵm and ebm ¼ t⊤m 1� μð Þt þ μZf g; then set eb ¼ eb1;eb2;…;ebMÞ
⊤�
and

normalize as b̂ ¼ eb=kebk2.
2.3. Set t ¼ ∑M

m¼1b̂mXmŵm.

3. (Deflation step) Set pm ¼ X⊤
mtm=t

⊤
mtm and X̂m ¼ tmp⊤

m, and Xm  Xm � X̂m.

Table 1.
Algorithm for SMS-PCA method.
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BIC λð Þ ¼ log
∑M

m¼1 X̂
rð Þ
m �Xm

���
���
2

nMq

0
B@

1
CAþ log nMqð Þ

nMq
# nonzero elements in wmð Þ,

where X̂ rð Þ
m ¼ T rð Þ

m P rð Þ⊤
m with T rð Þ

m ¼ t 1ð Þ
m ;…; t rð Þ

m

h i
and P rð Þ

m ¼ p 1ð Þ
m ;…;p rð Þ

m

� �
is obtained

from r deflation steps (the projection of Xm onto the r-dimensional subspace).
There are several search strategies for optimization, and these are introduced in the
software options below.

2.5 Software

The statistical software R package msma is provided to implement the method
described in Ref. [34] where the SMS-PCA method is a part of the package and the
PLS type can also be implemented. The package is available from the Comprehen-
sive R Archive Network (CRAN) at http://CRAN.R-project.org/package=msma.
Four-parameter search methods are available. Here, the parameters are λm and the
number of components. The “simultaneous” method identifies the number of com-
ponents by searching the regularized parameters in each component. The
“regpara1st” method identifies the regularized parameters by fixing the number of
components and then searching for the number of components with the selected
regularized parameters. The “ncomp1st” method identifies the number of compo-
nents with a regularized parameter of 0 and then searches for the regularized
parameters with the selected number of components. The “regparaonly” method
searches for the regularized parameters with a fixed number of components.

In this chapter, the “ncomp1st”method was applied with nonzero sparsity when
the number of components was selected because, in our experience, the BIC value
suffered from the high dimensionality of the data. The basic R code for this method
is as follows:

tuneparams = optparasearch(X=X, Z=Z, search.method=“ncomp1st”,
maxpct4ncomp=0.5, muX=0.5)

where the argument maxpct4ncomp = 0.5 means that 0:5 λmax is used as the
regularized parameter when the number of components is searched and where λmax

is the maximum of the regularized parameters among the possible candidates. In
order to obtain the final fit result with optimized parameters, the following code
should be implemented:

fit1 = msma(X=X, Z=Z, comp=tuneparams$optncomp, lambdaX=tuneparams
$optlambdaX, lambdaY=tuneparams$optlambdaY, muX = 0.5)

For more details, please see the package manual.

3. Application

In this section, we apply the SMS-PCA described in the previous section to real
data. The data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI) and
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early Alzheimer’s disease (AD). We use two types of data set: baseline measurement
with multimodal MRI and PET images and repeated measuring MRI images.

3.1 Multimodality

3.1.1 Data

Baseline imaging data were collected from 106 subjects with mean ages of
75.2 years for the 54 normal cognitive subjects and 72.9 years for the 27 patients with
dementia. This data set was somewhat larger than that of [34] because in this study
single-nucleotide polymorphism (SNP) was not considered and subjects withmissing
SNP data were included. Table 2 summarizes the characteristics of these patients.

We consider imaging data from two modalities, MRI X1 and PET X2, namely,
M ¼ 2. The preprocessing method is the same as that used in [34]. For the basis
function, we used four-voxel (therefore, h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 42
p

¼ 6:93) equal spacing knots
because of the results of our simulation study. The clinical outcome to supervise is
given by Z ¼ 3:17 � CDRþ 0:11� ADAS13� 0:57 �MMSE where CDR is the
clinical dementia rating score, ADAS13 is the Alzheimer’s disease assessment scale-
cognitive subscale, and MMSE is the mini-mental state examination score. These
coefficients were the same as in [34]. The SMSMA method was applied to the data
X1;X2;Zð Þ with parameters μ ¼ 0,0:25,0:5, and 0:75.

3.1.2 Results

The original data with dimensions of 2,122,945 (= 121 � 145 � 121) was reduced
to 7,162 using the basis functions for each imaging data set. The number of compo-
nents were selected as 8 for all μ = 0, 0.25, 0.5, 0.75, 1. Figure 3 shows the correla-
tion matrix from the dataset with the binary outcome, AD or Normal, and the
resulting super scores for each μ.

The correlations between the super scores were small except for μ ¼ 1, and for
μ ¼ 0, the second component had a high correlation with the outcome. In contrast,
for μ>0, the first component had the highest correlation with the outcome.

Table 3 shows the results for the multiple logistic regression model with AD or
normal as the outcomes and the super scores as predictors for each μ. The numbers

Dementia Normal p

n 52 54

Age (mean [sd]) 75.41 (7.18) 74.93 (4.89) 0.684

PTGENDER = Male (%) 31 (59.6) 36 (66.7) 0.582

APOE4 (%) <0.001

0 17 (32.7) 39 (72.2)

1 29 (55.8) 13 (24.1)

2 6 (11.5) 2 (3.7)

PTEDUCAT (mean [sd]) 14.19 (3.04) 15.89 (2.99) 0.005

CDRSB (mean [sd]) 4.54 (1.73) 0.03 (0.12) <0.001

ADAS11 (mean [sd]) 18.70 (5.63) 6.56 (3.28) <0.001

ADAS13 (mean [sd]) 28.94 (6.30) 10.08 (4.30) <0.001

MMSE (mean [sd]) 23.38 (2.07) 28.87 (1.24) <0.001

Table 2.
Characteristic for data set 1.

9

Supervised Sparse Components Analysis with Application to Brain Imaging Data
DOI: http://dx.doi.org/10.5772/intechopen.80531



BIC λð Þ ¼ log
∑M

m¼1 X̂
rð Þ
m �Xm

���
���
2

nMq

0
B@

1
CAþ log nMqð Þ

nMq
# nonzero elements in wmð Þ,

where X̂ rð Þ
m ¼ T rð Þ

m P rð Þ⊤
m with T rð Þ

m ¼ t 1ð Þ
m ;…; t rð Þ

m

h i
and P rð Þ

m ¼ p 1ð Þ
m ;…;p rð Þ

m

� �
is obtained

from r deflation steps (the projection of Xm onto the r-dimensional subspace).
There are several search strategies for optimization, and these are introduced in the
software options below.

2.5 Software

The statistical software R package msma is provided to implement the method
described in Ref. [34] where the SMS-PCA method is a part of the package and the
PLS type can also be implemented. The package is available from the Comprehen-
sive R Archive Network (CRAN) at http://CRAN.R-project.org/package=msma.
Four-parameter search methods are available. Here, the parameters are λm and the
number of components. The “simultaneous” method identifies the number of com-
ponents by searching the regularized parameters in each component. The
“regpara1st” method identifies the regularized parameters by fixing the number of
components and then searching for the number of components with the selected
regularized parameters. The “ncomp1st” method identifies the number of compo-
nents with a regularized parameter of 0 and then searches for the regularized
parameters with the selected number of components. The “regparaonly” method
searches for the regularized parameters with a fixed number of components.

In this chapter, the “ncomp1st”method was applied with nonzero sparsity when
the number of components was selected because, in our experience, the BIC value
suffered from the high dimensionality of the data. The basic R code for this method
is as follows:

tuneparams = optparasearch(X=X, Z=Z, search.method=“ncomp1st”,
maxpct4ncomp=0.5, muX=0.5)

where the argument maxpct4ncomp = 0.5 means that 0:5 λmax is used as the
regularized parameter when the number of components is searched and where λmax

is the maximum of the regularized parameters among the possible candidates. In
order to obtain the final fit result with optimized parameters, the following code
should be implemented:

fit1 = msma(X=X, Z=Z, comp=tuneparams$optncomp, lambdaX=tuneparams
$optlambdaX, lambdaY=tuneparams$optlambdaY, muX = 0.5)

For more details, please see the package manual.

3. Application

In this section, we apply the SMS-PCA described in the previous section to real
data. The data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI) and

8

Neuroimaging - Structure, Function and Mind

early Alzheimer’s disease (AD). We use two types of data set: baseline measurement
with multimodal MRI and PET images and repeated measuring MRI images.

3.1 Multimodality

3.1.1 Data

Baseline imaging data were collected from 106 subjects with mean ages of
75.2 years for the 54 normal cognitive subjects and 72.9 years for the 27 patients with
dementia. This data set was somewhat larger than that of [34] because in this study
single-nucleotide polymorphism (SNP) was not considered and subjects withmissing
SNP data were included. Table 2 summarizes the characteristics of these patients.

We consider imaging data from two modalities, MRI X1 and PET X2, namely,
M ¼ 2. The preprocessing method is the same as that used in [34]. For the basis
function, we used four-voxel (therefore, h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 42
p

¼ 6:93) equal spacing knots
because of the results of our simulation study. The clinical outcome to supervise is
given by Z ¼ 3:17 � CDRþ 0:11� ADAS13� 0:57 �MMSE where CDR is the
clinical dementia rating score, ADAS13 is the Alzheimer’s disease assessment scale-
cognitive subscale, and MMSE is the mini-mental state examination score. These
coefficients were the same as in [34]. The SMSMA method was applied to the data
X1;X2;Zð Þ with parameters μ ¼ 0,0:25,0:5, and 0:75.

3.1.2 Results

The original data with dimensions of 2,122,945 (= 121 � 145 � 121) was reduced
to 7,162 using the basis functions for each imaging data set. The number of compo-
nents were selected as 8 for all μ = 0, 0.25, 0.5, 0.75, 1. Figure 3 shows the correla-
tion matrix from the dataset with the binary outcome, AD or Normal, and the
resulting super scores for each μ.

The correlations between the super scores were small except for μ ¼ 1, and for
μ ¼ 0, the second component had a high correlation with the outcome. In contrast,
for μ>0, the first component had the highest correlation with the outcome.

Table 3 shows the results for the multiple logistic regression model with AD or
normal as the outcomes and the super scores as predictors for each μ. The numbers

Dementia Normal p

n 52 54

Age (mean [sd]) 75.41 (7.18) 74.93 (4.89) 0.684

PTGENDER = Male (%) 31 (59.6) 36 (66.7) 0.582

APOE4 (%) <0.001

0 17 (32.7) 39 (72.2)

1 29 (55.8) 13 (24.1)

2 6 (11.5) 2 (3.7)

PTEDUCAT (mean [sd]) 14.19 (3.04) 15.89 (2.99) 0.005

CDRSB (mean [sd]) 4.54 (1.73) 0.03 (0.12) <0.001

ADAS11 (mean [sd]) 18.70 (5.63) 6.56 (3.28) <0.001

ADAS13 (mean [sd]) 28.94 (6.30) 10.08 (4.30) <0.001

MMSE (mean [sd]) 23.38 (2.07) 28.87 (1.24) <0.001

Table 2.
Characteristic for data set 1.

9

Supervised Sparse Components Analysis with Application to Brain Imaging Data
DOI: http://dx.doi.org/10.5772/intechopen.80531



of 5% statistically significant components were 3, 4, 3, 3, and 0 for μ = 0, 0.25, 0.5,
0.75, and 1, respectively. The minimum numbers of nonzero subweights were 552,
581, 574, 523, and 1075, respectively.

Figure 4 shows the reconstructed subweights Bw1 and Bw2 for the MRI and PET
data, respectively, overlying a structural brain image shown for the most correlated
components with the binary outcome from each of μ ¼ 0,0:5,0:75, and 1. The
images for μ ¼ 0:25 were similar to those of μ ¼ 0:5,0:75 and are not shown here.

Figure 5 shows the reconstructed subweights Bw1 and Bw2 overlying a struc-
tural brain image and bar plots for the super-weights (right bottom) in the case of
μ ¼ 0:5 for all components.

In each component, the negative and positive sides are represented. These can
be interpreted by looking at the sign of the super-weight. Most cases remain on one
side of 0 (positive or negative), except for components 5 to 8. The super-weights
are similar between MRI and PET.

A 10-fold cross validated ROC analysis (Figure 6A) was conducted to evaluate
the diagnostic probabilities estimated from the multivariable logistic regression
mode whose coefficients and p-values are shown in Table 3. For comparison, the
single modalities, MRI (Figure 6B) and PET (Figure 6C), were also analyzed.

In the case of the multimodal MRI and PET (Figure 6A), μ ¼ 1 had the highest
AUC value (0.984) following by μ ¼ 0:75 (AUC = 0.880). In the case of the single-
modal MRI (Figure 6B), all values were below the AUC values of the multimodal
case. In the case of the single-modal PET (Figure 6C), μ ¼ 1 and 0:75 outperformed
the multimodal case, and the other values (μ ¼ 0,0:25, and 0:5) did not.

3.2 Multi-measurements

3.2.1 Data

The second data set was a collection of repeated measured imaging data from
68 patients with mild cognitive impairment (MCI). There were two groups, the
conversion to dementia MCI (cMCI) group and the stable MCI (not converted
to dementia, sMCI) group. MRI data measured at four time points were used.
For the cMCI group, the four time points were just before diagnosis of conversion.

Figure 3.
Correlations between super scores.
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of 5% statistically significant components were 3, 4, 3, 3, and 0 for μ = 0, 0.25, 0.5,
0.75, and 1, respectively. The minimum numbers of nonzero subweights were 552,
581, 574, 523, and 1075, respectively.

Figure 4 shows the reconstructed subweights Bw1 and Bw2 for the MRI and PET
data, respectively, overlying a structural brain image shown for the most correlated
components with the binary outcome from each of μ ¼ 0,0:5,0:75, and 1. The
images for μ ¼ 0:25 were similar to those of μ ¼ 0:5,0:75 and are not shown here.

Figure 5 shows the reconstructed subweights Bw1 and Bw2 overlying a struc-
tural brain image and bar plots for the super-weights (right bottom) in the case of
μ ¼ 0:5 for all components.

In each component, the negative and positive sides are represented. These can
be interpreted by looking at the sign of the super-weight. Most cases remain on one
side of 0 (positive or negative), except for components 5 to 8. The super-weights
are similar between MRI and PET.

A 10-fold cross validated ROC analysis (Figure 6A) was conducted to evaluate
the diagnostic probabilities estimated from the multivariable logistic regression
mode whose coefficients and p-values are shown in Table 3. For comparison, the
single modalities, MRI (Figure 6B) and PET (Figure 6C), were also analyzed.

In the case of the multimodal MRI and PET (Figure 6A), μ ¼ 1 had the highest
AUC value (0.984) following by μ ¼ 0:75 (AUC = 0.880). In the case of the single-
modal MRI (Figure 6B), all values were below the AUC values of the multimodal
case. In the case of the single-modal PET (Figure 6C), μ ¼ 1 and 0:75 outperformed
the multimodal case, and the other values (μ ¼ 0,0:25, and 0:5) did not.

3.2 Multi-measurements

3.2.1 Data

The second data set was a collection of repeated measured imaging data from
68 patients with mild cognitive impairment (MCI). There were two groups, the
conversion to dementia MCI (cMCI) group and the stable MCI (not converted
to dementia, sMCI) group. MRI data measured at four time points were used.
For the cMCI group, the four time points were just before diagnosis of conversion.

Figure 3.
Correlations between super scores.

10

Neuroimaging - Structure, Function and Mind

μ
=
0.
00

μ
=
0.
25

μ
=
0.
50

μ
=
0.
75

μ
=
1

E
st
im

at
e

P
r(
>|
z|
)

E
st
im

at
e

P
r(
>|
z|
)

E
st
im

at
e

P
r(
>|
z|
)

E
st
im

at
e

P
r(
>|
z|
)

E
st
im

at
e

P
r(
>|
z|
)

co
m
p1

�0
.0
21
0

0.
06

15
0.
08

27
<0

.0
00

1
0.
08

32
<0

.0
00

1
0.
08

57
<0

.0
00

1
4.
28
7

0.
99

82

co
m
p2

0.
08

82
<0

.0
00

1
0.
04

60
0.
00

30
0.
04

58
0.
00

31
0.
04

51
0.
00

39
2.
55
5

0.
99

89

co
m
p3

�0
.0
62

1
0.
00

01
0.
01

80
0.
09

23
0.
01

80
0.
09

20
0.
01

81
0.
09

52
4.
63

3
0.
99

95

co
m
p4

�0
.0
07

2
0.
61
26

0.
00

37
0.
79
53

0.
00

44
0.
75
83

0.
00

64
0.
65
74

1.
82
7

0.
99

87

co
m
p5

�0
.0
42

4
0.
02

28
0.
04

52
0.
04

32
0.
04

30
0.
02

03
0.
04

31
0.
02

06
3.
90

5
0.
99

88

co
m
p6

�0
.0
36

4
0.
09

00
0.
03

96
0.
03

20
0.
04

03
0.
07

15
0.
04

25
0.
06

58
4.
99

4
0.
99

84

co
m
p7

0.
04

46
0.
08

91
0.
05

05
0.
06

36
0.
05

10
0.
06

19
0.
05

35
0.
05

49

co
m
p8

0.
03

36
0.
25
17

�0
.0
22
8

0.
38

04
�0

.0
22
6

0.
38

16
�0

.0
21
8

0.
39

04

T
ab

le
3.

R
es
ul
ts
fo
r
m
ul
tiv

ar
ia
bl
e
lo
gi
st
ic

re
gr
es
sio

n
an

al
ys
is.

11

Supervised Sparse Components Analysis with Application to Brain Imaging Data
DOI: http://dx.doi.org/10.5772/intechopen.80531



For the sMCI group, the four time points were from the baseline for the entire
period of the study. Groups were matched for age, gender, and intracranial volume.
Table 4 summarizes the characteristics of these patients at baseline (at the first
image observation).

For imaging data processing, we used the VBM8 toolbox. For the basis function,
we used four-voxel equal spacing knots, as in the first study in the previous section.
The clinical outcome is given by Z ¼ 0:44� CDRþ 0:12� ADAS13� 0:11�
MMSE: The coefficients were different from those in the first study because the
target population was different.

3.2.2 Results

The original data with dimensions of 2,122,945 (=121 � 145 � 121) was reduced
to 7162 using basis functions for each imaging data set. The number of components

Figure 4.
Subweights.

Figure 5.
Sub- and super-weights for all components of μ ¼ 0:5.
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selected was 6 for μ ¼ 0,0:25,0:5,0:75 and 4 for μ ¼ 1. Table 5 shows the results for
the multiple logistic regression model with cMCI or sMCI as the outcomes and the
super scores as the predictors for each μ. The numbers of 5% statistically significant
components were 2, 3, 3, 3, and 2 for μ ¼ 0,0:25,0:5,0:75; 1, respectively. The
minimum numbers of nonzero subweights were 724, 736, 749, 753, and 852,
respectively.

A tenfold cross validated ROC analysis (Figure 7) was conducted to evaluate the
diagnostic probabilities estimated from the multivariable logistic regression mode
whose coefficients and p-values are shown in Table 5.

For comparison, the single-modal analysis for each time point was conducted.
The fourth time point (MRI4), which is closest to the MCI conversion diagnosis
time, had the highest AUC values, and these were higher than the multimodal
values (Figure 8).

Figure 9 shows the first component subweights, Bwm (m ¼ 1, 2, 3, 4), for the
four time points for μ ¼ 0 and 0.5. In the case of μ ¼ 0:5, the hippocampus area was
related to the components, and in the case of μ ¼ 0, the parietal lobe was.

Figure 6.
Results for cross-validated ROC analysis for (A) MRI and PET, (B) MRI, and (C) PET.

cMCI sMCI p

n 34 34

Age (mean [sd]) 76.06 (5.94) 75.91 (5.90) 0.922

PTGENDER = 2 (%) 10 (29.4) 10 (29.4) 1.000

APOE4 (%) 0.040

0 12 (35.3) 22 (64.7)

1 18 (52.9) 11 (32.4)

2 4 (11.8) 1 (2.9)

PTEDUCAT (mean [sd]) 16.15 (3.06) 15.50 (2.86) 0.371

CDRSB (mean [sd]) 1.76 (1.07) 1.32 (0.73) 0.051

ADAS11 (mean [sd]) 12.09 (3.49) 9.40 (4.08) 0.005

ADAS13 (mean [sd]) 19.65 (4.31) 15.93 (6.10) 0.005

MMSE (mean [sd]) 26.71 (1.71) 27.88 (1.70) 0.006

Table 4.
Characteristic for data set 2.
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Figure 7.
Results for cross validated ROC analysis.

Figure 8.
Subweights for times 1 and 4.

Figure 9.
Subweights for all time points for μ ¼ 0 and 0.5.
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Figure 8.
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Figure 9.
Subweights for all time points for μ ¼ 0 and 0.5.
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Figure 10 shows the corresponding super-weights. This result should be care-
fully interpreted. For time 4, the sparsest block weights were obtained, and thus the
weight values were larger than those of times 1 to 3, which were balanced by the
small super-weight. As a result, the super score for this component has the mean
value of the block scores.

4. Discussion

In this chapter, the SMS-PCA method was introduced and applied to multiple
measured neuroimaging data sets. The first data set consisted of two different types
of images, MRI and PET. The second data set consisted of repeated MRI measure-
ments (the same type of image). These imaging data have many voxels per person
which were reduced using the basis function prior to conducting the SMS-PCA. The
multi-block feature of the SMS-PCA also caused further reduction in each block,
and their summary was obtained in the super level where the weights were the
relationship and the scores were used in the prediction model.

One of the key features in the SMS-PCA is that it is supervised and its proportion
to (self) variance is parametrized by μ. In each study, the impact of μ was studied.
The case of μ ¼ 1 resulted in only supervision, that is, only the correlation between
the score and the outcome, without the variance of the score. As in an original PCA,
maximizing the variance of the score corresponds to μ ¼ 0, and the correlated vari-
ables (voxels) have relatively high weights for each component. Thus, the messy
maps for the block weights overlaying the brain in the case of μ ¼ 1 were reason-
able. In both applications, because μ ¼ 0:25,0:5, and 0:75 had similar results, a
possible large value in μ<1, or the median value μ ¼ 0:5 with a trade-off, can be
selected as optimal.

Repeated measured imaging data analysis was studied in [35] which reduced the
imaging dimensions using basis functions but did this independent for each image.
In contrast, in this study, the correlation between measurements at different time
points is considered. That is, simultaneous temporal and spatial correlation was
considered. This approach was limited by the need that the number of images for
each individual be the same, and this will be improved in future work. In addition,
the method introduced in this chapter can incorporate modalities such as network
models which would need to summarize the information into the component. This
research is in progress.

Figure 10.
Super-weights.
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5. Conclusion

Although there is room for improvement in this method, this study showed
reasonable results when the method was applied to the dementia study. In conclu-
sion, this data-driven approach would be helpful for exploratory neuroimaging data
analysis.
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Chapter 2

Vector-Based Approach for 
the Detection of Initial Dips 
Using Functional Near-Infrared 
Spectroscopy
Toshinori Kato

Abstract

Functional near-infrared spectroscopy (fNIRS) is a non-invasive method for the 
detection of local brain activity using changes in the local levels of oxyhemoglobin 
(oxyHb) and deoxyhemoglobin (deoxyHb). Simultaneous measurement of the 
levels of oxyHb and deoxyHb is an advantage of fNIRS over other modalities. This 
review provides a historical description of the physiological problems involved 
in the accurate identification of local brain activity using fNIRS. The need for 
improved spatial and temporal identification of local brain activity is described in 
terms of the physiological challenges of task selection and placement of probes. 
In addition, this review discusses challenges with data analysis based on a single 
index, advantages of the simultaneous analysis of multiple indicators, and recently 
established composite indicators. The vector-based approach provides quantitative 
imaging of the phase and intensity contrast for oxygen exchange responses in a time 
series and may detect initial dips related to neuronal activity in the skull. The vector 
plane model consists of orthogonal vectors of oxyHb and deoxyHb. Initial dips 
are hemodynamic reactions of oxyHb and deoxyHb induced by increased oxygen 
consumption in the early tasks of approximately 2–3 seconds. The new analytical 
concept of fNIRS, able to effectively detect initial dips, may extend further the 
clinical and social applications of fNIRS.

Keywords: functional near-infrared spectroscopy, fNIRS, initial dip, phase, vector-
based analysis, cerebral oxygen exchange, COE, oxyhemoglobin, deoxyhemoglobin

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive method for 
the detection of brain activity using changes in the local levels of oxyhemoglobin 
(oxyHb), deoxyhemoglobin (deoxyHb), and total hemoglobin (total Hb) [1]. fNIRS 
imposes fewer physical restrictions on patients compared with positron emission 
tomography (PET) or functional magnetic resonance imaging (fMRI), allowing 
investigators to measure and analyze cerebral circulation and metabolism while 
the patient walks or moves his/her upper body. Recently, studies showed that brain 
activity during rehabilitation [2] and car driving [3–6] may also be measured using 
fNIRS. In 1991, the first study of fNIRS utilizing localized changes in the levels 



23

Chapter 2

Vector-Based Approach for 
the Detection of Initial Dips 
Using Functional Near-Infrared 
Spectroscopy
Toshinori Kato

Abstract

Functional near-infrared spectroscopy (fNIRS) is a non-invasive method for the 
detection of local brain activity using changes in the local levels of oxyhemoglobin 
(oxyHb) and deoxyhemoglobin (deoxyHb). Simultaneous measurement of the 
levels of oxyHb and deoxyHb is an advantage of fNIRS over other modalities. This 
review provides a historical description of the physiological problems involved 
in the accurate identification of local brain activity using fNIRS. The need for 
improved spatial and temporal identification of local brain activity is described in 
terms of the physiological challenges of task selection and placement of probes. 
In addition, this review discusses challenges with data analysis based on a single 
index, advantages of the simultaneous analysis of multiple indicators, and recently 
established composite indicators. The vector-based approach provides quantitative 
imaging of the phase and intensity contrast for oxygen exchange responses in a time 
series and may detect initial dips related to neuronal activity in the skull. The vector 
plane model consists of orthogonal vectors of oxyHb and deoxyHb. Initial dips 
are hemodynamic reactions of oxyHb and deoxyHb induced by increased oxygen 
consumption in the early tasks of approximately 2–3 seconds. The new analytical 
concept of fNIRS, able to effectively detect initial dips, may extend further the 
clinical and social applications of fNIRS.

Keywords: functional near-infrared spectroscopy, fNIRS, initial dip, phase, vector-
based analysis, cerebral oxygen exchange, COE, oxyhemoglobin, deoxyhemoglobin

1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a non-invasive method for 
the detection of brain activity using changes in the local levels of oxyhemoglobin 
(oxyHb), deoxyhemoglobin (deoxyHb), and total hemoglobin (total Hb) [1]. fNIRS 
imposes fewer physical restrictions on patients compared with positron emission 
tomography (PET) or functional magnetic resonance imaging (fMRI), allowing 
investigators to measure and analyze cerebral circulation and metabolism while 
the patient walks or moves his/her upper body. Recently, studies showed that brain 
activity during rehabilitation [2] and car driving [3–6] may also be measured using 
fNIRS. In 1991, the first study of fNIRS utilizing localized changes in the levels 



Neuroimaging - Structure, Function and Mind

24

of oxyHb and deoxyHb was conducted by Kato and his colleagues at the National 
Center of Neurology and Psychiatry, Tokyo, Japan [1].

This study was the first to demonstrate that the activation of Hb in the human 
brain during photic stimuli was associated with increased levels of oxyHb, 
deoxyHb, and total Hb in the visual cortex. Of note, the measurements in the 
prefrontal cortex did not show clinically meaningful changes in the levels of these 
three indices. The original fNIRS technique was able to detect local activation of the 
brain during a task that is stronger than the signals during rest, by placing pairs of 
probes 2.5 cm apart on the scalp over the targeted cortex [7–9].

Thus, fNIRS solved the problem of oxygenation monitoring in NIRS [10, 11]. 
The measurement of targeted temporal changes in task-related activation markedly 
reduced data noise from the blood flow in the scalp at rest and from artifact-related 
bodily movement. Nowadays, more than 25 years later, statistical processing and 
mapping of changes in the levels of hemoglobin measured by fNIRS are used for the 
evaluation of brain activity.

The advantage of fNIRS over fMRI and other modalities is the ability to simulta-
neously and independently measure the levels of oxyHb and deoxyHb. Combined, 
these data may be used as indices reflecting changes in both blood volume and 
oxygenation.

However, the temporal resolution of fNIRS is fairly low on a 40–100 ms scale, 
compared with the underlying neural activity which is spanning from 1 to 3 ms 
of action potential firing and can be recorded extracranially using magnetoen-
cephalography (MEG). MEG can be sensitive on subcortical activity in a case of 
large extent of activated neuronal assembly and spatial extent of activated cortical 
assembly [12, 13].

In slow voluntary movements of the self-paced index finger, the activity of the 
sensorimotor area was detected before 4.5 seconds of the pre-movement using 
electroencephalography (EEG) [14]. Consistent with the findings of EEG, early 
deoxygenation of 3–4 seconds prior to the movement of the finger was observed in 
the sensorimotor area using fNIRS [15]. Presently, research on simultaneous mea-
surements using fNIRS and EEG is becoming an effective means of brain-computer 
interface [16].

In addition, a disadvantage of fNIRS is the low spatial resolution (5–10 mm) of 
the activation mapping of the cortical surface compared with those obtained from 
fMRI and PET. Research combining the use of fNIRS, fMRI, and MEG for source 
localization is currently ongoing [17]. These combination studies have advantages in 
temporal and spatial mapping of brain function.

A response involving increased and decreased levels of oxyHb and deoxyHb, 
respectively, has been considered the model of canonical activation in numerous 
studies utilizing fNIRS. However, the actual frequency of the occurrence of canoni-
cal activation, the most suitable index or indices for the differentiation between the 
center of activation and the surrounding area, and the associated degree of prob-
ability remain to be investigated. Following canonical activation, the rates of change 
in the levels of oxyHb and deoxyHb are not constant and may differ according to 
the task. Wylie et al. [18] performed a qualitative differentiation between two types 
of canonical activation according to the increase/decrease in the levels of total Hb. 
The investigators of that study identified four additional patterns of increase and 
decrease in the levels of oxyHb, deoxyHb, and total Hb that do not correspond to 
canonical activation.

Presently, the detection of the spatiotemporal characteristics of brain activity 
using fNIRS remains suboptimal. This fundamental limitation in evaluating brain 
activity may lead to misdiagnosis. fNIRS research is particularly challenging in the 
prefrontal cortex, responsible for complex higher functions. In areas of the brain 
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with clear localization of cerebral function (i.e., primary motor or visual cortices), 
it is possible to verify the accuracy of fNIRS data. However, in the human prefrontal 
cortex, there is currently no clear understanding of the localization of the more 
complex functions, and thus, the verification of the reliability of fNIRS data in this 
area remains a challenge.

Studies have attempted to bolster the reliability of fNIRS in the prefrontal cortex 
by comparing data obtained from fNIRS and fMRI [19, 20]. However, because 
the mechanisms differ between the two modalities [21–24], even if conformity is 
found between fMRI and fNIRS data, the reliability of the results is not necessar-
ily increased. Several problems have been pointed out. Considerable attention is 
required when analyzing with the index of oxyHb alone. In the prefrontal region, 
task-dependent data noise in the oxyHb response (increased levels) resulting from 
skin blood flow has been reported [25, 26]. In 2011, an article criticized the use of 
NIRS in the clinical diagnosis of psychiatric disorders as being insufficiently sup-
ported by scientific evidence [27]. In mental illness studies, the actual localization 
of increases in the levels of oxyHb is not clear [28], and therefore, measurements of 
oxyHb levels cannot be linked to a specific brain activity.

Furthermore, analytical challenges in the field of fNIRS have been reported. 
This review introduces new composite functional indices incorporating ratios of 
changes in the levels of oxyHb and deoxyHb, along with a novel vector-based fNIRS 
method [29, 30]. This vector-based approach can be used to visually and quantita-
tively evaluate combinations of changes in the levels of oxyHb and deoxyHb as new 
indices. It was useful to classify variations in the levels of hemoglobin in response 
to neural activity, using combinations of changes in the levels of hemoglobin. It 
was effective especially when the signal change is small such as initial dips. Initial 
dips are the hemodynamic reactions of oxyHb and deoxyHb induced by increased 
oxygen consumption in the early tasks of approximately 2–3 seconds [31, 32]. The 
vector-based approach could improve the sensitivity of fNIRS in the detection of 
brain activity both temporally and spatially through recognition of the initial dips 
from the skull to hemodynamic responses [33–36].

In addition, this review discusses challenges with data analysis based on a single 
index, advantages of the simultaneous analysis of multiple indicators, and recently 
established composite indicators.

2. NIRS until 1990

Prior to the development of fNIRS, NIRS was used mainly for monitoring 
cerebral oxygenation. Changes in tissue oxygen saturation are accompanied by 
simultaneous changes in cerebral blood volume. Using NIRS, Jöbsis [37] reported 
hypocapnia and a reduction in cerebral blood volume during human hyperventila-
tion. In addition, NIRS was used to prevent hypoxia through monitoring newborn 
and premature infants [10, 11]. Of note, NIRS had also been used to investigate the 
brains of animals [38–40].

In 1990, Takashima et al. [41] used NIRS to examine patients with probes placed 
5 cm apart from each other. This study was based on the original concept of the 
research conducted by Jöbsis [29]. The results of this study showed reductions in the 
levels of oxyHb, deoxyHb, and total Hb in the prefrontal area during hyperventila-
tion. Until 1990, research on NIRS did not target the specific localized brain function 
of the cerebral cortex. The technique was merely used to observe changes in the lev-
els of hemoglobin (task-related and at rest), without specific spatial identification.

Hypocapnia is known to cause global changes in the scalp and the entire brain. 
Hence, the changes reported during hyperventilation did not constitute proof of 
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with clear localization of cerebral function (i.e., primary motor or visual cortices), 
it is possible to verify the accuracy of fNIRS data. However, in the human prefrontal 
cortex, there is currently no clear understanding of the localization of the more 
complex functions, and thus, the verification of the reliability of fNIRS data in this 
area remains a challenge.
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the mechanisms differ between the two modalities [21–24], even if conformity is 
found between fMRI and fNIRS data, the reliability of the results is not necessar-
ily increased. Several problems have been pointed out. Considerable attention is 
required when analyzing with the index of oxyHb alone. In the prefrontal region, 
task-dependent data noise in the oxyHb response (increased levels) resulting from 
skin blood flow has been reported [25, 26]. In 2011, an article criticized the use of 
NIRS in the clinical diagnosis of psychiatric disorders as being insufficiently sup-
ported by scientific evidence [27]. In mental illness studies, the actual localization 
of increases in the levels of oxyHb is not clear [28], and therefore, measurements of 
oxyHb levels cannot be linked to a specific brain activity.

Furthermore, analytical challenges in the field of fNIRS have been reported. 
This review introduces new composite functional indices incorporating ratios of 
changes in the levels of oxyHb and deoxyHb, along with a novel vector-based fNIRS 
method [29, 30]. This vector-based approach can be used to visually and quantita-
tively evaluate combinations of changes in the levels of oxyHb and deoxyHb as new 
indices. It was useful to classify variations in the levels of hemoglobin in response 
to neural activity, using combinations of changes in the levels of hemoglobin. It 
was effective especially when the signal change is small such as initial dips. Initial 
dips are the hemodynamic reactions of oxyHb and deoxyHb induced by increased 
oxygen consumption in the early tasks of approximately 2–3 seconds [31, 32]. The 
vector-based approach could improve the sensitivity of fNIRS in the detection of 
brain activity both temporally and spatially through recognition of the initial dips 
from the skull to hemodynamic responses [33–36].

In addition, this review discusses challenges with data analysis based on a single 
index, advantages of the simultaneous analysis of multiple indicators, and recently 
established composite indicators.

2. NIRS until 1990

Prior to the development of fNIRS, NIRS was used mainly for monitoring 
cerebral oxygenation. Changes in tissue oxygen saturation are accompanied by 
simultaneous changes in cerebral blood volume. Using NIRS, Jöbsis [37] reported 
hypocapnia and a reduction in cerebral blood volume during human hyperventila-
tion. In addition, NIRS was used to prevent hypoxia through monitoring newborn 
and premature infants [10, 11]. Of note, NIRS had also been used to investigate the 
brains of animals [38–40].

In 1990, Takashima et al. [41] used NIRS to examine patients with probes placed 
5 cm apart from each other. This study was based on the original concept of the 
research conducted by Jöbsis [29]. The results of this study showed reductions in the 
levels of oxyHb, deoxyHb, and total Hb in the prefrontal area during hyperventila-
tion. Until 1990, research on NIRS did not target the specific localized brain function 
of the cerebral cortex. The technique was merely used to observe changes in the lev-
els of hemoglobin (task-related and at rest), without specific spatial identification.

Hypocapnia is known to cause global changes in the scalp and the entire brain. 
Hence, the changes reported during hyperventilation did not constitute proof of 
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functional local brain activity. These early studies of hyperventilation suggested 
that blood volume was reduced in the region supplied by the external carotid artery, 
which distributes blood mainly to the scalp and muscles outside the skull. In brain 
death, in spite of the absence of blood flow through the internal carotid artery, the 
blood flow distribution through the external carotid artery remains unimpaired—
an observation known as “the finding of the hollow skull” [42]. Early data obtained 
using NIRS data were affected by this blood flow from areas of the scalp supplied by 
the external carotid artery and the veins.

In addition, probes placed in the prefrontal area of seven healthy patients in a 
task of pressure for 1 minute on the jugular vein reported increases in the levels 
of oxyHb, deoxyHb, and total Hb [41]. These results were consistent with those 
obtained from an animal study (Figure 1 [40]), indicating task-related hemody-
namic changes prior to 1990. Importantly, the presence of a task does not differenti-
ate fNIRS from NIRS.

Until 1990, NIRS had not been considered a tool for the identification of specific 
cortical activity. In the usage of NIRS at the time, there was no technique that data 
could be obtained selectively from a site on the cortex located directly under a site 
sandwiched between irradiation and detection probes, let alone evidence of brain 
activity. The near-infrared light paths and the range and depth of irradiation were 
unknown. Moreover, the influence of factors such as the external carotid artery was 
undeniable. Early NIRS did not associate changes in the levels of Hb with localized 
brain activity and was unable to clearly distinguish between signals derived from 
the external carotid artery or the veins and those derived from the cortex.

3. Conception and first experiment of fNIRS in 1991

fNIRS was developed in 1991 [1, 7–9, 31] as a functional imaging method using 
NIRS to detect local brain activity accurately. This was achieved by identifying 
changes in the levels of Hb in different areas of the brain at rest and during a task. It 
was necessary to initially demonstrate that NIRS was able to detect localized brain 
activity to establish fNIRS. The selection of an experimental task and the settings of 
the probe were the key factors in this process. In the search for a task, lesion studies 
and PET studies were reviewed to identify a small part of the brain that could be 
clearly stimulated and measured from the frontal lobe. A multifocal increase in 
regional cerebral blood flow (CBF) had been reported in a mental arithmetic task in 
the frontal lobe [43]. Furthermore, mental arithmetic tasks to induce an autonomic 

Figure 1. 
Changes in the levels of HbO2 (oxyhemoglobin, oxyHb), HbR (deoxyhemoglobin, deoxyHb), and HbO2 + HbR 
(total hemoglobin, total Hb) with neck compression [40]. Comparisons between tasks had been reported at 
that time, unlike responses derived from specific cortical activity.
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nerve stimulus had been used to show the possibility of blood volume changes in 
the region supplied by the external carotid artery [44, 45]. Dyscalculia was not 
sufficiently localized, because it occurs in multiple sites of the frontal and temporal 
lobes from injury, etc. [46].

The cerebral metabolic rate of oxygen (CMRO2) was shown to increase by 
approximately 10% in a study using thinking tasks [47]. However, when compared 
with that observed at rest, this change in regional cerebral blood volume (CBV) was 
not significant. Exercise tasks produced side effects from movement of the probes 
and systemic circulation. In addition, a PET study had shown that blood flow 
increased in both the primary motor area of the frontal lobe and the nearby supple-
mental motor areas [48]. Overall, the confirmation of localization in the frontal 
lobe was challenging. The primary auditory cortex is located inside the Sylvian 
fissure, and there was no certainty that near-infrared light would be able to reach 
the site and reflect back to produce meaningful data.

In summary, an experiment designed to confirm that localization was possible 
using fNIRS required a task meeting the following conditions:

1. It should not stimulate the autonomous nervous system.

2. It should not induce global activation of the brain.

3. It should avoid the region supplied by the external carotid artery (possibility 
of changes in the volume of blood).

4. It should not involve pressure on the carotid artery.

5. It should not require bodily motion.

6. It should not target brain activity from the frontal or temporal lobes (possibil-
ity of movement of the scalp or muscles).

7. It should induce brain activity within a well-defined site.

According to these conditions, a suitable task would be one that stimulates the 
primary visual cortex, located in the occipital lobe and supplied with blood mostly 
from the posterior cerebral artery. An earlier study had reported an increase in CBF in 
the visual cortex with a task of 7.8 Hz photic stimulation [49]. A major question at that 
point was the following: “What kind of response in terms of local Hb levels would 
be obtained in a photic stimulation experiment using NIRS?” Other, more practical 
problems included the use of external light with the NIRS equipment and the irradia-
tion of the stimulus light to the patient wearing the probes. However, these problems 
were resolved during the experiment. As shown by PC darkness in Figure 2, the 
influence of extraneous light could be eliminated in actual experiments.

In 1991, the time course of responses arising from changes in the local levels of 
oxyHb, deoxyHb, and total Hb remained unknown. Therefore, it was necessary to 
perform measurements on different sites that would demonstrate brain activity and 
a null response. It was thought that the detection of varied responses from different 
sites in response to a given stimulus could demonstrate the localization of function.

In the actual experiment, photic stimulation (8 Hz) was delivered using a pho-
tosonic stimulator (Nihon Kohden Co., Japan) from the front and at the height of 
the patient’s line of sight for 5 minutes. As Figure 2 shows, the activation observed 
in the visual cortex during the photic stimulus was associated with increased levels 
of oxyHb, deoxyHb (slightly), and total Hb. No changes were observed in the 
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functional local brain activity. These early studies of hyperventilation suggested 
that blood volume was reduced in the region supplied by the external carotid artery, 
which distributes blood mainly to the scalp and muscles outside the skull. In brain 
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changes in the levels of Hb in different areas of the brain at rest and during a task. It 
was necessary to initially demonstrate that NIRS was able to detect localized brain 
activity to establish fNIRS. The selection of an experimental task and the settings of 
the probe were the key factors in this process. In the search for a task, lesion studies 
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nerve stimulus had been used to show the possibility of blood volume changes in 
the region supplied by the external carotid artery [44, 45]. Dyscalculia was not 
sufficiently localized, because it occurs in multiple sites of the frontal and temporal 
lobes from injury, etc. [46].

The cerebral metabolic rate of oxygen (CMRO2) was shown to increase by 
approximately 10% in a study using thinking tasks [47]. However, when compared 
with that observed at rest, this change in regional cerebral blood volume (CBV) was 
not significant. Exercise tasks produced side effects from movement of the probes 
and systemic circulation. In addition, a PET study had shown that blood flow 
increased in both the primary motor area of the frontal lobe and the nearby supple-
mental motor areas [48]. Overall, the confirmation of localization in the frontal 
lobe was challenging. The primary auditory cortex is located inside the Sylvian 
fissure, and there was no certainty that near-infrared light would be able to reach 
the site and reflect back to produce meaningful data.

In summary, an experiment designed to confirm that localization was possible 
using fNIRS required a task meeting the following conditions:

1. It should not stimulate the autonomous nervous system.

2. It should not induce global activation of the brain.

3. It should avoid the region supplied by the external carotid artery (possibility 
of changes in the volume of blood).

4. It should not involve pressure on the carotid artery.

5. It should not require bodily motion.

6. It should not target brain activity from the frontal or temporal lobes (possibil-
ity of movement of the scalp or muscles).

7. It should induce brain activity within a well-defined site.

According to these conditions, a suitable task would be one that stimulates the 
primary visual cortex, located in the occipital lobe and supplied with blood mostly 
from the posterior cerebral artery. An earlier study had reported an increase in CBF in 
the visual cortex with a task of 7.8 Hz photic stimulation [49]. A major question at that 
point was the following: “What kind of response in terms of local Hb levels would 
be obtained in a photic stimulation experiment using NIRS?” Other, more practical 
problems included the use of external light with the NIRS equipment and the irradia-
tion of the stimulus light to the patient wearing the probes. However, these problems 
were resolved during the experiment. As shown by PC darkness in Figure 2, the 
influence of extraneous light could be eliminated in actual experiments.

In 1991, the time course of responses arising from changes in the local levels of 
oxyHb, deoxyHb, and total Hb remained unknown. Therefore, it was necessary to 
perform measurements on different sites that would demonstrate brain activity and 
a null response. It was thought that the detection of varied responses from different 
sites in response to a given stimulus could demonstrate the localization of function.

In the actual experiment, photic stimulation (8 Hz) was delivered using a pho-
tosonic stimulator (Nihon Kohden Co., Japan) from the front and at the height of 
the patient’s line of sight for 5 minutes. As Figure 2 shows, the activation observed 
in the visual cortex during the photic stimulus was associated with increased levels 
of oxyHb, deoxyHb (slightly), and total Hb. No changes were observed in the 
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prefrontal cortex following photic stimulation. These findings demonstrated that 
fNIRS is able to detect spatial and temporal information (i.e., different hemody-
namic responses), depending on the site and the presence or absence of stimulation.

Today, fNIRS is widely used for tasks or in environments difficult for other 
modalities. Although the above list of requirements for task selection may seem 
outdated, the first four conditions are still required to distinguish between local 
activity and global change. The difference between local activity and global changes 
is still determined by the presence or absence of a response, limitation to a specific 
site, and dependence on the duration of the task.

4. Probe placement on the skull

A fundamental part for fNIRS is probe placement. As Figure 3A shows, Jöbsis 
[37] used infrared transillumination and optical computed tomography (CT) to 
create images of blood flow distribution at rest corresponding to brain structures. 
He estimated the optical path length of the human head to be 13.3 cm [37]. In addi-
tion, he stated that an interprobe distance of ≥4.25 cm would allow the detection 
of data from the brain tissue rather than the scalp (Figure 3B [50]). Although the 
diffused and reflected light used today had already replaced infrared transillumina-
tion, subsequent research on cerebral oxygenation monitoring [41] continued to use 
this setting (distance between probes ≥4.25 cm).

During the design of the first investigation using fNIRS, MRI showed that the 
distance between the scalp and the primary visual cortex was <1 cm in neonates 
and <2 cm in adults and demonstrated the gentle curvature of the skull [51]. The 
shape of the skull permitted further reduction in the distance between the probes 
(Figure 3C) and improved the detection of activity in the cerebral cortex.

In the study, placement of the probes 5 cm apart revealed only a slight increase 
in the levels of oxyHb. When the distance between the probes was shortened to 
4 cm, the increase in the levels of oxyHb became more pronounced. At an interprobe 
distance of 2.5 cm, a transient dip in the levels of oxyHb was observed. This effect 
occurred simultaneously with the initiation of the stimulus, followed promptly by an 

Figure 2. 
Changes in the levels of oxyhemoglobin (oxyHb), deoxyhemoglobin (deoxyHb), total hemoglobin (total Hb), 
Cyt (Cytochromeaa3), and PC darkness (photon counting darkness) measured over the occipital surface (above) 
and the frontal surface (below) prior to, during, and after photic stimulation in a healthy adult. Background 
noise from extraneous light was monitored as PC darkness. The data show spatial (site-dependent) and 
temporal (task on/off) differences in response [7, 8].
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increase in the levels of oxyHb, faster peak latency, and a post-stimulus undershoot 
in oxyHb. At an interprobe distance of 1.0–1.5 cm, there was either no response 
at all or the total amounts of Hb remained unchanged while small mirror-image 
changes were observed, namely an increase and decrease in the levels of oxyHb and 
deoxyHb, respectively. These mirror-image changes may have been derived from 
either the scalp (where metabolism does not increase) or from vascular changes in 
the veins on the surface of the brain. From these findings, it was established that an 
interprobe distance of 2.5 cm provided the most robust results (Figure 3D).

Based on this empirical hypothesis, the area on the scalp corresponding to the 
visual cortex that can be covered with two probes was considered to be 1.0 × 2.5 cm, 
as identified through sagittal MRI. Each pair of emitter and receptor probes was 
placed 2.5 cm apart vertically to prevent data noise from activity in the secondary 
visual cortex and the large vein running vertically through the sagittal sinus.

The movement of the probes outward by 1.0 cm impaired the detection of 
response in the pilot study. Thus, pairs of probes (channels) were placed within 
1.0 cm of the target in the horizontal direction to ensure accuracy. This adjustment 
permitted the investigators to develop the concept of functional resolution (in this 
case 1.0 × 2.5 cm) for the identification of the precise area of response. The original 
NIRS apparatus used (NIRO 1000, Hamamatsu Photonics K.K., Japan), shown in 
Figure 4, had only two channels and 5-mm diameter optical fibers for the emission 
and reception of light with 8 × 8 mm contact surfaces.

The concept that the spatial resolution of fNIRS should be determined by 
the anatomy of the cerebral cortex and the range in which a response occurs was 
developed from this early research. To establish the desired resolution, the distance 

Figure 3. 
(A) Conceptual schema of optical computed tomography performed by Jöbsis illustrated on a magnetic 
resonance imaging (MRI) image (revision from [37]). (B) Relationship between the signal intensity of 
hemoglobin and the distance between the light entry and exit locations, using the reflectance technique 
according to the origin of the reflected light (revision from [50]). (C) Conceptual schema of functional 
near-infrared spectroscopy illustrated on the same MRI image. (D) Relationship between the activation-related 
change in the levels of hemoglobin and the distance between the light source and detector [31].
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prefrontal cortex following photic stimulation. These findings demonstrated that 
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permitted the investigators to develop the concept of functional resolution (in this 
case 1.0 × 2.5 cm) for the identification of the precise area of response. The original 
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between the probes and the distance between the channels should be controlled 
independently. The more recently available multichannel fNIRS devices have 
become essential for the localization of brain activity. Unless the interchannel 
distance is changed depending on whether the measurement target is deep or 
wide from the scalp, the likelihood of detecting a localized response is reduced. In 
newborns, the distance between the brain and the surface of the cortex is <1 cm  
[51, 52]. Thus, in infants, the distance between probes should be shortened to 
1–2 cm [53], rather than being set at 2.5 cm apart [7–9, 54]. The 3-cm apart matrix 
array of probes commonly used in recent years [55, 56] cannot necessarily provide 
results corresponding to the actual distribution of brain function in usage not con-
sidering age and head size. Spatial identification may not be performed effectively 
when a probe “hat” with probes arranged without reference to the anatomy of the 
brain/scalp is used. Registration markers and MRI should be used to determine the 
localization of probe placement for each individual.

In late 1992, Hoshi and Tamura [57] reported findings from research using 
task-related NIRS. The investigators reported a calculation task which stimulated 
the autonomic nervous system with an interprobe distance of 4 cm. This protocol 
did not meet the requirements for either task selection or probe settings described 
earlier in this review, and thus, the method is not considered fNIRS. Villringer et al. 
[58] selected probe positions on the scalp with interprobe distances ranging from 
4 to 7 cm. In 1993, Chance et al. [59] also performed the task-related NIRS experi-
ments from the frontal skull. However, they were unable to demonstrate localization. 
Advances in techniques for the improvement of spatial resolution continued. The 
spatial resolution of the 3 cm2 probe arrangement failed to provide detailed informa-
tion regarding responses in the cortex [60]. Highly selective probe arrangements for 
establishing high-density measurement points have been reported (e.g., one with 
10-mm channel interval and 25-mm probe interval [31, 32], and one with a center 
probe and surrounding probes [61]). Structural MRI has been used to evaluate the 
distance between the brain and the scalp [62]. Moreover, a method using diffuse 
optical tomography for removing signals on the scalp has been reported [63–65].

Of note, fNIRS has also been used in animal studies. The results have shown that 
measurement of fNIRS indices from the scalp with an interprobe distance of 4 and 
8 mm was possible in the brain of rats [66] and cats, respectively. As Figure 5 shows, 
using fNIRS (ETG-100, Hitachi Medical Co., Tokyo, Japan), an initial dip was able to 

Figure 4. 
The NIRO 1000 (Hamamatsu Photonics K.K., Japan) used in the first functional near-infrared spectroscopy 
experiment [7–9].
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measure hemoglobin indices in the visual cortex during photic stimulation from out-
side the skull of a cat. In particular, the fNIRS response pattern to photic stimulation 
was identical between the cat and the human brains [67, 68]. These animal studies 
suggested that it was possible to use fNIRS for the detection of activity in a 1–2 mm 
region of the targeting cortex from the scalp.

5. Brain function indices and oxygen responses in capillaries

Numerous current fNIRS devices measure the levels of oxyHb, deoxyHb, and 
total Hb independently. A new challenge is that spatiotemporal characteristics may 
vary in functional brain imaging depending on the index used, and this problem has 
not been widely recognized or studied. In 1991, Kato et al. reported increases in the 
levels of oxyHb, deoxyHb (slight), and total Hb in the primary visual cortex during 
photic stimulation. Subsequent studies using fMRI and fNIRS reported increases 
and decreases in the levels of oxyHb and deoxyHb, respectively, in motor and visual 
tasks [69–71]. These results were accepted as typical fNIRS responses and have been 
corroborated by numerous fNIRS studies [1].

Nowadays, atypical responses are mostly ignored and left unexplained. There is 
a widespread tendency, hypothesized patterns of hemoglobin reaction in advance 
and those that are not hypothesized reaction types tend to be statistically excluded 
from the analysis data without being insufficiently examined [72]. In response 
to this trend, recent studies also have processed statistically and mapped inde-
pendently the observed increase and decrease in the levels of oxyHb [73, 74] and 
deoxyHb [75, 76], respectively. Even in studies using rats, their analysis may be 
performed using only oxyHb [77].

However, evaluation of brain activity using a single hemoglobin index is 
contrary to the physiological mechanisms involved, ignoring the fact that hemo-
dynamic responses include both blood volume and oxygenation. The distinction 
between blood volume and oxygenation, applying to fNIRS and fMRI [23, 24], has 

Figure 5. 
Time series data of hemodynamic response showing an initial dip in the levels of total hemoglobin decreased 
through stimulation using light in the cat brain. A thick black line indicates stimulation using light.
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between the probes and the distance between the channels should be controlled 
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using fNIRS (ETG-100, Hitachi Medical Co., Tokyo, Japan), an initial dip was able to 

Figure 4. 
The NIRO 1000 (Hamamatsu Photonics K.K., Japan) used in the first functional near-infrared spectroscopy 
experiment [7–9].
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measure hemoglobin indices in the visual cortex during photic stimulation from out-
side the skull of a cat. In particular, the fNIRS response pattern to photic stimulation 
was identical between the cat and the human brains [67, 68]. These animal studies 
suggested that it was possible to use fNIRS for the detection of activity in a 1–2 mm 
region of the targeting cortex from the scalp.

5. Brain function indices and oxygen responses in capillaries

Numerous current fNIRS devices measure the levels of oxyHb, deoxyHb, and 
total Hb independently. A new challenge is that spatiotemporal characteristics may 
vary in functional brain imaging depending on the index used, and this problem has 
not been widely recognized or studied. In 1991, Kato et al. reported increases in the 
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photic stimulation. Subsequent studies using fMRI and fNIRS reported increases 
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from the analysis data without being insufficiently examined [72]. In response 
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deoxyHb [75, 76], respectively. Even in studies using rats, their analysis may be 
performed using only oxyHb [77].

However, evaluation of brain activity using a single hemoglobin index is 
contrary to the physiological mechanisms involved, ignoring the fact that hemo-
dynamic responses include both blood volume and oxygenation. The distinction 
between blood volume and oxygenation, applying to fNIRS and fMRI [23, 24], has 
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been a subject of controversy. This remains an unresolved problem common to all 
brain functional imaging research based on hemodynamic responses. The begin-
ning of this argument can be traced back to Roy and Sherrington, who in 1890 
proposed neurovascular coupling. Changes in oxygenation and blood volume in the 
capillaries reflect neuronal activity. However, as Roy and Sherrington noted, these 
data were not derived from the capillaries [78].

The first to report the quantification of CBF using Fick’s law (i.e., subtracting 
the value of the veins from that of arteries, in units of per 100 g per minute) were 
Kety et al. [79]. Increases in CBF, calculated without taking the capillaries into 
account, show a positive correlation with increasing CMRO2 [80]. Based on slight 
increases in CMRO2 observed following an increase in CBF [81], a coupling model 
of a positive correlation between CBF and CMRO2 [82, 83] was used widely to 
evaluate vascular response. Changes in CBF were used as a substitute for changes 
in oxygen metabolism. It is likely that this trend also affected fNIRS and led to the 
independent analysis of the levels of oxyHb, as performed today. Recent waveforms 
of increases in the levels of oxyHb closely resemble the waveforms of increases in 
blood flow reported by Roy and Sherrington in 1890. After more than 120 years, the 
interpretation of neurovascular coupling has not advanced considerably. Roy and 
Sherrington had foresight in their interpretation related to blood flow, but they did 
not observe cerebral oxygen metabolism.

Although the capillary transit time in humans is reported to be <10 seconds 
[84], PET sampling times are markedly longer. For this reason, PET data include 
changes in CBF in the capillaries related to oxygen exchange, coupled with the 
additional component of the delayed increase in CBF in the veins not accompanied 
by oxygen exchange. Using PET, a dissociation between CMRO2 and CBF has been 
reported [85, 86]. Using fMRI, signals have been shown to remain unaltered during 

Figure 6. 
Schematic diagram of the possible hemodynamic responses occurring simultaneously with neural activity 
(revision from [31]). In (A), oxygen demand is increased by neural activity, and consequently, transient 
deoxygenation increases in the capillaries (oxyhemoglobin [HbO2] → hemoglobin [Hb] + oxygen [O2]). In a 
site with little neural activity (B), minimal amounts of oxygen enter the cells and even during a task, increased 
levels of oxyHb from the artery pass through the capillaries, bypassing the cells (HbO2 → HbO2). This 
response—increased and decreased levels of oxyHb and deoxyHb, respectively—has been recognized as typical 
activation. In actuality, according to the variation in the amount of oxygen exchange due to neural activity 
(C), a mixed response combining these two responses must also be present. These responses, differing according 
to the strength of oxygen exchange, are likely to be distributed among different sites, depending on the strength 
of neural activity at each site. Because the blood flows from (A), (B), and (C) are further mixed in the large 
veins, the data may not provide specific spatial information if responses are measured at longer sampling times 
than the capillary transit time.
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the capillary transit time [87]. In other words, there is a need to move beyond the 
simplistic interpretation of neurovascular coupling, which predicts an increase in 
the levels of oxyHb and blood flow in response to neural activity. Figure 6 shows 
the relationship between neural activity and hemodynamic response schematically.

fNIRS is able to measure the levels of oxyHb and deoxyHb at the same time. 
Therefore, it is a useful tool to solve this serious problem of simultaneously measur-
ing cerebral blood flow and cerebral oxygen metabolism which are faced by brain 
researchers for over 120 years. Future fNIRS research should distinguish between 
changes in blood volume and oxygenation occurring simultaneously with brain activ-
ity in the analysis of hemodynamic responses. In addition, it is necessary to re-evaluate 
activity-based hemodynamic responses using modalities such as EEG and MEG.

Research involving event-related optical signals [87] and invasive optical 
measurements [88, 89] has been unable to distinguish between oxygenation and 
blood volume. OxyHb and deoxyHb are involved in both oxygenation and blood 
volume. Thus, it may not be possible to evaluate brain activity based exclusively on 
the measurement of the levels of oxyHb.

6. Detection of initial dips

Currently, an experimental protocol termed block task design, employing tasks 
that continue for ≥10 seconds (longer than the capillary transit time), is being used 
in many fNIRS studies. The reason for this is that the peak latency of oxyHb is gen-
erally 10 seconds (occasionally longer) from the initiation of a task. The use of this 
method in fNIRS studies has followed from its use in fMRI and PET research, where 
the low temporal resolution of the modality justifies the use of a block design. 
When a task requires a longer period of time corresponding to a block design or the 
task requires a certain amount of time to elapse for observation, the selection of a 
block design protocol in research using fNIRS, providing higher temporal resolu-
tion, is appropriate. With fNIRS, there is no need to repeat cognitive tasks involving 
factors such as perception, recognition, or judgment for prolonged time to obtain a 
sufficiently strong peak response in oxyHb levels. A block design including many 
task components does not clarify the correspondence between each task component 
and spatiotemporal local brain activity. Studies have also analyzed post-task time 
periods [90, 91]. However, the data from these studies lacked simultaneity with 
local brain activity and were unable to temporally and spatially identify local brain 
activity. Although EEG shows high simultaneity between data and brain activity, it 
is characterized by poor spatial resolution. In this respect, if the spatial resolution of 
fNIRS can be set from the standpoint of functional resolution as described earlier, 
its high temporal resolution may be valuable for event-related measurements.

The initial dip, which is early deoxygenation in event-related experiments, is 
a highly accurate spatial indicator of neural activity [92]. In studies using optical 
intrinsic signals (OIS), increase in the levels of deoxyHb occurring prior to slow 
increases in the levels of oxyHb or total Hb has also been considered to be an index 
of increased oxygen metabolism [88, 93–97]. The absence of a correspondence 
(spatial or temporal) between increases in early deoxygenation and blood volume 
was also shown in a human study using invasive optical imaging [98]. Kato et al. 
[67, 68, 99, 100] conducted the first fNIRS study measuring initial dips appearing in 
fNIRS signals from the motor, visual, and language areas. Subsequently, the initial 
dip was observed in several fNIRS studies [18, 32–36, 101].

It has been suggested that this early increase in the levels of deoxyHb may arise 
from a transient increase in the consumption of oxygen in tissues [102, 103]. It has 
been obvious that this deoxyHb increase is useful as a precise indicator of brain 
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the capillary transit time [87]. In other words, there is a need to move beyond the 
simplistic interpretation of neurovascular coupling, which predicts an increase in 
the levels of oxyHb and blood flow in response to neural activity. Figure 6 shows 
the relationship between neural activity and hemodynamic response schematically.

fNIRS is able to measure the levels of oxyHb and deoxyHb at the same time. 
Therefore, it is a useful tool to solve this serious problem of simultaneously measur-
ing cerebral blood flow and cerebral oxygen metabolism which are faced by brain 
researchers for over 120 years. Future fNIRS research should distinguish between 
changes in blood volume and oxygenation occurring simultaneously with brain activ-
ity in the analysis of hemodynamic responses. In addition, it is necessary to re-evaluate 
activity-based hemodynamic responses using modalities such as EEG and MEG.

Research involving event-related optical signals [87] and invasive optical 
measurements [88, 89] has been unable to distinguish between oxygenation and 
blood volume. OxyHb and deoxyHb are involved in both oxygenation and blood 
volume. Thus, it may not be possible to evaluate brain activity based exclusively on 
the measurement of the levels of oxyHb.

6. Detection of initial dips

Currently, an experimental protocol termed block task design, employing tasks 
that continue for ≥10 seconds (longer than the capillary transit time), is being used 
in many fNIRS studies. The reason for this is that the peak latency of oxyHb is gen-
erally 10 seconds (occasionally longer) from the initiation of a task. The use of this 
method in fNIRS studies has followed from its use in fMRI and PET research, where 
the low temporal resolution of the modality justifies the use of a block design. 
When a task requires a longer period of time corresponding to a block design or the 
task requires a certain amount of time to elapse for observation, the selection of a 
block design protocol in research using fNIRS, providing higher temporal resolu-
tion, is appropriate. With fNIRS, there is no need to repeat cognitive tasks involving 
factors such as perception, recognition, or judgment for prolonged time to obtain a 
sufficiently strong peak response in oxyHb levels. A block design including many 
task components does not clarify the correspondence between each task component 
and spatiotemporal local brain activity. Studies have also analyzed post-task time 
periods [90, 91]. However, the data from these studies lacked simultaneity with 
local brain activity and were unable to temporally and spatially identify local brain 
activity. Although EEG shows high simultaneity between data and brain activity, it 
is characterized by poor spatial resolution. In this respect, if the spatial resolution of 
fNIRS can be set from the standpoint of functional resolution as described earlier, 
its high temporal resolution may be valuable for event-related measurements.

The initial dip, which is early deoxygenation in event-related experiments, is 
a highly accurate spatial indicator of neural activity [92]. In studies using optical 
intrinsic signals (OIS), increase in the levels of deoxyHb occurring prior to slow 
increases in the levels of oxyHb or total Hb has also been considered to be an index 
of increased oxygen metabolism [88, 93–97]. The absence of a correspondence 
(spatial or temporal) between increases in early deoxygenation and blood volume 
was also shown in a human study using invasive optical imaging [98]. Kato et al. 
[67, 68, 99, 100] conducted the first fNIRS study measuring initial dips appearing in 
fNIRS signals from the motor, visual, and language areas. Subsequently, the initial 
dip was observed in several fNIRS studies [18, 32–36, 101].

It has been suggested that this early increase in the levels of deoxyHb may arise 
from a transient increase in the consumption of oxygen in tissues [102, 103]. It has 
been obvious that this deoxyHb increase is useful as a precise indicator of brain 
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activity, but against the background that this increase in deoxyHb has been difficult 
to detect. For example, there is the case of less likely early deoxyHb increase depend 
on factors such as the type of task or the use of anesthesia [92]. A minimal and very 
localized increase may be attributed to imprecise fNIRS probe settings (i.e., missing 
the center of activity) or masking due to a strong increase in blood flow in the veins 
compromising detection.

With fMRI, what was reported previously as an early increase in the levels of 
deoxyHb was observed as an “initial dip” [21, 104, 105]. However, fMRI does not 
differentiate between oxyHb and deoxyHb. In addition, the relationship between 
increases or decreases in the levels of oxyHb and the increase in the levels of 
deoxyHb has not been investigated.

The more recently developed vector-based NIRS method [29, 30] is able to 
measure initial dips characterized by the canonical dip pattern showing increased 
deoxyhemoglobin, as well as several different hemoglobin patterns corresponding 
to differences in the degree of oxygen metabolism [32]. This method has permitted 
the reproducible measurement of hypoxic–ischemic initial dips (i.e., decreased 
levels of oxyHb) [34–36]. The initial dip at which the level of deoxyHb increases 
and the reaction where oxyHb increases after 2–3 seconds do not necessarily occur 
at the same site. Moreover, research on the intersection of these responses is limited, 
leading investigators to select one of the two responses (i.e., the typical oxyHb 
response or the initial dip) for the evaluation of brain activity. This serious problem 
may arise from the lack of quantification of brain activity. Indeed, the results of 
the evaluation of laterality in the language area [106, 107] may differ depending on 
the index used [108]. In addition, investigation of the relationship between event-
related oxyHb and deoxyHb responses, especially those within seconds from neural 
activity, in previous fNIRS studies has been limited.

7. Composite indices derived from vector analysis

An advantage of fNIRS over other modalities is the simultaneous measurement 
of the levels of oxyHb and deoxyHb. However, this advantage leads to the following 
question: What do the various possible combinations of oxyHb, deoxyHb, and total 
Hb mean? Early fNIRS lacked a quantitative integrated theory for the interpretation of 
combinations of hemoglobin indices from multiple channels. Kato [29, 30] developed 
a quantitative method of analysis of the ratios between changes in the levels of oxyHb 
(ΔO) and deoxyHb (ΔD) to differentiate between oxygenation and blood volume.

This technique uses a two-dimensional vector plane on which vector tracks 
generated by task-related changes in cerebral blood volume (ΔCBV) and change in 
cerebral oxygen exchange (ΔCOE) are quantitatively classified into eight “phases.” 
This provides a visible graphical display of information concerning hemody-
namic responses (Figure 7). This vector-based approach is able to calculate the 
angle k, determining the phase of the response, and the intensity of response L. 
Subsequently, these may be used as indices of vector-based brain activity.

Figure 7 shows an orthogonal vector coordinate plane defined by the ΔO and 
ΔD axes. Rotating this vector plane 45° counterclockwise results in an orthogonal 
vector coordinate plane defined by the ΔCBV and ΔCOE axes. For ΔCOE, a positive 
value indicates hypoxic change from ΔCOE = 0, whereas a negative value indicates 
hyperoxic change. The relationships among these four axes are described by the 
following square matrix:

  (1)
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  (2)

Expansion of these shows ΔCBV and ΔCOE representing blood volume and 
oxygenation, respectively:

  (3)

  (4)

The scalar L, drawn from the origin to the coordinates of an arbitrary point 
on the vector plane, indicates the amplitude of a vector, reflecting the amount of 
change in Hb. L can be described by the following equation:

  (5)

The angle k, indicating the phase, is defined by the following equation:

  (6)

A vector on the polar coordinate plane contains the four Hb indices (i.e., ΔO, 
ΔD, ΔCBV, and ΔCOE). The relationships between the four Hb vectors (Figure 7) 
are defined by the equations shown earlier in this section: Eqs. (1) and (2) define 
hemoglobin changes; Eq. (5) defines the scalar L; and Eq. (6) defines the angle k, 
which determines the phase of a vector. Earlier evaluations of brain activity were 

Figure 7. 
Functional near-infrared spectroscopy vector plane. Revised from [29, 30].
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based on signal intensity, without the concept of a phase. However, this method 
describes all the possible combinations of responses through eight phases on the 
vector plane. In addition, particular patterns of physiological responses are pre-
sented in a highly visual manner. This method provides a quantitative measure of 
oxygen metabolism, offering the advantage of measurements expressed in units of 
degrees. Moreover, measurements are determined from ratios of change rather than 
the actual extent of change in the levels of Hb.

8. Interpretation of initial dips using the vector-based approach

The angle k shows a positive value in the phases of initial dip occurrence. 
Previously, the initial dip was regarded as an indication of increased oxygen 
consumption. However, it was not possible to evaluate the strength of the initial dip 
or the possibility of different kinds of initial dips. Yoshino and Kato [32] classified 
initial dips in the language area by phase according to their particular combinations 
of ΔO, ΔD, ΔCBV, and ΔCOE.

• Phases 1 through 5 on the vector plane were dip phases, showing increases in 
ΔD or ΔCOE; the presence of an event-related vector in these phases defined 
an initial dip.

• Phase 1 (0 < ΔD < ΔO, ΔCOE<0 < ΔCBV) and Phase 2 (0 < ΔO < ΔD, 
0 < ΔCOE<ΔCBV) are canonical dips [79], in which both ΔD and ΔO increase.

• Phase 3 (ΔO < 0 < ΔD, 0 < ΔCBV<ΔCOE) is a hypoxic-hyperemic dip, in 
which ΔO decreases and ΔCBV increases.

• Phase 4 (ΔO < 0 < ΔD, ΔCBV<0 < ΔCOE) and Phase 5 (ΔO < ΔD < 0, 
ΔCBV<0 < ΔCOE) are hypoxic–ischemic dips, in which ΔCOE increases and 
ΔCBV decreases.

• Phases −1 through −3 are non-dip phases, in which ΔD and ΔCOE decrease.

Regarding oxygen metabolism, responses in the dip phases may indicate 
stronger brain activity than those in the non-dip phases. It is necessary to verify 
the strongest dip phases during the evaluation of the regulation between the 
oxygenation axis (ΔCOE) and the blood volume axis (ΔCBV) in the vector plane. 
The typical response corresponds to Phases −1 and − 2, interpreted as brain activ-
ity with a low degree of oxygen exchange. The responses in other phases should 
be evaluated in the same manner and the frequency of their occurrence should be 
investigated based on phase classifications. The percentage of dips in Wernicke’s 
area in Phases 1 and 2 was low (total: 15–21%). However, in Phases 4 and 5, this 
percentage was higher (total: 62–68%) [32]. Differences in the frequency of 
phase depending on the brain site and the task may have different physiological 
implications. The ratio between the decrease and increase in the levels of deoxyHb 
and oxyHb, respectively, in a typical response is not constant. The quantitative 
values of the phase angle k may be used to investigate such differences in typical 
responses.

In Figure 8, time course data for previously reported initial dips are reproduced on 
a vector plane using the vector-based technique. Figure 8A and 8B show two different 
types of dip in different phases, depending on the observed change in the ΔCBV. In 
both fMRI and OIS, the canonical initial dip has been considered to be a response 
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induced by increased levels of deoxyHb. Figure 8B shows an fNIRS initial dip (an 
increased ΔD accompanying a decreased ΔO), indicating Phase 4 [18, 32, 67, 68]. 
Recently, fNIRS was used to observe this new type of initial dip in primates [109].

As shown in Figure 8A, if this canonical initial dip detected by Malonek and 
Grinvald using OIS [94] corresponds to that of fMRI [95, 104], this would mean 
that the a blood oxygenation level-dependent (BOLD) signal from fMRI was able 
to differentiate between Phase 1, as a signal decrease, and Phase −1, as a signal 
increase. However, Phase 1 is an increased ΔCBV dip, in which ΔCOE decreases 
while the levels of deoxyHb increase. Thus, there is a discrepancy between the 
results from the two modalities. A theory bridging fNIRS and fMRI has been 
proposed, suggesting that a BOLD signal influenced by changes in ΔCBV closely 
resembles an increase in the levels of oxyHb [24]. In this model, the fMRI signal 
in the increased ΔCBV phase depends on the observed change in ΔO (not ΔD). 
Theoretically, this change may be considered to be a BOLD signal increase rather 
than a dip. Indeed, the use of the vector plane may explain the fact that the OIS 
initial dip does not correspond to that of fMRI.

In present, initial dips could be reliably detected with OIS [92–97] and fNIRS 
[31–36, 109]. On the other hand, the occurrence of the initial dip in fMRI has been 
doubted and its mechanism is still controversial [21–24, 105]. Logothetis et al. [86] 
reported a period of latency, when the increase in the BOLD signal was flat for a 
few seconds at the beginning of the task. This shows the difficulty in detecting 
changes in phases during passage through the capillaries from those in the BOLD 

Figure 8. 
Two kinds of initial dips [32]. Representative patterns of two types of initial dips when data from (A) and (B) 
were converted into vectors on a vector plane. (A) In a study using optical intrinsic signals, ΔD increased during 
the early part of a task [94]. The vector in this time course is in Phase 1 during the initial dip and subsequently 
progresses into Phase −1, indicating a typical response. (A) Initially, the vector is in Phase 1 and subsequently 
rotates in a clockwise direction into Phase −2. (B) The vector initially rotates in a clockwise direction into Phase 
4, followed by rotation in a counterclockwise direction into Phase −1 and subsequently into Phase 1.
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signal. Of note, the sensitivity of fMRI declines at detecting activities with high 
oxygen consumption. During early research on the combination of fMRI and 
fNIRS [9, 110], the concept of phases had not been introduced and the differences 
between these methods were not understood clearly.

Collectively, research has shown that these two modalities are physiologically 
inconsistent in their sensitivity to the initial dip, with significant differences 
between them. Moreover, animal studies have demonstrated the variation of ratios 
between changes in the levels of deoxyHb and oxyHb occurring simultaneously 
with neural activity (i.e., diversity of phase) [103, 109]. Using the concept of 
phases, it is also possible to re-evaluate the results of a previous fNIRS study [8] 
(Figure 2) and confirm that the results indicate Phase 1 in areas where oxygen con-
sumption is high or in the time zone. The vector-based evaluation was able to show 
a short initial dip and sustained oxygen metabolism because the period of the task 
was long in this study. On the other hand, investigations that followed this previous 
study [8] may have evaluated the intensity of brain activity only (similar to L) in the 
Phase −1 and −2 typical responses.

9. Quantification of brain activity in time series

Local brain activity was quantified for the first time in 1993 using continuous-
wave fNIRS, by substituting optical differential path length factors [8]. At that time, 
mmol∙mm (or mmol∙cm) was commonly used as the unit expressing the degree of 
change in the levels of Hb, taking the differential path length factor as 1 [111, 112]. 
The phase angle k expresses oxygen metabolism quantitatively in degrees. This offers 
the advantage of being independent of the actual levels of Hb. Figure 9 shows image 
displays from a verbal task [29, 30]. Local increases in the angle k were detected in 
Broca’s area (channel 4) and the surrounding area during the task, with almost no 
change observed in ΔCBV. Thus, the use of the angle k may permit the high-sensitiv-
ity detection of local brain activity occurring simultaneously with a task (regardless 
of the duration of the task) that has been undetected in previous studies against 
the background of slow hemodynamic change. On the other hand, intensity (L) is 
strongest in channels 4 and 5 during and after the task, respectively. After the task, 
the angle k decreases approaching zero. These findings indicate the variable behavior 
of different indices in spatiotemporal imaging. In the past, the differences in spatio-
temporal imaging had been largely ignored, with researchers focusing exclusively 
on typical responses. The differences in local brain activity of this kind were equally 
ignored, particularly when they occurred simultaneously with short tasks.

It has been shown that vector-based NIRS is able to quantitatively evaluate 
differences in the oxygen load in the prefrontal cortex arising from different 
breathing routes (Figure 10 [113]). In that study, although there were no significant 
differences in L, differences in the time series of the angle k were apparent between 
nasal and mouth breathing. This may have potentially useful practical applications, 
such as the provision of an earlier and more reliable diagnosis of a patient’s habitual 
breathing route compared with a patient interview. The use of an index combining 
both deoxyHb and oxyHb may lead to new interpretations of previous fNIRS data. 
Previous brain imaging studies have been based on the intensity of response.

In usage of this vector-based approach, it may not be possible to obtain the cor-
rect phase value by conventional data processing. For example, if the deoxyHb and 
oxyHb data are processed independently (e.g., when normalization or statistical 
parametric mapping has been performed on only the oxyHb data) [114], this will 
change the ratios, and there is a risk that the values of k will be distorted.
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In addition, a method of baseline correction, in which linear regression con-
necting the pre- and post-task period is used to emphasize the typical response, is 
available [115]. This may affect the angle k and L (intensity of response). By moving 
forward with quantitative analysis of this kind—designed to clarify differences 
between oxygenation and blood volume while taking care to avoid distortion from 
the initial processing of the data—fNIRS will be able to meet the challenges of 
quantitatively and accurately identifying localized brain activity.

Figure 9. 
Spatiotemporal imaging of cerebral oxygen exchange for a verbal task [29, 30]. (A) Channel positions. Broca’s 
area corresponds to channel 4. (B) Pink shows the duration of word listening (average 1.2 seconds) and blue 
shows the duration of word repetition (average 1.1 seconds). For ΔCBV, red indicates positive vector changes, 
whereas black indicates negative vector changes. For the angle k, black indicates k = 0, whereas red indicates 
the maximum angle k (180°). For L, black indicates 0, whereas red indicates the peak value. (C) Time courses 
of hemoglobin components and their two dimensional vector coordinates. Oxyhemoglobin (OxyHb; red), 
deoxyhemoglobin (deoxyHb; blue), and total hemoglobin (total Hb; yellow). Arbitrary unit (a.u.).

Figure 10. 
Time courses of the angle k for nasal and mouth breathing (**P < 0.05; *P < 0.1) [113].
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10. Conclusion

The precise detection of local brain activity was the original purpose of 
fNIRS. Nowadays, because of the vector-based approach, investigators can measure 
initial dips from the scalp. Progress has been achieved in the quantitative detection 
of local brain activity and the development of spatiotemporal imaging. However, 
some fNIRS studies are actually task-related studies using NIRS, never intended for 
the spatial localization of brain function. This together with other factors has intro-
duced doubts regarding the validity of fNIRS. The historical background described 
earlier in this review may be useful as we attempt to erase these doubts and improve 
the spatial and temporal accuracy of fNIRS. Studies are warranted to examine the 
physiological significance of the different combinations of changes in the levels of 
the different Hb and changes in the characteristics of mapping depending on the 
selection of indices.

Local brain activity induces local oxygen consumption and demand for oxygen 
supply. Further research is required to investigate the relationship between the con-
sumption of oxygen and the spatial distribution of oxygen supply accompanying 
local brain activity. The indices angle k and L, indicating the phase of hemoglobin 
response and its intensity, respectively, are new indices for the detection of local 
brain activity. In addition, the simultaneous measurement of composite indices 
of this kind may improve the detection of local brain activity. The application of 
methods for the simultaneous evaluation of these composite indicators is one of the 
challenges for future research on the new fNIRS method.
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Chapter 3

Application of ICA and Dynamic
Mixture Model to Identify
Microvasculature Activation
in fMRI
Yongxia Zhou

Abstract

The emphasis of this work is on developing novel data-processing techniques to
achieve a higher spatiotemporal resolution in dynamic functional magnetic reso-
nance imaging (fMRI). Due to partial volume effects, a pixel in fMRI may contain
signals from a mixture of micro- and macrovasculature, with very different tempo-
ral characteristics. This mixture effect provides a way to separate microvasculature
from macrovasculature in fMRI. A multi-component model representing a mixture
of many reference functions is used to fit the time course of pixels in fMRI. The
results suggest that it may be possible to separate the micro- and macrovasculature
fractional contributions to pixels by this approach. Compared to the classical single-
component model, the multi-component model fits the measured fMRI time course
with a higher correlation coefficient and also detects voxels with low latencies more
efficiently. Spatial independent component analysis (ICA) as a preprocessing step is
implemented to remove major physiological noise and artifacts. The results of
mixture model fitting after ICA cleaning show better results for microvasculature
detection.

Keywords: fMRI microvasculature, ICA, dynamic mixture model, neuronal
detection

1. Introduction

Functional magnetic resonance imaging (fMRI) is the most widely used modal-
ity to map brain function because it can be easily implemented, is noninvasive, and
has a relatively high spatial resolution. The dynamic fMRI signal change is regulated
by the local changes in cerebral blood flow (CBF), cerebral blood volume (CBV),
and blood oxygenation. CBF studies have suggested that a local increase in oxygen
delivery beyond metabolic demand occurs in active cerebral tissue, which results in
a higher concentration of oxygenated blood and a decrease in deoxyhemoglobin
concentration within the microvasculature of metabolically active brain regions.
Due to the four unpaired electrons, deoxyhemoglobin maintains a larger observed
magnetic susceptibility effect and is paramagnetic relative to oxyhemoglobin and
the surrounding brain tissue. The decrement in this paramagnetic substance in the
activated brain leads to an increase in the local magnetic homogeneity and reduces
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dephasing of spins. This increases the T2* contrast in the activated brain and results
in increases of MR signal relative to the resting state. A fast MRI data acquisition
sequence known as the echo-planar imaging (EPI) sequence is commonly used to
acquire fMRI signals. The physiological contributors to the fMRI signal changes
include the blood-oxygenation-level-dependent (BOLD) and in-flow effects such as
the increase in local CBF and arterial oxygenation. The signal in the functional area
reflects the local changes in the CBF and oxygen consumption rate due to the task or
stimulus [1]. And finally, the quantitative fMRI image indicates the spatiotemporal
mapping of the hemodynamic in response to a given task at specific brain areas.

The coupling between the BOLD hemodynamic effect and the underlying neu-
ronal activity has been studied and emphasized recently [2–4]. The first question is
whether the BOLD effect can reflect neuronal activation. Experiments have been
done with both animals and humans to verify that the BOLD contrast directly
reflects the neural responses elicited by a stimulus [5, 6]. The second question is
how the BOLD signal reflects the underlying neuronal activation. The exact nature
of the neurovascular coupling is not known yet. The studies by Logothetis suggest
that the BOLD signal is more likely to reflect the input and local neuronal processing
in a given area [5], whose weighted average of dendro-somatic components is
measured as the local field potential (LFP). However, because of the slow-brain
hemodynamics and the draining effects of vessels and veins, the BOLD activation
detected in fMRI is temporally delayed and spatially blurred from the actual site of
neuronal activation. The third question is then how to detect the neuronal activa-
tions from fMRI. Because of the unknown nature of the neurovascular coupling,
how to detect neuronal activation remains an open question. Since neuronal activa-
tion originates in tissue subserved by the microvasculature, the detected microvas-
culature will be co-localized or at least closer to neuronal activation.

The fMRI BOLD effect originates within the microvasculature but also spreads
into veins that drain blood from the activated brain tissue. And fMRI-based BOLD
contrast consists mainly of activations in the microvasculature, large venules, and
draining veins [7–10]. Because the BOLD signal is largely contaminated by the
signals in large veins and noise, extracting earlier microvasculature activation is
difficult and several issues need to be resolved. One major problem is the
compounding effects from the physiological cardiac and respiratory noise, random
noise, and also the contamination of head and vessel motion artifacts [11]. The
percentage signal changes triggered by the stimuli typically is 1–10% in 1.5–3 T
scanners [7]. Averaging scans for all events can improve signal-to-noise ratio (SNR)
in fMRI by canceling random noise. Low-pass and high-pass filtering for the data
can also improve SNR by removing the slow physiological processes such as subject
habituation, learning or fatigue, subject motion, machine calibration drift, and
scan-to-scan baseline variability [12]. However, artifacts in fMRI are often corre-
lated with the signal of interest. Thus, classical average and filtering methods are
not very effective. Noise-removing methods that are based on the intrinsic structure
of the measured signals are more effective.

Another challenge is the partial volume effect (PVE) within one fMRI voxel.
Because of the relatively large size of the voxel at the scale of mm compared to the
size of veins and microvasculature, a mixture of micro- and macrovasculatures is
present in the activated voxel with different temporal characteristics. Since the
actual site of neuronal activity could be masked by signals from macrovasculature, a
technique to separate micro- and macrovasculature within a voxel would be of great
significance to fMRI to improve spatial specificity as well.

The vascular contributions to the BOLD signal depend on magnetic field
strength as well as on data acquisition methods. Many previous works have been
done to enhance the detection of microvasculature. In Chen and Ugurbil [13],
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a higher field at 7 T was used to increase the relative contribution of
microcomponent to the BOLD signal. In spin-echo fMRI [14], large vessel contri-
butions were suppressed because the 180° radiofrequency (RF) pulse in spin-echo
(SE) sequence refocused the dephasing effect of the static field inhomogeneity
around large vessels. A fast response that may be attributed to an increased oxygen
consumption had been observed [15, 16]. This fast dip might be more sensitive to
microvasculature. Also, previous approaches to separate the microvasculature have
relied upon post-processing techniques that utilize the fact that the phase of the MR
signal often reflects the presence of larger vessels in a voxel [17, 18]. Thus, larger
vessels could be removed in the frequency domain or K-space. Our group has
presented a study of segmenting fMRI pixels into microvasculature, venules, and
large veins using intensity, phase, and temporal delay as features [17].

Independent component analysis (ICA) was first applied to fMRI in 1998 by
McKeown et al. using INFORMAX [19] and has been shown to be superior to
principle component analysis (PCA) in determining the spatial and temporal
extents of task-related activation. ICA can also be used to identify the nontask-
related components, such as physiological noise and movement artifacts. Initially,
ICA methods assumed that the sources were naturally occurring sources and mostly
had a super-Gaussian probability density function. Later on, the super-Gaussian
assumption was expanded to a combination of super-Gaussian and sub-Gaussian
distribution assuming that the source distribution was either sub-Gaussian or super-
Gaussian [20]. Recently, a mixture density model for the sources has been proposed
that enables the unknown sources to have a flexible density distribution [21]. The
advantages of ICA over PCA, the correlation of spatial ICA and temporal ICA to
fMRI, and some other issues have been discussed in many papers for the past
decade [22, 23]. In this study, ICA is implemented as an advanced preprocessing
step in fMRI activation detection to remove artifacts by identifying and then
removing some unrelated noisy components. ICA can also be used to identify
temporally independent sources by implementing temporal ICA to fMRI signals
within the region of interest (ROI). Sources identified by temporal ICA provide
extra information regarding the segmentation of microvasculature and macrovas-
culature mixtures within one voxel.

Temporal characteristics of the BOLD response had been investigated by using a
series of time-shifted reference functions [7, 24]. A better localization of the acti-
vated sites and temporal relationships among different brain regions within selected
clusters of activated voxels was achieved using this dynamic correlation method.
But this dynamic fitting used only a one-reference function at a time. Our method is
to use a multi-component model representing a mixture of many vascular compo-
nents to account for partial volume effect within one voxel [25, 26]. Because of
physiological and random noises in the fMRI signal, the multiple components fitting
of the dynamic mixture model can be further improved with both spatial and
temporal ICA methods to improve SNR. Our purpose is to implement dynamic
fitting in the proposed mixture model to account for different temporal character-
istics of vascular components and to improve SNR with ICA integration for better
microvasculature detections and a higher spatiotemporal resolution.

2. Methods

2.1 Experiment

To test the methodology, an Institutional Review Board (IRB)-approved human
study was conducted with fMRI on two normal subjects aged 25 and 40 years.
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A 480-volume of event-related EPI was acquired on a GE 1.5 T LX system from two
continuous slices (i.e., two images per volume) through the visual cortex. The
stimulus was a reversing checkerboard flashing with a 2-Hz frequency for 2 s every
20 s. The pulse repetition time TR = 275 ms, effective echo time TE = 45 ms, 45° flip
angle, 64 � 128 acquisition matrix, and 20 � 40 cm field of view. A total of seven
events were acquired.

2.2 Model

A multi-component reference function with a variable latency and a variable
time separation between adjacent components was fitted to the time course of each
voxel within the visual cortex, as shown in Eq. (1)

y tð Þ ¼ ∑
N

i¼1
aisi tð Þ þ n) Y ¼ SAþ n, t ¼ 1,⋯T (1)

where y is the normalized time course of a voxel, n is fMRI noise, N is the
number of component, si is the ith component, ai is the contributions or the mixture
coefficient of si in y,T is the number of time points in the time course.

Each vascular component is modeled by a reference function with a latency
parameter (2):

ST�N t;Nð Þ ¼ X1 t� T1ð Þ;X2 t� T2ð Þ;⋯;XN t� TNð Þ½ � (2)

where X(t) is the reference function to best represent BOLD response, and Ti is
the latency parameter for the ith component to account for delay. Since latency is
the most important and influential parameter in dynamic fitting, a dual-component
model was investigated in this chapter for simplicity.

2.3 Estimation algorithm

Assuming the noise in fMRI is Gaussian white noise and the components (or
mixtures) can be explicitly modeled by a series of reference functions, there are
several ways to estimate the mixture coefficient and the latency of each component.

A non-negative least square (NNLS) solver [27] can be used to estimate the
contribution coefficients of each component after normalizing both the time course
and the components. At each iteration, only the column of S where the associated
entry of A > 0 was used for least square estimation as in Eq. (3)

A ið Þ
NN ¼ SJþY, J ¼ jjAj

i�1ð Þ ¼ 0
n o

(3)

If the non-negative constraint is removed from the estimation, then a standard
minimum norm method can be used to estimate the contribution coefficients of
each component. The model falls in the general linear model (GLM) fitting problem
[28]. Thus, the estimation of the coefficient and hypothesis testing for the estima-
tion can be done using Eq. (4)

AGLM ¼ STS
� ��1

ST � Y
AGLM � N SþY; σn2 � STS

� ��1� � (4)
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Recently, a first-order Taylor approximation for the temporal derivative of the
reference function is used to estimate the delay of the fMRI response and the
latency difference in different regions [29, 30]. Assuming that there is a slight time
delay T0 between the reference function and the measurement, the delay T0 can be
estimated as listed in Eq. (5)

y tð Þ ¼ a � r t� T0ð Þ þ n tð Þ

r t� T0ð Þ ≈ r tð Þ � T0 � r• tð Þ ) y tð Þ ¼ β1r tð Þ þ β2r
• tð Þ þ n tð Þ

) a ≈ β1, T0 ≈ β2=β1

(5)

where r tð Þ is a one-reference function and r• tð Þ is the temporal derivative of the
reference function. Both are used as two basis functions in a GLM. The beta-
parameters β1 and β2 are estimated using the GLM algorithm. In case of a dual-
component model, the derivative of only one component or the derivatives of both
components are tested.

After the mixture coefficients are estimated for any combination of two (or
more) different reference functions, the combination of the two-reference func-
tions that has the minimum fitting error or a maximum correlation coefficient with
regard to the original time course of each voxel is the estimate of the two compo-
nents with different latencies.

To account for the relatively small microvasculature signal compared to veins at
1.5 T, a weighting factor can be used to estimate the relative fractions of micro- and
macrovasculature inside a voxel from the fitted coefficients. For two components,
assume is the estimate of fraction coefficient from each component
in one voxel using NNLS method, and is the weighting factor for
each component. Then, the percentage contribution of each component in this
voxel is computed as in Eq. (6)

ð6Þ

2.4 Simulation

In Eq. (2), each component comes from a reference function with certain laten-
cies. The reference function mimicking the BOLD response is represented by the
convolution of the stimuli function and the hemodynamic response function
(HRF), assuming that the brain response is linear to the input (7)

r tð Þ ¼ h tð Þ∗I tð Þ, I tð Þ ¼ ∑
trial

δ t� Ttrialð Þ (7)

HRF is the brain response to an impulse stimulus and is modeled as the differ-
ence between two gamma functions as in Eq. (8) [31]

h t; τ1; τ2; δ1; δ2ð Þ ¼ t
τ1

� �δ1

e� δ1=τ1ð Þ� t�τ1ð Þ � c � t
τ2

� �δ2

e� δ2=τ2ð Þ� t�τ2ð Þ (8)
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latency difference in different regions [29, 30]. Assuming that there is a slight time
delay T0 between the reference function and the measurement, the delay T0 can be
estimated as listed in Eq. (5)

y tð Þ ¼ a � r t� T0ð Þ þ n tð Þ

r t� T0ð Þ ≈ r tð Þ � T0 � r• tð Þ ) y tð Þ ¼ β1r tð Þ þ β2r
• tð Þ þ n tð Þ

) a ≈ β1, T0 ≈ β2=β1

(5)

where r tð Þ is a one-reference function and r• tð Þ is the temporal derivative of the
reference function. Both are used as two basis functions in a GLM. The beta-
parameters β1 and β2 are estimated using the GLM algorithm. In case of a dual-
component model, the derivative of only one component or the derivatives of both
components are tested.

After the mixture coefficients are estimated for any combination of two (or
more) different reference functions, the combination of the two-reference func-
tions that has the minimum fitting error or a maximum correlation coefficient with
regard to the original time course of each voxel is the estimate of the two compo-
nents with different latencies.

To account for the relatively small microvasculature signal compared to veins at
1.5 T, a weighting factor can be used to estimate the relative fractions of micro- and
macrovasculature inside a voxel from the fitted coefficients. For two components,
assume is the estimate of fraction coefficient from each component
in one voxel using NNLS method, and is the weighting factor for
each component. Then, the percentage contribution of each component in this
voxel is computed as in Eq. (6)

ð6Þ

2.4 Simulation

In Eq. (2), each component comes from a reference function with certain laten-
cies. The reference function mimicking the BOLD response is represented by the
convolution of the stimuli function and the hemodynamic response function
(HRF), assuming that the brain response is linear to the input (7)

r tð Þ ¼ h tð Þ∗I tð Þ, I tð Þ ¼ ∑
trial

δ t� Ttrialð Þ (7)

HRF is the brain response to an impulse stimulus and is modeled as the differ-
ence between two gamma functions as in Eq. (8) [31]

h t; τ1; τ2; δ1; δ2ð Þ ¼ t
τ1

� �δ1

e� δ1=τ1ð Þ� t�τ1ð Þ � c � t
τ2

� �δ2

e� δ2=τ2ð Þ� t�τ2ð Þ (8)
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where τ1 controls the rising time to peak, τ2 controls the peak time of the
undershoot, δ1, δ2 determine the dispersion of the two peaks, and c controls the
influence of the undershoot.

Firstly, the influences of the HRF parameters τ1, τ2, δ1, δ2, c and the reference
function latency parameter T0 were studied. These parameters were in the range of
as listed in the study:
τ1 ¼ 3:4 : 7:4, δ1 ¼ 5 : 7, τ2 ¼ 12, δ2 ¼ 2δ1, c ¼ 0:35, T0 ¼ �10 : 10 [24]. Then, the
reference function with all these parameters was fitted to one time course in the
activated brain. The correlation coefficient between time course and the reference
function as a function of shape parameter δ1 and delay parameter τ1 at one latency
parameter T0 is used as a criterion for optimization, similar to the dictionary-based
finger-printing method. Except for the latency parameter T0, all the other parame-
ters of HRF are found to have a minor influence on the correlation coefficient, and
thus, only the latency parameter is used as a variable for each reference function in
this work. And HRF parameters are the same as in SPM software
τ1 ¼ 5:4, τ2 ¼ 12, δ1 ¼ 6, δ2 ¼ 12, c ¼ 0:35 [28].

Secondly, a Monte-Carlo study was conducted to test the fitting algorithm and to
study the influence of noise on the latency estimations. The simulated time course
was a mixture of one- or two-reference functions at different latencies from a series
of reference functions. The mixture coefficient Wi, i ¼ 1, 2 of each reference func-
tion (or component) had a uniform distribution of Wi � U 0; 1½ �. A Gaussian white
noise was added to the mixed time course with different SNR. The latencies of the
components were estimated by different GLM and NNLS with or without deriva-
tive algorithms. The sampling step for the reference functions was dt ¼ 105 ms in
the case studied based on maximal temporal resolution that fMRI could achieve.
The process of adding random Gaussian noise to the mixture of one or two compo-
nents with a random uniform coefficient was repeated 1000 times for each SNR.
The SNRs were tested at level from 1 to 10, 20, and infinite which is noise-free. The
results were obtained for a traditional one-reference function condition and a mix-
ture of two-reference function condition.

For the simulated time course coming from one-reference function case, the
tested algorithms are GLM method for one component and one derivative (i.e., two
basis functions), GLM method with only one component, and NNLS method with
only one component. The results show that the estimation is unbiased for both
NNLS and GLM methods for all SNRs, and the standard deviation (STD) for the
estimation is relatively small (less than 100 ms) for both methods at SNR larger
than 3. For the GLM plus the derivative component method, the estimation error is
non-zero for larger SNR. This is because the method uses the first-order derivative
as an approximation, assuming that the delay is very small and the assumption is
not always valid. The result is consistent with Hensen [29]. So only, the GLM and
the NNLS without derivative were tested for the mixture of two components.

For the case in which the simulated time course came from two mixed reference
functions, the latency of first component and separation of the two reference
functions were estimated. First, only the latency of the first component was esti-
mated and the separation of the two reference functions was initialized and fixed.
Then, the separation of the two reference functions is also set as a variable. The
Monte-Carlo simulation shows that both fixed and variable separations between
two reference functions give a small bias in the estimation of latency as a function of
SNR in case of mixture fitting. However, the NNLS estimation algorithm produces
smaller bias than GLM. Also, a variable separation gives a higher STD than a fixed
separation for latency estimation. Therefore, NNLS with a fixed separation is used
for this work.
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2.5 ICA denoise preprocessing

To improve the fitting using the multi-component model, spatial ICA (SICA)
was implemented first to improve SNR. Temporal ICA (TICA) had also been
applied to the cleaned data within a region of interest to extract the possible intrin-
sic temporally independent sources. TICA has also been used on functional MRI by
several groups [32, 33].

In SICA, the assumption is that all the intrinsic spatial independent components
are mixed temporally and measured at different time (which has the same meaning
as “channel”). In order for spatial ICA to work, the measured fMRI EPI 2D or 3D
image will be transformed to 1D vector in the same order at each time. The whole
fMRI data are formulated as a 2D matrix: Xij, i ¼ 1, 2,⋯, N; j ¼ 1, 2,⋯, V. N is the
number of EPI volumes and V is the number of voxels in each volume. Assuming
SM�V are the M independent components, the independent components are mixed
in the following way (9):

XN�V ¼W�1
N�M � SM�V ) Xi ¼ ∑

M

m¼1
W�1

im � Si, i ¼ 1, 2,⋯, N

Xi ¼ Xi1, Xi2,⋯, XiV �0
�

(9)

where W�1
N�M is the mixing matrix and WN�M is called the unmixing matrix.

In order to get a good estimation of unmixing matrix and source components,
the number of samples or voxel number (V) and the number of sources (M) should
satisfy V≥M∗ Mþ 1ð Þ=2. The number of sources should not exceed the number of
channels: M≤N [19]. In the ICA algorithm, the number of sources by default is set
to be the number of channels (time points in case of spatial ICA and voxel number
in case of temporal ICA). The source numbers are usually very large and can
increase the computational complexity and lead to unstable solution [21]. One way
to solve this problem is to estimate the number of sources (or model order) using
the probability PCA such as Bayesian information criterion (BIC) [34].

In this chapter, we used PCA to estimate the number of the sources (M) in the
data based on the eigen decomposition of the covariance matrix of the data. The
number of components is estimated to maintain >95% of non-zero eigenvalues [33]
to contain a majority of data information. After PCA preprocessing, the data that
maintain the first M largest components were used for the spatial ICA decomposi-
tion using the ICA INFORMAX software [35]. The unmixing matrix and indepen-
dent components are obtained as the output.

Three features are extracted for each independent component (IC) in order to
select the artifacts components: (1) Spatial ICA map obtained by superimposing
activated voxels on the anatomy for the ith IC, Si, i ¼ 1, 2,⋯, 30. Each IC is scaled
by the variance after removing mean: Zij ¼ Sij�mi

σi
, i ¼ 1, 2,⋯, 30; j ¼ 1, 2,⋯,480.

The active voxels are selected such that Zj j ≥ 1:96 corresponds to statistical p = 0.05.
(2) The associated time course of the spatial IC. Based on Eq. (9), the contribution
of the ith IC to the original data is the ith column of the mixing matrix W�1 :; ið Þ.
W�1 :; ið Þ is called the associated time course for the ith IC, and it reflects the
temporal pattern of this source. The correlation coefficient (CC) and the statistical
P-value between the associated time course of sources and the single-shifted refer-
ence function are also calculated. (3) The power spectrum density (PSD) function
for the associated time course for the ith component with sampling frequency
f ¼ 1=TR ¼ 3:64 Hz.
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The SNRs were tested at level from 1 to 10, 20, and infinite which is noise-free. The
results were obtained for a traditional one-reference function condition and a mix-
ture of two-reference function condition.

For the simulated time course coming from one-reference function case, the
tested algorithms are GLM method for one component and one derivative (i.e., two
basis functions), GLM method with only one component, and NNLS method with
only one component. The results show that the estimation is unbiased for both
NNLS and GLM methods for all SNRs, and the standard deviation (STD) for the
estimation is relatively small (less than 100 ms) for both methods at SNR larger
than 3. For the GLM plus the derivative component method, the estimation error is
non-zero for larger SNR. This is because the method uses the first-order derivative
as an approximation, assuming that the delay is very small and the assumption is
not always valid. The result is consistent with Hensen [29]. So only, the GLM and
the NNLS without derivative were tested for the mixture of two components.

For the case in which the simulated time course came from two mixed reference
functions, the latency of first component and separation of the two reference
functions were estimated. First, only the latency of the first component was esti-
mated and the separation of the two reference functions was initialized and fixed.
Then, the separation of the two reference functions is also set as a variable. The
Monte-Carlo simulation shows that both fixed and variable separations between
two reference functions give a small bias in the estimation of latency as a function of
SNR in case of mixture fitting. However, the NNLS estimation algorithm produces
smaller bias than GLM. Also, a variable separation gives a higher STD than a fixed
separation for latency estimation. Therefore, NNLS with a fixed separation is used
for this work.
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2.5 ICA denoise preprocessing

To improve the fitting using the multi-component model, spatial ICA (SICA)
was implemented first to improve SNR. Temporal ICA (TICA) had also been
applied to the cleaned data within a region of interest to extract the possible intrin-
sic temporally independent sources. TICA has also been used on functional MRI by
several groups [32, 33].

In SICA, the assumption is that all the intrinsic spatial independent components
are mixed temporally and measured at different time (which has the same meaning
as “channel”). In order for spatial ICA to work, the measured fMRI EPI 2D or 3D
image will be transformed to 1D vector in the same order at each time. The whole
fMRI data are formulated as a 2D matrix: Xij, i ¼ 1, 2,⋯, N; j ¼ 1, 2,⋯, V. N is the
number of EPI volumes and V is the number of voxels in each volume. Assuming
SM�V are the M independent components, the independent components are mixed
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(9)

where W�1
N�M is the mixing matrix and WN�M is called the unmixing matrix.

In order to get a good estimation of unmixing matrix and source components,
the number of samples or voxel number (V) and the number of sources (M) should
satisfy V≥M∗ Mþ 1ð Þ=2. The number of sources should not exceed the number of
channels: M≤N [19]. In the ICA algorithm, the number of sources by default is set
to be the number of channels (time points in case of spatial ICA and voxel number
in case of temporal ICA). The source numbers are usually very large and can
increase the computational complexity and lead to unstable solution [21]. One way
to solve this problem is to estimate the number of sources (or model order) using
the probability PCA such as Bayesian information criterion (BIC) [34].

In this chapter, we used PCA to estimate the number of the sources (M) in the
data based on the eigen decomposition of the covariance matrix of the data. The
number of components is estimated to maintain >95% of non-zero eigenvalues [33]
to contain a majority of data information. After PCA preprocessing, the data that
maintain the first M largest components were used for the spatial ICA decomposi-
tion using the ICA INFORMAX software [35]. The unmixing matrix and indepen-
dent components are obtained as the output.

Three features are extracted for each independent component (IC) in order to
select the artifacts components: (1) Spatial ICA map obtained by superimposing
activated voxels on the anatomy for the ith IC, Si, i ¼ 1, 2,⋯, 30. Each IC is scaled
by the variance after removing mean: Zij ¼ Sij�mi

σi
, i ¼ 1, 2,⋯, 30; j ¼ 1, 2,⋯,480.

The active voxels are selected such that Zj j ≥ 1:96 corresponds to statistical p = 0.05.
(2) The associated time course of the spatial IC. Based on Eq. (9), the contribution
of the ith IC to the original data is the ith column of the mixing matrix W�1 :; ið Þ.
W�1 :; ið Þ is called the associated time course for the ith IC, and it reflects the
temporal pattern of this source. The correlation coefficient (CC) and the statistical
P-value between the associated time course of sources and the single-shifted refer-
ence function are also calculated. (3) The power spectrum density (PSD) function
for the associated time course for the ith component with sampling frequency
f ¼ 1=TR ¼ 3:64 Hz.
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To clean the data, the noise independent components are removed by setting the
associated columns of the noise components in the mixing matrix to be zero. Data
are reconstructed from the possible signal components as shown in Eq. (10)

XV�N ¼W�1
V�M � SM�N ) ~Xi ¼ ∑

M

m¼1
~W�1

im � Si, i ¼ 1, 2,⋯, V

~W�1 :; jð Þ ¼ 0, if j ∈ noise; ~W�1 :; kð Þ ¼W�1 :; kð Þ, otherwise
(10)

3. Results and discussion

3.1 Microvasculature estimation before ICA cleaning

Microvasculature estimation based on the methods described was applied to the
original data and the data after ICA cleaning. The histogram of voxels was detected
as a function of latency in steps of TR = 275 ms for the single component (Figure 1).
The histogram was fitted by a Gaussian distribution with the estimated mean and
standard deviation. Since pixels containing mostly microvasculature would have a
shorter latency among all detected voxels, the time separation from the peak of the
Gaussian to its baseline on the left side would be a reasonable estimate of the time
separation between the micro- and macrocomponents. The peak level was 22
(number of pixels) and Gaussian baseline is chosen at 10% of peak level which was
2.2. These correspond to indexes of 20 and 12, respectively, in units of TR. There-
fore, a separation of 8*TR = 2.2 s was selected between the components of the two-
component model.

Figure 2 shows the histogram of dual-component models using separation
time = 2.2 s. The histogram is a combination of two Gaussian distributions. The
latency boundary of micro- and macrovascular classes is chosen based on the sepa-
ration between two classes. The vertical line at �15 shows the separation boundary
(Figure 2).

Figure 3a shows the voxels (numbering 34) localized from fitting indexes 2–15
with earlier latency (latency up to 15, Figure 2) and has >50% fractional

Figure 1.
Histogram showing the number of voxels as a function of latency (each point in X-axis is 275-ms unit) for best
fitting time of a one-component model.

Figure 2.
Histogram showing the number of voxels as a function of latency for best fitting time for a dual-component
model.
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contribution from the earlier component. These voxels are likely to contain a
microvasculature component. The relative fractional contribution of these compo-
nents in the 34 voxels is shown in Figure 3b. Figure 3c shows the distribution of
voxels indexed with a high latency (after 15 shown in Figure 2) likely to be veins.
The relative contributions of the two components in these voxels are plotted in
Figure 3d. In Figure 3c, a large vein structure can be seen that may contain a
mixture of two macrovasculature components. In Figure 3a, the microvasculature
estimated in the V5 region (marked by circle) is in gray matter, though a couple of
pixels are likely to be macrovasculature and thus contain two vascular components
as shown in Figure 3b. For macrovasculature voxels estimated in Figure 3c, since
there might still be two vascular components (venules and veins) with different
latencies, the fractional contributions shown in Figure 3d were not equally distrib-
uted as in Figure 3b.

3.2 Microvasculature estimation after ICA cleaning

To further improve the mixture model, ICA is used as a preprocessing operation
for denoising. PCA was used to estimate the number of the sources, and the number
of components was chosen to be 30 (Figure 4) that contains ≥95% data variation
and information. After PCA preprocessing, the data that maintain the first 30
largest components were used for the spatial ICA decomposition using the ICA
INFORMAX software.

Figure 5 shows the features of a one-source component. The first row is the
spatial map of the 15th IC. V1, V2, and V5, expected to be activated, can be seen in
the spatial map. The second row is the associated time course and the averaged time
courses of original data. The associated time course matches well with the averaged
original time course. The correlation coefficient between the associated time course
and the reference function is 0.4 with P < 0.0001. The third row is the PSD of the
associated time course shown in the unit of Hz. Since the stimulus is presented
every 20 s, the corresponding frequency is 1/20 s = 0.05 Hz. The peak at 0.05 Hz can
be seen in the PSD; however, there are also some large peaks around 0.1 Hz and
lower frequencies that may come from the alias of the physiological noise. This
component is mostly likely to be task-related based on the high CC of 0.4 and a
distinct peak at 0.05 Hz in PSD. Figures 6 and 7 show two examples of components

Figure 3.
Results of mixture model for microvasculature estimation. (a) Voxels corresponding to indexes up to 15 in
Figure 2, (b) Fractional contributions from microvasculature (blue line) and macro-vasculature(green line).
(c) Voxels corresponding to indexes after 15 in Figure 2. (d) Fractional contributions from two components in
the macrovasculature.
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contribution from the earlier component. These voxels are likely to contain a
microvasculature component. The relative fractional contribution of these compo-
nents in the 34 voxels is shown in Figure 3b. Figure 3c shows the distribution of
voxels indexed with a high latency (after 15 shown in Figure 2) likely to be veins.
The relative contributions of the two components in these voxels are plotted in
Figure 3d. In Figure 3c, a large vein structure can be seen that may contain a
mixture of two macrovasculature components. In Figure 3a, the microvasculature
estimated in the V5 region (marked by circle) is in gray matter, though a couple of
pixels are likely to be macrovasculature and thus contain two vascular components
as shown in Figure 3b. For macrovasculature voxels estimated in Figure 3c, since
there might still be two vascular components (venules and veins) with different
latencies, the fractional contributions shown in Figure 3d were not equally distrib-
uted as in Figure 3b.

3.2 Microvasculature estimation after ICA cleaning

To further improve the mixture model, ICA is used as a preprocessing operation
for denoising. PCA was used to estimate the number of the sources, and the number
of components was chosen to be 30 (Figure 4) that contains ≥95% data variation
and information. After PCA preprocessing, the data that maintain the first 30
largest components were used for the spatial ICA decomposition using the ICA
INFORMAX software.

Figure 5 shows the features of a one-source component. The first row is the
spatial map of the 15th IC. V1, V2, and V5, expected to be activated, can be seen in
the spatial map. The second row is the associated time course and the averaged time
courses of original data. The associated time course matches well with the averaged
original time course. The correlation coefficient between the associated time course
and the reference function is 0.4 with P < 0.0001. The third row is the PSD of the
associated time course shown in the unit of Hz. Since the stimulus is presented
every 20 s, the corresponding frequency is 1/20 s = 0.05 Hz. The peak at 0.05 Hz can
be seen in the PSD; however, there are also some large peaks around 0.1 Hz and
lower frequencies that may come from the alias of the physiological noise. This
component is mostly likely to be task-related based on the high CC of 0.4 and a
distinct peak at 0.05 Hz in PSD. Figures 6 and 7 show two examples of components
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Results of mixture model for microvasculature estimation. (a) Voxels corresponding to indexes up to 15 in
Figure 2, (b) Fractional contributions from microvasculature (blue line) and macro-vasculature(green line).
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attributed to physiological noise. For instance, the source that is most likely from
the heart-beating with a dominant peak in 1.2 Hz is shown in Figure 6, and the
source that is from breathing and heart beating activation in the ventricles with
distinct frequencies at 0.27 and 1.2 Hz as in Figure 7. Figure 8 demonstrates an
example of the motion artifact component. The associated time course shows a
gradual drift along time. This component is likely to be movement-based low-
frequency drift. The activations have a “ring-like” spatial distribution that is coming
from head movement.

Figure 4.
SVD decomposition of fMRI data. Cutoff horizontal line was chosen to discard less than 5% data variation with
the corresponding number of components at 30.

Figure 5.
Representative result of one component from spatial ICA that is task related. (a) Spatial map of the 15th IC.
V1, V2, and V5, expected to be activated, can be seen in the spatial map. (b) Associated time course (red) and
the averaged time courses of original data (blue). The associated time course matches well with the averaged
original time course. The correlation coefficient between the associated time course and the reference function is
0.4. (c) Power spectrum density (PSD) of the associated time course shown in the unit of Hz. Since the stimulus
is presented every 20 s, the corresponding frequency is 1/20 s = 0.05 Hz as seen with the large peak in the
spectrum.
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Eight noise components were identified based on the three features, and data
were reconstructed by removing these components. We applied both multi-
component model and TICA to the original data and the data after ICA cleaning to
the visual cortex. Dynamic mixture model was used to fit the data after ICA
cleaning. The same time separation, 2.2 s, of “before ICA” was used for “after ICA”
fitting.

Figure 6.
One noisy component from heart beating.

Figure 7.
Another noisy component from both breathing and heart beating with distinct frequencies at 0.27 (from
breathing) and 1.2 Hz (from heart beating).
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V1, V2, and V5, expected to be activated, can be seen in the spatial map. (b) Associated time course (red) and
the averaged time courses of original data (blue). The associated time course matches well with the averaged
original time course. The correlation coefficient between the associated time course and the reference function is
0.4. (c) Power spectrum density (PSD) of the associated time course shown in the unit of Hz. Since the stimulus
is presented every 20 s, the corresponding frequency is 1/20 s = 0.05 Hz as seen with the large peak in the
spectrum.
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Eight noise components were identified based on the three features, and data
were reconstructed by removing these components. We applied both multi-
component model and TICA to the original data and the data after ICA cleaning to
the visual cortex. Dynamic mixture model was used to fit the data after ICA
cleaning. The same time separation, 2.2 s, of “before ICA” was used for “after ICA”
fitting.

Figure 6.
One noisy component from heart beating.

Figure 7.
Another noisy component from both breathing and heart beating with distinct frequencies at 0.27 (from
breathing) and 1.2 Hz (from heart beating).
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Figure 9 shows the histogram of a dual-component model using component
separation time = 2.2 s after ICA cleaning. The separation of micro- and
macrovascular classes was �12. The shape of the Gaussian distribution is narrowed
compared to Figure 2 before ICA. This is because ICA has removed the noisy voxels
and thus the distribution is less Gaussian.

Figure 10a shows the voxels (numbering 50) localized from low latency (up to
12, Figure 4) and has >50% fractional contribution from the earlier component.
These voxels are likely to contain a microvasculature component. Figure 10b shows
the relative fractional contribution of these components. Figure 10c shows the
distribution of voxels indexed with a high latency (after 12 in Figure 9) likely to be
veins. The relative contributions of two components in these later voxels are plotted
in Figure 10d.

3.3 Comparison of results before and after spatial ICA

The average correlation coefficient for the fitting after ICA cleaning has
increased around 70% compared to the original fitting (Figure 11). The number of
voxels at an earlier latency (up to 15 in Figure 2 and up to 12 in Figure 9) also
increased. The number of voxels that are most likely to be microvasculature has

Figure 8.
Result of motion artifact component from spatial ICA.

Figure 9.
Histogram showing the number of voxels as a function of latency for best fitting time for a dual-component
model after ICA cleaning.
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increased from 34 to 50 (�50%) after ICA. The regions marked by a circle in
Figure 10 identified microvasculature in V5 region on the left side which was
missed by the estimation before ICA.

For all the estimated microvasculature, the fractional contribution coefficients
of two components after ICA (Figure 10b) are the same, suggesting all the voxels
are in the microvasculature. The fractional contribution coefficients of two compo-
nents in the macrovasculature are different with venules and veins.

3.4 Comparison microvasculature estimation with temporal ICA

We have implemented further temporal ICA to the data after spatial ICA
cleaning in the cluster that has a higher correlation (≥0.3) to the reference function.
The assumption is that the concurrent active voxels may still be mixed with differ-
ent types of temporally independent components.

The number of components was set to be 10 based on the PCA of the cleaned
data within the activated cluster. There is an associated spatial map for each tem-
poral component that reflects the spatial contribution of the component. The spatial
map of each temporal IC is shown in Figure 12. Compared to the micro and
macrovasculature images, temporal IC #9 and IC #1 in Figure 12 have activation
patterns similar to the macrovasculature image in Figure 10c, while the spatial map

Figure 10.
Results of microvasculature estimation after ICA cleaning. (a) Voxels corresponding to indexes up to 13 in
Figure 9. (b) Fractional contributions from micro- and macrovasculature. (c) Voxels corresponding to indexes
after 13 in Figure 9. (d) Fractional contributions from two components in the macrovasculature.

Figure 11.
Correlation coefficient (CC) before ICA (blue) and after ICA (red). Average CC of all voxels improved 70%
after ICA compared to original fitting without ICA denoising.
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of temporal IC #10 and IC #4 has similar distributions with the microvasculature
image in Figure 10a.

3.5 Discussion

We have described a novel multiple-component model that takes into consider-
ation vascular mixtures in the fMRI BOLD signal and partial volume effect and
developed methods to estimate the contribution of each component. Experimental
studies have shown that compared to the traditional single-component model, our
method achieves a better match to the original time courses of fMRI and thus
reduces the fitting errors. Another advantage of the method is that it allows us to
estimate microvasculature. The microvasculature is closer to the site of neuronal
activation and validated with the temporal ICA method, as expected [36]. Spatial
ICA has been used as a preprocessing step in the mixture model to remove noise and
improve the microvasculature detection with a higher CC and more voxels with
lower latencies detected. The spatial and temporal distributions of all these noisy
components were consistent with the results of other studies [32, 34, 37].

We use a series of reference functions to model the brain vascular components.
Compared to the classical single-component model, the multi-component model fits
the measured fMRI time course with a higher correlation coefficient and also
detects voxels with low latencies more efficiently. Different vascular components
will have different HRF shapes. Therefore, how the brain vascular components can
be modeled more accurately needs to be investigated in the future. Also, the multi-
ple reference functions are not orthogonal to each other; some de-correlation
methods can be further implemented to improve the robustness of the fitting.

Figure 12.
Ten associated maps of temporal independent components (IC) identified by TICA.
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Temporal ICA decomposition in the activated regions could overcome these prob-
lems with good spatial correspondence results between temporal ICA and mixture
models. One limitation is that temporal independent assumption might not be fully
satisfied in fMRI data since hemodynamic responses evolve with time [29].

4. Conclusion

In conclusion, we had used two new methods (i.e., ICA and dynamic mixture
model) to improve microvasculature detection in fMRI that is closer to true neuro-
nal activation and therefore improve the specificity of the fMRI microvasculature
detection in both functional and structural ways [38]. Further integration and
validation with other modalities such as EEG and PET are warranted in the near
future. Further imaging of the full dynamic spatiotemporal multi-parametric func-
tional and neurophysiological profile including BOLD microvasculature activation,
couplings between BOLD and CBF/CBV, between BOLD, and oxygen extraction/
metabolism [39] are expected in the near future [40].
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Chapter 4

Simultaneous Smelling an Incense 
Outdoor and Putting the Hands 
Together Activate Specific Brain 
Areas
Mitsuo Tonoike and Takuto Hayashi

Abstract

Mirror neurons are involved in imitation of habitual behaviors. To 
increase understanding of the theory of mirror neurons and the default 
mode network, brain activation was explored in 11 healthy adult volunteers 
who did or did not have a habit of putting their hands together as if praying. 
Magnetoencephalography (MEG) data were recorded while the participants 
simultaneously smelled an odor in two kinds of incenses outdoor and/or while 
they moved to putting their hands together. A magnetoencephalographic contour 
map of the recorded findings was drawn and an estimated current dipole (ECD) 
was set. Regardless of a habit of putting their hands together or not, the inner lobe 
of the frontal area, anterior area in the temporal lobe, and F5 language area in the 
left frontal lobe and so on were specifically activated. We used cortisol value as 
an index of the stress state measured in every state (before and after smelling two 
different incenses outdoor). These experiments suggest that simultaneous smell-
ing an incense outdoor and the behavior of putting their hands together increased 
the activity of these specific areas in the human brain due to mutual interactions 
and enhanced interactions.

Keywords: incense outdoor, putting the hands together, habit/no habit, MEG, F5 
language area, mirror neuron, default mode network

1. Introduction

In the olfactory neural processing in humans, evoked magnetic fields by odor-
ant synchronized with respiration and sniffing odors are found in orbito-frontal 
cortex (OFC) and inferior temporal lobe [1–6]. On the other hand, mirror neurons 
in the brain are known to activate the inner prefrontal lobe and F5 area which have 
the function of imitation of behavior in daily life [7–9]. Therefore, mirror neurons 
are considered to have the function for imitation of habit [10–12]. Super mirror 
neurons are concerned with determination of values, recognition of oneself and 
others, and reward from one’s work. The inner default mode network controls the 
fundamental activity of daily movements and the resting state of the human brain 
[13–15]. Because this default mode network is strongly related to super mirror 
neurons, discrimination of oneself from others and the determination of social 
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cognition are considered important in human daily life [16, 17]. The purpose of 
this study is to clarify that simultaneous smelling an incense outdoor and putting 
the hands together activate the human brain and to show where specific areas are 
activated.

2. Materials and methods

2.1 Incense sticks

In this MEG experiment, two types of incense sticks (A: SEIUN-Violet 
Smokeless, and B: MAINICHI-Kou Sandalwood), which are produced by Nippon 
Kodo Co. Ltd. in Japan, were used as odors.

2.2 Subjects

Eleven Japanese volunteer subjects (six males, five females) between the ages 
of 22 and 58 years (mean age 41 ± 11 years) without significant smell loss or a 
neurologic history participated. All subjects were right-handed and were given the 
informed consent in accordance with guidelines set by the ethical committee on 
human studies in both Aino University and the Kansai center in AIST in Japan.

2.2.1 Preparation of subjects

All subjects used non-magnetic clothes, and answered no problem for the 
questionnaire to exclude metal artifacts. Before the MEG experiments, an indi-
vidual subject was shown the essence of instructions and possible debriefing for the 
experiments.

All subjects were given informed consent in accordance with the acceptance for 
measuring MEG and individual anatomical MRI for each individual brain structure 
to the experiments.

Participants were requested in seated during MEG experiments, and the head of 
the participant was positioned in the MEG helmet under the gantry of MEG system 
in the magnetically shielded room.

Ten of these volunteers (except for one male) were separated into two groups, the 
A-group, which included individuals with a habit of putting their hands together in 
their daily life (similar to praying), and the B-group, which included individuals who 
are not in the habit of putting their hands together or who do not pray.

One person was not included in either group, because he had experience putting 
his hands together and sometimes prayed. In this MEG experiment, he did not use 
a burning incense stick and instead directly sniffed his hands, which were painted 
with a liquid odorant containing the same ingredients as the incense stick.

2.3 Experimental design

2.3.1 MEG system

This MEG system is Neuro-magnetometer with 122 channel DC-SQUID sensors, 
whole-cortex type system (Neuromag-122™, Electa Co. Ltd., made in Finland).

SQUID sensor is planner DC-SQUID type. Inner helmet of the head, at 
the 62 points which were selected around the whole head two the first deriva-
tive DC-SQUID sensors were located individually (so, the number of total 
sensors are 122 = 62 × 2). This system’s version of the acquisition software is 

73

Simultaneous Smelling an Incense Outdoor and Putting the Hands Together Activate Specific…
DOI: http://dx.doi.org/10.5772/intechopen.81624

Neuromag-Aquis122-Ver.3. Sampling frequency was used Max 600 Hz, with an 
analog pass-band filter of 0.01–200 Hz for acquisition filters.

As the location of the head relative to MEG sensors differ across participants, 
projection onto a common source space would address this issue through well-
established techniques for spatial normalization [18], although realignment of the 
data could also be done in sensor space [19–21].

2.3.2 MRI system

This MRI system is 0.4T Hitachi open type MRI system (AIRIS-Light MRI 
system: permanent magnetic type, made in Hitachi Co. Ltd. in Japan).

1. EOG/ECG/EMG: EOG/ECG/EMG were measured to test for subject’s seating 
state on the chair in MEG system before the experiments, however these data 
were not used in MEG experiments because no artifacts and no noise for MEG 
data.

2. Head shape system: this MEG system used Head Position Indicator (HPI) for the 
digital value of the own head shape for individual subjects.

3. Head movements: head movements of MEG were recorded continuously by 
using advanced HPI system, and the head movement compensation algorithm 
was applied [22]. The difference of between head positions before and after 
the run of MEG was recorrected.

4. Position of participants: participants were in seated in MEG experiments, and 
the head of the participant was positioned in the MEG helmet under the gantry 
of MEG system in the magnetic shielded room.

5. External stimulation and recording devices: this MEG system has photodiode 
devices to determine visual stimulus onset with respect to MEG trigger, and 
MEG has delays of a few msec. MEG data were corrected for these delays.

6. Coregistration: this MEG system has the following coregistration procedure. 
Anatomical MRIs were used individually to apply to individual own MEG data 
only by oneself. The method section is described for the preprocessing of the 
MEG study as the following, and the order of these preprocessing steps were 
carried out.

7. Bad MEG sensors: in this MEG system there are sometimes a few bad MEG 
sensors. This MEG system has tuning program for all 122 sensor’s tune, and 
after tuning processing a few bad sensors were found, and a few bad sensors 
were excluded during acquisition or analysis. The signals of bad sensors were 
interpolated to the signal estimation by using signal estimation software.

8. Filtering processing: in this MEG experiments we applied the following filtering. 
We used the digital band-pass filtering (0.3–40 Hz) the second order forward 
butterworth filtering with the windows algorithms.

9. IAC algorithms: ICA program was applied to input data of MEG. The number 
of components was five for the estimation. Criteria of ICA estimation on the 
total five components for selecting are determined to 85% to all components 
of data.
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10. Trials and segments: trials and segments were anyways applied to reject under 
the criteria when the external bigger noises mix the income to the MEG data 
and the subject’s unforecasted artifacts of movements.

In this MEG experiment, each subject’s head was placed in a helmet with whole-
cortex type SQUID sensors (Neuromag-122™, Electa Co. Ltd.). Three-dimensional 
orthogonal coordinates were determined in the helmet of the neuromagnetometer. 
Experiments were performed in the Kansai Center in Ikeda city, National Institute 
of Advanced Industrial Science and Technology (AIST) in Japan.

An incense outdoor was freely presented to the subject by means of a burning 
incense stick on a holder that was naturally held in front of the subject while seated 
in a chair in a magnetically shielded room.

2.3.3 Experiments of the stress state using subject’s saliva

In these experiments, magnetoencephalography (MEG) was performed, and the 
cortisol value in the subject’s saliva was measured in every state (before and after 
smelling two different incense outdoors (A and B)).

2.4 MEG experiments for four mode state

MEG response data were measured at the following four mode states, (1): 
control mode, (2): simple mode of putting the hands together, (3): smelling mode 
with putting the hands together, (4): only smelling mode. MEG data were added 
with 100 times averaging with the random sampling method. The subject pushed an 
optical sensor button with his or her own thumb.

1. In the control mode, the subject sat quietly and naturally in a chair with his 
or her eyes open and freely pushed the button of the optical fiber sensor at 
random times with the right thumb in synchronization with active inspiration 
(i.e., sniffing with the nose) of his or her own respiration rate, and the average 
MEG brain waves were obtained from raw data collected about 100 times in 
the control state [23].

2. For the next mode, the simple mode for the behavior of putting the hands 
together was performed as the experimental task, regardless of whether the 
subject did or did not have the habit of putting his or her hands together or 
praying in daily life. During this simple mode of putting the hands together, 
the subject held the optical sensor between the hands and pushed the button 
with the right thumb at random times while putting the hands together.

By using the above two modes, we tried to measure the subject’s own singular 
characteristic active area on the control state and to obtain the brain area activated by 
putting the hand together and we have examined to compare how the brain activity is 
different for the habit and no habit behavior of putting the hand together in daily life.

3. In the next mode that included smelling and putting the hands together, we 
measured the MEG response of both brain activities: smelling the odor in 
synchronization with active inspiration (i.e., sniffing and smelling the incense 
odor) and the behavior of putting the hands together [6].

4. In the last smelling mode, when the subject smelled only the incense odor 
without putting the hands together, the averaged MEG response was measured 
by adding the raw MEG data collected about 100 times by pushing the optical 
sensor button.

75

Simultaneous Smelling an Incense Outdoor and Putting the Hands Together Activate Specific…
DOI: http://dx.doi.org/10.5772/intechopen.81624

Both the control mode and simple mode of putting the hands together were 
recorded in the absence of the burning incense odor. After one incense odor was 
tested, the room air including the odor in the magnetically shielded room was 
exchanged completely with fresh air by using a large fan for about 10 minutes.

2.5 MEG and data analysis

For the purpose of observing brain activity with greater accuracy, we used a 
whole-head 122-sensor neuromagnetometer (a DC-SQUID device of the first order 
differential planar type, by Neuromag, Finland). With an attached digital band 
filter capable of passing only measurements in the bandwidths of 0.3–40 Hz, only 
valid readings were collected at an actual sampling rate of 400 Hz and converted 
into digital values. To observe brain functions in several experimental modes, 
we used a whole-head type DC-SQUID, which allowed us to detect cortical cur-
rent directly and to monitor brain activities [24]. This detection method is called 
MEG. The analog readings detected in this manner of the brain magnetic field were 
digitized at a sampling rate of 400 Hz with an A/D converter, downloaded, and 
stored in a PC.

2.5.1 122-channel neuromagnetometer of the Planar Type Gradiometer

The 122-channel neuromagnetometer of the Planar Type Gradiometer can cal-
culate the first derivative of the magnetic vector field Bz through individual SQUID 
sensors installed on the helmet, or it can calculate {(∂Bz/∂x)i, (∂Bz/∂y)i} about 
SQUID sensor i. Its dimension is fT/cm   √ 

___
 Hz   . The x- and y-axes represent the direc-

tions of longitude and latitude, respectively. A total of 122 sensor elements on the 
helmet were paired with the x- and y-axes, and each pair was assigned to measure 
one part of the head surface. A total of 61 sets (122 data points total) of magnetic 
field data can be detected, recorded at a particular interval (j), and calculated using 
the formula {(∂Bz/∂x)i,j, (∂Bz/∂y)i,j, (i = 1, 2, …, t; j = 1, 2, …, t)}.

The advantage of planar gradiometer is the ability to manufacture them using 
standard thin-film techniques developed for the semiconductor this can reduce 
manufacturing costs and increase the precision with which the coils can be made 
since slight imperfections in the size or orientation of the two loops can reduce their 
ability to perfectly reject the zero-order field.

2.5.2 Signal Space Separation (SSS) system

Signal processing method for noise reduction to this MEG system is Signal Space 
Separation (SSS)n which reduces environmental noise [25]. This method math-
ematically decomposes the magnetic field recorded from a spherically distributed 
array of sensors into a series expansion composed of internal and external terms 
that represent the proportion of the measured fields arising from inside and outside 
the sphere, respectively. The measured signal is reconstructed using only the 
internal terms to discard the environmental noise [19, 20].

2.5.3 Source reconstruction

In general, we use the volume conductor model of the subject’s head (e.g., Sphere 
model, BEM, FEM) individually and the lead fields algorithms for magnetic fields 
[26]. Normalization procedure was also used for spatial normalization after source 
localization by using SPM-12 of MRI software. The coordinates of subject’s brain are 
linked to individual subject’s brain structures using the source of the lookup table 
(e.g., FSL atlas).
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2.5.4 Dipole fitting

The solutions obtained with dipole fitting approaches depend heavily on the 
choice that is made by the researcher. Therefore, this choice must be selected 
in with no intention. The reported solution for dipoles was chosen over a few 
alternative models. And the minimum current estimation method was used in our 
dipole fitting to MEG [27]. For example, the choices have to be made about the 
number of dipoles, time windows (single latency, multiple latencies), exact dipole 
models (moving, rotating, fixed dipole) for this process are shown as the follow-
ing [28–32] and the fitting of the best cost function for the stability of solution 
[28, 33].

2.5.5 Single current dipole tracing method (single sphere model)

The single current dipole tracing method is a common technique for estimat-
ing a single source of magnetic field distribution that emerges on the head surface 
(on the outer surface of the helmet). Given the hypothesis that the brain magnetic 
field is not distorted, we surmised that the influence of the distribution current 
(the so-called “volume current”) is balanced by spatial symmetry and that the first 
order approximation of reading values is not affected, based on Biot-Savart’s law. If 
these presumptions are valid, an equivalent current dipole, as displayed in three-
dimensional vectors, should emerge in the brains.

A critical step in the use of the single sphere model is the choice of the sphere 
center. The flow of volume currents would be most influenced by the boundary 
with the largest change in conductivity, the highly resistive inner skull surface is 
thought to be the optimal choice for defining the sphere surface. A best-fit sphere 
superimposed on an individual’s structural MRI scan and obtained from perform-
ing a least-squares minimization. We can achieve a relatively good fit of a sphere to 
the superior and lateral aspects of the inner skull, suggesting that a single sphere 
model is well justified for modeling sources in the central and lateral portions of the 
brain.

Still, for more nonspherical portions of intracranial space, such as near the infe-
rior frontal and temporal regions, large deviations from sphericity can introduce 
errors into solutions [34–36]. The distortion of volume currents should be taken in 
consideration. A variant of the spherical head model that is widely used in clinical 
MEG applications is the model of local or overlapping spheres. Instead of using a 
single sphere model, spheres of different curvature are fit to the various areas of the 
skull underlying each MEG sensor. The individual sphere centers are then used in 
the forward model to better model local distortions in the volume currents based on 
the assumption that the local curvature influences the volume currents for nearby 
sensors more than for distant sensors.

The current dipole can be estimated by solving the inverse problem of the 
magnetic field distribution as projected on the head surface. For estimation, 
we first drew a magnetic field contour map in reference to the measured values 
of (∂Bz/∂z)i,j or in reference to the values of {(∂Bz/∂x)i,j and (∂Bz/∂y)i,j} with 
the inner estimation method. This magnetic field contour map allowed us to 
estimate a single source by following the least-squares estimation method. Using 
this method, the signal source can be defined as in the middle position of the 
extreme and the sink identified on the magnetic field. A single current dipole 
tracing method relies on the common notion that a higher parameter G value 
(goodness of fit: GOF) guarantees a higher accuracy in the least-squares estima-
tion, and an estimated single source should therefore be closer to the actual 
value.
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2.5.6 Evaluation method using statistical cost function (GOF)

The statistical cost function measures the goodness of fit (GOF) between the 
magnetic field predicted by the dipole location and moment and the measured 
field. Typical statistical cost functions include the percent of variance unexplained 
(residual variance) or the corresponding chi-square statistic value [37, 38].

Most common approaches for MEG source estimation, and the dominated the 
field for many decades, is to specify only one or a few equivalent current dipoles 
(ECDs) to represent the solution. The strength (dipole moment) of ECDs ranges 
anywhere from 10−9 to 10−7 Am (or 1–100 nAm). The evoked magnetic responses, 
which have typical source moments ranging from 10 to 30 nAm, may involve the 
activation of less than 1 cm2 of cortex and are therefore reasonably well modeled as 
a single ECD.

For highly dipolar field patterns with high SNR, such as the early components 
of sensory responses, ECD solutions can reach a greater than 90% goodness of fit, 
with good correspondence to the corresponding sensory projection areas of the 
brain.

2.5.7 Multi-current dipoles tracing method (multi source models)

In general, the single current dipole tracing method is extremely useful if 
only one single cortical current is observed at a given instance as a result of brain 
activity. The method is not as valuable, however, if the entire brain is perceptively 
active and cortical current emerges at multiple points on the head surface. In such 
a case, use of the multi-current dipoles tracing method may provide a solution, 
as it presumes the appropriate number of dipoles likely to exist and estimates 
various current sources that may be occurring in the brain. Using this method, 
the parameter GOF becomes high only if the presumed number of dipoles is 
appropriate.

The ECD modeling approach was extended to more complex patterns of the 
brain activity by adding more dipole sources to the model. One solution is to keep 
adding dipoles until there is little or no improvement in the goodness of fit (GOF) 
measure or if the percent of variance obtained reaches a criterion. An alternative is 
to use an objective measure of signal complexity, such as the number of principal 
components requested to account for a criterion power.

To further stabilize the solutions, constraints can be applied (fixing the location 
of one source while allowing additional sources to have free parameters) such that 
very complex source models can sometimes be attained.

However, if it is not, the resulting estimate in the real clinical MEG is not close 
to the actual value. Because of the constraints in determining the propriety of the 
presumed number of dipoles and because of the subsequent, laborious calculations, 
the multi-current dipoles tracing method is usually deemed relatively unrealistic 
and impractical to the realistic clinical MEG.

2.5.8 Estimation of the current source by observing the magnetic field distribution

Unlike an experimental observing the spontaneous control state, the task 
of smelling state and putting the hands together state were designed to activate 
brain.

As the current dipole method was not originally intended to detect such a 
spontaneous control state, and because dipoles of the magnetic field are expressed 
in rather complicated patterns by this method, we traced the variations of the 
magnetic field distribution by their progress over time, as well as at given intervals. 
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Drawing a contour map of the recorded findings, we identified extremes (maxima) 
and sinks (minima) found in pairs respectively on the magnetic field. We then set 
a virtual current vector in the middle position between each pair of extremes and 
sinks and traced the variations of the vector over time. Although this method has 
not been established for signal estimation and can only give approximations, no 
other available method seems more practical or acceptable for evaluation of the 
spontaneous control state, where neither the single dipole method nor the multi-
dipole method is useful.

We observed a combination of extremes and sinks on the brain magnetic field 
contour map, vertically upward from the vertex. Extremes and sinks were aligned 
in such a way that their magnetic fields were tangential to each other. In between, 
the cortical current ran in the direction of the tangent vector in accordance with 
Biot-Savart’s Law [39, 40].

We calculated the magnetic field contour map at a single time, with all three 
cortical currents in clear view. The test results were analyzed using the method 
of contrast between extreme and sink. The pattern recognition analysis of 
the inverse problem method is also available and more precise; however, this 
method was too time-consuming considering the number of cortical currents we 
needed to observe [41]. With respect to our test objective, we prioritized effi-
ciency over numerical precision, which is normally preferred in localizing brain 
functional foci.

In order to reliable ECD fit, we must have fewer models. Another popu-
lar approach that has been used in MEG source modeling is the so-called 
“Spatiotemporal Dipole Fit” introduced Scherg and Von Cramon [38] in which the 
time-varying amplitude (time course) of each dipole is used as additional informa-
tion to constrain the solutions.

2.5.9 Data acquisition, processing and analysis

We traced the cortical current using the first-order differential planar type of 
DC-SQUID. This device enables us to detect the current source of brain activity 
directly under its sensor, revealing the maximum of the absolute values. This is the 
greatest advantage of using the differential planar type device, which has a dimen-
sion of fT/cm   √ 

___
 Hz   . When using neuromagnetometers of the axial type, as explained 

in Section 2.5.2 above (the single current dipole tracing method), we can estimate 
the current source as defined as the middle position between the minima and 
maxima of the cranial nerve magnetic field distribution [42].

Neuromagnetometers of the planar type are useful for determining where 
the current source of brain activity exists by detecting the maximum of absolute 
magnetic field values. We therefore used these readings to map the distributions 
of the cranial nerve magnetic field using MATLAB software, illustrating how the 
magnetic field varies over time [43]. Data acquisition began at the moment of the 
signal, although the data we actually used began 500 ms after the starting signal. 
Thus, we sampled the experimental activities of the brains. In the olfactory neural 
processing in humans, the responses of event related magnetic fields and evoked 
magnetic fields were obtained within about 250 ms in healthy subjects. In our 
MEG experiments, subjects sniff an incense odor actively by using his own nose 
and when starting to sniff he pushes the optical sensor button as a trigger signal. 
Therefore, to record the more precise changing of MEG we used the sampling 
interval with every 50 ms. So, measurements MEG responding data were analyzed 
by every 50 ms. By observing these cranial nerve magnetic field distributions on the 
surface of the head, we traced and recorded variations in the current source at each 
particular moment.
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3. Results

3.1 Result of signal source estimation of MEG in the brain obtained with the 
single current dipole tracing method

3.1.1  Advantage of the real-time response of the brain’s neural activities by analysis 
of millisecond-time resolution using the single current dipole tracing method of 
MEG

This single current dipole tracing method has the advantage of directly obtaining 
real-time responses of the brain’s neural activities. This is different from fMRI and 
PET methods, which measure metabolism of physiologically active substances. We 
obtained changing activities of the signal source and estimated the active regions 
in the brain with analysis using the single current dipole tracing method. In single 
current dipole tracing method, the first main current dipole is the largest dipole. 
This current dipole was obtained in the middle position of extreme center and sink 
center identified on magnetic field. The second and the third current dipoles were 
smaller and weaker than the first main current dipole. Using this single current 
dipole tracing method, we can estimate only one current signal source (magnitude, 
direction, and location) as the most reliable neural activity in the brain.

3.1.2  Mechanism of the real-time estimation method of the active area using the 
single current dipole tracing method of MEG data

Figure 1 shows the real-time estimation method for obtaining the active area 
in the subject’s brain. Figure 1(a) shows an example of a MEG response to random 
activities such as the control state before putting the hands together as assessed 
with the single current dipole tracing method. We could not obtain the dipole 
completely, and thus, we could not identify the generally active area in this control 
state (with no smelling odor and no putting the hands). Figure 1(b) shows contour 
mapping of MEG response at a control state.

Figure 1(a) shows over head vision, upper is anterior, lower is posterior of the 
head. Each curves show 122-channel MEG averaging response waves of duration 0.2 s 
time. A red vertical line shows starting time point for the inspiration of odorless air.

Figure 1. 
Real-time active state at a control in our brain.
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Figure 1(b) shows the contour mapping of real time MEG response at a control 
state. We could not almost obtain a constricted dipole completely, then we could not 
find out the active brain area generally in this control state.

(a) The simple mode of putting the hands together without smelling

3.1.3 The theory of mirror neurons and the default mode network

In this experimental task, the subjects put their hands together or mimicked pray-
ing without smelling. We obtained the subject’s type as an individual variation for the 
priority of brain laterality regarding putting the hands together or praying in daily 
life. Figure 2 shows an example of the MEG response for the active area obtained 
with the single current dipole tracing method for this experimental condition. We 
analyzed estimated active areas continuously using a real-time estimation method. 
Figure 2(b) shows an MEG response on active area of left side brain as a left prior-
ity type after only putting the hands together (with no smelling odor). Figure 2(c) 
shows a vector of single current dipole estimated in the brain using 3-D coordinates.

Figure 2(c) shows a vector of single current dipole estimated in the brain using 
3-D coordinates after putting the hands together. X-axis is the horizontal line of 
right to left ear, and Y-axis is the line from nasion to inion, and Z-axis is the upper to 
lower line of the vertical of the brain.

Figure 2. 
Real-time estimation of the active area in our brain after only putting the hands together.
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Table 1 shows an estimated ECD dipole each subjects for latency tie window 
(210–1100 ms), priority of the laterality (right or left), activated region, and GOF 
(statistical goodness of fit, %) for the simple mode of only putting the hands 
together without smelling.

3.1.3.1 a-1. Right priority brain type

Five of the 11 subjects had the right priority brain type for laterality. Three of 
these five persons regularly put their hands together in their daily life, and the other 
two did not.

3.1.3.2 a-2. Left priority brain type

Six of the 11 persons had the left priority brain type for laterality. Two of six sub-
jects regularly put their hands together in their daily life, and the other three did not.

Only one subject of the 11 was not classified in these two groups, and this person 
(N1) had the left priority brain type estimated in central temporal gyrus (N1: 
latency 579.0 ms, GOF 32.8%) as shown in the above Table 1.

The priorities of brain laterality are considered important for obtaining the 
characteristic laterality of the active brain in daily life as described below, regardless 
of putting the hands together and praying or not.

3.1.3.3 A-group: (A1–A5) habit of putting the hands together or praying

As shown in Table 1, in the A-group which had the habit of putting the hands 
together in daily life, the main active areas in the brain were generally estimated 
to be on the right near the superior regions (A1: latency 309.2 ms, GOF 50.2%; A4: 
latency 405.6 ms, GOF 47.4%) or the left near central (A5: latency 1065.3 ms, GOF 
57.6%) or left caudal regions (A2: latency 613 ms, GOF 47.9%) in the temporal 
gyrus. The right prefrontal area was activated in only one subject (A3: latency 
974 ms, GOF 47.9%).

Table 1. 
Results of MEG experiments for the simple modes (a) of only putting the hands together without smelling.
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of putting the hands together and praying or not.
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As shown in Table 1, in the A-group which had the habit of putting the hands 
together in daily life, the main active areas in the brain were generally estimated 
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Results of MEG experiments for the simple modes (a) of only putting the hands together without smelling.
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3.1.3.4 B-group: (B1–B5) no habit of putting the hands together or praying

As shown in Table 1, in the B-group, which did not have the habit of putting 
the hands together or praying, the main active areas in the brain were generally 
estimated to be the right posterior regions (B1: latency 215.0 ms, GOF 28.1%; B4: 
latency 419.4 ms) in the frontal gyrus and left central region (B2: latency 236.0 ms, 
GOF 68.6%) and left caudal regions (B3: latency 303.4 ms, GOF 30.5%; B5: latency 
366.3 ms, GOF 27.3%) in the frontal gyrus.

(b) Simultaneous smelling an incense outdoor and putting the hands 
together mode

All 11 subjects were separated into two groups. The A-group had the habit of 
putting the hands together or praying according to the Japanese traditional conven-
tional style of putting the hands together for a few minutes every day in their daily 
life. The B-group did not have this habit.

Table 2 shows an estimated ECD dipole for each subjects for latency time 
(290–1900 ms), priority of the laterality (right or left), and activated region, and 
GOF (statistical goodness of fit, %) for simultaneous smelling an incense outdoor 
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hands together. These responses were presented in two subjects, one is OFC area 
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Figure 4 shows that the responses of another two subjects (A2: left priority, 
latency 627.8 ms, GOF 55.1%; A4: right priority, latency 309.3 ms, GOF 33.7%) in 
the A-group were obtained at the V1 visual area in the calcarine sulcus in the right 
or left occipital lobe after smelling incense odors A and B with putting the hands 
together. These V1 responses were not found in the B-group.

Table 2. 
Results of MEG experiments for simultaneous smelling an incense outdoor and putting the hands together mode.
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Only one in the 11 subjects was classified in neither the A- nor B-group, and 
this only one subject (N1) was used by coating smell method. He had the left 
priority brain type. His estimated current dipole was obtained at the OFC orbito-
frontal gyrus (Figure 5) (N1: left priority, latency 974.1 ms, GOF 67.6%) when he 

Figure 3. 
F5 language area estimated by the simultaneous smelling an incense outdoor and putting the hands together.
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performed the special activities of directly coating smelling both hands that were 
coated with the liquid incense odor A and putting his hands together.

As shown in the Table 2, another one subject (A1: right priority, latency 
443.5 ms, GOF 62.5%) in the A-group with the habit of putting the hands together 

Figure 4. 
V1 visual area estimated by the simultaneous smelling an incense outdoor and putting the hands together.
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or praying showed the activity in the inner central temporal area in the right insula, 
and two subjects (B1: right priority, latency 296.1 ms, GOF 36.7%; B2: left priority, 
latency 1851.0 ms, GOF 64.6%) in the B-group without this habit also showed activ-
ity in the inner area in the right and left insula.

Figure 6 shows the estimated current dipoles of three subjects obtained in insula 
regions in the right and left temporal gyrus in both the groups after simultaneous 

Figure 5. 
Orbito-frontal area estimated by the coating smell and putting the hands together in only one subject without A 
and B group.
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smelling incense odors A and B outdoor and putting the hands together. In particu-
lar, the responses of almost all subjects in the B-group were found in temporal areas 
very close to the same regions as during the simple mode of only putting the hands 
together without smelling.

From the above analyses, in this task of simultaneous smelling an incense 
outdoor and putting the hands together mode, the brains of four subjects were acti-
vated in the F5 language area in the left frontal lobe. Two of four subjects had the 
right priority brain type and did not have the habit of putting the hands together in 
their daily life. However, their F5 language area in the left frontal lobe was activated 
after this task when simultaneous smelling an incense odor outdoor and putting 
their hands together. On the other hand, in two other persons with a habit of put-
ting their hands together or praying in daily life, the right and left calcarine sulci of 
the V1 visual area in the occipital lobe were activated after the task of simultaneous 
smelling the odor outdoor and putting their hands together. From these all results, 
we consider that the F5 language area in the left frontal lobe and V1 visual area in 
the right and left occipital lobes were activated by the task of simultaneous smelling 
an incense outdoor and putting their hands together regardless of whether they had 
the habit of putting their hands together in their daily life. These phenomena are 
considered to be guided by the activation of mirror neurons and the default mode 
neural network’s function.

(c) The mode of smelling only and not putting the hands together
Table 3 shows an estimated ECD dipole for each subjects for latency time 

(230–1100 ms), priority of the laterality (right or left), activated region and GOF 
(statistical goodness of fit, %) for the mode (c) of smelling an incense outdoor only 
and not putting the hands together.

3.1.4 One person (N1) not classified in the A- or B-group

3.1.4.1 c-1. Orbito-frontal lobe area

AS shown in the above Table 3, only one subject was not classified in either the 
A- or B-group, and this person (N1: right priority, latency 414.0 ms, GOF 43.0%) 
had the right priority brain type. His estimated current dipole was also obtained at 
the left or right orbito-frontal lobe when he performed only the mode of smelling 
both hands, which were coated with liquid odor A or B, without putting his hands 
together. In this experiment, he could smell and clearly perceive the odorants on 
both hands.

3.1.4.2 A-group: habit of putting the hands together or praying

AS shown in Table 3, one female subject had the right priority brain type. Her 
estimated current dipole (A4: right priority, latency 473.0 ms, GOF 35.5%) were 
obtained in the right insula in the temporal gyrus when she performed the mode of 
smelling only odor A or B without putting her hands together. Also, the estimated 
current dipoles of a male subject (A3: left priority, latency 563.2 ms, GOF 53.7%) 
and another female (A5: left priority, latency 520.2 ms, GOF 58.3%) who had the 
left priority brain type were obtained at the left amygdala in the olfactory nervous 
pathway system when they performed the mode of smelling odor B without putting 
their hands together. Another male subject (A1: right priority, latency 1060.3 ms, 
GOF 28.9%) was obtained at the posterior frontal gyrus and another female subject 
(A2: left priority, latency 598.3 ms, GOF 21.9 5) was obtained at trigonum olfacto-
rium in the olfactory pathway system in A-group.
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They could smell and clearly perceive odor A or B, and therefore, we could 
obtain their nervous pathway system and active area through olfactory nerve 
projection regions.

Figure 6. 
Anterior area in the temporal lobe estimated by simultaneous smelling an incense outdoor and putting the 
hands together in almost all B group.
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3.1.4.3 B-group: no habit of putting the hands together or praying

As shown in Table 3, two female subjects (B2: left priority, latency 509.7 ms, 
GOF 38.2; B4: right priority, latency 252.2 ms, GOF 35.2%) and one male subject 
(B3: left priority, latency 237.1 ms, GOF 57.0%) had the response at insula regions. 
Their estimated current dipoles were obtained in insula regions at the temporal 
gyrus when they performed the mode of smelling only odor B without putting their 
hands together.

On the other hand, other two male subjects had the left priority brain type. 
Their estimated current dipoles (B1: left priority, latency 502.5 ms, GOF 55.0%; B5: 
left priority, latency 303.4 ms, GOF 45.3%) were obtained at the left amygdala in 
the olfactory pathway system when they performed the mode of smelling only odor 
B without putting their hands together.

Although these subjects did not have the habit of putting the hands together 
or praying in their daily life, they could smell and clearly perceive odors A and 
B. Therefore, we could obtain the responses of their olfactory nervous pathway 
system and active areas through olfactory nerve projection regions.

3.2  Results of statistical analysis of the cortisol level in the saliva of each of the 
11 subjects

1. Cortisol value before smelling the odor and MEG experiments

2. Cortisol value after smelling incense A

3. Cortisol value after smelling incense B

The cortisol value (μg/dL) is an index of the state of stress.
Table 4 shows the result of statistical analysis of each value, and the mean and 

standard deviation of the cortisol value were calculated for all 11 subjects, and for 
ten subjects, five subjects in the A-group and another five subjects in the B-group. 

Table 3. 
Results of MEG experiments for the mode (c) of smelling an incense outdoor only and not putting the hands 
together.
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Next, statistical t-tests were performed to compare the cortisol values of each 
condition in all 10 subjects and each five subjects classified in the A- or B-group, 
respectively.

1. No significant difference was found among the mean cortisol value of the 
conditions 1: before smelling the odor, 2: after smelling incense odor A, and 3: 
after smelling incense odor B for all 10 subjects (see Figure 7).

2. The average cortisol value tended to decrease in the order of 1: before smelling 
the odor, 2: after smelling incense odor A, and 3: after smelling incense odor B 
in all 10 subjects and the five subjects in the A-group (see Figure 8).

3. A significant difference (p < 0.078) was found between the mean cortisol 
value of the condition after smelling incense odor A (2) and after smelling 
incense odor B (3) for the five subjects in the B-group (see Figure 9).

4. The average cortisol value tended to decrease in the order of (1) after smelling 
incense odor A (2), before smelling the odor, and (3) after smelling incense 
odor B for the five subjects in the B-group.

5. A different tendency in the average cortisol value was observed between the 
A-group and B-group. In particular, an effect of stress was observed for smell-
ing incense odor A.

6. All subjects perceived and smelled incense odor B, which had no effect regard-
ing stress.

7. For individual subjects, the cortisol value tended to decrease in the order of 
1: before smelling the incense odor, 2: after smelling incense odor A, 3: after 
smelling incense odor B in five subjects in the A-group.

8. For individual subjects, the cortisol value tended to decrease in the order of 
1: after smelling incense odor A, 2: before smelling the odor, 3: after smelling 
incense odor B in three subjects in the B-group.

9. For individual subjects, especially in the one subject who was different from 
the other subjects in the B-group whose cortisol value tended to decrease, the 
cortisol value tended to decrease in the order of 1: before smelling the odor, 2: 
after smelling incense odor A, 3: after smelling incense odor B, similar to the 
A-group.

3.3  Relation between the impression of the subject about the incense outdoor and 
stress measured by the cortisol value

3.3.1 A-group: habit of putting their hands together or praying

Almost all subjects in the A-group, except for one female, felt that incense odor 
B was more familiar than incense odor A in daily life. However, both incense odors 
were pleasant for all subjects in the A-group according to psychological inquiries. 
In these cases, the cortisol value for almost all subjects except this female decreased 
in the order of 1: before smelling the odor, 2: after smelling incense odor A, and  
3: after smelling incense odor B. In other words, almost all subjects except this 
female reported a decrease in stress in the order 1: odor B, 2: odor A. 3: no odor.
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Only one female subject was different from the other subjects in the A-group. 
She liked incense odor A more than incense odor B. Therefore, she felt not more 
stress from incense odor A than incense odor B. Her cortisol value decreased in the 
order 1: no odor, 2: odor A, odor B.

3.3.2 B-group: no habit of putting the hands together or praying

Almost all subjects in the B-group reported feeling more stress for incense odor 
A than incense odor B, because incense odor B was considered more familiar in 
their daily life. In contrast, almost all B-group subjects felt stress for unfamiliar odor 
A more than the state of no odor before smelling. Their cortisol value decreased in 
the order 1: incense odor A, 2: no odor, 3: incense odor B.

Figure 7. 
Statistical analysis of cortisol value for all 10 subjects.

Figure 8. 
Statistical analysis of cortisol value for habit group A.
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Only one female subject was different from the other subjects in the A-group. 
She liked incense odor A more than incense odor B. Therefore, she felt not more 
stress from incense odor A than incense odor B. Her cortisol value decreased in the 
order 1: no odor, 2: odor A, odor B.

3.3.2 B-group: no habit of putting the hands together or praying

Almost all subjects in the B-group reported feeling more stress for incense odor 
A than incense odor B, because incense odor B was considered more familiar in 
their daily life. In contrast, almost all B-group subjects felt stress for unfamiliar odor 
A more than the state of no odor before smelling. Their cortisol value decreased in 
the order 1: incense odor A, 2: no odor, 3: incense odor B.

Figure 7. 
Statistical analysis of cortisol value for all 10 subjects.

Figure 8. 
Statistical analysis of cortisol value for habit group A.
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From these analyses about the relationship between the impression of the odor 
and the measured cortisol value, the nature of the state of stress was different in the 
A-group and B-group.

3.4 Summary of results

3.4.1  The specific and distinct mirror neuron activities without the error activity on 
the hand motor system by putting the hands together

Our MEG experiments of the above results using the methods of (1) Control 
mode in section 2.4 as the obtained Figure 1(a) and (b) showed the distinct 
and objective activities of our brain on the control state of non-motor system’s 
activity clinically. However, in the MEG experiments of only putting the hands 
together without smelling using methods of (2) Simple mode of putting the hands 
together in section 2.4 as shown at (a) in Figure 2(a)–(c) we obtained the MEG 
local estimated signal response areas for the distinct mirror neuron activity. In our 
MEG experimental results for only putting the hands together without smelling 
an incense outdoor, 11 subject’s detailed responses were obtained as Table 1 in 
which A-group subjects were obtained in superior and anterior temporal gyrus or 
central and caudal temporal and frontal gyrus, on the other hand B-group subjects 
were obtained also the same temporal and frontal areas. These results show that 
the estimated local activated regions of B-group having the no habit of putting the 
hands together or praying are almost all resemble to the activated areas in brain of 
A-group having the habit of putting the hands together in daily lives. These results 
of the coincidence active areas in A-group and B-group in the behavioral action for 
putting the hands together show the distinct activities of mirror neurons activities 
as the imitation in the brain without the simple artifacts of moving error activities 
in moving neuronal system.

3.4.2  The simultaneous new specific stronger effects of both the distinct mirror 
neuron’s activity putting the hands together and the activities of smelling an 
incense outdoor at the same time

Our MEG experiments of the above results using the methods of (3) Smelling mode 
with putting the hands together in section 2.4 as the obtained (b) in Figure 3(a–c) 

Figure 9. 
Statistical analysis of cortisol value for no habit group B.
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showed the distinct and objective activities of our brain on the state of simultaneous 
responses of putting the hands together and at the same time smelling an incense 
outdoor. In this simultaneous status mode of our MEG experiments, this specific active 
area in Figure 3 were shown in distinct F5 language areas of the inner regions of the left 
frontal lobe or orbito-frontal gyrus (OFC) clinically. These responses were presented 
in two subjects in A-group and four subjects in B-group. These specific results show 
the simultaneous new distinct stronger effects of both the mirror neuronal activities as 
the imitation without the artifacts of the simple moving error activities and olfactory 
activated effects. The specific responses of another two subjects in A-group showed the 
simultaneous other new specific stronger effects of both the mirror neuron’s activities 
putting the hands together and the activities of smelling an incense outdoor at the 
same time in V1 visual areas in the calcarine sulcus in occipital lobe clinically as the 
another distinct active areas as shown in Figure 4(a) and (b). Only one person of 11 
subjects in neither A- nor B-group who used by the direct coating strong smell over the 
hands showed the specific simultaneous activities in the orbito-frontal lobe as shown 
in Figure 5(a) and (b). And the simultaneous specific activities in the brain both the 
putting the hands together and smelling an incense outdoor at the same time of other 
five subjects were obtained in anterior and posterior areas in the temporal lobes as 
shown in Figure 6(a)–(c). These detailed MEG response data are shown in Table 2 for 
simultaneous smelling an incense outdoor and putting the hands together and these 
results show the specific new strong effects of simultaneous responses in the relation of 
both the mirror neuron activities and olfactory effects at the same time.

3.4.3  The mode of smelling an incense outdoor only without putting the hands 
together (olfactory response with non-mirror neuron activity)

The detailed responses of our MEG experiments of the above results in the 
mode of smelling an incense outdoor only without putting the hands together 
(non-mirror neuron activity) were shown in Table 3 with almost all subject’s data. 
From these clinical and objective MEG measurements and analysis we obtained the 
distinct olfactory activities clearly such as the frontal and temporal regions in the 
olfactory nervous projection areas and olfactory nervous pathways nevertheless 
A- and B-group.

4. Discussions

4.1 The inverse problem: source estimation models

We used dipole models for the source estimation of the recorded MEG signals. 
The simpler spherical model for the head is adequate for MEG source modeling 
in most cases. In addition, MEG benefits from very precise knowledge of the real 
sensor geometry, including registration of sensors to the head.

However, source modeling in MEG remains a challenging mathematical prob-
lem, especially for more complex configurations of neuronal sources associated 
with higher cognitive function.

As a realistic clinical tool to for the spatio-temporal localization of the evoked brain 
activity by simultaneous smelling an incense outdoor and putting the hands together.

A variety of methods have been applied to the MEG source estimation problem 
to overcome the limitations. Using the individual’s MRI scan of every subjects, tem-
plate can provide good approximations for realistic head modeling. For example, 
finite element models (FEMs) could be applied to drastic changes in tissue conduc-
tivity and can be modeled more accurately in future [44].
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shown in Figure 6(a)–(c). These detailed MEG response data are shown in Table 2 for 
simultaneous smelling an incense outdoor and putting the hands together and these 
results show the specific new strong effects of simultaneous responses in the relation of 
both the mirror neuron activities and olfactory effects at the same time.

3.4.3  The mode of smelling an incense outdoor only without putting the hands 
together (olfactory response with non-mirror neuron activity)

The detailed responses of our MEG experiments of the above results in the 
mode of smelling an incense outdoor only without putting the hands together 
(non-mirror neuron activity) were shown in Table 3 with almost all subject’s data. 
From these clinical and objective MEG measurements and analysis we obtained the 
distinct olfactory activities clearly such as the frontal and temporal regions in the 
olfactory nervous projection areas and olfactory nervous pathways nevertheless 
A- and B-group.

4. Discussions

4.1 The inverse problem: source estimation models

We used dipole models for the source estimation of the recorded MEG signals. 
The simpler spherical model for the head is adequate for MEG source modeling 
in most cases. In addition, MEG benefits from very precise knowledge of the real 
sensor geometry, including registration of sensors to the head.

However, source modeling in MEG remains a challenging mathematical prob-
lem, especially for more complex configurations of neuronal sources associated 
with higher cognitive function.

As a realistic clinical tool to for the spatio-temporal localization of the evoked brain 
activity by simultaneous smelling an incense outdoor and putting the hands together.

A variety of methods have been applied to the MEG source estimation problem 
to overcome the limitations. Using the individual’s MRI scan of every subjects, tem-
plate can provide good approximations for realistic head modeling. For example, 
finite element models (FEMs) could be applied to drastic changes in tissue conduc-
tivity and can be modeled more accurately in future [44].
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4.2 Mirror neurons and the default mode network

The concept of mirror neurons was described by Marco Iacoboni. These neurons 
are located in the F5 inner area of the prefrontal lobe [7]. In general, the motion of 
putting the hands together and mimicking behavior are considered to activate the 
mirror neuron mechanism [8, 45, 46] and the default mode network in the human 
brain [9, 47–49]. These neural effects are considered to increase activity in the 
central areas of the temporal lobe and the caudal area of the frontal lobe according 
to the imitation principal [50–54].

The theory of these mirror neurons revealed the principal of imitation of 
behavior. Although these F5 areas in the left side of the human brain are in the same 
areas as Broca’s language regions, F5 areas of both sides of the brain function to 
mimic motion and behavior. From anatomical research, F5 areas are connected to 
pre-motor areas and supplemental areas in movement regions in the brain.

Mirror neurons are thus considered to function for imitation of the habit of 
putting the hands together or praying, which is also performed with both hands by 
almost all elderly Japanese people in their daily life.

Super mirror neurons are concerned with determination of values, recognition 
of oneself and others, and reward from one’s work. The inner default mode network 
controls the fundamental activity of daily movements and the resting state of the 
human brain. Because this default mode network is strongly related to super mirror 
neurons, discrimination of oneself from others and the determination of social 
cognition are considered important in human daily life.

4.3 The meaning of simultaneous smelling an incense outdoor and putting the 
hands together

Odorants stimulate activity in the olfactory nervous center, orbito-frontal areas, 
and others in the human brain [1–4]. Neurophysiological experiments in monkeys 
have shown that the olfactory nervous center and olfactory pathway project to the 
orbitofrontal cortex [55–57]. In humans, olfactory event-related potentials and 
magnetic fields evoked by odorant pulses synchronized with respiration are also 
found in the orbitofrontal area [5, 6, 58, 59].

In this experiment, only one subject was not in the A- or B-group and smelled 
his hands that were coated with liquid odor. By performing this behavior, he clearly 
experienced strong A and B odors. We estimated that the areas activated by his 
sniffing of both the A and B odors were the prefrontal area and the right or left 
orbito-frontal area.

In habits of daily life, the brain of A-group people after smelling incense odors 
and putting their hands together or praying was activated at the inner lobe of the 
frontal area, F5 language area, anterior area in the temporal lobe, orbito-frontal 
area, and others.

The brain of B-group individuals who did not have the habit of smelling incense 
odor or putting their hands together or praying in their daily life was also activated 
at the inner lobe of the frontal area, anterior area in the temporal lobe, and F5 
language area in the left frontal lobe, similar to the A-group.

These results suggest that mirror neurons or the super mirror neuron system and 
the default mode network system in the brain of B-group subjects were activated by 
both smelling the incense odor and their imitation of putting their hands together, 
although they did not have the habit of smelling incense odors or putting their 
hands together or praying in their daily life.

From the above analyses, in the task involving simultaneous smelling an incense 
outdoor and putting the hands together, four person’s brains were activated in the 
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F5 language area in the left frontal lobe. Two of four subjects had the right priority 
brain type and no habit of putting their hands together in their daily life. However, 
their F5 language area in the left frontal lobe was activated after this task.

On the other hand, in two persons with a habit of putting their hands together 
or praying in their daily life, the right and left calcarine sulci of the V1 visual area in 
the occipital lobe were activated after the task of simultaneous smelling an incense 
outdoor and putting the hands together [60–63].

5. Conclusions

This research revealed that simultaneous smelling an incense outdoor and 
putting hands together increased the activity of specific brain areas, for example 
inner areas of the prefrontal cortex and F5 regions of the human brain. In our 
experiments, evoked neuronal activity was recorded by the MEG and the cortisol 
value in the subject’s saliva was measured in every experimental stage. From a 
few previous researches, it is known that F5 area is activated during observation 
of certain actions, during action execution etc. and these results show F5 have 
multimodal and different type of neurons. Moreover, the F5p is also known as a 
hand-related area that encoded goal-directed actions, not only mimic or autonomic 
actions. Our results demonstrated that the sources of MEG which are postsynaptic 
signals synchronized activation of intracellular currents across dendrites of cortical 
pyramidal neurons link strongly with anatomic position of mirror neurons. Mirror 
neurons in our experiment case are considered to have the function for imitation of 
the habit of putting the hands together or praying, which almost all elderly Japanese 
peoples often practice in their daily life. Super mirror neurons are concerned with 
determination of values, recognition of oneself and others, and reward from one’s 
work. The inner default mode network controls the fundamental activity of daily 
movements and the resting state of the human brain. Because this default mode 
network is strongly related to super mirror neurons, discrimination of oneself 
from others and the determination of social cognition are considered important 
in human daily life. From these mirror neuron theories and the above summary 
of our results (1). We can conclude the distinct activities as follows. From these 
concerns and the above summary results (2) and (3), it can be considered that the 
specific regions in the brain such as the F5 language area in the left frontal lobe and 
the V1 visual area in the right and left occipital lobes were distinctly activated by 
the simultaneous new stronger effects increased with the task of smelling an odor 
and putting their hands together regardless of the habit in daily lives. These results 
show that the sources of MEG strongly link with the anatomic positions of mirror 
neurons and their types. Especially, these phenomena are considered to be guided 
by the simultaneous new stronger effects increased by both the olfactory activities 
of smelling an incense outdoor accompanied with the activation of mirror neurons 
and the default mode neural network [64–66] for the imitation behavior of putting 
hands together. From the above results, we consider that the F5 language area in 
the left frontal lobe and V1 visual area in the right and left occipital lobes and other 
specific brain areas were activated distinctly by the task of simultaneous smelling 
an incense outdoor and putting their hands together regardless of whether they had 
the habit of putting their hands together in their daily life. From our experiments, 
the cortisol value in saliva for the stress and the specific mirror neuron theories. we 
conclude that the simultaneous new specific effects both the smelling an incense 
outdoor and the imitating the behavior of putting the hands together can be 
considered to increase the activities of these areas in the human brain due to mutual 
interactions, reciprocal connections, or alternative actions.
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Chapter 5

Neuroimaging Reveals 
Heterogeneous Neural Correlates 
of Reading Deficit in Individuals 
with Dyslexia Consistent with a 
Multiple Deficit Model
Agnieszka A. Reid

Abstract

Neuroimaging has become a powerful way of studying in vivo brain function and 
structure. The aim here is to comprehensively review Reid’s fMRI study which is the 
first to use a multiple case approach to investigate individual differences among 18 
participants with dyslexia (DPs) and 16 control participants (CPs) and to directly 
test the predictions of the main dyslexia theories on reading deficit. The results show 
that the neural correlates of reading deficit for all DPs (except one) are consistent 
with more than one theory, supporting a multiple deficit model. Striking individual 
differences between DPs were found; even if the neural correlates of reading deficit 
in two DPs were consistent with the same theory, the affected brain areas could 
differ. To make progress, research on causes of reading deficit in dyslexia would need 
to (1) focus on the multiple deficit model, (2) use neuroimaging to test a further 
refined set of brain areas (including areas hypothesised by other dyslexia theories) 
in longitudinal designs, (3) control the effects of co-occurring neurodevelopmental 
disorders, (4) use high-field MRI (including diffusion techniques), multiband fMRI 
and MEG with optically pumped magnetometers, (5) progress imaging genetics and 
(6) pursue neuroimaging intergenerational transmission of brain circuity.

Keywords: dyslexia, MRI, fMRI, neuroimaging, individual differences, a multiple 
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Chapter 5

Neuroimaging Reveals 
Heterogeneous Neural Correlates 
of Reading Deficit in Individuals 
with Dyslexia Consistent with a 
Multiple Deficit Model
Agnieszka A. Reid

Abstract

Neuroimaging has become a powerful way of studying in vivo brain function and 
structure. The aim here is to comprehensively review Reid’s fMRI study which is the 
first to use a multiple case approach to investigate individual differences among 18 
participants with dyslexia (DPs) and 16 control participants (CPs) and to directly 
test the predictions of the main dyslexia theories on reading deficit. The results show 
that the neural correlates of reading deficit for all DPs (except one) are consistent 
with more than one theory, supporting a multiple deficit model. Striking individual 
differences between DPs were found; even if the neural correlates of reading deficit 
in two DPs were consistent with the same theory, the affected brain areas could 
differ. To make progress, research on causes of reading deficit in dyslexia would need 
to (1) focus on the multiple deficit model, (2) use neuroimaging to test a further 
refined set of brain areas (including areas hypothesised by other dyslexia theories) 
in longitudinal designs, (3) control the effects of co-occurring neurodevelopmental 
disorders, (4) use high-field MRI (including diffusion techniques), multiband fMRI 
and MEG with optically pumped magnetometers, (5) progress imaging genetics and 
(6) pursue neuroimaging intergenerational transmission of brain circuity.

Keywords: dyslexia, MRI, fMRI, neuroimaging, individual differences, a multiple 
case study, co-occurring neurodevelopmental disorders, reading disorder, imaging 
genetics, multiple deficit model

1. Introduction

1.1 A brief summary of neuroimaging methods and neuroimaging research on 
the biomarkers of neurological, neuropsychiatric and neurodevelopmental 
disorders

There are six main neuroimaging methods: magnetic resonance imaging (MRI), 
diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), 
electroencephalography (EEG), magnetoencephalography (MEG) and positron 
emission tomography (PET). MRI and DTI enable investigation of brain structure, 
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whereas fMRI, EEG, MEG and PET enable research into brain function. MRI 
produces high-resolution images of the brain, with clearly distinguishable grey and 
white matter, ventricles and fibre tracts. DTI is a method which is mainly used to 
investigate the anatomical structure of the axon tracts and can provide information 
on the between-regional anatomical connectivity in the brain. An MRI scanner 
is used to perform DTI which measures the motion and density of the water in 
the axons. fMRI uses magnetic resonance imaging to measure brain activity by 
measuring the ratio of oxygenated to deoxygenated haemoglobin, and this value 
is referred to as the blood oxygen level-dependent (BOLD) effect; brain activity 
is usually measured in an experimental task, relative to a control task. EEG is an 
electrophysiological method for recording global electrical activity of the brain. In 
order to ask questions on how brain activity is modulated in response to a particular 
task, an event-related potential (ERP) needs to be extracted from the global EEG 
signal. MEG is a technique which allows the mapping of brain activity by record-
ing the magnetic fields created by the electrical currents of the brain, using very 
sensitive magnetometers. Finally, PET measures metabolic activity in the brain by 
monitoring the distribution of a radioactive tracer. As with fMRI, PET relies on the 
fact that local blood flow increases in active brain areas. Unlike MEG and EEG, fMRI 
and PET do not directly measure neural events but metabolic changes which are 
correlated with neural activity. The neuroimaging techniques differ with respect to 
critical variables in brain mapping, such as spatial and temporal resolution. Spatial 
resolution is the ability to distinguish two separate objects that are situated close 
to one another, whereas temporal resolution is the ability to detect two events that 
happen in close temporal proximity [1]. ERP and MEG have relatively good temporal 
resolution of milliseconds (0.01 s) but relatively poorer spatial resolution (10 mm). 
Structural MRI has relatively good spatial resolution; brain structures much smaller 
than 1 mm can be resolved with this method, including subcortical structures, such 
as the superior colliculus. DTI’s spatial resolution has been improving, and high-
spatial-resolution DTI imaging has been reported with a resolution of 1 mm [2]. 
fMRI is characterised by relatively good temporal resolution of seconds to hundreds 
of milliseconds and spatial resolution of 4–5 mm. PET has relatively lower spatial 
(5–10 mm) and temporal (60–1000 s) resolutions [1]. It should be emphasised here 
that the neuroimaging methods introduced above are subject to steady improve-
ment, with regard to their spatial and temporal resolution and other characteristics; 
furthermore new neuroimaging methods are being developed. For instance, three 
more recent neuroimaging methods need to be mentioned here: diffusion kurtosis 
imaging (DKI) [3], a neuroimaging method that provides independent and addi-
tional information (to that acquired with DTI) which indicates the complexity of the 
microstructural environment of the imaged tissue, neurite orientation dispersion 
and density imaging (NODDI) [4] (see Section 3.4) and magnetic field correlation 
imaging (MFC) [5], a neuroimaging technique used for the quantitative assessment 
of iron within the brain. For more details on neuroimaging methods, see [6–9].

Neuroimaging has become a popular and powerful way of studying in vivo 
brain function and structure in health and disease. One important branch of 
neuroimaging is the search for a biomarker in neurological, neuropsychiatric 
and neurodevelopmental disorders (including dyslexia). For instance, promis-
ing strides here have been made using various neuroimaging techniques in 
Alzheimer’s disease (MRI [10], fMRI [11], PET [12] and MEG [13]), schizophre-
nia (PET [14], EEG [15] and MEG [16]), attention deficit hyperactivity disorder 
(ADHD) (MEG and structural MRI [17], DKI [18], MRI and MFC [19]) and 
dyslexia (MEG and structural MRI [17], structural MRI [20], ERPs [21, 22], 
MEG [23] and fMRI [24]). It should be noted that some of the above cited papers 
explicitly claim the search for neuroimaging biomarkers, while others do not, 
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but the results reported can be considered as potential candidates for neuroim-
aging biomarkers. However, an obstacle to the development of neuroimaging 
biomarkers in neurodevelopmental disorders, such as dyslexia and ADHD, is 
sample heterogeneity, due to the phenotypic and aetiological complexity and co-
occurrence of other disorders. Therefore, it is likely that no single neuroimaging 
biomarker (or even multiple biomarkers from the same domain) may be sufficient 
for reliable and accurate diagnosis of these disorders and there needs to be a shift 
towards identifying sets of biomarkers, possibly from different domains. The 
serious problem of sample heterogeneity which is associated with neurodevelop-
mental disorders was the main reason behind adopting a different approach in 
Reid’s [25] fMRI study reviewed in this chapter.

1.2. Dyslexia and the most researched causal theories of this disorder

‘Percy F ... has always been a bright and intelligent boy, quick at games, and in 
no way inferior to others of his age. His great difficulty has been – and is now – his 
inability to learn to read. This inability is so remarkable, and so pronounced, that I 
have no doubt it is due to some congenital defect’ [26, p.1378].

This chapter reviews the first fMRI study [25] which used a multiple case 
approach to investigate reading deficit in participants with similar difficulties to 
Percy F’s struggles described 122 years ago. Such difficulties are nowadays defined 
as developmental dyslexia (henceforth dyslexia). The above example is only given 
to illustrate the profound and puzzling literacy difficulties experienced by individu-
als with dyslexia and not to discuss Morgan’s [26] interpretation of reading difficul-
ties as congenital word blindness. It should also be emphasised that despite such 
profound difficulties when learning to read, most individuals with dyslexia reach a 
reasonable level of reading ability, becoming compensated DPs.

Dyslexia is one of the most prevalent neurodevelopmental disorders—it affects 
from 5 to 17.5% of the English-speaking population [27]. DPs exhibit difficulties 
in learning to read, despite sociocultural opportunities, a scholarly education, 
adequate conventional instruction and intelligence, as well as intact sensory abilities 
[28]. It has been demonstrated [29] that the rates of reading disability are higher 
in boys than in girls. Untreated dyslexia is likely to have a serious impact on the life 
of an individual, including learning ability, self-esteem, mental health, relation-
ships, social participation, employment and economic status. The vast majority of 
research on dyslexia has been conducted in English (an unrepresentative language 
in terms of grapheme-to-phoneme correspondence). More recent research across 
different languages indicates that dyslexia also occurs in other languages, includ-
ing languages with an orthographic transparency higher than English [30–32]. 
Dyslexia is characterised by a strong heritable component [33]. Most research on 
dyslexia has focused on deficits; however, some publications have explored positive 
aspects of dyslexia [34]. There is now considerable evidence that dyslexia co-occurs 
more frequently than by chance with other neurodevelopmental disorders, such as 
ADHD and developmental coordination disorder (DCD). About 20–42% of reading 
disabled children also meets the criteria for ADHD [35, 36]. Furthermore, there is 
growing evidence that some reading impaired individuals exhibit motor difficulties 
[37, 38]. The prevalence of dyslexia and DCD co-occurrence are relatively high, for 
example, 63 and 60% in samples in [36] and [38], respectively.

There are three main, most researched causal theories of dyslexia, and each 
theory postulates a different and single underlying cause of literacy difficulties 
in dyslexia. A short description of each theory is included below, but the detailed 
review of these theories is beyond the scope of this chapter; interested readers 
are referred to the references and to Reid’s publication [25]. According to the 



Neuroimaging - Structure, Function and Mind

102

whereas fMRI, EEG, MEG and PET enable research into brain function. MRI 
produces high-resolution images of the brain, with clearly distinguishable grey and 
white matter, ventricles and fibre tracts. DTI is a method which is mainly used to 
investigate the anatomical structure of the axon tracts and can provide information 
on the between-regional anatomical connectivity in the brain. An MRI scanner 
is used to perform DTI which measures the motion and density of the water in 
the axons. fMRI uses magnetic resonance imaging to measure brain activity by 
measuring the ratio of oxygenated to deoxygenated haemoglobin, and this value 
is referred to as the blood oxygen level-dependent (BOLD) effect; brain activity 
is usually measured in an experimental task, relative to a control task. EEG is an 
electrophysiological method for recording global electrical activity of the brain. In 
order to ask questions on how brain activity is modulated in response to a particular 
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ing the magnetic fields created by the electrical currents of the brain, using very 
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ment, with regard to their spatial and temporal resolution and other characteristics; 
furthermore new neuroimaging methods are being developed. For instance, three 
more recent neuroimaging methods need to be mentioned here: diffusion kurtosis 
imaging (DKI) [3], a neuroimaging method that provides independent and addi-
tional information (to that acquired with DTI) which indicates the complexity of the 
microstructural environment of the imaged tissue, neurite orientation dispersion 
and density imaging (NODDI) [4] (see Section 3.4) and magnetic field correlation 
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but the results reported can be considered as potential candidates for neuroim-
aging biomarkers. However, an obstacle to the development of neuroimaging 
biomarkers in neurodevelopmental disorders, such as dyslexia and ADHD, is 
sample heterogeneity, due to the phenotypic and aetiological complexity and co-
occurrence of other disorders. Therefore, it is likely that no single neuroimaging 
biomarker (or even multiple biomarkers from the same domain) may be sufficient 
for reliable and accurate diagnosis of these disorders and there needs to be a shift 
towards identifying sets of biomarkers, possibly from different domains. The 
serious problem of sample heterogeneity which is associated with neurodevelop-
mental disorders was the main reason behind adopting a different approach in 
Reid’s [25] fMRI study reviewed in this chapter.

1.2. Dyslexia and the most researched causal theories of this disorder

‘Percy F ... has always been a bright and intelligent boy, quick at games, and in 
no way inferior to others of his age. His great difficulty has been – and is now – his 
inability to learn to read. This inability is so remarkable, and so pronounced, that I 
have no doubt it is due to some congenital defect’ [26, p.1378].

This chapter reviews the first fMRI study [25] which used a multiple case 
approach to investigate reading deficit in participants with similar difficulties to 
Percy F’s struggles described 122 years ago. Such difficulties are nowadays defined 
as developmental dyslexia (henceforth dyslexia). The above example is only given 
to illustrate the profound and puzzling literacy difficulties experienced by individu-
als with dyslexia and not to discuss Morgan’s [26] interpretation of reading difficul-
ties as congenital word blindness. It should also be emphasised that despite such 
profound difficulties when learning to read, most individuals with dyslexia reach a 
reasonable level of reading ability, becoming compensated DPs.

Dyslexia is one of the most prevalent neurodevelopmental disorders—it affects 
from 5 to 17.5% of the English-speaking population [27]. DPs exhibit difficulties 
in learning to read, despite sociocultural opportunities, a scholarly education, 
adequate conventional instruction and intelligence, as well as intact sensory abilities 
[28]. It has been demonstrated [29] that the rates of reading disability are higher 
in boys than in girls. Untreated dyslexia is likely to have a serious impact on the life 
of an individual, including learning ability, self-esteem, mental health, relation-
ships, social participation, employment and economic status. The vast majority of 
research on dyslexia has been conducted in English (an unrepresentative language 
in terms of grapheme-to-phoneme correspondence). More recent research across 
different languages indicates that dyslexia also occurs in other languages, includ-
ing languages with an orthographic transparency higher than English [30–32]. 
Dyslexia is characterised by a strong heritable component [33]. Most research on 
dyslexia has focused on deficits; however, some publications have explored positive 
aspects of dyslexia [34]. There is now considerable evidence that dyslexia co-occurs 
more frequently than by chance with other neurodevelopmental disorders, such as 
ADHD and developmental coordination disorder (DCD). About 20–42% of reading 
disabled children also meets the criteria for ADHD [35, 36]. Furthermore, there is 
growing evidence that some reading impaired individuals exhibit motor difficulties 
[37, 38]. The prevalence of dyslexia and DCD co-occurrence are relatively high, for 
example, 63 and 60% in samples in [36] and [38], respectively.

There are three main, most researched causal theories of dyslexia, and each 
theory postulates a different and single underlying cause of literacy difficulties 
in dyslexia. A short description of each theory is included below, but the detailed 
review of these theories is beyond the scope of this chapter; interested readers 
are referred to the references and to Reid’s publication [25]. According to the 



Neuroimaging - Structure, Function and Mind

104

phonological deficit theory (PDT) [39–41], phonological deficit is the underlying 
cause of dyslexia. This means that DPs have a specific impairment in the represen-
tation and processing of speech sounds (phonemes) [41] or a deficit in accessing 
intact phonological representations [42]. According to the PDT, the phonological 
deficit leads to poor grapheme-to-phoneme conversion and this in turn leads to 
poor reading. It is claimed that the phonological deficit also manifests itself on the 
behavioural level by difficulties in phonological fluency [32, 40], phonological 
awareness [40, 43] and verbal short-term memory [44, 45]. The deficit postulated 
by the PDT was specified on the biological level as the left (L) perisylvian region 
abnormality [46] and recently as the L temporoparietal abnormality and L frontal 
abnormality [47].

The visual magnocellular deficit theory (MDT) [48–50] claims that the under-
lying cause of literacy problems in dyslexia is not language specific but a more 
general impairment of the visual magnocellular system with spared parvocellular 
system. Magnocellular neurons are defined at the level of the retinal ganglion 
cell which have specific projections to the lateral geniculate nucleus (LGN) in the 
thalamus. The results in support of the MDT include reduced contrast sensitivity 
[51], unsteady binocular fixation [48] and a significantly higher threshold for the 
perception of coherent movement in random-dot kinematograms in DPs than in 
CPs [52]. The MDT claims that the visual magnocellular system impairment in 
dyslexia has a genetic origin. According to Stein [48], the clearest genetic result 
is for linkage to the region on the short arm of chromosome 6 which helps to 
control the production of antibodies (see also [53, 54] for recent studies showing 
association between motion deficit and the DCDC2 gene). The magnocellular 
system is hypothesised to play an important role in reading and orthographic and 
phonological representations [48]. First, it subserves the process of image stabi-
lisation and/or letter localisation in words during reading [55]. Second, it affects 
orthographic knowledge, through reading skill. Third, it affects phonological 
representations through orthographic representations [48]. For the most recent 
version of the MDT, see [56].

According to the cerebellar deficit theory (CDT), the underlying cause of 
dyslexia is a cerebellar impairment. Cerebellar dysfunction has been linked to 
problems in (1) motor skills, (2) perception and production in timing tasks, 
(3) automatisation of motor skill and (4) classical conditioning of the eye-blink 
response. Dyslexia research has shown that DPs indeed exhibit deficits over a 
range of functions which rely on cerebellar processing, such as motor skills, 
including balancing [57], eye-blink conditioning [58] and time estimation [59]. 
Nicolson et al. [60] put forward a hypothetical ontogenetic causal chain accord-
ing to which cerebellar deficit could lead to reading difficulties in dyslexia by two 
routes. The major route claims that cerebellar impairment leads to mild articula-
tory problems, which lead to an impoverished representation of the phonological 
characteristics of speech. In turn, this causes difficulties in phonological aware-
ness and subsequently results in difficulties with learning to read. Furthermore, 
reduced articulation speed leads to reduced working memory. The second route 
claims that difficulties in reading acquisition stem from a cerebellar deficit which 
causes problems with automatising skills and knowledge, leading to problems 
with (1) automatic grapheme-to-phoneme conversion, (2) automatic word rec-
ognition, (3) automatic verbal working memory and (4) automatic awareness of 
the orthographic regularities. Motor problems (also caused by cerebellar impair-
ment) lead to dysgraphia (writing impairment). Additionally, balance deficits 
are also caused by cerebellar deficit. However, these motor difficulties (except for 
the articulatory difficulties) and problems with balance do not lead to reading 
difficulties, but the underlying cerebellar deficit [60].

105

Neuroimaging Reveals Heterogeneous Neural Correlates of Reading Deficit in Individuals…
DOI: http://dx.doi.org/10.5772/intechopen.80677

2.  The first neuroimaging study to use a multiple case approach to 
investigate individual differences among DPs

Most neuroimaging (and behavioural) studies which have been formulated 
within the main theories of dyslexia have shortcomings (for a review of studies, see 
[25]). First, they have used group comparisons which can cloud the less frequent 
differences between DPs and controls (CPs). Second, they mostly investigated a 
single underlying cause, hypothesised by one theory. Third, the majority of them 
concentrated on finding a deficit without empirically showing its relationship with 
reading deficit, which defines dyslexia. For instance, significantly lower BOLD 
signal in DPs (vs. CPs) was reported [61] in the R cerebellar cortex when learning 
a new sequence of finger presses and interpreted as support for the CDT. Another 
study [62] revealed lack of fMRI activation in V5/MT in DPs in contrast to CPs 
(while participants viewed a coherently moving, low-contrast, random-dot 
stimulus), and the results were interpreted as being in agreement with the 
MDT. However, a demonstration of a significant between-group difference on these 
variables does not show that there is a relationship with reading, even if DPs had a 
documented reading deficit, and their reading scores significantly differed from 
the CPs. This is because a given variable may be a correlate or biological marker of 
dyslexia, which is independent of any reading deficit [63].

The goal of Reid’s study [25] was to shed more light on the neural correlates of 
reading deficit in dyslexia and address the above criticisms: First, by choosing a 
multiple case study to investigate individual differences among DPs. Second, by con-
trasting the hypotheses based on each of the main theories, on the neural correlates 
of the reading impairment, in individual DP (vs. CP), thereby detecting differences 
which otherwise would have been obscured in the between-group comparison, due 
to heterogeneity among DPs. The behavioural studies suggest that there are subtypes 
of dyslexia [32, 40, 64–68], but they cannot be investigated by focusing on one 
theory. Third, by focusing on a reading task using fMRI - which provides an oppor-
tunity to more directly investigate the relationship between the predictions of a given 
theory and the neural correlates of reading impairment in dyslexia.

2.1 Hypotheses

First, if, as hypothesised by the PDT, the neural correlates of reading deficit 
in DPs lie within the phonological network, then DPs should show abnormal 
activation in all or some areas within this network. As the descriptive terms for 
phonological deficit on the biological level (L perisylvian, L temporoparietal and 
L frontal regions) were not detailed enough to thoroughly test the PDT on the 
neural level, a literature review was undertaken [25] and showed that phonological 
processing (operationalised as phonological awareness, naming and short-term 
memory) involves many brain areas but it is still unclear what role each area plays 
in phonological processing. Broadly speaking, the phonological processing network 
(also validated with the broader literature review presented in [25]) included the 
following L hemisphere areas: the inferior frontal gyrus (BA44/45)—Broca’s area, 
Wernicke’s area (BA22), the middle temporal gyrus (BA21), the insula, inferior 
parietal lobule (including the angular gyrus (BA39) and the supramarginal gyrus 
(BA40)), the precentral gyrus PMC (premotor cortex) (BA6), the fusiform gyrus 
(BA19/37) and the posterior fusiform gyrus. The role of the L posterior fusiform 
gyrus is unclear, with some researchers advocating its involvement exclusively in 
orthographic processing [69] and other investigators [70] in mapping orthogra-
phy onto phonology. The above listed areas were used to test the PDT. To detect 
abnormality in the neural correlates of the reading impairment of a given DP, not 
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[51], unsteady binocular fixation [48] and a significantly higher threshold for the 
perception of coherent movement in random-dot kinematograms in DPs than in 
CPs [52]. The MDT claims that the visual magnocellular system impairment in 
dyslexia has a genetic origin. According to Stein [48], the clearest genetic result 
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system is hypothesised to play an important role in reading and orthographic and 
phonological representations [48]. First, it subserves the process of image stabi-
lisation and/or letter localisation in words during reading [55]. Second, it affects 
orthographic knowledge, through reading skill. Third, it affects phonological 
representations through orthographic representations [48]. For the most recent 
version of the MDT, see [56].

According to the cerebellar deficit theory (CDT), the underlying cause of 
dyslexia is a cerebellar impairment. Cerebellar dysfunction has been linked to 
problems in (1) motor skills, (2) perception and production in timing tasks, 
(3) automatisation of motor skill and (4) classical conditioning of the eye-blink 
response. Dyslexia research has shown that DPs indeed exhibit deficits over a 
range of functions which rely on cerebellar processing, such as motor skills, 
including balancing [57], eye-blink conditioning [58] and time estimation [59]. 
Nicolson et al. [60] put forward a hypothetical ontogenetic causal chain accord-
ing to which cerebellar deficit could lead to reading difficulties in dyslexia by two 
routes. The major route claims that cerebellar impairment leads to mild articula-
tory problems, which lead to an impoverished representation of the phonological 
characteristics of speech. In turn, this causes difficulties in phonological aware-
ness and subsequently results in difficulties with learning to read. Furthermore, 
reduced articulation speed leads to reduced working memory. The second route 
claims that difficulties in reading acquisition stem from a cerebellar deficit which 
causes problems with automatising skills and knowledge, leading to problems 
with (1) automatic grapheme-to-phoneme conversion, (2) automatic word rec-
ognition, (3) automatic verbal working memory and (4) automatic awareness of 
the orthographic regularities. Motor problems (also caused by cerebellar impair-
ment) lead to dysgraphia (writing impairment). Additionally, balance deficits 
are also caused by cerebellar deficit. However, these motor difficulties (except for 
the articulatory difficulties) and problems with balance do not lead to reading 
difficulties, but the underlying cerebellar deficit [60].
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2.  The first neuroimaging study to use a multiple case approach to 
investigate individual differences among DPs

Most neuroimaging (and behavioural) studies which have been formulated 
within the main theories of dyslexia have shortcomings (for a review of studies, see 
[25]). First, they have used group comparisons which can cloud the less frequent 
differences between DPs and controls (CPs). Second, they mostly investigated a 
single underlying cause, hypothesised by one theory. Third, the majority of them 
concentrated on finding a deficit without empirically showing its relationship with 
reading deficit, which defines dyslexia. For instance, significantly lower BOLD 
signal in DPs (vs. CPs) was reported [61] in the R cerebellar cortex when learning 
a new sequence of finger presses and interpreted as support for the CDT. Another 
study [62] revealed lack of fMRI activation in V5/MT in DPs in contrast to CPs 
(while participants viewed a coherently moving, low-contrast, random-dot 
stimulus), and the results were interpreted as being in agreement with the 
MDT. However, a demonstration of a significant between-group difference on these 
variables does not show that there is a relationship with reading, even if DPs had a 
documented reading deficit, and their reading scores significantly differed from 
the CPs. This is because a given variable may be a correlate or biological marker of 
dyslexia, which is independent of any reading deficit [63].

The goal of Reid’s study [25] was to shed more light on the neural correlates of 
reading deficit in dyslexia and address the above criticisms: First, by choosing a 
multiple case study to investigate individual differences among DPs. Second, by con-
trasting the hypotheses based on each of the main theories, on the neural correlates 
of the reading impairment, in individual DP (vs. CP), thereby detecting differences 
which otherwise would have been obscured in the between-group comparison, due 
to heterogeneity among DPs. The behavioural studies suggest that there are subtypes 
of dyslexia [32, 40, 64–68], but they cannot be investigated by focusing on one 
theory. Third, by focusing on a reading task using fMRI - which provides an oppor-
tunity to more directly investigate the relationship between the predictions of a given 
theory and the neural correlates of reading impairment in dyslexia.

2.1 Hypotheses

First, if, as hypothesised by the PDT, the neural correlates of reading deficit 
in DPs lie within the phonological network, then DPs should show abnormal 
activation in all or some areas within this network. As the descriptive terms for 
phonological deficit on the biological level (L perisylvian, L temporoparietal and 
L frontal regions) were not detailed enough to thoroughly test the PDT on the 
neural level, a literature review was undertaken [25] and showed that phonological 
processing (operationalised as phonological awareness, naming and short-term 
memory) involves many brain areas but it is still unclear what role each area plays 
in phonological processing. Broadly speaking, the phonological processing network 
(also validated with the broader literature review presented in [25]) included the 
following L hemisphere areas: the inferior frontal gyrus (BA44/45)—Broca’s area, 
Wernicke’s area (BA22), the middle temporal gyrus (BA21), the insula, inferior 
parietal lobule (including the angular gyrus (BA39) and the supramarginal gyrus 
(BA40)), the precentral gyrus PMC (premotor cortex) (BA6), the fusiform gyrus 
(BA19/37) and the posterior fusiform gyrus. The role of the L posterior fusiform 
gyrus is unclear, with some researchers advocating its involvement exclusively in 
orthographic processing [69] and other investigators [70] in mapping orthogra-
phy onto phonology. The above listed areas were used to test the PDT. To detect 
abnormality in the neural correlates of the reading impairment of a given DP, not 
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all the areas involved in phonological processing needed to exhibit atypical activa-
tion, because individuals might have differed in the neural implementation of the 
phonological network and/or in the presence of areas with atypical activation. The 
PDT also predicts that DPs should not show abnormal activations in the magnocel-
lular system and the cerebellum, as predicted by the MDT and CDT, respectively.

Second, if, as predicted by the MDT, reading impairment in dyslexia is due to 
magnocellular abnormality, then DPs should show significantly lower activation in 
the V5/MT. The neuroimaging research on the MDT [62, 71] focused on the V5/MT 
area because it receives the input predominantly from the magnocellular stream [72]. 
The involvement of V5/MT in reading was demonstrated in a study by Liederman 
et al. [55] which showed that a virtual lesion of V5/MT, created by repetitive tran-
scranial magnetic stimulation (rTMS) during reading in CPs, resulted in visual but 
not phonological errors. Furthermore, there may also be differences between CPs 
and DPs in other areas within the magnocellular system. In the study reported in 
[25], three areas in both hemispheres were investigated: the V5/MT, V1 and V2. This 
is because of (1) significant correlations between fMRI activation in these areas 
(under low mean luminance moving grating conditions), and reading performance 
were reported [73] and (2) V1 and V2 could be more reliably localised than the 
remaining motion-sensitive areas, using available cytoarchitectonic maps [74, 75]. 
Hypoactivation in L and right (R) V1 and/or in V2 was interpreted as supporting 
the MDT only if discovered jointly with underactivation in the V5/MT. The V5/MT 
receives input predominantly from the magnocellular stream [72], but V1 and V2 
consist of partially separated magno and parvo cell inputs. Therefore, the underacti-
vation of V1 and V2 may reflect underactivation of either parvo cells or magno cells 
or a combination of these. Hypoactivation in V1 and/or V2, with no underactivation 
in the V5/MT, was interpreted as a visual but not a magnocellular deficit. A hypo-
thetical visual deficit theory (VDT) was put forward, and it was argued that in DPs 
who exhibited underactivation in V1 and/or V2, without hypoactivation of V5/MT, 
hypoactivation is in agreement with the VDT but not with the MDT.

Third, given, that according to the CDT, the underlying cause of dyslexia is 
a cerebellar impairment, one would predict that the neural correlates of reading 
problems in DPs are localised within the cerebellum and therefore DPs should show 
atypical activation during reading in some regions of the cerebellum. However, the 
CDT does not specify which cerebellar areas should be affected. As the research 
reported in [25] investigated reading, the focus there was mainly on the cerebellar 
language areas. Probably the most reliable results regarding the language areas in 
the cerebellum come from the meta-analysis by Stoodley and Schmahmann [76]. 
The areas include the R lobule VI (Hem), R and L Crus I (Hem), R Crus II (Hem), 
R Vermal lobule VIIAt (R Vermal lobule VI) and L lobule VI (Hem). These areas 
were selected to test the CDT in DPs’ reading. Additionally, some areas were also 
included, either because they were shown to significantly differ in DPs and CPs 
(R Vermal lobule VI [20], the L and R Crus II and the paramedian R and L lobule 
(VIIB) [77]) or because they were activated during silent reading in CPs (L and R 
Crus I, L and R Crus II, L and R lobule VI and L and R lobule VIIB [78]). Most of 
these areas overlapped with Stoodley and Schmahmann’s [76] regions.

Finally, it needs to be stated that the MDT and CDT also make additional predic-
tions. The MDT postulates that the magnocellular system is important in the acquisi-
tion of accurate visual representations of the written, orthographic forms of words 
and that this is essential to grasp their structure at the phonemic level. Therefore, it 
has been hypothesised [49] that a deficient magnocellular system could be the under-
lying cause of deficient phonological representations and therefore of a phonological 
deficit. Hence it is possible that the hypoactivation in phonological areas (coupled 
with the hypoactivation in the V5/MT) in DPs during reading is also consistent with 
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the MDT (and with the PDT, as discussed above). However, the methods used in 
[25] do not allow for teasing apart whether the hypoactivation in phonological areas 
(co-occurring with hypoactivation in magnocellular areas) is ‘purely phonological’ or 
has been influenced by magnocellular malfunctioning. The hypoactivation in DPs in 
phonological areas in the presence (but not in the absence) of the hypoactivation of 
magnocellular areas is interpreted here as being consistent with the MDT (and with 
the PDT, as specified above). Moving to the CDT, it predicts that a phonological defi-
cit (in phonological awareness and in reading) can be caused by a cerebellar impair-
ment. Therefore it is possible that the hypoactivation in phonological areas (coupled 
with the hypoactivation in cerebellar areas) in DPs during reading, in Reid’s study, 
may also be consistent with the CDT. However, the methodology used in [25] does not 
allow for teasing apart these effects. The hypoactivation in DPs in phonological areas 
in the presence (but not in the absence) of the hypoactivation of cerebellar areas was 
interpreted in [25] as being consistent with the CDT (and with the PDT, as specified 
above). It is important to keep in mind, however, that interpreting hypoactivation 
within the phonological areas as being also consistent with the MDT and CDT holds 
only if one takes the perspective of the MDT or CDT, respectively. In contrast, from 
the theoretical perspective of the PDT, such interpretations do not hold.

2.2 Participants

Thirty-eight adult native English speakers from three UK universities took part 
in Reid’s study [25]. They were all right handed, with normal hearing, normal or 
corrected to normal vision, without clinical ADHD (defined as a score < 70 on 
the ADHD D index on Conners’ scales [79]), without clinical DCD (as defined in 
DSM-IV [80]) or any other known sensory, neurological, psychiatric or neurode-
velopmental disorders. There were indications that DP8 and DP15 may be ‘at risk’ 
of clinical DCD (They were the only DPs who responded ‘yes’ to the question on 
whether their DCD difficulties significantly interfered with their everyday life). DP8 
and DP15 were included in Reid’s study [25], but a DCD measure obtained from a 
questionnaire (based on DSM-IV, Adult DCD Checklist (DANDA—Developmental 
Adult Neuro-Diversity Association) and questions devised by A. Reid (see [25] for 
details) was used as a covariate in the fMRI analysis. Furthermore, DP8’s and DP15’s 
fMRI data were additionally analysed for possible DCD effects. Four participants 
were excluded from the analysis (1 CP did not provide a dyslexia diagnosis and 3 DPs 
because their fMRI data could not be salvaged by the recommended techniques [8]). 
Eighteen individual DPs and 16 CPs (treated as a control group) were entered into an 
fMRI multiple case analysis. All DPs (6 males and 12 females; mean age 21.28 years 
(SD = 3.3)) reported a history of persistent literacy difficulties (mainly with read-
ing) and had a formal diagnosis of dyslexia. Twelve DPs (66.7%) disclosed that 
literacy problems occurred in one or more of their first-degree relatives. CPs (5 males 
and 11 females; mean age 21.38 years (SD = 6.03)) had no literacy problems or any 
other known sensory, neurological, psychiatric or neurodevelopmental disorders. 
Although the DP and CP groups were matched on years of education, age, handed-
ness, verbal IQ, performance IQ and full scale IQ, this was not always the case in 
the multiple fMRI case analyses which compared every individual DP to CPs. Hence 
additionally, age, handedness and FSIQ were used as covariates in these analyses. For 
more details on participants and other aspects of the study, see [25].

2.3 Materials, stimuli and fMRI task

The participants were tested using a broad battery of behavioural measures (see 
[25] for details). The fMRI reading task reported in Reid [25] had three conditions. 
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all the areas involved in phonological processing needed to exhibit atypical activa-
tion, because individuals might have differed in the neural implementation of the 
phonological network and/or in the presence of areas with atypical activation. The 
PDT also predicts that DPs should not show abnormal activations in the magnocel-
lular system and the cerebellum, as predicted by the MDT and CDT, respectively.

Second, if, as predicted by the MDT, reading impairment in dyslexia is due to 
magnocellular abnormality, then DPs should show significantly lower activation in 
the V5/MT. The neuroimaging research on the MDT [62, 71] focused on the V5/MT 
area because it receives the input predominantly from the magnocellular stream [72]. 
The involvement of V5/MT in reading was demonstrated in a study by Liederman 
et al. [55] which showed that a virtual lesion of V5/MT, created by repetitive tran-
scranial magnetic stimulation (rTMS) during reading in CPs, resulted in visual but 
not phonological errors. Furthermore, there may also be differences between CPs 
and DPs in other areas within the magnocellular system. In the study reported in 
[25], three areas in both hemispheres were investigated: the V5/MT, V1 and V2. This 
is because of (1) significant correlations between fMRI activation in these areas 
(under low mean luminance moving grating conditions), and reading performance 
were reported [73] and (2) V1 and V2 could be more reliably localised than the 
remaining motion-sensitive areas, using available cytoarchitectonic maps [74, 75]. 
Hypoactivation in L and right (R) V1 and/or in V2 was interpreted as supporting 
the MDT only if discovered jointly with underactivation in the V5/MT. The V5/MT 
receives input predominantly from the magnocellular stream [72], but V1 and V2 
consist of partially separated magno and parvo cell inputs. Therefore, the underacti-
vation of V1 and V2 may reflect underactivation of either parvo cells or magno cells 
or a combination of these. Hypoactivation in V1 and/or V2, with no underactivation 
in the V5/MT, was interpreted as a visual but not a magnocellular deficit. A hypo-
thetical visual deficit theory (VDT) was put forward, and it was argued that in DPs 
who exhibited underactivation in V1 and/or V2, without hypoactivation of V5/MT, 
hypoactivation is in agreement with the VDT but not with the MDT.

Third, given, that according to the CDT, the underlying cause of dyslexia is 
a cerebellar impairment, one would predict that the neural correlates of reading 
problems in DPs are localised within the cerebellum and therefore DPs should show 
atypical activation during reading in some regions of the cerebellum. However, the 
CDT does not specify which cerebellar areas should be affected. As the research 
reported in [25] investigated reading, the focus there was mainly on the cerebellar 
language areas. Probably the most reliable results regarding the language areas in 
the cerebellum come from the meta-analysis by Stoodley and Schmahmann [76]. 
The areas include the R lobule VI (Hem), R and L Crus I (Hem), R Crus II (Hem), 
R Vermal lobule VIIAt (R Vermal lobule VI) and L lobule VI (Hem). These areas 
were selected to test the CDT in DPs’ reading. Additionally, some areas were also 
included, either because they were shown to significantly differ in DPs and CPs 
(R Vermal lobule VI [20], the L and R Crus II and the paramedian R and L lobule 
(VIIB) [77]) or because they were activated during silent reading in CPs (L and R 
Crus I, L and R Crus II, L and R lobule VI and L and R lobule VIIB [78]). Most of 
these areas overlapped with Stoodley and Schmahmann’s [76] regions.

Finally, it needs to be stated that the MDT and CDT also make additional predic-
tions. The MDT postulates that the magnocellular system is important in the acquisi-
tion of accurate visual representations of the written, orthographic forms of words 
and that this is essential to grasp their structure at the phonemic level. Therefore, it 
has been hypothesised [49] that a deficient magnocellular system could be the under-
lying cause of deficient phonological representations and therefore of a phonological 
deficit. Hence it is possible that the hypoactivation in phonological areas (coupled 
with the hypoactivation in the V5/MT) in DPs during reading is also consistent with 
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the MDT (and with the PDT, as discussed above). However, the methods used in 
[25] do not allow for teasing apart whether the hypoactivation in phonological areas 
(co-occurring with hypoactivation in magnocellular areas) is ‘purely phonological’ or 
has been influenced by magnocellular malfunctioning. The hypoactivation in DPs in 
phonological areas in the presence (but not in the absence) of the hypoactivation of 
magnocellular areas is interpreted here as being consistent with the MDT (and with 
the PDT, as specified above). Moving to the CDT, it predicts that a phonological defi-
cit (in phonological awareness and in reading) can be caused by a cerebellar impair-
ment. Therefore it is possible that the hypoactivation in phonological areas (coupled 
with the hypoactivation in cerebellar areas) in DPs during reading, in Reid’s study, 
may also be consistent with the CDT. However, the methodology used in [25] does not 
allow for teasing apart these effects. The hypoactivation in DPs in phonological areas 
in the presence (but not in the absence) of the hypoactivation of cerebellar areas was 
interpreted in [25] as being consistent with the CDT (and with the PDT, as specified 
above). It is important to keep in mind, however, that interpreting hypoactivation 
within the phonological areas as being also consistent with the MDT and CDT holds 
only if one takes the perspective of the MDT or CDT, respectively. In contrast, from 
the theoretical perspective of the PDT, such interpretations do not hold.

2.2 Participants

Thirty-eight adult native English speakers from three UK universities took part 
in Reid’s study [25]. They were all right handed, with normal hearing, normal or 
corrected to normal vision, without clinical ADHD (defined as a score < 70 on 
the ADHD D index on Conners’ scales [79]), without clinical DCD (as defined in 
DSM-IV [80]) or any other known sensory, neurological, psychiatric or neurode-
velopmental disorders. There were indications that DP8 and DP15 may be ‘at risk’ 
of clinical DCD (They were the only DPs who responded ‘yes’ to the question on 
whether their DCD difficulties significantly interfered with their everyday life). DP8 
and DP15 were included in Reid’s study [25], but a DCD measure obtained from a 
questionnaire (based on DSM-IV, Adult DCD Checklist (DANDA—Developmental 
Adult Neuro-Diversity Association) and questions devised by A. Reid (see [25] for 
details) was used as a covariate in the fMRI analysis. Furthermore, DP8’s and DP15’s 
fMRI data were additionally analysed for possible DCD effects. Four participants 
were excluded from the analysis (1 CP did not provide a dyslexia diagnosis and 3 DPs 
because their fMRI data could not be salvaged by the recommended techniques [8]). 
Eighteen individual DPs and 16 CPs (treated as a control group) were entered into an 
fMRI multiple case analysis. All DPs (6 males and 12 females; mean age 21.28 years 
(SD = 3.3)) reported a history of persistent literacy difficulties (mainly with read-
ing) and had a formal diagnosis of dyslexia. Twelve DPs (66.7%) disclosed that 
literacy problems occurred in one or more of their first-degree relatives. CPs (5 males 
and 11 females; mean age 21.38 years (SD = 6.03)) had no literacy problems or any 
other known sensory, neurological, psychiatric or neurodevelopmental disorders. 
Although the DP and CP groups were matched on years of education, age, handed-
ness, verbal IQ, performance IQ and full scale IQ, this was not always the case in 
the multiple fMRI case analyses which compared every individual DP to CPs. Hence 
additionally, age, handedness and FSIQ were used as covariates in these analyses. For 
more details on participants and other aspects of the study, see [25].

2.3 Materials, stimuli and fMRI task

The participants were tested using a broad battery of behavioural measures (see 
[25] for details). The fMRI reading task reported in Reid [25] had three conditions. 
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Condition 1 consisted of 100 English words (high familiarity, imageability and 
concreteness, two-syllable, five to seven letters, with regular spelling selected from 
the MRC psycholinguistic database [81]); Condition 2 contained 100 pseudowords 
created by the substitution of consonants in the onset or middle of words from 
Condition 1. Condition 3 (the control condition) consisted of a fixation cross. The 
fMRI experiment had an event-related design [82] with stimuli from all conditions 
randomly intermixed. Each stimulus was displayed for 1000 milliseconds, with an 
interstimulus interval (ISI) of 3000 milliseconds and a stimulus onset asynchrony 
(SOA) of 4000 milliseconds. The focus in Reid’s [25] communication was on word 
reading which involved the contrast of Conditions 1 and 3.

2.4 fMRI data acquisition

The MRI and fMRI data were acquired at the Aston University MRI Research Centre 
using a 3 T Trio Siemens scanner equipped with echo planar imaging and a standard 
eight-channel head coil. A high-resolution structural MRI image was acquired first, 
followed by fMRI data acquisition during the reading task. For fMRI data, 44  
(3 × 3 × 3 mm) slices, covering the whole brain, were acquired every 3 sec (TR = 3000 ms,  
TE = 30, flip angle = 90, FOVread = 192, FOVphase = 100) for a total of 404 volumes. 
In the scanner the participants were asked to silently read words and to keep their gaze 
fixed on the ‘+’ sign shown in the centre of the field of view on the screen. They were 
asked to read every item carefully because there would be a posttest after the fMRI 
experiment. The posttest scores were summarised in d Prime and entered as covariates 
into the second-level neuroimaging analysis. To monitor participants’ vigilance, they 
were required to press a response button (with their left index finger) when a black star 
(displayed during ISI) became red. This occurred on 10% of trials.

2.5 Data preprocessing

SPM5 was used to analyse (and preprocess) the fMRI data. The preprocess-
ing involved realignment, slice timing correction, coregistration, segmentation, 
normalisation and smoothing [83]. Usually, realignment is run first and slice timing 
correction second; however, because each volume was acquired in slices in an 
interleaved fashion, starting from the bottom slice, the order of these two steps was 
swapped (John Ashburner, email communication, June 4, 2007). The slice timing 
correction was applied to correct the differences in slice acquisition times. The 
‘realign’ function was used to remove confounds which can arise in the fMRI data 
from changes in signal intensity over time due to head motion. Realignment param-
eters were saved for each participant for each session and entered into the design 
matrix as covariates. A coregistration function was used to coregister the functional 
(MRI) and the structural (MRI) data so as to maximise their mutual information. 
A segmentation function was used to segment the structural image according to 
tissue probability, using default maps, creating grey and white matter images and 
a bias-field corrected structural image. The data were pooled into the same ana-
tomical space using a spatial normalisation function to put the MRI images into a 
standard space defined by template images (corresponding to the space defined by 
the International Consortium for Brain Mapping (ICBM), NIH P-20 project). The 
data were smoothed with an 8-mm Gaussian kernel.

2.6 Data analysis

In the first-level analysis, the word condition was explicitly modelled. The control 
condition was implicitly modelled [84]. To avoid confounding the BOLD response 
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due to the ‘Star’ stimulus and ‘Button Press’, they were included in the design matrix 
as regressors. The shape of the canonical haemodynamic response function (HRF) 
(SPM5) was used to model the experimental haemodynamic response. Further 
inclusion of the dispersion and time derivatives was necessary to account for 
variations in the voxel-to-voxel and subject-to-subject responses, especially in the 
experiment that involved the DPs characterised by heterogeneity with respect to 
behavioural and neuroimaging findings. The time derivative allows for the variation 
in the peak response of plus or minus 1 second, whereas the dispersion derivative 
allows for the variation in the width of the response by a similar amount [83]. A 
t-contrast (Word>Fixation Cross) was tested in the first-level analysis. The second-
level analysis focused on comparison of a given individual DP and the CPs (treated 
as a group). Data analysis in the second level involved a two-sample t-test. Two 
contrasts were tested: CPs > DP (hypoactivation) and DP > CPs (hyperactivation). A 
number of DPs showed elevated (but non-‘clinical’) scores on the ADHD and DCD 
measures in comparison to the CPs; hence these scores were entered into the second-
level analysis as covariates. Participants’ age, handedness, FSIQ and d Prime scores 
were also entered into the second-level analysis as covariates, as discussed above.

2.7 ROI analysis (mask)

There is growing evidence that different brain regions, such as BA44 and BA45 
are characterised by high inter-participant structural variability [85]. Bearing this in 
mind, a mask for the ROI analysis was prepared mainly using cytoarchitectonic areas 
(see note for Table 1). The ROI mask consisted of 31 areas. Twenty-nine areas were 
created as individual ROIs in the AT (V.1.8) [86], and two areas (not available in AT 
(V.1.8)) were created as individual ROIs in MarsBar (version 0.43) [87]. The ROIs 
created in MarsBar were coregistered to the ROIs created in the AT (V.1.8). All ROIs 
were combined (and binarised) into one mask using SPM5. The 31 ROI mask was 
coregistered in SPM5 (using the resliced option) to the fMRI data before running 
the ROI analysis. As DPs are usually characterised by considerable heterogeneity, 
activation in a brain area was considered as supporting a given hypothesis when the 
probability that a given voxel belonged to that area was 10% or higher [88].

2.8 Results and discussion

The multiple case analysis of DPs’ performance on psychometric tests revealed 
marked heterogeneity among DPs, and this was in line with the previous findings 
[32, 40, 64–68] (see [25] for details). The neuroimaging results for underactivation 
in each individual DP, as compared to CPs (CPs > DPs) during word reading relative 
to the control condition, are shown in Table 1 and Figure 1 (see also Appendix B 
Table 1 to 18 for MNI coordinates of the BOLD [25]). Hypoactivation is usually 
assumed to reflect a functional disruption in a system [89]. In the context of the 
dyslexia theories, hypoactivation in the hypothesised brain areas was interpreted 
as lending support for these theories. The contrast DP > CPs revealed brain areas 
which were hyperactivated by a given individual DP (vs. CPs) during word read-
ing, relative to the control condition. Hyperactivation is usually interpreted as a 
correlate of a compensatory mechanism [89]. Because the dyslexia theories are 
concerned with a deficit and not compensatory mechanisms, hyperactivation of the 
brain areas associated with these main theories was not interpreted as evidence of 
support for them. An inspection of Table 1 and Figure 1 reveals that all individuals 
with dyslexia exhibited heterogeneous and complex patterns of hypoactivation 
which involved the areas predicted by the dyslexia theories. Five DPs showed 
overactivation; see text below.
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Condition 1. Condition 3 (the control condition) consisted of a fixation cross. The 
fMRI experiment had an event-related design [82] with stimuli from all conditions 
randomly intermixed. Each stimulus was displayed for 1000 milliseconds, with an 
interstimulus interval (ISI) of 3000 milliseconds and a stimulus onset asynchrony 
(SOA) of 4000 milliseconds. The focus in Reid’s [25] communication was on word 
reading which involved the contrast of Conditions 1 and 3.

2.4 fMRI data acquisition

The MRI and fMRI data were acquired at the Aston University MRI Research Centre 
using a 3 T Trio Siemens scanner equipped with echo planar imaging and a standard 
eight-channel head coil. A high-resolution structural MRI image was acquired first, 
followed by fMRI data acquisition during the reading task. For fMRI data, 44  
(3 × 3 × 3 mm) slices, covering the whole brain, were acquired every 3 sec (TR = 3000 ms,  
TE = 30, flip angle = 90, FOVread = 192, FOVphase = 100) for a total of 404 volumes. 
In the scanner the participants were asked to silently read words and to keep their gaze 
fixed on the ‘+’ sign shown in the centre of the field of view on the screen. They were 
asked to read every item carefully because there would be a posttest after the fMRI 
experiment. The posttest scores were summarised in d Prime and entered as covariates 
into the second-level neuroimaging analysis. To monitor participants’ vigilance, they 
were required to press a response button (with their left index finger) when a black star 
(displayed during ISI) became red. This occurred on 10% of trials.

2.5 Data preprocessing

SPM5 was used to analyse (and preprocess) the fMRI data. The preprocess-
ing involved realignment, slice timing correction, coregistration, segmentation, 
normalisation and smoothing [83]. Usually, realignment is run first and slice timing 
correction second; however, because each volume was acquired in slices in an 
interleaved fashion, starting from the bottom slice, the order of these two steps was 
swapped (John Ashburner, email communication, June 4, 2007). The slice timing 
correction was applied to correct the differences in slice acquisition times. The 
‘realign’ function was used to remove confounds which can arise in the fMRI data 
from changes in signal intensity over time due to head motion. Realignment param-
eters were saved for each participant for each session and entered into the design 
matrix as covariates. A coregistration function was used to coregister the functional 
(MRI) and the structural (MRI) data so as to maximise their mutual information. 
A segmentation function was used to segment the structural image according to 
tissue probability, using default maps, creating grey and white matter images and 
a bias-field corrected structural image. The data were pooled into the same ana-
tomical space using a spatial normalisation function to put the MRI images into a 
standard space defined by template images (corresponding to the space defined by 
the International Consortium for Brain Mapping (ICBM), NIH P-20 project). The 
data were smoothed with an 8-mm Gaussian kernel.

2.6 Data analysis

In the first-level analysis, the word condition was explicitly modelled. The control 
condition was implicitly modelled [84]. To avoid confounding the BOLD response 
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due to the ‘Star’ stimulus and ‘Button Press’, they were included in the design matrix 
as regressors. The shape of the canonical haemodynamic response function (HRF) 
(SPM5) was used to model the experimental haemodynamic response. Further 
inclusion of the dispersion and time derivatives was necessary to account for 
variations in the voxel-to-voxel and subject-to-subject responses, especially in the 
experiment that involved the DPs characterised by heterogeneity with respect to 
behavioural and neuroimaging findings. The time derivative allows for the variation 
in the peak response of plus or minus 1 second, whereas the dispersion derivative 
allows for the variation in the width of the response by a similar amount [83]. A 
t-contrast (Word>Fixation Cross) was tested in the first-level analysis. The second-
level analysis focused on comparison of a given individual DP and the CPs (treated 
as a group). Data analysis in the second level involved a two-sample t-test. Two 
contrasts were tested: CPs > DP (hypoactivation) and DP > CPs (hyperactivation). A 
number of DPs showed elevated (but non-‘clinical’) scores on the ADHD and DCD 
measures in comparison to the CPs; hence these scores were entered into the second-
level analysis as covariates. Participants’ age, handedness, FSIQ and d Prime scores 
were also entered into the second-level analysis as covariates, as discussed above.

2.7 ROI analysis (mask)

There is growing evidence that different brain regions, such as BA44 and BA45 
are characterised by high inter-participant structural variability [85]. Bearing this in 
mind, a mask for the ROI analysis was prepared mainly using cytoarchitectonic areas 
(see note for Table 1). The ROI mask consisted of 31 areas. Twenty-nine areas were 
created as individual ROIs in the AT (V.1.8) [86], and two areas (not available in AT 
(V.1.8)) were created as individual ROIs in MarsBar (version 0.43) [87]. The ROIs 
created in MarsBar were coregistered to the ROIs created in the AT (V.1.8). All ROIs 
were combined (and binarised) into one mask using SPM5. The 31 ROI mask was 
coregistered in SPM5 (using the resliced option) to the fMRI data before running 
the ROI analysis. As DPs are usually characterised by considerable heterogeneity, 
activation in a brain area was considered as supporting a given hypothesis when the 
probability that a given voxel belonged to that area was 10% or higher [88].

2.8 Results and discussion

The multiple case analysis of DPs’ performance on psychometric tests revealed 
marked heterogeneity among DPs, and this was in line with the previous findings 
[32, 40, 64–68] (see [25] for details). The neuroimaging results for underactivation 
in each individual DP, as compared to CPs (CPs > DPs) during word reading relative 
to the control condition, are shown in Table 1 and Figure 1 (see also Appendix B 
Table 1 to 18 for MNI coordinates of the BOLD [25]). Hypoactivation is usually 
assumed to reflect a functional disruption in a system [89]. In the context of the 
dyslexia theories, hypoactivation in the hypothesised brain areas was interpreted 
as lending support for these theories. The contrast DP > CPs revealed brain areas 
which were hyperactivated by a given individual DP (vs. CPs) during word read-
ing, relative to the control condition. Hyperactivation is usually interpreted as a 
correlate of a compensatory mechanism [89]. Because the dyslexia theories are 
concerned with a deficit and not compensatory mechanisms, hyperactivation of the 
brain areas associated with these main theories was not interpreted as evidence of 
support for them. An inspection of Table 1 and Figure 1 reveals that all individuals 
with dyslexia exhibited heterogeneous and complex patterns of hypoactivation 
which involved the areas predicted by the dyslexia theories. Five DPs showed 
overactivation; see text below.
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The main goal of the research reported in [25] was to shed more light on the 
underlying reading impairment (which defines dyslexia) in adult DPs, as hypoth-
esised by the PDT, MDT and CDT, with special focus on individual differences 
among DPs. When the hypotheses based on the three main theories of dyslexia 
were contrasted in the same DPs, the neural correlates of word reading deficit were 
consistent with the PDT in 17 cases (94.4%), with the CDT in 18 cases (100%) and 
in 1 case (5.5%) with the MDT. Furthermore, the reading deficit of 10 cases (56%) 
was consistent with the VDT but not with the MDT.

A more detailed inspection of the neuroimaging results for reading revealed that 
when hypotheses based on the three main theories are tested in individual DPs, DPs 
showed complex and heterogeneous patterns of underactivation in the brain regions 
predicted by the dyslexia theories. For instance, DP1 showed hypoactivation in 
eight areas predicted by the PDT (L area 6 (BA6), L area 44 (BA44), L middle 
temporal gyrus (BA21), L fusiform gyrus (BA19/37), L TE 3 (part of BA22), L IPC 
(PF) (BA40), L IPC (PFcm) (BA40) and L IPC (PGp) (BA39)), one area hypoth-
esised by the MDT (R hOC5 (V5/MT)) and three areas predicted by the CDT (R 
Lobule VIIa Crus I (Hem), L Lobule VIIa Crus II (Hem) and R Lobule VIIa Crus II 
(Hem). DP10 exhibited hypoactivation in one area hypothesised by the PDT (L IPC 

Figure 1. 
Clusters of underactivation (CPs > DP) for individual DPs. Underactivation is superimposed on a volume-
rendered brain (a spatially normalised anatomical image for an individual DP). Cluster size threshold k ≥ 6. 
An ROI mask was applied; see Section 2.7 and note for Table 1.
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(PFm) (BA40)) and four areas predicted by the CDT (L Lobule VIIa Crus I (Hem), 
R Lobule VIIa Crus I (Hem), R Lobule VIIa Crus II (Hem) and R Lobule VI (Hem)). 
In contrast, DP13 hypoactivated only areas predicted by the CDT (L Lobule VIIa 
Crus I (Hem), R Lobule VIIa Crus I (Hem) and R Lobule VIIa Crus II (Hem))  
(see Table 1 and Figure 1 for the other cases).

Moreover, the neuroimaging data exhibited a high degree of individual differ-
ences. Even if the neural correlates of reading disorder in two DPs were consistent 
with the same theory, the neural correlates in those DPs could differ. For instance, 
within the framework of the PDT, DP6 showed hypoactivation in the L area 44 
(BA44) and L IPC (PGp) (BA39); DP10 exhibited hypoactivation in L IPC (PFm) 
(BA40), whereas DP12 hypoactivated L FG (fusiform gyrus). This is also the case for 
the neural correlates of reading deficit hypothesised by the CDT. For instance, DP1 
showed hypoactivation in R Lobule VIIa Crus I (Hem), L Lobule VIIa Crus II (Hem) 
and R Lobule VIIa Crus II (Hem); DP14 hypoactivated L Lobule VIIa Crus I (Hem), 
R Lobule VIIa Crus I (Hem), R Lobule VIIa Crus II (Hem), R Lobule VI (Hem) and 
R Lobule VI (Vermis), whereas DP4 showed hypoactivation only in L Lobule VIIb 
(Hem). The traditional approach, based on group comparison where only between-
group differences (DPs vs. CPs) were tested, could not reveal the individual differ-
ences among DPs as shown in [25].

The results revealed considerable individual differences in patterns of hypoacti-
vation within the reading network among DPs, which are unexpected in the context 
of the between-group comparison studies, which have dominated neuroimaging 
research on dyslexia. Nevertheless, they are perhaps less surprising if one considers 
the fact that reading is a relatively new (less than 6000 years old) cultural invention 
in human evolutionary history. It requires areas which evolved for vision, language 
and associative learning. Reading acquisition is an exercise in brain plasticity; the 
goal of which is to create an efficient reading network which enables the unim-
paired reader to get from visual precept to meaning in approximately 250 millisec-
onds [98]. As in the ontogenetic development of an individual, a number of brain 
regions need to be ‘adapted’ for reading; it is perhaps not surprising that in different 
DPs, different components may be deficient.

Five (28%) DPs in the study [25] exhibited hyperactivation. Similar to the 
patterns of underactivation, overactivation differed in different DPs. DP4 exhibited 
overactivation in L area 6, L insula (Ig2), L IPC (PFm), L IPC (PGa), L area 17, 
R area 17, L area 18 and R area 18, R Lobule VIIa Crus I (Hem) and L Lobule VI 
(Hem). DP5 hyperactivated L area 17 and R area 18. DP8 overactivated L insula 
(Id1) and L area 18. DP13 show hyperactivation in L area 6, L middle temporal 
gyrus and L area 17. Finally, DP17 exhibited overactivation in L fusiform gyrus, 
insula (Id1) and L Lobule VIIb (Hem). All results for ROI analyses at p < 0.001 
(uncorrected for multiple comparisons), except for DP4’s results at p < 0.05 (FDR). 
Overactivation in some DPs in the areas hypothesised to show underactivation in 
DPs by the PDT indicates that a compensatory network is not limited to the frontal 
regions, as suggested by a number of studies based on group comparisons (for 
instance, see [89]), but involves brain regions distributed across the phonological 
reading network. Cerebellar and secondary and/or primary visual areas were over-
activated in two and four DPs, respectively, suggesting the existence of a potential 
compensatory network within these brain regions.

An important common characteristic of the dyslexia theories (the PDT, MDT 
and CDT) investigated in [25] is the assumption that a single underlying deficit 
is necessary and sufficient to cause symptoms of dyslexia: phonological, or visual 
magnocellular, or cerebellar, respectively. As mentioned above, one of the limita-
tions of research on dyslexia is that it has mostly investigated one theory in a 
given sample of DPs. The findings reported in [25] reveal that if one investigates 
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given sample of DPs. The findings reported in [25] reveal that if one investigates 
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individual DPs, comparing the predictions of all the main dyslexia theories, the 
neural correlates of reading for all DPs (except one DP) were in agreement with 
the hypotheses based on more than one theory. In the sample reported in [25], the 
neuroimaging results for one case (5.6%) were in agreement with the PDT, MDT 
and CDT and for another case with only the CDT. The results for six cases (33.3%) 
were in agreement with the PDT and CDT and the findings for 10 cases (55.6%) 
with the PDT, CDT and VDT. The results for all, but one DP, supported a multiple 
deficit model.

Supporters of the PDT may argue that the neural correlates of reading in all 
cases (except for DP13) are in agreement with the core deficit, as hypothesised 
by the PDT and that the hypoactivation in the cerebellum and/or magnocellular 
areas in these DPs just co-occurs with dyslexia. As highlighted above, contrary 
to previous studies, Reid’s study [25] investigated the more direct link between 
reading deficit in DPs and the predictions of the main dyslexia theories on the 
neural level by using an fMRI reading task. Hence it seems reasonable to inter-
pret the findings of hypoactivation in the areas hypothesised by the PDT and the 
CDT, in the same DP, as lending support to the claim that reading in a given DP is 
consistent with the predictions of both theories and therefore both phonological 
areas and cerebellar areas contribute to the reading impairment in a given DP and 
the CDT deficit is not just co-occurring with no causal effect on reading deficit 
(as argued by the protagonists of the PDT). The same reasoning also applies to 
DPs who exhibited underactivation in both phonological and visual/magnocel-
lular areas.

Taking into consideration the additional predictions of the CDT (discussed 
above), it might be the case that the underactivation in phonological areas in all DPs 
(except DP13) is also consistent with the CDT (and with the PDT), but this holds 
only from the perspective of the CDT and not the perspective of the PDT. Finally, it 
is also possible that the underactivation in phonological areas in DP1 is also in line 
with the additional predictions of the MDT (discussed earlier); however, this is true 
only from the perspective of the MDT and not from the perspective of the PDT (see 
Section 3.1 for further discussion).

A single deficit model has been dominant for many years in the research on 
dyslexia and other neurodevelopmental disorders. Each dyslexia theory postulates 
a different and single underlying cause of dyslexia. However, a single deficit model, 
although parsimonious and straightforward to test, has limitations. For instance, 
it cannot explain cases which exhibit a single deficit but do not have a reading 
disorder. Such cases have been reported in longitudinal studies involving children 
‘at risk’ of dyslexia [99]. Reid et al. [32] also reported cases of adult CPs, who, 
although exhibiting a phonological deficit, did not have a reading impairment. 
Furthermore, the single deficit model cannot account for the more frequent than 
chance co-occurrence of other neurodevelopmental disorders with dyslexia (see 
below for a further discussion). Therefore, Pennington [100] formulated a multiple 
deficit model (MMD). The MMD recognises the fact that there are multitudes of 
environmental and genetic risk factors and that they do not operate independently. 
It is possible that they are correlated with each other or that they share effects of 
gene-by-environment interaction, or genes may interact with each other as they 
are part of the genetic system. The model does not specify the causal connections 
between the levels of analyses, including feedback loops from the behavioural level 
to the neural system level (or even to the aetiology level). The strength and exis-
tence of causal connections need to be resolved empirically [100]. Multidisciplinary 
research on the underlying causes of reading disorder in dyslexia within the MDM 
holds significant promise.
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3. Future directions

3.1 Neuroimaging studies testing a further refined set of brain areas (including 
areas hypothesised by other dyslexia theories) in longitudinal designs

Research on the brain areas involved in language processing and reading, 
including those areas hypothesised by the main theories of dyslexia, is active. For 
instance, there is now growing evidence of the involvement of subcortical brain 
areas in reading and language skills [101, 102]. Also new research has been reported 
for the MDT. For instance, a high-resolution proton density-weighted MRI study 
[103] revealed that L LGN (but not R LGN) was significantly smaller in volume 
and differed in shape in vivo in DPs (vs. CPs). These results are consistent with the 
MDT, and future neuroimaging research testing the MDT needs to include LGN 
as an ROI in a neuroimaging study on reading deficit in DPs. Furthermore, there 
are other theories of dyslexia, for instance, the auditory MDT [48] and the low-
frequency phase-locking mechanism deficit theory [104]. Further research on the 
underlying reading deficits in dyslexia, using a refined set of brain areas (including 
also areas hypothesised by the other theories of dyslexia), is warranted, and it is 
argued below that longitudinal designs are indispensable here.

The study presented in [25] investigated reading in adult DPs in an fMRI task. 
Although such studies are valuable as they provide insight into the neural correlates of 
reading in a mature system, it is possible that the adult neural system may have been 
significantly or partially altered due to compensatory mechanisms. Given that read-
ing is a learned skill that is acquired through instruction and practice over a relatively 
long period of time, it is likely that brain-based findings are going to be dynamic, and 
therefore longitudinal neuroimaging studies, starting with newborns with familial risk 
of dyslexia, are indispensable in tracking the developmental trajectory of reading defi-
cits in dyslexia. Longitudinal studies may also be successful in testing the additional 
predictions of the CDT and MDT which could not be resolved in Reid’s study [25].

3.2 Controlling the effects of co-occurring neurodevelopmental disorders

The current research indicates that co-occurrence of neurodevelopmental 
disorders is most likely more common than cases of ‘pure’ disorders [36]. A detailed 
history was taken in Reid’s study [25] from participants regarding different disor-
ders, and measures were collected for ADHD and DCD and entered into the fMRI 
analyses as covariates. This procedure ensured that the results were not confounded 
by these variables. Furthermore, the supplementary fMRI analyses showed that two 
DPs (11%) who were identified as possibly being at risk of clinical DCD exhibited 
underactivation in the areas consistent with DCD, but the underactivated areas 
for DP8 and DP15 differed (see [25] for details). These findings underscore the 
co-occurrence of these neurodevelopmental disorders and heterogeneity among 
participants who are at risk of clinical DCD.

There is growing evidence that dyslexia may co-occur with other disorders, such 
as specific language impairment (SLI), speech sound disorder (SSD), autism spec-
trum disorder (ASD), dyscalculia, conduct disorder, oppositional defiant disorder, 
anxiety, depression and disruptive, impulse-control and conduct disorders (CDs). 
Currently the relationship between these disorders and dyslexia is unclear [105]. It 
should be emphasised here that, although some efforts, especially more recently, 
are made to control the effects of some co-occurring disorders, the effects of some 
other co-occurring disorders are not controlled for in dyslexia studies. Therefore 
there is an urgent need for future research on the underlying causes of reading 
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deficit in dyslexia to control for the effects of the co-occurring disorders either by 
the exclusion of cases with such disorders or by collecting appropriate data (includ-
ing genetic data, where available) to be used as covariates in the analyses.

The issue of co-occurring disorders is complex and can be further underscored by 
an observation that a person with a given neurodevelopmental disorder (e.g. dys-
lexia) may have first-degree relatives diagnosed with different neurodevelopmental 
disorders, for example, one with ADHD and another with DCD (Deborah Dewey, 
personal communication, July 2, 2015). It is currently unclear why this is the case, but 
it may suggest that genes that affect one neurodevelopmental disorder are also likely 
to affect other neurodevelopmental disorders [106]. The field of molecular genetics of 
co-occurring neurodevelopmental disorders is young. However, some findings have 
already suggested that common single-nucleotide polymorphisms on a number of 
chromosomes increase susceptibility to both dyslexia and SLI [107]. Research investi-
gating generalist gene hypothesis [106], de novo gene mutations [107] and pleiotropic 
effects [108], using state-of-the-art molecular technologies, such as high-throughput 
genotyping and next-generation sequencing of whole genomes, holds the promise of 
providing important answers here. In summary, molecular genetics of co-occurring 
neurodevelopmental disorders makes progress in identifying genetic components 
which increase the susceptibility to more than one neurodevelopmental disorder. The 
more is known here, the easier it would be to also control the genetic component in 
experimental work. It must be emphasised that co-occurrence of neurodevelopmental 
disorders cannot be ignored in the future research on dyslexia because it is a potentially 
serious confound which is likely to distort results. See, for instance [109, 110], for find-
ings which show that ADHD symptoms mediate deficits in developmental dyslexia.

3.3 Using a variety of imaging tools in dyslexia research

A promising way forward in dyslexia research would be to test individual DPs 
(or samples of DPs as homogenous, as possible, with respect to behavioural and 
genetic profiles) using various neuroimaging techniques, in addition to fMRI, 
which would allow for a fuller characterisation of DPs’ neural profiles, including 
the neural correlates of reading deficit. Some attempts have already been made; for 
instance, a recent study [111] used structural MRI, diffusion MRI and probabilistic 
tractography to investigate the structural connections of the visual sensory pathway 
in dyslexia in vivo. The results revealed altered structural connectivity in DPs in the 
direct pathway between the L LGN and L V5/MT but not between the L LGN and 
L V1. Another study [112] combined fMRI with multi-voxel pattern analysis and 
functional and structural connectivity analysis of DTI data in adult DPs. The results 
revealed that phonetic representations in the L and R auditory cortex were intact, 
whereas anatomical and functional connections found between these areas and the 
L inferior frontal gyrus were disrupted, suggesting an access deficit.

Another fruitful way forward would be to ask novel questions using neuroimag-
ing. Pugh et al. magnetic resonance spectroscopy (MRS) study [113] was the first to 
test the role of multiple metabolites in developing readers. The authors reported an 
inverse relationship between both glutamate and choline and reading ability, such 
that higher concentrations of these metabolites were associated with lower reading 
scores. Given that heightened levels of glutamate can reflect hyperexcitability [114], 
whereas heightened levels of choline are associated with abnormal white matter 
organisation [115], the results reported in [113] suggest potential links between 
abnormal white matter organisation and reading deficit and hyperexcitability and 
reading deficit in atypical brain development and reading acquisition. The find-
ings reported in [113] are cited (among others) in support of a recently formulated 
neural noise hypothesis (NNH) of dyslexia (see [116] for details).
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Finally, recent MRI advances, such as multiband fMRI [117] and high-field 
MRI [118], promise to increase the spatial and/or temporal resolution of MRI and 
fMRI. Also, recent developments of more sophisticated diffusion MRI techniques, 
such as neurite orientation dispersion and density imaging (NODDI), hold promise 
of new insights into white matter structure and organisation in DPs (see Section 
3.4 for further discussion of this). Furthermore, new developments in MEG also 
look promising. For instance, advanced preprocessing techniques which enable 
decomposition of the signal into components with origin inside and outside the 
head increase the signal-to-noise ratio by approximately 100%, enabling therefore 
even one-trial measurements with the standard MEG systems (e.g. whole head 
306 Elekta or 275 CTF channel systems). Furthermore, optically pumped magne-
tometers (which allow MEG sensors to get closer to the head) should considerably 
increase the signal-to-noise ratio of MEG [119]. As the defining characteristic of 
dyslexia is impaired reading—a skill characterised by extremely rapid and inter-
locked processing events—it is likely that MEG (with its relatively high temporal 
resolution) would play a particularly important role in providing valuable insights 
into the underlying causes of reading deficit in this neurodevelopmental disorder. In 
summary, the advances discussed above offer new possibilities in dyslexia research, 
so that dyslexia endophenotypes can be investigated with higher spatial and tempo-
ral resolution, increasing the chance of elucidating the underlying causes of reading 
disorder in dyslexia, as well as reliable biomarkers for dyslexia.

3.4 Imaging genetics

The neuroimaging data undoubtedly provide a description of endophenotypes 
in dyslexia, but they do not offer an explanation of what causes such endopheno-
types. As discussed above, Reid’s study [25] contrasted, on the neural level, the 
explanatory frameworks of the main dyslexia theories, but an explanation at the 
genetic level was not investigated (as genetic data were not available for the stud-
ied DPs). Given findings on dyslexia within the fields of molecular genetics and 
imaging genetics, it is likely that the heterogeneity among DP’s phenotypes and 
endophenotypes reported in [25] is due in part to dyslexia risk genes.

Imaging genetics offers a bridge between behavioural measures and the brain. 
Relatively direct connections have been made between (1) brain function and 
dyslexia risk genes and (2) brain anatomy and dyslexia risk genes [120]. As a full 
summary of studies on imaging genetics in DPs (and in CPs) is beyond the scope 
of this chapter, interested readers are referred to the relevant reviews [102, 121]. 
Findings on brain function and genes associated with dyslexia are briefly sum-
marised first. Cope et al.’s study [122] reported the strongest association between an 
fMRI activation for a reading task in the L anterior inferior parietal lobe and tandem 
repeat BV677278 in DCDC2. Another fMRI study [123], involving CPs and a read-
ing task, reported that (1) single-nucleotide polymorphisms (SNPs) rs6980093 
and rs7799109 (in FOXP2) were associated with variations of activation in the L 
frontal cortex and (2) SNP rs17243157 in the KIAA0319/TTRAP/THEM2 locus was 
associated with asymmetry in the functional activation of the superior temporal 
sulcus. Wilcke et al.’s fMRI study [124] revealed a significant main effect for ‘genetic 
risk’ of FOXP2 variant (rs12533005-G) in a temporoparietal area (significantly 
lower activation in the ‘at risk of dyslexia’ group than in the ‘non-at-risk’ group in 
the angular and supramarginal gyri). A MEG study [125] reported that DPs with a 
weakly expressing haplotype of ROBO1 exhibited defective interaural interaction 
and the extent of the deficit correlated with the ROBO1 expression level. Finally, 
another MEG study [126] reported that about half of DPs exhibited significantly 
higher levels of variability in their cortical responses to auditory and visual stimuli 
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deficit in dyslexia to control for the effects of the co-occurring disorders either by 
the exclusion of cases with such disorders or by collecting appropriate data (includ-
ing genetic data, where available) to be used as covariates in the analyses.
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that higher concentrations of these metabolites were associated with lower reading 
scores. Given that heightened levels of glutamate can reflect hyperexcitability [114], 
whereas heightened levels of choline are associated with abnormal white matter 
organisation [115], the results reported in [113] suggest potential links between 
abnormal white matter organisation and reading deficit and hyperexcitability and 
reading deficit in atypical brain development and reading acquisition. The find-
ings reported in [113] are cited (among others) in support of a recently formulated 
neural noise hypothesis (NNH) of dyslexia (see [116] for details).

117

Neuroimaging Reveals Heterogeneous Neural Correlates of Reading Deficit in Individuals…
DOI: http://dx.doi.org/10.5772/intechopen.80677

Finally, recent MRI advances, such as multiband fMRI [117] and high-field 
MRI [118], promise to increase the spatial and/or temporal resolution of MRI and 
fMRI. Also, recent developments of more sophisticated diffusion MRI techniques, 
such as neurite orientation dispersion and density imaging (NODDI), hold promise 
of new insights into white matter structure and organisation in DPs (see Section 
3.4 for further discussion of this). Furthermore, new developments in MEG also 
look promising. For instance, advanced preprocessing techniques which enable 
decomposition of the signal into components with origin inside and outside the 
head increase the signal-to-noise ratio by approximately 100%, enabling therefore 
even one-trial measurements with the standard MEG systems (e.g. whole head 
306 Elekta or 275 CTF channel systems). Furthermore, optically pumped magne-
tometers (which allow MEG sensors to get closer to the head) should considerably 
increase the signal-to-noise ratio of MEG [119]. As the defining characteristic of 
dyslexia is impaired reading—a skill characterised by extremely rapid and inter-
locked processing events—it is likely that MEG (with its relatively high temporal 
resolution) would play a particularly important role in providing valuable insights 
into the underlying causes of reading deficit in this neurodevelopmental disorder. In 
summary, the advances discussed above offer new possibilities in dyslexia research, 
so that dyslexia endophenotypes can be investigated with higher spatial and tempo-
ral resolution, increasing the chance of elucidating the underlying causes of reading 
disorder in dyslexia, as well as reliable biomarkers for dyslexia.

3.4 Imaging genetics

The neuroimaging data undoubtedly provide a description of endophenotypes 
in dyslexia, but they do not offer an explanation of what causes such endopheno-
types. As discussed above, Reid’s study [25] contrasted, on the neural level, the 
explanatory frameworks of the main dyslexia theories, but an explanation at the 
genetic level was not investigated (as genetic data were not available for the stud-
ied DPs). Given findings on dyslexia within the fields of molecular genetics and 
imaging genetics, it is likely that the heterogeneity among DP’s phenotypes and 
endophenotypes reported in [25] is due in part to dyslexia risk genes.

Imaging genetics offers a bridge between behavioural measures and the brain. 
Relatively direct connections have been made between (1) brain function and 
dyslexia risk genes and (2) brain anatomy and dyslexia risk genes [120]. As a full 
summary of studies on imaging genetics in DPs (and in CPs) is beyond the scope 
of this chapter, interested readers are referred to the relevant reviews [102, 121]. 
Findings on brain function and genes associated with dyslexia are briefly sum-
marised first. Cope et al.’s study [122] reported the strongest association between an 
fMRI activation for a reading task in the L anterior inferior parietal lobe and tandem 
repeat BV677278 in DCDC2. Another fMRI study [123], involving CPs and a read-
ing task, reported that (1) single-nucleotide polymorphisms (SNPs) rs6980093 
and rs7799109 (in FOXP2) were associated with variations of activation in the L 
frontal cortex and (2) SNP rs17243157 in the KIAA0319/TTRAP/THEM2 locus was 
associated with asymmetry in the functional activation of the superior temporal 
sulcus. Wilcke et al.’s fMRI study [124] revealed a significant main effect for ‘genetic 
risk’ of FOXP2 variant (rs12533005-G) in a temporoparietal area (significantly 
lower activation in the ‘at risk of dyslexia’ group than in the ‘non-at-risk’ group in 
the angular and supramarginal gyri). A MEG study [125] reported that DPs with a 
weakly expressing haplotype of ROBO1 exhibited defective interaural interaction 
and the extent of the deficit correlated with the ROBO1 expression level. Finally, 
another MEG study [126] reported that about half of DPs exhibited significantly 
higher levels of variability in their cortical responses to auditory and visual stimuli 



Neuroimaging - Structure, Function and Mind

118

in several brain areas of the reading network. A positive and significant relationship 
between the degree of neural variability in the primary auditory cortex across both 
DPs and CPs and the number of risk alleles at rs6935076 in KIAA0319 was found, 
supporting the link between KIAA0319 and neural variability.

Moving to studies which focused on brain structure and dyslexia risk genes, four 
publications need to be mentioned. A voxel-based morphometry (VBM) study [127] 
showed that participants with high genetic risk variants in TNFRSF1B exhibited 
significantly lower grey matter (GM) probability in Heschl’s gyrus/posterior superior 
temporal sulcus (HG/pSTS) but significantly higher GM probability in pSTS and 
the converse was true for participants with low genetic risk variants in TNFRSF1B. A 
structural MRI study [128] reported that DYX1C1, DCDC2 and KIAA0319 contained 
SNPs that significantly correlated with white matter volume in the L temporoparietal 
area and that white matter volume influenced reading ability in a general population 
sample. Finally, two studies need to be briefly discussed here—both using DTI. It 
should be noted that DTI (and a more sophisticated diffusion MRI techniques, such 
as NODDI, mentioned above, which provides more specific markers of brain tissue 
microstructure than standard indices from DTI) could become particularly important 
neuroimaging techniques in dyslexia research when combined with genetic measures 
because there is evidence that suggests that some dyslexia risk candidate genes (e.g. 
DCDC2, KIAA0319, DYX1C1, FOXP2 and CNTNAP2) are involved in neuronal 
migration (a period in brain development during which young neurons ‘look’ for 
their final destination in the brain; this process requires stringent controls that are 
genetically governed) and/or neurite outgrowth [102]. Such genes (together with the 
environment and gene-by-environment interaction) may contribute to shaping the 
brain’s white matter structure which can be inferred from the results obtained from 
MRI diffusion techniques. One of the first studies [129], which combined genetic, 
DTI (and behavioural) measures, reported that MRPL19/C2ORF3 was associated 
with general cognitive ability in DPs and participants with SLI. Also associations 
between white matter structure measured using DTI and genotypes at the MRPL19/
C2ORF3 (in an independent sample) were found in the posterior corpus callosum 
and cingulum connecting the temporal, parietal and occipital areas. More recently, 
a voxel-based DTI study [130] revealed that DPs with a deletion in DCDC2/intron 2 
compared to CPs exhibited significantly lower fractional anisotropy (FA) in a number 
of L hemisphere areas (including superior longitudinal fasciculus, arcuate fasciculus, 
inferior longitudinal fasciculus, optic radiation, corpus callosum, inferior cerebellar 
pedunculus and two R hemisphere areas (superior longitudinal fasciculus and corpus 
callosum)), indicating anatomical abnormalities of these white matter structures.

Although imaging genetics is a relatively young field and most findings need 
to be replicated, endophenotypes uncovered by imaging genetics hold promise 
for building a link between the behavioural and genetic characteristics of DPs 
[131]. Currently, however, the imaging genetics results are insufficient to obtain a 
full picture of the underlying causes of reading deficit in dyslexia. Advancement 
of imaging genetics in dyslexia needs to proceed in three major ways. First, new 
hypothesis-driven imaging genetic studies must be designed to investigate the 
function of neuronal migration (and other) genes and their relationships with well-
characterised cognitive and sensory vulnerability and to find connections between 
such susceptibility variants and neuroanatomical endophenotypes [102]. The 
integration of specific behavioural, imaging and genetic data may result in the iden-
tification of brain areas with gene and behavioural specific effects or with wide-
spread effects [102]. Second, although valuable results have emerged from known 
dyslexia risk genes, they cannot test other genetic impacts on the overall reading 
deficits in dyslexia. Therefore, sequencing studies and genome-wide association 
studies (GWAS) are needed, so that new genes associated with risk of dyslexia can 
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be discovered and their role tested in the neuroimaging studies, providing a fuller 
picture of phenotypes and endophenotypes in dyslexia [121]. Such attempts have 
already started; for instance, a GWAS [132] reported that mismatch negativity 
(MMN) (which reflects automatic speech deviance processing and is abnormal in 
DPs) was significantly associated with an intergenic SNP on chromosome 4q32.1. 
This SNP is hypothesised to have a potential effect on the expression of SLC2A3—a 
gene that encodes a neuronal glucose transporter. The results suggest a possible 
trans-regulation effect on SLC2A3, which might cause glucose deficits in DPs and 
this in turn may account for DPs’ attenuated MMN response. Third, as behavioural 
deficits overlap across neurodevelopmental disorders, it is of importance to include 
in the imaging genetics genes associated with different co-occurring disorders, 
including dyslexia. Such attempts have already been reported in dyslexia with 
respect to, for instance, FOXP2 [124]—a gene originally associated with develop-
mental verbal dyspraxia and included in imaging genetics in this disorder [133].

3.5 Neuroimaging intergenerational transmission of brain circuity

Intergenerational transmission is defined as ‘the transfer of traits from parents to 
offspring, including genetic and non-genetic influences. For example, the impact of 
prenatal effects (e.g. parent nutrition and in utero environment) as well as postnatal 
rearing effects and other environmental factors could lead to epigenetic or behav-
ioural changes in the offspring, which are thereby intergenerationally transmitted’ 
[134, p. 644]. Intergenerational neuroimaging is a new approach which uses neuro-
imaging to investigate the relationship of cognitive and neural phenotypes between 
children and their parents. It holds the promise of shedding light on the ontogeny of 
complex neurodevelopmental disorders, including dyslexia. One of the major goals 
of neuroimaging intergenerational transmission of brain circuity in such disorders 
is to dissociate the different sources of intergenerational effects on the brain circuity 
on dyslexia by contrasting parent–child pairs from natural conception, adoptive 
families and in vitro fertilisation (IVF). Such designs have a potential in addressing 
many important questions in dyslexia research, including (1) intergenerational 
effects on the brain structure and function (including those supporting reading 
ability) and (2) the impact of gender-specific effects at the prenatal stage (espe-
cially important as dyslexia is more prevalent in males [29]), including the effects 
of prenatal testosterone levels on brain development, epigenetic effects of estrogen 
on dyslexia risk genes and gender-specific transmission patterns in reading-related 
brain circuits in individuals who haven’t yet learnt to read [135].

4. Conclusion

The results from the first neuroimaging study to use a multiple case approach to 
investigate individual differences among DPs [25], reviewed here, revealed that DPs 
are characterised by marked heterogeneity and complexity in the neural correlates 
of their reading deficit; even if the reading deficit of two DPs was consistent with 
the same theory, their affected brain areas could differ. The results further show 
that the neural correlates of reading deficit for all (except one) DPs were consistent 
with more than one theory, supporting a multiple deficit model. It is suggested that 
future research on causes of reading deficit in dyslexia, to make significant prog-
ress, would need to (1) focus on the multiple deficit model [100], (2) use neuroim-
aging to test a further refined set of brain areas (including areas hypothesised by 
other dyslexia theories) in longitudinal designs, (3) control the effects of co- 
occurring neurodevelopmental disorders, (4) use different imaging tools 
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(high-field MRI (including diffusion techniques), multiband fMRI and MEG with 
optically pumped magnetometers), (5) progress imaging genetics and (6) pursue 
the neuroimaging intergenerational transmission of brain circuity.
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Chapter 6

Imaging Tests for Predicting 
the Presence of Difficult 
Airway in Head and Neck 
Cancer Patients Undergoing 
Otorhinolaryngological Surgery
Juan Gutiérrez Franchi, S. Merino, P. de la Calle, C. Perrino, 
M. Represa and P. Moral

Abstract

Patients with head and neck cancers represent a challenge for the surgical 
team from many points of view, but, especially, the surgical moment where 
greater stress generated corresponds to the perioperative management of the 
airway, because in many occasions we can face unexpected situations, most of 
the time, incidental findings can hinder ventilation and endotracheal intuba-
tion. Gutierrez et al., in 2018, decided to study four tomography measures and 
their correlation in anesthesia records with airway management difficulties. 
Material and methods: A retrospective, observational study was carried out in 
104 patients operated by head and neck cancers over a period of 36 months, 
only in those with access to tomographic records. Four tomographic measure-
ments were considered and were statistically related to the extreme degrees of 
visualization of the glottis (Cormack III–IV) and the presence of the physical 
examination of Mallampati III–IV. Results: After performing a multivari-
ate model in the group of extreme degrees of visualization of the glottis, the 
results were not statistically significant (p > 0.05; 95% CI: 0.030–2.31: EPI/
PPW, 0.018–1.37 TB/PPW). In the Mallampati III–IV group, in the multivariate 
model only the VC/PPW showed clinically significant results (p < 0.05; 95% CI: 
0.104–8.53). Conclusions: Tomographic measurements and the physical exami-
nation predictors could represent a useful guide in the prediction of the difficult 
airway in these patients.

Keywords: difficult airway, computed axial tomography, predictors

1. Prevalence of head and neck cancers

1.1 Prevalence

Head and neck cancers represent 5% of all tumors [1]. The most frequent loca-
tion is the larynx, followed by the oropharynx, oral cavity, and nasopharynx [2].
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Squamous cell carcinomas account for 95% of all malignant tumors of the 
head and neck, while carcinomas of the salivary glands are almost the remaining 
5%. They represent 4% of all malignant neoplasms in the USA. Epidermoid car-
cinomas of the head and neck can be divided into two different groups according 
to their pathogenesis, biology, and prognosis. The incidence of cancers related to 
the environment, mainly caused by tobacco and alcohol, has decreased; however, 
they are still frequent. An increased incidence of oropharyngeal cancers related 
to human papillomavirus (OCHPV) has been observed. The OCHPV currently 
accounts for about 75% of the oropharyngeal cancers seen in the USA and Europe. 
OCHPV affect a younger population (50–60 years) than cancers of environmental 
origin (55–65 years). Patients with OCHPVare generally also healthier and are not 
prone to comorbidities or the second neoplasms seen in epidermoid tumors related 
to environmental factors [3].

The mucosal surfaces of the head and neck are divided into six anatomical 
regions: the oral cavity, oropharynx, hypopharynx, larynx, nasopharynx, and 
paranasal sinuses. The anatomical location of an epidermoid carcinoma of the head 
and neck has important implications, although not well defined, for diagnosis, 
pathogenesis, dissemination pattern, prognosis, and treatment. Due to intrinsic dif-
ferences in the biological characteristics of the mucous cells and posterior tumors’ 
origin, tropisms of the carcinogenic viruses could be different lymphatic and 
anatomic distributions [3] Figure 1.

The oropharynx is an osteocartilaginous cavity with a continent that extends 
from the lips to the anterior wall of the first cervical vertebrae and a content 
that includes the tongue, epiglottis, and hard/soft palate. In Europe and the 
USA, one of the main causal factors is the human papillomavirus. OCHPV are 
produced almost exclusively by HPV-16, a high-risk type of HPV associated 
with cervical, anal, and vulvar cancers. Other types of high-risk HPV cause 
10–15% of new diagnoses. High-risk types of HPV are transmitted through body 
fluids that infect the surfaces of the squamous mucosa of the anogenital duct 
and the oropharynx. Although smoking does not increase the risk of OCHPV, 
HPV is the cause in 50% of smokers with oropharyngeal cancer. Compared to 
environmental neoplasms, OCHPV usually presents initially in a low primary 
T stage (T1 and T2) and a high nodal stage (N2 and N3) and often represents 
a cause of cancer of unknown primary origin because the tumors primary are 
small and difficult to identify [3].

The hypopharynx includes the pyriform sinuses, the lateral and posterior walls 
of the pharynx, and the posterior surfaces of the larynx. These structures surround 
the larynx from behind and laterally. It can be difficult to detect tumors in this 
region because sac bottoms and spaces around the larynx exist. As a result, primary 
hypopharyngeal tumors may be asymptomatic and, like oropharyngeal tumors, 
may be detected initially in advanced stages or as a primary tumor of unknown 
origin. These tumors are related to the consumption of tobacco and alcohol [3].

The larynx includes the vocal cords, the subglottis, and the supraglottic part of 
the larynx, in addition to the thyroid, cricoid, and arytenoid cartilages. Tumors 
that originate in the true vocal cords often produce symptoms in early stages and 
rarely extend beyond the boundaries of the larynx, while subglottic and supraglot-
tic tumors may be relatively asymptomatic and have a much higher risk earlier of 
spread to the lymph nodes and other regional areas. Laryngeal carcinomas have an 
intense association with tobacco [3].

The nasopharynx includes the mucosal surfaces and structures of the cavity 
located behind the nasal passages. Nasopharyngeal carcinomas are frequent 
on the Pacific coast, North Africa, and the Near East. In some regions of China 
and Southeast Asia, cancers of the nasopharynx have a frequency similar to 
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lung cancer. In the USA, approximately 2000 cases occur each year, but this 
number is increasing in populations with high-risk ethnic origins settling in 
North America. Nasopharyngeal carcinomas are frequently associated with 
a latent infection of epithelial tumor cells with EBV, the etiological agent of 
infectious mononucleosis. Nasopharyngeal carcinomas are also associated with 
environmental and genetic factors in susceptible populations that have migrated 
to North America and still have an elevated risk of this disease. Unlike other 
epidermoid carcinomas of the head and neck, nasopharyngeal carcinomas can 
appear at an early age, with a maximum incidence evident in adolescents and 
young adults. Nasopharyngeal carcinomas are divided into three histological 
types according to the World Health Organization (WHO): the undifferentiated 
(WHO III) and the non-keratinized (WHO II) have latent infection by EBV 
in 95% of cases and are the most of the cases in North America and the rest of 
the world; the well-differentiated form (WHO I) is less frequent and accounts 
for 5% of cases worldwide, although in North America it represents 15–25% of 
cancers and is usually associated with traditional risk factors, such as smoking. 
Nasopharyngeal carcinomas are associated with a high risk of early regional 
lymph node metastases, prolonged natural evolution, and very high risk of 
distant dissemination [3].

Figure 1. 
Malignant neoplasms of the oropharynx. Retrieved from Parul S, Uli H. Cummings Otolaryngology. January 
2, 2015. Páginas 1432.e4-1453.e4. © 2015.
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2. Difficult airway

2.1 Prevalence

In some cases, friable vocal cord tumors, subglottic stenosis, or tongue-based 
pathologies represent challenges for even the most experienced anesthesiologist. 
The incidence of difficult intubation in OC population is 7.1%. The American 
Society of Anesthesiologists defines “Difficult intubation” as the completion of 
multiple attempts of intubation in the presence or absence of tracheal disease [4].

We know, by difficult airway according to ASA, the clinical situation in which 
a conventionally trained anesthesiologist has difficulty in ventilating with facial 
mask, difficulty in tracheal intubation, or both [5]. The intubation failure plus ven-
tilation failure occurs at 0.003%, being the most dramatic situation that can occur 
[6]. Intubation failure is the inability to place an endotracheal tube. Its incidence is 
0.05% in the general population. The estimated incidence of all types of difficulties 
related to intubation or airway safety is estimated at 1–3% [7].

Currently, there are no generic references for the incidence of difficult intubation, 
due to the great diversity of material available in terms of video-laryngoscopy, which is 
nowadays commonly used. The incidence of failed intubation is around 0.05–0.35% [7].

2.2 Predictors of difficult airway

The preoperative recognition in physical examination can help to predict life- 
threatening situations for our patients. The test of Mallampati is considered the gold 
standard of the predictors, relating to the structures of the base of the tongue with 
respect to the visibility of the after pharyngeal structures, on a scale from I to IV, in which 
III–IV associated with other predictors may suggest difficulty [6]. Lee et al. describe that 
the modified Mallampati test has a sensitivity to predict difficult intubation of 76% and 
a specificity of 77% [8]. On the other hand, it is suggested that the Mallampati test in the 
supine position is a better predictor than in the sitting position [9, 10].

Numerous predictive tests of difficult airway can be mentioned with their 
different sensitivities and specificities that can improve the predictive power of the 
Mallampati: hyo- and thyromental distance [sensitivity (S) 88%/65% and specific-
ity (E) 60%/81%, respectively], the bite test (S 88% and E 88%), circumference 
of the neck in the obese population (S 88.2% and E 83%), and mouth opening 
(S 26–47% and E 94%). Due to the statistical limitations observed in the studied 
populations, predictive models that seek to improve the statistical power of these 
physical examination findings have been developed from multivariate analysis. 
Mainly they can be mentioned: Wilson (S 75% and E 88%), El-Ganzouri (S 65% 
and E 94%), Arne (S 94% and E 96%), Karkouti (S 86% and E 96%), and Naguib 
original (S 81% and E 72%) [8]. Recall that Mallampati plus thyromental distance 
and sternum distance is the combination of physical tests with greater discrimina-
tive power, with a sensitivity of 100% and specificity of 92.7% [11].

2.3 Radiology in the difficult airway

2.3.1 Ultrasonography

The physical principles of ultrasound consist in the transformation of mechanical 
energy into electrical and vice versa. The ultrasound wave travels through the tissues 
undergoing phenomena of scattering, refraction, and reflection, with wave frequen-
cies that oscillate from 2 to 20 MHz and therefore impossible to be heard by the human 
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ear. The organs of the body have different amounts of water that can help us distin-
guish the images in the ultrasound monitor. This physical alteration of the wave is 
known as impedance and is usually measured as the resistance to propagation of sound 
waves from one medium to another. The greater difference in impedance between two 
tissues, the easier it will be to distinguish one from the other. The same happens with 
the air-water interface, and to improve it, we usually place gel in the ultrasound probe 
to reduce it and optimize the visualization of the tissues. That is why we usually see 
black (hypoechoic) air in the monitor, solid viscera with high water content in white 
(hyperechoic), and structures of intermediate echogenicity (isoechoic) [12].

Everything explained previously was not possible without the piezo crystals of 
the probes. These devices are capable of emitting an electric pulse on their crystals, 
which is transduced to mechanical energy, generating an “oscillatory” activity in the 
tissues, and the signal is again received by the probe and transformed into electrical 
energy giving an image on the monitor. This information is processed in terms of 
amplitude and time of return of the signal in the ultrasound equipment. Tissues are 
images interpreted with hypo- (black), iso-, or hyperechoic (white) characteristics 
in the ultrasound monitor [12].

The resolution of ultrasound devices can be divided into axial, lateral, spatial, 
and temporal. The axial resolution refers to the ability of the ultrasound probe to 
define two images. At higher wave frequencies, we will be able to appreciate more 
superficial structures with greater definition, but not organs that are deeper. The 
lateral resolution refers to the ability to differentiate two structures perpendicular to 
the ultrasound probe and depends on the position of the probe with respect to the 
structure to be evaluated [12].

Spatial resolution is a fixed property of the probe and refers to its ability to solve 
objects located at the same height or thickness of the ultrasound beam. The number 
of individual PZT crystals that emit and receive the ultrasound waves and their 
sensitivity affect the resolution, accuracy, and clarity of the image. The temporal 
resolution refers to the clarity or resolution of structures in movement [12].

Ultrasounds seem to be beginning to play a role in the perioperative prediction 
of intubation difficulties. Chou et al. studied hyomandibular distance measured 
by X-rays and said that it may be increased in patients with difficult airway. The 
cutoff values described in this study were 33.8 mm in men and 26.4 mm in women. 
Knowing the limitations of this work, in 2008, it was described that the inability to 
see the hyoid bone in ultrasound (due to a hypopharyngeal of the base of the tongue 
or by a short mandibular branch) seems to increase the statistical power in the 
usefulness of ultrasound in the patient difficult to intubate [13].

Based on the previous study, years later Hui et al. recruited 110 patients that 
were trained in sublingual ultrasounds after a series of simple instructions. The 
probability of visualizing the hyoid bone by ultrasound was related in patients with 
Cormack I and II with a positive probability ratio of 21.6, which suggests that it can 
become a useful tool to predict difficult airway [14] Figure 2.

However, the shape and size of the tongue added to the fact that the patients 
were not in the sniffing position during the measurements may represent some 
limitations in the interpretation of the results in this study [14].

2.3.2 Computed tomography

The image in computerized axial tomography is an axial and coronal representa-
tion of the patient using the physical principles of X-rays. The final reconstruction 
of the image will generate a series of overlapping structures with attenuations that 
will depend on the amount of water contained in the tissue under study [15].
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The CT image is produced by the process of reconstruction, digitally combining 
information from X-ray projections through the patient from many different angles 
to produce the cross-sectional image. Because the image is digital, it is made up of 
a group of pixels (shortened from “picture elements”). Each pixel has a gray scale 
value that is displayed to the viewer. The image is 2D, but it represents a 3D volume 
of tissue with a finite thickness (usually a very small thickness compared to the field-
of-view (FOV) size [≈2–5 mm]). Each pixel is the projection, or 2D representation, 
of the X-ray attenuation of a voxel (shortened from “volume element”) of physical 
tissue. The size of the pixels and the thickness of the voxels relate to some important 
image quality features, such as detail, noise, contrast, accuracy of the attenuation 
measurement (CT number value), and artifacts. These will be discussed in more 
detail as they relate to the processes of acquiring and reconstructing CT data [15].

In a CT of a single section of tissue using a single detector, the X-ray beam is col-
limated to the desired image thickness. The detector array has a number of individ-
ual detector elements that each records the intensity of the beam passing through 
the tissue along the path from the X-ray tube to the element. The system captures 
a simple projection X-ray through the patient, consisting of a thin strip or row of 
pixels. It can be thought of as a one-dimensional (1D) radiograph. The scanner then 
rotates the source and detector to capture additional 1D “strip X-rays” through the 
same section of the patient, viewed from a number of angles. Each strip radiograph 
(projection) is stored in the computer memory for later reconstruction [15].

In multislice CT, this operation is performed simultaneously for many arrays of 
detectors stacked side by side along the z-axis (long axis) of the patient. The X-ray beam 
collimators can be opened so that a wider section of the patient is irradiated, and each 
row of detectors can measure a separate transmission signal for the tissue section that lies 
between the detector row and the tube. The width of tissue that is sampled by each detec-
tor row is determined by the physical width of the detector elements along the z-axis [15].

According to X-ray absorption, we use the scale of the Hounsfield units (HU) 
that allows to stratify the pixels of the measurements according to their densities 
with respect to water. The advantage of the HU scale is that density differences of 
1 part in 1000 (0.1%) can be represented by distinct values. The inherent density 
resolution of CT scanners is about 0.5%, so the HU scale is sufficient to display all 
attenuation differences the scanner can measure. Increasing the value of K would 
not improve on the density resolution of the system [15].

Many authors have tried to apply these imaging tests for the study of airway 
anatomy. Randell et al. in 1998 in Anesthesiology suggested the possibility of 

Figure 2. 
Retrieved from [14]. Sublingual ultrasound of the upper airway. (a) Schematic diagram showing placement 
of the ultrasound probe perpendicular to the face, as instructed by study participants. Indicated are positions 
of the tongue, geniohyoid and mylohyoid muscles and hyoid bone. The dashed lines indicate the coverage of the 
ultrasound beam. (b) Representative ultrasound image showing view of the hyoid bone.
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considering by means of NMR and CT studies parameters such as length of epiglot-
tis, length of tongue, and width thereof, as difficulty markers of the passage of the 
endotracheal tube during intubation with a fiberoptic bronchoscope [16].

2.3.3 Computed magnetic resonance

Understanding the physics of magnetic resonance is a challenge for many 
medical specialists, as it involves implicit technical knowledge shared with other 
professional fields; it may even be harder to understand than the basic principles of 
tomography and ultrasound. The four main points of the process are:

2.3.3.1 Preparation

The human being is basically composed of water. Hydrogen molecules contained 
in water when exposed to a “magnet” can be magnetized. Basically the resona-
tor is a magnet, which confers spin to the hydrogen with a resulting vector that 
oscillates at a frequency called Larmor that is proportional to the magnetic field 
surrounding it. This vector is going to align with the said field when it is exposed 
to 1.5–3.0 T. Magnetization can be manipulated with the use of contrasts such as 
gadolinium through a process called inversion of the image [17].

2.3.3.2 Excitation

The “spinning” of the hydrogen molecules generates a radiofrequency pulse 
in the Larmor spectrum, which is received by a coil (electrical conductor) that is 
transverse to the tissue magnetization under study and transduced by Faraday ther-
mal induction; the previous really will generate the “magnetic resonance signal.” 
The signal is attenuated by two processes called relaxation. This usually occurs 
in two times (T). T2 represents the loss of coherence of the spin of the hydrogen 
molecules over time. T1 represents the time it takes for the vector of the magnetic 
field to reach equilibrium. The important thing about these last two concepts is that 
they will determine the resolution of the soft parts during the study [17].

2.3.3.3 Spatial encoding

The frequency of the spin of the hydrogen molecules with different spatial 
location differs from each other. The sum of these frequencies generates a resulting 
vector causing a force called Lorentz force, which is perceived by the coils and will 
participate in the genesis of the acoustic signal generated during a resonance.

2.3.3.4 Signal acquisition

The different spatial location of the hydrogen ions and their individual rotation 
frequency are analyzed by a Fourier transform, which will generate the different 
pixels of the image and is stored in the magnetic resonance equipment [17].

The application of these concepts to the perioperative management of the air-
way can be observed. In the work on predictors of difficulty of endotracheal intuba-
tion considered from NMR studies conducted by Samra et al. in 40 patients in 1995, 
no significant differences were found in the 20/21 parameters studied in soft tissue 
X-ray imaging. NMR is among the difficult intubation groups not anticipated and 
achieved. It seems that no radiological study alone is able to predict the difficulty in 
intubation; one of the reasons is that the exposure of the larynx depends on its com-
pressibility. The tongue and the soft tissue consistency of the floor of the mouth, a 
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Figure 2. 
Retrieved from [14]. Sublingual ultrasound of the upper airway. (a) Schematic diagram showing placement 
of the ultrasound probe perpendicular to the face, as instructed by study participants. Indicated are positions 
of the tongue, geniohyoid and mylohyoid muscles and hyoid bone. The dashed lines indicate the coverage of the 
ultrasound beam. (b) Representative ultrasound image showing view of the hyoid bone.
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considering by means of NMR and CT studies parameters such as length of epiglot-
tis, length of tongue, and width thereof, as difficulty markers of the passage of the 
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molecules over time. T1 represents the time it takes for the vector of the magnetic 
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2.3.3.3 Spatial encoding

The frequency of the spin of the hydrogen molecules with different spatial 
location differs from each other. The sum of these frequencies generates a resulting 
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way can be observed. In the work on predictors of difficulty of endotracheal intuba-
tion considered from NMR studies conducted by Samra et al. in 40 patients in 1995, 
no significant differences were found in the 20/21 parameters studied in soft tissue 
X-ray imaging. NMR is among the difficult intubation groups not anticipated and 
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intubation; one of the reasons is that the exposure of the larynx depends on its com-
pressibility. The tongue and the soft tissue consistency of the floor of the mouth, a 
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situation that cannot be measured with imaging studies, perhaps dynamic studies, 
could be useful in these cases [18].

2.3.4 Imaging modalities: weaknesses and strengths

In head and neck cancers, tomography through the use of detectors (64 mid-
range) can provide dynamic images to assess phonation or oral cavity tumors. In 
addition, it is a useful rapid test in claustrophobic patients with respiratory prob-
lems [19, 20].

Some authors prefer the use of NMR in their institutions, since it is superior 
in resolution to delimit tumors and bone/cartilaginous parts and perineural inva-
sion and to reach areas such as the base of the tongue that can be difficult to see in 
nasofibroscopy [21, 22] Figure 3.

The 4–7% of head and neck tumors has lung metastases. Many hospital protocols 
use CT with low levels of radiation to follow these patients and even to determine 
responses to treatment, tumor biology, and nodal extension. And we cannot forget 
how important it is in radiotherapy simulation by tomographic tests. So in this group 
of patients, it seems that the two tests continue to complement each other [23–27].

Currently, it seems that MRI greatly improves the visualization of the bone and 
cartilage. The importance of this fact is related to staging and treatment of these 
patients [28–30] but not so in patients on chemotherapy treatment where positron 
emission tomography remains a better alternative for follow-up at 3 months [31].

CT protocols are less varied than MRI, but the technique still requires optimiza-
tion and patient cooperation. Many of these patients need a study that ranges from 
the base of the skull to the chest with a 1–1.5 mm collimation. The use of contrast 
offers an important advantage in these patients, and, whenever administered at 
1 ml/s, it helps to define better vascular structures and squamous cell tumors. The 
patient is then asked to raise their arms above their head, and the entire chest is 
scanned. Dental artifact remains a challenge in a patient group who will often have 
poor dentition. An additional limited CT with angled gantry can be used to mitigate 
beam hardening if the tumor is obscured [32].

In summary, CT continues to be used in most head and neck cancer patients. The 
cost of NRM continues to be a limitation for many centers. The tomography as a basis for 

Figure 3. 
Retrieved from [33]. Left oropharyngeal/buccal squamous cell carcinoma on (a) contrast-enhanced computed 
tomography and (b) T2 axial DIXON-FS magnetic resonance imaging (MRI), showing the benefits of superior 
contrast resolution in MRI. Head and neck is an area with a difficult anatomy and distorsions cause by tumors 
could compromise imagenologic interpretations. Notice better resolution in image than tomography that could 
help in staging and surgical decision.
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PET and radiotherapy remains a very valuable option in these patients, since it facilitates 
staging and treatment. It seems that in the future, it is inevitable that the MRI replaces 
the CT because of its resolution of soft tissue visualization, and therefore it would offer 
more targeted treatments to this area of such a complex anatomy [33].

3. Any place for CT and airway?

Patient intervened for head and neck cancers presents anatomical particularities in 
the airway, which are probably better described in tests performed routinely in this pop-
ulation as the CT. Comparing the degrees of visualization of the glottis and Mallampati 
test described in the anesthesia records with four tomographic measurements, the 
authors of this chapter propose a tool to improve the perioperative management of the 
airway in this group of patients. A retrospective study was conducted with 104 patients 
operated for head and neck cancers under general anesthesia and endotracheal intuba-
tion in the Otorhinolaryngology department during a period of 36 months. Throughout 
the selection process, the radiology team reported a number of 15 cases with significant 
distortion of the airway that are being excluded from the analysis [1].

Based on the findings of the preoperative imaging tests, a multivariate logistic 
regression analysis was performed, where the dependent variable was the presence 
of Mallampati III–IV and the extreme degrees of visibility of the glottis (defined as 
Cormack III–IV). The 89 patients were assigned to the Cormack I–IV and Mallampati 
I–IV groups in the analysis in equal proportion. A total of four tomographic and 
clinical factors of difficult airway were introduced into this model. The tomographic 
predictors considered in the study were the following: distance from the vocal cords 
to the posterior pharyngeal wall (CVV/PFP) and laryngotracheal angle (Alaring) and 
distance from the epiglottis to the posterior pharyngeal wall (EPI/PFP) and from the 
base of the tongue to the posterior pharyngeal wall (BL/PFP). The odds ratio (OR) 
was 95% with confidence intervals (CI). All the tests were considered statistically 
significant for all data analyses when p < 0.05 [1] Figure 4.

Figure 4. 
Axial CT scan. Measurements made by the Gutiérrez JC et al. [1]. 1. TB/PPW: tongue base distance to 
posterior pharyngeal wall. 2. VCD/PPW: vocal cords to posterior pharyngeal wall. 3. EPI/PPW epiglottis 
distance to posterior pharyngeal wall. 4. LTQ: laryngotracheal angle.
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PET and radiotherapy remains a very valuable option in these patients, since it facilitates 
staging and treatment. It seems that in the future, it is inevitable that the MRI replaces 
the CT because of its resolution of soft tissue visualization, and therefore it would offer 
more targeted treatments to this area of such a complex anatomy [33].

3. Any place for CT and airway?

Patient intervened for head and neck cancers presents anatomical particularities in 
the airway, which are probably better described in tests performed routinely in this pop-
ulation as the CT. Comparing the degrees of visualization of the glottis and Mallampati 
test described in the anesthesia records with four tomographic measurements, the 
authors of this chapter propose a tool to improve the perioperative management of the 
airway in this group of patients. A retrospective study was conducted with 104 patients 
operated for head and neck cancers under general anesthesia and endotracheal intuba-
tion in the Otorhinolaryngology department during a period of 36 months. Throughout 
the selection process, the radiology team reported a number of 15 cases with significant 
distortion of the airway that are being excluded from the analysis [1].

Based on the findings of the preoperative imaging tests, a multivariate logistic 
regression analysis was performed, where the dependent variable was the presence 
of Mallampati III–IV and the extreme degrees of visibility of the glottis (defined as 
Cormack III–IV). The 89 patients were assigned to the Cormack I–IV and Mallampati 
I–IV groups in the analysis in equal proportion. A total of four tomographic and 
clinical factors of difficult airway were introduced into this model. The tomographic 
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The most frequent surgeries performed during the study period were laryngeal 
microsurgery, total laryngectomy, and laser cordectomy, with percentages of 37.1, 
10.1, and 6.7%, respectively.

In the Mallampati III–IV group, the mean in millimeters of distances of CVV/
PFP and BL/PFP was 11.89 and 8.82, respectively. In the Cormack III–IV group, the 
means of EPI/PFP and BL/PFP were 7 and 10.40 mm. The tomographic predictors 
EPI/PFP and 177 BL/PFP in Cormack III–IV patients show significant results in the 
univariate model (p < 0.05, 95% CI: 0.125–3.84 and 0.654–5.915, respectively), but 
this situation was not repeated in the multivariate model when the variables were 
analyzed categorically (95% CI: 0.030–2.31 EPI/PFP, 0.018–1.37 BL/PFP). ROC 
curve was also assessed during the study, with 71 and 69% being observed for EPI/
PFP and BL/PFP, respectively [1] Table 1.

From the tomographic predictors, the CVV/PFP distance in the Mallampati 
III–IV patients shows significant results in the univariate model (p < 0.05, 95% CI: 
0.032–3.682), a situation that was repeated in the multivariate model with the same 
distance (p < 0.05, 95% CI: 0.104–8.53) The diagnostic yield of CVV/PFP was also 
assessed during the study, with 64% being observed [1].

Although is important to consider that most of the intubations are performed by 
residents, there is a possibility that the interpretation of the Cormack degree could 
be altered. On the other hand, were described must take into account the prefer-
ences for airway devices according to the experience of each doctor, since this may 
condition the analysis of the variables. Discerning the differences between device 
preferences is beyond the scope of this study [1].

Difficult for Cormack VCD/PPW 
(mm)

EPI/PPW 
(mm)

TB/PPW 
(mm)

°LTQ

I–II degree

 Median 13.20 8.99 13.68 139.81

 Minimum 6 3 5 119

 Maximum 22 16 21 160

 Percentile 25 10.75 7.00 11.00 135.00

50 13.00 9.00 13.00 141.00

75 16.00 11.00 17.00 145.25

Standard deviation 3.743 2.785 3.875 9.391

III–IV degree

 Median 12.33 7.00 10.40 141.00

 Minimum 6 3 5 122

 Maximum 22 11 19 155

 Percentile 25 7.00 4.00 6.00 133.00

50 11.00 8.00 11.00 142.00

75 16.50 9.00 12.25 149.50

Standard deviation 5.454 2.625 4.195 10.548

Retrieved from Gutiérrez JC et  al. REDAR-913 2018. °LTQ: laryngotracheal angle; EPI/PPW epiglottis distance 
to posterior pharyngeal wall; TB/PPW: tongue base distance to posterior pharyngeal wall; VCD/PPW: vocal cords 
distance to posterior pharyngeal parad. Good glottis visualization (Cormack I/II). Extreme degrees of glottis 
visualization (Cormack III/IV).

Table 1. 
Cormack III/IV and tomographic predictors.
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Patients undergoing oncological head and neck surgeries receive preoperative 
radiotherapy and other diagnostic-therapeutic techniques that were sometimes 
difficult to relate temporally with the CT evaluated. This fact may condition the 
interpretation of the imaging tests by the expert radiologist [1].

4. Conclusion

In certain patients, it seems that the role of ultrasonography in the prediction of 
difficult intubation plays an important role [34]. We cannot forget the importance 
of the predictors to physical examination, and that their sum complements their 
statistical power. The particularities of airway management in patients with head 
and neck cancers are well known, and sometimes supporting us in preoperative 
imaging tests, in conjunction with the interdisciplinary communication of the 
surgical team, favors the reduction of unwanted events in the management of the 
airway.

It is useful in these special populations to anticipate a possible difficult airway. 
Imaging tests, particularly CT, could help in this regard. Gutiérrez et al. described 
in the group Mallampati III–IV distance measurement CVV/PFP shows significant 
statistics in the multivariate model (p < 0.05, 95% CI: 0.032–3.682). However, 
obtaining images in a reproducible position that recreates the position that the 
patient will adopt during intubation and prospective evaluation in a larger popula-
tion can provide more useful preprocedure information for the anesthetist [1].

Knowing the limitations of difficulty predictors of airway, it seems that 
techniques are necessary alternatives that support doctors and allow us to foresee 
life-threatening situations.
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Chapter 7

Functional Brain Imagery and 
Jungian Analytical Psychology: An 
Interesting Dance?
Leon Petchkovsky, Michael Petchkovsky, Philip Morris, 
Paul Dickson, Danielle T. Montgomery, Jonathan Dwyer, 
Patrick Burnett and Kristin Robertson-Gillam

Abstract

Jung’s original neuroscience research project looked at the neurophysiological 
responses to the word association test (WAT) in an effort to understand ‘com-
plexes’, those emotionally laden fixations that bother us all, and can be inferred 
from certain painful responses in the WAT. He measured breathing rates, skin 
conductance and electrocardiography, but there was no brain functional imaging 
technology available at the time. One hundred years later, a wide range of brain 
functional technologies are available, and this chapter describes two studies in 
which the WAT was performed under functional magnetic resonance imaging and 
quantitative electroencephalography conditions. In essence, a complexed response 
first activates the amygdala (many right-sided). This is followed in the next 3 s by 
bilateral brain activity in the anterior insula, the supplementary motor area and 
the dorsal cingulum; the premotor mirror neuron areas, the so-called resonance 
circuitry, which is central to mindfulness (awareness of self) and empathy (sense 
of the other), negotiations between self-awareness and the ‘internal other’, and has 
been well described by Dan Siegel. But over the following 2 s, activity shifts to the 
left hemisphere, seemingly the way the brain deals with a complex in the moment, 
possibly to dull the pain of the complexed response.

Keywords: Jungian psychology, complexes, fMRI, QEEG

1. Introduction

1.1 Jung on the complexes

It is one of life’s ironies that Jungian analytical psychology, often regarded as the 
most starry-eyed of the psychoanalytic methods, had its beginnings, over 100 years 
ago, in what was essentially Jung’s neuroscience research project (Jung [1]) in which 
he looked at neurophysiological responses to the word association test (WAT), in an 
effort to understand ‘complexes’, those emotionally laden fixations that bother us 
all, and can be inferred from certain painful responses in the WAT.
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It is worth going back to Jung’s original descriptions:

[complexes] are psychic entities which are outside the control of the conscious 
mind… always contain something like a conflict…are the ‘sore spots’, the bêtes 
noires, the ‘skeletons in the cupboard’ which we do not like to remember but still 
come back to mind unbidden in the most unwelcome fashion….experience shows 
that complexes are infinitely varied, yet careful comparison reveals a relatively 
small number of typical primary forms (Jung [1], pp. 528–529).

Jung’s early WAT investigations led him to wonder about the role of complexes 
across a range of conditions, including psychosis, dissociative disorder and psycho-
logical trauma, through to everyday life:

…the average speed of the reactions and their qualities, was a relatively subsidiary 
result compared with the way in which the method was disturbed by the autonomous 
behaviour of the psyche….it was then that I discovered the feeling-toned complexes, 
which had always been registered before as failures to react (Jung [1], pp. 95).

1.2 A brief history of neuroscience research in analytical psychology

Jung and collaborators at the Burghӧlzli used the most advanced physiologi-
cal psychology technology of the times, skin conductance (SC) or galvanic skin 
response (GSR), electrocardiography (ECG) and plethysmographic spirometry 
(measurement of breath rate and depth), to track the neurophysiological changes 
that accompanied complexed responses when patients performed the WAT.

When a person hears a word read-out from a standard list, and is asked to 
respond as quickly as possible with the first word that comes to mind, most 
responses tend to be bland and neutral. However, every so often there are long 
pauses, often with unusual behavioural and semantic features (the so-called 
complex indicators), and physiological disturbances (heart rate, breathing rate, 
skin conductance). Such responses typically organise around themes. From these 
responses, a ‘map’ of psychological ‘hot spots’ can be built. Jung called these affect-
bound thematic nodes the ‘complexes’. But more importantly, both he and Freud 
viewed complexed reactions as evidence of ‘repression’, a state in which the subject’s 
experience collides with an internal opposition, generating internal conflict.

2. Functional brain imaging methods

Almost 100 years after Jung’s research, there is now a range of brain imaging 
technologies which include functional magnetic resonance imaging (fMRI), QEEG, 
near-infrared spectroscopy (NIRS), positron emission tomography (PET), single-
photon emission computed tomography (SPECT) and magnetoencephalography 
(MEG). The contributions of NIRS, PET and SPECT to anything of direct relevance 
to psychoanalytic practice have been modest for various reasons. The two most 
productive functional imaging modalities, in terms of giving deep insights into 
psychodynamic brain functions, are fMRI and QEEG.

2.1 MRI and fMRI

It takes 1–2 s for blood flow in an activated brain region to increase. More 
haemoglobin in its oxygenated form arrives in that area, and because it has different 
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magnetic properties to the deoxygenated form, this can be detected by the MRI 
scanner as magnetic signal variations, the so-called blood-oxygen-level dependent 
(BOLD) response. This allows functional maps to be constructed, with spatial 
resolutions as good as 1 cm3.

But temporal resolution is relatively poor, around 2 s. Since the early 1990s, 
fMRI has come to dominate brain mapping research because it does not require 
subjects to undergo surgery, be exposed to ionizing radiation or to take in radioac-
tive substances.

2.2 Quantitative electroencephalography (QEEG)

The EEG is a collection of electrical signal patterns originating in the brain, 
recorded from a set of scalp electrodes. The so-called 10/20 placement is the most 
common electrode placement. Nineteen electrodes are applied to specific scalp 
sites, with a set of reference electrodes at each ear. QEEG differs from regular EEG 
because a range of algorithms have been developed over the last two decades to 
process the data and extract patterns that cannot be easily accessed visually from 
the ‘resting’ or ‘background’ EEG. The technology also allows one to administer a 
standard range of auditory and visual tasks and stimuli, which in turn generate EEG 
response patterns, the so-called event-related potentials (ERPs). This allows a closer 
look at the brain in action (see ‘Event-Related Potentials (ERPs)’ section) (see also 
Kropotov [2] and Thatcher [3]).

QEEG spatial resolution can be displayed by the low-resolution electromagnetic 
tomography (LORETA) process and technology developed by Pascual-Marqui et al. [4], 
based at the KEY Institute for Brain-Mind Research, University Hospital of Psychiatry 
Zurich, Switzerland, which is impressive (circa 1–2 cm3) but not as good as that of fMRI 
(1–6 mm). In his 1999 paper, Pascual-Marqui [5] reviews and compares several ‘inverse 
problem’ resolution methods and finds that the LORETA method is the most accurate. 
However, EEG temporal resolution is much better than that of fMRI in the millisecond 
range, and with fMRI, the initial 2-s poststimulus are unavailable, because it takes that 
long for the blood oxygenated signal to manifest in the brain, and from then on, tempo-
ral resolution of about 500 ms is about the best that can be obtained.

3. The fMRI of complexes as elicited by the WAT

This chapter provides a condensed account of our experimental studies. For the 
reader wanting more details, these are available in Petchkovsky et al. [6, 7]. Jung’s 
word association test was performed under fMRI conditions by 15 normal subjects. 
Pooled complexed responses were contrasted against pooled neutrals.

3.1 Results

The scans were analysed using the Statistical Parametric Mapping program  
(see SPM-5 2009 url, 8). The complexed responses revealed a very strong pattern of 
bilaterally symmetrical activity in each hemisphere. Statistical significance of the 
results was well above the SPM-5 family-wise error (FWE) and false discovery rate 
(FDR) thresholds, described in SPM-5 2009 [8] with Z-scores ranging from 4.90 to 
5.66, i.e. four or more standard deviations above the baseline expectation (a result 
with a Z-score of 3.9 or above has less than 1 chance in 10,000 of being accidental).

The initial left and right hemisphere symmetry of the generic complex response is 
well captured in this Drishti image, as developed by Limaye [9]. In each hemisphere, 
we can see the interactive pattern between mirror neuron sites (premotor mirror 
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Figure 1. 
The generic complexed response.

neuron area and supplementary motor area), the conflict-monitoring cingulate 
gyrus and the anterior insula which tracks internal states but also communicates with 
midbrain limbic areas like the amygdala (to do with emotions). The BOLD responses 
accompanying ‘complexed’ activity are the strongest in the first 3 s (see Figure 2).

3.2 Complex versus neutral

One striking feature of the ‘complexed’ response pattern displayed above is the 
high level of interhemispheric symmetry in the first 3 s.

3.3 The complexed activation pattern

The complexed response pattern (see both Figures 1 and 2) includes [1] premo-
tor mirror neuron areas that track ‘otherness’ (Brodmann area 9 and 44), [2] ante-
rior insula on both sides (mediating proprioceptive and emotional self-awareness 
but also emotional empathy) and [3] dorsal cingulate gyrus (conflict-monitoring 
and self-monitoring processes, including conscious reflection about the ‘other’).

These are the sites described by Siegel and colleagues in 2007 and 2011 [10, 11] 
as the ‘resonance circuitry’. This serves both mindfulness (awareness of self) and 
empathy (sense of the other).

But our findings also show an interhemispheric dialogue. The left hemisphere 
over-rides the right within 3 s.

We can now add two further findings to this study:

1. Along with all the other findings, there was a very strong BOLD response seen 
in the first 3 s in the right dorsolateral prefrontal cortex RDLPFC; 7 voxels at 
54,749. Z = 5.06! At that time that we could not find any research literature 
relating to the significance of this site. Since then, it has emerged that RDLPFC, 
in connection with the insula, is involved in salience, a state in which the atten-
tion is grabbed and shifted from default mode network activity, as it is when we 
activate a complex (see Sridharan et al. [12] and Goulden et al. [13]). RDLPFC 
is also active in fear-driven inhibitory responses (see Shackman et al. [14]). This 
correlates well with the increased response time in a complexed response.

2. The anterior insula interacts with both dorsal cingulate gyrus and mirror neuron 
areas and in turn influences reciprocally, midbrain limbic areas like the amygdala. 
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The interaction between the DCG and insula is very marked in states of social 
rejection and experiences of object loss. An easily readable overview of various 
studies that explore this interaction between the cingulate and insula is available in 
the December 1, 2012 issue of the New Scientist (see [15]). Interestingly, these two 
sites are also activated in states of physical pain, as described by Slavich et al. [16].

3.4 Complexed activity over time

Although fMRI temporal resolution is poor (around 2 s), spatial resolution 
is high (better than 1 mm3). We can compensate somewhat by taking 2 s blocs 
overlapping by 1 s (as we have done in Figure 3), but we cannot break down the 
first 2 s to smaller time frames. The much higher temporal resolution of QEEG 
(milliseconds) helps us investigate the very earliest events, and we mention some 
preliminary findings further on in this text.

In the first 2 s, the activity is symmetrical. Presumably, a process of ‘internal 
conflict’ is active in each hemisphere, across a range of circuits (the ‘resonance 
circuits’) that mediate various aspects of ‘self ’ and ‘others’ within each hemisphere. 
But soon after, the activity shifts to the left hemisphere.

When we analyse the data in 2-s fragments from the beginning, we see that the 
left hemispheric activity quickly becomes more prominent and right hemispheric 
much less so; until by the fifth second, only the left activity raises above FWE or 
FDR thresholds (see Figure 3).

The low temporal resolution of the BOLD fMRI response (some 2 s) does not 
allow us to make more detailed inferences about the very first 2 s. However, even 
within these limitations, we can say that the sequential patterns seen above suggest 
that in the initial 3 s, negotiation between sites subserving ‘self-’ awareness (medial 
sites like dorsal cingulum) and ‘other’ awareness (lateral prefrontal sites) occurs 
within each hemisphere and results in lateral prefrontal predominance (compare 
front to back activity in the ‘transverse section’ 0–2 with 1–3 and 2–4 s).

Also note that the medial prefrontal (SMA and dorsal cingulum) activity within 
each hemisphere, while strongest in the first 2 s, begins to fade relative to dorsolat-
eral prefrontal activity. Compare the first ‘transverse section’ with the subsequent 
ones, and note how activity shifts to the left hemisphere and diminishes in the right 
one. Negotiation between left and right hemispheres results in left hemispheric 
hegemony. What is happening?

3.5 The ‘resonance circuits’

The ‘resonance circuitry’ pattern is the one that corresponds most strongly. 
Details of the literature review can be found in our Petchkovsky et al. [6]. 

Figure 2. 
First 3 s. Complex vs. neutral responses. SPM-5 images showing sagittal, coronal and transverse sections.
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Our findings suggest that what is being accessed is some representation of the 
‘internal other’ which seems in conflict with the self. There is a sense in which 
all representations of ‘otherness’ have to be internal of course, since even mirror 
neuron activity is actually embedded in the observer’s circuitry.

Why does the ‘generic’ complex response initially show bilateral symmetry and 
then ‘resolve’ in left hemispheric dominance? We think this is actually a ‘pseudo-
resolution’, the way the brain deals with a complex in the moment, possibly to 
dull the pain of the complexed response (as opposed to a real psychotherapeutic 
resolution, in which both left and right hemispheric experiences are tolerated, 
despite the pain, and worked with and hopefully come to a ‘transcendent function’ 
resolution). McGilchrist [17] argues that each hemisphere has its own distinctive 
mode of awareness or consciousness. In the first 2–3 years of life, the right hemi-
sphere develops, processing incoming data (including proprioceptive ‘body field’) 
holistically and emotionally, mediating highly affect-loaded attachment and threat 
patterns. In the third year, left hemisphere circuitry begins to develop. Its process is 
linear, organised around language, logic and abstractions. In the affective domain, 
the left hemisphere is more curious, exploratory and danger-denying (the subject as 
predator). McGilchrist asserts that optimal mind states have to do with good inter-
hemispheric communication, because a third more integrative mode of awareness 

Figure 3. 
Complexed versus neutral. SPM images, sagittal. Coronal and transverse, showing BOLD activity over the 
first 5 s.
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becomes possible. Pettigrew’s [18] research on right versus left hemispheric func-
tion is also worth reading as a complement to the above.

4. Implications for psychotherapy

4.1 Mindfulness and empathy

The resonance circuits mediate mindfulness (awareness of self-concept and self-
process) and empathy (awareness of the other, including the internal other). Much 
good psychotherapy involves establishing new patterns of relatedness especially in 
the domain of ‘implicit relational knowing’ as Lyons-Ruth points out [19].

4.2 Psychotherapy strategy: to resolve or tolerate the tension of internal conflict?

Although our fMRI findings suggest that the complex ‘pseudo resolves’ the con-
flict through the left brain dominance, there is also a deeper therapeutic opportunity 
(bringing awareness and compassion to work with the tension of opposites). The 
complex may continue to ‘pseudo resolve’ the tension in this fashion forever, unless 
the ‘holding of the tension of opposites’ that Jung recommended for psychotherapy 
can be done in a nurturing environment, leading to the emergence of a ‘transcendent 
function’ mediatory product beyond the terms of the original conflict.

In 1977, the Jungian Analyst Rossi [20] wrote that ‘just as the cerebral hemi-
spheres are in a continuous process of balancing and integrating each other’s 
functions on a neurophysiological level, Jung describes a similar regulation’. Not all 
conflicts can be reduced to the left vs. right brain. Our findings also show that in the 
first 3 or so seconds, within each hemisphere, patterns associated with negotiations 
between the internal self and internal other can be seen.

5. QEEG findings in the WAT responses

A new research project, the QEEG responses to the WAT (eight subjects thus far), 
is also being worked on, but we need at least another six to eight subjects for a reli-
able pilot study. However, QEEG allows us to look in detail at the first 500 ms that are 
unavailable to fMRI, because of QEEG’s much better time resolution (milliseconds). 
We are releasing a ‘preview’ here (Figure 4).

We noted in our preliminary examination of the QEEG results that within the 
first 60 ms, complexed responses begin to manifest as activity in the right middle 
temporal region. LORETA imaging struggles to locate amygdalar activity pre-
cisely, because it is so deep in the brain, but amygdalar activation can be inferred 
because right middle temporal activity is typically seen when the right hemispheric 
amygdala is activated by a stressful event, (in this case, the complexed response to 
a painful stimulus word). But from 150 ms onwards, there is an activation of the 
default mode network (DMN, anterior cingulate and precuneus), which mediates a 
background sense of self.

We suspected, in our published fMRI study, that the right amygdala and DMN 
had to be involved. The QEEG findings confirm this, allowing us to see what could 
not be detected by fMRI. Amygdalar and DMN activity predominate only in the 
very earliest phase of the response.

However, from about 1000 ms onwards, QEEG findings are very similar to what 
was found in the fMRI study. The left hemispheric activity (probably defensive in 
nature) gradually predominates over right over the next 3 s.
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This study sets the basis for further research:

i. QEEG studies (with their finer temporal resolution) of specific as opposed to 
generic complexed responses in normal subjects

ii. QEEG and fMRI studies of complexed responses in other conditions, like schizo-
phrenia, PTSD, developmental trauma disorders and disorders of self-organisation

5.1 A clinical example illustrating the usefulness of QEEG in psychotherapy 
efficacy research

We finish this discussion with an example of how brain functional imaging can 
facilitate the understanding and tracking of a psychotherapy process. While it is 
true that Jung encouraged the use of a range of creative techniques, including sing-
ing, the following account is not specific to Jungian therapy alone.

A group of 32 treatment-resistant outpatients suffering from chronic depression 
with anxietal/agitated features were offered an intensive 8-week-long music ther-
apy programme involving choir work by my music therapist colleague Robertson-
Gillam et al. [21]. QEEGs were performed before and after, using the Mitsar 
WinEEG program. This included the visual cognitive performance task (VCPT), 
which we used to elicit event-related potentials, indicators of brain function. The 
VCPT task is a GoNoGo task. The three types of visual stimuli presented in this 
task are pictures with animals, pictures with plants and pictures with peoples. The 
subject presses a button when an animal picture follows a previous animal picture 
but refrains if the first animal picture is followed by a plant or if one plant picture 
follows another. Every so often however, a plant picture is followed by a picture of 
a human and a bell-like noise. This is the so-called ‘novel’ stimulus. The component 
of the ERP wave response to thesis is called P3a or P3Nov wave. The patients had 
abnormally high responses to the novel stimuli during QEEG acquisition. This cor-
related with their hypervigilance and excessive responses to stress.

After 8 weeks of the music therapy, their P3a or novelty response had returned 
to normal (see (a) and (b) in the diagram). It was also possible to get a 3-D image 
of the location of the abnormal activity in the mid-cingulate gyrus region (see 
LORETA image (c)) (Figure 5).

Figure 4. 
The first 200 ms. EEG LORETA image of DMN activity smeared within the first 200 ms of the complexed 
response. See activation of the cingulate gyrus, precuneus and angular gyrus.
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Individual QEEG patterns are extremely constant, usually with very little change 
over decades, as noted by QEEG neuroscientist Kropotov [2–4]. The rapid change 
we see here tells us that something major has occurred in the way the patients’ brain 
processes life events.

5.2 Schizophrenia and WAT and fMRI and QEEG

Our very preliminary QEEG findings in three schizophrenic patients doing the 
WAT suggest that for them, in a complexed response, the right insular/cingulate 
activity persists for several seconds, accompanied by the right temporal activity 
(auditory hallucinatory processes?). This matches the patient’s experience. QEEG 
and fMRI studies of responses to the WAT, with sufficient subject numbers (both 
normal and patients with schizophrenia), are desperately needed. This will deepen 
our understanding and opens up a range of important assessments and diagnostic 
possibilities.

6. Conclusion

Science and the transcendental are seemingly incompatible. But they represent 
two of the deepest currents of human existence. The combination of these two 
perspectives makes analytical psychological so worthwhile. This field stands to 
benefit enormously from further engagement with neuroscience and especially its 
active research components.
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QEEG P3a response normalization in a depressive group.
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