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1. Introduction

In this book, advances in numerical methods for better understanding of atmospheric systems 
are introduced in eight chapters, with five chapters focusing on numerical weather prediction 
(NWP) and three chapters on observation. By using math to model the future state of the 
atmosphere, NWP relies upon observations to provide both initial and verification data so 
as to conduct and verify a forecast. In this sense, knowing the current state of the weather 
by various observations is as important as developing numerical models. Remote sensing 
techniques, which are crucial for observation on the occurrence and development of severe 
weather systems over data-sparse area, are considered as some of the best choices for global 
observation on atmospheric and ocean systems, e.g., tropical cyclones, clouds, dust storms, 
etc. Thus, Chapter 1 presents an efficient algorithm for tropical cyclone (TC) center determi-
nation by using texture and gradient of infrared remote sensing image from geostationary 
satellite. Because remote sensing approach faces dilemma in identifying atmospheric objects 
from its environment, a new polarization method is presented in Chapter 2 to solve this prob-
lem. Chapters 3–8 then attempt to enhance the performance of NWP models in prediction 
of atmospheric systems, by using radar remote sensing data (Chapter 3), spectral method 
(Chapter 4), parameterization schemes (Chapters 5, 6), and atmospheric chemistry models 
(Chapters 7, 8), which should be valuable for reference to researchers and forecasters in the 
field of NWP.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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2. The advances of NWP

Before going into the details of the book, we need to make a brief introduction on the back-
ground of NWP and its relation with each of the chapters. The advances of NWP in the past 
were based on the achievements in the development of theoretical principles of meteorology 
and computational mathematics. These achievements enable us today to create powerful sys-
tems to perform high-quality forecast of atmospheric systems by using atmospheric datasets 
in high spatial-temporal resolution. The first breakthrough in NWP started at the end of the 
1940s, when Charney et al. [1] got the first numerical simulation by solving the barotropic 
vorticity equation over a single layer of the atmosphere. Then, in 1954, the first operational 
forecast was conducted in Stockholm by Rossby et al. by using barotropic equation. Later 
models employed more complete equations for atmospheric dynamics and thermodynamics 
to improve the performance of NWP models [2]. Updates to primitive equation models were 
persistently conducted based on detailed consideration of various important physical pro-
cesses, for example, solar radiation, moisture, latent heat, sea surface temperature, and rainfall-
convection feedback, etc. The particular role of each kind of these processes in prediction was 
usually evaluated with sensitivity experiments, which demands a huge amount of computer 
resources. To avoid this problem, in Chapter 4, a new scheme called Generalized Weighted 
Residual Method (GWRM) is proposed to efficiently identify the parameter dependency of 
NWP model. The physical processes identified above are usually considered by model based 
on parameterization schemes [3], as there always are certain scales that are unresolved by the 
model grids. To first order, parameterization involves the representation of a process in terms 
of its known relationships to dependent variables resolved on the model grid. Some com-
mon processes that are parameterized by modern NWP models include radiation, planetary 
boundary layer, surface layer, shallow and deep cumulus convection, and cloud microphysics. 
One typical example is cloud parameterization, which can infer the properties of unresolved 
clouds and determine whether or not they should be present. Another example is about turbu-
lent motion. Given wind shear and stability in grid scale, a turbulent parameterization scheme 
can infer the properties of subgrid-scale turbulent motions. Usually, there are many ways that 
physical processes can be parameterized, each with assumptions, strengths, and weaknesses. 
It is noticed that, for any parameterized process, the parameterization is just an approximation 
and thus a major source for model error. Chapters 5 and 6 will introduce in detail the design 
of new parameterization schemes and its application in prediction of atmospheric systems.

The advances of numerical methods on physical parameterization and observation greatly 
contribute to the development of numerical models, including global model for prediction 
of large scale processes and regional models for mesoscale application. Currently there are 
more than 13 centers worldwide with operational global NWP capability (BoM—Australia, 
CMA—China, CMC—Canada, CPTEC—Brazil, DWD—Germany, ECMWF—Europe, IMD/
NCMRWF—India, JMA—Japan, KMA—Republic of Korea, MF—France, NOAA/NCEP—
USA, ROSHIDROMET—Russian Federation, and UKMO—UK). Most of these global NWP 
centers are typically running a combination of global models at grid spaces less than 30 km 
and high resolution regional models with grid spaces less than 12 km, according to the 

Understanding of Atmospheric Systems with Efficient Numerical Methods for Observation and Prediction4

Annual WMO Technical Progress Reports. Regional models, which is more convenient and 
flexible than global model for its relative low requirement on computational resources and 
datasets, are generally run for national or regional domains centered around the immediate 
area of the NWP center. Here, most of the regional models used in this book employed the 
background fields provided by one of the global models mentioned above. Among them, 
the Weather Research and Forecasting (WRF) model developed by National Center for 
Atmospheric Research (NCAR) might be one of the regional models most popularly used 
by the NWP community in the world. The WRF model features dynamical cores, a data 
assimilation system, and a software architecture allowing for parallel computation and sys-
tem extensibility. In this book, Chapter 3 will incorporate radar remote sensing data into 
high-resolution WRF model and evaluate its performance in numerical prediction of local 
weather systems.

In addition to the application in weather prediction, WRF model can also be coupled with 
atmospheric chemistry, namely WRF-Chem, for simulation on the emission, transport, 
mixing, and chemical transformation of trace gases and aerosols simultaneously with the 
meteorology. The WRF-Chem model has been successfully employed for investigation of 
regional-scale air quality, field program analysis, and cloud-scale interactions. In Chapter 7, 
the authors will share their experience on using WRF-Chem model for air quality numerical 
forecast over eastern China. Similar to the use of WRF-Chem in chemical weather prediction, 
another numerical model, the Community Multiscale Air Quality (CMAQ) model has been 
developed in US since 1998, to provide fast, technically sound estimates of ozone, particulates, 
toxics, and acid deposition. Because it includes information about the emissions and proper-
ties of compounds and classes of compounds, CMAQ can inform users about the chemical 
composition of a mixture of pollutants. This is particularly useful when measurements only 
give insight into aggregate details, like total particulate mass. CMAQ’s generalized and flex-
ible formulation has enabled incorporation of alternate process algorithms and numerical 
solution methods. This has allowed inclusion of new science in the model to address increas-
ingly complex air pollution issues. In Chapter 8, the author will use a coupled WRF/CMAQ 
model to simulate the effects of increasing urban albedo on air temperatures and quality over 
Madrid city of Spain.

3. Future work

With the increase of computer resources, the horizontal resolution of operational global 
numerical models reaches the gray-zone resolution at tens of km or finer, even within several 
100 m. A significant focus of research over the coming years is likely to be on improving the 
depiction of cloud with cloud resolving models, equipped by high resolution observations 
of cloud and its environment. However, the implementation of cloud resolving model into 
operational systems is a highly complex task, and is increasingly undertaken in a collabora-
tive framework of national centers, in collaboration with academic partners in universities 
and other research institutes.
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the Weather Research and Forecasting (WRF) model developed by National Center for 
Atmospheric Research (NCAR) might be one of the regional models most popularly used 
by the NWP community in the world. The WRF model features dynamical cores, a data 
assimilation system, and a software architecture allowing for parallel computation and sys-
tem extensibility. In this book, Chapter 3 will incorporate radar remote sensing data into 
high-resolution WRF model and evaluate its performance in numerical prediction of local 
weather systems.

In addition to the application in weather prediction, WRF model can also be coupled with 
atmospheric chemistry, namely WRF-Chem, for simulation on the emission, transport, 
mixing, and chemical transformation of trace gases and aerosols simultaneously with the 
meteorology. The WRF-Chem model has been successfully employed for investigation of 
regional-scale air quality, field program analysis, and cloud-scale interactions. In Chapter 7, 
the authors will share their experience on using WRF-Chem model for air quality numerical 
forecast over eastern China. Similar to the use of WRF-Chem in chemical weather prediction, 
another numerical model, the Community Multiscale Air Quality (CMAQ) model has been 
developed in US since 1998, to provide fast, technically sound estimates of ozone, particulates, 
toxics, and acid deposition. Because it includes information about the emissions and proper-
ties of compounds and classes of compounds, CMAQ can inform users about the chemical 
composition of a mixture of pollutants. This is particularly useful when measurements only 
give insight into aggregate details, like total particulate mass. CMAQ’s generalized and flex-
ible formulation has enabled incorporation of alternate process algorithms and numerical 
solution methods. This has allowed inclusion of new science in the model to address increas-
ingly complex air pollution issues. In Chapter 8, the author will use a coupled WRF/CMAQ 
model to simulate the effects of increasing urban albedo on air temperatures and quality over 
Madrid city of Spain.

3. Future work

With the increase of computer resources, the horizontal resolution of operational global 
numerical models reaches the gray-zone resolution at tens of km or finer, even within several 
100 m. A significant focus of research over the coming years is likely to be on improving the 
depiction of cloud with cloud resolving models, equipped by high resolution observations 
of cloud and its environment. However, the implementation of cloud resolving model into 
operational systems is a highly complex task, and is increasingly undertaken in a collabora-
tive framework of national centers, in collaboration with academic partners in universities 
and other research institutes.
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Abstract

A novel algorithm for tropical cyclone (TC) center determination is presented by using 
texture and gradient of infrared satellite image from geostationary satellite. Except those 
latter disappearing TC satellite images that are little valuable to a TC center determina-
tion, generally other periods of TC, all have an inner core. And the centers are generally 
determined in the inner core. Based on this, an efficient TC center determination algo-
rithm is designed. First, the inner core of a TC is obtained. Then, according to the texture 
and gradient information of the inner core, the center location of the TC is determined. 
The effectiveness of the proposed TC center determination algorithm is verified by using 
Chinese FY-2C stationary infrared satellite image. And the location result is compared 
with that of the “tropical cyclone yearbook,” which was compiled by Shanghai Typhoon 
Institute of China Meteorological Administration. Experimental results show that the 
proposed algorithm can provide a new technique that can automatically determine the 
center location for a TC based on infrared satellite image.

Keywords: tropical cyclone, infrared satellite image, center location, gradient, texture

1. Introduction

Tropical cyclone (TC) is one of the most serious natural disasters in the world. Satellite remote 
sensing technology can not only observe the whole situation but also the structural character-
istics and center information of a TC. It is the current main method of the TC center location.

Dvorak technique (DT) is widely used to TC center location. DT, which was proposed by [1, 2] 
in the 1970s was the most important method for TC analysis in the world. Nowadays, based 
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on the DT, advanced Dvorak technologies [3–5] were developed to determine the TC center 
location. Li et al. [6] put forward a new artificial intelligence algorithm for the eye TC center 
location. First, the image segmentation technique was used to extract the TC cloud features. 
And then, the mathematic morphology opening operation and the filling operation are used 
to obtain the contour of the TC eye. The gravity calculation method is applied to locate the TC 
center. Comparing the data to the Central Meteorological Observatory of China, the experi-
mental results show that the deviation is smaller. Li et al. [7] proposed an improved genetic 
algorithm to determine the TC center location. The theoretical analysis and experimental 
results show that this method is reasonable and effective. Yang et al. [8] combined pattern 
matching with the vector field analysis to determine the TC center position. The proposed 
method is very efficient for the TCs, which have clear spiral structure. Fan et al. [9] used 
85 GHz vertical polarization channels in specail sensor microwave/imager (SSM/I) for TC cen-
ter location. According to the distributed characteristics of brightness and temperature, the 
TC of its band is analyzed and classified. The average gap of the best route in the test results 
of TC is smaller. Wei et al. [10] presented a novel spiral band model to automatically locate 
the TC center. And particle swarm optimization was used to optimize the model parameters. 
Experimental results show that this model can achieve the best average error in both latitude 
and longitude in comparison with the best track data. Zhang et al. [11] proposed a novel 
intelligent automatic system framework, which was based on the image process technology 
to locate the TC center. According to the symmetry shape and spiral movement feature of TC, 
a rotation matching methodology is used to catch the track of TC. Compared with the data 
of Shanghai Meteorology Center, experimental results show that this system is efficient and 
the performance errors are acceptable for practical applications. Zheng et al. [12] established 
the TC forecast service production system based on geographic information system (GIS) 
technology and realized the function construction. It had met the requirements of the TC 
center forecast service production in the Central Meteorological Observatory. Recently, some 
researchers used deviation angle variance [13] and pattern matching algorithm [14] for TC 
center detection.

Although there are some advantages in the above methods, some defects are existing. The 
subjectivity of DT is stronger, and the degree of automation is limited. The location effect 
for the smaller intensity cyclone is poorer. The method based on mathematical morphology 
is suitable for tropical cyclone whose morphology characteristic can be identified easily. If 
it is applied to the weak or atypical morphology cyclone, a big deviation will be resulted. 
Intelligent learning method requires a lot of experimental data and experience accumula-
tion. It is suitable for recognizing the particular structures. Wind field analysis method is 
applicable to locate the tropical cyclone center, which is weak and whose circulation center 
is not clear. When the intensity level of tropical cyclone is higher, the center location is not 
accurate because it is easily affected by the resolution and heavy rain [11]. The temperature/
humidity structure retrieval method is also only applied to locate the tropical cyclone center 
whose intensity is strong. The tempo-spatial movement matching method applied movement 
information of adjacent satellite images to determine the TC center position [11]. But the 
computation burden of the method is large. Generally, center location for eye TCs has good 
results. But it is not very satisfying for non-eye TCs due to some reasons. Therefore, it is very 
important to improve the accuracy of automatic TC center location.

Understanding of Atmospheric Systems with Efficient Numerical Methods for Observation and Prediction10

Here, we extract the inner core region from an infrared satellite image, which contains a TC 
initially. Then, according to the characteristic of the position of TC center, which is the inter-
section of the ambient airflow and the different textures between the inner core region and 
other cloud area, we determine the TC center further. And the texture is uniform and smooth 
in the inner core region. The gray values of the inner core region are higher than those which 
are on the edge of the TC. So, we calculate the fractal dimension and 3-s order statistical 
parameters of a gray-gradient co-occurrence matrix to determine the inner core region of the 
TC. Then, according to the gradient information of the inner core region, the center location 
of the TC is determined.

2. Extract the inner core region

In general, the TC cloud consists of spiral cloud band, inner core region, and TC center area. 
If the inner core region is extracted from the TC cloud, it will reduce the area, which contains 
the TC center. The average gray values of the inner core region in an infrared satellite image 
are high and the difference between the gray values of pixels is small. The gray-gradient co-
occurrence matrix (GGCOM) can be used to measure the gray value difference in an infrared 
satellite image. The fractal dimension is a useful to represent texture characteristics of the 
infrared satellite image. The inner core region of a TC is extracted by combining the fractal 
dimension with GGCOM.

2.1. GGCOM

The analysis method of the gray-gradient co-occurrence matrix is to extract the texture feature 
by the comprehensive information about the gray values and gradient of the images. Because 
the scales of different characteristic parameters are different, we normalize the gray values 
and gradient values of the image. Details for GGCOM computation refer to our previous 
work [15].

2.2. Fractal dimension

According to the characteristics of the satellite cloud image, we use the method by Sarkar and 
Chaudhuri [16] to calculate the box fractal dimension.

If the size of image is  N × N , we shrink the image into an value   S  
n
    by the plotting scale,  1 <  S  

n
   ≤ N / 2 , 

and   S  n    ( 1 ≤ n ≤ N ) is an integer. So, we have an estimate of the scale  r , which is  r = N /  S  n   .

Let an image be considered as a three-dimensional space   (x, y, z)  . Here,   (x, y)   means two-dimen-
sional coordinate, and  z  means the gray value of the image element. So,   (x, y)   plane is divided 
into   S  

n
   ×  S  

n
    grid. There is a series of boxes, whose bottom is   S  

n
   ×  S  

n
    in each grid. The height  h  of 

box can be calculated by the gray level  L  of the whole image, namely   [L / h]  =  [N /  S  
n
  ]  . Each box 

is labeled from down to up as  1, 2, 3, ⋯ , and in which box the maximum and minimum image 
gray values of the   (m, n)   grid ( 1 ≤ m ≤ N ) fall is checked. If the maximum value falls into  a  and 
the minimum value falls into  b , then   n  

r
   = a − b + 1 .   N  

r
   , which is the number of the boxes that cover 

the entire image can be described as:
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   N  r   =   ∑ 
m,n

     n  r   (m, n)   (1)

In this way,   N  
r
    is calculated by each  r .  r  changes as the change of  s . The minimum linear fit 

is used for  log ( N  
r
  )   and  log (1 / r)  , and then the slope is calculated, namely  Q , which is the fractal 

dimension.

  Q = log  N  r   / log (1 / r)   (2)

It is necessary to consider how to select the window of subimage and  r  calculates the scale of 
fractal dimension. The window size of subimage is too small to lose the important texture or 
is too large to mix the edge pixels with other pixels of the image area. It affects the selection 
of the texture feature. Choosing different scales will also affect the correctness of the linear 
fitting,that is, it affects the fractal dimension  Q .

2.3. Extraction of inner core region

Through a large number of experimental satellite cloud images, we select the parameters, 
which can reflect the characteristic of TC cloud image clearly. The specific standard for choos-
ing is as follows: the difference of this characteristic in different TC cloud images, inner core 
region, and other cloud regions is the biggest. And this characteristic is not sensitive for the 
inner core region or other cloud region, that is, it is consistent between different samples. In 
this chapter, average gray scale, small gradient advantage, and gradient uniformity of the 
GGCOM are used as features to locate the center of the TC [15]. Then, the inner core region of 
TC is determined by combining GGCOM with fractal dimension.

The scales of the above four characteristic parameters vary widely because the physical sig-
nificance and scope of the different characteristic parameters are different. We test 10 groups 
of the main cloud region of the satellite cloud images whose size is 512 × 512: (1) infrared 
channel 1 cloud image of the No. 0513 TC “Talim,” which was obtained at 0 o’clock on August 
29, 2005 (20050829_0000_IR1); (2) infrared channel 2 cloud image of the No. 0513 TC “Talim,” 
which was obtained at 6 o’clock on August 29, 2005 (20050829_0600_IR2); (3) infrared channel 
1 cloud image of the No. 0513 TC “Talim,” which was obtained at 21 o’clock on August 29, 
2005 (20050829_2100_IR1); (4) infrared channel 2 cloud image of the No. 0513 TC “Talim,” 
which was obtained at 18 o’clock on August 30, 2005 (20050830_1800_IR2); (5) infrared chan-
nel 1 cloud image of the No. 0713 TC “Wipha,” which was obtained at 0 o’clock on September 
16, 2007 (20070916_0000_IR1); (6) infrared channel 2 cloud image of the No. 0713 TC “Wipha,” 
which was obtained at 18 o’clock on September 16, 2007 (20070916_1800_IR2); (7) infrared 
channel 1 cloud image of the No. 0814 TC “Hagumi,” which was obtained at 12 o’clock on 
September 22, 2008 (20080922_1200_IR1); (8) infrared channel 2 cloud image of the No. 0814 
TC “Hagumi,” which was obtained at 0 o’clock on September 24, 2008 (20080924_0000_IR2); 
(9) infrared channel 1 cloud image of the No. 0601 TC “Chanchu,” which was obtained at 6 
o’clock on May 11, 2006 (20060511_0600_IR1); and (10) infrared channel 2 cloud image of the 
No. 0601 TC “Chanchu,” which was obtained at 12 o’clock on May 12, 2006 (20060512_1200_
IR2). All the time are the universal time. About 10 groups of the satellite cloud images are 
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shown in Figure 1. The corresponding main bodies of the satellite cloud images are shown 
in Figure 2. Here, the fractal dimension  Q , the average gray scale   G ¯   , the small gradient   S ̄   , and 
the inhomogeneity of the gradient distribution   D ¯    are the characteristics of the main cloud of 
images. The four characteristics parameter values of these 10 test cloud images are shown in 
Table 1.

From Table 1, we can see that the range of the fractal dimension  Q  is from 1 to 3; the range 
of   S ̄    is from 0 to 1; the range of   D ¯    is on the amount of 105; and the range of   G ¯    is from 0 to 200. 
The difference between small and big components is large. The small component is easy to 
be ignored when the Euclidean distance is measured. The aforementioned four parameters 
should be normalized so that the same weight is used to compute the Euclidean distance.

The steps of determining the inner core region are as follows:

Step 1. Separate main body of the TC from an infrared satellite image based on our previous 
work [17];

Step 2. Because the size of the selection of the test cloud images is 512 × 512 or 256 × 256, we 
use 39 × 39 window, which is determined by the experiments to compute fractal dimension 
and GGCOM;

Step 3. Normalize four parameters to compute the difference value  Δ D  
w
    ( w = 1, 2, ⋯ , 39 ) of the 

fractal dimension and GGCOM;

Step 4. Get the values of  Δ D  
w
    in each window;

Step 5. Compare with each  Δ D  w   , the window, which  Δ D  w    is the biggest is determined as the 
inner core region of TC.

Figure 1. Ten groups of infrared channel satellite cloud images. (a) 20050829_0000_IR1; (b) 20050829_0600_IR2; (c) 
20050829_2100_IR1; (d) 20070916_0000_IR1; (e) 20070916_0000_IR1; (f) 20070916_1800_IR2; (g) 20080922_1200_IR1; (h) 
20080924_0000_IR2; (i) 20060511_0600_IR1; (j) 20060512_1200_IR2.
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fitting,that is, it affects the fractal dimension  Q .

2.3. Extraction of inner core region

Through a large number of experimental satellite cloud images, we select the parameters, 
which can reflect the characteristic of TC cloud image clearly. The specific standard for choos-
ing is as follows: the difference of this characteristic in different TC cloud images, inner core 
region, and other cloud regions is the biggest. And this characteristic is not sensitive for the 
inner core region or other cloud region, that is, it is consistent between different samples. In 
this chapter, average gray scale, small gradient advantage, and gradient uniformity of the 
GGCOM are used as features to locate the center of the TC [15]. Then, the inner core region of 
TC is determined by combining GGCOM with fractal dimension.

The scales of the above four characteristic parameters vary widely because the physical sig-
nificance and scope of the different characteristic parameters are different. We test 10 groups 
of the main cloud region of the satellite cloud images whose size is 512 × 512: (1) infrared 
channel 1 cloud image of the No. 0513 TC “Talim,” which was obtained at 0 o’clock on August 
29, 2005 (20050829_0000_IR1); (2) infrared channel 2 cloud image of the No. 0513 TC “Talim,” 
which was obtained at 6 o’clock on August 29, 2005 (20050829_0600_IR2); (3) infrared channel 
1 cloud image of the No. 0513 TC “Talim,” which was obtained at 21 o’clock on August 29, 
2005 (20050829_2100_IR1); (4) infrared channel 2 cloud image of the No. 0513 TC “Talim,” 
which was obtained at 18 o’clock on August 30, 2005 (20050830_1800_IR2); (5) infrared chan-
nel 1 cloud image of the No. 0713 TC “Wipha,” which was obtained at 0 o’clock on September 
16, 2007 (20070916_0000_IR1); (6) infrared channel 2 cloud image of the No. 0713 TC “Wipha,” 
which was obtained at 18 o’clock on September 16, 2007 (20070916_1800_IR2); (7) infrared 
channel 1 cloud image of the No. 0814 TC “Hagumi,” which was obtained at 12 o’clock on 
September 22, 2008 (20080922_1200_IR1); (8) infrared channel 2 cloud image of the No. 0814 
TC “Hagumi,” which was obtained at 0 o’clock on September 24, 2008 (20080924_0000_IR2); 
(9) infrared channel 1 cloud image of the No. 0601 TC “Chanchu,” which was obtained at 6 
o’clock on May 11, 2006 (20060511_0600_IR1); and (10) infrared channel 2 cloud image of the 
No. 0601 TC “Chanchu,” which was obtained at 12 o’clock on May 12, 2006 (20060512_1200_
IR2). All the time are the universal time. About 10 groups of the satellite cloud images are 
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shown in Figure 1. The corresponding main bodies of the satellite cloud images are shown 
in Figure 2. Here, the fractal dimension  Q , the average gray scale   G ¯   , the small gradient   S ̄   , and 
the inhomogeneity of the gradient distribution   D ¯    are the characteristics of the main cloud of 
images. The four characteristics parameter values of these 10 test cloud images are shown in 
Table 1.

From Table 1, we can see that the range of the fractal dimension  Q  is from 1 to 3; the range 
of   S ̄    is from 0 to 1; the range of   D ¯    is on the amount of 105; and the range of   G ¯    is from 0 to 200. 
The difference between small and big components is large. The small component is easy to 
be ignored when the Euclidean distance is measured. The aforementioned four parameters 
should be normalized so that the same weight is used to compute the Euclidean distance.

The steps of determining the inner core region are as follows:

Step 1. Separate main body of the TC from an infrared satellite image based on our previous 
work [17];

Step 2. Because the size of the selection of the test cloud images is 512 × 512 or 256 × 256, we 
use 39 × 39 window, which is determined by the experiments to compute fractal dimension 
and GGCOM;

Step 3. Normalize four parameters to compute the difference value  Δ D  
w
    ( w = 1, 2, ⋯ , 39 ) of the 

fractal dimension and GGCOM;

Step 4. Get the values of  Δ D  
w
    in each window;

Step 5. Compare with each  Δ D  w   , the window, which  Δ D  w    is the biggest is determined as the 
inner core region of TC.

Figure 1. Ten groups of infrared channel satellite cloud images. (a) 20050829_0000_IR1; (b) 20050829_0600_IR2; (c) 
20050829_2100_IR1; (d) 20070916_0000_IR1; (e) 20070916_0000_IR1; (f) 20070916_1800_IR2; (g) 20080922_1200_IR1; (h) 
20080924_0000_IR2; (i) 20060511_0600_IR1; (j) 20060512_1200_IR2.
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Extracting the inner core region not only can reduce the region of TC center but also can 
eliminate the influence of the outer spirals. It can make the foundation for extracting the small 
gradient information. Based on these two purposes, it is not important whether to completely 
extract the inner core region. The key is to extract the main part of the inner core region. So a 
rough estimation by the size of TC cloud is feasible. The experiments also prove that the size 
of window can satisfy the need as per the above algorithm.

3. Determine the center of TC

It is assumed that whatever the type of the bending cloud, strong wind, eye cloud region, or 
type of center closed clod cloud region, the center of TC is almost located in the inner core 

Figure 2. Corresponding main cloud of satellite cloud image. (a) 20050829_0000_IR1; (b) 20050829_0600_IR2; (c) 
20050829_2100_IR1; (d) 20070916_0000_IR1; (e) 20070916_0000_IR1; (f) 20070916_1800_IR2; (g) 20080922_1200_IR1; (h) 
20080924_0000_IR2; (i) 20060511_0600_IR1; (j) 20060512_1200_IR2.

Satellite cloud image  Q   S ̄     D ¯     G ¯   

20050829_0000_IR1 1.2954 0.9706 2.4513 × 105 12.2469

20050829_0600_IR2 1.2189 0.9039 2.1138 × 105 31.9240

20050829_2100_IR1 1.2089 0.9414 2.3005 × 105 20.5072

20050830_1800_IR2 1.2806 0.9522 2.3546 × 105 18.2701

20070916_0000_IR1 1.1528 0.6705 1.1624 × 105 110.3207

20070916_1800_IR2 1.1633 0.6720 1.1686 × 105 100.5608

20080922_1200_IR1 1.1642 0.6264 1.0208 × 105 100.7266

20080924_0000_IR2 1.2041 0.9532 2.3573 × 105 19.4768

20060511_0600_IR1 1.1911 0.9210 2.1964 × 105 31.7581

20060512_1200_IR2 1.1729 0.8973 2.0791 × 105 40.3393

Table 1. Characteristic parameters of the main cloud in 10 groups of satellite cloud images.
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region. After extracting the inner core region, we can determine the center of TC by the inner 
core region. The region near TC center has obviously the warm structure. The infrared bright-
ness temperature gradient of the inner core region is small compared with the TC eye. The 
richest gradient region can be considered as the TC center region.

3.1. Compute the gradient information of inner core region

Before computing the gradient of the inner core region, Gaussian filter reduces the noise of 
the main body of the TC. The image and Gaussian smoothing filter are convolved as follows:

  J (i, j)  = S (i, j;  σ   2 )  ∗ I (i, j)   (3)

where  S (i, j;  σ   2 )   represents the Gaussian function and   σ   2   indicates variance. How to choose 
proper   σ   2   is very important.  I (i, j)   shows TC main body image.

Different variance   σ   2   will be used to extract different gradient information from the main body 
cloud of a TC. The infrared channel 2 cloud image of the No. 0601 TC “Chanchu,” which was 
obtained at 12 o’clock on May 12, 2006 (20060512_1200_IR2) is an example (see in Figure 3(a)). 
The image in which the variance is chosen as   σ   2  = 0.5  is shown in Figure 3(b). The image in which 
the variance is chosen as   σ   2  = 1.0  is shown in Figure 3(c). The image in which the variance is 
chosen as   σ   2  = 1.5  is shown in Figure 3(d). The image in which the variance is chosen as   σ   2  = 2.0  is 
shown in Figure 3(e). The image in which the variance is chosen as   σ   2  = 2.5  is shown in Figure 3(f).

From Figure 3, we can see that the influence of   σ   2   for extracting the gradient information is big. 
When the value of   σ   2   is small, the accuracy of the edge position is high. But edge details change 
a lot. When the value of   σ   2   is small, the effect of the smooth is large and the details lose a lot. 

Figure 3. The influence of   σ   2   for extracting the gradient information. (a) Main body cloud of TC; (b)   σ   2   = 0.5; 
(c)   σ   2   = 1.0; (d)   σ   2   = 1.5; (e)   σ   2   = 2.0; (f)   σ   2   = 2.5.

Tropical Cyclone Center Determination Algorithm by Texture and Gradient of Infrared Satellite Image
http://dx.doi.org/10.5772/intechopen.79831

15



Extracting the inner core region not only can reduce the region of TC center but also can 
eliminate the influence of the outer spirals. It can make the foundation for extracting the small 
gradient information. Based on these two purposes, it is not important whether to completely 
extract the inner core region. The key is to extract the main part of the inner core region. So a 
rough estimation by the size of TC cloud is feasible. The experiments also prove that the size 
of window can satisfy the need as per the above algorithm.

3. Determine the center of TC

It is assumed that whatever the type of the bending cloud, strong wind, eye cloud region, or 
type of center closed clod cloud region, the center of TC is almost located in the inner core 
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Table 1. Characteristic parameters of the main cloud in 10 groups of satellite cloud images.
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region. After extracting the inner core region, we can determine the center of TC by the inner 
core region. The region near TC center has obviously the warm structure. The infrared bright-
ness temperature gradient of the inner core region is small compared with the TC eye. The 
richest gradient region can be considered as the TC center region.

3.1. Compute the gradient information of inner core region

Before computing the gradient of the inner core region, Gaussian filter reduces the noise of 
the main body of the TC. The image and Gaussian smoothing filter are convolved as follows:

  J (i, j)  = S (i, j;  σ   2 )  ∗ I (i, j)   (3)

where  S (i, j;  σ   2 )   represents the Gaussian function and   σ   2   indicates variance. How to choose 
proper   σ   2   is very important.  I (i, j)   shows TC main body image.

Different variance   σ   2   will be used to extract different gradient information from the main body 
cloud of a TC. The infrared channel 2 cloud image of the No. 0601 TC “Chanchu,” which was 
obtained at 12 o’clock on May 12, 2006 (20060512_1200_IR2) is an example (see in Figure 3(a)). 
The image in which the variance is chosen as   σ   2  = 0.5  is shown in Figure 3(b). The image in which 
the variance is chosen as   σ   2  = 1.0  is shown in Figure 3(c). The image in which the variance is 
chosen as   σ   2  = 1.5  is shown in Figure 3(d). The image in which the variance is chosen as   σ   2  = 2.0  is 
shown in Figure 3(e). The image in which the variance is chosen as   σ   2  = 2.5  is shown in Figure 3(f).

From Figure 3, we can see that the influence of   σ   2   for extracting the gradient information is big. 
When the value of   σ   2   is small, the accuracy of the edge position is high. But edge details change 
a lot. When the value of   σ   2   is small, the effect of the smooth is large and the details lose a lot. 

Figure 3. The influence of   σ   2   for extracting the gradient information. (a) Main body cloud of TC; (b)   σ   2   = 0.5; 
(c)   σ   2   = 1.0; (d)   σ   2   = 1.5; (e)   σ   2   = 2.0; (f)   σ   2   = 2.5.
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The accuracy of the edge position is low. And the gradient information is rich. Based on it, we 
choose the variance   σ   2   is 2.0. For this condition, the gradient image of the inner core is obvious.

In order to further enhance the gradient in the inner core region. A constant 5 is multiplied 
to the gradient image. Canny operator is used to determine the concentrated gradient region. 
This region should contain the TC center. The effect of the gradient information extracted 
from the inner core region is shown in Figure 4. Figure 4(a) is the gradient information of the 
inner core region when   σ   2   = 2.0. Figure 4(b) is the gradient information of the enhanced image. 
Figure 4(c) is the result of the edge detection by Canny operator.

We can see from Figure 4(a) that the gradient information of the image is not obvious. In 
Figure 4(b), the gradient information after enhancing the image is clearer. It is convenient 
to do the edge detection by the Canny operator. The gradient and texture information of the 
inner core region is very obvious in Figure 4(c).

3.2. Determine the center of TC

The region whose gradient information is the most abundant in the inner core region is the 
region which contains the TC center. The gradient information, which is extracted from the 
clear eye TC is the obvious characteristic. According to edge information of the image in 
Section 3.1, which is the gradient information and expresses the texture feature of the image, 
the region whose texture is the most abundant in the inner core region, which is called the 
region of interest (ROI), is the region, which contains the TC center. The geometric center of 
the ROI is defined as the TC center.

Generally, the average diameter for a TC eye is 45 km or so. The spatial resolution for FY-2C 
satellite image is 5 km. Therefore, a 9 × 9 mask is used to search the inner core region. If a 
closed curve is found in the inner core region, the centroid of the curve is determined as TC 
center. Otherwise, the region whose intersection lines are the most is chosen as the ROI.

4. Results and discussion

Infrared satellite images from Chinese geostationary satellite FY-2C are used to verify the per-
formance of the proposed algorithm in this paper. The TC center location is used to test the 

Figure 4. The gradient information and texture of the inner core region. (a) Gradient information when   σ   2   =2.0; (b) gradient 
information after enhancing and (c) edge detection by Canny.
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infrared channel 1 and the infrared channel 2 satellite images, respectively. Six groups of eye 
TC and six groups of non-eye TC, which are the satellite images are used to verify the proposed 
algorithm. All the satellite images are 512 × 512. The test satellite images of the eye TC include: 
(1) infrared channel 1 satellite image of the No. 0513 TC “Talim,” which was obtained at 12 
o’clock on August 29, 2005 (20050829_1200_IR1); (2) infrared channel 2 satellite image of the 

Figure 5. TC center location of eye TCs satellite images. (a) Result of the TC center location; (b) main cloud of TC; (c) 
position of the inner core region and (d) texture.
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Figure 4(c) is the result of the edge detection by Canny operator.

We can see from Figure 4(a) that the gradient information of the image is not obvious. In 
Figure 4(b), the gradient information after enhancing the image is clearer. It is convenient 
to do the edge detection by the Canny operator. The gradient and texture information of the 
inner core region is very obvious in Figure 4(c).

3.2. Determine the center of TC

The region whose gradient information is the most abundant in the inner core region is the 
region which contains the TC center. The gradient information, which is extracted from the 
clear eye TC is the obvious characteristic. According to edge information of the image in 
Section 3.1, which is the gradient information and expresses the texture feature of the image, 
the region whose texture is the most abundant in the inner core region, which is called the 
region of interest (ROI), is the region, which contains the TC center. The geometric center of 
the ROI is defined as the TC center.

Generally, the average diameter for a TC eye is 45 km or so. The spatial resolution for FY-2C 
satellite image is 5 km. Therefore, a 9 × 9 mask is used to search the inner core region. If a 
closed curve is found in the inner core region, the centroid of the curve is determined as TC 
center. Otherwise, the region whose intersection lines are the most is chosen as the ROI.

4. Results and discussion

Infrared satellite images from Chinese geostationary satellite FY-2C are used to verify the per-
formance of the proposed algorithm in this paper. The TC center location is used to test the 

Figure 4. The gradient information and texture of the inner core region. (a) Gradient information when   σ   2   =2.0; (b) gradient 
information after enhancing and (c) edge detection by Canny.
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infrared channel 1 and the infrared channel 2 satellite images, respectively. Six groups of eye 
TC and six groups of non-eye TC, which are the satellite images are used to verify the proposed 
algorithm. All the satellite images are 512 × 512. The test satellite images of the eye TC include: 
(1) infrared channel 1 satellite image of the No. 0513 TC “Talim,” which was obtained at 12 
o’clock on August 29, 2005 (20050829_1200_IR1); (2) infrared channel 2 satellite image of the 

Figure 5. TC center location of eye TCs satellite images. (a) Result of the TC center location; (b) main cloud of TC; (c) 
position of the inner core region and (d) texture.

Tropical Cyclone Center Determination Algorithm by Texture and Gradient of Infrared Satellite Image
http://dx.doi.org/10.5772/intechopen.79831

17



No. 0513 TC “Talim,” which was obtained at 12 o’clock on August 29, 2005 (20050829_1200_
IR2); (3) infrared channel 2 satellite image of the No. 0513 TC “Talim,” which was obtained at 
18 o’clock on August 29, 2005 (20050829_1800_IR2); (4) infrared channel 1 satellite image of the 
No. 0513 TC “Talim,” which was obtained at 21 o’clock on August 29, 2005 (20050829_2100_
IR1); (5) infrared channel 1 satellite image of the No. 0713 TC “Wipha,” which was obtained 
at 18 o’clock on September 17, 2007 (20070917_1800_IR1); and (6) infrared channel 2 satellite 
image of the No. 0713 TC “Wipha,” which was obtained at 0 o’clock on September 18, 2007 
(20070918_0000_IR2). The test satellite images of the non-eye TC include: (1) infrared channel 
1 satellite image of the No. 0513 TC “Talim,” which was obtained at 18 o’clock on August 27, 
2005 (20050827_1800_IR1); (2) infrared channel 1 satellite image of the No. 0513 TC “Talim,” 
which was obtained at 0 o’clock on August 29, 2005 (20050829_0000_IR1); (3) infrared channel 
1 satellite image of the No. 0513 TC “Talim,” which was obtained at 12 o’clock on August 28, 
2005 (20050828_1200_IR1); (4) infrared channel 2 satellite image of the No. 0513 TC “Talim,” 
which was obtained at 12 o’clock on August 28, 2005 (20050828_1200_IR2); (5) infrared channel 
1 satellite image of the No. 0713 TC “Wipha,” which was obtained at 0 o’clock on September 
17, 2007 (20070917_0000_IR1); and (6) infrared channel 2 satellite image of the No. 0713 TC 
“Wipha,” which was obtained at 0 o’clock on September 17, 2007 (20070917_ 0000_IR2). The 
time of these experimental images is the universal time.

4.1. Experimental group of eye TC center location

Figure 5(a)–(d) represents six eye TC satellite images and their center location results. TC 
center position from China Meteorological Administration is used as the reference center 
position. In this paper, blue “*” symbol and red “+” symbol, respectively, indicate the center 
position by the proposed method and reference center position.

We can see from above figures that the location results by the proposed TC center location 
algorithm are very close to the reference positions. Namely, the results are very close to the 
real center of TC. After the extraction of the main body cloud of a TC, the selected inner core 
region almost contains the cloud area of the eye of TC. And the texture of the inner core region 
is clear. The distance of the center location by the proposed algorithm and the reference posi-
tion is so little. So it is difficult to identify the difference between them by the naked eye. Since 

TC cloud image Result of center location Reference values Error (km)

North latitude 
(°)

East longitude 
(°)

North latitude 
(°)

East longitude (°)

20050829_1200_IR1 20.95 131.89 21.00 131.90 5.66

20050829_1200_IR2 20.95 131.89 21.00 131.90 5.66

20050829_1800_IR2 21.15 130.43 21.20 130.70 30.48

20050829_2100_IR1 21.19 130.21 21.30 130.10 17.27

20070917_1800_IR1 23.93 124.67 23.90 124.60 8.45

20070918_0000_IR2 24.43 123.71 24.40 123.60 12.66

Table 2. The center location errors of the experimental eye TC group.

Understanding of Atmospheric Systems with Efficient Numerical Methods for Observation and Prediction18

Figure 6. TC center location of non-eye TCs. (a) Result of the TC center location; (b) main cloud of TC; (c) position of the 
inner core region and (d) texture.
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No. 0513 TC “Talim,” which was obtained at 12 o’clock on August 29, 2005 (20050829_1200_
IR2); (3) infrared channel 2 satellite image of the No. 0513 TC “Talim,” which was obtained at 
18 o’clock on August 29, 2005 (20050829_1800_IR2); (4) infrared channel 1 satellite image of the 
No. 0513 TC “Talim,” which was obtained at 21 o’clock on August 29, 2005 (20050829_2100_
IR1); (5) infrared channel 1 satellite image of the No. 0713 TC “Wipha,” which was obtained 
at 18 o’clock on September 17, 2007 (20070917_1800_IR1); and (6) infrared channel 2 satellite 
image of the No. 0713 TC “Wipha,” which was obtained at 0 o’clock on September 18, 2007 
(20070918_0000_IR2). The test satellite images of the non-eye TC include: (1) infrared channel 
1 satellite image of the No. 0513 TC “Talim,” which was obtained at 18 o’clock on August 27, 
2005 (20050827_1800_IR1); (2) infrared channel 1 satellite image of the No. 0513 TC “Talim,” 
which was obtained at 0 o’clock on August 29, 2005 (20050829_0000_IR1); (3) infrared channel 
1 satellite image of the No. 0513 TC “Talim,” which was obtained at 12 o’clock on August 28, 
2005 (20050828_1200_IR1); (4) infrared channel 2 satellite image of the No. 0513 TC “Talim,” 
which was obtained at 12 o’clock on August 28, 2005 (20050828_1200_IR2); (5) infrared channel 
1 satellite image of the No. 0713 TC “Wipha,” which was obtained at 0 o’clock on September 
17, 2007 (20070917_0000_IR1); and (6) infrared channel 2 satellite image of the No. 0713 TC 
“Wipha,” which was obtained at 0 o’clock on September 17, 2007 (20070917_ 0000_IR2). The 
time of these experimental images is the universal time.

4.1. Experimental group of eye TC center location

Figure 5(a)–(d) represents six eye TC satellite images and their center location results. TC 
center position from China Meteorological Administration is used as the reference center 
position. In this paper, blue “*” symbol and red “+” symbol, respectively, indicate the center 
position by the proposed method and reference center position.

We can see from above figures that the location results by the proposed TC center location 
algorithm are very close to the reference positions. Namely, the results are very close to the 
real center of TC. After the extraction of the main body cloud of a TC, the selected inner core 
region almost contains the cloud area of the eye of TC. And the texture of the inner core region 
is clear. The distance of the center location by the proposed algorithm and the reference posi-
tion is so little. So it is difficult to identify the difference between them by the naked eye. Since 

TC cloud image Result of center location Reference values Error (km)

North latitude 
(°)

East longitude 
(°)

North latitude 
(°)

East longitude (°)

20050829_1200_IR1 20.95 131.89 21.00 131.90 5.66

20050829_1200_IR2 20.95 131.89 21.00 131.90 5.66

20050829_1800_IR2 21.15 130.43 21.20 130.70 30.48

20050829_2100_IR1 21.19 130.21 21.30 130.10 17.27

20070917_1800_IR1 23.93 124.67 23.90 124.60 8.45

20070918_0000_IR2 24.43 123.71 24.40 123.60 12.66

Table 2. The center location errors of the experimental eye TC group.
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Figure 6. TC center location of non-eye TCs. (a) Result of the TC center location; (b) main cloud of TC; (c) position of the 
inner core region and (d) texture.
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the length of 1° latitude is about 111 km and the length of 1° longitude is about 111 km all 
over the world, we calculate the distance error of the TC center position by the longitude and 
latitude errors. The center position errors of the six groups of eye TC are shown in Table 2.

In Table 2, we can find that the error of the TC center location by the proposed algorithm is below 
40 km. And it is suitable for the infrared channel 1 and the infrared channel 2 cloud images.

4.2. Experimental group of non-eye TC center location

Figure 6(a)–(d) represent six non-eye TC satellite images and their center location results.

We can see from the figures that the located results by the proposed TC center location algo-
rithm are very close to the reference positions. The effect of the non-eye TC center location is 
good. In order to get the more accurate location error, we calculate the distance error of the 
TC center position by the longitude and latitude errors. The center position errors of the six 
experimental groups of the non-eye TC center location are shown in Table 3.

In Table 3, we can find that the error of five groups of the non-eye TC center location by the 
proposed algorithm is below 70 km. Only the error of one group is more than 70 km, but it 
is below 100 km. In all, the proposed algorithm is suitable to be used to determine the center 
position for a TC by using the infrared channel 1 and the infrared channel 2 cloud images. 
Although the accuracy of the non-eye TC center location is slightly less than that of the eye 
TC center location, the error is small for the non-eye TC in which the texture is not prominent.

5. Conclusions

An effective TC center location algorithm, which is based on the fractal feature features and 
gradient of the infrared satellite cloud images, is proposed. The proposed algorithm is based 
on the assumption that the centers of a TC, which belongs to different development stages 
are mostly located in the inner core region. The inner core region is determined firstly. Then 

TC cloud image Result of center location Reference values Error (km)

North latitude 
(°)

East longitude 
(°)

North latitude 
(°)

East longitude (°)

20050827_1800_IR1 17.59 139.43 17.90 139.90 62.50

20050829_0000_IR1 20.49 133.85 20.40 134.30 50.94

20050828_1200_IR1 20.01 136.17 19.90 136.70 60.08

20050828_1200_IR2 20.01 136.17 19.90 136.70 60.08

20070917_0000_IR1 22.07 126.91 22.40 127.70 95.03

20070917_0000_IR2 22.37 128.13 22.40 127.70 47.85

Table 3. The center location errors of the experimental non-eye TC group.
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special gradient information and texture of the TC center are used to determine the center of 
TC. The proposed algorithm can be applied in the eye TC center location and the non-eye TC 
center location. The accuracy of the location by this proposed algorithm is higher. Moreover, 
the calculation of the proposed algorithm is simpler than that of the existing TC center location 
methods, such as the wind field analysis method, intelligent learning method based on the 
spiral fitting, tempo-spatial movement matching method, and so on. The proposed method 
is not proper to disorganized or weak TCs. Further work is needed to improve the location 
accuracy of TCs by using new features or techniques.
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special gradient information and texture of the TC center are used to determine the center of 
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Abstract

In the real world, vegetation, liquid surfaces, rocks, buildings, snows, clouds, fogs, etc. can
all be regarded as natural polarizers. In the process of reflecting, transmitting, and scat-
tering of electromagnetic radiations, land surface objects can produce polarized features
that are related to the nature of the materials. These polarized information can determine
objects’ properties, and therefore, detecting the polarization information of objects
becomes a new method of remote sensing. Polarization of reflected and scattered solar
electromagnetic radiation adds a new dimension to the understanding of the Earth’s
objects’ properties. The polarized bidirectional reflectance characteristics and polarized
hyperspectral properties of land objects were methodically studied. The results of the polar-
ized bidirectional reflectance characteristics can provide the theoretical basis for polarization
remote sensing such as the detecting conditions, modeling and others. The polarized spec-
tral property of the typical objects can be used as the spectral basis for polarization remote
sensing. The atmospheric correction is a key problem when using polarization remote
sensing method to detect land objects’ information, because scattered atmospheric particles
exhibit stronger polarization phenomena than land objects do. A method of using atmo-
spheric neutral point for the separation polarization effect between objects and atmosphere
has been proposed.

Keywords: polarized light, remote sensing, Earth’s observation

1. Introduction

Besides properties such as intensity, frequency, and coherence, polarization is another funda-
mental character of electromagnetic radiation. The polarization phenomenon occurs along with
the entire process of electromagnetic radiation reflection, scattering, and transmission. Since the
discovery of the scattered light from the blue sky is polarized by D.F.J. Arago in 1809, the effects
of various polarization parameters have been observed and measured by many scientists [1].
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In the real world, vegetation, liquid surfaces, rocks, buildings, snows, clouds, fogs, etc. can
all be regarded as natural polarizers. In the process of reflecting, transmitting, and scat-
tering of electromagnetic radiations, land surface objects can produce polarized features
that are related to the nature of the materials. These polarized information can determine
objects’ properties, and therefore, detecting the polarization information of objects
becomes a new method of remote sensing. Polarization of reflected and scattered solar
electromagnetic radiation adds a new dimension to the understanding of the Earth’s
objects’ properties. The polarized bidirectional reflectance characteristics and polarized
hyperspectral properties of land objects were methodically studied. The results of the polar-
ized bidirectional reflectance characteristics can provide the theoretical basis for polarization
remote sensing such as the detecting conditions, modeling and others. The polarized spec-
tral property of the typical objects can be used as the spectral basis for polarization remote
sensing. The atmospheric correction is a key problem when using polarization remote
sensing method to detect land objects’ information, because scattered atmospheric particles
exhibit stronger polarization phenomena than land objects do. A method of using atmo-
spheric neutral point for the separation polarization effect between objects and atmosphere
has been proposed.
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1. Introduction

Besides properties such as intensity, frequency, and coherence, polarization is another funda-
mental character of electromagnetic radiation. The polarization phenomenon occurs along with
the entire process of electromagnetic radiation reflection, scattering, and transmission. Since the
discovery of the scattered light from the blue sky is polarized by D.F.J. Arago in 1809, the effects
of various polarization parameters have been observed and measured by many scientists [1].
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All of these results have clearly indicated that aerosols and natural land surfaces have large
polarization effects, which, therefore, offers a powerful tool for monitoring the aerosol and land
objects’ properties from space. While the intensity information tells us about materials, polariza-
tion presents information about surface features, shape, shading, and roughness. Polarization
information has the potential to enhance many fields of optical metrology. Just like the space
applications of the polarization of microwave radiation, space polarization measurement pro-
grams are needed in the visible and near-IR spectral regions for better monitoring of the Earth’s
environment. Polarization of reflected and scattered solar radiation adds a new dimension to the
understanding of the Earth’s environmental radiation field. Furthermore, with the quick devel-
opment of remote sensing, the numerical solution of the remote sensing retrieval process leads to
the so-called, ill-posed inverse problem [2]. This problem is characterized by the incompleteness
of the available information, the nonuniqueness of the solutions, and the noncontinuous depen-
dence of the solutions on the input data. The polarization measurement not only can provide the
intensity information of land surface objects, but also can provide some extra parameters, such
as degree of polarization, polarization angle, and polarization phase information, all beneficial
for the solution of the ill-posed inverse problem [3].

Currently, the research of polarization remote sensing focuses mainly on the atmosphere and
climate [4, 5]. It is mainly because polarization complements the spectral and angular radiance
measurements, and it produces a high sensitivity to microphysical properties of aerosol parti-
cles than do radiance measurements. Furthermore, the satellite polarization sensor POLDER’s
6-km pixel size spatial resolution is a benefit for broad-scale (such as atmosphere) researches
[6]. However, some researchers have found that objects on the land objects surface have strong
polarized reflection. Tamalge and Curran gave a review of early attempts to use polarization
information for land surface remote sensing [7]. Theoretical studies also were performed to
understand the nature of polarization and to model the polarization from earth surfaces [8].
Until now, most studies were focused on atmospheric polarization than land surfaces because
the polarization effect of the atmosphere is much stronger than that of land objects. Removing
the atmospheric effect, therefore, would solve the bottleneck problem of using polarized
information for remote sensing land surface. As a result, a major concern for the use of
polarized light for the study of land surfaces is the capability to discriminate between polari-
zation generated in the atmosphere and that generated by the surface.

2. Polarization characters of land objects

Polarization is defined as the asymmetry of vibration direction relative to spreading direction.
It is a unique feature of horizontal wave. Polarization is an important feature of electromag-
netic wave. Objects on the land and in the atmosphere can produce their unique polarized
signals during reflection, scattering, and transmission, which means, polarization can reveal
abundant information of the objects. In the nature, natural polarizers exist here and there, such
as smooth leaves of a plant, soil, water surface, ice, snow, cloud, fog, etc. Reflection of sunshine
by such polarizers can result in polarization. Based on this feature, polarized remote sensing
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provides new and potential information for objects. And polarized remote sensing has become
a new Earth observation method, which is receiving more and more attention [9].

According to electromagnetic theory, light is a horizontal wave and it vibrates vertically to the
transmissive direction. Based on the trajectory of light vibration, it has five polarization states:
natural light (nonpolarized light), linearly polarized light, partially polarized light, round
polarized light, and elliptically polarized light. Natural light has same vibration range in every
direction. It may vibrate in each direction that is vertical to its spreading direction with same
amplitude. If we decompose the light of all directions to only two vertical directions, then we
can find the same vibration energy and amplitude in the two directions. Linear polarized light
means that in the vertical plane to the spreading direction, light vector only vibrates toward a
certain direction. Partial polarized light can be viewed as a mix of natural light and linearly
polarized light; namely it has a vibration range in a certain direction that is superior to other
directions. Round polarized light and elliptical polarized light refer to light whose vector end
has a round or elliptical trajectory on the vertical plane.

Polarized light is normally embodied as elliptical polarization. We need three mutually inde-
pendent parameters to describe elliptical polarization light, for example, amplitude Ex, Ey

and phase difference δ (or elliptical length, short axis a, b and angle of orientation ψ). Stokes
raised “Stokes Parameter” in 1852. And it became the three mostly used macromeasurable
parameters. Stokes parameters not only can describe complete polarized light, but also par-
tially polarized light.

Strokes Vector has four parameters (three of them are mutually independent). They can be
shown as follows, and this set of parameters is called Strokes Vector.

S ¼ S0 S1 S2 S3½ �T (1)

The four Strokes parameters, which can be marked as S0, S1, S2, S3, are defined as:

S0 ¼ ~E
2
x tð Þ þ ~E

2

y tð Þ

S1 ¼ ~E
2
x tð Þ � ~E

2

y tð Þ
S2 ¼ 2~Ex tð Þ � ~Ey tð Þ cos δ
S3 ¼ 2~Ex tð Þ � ~Ey tð Þ sin δ

(2)

~Ex, ~Ey are components of electric vector along x, y in the selected coordinate, δ is the phase

difference between two vibration components, and 〈 〉means taking the average of time. This
four-dimensional vector can embody the status of any polarized light including polarization
degree. S0 in the above equation represents polarization light intensity, S1 represents linear
polarization light component, S2 for in 45� linear polarization light component direction, and
S3 for dextrorotation circular polarization light component.

Based on Strokes Vector, we can get polarization status information of any light as below:
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All of these results have clearly indicated that aerosols and natural land surfaces have large
polarization effects, which, therefore, offers a powerful tool for monitoring the aerosol and land
objects’ properties from space. While the intensity information tells us about materials, polariza-
tion presents information about surface features, shape, shading, and roughness. Polarization
information has the potential to enhance many fields of optical metrology. Just like the space
applications of the polarization of microwave radiation, space polarization measurement pro-
grams are needed in the visible and near-IR spectral regions for better monitoring of the Earth’s
environment. Polarization of reflected and scattered solar radiation adds a new dimension to the
understanding of the Earth’s environmental radiation field. Furthermore, with the quick devel-
opment of remote sensing, the numerical solution of the remote sensing retrieval process leads to
the so-called, ill-posed inverse problem [2]. This problem is characterized by the incompleteness
of the available information, the nonuniqueness of the solutions, and the noncontinuous depen-
dence of the solutions on the input data. The polarization measurement not only can provide the
intensity information of land surface objects, but also can provide some extra parameters, such
as degree of polarization, polarization angle, and polarization phase information, all beneficial
for the solution of the ill-posed inverse problem [3].

Currently, the research of polarization remote sensing focuses mainly on the atmosphere and
climate [4, 5]. It is mainly because polarization complements the spectral and angular radiance
measurements, and it produces a high sensitivity to microphysical properties of aerosol parti-
cles than do radiance measurements. Furthermore, the satellite polarization sensor POLDER’s
6-km pixel size spatial resolution is a benefit for broad-scale (such as atmosphere) researches
[6]. However, some researchers have found that objects on the land objects surface have strong
polarized reflection. Tamalge and Curran gave a review of early attempts to use polarization
information for land surface remote sensing [7]. Theoretical studies also were performed to
understand the nature of polarization and to model the polarization from earth surfaces [8].
Until now, most studies were focused on atmospheric polarization than land surfaces because
the polarization effect of the atmosphere is much stronger than that of land objects. Removing
the atmospheric effect, therefore, would solve the bottleneck problem of using polarized
information for remote sensing land surface. As a result, a major concern for the use of
polarized light for the study of land surfaces is the capability to discriminate between polari-
zation generated in the atmosphere and that generated by the surface.

2. Polarization characters of land objects

Polarization is defined as the asymmetry of vibration direction relative to spreading direction.
It is a unique feature of horizontal wave. Polarization is an important feature of electromag-
netic wave. Objects on the land and in the atmosphere can produce their unique polarized
signals during reflection, scattering, and transmission, which means, polarization can reveal
abundant information of the objects. In the nature, natural polarizers exist here and there, such
as smooth leaves of a plant, soil, water surface, ice, snow, cloud, fog, etc. Reflection of sunshine
by such polarizers can result in polarization. Based on this feature, polarized remote sensing
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provides new and potential information for objects. And polarized remote sensing has become
a new Earth observation method, which is receiving more and more attention [9].

According to electromagnetic theory, light is a horizontal wave and it vibrates vertically to the
transmissive direction. Based on the trajectory of light vibration, it has five polarization states:
natural light (nonpolarized light), linearly polarized light, partially polarized light, round
polarized light, and elliptically polarized light. Natural light has same vibration range in every
direction. It may vibrate in each direction that is vertical to its spreading direction with same
amplitude. If we decompose the light of all directions to only two vertical directions, then we
can find the same vibration energy and amplitude in the two directions. Linear polarized light
means that in the vertical plane to the spreading direction, light vector only vibrates toward a
certain direction. Partial polarized light can be viewed as a mix of natural light and linearly
polarized light; namely it has a vibration range in a certain direction that is superior to other
directions. Round polarized light and elliptical polarized light refer to light whose vector end
has a round or elliptical trajectory on the vertical plane.

Polarized light is normally embodied as elliptical polarization. We need three mutually inde-
pendent parameters to describe elliptical polarization light, for example, amplitude Ex, Ey

and phase difference δ (or elliptical length, short axis a, b and angle of orientation ψ). Stokes
raised “Stokes Parameter” in 1852. And it became the three mostly used macromeasurable
parameters. Stokes parameters not only can describe complete polarized light, but also par-
tially polarized light.

Strokes Vector has four parameters (three of them are mutually independent). They can be
shown as follows, and this set of parameters is called Strokes Vector.

S ¼ S0 S1 S2 S3½ �T (1)

The four Strokes parameters, which can be marked as S0, S1, S2, S3, are defined as:

S0 ¼ ~E
2
x tð Þ þ ~E

2

y tð Þ

S1 ¼ ~E
2
x tð Þ � ~E

2

y tð Þ
S2 ¼ 2~Ex tð Þ � ~Ey tð Þ cos δ
S3 ¼ 2~Ex tð Þ � ~Ey tð Þ sin δ

(2)

~Ex, ~Ey are components of electric vector along x, y in the selected coordinate, δ is the phase

difference between two vibration components, and 〈 〉means taking the average of time. This
four-dimensional vector can embody the status of any polarized light including polarization
degree. S0 in the above equation represents polarization light intensity, S1 represents linear
polarization light component, S2 for in 45� linear polarization light component direction, and
S3 for dextrorotation circular polarization light component.

Based on Strokes Vector, we can get polarization status information of any light as below:
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ψ ¼ 1
2
arctan

S1
S2

(3)

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ S23

q
=S0 (4)

Herein, ψ is the azimuth angle of ellipse, which is also its orientation. P is a description of
polarization degree of partially polarized light, and its value ranges from 0 under nonpolarized
light to 1 under complete polarization. For partially polarized light, P will be the mid-value.
Sometimes, I, Q, U, V are also used to replace S0, S1, S2, and S3 [10, 11].

2.1. Objects surfaces show polarized characteristic mechanism

When light is slantwise, it irradiates the land objects’ surface, parts of the irradiation is
reflected, and the rest is absorbed by the objects. Assuming the incidence angle is α, the
refraction angle is β, and the incidence light, the reflection light and the refraction light
compose in the main plane. Regardless of which vibratory direction of the incidence light is,
its electric vector can be decomposed to two components: the vertical component E10⊥ and the
parallel component E10¼. Also supposing the corresponding electric vector components of the

reflection light are E010⊥ and E
0
10¼, the corresponding electric vector components of the refrac-

tion light are E20⊥ andE20¼.

When nonpolarized light reflected and refracted by the two media interfaces, the radiate
directions of the reflection and refraction lights are determined by the law of reflection and
refraction; however, the vibratory directions of these two lights, namely the polarization state,
obey the electromagnetic theory of light. Based on the Fresnel formula, the electric vector’s
reflection radiant intensity of the vertical and the parallel component is as follows:

E010⊥ ¼ �
sin α� β

� �

sin αþ β
� � � E10⊥ (5)

E010¼ ¼
tan α� β

� �

tan αþ β
� � � E10¼ (6)

E010¼
E10¼

¼ E010⊥
E10⊥

� cos αþ β
� �

cos α� β
� � (7)

When α ¼ 0º, because of E10⊥ = E10¼, so

E010¼ ¼ E010⊥ (8)

These two components are irrelevant. After being synthesized, the reflection light is still
unpolarized. Thereby, the polarization does not exist in the reflection light when the incidence
light irradiates objects vertically.

When 0º < α < 90º,
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cos αþ β
� ��� �� < cos α� β

� �
(9)

Then, we get

E010¼
E10¼

<
E010⊥
E10⊥

(10)

From formulae (5) and (6), we found that the physical effects of the two components E10⊥ and
E10¼ are different. No matter what the polarization state of the incidence light is, the interface
reflects E10⊥ as shown in formula (5) and reflects E10¼ as shown in formula (6). Formula (10)
indicates that in the reflection light, the parallel component E010¼ is always smaller than the
vertical component E010⊥. These two components are vector sum in the two directions that
include massive polarized light of different amplitudes and different directions. Therefore,
these two components are irrelevant and cannot synthesize a vector. So, the polarization state
is different from the incidence light [9].

2.2. The polarized directional characteristic of land objects

The bidirectional reflectance is the common macrophenomenon of the electromagnetic wave
reflection in nature. It reveals that the reflection has directivity relying on the incident direc-
tion. The ability of reflecting and dispersing the electromagnetic wave of targets are closely
related to its surface structural characteristic and material composition, the surface of various
targets could radiate the incident electromagnetism wave in any directions (except absorption)
and form different fringing flux function of material spectrum characteristic. It has been
expounded by bidirectional reflection distribution function (BRDF). In the following discus-
sion, the observation that does not add polarized radiance is bidirectional reflection.

The multiangle polarization remote sensing intends to utilize the polarization characteristic
information of the targets on ground or in air. During the process of reflecting, scattering, and
transmitting the electromagnetic radiation, the multiangle polarization remote sensing can
produce polarized bidirectional reflection as the remote sensing information source.

During reflection, scattering, and transmission, multiangle spectral feature and polarized
feature based on intrinsic characteristics of land objects exist. By studying the multiangle
spectral feature and polarized feature, their directional reflectance laws and polarized reflec-
tance laws in 2π space can be identified. Those potential laws, together with abundant infor-
mation about angle and polarization, bring new methods for remote sensing application [12].

We measured multiangle polarization reflectance and bidirectional reflectance of different
types of soils, including brown forest soil, calcareous soil, clay soil, yellow soil, and humus
soil with different water content using bidirectional photometer device. The light source angles
and viewing zenith angles range from 0 to 60º with 10º interval, the relative azimuth between
the source and the sensors (180º is the specular direction) from 0 to 360º with 10º interval.
Polarizer was attached in front of the light source and can be rotated freely. The maximum
polarized reflectance data were measured when the pointer was at 90º, while the minimum
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Herein, ψ is the azimuth angle of ellipse, which is also its orientation. P is a description of
polarization degree of partially polarized light, and its value ranges from 0 under nonpolarized
light to 1 under complete polarization. For partially polarized light, P will be the mid-value.
Sometimes, I, Q, U, V are also used to replace S0, S1, S2, and S3 [10, 11].

2.1. Objects surfaces show polarized characteristic mechanism

When light is slantwise, it irradiates the land objects’ surface, parts of the irradiation is
reflected, and the rest is absorbed by the objects. Assuming the incidence angle is α, the
refraction angle is β, and the incidence light, the reflection light and the refraction light
compose in the main plane. Regardless of which vibratory direction of the incidence light is,
its electric vector can be decomposed to two components: the vertical component E10⊥ and the
parallel component E10¼. Also supposing the corresponding electric vector components of the

reflection light are E010⊥ and E
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10¼, the corresponding electric vector components of the refrac-

tion light are E20⊥ andE20¼.

When nonpolarized light reflected and refracted by the two media interfaces, the radiate
directions of the reflection and refraction lights are determined by the law of reflection and
refraction; however, the vibratory directions of these two lights, namely the polarization state,
obey the electromagnetic theory of light. Based on the Fresnel formula, the electric vector’s
reflection radiant intensity of the vertical and the parallel component is as follows:
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When α ¼ 0º, because of E10⊥ = E10¼, so

E010¼ ¼ E010⊥ (8)

These two components are irrelevant. After being synthesized, the reflection light is still
unpolarized. Thereby, the polarization does not exist in the reflection light when the incidence
light irradiates objects vertically.

When 0º < α < 90º,
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From formulae (5) and (6), we found that the physical effects of the two components E10⊥ and
E10¼ are different. No matter what the polarization state of the incidence light is, the interface
reflects E10⊥ as shown in formula (5) and reflects E10¼ as shown in formula (6). Formula (10)
indicates that in the reflection light, the parallel component E010¼ is always smaller than the
vertical component E010⊥. These two components are vector sum in the two directions that
include massive polarized light of different amplitudes and different directions. Therefore,
these two components are irrelevant and cannot synthesize a vector. So, the polarization state
is different from the incidence light [9].

2.2. The polarized directional characteristic of land objects

The bidirectional reflectance is the common macrophenomenon of the electromagnetic wave
reflection in nature. It reveals that the reflection has directivity relying on the incident direc-
tion. The ability of reflecting and dispersing the electromagnetic wave of targets are closely
related to its surface structural characteristic and material composition, the surface of various
targets could radiate the incident electromagnetism wave in any directions (except absorption)
and form different fringing flux function of material spectrum characteristic. It has been
expounded by bidirectional reflection distribution function (BRDF). In the following discus-
sion, the observation that does not add polarized radiance is bidirectional reflection.

The multiangle polarization remote sensing intends to utilize the polarization characteristic
information of the targets on ground or in air. During the process of reflecting, scattering, and
transmitting the electromagnetic radiation, the multiangle polarization remote sensing can
produce polarized bidirectional reflection as the remote sensing information source.

During reflection, scattering, and transmission, multiangle spectral feature and polarized
feature based on intrinsic characteristics of land objects exist. By studying the multiangle
spectral feature and polarized feature, their directional reflectance laws and polarized reflec-
tance laws in 2π space can be identified. Those potential laws, together with abundant infor-
mation about angle and polarization, bring new methods for remote sensing application [12].

We measured multiangle polarization reflectance and bidirectional reflectance of different
types of soils, including brown forest soil, calcareous soil, clay soil, yellow soil, and humus
soil with different water content using bidirectional photometer device. The light source angles
and viewing zenith angles range from 0 to 60º with 10º interval, the relative azimuth between
the source and the sensors (180º is the specular direction) from 0 to 360º with 10º interval.
Polarizer was attached in front of the light source and can be rotated freely. The maximum
polarized reflectance data were measured when the pointer was at 90º, while the minimum
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polarized reflectance data were measured when the azimuth was at 0º. Once the polarized data
are collected, a white panel reflectance was measured immediately. Then, the ratios of the
polarization and the reference data were calculated automatically. The results were stored in
a database. Brown forest soil (collected from Liaoning province, China, water content is 19.7%)
was taken as an example.

2.2.1. The influence of the incidence angle

Figures 1–3 show the 0 and 90º polarized reflectance spectra of brown forest soil at 670–690 nm
spectral bands, and the incidence angles are 20, 40, and 60º respectively. In the figure, the
abscissa denotes the relative azimuth angle (θ) from 90 to 270� and different designs denote
different viewing zenith angles (φ) from 0 to 60�. All the data cover the 2π space of brown
forest soil’s surface.

In Figure 1, the curve of 20º incidence angle shows no obviouswave crest in the specular direction.
In Figures 2 and 3, the curves with viewing zenith angles of 40, 50, and 60º show obvious wave
peaks in the specular direction. The results indicate that with the increase of incidence angle from
10 to 60º, the spectral curves of brown forest soil in 2π space are changing gradually.

These results suggest that when the incidence angle is small, the reflection spectra of soil
surface are characterized by diffuse reflection. There is almost no composite of specular and
diffuse reflections. When the incidence angle increases, the reflection spectra show a specular
reflection pattern. So, it is reasonable to think that there is a composite of specular and diffuse
reflections. The incidence angle has influence on whether there will be a composite of specular
and diffuse reflection.

2.2.2. The influence of viewing zenith and relative azimuth angle

Figure 1 shows when the incidence angle is small, the reflection spectra of the brown forest soil
surface in 2π space have no obvious difference. The surface, thus, can be considered as a Lambert
object. In Figures 2 and 3, when the viewing zenith angle is 40–60º, the spectral curves lost the
Lambert characteristics. Because of the specular effect, there appears a wave crest in the azimuth

Figure 1. Polarized reflectance (0 and 90º) of brown forest soil at 670–690 nm, incidence angle = 20º.

Understanding of Atmospheric Systems with Efficient Numerical Methods for Observation and Prediction28

of 135–225º. The height of the wave crest changes according to the size of viewing zenith angle.
The curve for 30º has a relatively low crest, while those for 40, 50, and 60º are higher. The 180º

azimuth angle is the specular direction. This phenomenon indicates that the specular effect of
soil’s surface is intensified when the viewing zenith angle increases, thus losing ordinary Lam-
bert characteristics.

2.3. Polarized spectral of land objects

Polarized hyperspectral imaging is a new remote sensing method combining the benefits of
polarized and hyperspectral information [13]. It has hundreds of polarized wavelengths per
spatial pixel. Polarized hyperspectral imaging combines traditional two-dimensional remote
sensing imaging technology and polarized spectroscopy [14, 15], allowing to obtain both

Figure 3. Polarized reflectance (0 and 90º) of brown forest soil at 670–690 nm, incidence angle = 60º.

Figure 2. Polarized reflectance (0 and 90º) of brown forest soil at 670–690 nm, incidence angle = 40º.
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polarized reflectance data were measured when the azimuth was at 0º. Once the polarized data
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reflections. The incidence angle has influence on whether there will be a composite of specular
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surface in 2π space have no obvious difference. The surface, thus, can be considered as a Lambert
object. In Figures 2 and 3, when the viewing zenith angle is 40–60º, the spectral curves lost the
Lambert characteristics. Because of the specular effect, there appears a wave crest in the azimuth
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of 135–225º. The height of the wave crest changes according to the size of viewing zenith angle.
The curve for 30º has a relatively low crest, while those for 40, 50, and 60º are higher. The 180º

azimuth angle is the specular direction. This phenomenon indicates that the specular effect of
soil’s surface is intensified when the viewing zenith angle increases, thus losing ordinary Lam-
bert characteristics.

2.3. Polarized spectral of land objects

Polarized hyperspectral imaging is a new remote sensing method combining the benefits of
polarized and hyperspectral information [13]. It has hundreds of polarized wavelengths per
spatial pixel. Polarized hyperspectral imaging combines traditional two-dimensional remote
sensing imaging technology and polarized spectroscopy [14, 15], allowing to obtain both
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images and polarized spectra of objects. The polarization measurement can not only get the
intensity information of land surface objects, but can also get extra parameters, such as the
degree of polarization (DoP), angel of polarization (AoP), and polarization phase information.
This gives people the capability to discriminate, classify, and identify materials present in the
image. Using a self-developed polarized field imaging spectrometer system (FISS-P), we col-
lected the polarized hyperspectral images for several vegetations [16].

Ten related polarization parameters were considered in this study: I, Q,U,DoLP,AoP, R0,
R60, R120, R, R1. Here, I, Q, and U are the three Stokes parameters; DoLP and AoP are the degree
of linear polarization and angle of polarization, respectively; 0, 60, and 120º are the reflectances
of three polarization azimuth angles, respectively; R is the nonpolarized reflectance; and RI is
the reflectance of I.

Figure 4 shows the DoLP, AoP, and reflectance contrast spectral curves of a S. spectabile leaf of
the same pixel. The reflectance spectral curve of the leaf shows a typical vegetation reflectance
spectral curve shape. The reflectance is low in both blue (450 nm) and red (690 nm) regions of
the spectrum due to the absorption by chlorophyll in photosynthesis. It has a peak in green
(540 nm) region. In near-infrared (700–800 nm) region, the reflectance is much higher than that
in visible band due to the cellular structure in the leaves.

The AoP spectral curves of the leaf for the entire spectrum almost run parallel to the x-axis, and
its values are all approximately equal to 0.5, indicating that the AoP spectral curves of the
S. spectabile leaf have no unique spectral characteristics. It is not possible to use the AoP spectral
curve as a recognition characteristic for S. spectabile leaves.

As for the DoLP spectral curves of the leaf, the reflectance is high in both blue (450 nm) and red
(690 nm) regions of the spectrum. It exhibits a wave valley in green (540 nm) region. In near-
infrared (700–800 nm) region, the reflectance is much lower than in visible band. The data
show visible and near-infrared bands, and the DoLP and reflectance spectral curves of S.
spectabile show contrasting trends.

Figure 5 displays the false color composite images of different parameters. The RGB bands of
the three composite bands are the 167th band (666.8 nm), 243th band (771.3 nm), and 340th
band (906.7 nm) of the FISS image. Figure 5(a) is the spectrum image cube of R; Figure 5(b–d)
is the I, Q, U images, respectively; and Figure 5(e) and (f) is the DoLP and AoP images,
respectively. The white area of Figure 5(a) and (b) is the white plate.

2.4. The polarization remote sensing method for water surface sun flare elimination

The sun flare produced by water mirror reflection is one of the main noises of the water color
satellite images. It is an important subject to research on the sun flare and the sun flare eliminat-
ingmethod in remote sensing. In order to avoid the sun flare, people often set the satellite Central
European Time (CET) to 12 o’clock at noon or design the sensor into multiangle scan states.
However, those two methods are unable to avoid the sun flare effectively because most satellite
can only broadcast vertical observation. Here, a new method for this question is presented.
Combining multiangle remote sensing with polarized light, the multiangle polarized reflection
method about eliminating the sun flare and the suitable time of the polarized remote sensing of
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the water are proposed. This method will improve the utilization of the water color remote
sensing images and the precision of the quantitative remote sensing.

2.4.1. Function of solar zenith and degree of polarization

When satellite CETmoves from forenoon to 12 o’clock at noon, the central position of the solar
flare moves from the image’s east margin to the image’s center; with the covering range of the
solar flare changing from big to small, the distributing shape changing from long melon seeds
shape to the ellipse with area gradually decreases, to a small flare at 12 o’clock at noon. When

Figure 4. The DoLP, AoP, and reflectance spectral curves of a Sedum spectabile leaf. (a) Spectrum image cube of R, (b) I
image, (c) Q image, (d) U image, (e) DoLP image, and (f) AoP image.
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images and polarized spectra of objects. The polarization measurement can not only get the
intensity information of land surface objects, but can also get extra parameters, such as the
degree of polarization (DoP), angel of polarization (AoP), and polarization phase information.
This gives people the capability to discriminate, classify, and identify materials present in the
image. Using a self-developed polarized field imaging spectrometer system (FISS-P), we col-
lected the polarized hyperspectral images for several vegetations [16].

Ten related polarization parameters were considered in this study: I, Q,U,DoLP,AoP, R0,
R60, R120, R, R1. Here, I, Q, and U are the three Stokes parameters; DoLP and AoP are the degree
of linear polarization and angle of polarization, respectively; 0, 60, and 120º are the reflectances
of three polarization azimuth angles, respectively; R is the nonpolarized reflectance; and RI is
the reflectance of I.

Figure 4 shows the DoLP, AoP, and reflectance contrast spectral curves of a S. spectabile leaf of
the same pixel. The reflectance spectral curve of the leaf shows a typical vegetation reflectance
spectral curve shape. The reflectance is low in both blue (450 nm) and red (690 nm) regions of
the spectrum due to the absorption by chlorophyll in photosynthesis. It has a peak in green
(540 nm) region. In near-infrared (700–800 nm) region, the reflectance is much higher than that
in visible band due to the cellular structure in the leaves.

The AoP spectral curves of the leaf for the entire spectrum almost run parallel to the x-axis, and
its values are all approximately equal to 0.5, indicating that the AoP spectral curves of the
S. spectabile leaf have no unique spectral characteristics. It is not possible to use the AoP spectral
curve as a recognition characteristic for S. spectabile leaves.

As for the DoLP spectral curves of the leaf, the reflectance is high in both blue (450 nm) and red
(690 nm) regions of the spectrum. It exhibits a wave valley in green (540 nm) region. In near-
infrared (700–800 nm) region, the reflectance is much lower than in visible band. The data
show visible and near-infrared bands, and the DoLP and reflectance spectral curves of S.
spectabile show contrasting trends.

Figure 5 displays the false color composite images of different parameters. The RGB bands of
the three composite bands are the 167th band (666.8 nm), 243th band (771.3 nm), and 340th
band (906.7 nm) of the FISS image. Figure 5(a) is the spectrum image cube of R; Figure 5(b–d)
is the I, Q, U images, respectively; and Figure 5(e) and (f) is the DoLP and AoP images,
respectively. The white area of Figure 5(a) and (b) is the white plate.

2.4. The polarization remote sensing method for water surface sun flare elimination

The sun flare produced by water mirror reflection is one of the main noises of the water color
satellite images. It is an important subject to research on the sun flare and the sun flare eliminat-
ingmethod in remote sensing. In order to avoid the sun flare, people often set the satellite Central
European Time (CET) to 12 o’clock at noon or design the sensor into multiangle scan states.
However, those two methods are unable to avoid the sun flare effectively because most satellite
can only broadcast vertical observation. Here, a new method for this question is presented.
Combining multiangle remote sensing with polarized light, the multiangle polarized reflection
method about eliminating the sun flare and the suitable time of the polarized remote sensing of
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the water are proposed. This method will improve the utilization of the water color remote
sensing images and the precision of the quantitative remote sensing.

2.4.1. Function of solar zenith and degree of polarization

When satellite CETmoves from forenoon to 12 o’clock at noon, the central position of the solar
flare moves from the image’s east margin to the image’s center; with the covering range of the
solar flare changing from big to small, the distributing shape changing from long melon seeds
shape to the ellipse with area gradually decreases, to a small flare at 12 o’clock at noon. When

Figure 4. The DoLP, AoP, and reflectance spectral curves of a Sedum spectabile leaf. (a) Spectrum image cube of R, (b) I
image, (c) Q image, (d) U image, (e) DoLP image, and (f) AoP image.
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the satellite CET’s moving continues, the situation is just on the opposite—the solar flare’s
center moves toward the image’s west margin, and the influence to the image by the sun
gradually becomes greater. The movement of the satellite to the solar is the relative movement;
so the solar’s altitude angle is one of the main factors influencing the water surface solar
flare’s formation, size, and distributing shape.

The polarization degree is the physical quantity describing the polarized light’s polarization
degree, which expresses the proportion of the whole light taken by the linearly polarized light
quantificationally. According to Fresnel formula, and because the light intensity is the square
of the electric vector’s amplitude, then

P ¼
E10⊥

2 sin 2 α�βð Þ
sin 2 αþβð Þ � E10¼2

tg 2 α�βð Þ
tg 2 αþβð Þ

E10⊥
2 sin 2 α�βð Þ
sin 2 αþβð Þ þ E10¼2

tg 2 α�βð Þ
tg 2 αþβð Þ

(11)

where E⊥ is the component of the incident light whose electric vector is vertical to the incident
interface, E// is the component of the incident light whose electric vector is parallel to the
incident interface, α is the incidence angle, and β is the refraction angle.

When the incident light is the natural light, E2 ¼ E¼2 , using the refractive index to eliminate the
refraction angle in Eq. (11), with the refractive index of the purified water is 1.33, yields
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The derivative of the P function is then calculated when P0 = 0, α ¼ 53:1º. The maximum exists
at this time in the function, that is, the reflected light is completely linearly polarized light, and
the incidence angle α is the Brewster angle.

The reflected light’s DoP increases while the incidence angle α increases from 0º to Brewster
angle gradually. When it gets to Brewster angle, the polarization degree is maximal, and then it

Figure 5. False-color composite images of different parameters (hyperspectral image (a), calculated Stokes parameters
(I, Q, U) image (b, c, d), degree of linear polarization (DoLP) image (e), and angle of polarization image (f)).
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gradually decreases. That is to say, the closer to Brewster angle, the better the reflected light’s
linear polarization characteristics.

2.4.2. The mechanism of sun flare elimination

The water information received by the water color remote sensing sensors mainly contains
three kinds of light: (1) the light that is directly reflected by the water surface, (2) the light that
arrives at the sensors through the atmospheric photon scatters, and (3) the light that is
backscattered from the water body. Only the third kind of light includes water body informa-
tion, it is the only source of visible light remote sensing nearly, and the first two lights
constitute the background noise that must be corrected and eliminated.

According to the above discussions, light after being reflected by the water body, the polari-
zation phenomenon exists in the reflected light, and the water body is actually the polarizer
at this time. When the light’s incident angle is Brewster angle of 53�, that is, the sun’s altitude
angle is 37�, its reflected light is totally polarized light whose electric vector is vertical to the
incidence interface. By using the polarizer in front of the sensor, the polarizer’s azimuth angle
is adjusted and the polarization angle is made just vertical to the polarization direction of the
reflected light; at this time, the reflected light totally cannot pass through the polarization
sheet due to the polarizer’s light-blocking effect; the information received by sensors is
the atmospheric scattering and volume scattering of water body, and the intensity of the
water body mirror reflection can be ignored. So, we can use the radiation transfer equation
(RTE) of the atmospheric and water to reckon the water quality indicators without the solar
reflected light.

The angle between the horizon and the sun is sun’s altitude angle, expressed in symbol h,
which can be gained by the formula

sinh ¼ sinφ sin δþ cosφ cos δ cos τ (13)

where φ stands for the local geographical latitude, δ is the solar declination angle, and τ is
solar hour angle.

According to this formula, we can calculate the sun’s altitude angle in any place on the earth at
any time. Then, the suitable time for the water polarization remote sensing of all the world also
can be figured out when the solar altitude angle equals to 37�. Here, we only list the timetable
when the sun’s altitude angle equals to 37� in the place around the world on vernal equinox
day (Table 1). The suitable time is earlier or later than 12:00 at noon. On vernal equinox day
δ = 0�, the time is the local time. Other time’s dates can be deduced by analogy.

Table 1 shows that, on vernal equinox day, even at noon, the situation is impossible to exist
that the sun’s altitude angle equal to 37� in the areas exceeding south and north latitude is 53�;
we cannot use the polarization remote sensing to completely eliminate the water surface
mirror reflection at this time.

Combining the local solar zenith angle, in the areas of south and north latitudes between 0
and 30�, there are 12 months in 1 year that the water surface mirror reflection can be
completely avoided; in the areas of south and north between 30 and 40�, there are 8 months
that the water surface mirror reflection can be completely avoided; the rest may be deduced
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backscattered from the water body. Only the third kind of light includes water body informa-
tion, it is the only source of visible light remote sensing nearly, and the first two lights
constitute the background noise that must be corrected and eliminated.

According to the above discussions, light after being reflected by the water body, the polari-
zation phenomenon exists in the reflected light, and the water body is actually the polarizer
at this time. When the light’s incident angle is Brewster angle of 53�, that is, the sun’s altitude
angle is 37�, its reflected light is totally polarized light whose electric vector is vertical to the
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is adjusted and the polarization angle is made just vertical to the polarization direction of the
reflected light; at this time, the reflected light totally cannot pass through the polarization
sheet due to the polarizer’s light-blocking effect; the information received by sensors is
the atmospheric scattering and volume scattering of water body, and the intensity of the
water body mirror reflection can be ignored. So, we can use the radiation transfer equation
(RTE) of the atmospheric and water to reckon the water quality indicators without the solar
reflected light.

The angle between the horizon and the sun is sun’s altitude angle, expressed in symbol h,
which can be gained by the formula
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where φ stands for the local geographical latitude, δ is the solar declination angle, and τ is
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According to this formula, we can calculate the sun’s altitude angle in any place on the earth at
any time. Then, the suitable time for the water polarization remote sensing of all the world also
can be figured out when the solar altitude angle equals to 37�. Here, we only list the timetable
when the sun’s altitude angle equals to 37� in the place around the world on vernal equinox
day (Table 1). The suitable time is earlier or later than 12:00 at noon. On vernal equinox day
δ = 0�, the time is the local time. Other time’s dates can be deduced by analogy.

Table 1 shows that, on vernal equinox day, even at noon, the situation is impossible to exist
that the sun’s altitude angle equal to 37� in the areas exceeding south and north latitude is 53�;
we cannot use the polarization remote sensing to completely eliminate the water surface
mirror reflection at this time.

Combining the local solar zenith angle, in the areas of south and north latitudes between 0
and 30�, there are 12 months in 1 year that the water surface mirror reflection can be
completely avoided; in the areas of south and north between 30 and 40�, there are 8 months
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by analogy, and in the polar region there is no time in the whole year that the water body
surface mirror reflection can be completely avoided, because the sun’s altitude angle is
always lower than 37�.

The above discussion is the case of completely eliminating the sun flare, in fact, water glitter
sometimes has useful information of water body. This information may play an important role
for the water remote sensing retrieval. For example, the mirror reflection produced by the oil
slick on water surface, and this information will be lost if we completely eliminate the glitter. In
practice, the water body scattering is very weak, after completely eliminating the glitter, the
water information received by the sensors will be too little to be detected because of the
polarizer’s absorption. On the other hand, it is hard to let the sensors’ detection angle state at
the Brewster angle. So, it is impossible and no need to completely eliminate the sun flare. As
long as the sensor has not saturated by the glitter’s radiation, the upward radiation of water
will be identified effectively. That is to say, when the incident angle is nearby the Brewster
angle, we can adjust the glitter’s radiation by controlling the polarizer’s azimuth. In this way,
we can eliminate the noise and enhance the useful information.

Using different sensors, we can quantitatively present the suitable solar incident angle and the
suitable polarization azimuth for the polarization remote sensing. It can keep the intensity of
sun flare in an acceptable range and give the suitable schedule for the water polarization
remote sensing. The suitable times will be much longer than the case that completely elimi-
nates the sun flare. The sensor will receive more water information [17].

2.5. The polarized effect on plant spectrum

Leaf scattering spectrum is one of the key optical variables that conveys information about
leaf absorbing constituents from remote sensing. It cannot be directly measured from space
because the radiation scattered from leaves is affected by the three-dimensional canopy
structure. In addition, some radiation is specularly reflected by the surface of leaves. This
portion of reflected radiation is called partly polarized. It does not interact with pigments
inside the leaf and therefore contains no information about its interior. Very few empirical
data are available on the spectral and angular scattering properties of leaf surfaces.
Whereas canopy structure effects are well understood, the impact of the leaf surface reflec-
tance on estimation of leaf absorption spectra remains uncertain. We, thus, present empir-
ical and theoretical analyses of spectral, angular, and polarimetric measurements of light
reflected by needles and shoots of Picea koraiensis and Pinus koraiensis species. Figure 6
illustrates our samples.

North latitude 0� N10� N20� N30� N40� N50� N53� N60º

Suitable time (h) 12 � 3:32:00 12 � 3:29:19 12 � 3:20:42 12 � 3:03:55 12 � 2:32:53 12 � 1:22:16 12 —

South latitude 0� S10� S20� S30� S40� S50� S53� S60º

The suitable time is the time when the solar altitude angle equals to 37�.

Table 1. The suitable time for water polarization remote sensing on vernal equinox day around the world.
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The total radiation reflected by a leaf includes two components, diffuse and specular. The first
component emitting from light reflected at the air-cuticle interface is polarized. The diffuse
component results from photon interactions within the leaf and large particle on the leaf
surface. This portion of reflected light is not polarized. Polarization measurements can help
us to extract linearly polarization portion from the total radiation registered by the sensor.
Radiation specularly reflected from the needle surfaces exhibits weak spectral dependency, as
expected from theory. It increases from very small values in backscattering directions to about
17% in forward scattering directions. The shoot sample, polarized directional-conical reflec-
tance factor (PDCRF), shows a similar phenomenon. Its magnitude, however, is reduced by a
factor of about 10, as Figure 7 shows.

Ignoring polarization portion in reflected radiation, however, can cause an overestimation of the
scattering coefficient (Figure 8). The impact decreases from strongly (17–140%, 450–500 nm) to
weakly (<4%, 800–950 nm) absorbing wavelengths.

To summarize, the spectral, angular, and polarimetric data convey information about proper-
ties of the needle surfaces, shoot structural organizations, and needle optics. This information
is required to retrieve the needle albedo, which is directly related to the absorption spectra of
leaf biochemical constituents [18].

Figure 6. Samples of needles and shoots in the holder window. Sizes of the shoots were 13 � 15 � 17 cm (Pinus koraiensis)
and 6 cm (Picea koraiensis). Dimensions of the holder windows were 5.3 � 7 � 14 cm (Pinus koraiensis) and 5.0 cm (Picea
koraiensis).
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3. Polarized remote sensing for atmospheric correction

Scattered atmospheric particles exhibit strong polarization phenomena. The polarization effect of
the atmosphere is the main signal of the polarization remote sensing. For this reason, the present
spaceborne polarization remote sensing data are mainly used for atmospheric research, such
as to study the atmosphere physical properties and optical properties [19]. Land objects also have
strong reflected polarization phenomenon and can be valuable information for remote sensing.

Figure 7. Angular distribution of average PDCRF of shoot samples (dashed lines) and needle samples (solid lines)
averaged over 450–950 nm. Vertical bars denote �1 standard deviation.

Figure 8. Correlation between scattering coefficients of the Picea koraiensis shoot derived with (horizontal axis) and
without (vertical axis) correction for the needle surface effects. Relative differences are 17–140% in 450–500 nm, 3–74% in
600–650 nm, 3–59% in 520–580 nm, and below 4% in 800–950 nm spectral intervals.

Understanding of Atmospheric Systems with Efficient Numerical Methods for Observation and Prediction36

The land objects’ detection was one of the tasks of the spaceborne polarimeter—POLarization
and Directionality of the Earth’s Reflectance (POLDER). However, studies found that the
polarization effect of the atmosphere is much stronger than that of land objects in the images.
Information on land object polarization received by the polarimeter is always submerged in
the atmospheric polarization effect [20, 21]. As a result, a major concern for using polarized
light for the study of land surfaces is the capability to discriminate between polarization
generated in the atmosphere and that generated by the surface.

The neutral point is the point (or area) where the skylight is unpolarized. In the clear sky, there
are three normally occurring neutral points, the Arago, Babinet, and Brewster neutral points,
in the principal plane [22]. In this paper, we attempt to set spaceborne polarimeter to detect the
Earth at the direction of the neutral point. Because the polarization effect of atmosphere is zero
at this direction, the polarization information of the land surface objects can be maximized.
This study would promote the polarized remote sensing for land objects detection and expand
the polarization remote sensing research to a wider research area.

3.1. Atmospheric polarization distribution and neutral point

The solar radiation has no polarization at the outer space, and it will be polarized after the
atmosphere particles is scattered. If most of the atmosphere scattering is single scattering,
the polarization of the sky will show a regular polarization distribution, and it is also known
as the polarization pattern of sky.

Under the clear sky weather conditions, in the vertical plane of sun, the Arago, Babinet, and
Brewster neutral points in the sky will appear. As shown in Figure 9, the Arago is normally

Figure 9. Relative positions of neutral points in the sky.
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located 20–30º above the antisolar point. The Babinet point is directly above the sun located at
15–20º. The Brewster point is directly below the sun varying from 15–20º. Both the Babinet and
Brewster points are at the same direction of sun and their positions change along with the solar
altitude. The higher the sun elevation angles, the closer between the Babinet point and the
Brewster point. When the sun is at the zenith, the two points merged as one point [23, 24].
Because the neutral points at two side of sun and antisolar are symmetrical, there should be
another neutral point under antisolar in theory, as the anti-Babinet neutral point. In 2002, the
fourth neutral point actually has been detected using the sounding balloon [25].

For the single scattering, the polarization of the skylight is generally positive. However, for the
multiple scattering, the atmospheric particles can cause negative polarization. The degree of
polarization of sky will be zero where the positive and negative polarizations meet at the
intersection area. In this way, the atmospheric neutral point is produced [26]. The neutral point
is always at the main plane of the sun and zenith. The stronger the multiple scattering, there
will be more negative polarization, and the neutral point position will be farther away from the
theory position.

The positions of neutral points are close to the sun elevations. Chandrasekhar calculated
positions of the three neutral points for various angles of incidence in the main plane. Figure 10
shows the case for atmospheric optical thickness of 0.10. The abscissa and ordinate give the
solar elevation angle and neutral point elevation angle, respectively.

Figure 10. The relationship of neutral point and sun position.
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Babinet point is visible throughout the day from before sunrise until after sunset. The Brewster
neutral point becomes visible when solar elevation angle exceeds 20º. The position of the
Brewster point and sun is almost linear. As for Arago point, it will appear when solar elevation
angle is less than 20º. It means that the Arago point can only be observed in the morning or
evening. The situation of other atmospheric optical thicknesses (0.15 or 0.20) is almost the
same.

3.2. Atmosphere correction method based on neutral point

The method of using atmospheric neutral point for polarization remote sensing is to set the
remote sensing sensor at the direction of the neutral point. At this moment, the atmospheric
polarization effect between sensor and land objects can be zero or minimized. The polarization
information of land objects received by sensor can be maximized. Figure 11 is the sketch map
of using neutral points for polarization remote sensing atmosphere correction. The dash circle
is virtual outside the Earth’s atmosphere. This circle is also the sun trail of the very day. The
sun position in the figure is a virtual position too, which only denotes the direction of the sun
in the figure. From space to land surface, the neutral point can be seen at each height in the line
that goes through the neutral point and land object in theory. So, the neutral point can be
observed through by airborne or spaceborne sensors.

In the real atmosphere, because of multiple scattering, the neutral point is probably not a point
but a small region where all the degree of polarization is close to zero. In addition, this neutral
point (region) in the sky is not a fixed position, but a conical region where starting point is the
sensor as shown in Figure 11. The atmosphere degree of polarization at any height of this
conical region is zero.

3.2.1. Neutral point characteristics observed from space

The positions of neutral points that we discussed above are based on ground observations;
however, remote sensing is a process observed from sky to land. Can the remote sensing sensor

Figure 11. Sketch map of using neutral points for polarization remote sensing atmosphere correction.
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conical region is zero.

3.2.1. Neutral point characteristics observed from space

The positions of neutral points that we discussed above are based on ground observations;
however, remote sensing is a process observed from sky to land. Can the remote sensing sensor

Figure 11. Sketch map of using neutral points for polarization remote sensing atmosphere correction.
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detect the neutral point from sky? It is the basic problem of using the neutral point for land
surface polarization remote sensing.

Gábor Horváth [27] took the neutral point photos on the ground and at a 3500 m sounding
balloon separately, as the dark areas shown in Figure 12. The local solar elevation angle
shooting was similar to 0 when photos were taken. The black spot at the top of the image is
the sun. The camera band was red. Figure 12(a)was the ground photo, while Figure 12(b)was
the balloon photo. The right picture of Figure 12(b) indicates that the neutral point can be
observed from space.

Coulson calculated the neutral point position of the atmosphere upward radiation and the
downward radiation [28]. Figure 13 shows the curve of angular distance between the sun
and the neutral points as a function of sun elevation. The abscissa is the solar elevation angle
and the ordinate is angular distance from neutral to antisolar. The atmosphere optical
thickness is 1.0. The solid curves are the upward radiation and the dash curves are the
downward radiation.

The upward radiation is caused by the backscattering of atmospheric particles. The neutral
point’s positions are different in the upward radiation and the downward radiation. So, the
neutral points have different names in the upward radiation and the downward radiation. The
neutral points observed from ground are Arago point, Babinet point, and Brewster point. And
the corresponding neutral points observed from the space are Brewster point, anti-Babinet
point, and Arago point.

In Figure 13, the solid and dash lines of curve (a) denote the neutral point below the antisolar
and solar separately, which are Arago point and Brewster point. The solid and dash lines of
curve (b) denote anti-Babinet point and Babinet point separately.

It can be seen from Figure 13, as for curve (a), that the neutral point positions in the upward
and downward radiation are completely the same when the solar elevation angle is about
60�–90�. Their positions began to differ greatly when the solar elevation angle changed from

Figure 12. The neutral point observed from ground and space (the black areas are neutral points where DOP is nearly
zero). (a) observed from ground, and (b) observed from space.
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25 to 60�. Both the neutral points in the upward (Arago point) and downward (Brewster
point) radiation cannot appear in the sky when the solar elevation angle is less than 25�. As
for curve (b), the two neutral points’ positions in the upward (anti-Babinet point) and
downward radiation (Babinet point) are entirely consistent when the solar elevation angle
is about 32�–90�. Only when the solar elevation angle is small (about 5�–32�), the positions
began to be different slightly.

The above discussion shows that the neutral point positions of the same area observed from
space and ground are consistent when the atmosphere optical thickness is small and the solar
elevation angle is big. Normally, satellite transit time or aerial remote sensing flight time
always choose a high solar elevation, in order to obtain sufficient light conditions. At this time,
the space-based neutral point position can be calculated by the ground-based observation
position.

Kattawar compared the neutral point positions of different atmosphere optical thicknesses in
the upward and downward radiations [29]. The result shows that when the atmosphere
optical thickness increased, the Babinet point position changed slightly while the Brewster
point changed greatly. The position between anti-Babinet point in the upward radiation and
Babinet point in the downward radiation is almost the same when the atmosphere optical
thickness is <5. This also indicates that the Babinet point positions of the ground-based and
space-based observations are coincident of the same area. This paper also gives the impact of

Figure 13. Angular distance between the sun and the neutral points.
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the surface albedo on the neutral point position. The change of surface albedo has small
effect to the neutral point position. But the Brewster point is more sensitive than the Babinet
point on the surface albedo impact. The anti-Babinet point in the upward radiation is indepe-
ndent of surface albedo.

3.2.2. Proper neutral point selected for remote sensing

There are three common neutral points in the sky. We need to select the most applicable one for
the polarization remote sensing. The first satisfied condition is its position in the sky, conve-
nient for remote sensing observation. The second condition is that its position should be more
stable.

In the visible-near-infrared remote sensing, satellite transits time or aerial remote sensing flight
time always chooses a higher solar elevation, in order to obtain sufficient light conditions. The
Arago neutral point can only be observed in the morning or toward evening, and its position in
the sky is low when appearing. Its position is always lower than sun. Especially, in high
latitude area, the sun cannot reach the zenith position. The Arago point is not suitable for
polarized remote sensing. The Brewster neutral point has the same situation. The Brewster
point position is bound to be even lower. In addition, the Brewster point is affected by the
atmosphere condition and land surface reflection greatly. So, the Brewster neutral point is also
not suitable for polarization remote sensing.

In contrast, the anti-Babinet neutral point is an ideal choice for polarization remote sensing.
From the earth observing characters of Babinet neutral point, the anti-Babinet point is in the
same side of the sun; its position is always higher than the sun. It means that the anti-Babinet
point can be observed all the day. Higher elevating angle is a benefit in remote sensing
to obtain better light conditions. Moreover, the anti-Babinet point is not sensitive to the
atmosphere condition. Its position is more stable in the sky when the atmosphere condition
changes.

3.2.3. The position of neutral point calculated

The position of the anti-Babinet neutral point can be calculated from the position of the Babinet
neutral point, since the two points almost have the same position.

The main factor of the anti-Babinet point position is the solar elevation. So when using anti-
Babinet point for land surface polarization observation, the first thing is to determine the
observation time.

The solar elevation angle is constantly changing at the same place a day. The sun elevation
angle of a place can be calculated by the solar elevation angle formula, as in formula (13).

Generally, good weather conditions are selected for aerial remote sensing flight. For the anti-
Babinet neutral point, its position in the main plane is the function of the sun elevation when
the optical thickness is 0.10. For convenience, the curve was separated into two parts. Both
curves fit as segments.
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y ¼ 0:9xþ 18 0 < x < 30ð Þ
y ¼ 0:75xþ 22:5 30 <¼ x < 90ð Þ

�
(14)

where x is the solar elevation angle and y is the Babinet neutral point elevation angle.

For the equatorial region, the solar elevation angle of 90º at noon, the sun illuminates the land
surface vertically. All the neutral points are gathered into the sun position. The polarized
remote sensing sensor should be in the neutral point region when observing land surface
vertically, and this is a special case.

For nonequatorial regions, the sun elevation angle cannot reach 90º at noon. In local noon, the
solar elevation angle can be calculated by formula (13). Because both neutral point and sun are
at the main plane, the corresponding neutral point position can be calculated from formula
(14), and then we can get the remote sensing time. One thing needs to be noted that even the
sensor in the sky cannot be exactly at the center of the neutral point, and the region around the
neutral point is also a small polarization area; it is also conducive to polarization observation.

3.2.4. Experimental verification

In order to verify the method of using the neutral point for polarization remote sensing, we
designed a ground verification experiment. Polarization images were taken and compared
from neutral point direction and non-neutral point direction for the same area. Figure 14 is
the observation geometry sketch map. Figure 14(a) is the sketch map of neutral point direction
observation, while Figure 14(b) is the sketch map of non-neutral point direction observation.
The degree of polarization of atmosphere is zero on the line through the neutral point and
camera. The imaging device was Nikon D200 digital camera with iodine polarizer. 0, 60, and
120º, three angle polarization images, were obtained by changing the angle between polarizer
transmission axis and reference axis three times. And then the images of polarization param-
eters such as degree of polarization and polarization angle were calculated.

Figure 14 is the polarization parameter comparison images between non-neutral point imaging
and neutral point imaging. The observation time was 7:20 am and 11:20 am separately, April 29,
2010. At that time, the solar elevation angle was 24:40 and 62:95º separately. According to formula

Figure 14. Observation geometry sketch map of ground verification experiment. （a）Observation at non-neutral point
direction (in the noon) (b) Observation at neutral point direction (in the morning).
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polarized remote sensing. The Brewster neutral point has the same situation. The Brewster
point position is bound to be even lower. In addition, the Brewster point is affected by the
atmosphere condition and land surface reflection greatly. So, the Brewster neutral point is also
not suitable for polarization remote sensing.

In contrast, the anti-Babinet neutral point is an ideal choice for polarization remote sensing.
From the earth observing characters of Babinet neutral point, the anti-Babinet point is in the
same side of the sun; its position is always higher than the sun. It means that the anti-Babinet
point can be observed all the day. Higher elevating angle is a benefit in remote sensing
to obtain better light conditions. Moreover, the anti-Babinet point is not sensitive to the
atmosphere condition. Its position is more stable in the sky when the atmosphere condition
changes.

3.2.3. The position of neutral point calculated

The position of the anti-Babinet neutral point can be calculated from the position of the Babinet
neutral point, since the two points almost have the same position.

The main factor of the anti-Babinet point position is the solar elevation. So when using anti-
Babinet point for land surface polarization observation, the first thing is to determine the
observation time.

The solar elevation angle is constantly changing at the same place a day. The sun elevation
angle of a place can be calculated by the solar elevation angle formula, as in formula (13).

Generally, good weather conditions are selected for aerial remote sensing flight. For the anti-
Babinet neutral point, its position in the main plane is the function of the sun elevation when
the optical thickness is 0.10. For convenience, the curve was separated into two parts. Both
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(14), the neutral point elevation angle was 69:71 and 39:96º separately. The solar azimuth was
21:70 and 88:55º (the south is defined as the zero azimuth) separately. Both the camera detection
elevation angle was set as 40�. The relative azimuth angle of the camera and the sun were 0�

(backward) and 66:85º, respectively. The weather was clear and calm. Observation spots were fifth
floor platform, remote sensing building, and Peking University. The target area is Summer Palace
scenic region. Figure 14(a) is the non-neutral point direction observation. Figure 14(b) is the
neutral point direction observation.

Figure 15(a) shows the images without polarizer. The atmosphere visibility is high. Both the
images are clear: whether observation at the neutral point direction or non-neutral point
direction. Figure 15(b) shows the linear degree of polarization (DoLP) images of R, G, B bands.
Degree of polarization is a physical quantity that reflects the polarization size of objects. It is a
dimensionless number and the value is 0–1. The white and black areas in the figure denote the
big value of DoLP and small value of DoLP separately. On the image taken from neutral point
direction (right image), whether the closer tower of Buddhist Incenses (about 3.1 km from
camera) or the Forane Mountain (about 8 km from camera) are clearly visible, especially the
bare soil and road in the mountains. And the polarization information is not the same in the
red, green, and blue bands. However, on the image taken from non-neutral point direction (left
image), the closer objects are better displayed, such as the tower of Buddhist Incense. But the
polarization information of the forane objects is much weaker, only the mountain outline can
be shown. It means that the polarization information of forane objects cannot be obtained from
the non-neutral point direction image. This phenomenon shows that along with the increase of
the focusing distance, the atmospheric polarization effects increases, and the polarization
information of targets becomes weak.

The information entropies were calculated for the unpolarized images in Figure 15(a) and the
three bands of DoLP images in Figure 15(b), as shown in Figure 16(a). The abscissa is different
images and the ordinate is the value of information entropy. The twill denotes entropy value of
the non-neutral point imaging and the plaid denotes entropy value of the neutral point
imaging. It can be seen from Figure 16(a) that the information entropies of the two unpolarized
images are almost equal regardless of the neutral point imaging or non-neutral point imaging.
However, for the DoLP images of red, green and blue bands, the information entropy values of
the neutral point imaging are all greater than the non-neutral point imaging. This also shows
that land objects on the neutral point DoLP imaging are informative. In particular, we cut out
the upper half of all the images, keep only the distant objects on the images, and then the
information entropies were calculated separately, and the results are showed in Figure 16(b).
Similarly, the information entropies of the two nonpolarized images are almost the same. But
for the DoLP images of red, green, and blue bands, the information entropy values of the
neutral point imaging are all much greater than the non-neutral point imaging.

It is thus clear that the atmospheric polarization effect on the non-neutral point direction image is
stronger than the neutral point direction image. The degree of polarization image from neutral
point direction has good expressive force for remote objects. The objects’ polarization information
on it is far greater than on non-neutral point direction image’s. It means the neutral point imaging
can eliminate the atmospheric polarization effect and enhance the objects’ polarized information.
And then, we had a polarized remote sensing aerial flight experiment with atmospheric neutral
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Figure 15. The polarization collation images between neutral point imaging and non-neutral point imaging. (a) Images
taken without polarizer and (b) Degree of polarization images.
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point [30]. This experiment demonstrated the feasibility of using neutral point for polarized
remote sensing in atmospheric correction [31].

4. Conclusion

In conclusion, this chapter showed the researches on land object polarization properties, which
can provide a new base knowledge for polarization remote sensing and a new research break-
through in the separation method for the polarization effect between objects and atmosphere.

1. The polarized bidirectional reflectance characteristics and polarized hyperspectral proper-
ties of land objects were methodically studied. It is attempted to find the object polariza-
tion reflectance mechanisms by the measurements and theoretical derivations. The results
showed that the land object polarization reflectance had the law of bidirectional reflectance
and that there was a quantitative relationship between the bidirectional reflectance and the
polarized bidirectional reflectance. These two rules can provide the theoretical basis for
polarization remote sensing such as the detecting conditions, modeling, and others. This
chapter also gave the polarized spectral property of the typical objects. It can be also used
as the spectral basis for polarization remote sensing.

2. It proposed a method of using atmospheric neutral point for the separation polarization
effect between objects and atmosphere. In this study, we attempted to install the polariza-
tion sensor at the direction of the atmosphere point, at the neutral point. In this case, the
polarization effect of the atmosphere was reduced to zero and the polarization information
of the land surface was maximized. The theoretical derivation and ground experimental
results indicated the feasibility of using atmosphere neutral point to separate the polariza-
tion effect between object and atmosphere.

Figure 16. The information entropy comparison between non-neutral point and neutral point imaging.
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Abstract

In order to improve conventional rainfall nowcasting, radar extrapolation and high-
resolution numerical weather prediction (NWP) were blended to get a 6-h quantitative
precipitation forecast (QPF) over the Yangtze River Delta region of China. Modifications
and calibrations were done to both the extrapolation and NWP in order to get an inte-
grated result from the two, which mainly included the extension for the extrapolation time
and region, intensity and position calibration for the NWP, weighted blending of extrap-
olation and NWP based on scale and time, and a final real-time Z-R relation conversion.
Forecast experiments were done, and results show that the blending technique could
effectively extend forecast time compared with conventional radar extrapolation, mean-
while applying a positive calibration to the NWP. The overall CSI score of 0–6 h reflectiv-
ity forecast was better than either single forecast.

Keywords: nowcasting, radar extrapolation, NWP calibration, blending forecast

1. Introduction

Practice has shown that deterministic short-term extrapolation forecasts have its predictive
capability for forecasting precipitation within a few hours. Using modern high-resolution
observation, combined with simple extrapolation model, a satisfactory precipitation prediction
result with high time-space resolution can be obtained. When forecast time increases to 2–6 h,
optimal prediction result can be obtained by combining the results of short-term extrapola-
tions and numerical models together, and the blended product will be superior to any of the
two [1–3].
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As to various kinds of extrapolation methods, the main difference often lies in the acquisition
of extrapolation vectors, and there are mainly three of them: The first one is to determine the
position of the same echo at different times by using correlation method. The second one is to
use echo recognition tracking technology. By decomposing the precipitation echo into differ-
ent independent echo units, moving vectors of each unit can be obtained by matching units of
adjacent times. The third one is to use observation wind field or NWP forecast wind field
directly to carry on the echo extrapolation. All the three methods have shown their advan-
tages in operation, such as the models of TITAN [4], TREC [5, 6], and optical flow [7, 8]. At
present, both TITAN and TREC are in operation here at Shanghai Central Meteorological
Observatory (SCMO), and of which the modified COTREC method is more commonly used
by forecasters [9].

As to forecasts of high-resolution regional numerical models, when they are applied directly to
short-term prediction, several aspects need to be considered: The first one is the computation
time, as NWP model takes time to do data assimilation and parallel integral computation; the
result of the first 1–2 h of integral is often not available in practice. When time increases, its
forecast will inevitably deviate from the current reality, and its results will need to be
corrected. The second one is the resolution, mainly spatial resolution. The common resolution
of regional numerical model is about 3–10 km, which is enough to reflect the small and
mesoscale weather system, but it is still rough compared to the radar extrapolation of 1 km,
particularly in the case of complex urban boundaries; high-impact disaster weather tends to
occur within a few dozen square kilometers, and NWP is generally considered not able to
effectively distinguish a system with a size less than five times of its resolution. Therefore, it is
necessary to apply calibration to conventional NWP products.

Finally, as to the short-term quantitative precipitation forecast, the prevailing view is that to
use the combination of conventional short-term forecasting techniques (mainly radar extrapo-
lation) and numerical forecasts is a direct way to increase forecast to more than 2 h. The
Nimrod system in the UK, for example, makes short-term strong precipitation forecasts by
giving extrapolation and NWP different weights according to forecast time [10]. The NIWOT
system from NCAR, on the other hand, tries to modify the size of extrapolation using infor-
mation from NWP [11]. In the Swirl System of the Hong Kong Observatory (HKO), the
prediction of NWP is revised by means of phase correction and strength correction, and a
hyperbolic function is used to determine the weight of extrapolation and NWP, thus effectively
improving the prediction effect of 0–6 h [12]. Due to the relatively mature swirl system and
good openness, HKO has now collaborated with several advanced local bureaus in China such
as the Beijing Meteorological Service and the Zhejiang Meteorological Bureau on the task of
blending nowcasting [13, 14].

In this study, the authors also try to explore a set of short-term forecasting blending methods
for the Yangtze River Delta region by using advanced radar network observation in East China
and combining high-resolution numerical model forecast. In the following part of this chapter,
we first briefly introduce the extrapolation method, and then we will focus on how to set the
system configuration and calibrate the final forecast of NWP to obtain a better blending with
the extrapolation. Conclusion and discussion are given in the end.

Understanding of Atmospheric Systems with Efficient Numerical Methods for Observation and Prediction54

2. Blending scheme

The aim of this study is to establish a blended quantitative precipitation product for 0–6 h
short-term forecast, covering the Yangtze River Delta region with spatial resolution of 3 km
and time resolution of 10 min. Using high-resolution radar network observation extrapolation
and specially configured numerical model, blended product is then carried out by real-time
model evaluation and calibration, so as to improve the timeliness and accuracy of prediction
(Figure 1).

2.1. Extended 0–6 h radar extrapolation

In this chapter, an improved TREC method, namely, the COTREC [9], is used for the extrapo-
lation. First, a level-II real-time data quality control is done to remove non-meteorological
echoes such as super refraction and geophysical echo. Non-meteorological echoes are mostly
concentrated in low elevation angle; thus, it can be eliminated by doing comparative analysis
of different elevation data, which in this study is 0.5�/1.5� VCP scan. Then, cross-correlation
method (TREC) is used to find the TREC wind field. The wind field is first smoothed out by
adopting a 9-point smoothing to avoid sudden change. As wind field retrieved by TREC
method is only of value in the region where there is observed reflectivity, so the non-
convergence wind field obtained by TREC is usually weakened to a certain extent, which is
particularly the case when it comes to isolated echoes or lined echoes. By introducing wind
field from numerical forecast as the guide flow field of TREC wind field, the weakening of
TREC wind field can be compensated. In this chapter, a 3-hourly forecast wind field of GFS, a
global forecast model provided by the National Centers for Environmental Prediction (NCEP) of
the USA, is used to supply the TREC wind field. The missing values of TREC wind is compen-
sated by doing vertical averaging and horizontal interpolation of the GFS wind. Thus, a new
TREC wind field (nu0 (i, j), nv0 (i, j)) is obtained. The final wind field of COTREC (u (i, j), v (i, j))

Figure 1. Flowchart of the blending forecast.
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is obtained by applying non-convergence algorithm to the TREC field. Finally, by applying the
COTREC wind field to the observation radar reflectivity of t2, the extrapolation at t2 + Δt is
completed (Figure 2).

Traditional COTREC extrapolation is effective in about 2 h for a single radar observation. In
order to extend the extrapolation time to more than 2 h, on the one hand, it is necessary to
enlarge the radar data and extend the original single radar observation to the radar network
over Yangtze River Delta region surrounding Shanghai. Thanks to the East China regional
data sharing line established during the 2010 Shanghai World Expo, observations of 11 Dopp-
ler radars around Shanghai are available for the needs of longer time quality control and
extrapolation (Table 1). Furthermore, as theoretically the vector field calculated by the TREC
method is only effective for the current time, TREC method tends to lose validity due to the
evolution of atmosphere, so when forecast time comes to over 2 h, the average wind field of
numerical forecast is gradually taking part to replace the TREC wind field so as to indicate the
evolution of the wind field.

Figure 2. Flowchart of the COTREC extrapolation.

Name ID Type Longitude Latitude Antenna altitude (m)

Qingpu Z9002 SA 120�5703200 31�403000 42.1

Shanghai Z9210 88D 121�5300500 31�0000500 44.2

Nanjing Z9250 SA 118�4105200 32�1102700 138.8

Nantong Z9513 SA 120�5803300 32�0403300 29

Yancheng Z9515 SA 120�1200700 33�2505500 28.3

Hangzhou Z9571 SA 120�2001500 30�1602500 96

Jinhua Z9579 SB 119�3803900 29�1205500 1191.5

Zhoushan Z9580 SB 122�0603200 30�0400800 438.3

Hefei Z9551 SA 117�1502800 31�520100 165.5

Huangshan Z9559 SA 118�090 30�080 1847

Nanchang Z9791 SA 115�5305600 28�3502700 94.9

Table 1. Radar sites around Shanghai used for extrapolation.
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2.2. NWP configuration for blending

For the NWP system, how to configure the numerical model system to make it meet the needs
of short-term precipitation forecast as well as the afterward reflectivity blending is a prior task
throughout the system configuration. Some of the key issues here include (1) the need to run a
regional NWP model with high resolution to resolve weather processes involving small to
mesoscale convections, (2) configuration of parametrization schemes in convection scale to
keep strength and development of simulated echo system in basically the same range of the
radar observation to be assimilated, (3) reduction of spin-up time of NWP to about 1 h to meet
the needs for rapid updated short-term prediction, and (4), finally, as traditional short-term
precipitation forecast relies heavily on radar observations, it is a common thought that better
radar reflectivity assimilation and prediction are the keys to a better NWP for the blending. In
the following part of this section, we focus on the NWP system configuration and radar data
assimilation to describe their influence on the prediction of radar reflectivity.

2.2.1. The regional NWP system

Research and practice have shown that model spin-up can be effectively reduced by using
Rapid Update Cycle [15–18]. By doing RUC is basically to update numerical forecast of the
previous time by continuously adding the latest observation data assimilation, thus to reduce
spin-up time, and improve the short-term forecast. In this chapter, the Weather Research and
Forecasting Model (WRF-ARW, V3.9) and Community Gridpoint Statistical Interpolation (GSI,
V3.6) system were chosen as the numerical model and data assimilation system. In order to
integrate with the radar extrapolation, the model configuration was focused on the forecast of
reflectivity. Current 12 h forecast configuration includes a model grid of 700*700*51, horizontal
resolution of 3 km, Thompson’s microphysics parameterization, Noah land surface model,
RRTM longwave radiation scheme, and Dudhia shortwave radiation scheme. Referring to the
short-term system Rap [19] of the National Oceanic and Atmospheric Administration (NOAA),
the overall operation scheme was configured to a partially RUC CYCLE run accompanied with
a 6 h catch-up CYCLE over the East China (Figure 3). GFS forecast from the National Centers
for Environmental Prediction (NCEP) was used to provide initial and boundary conditions
twice a day at 02/14 BT for the catch-up cycle. The ECFLOW software package developed by
the European Centre for Medium-Range Weather Forecasts (ECMWF) is used for task sched-
uling and monitoring (https://software.ecmwf.int/wiki/display/ECFLOW/). By using such a
cycle-updated configuration with conventional data assimilation, spin-up time was essentially
eliminated even in the absence of radar data; well-structured precipitation was usually able to
be constructed within 1 h.

Cumulus and boundary layer parameterization are two other important schemes for model
precipitation. Cumulus parameterization directly influences the thermal environment and
precipitation forecast of model [20, 21]. While being the place where most heat and water
vapor concentrate in the atmosphere, eddies in the boundary layer were the main trigger
mechanism for precipitation, especially in the daytime [22, 23]. The chosen of different bound-
ary layer parameterization schemes would have important implications for forecasting precip-
itation [24–27]. In the current system, the UW boundary layer scheme [28] and the GF cumulus
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regional NWP model with high resolution to resolve weather processes involving small to
mesoscale convections, (2) configuration of parametrization schemes in convection scale to
keep strength and development of simulated echo system in basically the same range of the
radar observation to be assimilated, (3) reduction of spin-up time of NWP to about 1 h to meet
the needs for rapid updated short-term prediction, and (4), finally, as traditional short-term
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assimilation to describe their influence on the prediction of radar reflectivity.
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V3.6) system were chosen as the numerical model and data assimilation system. In order to
integrate with the radar extrapolation, the model configuration was focused on the forecast of
reflectivity. Current 12 h forecast configuration includes a model grid of 700*700*51, horizontal
resolution of 3 km, Thompson’s microphysics parameterization, Noah land surface model,
RRTM longwave radiation scheme, and Dudhia shortwave radiation scheme. Referring to the
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the overall operation scheme was configured to a partially RUC CYCLE run accompanied with
a 6 h catch-up CYCLE over the East China (Figure 3). GFS forecast from the National Centers
for Environmental Prediction (NCEP) was used to provide initial and boundary conditions
twice a day at 02/14 BT for the catch-up cycle. The ECFLOW software package developed by
the European Centre for Medium-Range Weather Forecasts (ECMWF) is used for task sched-
uling and monitoring (https://software.ecmwf.int/wiki/display/ECFLOW/). By using such a
cycle-updated configuration with conventional data assimilation, spin-up time was essentially
eliminated even in the absence of radar data; well-structured precipitation was usually able to
be constructed within 1 h.

Cumulus and boundary layer parameterization are two other important schemes for model
precipitation. Cumulus parameterization directly influences the thermal environment and
precipitation forecast of model [20, 21]. While being the place where most heat and water
vapor concentrate in the atmosphere, eddies in the boundary layer were the main trigger
mechanism for precipitation, especially in the daytime [22, 23]. The chosen of different bound-
ary layer parameterization schemes would have important implications for forecasting precip-
itation [24–27]. In the current system, the UW boundary layer scheme [28] and the GF cumulus
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parameterization scheme [29] are chosen to be the boundary layer and cumulus parameteriza-
tion scheme. Cumulus convection and boundary layer parameterization schemes can help the
establishment of rain bands within the NWP model, while for our experiment, the selection of
parametrization schemes should also be considered along with the adaptability of radar
assimilation and extrapolation. With the application of radar data and cycled start-up, precip-
itation should already form in model start for most cases. The maintenance and development
of the initial rain system are more important here. Research has found that the UW scheme
showed a stronger mixing of the boundary layer turbulence in the daytime [30] and thus has a
good inhibition on the afternoon false alarm of local convection, which is usually the case for
regional NWPs. On the cumulus parameterization, the GF scheme was chosen for two reasons:
one is that it can be applied to high-resolution numerical models [31] and the other is for the
optional shallow convection scheme with GF scheme, which can also help to suppress false
convection by distinguishing local convection type.

2.2.2. Radar data assimilation for reflectivity

Currently, weather radar is the only way to a continuous, high-resolution, three-dimensional
direct observation of convective scale precipitation. Conventional Doppler weather radar
observes radial wind and reflectivity, if one wants to combine them into the initialization of
NWP; the key point here is to make radar observation compatible with the thermal dynamic
fields of model atmosphere, so that they are neither smoothed away as noises nor to induce
false development to the model. By introducing radar radial wind and reflectivity data, Xiao
et al. [32] used the MM5 3DVAR system to improve initial wind field and moisture distribution
of model, thus improving short-term precipitation simulation. Xue et al. [33] assimilated radar

Figure 3. Model domain and configuration of the rapid update cycle (blue arrows) and the catch-up cycle (green arrows).
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reflectivity data within a time window. By using the ARPS assimilation system, they were able
to retrieve the distribution of water vapor and precipitation particles in the area of radar
observation and thus to improve the initial condition of model and afterward tornado simula-
tion. Some studies found that [34–36] the assimilation of radial wind data was generally less
important to precipitation than reflectivity data.

The assimilation of radar reflectivity at present was usually done through “diabetic initializa-
tion,” which is to convert the observation of radar reflectivity to the model variable such as
cloud and precipitation particles. At the same time, in-cloud atmosphere profile was adjusted
according to latent heat release and water vapor saturation ratio [37]. Researches have shown
that these kinds of assimilation can effectively reduce NWP spin-up time and improve forecast
from the model start to a few hours later. While in the case of radial wind, conventional
variation method (such as 3D-/4D-VAR) was used to do the assimilation. It should be pointed
out that for the assimilation of single radar radial wind, the improvement to the NWP’s three-
dimensional wind field was often limited, and it was usually done along with the assimilation
of reflectivity to get a better improvement.

In recent years, China made a great effort in the construction of various meteorological
observation networks. With the construction of the China’s next-generation weather radar
(CINRAD) network, even trivial precipitation is now hard to miss from observation. Especially
to the east part of China, where radar observations were full covered, the integrated radar
reflectivity observation can basically be viewed as the real-time precipitation distribution.
After data quality control and interpolation, the complex cloud analysis scheme in GSI system
was carried out to assimilate the reflectivity data. Model profile and particle mass variables
were thus moderated to contain the observed precipitation system.

As shown in Figure 4, the reflectivity of 51 Doppler radars in the middle and east part of China
was used. The new-generation weather radar 3Dmosaic system [38, 39] of the Chinese Academy
of Meteorological Sciences (CAMS) was used to integrate the raw data into a three-dimensional
mosaic reflectivity. The system was used to apply simple quality control to single radar obser-
vation and convert it to three-dimensional Cartesian coordinates. Afterward, data from each
radar in the region was integrated together to the three-dimensional reflectivity mosaic. As GSI
needed mosaic data of 31 levels which was a bit different from CinradMosaic, another vertical
interpolation to the mosaic data was applied. Finally, the mosaic data was converted into Bufr
formats onto the horizontal grid of NWP using the GSI radar data interface, so to be used in
the cloud analysis [40, 41].

Due to the fine coverage of the radar network observation, the distribution of precipitation can
be basically indicated at model initial time through assimilation. In order to perform a better
blending with the radar extrapolation afterward, the NWP system also needs to retain as much
information as possible from the initial radar assimilation. If the difference between observa-
tion and prediction was so large that one can hardly relate one to the other, trying to blend
them would certainly be difficult. Therefore, before the assimilation of reflectivity, all the initial
precipitation particles from the original background were removed, so that the simulated
reflectivity of model after assimilation was consistent with the observation (Figure 4). Although
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reflectivity data within a time window. By using the ARPS assimilation system, they were able
to retrieve the distribution of water vapor and precipitation particles in the area of radar
observation and thus to improve the initial condition of model and afterward tornado simula-
tion. Some studies found that [34–36] the assimilation of radial wind data was generally less
important to precipitation than reflectivity data.

The assimilation of radar reflectivity at present was usually done through “diabetic initializa-
tion,” which is to convert the observation of radar reflectivity to the model variable such as
cloud and precipitation particles. At the same time, in-cloud atmosphere profile was adjusted
according to latent heat release and water vapor saturation ratio [37]. Researches have shown
that these kinds of assimilation can effectively reduce NWP spin-up time and improve forecast
from the model start to a few hours later. While in the case of radial wind, conventional
variation method (such as 3D-/4D-VAR) was used to do the assimilation. It should be pointed
out that for the assimilation of single radar radial wind, the improvement to the NWP’s three-
dimensional wind field was often limited, and it was usually done along with the assimilation
of reflectivity to get a better improvement.

In recent years, China made a great effort in the construction of various meteorological
observation networks. With the construction of the China’s next-generation weather radar
(CINRAD) network, even trivial precipitation is now hard to miss from observation. Especially
to the east part of China, where radar observations were full covered, the integrated radar
reflectivity observation can basically be viewed as the real-time precipitation distribution.
After data quality control and interpolation, the complex cloud analysis scheme in GSI system
was carried out to assimilate the reflectivity data. Model profile and particle mass variables
were thus moderated to contain the observed precipitation system.

As shown in Figure 4, the reflectivity of 51 Doppler radars in the middle and east part of China
was used. The new-generation weather radar 3Dmosaic system [38, 39] of the Chinese Academy
of Meteorological Sciences (CAMS) was used to integrate the raw data into a three-dimensional
mosaic reflectivity. The system was used to apply simple quality control to single radar obser-
vation and convert it to three-dimensional Cartesian coordinates. Afterward, data from each
radar in the region was integrated together to the three-dimensional reflectivity mosaic. As GSI
needed mosaic data of 31 levels which was a bit different from CinradMosaic, another vertical
interpolation to the mosaic data was applied. Finally, the mosaic data was converted into Bufr
formats onto the horizontal grid of NWP using the GSI radar data interface, so to be used in
the cloud analysis [40, 41].

Due to the fine coverage of the radar network observation, the distribution of precipitation can
be basically indicated at model initial time through assimilation. In order to perform a better
blending with the radar extrapolation afterward, the NWP system also needs to retain as much
information as possible from the initial radar assimilation. If the difference between observa-
tion and prediction was so large that one can hardly relate one to the other, trying to blend
them would certainly be difficult. Therefore, before the assimilation of reflectivity, all the initial
precipitation particles from the original background were removed, so that the simulated
reflectivity of model after assimilation was consistent with the observation (Figure 4). Although
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eliminating previous particles could reduce false precipitation to a certain extent, due to the
application of hourly update cycle, radar observations were continuously added into the
NWP. Adjustments done by cloud analysis could still easily lead to overloading of the NWP’s
hydrometer fields, which further caused the overdevelopment of precipitation. One way to
prevent this problem in RAP was to reduce the overstatement of precipitation by setting up a
threshold to limit the hydrometer change in every cycle. Similarly in this experiment, assimi-
lation of reflectivity was restrained in two aspects. Firstly, the assimilation reflectivity was
performed only in the region where reflectivity was above 15dBZ. Secondly, the retrieved
hydrometer mass field was restricted to the limit of 3 g/kg in high-reflectivity area and 1 g/kg
in the low-reflectivity area. Figure 5 provides a comparison of the 3–9 h radar composite
reflectivity forecast and observation for a rainfall event in Central China on April 23, 2018. As
shown in the figure, the system could maintain radar reflectivity observation from assimilation
and continue to forecast its development up to about 9 h. Meanwhile, the overall intensity and
position of the simulated reflectivity are kept consistent with the observation. In this way, both
the prediction and observation had a good similarity in intensity and shape; then, it is possible
to calibrate the forecast echoes based on the comparison of the two.

Figure 4. Distribution of radar stations (purple triangles) used in assimilation and retrieved initial composite reflectivity
(shaded) from assimilation at 11:00 on June 5, 2018.
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2.3. Calibration to the NWP forecasted reflectivity

While it often took the short-term NWP forecast a delay of about 2 h to do data collection and
time integral, so even by the time forecasters got the NWP forecast, there would already be
errors on intensity and position. In order to integrate the NWP forecast with radar extrapola-
tion, it is necessary to calibrate the NWP prediction according to the current observation before
it can be integrated with the extrapolation. The main calibrations here include:

1. Calibration of the intensity. A Weibull function was used here to fit the probability distribu-
tion of forecast and observation reflectivity separately. The probability density function is:

where k is the shape parameter and λ is the scale parameter; they were used to determine the
resemblance of forecast and observation. If the two sets of parameters deviated from above a

Figure 5. Composite reflectivity of forecast (a/b/c) and observation (d/e/f). Forecast started on 08:00 23rd April, 2018.
(a)(d) 11:00 BT, (b)(e) 15:00 BT, and (c)(f) 17:00 BT.
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certain threshold, calibration was carried out by doing a proportional scaling to the forecast
reflectivity, so that the distribution of k and λ was closer to the observation ones. Recursive
scaling was carried out until the final parameters meet the threshold (Figure 6). The same
scaling value was then preserved and applied to the forecasts afterward but should be slightly
weakened as forecast hour increased.

2. Calibration of the position. Position error of NWP was evaluated based on a target recog-
nition algorithm of SCMO. Firstly, a low-pass filtering was carried out to remove noise and
singularity for both forecast and observation. Target recognition was then carried out by
identifying different blocks of distinct echoes. After target recognition, the predicted ech-
oes were associated with the observation target by target by comparing the deviation
characteristics such as center of gravity, scale, shape, period, intensity, and so on. Finally,
when two targets from forecast and observation were identified as the same echo, the
displacements of their centers of gravity were used to adjust the position of the original
forecast reflectivity (Figure 7).

Figure 6. Intensity adjustment for a 3 hour forecast started at 11:00 BT 20th April, 2016. (a) NWP prediction (original),
(b) NWP forecast (after calibration), and (c) Weibull fit for the forecast before/after calibration and the observation.

Figure 7. Position adjustment for a 3 hour forecast started at 11:00 BT 20th April, 2016. (a) target identification for
observation (after low pass filtering), (b) target identification for NWP prediction (after low-pass filtering), and (c) target
identification for NWP prediction (after target adjustment).
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2.4. Weighted blending and Z-R relation determination

Different weight coefficients were applied to the extrapolation and calibrated NWP prediction in
the stage of reflectivity blending. Coefficients were designed basically to make the extrapolation
dominant in the early time (0–2 h) and make the NWP prediction smoothly take control later on
(4–6 h). The weight function here used was based on the same equation used by Chen et al. [13]:

WNWP ¼ 0:5þ 0:5∗ 1þ tanh t� t0ð Þð Þ
WEX ¼ 1�WNWP

Precipitation type Z-R coefficients

A B

Convective precipitation 200 1.46

Mixed precipitation 254 1.33

Stable precipitation 263 1.26

Tropical precipitation 200 1.20

Default 300 1.4

Table 2. Coefficients of the five Z-R relation functions in operation at SCMO.

Figure 8. Real-time Z-R relation function determination.
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Default 300 1.4

Table 2. Coefficients of the five Z-R relation functions in operation at SCMO.

Figure 8. Real-time Z-R relation function determination.
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where t0 is the time when the extrapolation weight took the value of 0.5. At present the value
of t0 is adjusted within 3–4 according to the scale of the system empirically. The larger the
extrapolation echo scale was, the greater the t0 value would be.

Finally, the blended radar reflectivity is converted to precipitation rate through a Z-R relation
function:

Z ¼ ARB

There were five Z-R functions right now in operation at SCMO (Table 2). In order to decide
which one to use in the final conversion, a real-time evaluation for each function was applied.
Precipitations from the ground AWS observation along with their observed reflectivity in the
latest 3 h were used as statistical samples, mean absolute errors of these samples for each Z-R
function was calculated, and the one with the smallest error was selected to use (Figure 8). The
final operation run was a 6-h blending QPF forecast updated every 30 min with 3 km/10 min
space-time resolution.

3. Forecast case and evaluation

The forecast to a rainfall event occurred in the late evening of July 5, 2018, is exhibited below
for demonstration. This event happened during the Meiyu season in the southern part of

Figure 9. Composite reflectivity forecast and observation at 22:00/23:00/24:00 BT 5th July, 2018. (a)(b)(c) Blending forecast
and (d)(e)(f) Mosaic observation.
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Jiangsu and Anhui provinces. The rainfall was produced by a linear mesoscale convective
system (MCS) which occurred on the low-level vortex of the Meiyu front. Early convections
formed in the afternoon of July 5 in the middle of Anhui province and then moved southeast.
The precipitation lasted to until 18:00 BT in the evening, and new convections started to form
to the southwest side of the former convection in the southwest of Anhui. The convections then
organized into a quasi-linear convection zone, which lead to the heavy rainfall in the wide of
south Anhui. Figures 9, 10 provide composite reflectivity evolution to the process of both the
blending forecast and radar mosaic observation. Forecast started at 21:00 BT July 5 when the
linear structure of the convection system was basically formed and about to enhance. Figure 9
shows that the first 3 h forecasts of the blending are mainly the results of extrapolation. The
echo in south Anhui moves southeast while sustaining the initial intensity. Compared with the
observation, the shape of the forecast echo was still satisfying, but the intensity basically keeps
the same as initial. The influence of NWP is gradually strengthened after 3 h (Figure 10). New
convection develops to the bordering area of Zhejiang, Jiangxi, and Anhui while echoes to the
bordering area of Jiangsu and Zhejiang. While the moving direction of original extrapolation
echo is mainly southeast, the 6 h blending forecast overall shows a rainfall system moving
south and developing, which is consistent with the observation. Therefore, the blending
forecast shows a better effect compared to that of extrapolation and NWP prediction at 0–6 h.
There is also precipitation in the east of Zhejiang at the beginning of the forecast, which
was mainly generated by convections in the mountainous area of Zhejiang merging together.

Figure 10. Composite reflectivity forecast and observation at 01:00/02:00/03:00 BT 6th July, 2018. (a)(b)(c) Blending
forecast and (d)(e)(f) Mosaic observation.
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It gradually disperses while moving east after late afternoon, which is also the case in the
blending forecast.

To objectively illustrate the effects of blending forecast, experiments were carried out for four
rainfall events in the later part of Meiyu period from July 1–9, 2018, for forecast examination.
With a total of 94 forecasts, the critical success index (CSI) for the reflectivity threshold of
20 dBZ is shown in Figure 11. The forecast score of extrapolation overrides that of the NWP in
a longer time than common sense. The NWP only takes over at forecast time after 4 h. Although
it may be case dependent, the extrapolation of the mosaic reflectivity does have its validity in
longer forecast times in some occasion. And due to the differential weight coefficient adjust-
ment, the blending forecast is able to keep resembling to that of extrapolation within 4 h over-
matching the NWP. When the extrapolation score falls below the NWP after 4 h, weight of the
NWP forecast begins to dominate. The fact that blending forecast scores override the NWP
scores in all times shows the positive effect of NWP calibration to the forecasted reflectivity.

4. Conclusions and discussions

This chapter introduced the 0–6 h blending QPF forecast in SCMO, especially the configuration
and calibration of NWP in it. The forecast is based on an extended extrapolation of 11 Doppler
radars over the Yangtze River Delta and reflectivity forecast of a high-resolution rapid
updated NWP system. Intensity correction based on Weibull transform, position correction

Figure 11. Critical success index for 94 forecast experiments of four rainfall events in July 2018 (threshold: 20dBZ).
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based on target recognition andmatching, weight coefficient adjustment based on precipitation
scale, and Z-R relationship determination based on real-time AWS observation are used to
calibrate and blend the NWP forecast.

1. Extrapolation time can be extended when combining observations of multiple radars in
the region and using NWP wind forecast to do the extrapolation when forecast time
increases.

2. As NWP is still not perfect for all the forecast elements, configuration of the NWP system
is better done according to one’s special purpose of use. For short-term efficiency of the
reflectivity forecast, attention needs to be paid to decrease model spin-up, improving radar
data assimilation and various parameterization schemes. Based on the choice of the UW
boundary layer scheme, the GF cumulus scheme with shallow convection, complex cloud
analysis of three-dimensional reflectivity, and rapid update cycle along with catch-up
configuration, the NWP system is able to sustain initial observation echo and forecast its
development in the following hours and, at the same time, keep a good reduction to false
alarms of model convections.

3. Calibrations to the NWP forecasts are carried out based on real-time error analysis before
they can be integrated with the extrapolation. Spectrum distribution of forecast reflectivity is
adjusted by the standards made by aWeibull distribution fitting. Echo positions are adjusted
by target identification and matching according to parameters such as weight, scale, and
strength. The final QPF is achieved by real-time Z-R relation determination. Forecast exper-
iments were carried out, and results show that blending extrapolation and the NWP predic-
tion can get a better short-term prediction of 0–6 h with the advantages of both.

4. Some of the technical scheme used in this experiment is still immature. For example, for
the radar radial wind assimilation, although in some cases it might have got some
improvement to the movement and intensity of precipitation, but due to the data coverless
and lack of quality control, it was common that there were severe boundary effects which
contaminated forecast later that we had to exclude it in the system. For the extrapolation,
some state-of-the-art machine learning algorithms can already do forecasts with echo
intensity development. And for the areas without radar coverage, how to use satellite data
to get a 3D precipitation observation as a substitution is sure to be key to get a better short-
term forecast there.
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updated NWP system. Intensity correction based on Weibull transform, position correction

Figure 11. Critical success index for 94 forecast experiments of four rainfall events in July 2018 (threshold: 20dBZ).

Understanding of Atmospheric Systems with Efficient Numerical Methods for Observation and Prediction66
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data assimilation and various parameterization schemes. Based on the choice of the UW
boundary layer scheme, the GF cumulus scheme with shallow convection, complex cloud
analysis of three-dimensional reflectivity, and rapid update cycle along with catch-up
configuration, the NWP system is able to sustain initial observation echo and forecast its
development in the following hours and, at the same time, keep a good reduction to false
alarms of model convections.

3. Calibrations to the NWP forecasts are carried out based on real-time error analysis before
they can be integrated with the extrapolation. Spectrum distribution of forecast reflectivity is
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because of the strong sensitivity to initial conditions and physical parameters. As a result,
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CFL-like criteria, the GWRM typically employs time intervals two orders of magnitude
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chaotic Lorenz 1984 equations is demonstrated. The results indicate that the method has
strong potential for NWP. Furthermore, employing spectral representations of physical
parameters and initial values, families of solutions are obtained in a single computation.
Thus, the GWRM is conveniently used for studies of system parameter dependency and
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1. Introduction

Numerical methods are routinely used when modeling complex systems such as meteorolog-
ical and atmospheric systems. These systems can be described by nonlinear ordinary and
partial differential equations. Nonlinear systems in particular, as opposed to linear systems,
constitute specific numerical challenges in terms of processing and memory requirements.
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In order to efficiently use the computer’s resources, it is important to choose a suitable numerical
method [1].

Typically, when solving initial value ODEs, it is common practice to use finite difference
methods (FDM) that discretize the temporal domain into finite steps. Information from the
initial state and previously computed steps are used to estimate the solution at a “future”
discrete time step. This is an intuitive and powerful method because we can easily visualize the
cause and effect of each step. However, the problem with these techniques when solving
complex systems is that small temporal steps are required in order for a solution to be found.
In order to acquire a stable solution, the Courant-Friedrichs-Lewy (CFL) condition needs to be
satisfied when employing more accurate, explicit FDM, thus limiting time step length.

Another approach is to use a time-spectral method, which takes a bird’s eye view of the
problem [2–7]. Instead of focusing on small local steps in time, an approximate solution that
could fit the entire temporal domain is postulated. This approximate solution is set in the form
of a finite series of basis functions. Thus, the unknowns of the equations are thereby changed
from the physical variables to the coefficients of the solution ansatz. The procedure allows for
highly accurate and global temporal solutions.

In the following, we will present application of the GWRM [7] to the Lorenz 1984 [8] differen-
tial equations. This is a set of three coupled, nonlinear, and chaotic ODEs, providing a basic
model of the important process of Hadley tropical atmospheric circulation. In Section 2,
Method, we present a short derivation of the GWRM. Section 3 will introduce the Lorenz
equations and how they can be solved by the time-spectral method. In this section, we also
show how the parameter dependence of the solution can be found from a single GWRM
computation. We also show that, similarly, the dependence on initial conditions can be found
from one computation only. A discussion is given in Section 4, followed by conclusion in
Section 5.

2. Method

The time-spectral method employed here is the generalized weighted residual method
(GWRM). The physical equations of this Galerkin method are projected onto a space of
weighted orthogonal basis functions resulting in a set of algebraic equations. The residual of
the differential equation is necessarily zero for the exact solution, thus the numerical method
seeks to solve for the coefficients that minimize the residual in the interval where orthogonality
holds.

In this procedure, all dimensions can be included, thus the term “generalized.” This means
that the dependence on all temporal, spatial, and parameter domains can be included in the
algebraic equations.

A key characteristic of Chebyshev polynomials, and a main reason for choosing them as basis
functions, is their minimax property [9]. This property states that a Chebyshev series of order n
is the best approximation of the same Chebyshev series of order nþ 1. The implication is that
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the highest mode can be neglected without deteriorating the approximate solution. This
enables computation of nonlinear products entirely within spectral space. Actually, all GWRM
numerical computations are carried out in spectral space. In contrast to, for example, Fourier
series, Chebyshev series are also conveniently real. Any type of boundary condition can be
employed, such as Dirichlet, Neumann, and periodic boundary conditions. Finally, Chebyshev
polynomial series are known to converge rapidly when approximating smooth functions.

2.1. Generalized weighted residual method

Consider the following set of differential equations,

∂u
∂t
� F u½ � ¼ s, (1)

where u t; x;pð Þ is the unknown variable with a temporal, spatial, and parameter dependence.
F is a linear or nonlinear operator, and s is a source term. The GWRM solution ansatz takes the
form, in the case of a singular physical dimension and one parameter,

u t; x; pð Þ ≈U τ; ξ;Pð Þ ¼
X0K

k¼0

X0L

l¼0

X0M

m¼0
aklmTk τð ÞTl ξð ÞTm Pð Þ: (2)

Here, Tn xð Þ ¼ cos narccos xð Þð Þ is the Chebyshev polynomial of the first kind, aklm are coeffi-
cients, and the prime (

0
) denotes that the first term of each summation should be multiplied by

1=2. Since Chebyshev polynomials are orthogonal in the interval �1; 1½ �, variable transforma-
tions are applied for general intervals,

τ ¼ t� At

Bt
, ξ ¼ x� Ax

Bx
, P ¼ p� Ap

Bp
, (3)

where Az ¼ z1 þ z0ð Þ=2 and Bz ¼ z1 � z0ð Þ=2, z being the variable t, x, and p with their respec-
tive upper and lower bounds. The Picard integral is then applied to (1), after which the
residual of the differential equation is formed,

R ¼ u t; x; pð Þ � u t0; x; pð Þ þ
ðt
t0

F u½ � þ sð Þdt0
� �

: (4)

The residual is multiplied by weighted Chebyshev polynomials and then integrated over the
computational domain, whereafter it is set to zero. The equation takes the form

ðp1
p0

ðx1
x0

ðt1
t0
RTq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ 0, (5)

where the Chebyshev weight is wζ ¼ 1� ζ2
� ��1=2

, ζ being the transform variables τ, ξ, and P.
Eq. (5) has the form of an integral minimum in calculus of variation, which states that if R is
smooth and differentiable, and the basis functions and weights are nonzero, then R will be
minimized in the domain [10].
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Continuing, we expand Eq. (5),
ðp1
p0

ðx1
x0

ðt1
t0

u t; x; pð Þ � u t0; x; pð Þ þ
ðt
t0

F u½ � þ sð Þdt0
� �� �

Tq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ 0, (6)

yielding the following relations for each term of (6):
ðp1
p0

ðx1
x0

ðt1
t0
u t; x; pð ÞTq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ BtBxBp

π
2

� �3
aqrs (7)

ðp1
p0

ðx1
x0

ðt1
t0
u t0; x; pð ÞTq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ BtBxBp

π
2

� �2
πδq0brs (8)

ðp1
p0

ðx1
x0

ðt1
t0

ðt
t0
F u½ �dt0 0

� �
Tq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ BtBxBp

π
2

� �3
Aqrs (9)

ðp1
p0

ðx1
x0

ðt1
t0

ðt
t0
sdt0

� �
Tq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ BtBxBp

π
2

� �3
Sqrs: (10)

where
ðt
t0
F u½ �dt0 ≈

X0K

k¼0

X0L

l¼0

X0M

m¼0
AklmTk τð ÞTl ξð ÞTm Pð Þ, (11)

and
ðt
t0
sdt0 ≈

X0K

k¼0

X0L

l¼0

X0M

m¼0
SklmTk τð ÞTl ξð ÞTm Pð Þ: (12)

Combining Eqs. (7a)–(7d), we obtain the final set of algebraic equations

aqrs ¼ 2δq0brs þ Aqrs þ Sqrs (13)

where aqrs are the solution coefficients, δq0 is the Kronecker delta function, brs represents the
initial conditions, Aqrs is the spectral representation of the time-integrated linear or nonlinear
operator F, and Sqrs represents the time-integrated source term. Eq. (10) is here defined for the
truncated domain 0 ≤ q ≤K, whereas strictly the time integration renders K þ 1 terms. For the
spatial domain, we have 0 ≤ r ≤ LBC, where LBC ¼ L�NBC, with NBC representing the total
number of boundary conditions for this spatial dimension. Boundary condition equations are
thus added to (10) for problems including spatial derivatives. Here, we will be solving a set of
time-dependent ODEs, thus only initial conditions are required to find a unique solution.
Finally, it holds that 0 ≤ s ≤M.

Eq. (10) can be solved iteratively with a suitable root solver. Here, we use the semi-implicit root
solver (SIR) [11] because it shows superior global stability compared to the Newton method
(NM) with line-search while still maintaining a fast convergence.

For more details regarding GWRM basics, please see references [7, 12].
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3. The GWRM, exemplified by the Lorenz 1984 equations

The Lorenz 1984 model is a set of three nonlinear ordinary differential equations that features
chaotic behavior similar to that of meteorological systems [8]. It is consequently one of the
simplest models of Hadley circulation due to the substantial amount of approximations pos-
tulated in order to arrive at this low order model. Thus, whereas the Lorenz 1984 model is not
an accurate NWP model, it allows for a rigorous numerical analysis of simple, yet nonlinear
chaotic behavior. This is the reason for employing them in the present work. The equations are

dX
dt
¼ �Y2 � Z2 � αXþ αQ,

dY
dt
¼ XY� βXZ� YþW,

dZ
dt
¼ βXYþ XY� Z:

(14)

For a more exhaustive description of the model, see [8]. Suffice it to say the variables X, Y, and
Z represent certain meteorological systems such as wind currents and large-scale eddies. The
coefficients α, β, Q, and W are chosen within certain limits to act as damping, coupling, and
amplification of the physical processes of the system.

Lorenz, in his 1984 article, posed the question, “What can such a simple model possibly tell us
about the real atmosphere?”. His answer was that postulating certain hypothesis about the
behavior of the real atmosphere, we can strengthen the reasoning behind the hypothesis
qualitatively by the help of these models. However, that is not what we are concerned with
here, but rather the model is used as a test to show how different numerical methods handle
chaotic behavior. Furthermore, the model is useful to develop new techniques that can analyze
such quantities as error growth, parameter uncertainties, and variable perturbations in a more
efficient way.

3.1. Time intervals

The GWRM is a global method where a finite number of Chebyshev modes are used to
represent the physics in a given temporal domain. Instead of using a large number of
Chebyshev modes to obtain a single solution for the entire temporal domain, it is more
efficient to split the domain into smaller subintervals, so that lesser Chebyshev modes can be
used in each interval.

For controlling and maintaining the same numerical accuracy within each time interval, an
automatic time-adaptive algorithm is employed. Time-adaptive techniques are easily
implemented with Chebyshev polynomials. Since the absolute value of the Chebyshev coeffi-
cients decrease with increasing modes for well-resolved functions, the ratio of the absolute
values of the highest modes to those of the lowest modes (see Eq. (12)) gives a direct estimate
of how “good” the solution is. Thus, it holds that (for the example that (10) represents an ODE)
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Continuing, we expand Eq. (5),
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such quantities as error growth, parameter uncertainties, and variable perturbations in a more
efficient way.

3.1. Time intervals
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used in each interval.
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implemented with Chebyshev polynomials. Since the absolute value of the Chebyshev coeffi-
cients decrease with increasing modes for well-resolved functions, the ratio of the absolute
values of the highest modes to those of the lowest modes (see Eq. (12)) gives a direct estimate
of how “good” the solution is. Thus, it holds that (for the example that (10) represents an ODE)
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RK ¼ ∣aK∣þ ∣aK�1∣
∣a0∣þ ∣a1∣

! 0, K ! ∞ (15)

where ak, k ¼ 0::K, are the Chebyshev coefficients with K as the highest mode. By requiring
that RK < e, where ε is a stipulated accuracy, the time subintervals to achieve this accuracy are
automatically computed. We have found it efficient to use a balanced algorithm that tries to
expand the time interval at about every 10th time interval by a factor 1.5, and that halves the
interval whenever e accuracy could not be achieved.

An interesting and useful property of Chebyshev polynomials is Tk 1ð Þ ¼ 1, so that

u t1ð Þ ≈
X0K

k¼0
akTk 1ð Þ ¼

X0K

k¼0
ak: (16)

Thus, the exact solution at the end state u t1ð Þ can be approximated by a sum of the Chebyshev
coefficients. Eq. (13) conveniently allows for the previous end conditions, represented as
Chebyshev coefficients, to be applied as initial conditions for the next interval. All computa-
tions of a series of connected intervals are thus calculated in spectral space. A GWRM time-
interval pseudocode is provided in Appendix A. Only one domain, the temporal, is presented
for the sake of clarity.

The pseudocode shows the following: the algebraic equations are collected in a vector ϕ, along
with the initial conditions in the first element of the vector. The time domain is divided into
subintervals in which the ϕ equations are solved by SIR. The initial condition is equal to the
end-state of the previous solution, see (13). If the convergence parameter “conv” of the solution
is larger than the pre-set minimum error, then the current subinterval is halved and the ϕ
equations are solved by SIR. On the other hand, if the “conv” convergence criterion is satisfied,
the algorithm immediately proceeds to solve the next time interval, the length of which is
increased by a factor 1.5 typically every 10th interval. This procedure is done until the entire
temporal domain is solved for. When all coefficients are solved for, the semianalytical solution
ansatz is easily computed.

3.2. Parameter dependency

Instruments are continually measuring the weather’s temperature, wind speeds, and topolog-
ical height and width to name a few parameters. However, the measurement devices cannot, at
present, give a global coverage. Thus, meteorological parameters are approximate and inter-
polated.

The meteorological parameters are represented in the Lorenz model by α, β, Q, and W . The
uncertainty of the measured parameters will inevitably lower the confidence of the solution,
specifically important in weather prediction.

When studying parameter dependencies, the GWRM enables an interesting solution. Instead
of assigning the parameter a single value, we can introduce a spectrum of values. Thus, we
introduce a parameter dimension. This technique was first presented in [7], where it was
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applied to the viscosity parameter in the 1D nonlinear Burger equation. Later, it was applied to
a two-dimensional magnetohydrodynamic problem in the paper by Riva et al. [13].

For the Lorenz ODEs, where we have temporal and parameter dependencies, the solution
ansatz then takes the form,

u t;αð Þ ≈U τ;Pð Þ ¼
X0K

k¼0

X0M

m¼0
akmTk τð ÞTm Pð Þ: (17)

In Eq. (14), a single parameter has been included; however, the procedure can be expanded to
any number of parameters. The impact of the parameter α from the Lorenz equation (11) on
the X variable is demonstrated in Figure 1. The result from a single GWRM computation is
displayed, using the ansatz (14). It can be seen that varying α with the other parameters of
Eq. (11) held fixed, the solution is strongly dependent on α for longer times. For lower values of
α, the solution becomes more stable and fluctuates with a higher frequency than for higher
values of α.

It is of interest to provide a quantitative measure of the effect of α on the solution. One
approach would be to compare the deviations from a “base” run for different values of α. For
simplicity, however, we have chosen to monitor the standard deviations as a measure of the
deflection from the average value in the entire parameter interval. Standard deviations can be
computed from the semianalytical solutions with the formula

Figure 1. GWRM solution X t;αð Þ showing the parameter α dependency (interval [0.2, 0.3]) on variable X in the time
interval t∈ 0; 5½ �. The Lorenz parameters used are β ¼ 4:0, Q ¼ 8:0, and W ¼ 1:0. GWRM parameters used are M ¼ 8 and
K ¼ 8.
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The meteorological parameters are represented in the Lorenz model by α, β, Q, and W . The
uncertainty of the measured parameters will inevitably lower the confidence of the solution,
specifically important in weather prediction.

When studying parameter dependencies, the GWRM enables an interesting solution. Instead
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σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Ui �U
� �2
N � 1

s
, (18)

where Ui is the GWRM solution for a specific value of the parameter. The evaluations have
been carried out at N parameter points i at a time of interest. The parameter interval averaged
solution is denoted by U. A table is presented below where comparisons are made with a base
run with specified parameter values α∗, β∗, Q∗, and W∗. The solution at t ¼ 1:0 is used.

Average values U and standard deviations σ, representing the entire parameter interval are
also given.

The standard deviations are supplied with indices to indicate the chosen parameter and
variable for analysis. For example, σα, x states that α is the parameter domain and the standard
deviation of X is being analyzed. One parameter at a time has been varied by �20%, while the
others are kept constant.

Parameter dependency example, using a single GWRM computation t ¼ 1:0, K ¼ 8, M ¼ 8

GWRM sol. X 1;P∗ð Þ ¼ 1:311 Y 1;P∗ð Þ ¼ �0:046 Z 1;P∗ð Þ ¼ 1:541

α ¼ 0:2; 0:3½ �, α∗ ¼ 0:25

U � σ X� σα, x Y � σα, y Z� σα, z

1:307� 0:079 �0:061� 0:353 1:498� 0:073

β ¼ 3:2; 4:8½ �, β∗ ¼ 4:0

U � σ X� σβ, x Y � σβ, y Z� σβ, z

1:322� 0:068 �0:036� 0:584 1:401� 0:128

Q ¼ 6:4; 9:6½ �, Q∗ ¼ 8:0

U � σ X� σQ,x Y � σQ,y Z� σQ,z

1:308� 0:096 �0:071� 0:414 1:482� 0:087

W ¼ 0:8; 1:2½ �, W∗ ¼ 1:0

U � σ X� σW,x Y � σW,y Z� σW,z

1:310� 0:010 �0:044� 0:110 1:536� 0:015

It is immediately seen that the Y variable is strongly affected by changes in all parameter
values, whereas the X and Z solutions are more robust.

3.3. Initial condition uncertainty

Meteorological models generally include time-dependent PDEs and ODEs that require initial
conditions as starting points. In mathematical terms, initial conditions are required to close the
system of equations. If we are interested in computing a family of scenarios employing
different initial conditions, the standard approach to determine the final states is to restart the
computations from scratch, using a new initial condition each time.
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Time-spectral methods offer a more convenient approach. Similarly, as when we computed
parameter dependency in a single GWRM computation in the previous section, we will now
study the effect of a spectrum of initial values on the solution of Eq. (11), employing a single
GWRM computation.

Initial condition dependency example, using a single GWRM computation t ¼ 1:0, K ¼ 8, M ¼ 8

GWRM sol. X 1;P∗ð Þ ¼ 1:311 Y 1;P∗ð Þ ¼ �0:046 Z 1;P∗ð Þ ¼ 1:541

X 0;Pð Þ∈ 0:768; 1:152½ �, X∗ ¼ 0:96

U � σ X� σx,x Y � σx,y Z� σx, z

1:306� 0:079 �0:047� 0:205 1:521� 0:087

Y 0;Pð Þ∈ �1:32;�0:88½ �, Y∗ ¼ �1:1

U � σ X� σy,x Y � σy,y Z� σy, z

1:319� 0:156 �0:021� 0:440 1:460� 0:092

Z 0;Pð Þ∈ 0:4; 0:6½ �, Z∗ ¼ 0:5

U � σ X� σz,x Y � σz,y Z� σz, z

1:309� 0:008 �0:041� 0:132 1:535� 0:008

An interesting, albeit challenging, feature of meteorological models is the inherent uncertainty
of the initial conditions. As a result, how certain can we be of our numerical results? To be able
to predict a chaotic system with absolute precision, one would need infinitely accurate

Figure 2. GWRM solution X t;Pð Þ of the Lorenz equations in the time interval t∈ 0; 5½ �, where P is the initial condition
parameter varying in the interval 0:768; 1:152½ �. The Lorenz parameters used are α ¼ 0:25, β ¼ 4:0, Q ¼ 8:0, and W ¼ 1:0.
GWRM parameters used; M ¼ 8 and K ¼ 8.
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It is immediately seen that the Y variable is strongly affected by changes in all parameter
values, whereas the X and Z solutions are more robust.

3.3. Initial condition uncertainty

Meteorological models generally include time-dependent PDEs and ODEs that require initial
conditions as starting points. In mathematical terms, initial conditions are required to close the
system of equations. If we are interested in computing a family of scenarios employing
different initial conditions, the standard approach to determine the final states is to restart the
computations from scratch, using a new initial condition each time.
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study the effect of a spectrum of initial values on the solution of Eq. (11), employing a single
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measuring devices, computer, and numerical method. Since none of these are granted, error
growth analysis is important to gauge how far into the future we can be confident of our
predictions.

A classical error growth analysis employed for the Lorenz equations (11) would be the follow-

ing. A base scenario Uk,1 (where }k} denotes the variable) with initial conditions
v ¼< X 0ð Þ, Y 0ð Þ, Z 0ð Þ >¼< 0:96, � 1:10; 0:50 > with a time window of t∈ 0; 50½ � is solved for.
Subsequently, a number of perturbed scenarios N are solved, denoted with superscript 0ð Þ,
where the initial conditions are perturbed an amount δ, taking values < 0:001, for example.
The error growth is then computed with the formula,

Ek tð Þ ¼ 1
N

XN
n¼2

U0k,n �Uk,1

� �2
, k ¼ 1, 2, and 3: (19)

Thus, in this traditional analysis, a large number of computations are needed, where the ODEs
are solved for different perturbed initial conditions.

We suggest another approach. By use of an ansatz of the type (14), a spectrum of initial
conditions is allowed in a single computation. In the table above, results are presented for
three cases where Eq. (11) has been solved to time t ¼ 1:0. For the three cases, the base initial
conditions X∗, Y∗, and Z∗ as well as intervals for X 0;Pð Þ, Y 0;Pð Þ, and Z 0;Pð Þ are shown. Also,
results for the base initial conditions at t ¼ 1 are provided. For the solutions, where the initial

Figure 3. This figure shows the result of simultaneously varying the initial conditions of all the variables X, Y, and Z. The
plot is of the GWRM solution X t; δð Þ in the time interval t∈ 0; 5½ �, where δ is the perturbation parameter with interval
�0:1; 0:1½ � applied to the initial condition X0 0; δð Þ. The Lorenz parameters used are α ¼ 0:25, β ¼ 4:0, Q ¼ 8:0, and
W ¼ 1:0. GWRM parameters used are M ¼ 8 and K ¼ 8.
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conditions are allowed to vary in an interval, both averages over the interval are shown as well
as corresponding standard deviations. The analysis shows that the Y variable value at t ¼ 1 is
strongly dependent on the initial condition. In Figure 2, the time and initial condition depen-
dence of the X variable is shown in a 3D diagram. Here, the run time has been extended to t ¼ 5.

It would also be of interest to study the effect of allowing the initial conditions for all variables
X∗, Y∗, and Z∗ to vary simultaneously. In order to accomplish this in a single GWRM run, the
natural thing to do would be to extend the ansatz (14) to include three parameters,
corresponding to the different initial conditions. Instead, we have chosen a simpler approach.

Figure 4. Comparison of error growth for (a) X and (b) Y (16) for the ICPD and PI schemes, applied to the Lorenz
equation (11). (Solid) ICPD computation requiring tCPU ¼ 2:7 min and (dashed) PI computation requiring
tCPU ¼ 12:7 min. The Lorenz parameters used are α ¼ 0:25, β ¼ 4:0, Q ¼ 8:0, and W ¼ 1:0. GWRM parameters used are
K ¼ 8 and M ¼ 4.
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conditions are allowed to vary in an interval, both averages over the interval are shown as well
as corresponding standard deviations. The analysis shows that the Y variable value at t ¼ 1 is
strongly dependent on the initial condition. In Figure 2, the time and initial condition depen-
dence of the X variable is shown in a 3D diagram. Here, the run time has been extended to t ¼ 5.

It would also be of interest to study the effect of allowing the initial conditions for all variables
X∗, Y∗, and Z∗ to vary simultaneously. In order to accomplish this in a single GWRM run, the
natural thing to do would be to extend the ansatz (14) to include three parameters,
corresponding to the different initial conditions. Instead, we have chosen a simpler approach.
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equation (11). (Solid) ICPD computation requiring tCPU ¼ 2:7 min and (dashed) PI computation requiring
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We let X0 0; δð Þ ¼ X∗ þ δ, Y0 0; δð Þ ¼ Y∗ þ δ, and Z0 0; δð Þ ¼ Z∗ þ δ, where the perturbation δ is a
single parameter that is applied to all three variables. An example computation is shown in
Figure 3. The X variable here features a quite a different time evolution than in Figure 2, where
only the X variable initial condition was perturbed.

In the table below, initial condition interval average values, as well as standard deviations, are
provided for all the variables X, Y, and Z for a run extending to t ¼ 20.

Initial condition dependency example, using a single GWRM computation t ¼ 20, K ¼ 8, M ¼ 8, δ < 0:001

GWRM sol. X 20; 0ð Þ ¼ 1:779 Y 20; 0ð Þ ¼ 0:483 Z 20; 0ð Þ ¼ �0:167

U � σ X� σx Y � σy Z� σz

1:787� 0:063 0:460� 0:062 �0:099� 0:226

Returning to error growth analysis as suggested by Eq. (16), reliable results can be computed if
a sufficiently large domain has been spanned by the perturbed initial conditions. We have
compared the classical approach of perturbed iterations (PI) with the new initial condition
parameter dependency (ICPD) technique in Figure 4a and b. Of particular interest is the
potential gain in CPU time, using the ICPD.

It is found that the ICPD technique with K ¼ 8 and M ¼ 4 achieves the same result of error
growth as the PI scheme. The ICPD scheme computed the error growth in tCPU ¼ 2:7 min as
compared to the PI scheme which required tCPU ¼ 12:7 min. Thus, a near fivefold increase in
efficiency was obtained for this relatively simple case.

Numerically, Figure 4a is based on N ¼ 250 runs with the PI scheme, whereas Figure 4b was
computed in a single run, where N ¼ 1000 different initial condition values was used.

4. Discussion

Is it more efficient to solve a system of differential equations using a spectral representation of
the parameter domain instead of solving the system multiple times with different parameter
values? Some points related to this discussion are that for the ICPD approach, using the
GWRM,

• the parameter dependencies can easily be analyzed since GWRM solutions are analytical

• the time-spectral method is a high-order method, leading to high accuracy solutions

• all parameters in an interval are included, whereas certain regions of critical parameter
dependence could be missed out with traditional PI methods

• the parameter domain can be split into intervals, that can be solved for separately, poten-
tially spanning a larger parameter space more efficiently

In this chapter, a univariate analysis has been performed; however, a multivariate analysis can
also be implemented in the same manor. It should be noted, however, that the more parame-
ters introduced in the analysis, the more Chebyshev modes need to be solved for, which results
in larger matrices and memory demands.
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It is also of interest to address the accuracy of the present computations. The ICPD with K ¼ 8
and M ¼ 4 did not achieve high accuracy of the exact solution at the end time t ¼ 50 as can be
seen in Figure 5. To be more precise, the solution at higher times (� t > 25) does not represent
the real dynamics because the introduced error has grown to an extent where the real solution
is lost (see Figure 5). For long run times, the effect of uncertain initial conditions is muddled by
the effect of numerical inaccuracy. On top of this, the introduction of the parameter dimension
itself in the ansatz (14) is a source for inaccuracy, since the GWRM algorithm has to handle a
larger set of Chebyshev polynomials in this case. The argument could be made that if a lower
order (e.g., fourth order) solution ansatz cannot accurately represent the parameter “physics,”
then the solution exhibits no predictive power if the prediction horizon has been exceeded. How
could then the error growth be more accurately represented? The parameter Chebyshev
coefficient could perhaps be increased, or the parameter domain could be split into intervals.
These are interesting questions for future studies of ICPD methods related to NWP modeling.

5. Conclusion

Spectral methods have a long history when applied to the spatial domain in PDE modeling.
The time-spectral method GWRM, demonstrated here, provides similar accuracy for the tem-
poral domain. High-order methods, like the GWRM, may achieve resolutions much higher
than that of finite difference methods for similar amount of work. Furthermore, when applied
to meteorological systems, the time-spectral method can accurately and efficiently compute the
physics in all spatial, temporal, and parameter domains.

A recent study, comparing the time-spectral method GWRM with commonly used time-
stepping methods such as Runge-Kutta and other, high-order implicit methods, was carried
out in [1]. Since then, the GWRM numerical algorithms have been further streamlined; see for
example [14]. Moreover, it has been found that the Jacobian of the algebraic system of equa-
tions (10) need only be computed once by including the time interval length analytically. Thus,

Figure 5. Density plot of X t; δð Þ in the time interval t∈ 0; 50½ �, where δ is perturbation parameter with interval
�0:001; 0:001½ � applied to the initial condition X0 0; δð Þ. GWRM parameters used; K ¼ 8 and M ¼ 4.
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during the computations, the new time interval length can be substituted into the Jacobian
before use. This decreases the computation time from tCPU ¼ 17:9 min to tCPU ¼ 12:7 min,
roughly 30%, for 250 perturbed scenarios with K ¼ 8 and t∈ 0; 50½ �.
We have, in this chapter, also presented a new approach to error analysis using the initial condition
parameter dependency (ICPD) technique, that is, by spectral representation of the parameter
domain. In a single computation, the same error growth was reproduced as for the classical case
(where a large number of runs were carried out for different initial conditions), with a computa-
tional time of tCPU ¼ 2:7 min. This amounts to a near fivefold gain in CPU time efficiency.

Finally, it was shown that the ICPD technique is also successfully applicable for determining
the effect of perturbed physical variables on the solution. In one GWRM computation only, it
was found that the solutions to the Lorenz 1984 equations sensitively depend on the system
parameter α.

A. Pseudo-code

Algorithm 1. GWRM time Intervals.

1: procedure

2: ϕ Ak Algebraic equations

3: ϕ 0½ �  A0 þ 2:0 � IC Apply initial condition IC

4: tacc  0

5: j 1

6: if tacc > Time them

7: conv 1.

8: while conv > rel:error do

9: if j > 1 them

10: ϕ 0½ �  A0 þ 2:0 xj�1 0½ �=2þ xj�1 1½ � þ…þ xj�1 K½ �
�

.

11: xj  SIR ϕ
�

.

12: conv jx K½ �j þ jx K � 1½ �jð Þ= jx 0½ �j þ jx 1½ �jð Þ.
13: if conv < rel:error them

14: ak  xk Save solution

15: else

16: Δt Δt=2

17: tacc  tacc þ Δt

18: if modp j; 10ð Þ ¼ 0 them

19: Δt 1:5Δt

20: j jþ 1
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Abstract

Various radiative transfer (RT) schemes are presented in the chapter including four-stream
discrete ordinates adding method (4DDA), four-stream harmonic expansion approxima-
tion (4SDA) for the solar spectra and absorption approximation (AA), variational iteration
method (VIM) for the infrared spectra. 4DDA uses Gaussian quadrature method to deal
with the integration in the RT equation. 4SDA considers four-order spherical harmonic
expansion in radiative intensity. VIM allows the zeroth-order solution to be identified as
AA, and the scattering effect is included in the first-order iteration. By applying 4DDA/
4SDA to a realistic atmospheric profile with gaseous transmission considered, it is found
that the accuracy of 4DDA/4SDA is superior to two stream spherical harmonic (Eddington
approximation) adding method (2SDA) and two-stream discrete ordinates adding
method (2DDA), especially for the cloudy conditions. It is shown that the relative errors
of 4DDA/4SDA are generally less than 1% in heating rate, while the relative errors of both
2SDA and 2DDA are over 6%. By applying VIM to a full radiation algorithm a gaseous
gaseous transmission, it is found that VIM is generally more accurate than the discrete
ordinates method (DOM). Computationally, VIM is slightly faster than DOM in the two-
stream case but more than twice as fast in the four-stream case. In view of its high overall
accuracy and computational efficiency, 4DDA, 4SDA, as well as VIM are well suited in
solving radiative transfer in climate models.

Keywords: atmospheric radiative transfer, solar four-stream discrete ordinates adding
method, solar four-stream harmonic expansion approximation, infrared variational
iteration method, infrared absorption approximation, integro-differential equation

1. Introduction

Solving the radiative transfer (RT) equation is a key issue when dealing with solar/infrared
radiative processes related to climate simulations (e.g., radiative flux and heating rate
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calculation at each level of a climate model). In recent decades, numerous approximation
techniques have been proposed to solve the RT equation [1–5].

For solar radiation, analytical solutions of various two-stream approximations [6] have been
widely used in climate models [7]. More accurate methods of four-stream approximation and
six-stream approximation have also been proposed (e.g., [8–13]). Based on the invariance
principle [14], an adding method of four-stream discrete ordinates method (DOM) (4DDA)
has been proposed. The advantage of the adding method is that it can handle partial cloud in
climate models (e.g., [15–17]). 4DDA is much more accurate than the adding method of two-
stream DOM (2DDA) in flux and heating rate calculation, especially under cloudy-sky condi-
tions, where cloud plays an important role in radiative transfer with different dynamics and
microphysics [18, 19]. Zhang and Li [20] proposed a new solar RT parameterization (4SDA)
which is based on four-stream harmonic expansion to simulate RT in climate modeling.

Since scattering is much weaker for infrared radiation than for solar radiation, an absorp-
tion approximation (AA) is used in most current climate models [7]. In AA, the scattering
phase function is replaced by a δ-function, meaning that scattering is neglected in all but the
forward direction. The advantage of AA is that the upward and downward transfer processes
are completely separated. If scattering is considered, the upward and downward intensities
are coupled. Under this condition, Fu [21] derived an inverse matrix method to deal with
multiple scattering in the atmosphere by using the two-stream DOM (2DOM) and the four-
stream DOM (4DOM). It is found that 4DOM is more accurate than 2DOM, especially for thin
optical depths. Even if scattering is included, TOA errors for 2DOM can still be >2 W m�2 for
cirrus clouds [22]. The 4DOM results tend to be very accurate, but the calculation process is
complicated. Zhang et al. [23] apply the four-stream adding method to resolve multilayer
infrared RT.

In the past two decades, the variational iteration method (VIM) has been used to deal with
many nonlinear problems [24–31]. In addition, VIM has been shown to converge faster to the
exact solution than other methods do. An accurate solution can be found for most nonlinear
problems in only one or two iterations for small solution domains in VIM [27, 31]. Because of
its flexibility, convenience and efficiency, VIM has been applied to various nonlinear equations
([27–29] and many others). In VIM, a nonlinear problem is separated into linear and nonlinear
terms, where the latter are usually difficult to deal with and are initially approximated as a first
guess. Subsequently, a correction function is constructed by using a general Lagrange multi-
plier that can be identified optimally via variational theory. Although the infrared RT equation
is not a nonlinear equation, it contains an integral term for the scattering, and this is very
complicated to deal with. Therefore, VIM is applied to solve the infrared RT equation.

The objective of the chapter is to introduce 4DDA/4SDA scheme [15] for solar RT, AA,
and VIM [32] schemes and apply them to resolve solar/infrared radiative transfer in RT
models. The simulation results and their comparison to results from the 128-stream discrete
ordinates method radiative transfer scheme [33] are shown in Section 4. Finally, a summary is
given in Section 5.
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2. Parameterizations for solar radiative transfer

The azimuthally averaged solar RT equation is

μ
dI τ;μ
� �
dτ

¼ I τ;μ
� �� ω

2

ð1
�1

I τ;μ
0

� �
P μ;μ

0
� �

dμ
0 � ω

4π
F0e�τ=μ0P μ;�μ0

� �
(1)

where μ is the cosine of the zenith angle (we use the positive and negative μ to denote the
upward and downward light beams, respectively), τ is optical depth, ω is single-scattering
albedo, and P μ;μ

0� �
is the azimuthally averaged scattering phase function, defining the light

incidence at μ
0
, which is scattered in the direction μ. F0 is the incoming solar flux and μ0 is the

solar zenith angle. The P μ;μ
0� �
can be written as

P μ;μ
0

� �
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XN

l¼0
ωlPl μ

� �
Pl μ

0
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(2)

where Pl is the Legendre function. The ωl can be determined from the orthogonal property of
Legendre polynomials: ωl ¼ 2lþ 1ð Þ=2½ � Ð P cosΘð ÞPl cosΘð Þd cosΘ. In our notations, ω0 ¼ 1
and ω1 ¼ 3g. g is the asymmetry factor.

2.1. Four-stream discrete ordinates scheme

The four-stream discrete ordinates scheme (4DDA) use the Gaussian quadrature method to
deal with the integration in Eq. (1). Eq. (1) yields
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where the quadrature point μ�i ¼ �μi, the weight a�i ¼ ai with i ¼ �1, � 2, μ1 ¼ 0:2113248,
μ2 ¼ 0:7886752 and a1 ¼ a2 ¼ 0:5.

After a lengthy and laborious derivation, the solution of (3) is given by
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where G is determined by the boundary conditions, and values of other parameters are shown
in [13].

The adding method which is used to deal with multilayer RT is shown in [13].
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are completely separated. If scattering is considered, the upward and downward intensities
are coupled. Under this condition, Fu [21] derived an inverse matrix method to deal with
multiple scattering in the atmosphere by using the two-stream DOM (2DOM) and the four-
stream DOM (4DOM). It is found that 4DOM is more accurate than 2DOM, especially for thin
optical depths. Even if scattering is included, TOA errors for 2DOM can still be >2 W m�2 for
cirrus clouds [22]. The 4DOM results tend to be very accurate, but the calculation process is
complicated. Zhang et al. [23] apply the four-stream adding method to resolve multilayer
infrared RT.

In the past two decades, the variational iteration method (VIM) has been used to deal with
many nonlinear problems [24–31]. In addition, VIM has been shown to converge faster to the
exact solution than other methods do. An accurate solution can be found for most nonlinear
problems in only one or two iterations for small solution domains in VIM [27, 31]. Because of
its flexibility, convenience and efficiency, VIM has been applied to various nonlinear equations
([27–29] and many others). In VIM, a nonlinear problem is separated into linear and nonlinear
terms, where the latter are usually difficult to deal with and are initially approximated as a first
guess. Subsequently, a correction function is constructed by using a general Lagrange multi-
plier that can be identified optimally via variational theory. Although the infrared RT equation
is not a nonlinear equation, it contains an integral term for the scattering, and this is very
complicated to deal with. Therefore, VIM is applied to solve the infrared RT equation.

The objective of the chapter is to introduce 4DDA/4SDA scheme [15] for solar RT, AA,
and VIM [32] schemes and apply them to resolve solar/infrared radiative transfer in RT
models. The simulation results and their comparison to results from the 128-stream discrete
ordinates method radiative transfer scheme [33] are shown in Section 4. Finally, a summary is
given in Section 5.
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2. Parameterizations for solar radiative transfer

The azimuthally averaged solar RT equation is

μ
dI τ;μ
� �
dτ

¼ I τ;μ
� �� ω

2

ð1
�1

I τ;μ
0

� �
P μ;μ

0
� �

dμ
0 � ω

4π
F0e�τ=μ0P μ;�μ0

� �
(1)

where μ is the cosine of the zenith angle (we use the positive and negative μ to denote the
upward and downward light beams, respectively), τ is optical depth, ω is single-scattering
albedo, and P μ;μ

0� �
is the azimuthally averaged scattering phase function, defining the light

incidence at μ
0
, which is scattered in the direction μ. F0 is the incoming solar flux and μ0 is the

solar zenith angle. The P μ;μ
0� �
can be written as

P μ;μ
0

� �
¼

XN

l¼0
ωlPl μ

� �
Pl μ

0
� �

(2)

where Pl is the Legendre function. The ωl can be determined from the orthogonal property of
Legendre polynomials: ωl ¼ 2lþ 1ð Þ=2½ � Ð P cosΘð ÞPl cosΘð Þd cosΘ. In our notations, ω0 ¼ 1
and ω1 ¼ 3g. g is the asymmetry factor.

2.1. Four-stream discrete ordinates scheme

The four-stream discrete ordinates scheme (4DDA) use the Gaussian quadrature method to
deal with the integration in Eq. (1). Eq. (1) yields

μi
dI τ;μi

� �
dτ

¼ I τ;μi

� �� ω
2

X3

l¼0
ωlPl μi

� � X2
j¼�2

I τ;μj

� �
Pl μj

� �
aj � ω

4π
F0e�τ=μ0

X3

l¼0
ωlPl μi

� �
Pl �μ0

� �
(3)

where the quadrature point μ�i ¼ �μi, the weight a�i ¼ ai with i ¼ �1, � 2, μ1 ¼ 0:2113248,
μ2 ¼ 0:7886752 and a1 ¼ a2 ¼ 0:5.

After a lengthy and laborious derivation, the solution of (3) is given by

I τ;μ2

� �

I τ;μ1

� �

I τ;μ�1
� �

I τ;μ�2
� �

2
6664

3
7775 ¼

φþ2 e2 φþ1 e1 φ�1 e3 φ�2 e4
φþ2 e2 φþ1 e1 φ�1 e3 φ�2 e4
φ�2 e2 φ�1 e1 φþ1 e3 φþ2 e4
φ�2 e2 φ�1 e1 φþ1 e3 φþ2 e4

2
6664

3
7775Gþ

Zþ2
Zþ1
Z�1
Z�2

2
6664

3
7775 exp �τ=μ0

� �
(4)

where G is determined by the boundary conditions, and values of other parameters are shown
in [13].

The adding method which is used to deal with multilayer RT is shown in [13].
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2.2. Four-stream spherical harmonic expansion scheme

The purpose of the four-stream spherical harmonic expansion (4SDA) is to separate out the
angle-dependent intensity by assuming

I τ;μ
� � ¼

X3

l¼0
Il τð ÞPl μ

� �
(5)

By substituting Eqs. (2) and (5) into Eq. (1) and using the orthogonality relation of the Legen-
dre function in �1 ≤μ ≤ 1, we obtain

dI1
dτ
¼ a0I0 � b0e�τ=μ0 (6)

2
dI2
dτ
þ dI0

dτ
¼ a1I1 � b1e�τ=μ0 (7)

3
dI3
dτ
þ 2

dI1
dτ
¼ a2I2 � b2e�τ=μ0 (8)

3
dI2
dτ
¼ a3I3 � b3e�τ=μ0 (9)

The solution of Eqs. (6)–(9) is

I0
I1
I2
I3

2
6664

3
7775 ¼

e1 e3 e2 e4
R1e1 �R1e3 R2e2 �R2e4
P̂1e1 P̂1e3 P̂2e2 P̂2e4
Q1e1 �Q1e3 Q2e2 �Q2e4

2
6664

3
7775Gþ

η0
η1
η2
η3

2
6664

3
7775 exp �τ=μ0

� �
(10)

where G is determined by the boundary conditions, and values of other parameters can be
found at [20].

The 4SDA can also be applied to solve multilayer solar RT. The detailed process can be found
at [20].

3. Parameterizations for infrared radiative transfer

The infrared RT equation for intensity I τ;μ
� �

is

μ
dI τ;μ
� �
dτ

¼ I τ;μ
� �� 1� ωð ÞB τð Þ � ω

2

ð1
�1

I τ;μ
0

� �
P μ;μ

0
� �

dμ
0

(11)
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where μ, τ, ω, and P are the same as one in Eq. (1). The Planck function is approximated
exponentially in optical depth [17, 18] as B τð Þ ¼ B0e�βτ where β ¼ � ln B1=B0ð Þ½ �=τ1. τ1 is the
optical depth of the considered layer. Planck functions B0 and B1 are evaluated by the temper-
ature of the top (τ ¼ 0) and bottom (τ ¼ τ1) of the layer, respectively.

3.1. Absorption approximation

In absorption approximation (AA), the scattering phase function P μ;μ
0� �

is simplified as a

δ μ;μ
0� �
function [22], and the infrared RT equation becomes

μ
dI0 τ;μ

� �
dτ

¼ 1� ωð ÞI0 τ;μ
� �� 1� ωð ÞB0e�βτ (12)

We use I0 as the radiative intensity from the absorption approximation. The solution of Eq. (12) is

I0 τ;�μ� � ¼ I0 τs;�μ
� �

∓
1� ω

μβ� 1� ωð ÞB0e�βτs
� �

e� 1�ωð Þ τ�τsð Þ=μ � 1� ω
μβ� 1� ωð ÞB0e�βτ (13)

where�μ is corresponding to the upward (downward) path and τs is the initial point at optical
depth τs ¼ 0 for the downward direction and at τs ¼ τ1 for the upward direction. Generally,
AA is applied to the two-stream case (δ-2AA) and the four-stream case (δ-4AA). In the
following subsection, the AA solution is used as the initial approximate solution of the VIM.

3.2. Variational iteration method

A general nonlinear system is used to illustrate the basic idea of variational iteration method
(VIM) [24–31]:

Lυ xð Þ þNυ xð Þ ¼ h xð Þ (14)

where υ xð Þ is the function to be solved and h xð Þ, L, and N are an inhomogeneous term, a linear
operator, and a nonlinear operator, respectively. If υ xð Þ is found in the (n)th iteration, the
(n + 1)th-order functional solution is

υnþ1 xð Þ ¼ υn xð Þ þ
ðx
0
λ ζð Þ Lυn ζð Þ þN~υn ζð Þ � h ζð Þ½ �dζ (15)

Here, ~υ
n
ζð Þ is considered as a restricted variation [i.e., δ̂~υ

n
ζð Þ ¼ 0], where δ̂ represents the

variation. The term λ ζð Þ is a general Lagrange multiplier and should be identified optimally
by using variational theory.

Based on VIM, the functional reiteration of the infrared RT equation can be deduced as

Inþ1 τ;�μ� � ¼ In τ;�μ� �þ
ðτ
τs
λ� sð Þ

�
dIn s;�μ� �

ds
∓

In s;�μ� �
μ

� ω
2μ

ð1
�1

~In s;μ
0

� �
P �μ;μ0
� �

dμ
0

� 1� ωð ÞB0e�βs=μ
�
ds (16)
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2.2. Four-stream spherical harmonic expansion scheme

The purpose of the four-stream spherical harmonic expansion (4SDA) is to separate out the
angle-dependent intensity by assuming

I τ;μ
� � ¼

X3

l¼0
Il τð ÞPl μ

� �
(5)

By substituting Eqs. (2) and (5) into Eq. (1) and using the orthogonality relation of the Legen-
dre function in �1 ≤μ ≤ 1, we obtain

dI1
dτ
¼ a0I0 � b0e�τ=μ0 (6)

2
dI2
dτ
þ dI0

dτ
¼ a1I1 � b1e�τ=μ0 (7)

3
dI3
dτ
þ 2

dI1
dτ
¼ a2I2 � b2e�τ=μ0 (8)

3
dI2
dτ
¼ a3I3 � b3e�τ=μ0 (9)

The solution of Eqs. (6)–(9) is

I0
I1
I2
I3

2
6664

3
7775 ¼

e1 e3 e2 e4
R1e1 �R1e3 R2e2 �R2e4
P̂1e1 P̂1e3 P̂2e2 P̂2e4
Q1e1 �Q1e3 Q2e2 �Q2e4

2
6664

3
7775Gþ

η0
η1
η2
η3

2
6664

3
7775 exp �τ=μ0

� �
(10)

where G is determined by the boundary conditions, and values of other parameters can be
found at [20].

The 4SDA can also be applied to solve multilayer solar RT. The detailed process can be found
at [20].

3. Parameterizations for infrared radiative transfer

The infrared RT equation for intensity I τ;μ
� �

is

μ
dI τ;μ
� �
dτ

¼ I τ;μ
� �� 1� ωð ÞB τð Þ � ω

2

ð1
�1

I τ;μ
0

� �
P μ;μ

0
� �

dμ
0

(11)
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where μ, τ, ω, and P are the same as one in Eq. (1). The Planck function is approximated
exponentially in optical depth [17, 18] as B τð Þ ¼ B0e�βτ where β ¼ � ln B1=B0ð Þ½ �=τ1. τ1 is the
optical depth of the considered layer. Planck functions B0 and B1 are evaluated by the temper-
ature of the top (τ ¼ 0) and bottom (τ ¼ τ1) of the layer, respectively.

3.1. Absorption approximation

In absorption approximation (AA), the scattering phase function P μ;μ
0� �

is simplified as a

δ μ;μ
0� �
function [22], and the infrared RT equation becomes

μ
dI0 τ;μ

� �
dτ

¼ 1� ωð ÞI0 τ;μ
� �� 1� ωð ÞB0e�βτ (12)

We use I0 as the radiative intensity from the absorption approximation. The solution of Eq. (12) is

I0 τ;�μ� � ¼ I0 τs;�μ
� �

∓
1� ω

μβ� 1� ωð ÞB0e�βτs
� �

e� 1�ωð Þ τ�τsð Þ=μ � 1� ω
μβ� 1� ωð ÞB0e�βτ (13)

where�μ is corresponding to the upward (downward) path and τs is the initial point at optical
depth τs ¼ 0 for the downward direction and at τs ¼ τ1 for the upward direction. Generally,
AA is applied to the two-stream case (δ-2AA) and the four-stream case (δ-4AA). In the
following subsection, the AA solution is used as the initial approximate solution of the VIM.

3.2. Variational iteration method

A general nonlinear system is used to illustrate the basic idea of variational iteration method
(VIM) [24–31]:

Lυ xð Þ þNυ xð Þ ¼ h xð Þ (14)

where υ xð Þ is the function to be solved and h xð Þ, L, and N are an inhomogeneous term, a linear
operator, and a nonlinear operator, respectively. If υ xð Þ is found in the (n)th iteration, the
(n + 1)th-order functional solution is

υnþ1 xð Þ ¼ υn xð Þ þ
ðx
0
λ ζð Þ Lυn ζð Þ þN~υn ζð Þ � h ζð Þ½ �dζ (15)

Here, ~υ
n
ζð Þ is considered as a restricted variation [i.e., δ̂~υ

n
ζð Þ ¼ 0], where δ̂ represents the

variation. The term λ ζð Þ is a general Lagrange multiplier and should be identified optimally
by using variational theory.

Based on VIM, the functional reiteration of the infrared RT equation can be deduced as

Inþ1 τ;�μ� � ¼ In τ;�μ� �þ
ðτ
τs
λ� sð Þ

�
dIn s;�μ� �

ds
∓

In s;�μ� �
μ

� ω
2μ

ð1
�1

~In s;μ
0

� �
P �μ;μ0
� �

dμ
0

� 1� ωð ÞB0e�βs=μ
�
ds (16)
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According to VIM theory, under the conditions that δ̂In s;�μ� ����
s¼τs
¼ 0, δ̂

Ð τ
τs

1�ωð ÞB0e�βs
μ ds ¼ 0

and the restricted variation δ̂~I
n
s;μ

0� � ¼ 0, Eq. (16) yields

δ̂Inþ1 τ;�μ� � ¼ 1þ λ� sð Þ� �
δ̂In s;�μ� ����

s¼τ
þ δ̂

ðτ
τs
� dλ� sð Þ

ds
∓

λ� sð Þ
μ

� �
In s;�μ� �

ds (17)

For the above correction functional to be stationary [i.e., δ̂Inþ1 τ;�μ� � ¼ 0], we require the
following stationary conditions:

� dλ� sð Þ
ds

∓
λ� sð Þ
μ
¼ 0 and λ� sð Þ

����
s¼τ
¼ �1 (18)

Therefore the Lagrangian multiplier λ� sð Þ can be identified as

λ� sð Þ ¼ �e� τ�sð Þ=μ (19)

By substituting Eq. (19) into Eq. (16), we obtain

Inþ1 τ;�μ� � ¼ In τ;�μ� �� Ð τ
τs
e� τ�sð Þ=μ

�
dIn s;�μ� �

ds
∓

In s;�μ� �
μ

� ω
2μ

ð1
�1

In s;μ
0

� �
P �μ;μ0
� �

dμ
0

� 1� ωð ÞB0e�βs=μ
�
ds

(20)

In two-stream VIM (2VIM), the term of
Ð 1
�1 I

n s;μ
0� �
P �μ;μ0� �

dμ
0
in Eq. (22) is simplified as

ð1
�1

In s;μ
0

� �
P �μ;μ0
� �

dμ
0 ¼ 1þ 3gμμ1

� �
In s;μ1

� �þ 1þ 3gμμ�1
� �

In s;μ�1
� �

(21)

where μ1 ¼ �μ�1 ¼ 1=1:66. The AA expression shown in Eq. (15) is used as the initial zeroth-
order solution. By substituting Eq. (15) into Eq. (22), we obtain the first-order solution of
upward intensity at τ ¼ 0 and downward intensity at τ ¼ τ1. Detailed process can be found
at [30]. The upward and downward fluxes are written as

Fþ 0ð Þ ¼ πI1 0;μ1

� �
and F� τ1ð Þ ¼ πI1 τ1;μ1

� �
(22)

We consider a surface boundary condition with a surface emissivity εs as follows in 2VIM

Is μ1

� � ¼ 1� εsð ÞIs μ�1
� �þ εsB Tsð Þ (23)

where Ts, Is μ1

� �
, and Is μ1

� �
are the surface temperature, upward intensity, and downward

intensity, respectively, at the surface.
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In four-stream VIM (4VIM), the term of
Ð 1
�1 I

n s;μ
0� �
P �μ;μ0� �

dμ
0
in Eq. (22) is simplified as

ð1
�1

In s;μ
0

� �
P μi;μ

0
� �

dμ
0 ¼ 1

2

X2

j¼�2
1þ 3gμiμj

� �
In s;μj

� �
(24)

where μ1 ¼ �μ�1 ¼ 0:2113248 and μ2 ¼ �μ�2 ¼ 0:7886752. The AA expression shown in
Eq. (15) is used as the initial zeroth-order solution. Detailed process can be found at [30]. The
upward and downward fluxes are written as

Fþ 0ð Þ ¼ 2π a1μ1I
1 0;μ1

� �þ a2μ2I
1 0;μ2

� �� �
(25)

F� τ1ð Þ ¼ 2π a1μ1I
1 τ1;μ�1
� �þ a2μ2I

1 τ1;μ�2
� �� �

(26)

The surface boundary condition with an emissivity εs is given by

Is μi

� � ¼ 2 1� εsð Þ
X2

j¼1
ajμjIs �μj

� �
þ εsB Tsð Þ (27)

To enhance the accuracy of the radiative schemes, a δ-function adjustment is used to adjust the
optical parameters following Wiscombe [34]. We refer to the VIM solutions with the δ-function
applied as δ-2VIM and δ-4VIM.

4. Results and discussion

4.1. Solar spectra

RT in the atmosphere is a complicated process. It depends not only on the single-layer direct
reflection and transmission but also on the diffuse results and the gaseous transmission, cloud-
aerosol scattering and absorption, etc. It is important to evaluate errors in radiation under a
variety of atmospheric conditions by using a radiation algorithm. The Fu-Liou radiation model
[35] is used in this study. This model adopts the correlated-k distribution method for gaseous
transmission, including five major greenhouse gases, H2O, CO2, O3, NO2, and CH4.

In benchmark calculations, the discrete ordinates model [33] with a 128-stream scheme (128S)
is incorporated with the gaseous transmission scheme of the Fu-Loiu radiation model [35] by
replacing the existing radiative transfer algorithm in the model. Also the two-stream discrete
ordinates adding method (2DDA), Eddington adding method (2SDA), four-stream discrete
ordinates adding method (4DDA), and four stream spherical harmonic adding method (4SDA)
schemes are incorporated with the same gaseous transmission scheme. The atmosphere was
vertically divided into 280 layers, each of thickness 0.25 km. The mid-latitude winter of
atmospheric profile [36] is used with a surface albedo of 0.2 for each band. For a water cloud
the optical properties are parameterized in terms of liquid water content (LWC) and effective
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According to VIM theory, under the conditions that δ̂In s;�μ� ����
s¼τs
¼ 0, δ̂

Ð τ
τs

1�ωð ÞB0e�βs
μ ds ¼ 0

and the restricted variation δ̂~I
n
s;μ

0� � ¼ 0, Eq. (16) yields

δ̂Inþ1 τ;�μ� � ¼ 1þ λ� sð Þ� �
δ̂In s;�μ� ����
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þ δ̂
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ds
∓
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� �
In s;�μ� �

ds (17)

For the above correction functional to be stationary [i.e., δ̂Inþ1 τ;�μ� � ¼ 0], we require the
following stationary conditions:

� dλ� sð Þ
ds

∓
λ� sð Þ
μ
¼ 0 and λ� sð Þ

����
s¼τ
¼ �1 (18)

Therefore the Lagrangian multiplier λ� sð Þ can be identified as

λ� sð Þ ¼ �e� τ�sð Þ=μ (19)

By substituting Eq. (19) into Eq. (16), we obtain

Inþ1 τ;�μ� � ¼ In τ;�μ� �� Ð τ
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e� τ�sð Þ=μ

�
dIn s;�μ� �

ds
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In s;�μ� �
μ

� ω
2μ

ð1
�1

In s;μ
0

� �
P �μ;μ0
� �

dμ
0

� 1� ωð ÞB0e�βs=μ
�
ds

(20)

In two-stream VIM (2VIM), the term of
Ð 1
�1 I

n s;μ
0� �
P �μ;μ0� �

dμ
0
in Eq. (22) is simplified as

ð1
�1

In s;μ
0

� �
P �μ;μ0
� �

dμ
0 ¼ 1þ 3gμμ1

� �
In s;μ1

� �þ 1þ 3gμμ�1
� �

In s;μ�1
� �

(21)

where μ1 ¼ �μ�1 ¼ 1=1:66. The AA expression shown in Eq. (15) is used as the initial zeroth-
order solution. By substituting Eq. (15) into Eq. (22), we obtain the first-order solution of
upward intensity at τ ¼ 0 and downward intensity at τ ¼ τ1. Detailed process can be found
at [30]. The upward and downward fluxes are written as

Fþ 0ð Þ ¼ πI1 0;μ1

� �
and F� τ1ð Þ ¼ πI1 τ1;μ1

� �
(22)

We consider a surface boundary condition with a surface emissivity εs as follows in 2VIM

Is μ1

� � ¼ 1� εsð ÞIs μ�1
� �þ εsB Tsð Þ (23)

where Ts, Is μ1

� �
, and Is μ1

� �
are the surface temperature, upward intensity, and downward

intensity, respectively, at the surface.
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In four-stream VIM (4VIM), the term of
Ð 1
�1 I

n s;μ
0� �
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dμ
0
in Eq. (22) is simplified as
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�1

In s;μ
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0
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dμ
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2
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� �
In s;μj

� �
(24)

where μ1 ¼ �μ�1 ¼ 0:2113248 and μ2 ¼ �μ�2 ¼ 0:7886752. The AA expression shown in
Eq. (15) is used as the initial zeroth-order solution. Detailed process can be found at [30]. The
upward and downward fluxes are written as

Fþ 0ð Þ ¼ 2π a1μ1I
1 0;μ1

� �þ a2μ2I
1 0;μ2

� �� �
(25)

F� τ1ð Þ ¼ 2π a1μ1I
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� �þ a2μ2I
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(26)

The surface boundary condition with an emissivity εs is given by

Is μi

� � ¼ 2 1� εsð Þ
X2

j¼1
ajμjIs �μj

� �
þ εsB Tsð Þ (27)

To enhance the accuracy of the radiative schemes, a δ-function adjustment is used to adjust the
optical parameters following Wiscombe [34]. We refer to the VIM solutions with the δ-function
applied as δ-2VIM and δ-4VIM.

4. Results and discussion

4.1. Solar spectra

RT in the atmosphere is a complicated process. It depends not only on the single-layer direct
reflection and transmission but also on the diffuse results and the gaseous transmission, cloud-
aerosol scattering and absorption, etc. It is important to evaluate errors in radiation under a
variety of atmospheric conditions by using a radiation algorithm. The Fu-Liou radiation model
[35] is used in this study. This model adopts the correlated-k distribution method for gaseous
transmission, including five major greenhouse gases, H2O, CO2, O3, NO2, and CH4.

In benchmark calculations, the discrete ordinates model [33] with a 128-stream scheme (128S)
is incorporated with the gaseous transmission scheme of the Fu-Loiu radiation model [35] by
replacing the existing radiative transfer algorithm in the model. Also the two-stream discrete
ordinates adding method (2DDA), Eddington adding method (2SDA), four-stream discrete
ordinates adding method (4DDA), and four stream spherical harmonic adding method (4SDA)
schemes are incorporated with the same gaseous transmission scheme. The atmosphere was
vertically divided into 280 layers, each of thickness 0.25 km. The mid-latitude winter of
atmospheric profile [36] is used with a surface albedo of 0.2 for each band. For a water cloud
the optical properties are parameterized in terms of liquid water content (LWC) and effective
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radius (re) [36]. Two calculations are performed: (1) a low cloud (LWC ¼ 0:22gm-3,
re ¼ 5:89μm) positioned from 1.0 to 2.0 km and (2) a middle cloud (LWC ¼ 0:28gm-3,
re ¼ 6:19μm) positioned from 4.0 to 5.0 km. Three solar zenith angles of μ0 ¼ 1, μ0 ¼ 0:5, and
μ0 ¼ 0:25 are generally considered.

In Figure 1, the benchmark results of heating rate are shown for three solar zenith angles under
low/middle cloud condition (Figure 1a–c for low cloud condition, Figure 1g–i for middle
cloud condition) as well as the absolute errors of 2DDA, 2SDA, 4DDA, and 4SDA against the
benchmark results (Figure 1d–f for cloud condition, Figure 1j–l for middle cloud condition).
When μ0 ¼ 1, the absolute errors of 2DDA are up to about 1.5 and 2.3 K day�1 (relative errors
about 6%) for the low and middle clouds. The error of 2SDA is smaller than 2DDA. When
μ0 ¼ 0:25, the result becomes opposite as the error of 2SDA becomes larger than 2DDA. By
using 4DDA and 4SDA, relative errors are much suppressed. In general, the relative error
becomes less than 1% for the three solar zenith angles. This indicates both 4DDA and 4SDA are
accurate enough to obtain cloud-top solar heating.

4.2. Infrared spectra

For the infrared spectra, the accuracy and efficiency of δ-2AA, δ-4AA, δ-2VIM, δ-4VIM, δ-
2DOM, and δ-4DOM will be systematically compared. In addition, the discrete ordinates
model [28] with a 128-stream scheme (δ-128DOM) is used as the benchmark model.

A radiation model [17] is used to study the accuracy of the VIM scheme for multiple layers
within a model atmosphere. A correlation-k distribution scheme is used to simulate the
gaseous transmission with profiles for H2O, CH4, CO2, NO2, O3, and CFCs. This model is
reasonably efficient because it neglects to scatter for certain intervals with very large absorp-
tion coefficients and water vapor continuum at high altitudes. Nine infrared bands are
adopted in this model in wavenumber ranges 0–340, 340–540, 540–800, 800–980, 980–1100,
1100–1400, 1400–1900, 1900–2200, and 2200–2500 cm�1. The optical properties of ice and water
clouds are calculated based on the radiative property parameterization of [37–39], respectively.
The mid-latitude winter atmospheric profiles [36] are used. The atmospheric profile is divided
into homogeneous layers with a geometrical thickness of 0.25 km.

In this model, a low cloud with an effective radius re ¼ 5:89μm and liquid water content LWC ¼
0:22gm-3 is located at 1.0–2.0 km, a middle cloud with re ¼ 5:89μm and LWC ¼ 0:22 gm�3 is
located at 4.0–5.0 km, and a high cloud with a mean effective sizeDe ¼ 41:1 μmand an ice water
content IWC ¼ 0:0048 gm�3 is located at 9.0–11.0 km. The surface emissivity εs is set to 1.

In the left column of Figure 2, the benchmark heating rates calculated by δ-128DOM are given
under conditions of low clouds (Figure 2a), middle clouds (Figure 2d), high clouds (Figure 2g)
and the all-sky case containing a combination of low, middle, and high clouds (Figure 2j). The
middle column of Figure 2 shows the errors in the calculated heating rates of δ-2AA, δ-2DOM,
and δ-2VIM compared to those of δ-128DOM. Furthermore, the right column of Figure 2 shows
the errors in the calculated heating rates of δ-4AA, δ-4DOM, and δ-4VIM compared to those of
δ-128DOM.
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Figure 1. Heating rate profiles computed from 128S and the error profiles from 2DDA, 2SDA, 4DDA, and 4SDA. Three
solar zenith angles μ0 ¼ 1, μ0 ¼ 0:5, and μ0 ¼ 0:25 are considered.
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radius (re) [36]. Two calculations are performed: (1) a low cloud (LWC ¼ 0:22gm-3,
re ¼ 5:89μm) positioned from 1.0 to 2.0 km and (2) a middle cloud (LWC ¼ 0:28gm-3,
re ¼ 6:19μm) positioned from 4.0 to 5.0 km. Three solar zenith angles of μ0 ¼ 1, μ0 ¼ 0:5, and
μ0 ¼ 0:25 are generally considered.

In Figure 1, the benchmark results of heating rate are shown for three solar zenith angles under
low/middle cloud condition (Figure 1a–c for low cloud condition, Figure 1g–i for middle
cloud condition) as well as the absolute errors of 2DDA, 2SDA, 4DDA, and 4SDA against the
benchmark results (Figure 1d–f for cloud condition, Figure 1j–l for middle cloud condition).
When μ0 ¼ 1, the absolute errors of 2DDA are up to about 1.5 and 2.3 K day�1 (relative errors
about 6%) for the low and middle clouds. The error of 2SDA is smaller than 2DDA. When
μ0 ¼ 0:25, the result becomes opposite as the error of 2SDA becomes larger than 2DDA. By
using 4DDA and 4SDA, relative errors are much suppressed. In general, the relative error
becomes less than 1% for the three solar zenith angles. This indicates both 4DDA and 4SDA are
accurate enough to obtain cloud-top solar heating.

4.2. Infrared spectra

For the infrared spectra, the accuracy and efficiency of δ-2AA, δ-4AA, δ-2VIM, δ-4VIM, δ-
2DOM, and δ-4DOM will be systematically compared. In addition, the discrete ordinates
model [28] with a 128-stream scheme (δ-128DOM) is used as the benchmark model.

A radiation model [17] is used to study the accuracy of the VIM scheme for multiple layers
within a model atmosphere. A correlation-k distribution scheme is used to simulate the
gaseous transmission with profiles for H2O, CH4, CO2, NO2, O3, and CFCs. This model is
reasonably efficient because it neglects to scatter for certain intervals with very large absorp-
tion coefficients and water vapor continuum at high altitudes. Nine infrared bands are
adopted in this model in wavenumber ranges 0–340, 340–540, 540–800, 800–980, 980–1100,
1100–1400, 1400–1900, 1900–2200, and 2200–2500 cm�1. The optical properties of ice and water
clouds are calculated based on the radiative property parameterization of [37–39], respectively.
The mid-latitude winter atmospheric profiles [36] are used. The atmospheric profile is divided
into homogeneous layers with a geometrical thickness of 0.25 km.

In this model, a low cloud with an effective radius re ¼ 5:89μm and liquid water content LWC ¼
0:22gm-3 is located at 1.0–2.0 km, a middle cloud with re ¼ 5:89μm and LWC ¼ 0:22 gm�3 is
located at 4.0–5.0 km, and a high cloud with a mean effective sizeDe ¼ 41:1 μmand an ice water
content IWC ¼ 0:0048 gm�3 is located at 9.0–11.0 km. The surface emissivity εs is set to 1.

In the left column of Figure 2, the benchmark heating rates calculated by δ-128DOM are given
under conditions of low clouds (Figure 2a), middle clouds (Figure 2d), high clouds (Figure 2g)
and the all-sky case containing a combination of low, middle, and high clouds (Figure 2j). The
middle column of Figure 2 shows the errors in the calculated heating rates of δ-2AA, δ-2DOM,
and δ-2VIM compared to those of δ-128DOM. Furthermore, the right column of Figure 2 shows
the errors in the calculated heating rates of δ-4AA, δ-4DOM, and δ-4VIM compared to those of
δ-128DOM.
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Figure 1. Heating rate profiles computed from 128S and the error profiles from 2DDA, 2SDA, 4DDA, and 4SDA. Three
solar zenith angles μ0 ¼ 1, μ0 ¼ 0:5, and μ0 ¼ 0:25 are considered.
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Figure 2. Heating rate profiles calculated by δ-128DOM and the error profiles produced by δ-2AA, δ-4AA, δ-2DOM,
δ-4DOM, δ-2VIM, and δ-4VIM in the mid-latitude winter atmospheric profile with surface emissivity εs ¼ 1 for (a)–(c)
low cloud, (d)–(f) middle cloud, (g)–(i) high cloud, and (j)–(l) all three cloud types.
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For the low-cloud case, the maximum errors of δ-2AA, δ-2DOM, and δ-2VIM are 20.8, 10.5,
and 10.3 K day�1, respectively, at a height corresponding to the top of the cloud (Figure 2b).
The maximum errors of δ-4AA, δ-4DOM, and δ-4VIM are 20.9, 10.1, and 10.03 K day�1,
respectively, at the same height (Figure 2c). This shows that, for low-level water clouds,
δ-2VIM (δ-4VIM) is more accurate than δ-2AA (δ-4AA) and δ-2DOM (δ-4DOM).

For the middle cloud, the maximum errors of δ-2AA, δ-2DOM, and δ-2VIM are approximately
20.9, 11.1, and 10.8 K day�1, respectively, at a height corresponding to the top of the cloud. At
the bottom of the cloud, the errors are 10.6 K day�1 for δ-2AA and just 20.05 and 10.05 K day�1

for δ-2DOM and δ-2VIM, respectively (Figure 2e). At the top of the cloud, δ-4AA, δ-4DOM,
and δ-4VIM produce biases of approximately 11.1, 10.7, and 10.5 K day�1, respectively
(Figure 2f).

For the high-cloud case, the optical depth of the ice cloud is much smaller than that of the
water cloud. Based on the results shown in Figure 2, the accuracies of δ-2DOM and δ-2VIM are
similar and are better than that of δ-2AA. Furthermore, δ-4AA, δ-4DOM, and δ-4VIM have
very similar accuracies. As seen in the third row in Figure 2, δ-2AA produces an error of
approximately 10.6 K day�1 at a height corresponding to the top of a high cloud. The

Atmospheric condition 128DOM 2AA 2DOM 2VIM 4AA 4DOM 4VIM

Upward flux (TOA)

Low clouds 209.5326 211.2735
(1.7409)

208.5206
(�1.012)

209.0425
(�0.4901)

210.9585
(1.4259)

209.1645
(�0.3681)

209.5458
(0.0132)

Middle clouds 183.5646 185.7200
(2.1554)

182.4027
(�1.1619)

182.9060
(�0.6586)

182.4002
(�1.1644)

183.1096
(�0.4550)

183.5357
(�0.0289)

High clouds 198.1357 200.3545
(2.2188)

198.6394
(0.5037)

198.8373
(0.7016)

199.2441
(1.1084)

197.2351
(�0.9006)

197.4354
(�0.7003)

Low, middle, and high clouds 176.3821 179.7768
(3.3947)

175.6421
(�0.7400)

176.2356
(�0.1465)

178.8788
(2.4967)

175.5891
(�0.7930)

175.8856
(�0.4965)

Mean square error 6.0309 0.7939 0.2969 2.7128 0.4456 0.1845

Downward flux (surface)

Low clouds 302.7236 302.7267
(0.0031)

302.9533
(0.2297)

302.9384
(0.2148)

302.7429
(0.0193)

302.8662
(0.1426)

302.8449
(0.1213)

Middle clouds 287.4458 286.9155
(�0.5303)

287.7658
(0.3200)

287.6141
(0.1683)

287.7658
(0.3200)

287.5678
(0.1220)

287.5418
(0.096)

High clouds 247.8497 248.0313
(0.1816)

248.3309
(0.4812)

248.3303
(0.4806)

248.2968
(0.4471)

248.5608
(0.7111)

248.6452
(0.7955)

Low, middle, and high clouds 302.1410 302.0497
(�0.0913)

302.4413
(0.3003)

302.4227
(0.2817)

302.0189
(�0.1221)

302.3161
(0.1751)

302.3151
(0.1741)

Mean square error 0.0806 0.1192 0.0962 0.0794 0.1429 0.1718

The flux differences between the six approximate schemes and δ-128DOM are listed in parentheses. All δ symbols are
neglected in the table.

Table 1. Comparison of δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2VIM, and δ-4VIM for flux (W m�2) at the top and surface
by using the mid-latitude winter atmospheric profile with εs ¼ 1.
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Figure 2. Heating rate profiles calculated by δ-128DOM and the error profiles produced by δ-2AA, δ-4AA, δ-2DOM,
δ-4DOM, δ-2VIM, and δ-4VIM in the mid-latitude winter atmospheric profile with surface emissivity εs ¼ 1 for (a)–(c)
low cloud, (d)–(f) middle cloud, (g)–(i) high cloud, and (j)–(l) all three cloud types.
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For the low-cloud case, the maximum errors of δ-2AA, δ-2DOM, and δ-2VIM are 20.8, 10.5,
and 10.3 K day�1, respectively, at a height corresponding to the top of the cloud (Figure 2b).
The maximum errors of δ-4AA, δ-4DOM, and δ-4VIM are 20.9, 10.1, and 10.03 K day�1,
respectively, at the same height (Figure 2c). This shows that, for low-level water clouds,
δ-2VIM (δ-4VIM) is more accurate than δ-2AA (δ-4AA) and δ-2DOM (δ-4DOM).

For the middle cloud, the maximum errors of δ-2AA, δ-2DOM, and δ-2VIM are approximately
20.9, 11.1, and 10.8 K day�1, respectively, at a height corresponding to the top of the cloud. At
the bottom of the cloud, the errors are 10.6 K day�1 for δ-2AA and just 20.05 and 10.05 K day�1

for δ-2DOM and δ-2VIM, respectively (Figure 2e). At the top of the cloud, δ-4AA, δ-4DOM,
and δ-4VIM produce biases of approximately 11.1, 10.7, and 10.5 K day�1, respectively
(Figure 2f).

For the high-cloud case, the optical depth of the ice cloud is much smaller than that of the
water cloud. Based on the results shown in Figure 2, the accuracies of δ-2DOM and δ-2VIM are
similar and are better than that of δ-2AA. Furthermore, δ-4AA, δ-4DOM, and δ-4VIM have
very similar accuracies. As seen in the third row in Figure 2, δ-2AA produces an error of
approximately 10.6 K day�1 at a height corresponding to the top of a high cloud. The
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Upward flux (TOA)
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(1.7409)

208.5206
(�1.012)

209.0425
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(�0.7400)

176.2356
(�0.1465)

178.8788
(2.4967)
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(�0.7930)

175.8856
(�0.4965)

Mean square error 6.0309 0.7939 0.2969 2.7128 0.4456 0.1845

Downward flux (surface)

Low clouds 302.7236 302.7267
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302.9533
(0.2297)

302.9384
(0.2148)

302.7429
(0.0193)

302.8662
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302.8449
(0.1213)

Middle clouds 287.4458 286.9155
(�0.5303)
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(0.3200)
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(0.1683)
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(0.3200)

287.5678
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287.5418
(0.096)
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248.3309
(0.4812)

248.3303
(0.4806)

248.2968
(0.4471)

248.5608
(0.7111)

248.6452
(0.7955)

Low, middle, and high clouds 302.1410 302.0497
(�0.0913)

302.4413
(0.3003)

302.4227
(0.2817)

302.0189
(�0.1221)

302.3161
(0.1751)

302.3151
(0.1741)

Mean square error 0.0806 0.1192 0.0962 0.0794 0.1429 0.1718

The flux differences between the six approximate schemes and δ-128DOM are listed in parentheses. All δ symbols are
neglected in the table.

Table 1. Comparison of δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2VIM, and δ-4VIM for flux (W m�2) at the top and surface
by using the mid-latitude winter atmospheric profile with εs ¼ 1.
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accuracies of δ-2DOM and δ-2VIM are similar; the maximum errors of both are approximately
10.5 K day�1 (Figure 2h). The maximum errors of δ-4AA, δ-4DOM, and δ-4VIM are all about
10.1 K day�1(Figure 2i). However, the difference is that the maximum errors occur at top of the
high cloud for δ-4AA but on the bottom for δ-4DOM and δ-4VIM.

In the case of all three clouds together, δ-2VIM is more accurate than δ-2AA and δ-2DOM for
the low and middle clouds (Figure 2k). In general, δ-4DOM and δ-4VIM are comparable in
accuracy for cloud heating rate (Figure 2l).

The results of upward (downward) flux at the TOA (surface) for the six schemes are presented
in Table 1 for mid-latitude winter profiles with the surface emissivity εs ¼ 1. For the low and
middle clouds, the δ-2AA overestimates the upward flux at TOA by 1.8 and 2.1 W m�2,
respectively. The errors of the δ-2DOM are up to 21.0 and 21.2 W m�2, while that of the δ-
2VIM is limited to 20.7 W m�2. Also, the δ-4VIM is generally more accurate than the δ-4DOM.
However, the results for the high clouds are reversed, with the δ-2VIM errors becoming larger
than that of δ-2DOM. For the downward flux at the surface, the AA schemes are generally
more accurate than the corresponding DOM and VIM schemes except in the middle-cloud
case. We also calculate the mean square error of each scheme. For upward flux at TOA, the
mean square error of VIM is generally smaller than one of DOM and AA. However, the mean
square error of 2VIM and 4VIM is 0.10 W m�2 and 0.17 W m�2, respectively, while the mean
square error of 2AA is limited to 0.08 W m�2.

For climate modeling, the efficiency of radiative transfer parameterization is also very impor-
tant. Table 2 lists the computing times required for δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2VIM,
and δ-4VIM, which were computed by HP EliteDesk 880 G1 TWRwith 8 Intel(R) Core(TM) i7–
4790 CPUs, 32-bit operating system, and 8GB memory. The results are normalized to that of δ-
2AA. The computational efficiency of δ-2VIM is slightly better than that of δ-2DOM, which
took more than double the time of δ-2AA. However, δ-4VIM is more than twice as fast as δ-
4DOM for the radiation algorithm alone and the radiation model.

5. Summary and conclusions

The objective of the paper is to introduce 4DDA/4SDA [13, 20] for solar RT, AA, and VIM [32]
for infrared RT and applied them to radiative transfer models.

4DDA use Gaussian quadrature method to deal with the integration in the RT equation. 4SDA
is based on four-stream harmonic expansion in radiative intensity. By applying 4DDA/4SDA to

2AA 4AA 2DOM 4DOM 2VIM 4VIM

Algorithm only 1.0 1.4412 2.2223 14.8195 2.0365 5.3615

Radiation model 1.0 1.1095 1.4114 5.8899 1.3759 2.2739

All δ symbols are neglected in the table.

Table 2. Computing times of δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2DDA, δ-4DDA, δ-2VIM, and δ-4VIM (normalized by
the computing time of δ-2AA).
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a realistic atmospheric profile with gaseous transmission considered, it is found that the
accuracy of 4DDA/4SDA is superior to Eddington adding method (2SDA) and two-stream
discrete ordinates adding method (2DDA), especially for the cloudy conditions. It is shown
that the relative errors of 4SDA are generally less than 1% in heating rate, while the relative
errors of both 2SDA and 2DDA are over 6%.

VIM differs from other analytical methods for solving nonlinear differential equations in that it
requires neither linearization nor small perturbations. The optimal result is constructed
through variation by a Lagrange multiplier. It was found that the scattering term in the
infrared RT equation could be dealt with as a nonlinear operator in VIM. By taking the AA
solution as the zeroth-order solution, the scattering effect was properly included in the first-
order iterative solution.

The six schemes of δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2VIM, and δ-4VIM were compared
systematically against the benchmark results provided by δ-128DOM for a multilayer case. For
a multilayer atmosphere, VIM gave more accurate results than those of DOM and AA for the
low and middle clouds in both the two- and four-stream cases. However, the errors from VIM
for high clouds were similar to those from AA.

Computationally, δ-2VIM and δ-2DDA were slightly faster than δ-2DOM, which took more
than double time of δ-2AA. However, δ-4VIM/δ-4DDA was more than twice as fast as δ-
4DOM for both the pure radiation algorithm and the radiation model in a layered, cloudy
atmosphere. In general, the main benefit of δ-2VIM was an improved accuracy with a compu-
tational time similar to that of δ-2DOM. The main benefit of δ-4VIM/δ-4DDA was improved
computational efficiency with accuracy similar to that of δ-4DOM.

In view of their overall high accuracy and computational efficiency, the conclusion is that
4DDA, 4SDA, δ-2VIM, and δ-4VIM are well suited for parameterizing the solar/infrared RT
in climate models.
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accuracies of δ-2DOM and δ-2VIM are similar; the maximum errors of both are approximately
10.5 K day�1 (Figure 2h). The maximum errors of δ-4AA, δ-4DOM, and δ-4VIM are all about
10.1 K day�1(Figure 2i). However, the difference is that the maximum errors occur at top of the
high cloud for δ-4AA but on the bottom for δ-4DOM and δ-4VIM.

In the case of all three clouds together, δ-2VIM is more accurate than δ-2AA and δ-2DOM for
the low and middle clouds (Figure 2k). In general, δ-4DOM and δ-4VIM are comparable in
accuracy for cloud heating rate (Figure 2l).

The results of upward (downward) flux at the TOA (surface) for the six schemes are presented
in Table 1 for mid-latitude winter profiles with the surface emissivity εs ¼ 1. For the low and
middle clouds, the δ-2AA overestimates the upward flux at TOA by 1.8 and 2.1 W m�2,
respectively. The errors of the δ-2DOM are up to 21.0 and 21.2 W m�2, while that of the δ-
2VIM is limited to 20.7 W m�2. Also, the δ-4VIM is generally more accurate than the δ-4DOM.
However, the results for the high clouds are reversed, with the δ-2VIM errors becoming larger
than that of δ-2DOM. For the downward flux at the surface, the AA schemes are generally
more accurate than the corresponding DOM and VIM schemes except in the middle-cloud
case. We also calculate the mean square error of each scheme. For upward flux at TOA, the
mean square error of VIM is generally smaller than one of DOM and AA. However, the mean
square error of 2VIM and 4VIM is 0.10 W m�2 and 0.17 W m�2, respectively, while the mean
square error of 2AA is limited to 0.08 W m�2.

For climate modeling, the efficiency of radiative transfer parameterization is also very impor-
tant. Table 2 lists the computing times required for δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2VIM,
and δ-4VIM, which were computed by HP EliteDesk 880 G1 TWRwith 8 Intel(R) Core(TM) i7–
4790 CPUs, 32-bit operating system, and 8GB memory. The results are normalized to that of δ-
2AA. The computational efficiency of δ-2VIM is slightly better than that of δ-2DOM, which
took more than double the time of δ-2AA. However, δ-4VIM is more than twice as fast as δ-
4DOM for the radiation algorithm alone and the radiation model.

5. Summary and conclusions

The objective of the paper is to introduce 4DDA/4SDA [13, 20] for solar RT, AA, and VIM [32]
for infrared RT and applied them to radiative transfer models.

4DDA use Gaussian quadrature method to deal with the integration in the RT equation. 4SDA
is based on four-stream harmonic expansion in radiative intensity. By applying 4DDA/4SDA to

2AA 4AA 2DOM 4DOM 2VIM 4VIM

Algorithm only 1.0 1.4412 2.2223 14.8195 2.0365 5.3615

Radiation model 1.0 1.1095 1.4114 5.8899 1.3759 2.2739

All δ symbols are neglected in the table.

Table 2. Computing times of δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2DDA, δ-4DDA, δ-2VIM, and δ-4VIM (normalized by
the computing time of δ-2AA).
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a realistic atmospheric profile with gaseous transmission considered, it is found that the
accuracy of 4DDA/4SDA is superior to Eddington adding method (2SDA) and two-stream
discrete ordinates adding method (2DDA), especially for the cloudy conditions. It is shown
that the relative errors of 4SDA are generally less than 1% in heating rate, while the relative
errors of both 2SDA and 2DDA are over 6%.

VIM differs from other analytical methods for solving nonlinear differential equations in that it
requires neither linearization nor small perturbations. The optimal result is constructed
through variation by a Lagrange multiplier. It was found that the scattering term in the
infrared RT equation could be dealt with as a nonlinear operator in VIM. By taking the AA
solution as the zeroth-order solution, the scattering effect was properly included in the first-
order iterative solution.

The six schemes of δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2VIM, and δ-4VIM were compared
systematically against the benchmark results provided by δ-128DOM for a multilayer case. For
a multilayer atmosphere, VIM gave more accurate results than those of DOM and AA for the
low and middle clouds in both the two- and four-stream cases. However, the errors from VIM
for high clouds were similar to those from AA.

Computationally, δ-2VIM and δ-2DDA were slightly faster than δ-2DOM, which took more
than double time of δ-2AA. However, δ-4VIM/δ-4DDA was more than twice as fast as δ-
4DOM for both the pure radiation algorithm and the radiation model in a layered, cloudy
atmosphere. In general, the main benefit of δ-2VIM was an improved accuracy with a compu-
tational time similar to that of δ-2DOM. The main benefit of δ-4VIM/δ-4DDA was improved
computational efficiency with accuracy similar to that of δ-4DOM.

In view of their overall high accuracy and computational efficiency, the conclusion is that
4DDA, 4SDA, δ-2VIM, and δ-4VIM are well suited for parameterizing the solar/infrared RT
in climate models.
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Abstract

A cooling tower scheme considering quantitative sensible and latent heat flux released
from air condition was implemented in building energy model (BEM) and coupled to
the regional model (WRF). A mechanical drag coefficient formulation was implemented into
the WRF/BEM to improve the representation of the wind speed in complex urban environ-
ments. Two simulations used default WRF/BEP+BEM and improved WRF/BEM to estimate
the improvement effects focusing on dry day and wet day for summer 2015, respectively.
The cooling tower system in commercial area not only induces the significant increase of the
anthropogenic heat partition by 90% of the total heat flux releasing as latent but also further
changes the surface heat flux feature. When the cooling tower is introduced, averaged surface
latent heat flux in urban area is increased to about 60 W�m�2 with the peak of 150 W�m�2 in
dry day and 40 W�m�2 with the peak of 150 W�m�2 in wet day. Maximum and minimum
temperature error improved by 2–3 degrees. In the vertical model, the performance of bound-
ary layer structure in rural area is much better than in urban area. The average wind speed
error improved by 2–3 m/s in urban area with new calculation scheme.

Keywords: cooling tower, drag coefficient, regional model, high-resolution

1. Introduction

The world’s population is coming increasingly urbanized, and most of this additional urban-
ization occurs in developing countries [1]. The land-use change and the anthropogenic heat
release induced by urbanization have been recognized as important factors that have serious
impacts on climate at regional scales [2–4]. There is plenty of evidence that the regional climate
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effect of urban is significant [5–9]. And urban impacts are becoming more and more important
in fine weather forecasting. It is difficult to distinguish the impact of land-use change and
artificial heat emissions on regional climate in the observation. But numerical model can be
used to solve this problem [10]. Feng et al. [11] employed WRF coupled with single-layer
urban canopy model (UCM) to investigate urban land-use change and anthropogenic heat
release on regional climate in China and indicated that impact of anthropogenic heat release is
larger than urban land-use change.

Anthropogenic heat is one contributor to the urban heat islands which destroyed the near-
surface inversion and increased the stratification instability [12]. Anthropogenic heat release is
the extra heat flux which can change the surface energy balance [13, 14]. Energy consumption
from buildings is an important part of anthropogenic heat release that may modify near-
surface energy balance [15].

Sailor [16] provides a historical perspective on the development of models of urban energy
consumption and anthropogenic impacts on the urban energy balance. It indicated that there is
a positive feedback cycle that higher temperatures result from greater amounts of energy used
for air cooling in most urban area [17]. Global modeling results indicated that heat release from
building is the largest contributor (89–96%) to the large-scale urban consumption of energy
[12]. Future climate experiments by GCMs show anthropogenic heat flux can cause annual-
mean warming of 0.4–0.9�C over large industrialized regions although global-mean anthropo-
genic heat flux is small [18]. The temperature increased by anthropogenic heat not only
depends on the amount of heat released but also on orographical factors [19]. The amount of
heat released at night is lower than at day, but the temperature increase is nearly three times
greater [20]. Global model shows that the extra heat from energy consumption over the 86
major metropolitan can cause up to 1� of warming in winter seasons [21].

Recent regional modeling results show that anthropogenic heat flux from building has a
significant impact on temperature simulation on urban area [22]. The heat release of air
condition caused about 1–2�C warming in summer commercial area [23]. The study of Pairs
also indicated that about 0.5�C results from anthropogenic heat release and points out the air
condition makes important contributions to surface warming [24]. A study on three major
urban agglomerations of China suggests that contribution of anthropogenic heat release to
warming is larger than the land-use change [11].

But the performance of current urban canopy model is not satisfied for artificial heat emissions
in urban area [11, 25]. Both UCM and BEM take the anthropogenic heat as extra surface
sensible flux and can only recognize the diurnal variation [26]. But UCM and BEM cannot
describe the energy exchange between anthropogenic heat flux and the urban boundary layer
sensible heat flux which leads to energy balance in the boundary layer destroyed. It is note-
worthy that anthropogenic heat release includes not only sensible heat flux but also latent heat
flux. Anthropologic latent heat flux from urban area is ignored by UCM and BEM. Building
energy model that can accurately describe energy balance mechanism of urban boundary layer
and includes anthropogenic heat release urgently needs development.

The development of BEM model has solved the problem to a great extent [27]. Current BEM
model is capable of describing (1) the heat diffusion through walls, roofs, and floors, (2) the
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natural ventilation and the radiation exchanged between the indoor surfaces, (3) the heat from
occupants and equipment, and (4) the energy consumption from air condition.

Although BEM has the ability to simulate the building energy-exchange process as mentioned
above, the performance is not satisfied enough especially for the high-resolution forecast in
urban area [3, 25, 28]. Air condition releasing is treated as sensible heat flux to potential
temperature equation when couples to BEP and regional model [29]. Simulated temperature
in urban area is always obviously higher than the observation by current WRF/BEM model.
Assessment report in Beijing shows that latent heat flux maximum simulated by WRF/BEM is
only 40 W�m�2 while the observation is about 230 W�m�2 [25]. Errors of simulated heat flux
directly lead to underestimate the humidity and further affect the performance of rainfall. In
most commercial buildings, anthropogenic heat can be associated to heat release from air
conditioning systems. Most air conditioning systems use evaporative cooling that releases a
mixture of sensible and latent heat to the environment [30].

Many studies show that the energy consumption of air condition from building is gradually
increasing as the frequency of heat wave is increasing [31]. And heat release from the building
air condition system is one of the primary sources of anthropologic latent heat flux in urban
area [29, 32–35]. Although heat released by air condition is considered in the current WRF/
BEM, the performance is still not satisfied. Previous studies have indicated that heat released
by air condition in some megacities is equal to or more than half of the surface sensible flux
[23]. Simulation results show that contribution of heat released by air condition to summer
warming can exceed 1� in the megacities [23, 36, 37], and contribution to nighttime tempera-
ture can reach 2� [29].

However, most air condition systems use evaporative cooling that releases a mixture of sensible
and latent heat to the environment. In summer, 50–80% of their heat released by evaporative-
cooled systems is in the form of latent heating [38]. In China, metropolitan electricity consump-
tion report shows that most important energy consumption in building comes from air condition
system whether in commercial or residential area [39]. Air condition usage report about Chinese
metropolitan indicated that the ratio of sensible and latent heat flux by different types of air
condition emissions is 20 and 80%, respectively [39].

So how to correctly describe the latent heat flux released by air condition in high-resolution
model is an urgent problem to solve. It has shown that a BEM coupled with a cooling tower
model can improve the model performance of temperature [30]. Cooling tower scheme will
obviously improve model performance of the energy exchange ability between building and
its surroundings and urban boundary layer balance.

Beijing power consumption is gradually increasing from 1978 to 2015, and the proportion of
electricity consumed by residents is also gradually increasing (Beijing Municipal Bureau of
Statistics website). It is noteworthy that heat released from building air condition is the impor-
tant component of summer electricity consumed by residents. Namely, heat flux released by air
condition system in Beijing’s urban area becomes one of the primary sources of summer
anthropologic heat as other big cities. In order to modify the simulation of heat flux released by
air condition, a new cooling tower scheme [30] was coupled to rapid-refresh multi-scale analysis
and prediction (RMAPS).
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surface energy balance [15].

Sailor [16] provides a historical perspective on the development of models of urban energy
consumption and anthropogenic impacts on the urban energy balance. It indicated that there is
a positive feedback cycle that higher temperatures result from greater amounts of energy used
for air cooling in most urban area [17]. Global modeling results indicated that heat release from
building is the largest contributor (89–96%) to the large-scale urban consumption of energy
[12]. Future climate experiments by GCMs show anthropogenic heat flux can cause annual-
mean warming of 0.4–0.9�C over large industrialized regions although global-mean anthropo-
genic heat flux is small [18]. The temperature increased by anthropogenic heat not only
depends on the amount of heat released but also on orographical factors [19]. The amount of
heat released at night is lower than at day, but the temperature increase is nearly three times
greater [20]. Global model shows that the extra heat from energy consumption over the 86
major metropolitan can cause up to 1� of warming in winter seasons [21].

Recent regional modeling results show that anthropogenic heat flux from building has a
significant impact on temperature simulation on urban area [22]. The heat release of air
condition caused about 1–2�C warming in summer commercial area [23]. The study of Pairs
also indicated that about 0.5�C results from anthropogenic heat release and points out the air
condition makes important contributions to surface warming [24]. A study on three major
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warming is larger than the land-use change [11].

But the performance of current urban canopy model is not satisfied for artificial heat emissions
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sensible flux and can only recognize the diurnal variation [26]. But UCM and BEM cannot
describe the energy exchange between anthropogenic heat flux and the urban boundary layer
sensible heat flux which leads to energy balance in the boundary layer destroyed. It is note-
worthy that anthropogenic heat release includes not only sensible heat flux but also latent heat
flux. Anthropologic latent heat flux from urban area is ignored by UCM and BEM. Building
energy model that can accurately describe energy balance mechanism of urban boundary layer
and includes anthropogenic heat release urgently needs development.

The development of BEM model has solved the problem to a great extent [27]. Current BEM
model is capable of describing (1) the heat diffusion through walls, roofs, and floors, (2) the
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natural ventilation and the radiation exchanged between the indoor surfaces, (3) the heat from
occupants and equipment, and (4) the energy consumption from air condition.

Although BEM has the ability to simulate the building energy-exchange process as mentioned
above, the performance is not satisfied enough especially for the high-resolution forecast in
urban area [3, 25, 28]. Air condition releasing is treated as sensible heat flux to potential
temperature equation when couples to BEP and regional model [29]. Simulated temperature
in urban area is always obviously higher than the observation by current WRF/BEM model.
Assessment report in Beijing shows that latent heat flux maximum simulated by WRF/BEM is
only 40 W�m�2 while the observation is about 230 W�m�2 [25]. Errors of simulated heat flux
directly lead to underestimate the humidity and further affect the performance of rainfall. In
most commercial buildings, anthropogenic heat can be associated to heat release from air
conditioning systems. Most air conditioning systems use evaporative cooling that releases a
mixture of sensible and latent heat to the environment [30].

Many studies show that the energy consumption of air condition from building is gradually
increasing as the frequency of heat wave is increasing [31]. And heat release from the building
air condition system is one of the primary sources of anthropologic latent heat flux in urban
area [29, 32–35]. Although heat released by air condition is considered in the current WRF/
BEM, the performance is still not satisfied. Previous studies have indicated that heat released
by air condition in some megacities is equal to or more than half of the surface sensible flux
[23]. Simulation results show that contribution of heat released by air condition to summer
warming can exceed 1� in the megacities [23, 36, 37], and contribution to nighttime tempera-
ture can reach 2� [29].

However, most air condition systems use evaporative cooling that releases a mixture of sensible
and latent heat to the environment. In summer, 50–80% of their heat released by evaporative-
cooled systems is in the form of latent heating [38]. In China, metropolitan electricity consump-
tion report shows that most important energy consumption in building comes from air condition
system whether in commercial or residential area [39]. Air condition usage report about Chinese
metropolitan indicated that the ratio of sensible and latent heat flux by different types of air
condition emissions is 20 and 80%, respectively [39].

So how to correctly describe the latent heat flux released by air condition in high-resolution
model is an urgent problem to solve. It has shown that a BEM coupled with a cooling tower
model can improve the model performance of temperature [30]. Cooling tower scheme will
obviously improve model performance of the energy exchange ability between building and
its surroundings and urban boundary layer balance.

Beijing power consumption is gradually increasing from 1978 to 2015, and the proportion of
electricity consumed by residents is also gradually increasing (Beijing Municipal Bureau of
Statistics website). It is noteworthy that heat released from building air condition is the impor-
tant component of summer electricity consumed by residents. Namely, heat flux released by air
condition system in Beijing’s urban area becomes one of the primary sources of summer
anthropologic heat as other big cities. In order to modify the simulation of heat flux released by
air condition, a new cooling tower scheme [30] was coupled to rapid-refresh multi-scale analysis
and prediction (RMAPS).
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Parameterizations using the specific input parameters describe the complex arrangement
of buildings and streets in an urban environment. However, simulations using this type of
data reproduce fine-resolution features that are not clearly reproducible by traditional
methods [10, 29].

In order to represent the effects of horizontal and vertical building surfaces of momentum,
heat, and turbulent kinetic energy (TKE) equations, the building effect parameterization and
the building energy model (BEP + BEM) [40] have been introduced. In the relevant equations,
new terms about frictional and drag forces on the mean flow and the increase of the TKE
between buildings are introduced. This scheme assumes drag coefficient is a constant. That is
inaccurate because the magnitude of the drag is decided by building density in highly hetero-
geneous urban environments. A new formulation has been implemented in the BEP + BEM
system to calculate the values of the drag coefficient based on the building plan-area fraction to
improve the airflow simulation in the urban boundary layer. The performance of this drag
formulation has been evaluated in an idealized urban configuration using computational fluid
dynamical (CFD) simulations [27].

Our aims are as follows:

1. To improve the performance of BEM using the cooling tower scheme and drag formulation.

2. To evaluate the forecast performance of the improved RMAPS coupled with improved
BEM in summer Beijing

Details of the data and the experimental design are given in Section 2. The performance of
improved RMAPS is evaluated in Section 3. We summarize the findings and discuss our
results in Section 4.

2. Data, model description, and experimental design

The surface temperature and humidity data were obtained from 294 meteorological stations
operated by the Beijing Meteorological Bureau (Figure 1). Vertical temperature data was
gathered from a radiometer located at 39.8�N, 116.46�E. Heat flux data used in this study were
obtained from the Beijing meteorological tower (39.97�N, 116.37�E), which is 325 m high and
located in North Beijing.

This study used operational rapid-refresh multi-scale analysis and prediction system (RMAPS)
based on modified version of the WRF model (ARW versions 3.5.1), and its data assimilation
system (WRFDA v3.5) was developed by the Institute of Urban Meteorology, China Meteoro-
logical Administration, Beijing [25]. The system starts with ECMWF global forecasts (at 3-h
intervals) and terminates with hourly weather forecasts. Initial conditions is adjusted by
WRFDA-ingested including S/C band weather radar, ground-based global positioning system
meteorology (GPS-MET), radiosonde, Aircraft Meteorological Data Relay (AMDAR), and
AWS surface observations. Three domains are designed for the current study with horizontal
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grid spacings of 9, 3, and 1 km. The locations of the nested urban domains are shown in
Figure 2. NDOWN provides boundary conditions for the 1-km Domain-3 model from its 3-
km output, and VDRAS output is assimilated into the 1-km domain via FDDA [41]. Land-use
map (Figure 1) is based on 30-m Landsat data for the year 2010, including three urban land
types according to gridded urban-fraction values [42]. Parameterization schemes used in this
study are listed in Table 1.

In order to improve the current forecast model, a cooling tower scheme was incorporated to
the BEP + BEM and was coupled with RMAPS. Beijing is taken as the case study to investi-
gate anthropogenic heat impact of dense urban environment. Although the cooling tower
scheme has been used to the regional model in previous work, verification and evaluation
for improved model are not sufficient especially in vertical stratification. This work used
multiple intense observation data to evaluate the improvement effect of the new cooling
tower scheme.

Figure 1. High-resolution land-use map in model. Black dots show the 294 weather stations. The white triangle shows the
location of a 325 m meteorological tower (39.97�N, 116.37�E); the blue triangle shows the location of the Naojiao station
(39.8�N, 116.46�E); and the yellow triangle shows the location of the Yanqing station (40.45�N,115.97�E).
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based on modified version of the WRF model (ARW versions 3.5.1), and its data assimilation
system (WRFDA v3.5) was developed by the Institute of Urban Meteorology, China Meteoro-
logical Administration, Beijing [25]. The system starts with ECMWF global forecasts (at 3-h
intervals) and terminates with hourly weather forecasts. Initial conditions is adjusted by
WRFDA-ingested including S/C band weather radar, ground-based global positioning system
meteorology (GPS-MET), radiosonde, Aircraft Meteorological Data Relay (AMDAR), and
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In order to improve the current forecast model, a cooling tower scheme was incorporated to
the BEP + BEM and was coupled with RMAPS. Beijing is taken as the case study to investi-
gate anthropogenic heat impact of dense urban environment. Although the cooling tower
scheme has been used to the regional model in previous work, verification and evaluation
for improved model are not sufficient especially in vertical stratification. This work used
multiple intense observation data to evaluate the improvement effect of the new cooling
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The computing method is as follows:

Based on the first law of thermodynamics, heat exchange equation between air condition
system and the external atmosphere is defined as

Figure 2. Domain configuration and location of the study area.

D1 D2 D1

Models and versions WRFDA v3.5.1 + WRF v3.5.1 WRF v3.5.1

Horizontal grid points 649 � 400 550 � 424 460 � 403

Δx (km) 9 3 1

Vertical layers 50

Cumulus physics Kain-Fritsch None None

LW radiation RRTM

SW radiation Dudhia

Microphysics Thompson

PBL physics ACM2 BouLac

Urban physics SLUCM BEP BEP + BEM

Table 1. Modeling setting and parameterization options.
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Q ¼ Cmin Two,cond � Twi, condð Þ ¼ Cmin TRefi � Twi,cond
� �

(1)

Twi,cond ¼ Two,CT ¼ Twb,air (2)

Two,cond ¼ Twi,CT (3)

where Q is the total heat transfer from the building calculated by BEM, Twi, cond is the water
temperature entering the air condition system, Two,cond is the water temperature leaving the air
condition, Twi,CT is the water temperature entering the cooling, Two,CT is the water temperature
leaving the cooling tower (CT), and Cmin is the minimum thermal capacitance between the
water and the refrigerant [43]. It is assumed that the cooling tower is able to bring the water
entering the air conditioning to its minimum value of the wet bulb temperature. This wet bulb
temperature Twb,air is calculated from [44–48]:

Twb,air ¼Tairatan 0:151977 RH%þ 8:313659ð Þ1=2
h i

þ atan Tair þ RH%ð Þ � atan RH%� 1:676331ð Þ
þ 0:00391838 RH%ð Þ3=2atan 0:023101RH%ð Þ � 4:686035

(4)

where Tair is air temperature and RH is relative humidity.

The effectiveness, ε, for the cooling tower is defined as:

ε ¼ Q
ma hsai � haið Þ (5)

where hai is the enthalpy of inlet air and hsai is saturated enthalpy of inlet air.

Finally, the outlet air temperature Tao can be obtained from the following equations using an
iterative scheme:

Q ¼ ma hao � haið Þ (6)

hao ¼ hai þ ε hsai � haið Þ (7)

CpTao þ qvao Cpw þ L
� � ¼ hao (8)

qvao ¼ 0:62198
e

P� e
(9)

e ¼ 6:11� 10
7:5Tao

237:7þTao (10)

where qvao is absolute humidity or mixing ratio.

Due to the effect of complicated urban surface, the structure of the meteorological field in the
urban boundary layer is different from other surfaces. Impervious vertical surfaces of build-
ings induce a drag force that produces a loss of momentum that changes the flow field in near-
surface atmospheric boundary layer. The drag coefficient (Cd) is an important component for
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calculating the magnitude of the momentum flux induced by buildings in urban canopy
models. According to previous studies over urban environments and wind-tunnel measure-
ments of, Cd is assumed as a constant (0.4) in default WRF/BEM [40]. However, Cd could vary
with building packing densities. An analytical relation proposed by Salamanca and Martilli
[27] has been implemented into the BEP + BEM system to estimate the drag coefficient as a
function of the building plan-area fraction as follows:

Cdeq λp
� � ¼ 3:32x λp0:47 for λp ≤ 0:29

1:85 for λp > 0:29

(
(11)

This formulation represents an improvement compared to using a constant drag coefficient,
and it is necessary to assess this for a real complex urban underlay.

We evaluated the whole summer (from June 1 to September 30) simulation to evaluate the
performance of the RMAPS coupled to the cooling tower model and drag scheme (AC + VD).
The forecast results by default RMAPS were used as control run (CTL).

3. Results

3.1. Effect on diurnal pattern

The significant difference between CTL and AC + VD is in latent heat released from the
building because AC + VD improved the heat flux released from the building to the environ-
ment. Maximum sensible heat flux from air condition in CTL is about 180 W�m�2, while it is
reduced to 20 W�m�2 in AC + VD (Figure 3a and b). Meanwhile latent heat flux from air
condition is increased by AC + VD during daytime. Thermal exchange between building and

Figure 3. Averaged diurnal pattern of heat flux (W∙m�2). (a) Sensible heat flux in dry day; (b) sensible heat flux in wet
day; (c) latent heat flux in dry day; and (d) latent heat flux in wet day.
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its external atmosphere simulation is an inadequate capability in CTL. AC + VD not only
increase the latent heat flux released from building but also improve simulation ability of heat
exchange.

We evaluate sensible and latent heat flux in the dry day first. Based on the heat flux observa-
tion by Beijing tower in 140 m, sensible heat flux is less than 20 W�m�2 in the nighttime, while
CTL overestimate sensible heat flux about 50 W�m�2 in the nighttime (Figure 3a). It has largely
solved this problem by AC + VD during the dry days. But in the wet days, sensible heat flux is
still overestimated in nighttime simulated by both CTL and AC + VD. In the daytime, observed
sensible heat flux reaches the maximum (200 W�m�2) at 1400 LST; both CTL and AC + VD
overestimate the sensible heat flux in urban area (Figure 3a and b). Sensible heat flux simu-
lated by CTL delays the time to reach the maximum of about 1 hour while an hour earlier by
AC + VD. Both CTL and AC + VD overestimate sensible heat flux in urban area, but AC + VD
improve the simulation results from 1500 to 2000 LSTespecially in the dry days. Compared to dry
day result, improvement effect for sensible heat flux by ECs is not obvious in wet day. Different
from the dry day, the sensible heat flux is rapidly decreasing during the 1100–1800 LST in model
results because rainfall often occurs in that duration. And simulated sensible heat flux is more
sensitive to precipitation than observed.

Observed latent heat flux in dry days has the same features as the sensible heat flux in daytime
(Figure 3c). The maximum of observed latent heat flux is about 200 W�m�2, while the latent
heat flux is seriously underestimated by CTL in urban area which further leads to error in
humidity and temperature. But AC + VD result indicates that model performance for latent
heat flux is much improved in both dry day and wet day (Figure 3c and d). The simulated
diurnal pattern of latent heat flux by AC + VD is very close to the observation in the dry days
although the value is still less than observation and there is phase deviation. There are still
errors of latent heat flux simulated by AC + VD in the wet days.

Bowen ratio is a very important index for the energy balance. Because the latent heat flux is
seriously underestimated by CTL, there are big simulation errors for Bowen ratio especially in
nighttime, both in dry days and wet days (Figure 4). That problem has been largely solved by
AC +VD even though there are still underestimated Bowen ratios especially from 600 to 1600 LST.

The heat flux change by AC + VD will further influence temperature and humidity in urban
area. So next part we will force on evaluating the model performance of temperature and
humidity at 2 m. For the dry day, temperature is obviously overestimated by CTL during the

Figure 4. Averaged diurnal pattern of Bowen ratio. (a) Dry day and (b) wet day.
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its external atmosphere simulation is an inadequate capability in CTL. AC + VD not only
increase the latent heat flux released from building but also improve simulation ability of heat
exchange.
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tion by Beijing tower in 140 m, sensible heat flux is less than 20 W�m�2 in the nighttime, while
CTL overestimate sensible heat flux about 50 W�m�2 in the nighttime (Figure 3a). It has largely
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Figure 4. Averaged diurnal pattern of Bowen ratio. (a) Dry day and (b) wet day.

Evaluating Cooling Tower Scheme and Mechanical Drag Coefficient Formulation in High-Resolution Regional Model
http://dx.doi.org/10.5772/intechopen.80522

111



whole day. But performance is largely improved by AC + VD especially in nighttime. Temper-
ature at 2 m is decreased around 3� by AC + VD in nighttime which is very close to the
observation (Figure 5a). There are still obvious errors during 1200–1600 LST. For the dry days,
improvement for nighttime is still significant (2�) but not as good as wet days when compared to
the observation (Figure 5b). Although AC + VD improves the temperature about 1.5�, the
maximum simulation deviation still occurred from 1200 to 1600 LST. That is related to
overestimating the sensible heat flux. Another error of phase is still in the simulation in dry day.

For the dry day, absolute humidity is underestimated by CTL during the whole day, while it is
improved by AC + VD especially in nighttime (Figure 5c). For the wet day, absolute humidity
is increasing from 1200 to 1600 because rainfall will more likely occur in this period. While
simulated absolute humidity in both CTL and AC + VD lags behind the observation, increas-
ing period is from 1800 to 2300 LST (Figure 5d). Simulated value is improved by AC + VD
although the phase difference still remained in both dry day and wet day.

3.2. Effect on spatial distribution

294 meteorological stations are used to evaluate model performance of temperature and
humidity spatial distribution. Spatial distribution of averaged temperature error shows
that CTL overestimate daily mean temperature in most of urban station (Figure 6a), and
the errors of most stations reach 1–2�. Errors of temperature are obviously reduced by
EC in urban area and errors of about half stations <0.5� (Figure 6b). Both CTL and
AC + VD underestimate daily mean absolute humidity at most urban stations. And there
is no significant difference or improved effect by AC + VD in mean absolute humidity in
urban area.
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Maximum temperature (at 3 pm) simulated by CTL is more than 35�C in urban and suburban
area in the dry day and 33�C in most of the plains (Figure 7a). While temperature is reduced to
about 2� in AC + VD in both urban and suburban areas, and the area in which temperature is
more than 36�C is obviously decreased (Figure 7b). There are the same characteristics for wet
days (Figure 7c and d).

Spatial distribution of maximum sensible heat flux shows that sensible heat flux simulated by
CTL in urban area is more than 350 W�m�2 in the dry day (Figure 8a). The sensible heat flux
simulated by AC + VD in most urban areas is about 320 W�m�2 which is a little smaller than
CTL (Figure 8b) in the dry day. And the maximum region (more than 350 W�m�2) of sensible
heat flux is also reduced by AC + VD. In the wet day, sensible heat flux maximum simulated by
AC + VD is smaller about 50–100 W�m�2 than CTL (Figure 8c and d).

Latent heat flux maximum simulated by CTL is less than 50 W�m�2 in downtown area which is
obviously underestimated compared to the observation in both dry day and wet day
(Figure 9a and c). Simulation of latent heat flux in urban area by AC + VD improves the value
to 100 W�m�2 in dry day and 150 W�m�2 in wet day (Figure 9b and d).

Maximum sensible heat flux released by air condition in CTL is more than 100 W�m�2 in urban
area, and there is a little difference between dry day and wet day. AC + VD reduce the
maximum sensible heat flux released by the building’s air condition in both dry days and wet

Figure 6. Spatial distribution of averaged temperature (�C) and absolute humidity (g∙kg�1) errors (difference between
modeling and observation) at 2 m, the black circles show the second to sixth ring roads. (a) Temperature error in CTL;
(b) temperature error in AC + VD; (c) absolute humidity error in CTL; and (d) absolute humidity error in AC + VD.
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whole day. But performance is largely improved by AC + VD especially in nighttime. Temper-
ature at 2 m is decreased around 3� by AC + VD in nighttime which is very close to the
observation (Figure 5a). There are still obvious errors during 1200–1600 LST. For the dry days,
improvement for nighttime is still significant (2�) but not as good as wet days when compared to
the observation (Figure 5b). Although AC + VD improves the temperature about 1.5�, the
maximum simulation deviation still occurred from 1200 to 1600 LST. That is related to
overestimating the sensible heat flux. Another error of phase is still in the simulation in dry day.

For the dry day, absolute humidity is underestimated by CTL during the whole day, while it is
improved by AC + VD especially in nighttime (Figure 5c). For the wet day, absolute humidity
is increasing from 1200 to 1600 because rainfall will more likely occur in this period. While
simulated absolute humidity in both CTL and AC + VD lags behind the observation, increas-
ing period is from 1800 to 2300 LST (Figure 5d). Simulated value is improved by AC + VD
although the phase difference still remained in both dry day and wet day.

3.2. Effect on spatial distribution

294 meteorological stations are used to evaluate model performance of temperature and
humidity spatial distribution. Spatial distribution of averaged temperature error shows
that CTL overestimate daily mean temperature in most of urban station (Figure 6a), and
the errors of most stations reach 1–2�. Errors of temperature are obviously reduced by
EC in urban area and errors of about half stations <0.5� (Figure 6b). Both CTL and
AC + VD underestimate daily mean absolute humidity at most urban stations. And there
is no significant difference or improved effect by AC + VD in mean absolute humidity in
urban area.
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Figure 7. Spatial distribution of averaged temperature (�C) at 2 m in 3 pm. (a) Simulated by CTL in dry day; (b) simulated
by AC + VD in dry day; (c) simulated by CTL in wet day; and (d) simulated by AC + VD in wet day.

Figure 8. Spatial distribution of averaged sensible heat flux (W∙m�2) in 3 pm. (a) Simulated by CTL in dry day;
(b) simulated by AC + VD in dry day; (c) simulated by CTL in wet day; and (d) simulated by AC + VD in wet day.
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days (Figure 10a and c). And sensible heat flux in dry day is obviously larger than wet days
simulated by AC + VD (Figure 10b and d). That means sensible heat flux released by air
condition in AC + VD is affected by outdoor temperature. Model performance of indoor and
outdoor exchange is significantly improved by AC + VD.

There is no latent heat flux released by air conditioning used in the potential temperature
equation when coupled to the WRF/BEP + BEM in CTL. However, in AC + VD the maximum
latent heat flux released is more than 120 W�m�2 in dry days and 80–100 W�m�2 in wet days
(Figure 11a and b) over urban core areas.

3.3. Effect on wind field

The observed daytime change of urban area averaged wind speed appeared as single peak.
The wind speed reaches maximum and minimum at 700 LSTand 000 LST in summer in Beijing
(Figure 12a). The diurnal feature of wind speed is well captured by CTL and AC + VD.
However, CTL overestimated wind speed in daytime especially during 500–1000 LST. This
problem has been largely solved by AC + VD (Figure 12a). RMSE is also obviously reduced by
AC + VD in the whole day (Figure 12b).

Figure 9. As in Figure 8 but for latent heat flux.
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Spatial distributions of wind speed by CTL show that the average wind speed in urban area is
3.5 W∙m�2 (Figure 13a), while the wind speed is reduced in AC + VD about 1.5 W∙m�2

(Figure 13b). The averaged wind speed simulated by AC + VD is about 1.8 W∙m�2. Wind speed
in CTL is overestimated in all Beijing areas (Figure 14a). Spatial distributions of wind speed
errors also indicated that wind speed error is obviously revised by AC + VD (Figure 14b).

Figure 10. Spatial distribution of sensible heat flux (W∙m�2) released by building air condition in 3 pm. (a) Simulated by
CTL in dry day; (b) simulated by AC + VD in dry day; (c) simulated by CTL in wet day; and (d) simulated by AC + VD in
wet day.

Figure 11. Spatial distribution of latent heat flux (W∙m�2) released by building air condition at 3 pm. (a) Simulated by
AC + VD in dry day and (b) simulated by AC + VD in wet day.
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4. Conclusions and discussions

A cooling tower scheme considering quantitative sensible and latent heat flux released from air
condition was coupled to RMAPS. A mechanical drag coefficient formulation was implemented
into the RMAPS to improve the representation of the wind speed in complex urban environ-
ments. The computing method is based on the heat transfer between temperature and humidity

Figure 12. Averaged diurnal pattern of wind speed and its RMSE (W∙m�2). (a) Averaged of study period and (b) RMSE.

Figure 13. Spatial distributions of wind speed and wind fields (W∙m�2). (a) CTL and (b) AC + VD.

Figure 14. Spatial distributions of wind speed errors (m∙s�1) (difference between modeling and observation) at 10 m.
(a) CTL and (b) AC + VD.
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Spatial distributions of wind speed by CTL show that the average wind speed in urban area is
3.5 W∙m�2 (Figure 13a), while the wind speed is reduced in AC + VD about 1.5 W∙m�2

(Figure 13b). The averaged wind speed simulated by AC + VD is about 1.8 W∙m�2. Wind speed
in CTL is overestimated in all Beijing areas (Figure 14a). Spatial distributions of wind speed
errors also indicated that wind speed error is obviously revised by AC + VD (Figure 14b).

Figure 10. Spatial distribution of sensible heat flux (W∙m�2) released by building air condition in 3 pm. (a) Simulated by
CTL in dry day; (b) simulated by AC + VD in dry day; (c) simulated by CTL in wet day; and (d) simulated by AC + VD in
wet day.

Figure 11. Spatial distribution of latent heat flux (W∙m�2) released by building air condition at 3 pm. (a) Simulated by
AC + VD in dry day and (b) simulated by AC + VD in wet day.
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4. Conclusions and discussions

A cooling tower scheme considering quantitative sensible and latent heat flux released from air
condition was coupled to RMAPS. A mechanical drag coefficient formulation was implemented
into the RMAPS to improve the representation of the wind speed in complex urban environ-
ments. The computing method is based on the heat transfer between temperature and humidity

Figure 12. Averaged diurnal pattern of wind speed and its RMSE (W∙m�2). (a) Averaged of study period and (b) RMSE.

Figure 13. Spatial distributions of wind speed and wind fields (W∙m�2). (a) CTL and (b) AC + VD.

Figure 14. Spatial distributions of wind speed errors (m∙s�1) (difference between modeling and observation) at 10 m.
(a) CTL and (b) AC + VD.
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and between condenser and outdoor inlet air. Two simulations use default RMAPS and impro-
ved RMAPS to estimate the improvement effect focusing on dry day and wet day, respectively.
The cooling tower system in commercial area not only induces the significant increase of the
anthropogenic heat partition by 90% of the total heat flux releasing as latent but also further
changes the surface heat flux feature. When cooling tower is introduced, averaged surface latent
heat flux in urban area is increased to about 60 W�m�2 with the peak of 150 W�m�2 in dry day
and 40 W�m�2 with the peak of 150 W�m�2 in wet day. Further new cooling tower scheme
improves the model performance of temperature and humidity. Maximum and minimum tem-
perature error improves 2–3� especially in dry day. The drag coefficient formulation induced the
simulated wind speed to about 2.5 m∙s�1 that improve the wind speed error of about 2–3 m∙s�1

in urban area.
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and between condenser and outdoor inlet air. Two simulations use default RMAPS and impro-
ved RMAPS to estimate the improvement effect focusing on dry day and wet day, respectively.
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anthropogenic heat partition by 90% of the total heat flux releasing as latent but also further
changes the surface heat flux feature. When cooling tower is introduced, averaged surface latent
heat flux in urban area is increased to about 60 W�m�2 with the peak of 150 W�m�2 in dry day
and 40 W�m�2 with the peak of 150 W�m�2 in wet day. Further new cooling tower scheme
improves the model performance of temperature and humidity. Maximum and minimum tem-
perature error improves 2–3� especially in dry day. The drag coefficient formulation induced the
simulated wind speed to about 2.5 m∙s�1 that improve the wind speed error of about 2–3 m∙s�1

in urban area.
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Abstract

Air pollution is severely focused due to its distinct effect on climate change and adverse 
effect on human health, ecological system, etc. Eastern China is one of the most pol-
luted areas in the world and many actions were taken to reduce air pollution. Numerical 
forecast of air quality was proved to be one of the effective ways to help to deal with air 
pollution. This chapter will present the development, uncertainty and thinking about the 
future of the numerical air quality forecast emphasized in eastern China region. Brief his-
tory of numerical air quality modeling including that of Shanghai Meteorological Service 
(SMS) was reviewed. The operational regional atmospheric environmental modeling 
system for eastern China (RAEMS) and its performance on forecasting the major air pol-
lutants over eastern China region was introduced. Uncertainty was analyzed meanwhile 
challenges and actions to be done in the future were suggested to provide better service 
of numerical air quality forecast.

Keywords: numerical prediction, numerical forecast, air pollution, air quality, eastern 
China

1. Introduction

China has been suffering severe air pollution in recent years, characterized as high levels 
of fine particles (PM2.5) and ozone [1–4]. As part of atmospheric composition, air pollutants 
play important role in climate change. For example, ozone is one of major greenhouse gases, 
which causes atmospheric warming [5]. Atmospheric aerosol is one of the most important 
and uncertain factors in both climate change and weather activities. It influences climate by 
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its direct radiative forcing and induced cloud adjustments and weather by the interactions of 
aerosol-radiation, aerosol-cloud, etc. [5]. Air pollution also leads to adverse effects on health 
[6, 7], including increasing of respiratory and cardiovascular diseases, excess mortality, and 
decreasing of life expectancy [8–11]. High particulate matter (PM) concentration under rela-
tively high relative humidity (RH) conditions often induces haze events and causes high risk 
on public activities such as surface transportation, aircraft take-off and landing. Therefore, 
the characteristics, formation mechanisms, and influence factors of air pollution and related 
issues were seriously focused in recent years (e.g. in [4, 12–15]).

In policy decision aspect, the Chinese government therefore has issued series of actions 
to reduce air pollution in the last few years. The new Chinese national ambient air quality 
standards (CNAAQS2012) [16] was jointly released by Ministry of Environmental Protection 
(MEP) of the People’s Republic of China and General Administration of Quality Supervision, 
Inspection and Quarantine of the People’s Republic of China in 2012. At the first time, stan-
dards for PM2.5 and daily maximum 8-hour averaged (DM8H) ozone (O3-8h) were established 
in China. The State Council then issued a stringent action plan to combat air pollution on 
September, 2013 [17]. China sponsored tens of projects and funded several billions since 
2016 in a special fund named Study on Formation Mechanism of Atmospheric pollution and 
Control Technology. In the support of the Premier Fund, “2 + 26” cities were chosen and one 
scientific team was organized for each city in 2017 to deal with the air pollution in Beijing-
Tianjin-Hebei and its surrounding region. Accordingly, China Meteorological Administration 
(CMA) established operational centers in three populated regions (Beijing-Tianjin-Hebei, 
Yangtze River Delta, and Pearl River Delta) to provide air quality forecasting and warning. 
Provincial governments took many kinds of actions to try to improve ambient air quality.

Eastern China, which covers the Yangtze River Delta, is one of the most polluted regions [1, 3]. 
The air quality in this region is also influenced by Beijing-Tianjin-Hebei region by the north-
westerly. Study on air pollution as well as its secondarily produced haze in this region was 
thus widely carried out and numerical modeling played an important role. For example, Tie 
et al. studied ozone [18] and Zhou et al. studied particulate matter and haze [19] over Shanghai 
by using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) 
[20]; the severe PM pollution and haze episodes over eastern China in January 2013 were mod-
eled by using the nested air quality prediction model system (NAQPMS) [21] and revised 
Community Multi-scale Air Quality (CMAQ) model [22, 23], etc. In the previous studies, 
increase of secondary aerosols was certified to take important role in heavy PM pollution 
events (e.g. in [19, 23, 24]) and some new sources through heterogeneous processes were found 
to promote rapid increase of PM in extreme pollution episodes [14, 25]. These works proved 
that the usage of air quality models is one valid solution to air pollution studies.

In this chapter, the numerical forecast of air quality over eastern China is presented. This work 
is one of the important applications of numerical meteorological prediction and supports air 
quality and relevant service including temporary emission control and study of air pollution 
on health, etc. In the next sections, the brief history of development of numerical modeling for 
air pollution will be reviewed. Then the operational forecast will be emphasized, including 
the construction of modeling system and forecast performance. Analysis and discussion on 
the uncertainty and shortage in current work will be presented to help improving the forecast 
in the future. Brief conclusion will be given in the end.
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2. Brief history of numerical air quality modeling

Air quality models are tools that describe the physical and chemical processes which influence 
air pollutants, including chemical reactions, transport, diffusion, scavenging, etc. in the atmo-
sphere. They are built based on the understanding of atmospheric physics and chemistry and 
computation technology. The models are used in many air quality and related issues, such as 
analyzing the characteristics of tempo-spatial patterns and changes of air pollutants, discover-
ing the mechanisms of formation of air pollution, and estimating the influence of the change of 
factors (e.g. anthropogenic emission, volcanic explosion) on air quality, etc. Usually, air quality 
models are more or less driven by meteorological variables and therefore are connected with 
meteorological models or model outputs.

Since the 1970s, three generations of air quality models have been developed sponsored by 
United States Environmental Protection Agency (US EPA) and other organizations. In the first-
generation models, atmospheric physical processes are highly parameterized and chemical 
processes are ignored or just simply treated. These models introduce the dispersion profiles in 
different levels of discretized stability and are specialized in calculating the long-term average 
concentration of inert air pollutant. The second-generation models include more complicated 
meteorological models and nonlinear chemical reactions and the simulation domain is three-
dimensionally (3-D) gridded. The chemical and physical processes are individually calculated 
in each grid and influence between neighbor grids is considered. This generation is used 
generally to treat one type of air pollution, such as photochemical smog and acid rain. In 
the end of the 1990s, US EPA presented the concept of “one atmosphere” and developed the 
third-generation air quality modeling system—Medels-3/CMAQ [26]. It is an integrated sys-
tem and consists of serial modules to process emissions, meteorology inputs, chemical reac-
tion and transport, production making, etc. The third-generation models involve relatively 
detailed atmospheric chemistry and physics as well as the influence and inter-conversion 
among air pollutants of different types or phases. In fact, the divide of different generations is 
not distinct and some models are still in continuous development. For example, the CALPIFF 
(one Lagrangian model of the first-generation) introduced much research results in the 1990s 
and was often implemented in the 2000s. The second version regional acid model (RADM2) 
increased chemical species and reactions [27] and was introduced in the very newly devel-
oped third-generation model of WRF-Chem [20].

In recent years, 3-D chemical transport models (CTMs) has been widely used in studying 
and forecasting air quality combined with numerical meteorological models benefited from 
the rapid development of models and computing technology. For example, global ozone was 
simulated by using the model for ozone and related chemical tracers (MOZART) and the 
model performance was evaluated [28, 29]. Gu et al. studied summertime ozone and nitrate 
aerosol in upper troposphere and lower stratosphere (UTLS) over the Tibetan Plateau and 
the south Asian monsoon region using the Goddard Earth Observing System chemical trans-
port model (GEOS-Chem) [30, 31]. The CMAQ model had a great number of applications 
around the world, e.g. in [32, 33]. Tie et al. studied the characterizations of chemical oxidants 
in Mexico City using WRF-Chem [34]. Zhou et al. developed an operational mesoscale sand 
and dust storm forecasting system for East Asia by coupling a dust model within the CMA 
unified atmospheric chemistry environment (CUACE) [35]. Zhou et al. developed the CUACE 
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is one of the important applications of numerical meteorological prediction and supports air 
quality and relevant service including temporary emission control and study of air pollution 
on health, etc. In the next sections, the brief history of development of numerical modeling for 
air pollution will be reviewed. Then the operational forecast will be emphasized, including 
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for aerosols (CUACE/Aero) to study chemical and optical properties of aerosol in China 
[36]. Over eastern China, there were also numerous applications of CTMs. Gao et al. studied 
regional haze events in the North China Plain (NCP) using WRF-Chem [37]. Zhou et al. built 
an operational system to forecast air quality over eastern China region and resulted good per-
formance in forecasting the major air pollutants of PM2.5 and ozone over this region [38]. Wu 
et al. analyzed the source contribution of primary and secondary sulfate, nitrate, and ammo-
nium (S-N-A) during a representative winter period in Shanghai using online source-tagged 
NAQPMS [39]. Li et al. investigated ozone source by using the ozone source apportionment 
technology (OSAT) with tagged tracers coupled within Comprehensive Air Quality Model 
with Extensions (CAMx) [40].

Air quality modeling in current generation can be switched “offline” or “online” depending on 
the treatment of meteorology and chemistry. The offline chemical processes are treated inde-
pendently from the meteorological modeling, while those in online approach are dependent. 
The modeling systems implemented in recent years are mostly offline, such as AIRPACT [32]. 
The chemical transport in this approach is driven by outputs from a separate meteorological 
model, typically available once per hour. This approach is computationally attractive since only 
one meteorological dataset can be used to produce many chemical simulations for different 
scientific questions. On the other hand, the “online” treatment (e.g. WRF-Chem) was newly 
developed to solve the loss of information in offline approach about atmospheric processes that 
have a time scale of less than the output time interval of meteorological models, including wind 
speed, wind direction, rainfall, etc. The lost information may be very important in high reso-
lution air quality modeling. The online approach also benefits to investigate the interactions 
between meteorology and chemistry [21], which are out of the purpose of offline treatments. 
Previous studies (e.g. in [19, 21, 37, 38, 41]) on air pollution and related issues over eastern 
China region had proved the applicability and advantage of the online model of WRF-Chem.

Shanghai Meteorological Service (SMS), as well as the East China Meteorological Center of 
CMA, shares the responsibility to provide air quality forecast and air pollution warning for 
Shanghai and guidance for East China region. Therefore, SMS initialized numerical modeling 
of air quality in 2006. This work got scientific and technological supports from the World 
Meteorological Organization (WMO) through Shanghai WMO global atmosphere watch 
(GAW) urban research and meteorological environment (GURME) Pilot Project. Based on the 
thinking of the applicability and advantage of WRF-Chem and the extendibility on calcula-
tion of the inter-feedback between meteorological variables and air pollutants, WRF-Chem 
was chosen as the core model in developing our numerical air quality forecast system. An 
experimental forecasting system was established in 2008, in which nested domains of 16 × 
16-km and 4 × 4-km was implemented. The outer domain covered eastern China region and 
the inner one covered the main YRD region. The evaluation showed that the results from two 
domains had comparable performance and further study in [34] showed that the 6 × 6-km 
resolution performed best under the conditions of the model and emission data at that time. 
Therefore, a real time forecast system covering the YRD region with a horizontal resolution of 
6-km was built in 2009 to support the air pollution (including three variables of PM10, SO2 and 
NO2) forecast for Shanghai. This application showed that the forecasts from this version had 
acceptable performance under relatively stable conditions but poorer performance for trans-
port cases, because there are much more air pollutants transported from areas outside the 

Understanding of Atmospheric Systems with Efficient Numerical Methods for Observation and Prediction126

model region such as the NCP. With updates in high performance computational resource, 
one forecast system covering eastern China region was established in 2012, which was named 
as Regional Atmospheric Environmental Modeling System for eastern China (RAEMS). This 
system was certificated as an official operational forecast system by CMA in March, 2013. 
More details about the operational system will be introduced in the next section and the brief 
history of its development was shown in Figure 1.

3. The operational forecast and performance of RAEMS

3.1. Framework of the operational system

The core model in RAEMS is WRF-Chem, which was developed through the collaboration 
of several institutes (e.g. NOAA, NCAR, etc.). Chemistry and meteorology is fully coupled 
in this model, in other words, the same advection, convection, and diffusion scheme, model 
grids, physical schemes, and time step is used and there is no interpolation in time for meteo-
rological fields. The modeling performance of WRF-Chem has been extensively validated 
[20, 42]. Several real-time prediction systems were built based on the WRF-Chem model to 
provide air quality forecasts around the world (e.g. China, the United States, and Brazil), as 
listed in [43]. In RAEMS, several improvements were made based on WRF-Chem version 
3.2 by Tie et al. [44], including the introduction of aerosol effects on photolysis, adjustments 
of nocturnal ozone losing, and introduction of ISORROPIA II secondary inorganic aerosol 
scheme [45]. This modified version has been validated, showing good performance in ozone 
and PM2.5 prediction for Shanghai [18, 19].

As shown in Figure 2, the domain encompasses the eastern China Region. Centered at (32.5°N, 
118°E), it consists of 360 un-staggered grids in west-east and 400 in south-north with a 6-km 
grid resolution. There are 28 layers vertically, with the top pressure of 50 hPa. The time step 
for integration is 30-s for meteorology and 60-s for chemistry, and these for radiation, biogenic 
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for aerosols (CUACE/Aero) to study chemical and optical properties of aerosol in China 
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model region such as the NCP. With updates in high performance computational resource, 
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emission, and photolysis are 10, 30, and 15 min, respectively. Physical options are listed in 
Table 1. Specially, the Noah-modified 20-category IGBP-MODIS instead of 24-category 
USGS land-use was used. The RADM2 [27] was used for gas-phase chemistry. ISORROPIA II 

Parameterization scheme Option

Micro-physics (mp_physics) WSM 6-class

Cumulus parameterization (cu_phy) Not used

Long-wave radiation (ra_lw) RRTM

Short-wave radiation (ra_sw) Dudhia

Surface layer (sf_sfclay) Monin_Obukhov

Land surface (sf_surface) Unified Noah

Boundary layer (bl_pbl) YSU

Gas-phase chemistry RADM2

Inorganic aerosol chemistry ISORROPIA II

Organic aerosol chemistry SORGAM

Table 1. Physical and chemical configuration in RAEMS.

Figure 2. Components of RAEMS. Domain coverage was shown in the central component.
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secondary inorganic [45] and the Secondary ORGanic Aerosol Model (SORGAM) [46] schemes 
were used to treat aerosol chemistry. Madronich scheme [47, 48] was applied for photolysis.

The global forecast from the National Centers for Environmental Prediction Global Forecast 
System (NCEP GFS) was used for meteorological initial and boundary conditions. NCEP GFS 
data was used widely for weather forecast, analysis, and as the initial and lateral boundary 
conditions of regional modeling. 0.5-degree GFS forecast was used, and 1-degree data was also 
applied if higher resolution forecasts were not available. Previous forecast was used for chemi-
cal initial conditions. The gaseous chemical lateral boundary conditions were based on estima-
tions from a global chemical transport model (MOZART-4) [28, 29]. Boundary conditions were 
extracted from the MOZART-4 by matching the RAEMS boundary with the MOZART cells. 
While maintaining diurnal variations in species concentrations, monthly averaged MOZART-4 
values of the year 2009 were applied.

3.2. Biogenic and anthropogenic emissions

Biogenic emissions were calculated online using model of emissions of gases and aerosols 
from nature (MEGAN2, in [49, 50]). Global land cover maps including isoprene emission fac-
tor, plant functional type, and leaf area index were applied.

The multi-resolution emission inventory for China (MEIC [51, 52]) for the year 2010 was applied 
as the anthropogenic inventory. MEIC inventory was developed by Tsinghua University, 
including emissions of 10 major atmospheric pollutants and greenhouse gases (SO2, NOX, CO, 
NMVOC, NH3, CO2, PM2.5, PM10, BC, and OC) over mainland China. MEIC supplied gridded 
monthly emissions from five sectors (industry, power, residential, transport, and agriculture) 
with a 0.25-degree resolution. Asian emission inventory for the NASA INTEX-B Mission [53] 
was applied for regions outside mainland China and before August, 2014. It has a resolution 
of 0.5-degree for the year 2008.

While being used in RAEMS system, the emissions were spatially regridded to the model grids. 
Emissions were also hourly allocated with the diurnal profile (in [38]) provided by Shanghai 
Academy of Environmental Science. NO emission took a proportion of 90% of the amount of  
NOx in mole number and NO2 took the rest 10% (as in [41]). Information of spatial distribution 
and total amount can be found in [38].

3.3. Operational execution and products

The RAEMS was authorized as an official operational forecasting system by CMA on Mar. 
23, 2013 and has been producing forecast since then. The operational system runs once per 
day, initialized at 12Z UTC (20Z LST). It is started at about 2 am at local time every day and 
completes entire simulation and post-processing within 5 h. The predictable time length is 
more than 78 h and the forecast system provides forecast products for 3 local days.

Operational products are displayed on a website [54]. The link to this site is also accessi-
ble from the official NOAA WRF-Chem website [43]. The products include hourly spatial 
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secondary inorganic [45] and the Secondary ORGanic Aerosol Model (SORGAM) [46] schemes 
were used to treat aerosol chemistry. Madronich scheme [47, 48] was applied for photolysis.

The global forecast from the National Centers for Environmental Prediction Global Forecast 
System (NCEP GFS) was used for meteorological initial and boundary conditions. NCEP GFS 
data was used widely for weather forecast, analysis, and as the initial and lateral boundary 
conditions of regional modeling. 0.5-degree GFS forecast was used, and 1-degree data was also 
applied if higher resolution forecasts were not available. Previous forecast was used for chemi-
cal initial conditions. The gaseous chemical lateral boundary conditions were based on estima-
tions from a global chemical transport model (MOZART-4) [28, 29]. Boundary conditions were 
extracted from the MOZART-4 by matching the RAEMS boundary with the MOZART cells. 
While maintaining diurnal variations in species concentrations, monthly averaged MOZART-4 
values of the year 2009 were applied.

3.2. Biogenic and anthropogenic emissions

Biogenic emissions were calculated online using model of emissions of gases and aerosols 
from nature (MEGAN2, in [49, 50]). Global land cover maps including isoprene emission fac-
tor, plant functional type, and leaf area index were applied.

The multi-resolution emission inventory for China (MEIC [51, 52]) for the year 2010 was applied 
as the anthropogenic inventory. MEIC inventory was developed by Tsinghua University, 
including emissions of 10 major atmospheric pollutants and greenhouse gases (SO2, NOX, CO, 
NMVOC, NH3, CO2, PM2.5, PM10, BC, and OC) over mainland China. MEIC supplied gridded 
monthly emissions from five sectors (industry, power, residential, transport, and agriculture) 
with a 0.25-degree resolution. Asian emission inventory for the NASA INTEX-B Mission [53] 
was applied for regions outside mainland China and before August, 2014. It has a resolution 
of 0.5-degree for the year 2008.

While being used in RAEMS system, the emissions were spatially regridded to the model grids. 
Emissions were also hourly allocated with the diurnal profile (in [38]) provided by Shanghai 
Academy of Environmental Science. NO emission took a proportion of 90% of the amount of  
NOx in mole number and NO2 took the rest 10% (as in [41]). Information of spatial distribution 
and total amount can be found in [38].

3.3. Operational execution and products

The RAEMS was authorized as an official operational forecasting system by CMA on Mar. 
23, 2013 and has been producing forecast since then. The operational system runs once per 
day, initialized at 12Z UTC (20Z LST). It is started at about 2 am at local time every day and 
completes entire simulation and post-processing within 5 h. The predictable time length is 
more than 78 h and the forecast system provides forecast products for 3 local days.

Operational products are displayed on a website [54]. The link to this site is also accessi-
ble from the official NOAA WRF-Chem website [43]. The products include hourly spatial 
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distributions of major pollutants and air quality related meteorological conditions. Temporal 
variations of both meteorological elements and pollutant species at more than 500 stations as 
well as real-time evaluation results are also provided online.

3.4. Regular update on anthropogenic emission

The anthropogenic emission used in RAEMS was yearly updated since 2016 to fit the change 
of emission as well as the adaptability of the modeling system. The emission was updated 
monthly based on that used in the same month of previous year. These adjustments were 
majorly depended on the results of monthly evaluation of previous year and information of 
emission regulation and control implementing in that month as well as the feedback from 
the forecasters in operational agencies who use the products every day. In the treatment, the 
ratio of bias median to observational average for each city was taken as the key indicator for 
adjusting. At the same time, performance of NO2 and SO2 and primary PM emission was most 
focused because of the importance of S-N-A in secondary aerosol [55, 56] and that of primary 
aerosol. For example, the evaluation showed that NO2 was obviously underestimated in the 
northern and southern parts of East China region with bias ratios of over −25% in December, 
2015 (Figure 3). SO2 forecasts showed more serious underestimation for most cities in these 
two areas. But the RAEMS overestimated NO2 and SO2 for many cities in the middle region, 
especially for the cities along the Yangtze River. Therefore, the emitting intensities of NO2 and 
SO2 in December, 2016 were increased or decreased in different amounts separately for differ-
ent areas. Accordingly, other emitting species were adjusted in the similar way. The amounts 
were estimated experientially based on ratios and control information.

Figure 3. The distribution of the ratio of forecast bias median to the observational average in December, 2015 for NO2 
(left) and SO2 (right).
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3.5. Evaluations

A comprehensive evaluation on the performance of RAEMS was carried out in [38]. In that 
work, the performance in the beginning of two natural years of 2014 and 2015 was exhibited. 
They analyzed the series of statistical indicators for variables of PM2.5, ozone, PM10, NO2, SO2 
and CO. The indicators included mean bias (MB), mean error (ME), root mean square error 
(RMSE), correlation coefficient (R), normalized mean bias (NMB) and error (NME), factor of 2 
of measurement values (FAC2, the ratio of forecast records within between half and twice of 
measurement values), Fractional bias (FB) and error (FE), etc. Category performance with dif-
ferent exceedance limits was also evaluated for the two most important pollutants of PM2.5 and 
O3-8h. In spatial, the performance of PM2.5 and DM8H ozone for main cities and PM2.5 for pro-
vincial capital cities was shown. In temporal, the consistency of different forecast time length of 
PM2.5 and ozone and diurnal variation and the distribution of peak time of ozone was analyzed.

In general, their results showed that the RAEMS has good performance in forecasting the tem-
poral trend and spatial distribution of major air pollutants over eastern China region and the 
performance is consistent with the increasing forecast time length up to 3 days. All summarized 
statistical indicators of daily PM2.5 and DM8H ozone in different forecast time lengths were 
comparable with each other and no distinct disagreements were shown. About half of cities 
have correlation coefficients greater than 0.6 for PM2.5 and 0.7 for DM8H ozone. The forecasted 
PM2.5 concentrations were generally in good agreements with observed concentrations, with 
most cities having NMB within ±25%. Forecasted ozone diurnal variation was very similar to 
the observations and made small peak time error. The modeling system also exhibited accept-
able performance for the other air pollutants. More detailed information can be found in [38].

Here more evaluation results were given for the city of Shanghai, one of the largest cities 
around the world, to show a glimpse on the continuity of forecast performance and how 
the forecast system performed after 2015. Figure 4 shows the scattering results of observed 
and 48-h forecasted PM2.5 and O3-8h for 4 years from 2014 to 2017. It shows that RAEMS had 
generally good performance in forecasting the two most important air pollutants. For PM2.5, 
the four-year average observed concentration was 46.9 μg/m3 and the forecasted concentra-
tion was only 0.1 μg/m3 overestimated. The correlation coefficient between observation and 
prediction of PM2.5 was 0.74. It also revealed relatively low RMSE and NMB, 22.3 μg/m3 and 
8.1%, respectively and high FAC2 of 0.89. This result suggested that 89% forecasted PM2.5 con-
centrations were within between half and twice of those of observed. These indicators showed 
excellent performance in forecasting and modeling PM2.5. The NMB of 8.1% was much lower 
than the acceptable threshold value of ±20% recommended in the United Kingdom [57]. For 
example, Chen et al. reported a FAC2 of around 60% and NMB of 17 and 32% for polluted and 
clean periods [32]. Grell et al. reported a R2 of 0.38 for simulating PM2.5 over New Hampshire 
using WRF-Chem [20]. Foley et al. Reported a NMB of 19% [33]. Prank et al. found under-
estimation of 10–60% over Europe using four chemical transport models of CMAQ, EMEP, 
LOTOS-EUROS and SILAM [58]. Wu et al. reported FAC2 of 70–80% [39]. For O3-8h, the fore-
casts showed better performance in indicators of correlation coefficient, NMB, and FAC2, but 
worse in MB and RMSE comparing with corresponding indicators for PM2.5. The performance 
for Shanghai has high scores among the cities over the eastern China [38].
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The performances for different years were generally consistent for both PM2.5 and O3-8h 
(Table 2). For example, the values of FAC2 were around 0.89 for PM2.5 and 0.93–0.97 for O3-8h, 
respectively. RMSEs were within 20.8–23.9 μg/m3 for PM2.5 and 28.2–32.9 μg/m3 for O3-8h, 
respectively. Correlation coefficients agreed well with each other. But MBs and NMBs had 
some difference. MBs showed that the concentration of PM2.5 was underestimated in 2014 and 
2015 while overestimated in 2016 and 2017 although the biases were not very large. O3-8h was 
underestimated in 2015 and overestimated in the other 3 years. NMBs for PM2.5 in 2017 and for 
O3-8h in 2014 were relatively larger. In general, most statistical indicators for different years 
were comparable with each other.

To evaluate the capability of RAEMS on forecasting pollution, the categorical performance 
was calculated using the definition referenced in [20, 38] and the results are listed in Table 3. 
Only one heavy pollution for O3-8h (>265) occurred and therefore it was not included in the 
analysis. The exceedance limits were set using the criterion values for lightly, moderately, and 
heavily (PM2.5 only) polluted level in the technical regulation of CNAAQS2012. The results 

Figure 4. Scattering plot of 48-h forecasted and observed daily mean PM2.5 and O3-8h for shanghai during 2014–2017.

R MB RMSE NMB (%) FAC2 R MB RMSE NMB (%) FAC2

All 0.74 0.1 22.3 8.1 0.89 0.80 3.5 30.6 7.2 0.95

2014 0.75 −0.7 23.9 4.4 0.89 0.80 15.8 32.0 21.3 0.96

2015 0.78 −5.6 22.5 −2.3 0.89 0.81 −6.5 30.0 −1.4 0.94

2016 0.73 1.3 22.1 13.3 0.89 0.76 2.1 32.9 5.9 0.93

2017 0.75 5.3 20.8 17.2 0.88 0.86 2.8 28.2 3.2 0.97

Table 2. Summarized statistics of forecast performance of daily PM2.5 (left panel) and O3-8h (right) for different forecast 
length (units: μg/m3 for MB and RMSE).
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showed that the forecast performance decreases with increased exceedance limits for both 
PM2.5 and O3-8h. The values probability of detection and critical success index decrease with 
higher exceedance limit, while those of missed detection rate and false alarm rate increase. 
The biases are relatively steady and show slight over-estimation for PM2.5 and some for O3-8h. 
An interesting result is found for accuracy that it tends to increase with higher exceedance 
limits. Further analysis showed that this result is ascribed to the big percentage of the records 
under limits.

In general, RAEMS makes good performance on forecasting the major air pollutants over 
eastern China region. It also provides reliable products to support and promote the work 
on environmental meteorology and positive effects on increasing the ability to serve the 
decision-making and the public.

4. Uncertainty in forecasting air quality

The previous studies also showed shortage and uncertainty in several aspects in simulat-
ing and forecasting air quality using numerical models, although great improvements were 
achieved. The outputs of air pollutant concentrations from numerical models are more or 
less different from the observations in most cases. In other words, the bias of prediction and 
observation is usually more than 10%. If the forecast performances well, the bias could be even 
less than 10% (e.g. in [20, 32, 38]). For the ratio modeled value within between half and twice 
of observation, good performance could be around 90% in this work, while 70–80% [38, 39] or 
lower [58] were more recorded. Moreover, the temporal variation of model always varies from 
that of observation. This can be represented in correlation coefficient or ozone peak time as one 
often focused issue. High correlation coefficients could be greater than 0.7 or even 0.8 (in this 
work and [32, 38]), usually 0.5 or 0.6 (in [20, 32, 38, 39]) or lower (in [36]). A certain percentage 
of forecasted ozone peak time was several hours different from observed [32, 38]. The third 
aspect is that model performance is generally inconsistent in space, in other words, it may per-
form very well over some areas but poorly over some other areas in the same simulation using 
the same model. This phenomenon of inconsistency existed in results of all work. The models 
are not as satisfied in polluted situations as in usual or clean conditions while pollution always 

Exceedance limit (μg/m3) 75 115 150 160 215

Accuracy (%) 87.2 95.0 98.5 91.5 97.0

Probability of detection (%) 63.5 44.1 40.0 75.3 67.5

Missed detection rate (%) 36.5 55.9 60.0 24.7 32.5

False alarm rate (%) 43.5 60.6 68.4 42.3 52.6

Critical success index (CSI) 0.43 0.26 0.21 0.49 0.39

Bias 1.12 1.12 1.3 1.31 1.43

Table 3. Categorical performance evaluated with different exceedance limits for PM2.5 (left panel) and O3-8h (right).
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The performances for different years were generally consistent for both PM2.5 and O3-8h 
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respectively. RMSEs were within 20.8–23.9 μg/m3 for PM2.5 and 28.2–32.9 μg/m3 for O3-8h, 
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Figure 4. Scattering plot of 48-h forecasted and observed daily mean PM2.5 and O3-8h for shanghai during 2014–2017.
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All 0.74 0.1 22.3 8.1 0.89 0.80 3.5 30.6 7.2 0.95

2014 0.75 −0.7 23.9 4.4 0.89 0.80 15.8 32.0 21.3 0.96

2015 0.78 −5.6 22.5 −2.3 0.89 0.81 −6.5 30.0 −1.4 0.94

2016 0.73 1.3 22.1 13.3 0.89 0.76 2.1 32.9 5.9 0.93

2017 0.75 5.3 20.8 17.2 0.88 0.86 2.8 28.2 3.2 0.97

Table 2. Summarized statistics of forecast performance of daily PM2.5 (left panel) and O3-8h (right) for different forecast 
length (units: μg/m3 for MB and RMSE).
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takes more attention in many regions. For example, RAEMS did not provide enough satisfied 
forecast for air pollution, especially heavy pollution for Shanghai shown in former sections as 
well as in [20, 38] which showed unsatisfied results for high ozone in US. The performance on 
predicting aerosol components was worse than that on the integrated mass concentration (e.g. 
PM2.5 and PM10) (e.g. in [19, 20, 32]). This concerns to visibility and haze related forecast, which 
leads to lower capability of models in forecasting visibility and haze events.

Major components which caused the uncertainty on numerical air quality modeling and 
forecasting could be classified into the several following issues. First of all, emission inven-
tories are important as they were always mentioned in many previous studies [21, 32, 38, 
41]. Emissions can be classified into natural emissions and anthropogenic emissions. Natural 
emissions are from respiration and photosynthesis of plants, sea spray, forest fire, volcano 
explosion, etc. Many sources of deviation could be included in the model calculation because 
it’s impossible for modelers to know all of the details that can influence emission. For example, 
it is hard to obtain the fully accurate information on the growing states and types of plants, 
ambient conditions such as temperature, humidity, radiance, etc. in the region and duration 
to be forecasted or modeled. In forecasting, it is also difficult to know exactly when, where or 
even whether a forest fire or volcano explosion will occur or not. There are also many kinds of 
uncertainties in calculating the anthropogenic emissions. The inventory is always 2 or 3 years 
delayed and supplies the total amount of emission for 1 month or 1 year. In most situations, 
the diurnal variations used in the modeling are solid in time and space and cannot describe 
the tempo-spatial change due to actual activities of industry, traffic, etc. Another gap is that 
basic monitoring data is not sufficient enough for producing anthropogenic emission inven-
tory in chemical species and spatial resolution, and therefore many approaches are imple-
mented in developing inventories. At the same time, inventories are also sufficient enough for 
modeling, e.g. the number and types of chemical species and the height of each power plant.

The second uncertainty came from model representation. While developing a model, scientists 
always endeavored to balance the scientific understanding and the goal of extremely “perfect” 
performance. But in fact, a perfect model is always idealized and being sought. The under-
standing of the chemical processes formatting or depleting air pollutants, the physical pro-
cesses that transport or disperse air pollutants, the ambient conditions that influence chemical 
reactions is advancing. Forecast models usually introduce relatively mature technologies and 
keep them suitable for most situations. New technology is always developing to study or solve 
problems and be implemented into forecast model when it is validated. So, air quality models 
were in progress in the past and there is still some shortage or uncertainty in “current” model. 
Concerning RAEMS, its core model was developed several years ago and some elements were 
not included which were confirmed to influence the performance. For example, aerosol direct 
forcing in solar radiation was not considered in the model, which leads to more solar radiative 
flux to the air near ground and to ground surface. This deficiency results in higher near surface 
wind speed, PBL height and stronger vertical diffusion and thus lower primary pollutants and 
PM2.5 [21, 41]. This model missed some heterogeneous uptake of sulfate under high relative 
humidity conditions. For example, Wang et al. [14] and Cheng et al. [25] found a new source 
from reactive nitrogen chemistry in aerosol water, which explained the missing of sulfate and 
particle matter in extreme pollution conditions in northern China region.
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Bias may come from the treatments and inputs of initial and lateral boundary conditions. 
Usually, input data for initial and boundary conditions includes biases comparing with “real” 
atmosphere and is coarser than regional air quality model. More on this issue in meteorologi-
cal predictions can be found in the other chapters and chemical aspects are analyzed here. 
Specific to RAEMS, the inputted meteorological data is 0.5 degree and much coarser than the 
model resolution of 6-km. The interval of 6-h may also involve bias in calculating the ten-
dency of meteorological variables. The treatment of lateral boundary conditions in chemistry 
using historic mean field may make them far from reality. The missing of assimilation on both 
meteorological and chemical variables produced initial bias. The impact of such missing on air 
pollutants may exist in several hours since the model start over strong emitting regions but last 
for a long time over downwind regions, as the effect of chemical assimilation can be kept within 
12–24 h [59]. Better initial chemical conditions are strongly needed for nowcasting of air quality.

The uncertainty in meteorological variables could be another important source. It is known that 
meteorological variables are drivers of CTMs. Some of them drive the processes of advection, 
convection, dispersion, turbulent mixing, etc. Some of them participate in chemical reactions 
such as vapor or decide the reactivity rate. This chapter will not focus on this for much discus-
sion, however, this uncertainty can be found in other chapters which concern meteorology pre-
diction. But one point we should emphasize is that the uncertainty in forecast of weak weather 
conditions will be paid more attention to because heavy air pollution often occurs under such 
conditions, although weak conditions are not so focused in meteorology for less extreme weather 
occurring.

5. Work in the future

To improve the performance of numerical air quality forecast, several types of work are taken 
into consideration in the future. As one important application of numerical meteorological 
prediction and the role of meteorological variables driving CTMs, introduction of better 
numerical forecast of weather is always one economical and effective way to improve air 
quality forecast. This way should be carried out indubitably if it is feasible in technology.

Update in emission inventory and its implementation in CTMs is another core action. It 
includes several aspects: (1) reduction of time delay; (2) increase in horizontal and vertical 
resolution; (3) improving the accuracy of emission inventory itself; and (4) improving the 
applicability in models. The former three aspects mainly require efforts of inventory com-
munity and the last one needs efforts of modelers. Specifically, one job is to improve on-line 
calculated emissions, such as biogenic volatile organic compounds. For example, biogenic 
emissions can be calculated using model meteorological variables and some inputted static 
data in many current CTMs (e.g. WRF-Chem and CMAQ). Better vegetation data (classifica-
tion, leaf area, etc.) will benefit improvements of biogenic emissions and they can be retrieved 
from satellite data nearly real time. The other is to build one fast technology to adjust the emis-
sion data inputted into forecast system. The determination of indicators which may be used 
to adjust the emission data will be the first step and then develop a relatively fast evaluation 
system or technology to supply the result how the forecast performed in previous duration. 
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Based on the evaluation results, a fast adjustment technology is to be implemented to update 
emissions used in the coming forecasts. Besides the regular treatments, fast response to emer-
gency or temporary emission control needs to be prepared based on relatively less detailed 
information.

To fit the extending needs, numerical air quality forecast is increasing its capability on longer 
predictable period, finer resolution, and better service for other interests. Long time length 
and fine scale is the two main aims or requirements of coming air quality prediction besides 
higher accuracy. Long prediction of over 1 week has been urgently needed and required by 
decision-making agencies during recent years. Under the strong requirements on improv-
ing air quality, environment protection agencies over eastern China often carry out or be 
demanded to carry out temporary emission control to reduce air pollution. This action usu-
ally needs a few days ahead of predicted pollution episode. Another important need is on 
macro-management of industrial production, electric power, etc. for long-term objectives 
such as the level of annual mean air pollutant concentrations and the level of days of pol-
lution. It requires climate scale prediction of air quality, such as monthly or seasonally. The 
other aim is finer forecast in space and time. For example, tasks of air quality forecast for a 
specific community or a specific time point were required, which were far beyond the capabil-
ity of current forecast service 3 times a day for the entire Shanghai. Many other interests, such 
as human health service, also need the support of numerical air quality forecast. These needs 
require supporting information beyond forecast results to promote their own goals.

Comparing with that in meteorological prediction, treatment and approach in initial and bound-
ary layer conditions is rough and ongoing. Assimilation on air quality related variables or chem-
ical assimilation is needed to improve initial conditions and forecast performance, especially in 
nowcasting of air quality. Of course, chemical assimilation is more difficult than meteorological 
assimilation due to insufficient monitoring data. Implementation of real time global forecast 
in boundary is another way to reduce bias from lateral input out of the model domain. This 
treatment will greatly benefit the forecasts near model lateral boundary and of long-term period.

Improvement in representation of CTMs such as involving the feedback and interaction 
between meteorological variables and air pollutants is one persistent work. This work will 
provide better models for numerical air quality forecast and is essential for improving model 
performance. But it depends on scientific understanding and technological maturity. Some 
nowaday jobs could focus on increasing model performance on near-surface wind, vertical 
diffusion of particles, aerosol species, and diurnal variation in operational forecast. We should 
show more desire to involve new technology into forecast system in the future.

6. Conclusion

Air pollution is focused because of its adverse effects, e.g. on human health. Numerous works 
were taken into action including scientific study, policy making, and emission control, etc. 
over eastern China due to the severe situation as one of the most polluted areas. This chapter 
illustrated the numerical forecast of air quality over the eastern China region, especially what 
has been done in Shanghai Meteorological Service.
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Numerical air quality forecast has become truly profiting from the achievements on air 
quality models and computation technology during past decades. Three-dimensional 
chemical transport models were the major choice in studying and predicting air quality 
in both global and regional scale after entering the twenty-first century. In very recent 
years, online approach CTMs, which calculate meteorological and chemical variables in 
one model, prevent from the loss of information between two meteorological outputs, and 
benefit involving the interaction between meteorology and air pollution. The fully online 
coupled WRF-Chem was chosen to develop the Regional Atmospheric Environmental 
Modeling System for eastern China by SMS for its good performance in modeling the air 
quality/pollution over this region.

The operational RAEMS was certified by China Meteorological Administration in March 
2013 and has been providing numerical forecast data and products from then on. This 
forecasts greatly promoted the air quality prediction, air pollution warning, and decision-
making service in meteorological agencies as well as environmental protection agencies. 
A previous detailed evaluation validated the performance on forecasting the spatial dis-
tribution and temporal variation of major air pollutants over eastern China region during 
the 2 years of 2014–2015 [38]. For the two most important air pollutants of PM2.5 and O3-8h 
for the city of Shanghai, RAEMS had excellent performance during 2014–2017 as analyzed 
in this chapter. At the same time, RAEMS showed relatively lower accuracy under pol-
luted conditions than unpolluted conditions, and it even performed worse under heavier 
polluted conditions.

Further analysis showed that shortage or uncertainty in current numerical air quality fore-
cast mainly came from four aspects of emission inventory or emission related inputs, model 
capability in chemical representation, biases in initial and lateral boundary layer condi-
tions, and uncertainty in meteorological variables. These suggested ideas for improving 
performance of forecasts in the future. Longer predictable period and finer temporal and 
spatial resolution is also important goal and challenge for fitting the extending needs from 
application communities.
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Abstract

Meteorological and photochemical impacts of increasing urban albedo or reflectance over 
Madrid city have been simulated using a mesoscale climatic model (WRF) coupled to an 
air quality modeling system (AEMM/CMAQ). We have evaluated the influence over the 
concentration of the main pollutants of two different interventions with increasing lev-
els of albedo enhancement over all urban categories: a low albedo or cool roofs scenario 
(Alb1), where only roof albedo was modified (+0.35), and a high albedo scenario (Alb2), 
increasing both roof albedo (+0.35) and pavement albedo (+0.15). Simulations were run for 
two periods of 72 h, representative of summer and winter conditions. In both scenarios, 
surface air temperatures were cooled, with averaged midday reductions at the urban area 
of −0.2 (−0.5)°C for winter (summer) for Alb1 and −0.3 (−0.7)°C for winter (summer) for 
Alb2. Peak summer midday cooling at city center was −1.4°C and −1.6 ºC for Alb1 and Alb2, 
respectively. Pollutant concentrations were modified, with reductions in O3 levels, higher 
in summer, and increases in NO2 levels, bigger in winter period. Slight increases were 
also observed in winter for SO2 and particulate matter (PM2.5 and PM10) in both scenarios.

Keywords: WRF, BEM, CMAQ, urban albedo, air quality, Madrid city, cool roofs

1. Introduction

Adaptation to climate change by increasing the reflectance of human settlements has been pro-
posed as a simple and cost-effective geo-engineering strategy to offset the rise of temperatures 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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Abstract

Meteorological and photochemical impacts of increasing urban albedo or reflectance over 
Madrid city have been simulated using a mesoscale climatic model (WRF) coupled to an 
air quality modeling system (AEMM/CMAQ). We have evaluated the influence over the 
concentration of the main pollutants of two different interventions with increasing lev-
els of albedo enhancement over all urban categories: a low albedo or cool roofs scenario 
(Alb1), where only roof albedo was modified (+0.35), and a high albedo scenario (Alb2), 
increasing both roof albedo (+0.35) and pavement albedo (+0.15). Simulations were run for 
two periods of 72 h, representative of summer and winter conditions. In both scenarios, 
surface air temperatures were cooled, with averaged midday reductions at the urban area 
of −0.2 (−0.5)°C for winter (summer) for Alb1 and −0.3 (−0.7)°C for winter (summer) for 
Alb2. Peak summer midday cooling at city center was −1.4°C and −1.6 ºC for Alb1 and Alb2, 
respectively. Pollutant concentrations were modified, with reductions in O3 levels, higher 
in summer, and increases in NO2 levels, bigger in winter period. Slight increases were 
also observed in winter for SO2 and particulate matter (PM2.5 and PM10) in both scenarios.
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associated with global warming at local and regional scales [1]. The use of higher albedo roofs 
and/or pavements (cool roofs and pavements) has shown effective surface air cooling in simu-
lation experiments over many cities in the world [2]. Due to lower surface temperatures, an 
improvement in air quality can be obtained by slowing temperature-dependent photochemi-
cal reaction rates of formation of secondary pollutants, such as ozone, and reducing biogenic 
hydrocarbon emissions. Additional indirect benefits are linked to lower energy demand for 
summer cooling of buildings and its associated emissions in power plants [3]. On the contrary, 
due to the depression of the planetary boundary layer level (PBL) height caused by cooler 
temperatures, and to possible changes in local wind patterns, reduced mixing and dilution of 
pollutants can raise their levels by accumulation in some areas. Ground-level ozone (O3), par-
ticulate matter (PM), nitrogen oxides (NOx), and sulfur oxides (SO2) are most health-concerned 
pollutants, and their urban concentration levels can be affected by surface modification. O3 is 
a secondary pollutant resulting from the reaction between NOx oxides and volatile organic 
compounds (VOCs) in the presence of sunlight. Higher O3 concentration levels are directly 
related to warming in urban heat islands, reaching peak levels in summertime [4].

Most numerical simulations of the impact of albedo increase on pollutants have been 
 developed over US cities, in general with different urban fabrics than in Europe, where 
compact mid-rise urban categories occupy most of the city centers. In pioneering mesoscale 
numerical simulations [5], extreme surface albedo enhancement resulted in ozone reductions 
in California. Simulating a more feasible albedo increase over southern US cities with high 
insolation levels, [6] obtained ozone reductions linked to cooler summer ambient air tem-
peratures. However, only Sacramento showed significant peak ozone-level reductions due 
to a wider urban surface (25,000 ha). Applying comparable albedo increase levels, it has been 
simulated significant air quality benefits over California [7], suggesting that there is a maxi-
mum albedo increase implementation threshold above which no further benefits are obtained 
that should be determined for every urban case. There are scarce mesoscale simulation experi-
ments to investigate the impact of albedo enhancement on pollutants other than ozone. In 
another simulation the effect on air quality during a heat wave episode of albedo increase at 
high latitudes (Montreal, Canada) was reported [8], with no significant effect on ozone levels, 
and slight reductions in PM2.5 levels (2 ppb), associated with a decrease in PBL height, that 
counteracted the cooling impact on ozone formation. Applying an extreme albedo increase 
over Stuttgart (Germany), a peak urban temperature cooling down to −1.7°C and decreases 
in mean ozone concentration were reported [9]. However, secondary undesirable effects were 
an increase of primary pollutants (NOx and CO) and an increase in peak ozone concentration 
due to a higher intensity of reflected UV shortwave radiation. To date, the impact of urban 
albedo enhancement on temperatures and air quality has never been assessed over Spanish 
urban areas by numerical modeling. Spanish cities may give key information for this research, 
due to the high levels of annual and summer insolation and to the hot summer Mediterranean 
climate in most of the country, with high annual number of clear skies that maximize the 
thermal and energy-saving potential benefits of changes in solar reflectivity [10]. On the other 
hand, an undetermined minimum critical intervention surface is also needed to obtain sig-
nificant modifications in local atmospheric variables by land cover changes [6]. Madrid city 
is the biggest urban area in Spain, with broadly five million inhabitants in its metropolitan 
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area, and the fourth most populated city in Europe. Emissions of air pollutants in Madrid are 
mostly originated from anthropogenic sources, with the traffic sector as the main contribu-
tion activity to the emissions of the whole region. In the last years, the Regional Government 
of Madrid has developed an ambitious action plan to improve the air quality for the period 
2013–2020, called Plan Azul+. A WRF mesoscale simulation [11] showed that the Plan Azul+ 
measurements were effective in the reduction of NO2 levels over urban areas with high traffic 
influence. However, this simulation showed slight increases in ozone concentration (1–2%) in 
areas where typically ozone levels were low, and mitigation measures did not cause remark-
able reductions in the rest of pollutants selected in the plan. Thus, prior to the establishment 
of recommendations for policymakers to include albedo enhancement in urban planning, the 
balance between potential climatic and air quality benefits and disturbances of widespread 
cooling the urban air must be assessed. Here, we have used a meteorological model (WRF), 
an emission model (AEMM), and a photochemical model (CMAQ) to assess the impact on 
meteorology and air quality of widespread urban albedo increase at two feasible levels of 
implementation: cool roofs (Alb1) and Alb2 (cool roofs + cool pavements). Changes in surface 
air temperatures and main pollutants are given for two 72-h period representative of summer 
and winter seasons.

2. Materials and methods

Numerical simulations of urban surface modification over Madrid city have been designed 
to test the impact of two increasing surface albedo scenarios, conducted by coupling WRF/
AEMM/CMAQ. Urban layer was simulated by an urban energy model (BEM) coupled with 
an urban canopy model for simulations [12]. We have considered up to 10 urban categories. 
Air quality analysis has been focused over the main pollutants of health concern, namely O3, 
NO2, SO2, CO, PM2.5, and PM10.

2.1. Study area

Surface modification was simulated over the urban land cover of Madrid city, which is located 
in the center of the Iberian Peninsula. Its geographical position and topography determine a 
temperate continental Mediterranean climate with cold humid winters, with temperatures 
usually below 0°C, and warm dry summer, with temperatures above 30°C, frequently reach-
ing peak values over 40°C, and high nocturnal temperatures[13, 14].

2.2. Simulation domains

In Figure 1 we show nested modeling domains over the city of Madrid. Modeling is built 
over a mother domain (d01) with 27 km spatial resolution, centered at 40.383° N 3.717°W, and 
a domain size of 2727 × 2727 km2. This domain is intended to capture synoptic features and 
general circulation patterns. The first nested domain (d02), with a spatial resolution of 9 km, 
covers a domain size of 1575 × 1413 km2. The third domain (d03) with 3 km of spatial resolu-
tion has a domain size of 660 × 561 km2. The fourth domain covers the province of Madrid 
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associated with global warming at local and regional scales [1]. The use of higher albedo roofs 
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compounds (VOCs) in the presence of sunlight. Higher O3 concentration levels are directly 
related to warming in urban heat islands, reaching peak levels in summertime [4].

Most numerical simulations of the impact of albedo increase on pollutants have been 
 developed over US cities, in general with different urban fabrics than in Europe, where 
compact mid-rise urban categories occupy most of the city centers. In pioneering mesoscale 
numerical simulations [5], extreme surface albedo enhancement resulted in ozone reductions 
in California. Simulating a more feasible albedo increase over southern US cities with high 
insolation levels, [6] obtained ozone reductions linked to cooler summer ambient air tem-
peratures. However, only Sacramento showed significant peak ozone-level reductions due 
to a wider urban surface (25,000 ha). Applying comparable albedo increase levels, it has been 
simulated significant air quality benefits over California [7], suggesting that there is a maxi-
mum albedo increase implementation threshold above which no further benefits are obtained 
that should be determined for every urban case. There are scarce mesoscale simulation experi-
ments to investigate the impact of albedo enhancement on pollutants other than ozone. In 
another simulation the effect on air quality during a heat wave episode of albedo increase at 
high latitudes (Montreal, Canada) was reported [8], with no significant effect on ozone levels, 
and slight reductions in PM2.5 levels (2 ppb), associated with a decrease in PBL height, that 
counteracted the cooling impact on ozone formation. Applying an extreme albedo increase 
over Stuttgart (Germany), a peak urban temperature cooling down to −1.7°C and decreases 
in mean ozone concentration were reported [9]. However, secondary undesirable effects were 
an increase of primary pollutants (NOx and CO) and an increase in peak ozone concentration 
due to a higher intensity of reflected UV shortwave radiation. To date, the impact of urban 
albedo enhancement on temperatures and air quality has never been assessed over Spanish 
urban areas by numerical modeling. Spanish cities may give key information for this research, 
due to the high levels of annual and summer insolation and to the hot summer Mediterranean 
climate in most of the country, with high annual number of clear skies that maximize the 
thermal and energy-saving potential benefits of changes in solar reflectivity [10]. On the other 
hand, an undetermined minimum critical intervention surface is also needed to obtain sig-
nificant modifications in local atmospheric variables by land cover changes [6]. Madrid city 
is the biggest urban area in Spain, with broadly five million inhabitants in its metropolitan 
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area, and the fourth most populated city in Europe. Emissions of air pollutants in Madrid are 
mostly originated from anthropogenic sources, with the traffic sector as the main contribu-
tion activity to the emissions of the whole region. In the last years, the Regional Government 
of Madrid has developed an ambitious action plan to improve the air quality for the period 
2013–2020, called Plan Azul+. A WRF mesoscale simulation [11] showed that the Plan Azul+ 
measurements were effective in the reduction of NO2 levels over urban areas with high traffic 
influence. However, this simulation showed slight increases in ozone concentration (1–2%) in 
areas where typically ozone levels were low, and mitigation measures did not cause remark-
able reductions in the rest of pollutants selected in the plan. Thus, prior to the establishment 
of recommendations for policymakers to include albedo enhancement in urban planning, the 
balance between potential climatic and air quality benefits and disturbances of widespread 
cooling the urban air must be assessed. Here, we have used a meteorological model (WRF), 
an emission model (AEMM), and a photochemical model (CMAQ) to assess the impact on 
meteorology and air quality of widespread urban albedo increase at two feasible levels of 
implementation: cool roofs (Alb1) and Alb2 (cool roofs + cool pavements). Changes in surface 
air temperatures and main pollutants are given for two 72-h period representative of summer 
and winter seasons.

2. Materials and methods

Numerical simulations of urban surface modification over Madrid city have been designed 
to test the impact of two increasing surface albedo scenarios, conducted by coupling WRF/
AEMM/CMAQ. Urban layer was simulated by an urban energy model (BEM) coupled with 
an urban canopy model for simulations [12]. We have considered up to 10 urban categories. 
Air quality analysis has been focused over the main pollutants of health concern, namely O3, 
NO2, SO2, CO, PM2.5, and PM10.

2.1. Study area

Surface modification was simulated over the urban land cover of Madrid city, which is located 
in the center of the Iberian Peninsula. Its geographical position and topography determine a 
temperate continental Mediterranean climate with cold humid winters, with temperatures 
usually below 0°C, and warm dry summer, with temperatures above 30°C, frequently reach-
ing peak values over 40°C, and high nocturnal temperatures[13, 14].

2.2. Simulation domains

In Figure 1 we show nested modeling domains over the city of Madrid. Modeling is built 
over a mother domain (d01) with 27 km spatial resolution, centered at 40.383° N 3.717°W, and 
a domain size of 2727 × 2727 km2. This domain is intended to capture synoptic features and 
general circulation patterns. The first nested domain (d02), with a spatial resolution of 9 km, 
covers a domain size of 1575 × 1413 km2. The third domain (d03) with 3 km of spatial resolu-
tion has a domain size of 660 × 561 km2. The fourth domain covers the province of Madrid 
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and nearest provinces, with an extension of 217 × 199 km2 and grid resolution of 1 km2. The 
innermost fifth domain encloses Madrid metropolitan area, covering 80.3 × 90.3 km2, and grid 
resolution 333 m.

2.3. Modeling approach

The air quality modeling system used to evaluate albedo scenarios was composed by a 
coupled WRF/AEMM/CMAQ model. To configure it, we have followed the guidelines 
indicated in the Guide on the use of models for the European Air Quality Directive [15]. 
Emission and photochemical modeling configuration used here have been previously vali-
dated elsewhere [11], using a numerical deterministic evaluation during the development 
of the Plan Azul+, considering the Maximum Relative Directive Error [15] referred in the 
European Directive EC/2008/50. Meteorological simulations have been performed using the 

Figure 1. Up: Modelling domains for simulations: d01, d02, d03, d04 and d05 (left), and d04 and d05 (right). Down: 
Madrid local municipality (red line) and surrounding metropolitan area [Images generated using Google Earth].
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Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) version 3.2 [16], 
developed by the National Center of Atmospheric Research (NCAR). Urban categories have 
been adapted from The World Urban Database and Access Portal Tools [17, 18]. URBPARM.
TBL was an adapted file for Madrid city according to our knowledge of urban morphology. 
Meteorology-Chemistry Interface Processor (MCIP) version 4.3 was used to prepare WRF 
output to the photochemical model. The annual anthropogenic emissions inventory of the 
Regional Government of Madrid has been used (version 2010). This inventory has a hori-
zontal resolution of 1 × 1 km2 and includes emissions classified by Selected Nomenclature 
for Air Pollution (SNAP) sectors. We have used an Air Emission Model (AEMM) [11, 19] 
to adapt emissions to domains d04 and d05, using monthly and weekly profiles from the 
Unified EMEP model and vertical profiles from [20]. Emissions have been adapted under the 
requirements of the chemical modules considered in the photochemical model CMAQ. We 
have considered only anthropogenic emissions to avoid the influence of albedo modifications 
over the natural emissions, since the parameterizations that define them depend on meteo-
rological conditions. This assumption is valid considering that the urban metropolitan area 
of Madrid is strongly dominated by anthropogenic local sources, being the natural emissions 
not very important, and only provide a remarkable contribution in areas far away of the city 
of Madrid [11]. To simulate the physical and chemical processes into the atmosphere, the US 
Environmental Protection Agency models-3/CMAQ model has been used [21]. Here, we have 
used CMAQ v5.0.1, considering CB-5 chemical mechanism and associated EBI solver [22] and 
AERO5 aerosol module [23]. Initial and boundary conditions for d04 domain are used from 
inner profiles and for d05 conditions are provided by the results of simulation of d04 domain. 
Coupled WRF/AEMM/CMAQ has been validated over Madrid city [11]. Another assessment 
of coupled WRF/CMAQ over Madrid city was reported [24], for an annual period and 1 km 
resolution, including a comparison of meteorological and air quality observations between 
WRF bulk urban canopy parameterization (UCP) (used here) and an alternative building 
energy model (BEP). As temperature predictions were not improved by WRF-BEP and the 
differences on wind direction and PBL height were not remarkable, we decided to use bulk 
UCP for computing time savings. Simulations have been executed over a computing cluster 
owned by Meteosim SL (Spain) and formed by 28 nodes and 308 cores.

2.4. Simulation results

Meteorological, emissions, and photochemical simulations have been conducted for two 72 h 
periods representative of both summer and winter of the year 2008: the period between June 30, 
2008 and July 2, 2008 (hereinafter referred to as summer), and the period between January 1, 2008 
and January 3, 2008 (hereinafter referred to as winter). The previous 24 h were taken as spin-up 
time to minimize the effects of initial conditions. A total amount of six simulations have been done 
for each period and three increasing albedo scenarios, defined from feasible levels of intervention 
obtained from literature [2, 25] as: (a) default scenario: using default value of albedo for all urban 
categories; (b) cool roofs scenario (Alb1): increasing from 0.20 to 0.55 the roof surface albedo for 
all urban categories; (c) cool roofs + pavement scenario (Alb2), with the same roof albedo increase 
as Alb1 plus an increase in pavement surface albedo from 0.15 to 0.30 for all urban categories. 
Spatial distributions and changes in pollutants levels at the innermost domain are reported, given 
as recommended time-weighted exposure parameters [26].
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UCP for computing time savings. Simulations have been executed over a computing cluster 
owned by Meteosim SL (Spain) and formed by 28 nodes and 308 cores.

2.4. Simulation results

Meteorological, emissions, and photochemical simulations have been conducted for two 72 h 
periods representative of both summer and winter of the year 2008: the period between June 30, 
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and January 3, 2008 (hereinafter referred to as winter). The previous 24 h were taken as spin-up 
time to minimize the effects of initial conditions. A total amount of six simulations have been done 
for each period and three increasing albedo scenarios, defined from feasible levels of intervention 
obtained from literature [2, 25] as: (a) default scenario: using default value of albedo for all urban 
categories; (b) cool roofs scenario (Alb1): increasing from 0.20 to 0.55 the roof surface albedo for 
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3. Results and discussion

3.1. Albedo changes

Averaged changes in surface albedo at the innermost domain resulting from the modification 
of roofs and pavements albedo over urban land cover are shown in Figure 2a and b. Maximum 
albedo change occurred as expected at the most compact area of town center, with +0.2 for 
both scenarios. No significant difference observed in this peak albedo increase between both 
intervention levels (data not shown for Alb2), was due to low ratio pavements/roofs at the 
dense urban structure of the urban category where they occur, tagged as compact mid-rise 
in the WUDAPT. On the contrary, surface albedo change differences were observed between 
scenarios at the open mid-rise category (enclosing most of the rest of the urban area inside the 
M40 highway belt), with +0.06 for Alb1 and +0.1 for Alb2, respectively. These two categories of 
residential use encompass the major proportion of urban potential intervention areas, along 
with the southeast belt of industrial-commercial use, where albedo increased +0.14 and +0.18, 
in Alb1 and Alb2, respectively.

3.2. Temperature changes

The spatial distribution of temperature changes was dependent on both the distribution and 
the level of albedo change. In Figure 2c–f, 72-h averaged changes at 12 h UTC are given. 
City center (compact mid-rise urban category) showed the most intense cooling in all cases, 
  reaching the highest midday cooling intensity in summer of −1.4 and −1.6°C, for Alb1 and 
Alb2, respectively (Figure 2d and f). Little temperature change was observed in non-urbanized 
areas with small surface modification. In winter, much lower but significant cooling occurred, 
with maximum levels of −0.4 and −0.5°C, for Alb1 and Alb2, respectively, at the city center 
as well (Figure 2c and e). Thus, albedo enhancement was much more efficient in cooling air 
surface temperatures during summer periods, due to higher solar incidence angle. The spread 
of cooler air from city center toward the NE was due to predominant SW winds during the 
summer period, with averaging speed of 9.7 m s−1 (data not shown).

3.3. Changes in pollutant levels

After albedo enhancement, changes in pollutants were characterized by a decrease in O3 in 
both periods, but higher in summer, and an increase in NO2 in both periods. Averaged values 
for every 72-h period and scenarios are given in Figure 3. Spatial distributions of changes for 
ozone are given in Figure 4, in both scenarios and at the innermost domain. For the rest of 
pollutants, Alb1 scenario changes are given in Figures 5 and 6. Slight increases in PMx and in 
SO2 occurred in winter with negligible changes in summer. Little changes were observed in 
CO levels.

When cool pavements were added to cool roofs (Alb2), differences in distribution of pol-
lutants other than ozone were not remarkable (Alb2 changes in Figure 3). Areas of major 
changes in pollutants after albedo increase extended through city center and NE rural areas 
in summer. This NE spread during the summer period was again associated due to dominant 
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SW winds in those days (data not shown). Highest reduction in O3 levels occurred during 
the summer period (Figure 4b and d), when more intense cooling occurred as well. Eight-
hour maximum reductions of around −4 μg m−3 were reached at the city center. These results 
show that widespread cool roofs deployment over Madrid would benefit ozone levels at the 
city center, with additional reductions upwind depending on meteorological conditions. If 
additional cool pavements were implemented (Alb2), ozone reduction would extend further 
across most of the city, though reductions below the −4 μg m−3 threshold were not observed 
in this scenario. In winter period both scenarios show scarce benefits for ozone reduction, as 
expected from limited surface air temperature cooling and lower rates of ozone formation in 
default scenario (data not shown). Our ranges of O3 reduction are in accordance with similar 
mesoscale experiments of albedo modification [7, 9] with no local increases detected in our 
case, as other simulation studies have reported [3]. After albedo modification, NO2 levels 
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3. Results and discussion
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SW winds in those days (data not shown). Highest reduction in O3 levels occurred during 
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city center, with additional reductions upwind depending on meteorological conditions. If 
additional cool pavements were implemented (Alb2), ozone reduction would extend further 
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Figure 3. Mean change in pollutants concentration after albedo increase averaged for the winter (a) and the summer 
period (b).

Figure 4. Spatial distribution of changes in O3 maximum 8 h levels between default and Alb1 (a, b) and Alb2 scenarios 
(c, d) and for winter (a, c) and summer (b, d) (μg m−3).
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Alb1 data are shown. Winter reductions were observed at some highly populated areas NW 
of Madrid city. At both periods, peak increases in 1 h—maximum concentrations reached 
up to +20 μg m−3. At the city center, summer increases were below winter changes, though 
peaks of +20 μg m−3 were reached at the pollutants spreading area NW of the city due to 
wind conditions. However, and contrary to O3 changes, spatially averaged changes in NO2 
were very similar at both periods (Figure 5).

Increases in SO2 occurred in winter at the highly populated municipalities SW of the city 
and around the airport and NE corridor, with peak 1 h maximum differences of 10 μg m−3 
(Figure 5c and d). Decreased levels were observed in some municipalities west of the city. No 
significant changes occurred for summer in SO2 levels in Madrid city, with slight increases 
NE of the airport and SE of the municipality. Spatial changes between scenarios were not 
remarkable for the rest of pollutants (data not shown).

Figure 5. Spatial distribution of changes in NO2 (a, b) and SO2 (c, d) maximum 1 h levels between default and Alb1 
scenario for winter (a, c) and summer (b, d) (μg m−3).
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Slight differences were observed in the distribution of changes between PM2.5 (Figure 6a and b). 
Increases in PM2.5 were much higher in winter. Peak daily values increased above 2 μg m−3 in both 
scenarios, located around Barajas airport and south of the city. In summer on the contrary, little 
changes in PM2.5 were observed for both scenarios, with small increases in the city center below 
0.4 μg m−3. For CO, small increases were detected in city center (Figure 6c and d), with maximum 
+0.1 mg m−3 also around the airport and SW of the city.

According to our simulations, it was clear that albedo enhancement caused citywide air cooling with 
associated pollutant changes directly linked to temperature reduction. Our model shows that cool roofs 
and pavements reduce outdoor temperatures slowing reaction rates of ozone formation [3]. However, 
observed increases in the levels of other pollutants were caused by depression of PBL height associ-
ated with cooler air, limiting pollutant dispersion, and vertical mixing. Spatial distribution matches 
with cooling and shows peak change levels below 100 m (Figure 7), in areas where pollutants show 
higher increments. In summer, PBL height can fall to 90 m, but lower emissions and meteoro-
logical conditions generated lower increments. O3 summer reductions by slower formation rates 
must probably be partly offset by PBL fall. In terms of averaged changes from maximum levels 

Figure 6. Spatial distribution of changes in PM2.5 daily value (a, b) and CO 8-h maximum levels (c, d) between default 
and Alb1 scenarios for winter (a, c) and summer (b, d) scenarios (μg m−3).
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at default scenario inside the limits of Madrid city after implementing the highest level of surface 
modification (Alb2 scenario) were approximately summer reductions in O3 around to −4.4% and 
winter increments around +16% for NO2, +10% for SO2 and PM2.5, and +5% of CO. If only cool 
roofs were implemented (Alb1), these maximum thresholds would be the same for all pollutants 
but with a lower spatial reduction at the urban center for O3 (data not shown)

Thus, our results confirm that citywide cool roofs deployment is a feasible effective measure 
to reduce summer air temperatures and control the ozone pollution over Madrid metropolitan 
area. Further benefits can be obtained extending albedo enhancement with cool pavements. 
In consequence, this surface modification strategy should be considered along with other 
actions in air quality plans over Madrid. According to numeric simulations of the application 
of measures proposed in Plan Azul+, carried out with a similar modeling approach [11], 2% 
O3 increases would be expected over Madrid region and up to +6 μg m−3 (1 h-maximum) 
at the center of town. For the rest of pollutants, the simulated effect of the Plan predicted 
reductions in NO2 up to 11 μg m−3 but only slight global reductions below 5% of CO, PM10, 
PM2.5, and SO2. However, our simulation shows undesired impacts of albedo enhancement 
that need further research before a real implementation was to be considered, as in winter 
cool roofs might partly offset the reductions predicted in the plan for pollutants other than 
ozone. Anyhow, and given the nonlinear dynamics of the atmospheric processes, it would 
be advisable to make new simulations for longer representative seasonal periods, combining 
measures of Plan Azul+ with increasing levels of intervention of surface albedo change, to 
determine the balance between benefits and disadvantages on air quality of a global action 
plan. A key outcome of our simulation is that the increment in pollutants other than ozone 
occurs mainly in winter period, where ozone formation rates are low and the concentration 
of other pollutants is higher. On the contrary, in our summer simulation, albedo caused lim-
ited increases in these pollutants, along with a maximized ozone reduction. According to our 
results, an ideal implementation of cool roofs and/or pavements would be a seasonally chang-
ing system of increased reflectance only on warm periods, with little or no albedo change for 
colder months. Furthermore, such a system would avoid winter penalty due to increased 

Figure 7. Temperature at 2m (a) and PBL height (b) differences between Alb2 scenario and default scenario for the winter 
period at 14 UTC.
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heating demand [27]. A real experience of seasonal surface albedo change is applied over 
20,000 reflective greenhouses in Almeria province, 500 km south of Madrid, where whitewash 
slaked/lime painting is applied over the roofs to limit excess heating inside the greenhouses in 
summer and is washed out in September to allow enough winter radiation inside them. The 
implementation of high albedo in the area has caused mean outdoor surface air temperature 
cooling, locally offsetting the impact of global warming [28, 29]. The levels of albedo enhance-
ment simulated here (round +0.1 at the pixel level) are similar to those implemented on the 
field over Almeria area, but with more than double intervention surface at Madrid urban area, 
well above the minimum critical intervention area for efficient cooling at similar comparable 
latitudes and insolation. As our temperature data show, expected changes in net solar income 
at the surface should be comparable in both observed and simulated experiences, with dif-
ferences in air temperature impact due mostly to location and surface canopy parameters of 
the urban fabric. However, our results are site and time dependent and have been generated 
from the specific coupled modeling configuration applied over Madrid city, for the periods 
simulated, and for the emissions inventory used. Further extensive research with optimized 
mesoscale modeling should also include the impact of albedo enhancement on cloud cover 
and precipitation pattern, as rain causes wet deposition of pollutants improving air quality. 
As our results show, depression of PBL height and dynamics of cooler air over the city might 
cause reduced vertical mixing and affect to the dilution of pollutants [30]. Other undesir-
able effects on the microclimate of the city and surrounded areas cannot be discarded and 
should be studied, such as modifications in the wind pattern and the hydrological cycle in 
the region [31]. Finally, these results do not account for additional benefits such as reduced 
cooling energy use and associated reductions in emissions from point sources, neither on the 
potential negative impacts on heating energy use in winter [3].
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