
Fault Detection and Diagnosis
Edited by Constantin Volosencu

Edited by Constantin Volosencu
This book offers a selection of papers in the field of fault detection and diagnosis, 

promoting new research results in the field, which come to join other publications in 
the literature. Authors from countries of four continents: United States of America, 

South Africa, China, India, Algeria and Croatia published worked examples and case 
studies resulting from their research in the field. Fault detection and diagnosis has a 
great importance in all industrial processes, to assure the monitoring, maintenance 
and repair of the complex processes, including all hardware, firmware and software.

The book has four sections, determined by the application domain and the methods 
used: 1. Hybrid Computing Systems, 2. Power Systems, 3. Power Electronics and 4. 

Kalman Filtering. In the first section, the readers will find a technical report on fault 
diagnosis of hybrid computing systems, based on the chaotic-map method that uses 

the exponential divergence and wide Fourier properties of the trajectories, combined 
with memory allocations and assignments. In the second section, two chapters are 

included: one of them presents a study on preventive maintenance and fault detection 
for wind turbine generators using statistical models and the second chapter presents 
a technical report on fault diagnosis for turbo-generators, based on the mechanical-

electrical intersectional characteristics. The third section contains a technical report 
that presents some techniques of detection and localization of open-circuit faults in a 
three-phase voltage source inverter fed induction motor. The fourth section presents a 

theoretical study on the application of distributed discrete-time linear Kalman filtering 
with decentralized structure of sensors in fault residual generation.

Published in London, UK 

©  2018 IntechOpen 
©  Dmitrii Kotin / iStock

ISBN 978-1-78984-436-8

Fault D
etection and D

iagnosis



FAULT DETECTION AND
DIAGNOSIS

Edited by Constantin Volosencu



FAULT DETECTION AND
DIAGNOSIS

Edited by Constantin Volosencu



Fault Detection and Diagnosis
http://dx.doi.org/10.5772/intechopen.76272
Edited by Constantin Volosencu

Contributors

Dusan Krokavec, Anna Filasova, Yu-Ling He, Yue-Xin Sun, Nageswara Rao, Bobby Philip, Marco Adonis, Atanda Raji, 
Ian Kuiler, Bilal Djamal Eddine Cherif, Azeddine Bendiabdellah, Mokhtar Bendjebbar, Souad Laribi

© The Editor(s) and the Author(s) 2018
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and 
Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole 
(compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without 
INTECHOPEN LIMITED’s written permission. Enquiries concerning the use of the book should be directed to 
INTECHOPEN LIMITED rights and permissions department (permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in London, United Kingdom, 2018 by IntechOpen
eBook (PDF) Published by IntechOpen, 2019
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, registration number: 
11086078, The Shard, 25th floor, 32 London Bridge Street  
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Fault Detection and Diagnosis
Edited by Constantin Volosencu

p. cm.

Print ISBN 978-1-78984-436-8

Online ISBN 978-1-78984-437-5

eBook (PDF) ISBN 978-1-83881-831-9



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

3,800+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International  authors and editors

120M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Constantin Volosencu is a professor (full) at the “Po-
litehnica” University from Timisoara, Department of 
Automation. He is the author of 10 books and 4 book 
chapters and also the editor of 5 books, author of over 
150 scientific papers published in journals and confer-
ence proceedings, author of 27 patents and manager 
of several research grants. He is a member of several 

editorial boards of international journals, former plenary speaker, mem-
ber in scientific committees and chair at international conferences. He has 
undertaken research in the field of control systems, electrical drives, power 
ultrasounds, fuzzy logic, neural networks, fault detection and diagno-
sis, sensor networks and distributed parameter systems. He developed 
electrical equipment for machine tools, spooling machines, high power 
ultrasound processes and other, with homologation of 18 prototypes and 
12 zero manufacturing series.



Contents

Preface VII

Section 1 Hybrid Computing Systems    1

Chapter 1 Fault Diagnosis of Hybrid Computing Systems Using
Chaotic-Map Method   3
Nageswara S. V. Rao and Bobby Philip

Section 2 Power Systems    31

Chapter 2 Preventive Maintenance and Fault Detection for Wind Turbine
Generators Using a Statistical Model   33
Ian Kuiler, Marco Adonis and Atanda Raji

Chapter 3 Hybrid Fault Diagnosis Method Based on Mechanical-Electrical
Intersectional Characteristics for Generators   57
Yu-Ling He and Yue-Xin Sun

Section 3 Power Electronics    75

Chapter 4 A Comparative Study on Some Fault Diagnosis Techniques in
Three-Phase Inverter Fed Induction Motors   77
Bilal Djamal Eddine Cherif, Azeddine Bendiabdellah, Mokhtar
Bendjebbar and Laribi Souad

Section 4 Kalman Filtering    99

Chapter 5 Fault Residuals Based on Distributed Discrete-Time Linear
Kalman Filtering   101
Dušan Krokavec and Anna Filasová



Contents

Preface XI

Section 1 Hybrid Computing Systems    1

Chapter 1 Fault Diagnosis of Hybrid Computing Systems Using
Chaotic-Map Method   3
Nageswara S. V. Rao and Bobby Philip

Section 2 Power Systems    31

Chapter 2 Preventive Maintenance and Fault Detection for Wind Turbine
Generators Using a Statistical Model   33
Ian Kuiler, Marco Adonis and Atanda Raji

Chapter 3 Hybrid Fault Diagnosis Method Based on Mechanical-Electrical
Intersectional Characteristics for Generators   57
Yu-Ling He and Yue-Xin Sun

Section 3 Power Electronics    75

Chapter 4 A Comparative Study on Some Fault Diagnosis Techniques in
Three-Phase Inverter Fed Induction Motors   77
Bilal Djamal Eddine Cherif, Azeddine Bendiabdellah, Mokhtar
Bendjebbar and Laribi Souad

Section 4 Kalman Filtering    99

Chapter 5 Fault Residuals Based on Distributed Discrete-Time Linear
Kalman Filtering   101
Dušan Krokavec and Anna Filasová



Preface

This book offers a selection of papers in the field of fault detection and diagnosis, promoting
new research results in the field, which come to join other publications in the literature. The
book presents new coverage, starting from mathematical models for diagnosis for develop‐
ing data and model-based strategies with analytical or statistical methods and new knowl‐
edge based-systems implemented on computer tests and diagnosis, applied in process
control with applications. Authors from countries of four continents: United States of Amer‐
ica, South Africa, China, India, Algeria and Croatia published worked examples and case
studies resulting from their research in the field of fault detection and diagnosis. The readers
are provided with new solutions and answers to questions related to the emerging fault de‐
tection and diagnosis principles and their implementation. This book will be of interest and
useful to a large number of persons: graduate students of engineering, researchers in the
field of fault detection and diagnosis, faculty staff and managers who want to understand
fault detection issues and their economic benefits. With an open access publication, the book
may have visibility, worldwide researchers may read, download and interact with the pub‐
lished content. The book offers relevant information to further development of new projects.
Fault detection and diagnosis has a great importance in all industrial processes, to assure the
monitoring, maintenance and repair of the complex processes, including all hardware, firm‐
ware and software. Based on these considerations, the book may have a large impact in the
scientific community.

In a brief description, the book has four sections, determined by the application domain and
the methods used: 1. Hybrid Computing Systems, 2. Power Systems, 3. Power Electronics
and 4. Kalman Filtering. In the first section, the readers will find a technical report on fault
diagnosis of hybrid computing systems, based on the chaotic-map method that uses the ex‐
ponential divergence and wide Fourier properties of the trajectories, combined with memo‐
ry allocations and assignments. In the second section, two chapters are included: one of
them presents a study on preventive maintenance and fault detection for wind turbine gen‐
erators using statistical models and the second chapter presents a technical report on fault
diagnosis for turbo-generators, based on the mechanical-electrical intersectional characteris‐
tics. The third section contains a technical report that presents some techniques of detection
and localization of open-circuit faults in a three-phase voltage source inverter fed induction
motor. The fourth section presents a theoretical study on the application of distributed dis‐
crete-time linear Kalman filtering with decentralized structure of sensors in fault residual
generation. The published applications presented by the authors are indicative of their inter‐
est and engagement. The book shows the degree of information of authors in the field and
their dedication, appreciation and enthusiasm of the field they care about. The authors
choose to publish their research project results to explain fault detection and diagnosis
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methods in different applications, to explain variations of faults in different industrial proc‐
esses, to test the consequences of faults on processes, they conducted experimental tests of
hypothesis, developed mathematical versions of process models and use fundamental ideas
to address applied problems in novel ways.

The editor wishes to thank the research authors of the chapters for their scientific contribu‐
tion. The chapters were edited and published following a rigorous selection process, out of
more than triple the number of publication proposals. Also, it is a pleasure to thank and
acknowledging the help of many individuals from the editorial process that have made this
book possible. The publishing provided an efficient set of editorial standards, which ensur‐
ed the quality of the scientific level of relevance of the accepted chapters.
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Abstract

Computing systems are becoming increasingly complex with nodes consisting of a com-
bination of multi-core central processing units (CPUs), many integrated core (MIC) and
graphics processing unit (GPU) accelerators. These computing units and their intercon-
nections are subject to different classes of hardware and software faults, which should be
detected to support mitigation measures. We present the chaotic-map method that uses
the exponential divergence and wide Fourier properties of the trajectories, combined with
memory allocations and assignments to diagnose component-level faults in these hybrid
computing systems. We propose lightweight codes that utilize highly parallel chaotic-map
computations tailored to isolate faults in arithmetic units, memory elements and intercon-
nects. The diagnosis module on a node utilizes pthreads to place chaotic-map threads on
CPU and MIC cores, and CUDA C and OpenCL kernels on GPU blocks. We present
experimental diagnosis results on five multi-core CPUs; one MIC; and, seven GPUs with
typical diagnosis run-times under a minute.

Keywords: fault diagnosis, hybrid systems, chaotic maps, multi-core CPU, GPU

1. Introduction

High performance computing systems utilize increasingly complex hybrid nodes that consist of
multi-core central processing units (CPU) combined with many integrated core (MIC) or
graphics processing unit (GPU) accelerators [1]. The next generation systems that target
Exascale computations are expected to be massive with computing elements totaling a million
[2, 3]. Furthermore, these computing systems are expected to be built, at least in part, using off-
the-shelf components such as CPUs, Accelerated Processing Units (APU) and GPUs, which
have an expected life-span in the range of 5–10 years. Consequently, the computations that run
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for a few hours on such systems are likely to experience multiple faults, and it is essential
to account for them to achieve the resilience of these computations [4, 5]. Detection of such
faults contributes to resilient computations in a number of ways such as: supporting the
quarantine of faulty units from the scheduler pool; replacement of faulty processor boards
and accelerators; and, initiation of application migration and check point recovery. How-
ever, fast and efficient detection of such faults in hybrid computing systems is complicated
due to the continued increases in the number and complexity of processors, accelerators and
interconnects.

However, fast and efficient detection of such faults in hybrid computing systems is compli-
cated due to the continued increases in the number and complexity of processors, accelerators
and interconnects.

The impact of such faults could be quite significant on certain scientific computations, partic-
ularly if they fail to trigger checkpoint recovery or process migration, or result in too many
errors that require inordinate number of checkpointing operations. Furthermore, the variety of
faults is expected to expand in future as hybrid architectures evolve with increasing numbers
of cores, sockets and blocks, and with complex processors and interconnect designs. The
component faults in these systems can manifest in a variety of ways: faults in arithmetic and
logic units (ALU) and floating point units (FPU) lead to instruction execution errors; and
memory element errors and transport errors (over memory bus, inter-processor link, PCI bus
connection to GPU memory, or interconnect) lead to erroneous data. In production systems,
current support for detecting these faults is somewhat limited, primarily to hardware monitors
and codes with “known” outputs, and several other approaches are currently under develop-
ment [5–18]. In fact, some faults that develop during the computation may not be detected at
all, and the computation may indeed run to completion and produce unsuspected erroneous
output. One practical diagnosis technique is to run an application and compare its output with
a priori known correct values. For example, codes such as CUDA-enhanced HPL [19] with
known outputs have been used in practice to verify error-free executions. These codes, how-
ever, require significant execution times, since they solve dense linear systems with a primary
purpose of benchmarking the (error-free) system.

We propose lightweight codes to quickly and efficiently detect component faults in hybrid
computing nodes consisting of multi-core CPUs with MIC or GPU accelerators. These codes
are based on developing the chaotic-map method1 to diagnose hybrid systems, and are among
the smallest codes capable of detecting a large class of ALU, memory and interconnect errors,
typically requiring a few iterations of few instructions. The chaotic-map method is introduced
[15] as a fault diagnosis tool for computing systems, and applied to multi-core CPUs using
pthreads in [16]; but these codes are not transferable to GPUs due to their significantly
different architectures and software support. We first extend the chaotic-map implementation
to include logical and integer operations, and develop CUDA and OpenCL kernels to diagnose

1
Chaotic maps have origins in the analysis of non-linear systems with complex dynamics, such as weather systems.
Extensive theory and analysis methods of chaotic maps have been developed [20], and are often used for establishing
the existence of chaotic dynamics in a wide range of non-linear system models [21].

Fault Detection and Diagnosis4

GPUs, and integrate them with pthreads multi-core CPU diagnosis codes to diagnose large
systems with hybrid nodes. We have implemented and tested these diagnosis codes on sys-
tems shown in Table 1, namely on five multi-core CPUs; MIC accelerator; seven GPUs; and,
three multi-GPU systems.

Our main objective is to rapidly diagnose the faults in large-scale hybrid computing systems
with the architecture shown in Figure 1. In particular, we consider detecting component faults
entirely by software means, similar in spirit to the approaches of Erez et al. [6] and Sahoo et al.
[18]; in particular, we focus on codes that run in a fewminutes to diagnose non-transient faults.

A finer diagnosis to pinpoint individual faulty digital gates, as typical in the fault diagnosis
literature [22], requires solutions to the underlying NP-hard problems. The general problem of
detecting resilience of codes is computationally undecidable in Turing sense [17]. Also, spo-
radic faults that last for short durations (i.e., micro seconds) are not addressed here. Our
diagnosis codes are intended to provide “quick” diagnosis to complement other methods2

such as hardware monitors, HPL codes [19], application-specific detection methods [23–26],
and verification systems [27]. While our original motivation is to support facility operations,
our diagnosis codes can be made part of a broader, resilience ecosystem to complement and

Multi-Core CPU:

4-core Intel Xeon 2.67 GHz

16-core AMD Opteron 2.3 GHz

16-core Intel Xeon 2630

32-core Intel Xeon E5-2650 2.7GHz

48-core AMD Opteron 6176 SE 2.29GHz

Single-MIC:

Intel Xeon Phi Coprocessor 3120P/A

Single-GPU:

Quadro 600, Quadro K4200, Tesla T10, Tesla C1060

Tesla K20X, Tesla K20c, AMD Firepro W9000

Single-APU:

AMD A10-7850 K

Multiple-GPU:

8 Nvidia Tesla T10 GPUs

Nvidia Tesla K20c and AMD Firepro W9000

Intel HD Graphics 4000 and Nvidia GeForce GT 650 M

Table 1. Nodes used in implementation and testing of diagnosis codes.

2
Due to the multi-disciplinary nature of the area of extreme-scale resilient computations, the literature on related works is
quite extensive, and we only refer to a very small set of works that are directly connected to the technical areas of this
report.

Fault Diagnosis of Hybrid Computing Systems Using Chaotic-Map Method
http://dx.doi.org/10.5772/intechopen.79978
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support Algorithm-Based Fault Tolerance (ABFT) methods [7, 28]; software-based fault detec-
tion [5, 6]; and, likely invariants for detecting hardware faults [18].

Our overall approach is to compute chaotic-map trajectories concurrently on all CPU and MIC
cores, and GPU blocks. Two properties of chaotic map trajectories are critical for diagnosis
purposes: (a) their exponential divergence ensures that the trajectories subjected to faults will
rapidly diverge from the majority (fault-free) and are easily detected; and (b) their density and
aperiodicity ensures that they span across and cover a majority of bits involved in the constitu-
ent operations. Our codes utilize concurrent threads to compute chaotic map trajectories that
are augmented with: (a) arithmetic and logic operations to diagnose ALU operations, and
(b) content-preserving data movement operations to diagnose memory elements, busses and
interconnects.

This paper is organized as follows. We describe the basics of the fault detection method using
chaotic maps in Section 2. We present a brief description of the hybrid architecture and the
details of our diagnosis codes in Section 3. We describe the overall diagnosis method in Section
3.1, and provide the details of diagnosis of CPU andMIC cores in Section 3.2, and the details of
diagnosis of GPU blocks using CUDA and OpenCL kernels in Sections 3.4 and 3.4, respec-
tively. We present experimental results in Section 4.

2. Diagnosis using chaotic maps

A Poincare map M : ℜd ↦ℜd specifies a sequence, called the trajectory, of a real-vector state
Xi ∈ℜd that is updated at each iteration i such that Xiþ1 ¼ M Xið Þ [21]. The computation of
M Xið Þ may involve floating-point operations, such as multiplication and addition, and logical
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operations such as comparison of numbers, and can vary significantly in the number and types of
operations. The trajectory X0, X1,…, Xt, such that Xi ¼ Mi X0ð Þ, generated by certain Poincare
maps can exhibit complex profiles, even whenM is computationally simple. In Figure 2, we show
trajectories of the logistic map MLa Xð Þ ¼ aX 1� Xð Þ, for X∈ 0; 1½ �, which requires two multiplica-
tions and one subtraction per iteration. In Figure 3, we show the trajectories of the tent map

MTb Xð Þ ¼ bX ifX ≤ 1=2
b 1� Xð Þ ifX > 1=2

�

for X∈ 0; 1½ �, which requires a comparison operation, one multiplication and at most one
subtraction per iteration. The trajectories of these maps exhibit complex dynamics as shown
in Figures 2(a) and 3(a) for the logistic map for a ¼ 4 and the tent map for b ¼ 2, respectively.
The trajectories generated by the Poincare map M are characterized by the Lyapunov exponent
defined as LM ¼ ln dM

dX

�� ��, which characterizes the separation of the trajectories that originate
from the nearby states. For example, the Lyapunov exponent of the tent map is LMTb

¼ lnb,

which is defined for all X∈ 0; 1½ � except at X ¼ 1=2.

A bounded trajectory X0, X1,… generated by the Poincare map M :ð Þ is chaotic if (i) it is not
asymptotically periodic, and (ii) Lyapunov exponent LM is greater than zero [21]. Two impor-
tant properties of the chaotic maps are exploited here for fault diagnosis: (a) the exponential
divergence ensures that trajectories whose states slightly differ from each other at any iteration

Figure 2. Trajectories of the logistic map. (a) trajectory with no errors, (b) trajectory under arithmetic error, (c) differences
in trajectories with and without error.
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rapidly diverge within a few steps, and (b) the high spatial density and broad Fourier spectrum of
states of a trajectory spreads them across the bit-space of the underlying computing operations
within a few iterations. The first property has been proposed in [15] as an effective computa-
tional mechanism to rapidly amplify errors caused by factors such as bit flip in memory
content or stuck-at fault in an ALU operation. We extend this approach to diagnose High

Figure 3. Trajectories of the tent map. (a) trajectory with no error, (b) trajectory with logic error, (c) difference in
trajectories with and without error.
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Performance Computing (HPC) systems with small fault rates: these maps are computed
concurrently so that errors are detected by comparing them to a small majority of them. In
addition, several chaotic maps have very small computational requirements, and a vast litera-
ture is available on the analytical [8, 20], statistical [29] and computational aspects of these
maps [13, 30]. It is possible in theory to utilize linear maps in a similar way, but they are not as
efficient in detecting “small” errors (such as in least significant digits) which have to be linearly
amplified through multiple iterations to trigger detection, and also they do not generate dense
states and hence are limited in their bit-level coverage.

The trajectories that slightly differ from each other in any iteration rapidly diverge from each
other in a few steps, as shown in Figure 2(a) and (b) for the logistic map, and Figure 3(a) and
(b) for the tent map. This property is utilized as a mechanism to rapidly amplify errors in
computations caused by factors such as bit flip in memory elements or stuck-at fault in an ALU
operation. Also, through the iterations, the states are spread across the interval 0; 1½ � so that the
bit-space of the underlying computations, for example, of the registers, is covered with a high
likelihood. The difference between two trajectories with the same starting state is shown in
Figure 2(c) for the logistic map, where the state is corrupted by 1/10000 magnitude in iteration
50. During iterations 0 through 50, the difference between the trajectories is 0, but the small
difference in state magnitude is amplified to above 0.25 within 8 iterations, which is typically
under 1 ms on the systems we tested. In Figure 3, we show the effect of error in the logical
operation, wherein the result of the comparison is flipped in iteration 50. The effect on the
trajectory is more dramatic as shown in Figure 3(b), and the difference in the trajectories
crosses 0.25 within two iterations. Such divergence in trajectories can be detected by a magni-
tude test, and the detection time is controlled by the Lyapunov exponent of the map. While
both logistic and tent maps provide exponential divergence, they cover the state space [0, 1]
differently as illustrated in Figure 4, as a result of different Lyapunov exponents. It is lower in
the middle and large at the ends of state space [0, 1] for the logistic map, but is uniform for the
tent map, which makes it preferable for its coverage to support diagnosis.

The computation of a chaotic map M :ð Þ is sensitive to errors in its constituent operations, and
the mechanisms used in storing and updating the states. The detectable faults include errors in
arithmetic and logical operations performed by ALU, and faults in registers and memory, but

Figure 4. State space coverage by chaotic trajectories. (a) coverage under logistic map, (b) coverage under tent map.
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are limited to the basic operations of M :ð Þ itself. We propose the chaotic-detection map MD :ð Þ3
that augments the detection space ofM :ð Þ so that its execution path is routed through different
computing operations, memory locations and interconnect links to capture errors due to them.
The chaotic-detection map is obtained by adding the following two types of operations to the
chaotic map iterations.

a. Augmenting computing operations: The chaotic map iterations are augmented with
sequences of logical and arithmetic operations, which are selected based on the instruction
sets of CPU cores and GPU blocks to complement the original chaotic map operations. The
same sequence of operations is used in all concurrently computed maps by using the same
process code for pthreads of all CPU cores and the same CUDA kernel on all GPU blocks.
The type of state variable is used to exercise different parts of the computing units; in
particular, it is scaled to a large integer and addition and multiplication are applied to
exercise integer operations. Also, special operations such as log are applied to Xi to
exercise special instructions that are implemented in hardware by Extended Math Unit
(EMU), when applicable. The type casting of variables is used to exercise single precision
and double precision processing units as well as Vector Processing Units (VPU), as
described in the next section.

b. Content-preserving data movement operations: The state variable Xi is moved among
the memory elements and/or across the interconnects in between applyingM :ð Þ iterations,
to capture errors in the memory elements and paths, and during the transmission across
the interconnects. In each operation, the contents of Xi are unchanged under failure-free
conditions. These movements can be realized by several means based on the supported
operations, ranging from simple assignment statements to employing additional variables
in the “shared” memory to utilizing explicit MPI, CUDA or other constructs. In particular
for multi-core processors, memory assignments using pthreads can be used for both
purposes, namely, to test memory unit errors as well as transport errors across the mem-
ory bus or hypertransport.

The rate of divergence of a chaotic map, and hence the detection times of failures depend on
the Lyapunov exponent LM, generally larger values leading to quicker divergence. The class of
faults detected by a chaotic-detection map depends on the chaotic map and the augmenting
and data movement operations as well as the computing units used for their computation. A
main consideration in developing the diagnosis codes is to efficiently compute the chaotic-
detection maps on computing units with identical parameters, sequences of augmenting oper-
ations, state-preserving movement operations and chaotic map updates, so that the end states
are identical under fault-free conditions. Their implementation critically depends on the soft-
ware primitives supported on the systems, and they in turn are closely tied to the underlying
system architecture, including the location of the computing elements, memory hierarchies
and interconnects. In the next section, we describe specific implementations to compute
chaotic-detection maps on multi-core CPUs, MICs, GPUs and hybrid systems.

3
The chaotic-detection map is a generalization of the chaotic-identity map proposed in [15], which was restricted to the
operations with inverses.
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3. Hybrid system diagnosis

We consider hybrid computing systems, wherein each node consists of muti-core, possibly
multi-sockets CPUs, and one or more GPU and XeonPhi MIC accelerators; in the limiting case,
we have a single node with a multi-core CPU and zero or more GPUs. Computations are
spawned to run on CPU cores using OpenMP, pthreads or similar constructs, and on GPU
blocks using CUDA or OpenCL threads. Within each node, however, the data movements are
carried out differently on CPUs and GPUs, since the former accesses different levels of on-
board memory, but the latter can only directly access memory physically located on the GPU.
The CPU-GPU data transfers are realized using CUDA or OpenCL in our case using memory
copy operations between CPU on-board memory and GPU device memory. Computations on
GPUs utilize thread bundles on GPU blocks using kernels written in CUDA C or OpenCL.
Kernels are launched from the CPU of a node onto the corresponding GPU blocks as a
collection of threads. In this section, we describe different components of the diagnosis codes
for hybrid systems based on the chaotic-detection maps. Since these can be used as stand-alone
codes for simpler systems, codes for a single-node with multi-core CPU with zero or more
GPU accelerators, or as a cluster with only CPUs, are presented in separate sections.

3.1. Node diagnosis module

The overall diagnosis strategy is to utilize the “reliable” nodes to launch a node diagnosis module
on each node as shown in Figure 5, under the working assumption that only a small number of

Figure 5. Diagnosis approach for hybrid computing systems.
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nodes contain faulty components and a majority of them are fault-free. The node diagnosis
module is written in C, and consists of a CUDA or OpenCL C kernel for GPUs, and pthreads
code for multi-core CPUs or MIC accelerators. On each node, the diagnosis module detects the
number of cores (more precisely, the processing units) using linux/proc system, and also
explicitly checks for the physical presence of GPUs using CUDA C or OpenCL system calls
(to avoid GPU emulations). It then allocates and initializes node-level global memory and
copies the contents onto on-board device memory of GPUs connected to the node. Next, from
the default CPU core, it launches concurrent threads to compute the chaotic-detection maps on
the computing units, namely CPU cores and GPU blocks, and gathers their outputs and
generates the diagnosis output.

The chaotic-detection map computation carried out by threads on each CPU core and GPU
block consists of the following basic steps, which will be customized to CPU and GPU archi-
tectures (as described in the next sections):

i. Local memory is allocated and initialized based on the specifics of CPU or GPU;

ii. Initial state X0 of the chaotic-detection map, and additive and multiplicative factors,
denoted by A and M respectively, the numbers of pre and post iterations N1 and N2,
respectively, are accessed so that all threads use the same values;

iii. N1 iterations of the chaotic-detection map are computed using starting state X0 to obtain
XK. followed by a sequence of augmenting operations, for example, addition and sub-
traction of the additive factor A, and division and multiplication with factor M, namely,

XK ¼ XK þ A;

XK ¼ XK � A;

XK ¼ XK=M;

XK ¼ XK ∗ M,

to check addition, subtraction, multiplication and division operations.

iv. A fixed sequence of content-preserving data movement operations are performed on
variable XK that are specific to CPU or GPU; and

v. N2 iterations of the chaotic-detection map are computed with starting state XK to obtain
final state XE.

At the completion of threads, outputs XE‘s from all concurrent threads are transferred back to
the default CPU core and are used as starting states for N3 iterations of a follow-on chaotic
map. This follow-on chaotic map amplifies the errors captured by the outputs of chaotic-
detection maps from the CPU and GPU threads as well as those occur during data transfers,
for example, from GPU to CPU over the PCI bus.

The final outputs XF‘s of the follow-on chaotic map are compared to a pre-computed correct
state (or to the majority of a small subset of them). If XF‘s of all the threads match then no error
is declared. If not, diagnosis steps (iii)–(iv) are executed separately to identify portions during
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which errors occurred. The step (iii) identifies ALU errors in executing +, �, / and * operations,
and other operations of interest can be added. Steps (i), (ii) and (iv) are customized to match
the memory architectures of CPU and GPU as described in the following sections, wherein
assignment operations are used to diagnose memory elements and data paths. The memory
and interconnect diagnosis codes described here, however, are limited mainly to illustrate the
detection of faults in memory elements and data paths rather than complete sweeps of mem-
ory and interconnects.

All threads that compute chaotic-detection maps are provided identical parameters in step (ii).
These parameters are setup on global arrays GM :; :½ � of size SG on each node, which are
accessible to all CPU cores and are explicitly transferred to GPU memory. For initialization on
the node, malloc call is used for allocating the memory and memset is used to fill the memory
with the values. The data movements in step (iv) do not alter the contents if there are no errors
in storage or transfer operations, but are designed specifically to match the memory architec-
ture of CPU and GPU; in particular, primitives such as assignments can be used to diagnose
memory and transfer errors as will be described in next sections.

3.2. Multi-core CPU diagnosis

Multi-core CPU systems are composed of one or more sockets, each housing a number of
processor cores connected to memory modules, which are typically organized in a hierarchy.
An example of a single socket quad-core system is HP Z400 workstation shown in Figure 6
consisting of four 2.67 GHz Intel Xeon CPUs. The cache memory units are connected over the
memory bus such that L1 caches are local to processor cores, L2 caches are shared between
pairs and L3 caches are global. The memory caches are connected over a combination of
memory bus and hypertransport links. The L1 cache is local to cores whereas global memory
is accessible to certain cores via hypertransport links. Thus, certain memory transfers between
local and global memory take place over hypertransport links.

We now provide the details of node diagnosis module that is specific to multi-core CPUs. It
partitions the global memory into non-overlapping parts assigned to NC processor cores, and
launches dedicated threads one on each core as shown in Figure 7. Processor core i is assigned
the subarray GM i; :½ � of size SGi . Then, a single thread is invoked on each core i using
pthread_setaffinity_np call, and this thread computes the chaotic-detection map with the
following expanded steps described in Section 3.1.

(i) Local memory is allocated and initialized within the thread as an array LS :½ � of specified size
SL using malloc and memset.

(iv-a) The variable XK is stored and retrieved from each element of the initialized local
memory:

for j ¼ 1,…, SL.

LS j½ � ¼ XK;

XK ¼ LS j½ �;
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These operations are carried out between core i and its local memory.

(iv-b) The variable XK is stored and retrieved from each element of the assigned partition of the
global memory such that the thread assigned to processor code i executes the following code.

for j ¼ 1,…, SGi.

GM i; j½ � ¼ XK;

XK ¼ GM i; j½ �;
The basic idea of steps (iv-a) and (iv-b) is to utilize the variable assignments to diagnose both
memory elements as well as data paths. The step (iv-a) exercises the local memory operations
and detects errors in the memory elements, as well as during transport by the memory
controller. The step (iv-b) exercises the processor interconnect, as well as the elements in global
memory; the interconnect is memory bus for HP z400 workstation, and hypertransport for HP
Proliant server. While these steps do not cover all possible errors, they are likely to capture
several major errors in ALU, memory and interconnect so that processors with detected errors
can be excluded from computations or their boards may be replaced. This memory diagnosis
part can be further refined: (a) NUMA tools can be utilized to explicitly allocate memory in
different locations and layers so that the assignment operations require data to be transferred
across the memory connections, and (b) assignment primitives under higher level constructs

Figure 6. Architecture of 4-core HP Z400 workstation.
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such as openMP, SHMEM or PGAS can be used as diagnose memory paths at much higher
level using fairly simple codes.

3.3. Xeon phi diagnosis

Intel’s first generation MIC Architecture, code named Knights Corner has 57–61 cores per
coprocessor. The particular coprocessor we had access to was the Intel Xeon Phi 3120P/A
coprocessor with 57 cores, 1TF double precision performance, 6GB GDDR memory with
240 GB/s data transfer rates and a 1.1 GHz clock. Internally the 3120P consists of 57 cores with
each core having a VPU, a x87 math co-processor providing double precision transcendentals
(non-vectorized) and a scalar processing unit. The VPU on each core internally consisted of 8
double precision FPUs and 16 single precision (SP) FPUs and an extended math unit (EMU)
providing single precision vectorized transcendental functions. The VPUs are capable of 8 DP
or 16 SP operations per clock cycle. Associated with each VPU are four hardware thread
execution contexts each having access to 32,512 bit wide private registers (zmm0-zmm31)and
8 16 bit mask registers, 7 of which are writeable. Associated with each core are 32 KB L1 data
and instruction caches and a unified 512 KB instruction and data L2 cache. The instruction set
associated with the VPUs is the Intel Initial Many Core Instruction (IMCI) set. The 57 cores are
on a round robin bidirectional ring interconnect with 8 memory controllers. For further details
we refer to [14, 31–33].

The Xeon Phi node diagnosis module tests the single and double precision ALUs within each
VPU, the x87 math coprocessor for each core, the EMU for each core, the general purpose

Figure 7. Diagnosis of CPU cores.
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vector registers for each hardware thread, and the L1 and L2 caches. We did not attempt to
design explicit tests for the memory controllers, RAM, or the interconnects to the CPU within
this module though in theory this should also be possible. The code is written in C and IMCI
assembly. The icc compiler was used to automatically generate vectorized code for the VPUs.
The code can be executed either by offloading to the coprocessor or by natively executing on
the coprocessor. pthreads is used to spawn off one thread for each logical core detected. For the
Intel Xeon Phi 3120P/A coprocessor that we had access to this worked out to a total of 57 � 4
threads corresponding to the 4 hardware threads associated with the 57 cores. The core affinity
for each thread was explicitly set using the pthread_attr_setaffinity_np call. Each thread
executes a set of chaotic-map detection routines based on the description in Section 3.1 cus-
tomized to test the hardware components listed above. In particular, it was necessary to write
both single and double precision chaotic map routines that operated on 64 bit aligned arrays in
order to exercise the SP and DP ALUs. Testing of the�87 math co-processor was done through
the compiler switches -mmic -fp-model strict that disabled auto-vectorization and forced the
�87 coprocessor to be exercised. This was verified through examining the generated assembly
code. Diagnosis of the EMU was ensured by introducing transcendental function calls. From
examining the generated IMCI assembly it was clear that the generated code did not exercise
all 32 of 512-bit vector registers (zmm0–zmm31) and mask registers associated with each
thread. In order to test the registers, assembly routines were written to span all registers
associated with each thread that performed the chaotic map iterations.

3.4. GPU diagnosis using CUDA kernels

Nvidia general purpose GPUs (GPGPU) can be viewed as a set of streaming multiprocessors
(SMs) [34] as shown in Figure 8. Each SM internally consists of a number of simplified cores:
CUDA cores which consist of scalar SP floating point and arithmetic ALUs, DP cores, Special
Function Units (SFU) for transcendental functions, and Load/Store units. The number of cores
and the relative ratio of the different types has varied from generation to generation. Each SM
has a number of schedulers and instruction dispatch units associated with it, as well as a
register file shared by all cores in the SM, and local memory partitioned as shared memory
and L1 cache. SMs also have access to global device memory. The basic scheduling unit for
Nvidia GPGPUs is a warp which consists of 32 threads which operate in SIMT (single instruc-
tion multiple thread) fashion. At a higher level, threads are organized into thread blocks and
on each block all threads execute concurrently as shown in Figure 9. These computations have
only direct access to memory on the device DRAM with support from caches. Table 2 lists
hardware specifications for some of the Nvidia microarchitecture generations [9–12]. We note
that we have tested on a variety of Nvidia GPGPUs including Quadro 600, Tesla C1060,
Quadro K5000, and Tesla K20X (Table 2).

The diagnosis module for Nvidia GPUs performs separate chaotic-map detection iterations to
detect faults on the CUDA cores, the DP cores, and the SFU components. The global memory
GM :; :½ � is copied by the node diagnosis module onto the device memory GMG :; :½ � to make it
accessible to GPU threads. The thread computations are implemented by a CUDA kernel that
is loaded and executed on GPU(s). The same kernel code is executed on each block, which
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�87 coprocessor to be exercised. This was verified through examining the generated assembly
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has a number of schedulers and instruction dispatch units associated with it, as well as a
register file shared by all cores in the SM, and local memory partitioned as shared memory
and L1 cache. SMs also have access to global device memory. The basic scheduling unit for
Nvidia GPGPUs is a warp which consists of 32 threads which operate in SIMT (single instruc-
tion multiple thread) fashion. At a higher level, threads are organized into thread blocks and
on each block all threads execute concurrently as shown in Figure 9. These computations have
only direct access to memory on the device DRAM with support from caches. Table 2 lists
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GM :; :½ � is copied by the node diagnosis module onto the device memory GMG :; :½ � to make it
accessible to GPU threads. The thread computations are implemented by a CUDA kernel that
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consists of a number of threads that compute the chaotic-detection maps. The chaotic-detector
maps computed by each GPU thread consist of the following expanded versions of the steps
described in Section 3.1.

(i) The GPU SM id, thread id, warp id, and warp lane numbers are obtained, and the global
device memory is allocated to thread T as an array GMG:T :½ � of specified size ST .

(iv-a) A set of variables XK corresponding to the FP and integer portions of the CUDA core, DP
core, and SFU are retrieved from each thread.

(iv-b) The variables XK are stored and retrieved from each element of the assigned partition of
the global memory such that the thread T executes the following code.

for j ¼ 1,…, ST.

GMG:T i; j½ � ¼ XK;

XK ¼ GMG:T i; j½ �;
(v) N2 iterations of the chaotic-detection map are computed with starting state XK to obtain
final state XE;

The GPU diagnosis code is written as a CUDA kernel which is launched from CPU onto GPU
blocks concurrently with pthreads on CPU cores. This diagnosis code can be significantly
simplified for simpler diagnosis tasks, for example, checking PCI bus transfer errors between
CPU and GPU, by simply writing and reading back the global memory arrays.

3.5. GPU diagnosis using OpenCL kernels

AMD GPGPUs and APUs have transitioned to the graphics core now (GCN) Architecture with
the GPGPUs and APUs containing multiple GCN compute units (CU). For example, the AMD
RadeonHD7970 (FireproW9000) architecture consists of 32GCNCU’s operatingwith a 975MHz
clock while the AMD A10-7850 K Kaveri APU architecture consists of 2 Steamroller CPU cores
(3.7–4 GHz) and 8 GCN CUs (720 MHz) with a unified address space of up to 32GB. Each CU
consists of 4 Vector Units (VU) and one Scalar Unit. Each VU in turn consists of 16 SIMD multi-
precision ALUs and a register file. In the case of the Firepro W9000 this is a total of 2048 ALUs
(32CUs � 4VUs � 16 ALUs) with a theoretical peak of up to 1 TF DP and 4 TF SP performance.
The basic scheduling unit ofwork for a GCNCU consists of awavefront which is 64 threads. Each

Tesla Fermi Kepler Maxwell

SM 30 16 8 16

CUDA cores/SM 8 32 32 192

DP cores/SM 1 — 64 4

SFUs/SM 1 4 32 32

Load/Store/SM — 16 32 32

Table 2. Nvidia GPGPU micro-architecture specifications.
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SIMDVUwithin a CU has its own program counter and instruction buffer which can contain up
to 10 wavefront buffers. Four CUs currently share a 32 KB L1 instruction cache. At a given cycle
the 4 VUs of one CU can be operating on different wavefronts with a givenwavefront completing
in 4 clock cycles. In effect, a single CU could have up to 4 � 10 wavefronts in flight. Associated
with each GCN CU is a general purpose register file which consists of 4 independent slices, one
for each VU. Each slice consists of 256 vector registers (vGPRs) shared across 10 wavefronts with
each vGPR being 64 lanes of 32 bits allowing 64 SP or 32 DP values to be stored in each vector
register at each cycle. For further details we refer to [35].

The diagnosis module for AMD GPUs is written in OpenCL with separate kernels for chaotic
map fault detection of SP and DP FPUs, integer ALUS, extended math units, and register files.
Since the diagnosis modules are written in OpenCL they also run on multi-core CPUs and
GPUs from other vendors such as Nvidia. However, obtaining thread level information is
much harder with OpenCL and requires the use of vendor specific analysis tools. Hence, the
OpenCL chaotic map detection modules provide less quantitative information than the mod-
ules written with pthreads for Xeon Phi and CUDA for Nvidia GPGPUs. However, these
diagnostic codes provide a good tool for fault detection on hybrid systems due to the cross-
platform portabiity that OpenCL provides.

4. Experimental results

The diagnosis codes have been implemented in C using float and double datatypes based on the
logistic and tent maps, and have been developed and tested in stages on the systems listed in
Table 1. The test modes are represented as multi-core CPU (C), manycore processor (MC),
single GPU (G), multiple GPUs (MG) or hybrid node with CPU and GPU (CG). The tests were
carried out in C, MC, G, MG, and CG modes. In these systems, Xeon Phi’s and GPUs are
attached to CPUs over PCI bus, and are used as accelerators in all our systems, except in HP
Z200 workstation where the GPU is used only for display. The following are the details of
systems used in our code implementation and testing.

(C) Multi-Core CPU: Five different multi-core systems: 4-core Intel Xeon 2.67 GHz, 16-core
AMD Opteron 2.3 GHz, 16-core Intel Xeon, 32-core Intel Xeon 2.7GHz, and 48-core AMD
Opteron 2.29GHz.

(MC) MIC Processors: Intel Xeon Phi 3120P/A coprocessor.

(G) Single-GPU: Six cases: Quadro 600, Quadro K5000, Tesla T10, Tesla C1060, Tesla K20X,
and AMD Firepro 9000 GPUs connected to CPU over PCI bus.

(MG) Multiple-GPUs: Two cases: 4-socket 48-core HP server with eight 8 Tesla T10 GPUs
connected over four PCI busses and Apple MacBook Pro with an Intel HD Graphics 4000 GPU
and a Nvidia GT 650 M GPU.

(CG) Hybrid nodes: AMD A10-7850 K Kaveri APU with 2 Steamroller CPU cores (3.7–4 GHz)
and 8 GCN CUs (72 MHz)
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consists of a number of threads that compute the chaotic-detection maps. The chaotic-detector
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Together these systems represent quite different software environments and architectures, and
our diagnosis codes are compiled separately on them under Linux-like environments. But
otherwise these codes are portable using C, CUDA, and OpenCL compilers with the pthreads
libraries. The diagnosis test results are qualitatively quite similar across these systems. So, we
present high-level summaries of our results with some representative traces, and briefly
describe (somewhat) unexpected cases that may require additional considerations for devel-
oping application codes. For multi-core CPUs no errors were detected on these systems, and as
expected the chaotic map outputs XE‘s are identical for all cores. We simulated different faults
to verify the functionality of diagnosis codes. When GPU are utilized, some interesting preci-
sion and emulation artifacts were observed in G and MG modes (Section 4.3).

4.1. Multi-core CPU diagnosis

Four different CPUs have been tested in C mode. The outputs XE’s of all chaotic-detection
maps are identical in all these systems, and the results for the 4-core CPU are shown below
using the tent and logistic maps (N1 ¼ 20, N2 ¼ 0 iterations with X0 ¼ 0:2):

Tent map:

Core 0: output: 0.165669 : 3E29A528

Core 1: output: 0.165669 : 3E29A528

Core 2: output: 0.165669 : 3E29A528

Core 3: output: 0.165669 : 3E29A528

Core 0: output: 0.165669 : follow_on: 0.919737

Core 1: output: 0.165669 : follow_on: 0.919737

Core 2: output: 0.165669 : follow_on: 0.919737

Core 3: output: 0.165669 : follow_on: 0.919737

Logistic map:

Core 0: output: 0.787269 : 3F498A78

Core 1: output: 0.787269 : 3F498A78

Core 2: output: 0.787269 : 3F498A78

Core 3: output: 0.787269 : 3F498A78

Core 0: output: 0.787269 : follow_on: 0.062074

Core 1: output: 0.787269 : follow_on: 0.062074

Core 2: output: 0.787269 : follow_on: 0.062074

Core 3: output: 0.787269 : follow_on: 0.062074
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Outputs from all four threads from the individual cores are identical indicating no errors. The
output consists of two parts: first part shows the chaotic-detection map outputs XE’s from the
individual cores, and the second part shows the outputs of follow-on chaotic map XF’s.
In the first part, the state of chaotic-detection map XE is printed in C float format in the first
column, and in hexadecimal representation in the second column. For the follow-on chaotic
map, XE and XF are shown in the first and second columns, respectively. These outputs are the
same in all four multi-core CPUs and three systems tested.

Since there are no errors detected on the CPU cores above, we simulated four types of errors:

a. We add a small quantity to XK during the arithmetic operations for thread 0 to simulate
ALU errors.

b. We simulate stuck-at memory errors by clamping XK to a fixed value 0.000001 during the
store and retrieve operation for thread 1.

c. We simulate data path errors by replacing XK by a randomly generated number for a
thread 2 during the store and retrieve operation.

d. We flip the outcome of the logical operation in one iteration in XK computation for
thread 3.

The faults (a)–(c) are applicable to both logistic and tent maps, and fault (d) is applicable only
to the tent map.

The output for 4-core processor with four faults simulated on different cores, namely type (a)
through (d) on cores 0 through 3, respectively, are shown below for the tent map:

Diagnosis summary:

Core 0: output: 0.000370 : 39C21000

Core 1: output: 0.000001 : 358637BD

Core 2: output: 0.010000 : 3C23D70A

Core 3: output: 0.000510 : 3A05A000

Core 0: output: 0.000370 : follow_on: 0.117106

Core 1: output: 0.000001 : follow_on: 0.960860

Core 2: output: 0.010000 : follow_on: 0.795249

Core 3: output: 0.000510 : follow_on: 0.045228

The outputs from these threads are different from those above indicating an error during the
execution of each of them. Additionally, the final outputs of each of these chaotic trajectories
are different from each other indicating different types of faults. The global memory GM :; ;½ � is
allocated prior to invoking the threads on the processors cores, and local memory LS :½ � is
allocated within the thread assigned to a particular core. Since memory movements are carried
out by all cores between their local memory and global memory, significant portion of the
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Together these systems represent quite different software environments and architectures, and
our diagnosis codes are compiled separately on them under Linux-like environments. But
otherwise these codes are portable using C, CUDA, and OpenCL compilers with the pthreads
libraries. The diagnosis test results are qualitatively quite similar across these systems. So, we
present high-level summaries of our results with some representative traces, and briefly
describe (somewhat) unexpected cases that may require additional considerations for devel-
oping application codes. For multi-core CPUs no errors were detected on these systems, and as
expected the chaotic map outputs XE‘s are identical for all cores. We simulated different faults
to verify the functionality of diagnosis codes. When GPU are utilized, some interesting preci-
sion and emulation artifacts were observed in G and MG modes (Section 4.3).

4.1. Multi-core CPU diagnosis

Four different CPUs have been tested in C mode. The outputs XE’s of all chaotic-detection
maps are identical in all these systems, and the results for the 4-core CPU are shown below
using the tent and logistic maps (N1 ¼ 20, N2 ¼ 0 iterations with X0 ¼ 0:2):

Tent map:

Core 0: output: 0.165669 : 3E29A528

Core 1: output: 0.165669 : 3E29A528

Core 2: output: 0.165669 : 3E29A528

Core 3: output: 0.165669 : 3E29A528

Core 0: output: 0.165669 : follow_on: 0.919737

Core 1: output: 0.165669 : follow_on: 0.919737

Core 2: output: 0.165669 : follow_on: 0.919737

Core 3: output: 0.165669 : follow_on: 0.919737

Logistic map:

Core 0: output: 0.787269 : 3F498A78

Core 1: output: 0.787269 : 3F498A78

Core 2: output: 0.787269 : 3F498A78

Core 3: output: 0.787269 : 3F498A78

Core 0: output: 0.787269 : follow_on: 0.062074

Core 1: output: 0.787269 : follow_on: 0.062074

Core 2: output: 0.787269 : follow_on: 0.062074

Core 3: output: 0.787269 : follow_on: 0.062074
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Outputs from all four threads from the individual cores are identical indicating no errors. The
output consists of two parts: first part shows the chaotic-detection map outputs XE’s from the
individual cores, and the second part shows the outputs of follow-on chaotic map XF’s.
In the first part, the state of chaotic-detection map XE is printed in C float format in the first
column, and in hexadecimal representation in the second column. For the follow-on chaotic
map, XE and XF are shown in the first and second columns, respectively. These outputs are the
same in all four multi-core CPUs and three systems tested.

Since there are no errors detected on the CPU cores above, we simulated four types of errors:

a. We add a small quantity to XK during the arithmetic operations for thread 0 to simulate
ALU errors.

b. We simulate stuck-at memory errors by clamping XK to a fixed value 0.000001 during the
store and retrieve operation for thread 1.

c. We simulate data path errors by replacing XK by a randomly generated number for a
thread 2 during the store and retrieve operation.

d. We flip the outcome of the logical operation in one iteration in XK computation for
thread 3.

The faults (a)–(c) are applicable to both logistic and tent maps, and fault (d) is applicable only
to the tent map.

The output for 4-core processor with four faults simulated on different cores, namely type (a)
through (d) on cores 0 through 3, respectively, are shown below for the tent map:

Diagnosis summary:
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Core 2: output: 0.010000 : 3C23D70A
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Core 0: output: 0.000370 : follow_on: 0.117106

Core 1: output: 0.000001 : follow_on: 0.960860

Core 2: output: 0.010000 : follow_on: 0.795249

Core 3: output: 0.000510 : follow_on: 0.045228

The outputs from these threads are different from those above indicating an error during the
execution of each of them. Additionally, the final outputs of each of these chaotic trajectories
are different from each other indicating different types of faults. The global memory GM :; ;½ � is
allocated prior to invoking the threads on the processors cores, and local memory LS :½ � is
allocated within the thread assigned to a particular core. Since memory movements are carried
out by all cores between their local memory and global memory, significant portion of the
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memory data paths are exercised by the diagnosis code so that major errors in memory bus
and interconnect can be detected. An exhaustive coverage of all memory data paths would
require extensions of this method such as explicit placement of processes and their memory
near the cores, which may be achieved using NUMA tools.

4.2. Xeon phi diagnosis

Below we show a partial output from running the chaotic tent map detection on the Xeon Phi.
For lack of space we have only shown the outputs for a few cores and for the SP and DP ALU
calculations. Similar fields are outputted for the EMU, the integer ALU the �87 math copro-
cessor, and the vector registers for each hardware thread. In addition to the partial summary
shown a detailed output is written to file.

Diagnosis summary:

Number of cores detected = 228

Core 003: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 000: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 001: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 002: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

…

Core 226: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 227: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Outputs from the different threads are identical indicating no errors for the various compo-
nents tested.

4.3. GPU diagnosis

Four GPUs have been tested in G mode and one is tested in MG mode with pthreads. A single
thread is used on each block to compute the chaotic-detection map. The outputs of chaotic-
detection maps are identical in all these cases, analogous to the CPU case, when the chaotic-
map output is computed without adding the index value to XF; also, the results are the same as
the CPU case when faults were simulated. Recall that to keep track of outputs from individual
blocks, the index (block number) was added to XE, which was then subtracted on CPU to
compute XF. This specific combination of operations involving integers and fractions yielded
non-uniform precisions among different blocks of the same GPU. We now briefly describe the
details of such cases, and such effects have been observed on all GPUs in Table 1. The outputs
of diagnosis codes from GPU of Titan using the logistic map are shown below in a condensed
form so that only lines corresponding to blocks with different outputs are shown (when no
faults are simulated):

Fault Detection and Diagnosis22

Chaotic detection map:

block_x[0] = 0.682320 <-> 3F2EAC8E

…

block_x[2] = 2.682321 <-> 3F2EAC90

…

block_x[16] = 16.682320 <-> 3F2EAC80

block_x[17] = 17.682320 <-> 3F2EAC80

Follow-on chaotic map

block_x[0] = 0.682320 <-> 0.860477

…

block_x[2] = 2.682321 <-> 0.000000

…

block_x[16] = 16.682320 <-> 0.671719

block_x[17] = 17.682320 <-> 0.671719

Follow-on linear map

block_x[0] = 0.682320 <-> 0.000016

…

block_x[17]=17.682320 <-> 0.000016

The chaotic detection map outputs XE’s (fractional part in the first column) are not the identical
across the blocks, and the differences are significant enough to be noticed when printed under
C float format. The differences are more clearly seen in hexadecimal format; here the block
number has been subtracted from the first column number. The outputs of the follow-on
chaotic-map XF’s more clearly show significant deviations as these small precision differences
in XE’s are non-linearly amplified. As an additional step, we also computed the outputs of a
follow-on linear-map, M Xð Þ ¼ Xþ δ, which shows that these differences are inconsequential,
and it also shows that some linear maps do not provide the needed detection capability.

The outputs from Quadro 600 GPU are shown below using the tent map, wherein the results
are qualitatively similar to Titan K20X GPU but the details differ.

Chaotic detection map:

block_x[0] = 0.170387 <-> 3E2E79D8

…

block_x[2] = 2.170387 <-> 3E2E79E0
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memory data paths are exercised by the diagnosis code so that major errors in memory bus
and interconnect can be detected. An exhaustive coverage of all memory data paths would
require extensions of this method such as explicit placement of processes and their memory
near the cores, which may be achieved using NUMA tools.

4.2. Xeon phi diagnosis

Below we show a partial output from running the chaotic tent map detection on the Xeon Phi.
For lack of space we have only shown the outputs for a few cores and for the SP and DP ALU
calculations. Similar fields are outputted for the EMU, the integer ALU the �87 math copro-
cessor, and the vector registers for each hardware thread. In addition to the partial summary
shown a detailed output is written to file.

Diagnosis summary:

Number of cores detected = 228

Core 003: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 000: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 001: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 002: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

…

Core 226: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 227: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Outputs from the different threads are identical indicating no errors for the various compo-
nents tested.

4.3. GPU diagnosis

Four GPUs have been tested in G mode and one is tested in MG mode with pthreads. A single
thread is used on each block to compute the chaotic-detection map. The outputs of chaotic-
detection maps are identical in all these cases, analogous to the CPU case, when the chaotic-
map output is computed without adding the index value to XF; also, the results are the same as
the CPU case when faults were simulated. Recall that to keep track of outputs from individual
blocks, the index (block number) was added to XE, which was then subtracted on CPU to
compute XF. This specific combination of operations involving integers and fractions yielded
non-uniform precisions among different blocks of the same GPU. We now briefly describe the
details of such cases, and such effects have been observed on all GPUs in Table 1. The outputs
of diagnosis codes from GPU of Titan using the logistic map are shown below in a condensed
form so that only lines corresponding to blocks with different outputs are shown (when no
faults are simulated):
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Chaotic detection map:

block_x[0] = 0.682320 <-> 3F2EAC8E

…

block_x[2] = 2.682321 <-> 3F2EAC90

…

block_x[16] = 16.682320 <-> 3F2EAC80

block_x[17] = 17.682320 <-> 3F2EAC80

Follow-on chaotic map

block_x[0] = 0.682320 <-> 0.860477

…

block_x[2] = 2.682321 <-> 0.000000

…

block_x[16] = 16.682320 <-> 0.671719

block_x[17] = 17.682320 <-> 0.671719

Follow-on linear map

block_x[0] = 0.682320 <-> 0.000016

…

block_x[17]=17.682320 <-> 0.000016

The chaotic detection map outputs XE’s (fractional part in the first column) are not the identical
across the blocks, and the differences are significant enough to be noticed when printed under
C float format. The differences are more clearly seen in hexadecimal format; here the block
number has been subtracted from the first column number. The outputs of the follow-on
chaotic-map XF’s more clearly show significant deviations as these small precision differences
in XE’s are non-linearly amplified. As an additional step, we also computed the outputs of a
follow-on linear-map, M Xð Þ ¼ Xþ δ, which shows that these differences are inconsequential,
and it also shows that some linear maps do not provide the needed detection capability.

The outputs from Quadro 600 GPU are shown below using the tent map, wherein the results
are qualitatively similar to Titan K20X GPU but the details differ.

Chaotic detection map:

block_x[0] = 0.170387 <-> 3E2E79D8

…

block_x[2] = 2.170387 <-> 3E2E79E0
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…

block_x[8] = 8.170386 <-> 3E2E79C0

…

block_x[16] = 16.170387 <-> 3E2E7A00

Follow-on chaotic map:

block_x[0] = 0.170387 <-> 0.313038

…

block_x[2] = 2.170387 <-> 0.793185

…

block_x[8] = 8.170386 <-> 0.459723

…

block_x[16] = 16.170387 <-> 0.903821

Follow-on linear map:

block_x[0] = 0.170387 <-> 0.000041

…

block_x[16] = 16.170387 <-> 0.000041

The transition points of XE are different in this case compared to the logistic map case, and in
both cases they varied based on the number of blocks used by the CUDA kernel. But, these
outputs are the same across all four GPUs used in our tests. These artifacts are related to the
real number precision on GPU blocks. Similar precision effects also occur in CPU cores, and the
application codes account for them in some cases by using double precision computations.
Except on K20X GPUs, only single precision is supported on GPUs used in our tests. But, even
when the same single precision (C float) operations are used, these precision effects are differ-
ent between CPU cores and GPU blocks. To compare to CPU tests, we added the core number
to XE and subtracted it on host core, and no differences were found in XE‘s using C float print;
the largest number of cores we tested is 48, and such precision effects may indeed manifest
when larger numbers are added. Consequently, if not adequately accounted for, these precision
differences could lead to potentially unpredictable results in certain non-linear computations,
particularly if automated tools are used to convert CPU codes to CPU-GPU hybrid systems.

4.4. Hybrid systems diagnosis

For the purposes of this subsection hybrid systems are considered as consisting of a mixture of
CPU and GPU cores. Results are presented for three such systems using OpenCL kernels to
perform the chaotic-map detection. The simplest system is the platform on a Macbook Pro
which OpenCL detects as a single OpenCL platform with three different compute devices:
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Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz, an Intel HD Graphics 4000 device, and an
NVIDIA GeForce GT 650 M. Below are representative partial outputs for the single and double
precision FPU tent map computations. Not show are computations for the integer ALU and
EMU. Diagnosis Summary:

Device 0, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

Device 1, SP-ALU : 3F1B0A10, DP-ALU : FF800000FF800000

Device 2, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

Note that the DP ALU results for device 1 (Intel HD Graphics 4000) differ from the other
devices as device 1 does not possess double precision capability.

The second hybrid system we consider is a node that OpenCL detects as consisting of two
platforms with one and two compute devices, respectively. Platform 0 is an NVIDIA platform
with a NVIDIA Tesla K20c device. Platform 1 is an AMD platform with device 0 an AMD
Tahiti device (Firepro 9000) and device 1 an Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz.
Below are representative partial outputs for the double precision FPU tent map computations.
Not shown are calculations for the SP ALU, integer ALU, and EMU. All systems return the
same result in the absence of errors. Diagnosis Summary:

Platform 0, device 0, DP-ALU : 3FE9B1B7A9B71338

Platform 1, device 0, DP-ALU : 3FE9B1B7A9B71338

Platform 1, device 1, DP-ALU : 3FE9B1B7A9B71338

The third system considered is a node with an AMD A10-7850 K APU. OpenCL identifies it as
one platform with two devices. Device 0 is identified as AMD Spectre which consists of 8 GCN
cores and Device 1 is identified as AMD A10-7850 K APU which consists of 4 CPU cores.
Below are representative partial outputs for the single and double precision FPU tent map
computations. Not show are computations for the integer ALU and EMU.

Diagnosis summary:

Device 0, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

Device 1, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

4.5. Operational artifacts

Our diagnosis codes were originally developed for low-level hardware faults, such as in ALU
and interconnects. During the tests, however, they detected certain artifacts, which could lead
to inconsistencies and/or errors in some computations if not adequately accounted for:

a. Tardy computations: In some systems, GPUs are emulated on the nodes, particularly if they
housed them previously, and the emulated codes run sequentially on CPUs and lead to
tardy computations. Our codes explicitly check for physical GPUs, and detected such
emulations on nodes. Also, in SN-MG tests, we explicitly scheduled kernels on devices
with numbers outside the eight GPUs, and the computations on them were completed
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…

block_x[8] = 8.170386 <-> 3E2E79C0

…

block_x[16] = 16.170387 <-> 3E2E7A00

Follow-on chaotic map:

block_x[0] = 0.170387 <-> 0.313038

…

block_x[2] = 2.170387 <-> 0.793185

…

block_x[8] = 8.170386 <-> 0.459723

…

block_x[16] = 16.170387 <-> 0.903821

Follow-on linear map:

block_x[0] = 0.170387 <-> 0.000041

…

block_x[16] = 16.170387 <-> 0.000041

The transition points of XE are different in this case compared to the logistic map case, and in
both cases they varied based on the number of blocks used by the CUDA kernel. But, these
outputs are the same across all four GPUs used in our tests. These artifacts are related to the
real number precision on GPU blocks. Similar precision effects also occur in CPU cores, and the
application codes account for them in some cases by using double precision computations.
Except on K20X GPUs, only single precision is supported on GPUs used in our tests. But, even
when the same single precision (C float) operations are used, these precision effects are differ-
ent between CPU cores and GPU blocks. To compare to CPU tests, we added the core number
to XE and subtracted it on host core, and no differences were found in XE‘s using C float print;
the largest number of cores we tested is 48, and such precision effects may indeed manifest
when larger numbers are added. Consequently, if not adequately accounted for, these precision
differences could lead to potentially unpredictable results in certain non-linear computations,
particularly if automated tools are used to convert CPU codes to CPU-GPU hybrid systems.

4.4. Hybrid systems diagnosis

For the purposes of this subsection hybrid systems are considered as consisting of a mixture of
CPU and GPU cores. Results are presented for three such systems using OpenCL kernels to
perform the chaotic-map detection. The simplest system is the platform on a Macbook Pro
which OpenCL detects as a single OpenCL platform with three different compute devices:
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Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz, an Intel HD Graphics 4000 device, and an
NVIDIA GeForce GT 650 M. Below are representative partial outputs for the single and double
precision FPU tent map computations. Not show are computations for the integer ALU and
EMU. Diagnosis Summary:

Device 0, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

Device 1, SP-ALU : 3F1B0A10, DP-ALU : FF800000FF800000

Device 2, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

Note that the DP ALU results for device 1 (Intel HD Graphics 4000) differ from the other
devices as device 1 does not possess double precision capability.

The second hybrid system we consider is a node that OpenCL detects as consisting of two
platforms with one and two compute devices, respectively. Platform 0 is an NVIDIA platform
with a NVIDIA Tesla K20c device. Platform 1 is an AMD platform with device 0 an AMD
Tahiti device (Firepro 9000) and device 1 an Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz.
Below are representative partial outputs for the double precision FPU tent map computations.
Not shown are calculations for the SP ALU, integer ALU, and EMU. All systems return the
same result in the absence of errors. Diagnosis Summary:

Platform 0, device 0, DP-ALU : 3FE9B1B7A9B71338

Platform 1, device 0, DP-ALU : 3FE9B1B7A9B71338

Platform 1, device 1, DP-ALU : 3FE9B1B7A9B71338

The third system considered is a node with an AMD A10-7850 K APU. OpenCL identifies it as
one platform with two devices. Device 0 is identified as AMD Spectre which consists of 8 GCN
cores and Device 1 is identified as AMD A10-7850 K APU which consists of 4 CPU cores.
Below are representative partial outputs for the single and double precision FPU tent map
computations. Not show are computations for the integer ALU and EMU.

Diagnosis summary:

Device 0, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

Device 1, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

4.5. Operational artifacts

Our diagnosis codes were originally developed for low-level hardware faults, such as in ALU
and interconnects. During the tests, however, they detected certain artifacts, which could lead
to inconsistencies and/or errors in some computations if not adequately accounted for:

a. Tardy computations: In some systems, GPUs are emulated on the nodes, particularly if they
housed them previously, and the emulated codes run sequentially on CPUs and lead to
tardy computations. Our codes explicitly check for physical GPUs, and detected such
emulations on nodes. Also, in SN-MG tests, we explicitly scheduled kernels on devices
with numbers outside the eight GPUs, and the computations on them were completed
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sometimes with incorrect results. These tests call for suitable device checks by application
codes.

b. Data transfer errors: When CUDA kernels are launched and the results are gathered using
MPI, certain elements received zero values. The occurrence of these errors was random but
the zero elements always appeared in the blocks whose number matched the node.

These results provide information of interest to systems operations and application develop-
ment.

5. Conclusions

We described a method to quickly detect certain faults in hybrid computing systems consisting
of multi-core processors and accelerators by utilizing chaotic map computations. Our imple-
mentation is based on pthreads for multi-core CPUs and MICs, and CUDA C and OpenCL
kernels for GPUs. We presented experimental diagnosis results on five multi-core CPUs, one
MIC, seven GPUs and three hybrid systems. Since the original systems are not faulty, we
simulated certain faults in arithmetic operations, local and global memory elements, data
paths, and processor interconnects, which were detected. In addition, these codes identified
artifacts of non-uniform precisions of GPU blocks and tardy hybrid computations, which
could be of interest to non-linear computations.

Deeper investigations are needed to characterize the class of faults detected by a given set of
chaotic maps, augmentation and data movement operations. While the logistic and tent maps
used in our tests was able to detect the simulated faults, it would be interesting to study
different chaotic maps whose Lyapunov exponents closely match the specific faults to mini-
mize the detection times. More generally, it would be interesting to study the class of diagnosis
algorithms that are optimal for a given class of faults. In terms of implementations, it would be
interesting to explore finer control of memory allocations and data paths in movement opera-
tions using NUMA to further refine the diagnoses. In addition, assignment operations under
OpenACC, SHMEM and PGAS involve data movements across complex data paths, and it
would be interesting to explore the faults that can be detected by using them for content-
preserving data movement operations. The proposed chaotic maps can be embedded into
applications to track their execution paths so that faults can be detected during their execution.
More generally, the fault diagnosis codes could be an integral part of overall ecosystems
needed for resilient computations, and it would be of interest to co-develop them.
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sometimes with incorrect results. These tests call for suitable device checks by application
codes.

b. Data transfer errors: When CUDA kernels are launched and the results are gathered using
MPI, certain elements received zero values. The occurrence of these errors was random but
the zero elements always appeared in the blocks whose number matched the node.

These results provide information of interest to systems operations and application develop-
ment.

5. Conclusions

We described a method to quickly detect certain faults in hybrid computing systems consisting
of multi-core processors and accelerators by utilizing chaotic map computations. Our imple-
mentation is based on pthreads for multi-core CPUs and MICs, and CUDA C and OpenCL
kernels for GPUs. We presented experimental diagnosis results on five multi-core CPUs, one
MIC, seven GPUs and three hybrid systems. Since the original systems are not faulty, we
simulated certain faults in arithmetic operations, local and global memory elements, data
paths, and processor interconnects, which were detected. In addition, these codes identified
artifacts of non-uniform precisions of GPU blocks and tardy hybrid computations, which
could be of interest to non-linear computations.

Deeper investigations are needed to characterize the class of faults detected by a given set of
chaotic maps, augmentation and data movement operations. While the logistic and tent maps
used in our tests was able to detect the simulated faults, it would be interesting to study
different chaotic maps whose Lyapunov exponents closely match the specific faults to mini-
mize the detection times. More generally, it would be interesting to study the class of diagnosis
algorithms that are optimal for a given class of faults. In terms of implementations, it would be
interesting to explore finer control of memory allocations and data paths in movement opera-
tions using NUMA to further refine the diagnoses. In addition, assignment operations under
OpenACC, SHMEM and PGAS involve data movements across complex data paths, and it
would be interesting to explore the faults that can be detected by using them for content-
preserving data movement operations. The proposed chaotic maps can be embedded into
applications to track their execution paths so that faults can be detected during their execution.
More generally, the fault diagnosis codes could be an integral part of overall ecosystems
needed for resilient computations, and it would be of interest to co-develop them.
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Abstract

Vigilant fault diagnosis and preventive maintenance has the potential to significantly 
decrease costs associated with wind generators. As wind energy continues the upward 
growth in technology and continued worldwide adoption and implementation, the 
application of fault diagnosis techniques will become more imperative. Fault diagnosis 
and preventive maintenance techniques for wind turbine generators are still at an early 
stage compared to matured strategies used for generators in conventional power plants. 
The cost of wind energy can be further reduced if failures are predicted in advance of a 
major structural failure, which leads to less unplanned maintenance. High maintenance 
cost of wind turbines means that predictive strategies like fault diagnosis and preventive 
maintenance techniques are necessary to manage life cycle costs of critical components. 
Squirrel-Cage Induction Generators (SCIG) are the prevailing generator type and are 
more robust and cheaper to manufacturer compared to other generator types used in 
wind turbines. A statistical model was developed using SCADA data to estimate the 
relationships between winding temperatures and other variables. Predicting faults in 
stator windings are challenging because the unhealthy condition rapidly evolves into a 
functional failure.

Keywords: fault diagnosis, preventative maintenance, wind turbine, electrical 
generator, statistical model

1. Introduction

Wind energy has evolved into a mature, cost effective and sustainable power technology. 
The sizes of wind turbines are growing on a continuous basis and new topologies allow for 
better integration into electricity grids. Power electronics development has provided the 
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functionality of variable speed operation, which is more energy efficient. A wind turbine typi-
cally comprises 8000 parts or more with the blades, rotor, main bearing, drivetrain and power 
module its major components. Figure 1 depicts the typical components of a wind turbine. A 
major component of the power module is the electrical generator. Squirrel-Cage Induction 
Generators (SCIG) are currently the most common electrical generator type used in wind 
turbines, because these are robust and cheaper to manufacturer compared to other generator 
types. As a complex power system it is important to understand how failures in wind turbines 
occur despite its current level of maturity. High reliability and availability is thus expected 
over a typical 20-year design life.

2. Wind energy overview

2.1. Wind energy evolution

Wind energy adoption has seen year-on-year continued growth and implementation. The 
global installed wind energy capacity is illustrated in Figure 2.

The operating principle of all wind turbines make use of either aerodynamic lift or aerody-
namic drag forces. Aerodynamic lift forces are perpendicular to the direction of the wind 
whereas drag forces are in the same direction. Modern day wind turbines are mainly designed 
to use aerodynamic lift forces where the rotor blades are turned into the direction of the wind. 
The perpendicular lift force produces the required driving torque via the leverage of the rotor. 

Figure 1. Wind turbine components [1].
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Only wind turbines operating on aerodynamic lift will be discussed here and these are clas-
sified in accordance to the direction of the rotating axis i.e. horizontal axis wind turbines 
(HAWTs).

2.2. Wind energy cost

Wind energy has reached commercial maturity remarkably fast and has seen its cost dropped 
significantly to such levels that it’s now cost competitive with coal power generation [2]. For 
any power generation technology, the cost of production is variable and influenced by tech-
nology maturity, operating conditions, location and the capacity rating of the plant [3]. The 
LCOE for wind energy is affected mainly by the following factors [4]:

• Operation and Maintenance (O&M) costs;

• Annual energy production (AEP);

• Capital costs;

• Financing costs.

Figure 3 indicates the capital cost breakdown of all the major wind installation of a typical 
onshore wind turbine and it is evident that the major costs are related to the turbine itself. 
LCOE can be reduced if wind turbine manufacturers enhance turbine technology so that a 
variety of designs are available for different wind resource conditions. This can be achieved 
through larger rotors, improved blade aerodynamics and taller towers [4].

The capacity factor (CF) indicates how frequently the wind turbine was able to produce 
power at rated or name plate capacity over a given period (normally a year). Capacity fac-
tors for onshore wind turbines fall in the range between 30 and 35% [4]. This figure varies 

Figure 2. Global wind energy installed capacity [2].
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considerably depending on turbine design and the local wind resource. In conventional power 
generation technologies the AEP is generally proportional to the generator size. However in a 
wind turbine the rotor swept area can have a bigger influence than the generator size on the 
power generation capability [5].

Therefore the relationship between the rotor swept area and generator size can influence 
capacity factors of wind turbines. In other words a wind turbine with a specific rotor swept 
area connected to two different size generators will have different capacity factors. The 
smaller size generator will operate at a higher capacity factor compared to the bigger size 
generator with the same wind conditions. Wind turbine manufacturers should therefore 
optimise this relationship for specific site conditions and grid integration requirements to 
ensure the lowest possible costs. O&M costs of wind turbines vary over the lifespan of the 
plant and escalate with age as the risks of failure of the equipment increase. The O&M costs 
of wind turbines have reduced considerable over the last 30 years and accounts between 
20 and 30% of the total life cycle costs for onshore projects [2]. O&M costs for offshore 
wind projects are higher because of the severe operating conditions in the sea, access to 

Figure 3. Cost breakdown of onshore wind farms [2].
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site, complex maintenance tasks and transmission infrastructure costs. The costs for onshore 
wind projects are approximately USD 30-60/MWh versus USD 71-155/MWh for offshore 
projects [6].

2.3. Speed characteristics of wind turbines

Wind turbines can rotate at a fixed speed where the optimum energy conversion takes place 
at a specific wind speed or at variable speed which has a more complicated electrical design 
[7] but is efficient over a wind speed range. The fixed speed of the wind turbine technology 
depends on the gearbox ratio, frequency of the grid and the electrical generator design charac-
teristics [8]. From 1980 to early 1990s all wind turbines used for large scale power generation 
was fix speed and used gearboxes.

Fixed speed wind turbines are rugged, cost effective to build but experience higher power 
fluctuations as a result of the constant generator speed against varying wind speeds [7]. These 
turbines unfortunately draw large reactive power from the grid which are compensated for 
by installing power factor correction capacitors. The disadvantage of power factor correction 
capacitors is power quality problems like harmonic resonance on the grid [8].

Variable wind speed turbines are designed to reduce mechanical stresses, maximise wind 
energy capture and provide smoother output power which is more suited to the grid. This 
technology became popular in the 1990s at the same time when advances in power electron-
ics, reactive power control, variable speed induction generators and synchronous generator 
systems happened [9].

By connecting the electrical generator via a power electronics system to the grid, the wind 
turbine speed can be adjusted. Harmonic currents from the power electronics systems in vari-
able speed wind turbines also cause power quality problems. Associated transient voltage 
peaks of 100 times more than the expected values between windings cause insulation damage 
of windings and ultimately failure of the machine [10].

For a certain wind resource with specific Weibull distribution parameters, it was shown that 
additional annual energy captured by a variable speed turbine was 2.3% more than a similar 
rated fixed speed turbine. The additional costs of a variable speed wind turbine compared to 
a fixed speed wind turbine of the same rating at a given location are off-set by its ability to 
capture more energy in the wind [10].

The study in [10] revealed that a variable speed wind turbine produces more power than 
the fixed speed turbine of the same rating. Although the difference might appear small, the 
amount of power generated over the life cycle of the wind turbine which is typically 20 years 
can deliver substantial generation profit.

Power regulation is normally done by pitching the rotor blades, stall control or a combina-
tion of the two in order to avoid overloading the wind turbine. The aerodynamic forces 
acting on the rotor and the output power of the turbine are reduced during high wind 
speeds. Variable speed wind turbines in conjunction with dynamic blade pitch for power 
and load control is considered as the accepted industry standard for most modern wind 
turbines.
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site, complex maintenance tasks and transmission infrastructure costs. The costs for onshore 
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projects [6].
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Wind turbines can rotate at a fixed speed where the optimum energy conversion takes place 
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[7] but is efficient over a wind speed range. The fixed speed of the wind turbine technology 
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turbines unfortunately draw large reactive power from the grid which are compensated for 
by installing power factor correction capacitors. The disadvantage of power factor correction 
capacitors is power quality problems like harmonic resonance on the grid [8].

Variable wind speed turbines are designed to reduce mechanical stresses, maximise wind 
energy capture and provide smoother output power which is more suited to the grid. This 
technology became popular in the 1990s at the same time when advances in power electron-
ics, reactive power control, variable speed induction generators and synchronous generator 
systems happened [9].

By connecting the electrical generator via a power electronics system to the grid, the wind 
turbine speed can be adjusted. Harmonic currents from the power electronics systems in vari-
able speed wind turbines also cause power quality problems. Associated transient voltage 
peaks of 100 times more than the expected values between windings cause insulation damage 
of windings and ultimately failure of the machine [10].

For a certain wind resource with specific Weibull distribution parameters, it was shown that 
additional annual energy captured by a variable speed turbine was 2.3% more than a similar 
rated fixed speed turbine. The additional costs of a variable speed wind turbine compared to 
a fixed speed wind turbine of the same rating at a given location are off-set by its ability to 
capture more energy in the wind [10].
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can deliver substantial generation profit.

Power regulation is normally done by pitching the rotor blades, stall control or a combina-
tion of the two in order to avoid overloading the wind turbine. The aerodynamic forces 
acting on the rotor and the output power of the turbine are reduced during high wind 
speeds. Variable speed wind turbines in conjunction with dynamic blade pitch for power 
and load control is considered as the accepted industry standard for most modern wind 
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2.4. Wind turbine classes

Factors such as the average yearly wind speed magnitude, wind turbulence and severe gusts 
speeds, determine if a wind turbine design is suited for safe operation at a particular site. The 
International Electrotechnical Commission (IEC) standard IEC 61400-1, stipulates the differ-
ent wind turbine classes based on aerodynamic loading [11]. Wind turbines classified as low 
wind “Class IV” i.e. S111 according to IEC 61400-1 are now becoming feasible to enter the 
power generation market [11].

Wind classes I, II and III can be equated to high, medium and low wind sites in general. 
Locations with low wind resources are suited for wind turbines designed with bigger rotors 
and higher towers to balance energy conversion and costs. These wind turbines types are 
largely coupled to smaller drivetrain and power generating units to increase their effective-
ness in these less promising wind conditions. Medium and low wind turbines have become 
more popular than high wind turbines with Asia leading the international market.

3. Wind turbines generator types

The electrical generator in the wind turbine converts the mechanical energy from the tur-
bine rotor into electrical energy which is supplied to the grid. In conventional power systems 
where synchronous generators are used, power is produced at constant speed. Applying 
these generating systems in wind energy is a challenge because of the variable nature of the 
resource.

Induction generators also known as asynchronous generators because they do not rotate at 
a fixed speed are the most commonly used electrical generator in WECs today. The applica-
tion of induction generators in the power industry is limited compared to induction motors, 
which are seen as the workhorses in power systems consuming approximately 33% of global 
generated electricity. There are several advantages that make induction generators suitable 
for wind energy technologies as mentioned by Das et al. [12].

Induction generators are classified according to their rotor structure, which is, squirrel cage 
and wound rotor types. The stator designs of both induction machines are the same. The term 
power converter in the following paragraphs refers to all power electronic systems such as 
soft-starters, inverters, rectifiers or frequency converters.

3.1. The squirrel cage induction generator

SCIGs are used in fixed speed or variable speed wind turbine concepts. The SCIG stator is con-
nected to the grid via a power transformer and a power converter is used to reduce the inrush 
current. The function of the capacitor bank is to reduce the reactive power consumption and 
support the generator voltage. This configuration is also known as the Danish concept and the 
first generation was directly connected to the grid without any power converters Technology 
developments and subsequent reduction in power electronics costs have been main drivers 
for the use of SCIGs in variable speed wind turbines. The generator is connected to the grid 
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via a full rated converter, which controls the stator current instead. This configuration has full 
control of real and reactive power and operates across the full speed range.

The size of the generator is more compact and lighter compared to other full converter 
designs. This type configuration is predominantly used by Siemens Wind Power which has 
a 4.1% global market share [11]. According to [11] North America has an installed capacity of 
1.5 GW, the rest of the world 0.98 GW excluding European and Asian markets.

The power quality of SCIGs at low and high wind speeds are better compared to wound rotor 
induction generators (WRIGs) while the latter produce less harmonics near synchronous 
speed [76]. Other attributes, which make SCIGs desirable over WRIGs, are:

• Better grid stability because of the larger converter;

• No brushes or slip ring maintenance as well as reduced losses;

• Robust rotors which can provide better electrical and mechanical performance;

• It is cost effective and readily available.

The converter in this configuration needs to be sized to the full capacity of the generator, 
which makes it very expensive. The harmonic filters are also rated at full converter capacity 
which is costly and difficult to design [13]. The performance of the converter has to be very 
good over the entire power range to ensure optimum efficiency and generation capacity.

3.2. Synchronous generators

Synchronous generators are matured technologies in fossil fuels and nuclear power systems 
and produce grid power at constant speeds. Their robustness and ability to control grid volt-
age by adjusting the rotor excitation make them ideal for power systems. This is particularly 
important during grid problems like faults where the generator is to remain connected to 
the grid and support the grid voltage through reactive power control. Because of these attri-
butes synchronous generators are now being used in WECs and their rotors can be separately 
excited or make use of permanent magnets [13].

For a synchronous generator the absence of slip rings, gearbox and external excitation reduce 
the overall losses and the full rated power converter maintains its flexibility. The full rated 
converter and magnetic material costs make this concept very expensive but energy efficiency 
is improved [13]. Different permanent magnet synchronous generators designs are described 
and analysed by [14].

4. Failures in wind turbines

4.1. Wind turbine failures overview

Failures in wind turbines can result from various sources including poor quality, inferior 
design and manufacturing standards, construction and erection deficiencies, local operating 
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nected to the grid via a power transformer and a power converter is used to reduce the inrush 
current. The function of the capacitor bank is to reduce the reactive power consumption and 
support the generator voltage. This configuration is also known as the Danish concept and the 
first generation was directly connected to the grid without any power converters Technology 
developments and subsequent reduction in power electronics costs have been main drivers 
for the use of SCIGs in variable speed wind turbines. The generator is connected to the grid 
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via a full rated converter, which controls the stator current instead. This configuration has full 
control of real and reactive power and operates across the full speed range.

The size of the generator is more compact and lighter compared to other full converter 
designs. This type configuration is predominantly used by Siemens Wind Power which has 
a 4.1% global market share [11]. According to [11] North America has an installed capacity of 
1.5 GW, the rest of the world 0.98 GW excluding European and Asian markets.

The power quality of SCIGs at low and high wind speeds are better compared to wound rotor 
induction generators (WRIGs) while the latter produce less harmonics near synchronous 
speed [76]. Other attributes, which make SCIGs desirable over WRIGs, are:

• Better grid stability because of the larger converter;

• No brushes or slip ring maintenance as well as reduced losses;

• Robust rotors which can provide better electrical and mechanical performance;

• It is cost effective and readily available.

The converter in this configuration needs to be sized to the full capacity of the generator, 
which makes it very expensive. The harmonic filters are also rated at full converter capacity 
which is costly and difficult to design [13]. The performance of the converter has to be very 
good over the entire power range to ensure optimum efficiency and generation capacity.

3.2. Synchronous generators

Synchronous generators are matured technologies in fossil fuels and nuclear power systems 
and produce grid power at constant speeds. Their robustness and ability to control grid volt-
age by adjusting the rotor excitation make them ideal for power systems. This is particularly 
important during grid problems like faults where the generator is to remain connected to 
the grid and support the grid voltage through reactive power control. Because of these attri-
butes synchronous generators are now being used in WECs and their rotors can be separately 
excited or make use of permanent magnets [13].

For a synchronous generator the absence of slip rings, gearbox and external excitation reduce 
the overall losses and the full rated power converter maintains its flexibility. The full rated 
converter and magnetic material costs make this concept very expensive but energy efficiency 
is improved [13]. Different permanent magnet synchronous generators designs are described 
and analysed by [14].

4. Failures in wind turbines

4.1. Wind turbine failures overview

Failures in wind turbines can result from various sources including poor quality, inferior 
design and manufacturing standards, construction and erection deficiencies, local operating 
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conditions, transmission system design and general maintenance [15]. Mechanical failures 
occur most often, gearbox failures cause the longest downtimes and failure rates above one 
failure per turbine annually is still common [16]. The failure rate of the majority of wind turbine 
components or systems increase as designs move away from well-established designs towards 
new concepts, which are less, matured. A similar observation was made when the wind turbine 
generator rating increases from small to large [17]. In a study of about 800 wind turbines it was 
established that the availability was over 90% for the majority of turbines irrespective of size 
[15]. This study also showed that the difference between availability figures amongst major 
wind turbine manufacturers were small. The primary course of failures is due to wear out as 
the hazard rate increases during the last phase of component design life [17]. The authors in 
[16] concluded that gearbox failures cause the longest downtimes and that the average down-
time reduced as technologies improved. The failure rates and downtime of subsystems during 
a survey done on more than 1500 wind turbines in Germany over a 15 year period show gen-
erator failures represent approximately 4% of the total number of failures in the wind turbines.

4.2. Generator failures

The major cause of failure in electrical machines irrespective of their applications is related to 
bearings and windings. The following components are responsible for the majority failures in 
wind generators using induction generators [18]:

• Bearings;

• Winding failures in both the stator and rotor;

• Rotor cages and leads;

• Slip rings;

• Magnetic wedges in the stator;

• Cooling plant.

The size of the generator also influences which components fail as manufacturers try to opti-
mise designs for various power requirements and wind conditions. The three major faults 
identified across various generator ratings are summarised in Table 1 [18]. Failure modes 1–3 
represent the major faults ranging from most dominant to less dominant failure modes.

Rotor winding problems in small to medium generators are caused by conductor and band-
ing failures while stator winding problems are related to contamination and maintenance 

Generator size Failure mode 1 Failure mode 2 Failure mode 3

Small <1 MW Rotor Stator Bearings

Medium 1–2 MW Bearings Collector rings Rotor

Large >2 MW Bearings Stator Stator wedge

Table 1. Major failure modes across different wind generator sizes.
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issues. Failures of bearings, stator windings and rotor windings contribute more than 80% of 
the total failures in induction machines [18]. This translates to a failure distribution for bear-
ings (41%), stator (37%), rotor (10%) and other faults (12%).

4.3. Stator failures

4.3.1. Stator windings failures

Main ageing mechanisms causing insulation failure of rotor and stator windings are thermal 
effects, vibration stresses, voltage spikes from the power converters and material degradation 
because of temperature changes. Environmental conditions can accelerate insulation degrada-
tion and moist operating conditions should be avoided. The occurrences of short circuits escalate 
with time and are caused by overheating; ageing and vibrations while open circuits result from 
termination problems or damaged windings. Voltage spikes caused by power converters in 
variable speed induction machines are also responsible for winding insulation failures. Because 
of very fast switching times in the PWM circuit, multiple reflected waves travel between the 
converter and the machine. Impedance differences between the output cable and the generator 
create these reflected waves which become more severe as the cable length increases and the 
switching frequency of the semiconductors increases [16]. The reflected waves occur at the front 
of the voltage wave and can reach magnitudes up to 2.5 kV for a generator rated at 690 V.

Winding insulation design requirements should comply with the following conditions as a 
minimum [19]:

• Design life and mean time between failure (MTBF) of 20,000 h under accelerated ageing 
tests conditions;

• Rated voltage capacity test plus 10–15% and then 2.5 kV peak—peak “withstand” voltage 
after the ageing test;

• Initial partial discharge voltage test higher than the maximum peak—peak voltage after 
ageing test.

4.3.2. Stator wedge failures

Conductive wedges are used to keep the stator windings in the core and secure it against 
mechanical forces and vibrations. It also improves efficiency, limits magnetic flux distortion, 
inrush currents and increases the thermal properties of the machine [19]. There are instances 
of exposed stator coils where the wedges came loose and fell out of the stator slots. Figure 4 
shows an example of this [18]. The rotating magnetic field is the main cause that stator wedges 
become loose and this can result in grounds faults and or damage to stator coils.

4.3.3. Bearing failures

Bearing failures contribute a significant amount towards wind generator failures and com-
mon causes are incorrect installation or misalignment as well as poor lubrication, overheating 
and mechanical breakage [15]. Bearing wear through normal ageing together with “indenta-
tion, smearing, surface distress, corrosion”, electric current flow and overloading can also 
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issues. Failures of bearings, stator windings and rotor windings contribute more than 80% of 
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of the voltage wave and can reach magnitudes up to 2.5 kV for a generator rated at 690 V.
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after the ageing test;
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ageing test.
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Conductive wedges are used to keep the stator windings in the core and secure it against 
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inrush currents and increases the thermal properties of the machine [19]. There are instances 
of exposed stator coils where the wedges came loose and fell out of the stator slots. Figure 4 
shows an example of this [18]. The rotating magnetic field is the main cause that stator wedges 
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lead to bearing failure. It is recommended that maintenance practises comply with bearing 
lubrication schedules to reduce bearing failure rates. Damaged bearings can cause excessive 
vibrations of the rotor, which disturbs the uniform shape of the air gap between the stator and 
rotor. If not picked up these vibrations can cause contact between the stator and rotor, which 
will lead to catastrophic damage of both components.

5. Wind turbine maintenance

5.1. Maintenance strategies

Maintenance is the activity that assist production operations with optimum levels of availabil-
ity, reliability and operability at the lowest cost. Maintenance strategies can be broadly classi-
fied into three main strategies namely breakdown maintenance, preventive maintenance and 
corrective maintenance.

Currently all three maintenance strategies or a combination of them are used in the wind 
industry depending on the age of the wind turbine. Breakdown maintenance is the typi-
cal “run to failure” approach, preventive maintenance is done before a problem leads to a 
failure and corrective maintenance is scheduled to rectify existing plant specific problems. 
Preventive maintenance is further classified as use-based or predictive maintenance and the 
former is performed at predetermined instances which is related to the age of the equipment 
or at certain expired calendar times [20]. Use-based maintenance can lead to over or under 
maintenance as resources are not optimally used [21].

Condition based maintenance has the capability to estimate the remaining useful life of equip-
ment in order to implement the best maintenance strategy before failure occurs. Doing inspec-
tions or monitoring certain variables using sensors like temperature, voltage, current, noise 
or vibrations to determine the condition of the equipment can do it. The process of condition 
monitoring can be online or offline and is made up of three primary steps [22]:

• Data acquisition—gathering data that is pertinent to equipment health;

• Data processing—analytical verification, comprehension and refinement of collected data;

Figure 4. Missing stator slot wedges.
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• Decision-making—deciding which maintenance strategy is ideal to ensure long term plant 
health at the lowest cost.

5.2. Condition monitoring techniques in wind turbines

The application of condition monitoring in WEC systems is ideal as concluded by [20]. Several 
condition monitoring techniques like oil analyses, vibration analysis, electrical effects, acoustic 
emissions, ultrasonic methods, radiographic inspections, strain measurements, thermography, 
temperature measurements, shock pulse method and equipment performance are used as dis-
cussed by [21]. Current wind turbine condition monitoring focus on critical equipment like the 
gearbox, generator and main bearing, which are high, cost components and cause long downtimes.

Vibration analysis is the most common condition monitoring method used in wind turbines 
although its ability to detect electrical faults could be limited. Its effectiveness in direct driven 
or other modern wind turbine concepts is also questionable. Probabilistic measures in addi-
tion to data received from sensors are required for a more precise determination of the equip-
ment condition as the operating nature of wind turbines is stochastic.

5.3. Generator stator windings condition monitoring

Accurate condition monitoring techniques of stator winding faults are required as it is the 
second largest failure mechanism in generators. Shorted windings cause the most damage in 
the machine as it produces additional heat in the windings, which further reduce the design 
life of winding insulation material. These faults originate as undetected inter turn faults 
that gradually isolate multiple turns or when an arc exist between two points on a winding. 
Detection of inter turn winding faults is complex because the machine can still operate with-
out any obvious fault signatures. These faults can rapidly evolve and cause complete failure 
of the winding and damage to the machine.

Temperature monitoring is considered as one of the oldest conditioning monitoring techniques 
and is commonly used in wind turbines to detect abnormalities in bearings and generator wind-
ings [22]. High stator winding temperatures under normal operating conditions is generally a sign 
of possible winding damage. Other factors such as high ambient temperatures or problems with 
the generator cooling have a similar effect. Insulation life is reduced by 50% for every 10°C increase 
in temperature as oxidation rates increase above certain temperature limits. Oxidation makes the 
insulation material fragile and some parts of the winding might experience delamination.

Majority of modern wind turbines are designed with condition monitoring systems, which 
incorporates a Supervisory Control, and Data Acquisition (SCADA) system. One of the func-
tions of the SCADA system is to capture operating parameters from the wind turbine. Various 
mechanical and electrical sensors measure operating and performance data, which are recorded 
on a computer system for analysis. The SCADA data is typically recorded and stored by the com-
puter system. Analysis of SCADA data for fault prognosis is seen as cost effective maintenance 
strategy although its data content does not reveal abnormalities in a clear and explicit manner.

Proper data analysis and modelling techniques are required to identify and understand 
component degradation. This will enhance component health predictions and guarantee 
the implementation of optimum maintenance strategies. According to [21] physical models 
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• Decision-making—deciding which maintenance strategy is ideal to ensure long term plant 
health at the lowest cost.

5.2. Condition monitoring techniques in wind turbines

The application of condition monitoring in WEC systems is ideal as concluded by [20]. Several 
condition monitoring techniques like oil analyses, vibration analysis, electrical effects, acoustic 
emissions, ultrasonic methods, radiographic inspections, strain measurements, thermography, 
temperature measurements, shock pulse method and equipment performance are used as dis-
cussed by [21]. Current wind turbine condition monitoring focus on critical equipment like the 
gearbox, generator and main bearing, which are high, cost components and cause long downtimes.

Vibration analysis is the most common condition monitoring method used in wind turbines 
although its ability to detect electrical faults could be limited. Its effectiveness in direct driven 
or other modern wind turbine concepts is also questionable. Probabilistic measures in addi-
tion to data received from sensors are required for a more precise determination of the equip-
ment condition as the operating nature of wind turbines is stochastic.

5.3. Generator stator windings condition monitoring

Accurate condition monitoring techniques of stator winding faults are required as it is the 
second largest failure mechanism in generators. Shorted windings cause the most damage in 
the machine as it produces additional heat in the windings, which further reduce the design 
life of winding insulation material. These faults originate as undetected inter turn faults 
that gradually isolate multiple turns or when an arc exist between two points on a winding. 
Detection of inter turn winding faults is complex because the machine can still operate with-
out any obvious fault signatures. These faults can rapidly evolve and cause complete failure 
of the winding and damage to the machine.

Temperature monitoring is considered as one of the oldest conditioning monitoring techniques 
and is commonly used in wind turbines to detect abnormalities in bearings and generator wind-
ings [22]. High stator winding temperatures under normal operating conditions is generally a sign 
of possible winding damage. Other factors such as high ambient temperatures or problems with 
the generator cooling have a similar effect. Insulation life is reduced by 50% for every 10°C increase 
in temperature as oxidation rates increase above certain temperature limits. Oxidation makes the 
insulation material fragile and some parts of the winding might experience delamination.

Majority of modern wind turbines are designed with condition monitoring systems, which 
incorporates a Supervisory Control, and Data Acquisition (SCADA) system. One of the func-
tions of the SCADA system is to capture operating parameters from the wind turbine. Various 
mechanical and electrical sensors measure operating and performance data, which are recorded 
on a computer system for analysis. The SCADA data is typically recorded and stored by the com-
puter system. Analysis of SCADA data for fault prognosis is seen as cost effective maintenance 
strategy although its data content does not reveal abnormalities in a clear and explicit manner.

Proper data analysis and modelling techniques are required to identify and understand 
component degradation. This will enhance component health predictions and guarantee 
the implementation of optimum maintenance strategies. According to [21] physical models 
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depend on detailed understanding of failure modes whereas data driven models involve 
extensive data requirements to validate continuous degradation processes.

The application of SCADA data as a condition monitoring technique in the wind industry 
has become a prevalent research topic. These methods usually consist of various physical 
and statistical models of a particular system. Harmonics in line currents and magnetic flux, 
torque pulsations, reduced mean torque, high losses, abnormal winding temperatures and 
reduced efficiency are all indicators which highlight problems in induction machines [23]. 
The literature reveals that inter turn faults and asymmetries in the rotor or stator are the main 
focus of most condition monitoring techniques [23]. Electrical signature analyses of the stator 
parameters such as current, voltage and power under steady state operating conditions prove 
to be successful in sensing winding faults as well as other failure mechanisms.

6. System modelling and design

6.1. SCIG design parameters

The SCADA data was obtained from Siemens, the operator for the electrical utility, Eskom’s 
Sere wind farm in the Western Cape, South Africa. This is a 100 MW wind farm with a total of 
46 x 2.3 MW turbines. The SCIG in this study has the following design parameters as shown 
in Table 2.

6.2. Prediction model for stator winding temperatures

SCADA data from two wind turbines is used to model generator winding temperature 
between minimum and maximum output power which corresponds to 0–2.4 MW. Data for 
wind turbines (WTs) number 4 and number 38 were collected from June 2015 until October 
2015. The maximum designed generator stator winding insulation temperature for the wind 
turbines is 155°C, which corresponds to a Class F rated insulation material.

Multiple linear regression analysis is a statistical method that estimates or model relation-
ships between different variables that are linked in a nondeterministic way [24]. It uses more 
than one independent variable compared to linear regression, which has only one indepen-
dent variable. The stator winding temperature prediction model is designed using Stepwise 
Regression (SR) in Microsoft Excel. The model output also highlights which variables have 
the biggest influence on stator winding temperature. Modelling of stator winding tempera-
ture in this study equates to the generator temperature.

SR performs multiple regressions that add or remove independent variables at each step 
based on performing a partial F-test on the new independent variable. The F-test calculates if 
different variables are mutually important and that their output has a significant effect on the 
dependent variable. It selects the independent variable with the highest correlation with the 
dependent variable initially, then adds or removes independent variables in the model based 
on calculating its F-test value, which should be higher or at least equal to the previous value.
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When there are two independent variables, the F-test value is calculated using [24]:

   F  1   =   
 SS  R   (  

 β  1   ____  β  2  ,  β  0  
  ) 
 _________  MS  E   ( x  1  ,  x  2  ) 
    (1)

where F1, F-statistic of independent variable x1; SSR, sum of squared residuals due to regres-
sion; MSE, mean square error for the model containing x1 and x2; β0, β1, β2, slope coefficients.

The following assumptions are made to establish how a linear regression model fits the data 
[24].

• The residuals should be uncorrelated random variables with a zero average and constant 
variance.

• The residuals should be normally distributed.

• The order of the model is correct and that the data being investigated has linear 
characteristics.

SCIG 2.3 MW, 690 V, 50 Hz

Rated output power 2.3 MW

Rated line to line voltage 690 V

Rated phase voltage 398.4 V

Rated stator current 2100 A

Rated stator frequency 50 Hz

Rated power factor 0.88

Rated rotor speed 1510 rpm

Synchronous speed 1500 rpm

Rated slip −0.0069

Number of poles 4

Stator winding resistance, Rs 1.01 mΩ

Rotor winding resistance, Rr 1.3 mΩ

Stator leakage inductance, Lls 0.093 mH

Rotor leakage inductance, Llr 0.054 mH

Magnetising inductance, Lm 2.78 mH

Rated mechanical torque 16.313 kNm

Moment of inertia 63 kgm3

Table 2. SCIG design parameters.
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depend on detailed understanding of failure modes whereas data driven models involve 
extensive data requirements to validate continuous degradation processes.
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dent variable. The stator winding temperature prediction model is designed using Stepwise 
Regression (SR) in Microsoft Excel. The model output also highlights which variables have 
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different variables are mutually important and that their output has a significant effect on the 
dependent variable. It selects the independent variable with the highest correlation with the 
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on calculating its F-test value, which should be higher or at least equal to the previous value.
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A linear regression model where the dependent variable Y is related to k regressor (indepen-
dent) variables has the form [24]:

  Y =  β  0   +  β  1    x  1   +  β  2    x  2   + … + β  k    x  k   + ∈  (2)

where Y, dependent variable; β0, intercept; βj, j = 0,1,…,k, regression coefficients; x, regressor 
variables;  ∈ , random error term.

The model therefore provides an acceptable estimation of the dependent variable across cer-
tain ranges of the independent variables because the real relationship between them cannot 
be determined [24]. Regression coefficients represent the rate at which the dependent variable 
changes in relation to individual independent variables.

They are calculated in SR using the least squares method represented by the following matrix 
notations:
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The calculation of the predicted value of y is obtained by [24]:

   y ̂   =  β  0   +  β  1    x  1   +  β  2    x  2   + … … + β  k    x  k    (4)

6.3. Evaluating the adequacy of the model

The SR model needs to satisfy certain criteria to justify whether its linear function is sufficient 
to predict generator stator winding temperature over the proposed output power range of 
the wind turbines.

The following parameters are selected as variables in the SR model:

• Ambient Temperature (AT)

The AT refers to the outside temperature conditions. The outside air is used to cool the gen-
erator as well as the inside of the nacelle. This independent variable is labelled as “Mean 
Ambient Tmp” in the SR model.

• Nacelle Temperature (NT)

The temperature in the nacelle affects the generator operating conditions directly as well as 
other components. High nacelle temperatures cause the generator to run hotter which affects 
its performance. The nacelle temperature is not regulated. This independent variable is 
labelled as “Mean Nacelle Tmp” in the SR model.

Fault Detection and Diagnosis46

• Generator Output Power (GOP)

The stator winding temperature is related to the square of the phase current flowing in the 
windings. Therefore the higher the generated output power, the hotter the windings become. 
This independent variable is labelled as “Active Power” in the SR model.

• Stator Winding Temperature (SWT)

The stator winding temperature is the dependent variable, which the model regresses. Having 
knowledge which independent variable has the highest influence on stator winding tempera-
ture is important to optimise the generator operation. The SWT is predicted by the model 
based on the values of the independent variables AT, NT and GOP. The dependent variable is 
labelled as “Mean Winding Tmp U1” in the SR model.

6.4. Significance of regression model

The first check if the SR model is acceptable is to evaluate the value of the Coefficient of 
Determination R2 (0 ≤ R2 ≤ 1), which also means the goodness of fit test. It shows the propor-
tion of the variation of the dependent variable explained by the independent variables. A 
value of R2 close to 1 is ideal but it does not always imply that the model fits the data best or 
that future predictions by the model are perfect. It is affected by the number of independent 
variables, scatter or distribution of the independent variable(s) as well as adding higher 
polynomial values of the independent variable(s) in the model [24]. R2 can be calculated 
using:

   R   ²  =   
 SS  R  

 ___  SS  T      (5)

where SSR, regression sum of squares; SST, total sum of squares.

The F-test based on an F- distribution confirms the significance of the regression model. The 
following hypothesis is valid:

H0: β1,β2…..βk = 0.

H1: βj ≠ 0…..for at least one j.

The F- critical value of the F- distribution is calculated in Microsoft Excel using the function:

  F . INV (probability, DoF 1, DoF 2)   (6)

F.INV, calculates the inverse of the F-distribution; Probability, 95% confidence level; DoF 1, 
degrees of freedom. Number of independent variables; DoF 2, degrees of freedom. Number 
of residuals.

If F- critical >value needs to be larger than F—model value for the Null Hypothesis H0 to be 
rejected which confirms that the model fits the data adequately with a 95% confidence level. 
Additionally the regression coefficients (β0-β3) in this model should all have p-value less than 
0.05, which also confirms that H0 can be rejected.
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A linear regression model where the dependent variable Y is related to k regressor (indepen-
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The calculation of the predicted value of y is obtained by [24]:

   y ̂   =  β  0   +  β  1    x  1   +  β  2    x  2   + … … + β  k    x  k    (4)

6.3. Evaluating the adequacy of the model

The SR model needs to satisfy certain criteria to justify whether its linear function is sufficient 
to predict generator stator winding temperature over the proposed output power range of 
the wind turbines.

The following parameters are selected as variables in the SR model:

• Ambient Temperature (AT)

The AT refers to the outside temperature conditions. The outside air is used to cool the gen-
erator as well as the inside of the nacelle. This independent variable is labelled as “Mean 
Ambient Tmp” in the SR model.

• Nacelle Temperature (NT)

The temperature in the nacelle affects the generator operating conditions directly as well as 
other components. High nacelle temperatures cause the generator to run hotter which affects 
its performance. The nacelle temperature is not regulated. This independent variable is 
labelled as “Mean Nacelle Tmp” in the SR model.
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• Generator Output Power (GOP)

The stator winding temperature is related to the square of the phase current flowing in the 
windings. Therefore the higher the generated output power, the hotter the windings become. 
This independent variable is labelled as “Active Power” in the SR model.

• Stator Winding Temperature (SWT)

The stator winding temperature is the dependent variable, which the model regresses. Having 
knowledge which independent variable has the highest influence on stator winding tempera-
ture is important to optimise the generator operation. The SWT is predicted by the model 
based on the values of the independent variables AT, NT and GOP. The dependent variable is 
labelled as “Mean Winding Tmp U1” in the SR model.

6.4. Significance of regression model

The first check if the SR model is acceptable is to evaluate the value of the Coefficient of 
Determination R2 (0 ≤ R2 ≤ 1), which also means the goodness of fit test. It shows the propor-
tion of the variation of the dependent variable explained by the independent variables. A 
value of R2 close to 1 is ideal but it does not always imply that the model fits the data best or 
that future predictions by the model are perfect. It is affected by the number of independent 
variables, scatter or distribution of the independent variable(s) as well as adding higher 
polynomial values of the independent variable(s) in the model [24]. R2 can be calculated 
using:

   R   ²  =   
 SS  R  

 ___  SS  T      (5)

where SSR, regression sum of squares; SST, total sum of squares.

The F-test based on an F- distribution confirms the significance of the regression model. The 
following hypothesis is valid:

H0: β1,β2…..βk = 0.

H1: βj ≠ 0…..for at least one j.

The F- critical value of the F- distribution is calculated in Microsoft Excel using the function:

  F . INV (probability, DoF 1, DoF 2)   (6)

F.INV, calculates the inverse of the F-distribution; Probability, 95% confidence level; DoF 1, 
degrees of freedom. Number of independent variables; DoF 2, degrees of freedom. Number 
of residuals.

If F- critical >value needs to be larger than F—model value for the Null Hypothesis H0 to be 
rejected which confirms that the model fits the data adequately with a 95% confidence level. 
Additionally the regression coefficients (β0-β3) in this model should all have p-value less than 
0.05, which also confirms that H0 can be rejected.
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6.5. Analysis of residuals

The residuals also called the errors, are defined as the difference between the actual observa-
tion and the predicted observation from the model:

   e  i   =  y  i   −   y ̂    i  , i = 1, 2, … … n  (7)

where   e  
i
   , residual or error;   y  

i
   , actual observation;    y ̂    

i
   , - predicted observation from the model.

By plotting the residuals it can illustrate how the model best fit the data and show up any 
deviations from the previous assumptions made on applying linear regression. To check for 
normality in the residuals of the model, a normal probability plot of the residuals can be 
obtained in Microsoft Excel. A plot of the residuals versus the predicted observation    y ̂    

i
    can 

also be retrieved in the same manner. This plot has to show the residuals outlined in a hori-
zontal distribution about the zero average without any distinctive pattern for the model to be 
adequate [24]. Residual plots can have one of the four general outlines as shown in Figure 5. 
Figure 5(a) shows that the model is ideal, whereas the other plots (b–d) contain anomalies 
which show that the model could be inadequate for the data sample.

In this study a normal probability plot of residuals versus their standardised Z-scores is given. 
The procedure to construct the normal probability plot is as follows:

• Obtain the normal residuals from Microsoft Excel (SR);

• Rank each of the residuals;

• Calculate the percentile or proportion of the residuals that is smaller than a particular 
residual using:

   P  i   =   Rankvalue − 0.375  _____________ n + 0.25    (8)

Where, n is the number of observations;

• Calculate the Z-score using Microsoft Excel Normal Distribution function:

  = norm  .  s .  inv ( P  i  )   (9)

• Print a scatter plot residuals vs. Z-scores.

This method is considered an improvement of the normal probability plot of the residuals in 
Microsoft Excel. If the residuals are normally distributed, 99.72% of the data will fall within 3 
standard deviations of the mean. Therefore we can conclude that Z-score values outside these 
ranges do not have the same characteristics as the rest of the data and are possible outliers.

6.6. Intrinsically linear models

Linear regression can also be applied to investigate nonlinear characteristics between vari-
ables. Instead of using a straight line, linear regression has the functionality to fit curves to 
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data which could be more appropriate for nonlinear conditions. In this case transformation of 
the dependent and or independent variables are required.

Intrinsically linear models or curve fitting the data can be done through polynomial regres-
sion where the independent variables are transformed in consecutive powers i.e. X, X2, X3 
etc. Polynomial regression is used to detect any nonlinearity between the independent and 
dependent variables. Therefore the 2nd and 3rd powers of all three dependent variables AT, 
NT and GOP together with the linear values are used in the SR model.

A cubic polynomial with one independent variable has the following form:

  Y =  b  0   +  b  1   X +  b  2    X   ²  +  b  3    X   ³   (10)

If we set x1 = X, x2 = X2, x3 = X3 then Eq. (8) can be rewritten as:

Figure 5. General residual plot patterns.
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This method is considered an improvement of the normal probability plot of the residuals in 
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standard deviations of the mean. Therefore we can conclude that Z-score values outside these 
ranges do not have the same characteristics as the rest of the data and are possible outliers.

6.6. Intrinsically linear models

Linear regression can also be applied to investigate nonlinear characteristics between vari-
ables. Instead of using a straight line, linear regression has the functionality to fit curves to 
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data which could be more appropriate for nonlinear conditions. In this case transformation of 
the dependent and or independent variables are required.

Intrinsically linear models or curve fitting the data can be done through polynomial regres-
sion where the independent variables are transformed in consecutive powers i.e. X, X2, X3 
etc. Polynomial regression is used to detect any nonlinearity between the independent and 
dependent variables. Therefore the 2nd and 3rd powers of all three dependent variables AT, 
NT and GOP together with the linear values are used in the SR model.

A cubic polynomial with one independent variable has the following form:

  Y =  b  0   +  b  1   X +  b  2    X   ²  +  b  3    X   ³   (10)

If we set x1 = X, x2 = X2, x3 = X3 then Eq. (8) can be rewritten as:

Figure 5. General residual plot patterns.
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  y =  β  0   +  β  1    x  1   +  β  2    x  2   +  β  3    x  3   + ϵ  (11)

This is a multiple linear regression model similar to Eq. (2).

7. Statistical model analysis

Generator output power followed by nacelle temperature affects stator winding temperature 
the most as shown in Table 3.

This is expected as higher generated output power, cause more current flow through the 
windings and more heat is generated which is proportional to the square of the current. 
The nacelle temperature represents the ambient temperature of the generator and therefore 
also has a big impact. Insulation material of electrical machines is generally designed for 
an ambient temperature of 40°C and higher temperatures degrades the winding insulation 
material. Temperatures higher than 40°C in the nacelle can therefore cause the generator to 
shutdown to maintain the temperature raise limit of the insulation, which is 105°C for Class 
F. The temperature rise limit is calculated by subtracting the ambient temperature from the 
hot temperature of the insulation, which is 155–40°C. The outside temperature referred to as 
ambient temperature in the SR model is used for cooling of the stator windings. The outside 
air temperature has a limit of 45°C before the controller shuts down the machine to prevent 
overheating of the stator. Dirty or blocked air filters can also affect effective cooling. These can 
be checked during routine maintenance activities and replaced as required.

According to the SR model its ability to predict stator-winding temperature for WT4 and 
WT38 can be obtained using:

Table 3. Independent variables coefficients.
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  SWT = 0.0192AP + 2.335NT − 0.6295AT − 15.943  (WT4)   (12)

  SWT = 0.0168AP + 2.7916NT − 0.8144AT − 25.3452  (WT38)   (13)

where AP, active power (Generator output power); NT, nacelle temperature; AT, ambient 
temperature.

It can be concluded that the location and wind resource of the two turbines have a significant 
impact on the stator winding temperature. Environmental conditions could be less ideal for 
one turbine, which effects the cooling of the nacelle and generator. Access to optimum wind 
conditions means a higher capacity factor and also higher average stator winding tempera-
tures. The level of maintenance also needs consideration as one turbine can be exposed to 
severe dusty or moist conditions.

7.1. Adequacy of the SR model

Linear regression models such as SR need to meet certain criteria for accurate modelling of 
relationship between variables. It is generally assumed that these relationships between the 
variables are linear for the modelling to be successful.

7.1.1. Significance of the model

The coefficient of determination or R2 indicates how well the independent variables explain 
the variability in the dependant variable. The SR model calculated R2 = 0.911 for WT4 and 
R2 = 0.9234 for WT38. Although the value of R2 in both models is high, the ability of the models 
to predict stator-winding temperature accurately is not guaranteed. It does however indicate 
that GOP, NT and AT has a huge impact on the stator winding temperature.

The F-test (value) confirms if the regression is significant. If the F-test falls to the left of the 
F-critical value in the F Distribution, the Null Hypothesis is accepted which means the regres-
sors have no influence on the depended variable. If F-test > F-critical, the Null Hypothesis is 
rejected. The ANOVA Tables of both SR models in Table 4 shows that the regression is signifi-
cant which means the models for both wind turbines are adequate. In Table 4 the p-values of 
the regressors are all less than 0.05, which also confirms the significance of the model.

7.1.2. Using intrinsically linear models

The use of intrinsically linear models allows linear regression to model nonlinear relationships 
through the transformation of the variables. In this study a 3rd degree polynomial regression 
model was applied to establish if it predicts stator-winding temperature more accurately than 
the straight-line model. The results of the polynomial regression models of WT4 and WT38 
are shown in Table 5.

X—AT, NT and AP; X2—ATT, NTT and APP; X3—ATTT, NTTT and APPP.

The value of R2 in the polynomial regression models show an improvement of less than 0.1% 
compared to the SR models. Therefore both models explain the variation in stator winding 

Preventive Maintenance and Fault Detection for Wind Turbine Generators Using a Statistical Model
http://dx.doi.org/10.5772/intechopen.80071

51



  y =  β  0   +  β  1    x  1   +  β  2    x  2   +  β  3    x  3   + ϵ  (11)

This is a multiple linear regression model similar to Eq. (2).

7. Statistical model analysis

Generator output power followed by nacelle temperature affects stator winding temperature 
the most as shown in Table 3.

This is expected as higher generated output power, cause more current flow through the 
windings and more heat is generated which is proportional to the square of the current. 
The nacelle temperature represents the ambient temperature of the generator and therefore 
also has a big impact. Insulation material of electrical machines is generally designed for 
an ambient temperature of 40°C and higher temperatures degrades the winding insulation 
material. Temperatures higher than 40°C in the nacelle can therefore cause the generator to 
shutdown to maintain the temperature raise limit of the insulation, which is 105°C for Class 
F. The temperature rise limit is calculated by subtracting the ambient temperature from the 
hot temperature of the insulation, which is 155–40°C. The outside temperature referred to as 
ambient temperature in the SR model is used for cooling of the stator windings. The outside 
air temperature has a limit of 45°C before the controller shuts down the machine to prevent 
overheating of the stator. Dirty or blocked air filters can also affect effective cooling. These can 
be checked during routine maintenance activities and replaced as required.

According to the SR model its ability to predict stator-winding temperature for WT4 and 
WT38 can be obtained using:

Table 3. Independent variables coefficients.
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  SWT = 0.0192AP + 2.335NT − 0.6295AT − 15.943  (WT4)   (12)

  SWT = 0.0168AP + 2.7916NT − 0.8144AT − 25.3452  (WT38)   (13)

where AP, active power (Generator output power); NT, nacelle temperature; AT, ambient 
temperature.

It can be concluded that the location and wind resource of the two turbines have a significant 
impact on the stator winding temperature. Environmental conditions could be less ideal for 
one turbine, which effects the cooling of the nacelle and generator. Access to optimum wind 
conditions means a higher capacity factor and also higher average stator winding tempera-
tures. The level of maintenance also needs consideration as one turbine can be exposed to 
severe dusty or moist conditions.

7.1. Adequacy of the SR model

Linear regression models such as SR need to meet certain criteria for accurate modelling of 
relationship between variables. It is generally assumed that these relationships between the 
variables are linear for the modelling to be successful.

7.1.1. Significance of the model

The coefficient of determination or R2 indicates how well the independent variables explain 
the variability in the dependant variable. The SR model calculated R2 = 0.911 for WT4 and 
R2 = 0.9234 for WT38. Although the value of R2 in both models is high, the ability of the models 
to predict stator-winding temperature accurately is not guaranteed. It does however indicate 
that GOP, NT and AT has a huge impact on the stator winding temperature.

The F-test (value) confirms if the regression is significant. If the F-test falls to the left of the 
F-critical value in the F Distribution, the Null Hypothesis is accepted which means the regres-
sors have no influence on the depended variable. If F-test > F-critical, the Null Hypothesis is 
rejected. The ANOVA Tables of both SR models in Table 4 shows that the regression is signifi-
cant which means the models for both wind turbines are adequate. In Table 4 the p-values of 
the regressors are all less than 0.05, which also confirms the significance of the model.

7.1.2. Using intrinsically linear models

The use of intrinsically linear models allows linear regression to model nonlinear relationships 
through the transformation of the variables. In this study a 3rd degree polynomial regression 
model was applied to establish if it predicts stator-winding temperature more accurately than 
the straight-line model. The results of the polynomial regression models of WT4 and WT38 
are shown in Table 5.

X—AT, NT and AP; X2—ATT, NTT and APP; X3—ATTT, NTTT and APPP.

The value of R2 in the polynomial regression models show an improvement of less than 0.1% 
compared to the SR models. Therefore both models explain the variation in stator winding 
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temperature by the independent variables with the same accuracy. The F-test of the SR model 
is much higher than the polynomial regression model, which means the SR model is more sig-
nificant. The significance of the independent variables as determined by SR indicates that the 
linear independent variables are more important than the transformed independent variables. 
The SR model is simple, easy to implement and performs better than the polynomial regression 
model according to the various tests that were done. Considering the complexity and timeous 
development of the polynomial regression model, its application in this study is not justified.

7.1.3. Performance of the SR models

The regression model in this study is applied to identify abnormal high stator winding tem-
peratures in the induction generator. Stator temperature SCADA logs of 10-minute intervals 
during November 2015 will be used as input to both wind turbine models. High stator winding 
temperatures outside the normal operating range of the generator can possibly be attributed to:

• Physical damage of the stator winding;

• Inadequate maintenance or cooling;

• Incorrect measurements,

• Equipment failure or

• Adverse operating conditions.

In WT4 where stator winding temperatures are below 40°C, the predicted temperatures 
by the SR model are higher than the actual temperatures. This over estimation can also be 
observed at the higher temperature ranges although the prediction errors are smaller. The SR 
model for WT38 has similar performances when the stator winding temperatures are below 
40°C but has frequent under estimations at higher temperatures. The performances of the SR 
models for WT4 and WT38 are shown in Figures 6 and 7. Both models are able to predict the 
temperature trends in an acceptable manner and show very good accuracy when the stator 
winding temperatures are between 50°C and 90°C.

Table 4. ANOVA statistics of SR.
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Table 5. Polynomial regression model.
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Figure 6. WT4 SR model performance.

Figure 7. WT38 SR model performance.

The SR model deficiencies at the two extreme ends of the data distribution are possibly caused 
by nonlinear behaviour. These data points fall outside the three standard deviations of the 
normal distribution of temperature ranges as shown by Figure 7. There is a clear deviation by 
these data points away from the straight-line function used in SR model. Because wind tur-
bines produces power below rated capacity the majority of the time, very low power regions 
just above the cut-in wind speed can result in different stator winding temperatures even if 
the environmental conditions are the same. These represent the stator winding temperatures 
below 40°C where the SR model performances are inadequate. Above rated speeds the wind 
turbine control system regulates its output power, which requires predominantly nonlinear 
control strategies. The rotor blade aerodynamics are changed rapidly to prevent excess power 
generation and loading on the wind turbine.
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8. Conclusion

The aim of this study was to develop a new condition monitoring technique for stators in SCIGs. 
A statistical model was developed using SCADA data to estimate the relationships between 
winding temperatures and other variables. Predicting faults in stator windings are challenging 
because the unhealthy condition rapidly evolves into a functional failure. The analysis of SCADA 
data as a condition-monitoring tool for stator windings has been proven to be adequate. Active 
power, ambient and nacelle temperatures showed that the effects on stator winding temperature 
are significant as calculated by the statistical model. The capability of the model is proven in the 
analysis of the normal probability plots of the residuals, F-test and the value of R2. The statistical 
model performs very well when the wind turbine produces power at a constant rate below rated 
capacity. This operating region of the wind turbine has a more linear characteristic. Since a wind 
turbine spends the majority of the time in this operating region, the model can definitely be used 
as a conditioning monitoring tool for the SCIGs at Sere and similar wind farms.
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Abstract

In this chapter, a new hybrid fault diagnosis method based on the mechanical-electrical
intersectional characteristics for turbo-generators is proposed. Different from other stud-
ies, this method not only employs the rotor vibration characteristics but also uses the
stator vibration features and the circulating current properties inside the parallel branches
of the same phase. Detailed theoretical analysis, as well as the experimental verification
study, is carried out to demonstrate the proposed method. It is shown that in the proposed
criterion for the method, the combining faulty characteristics for the single rotor eccentric-
ity fault, the single rotor interturn short circuit fault, and the composite fault composed of
the rotor eccentricity and the rotor interturn short circuit are all unique. The running
conditions can be accurately and quickly identified by the proposed method. The work
proposed in this chapter offers a new thought for the condition monitoring and the fault
diagnosis of generators.

Keywords: turbo-generator, rotor eccentricity, rotor interturn short circuit,
mechanical-electrical intersectional characteristics

1. Introduction

The generator is the key equipment for a power plant and needs timely and accurate monitor-
ing and maintaining. Typically, after a long-term operation, generators may endure many
electrical faults such as the rotor interturn short circuit (RISC) [1] and the stator interturn short
circuit [2, 3], as well as mechanical faults such as rotor eccentricity [4].
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RISC is the fault in which short circuit takes place between two adjacent turns inside the filed
winding in the rotor [5]. That means, only the insulation between the two neighboring turns is
damaged, while the main insulation of the whole winding bar is still fine.

Rotor eccentricity is the fault that occurs when the air-gap between the rotor and the stator is
not average [6]. This fault can be further divided into three types, i.e., the static rotor eccentric-
ity in which the minimum air-gap remains stable in a certain direction, the dynamic rotor
eccentricity in which the minimum air-gap will vary as the rotor rotates, and the mixed rotor
eccentricity in which static and the dynamic eccentricity occur at the same time. Generally,
dynamic eccentricity is more complex and usually has a small eccentricity value, while static
eccentricity is more common and more likely to have a larger eccentricity value caused by
many factors such as bearing damage or un-accordance, assembling error, and deformation of
the stator core. In this chapter, we mainly focus on the static rotor eccentricity.

So far, scholars have developed many monitoring and diagnosis methods for either the rotor
eccentricity fault or the RISC fault. As for the rotor eccentricity fault, studies on the monitoring
and diagnosis of air-gap eccentricity primarily focus on the stator current [7] and voltage [8, 9],
the rotor current [9] and the shaft voltage [10], the inductance variation of the windings [11, 12],
and the rotor UMP and vibration analysis [13–15]. The inductance variation analysis is mainly
based on the winding function theory [16] and the improved winding function theory [17, 18]
and needs a large amount of calculation, while the current and the voltage analysis is actually
based on the harmonic changes of the magnetic flux density [7]. Using a direct analysis of the
spectrum of the stator and rotor current or voltage obtained via Fourier transform, it is
sometimes hard to exactly identify the eccentricity due to the inconspicuous amplitude
changes compared with the noise signal magnitude, especially when the capacity of the gener-
ator is small or the eccentricity is not so severe. To overcome this disadvantage, scholars have
developed an improved method using search coils [19].

People have studied the theoretical deduction and the simulation analysis of RISC in wind-
powered generator [20, 21] and analyzed the change rate of the magnetic flux as well in order
to detect this fault [22]. It is found that the induced voltage in rotor can be used to predict the
location and the number of short circuit turns [23]. Meanwhile, researchers have also studied
the characteristics of the excitation currents [24, 25], the copper losses [24], and the unbalanced
magnetic pull (UMP) for the interturn short circuit monitoring [15, 26, 27]. Generally, at
present, the application of search coils, which is mainly based on the magnetic field density
(MFD) variation, is still adopted as a primary approach to monitor and diagnose this fault [28–
30]. Therefore, further investigation on MFD variation characteristics at great length is of
significance and will be the key to improve the monitoring level of the very failure. It is shown
that some specific harmonic characteristics are very helpful and even more effective than other
traditional means to diagnose the fault [31, 32].

However, since the actual performing condition is far more complex than the ideal normal
condition and the single fault cases, the generator may display some untypical fault character-
istics. For example, in addition to the RISC fault, the generator may have rotor eccentricity as
well, i.e., the composite fault composed by rotor eccentricity and RISC. In this case, the fault
characteristics are not the same as those of the single RISC fault or the single rotor eccentricity
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fault. Thus the problem is to identify and diagnose the very fault (the single rotor eccentricity,
the single RISC, and the composite fault) accurately.

In this chapter, we will discuss a newmethod combining the mechanical fault characteristics, i.e.,
the stator and the rotor vibration characteristics, with the electrical fault characteristics, i.e., the
circulating current inside the parallel branches of the same phase (CCPB), to identify the single
rotor eccentricity fault, the single RISC fault, and the composite fault composed by these two.

2. Theoretical analysis

As is widely comprehended, the electrical and the mechanical properties of the generator are
all closely related to the magnetic flux density (MFD). For example, the magnetic pulls acting
on the stator core and the rotor core are in proportion to the square of MFD, and the stator
current and voltage are in direct proportion to MFD. Generally, both the rotor eccentricity fault
and the RISC fault will affect MFD.

In this section, we will firstly analyze the impact of the four running conditions, i.e., the normal
condition, the single rotor eccentricity fault, the single RISC fault, and the composite fault
composed of rotor eccentricity and RISC. Then, the unbalanced magnetic pull (UMP) formulas
and the electromotive force difference expression between the two parallel branches will be
deduced in detail to obtain the qualitative theoretical results.

2.1. MFD study for each case

MFD is composed by two factors, the magnetomotive force (MMF) and the permeance per unit
area. Usually MFD is written as

B αm; tð Þ ¼ f αm; tð ÞΛ αm; tð Þ (1)

where f(αm, t) is the MMF, and Λ(αm, t) is the permeance per unit area.

Typically, RISC primarily affects MMF but has little impact on the permeance, while the rotor
eccentricity mainly impacts on the permeance per unit area but has little influence on MMF. In
normal condition, there is neither RISC nor rotor eccentricity. In this case, the air-gap can be
indicated as Figure 1(a), while the rotor MMF and the vector diagram of the stator and rotor
MMFs can be indicated as given in Figure 2(a) and Figure 3(a), respectively, by the shorted turns.

As indicated in Figure 3(a), the MMF in normal condition can be written as
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� �
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RISC is the fault in which short circuit takes place between two adjacent turns inside the filed
winding in the rotor [5]. That means, only the insulation between the two neighboring turns is
damaged, while the main insulation of the whole winding bar is still fine.
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eccentricity in which static and the dynamic eccentricity occur at the same time. Generally,
dynamic eccentricity is more complex and usually has a small eccentricity value, while static
eccentricity is more common and more likely to have a larger eccentricity value caused by
many factors such as bearing damage or un-accordance, assembling error, and deformation of
the stator core. In this chapter, we mainly focus on the static rotor eccentricity.
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eccentricity fault or the RISC fault. As for the rotor eccentricity fault, studies on the monitoring
and diagnosis of air-gap eccentricity primarily focus on the stator current [7] and voltage [8, 9],
the rotor current [9] and the shaft voltage [10], the inductance variation of the windings [11, 12],
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based on the winding function theory [16] and the improved winding function theory [17, 18]
and needs a large amount of calculation, while the current and the voltage analysis is actually
based on the harmonic changes of the magnetic flux density [7]. Using a direct analysis of the
spectrum of the stator and rotor current or voltage obtained via Fourier transform, it is
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People have studied the theoretical deduction and the simulation analysis of RISC in wind-
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the characteristics of the excitation currents [24, 25], the copper losses [24], and the unbalanced
magnetic pull (UMP) for the interturn short circuit monitoring [15, 26, 27]. Generally, at
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30]. Therefore, further investigation on MFD variation characteristics at great length is of
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well, i.e., the composite fault composed by rotor eccentricity and RISC. In this case, the fault
characteristics are not the same as those of the single RISC fault or the single rotor eccentricity
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fault. Thus the problem is to identify and diagnose the very fault (the single rotor eccentricity,
the single RISC, and the composite fault) accurately.
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on the stator core and the rotor core are in proportion to the square of MFD, and the stator
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and the electromotive force difference expression between the two parallel branches will be
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Typically, RISC primarily affects MMF but has little impact on the permeance, while the rotor
eccentricity mainly impacts on the permeance per unit area but has little influence on MMF. In
normal condition, there is neither RISC nor rotor eccentricity. In this case, the air-gap can be
indicated as Figure 1(a), while the rotor MMF and the vector diagram of the stator and rotor
MMFs can be indicated as given in Figure 2(a) and Figure 3(a), respectively, by the shorted turns.

As indicated in Figure 3(a), the MMF in normal condition can be written as

f αm; tð Þ ¼ Fr cos ωt� αmð Þ þ Fs cos ωt� αm � π
2
� ψ

� �
¼ F1 cos ωt� αm � β

� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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>>>>>>:
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Figure 1. Air-gap for the four performing conditions. (a) Normal condition and RISC and (b) rotor eccentricity and
composite fault.

Figure 2. Rotor MMF before and after RISC. (a) Normal rotor MMF, (b) inverse MMF produced, and (c) MMF under
RISC.
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Since the permeance per unit area is in inverse proportion to the radial air-gap length, the
permeance per unit area in normal condition can be written as

Λ αm; tð Þ ¼ μ0

g αm; tð Þ ¼
μ0

g0
¼ Λ0 (3)

In the case of rotor eccentricity, the MMF is the same as in normal condition, while the
permeance per unit area is

Λ αm; tð Þ ¼ μ0

g αm; tð Þ ¼
μ0

g0 1� δs cosαmð Þ ¼
μ0

g0
1þ δs cosαm þ δ2s cos

2αm þ⋯
� �

≈Λ0 1þ δs cosαmð Þ ¼ Λ0 þΛs cosαm

Λs ¼ Λ0δs

8>><
>>:

(4)

where μ0 is the permeability of the air, g0 is the radial air-gap length, and δs is the relative rotor
eccentricity.

In the case of RISC, since there is no longer exciting current in the shorted turns, it is equivalent
to adding an inverse current to the normal exciting current for the shorted turns. The rotor
MMF before and after RISC is indicated in Figure 2. Since the area of the produced positive
MMF should be equal to that of the induced negative MMF, the inverse MMFs produced by
the shorted turns can be written as

f d θmð Þ ¼
� If nm 2π� αrð Þ

2π
γ ≤θm ≤γþ αr

If nmαr

2π
other condition

8>><
>>:

(5)

where θm is the circumferential angle on the rotor surface, If is the exciting current of the
generator, nm is the number of the shorted turns, γ is the circumferential angle to indicate the
beginning RISC position, and αr is the angle between the two slots where RISC takes place.

Figure 3. Vector diagram of the stator and rotor MMFs for the four performing conditions. (a) Normal condition and
rotor eccentricity and (b) RISC and composite fault.
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Fd(θm) can be expanded by Fourier series and written as

f d θmð Þ ¼ A0 þ
X∞
n¼1

An cos nθmð Þ þ Bn sin nθmð Þ½ �

A0 ¼ 1
2π

ð2π
0

Fd θmð Þdθm ¼ 0

An ¼ 1
π

ð2π
0

Fd θmð Þ cos nθmð Þdθm ¼ � If nm sin n αr þ γð Þð Þ � sin nγð Þ½ �
nπ

Bn ¼ 1
π

ð2π
0

Fd θmð Þ sin nθmð Þdθm ¼ If nm cos n αr þ γð Þð Þ � cos nγð Þ½ �
nπ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(6)

Since the nth MMF harmonic is equivalent to the main MMF which is produced by the
generator that has n pole-pairs, the reverse MMF induced by the short circuit turns can be
written as a function which is both time and space dependent.

Fd αm; tð Þ ¼
X∞
n¼1

An cos n ωt� αmð Þ þ Bn sin n ωt� αmð Þ½ � ¼
X∞
n¼1

Fdn cos n ωt� αm � φn

� �

Fdn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
An

2 þ Bn
2

p

φn ¼ arctan
Bn

An

8>>>>>><
>>>>>>:

(7)

Correspondingly, ignoring the higher-order harmonics, according to Figure 3(b), the MMF
under RISC can be written as

f αm; tð Þ ¼ F1 cos ωt� αm � β
� �� Fd1 cos ωt� αm � φ1

� �� Fd2 cos ωt� αm � π� φ2

� �

¼ FC cos cos ωt� αm � β
0� �� Fd2 cos ωt� αm � π� φ2

� �

FC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr � Fs sinψ� Fd1 cosφ1

� �2 þ Fs cosψ� Fd1 sinφ1

� �2q

β
0 ¼ arctan

Fs cosψ� Fd1 sinφ1

Fr � Fs sinψ� Fd1 cosφ1

8>>>>>>><
>>>>>>>:

(8)

Feeding Eqs. (2)–(4) and (8) into (1), the MFDs for the four running conditions can be obtained.

B αm; tð Þ ¼

F1 cos ωt� αm � β
� �

Λ0⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯normal

F1 cos ωt� αm � β
� �

Λ0 þΛs cosαmð Þ⋯⋯⋯⋯⋯⋯⋯⋯⋯rotor eccentricity

FC cos cos ωt� αm � β
0� �� Fd2 cos ωt� αm � π� φ2

� �� �
Λ0 � �⋯⋯⋯RISC

FC cos cos ωt� αm � β
0� �� Fd2 cos ωt� αm � π� φ2

� �� �

� Λ0 þΛs cosαmð Þ � �⋯⋯composite fault

8>>>>>>><
>>>>>>>:

(9)

2.2. Mechanical-electrical characteristic analysis

The physical model of the stator core is a hollow shell, as indicated in Figure 4, while the
physical model of the rotor core is the rigid cylinder. Therefore, the essential exciting force for
the stator core is the magnetic pull per unit area (MPPUA), while for the rotor it is the integral
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force. This may not be easy to understand, but it can be suggested from Figure 4(b) that
though the integral force of the stator core is zero due to the symmetric distribution of the unit
force, it will still have periodical shrinking-expanding deformations, i.e., the radial vibrations,
due to the cyclical pulsating feature of the MPPUA. However, for the rotor core, the MPPUA is
not enough to cause radial vibrations for this solid cylinder. Therefore, the internal force, i.e.,
the unbalanced magnetic pull (UMP) will be the essential exciting force for the rotor.

The MPPUA and the UMP can be calculated via

q αm; tð Þ ¼ B αm; tð Þ½ �2
2μ0

MPPUA

FX ¼ LR
ð2π

0

q αm; tð Þ cosαmdαm

FY ¼ LR
ð2π

0

q αm; tð Þ sinαmdαm

UMP

8>>>>>>>><
>>>>>>>>:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(10)

Feeding Eq. (9) into (10), the exciting force needed to cause stator vibration and rotor vibration
can be, respectively, written as Eqs. (11) and (12).

Since the stator and rotor vibration will have the same frequency harmonic components as the
exciting force, as indicated in Eq. (11), the stator will have second harmonic vibrations in
normal condition and in the rotor eccentricity case, while it will have first, second, third, and
fourth harmonic components under RISC and the composite fault. Obviously, it is hard to
identify the fault type accurately only by means of the stator vibration.

Comparing MPPUA formulas in the four running conditions in Eq. (11), it can be found that
the magnitude of the second harmonic under rotor eccentricity fault will be larger than that of the
normal condition because extra second harmonic terms are added in the formula. However, the
magnitude of the second harmonic MPPUA under RISC will be smaller than that in normal
condition because FC is smaller than F1, see Figure 3(b). For the composite fault, the second
harmonic MPPUA magnitude will be smaller than that under rotor eccentricity but larger than
that in the RISC case. Since there is theoretically no fourth harmonic in normal conditionwhen only
considering the first MMFs, the occurrence of RISCwill increase the fourth harmonic MPPUA.

Figure 4. Structure and magnetic force of stator core. (a) Structure of stator core and (b) MPPUA on stator core.
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force. This may not be easy to understand, but it can be suggested from Figure 4(b) that
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Feeding Eq. (9) into (10), the exciting force needed to cause stator vibration and rotor vibration
can be, respectively, written as Eqs. (11) and (12).

Since the stator and rotor vibration will have the same frequency harmonic components as the
exciting force, as indicated in Eq. (11), the stator will have second harmonic vibrations in
normal condition and in the rotor eccentricity case, while it will have first, second, third, and
fourth harmonic components under RISC and the composite fault. Obviously, it is hard to
identify the fault type accurately only by means of the stator vibration.

Comparing MPPUA formulas in the four running conditions in Eq. (11), it can be found that
the magnitude of the second harmonic under rotor eccentricity fault will be larger than that of the
normal condition because extra second harmonic terms are added in the formula. However, the
magnitude of the second harmonic MPPUA under RISC will be smaller than that in normal
condition because FC is smaller than F1, see Figure 3(b). For the composite fault, the second
harmonic MPPUA magnitude will be smaller than that under rotor eccentricity but larger than
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Figure 4. Structure and magnetic force of stator core. (a) Structure of stator core and (b) MPPUA on stator core.
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The rotor, as indicated in Eq. (12), will have no vibrations in normal condition, while it will
endure second harmonic vibrations in the case of rotor eccentricity; first harmonic vibration
under RISC; and first, second, and third harmonic vibrations under the composite fault. It
seems that the four running conditions can be identified by the rotor vibration characteristics.
However, still other faults have the same rotor vibration features, leading to practical difficul-
ties for exact diagnosis. For example, the mass imbalance fault will also cause the rotor to
vibrate at the fundamental frequency, and the shaft misalignment fault will also lead to the
rotor’s second harmonic vibrations. Therefore, it is actually still hard to diagnose the fault
accurately by only using the rotor vibration properties.

In fact, in addition to the stator and rotor vibrations, the circulating current inside the parallel
branches (CCPB) of the same phase will vary as well due to different running conditions.
Taking the SDF-9 type generator which will be employed as the study object behind as an
example, the parallel branches and the CCPB in Phase A are indicated in Figure 5.

q αm; tð Þ ¼

F12

8μ0
2Λ2

0 þ 2Λ2
0 cos 2ωt� 2αm � 2β

� �� �
:……………………………………normal condition

F12

8μ0

(
2Λ2

0 þΛ2
s

� �þ 4Λ0Λs cosαmð Þ þ Λ2
s cos 2αm

� �� �

þ ½0:5Λ2
s cos 2ωt� 2β

� �þ 2Λ0Λs cos 2ωt� αm � 2β
� �

þ 2Λ2
0 þΛ2

s

� �
cos 2ωt� 2αm � 2β
� �þ 2Λ0Λs cos 2ωt� 3αm � 2β

� �

þ 0:5Λs
2 cos 2ωt� 4αm � 2β

� ��g::……………………………………rotor eccentricity

Λ2
0

4μ0
½F2C þ F2d2 � 2FCFd2 cos ωt� αm þ β1 � 2φ2

� �

þ F2C cos 2 ωt� αm � β
� �� 2FCFd2 cos 3ωt� 3αm � β1 � 2φ2

� �

þ F2d2 cos 4 ωt� αm � φ2

� ��…………………………………………………………RISC

1
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The electromotive force difference between the two branches, which is indicated in Figure 5(b) and
is the exciting source of the CCPB, can be obtained via Eq. (13), where Ea1 and Ea2 are the
electromotive forces of the two branches, respectively; q is the number of slots for each pole per
phase;wc is the number of turns for each branchwinding; kw1 is the fundamental frequencywinding
factor; τ is the polar distance; l is the effective length of the winding; and f is the electrical frequency.
FeedingEq. (9) into (13), the electromotive forcedifference can be obtained andwritten as in Eq. (14).

As indicated in Eq. (14), the CCPB has different features due to varied running conditions.
However, it has the similar problem as the rotor vibration while using it as the fault diagnosis
criterion. For example, due to the initial asymmetry inside the generator, the generator may have
first harmonic CCPB in normal condition. Consequently, the CCPB features will be very similar
not only between normal condition and rotor eccentricity, but also between RISC and the com-
posite fault. Thus, it is still not enough to only use CCPBdifference to identify the faults accurately.
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Figure 5. Parallel branch and CCPB in Phase A. (a) Winding distribution of Phase A and (b) equal circuit of parallel
branches of Phase A.
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The rotor, as indicated in Eq. (12), will have no vibrations in normal condition, while it will
endure second harmonic vibrations in the case of rotor eccentricity; first harmonic vibration
under RISC; and first, second, and third harmonic vibrations under the composite fault. It
seems that the four running conditions can be identified by the rotor vibration characteristics.
However, still other faults have the same rotor vibration features, leading to practical difficul-
ties for exact diagnosis. For example, the mass imbalance fault will also cause the rotor to
vibrate at the fundamental frequency, and the shaft misalignment fault will also lead to the
rotor’s second harmonic vibrations. Therefore, it is actually still hard to diagnose the fault
accurately by only using the rotor vibration properties.

In fact, in addition to the stator and rotor vibrations, the circulating current inside the parallel
branches (CCPB) of the same phase will vary as well due to different running conditions.
Taking the SDF-9 type generator which will be employed as the study object behind as an
example, the parallel branches and the CCPB in Phase A are indicated in Figure 5.
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The electromotive force difference between the two branches, which is indicated in Figure 5(b) and
is the exciting source of the CCPB, can be obtained via Eq. (13), where Ea1 and Ea2 are the
electromotive forces of the two branches, respectively; q is the number of slots for each pole per
phase;wc is the number of turns for each branchwinding; kw1 is the fundamental frequencywinding
factor; τ is the polar distance; l is the effective length of the winding; and f is the electrical frequency.
FeedingEq. (9) into (13), the electromotive forcedifference can be obtained andwritten as in Eq. (14).

As indicated in Eq. (14), the CCPB has different features due to varied running conditions.
However, it has the similar problem as the rotor vibration while using it as the fault diagnosis
criterion. For example, due to the initial asymmetry inside the generator, the generator may have
first harmonic CCPB in normal condition. Consequently, the CCPB features will be very similar
not only between normal condition and rotor eccentricity, but also between RISC and the com-
posite fault. Thus, it is still not enough to only use CCPBdifference to identify the faults accurately.
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Figure 5. Parallel branch and CCPB in Phase A. (a) Winding distribution of Phase A and (b) equal circuit of parallel
branches of Phase A.
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3. Hybrid diagnosis method and verification

3.1. Method description

Based on the previously described theoretical study, a hybrid diagnosis method combining the
mechanical characteristics, i.e., the stator and the rotor vibration characteristics, with the
electrical features, i.e., the CCPB properties, can be proposed, as shown in Table 1.

As indicated in Table 1, the combining mechanical-electrical intersectional fault characteristics
are unique for each fault. It will be obviously more advantageous than only employing either
the vibration or the CCPB characteristics.

3.2. Experimental verification

The experimental verification is taken on a SDF-9 type fault simulating generator, in the Natio-
nal Key Lab of New Energy Electric Power System, P.R. China, as indicated in Figure 6(a).
The primary parameters of the generator are shown in Table 2.

Running condition Stator vibration Rotor vibration CCPB

Normal condition 2nd harmonic — —

Rotor eccentricity 2nd harmonic 2nd harmonic 1st harmonic

RISC 1st, 2nd, 3rd, 4th harmonics, comparing with normal condition,
the 2nd decreased while 1st, 3rd, and 4th increased

1st harmonic 2nd harmonic

Composite fault 1st, 2nd, 3rd, and 4th harmonics, comparing with normal
condition, the 1st, 3rd, and 4th increased

1st, 2nd, and
3rd harmonics

1st and 2nd
harmonics

Table 1. Detailed criteria of the hybrid diagnosis method.
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The rotor of the generator is kept to the underframe by the bearing pedestal, while the stator
can be moved along the horizontally radial direction by adjusting the screws; see Figure 6(b).
The movement can be controlled by two dial indicators, so that different fault degrees of rotor
eccentricity can be simulated.

Figure 6. Experiment method of the fault simulating generator. (a) General outlook, (b) method to set rotor eccentricity,
(c) method to test CCPB and (d) testing system of the experiment.

Parameters Values

Rated capacity 7.5 kVA

Rated exciting current 1.5 A

Rated rotation speed 3000 r/min

Number of pole pairs p = 1

Polar distance τ = 252 mm

Radial air-gap length g0 = 0.8 mm

Number of exciting slots per pole 6

Number of exciting turns peer pole 480

Number of stator slots 24

Number of turns in series per phase 100

Ratio of pitch to polar distance ky = y/τ = 0.83

Pitch shortening factor kp = 0.966

Table 2. Primary parameters of study object.
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can be moved along the horizontally radial direction by adjusting the screws; see Figure 6(b).
The movement can be controlled by two dial indicators, so that different fault degrees of rotor
eccentricity can be simulated.
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(c) method to test CCPB and (d) testing system of the experiment.
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Radial air-gap length g0 = 0.8 mm
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During the experiment, two velocity sensors are employed to test the stator vibration and the
rotor vibration (see Figure 6a), while the CCPB is measured by a current transformer (see
Figure 6c, the conductors of the two branches inversely cross the current transformer to get the
current difference which is also the CCPB). The tested data are collected by a U60116C type
collector and stored in the computer; see Figure 6(d).

The stator vibration spectra for the four running conditions are indicated in Figure 7, while the
rotor vibration spectra and the CCPB spectra for each performing case are illustrated in
Figures 8 and 9, respectively. Theoretically, in normal condition, the stator should have only
the second harmonic vibration component, and there should be no rotor vibrations or circulat-
ing currents. However, the experimental data show some differences. This is mainly caused by
the asymmetry inside the generator. For example, the winding distribution in the generator
may not be strictly symmetric. These initial values which should be zero in theory can be
treated as the null drift of the generator system.

As indicated in Figure 7, it is shown that the four performing conditions will have different
stator vibration characteristics. The occurrence of the rotor eccentricity will obviously increase
the amplitude of the second harmonic, while the occurrence of RISC will decrease this

Figure 7. Stator vibration spectra under different conditions. (a) Normal condition, (b) 0.3 mm eccentricity, (c) 3% RISC
and (d) composite fault.

Figure 8. Rotor vibration spectra under different conditions. (a) Normal condition, (b) 0.3 mm eccentricity, (c) 3% RISC
and (d) composite fault.
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harmonic but increase the first, third, and fourth harmonics. For the composite fault, the
amplitude of the second harmonic is generally between the rotor eccentricity and RISC. The
experimental results are consistent with the previously described theoretical analysis.

As indicated in Figure 8, the second harmonic vibration amplitude will be increased as the
rotor eccentricity takes place, while the occurrence of RISC will increase the first harmonic
amplitude. In the case of the composite fault, comparing with the normal condition, all of the
first, second, and third harmonic amplitudes will be increased. This tendency to develop
harmonic amplitude is in accordance with the theoretical result.

As indicated in Figure 9, the rotor eccentricity will mainly increase the first harmonic CCPB,
while RISC will primarily increase the second harmonic CCPB. In the case of the composite
fault, both the first and the second harmonic amplitudes of the CCPB will be enlarged. This
experimental result still follows that of the previous theoretical study.

It is suggested from Figures 7–9 that the stator vibration, the rotor vibration, and the CCPB
will all vary due to different performing conditions. Combining the stator and the rotor
vibration characteristics with the CCPB varying features, the mentioned four running condi-
tions can be effectively and accurately identified. To confirm this, we have also carried out the
experiments several times. And, by using the hybrid method proposed in this chapter, we
correctly identified the running conditions each time.

4. Conclusions

In this chapter, we propose a new hybrid fault diagnosis method based on the intersectional
mechanical-electrical characteristics. Primary conclusions drawn from the study are as follows.

1. Given the complex practical running condition, it is hard to identify the fault accurately
only by either the stator vibration characteristics or the rotor vibration features.

2. In addition to the rotor and the stator vibration characteristics, the circulating current
inside the parallel branches of the same phase is also an effective tool for condition
monitoring and fault diagnosis.

Figure 9. CCPB spectra under different conditions. (a) Normal condition, (b) 0.3 mm eccentricity, (c) 3% RISC and (d)
composite fault.
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During the experiment, two velocity sensors are employed to test the stator vibration and the
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harmonic but increase the first, third, and fourth harmonics. For the composite fault, the
amplitude of the second harmonic is generally between the rotor eccentricity and RISC. The
experimental results are consistent with the previously described theoretical analysis.

As indicated in Figure 8, the second harmonic vibration amplitude will be increased as the
rotor eccentricity takes place, while the occurrence of RISC will increase the first harmonic
amplitude. In the case of the composite fault, comparing with the normal condition, all of the
first, second, and third harmonic amplitudes will be increased. This tendency to develop
harmonic amplitude is in accordance with the theoretical result.

As indicated in Figure 9, the rotor eccentricity will mainly increase the first harmonic CCPB,
while RISC will primarily increase the second harmonic CCPB. In the case of the composite
fault, both the first and the second harmonic amplitudes of the CCPB will be enlarged. This
experimental result still follows that of the previous theoretical study.

It is suggested from Figures 7–9 that the stator vibration, the rotor vibration, and the CCPB
will all vary due to different performing conditions. Combining the stator and the rotor
vibration characteristics with the CCPB varying features, the mentioned four running condi-
tions can be effectively and accurately identified. To confirm this, we have also carried out the
experiments several times. And, by using the hybrid method proposed in this chapter, we
correctly identified the running conditions each time.

4. Conclusions

In this chapter, we propose a new hybrid fault diagnosis method based on the intersectional
mechanical-electrical characteristics. Primary conclusions drawn from the study are as follows.

1. Given the complex practical running condition, it is hard to identify the fault accurately
only by either the stator vibration characteristics or the rotor vibration features.

2. In addition to the rotor and the stator vibration characteristics, the circulating current
inside the parallel branches of the same phase is also an effective tool for condition
monitoring and fault diagnosis.

Figure 9. CCPB spectra under different conditions. (a) Normal condition, (b) 0.3 mm eccentricity, (c) 3% RISC and (d)
composite fault.
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3. By combining the rotor and stator vibration characteristics with the circulating current
inside the parallel branches, the four running conditions, i.e., the normal condition, the
single rotor eccentricity fault, the rotor interturn short circuit fault, and the composite fault
composed of the rotor eccentricity and the rotor interturn short circuit, can be accurately
identified due to the unique combining fault characteristics.
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Abstract

The growing importance of power conversion systems and their dependency on the
performance and reliability of static converters has motivated extensive research efforts
in this field. A variety of different techniques have been applied to detect open-circuit
faults in power converters. The present chapter is focusing on the techniques of detection
and localization of open-circuit faults in a three phase voltage source inverter fed induc-
tion motor. A comparative study is carried out between different detection techniques: the
Park current vectors and its enhancement by using the polar coordinates, the mean value
of the currents, the stator current spectrum analysis and the measurement of the current
drop. The aim of this comparison is to investigate the relative strengths and weaknesses of
the different techniques and evaluate the performance of each detection technique stud-
ied. The comparison study focuses on the time detection, the localization ability and the
hardware aspect. To validate these techniques, an experimental setup is developed in our
diagnostic group laboratory which consists of a two-level voltage source inverter con-
trolled by a DSPACE-1104, Card to generate the PWM vector control of the induction
motor. The obtained simulation and experimental results illustrate well the detection
feasibility of each technique as well as the benefits and merits of the performed compara-
tive study.
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1. Introduction

The applications of electronics were for a long time limited to the technique of high frequen-
cies. The possibilities of application were limited by the unreliability of the electronic elements
available at that time. This reliability was insufficient to meet the high demands of new
applications in the industrial field. It was only after the development of special electronic
power components of higher reliability and more limited tolerance that new techniques could
be envisaged, thus creating a new branch of electronics called power electronics.

One area where power electronics is widely used today is the industrial applications related to
machine-static power converter associations, particularly the industrial variable speed AC
drives. These drives are mainly used in which the machines are connected through a static
power electronic converter usually a three-phase inverter. It is estimated that about 38% of the
faults in these industrial drives are due to failures of the supply system. Some uses of the
machine-static power converter sets do not tolerate untimely failures, mechanical or electrical
failures at the machine or related to static power converter failure. An industrial survey [1]
conducted in 2011, comes to the conclusion that 93% of respondents stated that reliability is a
paramount issue in the field of static power electronic converters. The faults of the static power
converters have various causes; they can be related to the open-circuit faults of the IGBT
switches for example. This type of malfunction induces damage constraints for the production
system if the personnel are not notified and a nuisance shutdown can eventually result.

The growing interest of manufacturers in the maintenance of electrical drives justifies the
emphasis placed on research into the diagnosis of machine-static power converter associations.
The complexity of the systems involved and the necessary approach from the new angle of
diagnosis today require a preliminary work of detection/diagnosis of the faults of the machine-
converter association.

Several researchers have studied the behavior of static power converters with internal failure,
focusing particularly on the open-circuit fault of an IGBT switch. Such a fault can lead to
secondary faults in other converter components that can result in high repair costs [2].

Authors [3, 4] propose the Park vector technique, the principle of this technique is based on the
tracking of the current trajectory of Park (id, iq). In the healthy case, the trajectory takes a circle
shape and in the case of an IGBT switch open-circuit fault, the circle becomes a semicircle.

The position of this trajectory in the (d-q) framemakes it possible to calculate the intervals of the
angles of the fault to localize the faulty IGBT. Other researchers [5–8] have proposed the Park.

Average current (idmean, iqmean) technique to calculate the exact open-circuit fault angle in
order to identify the faulty IGBT switch. Authors [9–11] have proposed the technique based
on the spectral analysis of the stator currents. This technique is based on the study of the
harmonic analysis of each phase current. The amplitude and argument of each harmonic can
be used in detecting and localizing the faults. The analysis of the first harmonics shows that the
difference between the healthy state and the open-circuit fault case resides in the zero-order
harmonics which signifies the presence of the DC component in the signal. The argument of
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the harmonic zero with respect to the fundamental makes it possible to know the type of fault;
on the other hand, the argument of this harmonic also makes it possible to know the faulty
IGBT switch either the high or the lower one. The authors [12] combined normalized standard
currents with additional diagnostic variables for one or more IGBT switch open-circuit faults.
The diagnostic alarms were performed by the Boolean output signals. In the paper presented
by [13], the same authors proposed another extension based on the use of fuzzy logic symp-
toms. The author [14] proposes the Clarke technique followed by the polarity of the trajectory
slope in the complex α-β frame identify the faulty IGBT switch.

The present chapter is focusing on techniques of detection and localization of IGBT switch
open-circuit faults in a three phase voltage source inverter fed induction motor. A comparative
study is carried out between different detection techniques: the Park current vectors and its
enhancement by using the polar coordinates, the mean value of the currents, the stator current
spectrum analysis and the measurement of the current drop. The comparison study aims at
exhibiting the relative strengths and weaknesses of the different techniques and at assessing
each detection technique in terms of its performance; that is the time detection and the
localization ability; as well as in terms of hardware; that is the number of current sensors
required for IGBT switch open-circuit fault detection. To validate these techniques, an experi-
mental setup is developed in our diagnostic group laboratory which consists of a two-level
voltage source inverter controlled by a DSPACE-1104 Card to generate the PWM vector control
of the induction motor. The obtained simulation and experimental results illustrate well the
detection feasibility of each technique as well as the benefits and merits of the performed
comparative study.

2. Space voltage vector and switching states for the case of both healthy
and faulty inverter

Figure 1 shows the general structure of a three phase two-level voltage source inverter feeding
an induction motor.

This inverter is controlled by the PWM vector control strategy. For each leg of the inverter,
there are two possible states:

State 1: The higher switch Kx (x = 1, 2 or 3) is closed, while the lower switch K2x (x = 1, 2 or 3) is
open. The output voltage relative to the neutral of the dc source is Vdc.

State 0: The lower switch Kx (x = 1, 2 or 3) is closed, while the higher switch K1x (x = 1, 2 or 3) is
open. The output voltage relative to the neutral of the dc source is 0v.

It is to note that the faulty inverter used in this chapter is defined as an inverter with one of its
IGBT switch exhibiting an open-circuit fault.

The experimental setup used in this chapter is depicted in the photo of Figure 2. It includes
a three-phase squirrel-cage inductionmotor fed by a three-phase two-level voltage source inverter.
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The detailed characteristics of the motor are given in the appendix. Furthermore, the motor is
mechanically coupled to a DC generator supplying a bank of resistors which allows varying the
load torque. Moreover, the measuring system includes three current Hall Effect sensors and three
voltage sensors and a DSPACE 1104 acquisition card to generate pulses for triggering the IGBT’s
gates in the inverter. The whole set is connected to a computer for visualizing and analyzing the
processed sensed signal [14].

Because of the randomness of the measured signals and for a reliable analysis, 05 acquisitions
are performed for each case. The acquisition time used is Tacq = 20s. To study the effect of the
load on the induction motor signals, the following mode of operation is considered; the rated
load operation with a rated current of 7A and an estimated torque of 20 Nm and a frequency of
sampling Fe = 1.5kHz.

3. Fault detection techniques for a faulty inverter

During its operation, the inverter is subjected to various internal and external constraints
resulting in its failure; especially those failures related to the IGBT semiconductor switches
because of their fragility. Two types of faults are usually linked with the inverter and can be
reported in Table 1 as follows:

Figure 2. Experimental setup.

Figure 1. The structure of a three phase two-level inverter.
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In this chapter section, different techniques for fault detection and localization of the inverter
IGBT switches open-circuit fault are presented in the summarized Table 2 and thoroughly
discussed.

3.1. Technique based on the Park vectors

The Park vectors technique is based on the tracking of the trajectory of the current vector.
Indeed, in normal conditions (without fault), the trajectory of the current vector in the d-q
frame is a circle. The circle becomes a semicircle when an IGBT open-circuit fault of an inverter
leg occurs. The position of this semicircle in the d-q frame allows identifying the faulty switch
as developed by [10]. Applying the Park transformation on the three phase currents (ia, ib, ic)
results in two currents (id, iq) in the d-q frame. The current is expressed by the following
mathematical system:

ids¼2=3ias�1=3ibs�1=3ics

iqs¼1 ffiffi
3

p= ibs�icsð Þ

(
(1)

Its slope is used to identify the faulty leg. As mentioned above, the extraction of information of
any faulty leg can be obtained from the angle between the current vector and the d-q frame
using the following equation:

θl¼arctan iqs=ids

� �
(2)

where θl is the inverter leg fault angle.

Faults Description

Short-
circuit

Short-circuit faults affecting the IGBT switches are the most serious faults. In the presence of such a fault, the current
reaches limits which can cause the fusion of its chip or its connection. If the detection of this type of fault does not
occur rapidly (less than 10 μs), then the IGBT switch which is still active on the same leg undergoes the same
phenomenon and so the whole inverter leg is shorted.

Open-
circuit

Open-circuit faults affecting the IGBT switches may occur when, for any reason, the IGBT is disconnected, is
damaged, or had a problem in its grid control signal. This type of fault is very difficult to perceive directly because the
motor can continue to operate but with a degradation of its performance due to the occurrence of fluctuations in the
mechanical parameters (speed and torque) as well as an imbalance of the currents where the currents of the other two
healthy legs take high values to maintain the average torque and the speed. The starting of the motor in the presence
of this type of fault cannot always be ensured.

Table 1. Description of inverter faults.

Number Methods for open-circuit IGBT switch faults

1 Technique based on the Park vectors and enhanced Park vectors with polar coordinates

2 Technique based on the mean value of the currents

3 Technique based on the stator current spectrum analysis

4 Technique based on the measure of the current drop

Table 2. Fault diagnosis used techniques.
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where θl is the inverter leg fault angle.

Faults Description
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reaches limits which can cause the fusion of its chip or its connection. If the detection of this type of fault does not
occur rapidly (less than 10 μs), then the IGBT switch which is still active on the same leg undergoes the same
phenomenon and so the whole inverter leg is shorted.

Open-
circuit

Open-circuit faults affecting the IGBT switches may occur when, for any reason, the IGBT is disconnected, is
damaged, or had a problem in its grid control signal. This type of fault is very difficult to perceive directly because the
motor can continue to operate but with a degradation of its performance due to the occurrence of fluctuations in the
mechanical parameters (speed and torque) as well as an imbalance of the currents where the currents of the other two
healthy legs take high values to maintain the average torque and the speed. The starting of the motor in the presence
of this type of fault cannot always be ensured.

Table 1. Description of inverter faults.

Number Methods for open-circuit IGBT switch faults

1 Technique based on the Park vectors and enhanced Park vectors with polar coordinates

2 Technique based on the mean value of the currents

3 Technique based on the stator current spectrum analysis

4 Technique based on the measure of the current drop

Table 2. Fault diagnosis used techniques.
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Figure 3 depicts the angle of the faulty leg when applying an open-circuit fault at t = 1.5 s.

In reference to Figure 3, the leg fault angle θl is used to identify the faulty leg of the inverter.
For the case of a healthy inverter, the angle values are always π or -π. Any angle values
different from π or -π are therefore considered as an indication confirming faulty legs pres-
ence. The various faulty inverter legs corresponding to the various fault angle values are
expressed in Table 3.

The Park trajectory slope is used to identify the faulty switch. As mentioned above, the
extraction of information of any faulty switch can be obtained from the angle between the
mean current vector and the d-q frame using the following equation:

θK ¼ arctan iqsmean=idsmean

� �
(3)

where θK is the inverter switch fault angle.

Figure 4 depicts the angle of the faulty switch when applying an open-circuit fault at t = 1.5 s.

Figure 4 shows the fault angles switch θK. The various faulty inverter switches corresponding
to the various fault angle values are expressed in Table 4.

For example for the case of a faulty inverter switch K1 corresponds the angle intervals [0, π/2]
or [3π/2, 2π].

Figure 5 depicts the trajectories of the currents for both healthy and faulty inverters.

Figure 3. Ideal shapes of the leg fault angle θl (simulation results).

Faulty leg IGBT switches Leg fault angle θl

leg A K1, K2 π/2 or –π/2

leg B K3, K4 5π/6 or –π/6

leg C K5, K6 5π/6 or –π/6

Table 3. Current vector position as function of θl .
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3.1.1. Enhanced Park vectors with polar coordinates

A polar coordinates calculation is proposed associated with the technique of Park vectors in
order to enhance the inverter IGBT switch fault localization. This section focuses on the
localization of each faulty IGBT switch by calculating the borders of each trajectory as well as
the fault current vector. This calculation is carried out by proposing the use of the polar
coordinates diagram as shown by Figure 6.

The mathematical model based on the polar coordinates is related to the trajectory and the
angle θicf of the specified faulty IGBT. Consequently, a change in the shape of the trajectory
and the angle indicates the occurrence of a fault condition. This represents an indicator for the
localization of the faulty IGBT switch. The angle is calculated from Eqs. 4–6 as follows:

θicf¼
XN

i¼0

πr2r=360 (4)

Figure 4. Ideal shapes of the IGBT switch open-circuit fault angle θK (simulation result).

IGBT Fault angles of inverter switch θK

K1 open [0, π/2] or [3π/2, 2π]

K2 open [π/2, 3π/2]

K3 open [π/6, 7π/6]

K4 open [0, π/6] or [7π/6, 2π]

K5 open [5π/6, 11π/6]

K6 open [0, 5π/6] or [11π/6, 2π]

Table 4. Open-circuit switch fault angles.
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The radius of this trajectory can be calculated from the following equation:

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ids2þiqs2

q
(5)

r¼rmax�rmin (6)

Figure 5. Currents trajectories of healthy and faulty inverter (simulation results).

Figure 6. Proposed schematic geometry of polar coordinates.
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The d-q currents at the center of the trajectory idc and iqc can be computed using the maximum
and minimum of the currents vectors as follows:

idsc ¼ 1=2 idsmax þ idsminð Þ
iqsc ¼ 1=2 iqsmax þ iqsmin

� �
(

(7)

For the case of a faulty IGBT switch, the current vector is given by the following equation:

icf¼idscþjiqsc (8)

IGBT Fault current vector icf

K1 open icf = 6.5∟π

K2 open icf = 6.5∟2π

K3 open icf = 4.95∟5π/3

K4 open icf = 4.95∟2π/3

K5 open icf = 5.3∟π/3

K6 open icf = 5.3∟4π/3

Table 5. Fault current vector for each faulty switch.

Figure 7. Graphical representation of fault current vectors (simulation results).
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From this calculation, the open-circuit fault of each IGBT switch can be localized and Table 5
summarizes the computation of the fault angle values and the fault current vectors for the case
of each faulty IGBT switch.

Figure 8. Currents trajectories of healthy and faulty inverter (experimental result).

Figure 9. Ideal shapes of the IGBT switch open-circuit fault angle θK (experimental results).
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A significant advantage of the polar coordinates calculation is that it enables to yield the exact
value of the angle for inverter faults detection while other existing techniques gives rather an
interval of angles.

Figure 7 shows the fault current vector icf when the inverter is operating under both healthy and
faulty conditions. For the case of a healthy inverter, the average amplitude of the fault current
vector is zero. If a failure occurs, the magnitude of the fault current vector becomes non-zero. The
faulty IGBT is identified by the phase angle and the fault current vector magnitude.

3.1.2. Experimental results for healthy and faulty inverters using the Park vectors technique with polar
coordinates

See Figures 8–10.

4. Technique based on the mean value of the currents

This technique uses the mean phase current value for fault detection. A fault in a semiconduc-
tor switch can produce offsets in the currents of the electrical machine phases. This diagnostic

Figure 10. Graphical representation of fault current vectors (experimental results).
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From this calculation, the open-circuit fault of each IGBT switch can be localized and Table 5
summarizes the computation of the fault angle values and the fault current vectors for the case
of each faulty IGBT switch.

Figure 8. Currents trajectories of healthy and faulty inverter (experimental result).

Figure 9. Ideal shapes of the IGBT switch open-circuit fault angle θK (experimental results).
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Figure 7 shows the fault current vector icf when the inverter is operating under both healthy and
faulty conditions. For the case of a healthy inverter, the average amplitude of the fault current
vector is zero. If a failure occurs, the magnitude of the fault current vector becomes non-zero. The
faulty IGBT is identified by the phase angle and the fault current vector magnitude.

3.1.2. Experimental results for healthy and faulty inverters using the Park vectors technique with polar
coordinates

See Figures 8–10.

4. Technique based on the mean value of the currents

This technique uses the mean phase current value for fault detection. A fault in a semiconduc-
tor switch can produce offsets in the currents of the electrical machine phases. This diagnostic

Figure 10. Graphical representation of fault current vectors (experimental results).

A Comparative Study on Some Fault Diagnosis Techniques in Three-Phase Inverter Fed Induction Motors
http://dx.doi.org/10.5772/intechopen.79960

87



technique is to calculate the mean values of these currents from which the fault can be
detected. A current threshold is defined in order to distinguish between the open-circuit faults
in a semiconductor switch.

The mathematical model of this technique is illustrated by the following steps:

1st step: Extraction of the three currents of the stator (ias, ibs, ics) as follows:

Ias ¼ 0

Ibs ¼ Icos ωtþ φ� 2π
3

� �

Ics ¼ Icos ωtþ φ� 4π
3

� �

8>>>>>><
>>>>>>:

(9)

2nd step: Calculation of the mean value of the three stator currents:

Iamean ¼ sum Ias=length iað Þ
� �

Ibmean ¼ sum Ibs=length ibð Þ
� �

Icmean ¼ sum Ics=length icð Þ
� �

8>><
>>:

(10)

where length (Ia,b,c): number of point the three current signals Ia, Ib, Ic.

After the introduction of a fault in the IGBTof the inverter, one can easily observe the change in
the form of the stator currents and also their mean values. This technique allows us therefore to
easily identify and localize the faults which are expressed by the following equation:

Imean ¼ IameanþIbmeanþIcmeanð Þ=3 (11)

Figure 11. Detection algorithm of faulty inverter using the mean value of stator currents technique.
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The open-circuit fault detection algorithm that will be applied in this technique is based on the
calculated mean value of the currents and can be described by the following algorithm as
shown in Figure 11 (Table 6).

4.1. Simulation results for healthy and faulty inverter using the technique of the mean
value of the currents

See Figures 12 and 13.

State Phase A Phase B Phase C

Healthy IThresh, (IThresh ¼0) IThresh, (IThresh ¼0) IThresh, (IThresh ¼0)

K1 open �IThresh < Iamean < 0, (Iamean = �1.5) Ibmean ≥ 0, (Ibmean = 0) Icmean ≥ 0, (Icmean = 0)

K3 open Iamean ≥ 0, (Iamean = 0) �IThresh < Ibmean < 0, (Ibmean = �1.5) Icmean ≥ 0, (Icmean = 0)

K5 open Iamean ≥ 0, (Iamean = 0) Ibmean ≥ 0, (Ibmean = 0) �IThresh < Icmean < 0, (Icmean = �1.5)

K2 open 0 < Iamean ≤ IThresh, (Iamean = 1.5) Ibmean ≤ 0, (Ibmean = 0) Icmean ≤ 0, (Icmean = 0)

K4 open Iamean ≤ 0, (Iamean = 0) 0 < Ibmean ≤ IThresh, (Ibmean = 1.5) Icmean ≤ 0, (Icmean = 0)

K6 open Iamean ≤ 0, (Iamean = 0) Ibmean ≤ 0, (Ibmean = 0) 0 < Icmean ≤ IThresh, (Icmean = 1.5)

Table 6. Characteristics of various types of fault of the inverter.

Figure 12. Current characteristics for a healthy inverter (simulation results). (a) Three stator currents (Ia, Ib, Ic), (b) Mean
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technique is to calculate the mean values of these currents from which the fault can be
detected. A current threshold is defined in order to distinguish between the open-circuit faults
in a semiconductor switch.

The mathematical model of this technique is illustrated by the following steps:

1st step: Extraction of the three currents of the stator (ias, ibs, ics) as follows:

Ias ¼ 0

Ibs ¼ Icos ωtþ φ� 2π
3

� �

Ics ¼ Icos ωtþ φ� 4π
3

� �

8>>>>>><
>>>>>>:

(9)

2nd step: Calculation of the mean value of the three stator currents:

Iamean ¼ sum Ias=length iað Þ
� �

Ibmean ¼ sum Ibs=length ibð Þ
� �

Icmean ¼ sum Ics=length icð Þ
� �

8>><
>>:

(10)

where length (Ia,b,c): number of point the three current signals Ia, Ib, Ic.

After the introduction of a fault in the IGBTof the inverter, one can easily observe the change in
the form of the stator currents and also their mean values. This technique allows us therefore to
easily identify and localize the faults which are expressed by the following equation:

Imean ¼ IameanþIbmeanþIcmeanð Þ=3 (11)

Figure 11. Detection algorithm of faulty inverter using the mean value of stator currents technique.
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The open-circuit fault detection algorithm that will be applied in this technique is based on the
calculated mean value of the currents and can be described by the following algorithm as
shown in Figure 11 (Table 6).

4.1. Simulation results for healthy and faulty inverter using the technique of the mean
value of the currents

See Figures 12 and 13.
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K4 open Iamean ≤ 0, (Iamean = 0) 0 < Ibmean ≤ IThresh, (Ibmean = 1.5) Icmean ≤ 0, (Icmean = 0)

K6 open Iamean ≤ 0, (Iamean = 0) Ibmean ≤ 0, (Ibmean = 0) 0 < Icmean ≤ IThresh, (Icmean = 1.5)
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values of three stator currents (Iamean, Ibmean, Icmean), (c) Mean value of current Imean.

Figure 13. Currents trajectories for a faulty inverter. (a) Three stator currents (Ia, Ib, Ic), (b) Mean values of three stator
currents (Iamean, Ibmean, Icmean), (c) Mean value of current Imean.
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4.2. Experimental results for healthy and faulty inverter using the technique of the mean
value of the currents

See Figures 14 and 15.

5. Technique based on the stator current spectrum analysis

This technique is based on the study of the harmonic analysis of each phase current. The amplitude
and the argument of each harmonic may be used in the detection and location of the faults [15].

5.1. Simulation results for healthy and faulty inverter using the stator current spectrum
analysis

In what follows we will present the simulation for both the healthy state and the inverter with
open-circuit switch fault state. Figure 16 shows the harmonic spectrum of the current for the
healthy state.

For an open-circuit K1 IGBT fault, the harmonic spectrum for each phase is shown as in
Figure 17. Note that the occurrence of the zero harmonic (i.e., the presence of the DC compo-
nent) indicates the presence of a fault in K1.

Figure 14. Current characteristics for a healthy inverter. (a) Three stator currents (Ia, Ib, Ic), (b) Mean values of three stator
currents (Iamean, Ibmean, Icmean), (c) Mean value of current Imean.

Figure 15. Currents trajectories for a faulty inverter (experimental results). (a) Three stator currents (Ia, Ib, Ic), (b) Mean
values of three stator currents (Iamean, Ibmean, Icmean), (c) Mean value of current Imean.
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The analysis of the first eight harmonics shows that the difference between the healthy
state and the case of open-circuit fault state lies at the zero-order harmonics which means
the presence of the DC component in the signal. The argument of zero harmonic relative
to the fundamental enables us to know the type of fault. On the other hand, the argument
of this harmonic enables us also to know the faulty switch either the upper one or the
lower one.

From the result of Table 7, we note that the phase which contains the open-circuit fault has its
dc component equals to the sum of the dc component of the two other phases and is expressed
by the following relations as:

• If the fault is at phase A, then: h0A = h0B + h0C

• If the fault is at phase B, then: h0B = h0A + h0C

• If the fault is at phase C, then: h0C = h0A + h0B

Where h0A is the zero-order harmonic of phase A, h0B the zero-order harmonic of phase B and
h0C the zero-order harmonic of phase C.

5.2. Experimental results for healthy and faulty inverter using the stator current spectrum
analysis

In what follows we will present the experimental results for the healthy and open-circuit faulty
inverter. Figure 18 shows the harmonic spectrum of the current for the healthy state, while
Figure 19 depicts the experimental results for open-circuit fault state.

Figure 16. Harmonic spectrum of each phase of a healthy inverter (simulation results).

Figure 17. Harmonic spectrum of each phase of a faulty inverter (simulation results).
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The analysis of the first eight harmonics shows that the difference between the healthy
state and the case of open-circuit fault state lies at the zero-order harmonics which means
the presence of the DC component in the signal. The argument of zero harmonic relative
to the fundamental enables us to know the type of fault. On the other hand, the argument
of this harmonic enables us also to know the faulty switch either the upper one or the
lower one.

From the result of Table 7, we note that the phase which contains the open-circuit fault has its
dc component equals to the sum of the dc component of the two other phases and is expressed
by the following relations as:

• If the fault is at phase A, then: h0A = h0B + h0C
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Where h0A is the zero-order harmonic of phase A, h0B the zero-order harmonic of phase B and
h0C the zero-order harmonic of phase C.

5.2. Experimental results for healthy and faulty inverter using the stator current spectrum
analysis

In what follows we will present the experimental results for the healthy and open-circuit faulty
inverter. Figure 18 shows the harmonic spectrum of the current for the healthy state, while
Figure 19 depicts the experimental results for open-circuit fault state.

Figure 16. Harmonic spectrum of each phase of a healthy inverter (simulation results).

Figure 17. Harmonic spectrum of each phase of a faulty inverter (simulation results).

A Comparative Study on Some Fault Diagnosis Techniques in Three-Phase Inverter Fed Induction Motors
http://dx.doi.org/10.5772/intechopen.79960

91



6. Technique based on the measure of the current drop

This technique requires the use of two current sensors by inverter leg. The current mea-
surement may be performed using Hall Effect sensors. Hence the two current sensors for

Figure 18. Harmonic spectrum of each phase of a healthy inverter (experimental results).

Figure 19. Harmonic spectrum of each phase in case of a faulty inverter (experimental results).

Zero-order harmonic of the three phases

Faults types Phase A Phase B Phase C

Healthy case h0j j ¼ εh0, (h0 ¼ 0Þ h0j j ¼ εh0, (h0 ¼ 0Þ h0j j ¼ εh0, (h0 ¼ 0Þ
K1 open εh0 < h0j j < h1j j

φh0 ¼ 2700, (h0 ¼ 5:377Þ
εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:688Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:688Þ

K2 open εh0 < h0j j < h1j j
φh0 ¼ 900(h0 ¼ 5:35Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:68Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:68Þ

K3 open εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:68Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 5:36Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:68Þ

K4 open εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 5:39Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:69Þ

K5 open εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 5:38Þ

K6 open εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 5:37Þ

Table 7. Open-circuit fault characteristics of an inverter.
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each leg give the measurements of currents iK1 and iK2. If the current of phase A is
positive, the K1 switch is under open-circuit fault if it is ordered to close CK1 = 1 but the
current iK2 remains negative. For the K2 switch and when ik1 is negative, the open-circuit
fault is detected if CK2 = 1 and iK1, remain negative. We therefore obtain the following
equations as given in [16]:

OCK1 ¼ CK1 iK2<�i0ð Þ (12)

OCK2 ¼ CK2 iK1<�i0ð Þ (13)

where CK1 = 1 is the Control of K1 IGBT and CK2 = 1 is the Control of K2 IGBT (Table 8).

The algorithm of the open-circuit detection applied in this technique; as shown in Figure 20; is
based on the measurement of the current drop and can be described by the following steps:

1st step: Measure the current Ij.

2nd step: Search the current error ej by comparing the current Ij to the threshold current I0.

3th step: Identify whether any of the six errors exceed the threshold I0.

4th step: If so, identify the faulty leg of the inverter that should be immediately isolated.

CK1 CK2 iK1 < �i0 iK2 < �i0 Conclusion

1 0 0 1 K1 open

0 1 1 0 K2 open

Table 8. Fault detection of a faulty inverter using the measure of the current drop technique.

Figure 20. Algorithm for detecting an inverter open-circuit fault using the measure of the current drop.

A Comparative Study on Some Fault Diagnosis Techniques in Three-Phase Inverter Fed Induction Motors
http://dx.doi.org/10.5772/intechopen.79960

93



6. Technique based on the measure of the current drop

This technique requires the use of two current sensors by inverter leg. The current mea-
surement may be performed using Hall Effect sensors. Hence the two current sensors for

Figure 18. Harmonic spectrum of each phase of a healthy inverter (experimental results).

Figure 19. Harmonic spectrum of each phase in case of a faulty inverter (experimental results).

Zero-order harmonic of the three phases

Faults types Phase A Phase B Phase C

Healthy case h0j j ¼ εh0, (h0 ¼ 0Þ h0j j ¼ εh0, (h0 ¼ 0Þ h0j j ¼ εh0, (h0 ¼ 0Þ
K1 open εh0 < h0j j < h1j j

φh0 ¼ 2700, (h0 ¼ 5:377Þ
εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:688Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:688Þ

K2 open εh0 < h0j j < h1j j
φh0 ¼ 900(h0 ¼ 5:35Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:68Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:68Þ

K3 open εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:68Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 5:36Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:68Þ

K4 open εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 5:39Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:69Þ

K5 open εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 5:38Þ

K6 open εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 2700, (h0 ¼ 2:69Þ

εh0 < h0j j < h1j j
φh0 ¼ 900, (h0 ¼ 5:37Þ

Table 7. Open-circuit fault characteristics of an inverter.

Fault Detection and Diagnosis92

each leg give the measurements of currents iK1 and iK2. If the current of phase A is
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In what follows, the experimental results for the case of a healthy inverter state and an open-
circuit fault of the K1 switch state, of an inverter are represented as shown in Figure 21, using
the technique based on the measurement of the switch current drop.

7. Comparative study between the different techniques

The comparative study is carried out between different detection techniques. The aim of this
comparison is to investigate and evaluate the performance of each detection technique studied.
The comparison study focuses on the time detection, the localization ability, the hardware
aspect and also the error between the threshold set to zero and the fault value. From this
comparison study as illustrated both in Figure 22 and Table 9, we come up with the following
deductions: the fastest technique in terms of open-circuit fault time detection (1.5 ms) is the
measurement of the switch current drop technique. Unfortunately this technique presents also
two disadvantages: the first one is related to its inability for localization and is used only for
detection purpose. The second drawback of this technique is concerned with the hardware and
implementation aspect as it utilizes six current sensors (one for each gate of the six IGBT gates
of the three phase two-level voltage source inverter).

The three other techniques: the one based on the Park vectors witch polar coordinate, the one
based on the average value of the currents and the one based on the current spectral analysis

Figure 21. Healthy and faulty inverters detection (a) healthy inverter and (b) open-circuit fault.
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are all used for the detection and localization of open-circuit switch faults in inverters. It
should be noted that the three techniques require only three sensors, hence presenting an
advantage over the measurement of the current drop technique in terms of cost and imple-
mentation. The current spectral analysis has an additional advantage in terms of detection time
rapidity (2.5 ms) compared to the two other ones (3 and 5 ms) respectively. This comparative
study is summarized in Table 9. For all detection techniques presented in this chapter study,
the calculated error in Table 9, is that between the normal value corresponding to the thresh-
old for the healthy state case (note that the healthy state is taken as a reference corresponding
to zero value of the threshold) relative to the fault value corresponding to the IGBT switch
open-circuit fault state.

In what follows, Figure 22. illustrates the detection time of the four techniques used for open-
circuit fault occurrence at t = 1.5 ms.

Figure 22. Detection time of open-circuit fault for the four techniques, (a) Park vectors with polar coordinates, (b) mean
value of the currents, (c) current spectrum analysis and (d) measure of the current drop.

Techniques Hardware Detection
time (ms)

Detection Localization Error Quality and
performance

Park stator current Vectors Three current sensors 5 Yes Yes 7.62 Good

Average value of stator currents Three current sensors 3 Yes Yes 1.5 Good

Stator current spectrum analysis Three current sensors 2.5 Yes Yes 5.37 Very good

Measure of the stator current
drop

Six current sensors 1.5 Yes No 3 Average

Table 9. Comparison summary of the detection techniques.
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are all used for the detection and localization of open-circuit switch faults in inverters. It
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advantage over the measurement of the current drop technique in terms of cost and imple-
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to zero value of the threshold) relative to the fault value corresponding to the IGBT switch
open-circuit fault state.

In what follows, Figure 22. illustrates the detection time of the four techniques used for open-
circuit fault occurrence at t = 1.5 ms.
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value of the currents, (c) current spectrum analysis and (d) measure of the current drop.

Techniques Hardware Detection
time (ms)

Detection Localization Error Quality and
performance

Park stator current Vectors Three current sensors 5 Yes Yes 7.62 Good

Average value of stator currents Three current sensors 3 Yes Yes 1.5 Good

Stator current spectrum analysis Three current sensors 2.5 Yes Yes 5.37 Very good

Measure of the stator current
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Six current sensors 1.5 Yes No 3 Average
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8. Conclusion

In this chapter work, the main purpose is to present a very detailed study of some detection
techniques using both simulation and experimental work. The study is followed by a perfor-
mance comparison between the various techniques to illustrate the feasibility and merits of
each one of them and shows the suitability of each technique for a diagnostic situation. The
study focuses mainly on the detection time as a key parameter in the detection procedure, the
ability of the technique to localize in an exact manner the inverter IGBT switch open-circuit
fault and also to assess the hardware aspect in terms of number of sensors required. The
experimental work is conducted to validate the simulation results obtained.

The Technique based on the measure of the current drop is found to be superior in terms of
fault time detection rapidity but unfortunately cannot be used for fault localization which is a
drawback with respect to the three other presented techniques. Another disadvantage of this
technique is the high number of required current sensors which has doubled in comparison to
the three other studied techniques.

The three other techniques based on the Park vectors associated with polar coordinates, the
average value of the currents and the current spectral analysis can be all used for detection and
localization of inverter IGBT open-circuit faults and they require only three sensors, hence
presenting an advantage over the measure of the current drop technique in terms of cost and
implementation. The current spectrum analysis has an additional advantage in terms of detec-
tion time rapidity (2.5 ms) compared to the two other ones (3 ms and 5 ms).

The chapter also proposes polar coordinates calculation to enhance the Park current vectors
technic by developing a simple graphical representation which enables the exact computation
of both the magnitude and the phase angle of the fault current vector related to the faulty
inverter IGBT switch.
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8. Conclusion

In this chapter work, the main purpose is to present a very detailed study of some detection
techniques using both simulation and experimental work. The study is followed by a perfor-
mance comparison between the various techniques to illustrate the feasibility and merits of
each one of them and shows the suitability of each technique for a diagnostic situation. The
study focuses mainly on the detection time as a key parameter in the detection procedure, the
ability of the technique to localize in an exact manner the inverter IGBT switch open-circuit
fault and also to assess the hardware aspect in terms of number of sensors required. The
experimental work is conducted to validate the simulation results obtained.

The Technique based on the measure of the current drop is found to be superior in terms of
fault time detection rapidity but unfortunately cannot be used for fault localization which is a
drawback with respect to the three other presented techniques. Another disadvantage of this
technique is the high number of required current sensors which has doubled in comparison to
the three other studied techniques.

The three other techniques based on the Park vectors associated with polar coordinates, the
average value of the currents and the current spectral analysis can be all used for detection and
localization of inverter IGBT open-circuit faults and they require only three sensors, hence
presenting an advantage over the measure of the current drop technique in terms of cost and
implementation. The current spectrum analysis has an additional advantage in terms of detec-
tion time rapidity (2.5 ms) compared to the two other ones (3 ms and 5 ms).

The chapter also proposes polar coordinates calculation to enhance the Park current vectors
technic by developing a simple graphical representation which enables the exact computation
of both the magnitude and the phase angle of the fault current vector related to the faulty
inverter IGBT switch.
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Abstract

The chapter is concerned with the application of distributed discrete-time linear Kalman
filtering with decentralized structure of sensors in fault residual generation. Two variants
of distributed Kalman filtering algorithms are introduced, giving the incidence of equiva-
lent functional realization structure of fault residual filters. The obtained solutions use
Kalman filter innovations in a nonstandard way to generate residuals with significantly
higher dynamic signal range. The obtained results, offering structures for fault detection
filter realization, are illustrated with a numerical example to note the effectiveness of the
approach.

Keywords: linear noisy systems, Kalman filtering, innovation sequences, fault residual
filters, distributed computing

1. Introduction

The castigatory principal aspect for designing a fault-tolerant control (FTC) structure is a
functionality of diagnostic operations that solve the fault detection and isolation (FDI) tasks.
These techniques most commonly use residuals generated by fault detection filters (FDF),
followed by the residual signal evaluation within decision functions. Guarantying adequate
sensitivity to faults, the accessory objective is to create residuals with minimal sensitivity to
noises. Kalman filtering is an optimal state estimation process applied to a dynamic system
that involves random noises, giving a linear, unbiased, and minimum error variance recursive
algorithm to optimally estimate the unknown state of a dynamic system from noisy data taken
from sensors [1, 2].
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Practically, a bank of Kalman filters is used to achieve sensor and actuator fault detection
applied to a steady-state system, while the statistical characteristics of the system are not
required to be known after a fault has occurred [3, 4]. In these methods, the faults are assumed
to be known, and the Kalman filters are designed for such kind of sensor or actuator faults.
Another approach based on Kalman filtering is the analysis of the innovation sequence, since
faults displace its zero mean and change its covariance matrix [5]. The associated problem is
quick detection of changes in these parameters from their nominal values. Evidently, research
in Kalman filter based-FDI is the subject of wide range of other publications (see, e.g., [6–9] and
the reference therein). Other applications can be found in [10].

The state estimation obtained by the Kalman filter prediction-correction equations at every
time instant can be solved almost optimally and substantially faster by applying a distributed
approach [11–14]. With this setup can be exploited the fact that the correction error can be
decaying exponentially with time instant sequence to reach the optimal values [15–18].

The chapter exploits a variant of distributed methods to apply the distributed correction stage
filtering equations on each sensor level as well as an approach based on quasi-parallel central
computation. Benefiting from the distributed Kalman filtering algorithm, two residually
equivalent signal structures are presented for the discrete-time linear noisy systems.

The outline of this chapter is as follows: Section 1 delineates the problem and draws the basic
starting points of solutions. Dealing with the discrete-time noisy systems description, the equa-
tions describing Kalman filters for uncorrelatedmeasurement and system noises are traced out in
Section 2, to delineate distributed approaches in Kalman filter design, suitable for supporting the
fault residual generation, presented in Section 3. Section 4 gives a numerical example, illustrating
the properties of the proposed method, and Section 5 presents some concluding remarks.

Throughout the chapter, the notations are narrowly standard in such a way that xT and XT

denote the transpose of vector x and matrix X, respectively, and diag �½ � denotes a block diago-
nal matrix—for a square matrix X > 0 means that X is a symmetric positive definite matrix.
The symbol In indicates the nth order unit matrix; IR denotes the set of real numbers; IRn and
IRn�r refer to the set of all n-dimensional real vectors and n� r real matrices, respectively; and
Zþ is the set of all positive integers.

2. Discrete-time linear Kalman filter

In this section, one version of the Kalman filtering concept is applied for the discrete-time linear
multi inputs and multi outputs (MIMO) plants with the system and output noises of the form

q iþ 1ð Þ ¼ Fq ið Þ þGu ið Þ þ v ið Þ, (1)

y ið Þ ¼ Cq ið Þ þ o ið Þ, (2)

where q ið Þ∈ IRn, u ið Þ∈ IRr, and y ið Þ∈ IRm are vectors of the system state, input and measure-
ment output variables, respectively; v ið Þ∈ IRn and o ið Þ∈ IRm are vectors of the system and
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measurement noise; and F ∈ IRn�n, G∈ IRn�r, and C∈ IRm�n are conditioned by 1 ≤m, r ≤n.
Kalman filter is used only for diagnostic purposes. Zero-mean Gaussian white noise processes
are considered such that

E
v ið Þ
o ið Þ

� �� �
¼ 0

0

� �
, (3)

E
v ið Þ
o ið Þ
� �

vT kð Þ oT kð Þ� �� �
¼ Q S

ST R

� �
δik, (4)

where E �f g is the a statistical averaging operator,

δik ¼
1 if i ¼ k,
0 if i 6¼ k,

�
(5)

is the Kronecker delta-function and the covariance matrices Q∈ IRn�n and R∈ IRm�m are sym-
metric positive definite matrices.

It is assumed that the deterministic system initial state q 0ð Þ ¼ q0 is independent of v ið Þ and o ið Þ
in the sense that

E q0v
T ið Þ� � ¼ 0, E q0o

T ið Þ� � ¼ 0 for all i (6)

and that the system and measurement noises are uncorrelated, i.e., S ¼ 0.

Determining the optimal system state vector estimate, qe iji� 1ð Þ denotes the predicted estima-
tion of the system state vector q ið Þ at the time instant i in the dependency on all noisy output
measurement vector sequence y jð Þ; j ¼ 0; 1;…; i� 1f g up to time instant i� 1; qe ijið Þ is the
corrected estimation of the system state vector q ið Þ at the time instant i in the dependency
on all noisy output measurement sequence y jð Þ; j ¼ 0; 1;…; if g up to time instant i; and
e iji� 1ð Þ ¼ q ið Þ � qe iji� 1ð Þ and e ijið Þ ¼ q ið Þ � qe ijið Þ are prediction and correction errors.

Definition 1. [19] If the Kalman filter, associated with the plant (1), (2) with uncorrelated system and
measurement noises, is defined by the set of equations

qe iji� 1ð Þ ¼ Fqe i� 1ji� 1ð Þ þGu i� 1ð Þ, (7)

qe ijið Þ ¼ qe iji� 1ð Þ þ J ið Þ y ið Þ � ye iji� 1ð Þ� �
, (8)

ye iji� 1ð Þ ¼ Cqe iji� 1ð Þ, (9)

ye ijið Þ ¼ Cqe ijið Þ, (10)

then with qe 0j0ð Þ ¼ q0, P 0j0ð Þ ¼ Q ∘ , where Q ∘ ∈ IRn�n is a positive definite matrix, yielding

J ið Þ ¼ P iji� 1ð ÞCT Rþ CP iji� 1ð ÞCT� ��1
, (11)
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P iji� 1ð Þ ¼ FP i� 1ji� 1ð ÞFT þQ, (12)

P ijið Þ ¼ I � J ið ÞCð ÞP iji� 1ð Þ, (13)

where

P iji� 1ð Þ ¼ E e iji� 1ð ÞeT iji� 1ð Þ� �
, (14)

P ijið Þ ¼ E e ijið ÞeT ijið Þ� �
, (15)

are the covariance matrices of prediction and correction errors and J ið Þ∈ IRn�m is the Kalman filter gain
matrix, all at time instant i.

The discrete-time Kalman filter equations can be algebraically manipulated into a variety of
forms [6, 16, 20]. From the point of view of distributed filtration, it is necessary to achieve such
form of the equation for calculating the Kalman gain J ið Þ that yields the matrix C from the
matrix inversion operation (see (11)). If the system and measurement noises are uncorrelated,
then for the Kalman filter gain, one can propose the following:

Lemma 1. If the system and measurement noises are uncorrelated, then the Kalman filter gain and the
correction error covariance matrix can be computed using (12) and

J ið Þ ¼ P ijið ÞCTR�1, (16)

P�1 ijið Þ ¼ P�1 iji� 1ð Þ þ CTR�1C: (17)

Proof. Substituting (11) into (13), one can obtain that

P ijið Þ ¼ P iji� 1ð Þ � P iji� 1ð ÞCT Rþ CP iji� 1ð ÞCT� ��1
CP iji� 1ð Þ: (18)

Exploiting the Sherman-Morrison-Woodbury formula of the form [21].

Aþ BDBT� ��1 ¼ A�1 � A�1B D�1 þ BTA�1B
� ��1

BTA�1, (19)

where square invertible matrices A, D, and a matrix B of appropriate dimensions are such that
Aþ BDBT� �

is invertible, with

A ¼ P iji� 1ð Þ, B ¼ P iji� 1ð ÞCT, D ¼ � Rþ CP iji� 1ð ÞCT� ��1
, (20)

yields, since the covariance matrices are positive definite,

P�1 ijið Þ ¼ P�1 iji� 1ð Þ � P�1 iji� 1ð ÞP iji� 1ð ÞCTE�1CP iji� 1ð ÞP�1 iji� 1ð Þ, (21)

where

E ¼ �R� CP iji� 1ð ÞCT þ CP iji� 1ð ÞP�1 iji� 1ð ÞP iji� 1ð ÞCT ¼ �R: (22)

Then, evidently,
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P�1 ijið Þ ¼ P�1 iji� 1ð Þ � CTE�1C (23)

and (31) implies (17).

Premultiplying the left side byP�1 ijið Þ and postmultiplying the right side by P�1 iji� 1ð Þ, (13) gives

P�1 iji� 1ð Þ ¼ P�1 ijið Þ � P�1 ijið ÞJ ið ÞC (24)

and comparing (17) and (24), it can be seen that

P�1 ijið ÞJ ið ÞC ¼ CTR�1C: (25)

Thus, (25) implies (16). This concludes the proof.

Note, since CTR�1C is at least a positive semi-definite matrix, it is evident from (17) that P ijið Þ
is never larger than P iji� 1ð Þ. Moreover, the result is an unbiased filter with the estimates of
minimum error variances. More details can be found in [12, 22].

Corollary 1. Considering that qe iji� 1ð Þ is known and qe ijið Þ is the best estimate of q ið Þ that minimizes
the cost criterion

T ið Þ ¼ q ið Þ � qe iji� 1ð Þ� �TP�1 iji� 1ð Þ q ið Þ � qe iji� 1ð Þ� �

þ y ið Þ � Cq ið Þð ÞTR�1 y ið Þ � Cq ið Þð Þ:
(26)

Then, evaluating (26) it follows, with the optimal setting of a state vector estimate q ið Þ ¼ q ijið Þ, that the
minimum expected cost is given by

dT ið Þ
dq ið ÞT ¼ P�1 iji� 1ð Þ q ijið Þ � qe iji� 1ð Þ� �� CTR�1 y ið Þ � Cq ijið Þð Þ ¼ 0, (27)

which implies

P�1 iji� 1ð Þ þ CTR�1C
� �

qe ijið Þ ¼ P�1 iji� 1ð Þqe iji� 1ð Þ þ CTR�1y ið Þ
¼ P�1 iji� 1ð Þ þ CTR�1C
� �

qe iji� 1ð Þ
þ CTR�1 y ið Þ � Cqe iji� 1ð Þ� �

:

(28)

Therefore, using the above relations, at the ith step Eq. (28) gives

qe ijið Þ ¼ qe iji� 1ð Þ þ P�1 iji� 1ð Þ þ CTR�1C
� ��1

CTR�1 y ið Þ � Cqe iji� 1ð Þ� �

¼ qe iji� 1ð Þ þ P ijið Þ � CTR�1 y ið Þ � Cqe iji� 1ð Þ� �
:

(29)

Pre-multiplying the left side by P ijið Þ and post-multiplying the right side by P iji� 1ð Þ then it follows
from (17)

P iji� 1ð Þ ¼ P ijið Þ þ P ijið ÞCTR�1CP iji� 1ð Þ, (30)
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P iji� 1ð Þ ¼ FP i� 1ji� 1ð ÞFT þQ, (12)

P ijið Þ ¼ I � J ið ÞCð ÞP iji� 1ð Þ, (13)

where

P iji� 1ð Þ ¼ E e iji� 1ð ÞeT iji� 1ð Þ� �
, (14)

P ijið Þ ¼ E e ijið ÞeT ijið Þ� �
, (15)

are the covariance matrices of prediction and correction errors and J ið Þ∈ IRn�m is the Kalman filter gain
matrix, all at time instant i.

The discrete-time Kalman filter equations can be algebraically manipulated into a variety of
forms [6, 16, 20]. From the point of view of distributed filtration, it is necessary to achieve such
form of the equation for calculating the Kalman gain J ið Þ that yields the matrix C from the
matrix inversion operation (see (11)). If the system and measurement noises are uncorrelated,
then for the Kalman filter gain, one can propose the following:

Lemma 1. If the system and measurement noises are uncorrelated, then the Kalman filter gain and the
correction error covariance matrix can be computed using (12) and

J ið Þ ¼ P ijið ÞCTR�1, (16)

P�1 ijið Þ ¼ P�1 iji� 1ð Þ þ CTR�1C: (17)

Proof. Substituting (11) into (13), one can obtain that

P ijið Þ ¼ P iji� 1ð Þ � P iji� 1ð ÞCT Rþ CP iji� 1ð ÞCT� ��1
CP iji� 1ð Þ: (18)

Exploiting the Sherman-Morrison-Woodbury formula of the form [21].

Aþ BDBT� ��1 ¼ A�1 � A�1B D�1 þ BTA�1B
� ��1

BTA�1, (19)

where square invertible matrices A, D, and a matrix B of appropriate dimensions are such that
Aþ BDBT� �

is invertible, with

A ¼ P iji� 1ð Þ, B ¼ P iji� 1ð ÞCT, D ¼ � Rþ CP iji� 1ð ÞCT� ��1
, (20)

yields, since the covariance matrices are positive definite,

P�1 ijið Þ ¼ P�1 iji� 1ð Þ � P�1 iji� 1ð ÞP iji� 1ð ÞCTE�1CP iji� 1ð ÞP�1 iji� 1ð Þ, (21)

where

E ¼ �R� CP iji� 1ð ÞCT þ CP iji� 1ð ÞP�1 iji� 1ð ÞP iji� 1ð ÞCT ¼ �R: (22)

Then, evidently,
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P�1 ijið Þ ¼ P�1 iji� 1ð Þ � CTE�1C (23)

and (31) implies (17).

Premultiplying the left side byP�1 ijið Þ and postmultiplying the right side by P�1 iji� 1ð Þ, (13) gives

P�1 iji� 1ð Þ ¼ P�1 ijið Þ � P�1 ijið ÞJ ið ÞC (24)

and comparing (17) and (24), it can be seen that

P�1 ijið ÞJ ið ÞC ¼ CTR�1C: (25)

Thus, (25) implies (16). This concludes the proof.

Note, since CTR�1C is at least a positive semi-definite matrix, it is evident from (17) that P ijið Þ
is never larger than P iji� 1ð Þ. Moreover, the result is an unbiased filter with the estimates of
minimum error variances. More details can be found in [12, 22].

Corollary 1. Considering that qe iji� 1ð Þ is known and qe ijið Þ is the best estimate of q ið Þ that minimizes
the cost criterion

T ið Þ ¼ q ið Þ � qe iji� 1ð Þ� �TP�1 iji� 1ð Þ q ið Þ � qe iji� 1ð Þ� �

þ y ið Þ � Cq ið Þð ÞTR�1 y ið Þ � Cq ið Þð Þ:
(26)

Then, evaluating (26) it follows, with the optimal setting of a state vector estimate q ið Þ ¼ q ijið Þ, that the
minimum expected cost is given by

dT ið Þ
dq ið ÞT ¼ P�1 iji� 1ð Þ q ijið Þ � qe iji� 1ð Þ� �� CTR�1 y ið Þ � Cq ijið Þð Þ ¼ 0, (27)

which implies

P�1 iji� 1ð Þ þ CTR�1C
� �

qe ijið Þ ¼ P�1 iji� 1ð Þqe iji� 1ð Þ þ CTR�1y ið Þ
¼ P�1 iji� 1ð Þ þ CTR�1C
� �

qe iji� 1ð Þ
þ CTR�1 y ið Þ � Cqe iji� 1ð Þ� �

:

(28)

Therefore, using the above relations, at the ith step Eq. (28) gives

qe ijið Þ ¼ qe iji� 1ð Þ þ P�1 iji� 1ð Þ þ CTR�1C
� ��1

CTR�1 y ið Þ � Cqe iji� 1ð Þ� �

¼ qe iji� 1ð Þ þ P ijið Þ � CTR�1 y ið Þ � Cqe iji� 1ð Þ� �
:

(29)

Pre-multiplying the left side by P ijið Þ and post-multiplying the right side by P iji� 1ð Þ then it follows
from (17)

P iji� 1ð Þ ¼ P ijið Þ þ P ijið ÞCTR�1CP iji� 1ð Þ, (30)

Fault Residuals Based on Distributed Discrete-Time Linear Kalman Filtering
http://dx.doi.org/10.5772/intechopen.80296

105



which can be proved recursively as follows

P ijið Þ ¼ In � P ijið ÞCTR�1C
� �

P iji� 1ð Þ: (31)

Comparing (29) with the covariance matrix of the filtering error given by (13), it is evident that

J ið Þ ¼ P ijið ÞCTR�1 (32)

which is identical to (16).

On the other side, substituting (11) into (13), one can write

P ijið Þ ¼ P iji� 1ð Þ � P iji� 1ð ÞCT Rþ CP iji� 1ð ÞCT� ��1
CP iji� 1ð Þ (33)

and using the Sherman-Morrison-Woodbury formula, Eq. (27), it follows

P�1 ijið Þ ¼ P�1 iji� 1ð Þ � CT �R� CP iji� 1ð ÞCT þ CP iji� 1ð ÞCT� ��1
C (34)

and so, evidently, (34) gives (17).

3. Fault residual generation using distributed Kalman filtering

The obtained equations, Eqs. (16) and (17), allow the use of the open form of the Kalman filter
equations if

R ¼ E o ið ÞoT ið Þ� � ¼ diag R1 R2 ⋯ Rm½ �: (35)

Writing separately,

yT ið Þ ¼ y1 ið Þ y2 ið Þ ⋯ ym ið Þ� �
, (36)

uT ið Þ ¼ u1 ið Þ u2 ið Þ ⋯ ur ið Þ½ �, (37)

CT ¼ c1 c2 … cm½ �, G ¼ g1 g2 … gr
� �

, (38)

then, (7)–(11), (16), and (27) imply

qe iji� 1ð Þ ¼ Fqe i� 1ji� 1ð Þ þ
Xw

h¼1

ghuh i� 1ð Þ, (39)

qe ijið Þ ¼ qe iji� 1ð Þ þ
Xm

h¼1

jh ið Þ yh ið Þ � cTh qe iji� 1ð Þ� �
, (40)

yej iji� 1ð Þ ¼ cTh qe iji� 1ð Þ, (41)
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yej ijið Þ ¼ cTh qe ijið Þ, (42)

jh ið Þ ¼ P ijið ÞchR�1
h , (43)

P�1 ijið Þ ¼ P�1 iji� 1ð Þ þ
Xm

h¼1

chR�1
h cTh , (44)

P iji� 1ð Þ ¼ FP i� 1ji� 1ð ÞFT þQ: (45)

It is evident from the above given formulation that the relation of (40) gives the possibility to
compute corrections from the data obtained at all sensor nodes.

Theorem 1. Defining the residual vector as

rT ið Þ ¼ z1 ið Þ z2 ið Þ … zm ið Þ½ �, (46)

where

zh ið Þ ¼ yh ið Þ � cTh qec iji� 1ð Þ, (47)

then

qec iji� 1ð Þ ¼ Fqec i� 1ji� 1ð Þ þ
Xr

h¼1

ghuh i� 1ð Þ, (48)

qed iji� 1ð Þ ¼ Fqed i� 1ji� 1ð Þ, (49)

qec ijið Þ ¼ qec iji� 1ð Þ, (50)

qed ijið Þ ¼ qed iji� 1ð Þ þ P ijið Þ
Xm

h¼1

chR�1
h zh ið Þ � cTh qed iji� 1ð Þ� �

, (51)

while the filter gain matrices, as well as recurrences of the covariance matrices are given by (43)–(45).

Proof. Considering that there are components of the system state vector estimate that are
dependent on the control signal as well as ones that are not dependent on the control signals,
since the correction step does not depend on the control inputs, (40) can be rewritten as

qe ijið Þ ¼ qec iji� 1ð Þ þ qed iji� 1ð Þ þ
Xm

h¼1

jh ið Þ yh ið Þ � cTh qec iji� 1ð Þ þ qed iji� 1ð Þ� �� �
: (52)

Prescribing that

qe ijið Þ ¼ qed ijið Þ þ qec ijið Þ, (53)

Eqs. (52) and (53) can be separated as
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which can be proved recursively as follows

P ijið Þ ¼ In � P ijið ÞCTR�1C
� �

P iji� 1ð Þ: (31)

Comparing (29) with the covariance matrix of the filtering error given by (13), it is evident that

J ið Þ ¼ P ijið ÞCTR�1 (32)

which is identical to (16).

On the other side, substituting (11) into (13), one can write

P ijið Þ ¼ P iji� 1ð Þ � P iji� 1ð ÞCT Rþ CP iji� 1ð ÞCT� ��1
CP iji� 1ð Þ (33)

and using the Sherman-Morrison-Woodbury formula, Eq. (27), it follows

P�1 ijið Þ ¼ P�1 iji� 1ð Þ � CT �R� CP iji� 1ð ÞCT þ CP iji� 1ð ÞCT� ��1
C (34)

and so, evidently, (34) gives (17).

3. Fault residual generation using distributed Kalman filtering

The obtained equations, Eqs. (16) and (17), allow the use of the open form of the Kalman filter
equations if

R ¼ E o ið ÞoT ið Þ� � ¼ diag R1 R2 ⋯ Rm½ �: (35)

Writing separately,

yT ið Þ ¼ y1 ið Þ y2 ið Þ ⋯ ym ið Þ� �
, (36)

uT ið Þ ¼ u1 ið Þ u2 ið Þ ⋯ ur ið Þ½ �, (37)

CT ¼ c1 c2 … cm½ �, G ¼ g1 g2 … gr
� �

, (38)

then, (7)–(11), (16), and (27) imply

qe iji� 1ð Þ ¼ Fqe i� 1ji� 1ð Þ þ
Xw

h¼1

ghuh i� 1ð Þ, (39)

qe ijið Þ ¼ qe iji� 1ð Þ þ
Xm

h¼1

jh ið Þ yh ið Þ � cTh qe iji� 1ð Þ� �
, (40)

yej iji� 1ð Þ ¼ cTh qe iji� 1ð Þ, (41)
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yej ijið Þ ¼ cTh qe ijið Þ, (42)

jh ið Þ ¼ P ijið ÞchR�1
h , (43)

P�1 ijið Þ ¼ P�1 iji� 1ð Þ þ
Xm

h¼1

chR�1
h cTh , (44)

P iji� 1ð Þ ¼ FP i� 1ji� 1ð ÞFT þQ: (45)

It is evident from the above given formulation that the relation of (40) gives the possibility to
compute corrections from the data obtained at all sensor nodes.

Theorem 1. Defining the residual vector as

rT ið Þ ¼ z1 ið Þ z2 ið Þ … zm ið Þ½ �, (46)

where

zh ið Þ ¼ yh ið Þ � cTh qec iji� 1ð Þ, (47)

then

qec iji� 1ð Þ ¼ Fqec i� 1ji� 1ð Þ þ
Xr

h¼1

ghuh i� 1ð Þ, (48)

qed iji� 1ð Þ ¼ Fqed i� 1ji� 1ð Þ, (49)

qec ijið Þ ¼ qec iji� 1ð Þ, (50)

qed ijið Þ ¼ qed iji� 1ð Þ þ P ijið Þ
Xm

h¼1

chR�1
h zh ið Þ � cTh qed iji� 1ð Þ� �

, (51)

while the filter gain matrices, as well as recurrences of the covariance matrices are given by (43)–(45).

Proof. Considering that there are components of the system state vector estimate that are
dependent on the control signal as well as ones that are not dependent on the control signals,
since the correction step does not depend on the control inputs, (40) can be rewritten as

qe ijið Þ ¼ qec iji� 1ð Þ þ qed iji� 1ð Þ þ
Xm

h¼1

jh ið Þ yh ið Þ � cTh qec iji� 1ð Þ þ qed iji� 1ð Þ� �� �
: (52)

Prescribing that

qe ijið Þ ¼ qed ijið Þ þ qec ijið Þ, (53)

Eqs. (52) and (53) can be separated as
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qec ijið Þ ¼ qec iji� 1ð Þ, (54)

qed ijið Þ ¼ qed iji� 1ð Þ þ
Xm

h¼1

jh ið Þ yh ið Þ � cTh qec iji� 1ð Þ þ qed iji� 1ð Þ� �� �
(55)

and using (47), (54) gives (50), and (55) implies (51).

Substituting (53) in (39) yields

qe iji� 1ð Þ ¼ F qed i� 1ji� 1ð Þ þ qec i� 1ji� 1ð Þ� �þ
Xw

h¼1

ghuh i� 1ð Þ (56)

and, evidently, (56) implies (48) and (49). This concludes the proof. □
Remark 1. If Eqs. (46)–(51) are analyzed from a computational point of view, it is clear that their
structures support autonomous parallel calculations only with a single interaction defined by Eq. (47).
However, the cost for this parallelism is additional computation at each step, but the directional
properties of the components of the residual vector are advantageous in the case of single sensor faults.
The directional sensor residual property derives indirectly from relationship (44). Since every compo-
nent zh ið Þ carries with it the measurement noise oh ið Þ if qed iji� 1ð Þ is used for LQG control, it will be
no noise at the state control law input.

In principle, it is possible to define the residue generation by results of the local system state
correction at Kalman filtration at the time instant i.

Theorem 2. Defining the residual vector as

rT ið Þ ¼ z1 ið Þ z2 ið Þ … zm ið Þ½ �, (57)

where

zh ið Þ ¼ yh ið Þ � cTh qec iji� 1ð Þ, (58)

then

qedj iji� 1ð Þ ¼ Fqedj i� 1ji� 1ð Þ, (59)

qedj ijið Þ ¼ qedj iji� 1ð Þ þ jh ið Þ zh ið Þ � cTh qedj iji� 1ð Þ
� �

, (60)

jh ið Þ ¼ Ph ijið ÞchR�1
h , (61)

P�1
h ijið Þ ¼ P�1 iji� 1ð Þ þ chR�1

h cTh , (62)

while the predicted system state at the time instant i is computed centrally and the filtered full system
state is covered by the equations
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qed ijið Þ ¼
Xm

h¼1

P ijið ÞP�1
h ijið Þqedj ijið Þ

�
Xm

h¼1

P ijið ÞP�1 iji� 1ð ÞFqedj i� 1ð Þ∣i� 1ÞÞ

þ P ijið ÞP�1 iji� 1ð ÞFqed i� 1ji� 1ð Þ,

(63)

qec ijið Þ ¼ qec iji� 1ð Þ (64)

at the time instants i∈Zþ.

Proof.The correction step for theKalman filter inEq. (51) can beprescribed locally for the jth node as

qedj ijið Þ ¼ qedj iji� 1ð Þ þ jh ið Þ zh ið Þ � zdh iji� 1ð Þð Þ, (65)

where

zh ið Þ ¼ yh ið Þ � cTh qec iji� 1ð Þ, (66)

zdh iji� 1ð Þ ¼ cTh qedj iji� 1ð Þ, (67)

jh ið Þ ¼ Ph ijið ÞchR�1
h , (68)

P�1
h ijið Þ ¼ P�1 iji� 1ð Þ þ chR�1

h cTh : (69)

Substituting (66), rearranging and postmultiplying the left side by P�1
h ijið Þ, (65) implies

P�1
h ijið Þ qedj ijið Þ � qedj iji� 1ð Þ

� �
¼ chR�1

h zh ið Þ � zdh iji� 1ð Þð Þ, (70)

chR�1
h zh ið Þ ¼ chR�1

h cTh qedj iji� 1ð Þ þ P�1
h ijið Þ qedj ijið Þ � qedj iji� 1ð Þ

� �
, (71)

respectively. Since (69) gives

chR�1
h cTh ¼ P�1

h ijið Þ � P�1 iji� 1ð Þ, (72)

with a simple elimination after inserting (72), (71) gives

chR�1
h zh ið Þ ¼ P�1

h ijið Þ qedj ijið Þ � qedj iji� 1ð Þ
� �

þ P�1
h ijið Þqedj iji� 1ð Þ � P�1 iji� 1ð Þqedj iji� 1ð Þ

¼ P�1
h ijið Þqedj ijið Þ � P�1 iji� 1ð Þqedj iji� 1ð Þ:

(73)

Combining (49) and (51) results in

qed ijið Þ ¼ Fqed i� 1ji� 1ð Þ þ P ijið Þ
Xm

h¼1

chR�1
h zh ið Þ � cThFqed i� 1ji� 1ð Þ,�

(74)
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qec ijið Þ ¼ qec iji� 1ð Þ, (54)

qed ijið Þ ¼ qed iji� 1ð Þ þ
Xm

h¼1

jh ið Þ yh ið Þ � cTh qec iji� 1ð Þ þ qed iji� 1ð Þ� �� �
(55)

and using (47), (54) gives (50), and (55) implies (51).

Substituting (53) in (39) yields

qe iji� 1ð Þ ¼ F qed i� 1ji� 1ð Þ þ qec i� 1ji� 1ð Þ� �þ
Xw

h¼1

ghuh i� 1ð Þ (56)

and, evidently, (56) implies (48) and (49). This concludes the proof. □
Remark 1. If Eqs. (46)–(51) are analyzed from a computational point of view, it is clear that their
structures support autonomous parallel calculations only with a single interaction defined by Eq. (47).
However, the cost for this parallelism is additional computation at each step, but the directional
properties of the components of the residual vector are advantageous in the case of single sensor faults.
The directional sensor residual property derives indirectly from relationship (44). Since every compo-
nent zh ið Þ carries with it the measurement noise oh ið Þ if qed iji� 1ð Þ is used for LQG control, it will be
no noise at the state control law input.

In principle, it is possible to define the residue generation by results of the local system state
correction at Kalman filtration at the time instant i.

Theorem 2. Defining the residual vector as

rT ið Þ ¼ z1 ið Þ z2 ið Þ … zm ið Þ½ �, (57)

where

zh ið Þ ¼ yh ið Þ � cTh qec iji� 1ð Þ, (58)

then

qedj iji� 1ð Þ ¼ Fqedj i� 1ji� 1ð Þ, (59)

qedj ijið Þ ¼ qedj iji� 1ð Þ þ jh ið Þ zh ið Þ � cTh qedj iji� 1ð Þ
� �

, (60)

jh ið Þ ¼ Ph ijið ÞchR�1
h , (61)

P�1
h ijið Þ ¼ P�1 iji� 1ð Þ þ chR�1

h cTh , (62)

while the predicted system state at the time instant i is computed centrally and the filtered full system
state is covered by the equations
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P ijið ÞP�1
h ijið Þqedj ijið Þ

�
Xm

h¼1

P ijið ÞP�1 iji� 1ð ÞFqedj i� 1ð Þ∣i� 1ÞÞ

þ P ijið ÞP�1 iji� 1ð ÞFqed i� 1ji� 1ð Þ,

(63)

qec ijið Þ ¼ qec iji� 1ð Þ (64)

at the time instants i∈Zþ.

Proof.The correction step for theKalman filter inEq. (51) can beprescribed locally for the jth node as

qedj ijið Þ ¼ qedj iji� 1ð Þ þ jh ið Þ zh ið Þ � zdh iji� 1ð Þð Þ, (65)

where

zh ið Þ ¼ yh ið Þ � cTh qec iji� 1ð Þ, (66)

zdh iji� 1ð Þ ¼ cTh qedj iji� 1ð Þ, (67)

jh ið Þ ¼ Ph ijið ÞchR�1
h , (68)

P�1
h ijið Þ ¼ P�1 iji� 1ð Þ þ chR�1

h cTh : (69)

Substituting (66), rearranging and postmultiplying the left side by P�1
h ijið Þ, (65) implies

P�1
h ijið Þ qedj ijið Þ � qedj iji� 1ð Þ

� �
¼ chR�1

h zh ið Þ � zdh iji� 1ð Þð Þ, (70)

chR�1
h zh ið Þ ¼ chR�1

h cTh qedj iji� 1ð Þ þ P�1
h ijið Þ qedj ijið Þ � qedj iji� 1ð Þ

� �
, (71)

respectively. Since (69) gives

chR�1
h cTh ¼ P�1

h ijið Þ � P�1 iji� 1ð Þ, (72)

with a simple elimination after inserting (72), (71) gives

chR�1
h zh ið Þ ¼ P�1

h ijið Þ qedj ijið Þ � qedj iji� 1ð Þ
� �
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¼ P�1
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(73)

Combining (49) and (51) results in
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chR�1
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(74)
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which can be written as

qed ijið Þ ¼
Xm

h¼1

P ijið ÞchR�1
h zh ið Þ þ In �

Xn

h¼1

P ijið ÞchR�1
h cTh

 !
Fqed i� 1ji� 1ð Þ: (75)

Pre-multiplying the left side of (44) by P ijið Þ leads to

In �
Xw

h¼1

P ijið ÞchR�1
h cTh ¼ P ijið ÞP�1 iji� 1ð Þ (76)

and considering (76), relation (75) takes the form

qed ijið Þ ¼
Xm

h¼1

P ijið ÞchR�1
h zh ið Þ þ P ijið ÞP�1 iji� 1ð ÞFqed i� 1ji� 1ð Þ: (77)

Thus, the substitution of (73) into (77) gives

qed ijið Þ ¼
Xm

h¼1

P ijið ÞP�1
h ijið Þqedj ijið Þ �

Xm

h¼1

P ijið ÞP�1 iji� 1ð Þqedj iji� 1ð Þ

þ P ijið ÞP�1 iji� 1ð ÞFqed i� 1ji� 1ð Þ
(78)

and with the notation

qedj iji� 1ð Þ ¼ Fqedj i� 1ji� 1ð Þ, (79)

(78) implies (62). This concludes the proof.

Remark 2. It is clear that each of Eqs. (59)–(62) is only bound to the jth node and therefore such
correction can be done locally for each sensor. Conversely, the system state prediction and the residual
vector must be computed globally by Eqs. (39), (53), (57), (58), (63), and (64), respectively.

Remark 3. Obviously, under the above conditions, the distributed realization of the Kalman filter
correction step is optimal in the sense of criterion (26), and therefore the structure of the fault residual
generator based on distributed Kalman filtration is optimal.

4. Illustrative examples

4.1. Example 1

To eliminate specific system dependencies, the Schur discrete-time linear strictly positive
system [23] is used for demonstration of the Kalman filtering technique in residual signals
construction. The considered system can be put in the system class (1)–(4), with the sampling
period ts ¼ 0:8s, with uncorrelated system and measurement Gaussian noise and the noise
covariance matrices
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R ¼ diag 0:003 0:04½ �, Q ¼ 0:002I4

while the system matrix parameters are

F ¼

0:7650 0:6267 0:6058 0:0510

0:1048 0:1083 0:0813 0:0098

0:1484 0:1419 0:1171 0:0150

0:1709 0:2286 0:1603 0:1998

2
666664

3
777775
,G ¼

0:0241 0:0139

0:0151 0:0013

0:0109 0:0056

0:0142 0:0032

2
666664

3
777775
,C ¼

0:0001 0 1 0

0:0000 0 0 1

" #
:

Since the discrete-time stochastic linear strictly positive system is stable, the system control law
in simulations is defined for the forced mode control as u ið Þ ¼ Wwo, where

W ¼ �117:3841 79:3124
280:8078 �187:1829

� �
, wo ¼

0:6
0:8

� �

and the initial conditions for the Kalman filter are

qe 0j0ð Þ ¼ 0, P 0j0ð Þ ¼ I4:

Using the given initial conditions, Figures 1 and 2 display the residuals obtained by the
residual filter generated by the distributed Kalman filter defined in (46)–(51), reflecting single
actuator and sensor faults, starting at the time instant t ¼ 50 s. The time scale is discrete with
the sampling period T ¼ 0:8s.

Evidently, the residual trajectories indicate that the proposed residual filter generates direc-
tional signals in the event of single sensor faults, and has a significantly higher dynamic signal
range in the event of single faults of the actuators, as compared to the residual presented using
the standard Kalman filter.

Figure 1. Residual responses to single faults: (a) the first actuator and (b) the second actuator.
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qed ijið Þ ¼
Xm

h¼1

P ijið ÞchR�1
h zh ið Þ þ In �

Xn

h¼1

P ijið ÞchR�1
h cTh

 !
Fqed i� 1ji� 1ð Þ: (75)
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In �
Xw

h¼1

P ijið ÞchR�1
h cTh ¼ P ijið ÞP�1 iji� 1ð Þ (76)
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qed ijið Þ ¼
Xm

h¼1

P ijið ÞchR�1
h zh ið Þ þ P ijið ÞP�1 iji� 1ð ÞFqed i� 1ji� 1ð Þ: (77)
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Xm
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P ijið ÞP�1
h ijið Þqedj ijið Þ �

Xm

h¼1

P ijið ÞP�1 iji� 1ð Þqedj iji� 1ð Þ

þ P ijið ÞP�1 iji� 1ð ÞFqed i� 1ji� 1ð Þ
(78)

and with the notation

qedj iji� 1ð Þ ¼ Fqedj i� 1ji� 1ð Þ, (79)

(78) implies (62). This concludes the proof.

Remark 2. It is clear that each of Eqs. (59)–(62) is only bound to the jth node and therefore such
correction can be done locally for each sensor. Conversely, the system state prediction and the residual
vector must be computed globally by Eqs. (39), (53), (57), (58), (63), and (64), respectively.
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correction step is optimal in the sense of criterion (26), and therefore the structure of the fault residual
generator based on distributed Kalman filtration is optimal.

4. Illustrative examples

4.1. Example 1

To eliminate specific system dependencies, the Schur discrete-time linear strictly positive
system [23] is used for demonstration of the Kalman filtering technique in residual signals
construction. The considered system can be put in the system class (1)–(4), with the sampling
period ts ¼ 0:8s, with uncorrelated system and measurement Gaussian noise and the noise
covariance matrices
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4.2. Example 2

To produce another example that demonstrates achievable performances of the presented
design method, the sign-indefinite Schur discrete-time linear system is used, where [24]

F ¼

1:1039 �0:2360 �0:0563 �0:0229
0:1063 0:7971 �0:0575 �0:0109
0:0100 �0:0211 0:9401 �0:0476
0:0599 �0:0843 �0:0111 0:9633

2
6664

3
7775,G ¼

0:1957 0:2878
0:0976 0:1921
0:0969 0:0939
0:0012 0:0982

2
6664

3
7775,C ¼ 0 0 0 1

0 1 0 0

� �
,

ts ¼ 0:05s, and the Gaussian noise covariance matrices are R ¼ diag 0:003 0:04½ � and
Q ¼ 0:002I4. To force the desired system output values, it is prescribed

W ¼ �2:1250 0:9375
1:8750 �0:5625

� �
, wo ¼

0:6
0:8

� �
, qe 0j0ð Þ ¼ 0, P 0j0ð Þ ¼ I4:

Figures 3 and 4 present the residual responses of the residual filter based on distributed
Kalman filtering, from which it is clear that the used principle, especially when compared to
the achievable responses with the alternative system presented in Example 1, is operational.
Evidently, the residual filter behavior is also acceptable for the system parameters in this
example and the system noise environment. The step-like single faults start and continue from
the time instant t ¼ 25 s, the time scale is discrete with the sampling period T ¼ 0:05s.

4.3. Example 3

Following the above-mentioned procedures, Example 3 verifies their effectiveness for the
linear discrete-time system with the parameters

Figure 2. Residual responses to single faults: (a) the first sensor and (b) the second sensor.
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F ¼

0:1 0:2 0:3 0:4
0:7 0 0 0:1
0:2 0:8 0:2 0:3
0 0 0:5 0:2

2
6664

3
7775, g ¼

0:1
0
0:3
0

2
6664

3
7775, gf ¼

0
0
0:3
0

2
6664

3
7775, c

T ¼ 1 0 0 1½ �, cTf ¼ 0 0 0 1½ �,

where F is a left-stochastic matrix [25], ts ¼ 0:05s, and the Gaussian noise covariance matrices are
R ¼ 0:003 andQ ¼ 0:002I4. The behavior of the system is changed by the state-feedback control

u ið Þ ¼ �kTq ið Þ þWwo

where

kT ¼ 0:2982 1:0731 0:3711 0:6412½ �, W ¼ 1:1834, wo ¼ 0:6,

Figure 3. Residual responses to single faults: (a) the first actuator and (b) the second actuator.

Figure 4. Residual responses to single faults: (a) the first sensor and (b) the second sensor.
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Figure 4. Residual responses to single faults: (a) the first sensor and (b) the second sensor.
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which provides Schur matrix Fc as follows

Fc ¼ F � gkT ¼

0:0702 0:0927 0:2629 0:3359

0:7000 0 0 0:1000

0:1105 0:4781 0:0887 0:1076

0 0 0:5000 0:2000

2
6666664

3
7777775

Note, the steady states of Fc are absorbing states.

The single fault effects in residuals, when using the proposed algorithm of distributed Kalman
filtering (46)–(51) with setting F ¼ Fc, qe 0j0ð Þ ¼ 0 and P 0j0ð Þ ¼ I4 are shown in Figure 5. The
time scale is discrete with the time sample interval T = 0.1s.

From the figures, we find that the fault responses are satisfactory by using the proposed
method also for this system and noise environment.

Analyzing all examples, exactly the same responses are reached using the same parameters as
before and assuming the same fault patterns if the residuals are evaluated exploiting formulas
(57)–(64) or (46)–(51). It is given by the equivalent principles of distributed computing that are
bound by the equivalent relationships (44) and (62), respectively. As a result, in this particular
point of view, the proposed distributed algorithm has only one common matrix component,
P�1 iji� 1ð Þ, which has to be transmitted to every separated sensor before carrying out the state
correction filtering step at every time instant. Since the correction step at time instant i is done
in dependency on the measured value at the same time instant y ið Þ, it is clear that the shorter
the computation at the correction step, the smaller the time-delay introduced into the fault
detection system responses.

Figure 5. Residual responses to single faults: (a) the actuator and (b) the sensor.
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5. Concluding remarks

Realization forms for fault detection residual structures, based on distributed Kalman filtering
destined for noisy discrete-time linear systems, were derived in this chapter. The main idea
deals with introducing a distributed sensor measurement noise corrector step of a Kalman
filter, applied in such a way to be locally uncorrelated with other sensor measurements. Two
different algorithmic supports, a parallel decentralized Kalman filter and a locally distributed
Kalman filter, are constructed to generate fault residuals. Both solutions are discussed in detail
to demonstrate the condition of their equivalency. The problem accomplishes the manipulation
in the manner giving guaranty of asymptotic stability of a local fault residual detection filter.
Simulated example is included to illustrate the applicability of the proposed methods, encour-
aging the results that are obtained. Note, since the Kalman filter is based on the nominal
system parameters G and C, it cannot estimate system states and outputs starting for faulty
regimes with modified matrices Gf and Cf, respectively.

From the point of cloud-based distributed systems, to combine appropriately the network and
computational resources, a locally distributed Kalman filter seems to be naturally adaptable,
also with cross-correlated sensor noises. Of course, no theoretical justification for this affirma-
tion is presented in the chapter. This is seen as an area for future research by the authors.
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Edited by Constantin Volosencu
This book offers a selection of papers in the field of fault detection and diagnosis, 

promoting new research results in the field, which come to join other publications in 
the literature. Authors from countries of four continents: United States of America, 

South Africa, China, India, Algeria and Croatia published worked examples and case 
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