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Preface

“A teacher can never truly teach unless he is still learning himself. A lamp can never light another
lamp unless it continues to burn its own flame. The teacher who has come to the end of his subject,

who has no living traffic with his knowledge but merely repeats his lessons to his students, can only
load their minds; he cannot quicken them.”

—Rabindranath Tagore

In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that de‐
scribes the flow of fluids, liquids, and gases. It has several subdisciplines, including aerody‐
namics (the study of air and other gases in motion) and hydrodynamics (the study of liquids
in motion). Fluid dynamics has a wide range of applications, including calculating forces
and moments on aircraft, determining the mass flow rate of petroleum through pipelines,
predicting weather patterns, understanding nebulae in interstellar space and modeling fis‐
sion weapon detonation. In this book, we provide readers with the fundamentals of fluid
flow problems. Specifically, Newtonian, non-Newtonian and nanofluids are discussed. Sev‐
eral methods exist to investigate such flow problems. This book introduces the applications
of new, exact, numerical and semianalytical methods for such problems. The book also dis‐
cusses different models for the simulation of fluid flow.

Chapter 1 is an introductory chapter, providing a brief discussion of fluid flow problems
and their application in society.

Chapter 2 is a brief description of existing viscoelastic models, starting with the classical
differential and integral models, and then focusing on new models that take advantage of
the enhanced properties of the Mittag–Leffler function (a generalization of the exponential
function). The generalized models considered in this work are the fractional Kaye–Bern‐
stein, Kearsley, Zapas integral model and the differential generalized exponential Phan-
Thien and Tanner (PTT) model. The integral model makes use of the relaxation function
obtained from a step-strain applied to the fractional Maxwell model, and the differential
model generalizes the familiar exponential PTT constitutive equation by substituting the ex‐
ponential function of the trace of the stress tensor by the Mittag–Leffler function.

In Chapter 3, a magnetohydrodynamic flow of a viscous and conducting fluid confined be‐
tween two parallel differentially moving boundaries is considered. The whole system is in a
strong magnetic field chosen in such a way that the Hartmann boundary layers that form in
this problem become singular at the points where the magnetic field becomes tangent to the
boundary. Two geometries are taken into account: plane and spherical. Within the class of
such configurations the velocity field of the fluid and the influence of the conductivity of the
boundaries on the fluid's motion are reviewed here.
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“A teacher can never truly teach unless he is still learning himself. A lamp can never light another 
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who has no living traffic with his knowledge but merely repeats his lessons to his students, can only 
load their minds; he cannot quicken them.” 

—Rabindranath Tagore 

In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that de‐
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and their application in society. 
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differential and integral models, and then focusing on new models that take advantage of 
the enhanced properties of the Mittag–Leffler function (a generalization of the exponential 
function). The generalized models considered in this work are the fractional Kaye–Bern‐
stein, Kearsley, Zapas integral model and the differential generalized exponential Phan-
Thien and Tanner (PTT) model. The integral model makes use of the relaxation function 
obtained from a step-strain applied to the fractional Maxwell model, and the differential 
model generalizes the familiar exponential PTT constitutive equation by substituting the ex‐
ponential function of the trace of the stress tensor by the Mittag–Leffler function. 

In Chapter 3, a magnetohydrodynamic flow of a viscous and conducting fluid confined be‐
tween two parallel differentially moving boundaries is considered. The whole system is in a 
strong magnetic field chosen in such a way that the Hartmann boundary layers that form in 
this problem become singular at the points where the magnetic field becomes tangent to the 
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XII Preface 

The aim of the study in Chapter 4 is to coat a stretching cylinder with the help of a liquid 
film spray. Casson fluid has been chosen for the coating phenomena. The thickness of the 
liquid film has been used variably and the influence of heat and mass transmission under 
the impact of thermophoresis has been encountered in the flow field. The required pressure 
term for the spray pattern during variable thickness is the main focus. Using suitable simi‐
larity transformations the basic flow equations for fluid motion have been converted into 
high-order non-linear coupled differential equations. A series of solutions to subsequent 
problem have been obtained using a controlling procedure optimal approach. 

The relationship of compressive behavior according to manufacturing process parameters of 
GeoNet is investigated in Chapter 5. The drainage behavior of the bi-and triplane GeoNet 
used for planar drainage analyzed and investigated the changes of the drainage behavior 
due to the restraining load. The data showed that there is no critical manufacturing factor 
that affects the compressive strength of the biplanar GeoNet. All of these parameters are 
affected in a very complicated way. The strand inclination mainly affects the after-compres‐
sive strength, i.e. roll-over behavior. The results considering site-specific conditions of the 
landfill system explain that temperature has an influence on the compressive behavior of the 
GeoNet. Compressive strength was reduced and the strain at yield increased gradually with 
temperature for both bi- and triplanar GeoNets. 

This text is suitable for senior undergraduate students, postgraduate students, engineers, 
and scientists. 

I am grateful to many friends, colleagues, and students around the world who offered their 
suggestions and help at various stages of the preparation of the book. I express my sincere 
thanks to my student Mr. Nadeem Ahmad Sheikh, lecturer at City University of Science and 
IT, Peshawar, for making this project successful. In spite of the best efforts of everyone in‐
volved, some typographical errors doubtless remain. Finally, I wish to express my special 
thanks to the staff of IntechOpen for their help and cooperation. 

Dr. Farhad Ali 
Head of Department of Mathematics 

City University of Science and Information Technology 
Peshawar, Pakistan 



 

 
          

 

 
  

 

Chapter 1 

Introductory Chapter: Fluid Flow Problems 

Farhad Ali and Nadeem Ahmad Sheikh 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/intechopen.81300 

1. Introduction 

This chapter will cover various flow regimes and their solutions, including, Newtonian,
non-Newtonian, and nanofluids via integral transforms and numerical schemes.

1.1. Background 

In many real life problems, heat transfer is an important issue and becomes a challenge for the
engineers and industrialists. In order to overcome this challenge, one of the methods, which
is commonly in use, is to increase the available surface area of heat exchange [1–4]. Hussanan
et al. [5] studied the use of oxide nanoparticles for the energy enhancement in water, kero-
sene, and engine oil-based nanofluids. Tesfai [6] experimentally investigated graphene and
graphene oxide suspension for thermal management application. Shafie et al. [7] are consid-
ered the first who reported a theoretical study on molybdenum disulfide (MoS ) nanoparticle

2 

suspended in water-based nanofluid in a channel. Khan et al. [8] and Khan [9] also analyzed
Molybdenum Disulfide nanofluids in a vertical channel with various effects. Few other inter-
esting investigations in this direction are those made by Wu and Zhao [10], Khan [11], Ali et al.
[12] Sheikholeslami and Bhatti [13], Rashidi et al. [14], Mahian et al. [15], and Kasaeian [16].

About 300 years ago, the idea of fractional derivatives was presented [17–21]. This was con-
sidered an abstract area of mathematics by many researchers at the initial stages, which will
be of no use and will contain only mathematical manipulations. For the last few decades, a
new era started in the field of mathematics that changed the interest of scientists from pure
mathematics to various applied fields of mathematical sciences, for instance, bioengineering,
viscoelasticity, mechatronics and biophysics. Applications of fractional calculus have also
been found to be used widely in various fields of science despite mathematics and physics.
In fluid dynamics, the noninteger order calculus has been widely used to describe the visco-
elastic behavior of the materials. The viscoelasticity of a material is defined as being deformed

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

http://creativecommons.org/licenses/by/3.0
http://dx.doi.org/10.5772/intechopen.81300


 
 
 
 
 
 
 

 
 

          
 

  
 

 

 

 
 
 

 

2 Fluid Flow Problems 

and exhibiting a viscous and elastic behavior through the mechanical energy of storage and
simultaneous behavior. The commonly used fractional derivative operators are that of the
Riemann-Liouville and the Caputo fractional derivatives. However, there have been some
shortcomings in use of these operators. When the Riemann-Liouville fractional derivatives are
used, the derivative of a constant is not zero, and some terms are contained without physical
significance while applying the Laplace transform, whereas in the case of Caputo fractional
derivatives, the kernel is a singular function. To overcome this problem, in 2015, Caputo and
Fabrizio have developed a new approach without singularities [18]. The time fractional deriv-
ative operator of Caputo-Fabrizio is suitable for the use of the Laplace transform. Frequently,
the classical models of equations governing the fluid flow are changed to fractional models,
just by replacing derivatives w.r.t time with fractional order derivatives of order α ∈ (0, 1) see 
for example [18]. Many scientists and researchers have used the Caputo-Fabrizio fractional
derivatives in their studies for physical models [22–28]. Atangana et al. [29] have studied the
ground water flowing in aquifer using the applications of the Caputo-Fabrizio derivatives.
Very recently, Atangana and Baleanu have presented a new fractional derivative with nonlo-
cal and nonsingular kernel [30–34]. Keeping in mind the above important features, the frac-
tional model for non-Newtonian fluid is considered in the present project.

MHD is the study of magnetic properties of electrically conducting fluids. Liquid metals, plasma,
salt water, and electrolytes are the examples of MHD fluid. The pioneering work on MHD has
been done by Alfven [35]. In 1970, for his great work, he also received a Nobel Prize. In engineer-
ing and technology, MHD has many applications such as hydromagnetic generators (it includes
disk system) and MHD flow meters, plasma studies, bearings, pumps, solar energy collection,
geothermal energy extractions and nuclear reactors, boundary layer control, extraction of petro-
leum products, and cooling of the metallic plate. There are many applications of hydromagnetic
flow of non-Newtonian fluids in a rotating body in metrology, geographic, turbo machinery,
astrophysical, and several other areas. In addition, it has a lot of applications in the biomedical
field for instance blood flow in capillaries and flows in blood oxygenation, etc. Also, it has many
applications in engineering such as in transpiration cooling, porous pipe design, and design of
filters [36]. The role of Hall effect on MHD flow in a rotating frame is remarkable.

In many industrial and natural conditions, the flow through porous media occurs. As rainwa-
ter penetrates through the permeable aquifer, hydrological engineering forced flow of oil into 
sandstone deposits, membrane separation process, drying process and powder technology. 
Recently, there have been numerous reports dealing with the transport phenomena in porous 
media, especially due to their importance in various applications, involving the manufactur-
ing and processing industries. It is assumed that the fluid is incompressible, and the fluid flow 
in the saturated porous medium is treated in most studies where the mass density is constant 
and the velocity of the fluid is independent of the mass density. The researchers can get help 
from a better knowledge of free convection through a porous medium in several fields such 
as heat exchanger, geothermal systems, insulation design, grain storage, catalytic reactors, 
filtering devices, and metal processing. Recently, attention has been focused on the uses of 
porous media in high-temperature applications. Porous media are used for the improvement 
of heat transfer in thermal insulation systems and coolant passages. It is the immeasurable 
need to ponder on convection flows of Newtonian and non-Newtonian fluids over a vertical 
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oscillating plate passing through a porous medium. In the applied science and engineering, 
porous media play an important role such as:

• Soil Science: the porous media (soil) contains and transports nutrients and water to plants.

• Hydrology: the porous media are a water bearing and sealing layer.

• Chemical Engineering: porous media are used as a filter or catalyst bed.

• Petroleum Engineering: porous media in the form of reservoir rock, stores, crude oil, and 
natural gas.
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Abstract

In this chapter, we present a brief description of existing viscoelastic models, starting with
the classical differential and integral models, and then focusing our attention on new
models that take advantage of the enhanced properties of the Mittag-Leffler function
(a generalization of the exponential function). The generalized models considered in this
work are the fractional Kaye-Bernstein, Kearsley, Zapas (K-BKZ) integral model and the
differential generalized exponential Phan-Thien and Tanner (PTT) model recently pro-
posed by our research group. The integral model makes use of the relaxation function
obtained from a step-strain applied to the fractional Maxwell model, and the differential
model generalizes the familiar exponential Phan-Thien and Tanner constitutive equation
by substituting the exponential function of the trace of the stress tensor by the Mittag-
Leffler function. Since the differential model is based on local operators, it reduces the
computational time needed to predict the flow behavior, and, it also allows a simpler
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8 Fluid Flow Problems 

We start this section with some basic concepts that are needed to derive and understand classi-
cal and fractional viscoelastic models. These are trivial concepts such as force, stress, viscosity, 
Hooke’s law of elasticity and also Newton’s law of viscosity. Later, we evolve to more complex 
concepts of viscoelasticity that involve the knowledge of fractional calculus, integral and 
differential models. 

It is well known that a force is any interaction that when unopposed will change the motion of 
an object/body. Stress is an internal resistance provided by the body itself whenever it is under 
deformation. Stress is defined as the intensity of internal forces developed in the material. The 
intensity of any quantity is defined as the ratio of the quantity to the area on which it is acting, 
leading to: Average Stress = Force/Area. If we want to know the stress in one material point, 
then we must take the limit of the area to zero. A good example on how stress works is given 
by imagining a person lying on top of thin layer of ice. When the person is lying down on the 
ice, the force (weight) divided by the area of the surface of the person in contact with the ice is 
smaller, when compared to the case when someone is standing up (the weight is the same, but 
the area in contact with the ice is smaller). Therefore, eventually, the ice will break due to the 
high internal stresses when the person is standing. Finally, we refer to elasticity as the ability of 
a body to resist a distorting influence and to return to its original size and shape when that 
influence or force is removed. See for example Figure 1 where three springs are stretched. If we 
remove the weights attached to the springs, the spring would ideally return to its initial/ 
natural position. 

Figure 1(b) also shows an experiment where we observe that the force (mass times gravity) 
applied to the spring (increasing weight) is proportional to the displacement. This is known as 

Figure 1. Schematic of an experiment to obtain the relationship between force and deformation: (a) Experimental setup 
where three springs are stretched with the use of weights; (b) Graph showing the experimental results obtained from 
stretching three springs (the force is proportional to the deformation). 
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Hooke’s law (the force F needed to extend or compress a spring by some distance γ ¼ ðx � x0Þ e 

is proportional to that distance, F ¼ kγ ). Note that if we continue to increase the weight, e 

eventually the spring will break. Therefore, Hooke’s law is a very good linear approximation 
of what happens in the real world. 

We will now explore the concept of viscosity in fluids. The viscosity of a fluid is a measure of 
the internal resistance to the rate of deformation: 

As an example, imagine that we have a thin film of fluid in between two parallel plates, as 
shown in Figure 2. The fluid is at rest, and suddenly the upper plate starts moving with 
constant velocity U. This velocity will be felt at the bottom layer due to diffusion of momen-
tum, and to keep the bottom wall fixed, we must exert a restraining force, that is measured 
with a force gage or dynamometer attached to that wall. Note that if we take the view of this 
portion of fluid as infinitesimally thin layers, we observe that each layer will drag the under-
lying layer due to the action of viscosity (internal resistance). The higher the viscosity, the more 
force will be required to deform the fluid at a given speed U. 

Since the velocity of the thin layer adjacent to the top wall is U and the velocity of the bottom 
layer is 0, the velocity of each layer (for a Newtonian fluid) is given by u(y) = Uy/h, with y the 
coordinate shown in Figure 2(a). Figure 2(b) shows the experimental forces measured for 
different ratios of U/h. We observe that the force is proportional to U/h and U/h = du(y)/dy; 
therefore, we conclude the following (Newton’s law of viscosity): 

Force U duð Þy duð Þy ¼ σ ¼ η ¼ η ) σ ¼ η (1) 
Area h dy dy 

with σ the unidirectional stress and η as the constant of proportionality, known as the Newto-
nian shear viscosity. Note that du/dy is known as the rate of shear deformation, usually 
denoted by γ_. 

A good example of something we may see every day and something that verifies Newton’s law 
of viscosity is a dashpot. It is used for example as a door closer to prevent it from slamming shut. 

Figure 2. Schematic of an experiment to verify Newton’s law of viscosity: (a) Liquid at rest between parallel plates; (b) The 
top wall is pulled with velocity U and a force meter is used to measure the force exerted on the bottom wall; (c) 
Experimental results. 
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1.1. Viscoelastic models 

The simplest model that considers both viscous and elastic behavior is the linear Maxwell 
model [1] and can be obtained from a combination in series of a dashpot, σ ¼ ηdγf ð Þt =dt, and 

a spring, σ ¼ Gγ ð Þt (with the subscripts f and e standing for Newtonian fluid and Hookean e 

elastic solid, respectively), as shown in Figure 3. 

The total deformation γ is the sum of the deformation obtained from the spring γ and the e 

dashpot γf , and the rate of deformation is given by: 

dγð Þt dγf ð Þt dγ ð Þt e ¼ þ 
dt dt dt 

dγð Þt σ 1 dσ 
⇔ ¼ þ 

dt η G dt (2) 
dσ dγð Þt η 

⇔ σ þ λ ¼ η , λ ¼ 
dt dt G |fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} 

Maxwell Model 

The three-dimensional version of this model can be easily obtained by considering appropriate 
tensors instead of the scalar properties of stress and deformation, leading to the following 
model: 

dσ dγð Þt 
σ þ λ ¼ η (3) 

dt dt 

T with σ the stress tensor, γ_ ¼ ∇u þ ð∇uÞ the rate of deformation tensor, u the velocity 

vector, λ the relaxation time of the fluid and η the zero shear rate viscosity. This model can be 
equivalently written in integral form as 

t 

t0 =λ dγ 
ð

ð Þ σð Þ ¼t Ge� t� dt0 , (4) 
dt0 

0 

where G ¼ η=λ and it was assumed that the fluid is at rest for t < 0. 

Figure 3. Maxwell model. 
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The Maxwell model is not observer independent (frame invariant) and, therefore, the results 
obtained with this model may not be correct if large deformations are considered (e.g., we 
may obtain a viscosity that depends directly on the velocity rather than the velocity gradient, 
which is not correct, and is unphysical). To solve this problem, new models were proposed in 
the literature that can deal with this non-invariance problem. 

Two well-known examples of frame invariant models are the upper-convected Maxwell 
T (UCM) model given by σ þ λ σ̂ ¼ ηγ_ (with σ̂ ¼ ∂σ=∂t þ u � ∇σ � ð∇uÞ � σ � σ � ∇u the 

upper-convected derivative) that can also be written in integral form as 

t 
η �ðt�t0 � � ð

Þ=λ C�1 σð Þ ¼t t0 � I dt0 (5) 
λ2 e 

0 

where C�1 is the Finger strain tensor (a frame-invariant measure of deformation) [1]. The term 

e�ðt�t0Þ=λ m tð � t0Þ ¼ η=λ2 is known as the memory function (the derivative of the relaxation 
modulus Gðt � t0Þ). Note that the relaxation modulus can be easily obtained by imposing a step 

ð Þ=λ strain (constant deformation), as shown in Figure 4, resulting in G t . ð Þ ¼ σ=γ0 ¼ Ge� t�t0 

Other well-known example of a frame-invariant but now nonlinear viscoelastic model is the 
variation of the K-BKZ [2] model proposed by Wagner, Raible and Meissner [3, 4], 

t ð
σ t m t  � t0ÞhðI1; I2Þ C� 

t0 
1 � I dt0 , (6) ð Þ ¼  ð 

0 

where C�1 is the Finger tensor [1], I1, I2 are the traces of C�1 and C, respectively, and h Ið 1; I2Þ is 
termed the damping function [5] (note that it is again assumed that the fluid is at rest for t < 0). 
A large number of damping functions can be found in the literature (see [5]). The term m tð � t0Þ 
was proposed to be of the form: 

a �ðt�t0Þ=λ m tð � t0Þ ¼  e , (7) 
λ 

Figure 4. Step strain of a Maxwell model. The step strain is given by γ ¼ γ0 H tð � t0Þ with H tð Þ the Heaviside function, 
ð Þ=λ and the stress relaxation is the solution of σ þ λ dσ=dt ¼ ηdγ0 H tð � t0Þ=dt with σðt0Þ ¼ σ0, given by σ ¼ σ0 e� t�t0 

(σ0 ¼ Gγ0). 
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where a and λ are model parameters. Note that the relaxation modulus is the response of the 
stress to a step in deformation (see Figure 4). It should be remarked that when a ¼ η=λ and 
h Ið 1; I2Þ ¼ 1, we recover the integral version of the UCM model. 

Different differential models were proposed in the literature along the years, with the aim of 
improving the modeling of complex viscoelastic materials, and with the aim of achieving the 
same modeling quality of integral models (by only using differential operators). Note that 
integral models are non-local (in time) operators that take into account all the past deformation 
of the fluid while differential models ones describe the material response in terms of the rate of 
change of stress to the local deformation, thus influencing the fitting quality of the model and the 
computational effort to numerically solve them (when performing numerical simulations). 

More recently, new models have been proposed in the literature that basically take advantage 
of the generalization of the exponential function appearing in Eqs. (4), (5), and (7), thus 
allowing a more broad and accurate description of the relaxation of complex fluids (while the 
commonly used continuum approach describes the fluid as a whole, with only one relaxation, 

ð Þ unless a Prony series is considered, that is, considering a series of the form 
P 

i aie
� t�t0 =λi ). This 

generalized function is the Mittag-Leffler function that naturally arises when solving problems 
involving fractional derivatives (more precisely, derivatives of non-integer order). This func-
tion will be introduced later in Section 3. 

2. Fractional derivatives 

To understand the need and the concept of a fractional derivative and its importance in the 
context of modeling physical processes, let us start with a simple example (Figure 5). 

Imagine a portion of material that is principally formed of two different regions. In these 
regions, two similar physical processes φ1 and φ2 occur (for the time being it does not matter 
what is the process under study), but, at different rates, dφ1 =dt ¼ 0:1 for Region I and 
dφ2 =dt ¼ 1 for Region II. If we look at the portion of material as a whole, one would naturally 
choose the rate of 1 as representative of the material’s behavior, because this region is bigger 

Figure 5. Material formed by two regions where the same physical process occurs at different rates. 
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(when compared to Region I). However, this clearly neglects entirely the local variation in the 
deformation associated with the neighboring Region I. With the help of fractional calculus, we 
may define derivatives/rates of non-integer order, and we may have (for example) a rate given 

by dβφ=dtβ with β ¼ 0:9 (possibly better representing the material behavior as a whole, by 
providing intermediate rates). 

Although we have not defined yet what a fractional derivative is, the fact of having the 
possibility of non-integer derivatives seems quite attractive, allowing the creation of a contin-
uous path between integer-order derivatives that may lead to a better description of the 
different rates of a certain physical process occurring in the same material. This means that 
fractional derivatives can transport more and more precise local information from the micro-
scopic world to the continuum description. 

2.1. Riemann-Liouville and Caputo fractional derivatives 

Now, to understand a fractional derivative, we start by acknowledging that the n-fold integral 
of a generic function f tð Þ is given by the formula 

t 

Jn 1 n�1 
ðt ðt ðt ð

⋯ f tð Þdtdt…dt ¼ f tð Þ ¼  ðt � t0Þ f tð Þ0 dt0: (8) a ðn � 1Þ! a a a |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} a 
n times 

A generalization to non-integer values of n can be performed using the Euler Gamma function 
Γð Þx , leading to the Riemann-Liouville fractional integral 

ðt 
Jn 1 α�1 f tð Þ ¼  ðt � t0Þ f tð Þ0 dt0 , (9) a Γ αð Þ  a 

where we have used α to represent the generalization of n to non-integer values. A fractional 
derivative of any order can then be obtained by manipulating the number of integrations and 

differentiations of the function f tð Þ. By performing the m � α-fold integration of the mth deriv-
ative of f tð Þ, Jm� ð Þwith m ¼ α , we arrive at the generalized derivative formula (Caputo αDmf t  d e  a 

fractional derivative [6]) of order m � 1 < α < m, 

t 
dαf tð Þ  1 �αþm�1 dmf tð Þ0 ð

¼ ðt � t0Þ dt0, m  � 1 < α < m, (10) 
dtα Γðm � αÞ dt0m 

a 

This last fractional derivative is the one chosen to deal with physical processes due to the ease 
in handling initial and boundary conditions [7]. 

Next, we present two models that rely on the Mittag-Leffler function (a function closely related 
to fractional calculus) to improve their modeling and fitting capabilities when describing the 
behavior of viscoelastic materials. These are the fractional K-BKZ (integral) and the general-
ized Phan-Thien and Tanner (differential) models. 
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3. Viscoelastic models based on the Mittag-Leffler function 

3.1. The fractional K-BKZ model 

We first note that the Maxwell-Debye relaxation of stress (exponential decay—see Eqs. (4) and 
(5)) is quite common, but there are many real materials showing different types of fading 
memory, such as a power law decay G t , 0 < α < 1 [8]. For example, the critical gel ð Þ � t�α 

model investigated by Winter and Chambon is written G t . If we assume the relaxa-ð Þ ¼ St�α 

tion modulus for an arbitrary loading history in such materials is given by Gðt � t0Þ ¼  
�1 � VðΓð1 � αÞÞ ðt � t0Þ α (V is known as a quasi-property [9] and is connected to the critical gel 

strength by S ¼ V=Γð1 � αÞ), then we have that: 

t ð
1 �α dγ 

σ t Vðt � t0Þ dt0: (11) ð Þ ¼  
Γð1 � αÞ dt0 

0 

By recognizing that the Caputo fractional derivative of a general function γð Þt (in our case γð Þt 
is the deformation) is defined as [10]: 

t 
dαγð Þt 1 

ð 
�α dγ ¼ ðt � t0Þ dt0 , (12) 

dtα Γð1 � αÞ dt0 
0 

we obtain a generalized viscoelastic model [10, 11], that can be written in the simple compact 
form: 

dαγð Þt 
σ ¼ V , 0 < α < 1, (13) 

dtα 

This model provides a generalized viscoelastic response, in the sense that when α ¼ 1 we 
obtain a Newtonian fluid, and when α ¼ 0 we obtain a Hookean elastic solid. The 
corresponding mechanical element is intermediate to the spring and dashpot shown in Figure 3 
and is thus known as a spring-pot [11, 12]. Note that care must be taken when α ! 1 because of 
the singularity in Γð1 � αÞ [12]. 
We can define the fractional Maxwell model (FMM) as a combination of two linear fractional 
elements (spring-pots) in series. In a series configuration, the stress felt by each spring-pot is 
the same, that is, σ ¼ V dαγ1ð Þt =dtα ¼ G dβγ2ð Þt =dtβ , 0 < α, β < 1, and the total deformation is 
given by the sum of the deformation obtained for each spring-pot, γ t t t . The ð Þ ¼ γ1ð Þ þ γ2ð Þ  
FMM can then be written as 

dα�βσ t V ð Þ  dαγð Þt 
σ t ¼ V (14) ð Þ þ  , G dtα�β dtα 

This model allows a much better fit of rheological data, as shown in [12] but it is not frame 
invariant. However, following the same procedure employed with the Maxwell and K-BKZ 



� � 

� � 

Recent Advances in Complex Fluids Modeling 15 
http://dx.doi.org/10.5772/intechopen.82689 

model, that is, using the derivative of the relaxation function obtained for the Maxwell model 
as the memory function of the K-BKZ model, one can also use the derivative of the relaxation 
function of the FMM and insert it in the K-BKZ model, thus, obtaining a frame-invariant 
constitutive model, that retains all the good fitting properties of the FMM. 

The relaxation function of the FMM can be obtained by solving the fractional differential 
Eq. (14) considering a constant deformation γ ¼ γ0H tð Þ  (H tð Þ  is the Heaviside function) 
together with σðt0Þ ¼ σ0, leading to the relaxation modulus G tð Þ ¼ σð Þt =γ0 given by: 

G �βE α�β G tð Þ ¼ Gt α�β,1�β � t , (15) V 

where Ea,bð Þz is the generalized Mittag-Leffler function [7], 

∞ X k z 
Eα,β z � � , (16) ð  Þ ¼  

Γ αkþ β k¼0 

and a characteristic measure of the relaxation spectrum described by the two spring-pots in 
1=ðα�βÞ series is λ ¼ ðV=GÞ . 

This leads to the fractional K-BKZ model proposed by Jaishankar and Mckinley [12, 13], with 
0 m tð � t Þ the memory function [2] in Eq. (6) now given by. 

0 dG tð � t Þ �1�β G α�β 0 0 0 m tð � t Þ ¼  ¼ �Gðt� t Þ Eα�β,�β � ðt� t Þ , (17) 
dt0 V 

Note that here the relaxation modulus G tð � t0Þ is the one obtained for the FMM. Please see 
[11–13] for more details. It should be remarked that the Mittag-Leffler function was used in the 
past by Guy Berry to describe polymeric materials exhibiting Andrade creep [14]. 

The fractional K-BKZ model is therefore given by: 

ðt � � 
G � � 0 �1�β 0 α�β 0 σ t ðt� t Þ Eα�β,�β � ðt� t Þ h Ið 2Þ Ct 

�1 � I dt , (18) ð Þ ¼ �G V 1; I 0 

0 

and we need to ensure that the integral converges (see the Foundations of Linear Viscoelastic-
0 �1�β ity by Coleman and Noll [15]). The main problem seems to be the term ðt� t Þ that Ð t 0 ! t 0 diverges as t , and ðt� t Þ�1�βdt0 diverges. Also, the termEα�β,�β … ð 1; I2 ð Þh I  Þ is finite 0 � 

C�1 � 0 m 0 �1�β ∀t0, t0 ≤ t. Therefore, we must have � I ¼ Oððt� t Þ Þ, m ≥ 1 as t0 ! t so that ðt� t Þ 0t � 
C�1 � 0 � I ¼ O t� t Þ Þ, n ≤ 1 and therefore the integral converges. ðð n 

0 t 

It can be easily shown [1] that a Taylor series expansion of C�1 � I about t0 ¼ t leads to. 0t 

X � � ∞ ðt0 � tÞk 
C�1 

0 � I ¼ �  Akð Þt , (19) t k! 
k¼1 
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with Akð Þt the Rivlin-Ericksen tensors. Note that these tensors can be obtained directly from 
the velocity field without having to find the strain tensor [16]. We may therefore conclude that 
the integral is convergent, assuming a smooth velocity field is provided/obtained. Note that 
this does not mean that convergence problems will not arise during numerical calculations. 

In Refs. [11, 12, 17], the beneficial fitting qualities of this constitutive model framework are 
discussed in detail. Here, we are interested in determining to what extent the properties of the 
Mittag-Leffler function can be used to improve the fitting quality of differential models, and this 
will be discussed in the next subsection. 

3.2. Generalized Phan-Thien and Tanner model 

The previous integral model given by Eq. (18) allows a good fit to experimental rheological 
data, in flows with defined kinematics where C-1 can be computed explicitly; but, it would be 
desirable to obtain also an improved frame-invariant differential model, that is easier to handle 
both mathematically and numerically, when compared to integral models, for solving complex 
flow problems with spatially varying kinematics. The model to be presented was recently 
proposed by our research group [18], and basically takes advantage of the flexible functional 
form of the Mittag-Leffler function by inserting this function into the already well-known 
Phan-Thien and Tanner (PTT) model, replacing the classical linear and exponential functions 
of the trace of the stress tensor. 

The original exponential PTT model [19, 20] is given by. 
˜ ° 
ελ □ 

exp σkk σ þ λ σ ¼ ηγ_ , (20) 
η 

□ T with σ ¼ ∂σ=∂t þ u • ∇σ - ð∇uÞ • σ - σ • ∇u þ ξðD • σ - σ •DÞ being the Gordon-Schowalter 
derivative and σkk the trace of the stress tensor. Here, the parameter ξ accounts for slip between 
the molecular network and points in the continuous medium. The model was derived from a 
Lodge-Yamamoto type of network theory for polymeric fluids, in which the network junctions 
are not assumed to move strictly as points of the continuum but instead they are allowed a 
certain effective slip as well as a rate of destruction that depends on the state of stress in the 
network. Phan-Thien proposed that an exponential function form would be quite adequate to 
represent the rate of destruction of junctions and in [17] it was shown that the Mittag-Leffler 
function could improve the quality of model fits to real data by allowing different forms for the 
rates of destruction. 

The model is then given by 
˜ ° ˛ ˝  ελ □ 

Γ β Eα, β σkk σ þ λ σ ¼ ηγ_ , (21) 
η 

˛ ˝  
where the factor Γ(β) is used to ensure that Γ β Eα,βð  Þ ¼ 1. 0 

This new model can further improve the accuracy of the description of real data obtained with 
the original exponential function of the trace of the stress tensor, as shown in [18]. 
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4. Parametric study of the GPTT model 

We will now present a detailed parametric study on the influence of the new parameters α, β 
(arising from the Mittag-Leffler function) on the rheological behavior of the generalized expo-
nential PTT model. 

_ _ 

4.1. Steady-state shear flows 

ðγÞ ¼ σxy γ γ with ð Þ  _ 

ðγÞ ¼  
_ 

_ 

As shown in [18], the steady shear viscosity is given by η = 

η 
σxy (22) 

γ � σxxWiξ 
, 

ελ 2�2ξ Eα, β η Γ β σxx 2�ξ 

_ 

and σxx is given by the solution of 

2 h i � �  ελ 2 � 2ξ η 2 Γ2 β Eα, β σxx σxx ¼ ð2 � ξ Þðλγ � σxxξ (23) Þ : 
η 2 � ξ λ 

Here Wi ¼ λ 

_ 

γ is the dimensionless strength of the shear flow and η, λ, ε, ξ, α, β are the consti-
tutive parameters of the generalized PTT (or GPTT) model. 

Since we consider a simple plane shear flow aligned with the x-axis, we have that 
ðγÞ ¼ σxxξ= ðγÞ ¼ 0 (see [18] for more details). 

_ 

_ σyy 2 � ξÞ and σzz ð 
Eqs. (22) and (23) can readily be solved using the Newton-Raphson method (solving first 
Eq. (23) and then substituting the numerical values obtained for σxx into Eq. (22)). 

Figure 6 shows the dimensionless steady shear viscosity obtained for the different parameters 
of the Mittag-Leffler function, α, β. On the left, we show the influence of α by keeping constant 
all other parameters. On the right, we show the influence of β (it should be remarked that 
when α, β ¼ 1 the exponential PTT model is recovered). We observe that when compared to the 

Figure 6. Dimensionless shear viscosity obtained for the different parameters of the Mittag-Leffler function; (a) varying α 
holding the other five parameters constant and (b) varying β. 
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_ _ 

Figure 7. Dimensionless shear viscosity obtained for the different parameters of the Mittag-Leffler function varying: 
(a) Constant ε; (b) Varying ε. 

classical exponential PTT model, when α, β < 1, shear-thinning occurs for lower dimensionless 
shear rates and when α, β > 1 there is a delay in the shear-thinning effect. For α, β > 1 the shear 
viscosity increases, especially for high shear rates. Also, when we increase α, the slope of the 
shear viscosity curve for high dimensionless shear rates decreases (observed in Figure 6(a)), 
while varying β, the slope seems to be the same, but a higher viscosity is obtained (observed in 
Figure 6(b)). 

Figure 7(a) shows the dimensionless steady shear viscosity, now obtained for different values 
of α, β and ε. These plots allow one to see that the ε parameter may not be compared directly 
to the value used in the classical models (featuring linear and exponential functions of the trace 
of the stress tensor). For comparison purposes, we plot again the curve obtained for the 
exponential PTT model with ε ¼ 0:25 (α ¼ β ¼ 1) by the dash-dot lines. 

Note that (see Figure 7(b)) small variations of the parameter ε allows one to control the rate of 
transition to the shear-thinning at high Wi while maintaining a similar shear thinning set 
point. 

Figure 7 shows that by setting different combinations of α, β we may obtain different slopes at 
higher dimensional shear rates. For low β and high α, we obtain a lower slope but a premature 
shear viscosity thinning, while for high β and low α, we obtain a higher slope but a delayed 
shear-thinning. 

4.2. Steady-state elongational flows 

˜ ° 
ς, where ς is the The steady unidirectional extensional viscosity is defined as ηE ¼ σxx � σyy = 

imposed elongation rate [18], and can be obtained by solving the system of equations (for a 
simpler technique that does not involve an iterative procedure, please consult [18]) 

˛ ˛ ˝ ˝ ˜ °  ελ 
σxx Γ β Eα, β σkk _� 2λς 1 ð � ξ Þ ¼ _ς, 2η (24) 

η 
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˛ ˛ ˝ ˝ ˜ °  ελ 
σxx Γ β Eα, β σkk þ λς_ð1 � ξÞ ¼ �ης_ , (25) 

η 

with σkk ¼ σxx þ 2σyy. 

Figure 8 shows the dimensionless steady elongational viscosity obtained for different param-
eters of the Mittag-Leffler function. In Figure 8(a), we show the influence of α by keeping 
constant all other parameters. In Figure 8(b), we show the influence of β. Note that we have 
used the same parameters as in the shear viscosity case. 

Note that when we increase α, β, we observe an increase of the elongational viscosity, with the 
maximum value being reached for higher dimensionless extensional rates. Again, we observe 
different asymptotic slopes for high extension rates (when varying α). Note that there is no 
overshoot for low values of β. 

We may conclude that by varying α, β, we change both the shear and elongational viscosities, 
and therefore the fit to experimental data should be performed with care, taking into account 
this dependence. 

Figure 9 shows the effect of the parameters used in Figure 7, for the case of elongational 
viscosity. The results are qualitatively similar to the ones obtained in Figure 7, that is, in terms 
of changes to the asymptotic slopes at high deformation rates and premature/delayed thin-
ning. It can be observed that the elongational viscosity is more sensitive to changes in the 
parameters α, β and ε. This result is to be expected since this is a strong flow, and, the 
exponential PTT model was originally proposed to be able to describe the response of complex 
fluids in strong flows. Figure 9(a) shows that the overshoot can be suppressed using a low β 
and high α values. Note that the maximum extensional viscosity is obtained for the exponen-
tial PTT model, and that the values of α, β have a strong influence on the asymptotic slope of 
the curve for high extensional rates. Figure 9(b) shows three different curves for different 
combinations of α, β and ε. Note that for α ¼ 0:1, β ¼ 0:1 and ε ¼ 10 we can also suppress the 

Figure 8. Dimensionless elongational viscosity obtained for different parameters of the Mittag-Leffler function: (a) 
Varying α; (b) Varying β. 
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Figure 9. Dimensionless elongational viscosity obtained for the different parameters of the Mittag-Leffler function: (a) 
Constant ε; (b) Varying ε. 

overshoot in the extensional viscosity, and for α ¼ 2, β ¼ 0:1 and ε ¼ 0:05 we can decrease the 
curvature of the overshoot, and at the same time decrease the slope of curve. 

4.3. Steady-state shear and elongational flows 

Until now, we have explored generally the influence of the different model parameters on the 
behavior of the GPTT model for steady flows, but, a more quantitative side-by-side comparison 

Figure 10. Comparison of the dimensionless elongational and shear viscosity obtained for different parameters of the 
Mittag-Leffler function, varying ε, and the classical exponential PTT model (α = 1, β = 0). 
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between the shear and elongational flow curves was not performed, and the limited flexibility 
of the classical exponential PTT model for fitting experimental data (when compared to the 
GPTT) was not explored. In Figure 10, we try to illustrate the advantages of using the Mittag-
Leffler function instead of the classical exponential one. To this end, we present the viscometric 
predictions obtained for both shear and elongational flows for both models (GPTT and expo-
nential PTT). 

Figure 10 illustrates the additional flexibility of using the Mittag-Leffler function, by show-
ing that we can manipulate the magnitude of the increase in the elongational viscosity and 
at the same time only slightly change the shear viscosity. This allows better fits to rheo-
logical data when using the Mittag-Leffler function [18]. Note that in the exponential 
PTT model, when we increase the ε parameter, both the shear and elongational viscosities 
increase concomitantly. 

5. Conclusions 

In this chapter, we have presented a brief introduction to the world of viscoelastic models 
capable of describing the rheology of complex fluids, and we have summarized some of the 
well-known classical differential and integral models. 

With incorporation of ideas from fractional calculus, most of these models can be further 
improved, either by changing classical local operators for improved (non-local) fractional 
versions, or, either using new analytic functions that arise in the realm of fractional differential 
equations, such as the Mittag-Leffler function. 

As an example, we present the fractional K-BKZ model and the recently proposed gener-
alized PTT model. The fractional K-BKZ model allows a better description of fluid flow 
behavior (when compared to the generalized PTT model), but, increases the need for high 
computational power. Therefore, the novelty of the present work is our detailed study on 
the influence of the Mittag-Leffler function in shear and elongational flows of a general-
ized PTT model. 
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Abstract

A magnetohydrodynamic flow of a viscous and conducting fluid confined between two
parallel differentially moving boundaries is considered. The whole system is in a strong
magnetic field chosen in such a way that the Hartmann boundary layers which form in this
problem become singular at the points where the magnetic field becomes tangent to the
boundary. Two geometries are taken into account: plane and spherical. Within the class of such
configurations, the velocity field of the fluid and the influence of the conductivity of the
boundaries on the fluid’s motion are reviewed here. In the region of singularity, where the
magnetic field is tangent to the boundary, the fluid’s velocity exceeds that of the moving
boundary. The effect of nonzero conductivity of the boundaries on the super-speeding jets is
vital and has been enlightened in a series of papers, including experimental and theoretical
findings. Themechanism of the formation of super-speeding jets in the considered configura-
tions has been explained, which is based on strong Hartmann currents allowed to enter the
boundary layer due to the singularity. In the case of both perfectly conducting boundaries, the

super velocity was shown to be as strong as to scale with theHartmann number asO M1=2
˜ °

.

Keywords: super rotation, magnetohydrodynamics, MHD boundary layers, Hartmann
layer singularity, nonzero conductivity

1. Introduction

Super-speeding jets in the geometry of magnetohydrodynamic (MHD) spherical Couette flow
have been first noticed in the numerical simulations of Dormy et al. [1]. They have analyzed a
flow of an electrically conducting fluid in a spherical gap between concentric spherical shells,
rapidly and differentially rotating about a common axis in a centered axial dipolar magnetic
field. The solid inner sphere, which had the same conductivity as the fluid, was spinning
slightly faster than the insulating outer shell. The stationary flow obtained via DNS exhibited
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a super-rotating structure near the region, where the critical magnetic field line, henceforth 
denoted by C, was tangent to the outer shell. The angular velocity of the flow in that region was 
about 50% greater than that of the inner sphere, which was driving the flow. 

Hollerbach [2] for the first time investigated numerically the effect of nonzero conductivity of 
the outer shell in the same spherical geometry but the outer boundary was held motionless, 
thus eliminating the Coriolis force from the problem. He reported that the super rotation in the 

1 singular region was greatly enhanced and scaled with the value of the Hartmann number M. 
Hollerbach [3] studied the MHD spherical Couette flow for several different topologies of the 
external field lines and also observed that singular points of isolated contact of the magnetic 
lines with boundaries result in the formation of jets. 

In a following sequence of three theoretical papers, the mechanism of super-velocity formation 
and the effect of nonzero conductivity of the boundaries have been explained. Dormy et al. [4] 
performed a joint analytical and numerical study of the system analyzed previously by 
Hollerbach [2], where they have described the super rotating shear layer along the critical 
magnetic line C which grazes the outer boundary and found analytic expressions for super 
rotation within the scope of asymptotic theory for M ≫ 1, confirmed by the results of numerical 
simulations. Not only they have explained the physics of the mechanism behind the formation 
of super-speeding jets in the studied configuration, which relies on the enhancement of the 
Lorentz force accelerating the flow, due to strong currents entering the singular Hartmann 
boundary layer at the outer shell near the point of contact of the critical field line C with the 
boundary, but also their analysis set grounds for the following theoretical findings. The study 
of Mizerski and Bajer [5] greatly relied on that of Dormy et al. [4], although it involved 
geometries—planar and spherical, and the resting boundary was weakly conducting (as 
opposed to the previous study, where it was insulating). The two geometries studied by 
Mizerski and Bajer [5] are depicted on Figure 1. In the plane geometry, the bottom boundary 
is moving at a constant speed and has the same conductivity as the fluid, whereas the conduc-
tivity of the upper boundary relative to the fluid’s conductivity e is assumed small at the order 
e ˜ M°1. The rest of the space was an insulator. The crucial features of the external field in this 
configuration are that it is potential and that there exists a critical magnetic line, which grazes 
the upper boundary thus creating a singularity of the Hartmann layer. The two configurations 
depicted on Figure 1 are planar and spherical counterparts, equivalent from the point of view 
of physics of the super-speeding jets which form near the singularities. The plane configura-
tion, however, captures all the necessary physical ingredients of the problem but at the same 
time makes the problem more transparent, avoiding the complications resulting from the 
curvature of the boundaries. Mizerski and Bajer [5] utilized this simplification and demon-
strated the super-velocity excess, that is, the difference between the super velocity in the cases ˜ ° 

εM3=4 of a conducting and insulating outer boundary scales like O . They have also studied a 

somewhat similar case of a strongly conducting, but thin outer shell, with conductivity being 
the same as that of the fluid, but the relative thickness of the conducting shell to the thickness 

1
He fitted an exponent of M0:6 to his numerical results, which however, was later shown not to be the true asymptotic 
scaling law. 
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Figure 1. A sketch of the two situations considered: the plane case on the left (the bottom boundary is moving) and the 
spherical case on the right (the inner sphere is rotating). After Mizerski and Bajer [5]. 

1 of the fluid layer δ was assumed small, at the order δ � M� . They demonstrated that both 

cases, e � M1, δ � 1 and the other one e � 1 and δ � M�1, are exactly equivalent in terms of the 
flow structure and the super-velocity magnitude. In the latter case, the super-velocity excess ˜ ° 

δM3=4 was shown to scale like O . The same scalings were shown to pertain to the spherical 

geometry. The most notable contribution to the problem of super-speeding jets was the 
remarkable comprehensive analysis of Soward and Dormy [6] in the spherical geometry. They 

have emphasized the role of the parameter eM3=4 (or δM3=4 for the case of thin outer shell), 
identified in Mizerski and Bajer [5], for the general case of continuously varying relative 
conductivity of the outer shell e from zero to infinity. They have reported the following scaling 
laws for the super velocity (angular velocity) in the singular region, for the case of perfectly 
conducting inner boundary. 

˜ ° 
M1=2 1 ≪ e ≪ eM3=4 Ωmax ¼ O for 
˜ ° 
ε2=3M1=2 (1) Ωmax ¼ O for e ≪ 1 ≪ eM3=4 

Ωmax ¼ Oð Þ1 for e ≪ eM3=4 ≪ 1 

The magnitude of the super rotation Ωmax was shown to be proportional to the magnitude of 
current on the critical C-line, denoted by J , i.e., Ωmax � J . c c 

The phenomenon of super rotation was also observed in the experimental setup called 
“Derviche Tourneur Sodium” (DTS) located in Grenoble at the Université Joseph-Fourier. 
Nataf et al. [7] conducted experiments on the spherical Couette flow of liquid sodium in an 
external, centered axial dipolar field, with both boundaries differentially rotating. The outer 
shell was only 5 mm thick, about 27 times thinner than the fluid gap and about 8 times less 
electrically conductive than liquid sodium. The Hartmann number in the experiment was at 
the order of a thousand. They observed the super-rotating jets and obtained a very good 
agreement with the numerical models. However, they also observed that the super-speeding jets 
can be destabilized and reported oscillatory motion near the singular region. More recently, Brito 
et al. [8] further exploited the same DTS experimental setup and explored the effects of strong 
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inertia. They also reported strong super rotation; however, they clearly demonstrated that the 
Coriolis force tends to suppress the super-speeding jets. 

Wei and Hollerbach [9] investigated numerically the effect of strong inertia, that is, large 
Reynolds number, on the spherical Couette flow configuration with the outer shell stationary. 
Three configurations of the external magnetic field were chosen, which resulted from a combi-
nation of dipolar and axial fields. The super-speeding jets have been destabilized by increasing 
the Reynolds number, whereas strengthening the filed had the opposite effect. Most recently, 
Hollerbach and Hulot [10] performed numerical analysis of a similar problem in cylindrical 
geometry, putting an emphasis on the role of conductivity of the boundaries. The field config-
urations were also chosen so as to create singularities in the flow. When the boundaries were 
electrically conducting, super-speeding jets were reported on the contrary to the case with 
insulating boundaries, when simply shear layers were observed in the singular regions. A 
curious observation is made by the introduction of a nonzero azimuthal component of the 
external field in which case the conductivity of the boundaries has the opposite effect to the 
previous case, greatly suppressing the magnitude of super rotation. 

The motivation for some of the aforementioned studies was justified on geophysical grounds. 
The investigations of the Earth’s interior reveal differential rotation of the inner core (cf. [11, 12]) 
and that the electrical conductivity of the lower mantle is nonnegligible [13]. Moreover, some 
evidence can be found for the existence of a very thin layer of anomalously high conductivity 
at the base of the mantle [14, 15]. It must be said, however, that the model of MHD spherical 
Couette flow is so idealized with respect to the true dynamics of the core, neglecting thermal 
and compositional driving, turbulence, the solidification processes at the inner core, etc., that 
no direct comparisons with the flow at the core-mantle boundary can be made. Nevertheless, it 
might be possible that the effect of super rotation manifests itself on the field zero isolines 
locally at the core mantle boundary. 

1.1. Ferraro’s law of isorotation 

Throughout this chapter, we will assume that the Hartmann number, 

rffiffiffiffiffi 
B0L σ 

M ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ B0L ≫ 1 (2) 
μ0rνη rν 

is large. In the above, μ0, r, ν, η, and σ are the magnetic permeability, constant density, 
viscosity, magnetic diffusivity, and electrical conductivity of the fluid, respectively; B0 is the 
typical strength of the external magnetic field; and L is the distance between the boundaries. 

In such a case, the Ferraro’s law of isorotation states that for a steady azimuthal motion about 
an axis of symmetry of an electrically conducting fluid, the magnitude of the angular velocity 
is predominantly constant along a magnetic field line. This means that in the studied configu-
rations presented in Figure 1, the flow in the equatorial region ℰ in the spherical case and 
region I in the planar case both bounded by the critical line which grazes the outer/upper 
boundary must significantly differ from the flow outside those regions. The magnetic lines 
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Figure 2. The moving electrically conducting boundary drags the field lines with it, but only those lines which experience 
drag from the top, stationary boundary are tilted (solid lines). The lines within the arcade bounded by the critical C-line 
are carried with the same velocity as that of the bottom boundary. After Mizerski and Bajer [5]. 

within the regions ℰ and I do not reach the outer/upper boundary and their both footpoints lie 
on the inner/bottom boundary, which is moving. Since the moving boundary is assumed 
electrically conducting with the same conductivity as the fluid, the magnetic field lines within 
the arcade bounded by the C-line are carried by the fluid without any tilt. Therefore, by the 
Ferraro’s law, the flow within the arcade must be uniform, with the same magnitude as the 
velocity of the moving boundary. On the contrary, the magnetic lines outside those regions 
extend from one boundary to the other; therefore, they are tilted due to advection by the inner/ 
bottom boundary and the drag they experience from the outer/top, stationary boundary. The 
effect of competition of the moving and the stationary boundary makes the flow vary from one 
field line to the other. This is illustrated in Figure 2 for the case of planar geometry. 

In the following, we review the analytic approach and most important results for the two cases 
introduced in Figure 1. 

2. Mathematical formulation 

We study two types of stationary, magnetohydrodynamic Couette flow, that is, a flow between 
two parallel boundaries one of which is moving with a constant velocity: plane and spherical. 
The flow interacts with a strong (large Hartmann numbers) force-free magnetic field tangent to 
the boundaries at some isolated points. In the spherical case, the external field is a dipole field 
with a source at the center of the system and in the plane case, it is harmonic with oscillatory 
dependence in the direction perpendicular to the velocity of the moving boundary with an 

arbitrary period 2 
k 
π . Figure 1 illustrates both the spherical and the plane cases. 

We focus here on the phenomenon of super velocities in the regions of singularity of the 
Hartmann boundary layers which are present in this problem, that is, in the vicinity of points, 
where the magnetic field becomes tangent to the stationary boundary. In those regions, the 
fluid’s velocity exceeds the velocity of the moving boundary. The aim of this chapter is to 
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review the influence of conductivity of the upper/outer boundary on the enhancement of the 
super-velocity magnitude and explain why the super velocities are larger in the case when the 
stationary boundary is conducting when compared to the case where it is insulating. As 
mentioned in the introduction, this fact was proved numerically by several authors. We adopt 
here the analytic approach and notations of Dormy et al. [4] and Mizerski and Bajer [5]. 
Majority of the analysis will be done in the simpler and therefore more transparent planar 
geometry. 

We consider here a stationary state in which the velocity of the fluid and the induced 
magnetic field have only one component, the same as the velocity of the moving boundary, 
axisymmetric for the spherical case and translationally invariant in the direction of the flow 
for the flat case. Small differential rotation/motion of the boundaries is assumed for the 
Couette flow dominated by the magnetic forces, that is, the magnetic Reynolds number is 
assumed small, 

Lu0 ReM ¼ ≪ 1 (3) 
η 

where u0 is the velocity of the moving boundary and the Hartmann number (2) is large. The 
above assumption of small ReM implies that the flow-induced component of the magnetic field 
is of the order ReM, and thus the magnetic field is decomposed in the following way 

B ¼ B0ðx; zÞ þ ReMb xð ; zÞbey for the plannar case (4) 

B ¼ B0ðs; zÞ þ ReMb sð ; zÞbeφ for the spherical case (5) 

where ðs; φ; zÞ are the cylindrical polar coordinates, B0 is the external potential field, and ReMb 
is the perturbation magnetic field generated by the flow. Indeed, in the numerical simulations 
of Hollerbach and Skinner [16] for infinitesimally small rotation rate, the flow was axisymmet-
ric with only the azimuthal components of the velocity and the induced magnetic field present. 
The assumption of the small magnetic Reynolds number is crucial for the spherical case to 
neglect the nonlinear term which does not vanish because of the curvature effects. In the flat 
case, however, this assumption is not necessary to simplify the equations, because the 
nonlinear term vanishes due to the translational symmetry in the direction of the flow. Never-
theless, we keep the Reynolds numbers small even in the plane flow, since for high Rm, the 
unidirectional solutions are most probably unstable. 

Furthermore, the solution for the plane flow is also valid when both boundaries are moving 
with different velocities since it is just a matter of changing the frame of reference to one 
moving at the same constant velocity as one of the boundaries. In the spherical case, however, 
when both boundaries rotate at different angular velocities, the Coriolis force substantially 
modifies the solution even in the case of small differential rotation unless the flow is strongly 
dominated by the magnetic force. The problem of MHD Couette flow with Coriolis force was 
investigated numerically by Hollerbach [17] and Dormy et al. [1] and analytically, for small 
Elsasser numbers, by N. Kleeorin et al. [18]. As remarked in the introduction, Brito et al. [8] 
demonstrated experimentally the detrimental effect of the Coriolis force on superrotation. 
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2.1. The equations and the main flow solution 

As mentioned, we present the analysis for the flat case illustrated on the left panel of Figure 1. 
In Cartesian coordinates ðx; y; zÞ, the lower boundary is moving in the “y” direction and the 
“z” axis is perpendicular to both parallel boundaries. The dimensionless external magnetic 
field is given by 

�λz �λz B0ðx; zÞ ¼ ∇A� bey ¼ ∇Φ ¼ e sinλx; 0; e cosλx , (6) 

where A ¼ expð�λzÞsinλx=λ, Φ ¼ �expð�λzÞcosλx=λ, and 2π=λ is the arbitrary period of 
oscillation of the external field in the “x” direction. 

The lower moving boundary is assumed to have the same conductivity as the fluid, while the 
conductivity of the upper one, which is at rest, 

σu 
e ¼ (7) 

σf 

can vary from zero to infinity, where σu and σf are the electrical conductivities of the upper 
boundary and the fluid, respectively. The magnetic permeabilities of boundaries and the fluid 
are assumed to be same. 

The general set of equations for the analyzed stationary state is obtained by taking the “y” 
components of the induction and the Navier-Stokes equations 

B0 � ∇uþ ∇2b ¼ 0 
1 for 0 < z < 1 (8) 

B0 � ∇bþ ∇2u ¼ 0 2M 

with M≫ 1 and no-slip boundary conditions for the velocity field u xð ; zÞ 
u xð ; 1Þ ¼ 0 

(9) 
u xð ; 0Þ ¼ 1: 

Inside the rigid conductors, the magnetic field b has to satisfy Laplace equations: 

∇2b1 ¼ 0 for 1 < z < 1 þ δ1 (10) 
∇2b2 ¼ 0 for � δ2 < z < 0 

where bi and δi are the perturbation magnetic fields inside the rigid conductors and their 
dimensionless thickness (with i ¼ 1 for the upper conductor and i ¼ 2 for the lower one). At 
the boundaries with the insulator at z ¼ 1 þ δ1 and at z ¼ �δ2, the perturbation magnetic field 
must vanish since there is no imposed magnetic field in the “y” direction 

b1ðx; 1 þ δ1Þ ¼ 0 
(11) 

b2ðx; �δ2Þ ¼ 0 

Finally, the conditions at z ¼ 0 and at z ¼ 1 for the magnetic field can be written in the 
following form 
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( ( b xð ; 1Þ ¼ b1ðx; 1Þ b xð ; 0Þ ¼ b2 x; 0 ð Þ 
and (12) 

¼ ∂b 
∂z 

1 2 ¼ ∂b
∂z 

∂b ∂b e ∂z ¼0 ¼0 ∂z z z ¼1 ¼1 z z 

To understand the structure of the flow, it is very important to note the symmetries in the 
π system with respect to planes defined by x ¼ n for n∈ N (see Figure 1). Since the problem 2λ 

has to be periodic in the “x” direction with the period of the applied field 2 
λ
π , it is enough to 

2π analyze only the region where 0 < x < λ . The symmetry of the external field B0, the symmetric 
boundary conditions on u xð ; zÞ, and the boundary conditions on b xð ; zÞ listed above imply that 

8 >>>>>>>>>< 

8 >>>>>>>>>< 

π π π π b � α; z ¼ �b þ α; z u � α; z ¼ u þ α; z 
2λ 2λ 2λ 2λ 

3π 3π 3π 3π 
and b ¼ �b (13) � α; z þ α; z � α; z þ α; z ¼ u u 

2λ 2λ 2λ 2λ >>>>>>>>>: 

>>>>>>>>>: 
π π π π u � α; z ¼ u þ α; z 
λ λ b � α; z ¼ b þ α; z 

λ λ 

for any α ∈ R. One can see now the precise analogy between the flat and spherical cases. In the 
spherical problem, the meridional angle “ϑ” corresponds to the “x” coordinate in the flat case, 
with the equatorial plane corresponding to the planes x ¼ π and x ¼ 3

2 
π
λ. The azimuthal angle 2λ 

“φ” and the radial coordinate “r” are of course analogous to “y” and “z,” respectively. 

It is also clear from (13) that the “z” component of the currents j ¼ ∂b has to be symmetric with z ∂x 
3π respect to the planes x ¼ π while the “x” component j ¼ � ∂b remains antisymmetric. This 2λ , 2λ x ∂z 

3π means that j must have an external value and j must vanish at x ¼ π 
z x 2λ , 2λ. 

The main flow is defined as the flow outside all boundary and internal layers in the problem. 
When the upper boundary is insulating or only weakly conducting, the problem is greatly 
simplified since the magnetic coupling of the fluid with the lower conductor, in the limit of the 
large Hartmann number, is much stronger than with the upper one. The fluid therefore should 
lock on to the lower boundary generating large shear in a Hartmann boundary layer adjacent 
to the upper conductor, where the velocity decreases to zero on a distance in the order of M�1. 
This allows to deduce that the electrical currents in the system, generated by the flow and 
circulating through the boundary layers and both boundaries, in particular through the upper 

�1 poor conductor, should scale as O M  everywhere except for the boundary layers where the 

shear is large. A schematic picture of the current circulation when the outer/upper boundary is 
poorly conducting or insulating for both geometries is provided in Figure 3. It follows, that 

�1 everywhere the perturbation magnetic field is weak, that is b xð ; zÞ ¼ O M  . Therefore, from 

(8), we infer that the main flow for the case of poorly conducting or insulating boundary is 
determined by 

8< Bo � ∇u ¼ 0 þO M  �1 
8< u ¼ F ðAÞ þO M  �1 

�2 : b ¼ GðAÞ þO M  �2 
(14) : Bo � ∇b ¼ 0 þO M  
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Figure 3. A schematic picture of the current circulation in the planar (left panel) and spherical (right panel) configura-
tions. In the planar case, the direction of the external field oscillates in the x direction and so does the direction of currents, 
which are strongest in a shear layer along the critical C-line. In the spherical case, strong currents flow from the inner 
sphere to the outer shell in the shear layer along C and return in polar regions. 

where F and G depend on A alone, thus the flow and the induced magnetic field are constant 
on the field lines. The second equation in (14) means of course, that at the leading order, the 
Lorentz force vanishes everywhere in the main flow, which in turn implies that the currents are 
parallel to the external field B0. 

It is clear now that the magnetic field lines which are tangent to the upper boundary, 
referred to as the C lines, divide the flow into three regions I, II, and III (see Figure 1), 
and the properties of the solution for each region are somewhat different since in regions II 
and III, the external field lines intersect with both boundaries and in region I, only with the  
lower one. Regions II and III are, therefore, very similar and the only difference between 
them is the sign of the perturbation magnetic field since it is antisymmetric with respect 

3π to the planes x ¼ 2 
π
λ , 2λ. This antisymmetry of b and symmetry of u, together with (14) 

results in 

�1 u � 1 þ O M  
� � in region I (15) �2 b � 0 þ O M  

thus, the fluid in region I flows with the same uniform velocity of the bottom boundary and 
the perturbation magnetic field vanishes at leading order. Therefore, in region I, the currents 
also must vanish. However, in the area of singularity of the Hartmann layer, namely at 
x ¼ π 3π 

2λ , and at z ¼ 1, the “z” component of the currents, as it was stated earlier, has an 2λ 

external value (while the “x” component is zero) and interacting with the external magnetic 
field creates a Lorentz force which has to either accelerate or decelerate the fluid depending on 
whether the signs of j and B0x are the same or opposite. z 

Since the C lines that create the singularity of the upper Hartmann layer connect regions of 
different flow characteristics, a thin area along the lines has to be treated differently and the 
dissipation must play an important role in this region. Those are shear layers, for which the 
precise analysis allows to compute the magnitude of super velocity. 
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The situation is more complicated when the upper boundary is strongly conducting. 
According to Soward and Dormy [6], the Ferraro’s law still holds in region I (equatorial region 
E for the spherical case) where the fluid locks on to the moving boundary, however, in regions 
II and III (equivalently in polar regions P), the Ferraro’s law is violated by the influence of 
ohmic diffusion. This happens, because the induced magnetic field b is no longer small, but of 
comparable magnitude with the velocity field. Nevertheless, the shear layer along the critical 
C-line still forms and strong currents enter the upper boundary in the region of tangent contact 
between the line C and the boundary, thus creating strong Lorentz force, which accelerates the 
flow. The results of numerical simulations of Mizerski and Bajer [5] are recalled here on 
Figure 4 to demonstrate the enhancement of super velocities with the increasing conductivity 
of the upper boundary. 

The obvious conclusion of the above analysis is that the acceleration of the fluid at x ¼ π=2λ 
and z ≈ 1 is due to the curvature of the applied field B0 generating singularity at this point, and 
the antisymmetry of external field's “z” component with respect to the plane x ¼ π=2λ which 
is responsible for the direction of the currents and therefore also the Lorentz force at z ¼ 1. 
At the singular point, the intensity of the currents entering the boundary layer and the upper 
boundary increases with the conductivity of this boundary because its interaction with 
the conducting fluid strengthens. This also implies the increase of the magnitude of the super 
velocities with e. 

These conclusions are also true for the spherical case for which the whole analysis differs only 
with slightly more complicated boundary conditions and diffusive terms. This complication, 
however, at the leading order affects mainly the analysis of the shear layer presented in the 
next section but does not make the main flow analysis more difficult in any way. 

Figure 4. Velocity profiles at x ¼ π=2 for four different values of the conductivity ratio for the upper boundary e ¼ 0, 0:01, 
0:1, and 1. The magnitude of super velocities is the highest near the upper boundary (in the region of singularity of the 
Hartmann layer) and significantly increases with e. After Mizerski and Bajer [5]. 
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It may also be interesting to make a comment on a similar problem studied numerically by 
Hollerbach & Skinner [16] of spherical Couette flow with axial magnetic field aligned with the 
axis of rotation in terms of the singular perturbation method for large Hartmann numbers, 
infinitesimal rotation and conductivity of the inner sphere. In this case, the Hartmann layers 
also become singular at the equator where the external filed becomes tangent to the bound-
aries. This time, however, only the singularity at the inner sphere is important since the field 
lines tangent to the outer shell leave the fluid and do not couple it to the boundary. Outside a 
cylinder tangent to the inner sphere and aligned with the axis of rotation the fluid must be at 
rest, since the velocity field must be constant on the magnetic field lines and the outer station-
ary sphere has the same conductivity as the fluid, thus the fluid is locked on to it. In such a 
case, the currents leaving the inner boundary layer at ϑ ¼ π and interacting with the external 2 

magnetic field create a Lorentz force which decelerates the fluid and produce a counter-
rotating jet as found by Hollerbach and Skinner [16]. 

A simple conclusion which can be stated now is that super- and counter-rotating jets in such 
MHD systems as considered above are, in general, the outcome of three major features of these 
systems: the presence of isolated singular points where the external magnetic field is tangent to 
the boundary, the symmetries of the external magnetic field in respect to planes containing the 
singular points and perpendicular to the boundaries (namely, antisymmetry of the component 
perpendicular to the boundary and symmetry of the parallel component) and the symmetric 
boundary conditions for the velocity field. However, as observed by [10] the singular points 
can also be created in side the domain (away from the boundaries) by a magnetic field 
configuration with X-type null points (see field configuration 4 in [10]); also in this case the 
presence of super-rotation depends on the conductivity of boundaries. 

3. The shear layer along the C-line 

We will now briefly introduce the reader into the mathematical approach to the analysis of the 
shear layer structure, which is based on the singular perturbation theory. To take into account of 
the curvature of the C-line, it is more suitable to use different variables. As mentioned, the 
symmetries of the system imply that it is enough to limit the analysis to the interval 0 < 
x < π=2λ. Thus, the magnetic field lines can be represented parametrically in the following way 

π 
x τ Aðτ� 1Þ þ  ð  Þ ¼ λ 

2λ 
i (16) h 1 2Aðτ� 1Þ þ  

π 
sin λ exp½λzð Þτ � ¼  

λ A 2 

and the point x ¼ π , z ¼ 1 where the Hartman layer singularity occurs (referred to as the point 2λ 

S (see Figure 5)) is defined by A ¼ AC and τ ¼ 1. Introducing a measure of distance along the 
critical C-line 

ð ð τ 0 
e�λz τð Þ  

2Aðτ� 1 cos½λx τð Þ  0 B � dr ¼ �  dΦ ¼ ¼ �Atan λ (17) γ τð  Þ ¼ �  Þ , 
λ S S 1 
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Figure 5. The shear layer along the critical magnetic field line C. The point S is the point x ¼ π , z ¼ 1 at which the line 2λ 

grazes the upper boundary and the point of intersection of the critical line with the lower boundary is denoted by I. After 
Mizerski and Bajer [5]. 

and letting Γ ¼ γ τð Þ be the distance between point S and the point of intersection of the field I 

line C with the lower boundary (referred to as the point I (see Figure 5)) we introduce a new 
set of coordinates 

γ τð Þ  e�λz 
l ¼ 1 � ¼ 1 � cos λx (18) ð Þ  

Γ λΓ 

pffiffiffi pffiffiffi e�λz 
n ¼ M

1 
ΓðAC � AÞ ¼ M

1 
Γ AC � sinðλxÞ (19) 2 2 

λ 

where l is the coordinate along the basic magnetic field lines which has the property that l ¼ 1 
at S and l ¼ 0 at I , whereas n is a measure of distance between other field lines and the C-line 

within the shear layer of thickness M�1=2 (cf. [19, 20]). The so-defined coordinate n has the 
properties, that it is 0 on the C-line, positive in region II and negative in region I; moreover pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

2Γ2 AC ¼ expð�λÞ=λ ¼ 1 � λ =λ. 

For the simplest case of poorly conducting or insulating upper/outer boundary, with the use of 
the shear layer coordinates ðl; nÞ, the Eq. (8) can now be written at the leading order in the form 

∂V� 

∂l 
∂2V� � 
∂n2 

¼ 0 (20) 

where 

V� ¼ u �Mb: (21) 

In the spherical geometry, the analogous formulation leads to the coupling of the two equa-
tions for V� through nonzero curvature terms on the right-hand sides 
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∂V� ∂2V� 1 dsc � ¼ V ∓ : (22) 
∂l ∂n2 sc dl 

The coupling term, however, may be neglected if the narrow gap limit is assumed. More 
importantly, however, the two equations, in both—planar and spherical configurations, are 
coupled through the boundary conditions at l ¼ 0, 1, thus at the points I and S. Eqs. (20) and 
(22) are diffusion equations (with a source in the spherical case) valid for all ∞ < n < ∞, with 
the variable l corresponding to time variable from standard diffusion processes in the case of 
V� and 1 � l corresponding to time in the case of Vþ. The following solving procedure of 
Eqs. (20) or (22) can be applied. One can utilize the Green’s formula for the diffusion equation 
and first solve for Vþ by the use of the “initial condition” at l ¼ 1 (1 � l ¼ 0). Then introduce 
the obtained expression for Vþ into the “initial condition” for V� at l ¼ 0 and utilize the 
Green’s formula again. Finally, matching the two solutions through the condition at l ¼ 1 again 
yields an integral equation for the super velocities. Such procedure leads to an integral equa-
tion of Fredholm type, which has been solved numerically in Dormy et al. [4] and Mizerski and 

Bajer [5] for the two cases e ¼ 0 and e ¼ M�1. 

However, when the boundaries are perfectly conducting, the problem becomes more compli-
cated. The same equations as (20) and (22) are obtained for 

V� ¼ M�1=2u � M1=2b: (23) 

(cf. Eq. (3.20) in [6]), but the problem becomes analytically intractable due to the complications 
arising from vanishing of the current component parallel to the boundary at l ¼ 1. Neverthe-
less, Soward and Dormy [6] have managed to show that for perfectly conducting boundaries, 
the strong current leakage from the shear layer into the outer boundary in the vicinity of the ˜ ° 

M1=2 critical point causes strong super rotation Ω ¼ O . 

4. Summary 

The plane and spherical magnetohydrodynamic Couette flow with an applied strong external 
magnetic field creating Hartmann layer singularities on a boundary is a setting where fastly 
moving jets form, with the magnitude of the flow exceeding that of the moving boundary, 
which drives the entire flow. These are the so-called super velocities (super rotation in the 
spherical case). We have concentrated here on the review of the results and analytic approach 
to the problem of the formation of super velocities in strong, potential fields, with particular 
emphasis on the enhancement of super velocities by the conductivity of the resting boundary. 

As found by Soward and Dormy [6], the conductivity of the resting (upper/outer) boundary ε 
greatly influences the current leakage from the shear layer to that boundary near the point of 
its tangent contact with the critical C-line. In the case of weakly conducting boundary ˜ ° 
eM3=4 ≪ 1, the current leakage is of the order O eM3=4 and it increases with ε to become 

order unity when eM3=4 ≫ 1. This strong current is perpendicular to the external field in the 
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singular region, and thus a strong Lorentz force j ˜ B0 is created, which accelerates the flow (or 
decelerates in some cases as shown by [16], depending on the symmetries of the applied field). 
In the case of interest when the moving boundary is strongly conducting and M ≫ 1, the ˜ ° ˜ ° 

M1=2 2=3M1=2 resulting super-velocity scales like O when e ≫ 1 is of the order O e when 

1 ≫ e ≫ M°3=4 and becomes order unity when e ≪ M°3=4. 
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Abstract

The aim of this study is to coat a stretching cylinder with the help of a liquid film spray.
The Casson fluid has been chosen for the coating phenomena. The thickness of the
liquid film has been used as variable, and the influence of heat and mass transmission
under the impact of thermophoresis has been encountered in the flow field. The
required pressure term for the spray pattern during variable thickness has mainly been
focused. Using the suitable similarity transformations, the basic flow equations for the
fluid motion have been converted into high-order nonlinear coupled differential equa-
tions. Series solutions of subsequent problem have been obtained using controlling
procedure optimal approach. Important physical constraints of skin friction, Nusselt
number, and Sherwood number have been calculated numerically and discussed. Other
physical parameters involved in the problem, i.e., Reynolds number Re, Casson fluid
parameter β1, Prandtl number Pr, Lewis number Le, Brownian motion parameter Nb,
and thermophoresis parameter Nt have been illustrated. The skin friction effect and its
physical appearance are also included in this work. The convergence is checked by
plotting h-curves. The emerging parameters are discussed by plotting graphs. The
recent work is also compared with the published work.

Keywords: thin film spray, Casson nanofluid, stretched cylinder, heat and mass transfer,
thermophoresis, HAM

1. Introduction

The relation among pressure and flow is an important phenomena which plays a vital role to
understand the circulation of the blood in the human body and its sustainability. The approach
of pressure [1] can bring a partial barrier in some areas of the smaller vessels due to the
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Abstract 

The aim of this study is to coat a stretching cylinder with the help of a liquid film spray. 
The Casson fluid has been chosen for the coating phenomena. The thickness of the 
liquid film has been used as variable, and the influence of heat and mass transmission 
under the impact of thermophoresis has been encountered in the flow field. The 
required pressure term for the spray pattern during variable thickness has mainly been 
focused. Using the suitable similarity transformations, the basic flow equations for the 
fluid motion have been converted into high-order nonlinear coupled differential equa-
tions. Series solutions of subsequent problem have been obtained using controlling 
procedure optimal approach. Important physical constraints of skin friction, Nusselt 
number, and Sherwood number have been calculated numerically and discussed. Other 
physical parameters involved in the problem, i.e., Reynolds number Re, Casson fluid 
parameter β1, Prandtl number Pr, Lewis number Le, Brownian motion parameter Nb, 
and thermophoresis parameter Nt have been illustrated. The skin friction effect and its 
physical appearance are also included in this work. The convergence is checked by 
plotting h-curves. The emerging parameters are discussed by plotting graphs. The 
recent work is also compared with the published work. 

Keywords: thin film spray, Casson nanofluid, stretched cylinder, heat and mass transfer, 
thermophoresis, HAM 

1. Introduction 

The relation among pressure and flow is an important phenomena which plays a vital role to 
understand the circulation of the blood in the human body and its sustainability. The approach 
of pressure [1] can bring a partial barrier in some areas of the smaller vessels due to the 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

http://creativecommons.org/licenses/by/3.0
http://dx.doi.org/10.5772/intechopen.79772


42 Fluid Flow Problems 

thrilling change of the yield stress. The blood is equally a mixture of two fluids Casson and the 
other one is Newtonian fluid and studied by Srivastava and Saxena [2]. They focused on the effect 
of resistance created by the viscosity term and wall shear stresses. Later on, this fluid is studied by 
many researchers on the stretching surfaces for other industrial and engineering usages [3]. 
Mahdy [4] have examined the fluid motion over an extending cylinder considering Casson fluid. 
Hayat et al. [5] have examined the third-order fluid motion over an extending tube within the 
effect of MHD. Qasim et al. [6] have considered the slip flow of sighted ferrofluid over an 
extending cylinder. Sheikholeslami [7] has studied the suction idea considering nanofluid over 
an extended cylinder. Manjunatha et al. [8] have examined the radiation effect in a porous space 
using dusty fluid and stretching cylinder. Abdulhameed et al. [9] have examined the oscillatory 
flow phenomena using circular cylinder. Hakeem et al. [10] have studied the flow of Walter’s B  
fluid over an extending sheet. Pandey et al. [11] have studied the Walter’s B viscoelastic 
nanofluid film energetic from below. The interesting and fruitful applications of thin film are 
the wire and fiber coating, processing of food stuff, extrusion of polymer and metal, drawing of 
plastic sheets, continuous casting, fluidization of reactor, and chemical processing equipment. 
On the basis of these applications, researchers did a lot of work on it. Wang [12] was the main 
researcher who investigated liquid film on an unstable extending surface. Recently Tawade 
et al. [13] have investigated liquid film flow over an unstable extending surface with thermal 
radiation, in the existence of continuous magnetic field using numerical method. The liquid 
film flow considering non-Newtonian fluids proliferates in many life geographies which is 
used mostly in cylindrical shapes. Several researchers [14–17] investigated power-law fluid 
with unsteady extending surface using different cases. Megahe [18] and Abolbashari et al. [19] 
have scrutinized thin film flow of Casson fluid using slip boundary conditions. Recently Qasim 
et al. [20] have examined the liquid film flow of nanofluid considering Buongiorno’s model. 

The liquid film spray on a stretching sheet has also an important phenomena to coat the metals 
and increase their life. The idea of spray on the stretching surface is the study of Wang [21]. 
Recently Noor et al. [22] considered the thin film spray of nanofluid on a stretching cylinder. They 
compared their results with the experimental data and found the impact of the physical parame-
ters during flow phenomena. They also discussed the application of their work in detail. Most of 
the mathematical problems in the field of engineering are composite in their nature, and the exact 
resolution is very tough or even not conceivable. The solution of these problems is tackled through 
numerical and analytical methods. Homotopy analysis method is one of the popular techniques 
for the solution of such complex problems. Liao [22–26] investigates this series solution technique 
for the solution of nonlinear problems. The other important feature of this method is that its 
solution contains all the embedded parameters involved in the problem and also the range of the 
embedded parameters. The high nonlinear problems have been solved by Abbasbandy [27] due to 
the fast convergence of this method. Alshomrani and Gul [28], Gul [29] have studied the solution 
of nonlinear differential equations through HAM arises in the field of engineering and industry. 

2. Formulation 

Consider the thin film flow of Casson nanofluid elegantly through a circular cylinder of radius 
“a.” The cylinder is supposed to be stretched along with radial direction with velocity Uw, and 
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temperature at the surface of cylinder is taken Tw. The uniform ambient temperature is 
considered Tb such that Tw � Tb > 0 for assisting flow and Tw � Tb < 0 for opposing flow. 

The governing equations of continuity, heat transfer, and mass transfer are 

∂u u ∂w þ þ ¼ 0, (1) 
∂r r ∂z 

∂w ∂w 1 ∂2w 1 ∂w 1 ∗ u þ w ¼ υ 1 þ þ þ gβ ðT � TbÞð1 � CbÞ þ  ðr ∗ � rÞðC � CbÞ, (2) 
∂r ∂z β1 ∂r2 r ∂r r 

∂u ∂u 1 ∂P 1 ∂2u 1 ∂u u 
u þ w ¼ �  þ υ 1 þ þ � , (3) 
∂r ∂z r ∂r β1 ∂r2 r ∂r r2

 ! � � � �2 ∗ ∗ ∂T ∂T ∂2T 1 ∂T r cp ∂T ∂ϕ DT ∂T 
u þ w ¼ α þ þ DB þ , (4) 
∂r ∂z ∂r2 r ∂r rcp ∂r ∂r Tb ∂r 

∂C ∂C ∂2C 1 ∂C DT ∂2T 1 ∂T 
u þ w ¼ DB þ þ þ , (5) 
∂r ∂z ∂r2 r ∂r Tb ∂r2 r ∂r 

where u rð ; zÞ and w rð ; zÞ are velocity components; r is density; υ is kinematic viscosity; β1 is the 
∗ constant characteristic to Casson fluid; β is the coefficient of thermal expansion; g is the 

gravitational acceleration along z-axis; T, Tb, C  and Cb determine the temperature, ambient 
temperature, concentration, and ambient concentration, respectively; and α, DT,DB stands 
for the thermal diffusivity, thermophoresis diffusion coefficient, and Brownian diffusion 
coefficient. 

The suitable boundary conditions are 

u ¼ Uw,w  ¼ Ww, T  ¼ Tw, C  ¼ Cw at r ¼ a, (6) 

∂w ∂T ∂C dδ 
μ ¼ ¼ ¼ 0, u  ¼ w at r ¼ b: (7) 
∂r ∂r ∂r dz 

Here Uw ¼ �ca represents the suction and injection velocity, and Ww ¼ 2cz is the stretching 
velocity such that c represents the stretching parameter and δ is the thickness of fluid film. 

The similarity transformations are used to alter the basic Eqs. (1)–(7) used in [22] as 

2 2 f ð Þη df cz cz 
u ¼ �ca p , w  ¼ 2cz , T z  θ η  ð  Þ ¼ Cb � Cref ð Þ, ffiffiffi ð  Þ ¼ Tb � Tref ð Þ, C  z  ϕ η  (8) 

η dη υnf υnf 

where � �2 r 
η ¼ : 

a 

� �2 In the case of the outer radius b of the flow, η ¼ b : a 
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Using these transformations in Eqs. (1), (2), (4)–(7), we obtained a set of dimensionless equa-
tions which is

 ! 
1 ∂3f ∂2f ∂2f ∂f 2 � � 

1 þ η þ þ Re f � þ λ θþNrϕ ¼ 0, (9) 3 2 2 β ∂η ∂η ∂η ∂η 1 

∂2θ ∂θ ∂θ ∂f ∂θ ∂θ ∂ϕ 
η þ þ Pr:Re f � 2 θ þ η Nt þNb ¼ 0, (10) 2 ∂η ∂η ∂η ∂η ∂η ∂η ∂η 

∂2ϕ ∂ϕ ∂ϕ ∂f Nt ∂2θ ∂θ 
η þ þ Le:Re f � 2 ϕ þ η þ ¼ 0, (11) 
∂η2 ∂η ∂η ∂η Nb ∂η2 ∂η 

where 

2 ∗ ca gβ∗a Tw � T∞Þð1 � C∞Þ ðr � r ÞðCw � C∞Þ ð 
Re ¼ , λ ¼ , Nr ¼ , ∗ 2υ W2 rβ ðTw � T∞Þð1 � C∞Þ w nf 

(12) ∗ ∗ ∗ ∗ μ r c DT ΔT r c DBΔC cp p υ p Pr ¼ , Nt ¼ , Le ¼ , Nb ¼ : 
k rcpαTb DB rcpα 

In Eq. (12) Re stands for the Reynolds number, λ is the buoyancy parameter or in other word it 
is the natural convection parameter, Nr stands for the buoyancy ratio, Pr represents the Prandtl 
number, Nt is used to represent thermophoresis parameter, Le is Lewis number, and Nb is 
Brownian motion parameter. 

Physical conditions for momentum, thermal, and concentration fields are transformed as 

∂f ð Þ1 
f ð  Þ ¼1 ¼ θ 1 ð  Þ ¼ 1, ð  Þ ¼ ϕ 1 (13) 

∂η 

∂2f β � �  ∂θ β  ∂ϕ β  
2 

¼ f β ¼ ¼ ¼ 0, (14) 
∂η ∂η ∂η 

where β is the thickness of liquid film sprayed on the outer surface of the cylinder. 

Integrating Eq. (3) for pressure term 

p � pb Re 1 ∂f ¼ f 2 � 2 1  þ : (15) 
μc η β ∂η 1 

At the outer surface, the shear stress of the liquid film is zero, i.e., 

∂2f 
� �  
β 
2 

¼ 0: (16) 
∂η 

The shear stress on the cylinder is 

rυ4cz 4cμz 
f 00 1 f 00 1 τ ¼ ð Þ ¼  ð Þ  (17) 

a a 
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The deposition velocity V is written as 

f 0 β �V ¼ �ca pffiffiffi : (18) 
β 

Mass flux m1 is in association with the deposition per axial length which is 

m1 ¼ V2πb (19) 

The normalized mass flux m2 is 

m1 m1 m2 ¼ ¼ ¼ f β (20) 
2πa2c 4πυnf Re 

The flow, temperature, and concentration rates are 

2υnf ∂w ak ∂T a ∂C 
Sf ¼ , Nu ¼ �  , Sh ¼ �  : (21) 

Ww ∂r ðTw � TbÞ ∂r 2ðCw � CbÞ ∂r r¼a r¼a r¼a 

The nondimensional forms for the abovementioned physical properties are 

zRe ∂2f ð Þ1 ∂θð Þ1 ∂ϕð Þ1 
Sf ¼ , Nu ¼ �2k , Sh ¼ �  : (22) 

a ∂η2 ∂η ∂η 

3. Solution by homotopy analysis method 

Initially guessed values for f ,  θ, and ϕ at η ¼ 1 are 

β � � � � �� 
f 0 η � �3 η

3 � 3βη2 � 3 � 6β þ η, ð  Þ ¼  η þ 2 � 3β 
2 β � 1 (23) 
�η2 3 �η2 3 

θ0 η þ β η  � 1Þ þ ð Þ ¼  ð : ð Þ ¼  ð , ϕ0 η þ β η  � 1Þ þ  
2 2 2 2 

The linear operators for the given functions Lf , Lθ and Lϕ are selected as 

∂4f ∂2θ ∂2ϕ 
Lf ¼ , Lθ ¼ and Lϕ ¼ (24) 

∂η4 ∂η2 ∂η2 
, 

which satisfies the following general solution: 

Lf A1 þ A2η þ A3η2 þ A4η3 ¼ 0, LθðA5 þ A6ηÞ ¼ 0 and LϕðA7 þ A8ηÞ ¼ 0, (25) 

where Aiði ¼ 1 � 8Þ are constants of general solution. 

The corresponding nonlinear operators Nf , Nθ, and Nϕ are defined as 
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∂3f ðη; pÞ ∂2f ðη 

 
1 Þ ; p 

Nf ½ f ðξ; pÞ; θ ξð ; pÞ] ¼  1 þ η þ 
∂η 3 2 ∂η β1  ! (26)   2 ∂2f ðη   ; pÞ ∂f ðη; pÞ þRe f ðη þ λθ ηð ; pÞ þNrϕ ηð ; pÞ ¼ 0, Þ -; p 2 ∂η ∂η 

 
∂f ðη; pÞ 

; p
 

∂2θ ηð ∂θ ηð ; pÞ ∂θ ηð ; pÞ ð Þ ; p 
Nθ½f ðξ; pÞ; θ ξð ; pÞ] ¼ η þ Pr:Re f η - 2 θ ηð þ Þ Þ ; p 2 ∂η ∂η ∂η ∂η 

(27)   
∂θ ηð ; pÞ ∂θ ηð ; pÞ ∂ϕ ηð ; pÞ þη Nt þNb ¼ 0, 

∂η ∂η ∂η 

 
∂f ðη; pÞ 

∂2ϕ ηð   ∂ϕ ηð ; pÞ ∂ϕ ηð ; pÞ ð ; p Þ 
Nϕ f ðη ; p þ Le:Re f η - 2 Þ; ϕ ηð ; pÞ ¼ η ϕ ηð þ Þ Þ ; p ; p 2 ∂η ∂η ∂η ∂η 

(28)   
∂2θ ηð Nt ; pÞ ∂θ ηð ; pÞ þ ¼ 0, η þ 2 Nb ∂η ∂η 

where p ∈ ½0; 1] is embedded parameter. 

4. Zeroth-order deformation problem 

The equations of zeroth-order deformation problem are obtained as 

  ð1 - pÞLf f ðη; pÞ - f 0ð Þη ¼ phf Nf ½f ðη; pÞ], (29) 

ð1 - pÞLθ½θ ηð ; pÞ - θ0ð Þη ] ¼ phθNθ½f ðη; pÞ; θ ηð ; pÞ], (30) 
    

  

ð1 - pÞLϕ ϕ ηð ; pÞ - ϕ ð Þη ¼ phϕNϕ f ðη; pÞ; ϕ ηð ; pÞ : (31) 0 

Here hf , hθ and hϕ are auxiliary nonzero parameters. The corresponding boundary conditions 
are written as 

Þ η 

  
    

∂f ðη; pÞ 
f ðη; pÞ ¼1 ¼ 1; η ¼ 1, θ ηð ; p ¼1 ¼ 1; ϕ ηð ¼ 1, (32) Þ ; p η¼1 ∂η 

    

η¼1 

∂θ ηð ; pÞ     
∂2f ðη; pÞ 

∂η 

    
η¼β 

¼ 0, 
∂ϕ ηð ; pÞ 

∂η 
¼ 0, ¼ 0: (33) 

∂η η¼β η¼β 

Since 

p ¼ 0 ) f ðη; 0Þ ¼ f 0 η , θ ηð ; 0Þ ¼ θ ð  Þ ¼ 1, ϕ η; 0Þ ¼ ϕ ð  Þ ¼ 1, ð  Þ ¼ η 0 η ð 0 η (34) 
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p ¼ 1 ) f ðη; 1Þ ¼ f ð Þη ,θ ηð ; 1Þ ¼ θ ηð Þ,ϕ ηð ; 1Þ ¼ ϕ ηð Þ: (35) 

Using the Taylor’s expansions of f ðη; pÞ,θ ηð ; pÞ and ϕ ηð ; pÞ about p ¼ 0 in Eqs. (28)–(31), we 
obtained 

∞ 
w f ηð ; p Þ ¼ f 0 ηð  Þ þ  f ηð Þp , w 

w¼1 

X
(36) 

∞ 
w θ ηð ; p Þ ¼ θ0 ηð  Þ þ  θw ηð Þp , 

w¼1 

X
(37) 

∞ 
w ϕ ηð ; p Þ ¼ ϕ ηð  Þ þ  ϕ ηð Þp , 0 w 

w¼1 

X
(38) 

where 

,θw ηð  Þ ¼  ,ϕ ηð  Þ ¼  w : 
∂wf ðη; pÞ ∂wθ ηð ∂wϕ ηð 1 1 1 ; pÞ ; p Þ 

f (39) ηð  Þ ¼  w w ∂η ∂η w ∂η w w! w! w! p¼0 p¼0 p¼0 

X 

The convergence of series depends on hf , hθ, and hφ. So let us suppose that series converges at 
p ¼ 1 for some values of hf , hθ, and hφ, then Eqs. (35)–(37) become 

∞ 

f ηð  Þ ¼ f 0 ηð  Þ þ  f ηð Þ, w 
w¼1 

(40) 

X∞ 

θ ηð  Þ ¼ θ0 ηð  Þ þ  θw ηð Þ, 
w¼1 

(41) 

X∞ 

ϕ ηð  Þ ¼ ϕ ð  Þ þ  ϕ η : (42) η ð Þ  0 w 
w¼1 

5. wth order deformation problem 

By taking w times derivatives of Eqs. (28)–(32) and then dividing by w! as well as substituting 
p ¼ 0, we obtained the following equations: 

Lf f w η w f ð  Þ � χ w�1 ð Þη ¼ ћf ℜf 
w ð Þη , (43) 

½ ð Þ � χ θ ð Þ� ¼ ћθ ℜf ð Þη , (44) Lθ θw η w�1 η w w 

Lϕ ϕ w ð  Þ �η χwϕw�1ð Þη ¼ ћϕ ℜf 
w ð Þη , (45) 
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where 
n 
0, if p ≤ 1 χw ¼ 1, if p>1 : 

w�1 � � � � X � � 
ℜf ð  Þ ¼η 1 þ

β 
1

1 

η f ‴ 
w�1 þ f 00 þ Re f w�1�j f j 

00 � f 0 w�1�j f 
0 þ Grtθw�1 þ Grcϕ , w w�1 j w�1 

j¼0 

(46) 
w�1 � � w�1 X X� � 

ℜθ 
w η w�1 þ θw 

0
�1 þ Pr:Re f w�1�jθj 

0 � 2f 0 w�1�jθj þ ηθ0 
w�1 Ntθ0 

w�1 þNbϕ
0 , (47) ð  Þ ¼ ηθ00 
w�1 

j¼0 j¼0 

w�1 � � X � � 
ℜw 

ϕ η w�1 þ ϕw 
0
�1 þ Le:Re f w�1�jϕj 

0 � 2f 0 w�1�jϕj þ 
Nt ηθ00 

w�1 þ θ0 
w�1 : (48) ð  Þ ¼ ηϕ00 

Nb j¼0 

The related boundary conditions are 

f 1 1 1 1 ð  Þ ¼ f 0 ð  Þ ¼ θwð  Þ ¼ ϕ ð  Þ ¼ 1, w w w � � � �  � �  (49) 
f 00 β ¼ θ0 β ¼ ϕ0 β ¼ 0: w w w 

The general solution of Eqs. (42)–(44) is given by 

f η η , ð  Þ ¼ e1 þ e2η þ e3η2 þ f ∗ ð Þ  w w 

θw η η , (50) ð  Þ ¼ e4 þ e5η þ θ∗ ð Þ  w 

ϕ η η : ð  Þ ¼ e6 þ e7η þ ϕ∗ ð Þ  w w 

∗ Here f ∗ ð Þξ , g  ð Þξ and θ∗ ð Þξ represent the particular solutions, and the constant Aiði ¼ 1 � 8Þ w w w 

are determined from boundary conditions (49). 

6. Discussion about graphical results 

The purpose of this study is to enhance the heat and mass diffusion by choosing a thin-layer 
spray of the Casson nanofluid over a stretching cylinder. The physical configuration of the 
problem is shown in Figure 1. The solution of the problem has been obtained using the 
homotopy approach, and the main features for the convergence (h-curves) of homotopy analy-
sis method (HAM) have been shown in Figures 2 and 3. These figures demonstrate the h-curves 
for velocity, temperature, and concentration fields, respectively. The impact of buoyancy param-
eter λ and buoyancy ratio Nr on velocity field is prescribed in Figure 4. Velocity grows with the 
rising values of λ because the natural convection parameter λ and momentum boundary layer 
are in direct relation. The similar effect for the rising values of Nr can be seen in Figure 4. The 
effect of thickness parameter β and Casson fluid parameter β1 versus velocity field is shown in 

Figure 5. Increasing values of β generate friction force and decline the velocity field because the 
thicker flow creates hurdles in fluid motion, while the thin layer is comparatively fast flowing. 
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Figure 1. Physical geometry of the problem. 

Figure 2. h-curve for velocity profile. 
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Figure 3. Combined h-curve for temperature and concentration fields. 

Figure 4. Variation of velocity with Nr and λ. 

Therefore, larger amount of β declines the flow motion. The similar effect of the larger amount 
of the Casson fluid parameter β1 is shown in Figure 5. The rising values of the parameter β1 

imply a decline in the yield stress of the Casson fluid. In Figure 6, the behavior of the thermo-
phoretic parameter Nt and Reynolds number Re is observed over the field of temperature. 
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Figure 5. Variation of velocity with β and β1. 

Figure 6. Variation of Nt and Re. 

The larger amount of thermophoresis parameter Nt depreciates temperature profile because 
rising values of Nt enhance the concentration profile due to its direct relation and its product in 
the model equation increases the cooling effect to reduce the temperature field. The larger 
quantity of Re reduces temperature field. Rising values of Reynolds number Re enhance the 
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Figure 7. Variation of Nt and Nb. 

inertial forces. The powerful inertial forces kept the fluid particles tightly closed, and more heat 
energy is required to break down the bonds among these atoms. In other words the inertial 
forces raise the boiling point of the fluid, and more heat energy is required to enhance the 
temperature. Figure 7 shows the influences of thermophoretic parameter Nt and Brownian 
motion parameter Nb in concentration field. The larger amount of Nb displays a falling perfor-
mance against concentration field. The parameter Nb is owing to the thinning of boundary 
layer because the random flow of liquid particles makes the decline in the concentration. The 
rising values of thermophoresis parameter Nt enhance the concentration field. The reason 
behind this is that Nt is in direct relation with concentration pitch, while the Nb is in inverse 
relation to the concentration field. 

Figure 8 represents the behavior of the concentration field with respect to Reynolds number Re 
and Lewis number Le. The larger amount of Re improves the concentration field. The reason is 
that larger values of Re generate the enhancement in the inertial forces to rise concentration 
field. The concentration boundary layer is falling with the rising value of Lewis number Le. 

Figure 9 shows the relationship between pressure distribution over the stretching surface 
versus Reynolds number Re and Casson fluid parameter β1. The larger amount of β1 increases 
the viscous forces, and more pressure are required at the surface. Thus the larger amount of β1 

decreases the pressure distribution. The larger amount of the Reynolds number Re decreases 
the pressure distribution. The strong inertial effects packed the fluid particle tightly, and as a 
result the pressure distribution decreases. 

Table 1 shows the numerical values of the skin friction coefficient, local Nusselt number, and 
Sherwood number of various physical parameters. The skin friction coefficient rises with the 
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Figure 8. Variation of Re and Le. 

Figure 9. Variation of pressure term. 

growth of thickness parameter β. The thick boundary layer increases friction force and 
improves the cooling effect. Therefore, the Nussselt and Sherwood numbers are increased. 
The Reynolds number Re decreases the fluid flow due to inertial forces. Due to this reason, the 

larger quantity of Re enhances the f 00ð Þ1 , Θ0ð Þ1 and ϕ0ð Þ1 . Similar effect for rising values of the 
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f 00 1 β Re β1 ð Þ  θ0ð Þ1 ϕ0ð Þ1 

1.5 0.8 1.2 0.0149342 0.785646 0.212503 

1.6 0.0150964 0.916634 0.260143 

1.7 0.01673959 1.03338 0.309284 

0.8 0.0149342 0.785646 0.212503 

0.9 0.0151422 0.881567 0.240775 

1.0 0.0149653 0.976928 0.269410 

1.2 0.0149342 0.785646 0.212503 

1.3 0.0154906 0.785691 0.212518 

1.4 0.0160015 0.785733 0.212531 

Table 1. Numerical values for skin friction coefficient, local Nusselt number, and Sherwood number for various physical 
parameters when h ¼ �0:5, Pr ¼ 0:5, β1 ¼ 1:2, β ¼ 1:5, Nt ¼ 0:5, Nb ¼ 1, Nr ¼ 0:6, Re ¼ 0:8, Le ¼ 0:5. 

Re [30] [31] [4] Present 

0.5 0.88220 0.8827 0.88691 0.886942 

1.0 1.17776 1.1781 1.17953 1.72926 

2.0 1.59390 1.5941 1.59434 3.26714 

5.0 2.41745 2.4175 2.4175 6.75053 

10.0 3.34445 3.3445 3.34447 10.1078 

Table 2. Values of f 00ð Þ1 for various Reynolds numbers when h ¼ �0:5, Pr ¼ 0:5, β1 ¼ 1:2, β ¼ 1:1, Nt ¼ 0:5, Nb ¼ 1, 
Nr ¼ 0:6, Le ¼ 0:5. 

Pr [30] [31] [4] Present 

0.7 1.568 1.5683 1.56878 1.56846 

2.0 3.035 3.0360 3.03596 3.68121 

7.0 6.160 6.1592 6.15813 7.24452 

10.0 10.77 7.4668 7.46477 10.2634 

Table 3. Values of �θ0ð Þ1 for various Prandtl numbers when h ¼ �0:5, β1 ¼ 1:2, β ¼ 1:1, Nt ¼ 0:5, Nb ¼ 1, Nr ¼ 0:6, 
Re ¼ 0:8, Le ¼ 0:5. 

Casson parameter β1 has been shown in Table 1. The reason is that the viscous forces become 

dominant with the larger amount of β1 to enhance the f 00ð Þ1 , Θ0ð Þ1 and ϕ0ð Þ1 . The comparison of 
present work and published work has been shown in Tables 2 and 3, and closed agreement for 
f 00 1ð Þ, Θ0ð Þ1 and ϕ0ð Þ1 has been achieved. 

7. Conclusion 

The heat and mass transfer effect of a thin film over the extended surface of a cylinder has been 
explored in the recent research. The spray phenomenon has been studied in the form of 
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velocity, temperature, concentration, and pressure distribution profiles, respectively. The sim-
ilarity transformation has been used to alter the governing equations into the set of nonlinear 
differential equations. The solution of the problems has been obtained through the homotopy 
analysis method (HAM). The impact of the embedded parameters has been examined and 
discussed. The outcomes of the recent study have been pointed out as: 

• The inertial forces become stronger with the larger amount of Reynolds number Re, and 
as a result the velocity of the fluid flow reduces, while the upsurge values of Reenhance 

the f 00ð Þ1 . Similarly, the Nusselt number and the Sherwood number are also increasing. 

• The larger amount of the thickness parameter β of the thin film produces hurdles in the 
spray phenomenon, and as a result the velocity of the fluid decreases. On the other hand, 
the skin friction, Nusselt number, and the Sherwood number grow with the larger values 
of β. In fact, the cooling effect increases with the rising values of β to enhance the friction 
force. 

• The greater amount of the Brownian motion parameter Nb declines the concentration 
field. The reason is that the rising values of Nb improve the thinning of the fluid layer 
and as a result the concentration profile reduces. 

• The temperature field increases with the rising value of the thermophoresis parameter Nt, 
while the concentration field falls to reduce with the larger amount of Nt, because the 
thermophoresis parameter is in inverse relation to the concentration profile. 

• The comparison of the present study with the published work authenticates the obtained 
result. 
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Abstract

The relationship of compressive behavior according to manufacturing process parameters of
geonet was investigated. We analyzed the drainage behavior of the bi- and tri-plane geonet
used for the planar drainage and investigated the changes of the drainage behavior due to
the restraining load. The data showed that there is no critical manufacturing factor to affect
the compressive strength of the bi-planar geonet. All of these parameters can affect in a very
complicated way. And the strand inclination can mainly affect to the after compressive
strength, i.e., roll-over behavior. The results considering site-specific conditions of the landfill
system explained the temperature has influence on the compressive behavior of the geonet.
The compressive strength was reduced and the strain at yield increase gradually with the
temperature for both of bi- and tri-planar geonet. Significant reductions in flow capacity
were observed for the traditional bi-planar and cylindrical type geonet and this value was
consistent to the compressive strength. These decreases were anticipated due to the abrupt
thickness decrease of the geonet caused by roll-over. In the other hand, there was no signifi-
cant decrease of transmissivity for the tri-planar geonet which has no roll-over phenomena.

Keywords: geonets, compressive behaviors, transmissivity, strand inclination, 
flow capacity, roll-over phenomena

1. Introduction

The application goal of geonets is mainly for planar drainage, and it is used as a medium to 
safely discharge the leachate generated from the landfill to the outside of the landfill. The two 
strands are cross-bonded to form a network structure in geonet, which serves as a drainage 
passage for the liquid. Geonet products of various structures are used and drainage capacity 
of geonet is very important because the landfill service life is determined by geonets drainage 
capacity when designing landfill.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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strands are cross-bonded to form a network structure in geonet, which serves as a drainage 
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Fannin [1] investigated the factors influencing the drainage capacity of geonets, and con-
firmed that the flow rate depends on the structure of the geonet and the drainage capacity is 
smaller when the strand channel and the crossing angle of the geonet are large. 

Also, Zhao [2] analyzed the factors affecting the drainage performance of geonets and con-
firmed that the drainage capacity decreases as the hydraulic gradient and the compressive 
strength increase. 

To investigate the behavior of geosynthetics under high normal stresses, Narejo and Rad et al. 
conducted a transmissivity test with normal stresses up to 2000 kPa [3–5]. From the results 
showed the variation of geonet transmissivity with normal stresses. Geonets behaved similarly 
up to 200 kPa regardless of weight. However, in the case of geonet with a small strand cross-
section area thickness, the drainage performance decreases when the compressive strength 
increases, but the drainage performance does not decrease much even when the maximum con-
fining load is 2000 kPa for thicker geonets. This is probably due to the fact that as the thickness
of the strand cross-section layer constituting the geonet becomes smaller and the compressive 
strength becomes larger, the roll-over of the strand intersection of the geonet occurs more often. 

Koerner [6] analyzed the roll-over phenomenon of bi-planar geonet. According to this, since 
the upper and lower strands constituting the geonet are not vertically bonded to each other 
at the cross-section areas, when the compressive strength is applied to the upper and lower 
layers of the geonet, the drainage capacity is large at the initial stage, the deformation of 
the strand joint starts to occur. This roll-over phenomenon causes a change in the drainage 
capacity in the upper and lower layers of the geonet, and the drainage capacity of the geonet 
is decreased and the drainage performance is lowered with time. 

Allen [7] analyzed the effect of orientation of strand constituting geonet on drainage perfor-
mance. In the case of the lower strand with small inclination angle at the cross-section area of 
the upper and lower strands, the roll-over phenomenon occurs more than the upper strand, 
and the drainage performance deteriorates. 

Kopp reported that geonet drainage performance was affected by the construction site tempera-
ture when the geonet was constructed at the landfill site [8]. Pegg indicates that the drainage per-
formance of the geonet is most affected under the circumstance at 80 or 85°C in the landfill site [9]. 

Therefore, when the environmental temperature is increased, the mobility of the molecular chain 
of the polyethylene, which is the raw material of geonet, becomes larger, and the drainage perfor-
mance may be decreased due to the structural change of the geonet to the compressive strength. 

In this chapter, the variation of drainage performance of geonets used for horizontal drainage 
is analyzed in relation to the influence of constraint load related factors.

2. Materials and performance test 

2.1. Specimens 

Three samples of geonets were used. The first geonet is a 5.6 mm thick high density polyeth-
ylene (HDPE) traditional bi-planar geonet. A photograph of this sample is shown in Figure 1. 
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Figure 1. Photograph of various geonets samples: (a) bi-planar, (b) tri-planar, and (c) cylindrical type. 

The second and third geonet are also HDPE, and have 8.6 mm tri-planar, 8.2 mm cylindrical 
type bi-planar structure, respectively. All these material are used for landfill cover and lining 
system drainage. Typical specifications for samples are provided in Table 1. 

2.2. Short-term compressive test 

Short-term compressive deformation testing was performed in accordance with ASTM 
Standard Test Method (ASTM D6364-06; Standard Test Method for Determining Short-Term 
Compression Behavior of Geosynthetics) [10]. 

The geonet specimens were placed between two steel sheets and compressed at a strain rate 
of 1.0 mm/min. The compressive strength was measured while varying the strain. The com-
pressive strength of the geonet is determined by parameters such as thickness, mass per unit 
area, crystallinity, strand strength, bonding strength of strand, strand angle and inclination in 
plane, test conditions are 23, 35 and 50°C, Strain rates were 0.1, 0.5, 1.0, 5.0 and 10 mm/min. 
Figure 2 shows the test pattern according to various parameters.

2.3. Transmissivity test 

The horizontal permeability, transmissivity, which is the drainage performance of the 
geonet, was measured using the ASTM Standard Test Method (ASTM D4716/D4716M-14; 
Standard Test Method for Determining the In-plane Flow Rate per Unit Width and Hydraulic 
Transmissivity of a Geosynthetic Using a Constant Head) [11]. And this is determined from 
the relationship between the number of paths per unit area and the in-plane drainage capac-
ity, the compressive strength and the hydraulic gradient. 

The short-term transmissivity test of geonet was carried out under various normal stresses 
and three hydraulic gradient conditions at 0.1–1.0, and the test temperature was 22–23°C. 
Figure 3 shows a schematic diagram of the transmissivity test apparatus and the transmissiv-
ity value was calculated from the following equation: 

Q θ = (1) B × (Δh/L) 

where θ = transmissivity (m2/s), Q = volume of discharged fluid per unit time (m3/s), L = length 
of the specimen (m), B = width of the specimen (m) and h = difference in the total head across 
the specimen (m). 
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Property Test method Unit Bi-planar Tri-planar Cylindrical type 

Thickness ASTM D5199 mm 5.6 8.6 8.2 

Mass per unit area ASTM D5261 g/m2 920 1700 2300 

Carbon black ASTM D4218 % 2.3 2.2 2.3 

Density ASTM D1505 g/cm3 0.942 0.944 0.940 

Crystallinity ASTM D2910 % 56 55 61 

Table 1. Basic properties of various geonet samples.

Figure 2. Schematic diagram various test parameter for determining the main factor: (a) 3-D, (b) horizontal, and (c) verticle. 

Figure 3. Schematic diagram of transmissivity test device. 
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3. Results and discussion 

3.1. Factors affecting the short-term compressive behavior

Figures 4–10 show the results of correlation between various manufacturing parameters and 
the compressive strength. The relationship between all of these manufacturing parameters of 
geonet and the compressive strength were not well defined through analysis of experimental 
values and it is assessed that the compressive strength of a geonet cannot be related to such 
as weight, geometrical properties, crystallinity, rib mechanical properties, etc. Only, compres-
sive strength is determined by a combination of these factors and thus has to be controlled as 
any other material constant of a geonet. 

Figure 4. Plot of compressive strength vs. thickness. 

Figure 5. Plot of compressive strength vs. mass per unit area. 
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Figure 6. Plot of compressive strength vs. strand intersection angle. 

Figure 7. Plot of compressive strength vs. crystallinity: (a) at intersection and (b) at strand. 
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Figure 8. Plot of compressive strength vs. strand strength. 

Figure 9. Plot of compressive strength vs. junction strength. 

To determine the compressive strength, the strand slope associated with the range of roll-over 
may not affect the confining strength, since the confining strength measurement time is after 
the start or end point of the roll-over (Figure 11). In Figure 11, the roll-over distance of a rect-
angular geonet strand is longer than that of a circular stranded geonet. Additional evidence 
for the relationship between the strand cross-sectional shape and the rollover behavior to 
support this can be seen by comparing the shape of the compressive strength-strain curve of 
the geonet shown in Figure 12. 

The cylindrical type exhibits a very stiff behavior even after the end of the roll-over and has 
very short roll-over range compare to the bi-planar which has very long roll-over region. 
By defining the factor that affects to the short-term compressive strength behavior of the 
bi-planar geonet, it should be determined that before the determining point of compressive 
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Figure 10. Plot of compressive strength vs. strand inclination. 

Figure 11. Relationship between strand cross sectional shape and roll-over range. 

strength. Also, all of the manufacturing parameters can affect the transmissivity of the geonet 
and strand inclination and strand cross-sectional shape will affect the roll-over phenomenon 
mainly. 

Therefore, it is concluded that if the cross-sectional shape of the strand is close to the circle, 
the roll-over region could be shortened dramatically and this advantage will contribute to the 
advance the long-term flow capacity of the geonet.
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Figure 12. Plot of compressive strength-strain curves of various geonet samples. 

Figure 13. Plot of compressive behavior curves according to various deformation rates at 23°C test temperature: (a) bi-planar
and (b) tri-planar. 
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3.2. Short-term compressive behavior 

Figures 13–15 show all the results of compressive strength-strain curves at different tempera-
tures (23, 35 and 50°C) and elongation rate (0.1, 0.5, 1.0, 5.0 and 10 mm/min).

In here, the compressive strength decreases and the deformation value increases according to 
the temperature. And the initial slope of this curve decreases greatly with increasing tempera-
ture, and the elastic modulus with temperature increases in the given strain range. 

Figure 14. Plot of compressive behavior curves according to various deformation rates at 35°C test temperature: (a) bi-planar
and (b) tri-planar. 
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Figure 15. Plot of compressive behavior curves according to various deformation rates at 50°C test temperature: (a) bi-planar
and (b) tri-planar. 

Considering the landfill’s severe temperature conditions, this decrease may be affect the long-
term flow capacity of the geonet drainage.

3.3. Short-term transmissivity 

The flow capacity data as logarithm of transmissivity as a function of normal pressure (log 
value) is presented in Figure 16. This type of plot more clearly reveals the material response 
to applied loading conditions. Figure 16 shows a continuous decrease in transmissivity from 
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Figure 16. Plot of transmissivity results of various geonet samples: (a) gradient—0.1, (b) gradient—0.5 and (c) gradient—0.5. 
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8.2 to 0.25, 9.53 to 2.62 and 8.2 to 1.16 (×10−3) at 0.1 hydraulic gradient for bi-planar, tri-planar 
and cylindrical type geonet, respectively. Also in other hydraulic conditions show same trend 
as 0.1 hydraulic gradient. It is clear from Figure 16 that bi-planar and cylindrical type show 
dramatic decrease of transmissivity above 600 kPa. 

However, the cylindrical type geonet has more strong flow capacity compare to the bi-planar 
geonet even though there is a roll-over effect. On the other hand, the tri-planar geonet shows 
the excellent resistance to the thickness decrease. 

The transmissivity of the tri-planar geonet is very high but decrease gradually with increasing 
normal pressure (compressive strength). This is due to the tri-planar geonet structure and 
means the stability of tri-planar geonet even though very high normal pressure (2000 kPa) 
and hydraulic gradient (1.0). 

Therefore, it can be concluded that the triplanar geonet drainage pattern is linear and that a 
tri-planar geonet with a zig-zag-shaped flow pattern can discharge the liquid very effectively 
even when the thickness is the same as the bi-planar geonet. 

From these results, it is considered that the most important factors affecting short-term flow 
capacity of geonet are drainage path and drainage pattern (e.g., linear or zigzag type) and 
geonet thickness. 

4. Conclusion 

The data from short-term engineering properties describe the influencing factors to the short-
term compressive for the bi-planar geonet, compressive behavior under various test condi-
tions for the bi-planar and tri-planar geonet, and the short-term flow capacity for three types 
of geonet under up to 2000 kPa normal pressure. 

The following conclusions are drawn: 

1. The compressive behavior of bi-planar geonet shows different drainage behavior before 
and after compression. Compared with the pre-compression, it can be affected by the 
strand cross-pattern after compression, and the strand inclination and cross-sectional pat-
tern affect the roll-over behavior, resulting in a larger reduction in drainage performance.

2. Since these materials are viscoelastic in nature, compressive behavior was affected by the
temperature changes. The compressive decreases were up to 40% when compared to its 
value for 23°C for both bi- and tri-planar geonet in very critical temperature condition (50°C).

3. The reduction of the drainage capacity depends on the structure of the geonet, and the 
drainage pattern is composed of a zigzag pattern rather than a straight line, or a smaller 
triple-planar geonet with a larger strand thickness. In this case, the roll-over effect can be 
minimized, and even when the compressive strength is higher than 600 kPa, the decrease 
of drainage capacity is smaller than that of the bi-planar geonet. And the selection of a 
geonet to maximize flow capacity in the long-term must consider not only the thickness of 
the strands but also the pattern of the liquid flow channel.
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Fluid Flow Problems72

 

  
 

  
 

  
 

  
 

  
 

  

  
 

   

 

  

 

 

 



 

Edited by Farhad Ali 

In physics and engineering, fuid dynamics is a subdiscipline of fuid mechanics that 
describes the fow of fuids, liquids, and gases. It has several subdisciplines, including 

aerodynamics (the study of air and other gases in motion) and hydrodynamics (the 
study of liquids in motion). Fluid dynamics has a wide range of applications, including 

calculating forces and moments on aircraf, determining the mass fow rate of 
petroleum through pipelines, predicting weather paterns, understanding nebulae in 
interstellar space and modeling fssion weapon detonation. In this book, we provide 
readers with the fundamentals of fuid fow problems. Specifcally, Newtonian, non-
Newtonian and nanofuids are discussed. Several methods exist to investigate such 
fow problems. Tis book introduces the applications of new, exact, numerical and 

semianalytical methods for such problems. Te book also discusses diferent models 
for the simulation of fuid fow. 
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