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Preface

Sensor data fusion is the process of combining error-prone, heterogeneous, incom-
plete, and ambiguous data to gather a higher level of situational awareness. In prin-
ciple, all living creatures are fusing information from their complementary senses
to coordinate their actions and to detect and localize danger. In sensor data fusion, 
this process is transferred to electronic systems, which rely on some “awareness” of
what is happening in certain areas of interest. By means of probability theory and 
statistics, it is possible to model the relationship between the state space and the
sensor data. The number of ingredients of the resulting Kalman filter is limited, but
its applications are not.

This book presents recent advances in applications and theory of Kalman filters
with a special focus on implementation advice for efficient, fast, and robust state
estimation algorithms. These aspects highlight the particular strengths of Kalman
filter-based approaches, since the analytical solutions of the Bayes formalism enable
smart—and in some way “intelligent”—modifications for lightweight processing 
algorithms while maintaining data consistency for robustness. This is of great
interest for industrial applications such as human assistance systems, robot percep-
tion, and advanced driver-assistance systems for automotive platforms due to the
constraints in costs, energy, and computational resources.

This book is therefore well suited for practical engineers who are interested in novel 
techniques for fast and efficient sensor data fusion and non-linear state estimation.

I would like to thank all contributing authors who have made this book possible
by sharing their research and empirical knowledge to help others who are build-
ing complex systems. Moreover, I would like to thank the forbearing managers at
IntechOpen for their support.

Felix Govaers
Fraunhofer FKIE,

Wachtberg, Germany
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Chapter 1

Introductory Chapter: Kalman
Filter - The Working Horse
of Object Tracking Systems
Nowadays
Felix Govaers

1. Introduction

Sensordata fusion is the process of combining error-prone, heterogenous, 
incomplete, and ambiguous data to gather a higher level of situational awareness. 
In principle, all living creatures are fusing  information from their complementary
senses in order to coordinate their actions and to detect and localize danger. In
sensor data fusion, this process is transferred to electronic systems, which rely on
some “awareness” of what is happening in certain areas of interest, and since the
sensors involved most often are confronted with a dynamical world, the state of
interest underlies an evolution process in time, which has to be reflected within
the data processing. By means of probability theory and statistics, it is possible to
model the relationship between the state space and the sensor data. Kinematic laws
and stochastic processes further provide the basis for evolution models in object
tracking. The number of ingredients of the resulting Kalman filter is limited, but its
applications are not.

Invented many decades ago—Kalman’s initial paper was published in 1960,
and it is well known that similar solutions to the tracking problem were found
even earlier—the Kalman filter is an algorithm with an extraordinary career. In
the days it was invented, the Kalman filter was designed for tracking airplanes
in the sky based on surveillance radars. As a consequence, the problems of
measurement error and object dynamics were the key points, which the Kalman
filter can cope with. Since then, sensor technology has evolved enormously.
In recent decades, sensor technology has become increasingly important for
numerous civilian and military applications, and it is obvious that this trend
will continue in the future. High performance sensors have conquered many
novel applications, and existing applications have been brought to a much higher
level of technical complexity. This technological trend is accompanied with an
evolution in the field of sensor data processing algorithms. Besides the fam-
ily of Kalman filters, other solutions to the Bayesian approach to information
processing have been developed—based on grids or Monte Carlo simulation for
instance. However, the most often used approach for practical tracking system
still is the Kalman filter, at least in one of its numerous variants. While the
classical assumptions including linear models for sensor and dynamics, perfect
data association, and known track existence are mostly handled in the academic
and educational field, many extensions have been developed to bring the Kalman
filter into practical and industrial systems. It is literally impossible to list all
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Introduction and Implementations of the Kalman Filter 

methods that have been developed based on the Kalman filter, a few of the most 
important variations possibly would be: 

• Extended and unscented Kalman filter (EKF/UKF) for nonlinear models. 

• Multiple hypothesis tracking (MHT) for ambiguous data association. 

• Interacting multiple model (IMM) for Markov Chain motion model systems. 

• Distributed Kalman filter (DKF) and information filter for multisensor fusion. 

• Random matrix model and hypersurface model for extended target tracking. 

• Self-localization and mapping (SLAM) for autonomous navigation in unknown 
environments. 

In the past decade, challenges in target tracking applications have changed again. 
Today, often heterogenous sensors such as radar, LIDAR, E/O and I/R cameras, and 
others are combined to achieve robustness and a high level of perception. 
Also, Kalman filters are applied to a great variety of applications where, for instance, 
intelligence data from social media or computer program logs for intrusion detection 
systems are combined to achieve situational awareness. And, of course, we may not 
omit the uprising self-driving cars, which might be the most famous application 
these days. It is a particularly interesting application, since the challenges involved 
are enormous: bias- and error-prone point clouds are obtained from partially scatter-
ing points in the environment, the quality highly depends on weather and daylight 
conditions, the environment might be unknown, and other participants might not be 
aware and have to be protected. And all this is safety critical. And the processing unit 
is supposed to be lightweight for economic reasons. 

There are many more examples to demonstrate for further development, trends, 
and improvements of Kalman filter based algorithms, and I am happy that we have 
gathered some interest of practical relevance in this book. 

2. Kalman filter in the shed light of artificial intelligence 

Artificial intelligence (AI) comprises a wide range of technologies and method-
ologies such as machine learning (ML), support vector machines (SVM), logistic 
regression (LR), game theory, logic reasoning, and many more. The term was 
introduced once to highlight the increasing complexity of machines in combination 
with numerical algorithms for robotic perception for instance. In particular the 
success in image and video processing based on massive training data, well-tuned 
models, and high-performance hardware has created a boost in research and 
expectations for new AI applications and results in the past years. ML methods 
show good performances when it comes to perception task such as object classifica-
tion and image segmentation; however, it will be hard to match the expectations 
on AI if models created and tested by engineers together with logic reasoning and 
the Bayes formalism are kept out of complex systems with decision-making and 
strategic situational awareness on a higher level. This is due to the fact that ML 
encodes correlations between input data and the resulting class very efficiently but 
does not have a concept to infer causality. Thus, a deeper understanding beyond a 
rough comparison of shallow features is not possible. But often, this is not enough. 
In particular when it comes to safety critical applications or even military use, a 
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mere performance argument is not sufficient to justify the usage of algorithms, 
which still suffer from the black box property with respect to the transparency 
of computed results. Moreover, one cannot overemphasize the dependency of 
ML methods on huge training sequences, which must be labeled for most useful 
applications. Image recognition essentially is solved due to the fact that there are 
tons of labeled pictures in the Internet. However, this is not the case for complex 
multisensor systems, which must adapt appropriately in unseen environments. 
Moreover, it is obvious that the feature space grows exponentially when it comes to 
complex systems and higher-order reasoning. As a consequence, the amount of data 
which would be necessary to train a neural network for such systems is a natural 
show stopper. This is where we will find logic reasoning and Bayes methods such 
as the Kalman filters (KF) increasingly. The human experience and ability to infer 
chains of causality can be transferred into AI algorithms by means of sensor models, 
motion models, and time evolution models. The KF with its low weight consump-
tion when it comes to numerical costs is an important backbone in advanced driver 
assistance systems already, and this trend is about to continue heavily. 

Author details 

Felix Govaers 
Fraunhofer FKIE, Wachtberg, Germany 

*Address all correspondence to: felix.govaers@fkie.fraunhofer.de 
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Chapter 2

Introduction to Kalman Filter and
Its Applications
Youngjoo Kim and Hyochoong Bang

Abstract

We provide a tutorial-like description of Kalman filter and extended Kalman
filter. This chapter aims for those who need to teach Kalman filters to others, or for
those who do not have a strong background in estimation theory. Following a
problem definition of state estimation, filtering algorithms will be presented with
supporting examples to help readers easily grasp how the Kalman filters work.
Implementations on INS/GNSS navigation, target tracking, and terrain-referenced
navigation (TRN) are given. In each example, we discuss how to choose, imple-
ment, tune, and modify the algorithms for real world practices. Source codes for
implementing the examples are also provided. In conclusion, this chapter will
become a prerequisite for other contents in the book.

Keywords: Kalman filter, extended Kalman filter, INS/GNSS navigation, target
tracking, terrain-referenced navigation

1. Introduction

Kalman filtering is an algorithm that provides estimates of some unknown vari-
ables given the measurements observed over time. Kalman filters have been dem-
onstrating its usefulness in various applications. Kalman filters have relatively
simple form and require small computational power. However, it is still not easy for
people who are not familiar with estimation theory to understand and implement
the Kalman filters. Whereas there exist some excellent literatures such as [1]
addressing derivation and theory behind the Kalman filter, this chapter focuses on a
more practical perspective.

Following two chapters will devote to introduce algorithms of Kalman filter and
extended Kalman filter, respectively, including their applications. With linear
models with additive Gaussian noises, the Kalman filter provides optimal estimates.
Navigation with a global navigation satellite system (GNSS) will be provided as an
implementation example of the Kalman filter. The extended Kalman filter is utilized
for nonlinear problems like bearing-angle target tracking and terrain-referenced
navigation (TRN). How to implement the filtering algorithms for such applications
will be presented in detail.

7



Chapter 2 

Introduction to Kalman Filter and 
Its Applications 
Youngjoo Kim and Hyochoong Bang 

Abstract 

We provide a tutorial-like description of Kalman filter and extended Kalman 
filter. This chapter aims for those who need to teach Kalman filters to others, or for 
those who do not have a strong background in estimation theory. Following a 
problem definition of state estimation, filtering algorithms will be presented with 
supporting examples to help readers easily grasp how the Kalman filters work. 
Implementations on INS/GNSS navigation, target tracking, and terrain-referenced 
navigation (TRN) are given. In each example, we discuss how to choose, imple-
ment, tune, and modify the algorithms for real world practices. Source codes for 
implementing the examples are also provided. In conclusion, this chapter will 
become a prerequisite for other contents in the book. 

Keywords: Kalman filter, extended Kalman filter, INS/GNSS navigation, target 
tracking, terrain-referenced navigation 

1. Introduction 

Kalman filtering is an algorithm that provides estimates of some unknown vari-
ables given the measurements observed over time. Kalman filters have been dem-
onstrating its usefulness in various applications. Kalman filters have relatively 
simple form and require small computational power. However, it is still not easy for 
people who are not familiar with estimation theory to understand and implement 
the Kalman filters. Whereas there exist some excellent literatures such as [1] 
addressing derivation and theory behind the Kalman filter, this chapter focuses on a 
more practical perspective. 

Following two chapters will devote to introduce algorithms of Kalman filter and 
extended Kalman filter, respectively, including their applications. With linear 
models with additive Gaussian noises, the Kalman filter provides optimal estimates. 
Navigation with a global navigation satellite system (GNSS) will be provided as an 
implementation example of the Kalman filter. The extended Kalman filter is utilized 
for nonlinear problems like bearing-angle target tracking and terrain-referenced 
navigation (TRN). How to implement the filtering algorithms for such applications 
will be presented in detail. 

7 



Introduction and Implementations of the Kalman Filter 

2. Kalman filter 

2.1 Problem definition 

Kalman filters are used to estimate states based on linear dynamical systems in 
state space format. The process model defines the evolution of the state from time 
k 1 to time k as: 

xk ¼ Fxk 1 þ Buk 1 þ wk 1 (1) 

where F is the state transition matrix applied to the previous state vector xk 1, B 
is the control-input matrix applied to the control vector uk 1, and wk 1 is the 
process noise vector that is assumed to be zero-mean Gaussian with the covariance 
Q, i.e., wk 1 ~ N ð0; QÞ. 

The process model is paired with the measurement model that describes the 
relationship between the state and the measurement at the current time step k as: 

zk ¼ Hxk þ νk (2) 

where zk is the measurement vector, H is the measurement matrix, and νk is the 
measurement noise vector that is assumed to be zero-mean Gaussian with the 
covariance R, i.e., νk ~ N ð0; RÞ. Note that sometimes the term “measurement” is 
called “observation” in different literature. 

The role of the Kalman filter is to provide estimate of xk at time k, given the 
initial estimate of x0, the series of measurement, z1, z2, …, zk, and the information of 
the system described by F, B, H, Q, and R. Note that subscripts to these matrices are 
omitted here by assuming that they are invariant over time as in most applications. 
Although the covariance matrices are supposed to reflect the statistics of the noises, 
the true statistics of the noises is not known or not Gaussian in many practical 
applications. Therefore, Q and R are usually used as tuning parameters that the user 
can adjust to get desired performance. 

2.2 Kalman filter algorithm 

Kalman filter algorithm consists of two stages: prediction and update. Note 
that the terms “prediction” and “update” are often called “propagation” and 
“correction,” respectively, in different literature. The Kalman filter algorithm is 
summarized as follows: 

Prediction: 

Predicted state estimate þ
k 1 þ Buk 1 ¼ F ̂  ^ x 

Predicted error covariance P k ¼ FPþk 1F
T þ Q 

x k 

Update: 

 
k Measurement residual eyk ¼ zk  H ̂  

^ ^ 

x 

Kalman gain Kk ¼ P k H
T R þ HPk

 HT  1 

x Updated state estimate þ
k ¼ þ Kkey x k 

Updated error covariance Pk
þ ¼ ðI  KkHÞP k 

8 
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In the above equations, the hat operator, ̂, means an estimate of a variable. That 
x is an estimate of x. The superscripts – and þ denote predicted (prior) and ^ is, 

updated (posterior) estimates, respectively. 
The predicted state estimate is evolved from the updated previous updated state 

estimate. The new term P is called state error covariance. It encrypts the error 
covariance that the filter thinks the estimate error has. Note that the covariance of a h iT T random variable x is defined as cov xð  Þ ¼ E where E denotes the x x 

expected (mean) value of its argument. One can observe that the error covariance 
becomes larger at the prediction stage due to the summation with Q, which means 
the filter is more uncertain of the state estimate after the prediction step. 

^ 

In the update stage, the measurement residual is computed first. The yek 
measurement residual, also known as innovation, is the difference between the true 

^ ðx � Þðx � Þ 

measurement, zk, and the estimated measurement, H ̂x k . The filter estimates the 
current measurement by multiplying the predicted state by the measurement 

^ 
matrix. The residual, eyk, is later then multiplied by the Kalman gain, Kk, to provide 
the correction, Kkeyk, to the predicted estimate x� 

k . After it obtains the updated state 

^ 
^ 

estimate, the Kalman filter calculates the updated error covariance, Pþ
k , which will 

be used in the next time step. Note that the updated error covariance is smaller than 
the predicted error covariance, which means the filter is more certain of the state 
estimate after the measurement is utilized in the update stage. 

We need an initialization stage to implement the Kalman filter. As initial values, 
x 

x 

þ
0 , and the initial guess of the error we need the initial guess of state estimate, 

covariance matrix, Pþ
0 . Together with Q and R, þ

0 and P0
þ play an important role to 

obtain desired performance. There is a rule of thumb called “initial ignorance,” which 
means that the user should choose a large Pþ for quicker convergence. Finally, one 0 
can obtain implement a Kalman filter by implementing the prediction and update 
stages for each time step, k ¼ 1, 2, 3, …, after the initialization of estimates. 

Note that Kalman filters are derived based on the assumption that the process 
and measurement models are linear, i.e., they can be expressed with the matrices F, 
B, and H, and the process and measurement noise are additive Gaussian. Hence, a 
Kalman filter provides optimal estimate only if the assumptions are satisfied. 

2.3 Example 

An example for implementing the Kalman filter is navigation where the 
vehicle state, position, and velocity are estimated by using sensor output from 
an inertial measurement unit (IMU) and a global navigation satellite system 
(GNSS) receiver. In this example, we consider only position and velocity, 
omitting attitude information. The three-dimensional position and velocity 
comprise the state vector: 

� T T�T 
x ¼ p ; v (3) 

h iT � �T where p ¼ p ; p ; p is the position vector and v ¼ vx; vy; vz is the velocity x y z 

vector whose elements are defined in x, y, z axes. The state in time k can be 
predicted by the previous state in time k � 1 as: 

2 3 " # 1 
pk pk�1 þ vk�1Δt þ aek�1Δt2 

xk ¼ ¼ 46 2 57 (4) 
vk vk�1 þ eak�1Δt 
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Introduction and Implementations of the Kalman Filter 

where eak 1 is the acceleration applied to the vehicle. The above equation can be 
rearranged as: 

2 3  1 I3x3 I3x3Δt I3x3Δt2 

xk ¼ xk 1 þ 4 2 5aek 1 (5) 
03x3 I3x3 I3x3Δt 

where I3x3 and 03x3 denote 3 x 3 identity and zero matrices, respectively. The 
process noise comes from the accelerometer output, ak 1 ¼ eak 1 þ ek 1, where ek 1  
denotes the noise of the accelerometer output. Suppose ek 1 ~ N 0; I3x3σ2 . From e 

the covariance relationship, CovðAxÞ ¼ AΣAT where Cov xð  Þ ¼ Σ, we get the 
covariance matrix of the process noise as: 

2 3 2 
1   T 1 1 I3x3Δt2 I3x3Δt2 I3x3Δt4 4 2 4 Q ¼ 2 5I3x3σ2 ¼ 4 e I3x3ΔtI3x3Δt 03x3 

3 
03x3 5σ2 

e 
I3x3Δt2 

(6) 

Now, we have the process model as: 

xk ¼ Fxk 1 þ Bak 1 þwk 1 (7) 

where 

 
I3x3 F ¼ 
03x3 

 
I3x3Δt 
I3x3

(8) 

2 3 
1 
I3x3Δt2 4 5 B ¼ 2 (9) 
I3x3Δt 

wk 1 ~ N 0; Q ð Þ (10) 

The GNSS receiver provides position and velocity measurements corrupted by 
measurement noise νk as: 

" # 
pk 

zk ¼ þ νk (11) 
vk 

It is straightforward to derive the measurement model as: 

zk ¼ Hxk þ νk (12) 

where 

H ¼ I6x6 (13) 

νk ~ N ð0; RÞ (14) 

In order to conduct a simulation to see how it works, let us consider N ¼ 20 time 
steps (k ¼ 1, 2, 3, …, NÞ with Δt ¼ 1. It is recommended to generate a time history of 
true state, or a true trajectory, first. The most convenient way is to generate the 
series of true accelerations over time and integrate them to get true velocity and 
position. In this example, the true acceleration is set to zero and the vehicle is 
moving with a constant velocity, vk ¼ ½5; 5; 0fT for all k ¼ 1, 2, 3, …, N, from the 
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initial position, p0 ¼ ½0; 0; 0�. Note that one who uses the Kalman filter to estimate 
the vehicle state is usually not aware whether the vehicle has a constant velocity or 
not. This case is not different from nonzero acceleration case in perspective of this 
Kalman filter models. If the filter designer (you) has some prior knowledge of the 
vehicle maneuver, process models can be designed in different forms for best 
describing various maneuvers as in [2]. 

We need to generate noise of acceleration output and GNSS measurements for 
every time step. Suppose the acceleration output, GNSS position, and GNSS velocity 
are corrupted with noise with variances of 0.32,  32, and 0.032, respectively. For each 
axis, one can use MATLAB function randn or normrnd for generating the Gaussian 
noise. 

The process noise covariance matrix, Q, and measurement noise covariance 
matrix, R, can be constructed following the real noise statistics described above to 
get the best performance. However, have in mind that in real applications, we do 
not know the real statistics of the noises and the noises are often not Gaussian. 
Common practice is to conservatively set Q and R slightly larger than the expected 
values to get robustness. 

Let us start filtering with the initial guesses 

þ T x̂ ¼ ½2; �2; 0; 5; 5:1; 0:1� (15) 0 

" # 
I3�342 03�3 Pþ ¼ (16) 0 03�3 I3�30:42 

and noise covariance matrices 

2 3 

4 
1 
I3�3Δt4 03�3 Q ¼ 4 50:32 (17) 
03�3 I3�3Δt2 

" # 
I3�332 03�3 R ¼ (18) 
03�3 I3�30:032 

where Q and R are constant for every time step. The more uncertain your initial 
guess for the state is, the larger the initial error covariance should be. 

In this simulation, M ¼ 100 Monte-Carlo runs were conducted. A single run is 
not sufficient for verifying the statistic characteristic of the filtering result because 
each sample of a noise differs whenever the noise is sampled from a given distribu-
tion, and therefore, every simulation run results in different state estimate. The 
repetitive Monte-Carlo runs enable us to test a number of different noise samples 
for each time step. 

The time history of estimation errors of two Monte-Carlo runs is depicted in 
Figure 1. We observe that the estimation results of different simulation runs are 
different even if the initial guess for the state estimate is the same. You can also run 
the Monte-Carlo simulation with different initial guesses (sampled from a distribu-
tion) for the state estimate. 

The standard deviation of the estimation errors and the estimated standard 
deviation for x-axis position and velocity are drawn in Figure 2. The standard 
deviation of the estimation error, or the root mean square error (RMSE), can be 
obtained by computing standard deviation of M estimation errors for each time 
step. The estimated standard deviation was obtained by taking squared root of the 

11 

http://dx.doi.org/10.5772/intechopen.80600


Introduction and Implementations of the Kalman Filter 

Figure 1. 
Time history of estimation errors. 

Figure 2. 
Actual and estimated standard deviation for x-axis estimate errors. 

þ
k . Drawing the estimated standard deviation for 

each axis is possible because the state estimates are independent to each other in this 
þ 

corresponding diagonal term of P 

k example. A care is needed if P has nonzero off-diagonal terms. The estimated 

þ 

standard deviation and the actual standard deviation of estimate errors are very 
similar. In this case, the filter is called consistent. Note that the estimated error 

0 , Q, and R, judging from the Kalman filter covariance matrix is affected solely by P 
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algorithm. Different settings to these matrices will result in different Pþ and there-k 
fore different state estimates. 

In real applications, you will be able to acquire only the estimated covariance 
because you will hardly have a chance to conduct Monte-Carlo runs. Also, getting a 
good estimate of Q and R is often difficult. One practical approach to estimate the 
noise covariance matirces is the autocovariance least-squares (ALS) technique [3] 
or an adaptive Kalman filter where the noise covariance matrices are adjusted in real 
time can be used [4]. 

Source code of MATLAB implementation for this example can be found in [5]. It 
is recommended for the readers to change the parameters and aircraft trajectory by 
yourself and see what happens. 

3. Extended Kalman filter 

3.1 Problem definition 

Suppose you have a nonlinear dynamic system where you are not able to define 
either the process model or measurement model with multiplication of vectors and 
matrices as in (1) and (2). The extended Kalman filter provides us a tool for dealing 
with such nonlinear models in an efficient way. Since it is computationally cheaper 
than other nonlinear filtering methods such as point-mass filters and particle filters, 
the extended Kalman filter has been used in various real-time applications like 
navigation systems. 

The extended Kalman filter can be viewed as a nonlinear version of the Kalman 
filter that linearized the models about a current estimate. Suppose we have the 
following models for state transition and measurement 

xk ¼ f xð k�1; uk�1Þ þwk�1 (19) 

zk ¼ h xð kÞ þ νk (20) 

where f is the function of the previous state, xk�1, and the control input, uk�1, 
that provides the current state xk. h is the measurement function that relates the 
current state, xk, to the measurement zk. wk�1 and νk are Gaussian noises for the 
process model and the measurement model with covariance Q and R, respectively. 

3.2. Extended Kalman filter algorithm 

All you need is to obtain the Jacobian matrix, first-order partial derivative of a 
vector function with respect to a vector, of each model in each time step as: 

˜̃
˜̃
 

∂f 
Fk�1 ¼ (21) 

∂x þ x̂ 
k�1,uk�1 ˜̃
˜̃
 

∂h 
Hk ¼ (22) 

∂x x̂� 
k 

Note the subscripts of F and H are maintained here since the matrices are often 
varying with different values of the state vector for each time step. By doing this, 
you linearize the models about the current estimate. The filter algorithm is very 
similar to Kalman filter. 
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Prediction: 

  þ
k 1; u Predicted state estimate  ¼ f k 1 k x x 

Predicted error covariance P ¼ Fk 1 Pþ FT 
k k 1 k 1 þ Q 

^ ^ 

Update: 

   
k Measurement residual yk ¼ zk  h 

Kalman gain Kk ¼ P k H
T 

e 

k 

^

 
x 

  1 
R þHkP k H

T 
k 

þ
k 

 Updated state estimate þ Kkey ^ x̂ x 

Updated error covariance Pk
þ ¼ ðI  KkHkÞPk

 

¼ k 

As in the Kalman filter algorithm, the hat operator, ̂, means an estimate of a 
x is an estimate of x ^ variable. That is, . The superscripts – and þ denote predicted 

(prior) and updated (posterior) estimates, respectively. The main difference from 
the Kalman filter is that the extended Kalman filter obtains predicted state estimate 
and predicted measurement by the nonlinear functions f xð k 1; uk 1Þ and h xð Þk , 
respectively. 

3.3 Example 

3.3.1 Target tracking 

We are going to estimate a 3-dimensional target state (position and velocity) by 
using measurements provided by a range sensor and an angle sensor. For example, a 
radar system can provide range and angle measurement and a combination of a 
camera and a rangefinder can do the same. We define the target state as: 

 
x ¼ p T T T 

; v (23) 

where p and v denote position and velocity of the target, respectively. The 
system model is described as a near-constant-velocity model [2] in discrete time 
space by: 

# " 
pk pk 1 þ vk 1Δt xk ¼ ¼ f xð k 1; uk 1Þ ¼  þwk 1 (24) 
v k 1 v k 

The process noise has the covariance of wk 1 ~ N ð0; QÞ where 

2 3 03x3 03x3 

σ2 0 0 x 

03x3 0 σy 
2 0 

0 0 σ2 
z 

66664 

77775 
Q ¼ (25) 

and σx, σy, and σz are the standard deviations of the process noise on the velocity 
in x, y, and z directions, respectively. 
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The measurement vector is composed of line-of-sight angles to the target, A and 
E, and the range, R, to the target. The relationship between the measurement and 
the relative target state with respect to the sensor comprises the measurement 
model as: 

2 3 xt � xs atan 6 yt � y 7 6 s 7 2 3 6 0 1 7 A 6 7 6 7 6 7 zk ¼ 4 E 5 ¼ h xð kÞ ¼ 6 B zt � zs 
� �2 

C 7 þ νk (26) 6 atan@qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiA 7 6 2 7 R 6 ðxt � xsÞ þ y � y 7 t s 6 7 4 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 5 
2 � �2 2 ðxt � xsÞ þ yt � y þ ðzt � zsÞ s 

� �T � �T where pk ¼ xt; y ; zt is the position vector of the target and xs; y ; zs is the t s 
position vector of the sensor. The target position is the variable in this measurement 
model. Note that the measurement has nonlinear relationship with the target state. 
This cannot be expressed in a matrix form as in (2) whereas the process model can 
be. If at least one model is nonlinear, we should use nonlinear filtering technique. In 
order to apply extended Kalman filter to this problem, let us take first derivatives of 
the process model and measurement model as: 

∂f � I3�3 I3�3Δt Fk�1 ¼ � ¼ (27) 
∂x þ 03�3 I3�3 x̂ 

k�1, uk�1 

2 3 y �x 
0 6 x2 þ y2 x2 þ y2 7 6 7 

∂h�� 66 �xz �yz 1 77 

Hk ¼ � ¼ 6 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 03�37 (28) 
∂x� � ðx2 þ y2 þ z2Þ x2 þ y2 ðx2 þ y2 þ z2Þ x2 þ y2 x2 þ y2 7 6 

x̂ 
k 

6 7 6 7 4 x y z 5 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
x2 þ y2 þ z2 x2 þ y2 þ z2 x2 þ y2 þ z2 

T � �T where ½x; y; z� ¼ xt � xs; y � y ; zt � zs is the relative position vector. Note t s 
T that the matrix Hk varies with different values of ½x; y; z� on which the filtering 

result will, therefore, depend. Thus, one can plan the trajectory of the sensor to get a 
better filtering result [6]. Developing such a method is one of active research topics. � �T In the simulation, the sensor is initially located at xs; y ; zs ¼ ½40; 20; 50�T and s 
the sensor is moving in a circular pattern with a radius of 20 centered at 

T T ½20; 20; 50� . The initial state of the target is x0 ¼ ½10; �10; 0; �1; �2; 0� . The sen-
T sor is moving with a constant velocity of ½�1; �2; 0� . The trajectory of the target 

and the sensor is shown in Figure 3. Note that this is the case where we are aware 
that the target has a constant velocity, unlike the example in Section 2.3, which is 
why we modeled the state transition as the near-constant-velocity model in (4). Let 
us consider N ¼ 20 time steps (k ¼ 1, 2, 3, …, NÞ with Δt ¼ 1. Suppose the measure-
ments are corrupted with a Gaussian noise whose standard deviation is 
½0:02; 0:02; 1:0�T . 

In the filter side, the covariance matrix for the process noise can be set as: 

03�3 03�3 
Q ¼ (29) 

03�3 I3�3σ2 
v 
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Figure 3. 
Trajectory of the sensor and the target. 

where σv ¼ 5 is the tuning parameter that denotes how uncertain the velocity 
estimate is. The measurement covariance matrix was constructed following the real 
noise statistics as: 

2 3 
0:022 0 0 

64 
75 R ¼ 0 0:022 0 (30) 

0 0 1:02 

M ¼ 100 Monte-Carlo runs were conducted with the following initial guesses: 

x̂þ ¼ x0 þ normrndð0; ½1; 1; 0; 0; 0; 0�Þ (31) 0 # " 
I3�312 03�3 Pþ ¼ (32) 0 03�3 I3�30:12 

The above equation means that the error of the initial guess for the target state is 
randomly sampled from a Gaussian distribution with a standard deviation of 
½1; 1; 0; 0; 0; 0�. 

Time history of an estimation result for x-axis position and velocity is drawn 
together with the true value in Figure 4. The shape of the line will be different at 
each run. The statistical result can be shown as Figure 5. Note that the filter worked 
inconsistently with the estimated error covariance different from the actual value. 
This is because the process error covariance is set to a very large number. In this 
example, the large process error covariance is the only choice a user can make 
because the measurement cannot correct the velocity. One can notice that the 
measurement Eq. (26) has no term dependent on the velocity, and therefore, matrix 
H in (28) has zero elements on the right side of the matrix where the derivatives of 
the measurement equation with respect to velocity are located. As a result, the 
measurement residual has no effect on velocity correction. In this case, we say the 
system has no observability on velocity. In practice, this problem can be mitigated 
by setting the process noise covariance to a large number so that the filter believes 
the measurement is more reliable. In this way, we can prevent at least the position 
estimate from diverging. 
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Figure 4. 
Time history of an estimation result for x-axis position and velocity. 

Figure 5. 
Actual and estimated standard deviation for x axis estimate errors. 

Source code of MATLAB implementation for this example can be found in [5]. It 
is recommended for the readers to change the parameters and trajectories by your-
self and see what happens. 

3.3.2 Terrain-referenced navigation 

Terrain-referenced navigation (TRN), also known as terrain-aided navigation 
(TAN), provides positioning data by comparing terrain measurements with a digital 
elevation model (DEM) stored on an on-board computer of an aircraft. The TRN 
algorithm blends a navigational solution from an inertial navigation system (INS) 
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with the measured terrain profile underneath the aircraft. Terrain measurements 
have generally been obtained by using radar altimeters. TRN systems using cameras 
[7], airborne laser sensors [8], and interferometric radar altimeters [9] have also 
been addressed. Unlike GNSS’s, TRN systems are resistant to electronic jamming 
and interference, and are able to operate in a wide range of weather conditions. 
Thus, TRN systems are expected to be alternative/supplement systems to GNSS’s. 

The movement of the aircraft is modeled by the following Markov process: 

xk ¼ xk�1 þ uk�1 þwk�1 (33) 

where xk�1, uk�1, and wk�1 denote the state vector, the relative movement, and 

the additive Gaussian process noise, respectively, at time k � 1. xk ¼ ½ϕ; λ�T is a two-
dimensional state vector, which denotes the aircraft’s horizontal position. Estimates 
of the relative movement (velocity) are provided by the INS and their error is 
absorbed into wk�1 to limit the dimensionality of the state. The simple model in (33) 
is considered realistic without details of INS integration if an independent attitude 
solution is available so that the velocity can be resolved in an earth-fixed frame [10]. 
The estimation models we deal with belong to the TRN filter block in Figure 6, 
taking relative movement information from the INS as uk. 

Typical TRN systems utilize measurements of the terrain elevation underneath 
an aircraft. The terrain elevation measurement is modeled as: 

zk ¼ hðxkÞ þ υk (34) 

where h xkð Þ denotes terrain elevation from the DEM evaluated at the horizontal 
position, xk, and υk denotes the additive Gaussian measurement noise. The eleva-
tion measurement is obtained by subtracting the ground clearance measurement 
from a radar altimeter, hr, from the barometric altimeter measurement, hb. υk 

contains errors of the radar altimeter, barometric altimeter, and DEM. The ground 
clearance and the barometric altitude correspond to the above ground level (AGL) 
height and the mean sea level (MSL) height, respectively. The relationship between 
the measurements is depicted in Figure 7. Note that the terrain elevation that 
comprises the measurement model in (34) is highly nonlinear. 

The process model in (33) and the measurement model in (34) can be linearized as: 

∂f 
Fk�1 ¼ 

˜̃
˜̃
 

∂x 
¼ I2�2 (35) 

x̂þ 
k�1, uk�1 

Figure 6. 
Conventional TRN structure. 
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Figure 7. 
Relationship between measurements in TRN. 

˛ ° 
∂h ̃̃̃
˜ 

∂Dðϕ; λÞ ∂Dðϕ; λÞ 
Hk ¼ ¼ (36) 

∂x ∂ϕ ∂λ x̂� 
k 

where Dðϕ; λÞ denotes the terrain elevation from the DEM on the horizontal 
T position ½ϕ; λ� . 

The DEMs are essentially provided as matrices containing grid-spaced elevation 
data. For obtaining finer-resolution data, interpolation techniques are often used to 
estimate the unknown value in between the grid points. One of the simplest 
methods is linear interpolation. Linear interpolation is quick and easy, but it is not 
very precise. A generalization of linear interpolation is polynomial interpolation. 
Polynomial interpolation expresses data points as higher degree polynomial. Poly-
nomial interpolation overcomes most of the problems of linear interpolation. How-
ever, calculating the interpolating polynomial is computationally expensive. 
Furthermore, the shape of the resulting curve may be different to what is known 
about the data, especially for very high or low values of the independent variable. 
These disadvantages can be resolved by using spline interpolation. Spline interpo-
lation uses low-degree polynomials in each of the data intervals and let the polyno-
mial pieces fit smoothly together. That is, its second derivative is zero at the grid 
points (see [11] for more details). Classical approach to use polynomials of degree 3 
is called cubic spline. Because the elevation data are contained in a two-dimensional 
array, bilinear or bicubic interpolation are generally used. Interpolation for two-
dimensional gridded data can be realized by interp2 function in MATLAB. Cubic 
spline interpolation is used in this example. 

The DEM we are using in this example has a 100 � 100 grid with a resolution of 
30. The profile of the DEM can be depicted as Figure 8. The figure represents 
contours of the terrain where brighter color denotes regions with higher altitude. 
The point (20, 10) in the grid corresponds to the position ½600; 300�T in the navi-
gation frame. 

An aircraft, initially located at x0 ¼ ½400; 400�T , is moving by 20 every time step 
in x direction. The aircraft is equipped with a radar altimter and a barometric 
altimter, which are used for obtaining the terrain elevation. This measured terrain 
elevation is compared to the DEM to estimate the vehicle’s position. 

The process noise wk�1 is a zero-mean Gaussian noise with the standard devia-
T tion of ½0:5; 0:5� . The radar altimeter is corrupted with a zero-mean Gaussian noise 
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Figure 8. 
Contour representation of terrain profile. 

with the standard deviation of 3. The matrices Q and R are following the real 
statistics of the noises as: 

" # 
0:52 0 

Q ¼ (37) 
0 0:52 

R ¼ 32 (38) 

Let us consider N ¼ 100 time steps (k ¼ 1, 2, 3, …, NÞ with Δt ¼ 1. M ¼ 100 
Monte-Carlo runs were conducted with the following initial guesses: 

x̂þ ¼ x0 þ normrndð0; ½50; 50�Þ (39) 0 " # 
502 0 

Pþ ¼ (40) 0 0 502 

The above equation means the error of the initial guess for the target state is 
randomly sampled from a Gaussian distribution with a standard deviation of 
½50; 50�. 

The time history of RMSE of the navigation is shown in Figure 9. One can observe 
the RMSE converges relatively slower than other examples. Because the TRN esti-
mates 2D position by using the height measurements, it often lacks information on 
the vehicle state. Moreover, note that the extended Kalman filter linearizes the terrain 
model and deals with the slope that is effective locally. If the gradient of the terrain is 
zero, the measurement matrix H has zero-diagonal terms that has zero effect on the 
state correction. In this case, the measurement is called ambiguous [12] and this 
ambiguous measurement often causes filter degradation and divergence even in 
nonlinear filtering techniques. With highly nonlinear terrain models, TRN systems 
have recently been constructed with other nonlinear filtering methods such as point-
mass filters and particle filters, rather than extended Kalman filters. 

20 



Introduction to Kalman Filter and Its Applications 
DOI: http://dx.doi.org/10.5772/intechopen.80600 

Figure 9. 
Time history of RMSE. 

Source code of MATLAB implementation for this example can be found in [5]. It 
is recommended for the readers to change the parameters and aircraft trajectory by 
yourself and see what happens. 

4. Conclusion 

In this chapter, we introduced the Kalman filter and extended Kalman filter 
algorithms. INS/GNSS navigation, target tracking, and terrain-referenced naviga-
tion were provided as examples for reader’s better understanding of practical usage 
of the Kalman filters. This chapter will become a prerequisite for other contents in 
the book for those who do not have a strong background in estimation theory. 
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Chapter 3

Tuning of the Kalman Filter Using
Constant Gains
Mudambi R. Ananthasayanam

Abstract

For designing an optimal Kalman filter, it is necessary to specify the statistics,
namely the initial state, its covariance and the process and measurement noise
covariances. These can be chosen by minimising some suitable cost function J. This
has been very difficult till recently when a near optimal Recurrence Reference
Recipe (RRR) was proposed without any optimisation but only filtering. In many
filter applications after the initial transients, the gain matrix K tends to a constant
during the steady state, which points to design the filter based on constant gains
alone. Such a constant gain Kalman filter (CGKF) can be designed by minimising
any suitable cost function. Since there are no covariances in CGKF, only the state
equations need to be propagated and updated at a measurement, thus enormously
reducing the computational load. Though CGKF results may not be too close to
those of RRR, they are acceptable. It accepts extremely simple models and the gains
are robust in handling similar scenarios. In this chapter, we provide examples of
applying the CGKF by ancient Indian astronomers, parameter estimation of spring,
mass and damper system, airplane real flight test data, ballistic rocket, re-entry of
space object and the evolution of space debris.

Keywords: adaptive EKF, reference recursive recipe, maximum likelihood,
Cramer Rao bound, constant gain Kalman filter

1. Introduction to Kalman filter

The simplest formulation of a Kalman filter [1] is when the state and measure-
ment equations are both linear. However, Kalman filter has found its greatest
application for non-linear systems. A typical continuous state with discrete mea-
surements in time forming a non-linear filtering problem can be written as

x kð Þ ¼ f x k� 1ð Þ;Θ;u k� 1ð Þð Þ þw kð Þ, (1)

Z kð Þ ¼ hðx k;ΘÞð Þ þ v kð Þ, k ¼ 1, 2, 3,…,N (2)

where ‘x’ and ‘Z’ are, respectively, the state and measurement equations of size
(n � 1) and (m � 1); u is the control input and Θ the parameter vector of size
(p � 1) and ‘f’ and ‘h’ are non-linear functions. The process ‘w’ and measurement
‘v’ noises are respectively of size (n � 1) and (m � 1). These are assumed to be zero
mean with covariances Q and R and their sequences are uncorrelated with each
other. The states may not be in general observable but the measurements should be
related to the states. In many applications for linear systems, if the unknown
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Abstract 

For designing an optimal Kalman filter, it is necessary to specify the statistics, 
namely the initial state, its covariance and the process and measurement noise 
covariances. These can be chosen by minimising some suitable cost function J. This 
has been very difficult till recently when a near optimal Recurrence Reference 
Recipe (RRR) was proposed without any optimisation but only filtering. In many 
filter applications after the initial transients, the gain matrix K tends to a constant 
during the steady state, which points to design the filter based on constant gains 
alone. Such a constant gain Kalman filter (CGKF) can be designed by minimising 
any suitable cost function. Since there are no covariances in CGKF, only the state 
equations need to be propagated and updated at a measurement, thus enormously 
reducing the computational load. Though CGKF results may not be too close to 
those of RRR, they are acceptable. It accepts extremely simple models and the gains 
are robust in handling similar scenarios. In this chapter, we provide examples of 
applying the CGKF by ancient Indian astronomers, parameter estimation of spring, 
mass and damper system, airplane real flight test data, ballistic rocket, re-entry of 
space object and the evolution of space debris. 

Keywords: adaptive EKF, reference recursive recipe, maximum likelihood, 
Cramer Rao bound, constant gain Kalman filter 

1. Introduction to Kalman filter 

The simplest formulation of a Kalman filter [1] is when the state and measure-
ment equations are both linear. However, Kalman filter has found its greatest 
application for non-linear systems. A typical continuous state with discrete mea-
surements in time forming a non-linear filtering problem can be written as 

x k ð ð Þ; Θ; uðk � 1Þ ð Þ, (1) ð  Þ ¼ f x  k � 1 Þ þw k 

Zð  Þ ¼k hðxðk; ΘÞÞ þ vð Þk , k ¼ 1, 2, 3, …, N (2) 

where ‘x’ and ‘Z’ are, respectively, the state and measurement equations of size 
(n � 1) and (m � 1); u is the control input and Θ the parameter vector of size 
(p � 1) and ‘f’ and ‘h’ are non-linear functions. The process ‘w’ and measurement 
‘v’ noises are respectively of size (n � 1) and (m � 1). These are assumed to be zero 
mean with covariances Q and R and their sequences are uncorrelated with each 
other. The states may not be in general observable but the measurements should be 
related to the states. In many applications for linear systems, if the unknown 
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parameters Θ are treated as additional states, then the linear system of equations 
becomes non-linear. In such cases, the extended Kalman filter (EKF) formulation 
can be written as 

      
x kð Þ  f x  k - 1 ð ð Þ; Θ k - 1 ð Þ; u k - 1 ð Þ Þ w kð Þ  ¼ þ 
Θ kð Þ Θ k -ð 1 Þ 0

(3) 

or equivalently 

X kð Þ ¼ f X  k -ð ð 1 Þ Þ þw kð Þ  (4) 

Z kð Þ ¼ h X  k ð ð ÞÞ þ v kð Þ, k ¼ 1, 2, …, N (5) 

where ‘X’ is the augmented state of size ((n + p) x 1). The control symbol ‘u’ is 
not shown for brevity. The formal solution for the above filtering problem can be 
summarised following Brown and Hwang [2] as 

Initial state estimate Xð0j0Þ ¼ X0 ¼ E X  t0 , (6) ½ ð Þ] 
h i 

T Initial state covariance matrix Pð0j0Þ ¼ P0 ¼ E ð ð Þ ð ð ÞÞ (7) X0–X t0 Þ X0–X t0 

Prediction step: Xðkjk - 1 ð ð 1jk - 1ÞÞ, (8) Þ ¼ f X  k -
T Pðkjk - 1Þ ¼ Fðk - 1ÞPðk - 1jk - 1ÞFðk - 1Þ þQ ð Þk (9) 

We assume that Xðkjk - 1Þ and Pðkjk - 1Þ denote the estimates of the state and 
its covariance matrix, respectively, at time index k, based on all information avail-
able up to and including time index k-1. Then, we seek to update the state value 
from X ðkjk - 1Þ to X ðkjkÞ using the measurement Zð Þk with uncertainty denoted 
by Rð Þk based on the value of Kð Þk called the Kalman gain such that the updated 
covariance PðkjkÞ having the individual terms along its major diagonal is a mini-
mum, leading to 

h i-1 T T Update step: K k ð k - 1 ð Þ  ð Þ Pðkjk - 1 ð Þ  þ R k (10) ð Þ ¼ P kj Þ H k H k Þ H k ð Þ  

Þ þ K k ½ ð Þ  ð XðkjkÞ ¼ Xðkjk - 1 ð Þ Z k –h Xðkjk - 1ÞÞ] ¼ Xðkjk - 1Þ þKð Þk νð Þk (11) 

PðkjkÞ ¼ ½I -Kð Þk Hð Þk ]Pðkjk - 1Þ (12) 

with P denoting uncertainty, Fðk - 1Þ is the state Jacobian matrix (∂f/∂X) eval-
uated at X ¼ Xðk - 1jk - 1Þ: Xðkjk - 1Þ denotes the estimate at t(k) based on the 
process dynamics between t(k-1) and t(k) but before using the measurement 
information. The measurement Jacobian Hð Þk = (∂h/∂X) is evaluated at X ¼ Xð Þk : 
The difference between the actual measurement and the predicted model output 

ν k ½ ð Þ–h Xð ðkjk - 1Þ ] (13) ð Þ¼ Z k Þ 
is called the innovation. The importance of the innovation following white 

Gaussian for filter performance was brought out by Kailath [3]. When the innova-
tion is white, it means all the information has been extracted from the data and no 
further information is left out, thus both the models and the algorithm have done 
their best job. 

There are thus five basic filter operations, namely: (i) the state propagation, (ii) 
the covariance propagation, (iii) Kalman gain evaluation, (iv) the state update and 
(v) the covariance update. The first and fourth refer to sample values and the 
second, third and fifth refer to the population characteristics. At any given time 
point, the statistical combination of the two estimates, one from state and the other 
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from measurement equation, are formal if only the covariances denoting their 
uncertainties are available. Thus the states and the covariances at all times can be 
estimated if the initial X0 and P0 as well as Q(k) and R(k) are specified over time, 
but this is not easy. These have to be specified over a time span in order to match 
and minimise a cost function based on the innovation, or any other in some best 
possible sense. A well-known criterion is the method of maximum likelihood esti-
mation (MMLE). When Q � 0, the Kalman gain matrix is zero and the technique is 
called as the output error method (MMLE-OEM). When Q > 0, the method is 
called as filter error method [4, 5]. For optimal design of the Kalman filter, the 
innovation follows a white Gaussian distribution which is operationally equivalent 
to minimising the cost function 

h i 
T J ¼ ð1=NÞΣ ν kð Þ H kð ÞP kjð k � 1 ÞH kð Þ þ R kð Þ  � T 1ν kð Þ (14) 

� T ¼ ð1=NÞΣ ν kð Þ R½ � 1ν kð Þ or (15) 

¼ J X0; P0; Q ; R; Θ ð Þ or (16) 

¼ J X0; Θ; K traded for; P0; Q ; and; R ð ð Þ Þ (17) 

based on summation over all the N measurements. Thus, the filter has to be 
tuned or in other words should solve for either the statistics X0, Θ, P0, Q and R, in 
Eq. (16), or for X0, Θ and K in Eq. (17). Of course, there have been many number 
of cost functions used in the literature, the only constraint being all should lead to 
reasonable answers that are acceptable. The Q � 0 case leads to an optimisation of 
the cost function. If Q > 0, then the filter approach becomes compulsive and 
generally the cost function is forgotten and mostly the filter statistics are tuned 
manually to obtain the results. 

One can see straightaway that the structure of the above cost function J becomes 
different due to the change of variables (different combination of the statistics can 
lead to the same gain!); and hence whatever the results are generated, they will be 
different but have to be within reasonable limits. In the RRR studies [6–9], many 
typical cost functions have been stated to bring home the above point. One can be 
around the true answer but not at the answer which is not known due to the 
occurrence of the random unknown sequence of the noise distribution in the data. 
Hence, estimation theory being an inverse problem, the results are subjective and 
not objective as many claim. In fact, the whole of statistics is subjective from the 
beginning to the end and thus the results generated can be stretched to any limit but 
have to be meaningful, acceptable and useful for further use. As is well known, 
inverse problems do not have unique answers, more so with randomness being 
introduced. Unless the above sequence of noise distribution can be worked out 
correctly, there is no way to get the true answers. Thus, the statistical percolation 
effect affects all the unknowns in any estimation theory. This should be kept in 
mind to understand any result based on filter statistics or filter gains in Kalman 
filtering. 

1.1 The competence and beauty of the Kalman filter 

The earliest Kalman filter formulation by Kalman [1] dealt with state estimation. 
However, it has grown at present to handle myriad other scenarios such as state and 
parameter estimation, data fusion and many more. The Kalman filter can ably 
estimate or account for time-invariant or time-varying (i) unknown, (ii) inaccu-
rately known or (iii) even unmodellable structure of the state and measurement 
model equations and the parameters in them as also (iv) the deterministic or 
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random inputs and by accounting for them suitably as process and measurement 
noises. It can compensate even for computational errors during the entire filter 
operation. 

Further, the state and covariance updates at a measurement depend only on 
the covariances of the state and the measurements and not their probability distri-
bution (!). Hence, after assimilating the measurement information, the update is 
subtly reset to follow a Gaussian distribution. Thus, the use of only the estimate and 
covariance all over the filter tacitly implies (one can however improve the numer-
ical values of the estimate and covariance in non-linear problems) the state and 
measurement variables are all distributed or approximated as quasi-Gaussian. 
Hence, with all such subjective features, the final result can only be an answer 
rather than a true or unique answer. All the above have to be checked for the 
consistency of the whole process of modelling, convergence of the numerical algo-
rithm and other consistency checks among the variables occurring in the filter as 
discussed in [6, 10–12]. 

1.2 Use of filter statistics in designing the Kalman filter 

Assuming that the measurements are available at N discrete time instants, the 
normalised innovation cost function J fundamental to the Kalman filter as suggested 
by Sorenson [13] is defined as 

�1ν k T J ¼ ð1=NÞΣ ν k ½ �  ð Þ  ð Þ  R (18) 
h i 

T where R is the covariance matrix of the innovation H k Pðkj 1 ð Þ  ð Þ  ð Þ  k � ÞH k  þ R k : 

Here, R which is a function of P0, Q and R varies with time. The estimation of the 
system parameters X0, Θ, P0, Q and R is called filter design or filter tuning as men-
tioned earlier. Though there are many techniques for adaptively tuning the filter statis-
tics [14], the recent RRR [6–9] or the heuristic approach of Myers and Tapley [15] for 
Q,  and R, and of Gemson [16] and Gemson and Ananthasayanam [17] for P0 are 
perhaps the simplest ones. 

1.3 Use of filter gains and design of constant gain Kalman filter (CGKF) 

In the constant Kalman gain formulation (in discrete form), the update step 

h i�1 T T K kð Þ ¼ P kjð k � 1 Þ H kð Þ H kð Þ P kjð k � 1 Þ H kð Þ þ R kð Þ  (19) 

X kj ð kÞ ¼ X kjð k � 1 Þ þK kð Þ Z k½ ð Þ–h X  kjð ð k � 1 Þ Þ � ¼ X kjð k � 1 Þ þK kð Þνk (20) 

P kj ð kÞ ¼ I �½ K kð ÞH kð Þ  �P kjð k � 1 Þ (21) 

gets simplified to determine only the constant gain matrix K(k) by subsuming 
P0, Q and R. Hence, there are no covariance equations for propagation at all, thus 
enormously reducing the numerical effort and time. The constant filter gain 
approach is less explored than the filter statistics approach. Many attempts have 
been made by Wilson [18], Cook and Dawson [19], Grimble et al. [20], Kobayashi 
[21] and Liu et al. [22]; but these are not simple, except the modified gain extended 
Kalman filter (MGEF) proposed by Song and Speyer [23]. Gelb [24] and Sugiyama 
[25] consider the CGKF approach but their method of tuning the desired filter gain 
parameters is manual. The present rational procedure is based on a suitable 
normalised innovation cost function as in space debris [26–29] and many other 
illustrative examples to follow. 
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When a regular Kalman filter using the filter statistics operates on the data in 
general, it turns out that after the initial transients the Kalman gain matrix tends to 
a constant value. Such a feature has been noticed in the tracking of ballistic rockets 
by Sarkar [30], evolution and expansion of the space debris scenario and prediction 
of re-entry objects [27–29]; for parameter estimation of dynamic systems by 
Viswanath [31]; in rendezvous and docking studies [32, 33] and total electron 
content in the ionosphere [34, 35] and in integration of GPS and INS [36, 37], target 
tracking in wireless sensor networks by Yadav et al. [38] and many more. Due to 
limited space, only the first three will be discussed in this chapter. This observation 
provides a possible approach in which instead of tuning the usual Kalman filter 
statistics for X0, P0, Q and R, in general, a smaller number of Kalman gain ele-
ments can be worked out. This constant gain matrix K can be obtained by making 
the above normalised innovation cost function equal to the number of measure-
ments by assuming the above R in Eq. (18) to be a constant. Then, the R can be 
estimated as if it is the estimation of pure noise only as is the case of MMLE-OEM 
[4, 5]. There could be some differences in the gain values obtained from the adap-
tively or manually tuned P0, Q and R and the constant gain approach due to the 
relative periods of transients and the steady-state conditions. Though the results 
may not be as close to the optimum, the estimates are generally acceptable. The 
present examples mostly utilise the genetic algorithm [39, 40] to minimise the cost 
function J and obtain optimum K. However, before applying the constant Kalman 
gain approach, it is desirable to carry out extensive studies using any adequate 
adaptive filtering technique such as RRR. A comparison of the results from the 
adaptive technique and the constant Kalman gain approach provides confidence in 
the latter approach. The following sections provide example applications of design-
ing constant gain Kalman filters. 

2. Ancient Indian astronomers implicitly using the constant Kalman 
gain approach 

Ancient Indian astronomers needed to calculate the position of celestial objects 
like Sun, Moon and other planets for timing the Vedic rituals. But their predicted 
positions changed over many centuries due to unmodelled or unmodellable causes. 
The philosophy of ‘change, capture and correct’ is the one that is followed in the 
Kalman filter. The ancient Indian astronomers had understood the above philoso-
phy. They used the above concept to update the parameters for predicting the 
position of celestial objects based on measurements carried out at various time 
intervals which can be stated as. 

˜ ° 
Updated parameter ¼ Earlier parameter þ Some quantity � 

(22) ðMeasured � PredictedÞ Position of the celestial object 

They could not have done it in any other way to update the earlier parameters 
called ‘cannons’. The ‘some quantity’ as we will see later on is the Kalman gain. 
There were no frills and fashion of distributions and the spread to infer uncer-
tainties after combining statistically one estimate in certain units with another 
estimate in another unit but related to the former. The measured longitude of the 
celestial object is different from the state that is updated, which is the number of 
revolutions in a yuga just as state and measurements are in general different in 
many Kalman filter applications! 

Billard [41, 42] had stated that if the elements of Aryabhata are now wrong, they 
must have been accurate when he was living. Then, newer astronomical elements 
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can be established based on the earlier astronomical elements and the new observa-
tions of the present time. Billard [41, 42] provides many cannons starting from 
around AD 500 by Aryabhata to AD 1600 based on later measurements carried out 
(over many years or even decades!) to make the predicted position of the objects 
consistent with new observations. One such canon around AD 898 shows a very 
high accuracy valid over a larger number of centuries. Sarma [43] quotes such 
revisions over a period of time. Nilakantha (around AD 1443) had stated that the 
eclipses cited in Siddhanthas as well as those currently observable can be studied 
and future eclipses can be predicted (extrapolation!). Also, for the eclipses occur-
ring at other longitudes and latitudes, the predictions can be perfected (data 
fusion!). Based on these, the past eclipses of one’s own place can be refined equiv-
alent to ‘smoothing’! It is strongly urged that research is undertaken on Billard’s 
work available in French. 

3. Typical parameter estimation studies 

In order to illustrate the ability of CGKF, we consider the parameter estimation 
of a spring, mass and damper (SMD) system with a weak non-linear spring con-
stant and also a real flight test data of an airplane. 

3.1 Analysis of spring, mass and damper (SMD) system 

The SMD system with weak non-linear spring constant in continuous time (t) is 
governed by the equations 

_x1 

3 t t t t (24) ð Þ ¼ �Θ1x1ð Þ � Θ2x2ð Þ � Θ3x1 ð Þ  

t t (23) ð Þ ¼ x2 ð Þ  

_ x2 

where x1 and x2 are the displacement and velocity states. The ‘dot’ represents 
differentiation with respect to time (t). The unknown parameter vector Θ = [Θ1, 
Θ2, Θ3]T has the true value Θtrue = [4, 0.4, 0.6]. Θ3 being a weak parameter, it does 
not affect the system dynamics much and hence its estimation also has more 
uncertainty. The complete state vector X = [x1, x2, Θ1, Θ2, Θ3]T of size [(n + p) � 1] 
which in this case is (5 � 1). The measurement equation is given by. 

ZðkÞ ¼ H Xð Þk (25) 
˜ ° 
1 0 0 0 0  

where H = is the measurement matrix of size (m � (n + p)) 
0 1 0 0 0  

where m = n = 2 and p = 3. 
At a measurement with the additional terms to assimilate the measurement data, 

the above equations become 

_x1 

3 ð Þ ¼ �t Θ1x1 t t 1 t ð ð Þ ð Þ � Θ2x2ð Þ � Θ3x ð Þ þ K21 Z1–x1Þ þ K22 Z2–x2 (27) 

ð Þt x2 t ðZ1–x1Þ þ K12 Z2–x2Þ ¼ ð Þ þ K11 ð (26) 

_x2 

where K11, K12, K21 and K22 are the elements of the constant Kalman gain matrix 
K. These along with the parameter vector Θ have to be estimated by minimising 
the earlier mentioned innovation cost function J. A total of N = 100 simulated 
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measurement data are generated with initial state conditions 1 and 0, respectively, 
in steps of dt = 0.1 s between time 0 and 10 s. 

3.2 Remarks on the SMD parameter estimation 

The CGKF were based on 25 Newton-Raphson iterations and RRR results were 
generated based on 100 iterations for each data set (for obtaining generally four-
digit accuracy though not necessary) and are compared in Table 1 below. The 
parameter values are to be read as for [Θ1, Θ2, Θ3]. For Q ˜ 0 and Q > 0 cases, the 
mean and standard deviation of the parameter estimates from CGKF and RRR are 
by and large close. In fact, the CGKF estimates are generally within about 1σ of the 
CRB values given by RRR. In the RRR with constant P0, Q and R, the filter is able to 
follow the system fairly well due to the time-varying gains providing near optimal 
solution. But in the CGKF approach, since the gains are constant, the filter is 
unable to follow the system model as well as by RRR. Thus, CGKF follows a slightly 
different dynamical model than RRR and hence their results are somewhat different. 

The gains are to be read as first column first and the second column next. 
For CGKF, there are only four gains associated with the two states and two 
measurements. But for RRR, there are ten gains associated with five states and 
two measurements. For the case of Q ˜ 0, all the gains should have been ideally 
zero but are around zero here due to the statistical percolation effect of the 
unforgiving noises, be it process and/or measurement. This affects not just one 
parameter or state but every other quantity, so the gains or any estimated 
quantity in the numerical algorithm can also never take their true values except 
perhaps with an appropriate algorithm that can capture the true values with 
increasing amount of data. For the Q > 0 case, the major gains marked in bold 
are somewhat similar. 

SMD SYSTEM: For CGKF, the standard deviation (STDV) is based on parameter estimates and for RRR, the 
Cramer-Rao Bound (CRB ~ STDV) is based on filter covariance averaged over 100 simulations 

Results for the three parameters 

Case Mean STDV 

CGKF Q ˜ 0 3.9982 0.3994 0.5948 0.0377 0.0112 0.0954 

RRR Q ˜ 0 4.0028 0.4000 0.5921 0.0242 0.0055 0.0677 

CGKF Q > 0 4.0467 0.4115 0.5734 0.2218 0.0682 0.4862 

RRR Q > 0 3.9770 0.4085 0.6456 0.2337 0.0714 0.4047 

Results for the gain 

Case Mean STDV 

CGKF Q ˜ 0 °0.0655 0.0002 0.0027 -0.0758 0.0410 0.0286 0.1129 0.0529 

RRR Q ˜ 0 0.0184 0.0077 °0.0955 °0.0038 0.2001 0.0020 0.0014 0.0102 0.0006 0.0216 
0.0019 0.0096 °0.0169 0.0055 0.0457 0.0002 0.0009 0.0018 0.0006 0.0045 

CGKF Q > 0  0.6249 °0.0038 °0.0017 0.4401 0.1199 0.0460 0.2033 0.1246 

RRR Q > 0  0.6347 °0.0097 °0.0424 0.0111 0.0711 0.0737 0.0107 0.0487 0.0087 0.0702 
°0.0035 0.5409 °0.0796 0.0330 0.1417 0.0035 0.0886 0.1506 0.0218 0.2206 

Table 1. 
Comparison of simulated SMD data results of CGKF with RRR. 
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3.3 Analysis of real airplane flight test data 

This real data set discussed earlier in [6, 8, 9] is obtained along with airplane, 
flight test data and notations from [44]. Briefly, to explain the scenario, there is a 
peculiar manoeuvre when the aircraft (T 37 B) is rolling through a full rotation 
using the aileron, and then the elevator angle (δe in deg) is imparted. The coupling 
between the longitudinal and lateral motion is replaced by their measured values, 
namely the roll angle (φm), sideslip (βm), velocity (Vm), roll rate (pm), yaw rate 
(rm) and the angle of attack (αm). The state equations (n = 3) for the angle of attack 
(α), pitch rate (q) and the pitch angle (θ), respectively, are 

q S ˜ ° 
CLα α þ CLδe 

δe þ CL0 α ¼ �  
mVm Cos βmð Þ  

g 

_ 

(28) ϕmÞð cos ð Þ  θ ð Þ sin θ αm cos ð Þ þ sin αm ð ÞÞ þ q þ ð ð cos 
Vm Cos βmð Þ  ˜ °° 

sin αm � tan ð Þ p cos ðαmÞ þ rm βm m ˛ ˝ 
q S I I � c c c zz xx 

_ α þ Cmδe 
Cmαα þ Cmq q þ Cm δe þ Cm0 (29) 

q_ 

q ¼ 

θ ¼ q cos 

The measurement equations (m = 4) for the angle of attack, pitch rate, pitch and 

_ 

normal acceleration are given by 

q 
αm ¼ Kα α � Kα xα ; (31) 

V 

q ¼ q ; (32) m 

θm ¼ θ (33) 

q S ̃ ° xan 

_ þ rmp α m Iyy 2V 2V Iyy 
_ 

rm sin ðϕmÞ þ  θ0 (30) ϕm ð  Þ �  

CNαα þ CNδe 
δe þ CN0 (34) ¼ þ anm mg g 

_ 

˙ ˆT 

α ; Cmδe 
The unknown parameters (p = 10) are CLα ; CLδe 

; CL0 ; Cmα ; Cmq ; Cm ; Cm0 ; θ0; CN0 

with the approximation CNα ¼ CLα and CNδe 
¼ CLδe 

. The suffix δe denotes control 
derivatives, and suffix zero refers to biases and all others are aerodynamic deriva-
tives. The initial states are taken as the initial measurements and the initial param-
eter values are taken as (4, 0.15, 0.2, �0.5, �11.5, �5, �1.38, �0.06, �0.01, 0.2)T. 
At a measurement similar to the SMD system, there is an additional term Kν kð Þ  
which is the product of the gain matrix multiplying the innovation. 

3.4 Remarks on the real flight test data results 

Table 2 below compares the parameter estimates and their CRBs (in parenthesis) 
from the RRR [6, 8, 9], Gemson [16], (derived from the filter covariance) and CGKF 
(based on cost function) approaches. The parameter estimates from the first two are 
comparable except for the parameters CLδe 

and Cmq which strongly affect the airplane 
dynamics. However, all the parameter estimates from RRR, Gemson and CGKF are 
quite comparable. The CGKF estimates are within about 1σ of the RRR values as in 
the previous SMD case. The STDV from the CGKF (corresponding to CRB) is 
somewhat different from the other approaches since it follows a slightly different 
dynamical model than RRR or Gemson as in the SMD case. 
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Θ RRR Gemson CGKF 

CN0 0.2538 (0.0014) 0.2503 (0.0014) 0.2512 (0.0006) 

CL0 0.2409 (0.0021) 0.2529 (0.0018) 0.2443 (0.0019) 

CLα 4.9235 (0.0164) 4.9028 (0.0168) 4.8035 (0.2199) 

CLδe 
0.1554 (0.0271) 0.0879 (0.0267) 0.1653 (0.0993) 

Cm0 ˜0.0425 (0.0009) ˜0.0507 (0.0024) ˜0.0459 (0.0001) 

Cmα ˜0.5293 (0.0079) ˜0.6174 (0.0211) ˜0.4986 (0.0345) 

Cmq ˜11.8596 (0.2402) ˜18.8339 (.8379) ˜9.3528 (2.1234) 

Cm _α ˜6.8959 (0.4891) ˜7.1290 (1.544) ˜6.6730 (4.6084) 

Cmδe 
˜0.9731 (0.0177) ˜1.1841 (0.471) ˜1.0063 (0.0019) 

θ0 0.0003 (0.0021) ˜0.0037 (0.001) 0.0020 (0.0003) 

Table 2. 
Comparison of real flight test data results (Θ, σ(Θ)). 

4. Introduction to flight data analysis of a ballistic rocket (BR) 

During the development of any BR, it is necessary to carry out many flight trials 
and compare the flight performance with that based on pre-flight estimates. For a 
BR, an accurate estimation of drag coefficient is very important due to its direct 
impact on the system performance as it plays a very critical role in generating the 
firing tables. One also uses wind tunnel tests or computational fluid dynamic codes 
to obtain the aerodynamic characteristics. But there exist generally unavoidable 
errors due to wind tunnel wall interference and the limitation of wind tunnel 
Reynolds number. Hence, the assessment of the aerodynamic coefficient from the 
full-scale flight test of vehicles is an important area of activity and research. Such an 
analysis would help the BR as follows. 

1. If it fails en route, a real-time state estimation helps to obtain the expected 
impact location from range safety viewpoint. 

2. A compatibility check of measured data reduces bias and scale factor effects in 
the measurements. The measurement noise covariances given in the 
manufacturer’s catalogues being notional, such values can also be estimated. 

3. In its external ballistics, the variation of aerodynamic drag coefficient with 
respect to Mach number is very important. 

4.Comparison of pre-flight with flight test estimated drag coefficient helps to 
improve and modify the former. 

4.1 State estimation of a ballistic rocket (BR) 

It is possible to formulate the Kalman Filter (KF) to simultaneously estimate 
both the state and parameter or carry out the same sequentially. In the state esti-
mation step, the bias, scale and the random errors are estimated, called compatibil-
ity check, and thus relatively clean data are available for parameter estimation. The 
BRs are generally tracked by ground based radar, which provides range, azimuth 
and elevation measurements. Sarkar explains in [30] the extended Kalman filter 
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[24] together with a smoother for handling the effect of both the process and 
measurement noise contained in the measured flight test data. Later, it is used to 
estimate the aerodynamic drag coefficient (which is a parameter estimation prob-
lem) using the MMLE-OEM approach. We discuss here only his trajectory estima-
tion by using CGKF and the reader can refer to [30] for drag estimation. 

In order to track the trajectory of a BR, one can use either the dynamical or the 
kinematical equations. The former needs many inputs such as the forces and 
moments, propulsion and the control which may not be available and more so if the 
BR belongs to an adversary. Broadly, the three approaches all utilising the kinematic 
state equations for trajectory estimation with increasing accuracy are 

1. The ‘generic’ ones called α, αβ or αβγ types of filters as found in Blair [45] 
and Bar-Shalom and Li [46]. 

2. The ‘similar’ ones like the CGKF approach which can handle similar situations. 

3. The ‘specific’ one for a given scenario like the adaptive extended Kalman 
filter (AEKF) such as by Gemson [16] or the ones like the adaptive limited 
memory filter (ALMF) as in [15]. 

The AEKF/ALMF deals with a specific scenario and adaptively obtains Q and R 
by minimising the cost function J in Eq. (16) and the steady-state gain K follows. 
The second CGKF handles the same specific scenario by minimising the cost func-
tion J in Eq. (17) and obtains the gain K directly. Due to the transformed unknown 
variables, the results for K will be somewhat different but close to AEKF. The gain 
being more robust, CGKF can handle similar situations. In order to account for 
model deficiencies or uncertainties in real cases, these constant gains can be 
increased from the ones based on simulated studies. The αβγ types of filters define a 
manoeuvre index called λ (based on a subjective choice of Q , and R, and the time 
between measurements) which leads to the various gains. Thus, λ being chosen 
subjectively, the model accountability is generic. Such filters also do not consider 
any cost function, whereas the second and third are two routes to tune the Kalman 
filter by minimising J, the normalised innovation sequence (NIS) cost function. The 
only way to improve the performance of αβγ types of filters is to tune the λ 
manually as is shown later. 

The filter world kinematic model equations could consist of displacement, 
velocity, acceleration, jerk, slack and so on driven by inputs at the highest state 
derivative variables as chosen by the analyst. The inputs could be random white 
noise or even correlated noise. If the input is a random white noise, then the 
corresponding state variable and lower ones become Gauss-Markov (GM) processes 
of increasingly higher order. 

One cannot drive the displacement by white noise since no real-world system 
can be instantaneously displaced due to its finite mass and moment of inertia. It is 
best to introduce the input at higher levels as a white or correlated Gaussian noise as 
in Mehrotra and Mahapatra [47], or Singer [48]. Usually, the input being a white 
noise acceleration, its integration provides velocity and the further integration leads 
to displacement. Hence, the displacement would become a third-order GM process. 
If the input is at the velocity level, then the displacement becomes second-order 
Gauss-Markov process. The input at the jerk or the slack would increase the order of 
the filter equations. Hence, the analyst has to choose the input acceleration at a level 
to provide a reasonable balance between the model order and the anticipated 
dynamic rate of change of the object. 
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4.2 Comparison of second and third order Gauss Markov system model in 
CGKF 

_ € _ € _ € Here, we consider the nine state variables as (R, R, R, A, A, A, E, E, E) and the 
three measurements as (R, A, E), both in polar coordinates, and the specific to real-
time application in the so called PPR [30] frame. The estimation error of the state 
variables’ position and velocity based on the second and third order model shows it 
is more in the former than in the latter. This is due to the simple fact that in the 
second order model, the accelerations are not accounted for properly during the 
transition from boost phase to power off coast, when there is a rapid change in BR 
acceleration level, which is not taken into account in the second-order model unlike 
in the third order model [30]. 

4.3 Filter tuning using CGKF and adaptive estimation of (P0, Q , R) 

We consider both the above ALMF and the simpler CGKF for real-time 
processing to gain confidence in the results. In the former, the choice of window 
length is important to reach the NIS equal to the number of measurements for filter 
tuning. The adaptive filter tuning of the statistics P0, Q and R has been carried out 
by varying the window length L to track the NIS Cost towards 3 as shown in 
Figure 1. The next Figure 2 shows the time variation of Q elements with data length 
of the adaptive EKF after NIS cost convergence. For a given manoeuvre in space, 
the choice of the coordinate system and hence the components along different axes 
could vary. Very rapid dynamics demand higher Q to track and slower dynamics 
demand lower Q. This leads to different overall constant Qs being injected in 
different state variables and thus the Kalman gains. In the same frame, if the origin 
is changed, trajectory can be hard or soft. For example, if initially the manoeuvre is 
very rapid in azimuth and elevation channels (with injected constant Q ), the filter 
cannot track the BR closely, thus giving rise to oscillatory tracking error. Other axes 
systems and sensitivity studies for filter statistics are available in Sarkar [30]. 

Figure 1. 
Variation of the NIS cost with length of limited memory window. 
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4.4 Real-time tracking using CGKF 

The small differences in the gains from AEKF and CGKF are due to the duration 
of the transient and the steady state. At first, a set of R, A and E measurements are 
generated for one launch angle of the BR (45°). This data set is processed using 
AEKF to estimate P0, Q and R adaptively by equating the NIS cost function to 3, 
the number of measurement channels. After some initial transients, the Q and K 
elements become constant as can be seen in Figures 2 and 3, respectively. The 

Figure 2. 
Time variation of Q elements with data length of the adaptive EKF after NIS cost convergence. 

Figure 3. 
Time variation of K elements with data length of the adaptive EKF after NIS cost convergence. 
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steady state gains from the AEKF for 45° are used for processing the real data for a 
different launch angle of 75° of the same BR and the filter performs well. This is 
because the Q values from AEKF for 45 and 70°, being only slightly different, do 
not affect the gains in AEKF, so also in CGKF and thereby the filter performance. 
The NIS cost function for AEKF based on L = 5 is 3.05. For αβγ filter, the combina-
tion of λ equal to (0.002, 0.001, 0.001); (0.02, 0.01, 0.01); (0.05, 0.02, 0.02); 
(0.07, 0.05, 0.05) and (0.1, 0.1, 0.1) gave costs of 56.0, 17.0, 5.71, 3.03 and 2.85, 
respectively. These indicate the αβγ filter and the constant gain AEKF performance 
are close when λ = (0.07, 0.05, 0.05). Thus, the choice of gain elements from AEKF 
and CGKF is better than in the αβγ filter and the latter is simpler to implement. 

5. Space debris re-entry 

An accurate prediction of re-entry time of large orbital space debris is useful to 
plan hazard assessment and mitigation strategies. The database for such an analysis 
of large objects is the set of two line elements (TLEs) provided by agencies like 
USSPACECOM. The TLE sets [49] provide information regarding orbital parame-
ters together with rate of mean motion decay and a reference parameter B* related 
to the ballistic coefficient B as 

B∗ ¼ ðρo =2Þ B ¼ ðρo =2Þ ðCD Aeff =mÞ (35) 

B represents the sensitivity of an object to air drag and B* is an adjusted value of B 
using the reference value of atmospheric density ρo at a reference altitude 120 km 
above earth. CD is the non dimensional drag coefficient, m is the mass and Aeff is the 
effective area of cross-section of the object. Larger B means its orbit decays faster. 

5.1 Re-entry case study of US Sat. No. 25947, Soyuz 

The Satellite No. 25947 is a rocket body that has been the test case for the third 
IADC Re-entry campaign. The sets of 72 orbital elements were made available for 
re-entry prediction during February 2, 2000, to March 3, 2000. 

5.2 Filter-world scenario: state equations 

The measurements are available in terms of the orbital parameters the semimajor 
axis ‘a’ and the eccentricity ‘e’ in both the simulated cases and the tracked TLE 
elements. The state equations governing the state variables (a, e, B) are [29] 

ak ¼ ak�1 þ Δ ak�1 þ w1 ¼ ak�1 þ ϕ1 að k�1; ek�1Þ Bk�1 þ w1 (36) 

ek ¼ ek�1 þ Δ ek�1 þ w2 ¼ ek�1 þ ϕ2 að k�1; ek�1Þ Bk�1 þ w2 (37) 

Bk�1 ¼ Bk�1 þ w3 (38) 

where ϕ1 and ϕ2 are the functional forms of King-Hele [50] which depend on 
ballistic coefficient B, ‘a’ and ‘e’, and w1, w2 and w3 are, respectively, the process 
noises. The subscript argument inside the brackets (∙) denotes the time instant. 

5.3 Filter-world scenario: measurement equations 

But, in the filter implementation process, the transformed variables, namely the 
predicted apogee and perigee heights, are 
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ha� ð Þk ¼ ak 1 þ ek ð Þ and hp� ð Þk ¼ ak 1 � ek ð Þ (39) 

The measurements at time t(k) are of the form 

ha� ð Þk ¼ ha� ð Þk þ v1 and hp� ð Þk ¼ hp� ð Þk þ v2 (40) 

where v1 and v2 are the measurement noises assumed to be white Gaussian with 
zero mean and covariance R assumed as constant. The predicted values of these 
heights in the state equations are updated by utilising the measured values 
ha and hp, respectively, the apogee height and the perigee height. 

2 2 3 3 2 3 
haþ ha� k11 k12 

ha � ha� 64 
75 ¼ 64 

75 þ 64 
75 hpþ hp� k21 k22 ∙ (41) 

hp � hp� 
k Bþ 

k B� 
k k31 k32 

The superscripts (+) and (�) correspond to the predicted and updated values, 
and suffix k denotes the time instant. Further details are available in Anilkumar [26] 
and Anilkumar et al. [29]. 

5.4 Uncertainties in the state and measurement equations requiring Q and R 

In general, the physical parameters like mass, shape and dimensions of the 
re-entry objects that vary are not available accurately. Also, the atmosphere 
varies randomly. Further, the tumbling effect of the body and the molecule gas 
surface interaction leads to uncertain and varying aerodynamic drag coefficient, 
which makes the prediction of re-entry time a difficult problem. The re-entry 
objects are mainly affected by the atmospheric drag, earth’s oblateness, solar 
activity index F10.7 and magnetic index Ap. However, the orbital propagator 
utilised in this study is a very simple model of King-Hele [50] which accounts 
for only the atmospheric drag effect. The present propagator assumes a mean 
atmospheric condition as provided by the US Standard Atmosphere [51]. This 
model estimates only the semimajor axis and eccentricity decay with respect to 
one revolution, assuming a constant scale height during one revolution. This 
model is sufficient for the re-entry prediction as the decay of the object is 
mainly governed by the air drag only. The effects of other orbital perturbations 
and variations in the atmospheric density are accountable through the process 
noise and the Kalman filter is thus able to handle it through the proper gains as 
will be demonstrated subsequently. In all the prediction exercises, when the 
semimajor axis of the object reaches a height of 120 km above the earth, it is 
considered to have re-entered the atmosphere. This assumption is appropriate as 
a reference condition since there are significant variations in the atmospheric 
properties above 120 km with solar, magnetic activity and local time than below 
this height. Also, effectively, a diffusive equilibrium predominates beyond 
120 km as given in Whitten et al. [52]. 

5.5 Adaptive filtering approach for re-entry prediction 

It was found to be adequate to obtain P0 based on the difference between the 
assumed initial conditions of the states (a, e) with those from the first TLE set. For 
state B, the deviation of initially assumed B0 with that of the derived value of B 
from B∗ is used. For Q and R, the heuristic estimators of Myers and Tapley [15] 
have been used. A careful study of data of varying length based on adaptive 
filtering (both by simulation and actual data) helped to assess how the estimated 
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B, Q and R vary with data length. Recently, the RRR [6–9] has found a near 
optimal solution for tuning the filter statistics and thus an improvement over 
earlier adaptive procedures. 

5.6 The CGKF approach for re-entry prediction 

The present study utilised the genetic algorithm (GA) in the CGKF to minimise 
the cost function J. The fundamentals of GA, its features and other implementation 
aspects can be found in [39, 40]. The values of the parameters arrived at after some 
trials for the present GA re-entry problem are: population size = 100; bit 
length = 20; probability of cross over = 0.90; probability of mutation = 0.05; num-
ber of generations for convergence = 50 and tolerance for convergence: change in 
cost function J between generations = 0.0001. 

Starting from the 22nd TLE set, the present constant gain Kalman filter algorithm 
utilises a total of six gains corresponding to the three states, namely, apogee and 
perigee heights and the ballistic coefficient and two apogee and perigee height mea-
surements. An important parameter in this implementation is the initial assumed 
value of ballistic coefficient B0. This is to be expected as the body may be tumbling, 
with irregular shape and with varying gas molecule and surface interaction reflected 
in the predicted ballistic coefficient. Further, for the drag, a very simple mean atmo-
spheric condition is used. Figure 4 shows that as time passes, with more and more 
TLE data sets being available, for various initial B0 values, the predicted re-entry 
date comes closer. But the point is what is the best choice for the initial B0 that 
provides minimum variation in the predicted re-entry time right from the beginning 
up to the actual re-entry? This turns out to be B0 = 0.40 as shown in  Figure 5. The 
overall problem is to find out the best possible B0 and the constant Kalman gain that 
predicts the re-entry time with least variation from the beginning to the end. 

A combination of adaptive filtering and the constant gain approaches provided a 
set of constant gains as [0.6, 0.2, 0.2, 0.6, 0.00014 and 0.0001], as nearly optimal 
[26, 29]. One curious fact that may be noticed is the choice of the optimum Kalman 
gains. The optimal gain values for the states are larger and for B it is very small, the 
reason being the noise-to-signal ratio is very small for the states. Hence, the filter 

Figure 4. 
Variation of B with time during re-entry. 
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Figure 5. 
Variation of re-entry time with B0. 

can track the state with a large gain value close to unity or even a small non-zero 
value (but not zero!). However, for the ballistic coefficient B, the gains have to be 
smaller in order to slowly learn from the measurements; and if these gains are 
larger, then the estimated B will show lot of fluctuations. The actual re-entry 
occurred on March 4, 2000, at 5 h 50 min. The CGKF formalism based on a mean 
atmosphere and approximate drag effects predicted the re-entry on March 4, 2000, 
at 5 h 35 min. Even the MSIS-86 model [53] could have been used. This shows once 
again the robustness of the constant gains has the ability to handle the inaccuracies 
in modelling B, as well as both the unmodelled and unmodellable state and mea-
surement noise characteristics. 

6. Evolution and expansion of the space debris scenario 

6.1 Introduction 

The evolution of the space debris scenario consisting of characterising each and 
every fragment can be very unwieldy. The purpose of the present study is to 
demonstrate that it is not necessary to follow each and every fragment in a complex 
environment, which demands enormous amount of computing time. It suffices to 
group the fragments called equivalent fragments (EQF) in the ‘a’, ‘e’ coarse bins 
and propagate these with time. However, the orbital and ballistic coefficients of the 
EQFs need to be redefined for the above purpose of time propagation in terms of 
the individual fragment characteristics constituting it. After time propagation, the 
number of fragments and their ballistic coefficient constituting the EQFs are 
updated based on just the measured number of individual fragments as will be 
explained later. This process is continued with subsequent measurements. 

For studying the long-term evolution of the space debris, an initial model like in 
Johnson and McKnight [54], ASSEMBLE model of Anilkumar et al. [27], and Rossi 
et al. [55] can be assumed. At large times, the prediction could depart greatly from 
the real scenario due to the sensitivity of the evolution to the inaccuracies in the 
model parameters and the environment. There are large differences in the estimated 
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characteristics among many debris models [26, 54]. The only way the prediction can 
be made to follow more closely the real situation is to update the characteristics by 
assimilating properly the subsequent measurements of the number density in (a, e) 
bins repeatedly for further evolution in time. The present procedure in addition also 
expands the scenario for the distribution of the ballistic coefficient of the debris as 
well(!) which is not generally available or measurable. 

6.2 The present approach and the stochastic analog tool of Rossi et al. 

The stochastic analog tool (STAT) of Rossi et al. [55] simulates the time evolution 
of the debris by a threefold subdivision of namely: (i) the semimajor axis ‘a’ from 
6378 to 46,378 km, (ii) the eccentricity ‘e’ from 0 to 1 and (iii) the mass ‘m’ from 
1 mg to 10,000 kg. The present approach considers a, log(e) and log(B) as against a, e 
and m of STAT. The third parameter B has been presently used because the orbital 
parameters are sensitive to the air drag and thus change with time. There are errors 
due to discretisation and approximation in specifying the arithmetic mean values for 
‘a’ and geometric values ‘e’ of the EQF in the various bins. Further, there are unac-
counted or even unmodellable forces during propagation. However, all such errors 
can be accounted for by process noise in the state equations describing the propaga-
tion of the EQF. Since the individual representative objects of each bin are propa-
gated, the computing time is almost independent of the debris population size in both 
the present and STAT approaches. It is the second step that is fundamentally new 
and different in the present approach namely at an update apart from assimilating the 
measurement information it also expands the scenario to update the equivalent 
ballistic coefficient (EQB) for the EQFs in various bins with time. 

6.2.1 Characteristics of the equivalent fragment (EQF) in terms of the fragments in a bin 

Presently, with 10 divisions for each of the parameters a, e and B, a total of 1000 
bins are formed. Instead of handling each and every fragment, the fragments in 
every bin are handled as a fewer number of EQFs. Next, to follow the dynamics of 
these EQFs, it is necessary to assign suitable orbital and ballistic coefficient values 
for these EQFs in terms of the individual fragment properties. Presently, these are 
set as the arithmetic mean for ‘a’, geometric mean for ‘e’ and the geometric mean 
also for ‘B’ of the number of fragments in each bin. As the EQFs meander across the 
various ‘B’ bins, their ballistic coefficients are updated. This is somewhat similar to 
a debris with a certain value of B moving in the atmosphere though it could change 
its value. A priori, how well a mean defined as above can follow the dynamics and 
subsequently get updated in the filter is not conceptually clear. Its adequacy can 
only be demonstrated from subsequent results. 

6.2.2 Evolution of individual fragments as well as EQF in the bins 

Initially, about 10,000 simulated debris fragments due to an explosion are con-
sidered and the later fragments due to further breakups are accounted for as source 
terms. The state propagation equations for both the fragments and the EQF are 
identical to the earlier Eqs. (38), (39) and (40). The EQF propagated based on its 
assigned value of suitable ‘a’ and ‘e’ and could in general end up in just within another 
bin. In order to redistribute the fraction of the EQFs among the bins, a heuristic rule 
is used as in Rossi et al. [55] that takes the ratio between the area covered by the 
propagated rectangle and the area of the initial rectangle as shown in Figure 6. 

Subsequently, by using the measurements of the number of debris in the bins at 
various times, the EQB of each EQF is updated based on the weighted average of 
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Figure 6. 
Representation of the orbital propagation and redistribution in the eccentricity ‘e’ versus semimajor axis ‘a’ 
space. 

the predicted and measured number density of the fragments in the bins. This 
weightage is the Kalman gain as we will see later on. Without the update of the EQB 
of these EQF, the filter is unable to follow the true time variation of the number 
density of the debris fragments in the bins. Hence, the ballistic coefficient of the 
EQF is aptly called as the EQB. 

6.2.3 Update of the EQF characteristics 

The evolution of the EQF takes place in two steps, namely: (i) the propagation of 
the EQFs representing all the fragments in the various bins, then, redistribution of 
the fragments around the adjacent bins as mentioned earlier; further breakups are 
also accounted for by the changed number density in the various bins, and (ii) using 
appropriate constant Kalman gains for obtaining an updated estimate of the number 
density of the fragments in the various bins and the EQB of the EQFs. 

There is one subtle point in the estimation of the EQB of the EQF corresponding 
to various (a, e) bins. After update, the value of B for the EQB of EQF at times can 
fall outside the fixed bin interval. Presently, we have taken the propagation of the 
EQF always from the initial (a, e) condition based on the arithmetic and geometric 
mean, respectively. But, for a group of fragments, the above initial condition may 
not be the most appropriate. The EQF could have started its trajectory from any-
where inside or on the boundary of (a, e) bin whence the redistribution could have 
been different and thus the updated ballistic coefficient B as well. Such features 
arise due to the definition of the EQF characteristics and the coarseness of the bins, 
but one has to see if the final results are meaningful and acceptable. 

6.2.4 Real-world (individual fragments) and filter-world (EQF) scenarios 

The state and measurement equations in the real-world and filter-world sce-
narios are given in Table 3. In the filter state equations, the binning, formation 
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Quantity Real World Scenario for each 
fragment 

Filter World Scenario for each EQF 

The state variables The (a, e, B) of each fragment. The (a, e, B) of each EQF. 

The initial conditions The initial (a, e) of each 
fragment. 

For the EQF from anywhere in the (a, e) bin. 

The state input Complex environment. Only the air drag effect is considered. 

The state process Random variations in the real 
environment. 

The inaccuracies in assigning (a, e, B), 
binning, its propagation, redistribution and 
the environment. 

The measured 
variables 

The number of individual 
fragments in the various bins. 

The EQFs are propagated with only air drag 
and later converted to the number of objects 
in each of the bins. 

The measurement 
noise 

Measurement errors due to 
tracking and data processing. 

No measurement noise as the EQFs are 
propagated and using the changed values of 
(a, e) are assigned to appropriate bins. 

Table 3. 
Real world without binning and filter world with binning (for simulation studies). 

of EQF, propagation and redistribution all lead to modelling error and need 
process noise to handle the situation. In a real-world scenario, there would be 
measurement noise due to inaccuracies in the assigned orbital characteristics of 
the individual fragments. In simulation studies, the propagation of each and 
every one of the individual debris fragments and counting their number in the 
various bins lead to no measurement noise. 

The uncertainties in the initial EQB values of the EQF in the state equations 
(shown in Table 3) are improved by the filter by using a certain length of 
data. In the present study, the constant Kalman gains have been derived as 
explained later. 

6.3 The present constant gain Kalman filter approach 

From simulated studies, the number of debris fragments in each three-
dimensional (a, e, B) bin is known exactly. The Kalman filter by using the constant 
gains and the updated number of objects at various times is able to track closely the 
true number of fragments. Similarly, the measurements can be assimilated and the 
scenario expanded to get the EQB. 

6.3.1 Filter-world state equations 

Thus, the states presently considered in every one of the (a, e) bins are the 
number of objects N and their EQB. The (a, e) bins are not changing and the EQF 
moves in the (a, e) plane like any other single fragment and later gets redistributed 
based on a certain rule. The various EQFs are specified by: (i) their number in each 
(a, e) bin; (ii) the equivalent semimajor axis, (iii) the equivalent eccentricity and 
(iv) the EQB. 

The state equations for the EQF in the various bins between measurements are 

dN=dt ¼ Σ½propagation across the ða; eÞ bins and redistribution þ source terms� 
(42) þ state noise 

dB=dt ¼ 0 þ state noise ð¼ 0Þ (43) 
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6.3.2 Filter-world measurement update equations 

The true number density NM in the various bins is obtained in simulation by 
propagating each and every individual debris fragment. This is used to update the 
predicted number density based on propagated and redistributed EQF as well as 
update the ballistic coefficient of the EQF in the various bins as given by 

Nþ ¼ N� þKN: ðNM – N�Þ; (44) 

Bþ ¼ B� þ KB:ðNM – N�Þ (45) 

with the pre- and post-updated values denoted, respectively, by the superscripts 
(�) and (+). The gains KN and KB, respectively, correspond to the number density 
and the equivalent ballistic coefficient. 

Presently, the number of constant gains KN and KB to be estimated is 200 with 
two for each of the 100 (a, e) bins. These are obtained based on minimising the cost 
function. 

1νT J ¼ ð1=NÞΣνk ½ �  (46) R � 
k 

Σ denotes the summation over all bins and times. The constant Kalman gains 
were obtained by using the genetic algorithm [39, 40]. The different parameters 
used in GA implementation are as follows: population size = 200; bit length = 20; 
probability of cross over = 0.90; probability of mutation = 0.05; Convergence: 
number of generations 50 or alternately change in J between generations 0.0001. 

The whole of Kalman filter process can be summed up in a simple way. One 
can have the evolution of the state (without knowing how) generated by any 
random process. The time variation of the state can even be assumed to be 
given. The measurements could be noisy or even exact. In order to track the 
state and also follow it smoothly by reducing the fluctuations, a simple filter 
can be designed with the states remaining constant between measurements. For 
zero Kalman gain, the filter will learn nothing from the measurements and the 
state will remain at the initial values. For unity Kalman gain, the state will 
follow the measurements. In between, there is a range of gain for which the 
difference between the predicted state and the measurement is minimised in a 
suitable sense over the range of data. For slow and fast state dynamics, gains 
near zero and unity, respectively, would be appropriate. Further, if the random 
process is known to have an inaccurate or unknown parameter, they can also be 
handled by additional constant gains. 

6.3.3 Evolution of debris objects generated due to explosions 

A single explosion at a typical altitude of 800 km and eccentricity 0.00045 
resulting in about 10,000 debris of varying ballistic coefficients is simulated using 
the ASSEMBLE model [26, 27]. These objects were propagated accounting for only 
the atmospheric drag effect for a period of 600 days and thus generate the (a, e, B) 
data of the objects. Among many studies, updating both the number of objects and 
the EQB gave the best results and is described here for brevity. Further experiments 
like initial explosion followed by one breakup, two break ups and some launch 
activities were carried out. The filtering process reduces the errors in the estimates, 
but not below a certain value due to continuous occurrence of error due to binning, 
propagation and redistribution leading to a non-zero K. In all the subsequent fig-
ures, the symbol (o) denotes the true, (solid line) filter and (dashed line) with no 
update using K = 0. 
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6.3.4 Evolution of a single breakup and additional debris 

Figure 7 provides the results by updating both the number density and the EQB 
for the typical B bin (0.6056, 1.6476). Figure 8 shows the variation of the constant 
Kalman gain KN across the semimajor axes bins for four ballistic bins are always 
between zero and unity since the state, namely the number density, is measured. 

Figure 9 shows the KB for various values of the semimajor axes bins. However, 
this takes positive and negative values. Such a thing can happen since the ballistic 
coefficient though a state has not been measured. Further, in other experiments that 
were performed, it was noted that the estimated ballistic coefficient with time in 
typical bins is generally within the limits of the ballistic coefficient bin values. 
However, at times, they move somewhat outside the limits of the bin values. The 
initial condition for EQF propagation from the mean values of the bins, though it 
could have started from anywhere inside the bins, the subsequent propagation and 
redistribution error could be responsible for such a behaviour. It is best to accept the 
approach here as the ability to mimic the dynamical behaviour. 

At the beginning 10,000 fragments were introduced and subsequently an addi-
tional 300 fragments were introduced after 120 days very much like the real-world 
scenario where the debris are growing but not too rapidly. Even after adding the 
new source terms, the constant Kalman gains obtained based on the initial cloud 
evolution have been used for further evolution. In general, the constant gains are 
robust around a range of the estimated values. Hence, even if the subsequent results 
are non-optimal, they are adequate to obtain acceptable estimates. 

Figure 7. 
Breakup evolution in B bin (0.6056, 1.6476). 
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Figure 8. 
Kalman gains for number of objects (KN). 

Figure 9. 
Kalman gains for ballistic coefficients (KB). 
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Figure 10. 
Estimated and observed number of objects. (Two explosions and some new launches). 

6.3.5 Evolution of a single breakup followed by more than one breakup and some launch 
activities 

To simulate the real-world scenario, two explosions and some launches are 
introduced during the evolution. Once again, the constant gains obtained using the 
primary debris clouds suffice for all later cases as well! The results provided in 
Figure 10 show that the present model is able to track the number of objects even in 
such evolution process. 

6.3.6 Application to a typical real-world scenario 

The catalogued TLE data of 335 debris objects in near circular orbits in the 
perigee and apogee bin of 700–800 km from October 1998 to September 1999 
were chosen, assuming an initial ballistic coefficient for the EQFs is propagated 
and updated using first eight observations. A constant eccentricity for all the 
EQFs in all the bins is assumed since the bin size is just 10 km (unlike in the 
simulated scenario where it was 150) km but their semimajor axis corresponds 
to the mid-value of the bin. The Kalman gains from simulation studies were 
once again used to analyse the real-world data(!), thus demonstrating the 
robustness of the constant Kalman gains. The innovation here is given by the 
difference between the TLE data and the predicted number density. The 335 
objects observed in the apogee/perigee bin from October 1998 were tracked for 
the next 12 months to obtain the number of objects in the semimajor axis bins. 
By tracking the same objects, Figure 11 provides their number for the 
12 months in the 10 different semimajor axis bins. 
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Figure 11. 
Variation of the number density of the debris in the bins with time. 

Figure 12. 
Comparison of the estimated time-varying debris number density with TLE values. 
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Figure 12 shows a comparison of the number of objects from the present 
approach with that observed for the semimajor axis bin of (7150, 7160) km. Con-
sidering 10 equivalent objects rather than propagating and monitoring all of the 335 
objects, the match is quite good. 

7. Conclusions 

The present CGKF approach has been demonstrated with many examples and in 
particular the evolution of thousands of space debris fragments. This formalism can 
be used even in massive atmospheric data assimilation and weather prediction 
problems that have tens of thousands of states and measurements. 
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Chapter 4

Statically Fused Converted
Measurement Kalman Filters
Gongjian Zhou and Zhengkun Guo

Abstract

This chapter presents a state estimation method without using of nonlinear
recursive filters when Doppler measurement is incorporated into the tracking sys-
tem. The commonly used motions, such as the constant velocity (CV), constant
acceleration (CA), and constant turn (CT), are represented in a pseudo-state space,
defined from the product of target true range and range rate, by linear pseudo-state
equations. Then the linear converted Doppler measurement Kalman filter
(CDMKF) is presented to extract pseudo-state from the converted Doppler mea-
surement, constructed by the product of the range and Doppler measurements. The
output of the CDMKF is fused statically with that of the converted position mea-
surement (range and one or two angles) Kalman filter (CPMKF) to produce target
Cartesian state estimates. The accuracy and consistence of the estimator can be both
guaranteed, since linear Kalman filters are both used to extract information from
position and Doppler measurements.

Keywords: Kalman filter, measurement conversion, doppler, static fusion

1. Introduction

In real tracking applications, most sensors report target parameters in sensor
(e.g., polar) coordinates, while target motion is usually modeled in Cartesian coor-
dinates. In Doppler radars, the measurements consist of range, one or two angles,
and range rate. Tracking in Cartesian coordinates using polar measurements is a
nonlinear estimation problem. To handle the range and angle measurements, it is
preferred to convert the measurements to a linear form in Cartesian coordinates to
avoid nonlinear filtering. This results in the converted position measurement
Kalman filtering (CPMKF) method [1]. The statistic property of the converted
position measurement errors has been explored in [1–10]. The Doppler or range-
rate measurement, which is the only measurement containing target velocity infor-
mation, is not processed in the CPMKF method.

Due to the high nonlinearity of the Doppler measurement, the filtering process
becomes more complex when Doppler is also included as a part of measurement
vector. Various nonlinear filtering methods are utilized to handle Doppler
measurements [11–18]. The first-order extended Kalman filter (EKF) is used to
process the position and Doppler measurements simultaneously [12, 16]. A sequen-
tial processing approach, which can not only improve the filtering accuracy but also
reduce the computational complexity [19, 20], is used with the first-order EKF [18]
to process position and range-rate measurements. Since the EKF is based on a
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Due to the high nonlinearity of the Doppler measurement, the filtering process 
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Taylor series expansion, large errors in the posterior mean and covariance approx-
imation may lead to performance degradations and possible divergence with the 
highly nonlinear range-rate measurements. The unscented Kalman filter (UKF), 
which overcomes some of the shortcomings of the EKF based on a deterministic 
sampling approach, is used to process the Doppler measurements sequentially in 
[15, 17]. On the other hand, the converted Doppler measurements, constructed by 
the product of range and Doppler measurement, are used to replace the original 
Doppler measurement in [13, 14, 21]. Nonlinear recursive filtering methods still 
have to be employed to extract target information from the nonlinear converted 
measurements directly, although the nonlinearity is reduced largely [13]. The 
second-order EKF is utilized to process the converted Doppler measurements and 
the converted position measurements simultaneously in [21] and sequentially in 
[13, 14]. The measurement errors amplified by large ranges may result in perfor-
mance degradation of those converted Doppler measurement-based methods. A 
linear denoising filter is presented in [22, 23] to reduce the noise contained in the 
converted Doppler measurement, but only the constant velocity (CV) motion is 
investigated. In [3], based on the estimated angle cosine and sine, Doppler is treated 
as an approximate linear function of velocity components to allow the use of linear 
Kalman filter. Since the angle cosine and sine are all nonlinear functions of target 
position components, the process is actually nonlinear, and estimation performance 
may rely on the quality of angle cosine and sine critically. 

Although performance improvements have been observed in the existing litera-
ture, which use the Doppler measurements in state estimation, performance cannot 
be guaranteed due to the utilization of nonlinear recursive filtering methods. One of 
the major advantages of the CPMKF is that the nonlinear approximations (i.e., 
measurement conversion and statistic evaluation) are performed outside the filter-
ing recursion and nonlinear filters are avoided [24]. Whereas, in the existing 
nonlinear filtering methods [13, 17, 18], the nonlinear approximation of the Doppler 
measurements or the converted Doppler measurement is performed inside the 
dynamic filtering recursion. The accumulations of approximation errors may lead to 
unsatisfactory performance. 

In order to rectify these flaws, a new method is proposed in [27–29] and sum-
marized in this chapter. In the proposed method, the use of nonlinear filtering 
approaches is also avoided while dealing with the Doppler measurements. First, the 
pseudo-state vectors, of which the converted Doppler measurements [13, 14, 22, 23] 
are linear functions, are defined. The pseudo-state vector consists of the converted 
Doppler (i.e., the product of range and range rate) and its derivatives. The time-
evolving equations of the pseudo-states are derived and proven to be linear for the 
three commonly utilized motion models, the constant velocity (CV), constant turn 
(CT), and the constant acceleration (CA) models. Then, the converted Doppler 
measurement Kalman filter (CDMKF), a linear filter, is presented to produce the 
pseudo-state estimates and filter the noise contained in the converted Doppler 
measurements. Finally, the CDMKF is carried out along with the CPMKF to estab-
lish a new state estimation method, statically fused converted measurement Kalman 
filters (SF-CMKF). Cartesian state estimates and pseudo-state estimates are pro-
vided by CPMKF and CDMKF, respectively, and are then fused by a static estimator 
to produce final state estimates. The quadratic nonlinearity of the pseudo-states is 
processed by expanding the pseudo-states up to the second order around the esti-
mates from the CPMKF. The correlation between the CPMKF and CDMKF, caused 
by the common range measurement and process noise, is involved in the static 
minimum mean squared error (MMSE) estimator to derive correct fusion of the 
states from the two linear Kalman filters. This filtering scheme actually converts the 
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dynamic nonlinear estimation problem to a linear dynamic estimation following 
with a static nonlinear fusion problem, where nonlinearity approximations are 
carried out outside the filtering recursions and the static fusion part produces 
estimates only for overall outputting. Therefore, nonlinear filtering is also avoided 
even when range-rate measurements are used for estimation. 

2. Problem formulation 

A target’s motion is modeled in a two-dimensional (2D) Cartesian system by a 
discrete time-state equation as 

Xðkþ 1Þ ¼ ΦX k ð Þ  (1) ð Þ þ ΓV k 

where Xð Þk is a state vector consisting of position components and 
corresponding velocity components (or acceleration components) along x and y 
directions, Φ is the state transition matrix, and Γ denotes the noise input matrix. 

For CV model, 
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_y kð Þ  0 sinðϖTÞ 0 cosðϖTÞ 0 T 

(3) 

For CA model, 

3 2 2 2 3 3 2 =2 0 0  0  2 =2 0 x kð Þ  1 T T  T 
666666664 

777777775 

666666664 

777777775 

, Γ ¼ 

666666664 

777777775 

_ð Þx k  

€ð Þx k  

y kð Þ  

_ð Þy k  

T 0 0  0  T 0 

1 0 

0 1  

0 0  1 0 0 0  
, Φ ¼ X kð Þ ¼  (4) 2 =2 2 =2 0 0  0  1  T T  T 0 

T T 0 0  0 0 1  0 

y k€ð Þ  0 0 0 0 0 1  0 1 

where T is the sampling interval. V k x k ; vyð Þk ð Þ ¼  v ð Þ  
�T is the process noise that 

follows the Gauss distribution with zero mean and known covariance 
Q ¼ diag½q; q�. Here, and denote process noises in x and y directions, 
respectively, and q denotes the process noise intensity. is the known turn rate for 
CT model [25]. 

A 2D Doppler radar is assumed to report measurements of targets in polar 
coordinates, including range, range rate, and azimuth. The measurement equation 
can be expressed as 
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ð5Þ 

where , , and are the target’s true range, azimuth, and range rate, 
respectively. , , and are the corresponding measurement noises, which 
are all assumed to be zero-mean Gaussian noises with known variances , , and 
, respectively. It is assumed that the measurement noises are mutually indepen-

dent with the exception that and are statistically correlated [26] with 
correlation coefficient , i.e., . 

3. Measurement conversion 

In this chapter, the CPMKF is utilized to extract information from position 
(range and azimuth) measurements, and the CDMKF is used to produce pseudo-
state estimates from range and range-rate measurements. Fusion of the two 
converted measurement Kalman filters yields final Cartesian state estimation. For 
appropriate filtering, the actual statistic, mean and covariance, of the converted 
measurements has to be evaluated. 

The converted position measurements constructed from range and azimuth 
measurements can be written as 

ð6Þ 

where and are converted measurement errors along x and y directions, 
respectively. The converted Doppler measurements is constructed by the product of 
the range and Doppler measurements as 

ð7Þ 

where is the product of true range and range rate, expressed by. 

ð8Þ 

and is the corresponding error. It can be seen from (8), the converted 
Doppler measurements are nonlinear with respect to Cartesian states. In conven-
tional tracking approaches, which estimate Cartesian states by recursive filtering 
directly from measurements, nonlinear recursive filters have to be employed, 
resulting in unsatisfied performance and possible divergence. In this chapter, the 
converted Doppler measurements are processed first, by a linear filter, to produce 
pseudo-state estimates, instead of Cartesian state estimates directly. 

The converted measurements in (6) are biased [1, 8] due to nonlinear trans-
formations. Both additive [1] and multiplicative [8] debiasing approaches are 
presented to counter this bias. Some modifications have also been proposed to deal 
with large errors [4] and correlation between the measurement noise and the 
covariance [2, 3, 5, 7]. A detailed discussion on the bias issue is beyond the scope of 
this chapter. In [1], the additive debiasing method is used with converted position 
measurements. A linearization method based on Taylor series expansion, which 
may result in large errors, is proposed in [18]. To facilitate a fair comparison against 
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existing works [14, 15] dealing with Doppler measurements, the position measure-
ment conversion is implemented here based on the additive debiasing [1] tech-
nique, as in [14, 15]. 

Using the nested conditioning method [1, 24], which was proven to be effective 
and consistent, the calculation of the converted Doppler measurement errors was 
investigated in [14, 15]. The objective of the nested conditioning method is to find 
the mean and covariance conditioned on the unknown ideal measurement first and 
then to find their expectations conditioned on the noisy measurement. 

Denote the bias and covariance of the converted position measurements as 

ð9Þ 

and 

ð10Þ 

respectively. Then the debiased converted position measurements can be 
obtained as 

˜ ° 
xcð Þk 

Zpð Þ ¼k � μpð Þk (11) c y ð Þk c 

The expressions of the elements in (9) and (10) can be obtained by the nested 
conditioning method [1] as 

ð12Þ 

ð13Þ 

ð14Þ 

ð15Þ 

ð16Þ 

Similarly, one can get the bias and variance of the converted Doppler 
measurements as [14]. 

ð17Þ 

and 

ð18Þ 

respectively. The converted Doppler measurements are debiased as 

ð19Þ 
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The covariance between the converted position and Doppler measurements is 
given as 

ð20Þ 

For details of the derivations of the measurement errors presented above, see 
[1, 13, 14]. 

4. Statically fused converted measurement Kalman filters 

The converted position measurements, given by (10) and (11), are preferably 
processed by the standard linear Kalman filter to outperform practical nonlinear 
filters (EKF and UKF). The converted Doppler measurements, given by (18) and 
(19), are also processed by a linear Kalman filter to extract pseudo-state. The out-
puts of these two linear filters are then fused by a static MMSE estimator to yield the 
final Cartesian state estimates. This results in the statically fused converted mea-
surement Kalman filter, which is illustrated in Figure 1. This method, abbreviated 
as SF-CMKF, produces superior performance in both accuracy and consistency. 

4.1 Pseudo-state equation 

Finding the proper representation of a certain motion in the generic state space 
that corresponds to the converted Doppler is critical to this method. In this section, 
the pseudo-state equation, consistent with the CV, CA, and CT model in 2D Carte-
sian state space, is derived first, and then the CDMKF and SF-CMKF filtering pro-
cedures are formulated. 

4.1.1 Pseudo-state equation for CV model 

The CV model in 2D Cartesian coordinates can be described by 

ð21Þ 

The converted Doppler (8) is considered to be a generic position to define a 
pseudo-state that is linear with respect to measurement (7). Since the converted 
Doppler is quadratic in Cartesian states, it has limited derivatives for the CV model. 
Taking derivatives of the converted Doppler up to the second order using (21), we 
have 

ð22Þ 

It shows that the CV motion in 2D Cartesian coordinates can be described 
completely by and its first-order derivative in the state space corresponding to 
the generic position, converted Doppler. Then the pseudo-state vector can be 
defined as 

60 



Statically Fused Converted Measurement Kalman Filters 
DOI: http://dx.doi.org/10.5772/intechopen.85711 

ð23Þ 

where is the vector-valued nonlinear function. 
To derive the pseudo-state equation, explicit substitutions are employed. From 

(23), the pseudo-state at time is given by 

ð24Þ 

Using (1), (23), and (24), explicit substitutions of the pseudo-state by the 
Cartesian state equations are performed; the pseudo-state equation can be 
derived as 

ð25Þ 

where 

ð26Þ 

ð27Þ 

ð28Þ 

ð29Þ 

ð30Þ 

Figure 1. 
Filtering structure of SF-CMKF. 
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ð31Þ 

It can be seen from (25)–(31) that the pseudo-states evolve linearly in time, 
disturbed by the noise part. Based on the assumption that , , and are 
white Gaussian with zero mean and mutually independent, we have that the noises 

and are white with zero mean; the corresponding covariance can be 
obtained as 

ð32Þ 

ð33Þ 

4.1.2 Pseudo-state equation for CA model 

Similarly, the pseudo-state equation for CA model can be derived as 

ð34Þ 

where 

ð35Þ 

ð36Þ 

ð37Þ 

ð38Þ 

ð39Þ 

ð40Þ 

62 



Statically Fused Converted Measurement Kalman Filters 
DOI: http://dx.doi.org/10.5772/intechopen.85711 

ð41Þ 

The noises and are white with zero mean; the corresponding covari-
ance can be obtained as 

ð42Þ 

ð43Þ 

4.1.3 Pseudo-state equation for CT model 

Similarly, the pseudo-state equation for CT model can be derived as 

ð44Þ 

where 

ð45Þ 

ð46Þ 

ð47Þ 

ð48Þ 

ð49Þ 

ð50Þ 

ð51Þ 

In the above 

ð52Þ 
ð53Þ 
ð54Þ 
ð55Þ 
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where 

ð56Þ 
ð57Þ 
ð58Þ 
ð59Þ 

The noises and are white with zero mean; the corresponding 
covariance can be obtained as 

ð60Þ 

ð61Þ 

For CV, CA, and CT models, the cross-covariance between and is 
proven to be zero. Therefore, the disturbance part in the pseudo-state equation can 
be treated as white. Additionally, the pseudo-state equation can be considered as 
linear. In this case, the MMSE can be used to produce a best linear estimation. 

4.2 Converted doppler measurement Kalman filter 

The debiased converted Doppler measurements in (19) guarantee the 
observability of the pseudo-states in (23), (25), (34), (35), (44), and (45) with the 

measurement matrix given as , where is the dimension of the 

pseudo-state. The measurement equation is given by 

ð62Þ 

In the above, denotes the zero-mean Gaussian measurement noise with 
known variance given by (18). The CDMKF is derived under the linear minimum 
mean squared error (LMMSE) estimation frameworks as follows: 

Applying the expectation operator on the pseudo-state (25), (34), and (44) 
conditioned on the converted Doppler measurements up to time step , we can 
obtain the predicted pseudo-state as 

ð63Þ 

Subtracting the above from the pseudo-state equation yields the state prediction 
error 

ð64Þ 

where is the estimation error at time step . Then the state prediction 
covariance is 

ð65Þ 
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The predicted measurement can be obtained similarly by taking expectation 
(62) conditioned on the measurements until time step as 

ð66Þ 

Subtracting the above from (62), the measurement prediction error can be 
written as 

ð67Þ 

Then the measurement prediction covariance is given by 

ð68Þ 

And the cross-covariance between the pseudo-state and the measurement is 

ð69Þ 

The filter gain is calculated by 

ð70Þ 

Then the updated pseudo-state at time step is given as 

ð71Þ 

And the updated covariance is 

ð72Þ 

Eqs. (63)–(72) summarize the filtering procedure of the CDMKF with the key 
matrix parameters defined by the pseudo-state equation. The whiteness of the 
process noise and the linearity of the state equations guarantee that the CDMKF is a 
best linear estimator in the sense of MMSE. This provides a new method, rather 
than a nonlinear filter, to mitigate the noises in Doppler measurements and extract 
target information in pseudo-state space. 

Note that the Cartesian state at time is required to determine the matrix in 
(30), (40), and (50). In practice, the true state is not available. The solution is to 
replace the true state by the state estimates at time step from the 
CPMKF. Also, the covariance for CV model in (32) can be approximated using 
components of as 

ð73Þ 

and the covariance for CA model in (42) can be approximated as 
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ð74Þ 

4.3 Converted position measurement Kalman filter 

The formulations of the CPMKF are also given for derivation of the SF-CMKF. 
The state equation and measurement equation can be expressed as 

ð75Þ 
ð76Þ 

The process noise is identical to those in (30), (40), and (50). Here, is 
the debiased converted position measurement in (11). The converted measurement 
error is zero mean with known covariance in (10). The subscript is utilized 
to indicate the matrixes or variables are related to the CPMKF. The implementation 
procedure of CPMKF is as below: 

ð77Þ 

ð78Þ 
ð79Þ 

ð80Þ 
ð81Þ 

4.4 Correlation between CDMKF and CPMKF 

As shown in Figure 1, the range measurements are commonly used in CDMKF 
and CPMKF. Therefore, the pseudo-state produced by the CDMKF and the Carte-
sian states from the CPMKF are not independent. The correlation should be handled 
appropriately in the fusion procedure. 

According to the formulations in the CDMKF, we can rewrite the state estimate 
from CDMKF at time step as 

ð82Þ 

Then the corresponding estimation error is 

ð83Þ 
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Similarly, the filtering error of CPMKF at time step can be obtained as 

ð84Þ 

Multiplying (84) by the transpose of (83) and taking expectation, the covariance 
between the parallel two filters can be updated recursively as 

ð85Þ 

In the above, is the cross-covariance between the converted position 
and Doppler measurements at time step . It can be given by (20). The above 
equation is a Lyapunov-type equation. The initial condition can be obtained from 
the initial covariance between the converted measurements. 

4.5 Static fusion of CDMKF and CPMKF 

The challenges, when combing the estimates from the CDMKF and CPMKF to 
obtain final state estimates, are not only the nonlinearity but also the correlation 
between the CDMKF and CPMKF. Since the pseudo-states from the CDMKF are 
quadratic in Cartesian states, the nonlinearity can be dealt with by expanding the 
pseudo-states up to the second order in a Taylor series. In the meantime, the cross-
covariance between these two filters should also be taken into account. A static 
estimator is derived based on the framework of linear MMSE estimator to fuse the 
outputs from the two filters, with both the nonlinearity and the dependence han-
dled simultaneously. 

The problem is to estimate target states at time step using the pseudo-state 
estimates produced by the CDMKF and the Cartesian state estimates 

from the CPMKF. The prior mean of the state is 

ð86Þ 

given the state estimates of the CPMKF. 
A “measurement” 

ð87Þ 

is constructed to update the state of interest. The error is assumed 
zero mean, with known covariance , and is correlated to the estimation 
error of the CPMKF 

ð88Þ 

with cross-covariance in (85). 
To obtain the prior mean of measurement , the nonlinear function 

between pseudo-states from CDMKF and Cartesian states is expanded as a Taylor 
series around with terms up to the second order as 

67 

http://dx.doi.org/10.5772/intechopen.85711


Introduction and Implementations of the Kalman Filter 

ð89Þ 

Since the calculations are all performed at a single time step , the time 
subscript is omitted for simplicity. Here, denotes the Cartesian basis vector. 

In the above, 

ð90Þ 

is the Jacobian of the vector , evaluated at . Also, 

ð91Þ 

is the Hessian of the component of , and stands for the higher-order 
terms, which are all zero for the components with quadratic nonlinearity. 

The prior mean of the measurement can be obtained by taking expectation on 
(89) conditioned on the estimates from the CPMKF as 

ð92Þ 

Then the covariance between the states to be estimated and the “measurement” 
is, incorporating their dependence, 

ð93Þ 

The covariance of the measurement is 

ð94Þ 

The items with in (93) and (94) arise from the correlation between the two 
converted measurement filters, and the other items are the same as the measure-
ment update of the second-order EKF. 

The static nonlinear estimates are obtained as 

ð95Þ 

The covariance associated with this combined estimate is 

ð96Þ 

The final target states are then evaluated by (95) from the pseudo-state esti-
mates of the CDMKF and the state estimates of the CPMKF. 
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4.6 Initialization 

In the SF-CMKF, there are three estimators that need to be initialized: (1) the 
CPMKF, (2) the CDMKF, and (3) the static fuser. 

The two-point differencing method, which uses measurements from two con-
secutive time steps and to estimate the “position” components 
and the corresponding “velocity” components and the measurement covari-
ance to approximate state covariance , is used. The initial state has the 
form as 

ð97Þ 

where is the remaining components. The corresponding covariance is 
given by 

ð98Þ 

ð99Þ 

where is the vector consisting of maximum values of the remaining 
components. 

The initialization of the three estimators can be implemented all based on (97) 
and (98), using correct measurements and measurement covariance. 

To initialize the CPMKF, we should use the converted position measurements in 
(11) and the converted position measurement covariance in (10). To initialize the 
CDMKF, the converted Doppler measurements in (19) and the corresponding 
covariance in (18) are used to calculate (97) and (98). 

The initialization of the static estimator in the fusion step can be implemented 
similarly to (98) as 

ð100Þ 

where is the cross-covariance (20) between the converted position 
measurements and the converted Doppler measurements. Here, matrix is 
replaced by , which is because there is no correlation between the states that 
are initialized to zero. 

5. Conclusions 

Tracking with position and Doppler measurements, where the range and Dopp-
ler measurement errors may be correlated, was considered in this chapter. 

First, the converted Doppler measurement Kalman filter, a linear filtering 
approach, can be used to improve state estimation results with the converted 
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Doppler measurements, which are constructed by the product of the range and 
Doppler measurements. This estimation produces pseudo-state estimate. The 
pseudo-state equations for three commonly used target motion models, the CV, CA, 
and CT models, were presented, and the filtering procedures were derived. 

Based on the converted Doppler measurement Kalman filter and the converted 
position measurement Kalman filter, a novel tracking filter was proposed to esti-
mate target states from position and Doppler measurements. In this approach, the 
two converted measurement Kalman filters are used to produce recursive state 
estimates individually, and their outputs are fused outside the filtering recursion by 
a static nonlinear estimator, with nonlinearity and correlation handled properly. 
Since nonlinear operations are all shifted outside the filtering recursions and the two 
dynamic filters are the best linear MMSE estimators, the proposed method mitigates 
the effects of nonlinear filtering methods. 
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Chapter 5 

A Scalable, FPGA-Based 
Implementation of the Unscented 
Kalman Filter 
Jeremy Soh and Xiaofeng Wu 

Abstract 

Autonomous aerospace systems may well soon become ubiquitous pending an 
increase in autonomous capability. Greater autonomous capability means there is a 
need for high-performance state estimation. However, the desire to reduce costs 
through simplified development processes and compact form factors can limit 
performance. A hardware-based approach, such as using a field-programmable gate 
array (FPGA), is common when high performance is required, but hardware 
approaches tend to have a more complicated development process when compared 
to traditional software approaches; greater development complexity, in turn, results 
in higher costs. Leveraging the advantages of both hardware-based and software-
based approaches, a hardware/software (HW/SW) codesign of the unscented 
Kalman filter (UKF), based on an FPGA, is presented. The UKF is split into an 
application-specific part, implemented in software to simplify the development 
process, and a non-application-specific part, implemented in hardware as a 
parameterisable ‘black box’ module (i.e. IP core) to increase performance. Simula-
tion results demonstrating a possible nanosatellite application of the design are 
presented; implementation (synthesis, timing, power) details are also presented. 

Keywords: field-programmable gate array (FPGA), unscented Kalman filter 
(UKF), codesign, system on a chip (SoC), nonlinear state estimation 

1. Introduction 

Small (micro-, nano-, pico-) satellites and (micro-) unmanned aerial systems 
(UASs) are emerging technologies that have the potential to be of great academic 
and commercial use but only if a balance can be found between two diametrically 
opposed forces that act on their design: the desire, and need, for high performance 
and the desire to reduce costs. High performance, especially in state estimation, is 
necessary for these technologies to be advantageous over traditional aerospace 
systems in relevant applications. 

The desire to reduce the costs of these technologies has led to their 
miniaturisation and heavy use of commercial off-the-shelf (COTS) components so 
that some level of economy of scale may be achieved. Though both component and 
development costs can be reduced in this way, this approach, in turn, leads to a 
reduction in the resources available (e.g. electrical power, computing power and 
physical space) aboard those systems, impacting performance. 
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Figure 1. 
The performance versus development complexity trade-off for different types of embedded systems. 

Specialised hardware, e.g. application-specific integrated circuit (ASIC)- or field-
programmable gate array (FPGA)-based systems, can achieve high performance, 
even for severely resource-constrained systems, but tends to increase the develop-
ment complexity of these systems; in this way, using specialised hardware may 
reduce component costs and meet performance and miniaturisation requirements, 
while development costs are typically increased. This issue is illustrated in Figure 1, 
which depicts the balance between development complexity and performance for 
different embedded systems; greater complexity during the development process 
means that a greater investment in resources, personnel and time becomes necessary, 
which leads to higher development costs. 

Software approaches, e.g. microprocessor-based systems, generally have lower 
performance than specialised hardware but have much simpler, and thus cheaper, 
development processes. It is, however, possible to draw upon aspects of both hard-
ware and software approaches and combine them into a hardware/software codesign. 
This codesign could deliver the high performance of specialised hardware but, by 
using software techniques, e.g. modularity or abstraction, could also alleviate some of 
the high development costs associated with such hardware. If this codesign approach 
is applied to a prolific state estimation algorithm, then the performance and 
miniaturisation requirements could be met, while keeping development costs low. 

In this chapter, a library containing a scalable, hardware/software (HW/SW) 
codesign of the unscented Kalman filter (UKF), based on an FPGA, is presented. The 
codesign is implemented as a fully parameterisable, self-contained ‘black box’ (which 
is often referred to as an IP core), which aims to minimise the necessary input from 
system designers when applying the codesign to a new application, such that overall 
development complexity is reduced. 

This chapter is a distillation of work first presented in [1]. The rest of this 
chapter is organised as follows: Section 2 provides background on relevant concepts, 
Section 3 outlines the proposed design, Section 4 describes the simulation model to 
verify the design and simulation results, Section 5 presents implementation results 
and Section 6 concludes the chapter. 

2. Background 

2.1 Hardware/software codesign 

Hardware/software codesign is a design practice that is often used with system-
on-a-chip (SoC) architectures. The term system on a chip comes from the field of 
very large-scale integration (VLSI) where individual hardware units or ‘black 
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boxes’ (IP cores) that perform some dedicated function are arranged and connected 
together on a single ASIC chip. Typical SoCs may include a microcontroller or 
microprocessor core, DSPs, memories such as RAMs or ROMs, peripherals such as 
timers/counters, communication interfaces such as USB/UART, analog interfaces 
such as ADCs/DACs or other analog, digital, mixed-signal or RF hardware. Previ-
ously, each of these components may have had its own ASIC and was connected 
together on a PCB, but, in accordance with Moore’s law, resource densities of silicon 
chips have massively increased over time, so now these components are able to be 
integrated together on a single chip; an example SoC can be seen in Figure 2a. 

(a) Example of a typical system on a chip. 
(b) An example of a target architecture for early hardware/software codesign 

implementations. 
SoC designs for FPGAs have become more popular recently as the increase in 

resource densities allowed more complex logic to be implemented. The push 
towards SoCs on FPGAs is driven by the desire for greater autonomy in a variety of 
systems; the most obvious example is field robotics, but autonomous systems such 
as ‘smart’ rooms and satellites also have a need for a small form factor and high-
performance computing solutions that the FPGA is well placed to deliver. 

As VLSI technology matured, designers began to see that the increase in develop-
ment complexity for hardware or ASIC designs was impacting their ability to bring 
products to market quickly. The associated increase in the complexity of micropro-
cessors led many designers to realise that these microprocessor units could be 
included into system designs and some of the functionality shifted to software to 
reduce their time to market. Microprocessors can be considered a SoC on their own, 
but they can also be included in much larger SoC designs, and this is where the idea of 
hardware/software codesign first began; reviews of the field by [2–4] give a compre-
hensive history of hardware/software codesign. A basic example of an architecture 
where hardware/software codesign may be appropriate is shown in Figure 2b. 

2.2 Unscented Kalman filter 

The extended Kalman filter (EKF) is, and has been, the most widespread 
method for nonlinear state estimation [5]. It has also become the de facto standard 

Figure 2. 
Examples of system-on-a-chip architectures. 
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by which other methods are compared when analysing their performance. Various 
surveys of the field have noted that the EKF is ‘unquestionably dominant’ [6], ‘the 
workhorse’ of state estimation [7, 8] and the ‘most common’ nonlinear filter [9]. 
Despite some shortcomings, the relative ease of implementation and still-
remarkable accuracy have propelled the EKF’s popularity. 

However, more recently the unscented Kalman filter (UKF) [10] has been 
shown to perform much better than the EKF when the system models are ‘highly’ 

ance. Following this, a deterministic sampling technique known as the unscented 
transform (UT) is applied. A set of points, called ‘sigma’ points, are drawn from the 
probability distribution, and each of them propagated through the nonlinear system 
models. The new mean and covariance of the transformed sigma points are then 

nonlinear [6 9, 11]. While the EKF attempts to deal with non-linearities in the– 
system model by using the Jacobian to linearise the system model, the UKF instead
models the current state probability distribution with and covari-as a some mean 

recovered to inform the state estimate. The crucial aspect of the UT is that the new 

f (1) ¼ ð Þ x x ; u ; w k k 1 k 1 k 1 � � � 

^ 

sigma points are drawn deterministically, unlike random sampling methods like 
Monte Carlo algorithms, drastically reducing the number of points necessary to 
recover the ‘transformed’ mean and covariance. 

Consider the general nonlinear system described for discrete time, k: 

zk ¼ hðxk; vkÞ (2) 

where f and h are the system’s process and observation models, respectively; x 
and z are the state and observation vectors, respectively; u is the control input and 
w and v are, respectively, the process/control and measurement/observation noise, 
which are assumed to be zero-mean Gaussian white noise terms with covariances Q 
and R. The formalisation of the UKF for this system is as follows. Define an 
augmented state vector, xa, with length M that concatenates the process/control 
noise and measurement noise terms with the state variables as 

2 3 
xk 

a 6 7 xk ¼ 4wk 5 (3) 

vk 

The augmented state vector has an associated augmented state covariance, Pa
k, 

which combines the (regular) state covariance, Pk, with the noise covariances Q k 
and Rk. The augmented state vector and covariance are initialised with 

2 3 
x0 

^ 
� � 6 7 

xa 
0 ¼ E xa ¼ 6 0 7 

0 4 5 

^ ^ 

0 2 3 (4) 
P0 0 0 h i � �� � 6 7 T x x 6 7 4 5 

a a Pa 
0 ¼ E Q 0 xa 

0 � xa 
0 � 0 0 ¼ 0 0 

0 0 R0 

where x̂0 is the expected value of the initial (regular) state. There exist various 
other sigma point selection strategies, and, in order to minimise computational 
effort, a selection strategy involving a minimal set of samples is highly desired. The 
spherical simplex set of points [10, 12] can be shown to offer similar performance to 
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the original UKF with the smallest number of sigma points required (Mþ 2). The 
sigma point weights, and a coefficient matrix is generated by choosing 0≤W0≤1 
and then calculating W1: 

ð1 �W0Þ W1 ¼ Wi ¼ i ¼ 1,…,Mþ 1 (5) ðMþ 1Þ 
The choice of W0 determines the spread of sigma points about the mean. Choosing 

W0 ≈ 1 reduces the spread, implying a greater confidence in the previous estimate, 
while the opposite is true when choosing W0 ≈ 0. The vector sequence is initialised as 

1 1 
σ1
0 ¼ ½ �0 , σ1

1 ¼ �  pffiffiffiffiffiffiffiffiffiffi , σ12 ¼ pffiffiffiffiffiffiffiffiffiffi (6) 
2W1 2W1 

Then, the vector sequence is expanded for j ¼ 2,…,M via 

" # 

2 

64 

8 >>>>>>>>>>>>>>>< 

σj�1 
0 i ¼ 0 
0 

σj�1 
i 

3 

75 i ¼ 1,…, j  1 σj 
i ¼ (7) ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi p >>>>>>>>>>>>>>>: 

j jð þ 1 W1 Þ 2 3 
0j�1 

64 
75 i ¼ jþ 1 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

j jð þ 1ÞW1 

p 

The actual sigma points are drawn, via a column-wise accumulation, from 

q ffiffiffiffiffi 
a Paσ k þ k χ i, k ¼ (8) x̂ 

where i refers to the ith column of the matrix product and 

i 

p ffiffiffiffiffi 
Pa 
k refers to the 

matrix ‘square root’. The matrix square root of a target matrix A is a matrix B that 
satisfies A ¼ BB; it is often calculated via the Cholesky decomposition [13]. 

The predict step begins with the sigma points being propagated through the 
system model: 

^ 

χ x 
1 ¼ f χ x 

1; χ 
w (9) i, k∣k� i, k�1∣k�1; uk�1∣k� i, k�1∣k�1 

The state and covariance are then predicted as 

N�1 
x ð Þ  � W m
k ¼ ∑ χ x (10) i i,k∣k�1 

i¼0 

hi 
^ 

h 
x 

iT N�1 ð Þ  W c χ x 
i, k∣k� 1 � 

k 
P� 
k ¼ ∑ χ x 

i, k∣k� (11) 1 � i k 
i¼0 

x̂ 

For the update step, the sigma points that were updated in the predict step are 
propagated through the observation model: 

Zi;k∣k�1 ¼ h χ i
x
,k∣k�1; χ i

v
,k�1∣k�1 (12) 
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The mean and covariance of the observation-transformed sigma points are cal-
culated: 

N�1 
zk∣k� 

zk∣k� 

^ 

^ 

zk∣k� 

^ ð Þ  W m 
1 ¼ ∑ Zi;k∣k�1 (13) i 

i¼0 

N�1 � �� 
zk∣k� ^ 

�T ð Þ  W c Sk∣k�1 ¼ ∑ i χ i, k∣k� (14) Zi;k∣k� 1 � 1 � 1 1 
i¼0 

followed by the cross-covariance 

N�1 h i
x̂ 

�T ð Þ  W c 
1 ¼ ∑ χ x 

i, k∣k� Pxz,k∣k� (15) Zi;k∣k� 1 � 1 � 1 i k∣k�1 
i¼0 

and the Kalman gain 

^ 

1 

~ 

K ¼ Pxz,k∣k�1Sk 
� 
∣k�1 (16) 

Finally, the current system state is estimated by 

xk ¼ zk � zk∣k� 

z is the current set of observations and the current covariance is updated 

^ 

~ 

k∣k�1 þK (17) x̂ 1 

where 
with 

Pk ¼ P� 
k∣k�1 �KSk∣k�1KT (18) 

¼ P� 
k∣k�1 � Pxz,k∣k�1KT (19) 

where the expression for the Kalman gain, Eq. (16), is substituted. 

3. Hardware/software codesign of the unscented Kalman filter 

The first exercise in the hardware/software codesign is to divide the UKF algo-
rithm into two parts. For maximum performance, it is desirable for as much of the 
algorithm as possible to be implemented in hardware. However, to maintain porta-
bility, any part of the algorithm that is application-specific would be better 
implemented in software. This is so that the application-specific parts can make use 
of the faster and simpler development processes that using software entails. 
Reviewing the UKF algorithm, only the two system models, the predict and 
update models, are application-specific. 

Apart from the two system models, the rest of the UKF can be viewed as, 
essentially, a series of matrix manipulations. The only changes to the rest of the 
UKF when either of the system models changes are the size of the vectors and 
matrices used in the UKF calculations. The sizes of these vectors and matrices are 
fixed for a particular formulation of the UKF, and so they can be treated as param-
eters that are set at synthesis. Fixing the parameters at synthesis means that only the 
bare minimum of hardware resources is needed, but the hardware can still be easily 
used for different applications with different vector/matrix sizes; rather than need-
ing to redesign any functionality, the hardware can simply be synthesised with 
different parameters. Thus, the rest of the UKF can be designed and then used as a 
parameterisable, modular ‘black box’ (IP core), and implementing it for any given 
application only requires the appropriate selection of parameters. 
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Figure 3. 
The hardware/software partition on the FPGA. 

When it comes to designing hardware, there are three main considerations: the 
performance of the hardware (which may include data throughput, maximum clock 
frequency, etc.), the logic area (on-chip resources) used and the power consump-
tion of the hardware. During development these considerations are usually at odds 
with each other—specifically performance is usually opposed by logic area and 
power consumption. In order to increase the performance of the design, additional 
resources often have to be used which, in turn, may increase the power consump-
tion; these increases in resource/power cost may make the implementation infeasi-
ble for a given application. Due to these considerations, it is beneficial to give 
system designers the ability to scale resource use to the requirements of their 
particular application. 

The actual physical implementation of the hardware/software UKF on an FPGA 
can be seen in Figure 3. The hardware part is implemented as a stand-alone IP core, 
and the software part is implemented on a general-purpose microprocessor. The 
processor acts as the main controller which, in addition to implementing the system 
model software, controls the hardware IP core. The precise method of controlling 
the IP core is dependent on the design variation and is elaborated on in the follow-
ing sections. 

The processor communicates with the IP core over some communication 
interface. Any intra-chip communication method would be sufficient and would 
be driven mostly by the requirements of the application; viable interfaces 
include point-to-point, bus or NoC interfaces. The IP core contains memory 
buffers at the interface in order to receive data from the processor as well as to 
temporarily store data that needs to be read by the processor. The communica-
tion interface is the same between all three variants, but the specifics of the 
memory buffers are not. 

Here, the communication interface between the two parts is an AXI4 bus. All 
variants are implemented using single-precision arithmetic (IEEE-754); this gives a 
decent balance of dynamic range and resource usage which should be sufficient for 
the majority of applications. All hardware in the codesign is developed using the 
Verilog HDL, and all software in the codesign is developed using C. Although C is 
used here, in general, any type of software may be used as long as it contains the 
ability to interact with the communication interface connecting the hardware and 
software parts. 

3.1 Overall design 

The codesign utilises the main benefit of hardware implementations: wide 
parallelism. An increase in performance is gained by encapsulating certain parts of 
the major datapaths into a sub-module called a processing element (PE) and then 
using multiple instances of these PEs in parallel, allowing multiple elements of an 
algorithm to be calculated at once. The increase in resources used is not only for 
the extra processing elements but also in the additional overhead needed to deal 
with the parallel memory structure that is also necessary to feed to the parallel 
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processing elements. The number of PEs used in the design is parameterisable, 
allowing for some trade-offs by the system designer between resources used and 
performance. 

The codesign logically separates the UKF algorithm into three parts, while on the 
hardware side, the IP core consists of the UKF hardware and a memory buffer 
which is attached to a communication (AXI4) bus; the top-level block diagram of 
the codesign can be seen in Figure 4. The memory buffer has a memory map that 
ensures that data are coherent between the processor and the IP core and also 
incorporate a control register which allows the IP core to be controlled. The control 
register allows the processor to reset or enable the IP core as a whole as well as start 
one of the core’s functional steps via a state machine; the control register also 
records the current state of the IP core. Data required by the IP core (e.g. 
transformed sigma points) must be placed in the memory buffer at the appropriate 
address by the processor before signalling the IP core to begin its calculations. The 
control register may be polled by the processor to control the IP core; alternatively, 
the core may also be configured with an optional interrupt line that may be attached 
to the processor’s interrupt controller or external interrupt lines. 

3.2 Sigma point generation 

The sig_gen step uses the current augmented state vector and covariance to 
calculate the new sigma points via (Eq. (8)). To calculate the new set of sigma 
points, first the matrix ‘square root’ of the current augmented covariance must be 
calculated which is implemented by the trisolve module. The ‘square root’ of the 
augmented covariance is then multiplied by the sigma coefficients weighting matrix 
and the current augmented state vector added column-wise; this is implemented by 
the matrix multiply-add module described in Section 3.2.2. After the sigma points 
are calculated, they are written to the memory buffer; a control bit is set to signify 
completion to the processor; and if the interrupt line is included, an interrupt 
generated. A block diagram of this step can be seen in Figure 5 showing the data 
flow between modules. 

Figure 4. 
Top-level block diagram. 

Figure 5. 
Block diagram of the sig_gen step. 
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The memory prefetch and memory serialiser modules add a small amount of 
overhead to the sig_gen step but are necessary due to the matrix multiply-add 
featuring a parallelised datapath but the memory buffer requiring serial access. 

3.2.1 Triangular linear equation solver 

In addition to the matrix ‘square root’, the Cholesky decomposition is also used 
in the Kalman gain calculation which involves a matrix inversion (see Eq. (16)). 
Directly computing a matrix inversion is extremely computationally demanding; so 
rather than directly inverting the matrix, an algorithm called the matrix ‘right 
divide’ is used here. For positive definite matrices, this algorithm involves using the 
Cholesky decomposition to decompose the target matrix into a triangular form 
followed by forward elimination and then back substitution to solve the system; this 
sequence may be treated as solving a series of triangular linear equations meaning 
the same hardware can be reused for each operation [14]. The Cholesky decompo-
sition of a target matrix A, which is positive definite, is given by 

A ¼ L1LT (20) 1 

where L1 is lower triangular. Reducing the calculation to a series of triangular 
linear equations involves using an alternative version: 

A ¼ L2DLT (21) 2 

where L2 is lower triangular and its diagonal terms are unit elements, D is 
diagonal and the two versions are related by 

pffiffiffiffi 
L1 ¼ L2 D (22) 

The recombination process is necessary because of the subsequent matrix 
multiply-add between the augmented covariance square root and the sigma 
weighting coefficient matrix (see Eq. (8)). The element-wise calculation for L2 and 
D is given by 

 ! 
j�1 

Fij ¼ Aij � ∑ LikFjk for i>j (23) 
k¼1 

j�1 F2 
jk Dj ¼ Ajj � ∑ 

k¼1 Dk 
(24) 

where Fij ¼ LijDj and Fjk ¼ LjkDk are substituted to simplify the calculation 
further. Figure 6 depicts the full trisolve datapath, including the division and 
the recombination process to recover L1. The input b is either Aij in the 
Cholesky decomposition or an element from the divisor matrix in the matrix 
‘right divide’. 

The fused multiply-add module and feedback FIFO have been encapsulated 
to form an elementary block of hardware called a processing element (PE) 
which can be instantiated multiple times in parallel. The PE output to a demul-
tiplexer, which ensures values, is passed to the subsequent calculations in the 
correct order. The latter calculations, after the demultiplexer, are not 
parallelised because these calculations require much fewer operations, and so 
parallelisation is not necessary. 
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Figure 6. 
Triangular linear equation solver. 

3.2.2 Matrix multiply-add 

The matrix multiply-add datapath is a standard ‘naive’ element-wise multiplica-
tion and accumulation. However, the hardware to calculate one element is enclosed 
as one processing element, and additional PEs are added to handle calculations in 
parallel; the matrix multiply-add datapath can be seen in Figure 7. Each PE is 
responsible for calculating at least one row of the result matrix. The elements of the 
matrix to be added can simply be injected into the accumulation directly, instead of 
performing an additional matrix addition after a matrix multiplication. 

3.3 Predict step 

The predict step uses the transformed sigma points to calculate the a priori state 
estimate; the architecture for the predict step can be seen in Figure 8 showing how 
data flows between each module. 

Figure 7. 
Matrix multiply-add operation. 

Figure 8. 
Block diagram of the predict step. 
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The processor may initiate a predict step once it has placed valid transformed 
sigma points into the memory buffer. The prefetch module fetches the transformed 
sigma points from the memory buffer and places them into a parallel memory 
structure. The mean of the transformed sigma points is calculated which is also the a 
priori state estimate (10). The transformed sigma points and the mean are then used 
to calculate the ‘sigma point residuals’ via a subtract operation. From the ‘sigma 
point residuals’, the covariance of the set of transformed sigma points is calculated 
which is also the a priori covariance (11). Calculation of the mean and covariance is 
implemented by the calculate mean/covariance module described in Section 3.3.1; 
this section also describes the details of the ‘sigma point residuals’. Once the calcu-
lations are complete, the IP core writes the a priori state and covariance to the 
memory buffer so that both the processor and IP core have the current state 
estimate. Once the predict step is completed, a control bit is set to notify the 
processor, and, if included, an interrupt generated. 

3.3.1 Calculation of mean/covariance 

Calculating the mean and covariance of the transformed sigma points is both 
very similar, meaning both can be calculated by the same datapath. Consider the 
calculation for the mean of the predict step transformed sigma points: 

N 
x̂ k ¼ ∑ Wiχ 

x (25) i 
i¼1 

This is a simple column-wise multiply-accumulation. Consider the calculation of 
the covariance: 

N ˜ °˜ ° T P� 
k ¼ ∑ Wi χ 

x 
i � x̂ χ x 

i � x̂ (26) 
i¼1 

The subtraction looks like it will cause inefficiencies in the datapath, similar to 
the division operation in the original Cholesky decomposition. However, let 
χ~ i ¼ χ x � x̂� be the ith column of χ~, and then the covariance calculation reduces to i 

N 
χ T 
i P� 

k ¼ ∑ Wiχ~ i ~ (27) 
i¼1 

This ‘sigma point residual’ matrix χ~ is of size Mstate � N where Mstate is the 
number of state variables and N ¼ M þ 2 is the number of sigma points. The 
element-wise calculation is then 

N 
P� 
ij ¼ ∑ W1~χik ~χjk (28) 

k¼1 

This expression involves two multiplications followed by an accumulation; if 
these ‘sigma point residuals’ are calculated first with a subtract operation, then 
both the mean and covariance calculations simply involve a series of multiplications 
and accumulation. Similar to the matrix multiply-add operation, the basic calcula-
tions are encapsulated into one processing element, and then additional PEs are 
added to the datapath in order to calculate additional rows in parallel; the datapath 
can be seen in Figure 9. 

The input to the datapath is either the transformed sigma points to calculate the 
mean or the residuals to calculate the covariance. The FIFO is used to skip the first 
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Figure 9. 
Calculate mean/covariance operation. W refers the sigma point weights W0,W1. 

multiplication when calculating the mean; the multiplexer selects which value is 
calculated. 

3.4 Update step 

The update step corrects the a priori state estimate with a set of observations to 
generate the new state estimate. Many of the calculations in the update step are 
very similar to the predict step; the architecture for the update step can be seen in 
Figure 10 showing the data flow between modules. 

As with the predict step, the processor must first place the valid 
transformed sigma points into the memory buffer before signalling the IP core 
to begin. First, the prefetch module converts the transformed sigma points into 
a parallel memory structure. The mean and ‘sigma point residuals’ are calcu-
lated and then used to calculate the observation covariance. The update ‘sigma 
point residuals’ are also combined with the predict ‘sigma point residuals’, 
which were calculated during the predict step, to calculate the cross-covariance 
between the two system models. The observation residual, ~z ˜ ẑ (17), is calcu-
lated with the current set of observations in the memory buffer. The observa-
tion and cross-covariance are used to calculate the Kalman gain before the 
matrix multiply-add modules use the Kalman gain and the a priori state esti-
mate and covariance to calculate the new state estimate and covariance. The 
new estimates overwrite the a priori estimates in the internal memory and are 
also written into the memory buffer such that both the core and the processor 
have the most recent estimate. The core notifies the processor upon completion, 
setting a control bit and/or generating an interrupt. 

Figure 10. 
Block diagram of the update step. 
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4. Testing and validation of the hardware/software codesign 

To validate the implementation of the hardware/software UKF and demon-
strate its effectiveness, an example application is presented. This demonstration 
emulates the attitude determination subsystem of a single, uncontrolled 
nanosatellite. It is envisioned that a system designer looking to use the HW/SW 
UKF in a new application simply formulates the UKF appropriately for that 
application, i.e. formulates the system models (1), (2) and sets the algorithm 
parameters. Then, once the UKF algorithm has been defined, the HW/SW 
codesign detailed in Section 3 can then be used to actually implement the UKF 
and accelerate its performance. The example application attempts to employ 
this process. 

The UKF was implemented using a number of methods for validation and 
comparison purposes. Once formulated, the UKF was first implemented in 
MATLAB (SW) to validate the design of the UKF algorithm. Next, the UKF was 
implemented again using the HW/SW codesign on an FPGA development board 
in order to validate the codesign. Finally, the UKF was implemented a third 
time in C (SW), but on the same FPGA development board, to provide a 
performance benchmark the HW/SW codesign could be compared to. 

The FPGA development board used was the Zedboard, featuring a Xilinx 
Zynq-7000 series XC7Z020, seen in Figure 11. The relevant features of the 
board are: 

• Dual ARM Cortex-A9 processor system (PS) @ 667 MHz 

• The equivalent of an Artix-7 device in programmable logic (PL) 

• AXI4 PS-PL interface 

The HW/SW codesign was implemented for the 1 PE and 2 PE cases. The 
hardware part of the codesign, the IP core, was developed in Verilog and 
synthesised and implemented using Vivado 2014.1; basic arithmetic was 
implemented using floating point IP cores from Xilinx’s IP catalogue. All designs 
used a single-precision (IEEE 754–2008) number representation. The target 
synthesisable frequency for the IP core was 100 MHz, and the 2 PE case instantiated 
two processing elements for the whole design (i.e. each individual module had two 
processing elements). The software part of the codesign was implemented in C as 
bare-metal application on the processor system. The general-purpose AXI4 

Figure 11. 
Zedboard development board used for two of the UKF implementations. 
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interface between the PS and the PL was used by the two parts to communicate 
with each other (@ 100 MHz as well). The C (SW) implementation of the UKF 
was a bare-metal application that used the GNU Scientific Library (GSL) for 
its vector and matrix manipulations. All software was compiled using the -O2 
optimisation flag. 

To test the different UKF implementations, a simulator was constructed in 
MATLAB to model the nanosatellite’s motion; the details are given in Section 
4.5. Simulated sensor measurements were generated from the nanosatellites’ 
motion and passed to each of the three UKF implementations, which act as the 
attitude determination subsystem. For the MATLAB implementation, the simu-
lated measurements could be passed directly. For the HW/SW codesign and the 
C (SW) implementations, the simulated measurements were first exported to a 
C header which was included during compilation. 

4.1 System model 

The nanosatellite is modelled as a 1 U CubeSat. The attitude of the nanosatellite � �T � �T is represented by the unit quaternion q ¼ q; q0 where q ¼ q1; q2; q3 and which 
2 2 2 2 satisfies q1 þ q2 þ q3 þ q0 ¼ 1. 

The kinematic equations for the satellite in terms of quaternions are given by 

1 � � 
q_ ¼ q0I3�3 þ q ω (29) 

2 

q_0 ¼ �  
1 
qT ω (30) 

2 

where ω is the angular rate and q� is the skew-symmetric matrix of q given by 

2 3 
0 �q3 q2 

q� ¼ 6 4 q3 0 7 �q1 5 (31) 
�q2 q1 0 

4.2 Sensor model 

We consider a basic sensor set common on nanosatellites—a three-axis MEMS 
IMU including an accelerometer, gyroscope and magnetometer. We use the stan-
dard gyroscopic model for the gyroscope: 

zg ¼ ωT þ β þ ηg (32) 

_β ¼ ηd (33) 

_ where ωT is the true angular velocity, β is the gyroscopic bias, β is the gyroscopic 
bias drift and ηg, ηd are noise terms that are assumed to be zero-mean Gaussians. 
Similarly, we model the accelerometer and magnetometer as 

za ¼ aT þ ηa (34) 

zm ¼ mT þ ηm (35) 

where aT is the true local acceleration vector, mT is the true local magnetic 
vector and ηa, ηm are, again, zero-mean Gaussian measurement noise terms. 
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4.3 Predict model 

We use a dead-reckoning model and the gyroscopic data to predict the motion of 
the nanosatellite. However, it is necessary to account for the gyroscopic bias drift, 
so we estimate the current gyroscopic bias as well. Let the state vector be 

T x ¼ q; q0; β (36) 

The predict model, f, is then 

χ x ¼ χ x 0 
χ x f k�1∣k�1; χ k

w 
�1∣k�1 k�1∣k�1 þ f k�1∣k�1; χ k

w 
�1∣k�1 � dt (37) 

2 3 
1 � �� 6 q0I3�3 þ q zg 7 � � 2 6 7 

f 0 χ xk�1∣k�1; χ 
w
k�1∣k�1 ¼ 66 1 T 

77þwk (38) � q zg 4 5 2 
03�1 

h iT 
_ where dt is the time step between samples, wk ¼ ηq; β is the process noise and 

ηq is assumed to be a zero-mean Gaussian. 

4.4 Update model 

The accelerometer and magnetometer data are used to correct for the gyroscopic 
bias, so the observation model, h, is 

� � Aqð Þq gba 
h χ x 

k�1∣k�1; χ k
v 
�1∣k�1 ¼ þ vk (39) 

Aqð Þq bm 

where ba and bm are the respective body frame vectors, g is the magnitude of the 
gravity vector (assumed 8:94 m:s 2 at an altitude of 300 km), vk ¼ ½ηa; ηm� is the 
measurement noise and Aq q is the rotation matrix between the body frame and ð Þ  
the local frame given by 

2 � � � � 3 2 2 2 2 q0 þ q q q 2 q1q2 � 1 � 2 � 3 q0q3 2 q0q2 þ q1q3 
2 2 2 2 Aqð Þ ¼q 46 2 q1q2 þ q0q3 q0 � q1 þ q2 � q 2 q2q3 � q0q1 57 (40) 3 

q2 q2 q2
2 þ q2 2 q1q3 � q0q2 2 q0q1 þ q2q3 0 � 1 � 3 

4.5 Simulation model 

Collecting all the relevant terms, the initial augmented state vector is given by 

T a x0 ¼ q; q0; β; 04�1; 03�1; 03�1; 03�1 , (41) 

and the initial augmented covariance is a diagonal matrix with diagonal terms: 

h i 
_ diag Pa ¼ 16�1; ηq; β; ηa; ηm (42) 0 

The state vector length is 7, the number of observation variables is 6 and the 
augmented state vector length is 20. The quaternion noise term was modelled with 

6 covariance ηq ¼ 10� . The simulated sensor set was homogeneous, so the modelled 
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errors are the same for each nanosatellite. The gyroscopic bias drift was modelled 
2 with covariance ηd ¼ 10�2° =s . The measurement noise terms were modelled with 

covariances: ηg ¼ 10�1° =s, ηa ¼ 10�2g, ηm ¼ 10�2 gauss. The satellite was modelled as 
undergoing slow tumbling. The motion was modelled using the Euler angles in a 
local ground frame, which is relevant in most remote sensing applications; here, we 
use roll-pitch-yaw to refer to rotations about the x-y-z axis, respectively. 

To generate the sensor measurements, the simulated motions were converted 
into the body frame via rotation matrix with 1–2-3 referring to roll-pitch-yaw, 
respectively: 

3 2 
c1c2 c1s2s3 � s1c3 s1s3 þ c1s2c3 

Aeuler ¼ 64 s1c2 s1s2s3 þ c1c3 s1s2s3 � c1s3 

�s2 c2s3 c2c3 

75 (43) 

It is assumed that the magnetometer is aligned with the x-axis (bm ¼ ½1; 0; 0�) 
and the accelerometer is aligned with the z-axis (ba ¼ ½0; 0; 1�). Next, using the 
sensor models described earlier, noise terms were added to the sensor ‘truth’ data 
which was then sampled at 1 Hz to simulate measurements from an actual set of 
sensors. 

4.6 Results 

The UKF was simulated in MATLAB environment as well as on the Zedboard 
development board. For the Zedboard implementations, the simulated sensor data 
set was loaded into the onboard memory (RAM) and the UKF simulated as if it were 
receiving data from the actual sensors. The data set used in all three 
implementations was the same. State estimates from the UKF were stored on the 
Zedboard for the duration of the simulation and then read back into MATLAB 
afterwards for analysis. 

All three implementations produced (within working precision) the simulation 
results in Figure 12a and b; these figures show the absolute attitude error (i.e. 
the difference between the UKF estimated attitude and the simulated ‘truth’) of 
the nanosatellite. In Figure 12a, the top graph shows the first tenth of a second 
of the simulation, highlighting early convergence of the filter to the truth from an 

Figure 12. 
Absolute attitude error. 
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SW 1 PE 2 PE 

Total 660 363 272 

Table 1. 
Overall latency for the single nanosatellite. All values in μs. 

initial noisy estimate. The bottom figure shows the first second of the simulation, 
highlighting the ability of the filter to maintain its accuracy ( < 0:1° error) after 
convergence. Figure 12b shows that the UKF is able to correct for the inaccura-
cies arising from the gyroscopic bias and bias drift over the full duration of the 
simulation. 

(a) At the very beginning of the simulation. 
(b) For the full simulation. 
These results demonstrate that there are no implementation issues when taking 

the UKF to a HW/SW codesign; the codesign, and IP core, is able to completely 
replicate software-based implementations of the UKF. The overall latency of the C 
(SW) implementation and the HW/SW codesign (serial and parallel) for the single 
nanosatellite case were measured using the ARMv7 Performance Monitoring Unit 
(PMU) and can be seen in Table 1. This overall latency is the time taken to 
complete one full iteration of the UKF (all steps). The 1 PE case offers a modest 
1:8˜ increase in performance over the C (SW) implementation and can be run at ≈2 
kHz which is more than adequate for the sampling frequency assumed by the 
simulation. The 2 PE case offers a slightly better 2:4˜ speed-up over the C (SW) 
implementation. Note that the processor system operates at a clock frequency more 
than six times the frequency used by the IP core (667 vs. 100 MHz), yet the IP core 
is still able to outperform the C (SW) implementation. 

5. Implementation analysis of the hardware/software codesign 

Synthesis and implementation runs were targeted at the Zynq-7000 XC7Z045 at 
a target frequency of 100 MHz. Though the implementations of the example appli-
cations presented in Section 4 was for the Zynq-7000 XC7Z020, the codesign does 
not fit on this device for larger numbers of processing elements. In order to still 
compare implementation details, this larger device in the Zynq-7000 family is used 
instead. All the devices in the Zynq-7000 family feature the same processing sys-
tem; the only difference for larger devices is the amount of programmable logic 
available. 

Resource utilisation of the device by the IP core is reported by Vivado post-
implementation. The power analysis is done via the Xilinx Power Estimator (XPE) 
post-implementation; all power estimates exclude the device static power dissipa-
tion and the processing system power draw. 

The execution time (latency) for the hardware part is measured via behavioural 
simulation in Vivado Simulator, assuming a clock frequency of 100 MHz; this 
assumption was validated post-implementation for all designs. Though behavioural 
simulations are usually used for only functional verification, Vivado Simulator pro-
vides cycle-accurate execution times as long as timing assumptions made in the 
simulation are verified post-implementation. The entire IP core utilises synchro-
nous logic and is on a single clock domain which makes confirming the proper 
distribution of the assumed clock signals, in this case 100 MHz, relatively straight-
forward. 

The execution time (latency) of the software part is measured via the ARMv7 
Performance Monitoring Unit (PMU), which counts processor clock cycles between 
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two epochs; because the number of processor clock cycles to perform a given task 
can vary, each measurement was conducted at least 10 times, and the average 
latency measured is reported here. 

5.1 Synthesis results 

Synthesis results for a selection of different numbers of processing elements can 
be seen in Table 2. These results do not include the processor but do include the 
logic necessary for the AXI4 interface ports. The initial numbers of PEs were chosen 
to be multiples of the number of augmented state variables so that the major 
datapaths remained data efficient. Recall, for example, the matrix multiply-add 
datapath (Section 3.2.2); each PE calculates an entire row in the result matrix. If the 
number of PEs is not a multiple of the size of the matrix, then the last iteration of 
the calculations will not have enough data to fill all the PEs making the datapath 
slightly inefficient. 

For low numbers of processing elements, the codesign utilises a relatively small 
percentage of the available resources. The XC7Z045 is a mid-range device in the 
Zynq-7000 series which means even the 10 PE case still only uses a quarter of the 
available LUTs. The codesign does not require a proportionally large amount of any 
one resource; in fact, the design uses a disproportionately smaller amount of FFs 
than other resources. This will allow easier integration into a full SoC, particularly if 
partially reconfigurable regions are used. Requiring too much of any one resource 
type can lead to placement and routing issues since resource on-chip locations are 
fixed by the manufacturer. This also implies that additional register stages could be 
added to major datapaths, which would increase the overall latency but could allow 
an increase in clock frequency as well. If the increase in clock frequency was greater 
than the increase in latency, the overall performance of the design would benefit. 

5.2 Power consumption 

A power consumption breakdown for the hardware IP core (i.e. excluding the 
processor) can be seen in Table 3. The power consumption for low numbers of PEs 
is reasonably low, due to the area efficiency design goals and the heavy utilisation of 
the FPGA clock that enable resources to disable modules that are not currently in 
use. For reference, the device static power consumption (@ 25°C) is ≈245 mW, and 
the rough power consumption of the processing system is ≈1:5 W. A conservative 
estimate of the electrical power available to a CubeSat is in the order of 1–2 W per 
unit [15]; larger 2–3 U or more CubeSats have a greater surface area to cover in solar 
panels. The 1 PE case could be incorporated into a 1 U or larger CubeSat with 
relative ease, but even for just the 2 PE case, a 2 U CubeSat or larger may be 
necessary. 

Resource 1 PE 2 PE 5 PE 10 PE 

FF 7668 (2) 14,286 (3) 27,311 (6) 48,714 (11) 

LUT 5764 (3) 15,158 (7) 29,500 (13) 53,427 (24) 

BRAM 16.5 (3) 36.5 (7) 62 (11) 109.5 (20) 

DSP48 35 (4) 62 (7) 104 (12) 182 (20) 

Table 2. 
Resource utilisation (% total) on the XC7Z045. 
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Resource 1 PE 2 PE 5 PE 10 PE 

Clocks 38 74 136 234 

Signals 24 83 144 261 

Logic 23 76 126 219 

BRAM 51 82 112 209 

DSP 4 6 21 52 

Total 140 336 549 975 

Table 3. 
Power consumption of the codesign. All values in mW. 

SW 1 PE 2 PE 5 PE 10 PE 

Sig. gen. — — 92 61 51 

System model 52 137 137 137 137 

Predict 522 170 13 8.5 6.5 

Update 87 56 30 21 17 

Total 660 363 272 228 212 

Table 4. 
Latency of each stage for the codesign. System models encompass propagation through both the predict and the 
update models on the processor. All values in μs. 

5.3 Timing analysis 

A breakdown of the execution time (latency) of different modules can be seen in 
Table 4. The design spends a large amount of the time propagating the sigma points 
through the two system models. The majority of the time spent by the design is 
actually in these system models, making the software part the main bottleneck. 
Looking at the sigma point propagation process a little closer, however, the latency 
of reading the sigma points from the memory buffer and of writing the transformed 
points back to the memory buffer was 116 μs. The actual calculation of the system 
models took a mere 21 μs. So, the bottleneck is actually the speed of the AXI4 port in 
transferring data between the processor and the memory buffer. Using a higher-
performance communication, bus or other techniques such as direct memory access 
(DMA) ports may alleviate this issue, but intra-chip communication methods are 
beyond the scope of this chapter. 

For the hardware part, the majority of time is spent in the sig_gen step. The two 
modules in the sig_gen step, the triangular linear equation solver and the matrix 
multiply-add, are both large matrix operations which scale with the number of 
augmented state variables. Operations in the predict and update steps tend to scale 
with the number of state or observation variables, respectively, which are always 
necessarily smaller than the number of augmented state variables. It should be 
noted that the hardware part appears to suffer from diminishing returns with 
regard to decreasing the latency as the number of processing elements increases. 

6. Conclusion 

In this chapter, a scalable FPGA-based implementation of the unscented Kalman 
filter was presented. The proposed design balances development effort/complexity 
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with performance, combining the advantages of both the traditional software 
approach and hardware approaches to create a design that system designers can 
easily use in a potentially wide variety of applications. Simulation and physical 
implementation results of the codesign were presented. The demonstration appli-
cation simulated the attitude determination system of an uncontrolled nanosatellite, 
and the physical implementation was performed on the Xilinx XC7Z045. 
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Chapter 6

Novel Direct and Accurate
Identification of Kalman Filter
for General Systems Described
by a Box-Jenkins Model
Rajamani Doraiswami and Lahouari Cheded

Abstract

A novel robust Kalman filter (KF)-based controller is proposed for a multivari-
able system to accurately track a specified trajectory under unknown stochastic
disturbance and measurement noise. The output is a sum of uncorrelated signal,
disturbance and measurement noise. The system model is observable but not con-
trollable while the signal one is controllable and observable. An emulator-based
two-stage identification is employed to obtain a robust model needed to design the
robust controller. The system and KF are identified and the signal and output error
estimated. From the identified models, minimal realizations of the signal and KF,
the disturbance model and whitening filter are obtained using balanced model
reduction techniques. It is shown that the signal model is a transfer matrix relating
the system output and the KF residual, and the residual is the whitened output
error. The disturbance model is identified by inverse filtering. A feedback-
feedforward controller is designed and implemented using an internal model of the
reference driven by the error between the reference and the signal estimate, the
feedforward of reference and output error. The successful evaluation of the pro-
posed scheme on a simulated autonomously-guided drone gives ample encourage-
ment to test it later, on a real one.

Keywords: identification, Box-Jenkins model, Kalman filter, whitening filter, signal
estimation, model reduction, robust controller, feedback controller, feedforward
controller, internal model principle, autonomous vehicles, drones

1. Introduction

In conventional Kalman filter applications, the system involved is typically
linearized and then identified. Based on the identified system, the Kalman filter is
then identified. In this chapter, we propose a novel approach in that (a) the system
is represented by a more general model, termed multi-input multi-output Box-
Jenkins (MIMO BJ model) which subsumes all previous classical models, such as
ARMA models and their derivatives, and (b) the associated Kalman filter identifi-
cation is carried out directly, i.e. it does not necessitate the prior identification of
the system involved. The various tools involved in our proposed approach are all
explained below.
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1.1 Box-Jenkins model and its applications 

Identification of a class of system described by MIMO BJ model, and the associ-
ated Kalman filter directly from the input-output data is proposed [1, 2]. There is no 
need to specify the covariance of the disturbance and the measurement noise, 
thereby avoiding the use the Riccati equation to solve for the Kalman gain. The 
output is the desired waveform, termed signal, corrupted by a stochastic distur-
bance and zero-mean white measurement noise. The state-space BJ model is an 
augmented system formed of the signal and disturbance model. The signal model 
and the disturbance models are driven respectively by a user-defined accessible 
input, and an inaccessible zero-mean white noise process. The signal model is 
generally a cascade, parallel and feedback combinations of subsystems such as 
controllers, actuators, plants, and sensors [3]. Unlike the ARMA model, the Box-
Jenkins model is observable but not controllable while the signal model is both 
controllable and observable. In other words, the transfer matrix of the system is 
non-minimal whereas that of the signal is minimal. This issue will need to be 
addressed in the identification and implementation of the Kalman filter. 

1.2 Kalman filter and its key properties 

The structure of the Kalman filter is determined using the internal model 
principle which establishes the necessary and sufficient condition for the tracking 
of the output of a dynamical system [3, 4]. In accordance with this principle, the 
Kalman filter consists of (a) a copy of the system model driven by the residuals, 
and (b) a gain term, termed the Kalman gain, to stabilize the filter. The Kalman 
gain is determined such that the residual of the Kalman filter is a zero-mean white 
noise process with minimum variance. The Kalman filter enjoys the following key 
properties: 

Tracking a signal: The estimate of the Kalman filter tracks a given signal if and 
only if the model that generates the signals including those of the noise and distur-
bances is embodied in the Kalman filter. In other words, the Kalman filter tracks the 
input, thanks to its internal model-based structure [3, 4]. 

Model matching: The residual is a zero-mean white noise process if and only if 
there is no mismatch between the actual model of the system and its identified 
version embodied in the Kalman filter, and its variance is minimum [4]. 

Optimality: The estimate is optimal in the sense that it is the best estimate that 
can be obtained by any estimator in the class of all estimators that are constrained 
by the same assumptions [5]. 

Robustness: Thanks to the feedback (closed-loop) configuration of the Kalman 
filter with residual feedback, the Kalman filter provides the highest robustness 
against the effect of disturbance and model variations [5]. 

Model-mismatch: If there is a model mismatch, then the residual will not be a 
zero-mean white noise process and an additive term termed fault-indicative term 
will occur. The fault-indicative term is a filtered version of the deviation in the 
linear regression model of the system or that of the signal [6–8]. 

1.3 Identification using residual model 

The equation error in the regression model of the system is a colored noise 
process, and hence a direct identification of the system model from the input-
output data by minimizing the equation error will not ensure that the estimates are 
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consistent, unbiased, and efficient. The fundamental requirement of identification is 
that the leftover signal from identification, namely the residual is a zero-mean white 
noise process that contains no information. To meet this requirement, both the input 
and output of the system are filtered. Among the class of all linear whitening filters, 
the Kalman filter is the best. The system model is indirectly identified by minimizing 
the residual generated by the Kalman filter instead of the equation error. The Sub-
space Method (SM) uses the structure of the state-space model of the Kalman filter, 
whereas the prediction error method (PEM), which is the gold standard in system 
identification, is developed from the residual model [1, 9–11]. 

1.4 Emulator-based two-stage identification 

The static and dynamic behavior of a physical system change as a result of 
variations in the parameters of some of its subsystems such as sensors, actuators, 
plant, disturbance models, and controllers. As the parameters of these subsystems 
are not generally accessible to generate data, instead, emulators, which are hard-
ware or software devices, are connected in cascade to the output, input or both, of 
the subsystems. An emulator is a transfer function block which mimics the varia-
tions in the associated subsystems including the disturbance model. An emulator 
takes the form of a static gain or an all-pass filter to induce gain or phase variations 
in the subsystem it is connected to. Emulator parameters are perturbed to mimic 
various normal and abnormal, or faulty, operating scenarios resulting from varia-
tions in these subsystems. The emulator-generated data is employed in (a) the 
identification of robust systems and signal models and their associated Kalman 
filters using the two-stage identification scheme [2, 3, 6–8]. 

A two-stage identification is used in various applications including the non-
parametric identification of impulse response, estimation of Markov parameters in 
the SM, in model predictive control, identification of a signal model and in system 
identification. The use of the two-stage identification is inspired by the seminal paper 
by [12] for an accurate estimation of the parameters of an impulse response from 
measurements in an additive white noise. It is shown via simulation that the variance 
of the parameter estimation error approaches the Cramer-Rao lower bound [13]. 
Further, it is shown analytically that using a high-order model (with an order several 
times larger than the true order) improves significantly the accuracy of the parameter 
estimates. The two-stage scheme has not received much attention in system identifi-
cation although it has been mentioned as an alternative scheme to the PEM [1, 14], 
and has been successfully employed in identification in [15–17]. 

It should be emphasized that the prediction error method (PEM), viewed as a 
gold standard for system identification, is not geared for the estimation of the signal 
buried in the output, i.e. it is developed for the ARMA model and not for the Box-
Jenkins one. A two-stage identification of the Box-Jenkins model is proposed as the 
system model is observable but not controllable while the signal model is both 
controllable and observable: 

• In the first stage, the robust system model and the associated Kalman filter are 
identified using the emulator-generated data using PEM, and the signal and the 
output error are both estimated. Further, the whitening filter that relates the 
output error and the residual is obtained. 

• In the second stage, minimal realizations of the signal model and the associated 
Kalman filter are obtained using model reduction method [18]. 
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The high- order for the first stage and the reduced-order for the second are both 
selected using the Akaike information criterion (AIC) and are cross-checked by 
verifying the whiteness of the associated residual. The two-stage identification has 
also been successfully employed in the identification model. 

The question arises as to how to obtain the system model and the signal model 
from the identified high-order model Kalman filters. A key property of the Kalman 
filter is established here, namely that the transfer matrix of the signal and the 
system is the matrix fraction description model derived from the Kalman filter 
residual model of the system. This property is exploited to derive the signal and the 
system transfer matrices. The state-space models of the signal and the system 
models are derived from the identified state-space models of the Kalman filters. 
Thus, the proposed scheme identifies (a) the Kalman filter for the system, (b) the 
Kalman filter for the signal first. Then, the system model and the signal model are 
separately obtained. 

The proposed scheme is further extended to identify the signal model to com-
plement the PEM. In the first stage, a very high-order model is identified using 
PEM. In the second stage, the signal model is identified using a balanced model 
reduction of the high-order identified model obtained in the first stage. The PEM 
and state-space method (SM) are both tailored to identify the signal model and 
estimate the signal by employing the proposed version of the two-stage identifica-
tion scheme. The results of the comparison of the performance of these methods in 
identifying the system and signal models are presented. 

1.5 Highlights of the contributions 

• The Auto-Regressive (AR), The Moving Average (MA), and the Auto-
Regressive and Moving Average (ARMA) models are all special cases of 
the proposed Box-Jenkins model. As this model is more general and hence 
has wider applications, including robust controller design; estimation of 
latent variables; monitoring of the status of the system, fault diagnosis, 
development of condition-based maintenance programs and design of fault-
tolerant systems; filtering of signals, speech enhancement, noise and echo 
cancelation in communication; 2-D image filtering and tracking of moving 
objects. 

• The state-space models of the system and the signal models are derived from 
the identified Kalman filters, by invoking the (causal) invertibility of the 
output error and the residual [5]. 

• An efficient scheme to monitor the status of the system may be implemented 
from the proposed scheme. First the status of the system is monitored by 
analyzing the residual of the Kalman filter of the system model. If there is a 
variation, then the residual of the Kalman filter of the signal model is analyzed 
to ascertain whether a fault has occurred. 

• In practice, disturbances are inevitable, and can negatively affect the system 
performance. When the system is in an abnormal state, it is not in general easy 
to determine whether the abnormal operation is the result of variations in the 
disturbance or the occurrence of a fault. The proposed scheme provides a 
simple solution by analyzing the residuals of both Kalman filters as the residual 
of the Kalman filter for the system captures the variations in both the system 
and disturbance models, while that of the Kalman filter for the signal, and 
captures only the variations in the signal model. This is crucial for reducing 
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false alarm, and all its concomitant risks and costs, resulting from variations in 
the disturbance and not in the signal model [19]. 

• The PEM (SM) may be tailored to identify the signal model and estimate the 
signal itself by using the proposed two-stage identification scheme. 

1.6 Applications 

Applications include monitoring the status of the system and the signal models, 
distinguishing between the variations in the disturbance model and those in the 
signal model to help diagnose a fault in the system and ensure a low false alarm 
probability, estimating the latent variable, namely the signal, developing a frame-
work for applications including robust controller design; fault diagnosis; speech and 
biological signal processing; tracking of moving objects, design of soft sensors to 
replace maintenance-prone hardware sensors, evaluate and monitor product qual-
ity, meeting the ever-increasing need for fault-tolerant systems for mission-critical 
systems found in aerospace, the nuclear power systems, and autonomous vehicles. 

2. Problem formulation 

The output yð Þk ∈ Rq is an additive sum of the signal sð Þk ∈ Rq, disturbance, 
dð Þk ∈ Rqand the measurement noise vð Þk ∈ Rq where R is real scalar field. 

yð Þ ¼k sð Þ þk d k ð Þ  ð Þ þ v k (1) 

Where the signal and the disturbance models are: 

s z z u z (2) ð Þ ¼ Gsð Þ  ð Þ  

d z z w z (3) ð Þ ¼ Gwð Þ  ð Þ  

Where uð Þk ∈ Rq is the input; wð Þk ∈ Rp is zero-mean white noise process that 
generates the disturbance dð Þk ∈ Rp, and is uncorrelated with the measurement 

1 1 noise vð Þk z z Nsð Þ and Gwð Þ ¼ D� ð Þ  z ; Gsð Þ ¼ D� ð Þ  z z z Nwð Þ are qxp transfer matrix s w 
of order ns and nw respectively; ϑ k d k ð Þ is the output error. ð Þ¼ ð Þ þ v k 

The signal model Gsð Þz is formed of cascade and parallel combinations of the 
subsystems such as actuators, plant and the sensors. Let the state space model of the 
signal and the disturbance models be respectively ðAs; Bs; CsÞ and ðAw; Bw; CwÞ. 

Figure 1 shows the input-output model relating the input, the signal model, the 
signal, the disturbance model, the disturbance, the measurement noise and the 
output. 

Linear regression model: 

Figure 1. 
System: signal, the disturbance and the measurement noise. 
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Using, (1)–(3), the expression for the linear regression becomes: 

Dsw z y z z Nswð Þ  ð Þ þ υ z ð Þ ð Þ ¼ Dwð Þ  z u z ð Þ  
(4) 

υð Þ ¼z Ds z Nw z w z z v z ð Þ  ð Þ  ð Þ þDswð Þ ð Þ  

Where υ z ð Þϑ z ð Þ ¼ Dsð ÞDwð Þ and ð Þ ¼ D z ð Þ is the equation error; Dsw z z z 
Nsw z z Nsð Þz are respectively the denominator and numerator polynomials. ð Þ ¼ Dwð Þ  
The model is termed Box-Jenkins model. 

Note that the model that generates the equation error υð Þz is a Moving Average 
(MA) model, whereas the one that generates the output error ϑð Þk is an Auto-
Regressive Moving-Average (ARMA) model. 

Augmented state-space model: The augmented state-space representation of the 
multi-input and multi-output (MIMO) system ðA; B; C; DÞ formed of the signal 
model ðAs; Bs; Cs; DsÞ and ðAw; Bw; Cw; DwÞ representing a p-input, q-output system, 
is given by: 

xðk þ 1Þ ¼ Ax k ð Þ þ Ewwð Þk ð Þ þ Bu k 

s k ð Þ þDsu k (5) ð Þ ¼ Csx k ð Þ  

y k ð Þ þDu k ð Þ  ð Þ ¼ Cx k ð Þ þ v k 

As 0 Bs 0 
Where A ¼ ; B ¼ ; Ew ¼ ; C ¼ ½Cs Cw�; A ∈ Rnxn is an augmented 

0 Aw 0 Bw 

∈ ℜnsxns ∈ ℜnwxnw ; state transition matrix formed of As and Aw h iT 
∈ Rnxp; C¼ C1 C2 : C B¼ B1 B2 : Bp ∈ Rqxn; Ew ∈ Rnxp is a disturbance entry q 

matrix; 
x k ½ k x2 k x3 k … xnð Þ � ð Þ ¼ ½ s1ð Þ  s2ð Þ  ð Þ ¼  x1ð Þ  ð Þ  ð Þ  k T ∈ Rn; s k k k 

s3 k … sqð Þ�T ∈ Rq; ð Þ  k � �T uð Þ ¼k u1ð Þk u2ð Þk u3ð Þk … upð Þk ∈ Rp; � �T ð Þ ¼  y1ð Þ y2ð Þ y3ð Þ  k ∈ Rq y k k k k … yqð Þ  are respectively the state, the input and 
output; n ¼ ns þ nw is the order; wð Þk ∈ Rn and vð Þk ∈ Rq are respectively the 
disturbances and measurement noise; Dsw z jð Þ jð Þj where jð Þ: j ð Þ ¼  zI �As j zI �Aw 

is the determinant of : . Using Dswð Þ ¼ Dsð Þ  z z z Nsð Þ  ð Þ  z z Dwð Þ and Nswð Þ ¼ Dwð Þ  z 
we get: 

G z ð Þ� 1 z Nswð Þz ð Þ ¼ C zI �A 1B þD ¼D� ð Þ  sw (6) 
G z 1 z Nsð Þ ¼ Gsð Þ  ð Þ ¼ D� ð Þ  z z s 

The augmented transfer matrix is not a minimal realization of the system output 
model as there is (stable) pole-zero cancelation since the polynomial Dwð Þz , which 
is common to both the numerator Nswð Þz and the denominator Dswð Þz . In other 
words, Nswð Þz and Dswð Þz are not coprime. The signal model ðAs; Bs; Cs; DsÞ 
associated with signal model Gsð Þz is controllable and observable while ðA; B; C; DÞ, 
associated withGð Þz , is merely an observable. ðAs; Bs; Cs; DsÞ (Gsð Þz ) is a minimal 
realization of ðA; B; C; DÞ (Gð Þz ). 

Assumptions: It is assumed that (a) the disturbance wð Þk and the measurement 
noisevð Þk are independent zero-mean Gaussian white noise processes with unknown 

T T but finite covariance, Q ¼ E wð Þk w ð Þk and R ¼ E vð Þk v ð Þk , respectively, and 
are inaccessible, (b) ðA; CÞ is observable, (c) the signal and disturbance models are 
both minimal, ðAs; Bs; Cs; DsÞ and ðAw; Bw; Cw; DwÞ are both controllable and 
observable, (d) The initial conditions x 0 , w k ð Þ are mutually ð Þ  ð Þ and v k 
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uncorrelated. However, the signal sð Þz and the disturbance wð Þz may have spectral 
overlap, (e) the output error is bounded. 

2.1 Kalman filter 

Predictor form: A robust Kalman filter of the identified system A0; B0; C0; D0 

relating the system input uð Þz and system output yð Þk to the estimated output 
^ yð Þk is: 

Þ ¼  A0 � K0C0 x kð Þ þ  B0 � K0D0 ^ ^ u kð Þ þ K0 yð Þk xðk þ 1 

y kð Þ ¼ C0 xð Þ þk D0uð Þk (7) 

^ e k ð Þ �  ð Þ ¼ y k 

^ ^ 

yð Þk 

ð Þk T ∈ Rn and Where ð Þk ð Þk ð Þk x1 x2 x3 h iT 
^ ^ ^ ^ x k ½ ð Þ ¼  xn 

∈ Rq 

^ … 

y1 y2ð Þk y3 

state xð Þk , and of the output yð Þk ; e k 

^ ^ ^ ^ ð Þk ð Þk ð Þk are respectively the best estimate of the y kð Þ ¼  … yq ^ 
� �T ð Þ ¼  e1ð Þk e2ð Þk e3ð Þk … eqð Þk ∈ Rq is 

the residual or the innovation sequence; the Kalman gain K0 ∈ Rnxq ensures the 
asymptotic stability of the Kalman filter, i.e. (A0 � K0C0) is strictly Hurwitz having 
all its eigenvalues strictly inside the unit circle. 

Innovation form: There is duality between the predictor, and the innovation 
forms of the Kalman filter [5]. The output yð Þk and the residual eð Þk are (causally) 
invertible. In other words, eð Þk can be generated from the output yð Þk and rð Þk 
using the (causal) predictor form, and yð Þk can be generated from eð Þk and rð Þk 
using the innovation form. The Kalman filter given by (7) is termed the predictor 
form and can be expressed in an alternative form, termed the innovation form, 
given by: 

Þ ¼ A0 ð Þ þ K0 ð Þ  xð Þ þk B0u k e k ^ 

^ 

^

^ 

Figure 2 shows the system and the Kalman filter which embodies the system 
model ðA; B; CÞ. The inputs to the Kalman filter are the input rð Þk and the output 
yð Þk which is corrupted by the noise vð Þk and affected by the disturbance wð Þk . 

2.2 Residual model 

The frequency-domain expression relating the input uð Þz ∈ Rp and the output 
yð Þz ∈ Rq to the residual eð Þz ∈ Rq is given by the following model termed the 
residual model: 

e z z D z y z z N z u z (9) ð Þ ¼ F�1ð Þ  ð Þ ð Þ � F�1ð Þ  ð Þ ð Þ  

where Dð Þz and Nð Þz are matrix polynomials, F zð Þ is the scalar characteristic 
polynomial termed Kalman polynomial, F zð Þ ¼ �zI �A0þK0C0�; �� �� � ��1 � zI �A0 �; D z zI �A0þK0C0 K0 D zð Þ ¼  ð Þ ¼ F zð Þ I � C0 is qxq matrix; 

� ��1� � 
Nð Þ ¼z F zð Þ C0 zI �A0þK0C0 B0 � K0D0 þD0 is qxp matrix; I ∈ Rqxq is an 

identity matrix; 

xðk þ 1 
(8) 

y kð Þ ¼ C0 x kð Þ þD0 uð Þk 
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3 2 3 2 
D1ð Þz D11ð Þz D12ð Þz : D1qð Þz 

D zð Þ ¼  

666664 

777775 
¼ 

666664 

ð Þz 
777775 

D2 D21ð Þz D22ð Þz : D2q ð Þz 
; 

; : : : : 

Dq1 2 
Dq ð Þz ð Þz Dq2ð Þz : Dqq ð Þz 

(10) 3 2 3 
N1ð Þz N11ð Þz N12ð Þz : N1pð Þz 

666664 

N2 ð Þz 

: 

777775 
¼ 

666664 

777775 

N21ð Þz N22ð Þz : N2p ð Þz 
N zð Þ ¼  

: ; : : 

Nqð Þz Nq1ð Þz Nq2ð Þz : Nqpð Þz 

Dij z 0aijℓz ℓ; Nij z 1bijℓz ℓ; aijℓ and bijℓ are the coefficients of the ð Þ ¼ ∑n 
ℓ¼ ð Þ ¼ ∑n 

ℓ¼ 
1 polynomials Dijð Þz and Nijð Þz , respectively. The rational polynomials F� ð Þz Dð Þz 

1 and F� ð Þz Nð Þz associated with the system output yð Þz and the input uð Þz are 
termed as an output IIR filter, and an input IIR filter, respectively. The estimate of 
the Kalman filter ŷð Þk is: 

ŷ zð Þ ¼  I � F� 1 ð Þz Dð Þz y zð Þ þ F� 1 ð Þz Nð Þz uð Þz (11) 

The residual model of the Kalman filter forms the backbone of the proposed 
identification scheme. 

2.3 The key properties of the Kalman filter 

The map relating the signal and its model, and the output IIR filter and an input 
IIR filter of residual model is developed next. 

The following lemmas are developed by invoking the key property namely that 
the residual is a zero-mean white noise process if and only if there is no mismatch 
between the actual model of the system and its identified model embodied in the 
Kalman filter [4], that is, the identified model embodied in the Kalman filter is 
identical to that of the actual model: 

2.3.1 Derivation of the signal and the signal model 

The following Lemma 1 shows that (a) the estimate of the signal model is the 
matrix fraction description relating the transfer matrices relating the residual of the 

Figure 2. 
The system and the Kalman filter model. 
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Kalman filter to the input, and the output of the system; (b) the estimate of the 
signal is its output generated by the system input; and the Kalman filter whitens the 
output error. 

Lemma 1 
(a) The left-matrix description of the MIMO signal model derived from the state-˜ ° ˜ 

A0 ° �1
B0 D�1 space model ; B0; C0; D0 , namely,Gsð Þ ¼ C0 zI �A0 ¼ z Nsð Þz z ð Þ  s s s s s s s s 

and the left-matrix description of the Kalman filter derived from the residual 
1 

model,Gð Þ ¼z D� ð Þz Nð Þz are identical. The signal model Gsð Þz and the signal 
sð Þz are: 

Gs 

s z Gs ð Þ ¼  

^

^ ^ 

^ G z ð Þ  ð Þ ¼ G z zð Þ ¼  

uð Þ ¼z Gð Þz uð Þz (12) ð Þz 

Proof: 

(a) Consider the residual model (9). Substituting for yð Þz yields: 
˛ ˝ 

F�1 1 1 ð Þz D z ð ÞNsð Þu z ð Þ  ð Þu z ð Þ  ¼ e z (13) ð Þ  D� z z ð Þ �D� z N z ð Þ þ ϑ z ð Þ  s 

^ 

Since the residual is a zero-mean, white noise process and is uncorrelated with 
1 uð Þz andυð Þz , correlating both sides with the input uðz� Þ yields: 

˛ ˝ ˙ ˜ °ˆ �1 1 1 �1 F� z ð Þ  z N sð Þ � F� z ð Þ  D̂ D z Nð Þz E u z ¼ 0 (14) ð Þ  ð Þ  ð Þ  z u z s 

^ ^ 

Assuming that the input correlation is not identically equal to zero, i.e. 
1 E½uð Þz uðz� Þ� 6¼ 0 yields: 

˛ ˝ 
D N s 

�1 1 1 F� zð Þ � F� Dð Þz Nð Þz ¼ 0 (15) ð Þz ð Þz ð Þz s 

Simplifying we get: 

�1 1 

^ ^ 

^ ^ N s 

z ð Þ holds. Since Dswð Þ ¼ Dsð ÞDwð Þ and Nswð Þ ¼ Dwð ÞNs ð Þ ¼ G z z z z z z 
Gs 

zð Þ ¼ D Nð Þz (16) ð Þz ð Þz D� 
s 

Ĝs 

are not coprime as Dwð Þz is a common factor, then 
Hence ð Þz 

G z ð Þ  ð Þ ¼ G z zð Þ ¼  . 
(b) Substituting (16) in (13) we get 

1 1 1 e z z D z ϑ z z D� z D z υ z (17) ð Þ ¼ F� ð Þ  ð Þ  ð Þ ¼ F� ð Þ  ð Þ  ð Þ ð Þ  
˛ ˝ 

1 � where F� z D z ð KCÞ 1K . ð Þ  ð Þ ¼  I �C zI �Aþ 

Proof: 
follows from ϑ k d k ð Þ, (9) and ð Þ¼ ð Þ þ v k 

2.3.2 Derivation of the output error and its model 

The following Lemma 2 shows that the output error is the difference between 
the output and the estimate of the signal; the estimate of the output error model is 
the matrix fraction description of the transfer matrices relating the residual of the 
Kalman filter to the input; the estimate of the output error is obtained as its output 
when its input is the residual. It is assumed that the transfer matrix of the Kalman 
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1 
˛ ˜ ° �1 

˝ 
filter F� z D z zI �A0þK0C0 K0 relating the output yð Þz and the ð Þ  ð Þ ¼  I � C0 

residual eð Þz is minimum-phase, that is both the numerator and the denominator 
polynomials are asymptotically stable. 

Lemma 2. 
If the matrix Dð Þz ð Þ ¼ d z ð Þ is given by: is invertible, the output error ϑ z ð Þ þ v z 

ϑ̂ð Þ ¼k yð Þ �k ŝð Þk 
(18) �1 

ϑ̂ð Þ ¼z F zð ÞD ð Þz eð Þz 

D
� 

˛ 
zI �A0þK0C0 K0 ̋

� ˜ ° �1 1 
where F zð Þ  

1 ð Þ ¼  I �C0 z is termed the distur-

bance model estimate which generates the output error when excited by the 
residual. 

Proof: 
Using (17) we get (18). 

As the input wð Þk driving the disturbance model is not accessible, then by 
substituting the actual input wð Þk by the residual eð Þk , although both are zero-mean 
white noise processes, only the denominator polynomial of the disturbance model 
can be identified. Hence the term “disturbance model estimate”. 

Minimum realization of the output error model is obtained using balanced model 
reduction method by treating eð Þz as the input and ϑ̂ð Þk as the output of a model [7]. 

2.3.3 Minimal realization of the signal model 

There are two approaches to identifying the signal model and the signal. One 
approach is by deriving them from the residual model of the Kalman filter as shown 
in Lemma 1 given by (12) and the other approach is to invoke the duality between 
the predictor form (7) and the innovation form (8) of the Kalman filter. The latter 
approach may be more convenient. 

In view of (12), the system model Gð Þz and the signal model Gsð Þz is derived 
from the identified Kalman filter (7) by simply replacing the transition matrix of 
the Kalman filter A0 � K0C0 by the system transition matrixA0. 

Lemma 3. ˜ ° ˜ ° 
A0; B0; C0; D0 ¼ A0þK0C0 , B0; C0; D¼ 

˜ ° (19) ðAs; Bs; Cs; DsÞ ¼ minreal A0; B0; C0; D0 

˜ ° ˜ ° 
Where minreal A0; B0; C0; D0 is the minimal realization of A0; B0; C0; D0 . 

Proof 

There is duality between the predictor form (7) and the innovation form (8) of 
the Kalman filter [5]. The output yð Þk and the residual eð Þk are (causally) invert-
ible. In other words, eð Þk can be generated from the output yð Þk and rð Þk using 
the (causally) predictor form, and yð Þk can be generated from eð Þk and rð Þk using ˜ ° ˜ ° 
the innovation form [3]. Moreover, A0; B0; C0; D0 and A0; B0; C0; D0 are s s s s 

1 associated with the system transfer matrices Gð Þ ¼z D� ð Þz Nð Þz and 
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Gs z z Nsð Þz respectively, as shown in (4), implying that ð Þ ¼ D�1ð Þ  ˜ s ° ˜ ° 
A0; B0; C0; D0 is a minimum realization of A0; B0; C0; D0 . s s s s ˜ ° 
The minimum realization of the system A0; B0; C0; D0 is obtained from the s s s s 

balanced model reduction method by treating uð Þk as the input and ̂sð Þk as the 
output of a model [7]. 

3. Emulator-based two-stage identification 

An identified model at each operating point characterizes the behavior of the 
system in the neighborhood of that point. In practice, however, the system model 
may be perturbed because of variations in the parameters of that system. To 
overcome this problem, the system model is identified by performing a number of 
emulator parameter-perturbed experiments proposed in [7–9]. Each experiment 
consists of perturbing one or more emulator parameters. A robust model is iden-
tified as the best fit to the input–output data from the set of emulated perturba-
tions. The robust model thus obtained characterizes the behavior of the system 
over wider operating regions (in the neighborhood of the operating point) 
whereas the conventional model characterizes the behavior merely at the nominal 
operating point (that is, the conventional approach assumes that the model of the 
system remains unperturbed at every operating point). In [7–9], it is theoretically 
shown that the identification errors resulting from the variations in the emulator 
parameters are significantly lower compared to those of the conventional ones 
based on performing a single experiment (that is, without using emulators). The 
emulator-based identification scheme is inspired from the model-free artificial 
neural network approach which captures the static and dynamic behaviors by 
presenting the neural network with data covering likely operating scenarios. The 
PEM identifies the robust model of the plant, and the Kalman filter associated 
with the plant is then derived from the identified model without any a-priori 
knowledge of the statistics, such as covariance of the disturbance and measure-
ment noise affecting the input-output data. 

An accurate emulator-based model identification scheme is proposed and 
employed here. An emulator, which is modeled as a product of first-order all-pass 
filters and which induces phase and gain changes, is connected in cascade to the 
input, output or both, of the signal model to emulate a set of likely operating 
regimes around the nominal operating point. The identified model is obtained as the 
best fit over all emulated operating regions, thereby ensuring both accuracy and 
robustness of the identified model. 

3.1 Two-stage identification 

˜ ° 
• In the first stage, a robust model of the system A0; B0; C0; D0 and its ˜ ˛˜ ° ˝ ° 
associated Kalman filter A0 � K0C0; B0 � K0D0 K0 ;C0; D0 are identified 
using PEM from the set of the emulator-generated input-output data. Then the 

0 estimate s ð Þk of the signal sð Þk and the estimate ϑ̂ð Þk of the output error ϑð Þk 
are derived. 

• In the second stage, using the key properties established in Lemmas 1–3, the ˜ ° 
robust signal model A0; B0; C0; D0 and its associated Kalman filter s s s s ˜ ˛ ˝ ° 
A0 � K0C0; B0 � K0D0 K0 ; C0; D0 are obtained using balanced model s s s s s s s s s 
reduction method and the PEM. 
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Akaike Information Criterion: To select an appropriate order for the identified 
system model in the first stage, and for the signal model in the second stage, the 
widely popular Akaike Information Criterion (AIC) is used, which weights both the 
parameter estimation error and the complexity of the model so as to arrive at an 
optimal order [1]. 

3.2 Signal model and the Kalman filter 

Similar to the Kalman filter for the system (7), the Kalman filter for the signal is: ˜ ° ˜ ° 
xs Þ ¼  A0 xs 

s k xs ð Þ ¼ C0 

sð Þk 

xs 

^ 

^ 

^ 

^ 

^ 

^ 

� K0C0 
s s kð Þ þ  B0 � K0D0 u k s0 ð Þ þ K0 

s s s k þ 1 ð Þk ð s s 

kð Þ þD0 
s uð Þk s 

0 ð Þ ¼k s kð Þ �  (20) es 

ð Þk ∈ Rns ; ̂sð Þk ∈ Rns ; the residual Where ˝T ð Þ ¼  es1ð Þ  es2ð Þ ð Þ  ð Þ  es k k k es3 k … esq k ∈ Rq is the residual; and Ks ∈ Rnsxq is 
the Kalman gain. 

Status monitoring: The residuals eð Þk and esð Þk of the Kalman filters (7) and (20) 
are employed to monitor the status of the overall system and to detect and isolate 
faults in the signal and disturbance models and the sensors. The proposed scheme 
provides a sound framework for developing fault-tolerant systems and condition-
based maintenance systems as well. 

4. Evaluation on the illustrative example 

The proposed two-stage identification scheme and the key properties of the 
Kalman filter established in the lemmas in Sections 2.3.1–2.3.3 are verified using the 
illustrative example given in Section 3.1. The results of this illustration are shown 
below in Figure 3a and b. 

Subfigures A and B, of Figure 3a compare the true step response of the signal 
and its Kalman filter estimate; subfigures C and D show the output error ϑð Þk and 
its estimate. 

Remarks: These subfigures confirm the accuracy of the estimates of the signal 
and the output error (18) established in Lemmas 1 and 2. Subfigures A and B, of 
Figure 3b show the autocorrelation of the equation error whereas subfigures C and 
D show the autocorrelations of the residual. 

Moreover, these subfigures clearly confirm that the equation error is a colored 
noise that is whitened by the KF, thus confirming (17) of Lemma 1 and making the 
KF residual a zero-man white noise process. 

Table 1 compares the true and estimated poles of the signal and disturbances 
models. The estimated poles are obtained from the model reduction techniques 
employed in the second stage of the two-stage identification scheme. 

Remarks: The estimated poles are close to the true ones, especially those of the signal. 

5. Evaluation of the proposed scheme 

The management of leakage faults in fluid systems is becoming increasingly 
important in recent years from the point of view of economy, potential hazards, 
pollution, and conservation of scarce resources. Leakage in pipes and storage tanks 
occurs due to faulty joints, aging, excessive loads, holes caused by corrosion and 
accidents and the like. The process control system is a MIMO system that exhibits 

˛ 

106 



Novel Direct and Accurate Identification of Kalman Filter for General Systems… 
DOI: http://dx.doi.org/10.5772/intechopen.81793 

Figure 3. 
(a) Signal and its estimate; output error and (b) autocorrelations of equation error and the residual and its 
estimate. 

turbulence and is modeled as a combination of a signal, (which includes an ideal 
noise-free height, flow rate, and control input), a disturbance that includes effects 
of turbulence, and a measurement noise. The augmented model of the signal, and 
the disturbance, whose output is a sum of the signal, the disturbance, and the 
measurement noise described by Box-Jenkins model. The transfer matrices of the 

107 

http://dx.doi.org/10.5772/intechopen.81793


   

_

_
_

� 

Introduction and Implementations of the Kalman Filter 

True poles Identified poles 

Signal G s zð Þ  ^ 0:7500 � j0:3708 0:7510 � j0:3715 
0:8500 � j0:2784 0:8483 � j0:2769 

Disturbance Gw 
^ zð Þ  0:1980 � j0:8737 0:2031 � j0:8752 

Table 1. 
Poles of the signal and disturbance models. 

signal and the disturbance may be totally different from those of the ARMA model, 
where the signal and the disturbance have identical denominator polynomials. 

Physical systems are subject to model uncertainties and are affected to unknown 
stochastic disturbances such as turbulence and measurement noise. The proposed 
scheme covers a wider class of systems compared to the laminar flow model pro-
posed. The laminar flow is the flow of a fluid when each particle of the fluid follows 
a smooth path which results in the velocity of the fluid being constant. The turbu-
lent flow is an irregular flow that exhibits tiny whirlpool regions. 

It is assumed that the disturbance is a Gaussian stochastic process and the mea-
surement noise is a zero-mean Gaussian white noise process. The measurement output 
is, in general, an additive combination of the signal, disturbance and measurement 
noise. The output error, which is a sum of the disturbance and measurement noise, is 
assumed to be bounded. The signal and the disturbance are both modeled as outputs of 
linear time-invariant systems driven by some known input, and a Gaussian zero-mean 
white noise process, respectively. It is assumed that the signal, disturbance and mea-
surement noise are mutually uncorrelated with each other. 

5.1 Physical two-tank fluid system 

A benchmark model is a cascade connection of a dc motor and a pump relating 
the reference input r tð Þ and the flow rate f ð Þt , the outflow q0ð Þt and leakage qℓð Þt is a 
fourth-order system. The linearized signal model of the nonlinear SIMO system is: 

0:5663 � j0:4114 0:5822 � j0:3746 

2 3 

_ 

2 
h 

h2 

u 

f 

2 3 2 3 3 0 b1 h 0 �a1 � α a1 66664 

77775 

6664 

6664 

7775 

7775 
þ 
6664 

7775 

0 0 0 

1 

�a2 � β h1 

u 

a2 
r tð Þ  (21) ¼ 

1 0 0 0 

�bmkp 0 bmkI �am f bmkp 

Where h, h2, u and f are respectively the height of tank 1, the height of tank 2, 
the control input and the flow rate; a1, a2, α and β are parameters associated with 
the linearization process, α is the leakage flow rate, qℓ ¼ αh, and β is the output flow 
rate, q ¼ βh2. The output is given by: o 

T s kð  Þ ¼ ½h kð Þ f ð Þk u kð Þ� 
(22) 

y kð  Þ ¼ s kð  Þ þ d kð  Þ þ v kð Þ  

5.2 Simulation of faults in the system 

The process control system is interfaced to National Instruments LABVIEW as 
shown below in Figure 4a. The controller is implemented in LABVIEW. 

The two-tank system formed of subsystems and whose faults are to be isolated is 
shown in Figure 4b. There are four subsystems whose faults are to be isolated. 
Subsystem 1 is the flow rate sensor γs1, subsystem 2 the height sensor γs2, subsystem 
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Figure 4. 
(a) Two-tank fluid system controlled by LABVIEW interfaced to a PC and (b) block diagram of process 
control system. 

3 the actuator G1 ¼ G0
1 γa where G0

1 is the fault-free transfer function, and 
subsystem 4 the leakage fault sensor gain γℓ. The fault-free cases correspond 
toγsi ¼ 1 :i ¼ 0, 1, 2, γa ¼ 1 and γℓ ¼ 1. The various subsystems and sensor blocks are 
all shown in Figure 4b. The first two blocks G0 and G1 ¼ G0

1 γa, represent the 
controller and the actuator sub-systems, respectively. The leakage is modeled by the 
gain γℓ which is used to quantify the amount of flow lost from the first tank. Thus, 
the net outflow from tank 1 is quantified by the gain (1 � γℓ). Since the two blocks 
G0

2 and (1 � γℓ) cannot be dissociated from each other, they are fused into a single 
block labeled G2 ¼ G0ð1 � γℓÞ. The physical two-tank system is controlled using 2 
LABVIEW which acquires the flow rate, and the height sensor outputs. The con-
troller is implemented in LABVIEW and the controller output drives the actuator, 
namely the DC motor and pump combination. A fault in the sensor is introduced by 
including the emulator block, γsi : i ¼ 0, 1, 2 in the control input, flow rate, the 
height sensors, respectively in LABVIEW software. Similarly, an actuator fault is 
introduced by including an emulator γa between the controller output and the 
input to the DC motor. The leakage fault is simulated by opening the drainage valve 
of the first tank. The amount by which the valve is opened is modeled by the 
emulator γℓ. 

The height, flow rate, and control input profiles under various types of faults, 
are shown in Figure 5. Subfigures A, B and C show profiles for the leakage; 
subfigures D, E and F show the profiles for the actuator fault; subfigures G, H, and I 
show the profiles for sensor fault. The fault was simulated by varying the 
appropriate emulator parameters γℓ, γa and γs2, by 0.25, 0.5 and 0.75 times 
their nominal values representing ‘small’, ‘medium’ and ‘large’ fault sizes 
respectively. 
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Figure 5. 
(a) Height, flow rate, control: nonlinear and (b) height, flow rate, control: linearized. 
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Figure 6. 
(a) The residuals and test statistics and (b) autocorrelations of the residuals. 
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The height, the flow rate and the control input profiles under various types of 
faults are shown in Figure 5a for the nonlinear model, namely the dead-band effect 
of the actuator on the flow measurements. The measurement outputs are corrupted 
by the disturbance and measurement noise. Figure 5b show the outputs of the two-
stage identification of the linearized signal model. Subfigures A, B and C on the top 
show height profiles, and subfigures D, E and F in the middle show the flow rate 
profiles, and G, H, and I at the bottom show the control input profiles under 
leakage, actuator and sensor faults, respectively. The faults are induced by varying 
the appropriate emulator parameters to 0.25, 0.5 and 0.75 times the nominal values 
to represent ‘small’, ‘medium’ and ‘large’ faults. However, by its control design 
objective, the closed-loop PI controller will hide any fault that may occur in the 
system and hence will make it difficult to detect it. Also, the physical system 
exhibits a highly-nonlinear behavior. The flow rate saturates at 4.5 ml/s. The dead-
band effect in the actuator exhibits itself as a delay in the output response and 
saturation of the flow. 

Remarks: The two-stage identification is employed to estimate the height, flow 
rate and the control input; their estimates are shown in Figure 5b. Comparing 
subfigures D, E, F confirms the superior performance of the identified estimates, 
thanks to the use of emulators. 

Figure 6a shows the residuals and their test statistics, and Figure 6b shows the 
autocorrelations of the residuals when the system is subject to leakage, actuator, and 
sensor faults of various degrees such a small, medium and large fault sizes. 
Subfigures A, B, and C; D, E, and F; and G, H, and I of Figure 6a show the residuals 
and their statistics when there is a leakage, actuator and sensor faults, respectively. 
Subfigures A, B, and C; D, E, and F; and G, H, and I of Figure 6b show the 
corresponding auto-correlations for different fault types. 

Remarks: The Bayes decision strategy was employed to assert the fault type, i.e., 
to decide whether it is either a leakage or an actuator or sensor fault, respectively, 
using the fault isolation scheme proposed in [8]. The variance of the residual, which 
is the maximum value of the autocorrelation function evaluated at the origin (i.e. 
at zero delay), indicates the fault size. 

The proposed Kalman-filter-based scheme can detect and isolate small and 
nascent faults and estimate the fault size. Thanks to the emulator-generated data, 
it can also provide an accurate prognosis of the status of the system. 

6. Conclusions 

Emulator-based identification of a wider class of multiple-input and multiple-
output system governed by Box-Jenkins model and the associated Kalman filter 
directly from the input-output data without a-priori knowledge of the disturbance 
and measurement noise statistics, and the establishment of key properties of e-
stimation of the signal, the output error and their models are developed. The 
applications include monitoring the status of the system including faults, 
distinguishing between the variations in the disturbance model and those in the 
signal model to help diagnose a fault in the system and ensure a low false alarm 
probability, developing a framework for controlling autonomous vehicles, and 
meeting the ever-increasing need for fault-tolerant systems. The proposed 
emulator-based two-stage identification and estimation of the signal and its model 
were evaluated physical laboratory-scale process control system so as to estimate 
the signal corrupted by disturbance such as turbulence. Thanks to emulator-based 
identification, the estimates of the signal were accurate, the detection and 
isolation of leakage faults were promising and, as such, provide sufficient 
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encouragement and impetus to try the proposed scheme on real-life processes in our 
future work. 
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Edited by Felix Govaers 

Sensor data fusion is the process of combining error-prone, heterogeneous, incomplete, 
and ambiguous data to gather a higher level of situational awareness. In principle, all 

living creatures are fusing information from their complementary senses to coordinate 
their actions and to detect and localize danger. In sensor data fusion, this process is 

transferred to electronic systems, which rely on some “awareness” of what is happening 
in certain areas of interest. By means of probability theory and statistics, it is possible 
to model the relationship between the state space and the sensor data. Te number of 

ingredients of the resulting Kalman flter is limited, but its applications are not. 
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