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Preface

An oscillator is dedicated to the generation of signals. It is used in computers,
telecoms, watchmaking, astronomy, and metrology. It can be a pendulum, an
electronic oscillator based on quartz technology [1], an optoelectronic oscillator [2],
or an atomic clock, depending on its application. Since water clocks of antiquity,
mechanical clocks invented during the thirteenth century, and the discovery of
piezoelectricity by Jacques and Pierre Curie in 1880 [3], oscillators have made great
progress [4]. This book does not attempt to tell the story of oscillators, but rather to
provide an overview of particular oscillator structures through examples from
mathematics to oscillators, and from the millimeter scale to the vibration of a
building, focusing on recent developments, as we live in a time when technology
and mathematical analysis play a vital role.

By providing an overview of the quest of mathematics for the oscillator, we had to
make choices, as is evident in the selection of the first three chapters:

• It all starts with the need to have the best mathematical models to understand
what an oscillator is. This is why we became interested in the work of Roman
Parovik, researcher at the Institute of Cosmophysical Research and Radio
Wave Propagation at Vitus Bering Kamchatka State University, Petropavlovsk-
Kamchatskiy, Russia. He investigates mathematical models of oscillators with
memory.

• Then we focused our attention on the research of Coskun Deniz, working as
Lecturer in Department of Electrical-Electronics Engineering in the Aydin
Adnan Menderes University, Aydin, Turkey. He has worked on the quantum
harmonic oscillator (QHO) and two conventional semi-classical approximation
methods to solve QHO.

• Ozkan Ozturk from the American University of the Middle East in Kuwait is
interested in theories of time-scale systems to acquire information about the
long-time behavior of nonlinear systems. Therefore he is interested in the
oscillation criteria of two-dimensional time-scale systems.

We have chosen to emphasize the place of oscillators in our word. The oscillation
problem begins at the micrometer scale with microstrip oscillators and extends to
the macroscopic scales with civil structures such as bridges. Two following chapters
discuss these themes:

• Time-domain simulation of microstrip-connected solid-state oscillators for
radar applications is a hot topic investigated by Vladimir Yurchenko and Lidiya
Yurchenko at the O.Ya. Usikov Institute for Radiophysics and Electronics,
Kharkov, Ukraine.

• Yonggang Tan, awarded by the Chinese construction Enterprise Management
Association of Science and Technology, works on bridge and tunnel
engineering at the faculty of infrastructure engineering, Dalian University of



Preface 

An oscillator is dedicated to the generation of signals. It is used in computers, 
telecoms, watchmaking, astronomy, and metrology. It can be a pendulum, an 
electronic oscillator based on quartz technology [1], an optoelectronic oscillator [2], 
or an atomic clock, depending on its application. Since water clocks of antiquity, 
mechanical clocks invented during the thirteenth century, and the discovery of 
piezoelectricity by Jacques and Pierre Curie in 1880 [3], oscillators have made great 
progress [4]. This book does not attempt to tell the story of oscillators, but rather to 
provide an overview of particular oscillator structures through examples from 
mathematics to oscillators, and from the millimeter scale to the vibration of a 
building, focusing on recent developments, as we live in a time when technology 
and mathematical analysis play a vital role. 

By providing an overview of the quest of mathematics for the oscillator, we had to 
make choices, as is evident in the selection of the first three chapters: 

• It all starts with the need to have the best mathematical models to understand
what an oscillator is. This is why we became interested in the work of Roman
Parovik, researcher at the Institute of Cosmophysical Research and Radio
Wave Propagation at Vitus Bering Kamchatka State University, Petropavlovsk-
Kamchatskiy, Russia. He investigates mathematical models of oscillators with
memory.

• Then we focused our attention on the research of Coskun Deniz, working as
Lecturer in Department of Electrical-Electronics Engineering in the Aydin
Adnan Menderes University, Aydin, Turkey. He has worked on the quantum
harmonic oscillator (QHO) and two conventional semi-classical approximation
methods to solve QHO.

• Ozkan Ozturk from the American University of the Middle East in Kuwait is
interested in theories of time-scale systems to acquire information about the
long-time behavior of nonlinear systems. Therefore he is interested in the
oscillation criteria of two-dimensional time-scale systems.

We have chosen to emphasize the place of oscillators in our word. The oscillation 
problem begins at the micrometer scale with microstrip oscillators and extends to 
the macroscopic scales with civil structures such as bridges. Two following chapters 
discuss these themes: 

• Time-domain simulation of microstrip-connected solid-state oscillators for
radar applications is a hot topic investigated by Vladimir Yurchenko and Lidiya
Yurchenko at the O.Ya. Usikov Institute for Radiophysics and Electronics,
Kharkov, Ukraine.

• Yonggang Tan, awarded by the Chinese construction Enterprise Management
Association of Science and Technology, works on bridge and tunnel
engineering at the faculty of infrastructure engineering, Dalian University of



Technology, Dalian, China. He is interested in reducing vibrations of civil 
structures under harmonic or wind excitations. 

Authors and coauthors cover various areas of oscillator research throughout this 
book. The common thread of the chapters in this book is to conduct investigations 
in the field of oscillators. This book will certainly be useful for students, engineers, 
and researchers who want to keep up with the latest developments in oscillators 
through chosen examples. We assume that the original approach of this book 
consists in the possibility offered to the reader to realize the diversity of the field 
covered by oscillators and their relevance in research today. 

Patrice Salzenstein 
Senior Research Engineer, 

Centre National de la Recherche Scientifique (CNRS), 
Franche-Comté Electronique Mécanique Thermique et Optique—Sciences et 

Technologies (FEMTO-ST) institute, mixed research unit associated with CNRS 
(UMR 6174), 

Besançon, France 
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Chapter 1

Mathematical Models of
Oscillators with Memory
Roman Ivanovich Parovik

Abstract

The chapter proposes a mathematical model for a wide class of hereditary oscil-
lators, which is a Cauchy problem in the local formulation. As an initial model
equation, an integrodifferential equation of Voltaire type was introduced, which
was reduced by means of a special choice of difference kernels to a differential
equation with nonlocal derivatives of fractional-order variables. An explicit finite-
difference scheme is proposed, and questions of its stability and convergence are
investigated. A computer study of the proposed numerical algorithm on various test
examples of the hereditary oscillators Airy, Duffing, and others was carried out.
Oscillograms and phase trajectories are plotted and constructed.

Keywords:mathematical model, cauchy problem, heredity, derivative of fractional
order, finite-difference scheme, stability, convergence, oscillograms, phase
trajectory

1. Introduction

In the paper of the Italian mathematician Vito Volterra [1], the notion of hered-
ity (memory), a property of a dynamical system characterized by nonlocality in
time, is introduced, which consists in the dependence of its current state on a finite
number of previous states. In another paper [2], Volterra investigated the heredi-
tary oscillator—a vibration system with memory, which was written in the form of
an integrodifferential equation with a difference kernel, a function of memory.
Further, for such an oscillator, Volterra derived the law of total energy, in which an
additional term appeared, responsible for the dissipation of energy in the vibra-
tional system. This fact was confirmed in subsequent works.

In papers [3–21], fractal oscillators were considered, which represent the class of
hereditary oscillators with a power-law function of memory. The peculiarity of such
oscillators is that their mathematical description can be reduced to differential
equations with nonlocal derivatives of fractional constant orders, which are inves-
tigated within the framework of the theory of fractional calculus [22–24].

In papers [6–9, 11–14, 18–21], models of fractal linear oscillators were investi-
gated in the sense of the Gerasimov-Caputo derivative and in papers [4, 10, 16]—in
the sense of the Riemann-Liouville derivative. Analytical solutions of model equa-
tions in terms of a special function of Mittag-Leffler-type and generalized Wright-
type function, oscillograms, and phase trajectories are constructed. It is shown that
in the regime of free oscillations, the presence of memory effects in the system leads
to attenuation of oscillations as a result of energy dissipation, and with allowance
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for external periodic action, it is possible to stabilize the amplitude of the oscilla-
tions, with the phase trajectories reaching the limit cycle and also the resonance 
effect. 

In papers of the author [25, 26], the fractal parametric resonance (the fractal 
Mathieu oscillator) was investigated, and the Strutt-Ince diagrams of parametric 
resonance existence areas were constructed. It is shown that these regions strongly 
depend on the orders of the value fractional derivatives entering into the initial 
equation. 

In a monograph by the Slovak mathematician Ivo Petras [10], the fractal 
nonlinear oscillator models whose differential equations contained fractional deriv-
atives in the sense of Riemann-Liouville were considered and analyzed using 
numerical methods and considered the stability of the rest point of oscillatory 
systems. However, the stability and convergence of numerical methods have not 
been considered. 

A further continuation of the investigation of hereditary oscillators is associ-
ated with the introduction of the derivatives of fractional variable orders in the 
model equations. This is due to the fact that the orders of fractional derivatives 
are related to the properties of the medium in which this or that process takes 
place and changes with time under the influence of external influence. There-
fore, papers [27–30] proposed that the models of fractal nonlinear oscillators 
(Duffing, Van der Pol, Van der Pol-Duffing, FitzHugh-Nagumo) were proposed 
and investigated using explicit finite-difference schemes, whose equations con-
tain both the derivatives of the constants and variable fractional orders of the 
Gerasimov-Caputo and Riemann-Liouville types. With the help of computer 
experiments, the convergence of finite-difference schemes was shown, and 
estimates of the computational accuracy of the method were obtained; oscillo-
grams and phase trajectories were constructed. However, the questions of sta-
bility and convergence were not formulated in the form of corresponding 
theorems. 

In [31, 32], a new class of fractal oscillators was proposed and investigated; 
active fractal oscillators (AFOs)—nonlinear oscillators with external influences, 
which include the fractional Riemann-Liouville integral—were investigated. Such 
oscillators are constructed on the basis of the scheme of the radioelectronic 
аutogenerator with a fractional feedback circuit. Authors use the method of equiv-
alent linearization to investigate AFOs and come to the conclusion that the self-
oscillator is isochronous. 

From the analysis of the above publications on the study of hereditary oscillator, 
we can conclude that the main tool for their study is numerical methods, for 
example, finite-difference schemes. In most cases, the authors leave without con-
sidering the questions of stability and convergence of finite-difference schemes 
and, even if they touch, then without formulating the corresponding theorems and 
proofs. Therefore, the goal of the present paper is to construct a finite-difference 
scheme for a wide class of hereditary (fractal) linear and nonlinear oscillators, prove 
its stability and convergence, formulate results in the form of corresponding theo-
rems, and study finite-difference schemes on specific test examples. 

2. Formulation of the problem 

Consider the following model integrodifferential equation for the function 
x tð Þ ∈ C3ð0; TÞ, where T > 0: 

4 
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t tð ð 
K1ðt� η ð Þdη þ λ K2ðt� ηÞ _ ð Þd ð ð Þ; tÞ,Þx€ η x η η ¼ f  x t  (1) 

0 0 

where €ð Þ ¼ d =dt x t  =dt, λ > 0—given constant. x t  2x 2 , _ð Þ ¼ dx 
Eq. (1) describes a wide class of hereditary, depending on the form of the right-

hand side (function f  x tð Þ  Þ) of linear or nonlinear oscillators. ð ; t 
Definition 1. Functions K1ðt� ηÞ and K2ðt� ηÞ—difference kernels in Eq. (1)— 

will be called memory functions, since they define the notion of heredity (memory), 
which was introduced in the work of the Italian mathematician Vito Volterra [2]. 

Definition 2. A nonlinear function f  x tð Þ; tð Þ on the right-hand side of Eq. (1) 
satisfies a Lipschitz condition with respect to a variable x tð Þ: 

ð 1ð Þ  ð 2 t 1ð Þ � x2 j (2)jf x  t ; tÞ � f x ð Þ; tÞj ≤ L xj t ð Þt , 

L—Lipschitz constant. 
Eq. (1) describes a broad class of hereditary nonlinear oscillators, depending on 

the form of the function f  x tð Þ; tð Þ on its right-hand side, and the parameter λ has the 
meaning of the coefficient of friction. 

Note that in Definition 1, the memory functions K1ðt� ηÞ and K2ðt� ηÞ can be 
chosen arbitrarily, depending on the conditions of the particular problem. We will 
choose these functions power law, since power laws are often found in various 
fields of knowledge [33]. We choose the memory functions K1ðt� ηÞ and K2ðt� ηÞ 
in the form 

1�βð Þt �γð Þtðt� ηÞ ðt� ηÞ
K1ðt� ηÞ ¼  , K2ðt� ηÞ ¼  , 1 <  βð Þt < 2,0<  γð Þt < 1, (3)

Γð2 � βð Þt Þ Γð2 � γð Þt Þ 
where γð Þt , βð Þt ∈ C½0; T�, Γð Þt —Euler gamma function. 
We give the following definitions. 
Definition 3. Derivatives of fractional variables of orders βð Þt and γð Þt 

Gerasimov-Caputo type: we call the following operators of fractional differentiation: 

t tð ð 
βð Þt 1 x€ð Þη dη γð Þt 1 x_ð Þη dη 

∂ ð  Þ ¼  , ∂ ð  Þ ¼  : (4)0t x η ð Þ� ð Þ0t x η 
Γð2 � βð Þt Þ β t 1 Γð1 � γð Þt Þ γ tðt� ηÞ ðt� ηÞ 

0 0 

We note that in the case when the functions βð Þt and γð Þt in the relations (4) and 
(5) are constants, we arrive at the definitions of the fractional derivative in the 
sense of Gerasimov-Caputo [34, 35], and in the case when these constants β ¼ 2 and 
γ ¼ 1, the operators of fractional differentiation (4) become classical derivatives of 
the second and first orders. 

Taking into account Definition 3, the model Eq. (1) can be rewritten in a more 
compact form: 

βð Þt γð Þt 
∂0t x η 0t x η ð ð Þ; tÞ: (5)ð  Þ þ λ∂ ð  Þ ¼ f  x t  

For Eq. (5), the initial conditions in the local formulation are valid: 

x 0 x 0 (6)ð  Þ ¼ α0, _ð  Þ ¼ α1, 

where α0 and α1—given constants. As a result, we arrive at the Cauchy problems 
(5) and (6), which we will investigate. 

5 
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3. Explicit finite-difference scheme 

We construct an explicit finite-difference scheme for the Cauchy problems (5) 
and (6). We divide the time interval ½0; T] into N equal parts with a step τ ¼ T=N. 
We introduce the grid function x tð kÞ ¼ xk, where tk ¼ kτ, k  ¼ 1, …, N  - 1. 

The derivatives of the variables of fractional orders in Eq. (5) are approximated 
according to the relations in [36, 37]: 

k-1   βð Þt 
∂ xð Þη ≈ Ak ∑ aj,k xk-jþ1 - 2xk-j þ xk-j-1 , (7)0t 

j¼0 

k-1   γð Þt 
∂ xð Þη ≈ Bk ∑ bj,k xk-jþ1 - xk-j-1 ,0t 

j¼0 

then the formulas will refer to the formula (7) 

2-βk 1-γkaj,k ¼ ð j þ 1Þ - j2-βk , bj, k ¼ ð j þ 1Þ - j1-γk , 

τ-βk λτ-γk 

Ak ¼ , Bk ¼ ,
Γð3 - βkÞ 2Γð2 - γkÞ 

Here, to shorten the record, βðtkÞ ¼ βk, γðtkÞ ¼ γk. 
Taking into account relation (7), the Cauchy problems (5) and (6) in the differ-

ence formulation will have the form 

k-1   k-1   
Ak ∑ aj,k xk-jþ1 - 2xk-j þ xk-j-1 þ Bk ∑ bj,k xk-jþ1 - xk-j-1 ¼ f k, 

j¼0 j¼0 (8) 
x0 ¼ α0, x1 ¼ α1 þ τα0, 

Here, to shorten the record, f k ¼ f xð k; tkÞ. We write the problem (8) explicitly:

 ! 
k-11   

xkþ1 ¼ 2 Akxk - ðAk - BkÞ xk-1 - Ak ∑ aj,k xk-jþ1 - 2xk-j þ xk-j-1Ak þ Bk j¼1 

Bk 
k-1   - ∑ bj,k xk-jþ1 - xk-j-1 þ f k:Ak þ Bk j¼1 

(9) 

We note that the weight coefficients aj, k and bj,k have properties, which we 
formulate in the form of the following lemmas. 

Lemma 1. For any k weights, coefficients aj,k and bj,k, as well as coefficients Ak and 
Bk, have the following properties: 

1 βk 1 γk1. ∑k
j¼
-
0 aj,k ¼ k2- , ∑k

j¼
-
0 bj, k ¼ k1- , 

2. 1 ¼ a0, k > a1, k > … > 0, 1 ¼ b0, k > b1, k > … > 0, 

3. Ak ≥ 0, Bk ≥ 0: 

Proof. The first property follows the definition of weight coefficients:h i 
∑j

k 
¼
-
0
1 aj,k ¼ ∑j

k 
¼
-
0
1 ð j þ 1Þ2-βk - j2-βk ¼ 1 - 0 þ 22-βk - 1 þ 32-βk - 22-βk þ :… 

2-βk þ k2-βk 2-βk ¼ k2-βk :þðk - 1Þ - ðk - 1Þ 
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h i 
∑k� 

0
1bj,k ¼ ∑k�1 ð jþ 1Þ1�γk � j1�γk ¼ 1 � 0 þ 21�γk � 1 þ 31�γk � 21�γk þ :…j¼ j¼0 

1� 1� 1� 1�γk :þðk� 1Þ γk þ k γk � ðk� 1Þ γk ¼ k 
The second property is proven in the following way. We introduce two 

functions: 

2�βk � x2� 1�γk � x1�γkφ x ð βk and η x ð ,ð  Þ ¼  xþ 1Þ ð Þ ¼  xþ 1Þ 
where x> 0. These functions are decreasing. Really derived from these functions 

h i h i 
1� 1�βk 1�γk � x1�γkφ0 x ð Þ ðxþ 1Þ βk � x <0, η0ð  Þ ¼ ð1 � γkÞ ðxþ 1Þ <0:ð  Þ ¼  2 � βk x 

Therefore, the second property holds. The third property follows also the prop-
erties of the gamma function. The lemma is proven. 

βð Þt γð ÞtLet ∂0t xð Þη and ∂0t xð Þη —approximations of differential operators of 
βð Þt γð ÞtGerasimov-Caputo types ∂0t xð Þη and ∂0t xð Þη . Then, we have the following lemma. 

βð Þt γð ÞtLemma 2. Approximations ∂0t xð Þη and ∂0t xð Þη operators of the Gerasimov-
βð Þt γð ÞtCaputo types ∂0t xð Þη and ∂0t xð Þη satisfy the following estimates: 

� βð Þt � � γð Þt �βð Þt γð Þt�∂0t x η x η � ≤ C � 
0t x η x η � ≤ C (10)ð  Þ � ∂ ð Þ  1τ, ∂ ð  Þ � ∂ ð Þ  2τ,� 0t � � 0t � 

where С1 and С2—constants that are independent of the parameter τ. 
Proof. Using the first property of Lemma 1 and Definition 3, we obtain 

τ2�βk τ2�βkk�1 k�1 
Þ þ O τ2

βð Þt ∑ ∑x tð � jk € τ x tð � jk€x ηð  Þ ¼  τÞ¼aj, a∂ j0t ,Γð3 � βk Γð3 � βkÞ Þj¼0 j¼0 

2�βkτ2�βkk � �  τ2�βk 2�βkk�1 
O τ2

t þ O τ2 ¼ ∑ x tð � jτk€ Þ þaj,Γð3 � βk Γð3 � βk Γð3 � βkÞ Þ Þj¼0 

τ2�βk 

¼
Γð3 � βkÞ 

k�1 � �  
a x tð � jτÞ þ O τ2 :j, k€∑ 

j¼0 

ðjþð1Þτ k�1 k�111β ξ1�βk €x tð � ξÞd∑ ∑x ηð  Þ ¼  ξ ¼ x t� ηjk€∂ aj, ,0t Γð2 � βk Γð2 � βkÞ Þj¼0 j¼0 
jτ 

� βð Þt �βð Þtτ�: ∂ ð  Þ � ∂ xð Þη� 0t x η 0t �ηj ∈ jτ; ðjþ 1½ Þ 
� h � �i �

þO τ2
τ2�βð Þt k�1 

∑ k €ð x t� ηjx t� jτÞ � €¼ aj,Γð3 � βð Þt Þ j¼0 

� � � 2�βk �τ2�βkk � �  ð  Þ þO τ2 ð  Þ þ O τ2
τ2�βk k�1 � �  

∑ k �O τ O τ¼ ¼aj,Γð3 � βkÞ j¼0 Γð3 � βkÞ 

¼ O τ ¼ O τ :ð  Þ þO τ2 ð Þ  

Similarly, we can obtain the second estimate from Eq. (10). 
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τ1-γkk1-γkτ1-γk τ1-γkk-1 k-1γð Þt ∑ ∑bj,k _x tð - jτÞ þ Oð Þτ bj, k _ðx t  - jτx ηð  Þ ¼  ½  ] ¼  Þ þ∂0t Γð2 - γk Γð2 - γk Γð2 - γkÞ Þ Þj¼0 j¼0 

τ1-γk t1-γk   τ1-γkk-1 k-1 
Þ þ  O τ2 ¼∑ ∑O τð  Þ ¼  bj, k _ðx t  - jτ bj, k _x tð - jτÞ þOð Þτ :

Γð2 - γk Γð2 - γkÞ Γð2 - γkÞ j¼0Þ j¼0 

ðjþð1Þτ k-1   
∑ 

1 
∑

1 1γð Þt ξ-γkx t_ð - ξÞdξ ¼ bj, kx ηð  Þ ¼  _x t  - ηj∂ ,0t Γð1 - γkÞ Γð1 - γkÞ 
k-

j¼0 j¼0 
jτ 

ηj ∈ ½ jτ; ð j þ 1Þτ]:
       τ1-γk k-1 h   i   γð Þt     γð Þt ∂ ∑ bj,k x tð - jτÞ - x t  - ηj þ Oð Þτxð  Þ -η ∂ xð Þη ¼ ¼ 0t 0t  Γð2 - γk  Þ j¼0 

     k-1   τ1-γkk1-γk    ∑
τ1-γk     ð  Þ þ Oð Þτbj,k ·O τ O τ ð Þð  Þ þ O τ¼ ¼  

Γð2 - γkÞ j¼0 Γð2 - γkÞ  
¼ O τ ð  Þ ¼ O τ :ð  Þ þO τ ð Þ  

The lemma is proven. 
Investigation. According to Lemma 2, it can be shown that the explicit finite-

difference scheme (9) has an error ε ¼ Oð Þτ . This fact will be used in computer 
experiments in determining the computational accuracy of the numerical method. 

Lemma 3. The sums in the finite-difference scheme (9) have the following representations: 
k-1   
∑aj,k xk-jþ1 - 2xk-j þ xk-j-1 ¼ a1, kxk þ ak-1, kx0 
j¼1 

k-2  
∑þðak-2, k - 2ak-1, kÞ x1 þ ða2, k - 2a1, k ajþ1, k - 2aj, k þ aj-1, kÞ xk-1 þ xk-j, 
j¼2 

(11)
k-1   
∑bj,k xk-jþ1 - xk-j-1 ¼ b1, kxk - bk-1, kx0 þ b2, kxk-1 - bk-2, kx1 
j¼1 

k-2  
∑ bjþ1, k - bj-1, kþ xk-j: 
j¼2 

Proof. The representation (11) follows the properties of the sum. Indeed, by 
opening the sums in Eq. (9) and grouping the terms properly, we arrive at the 
representation (11). 

Using Lemma 3, the finite-difference scheme (9) can be rewritten as 

x1 ¼ α0 þ τα1, 

x2 ¼ 
2A1 A1 - B1 f 1x1 - x0 þ , k  ¼ 1,

A1 þ B1 A1 þ B1 A1 þ B1 

1 
xkþ1 ¼ 
 Ak þ Bk  ðAkð2 - a1, kÞ - Bkb1,kÞxk - ðAkða2, k - 2a1, k þ a0,kÞ þ Bkðb2, k - b0,kÞÞxk-1 þ f k -
ðAkðak-2, k - 2ak-1,kÞ - Bkbk-2, kÞx1 - ðAkak-1, k - Bkbk-1,kÞx0-

Ak þ Bk 

1 k-2      -
Ak þ Bk 

∑ Ak ajþ1, k - 2aj,k þ aj-1, k þ Bk bjþ1,k - bj-1, k xk-j, k  ¼ 2, …, n  - 1, 
j¼2 

Or in matrix form 

Xkþ1 ¼MXk þ Fk, (12) 

8 
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�TXkþ1 ¼ ðx1; x2; …; xN�1ÞT, Xk ¼ ðx0; x1; …; xN�2ÞT, Fk ¼ f 0; f 1; …; f N�2 

where the matrix M ¼ mij , i ¼ 1, …, N  � 1, j  ¼ 1, …, N  � 1: 
8 
>>>>>< 

0, j ≥ i þ 1, 
Ai�1ð2 � ai�2, i�1Þ � Bi�1bi�2, i�1 , j ¼ i ¼ 3, …, N  � 1,

Ai�1 þ Bi�1mij ¼ 
�Ai�1 

>>>>>: ai�jþ1, i�1 � 2ai�j, i�1 þ ai�j�1, i�1 � Bi�1 

Ai�1 þ Bi�1 

bi�jþ1, i�1 � bi�j�1, i�1 , j  ≤ i � 1, 

(13) 

2A1 Bi�1bi�2, i�1 � Ai�1ai�2, i�1 m1,1 ¼ 1, m2,2 ¼ , mi,1 ¼ , i  ¼ 2, …, N  � 1,
A1 þ B1 Ai�1 þ Bi�1 

Ai�1ð2ai�2, i�1 � ai�3, i�1Þ þ Bi�1bi�3, i�1 mi,2 ¼ , i  ¼ 3, …, N  � 1:
Ai�1 þ Bi�1 

Theorem 1. An explicit finite-difference scheme (9) converges with the first order 
jxk � xkj ¼ Oð Þτ if the following condition is satisfied: 

1  ! 
2Γð2 � γi�1Þ βi�1 �γi�1 

τ ≤ τ0 ¼ min 1; , i  ¼ 2, …, N  � 1: (14)
λΓð3 � βi�1Þ 

Proof. Let Xk ¼ ðx0; …; xN�2ÞT be the exact solution of system (8) and the error 
vector ekþ1 ¼ Xkþ1 � Xkþ1, e0 ¼ 0:. Then, system (8), with allowance for Lemma 2, 
can be written as follows: 

ekþ1 ¼Mek þ Fe, k þ Oð Þτ , (15) 

where 

1 TFe,k ¼ ðjf ðx1; tkÞ � f ðx1; tkÞj; …; j f xð k; tkÞ � f ðxk; tkÞjÞAk þ Bk 

1 1
L1e1; …; Lkek 

T≤ ð  Þ ¼ ΔFkek, ΔFk ¼ diagðL1; …; LkÞ :Ak þ Bk Ak þ Bk 

We note that for any k, the inequality holds Lkj j≤ L. Consider the norm for the 

∑k�1matrix M: M j¼1 mij , we obtaink k∞ ¼ maxi 

M maxk k∞ ¼ 
1 ≤ i ≤ N�1 

1 þ 
B1b0, 1 � A1a0, 1 

A1 þ B1 
þ 

A2ð2 � a1, 2Þ � B2b1, 2 

0 1 
2A1 

A1 þ B1 

B2b1, 2 � A2a1, 2þBBBBBBBBBBBBBBBBBBBBBBBB@ 

CCCCCCCCCCCCCCCCCCCCCCCCA 

A2 þ B2 

A2ð2a1, 2 � a0, 2Þ þ B2b0, 2 

A2 þ B2 
þþ 

A2 þ B2 

Bi�1bi�2, i�1 � Ai�1ai�2, i�1 

Ai�1 þ Bi�1 

A3ð2a1, 3 � a2, 3 � a0,3Þ þ B3ðb0, 3 � b2,3Þ 
A3 þ B3

þ þ… þ 

Ai�1ð2ai�2, i�1 � ai�3, i�1Þ þ Bi�1bi�3, i�1 

Ai�1 þ Bi�1
þ 

þ 
Ai�1ð2ai�3, i�1 � ai�2, i�1 � ai�4, i�1Þ þ Bi�1ðbi�4, i�1 � bi�2, i�1Þ 

Ai�1 þ Bi�1 

þ 
Ai�1ð2 � ai�2, i�1Þ � Bi�1bi�2, i�1 

Ai�1 þ Bi�1 
þ… 

(16) 
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According to Lemma 1, we note that the inequality holds 2A1 ≥ 0. Suppose that A1þB1 

the condition is satisfied Ai-1 ≥ Bi-1, then the second diagonal element satisfies the 
inequality 1 ≤ 2A1 ≤ 2 in the matrix M, and the remaining diagonal elements areA1 þB1 

Ai-1 ð2-ai-2, i-1Þ-Bi-1bi-2, i-1equal to the inequality 0 ≤ ≤ 1; these elements with Ai 1þ 1- Bi-
i ! N - 1, in view of properties 2 and 3, tend to be zero. 

The remaining elements of the matrix (16) also possess these properties. We 
also note that the matrix M is a matrix with a diagonal predominance for small 
values λ. 

Therefore, the sum of the elements of the second row in the matrix M satisfies 
A1a0,1 -B1b0,1the condition 1 ≤ 2A1 þ ≤ 3. Further, by virtue of properties 2 and 3 of A1 þB1 A1 þB1 

Lemma 1, it is obvious that the sum of the remaining terms also satisfies these 
conditions. Therefore, the following estimate is valid for the norm: 1 ≤ M ∞ ≤ 3.k k  

Note that for the values of the parameter λ ≫ 1 the norm M ∞ !k k  1, however, 
the condition number μ M ≫ 1 is violated and the diagonal transformation is ð Þ  
violated; therefore, it is necessary to decrease the step τ. 

Further, for any constant С > 0 independent of τ, and the error rate, the follow-
ing estimate holds:

  
L kekþ1k∞ ≤ k Mk k k  Cτ ≤ 3 þ ek ∞ þ Cτ: (17)ΔFk þ ek ∞ þ k k∞ Ak þ Bk

  
We introduce the notation in Eq. (17): sk ¼ 3 þ L , s  ¼ Cτ. Then, we obtainAk þBk 

the following estimate:
  

ek ∞ þ sk- ek- 1k 1 1Þkekþ1k∞ ≤ skk k  s ≤ sk 1k 1k∞ þ s þ s ¼ sksk- ek- k∞ þ s sð k þ
  

≤ sksk-1 sk-2kek-2k∞ þ s þ s sð k þ 1Þ ¼ sksk-1sk-2kek-2k∞ þ s sð ksk-1 þ sk þ 1Þ
  

≤ sksk-1sk-2 sk-3kek-3k∞ þ s þ s sð ksk-1 þ sk þ 1Þ ¼ sksk-1sk-2sk-3kek-3k∞ (18)
  

≤ sksk-1sk-2 sk-3kek-3k∞ þ s þ s sð ksk-1 þ sk þ 1Þ ¼ sksk-1sk-2sk-3kek-3k∞ 

þ s sð ksk-1sk-2 þ sksk-1 þ sk þ 1Þ≤ … ≤ sksk-1 .… . sk-rkek-rk 
þ s sð ksk-1 .… . sk-rþ1 þ… þ sk þ 1Þ: 

Substituting into Eq. (18) r ¼ k - 1, we obtain 

k … . k k þ s sð ksk- … . s2 þ… þ sk þ 1Þ≤ C0k k þ Oð Þτ :kekþ1 ∞ ≤ sksk-1 . s1 e1 1 . e0 

Qk 
From the second initial condition (6) it follows: e1 ≤ k k and С0 ¼ sp.k k  e0 

p¼1 

Now according to our assumption Ai-1 ≥ Bi-1, which leads us to the relation

  1 

2Γ 2 -ð Þ βi-1-γi-1γi-1τ ≤ , i  ¼ 2, …, N  - 1: (19)
λΓð3 - Þβi-1 

Condition (19) begins to work at such values λ, when many of conditionalities 
arise μ М ≫ 1, and for sufficiently small values λ, it suffices that the step satisfies ð Þ  
the inequality τ ≤ 1. Therefore, we arrive at the relation (14). The theorem is 
proven. 

We note that in [38] the authors used the classical Lax theorem, which holds for 
local finite-difference schemes, to prove the convergence of the scheme. For nonlocal 
finite-difference schemes, the convergence must be proven independently. 
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We consider the stability of an explicit finite-difference scheme (4). Suppose 
that Xk and two Yk are different solutions of the matrix Eq. (12) with initial 
conditions X0 and Y0. 

Theorem 2. An explicit finite-difference scheme (9) is conditionally stable if condi-
tion (14) is satisfied and the estimate holds jYk � Xkj≤ C Yj 0 � X0j for any k, where 
С >0  does not depend on the step τ. 

Proof. We introduce the notation: ekþ1 ¼ Ykþ1 � Xkþ1: Then, Eq. (12) can be 
written in the form ekþ1 ¼Mek þ Fe, k. Here, as it was said in. 

1 T ≤ 1Fe,k ¼ ðj f ðx1; tkÞ � f ðx1; tkÞj; …; j f ðxk; tkÞ � f ðxk; tkÞjÞAkþBk AkþBk 

ðL1e1; …; LkekÞ ¼ ΔFkek 

According to Theorem 1, we have the following estimate: 

� 

kM þ ΔFkk≤ 3 þ 
L 

� 

¼ sk:Ak þ Bk 

Therefore, the following estimate holds 

L kekþ1k∞ ≤ k k k  3 þ k kM þ ΔFkk ek ∞ ≤ ek ∞Ak þ Bk 

¼ sk ek ∞ ≤ sksk� kek� k∞ ≤ sksk� 2 2k 1 �… � sk�rk :k k  1 1 1sk� kek� ∞ ≤ … ≤ sksk� ek�rk 
Qk 

With r ¼ k � 1, we obtain kekþ1k e1 e0 sp.∞ ≤ С0k k ≤ C0k k and С0 ¼ 
p¼1 

The last inequality follows the second condition of problem (6). Therefore, if X0 

there is a perturbation, then it does not lead to a large increase in the error of the 
numerical solution. However, for large values λ, many of conditionalities μ Мð Þ≫ 1 
arise, and therefore it is necessary to decrease the step τ; according to Eq. (19), for 
small values λ, the estimate is valid τ ≤ 1. Then, the system is stable if condition (14) 
is satisfied. The theorem is proven. 

4. Results of modeling 

Consider the work of the explicit finite-difference scheme (9) on specific exam-
ples. We show that the scheme (9) has the first order of accuracy. Since in the 
general case, the exact solution of the Cauchy problems (5) and (6) cannot be 
written in analytical form, we will use the double conversion method. For this, we 
introduce two parameters: ξ ¼ maxi jxi � x2ij—absolute error between the numeri-
cal solution xi in step τ and the numerical solution x2i in step τ=2. Then, the order of 
computational accuracy p can be estimated by the formula 

p ¼ log 2ð Þξ = log 2ðτ=2Þ: 
We note that in the case when the fractional parameters in the scheme (9) do 

not change and have the following values of βk ¼ 2 and γk ¼ 1, we arrive at the 
classical local explicit finite-difference scheme with the second order of accuracy. 

The numerical algorithm (9) was implemented in Maple software. 
Example 1. Suppose that the right-hand side in Eq. (1) has the form 

f ðx tð Þ; tÞ ¼ δ sin ðφtÞ þ txð Þt : 
Then, Eq. (5) describes a linear hereditary Airy oscillator, which was considered 

in the author’s papers [21, 39] and has the following form. 
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βð Þt γð Þt 
∂ x η x η ð Þ ¼ δ cos ð Þ:ð  Þ þ λ∂ ð  Þ � tx t φt0t 0t 

We choose the initial condition (6) for simplicity by homogeneous: 

xð0Þ ¼ x_ð0Þ ¼ 0: 

We note that the Airy oscillator is used in optics in the simulation of Airy laser beams. 
In this case, the explicit finite-difference scheme (9) has a more specific form: 

x0 ¼ x1 ¼ 0, 

1 
xkþ1 ¼ ðð2Ak � kτÞxk � ðAk � BkÞxk�1Þ (20)

Ak þ Bk 

Ak 
k�1 ˜ ° � ∑ aj,k xk�jþ1 � 2xk�j þ xk�j�1Ak þ Bk j¼1 

Bk 
k�1 ˜ ° � ∑ bj,k xk�jþ1 � xk�j�1 þ δ sin ðφkτÞ:

Ak þ Bk j¼1 

For the explicit finite-difference scheme (20), we choose the following values of 
the control parameters: T ¼ 1. λ ¼ 1, δ ¼ 5, φ ¼ 10, ω ¼ 10 and 
ð Þ ¼ 1:8 � 0:03 sin ωt ð Þ ¼ 0:8 � 0:05 cos ωtβ t ð Þ, γ t ð Þ. And during the simulation, we 

will change the number of nodes N in the calculation grid. 
Note that the values of the selected parameters for Example 1 satisfy the condi-

tions of Theorems 1 and 2, which is indirectly confirmed by the results of modeling 
for different values N of the nodes of the computational grid (Table 1). 

From Table 1 we can notice that when the number of calculated nodes in the 
grid doubles in nodes N, the maximum error in absolute value decreases twice, and 
the order of computational accuracy p tends to unite. 

This confirms that the explicit finite-difference scheme (9) and in particular the 
scheme (20) for Example 1 have the first order of accuracy, and since condition 
(14) is satisfied, then convergence with the same order. 

In Figure 1 the oscillogram (Figure 1a) and the phase trajectory (Figure 1b) are 
shown for Example 1 at the parameter value T ¼ 10, N  ¼ 1000: It can be noted that 
with time the amplitude of the oscillations is established and as a result the phase 
trajectory reaches the limit cycle. Another situation arises in the case of free oscilla-
tions δ ¼ 0 (Figure 2). 

The amplitude of the oscillations decays (Figure 2a), and the phase trajectory 
twists into a spiral (Figure 2b). The dissipation of energy in this case occurs as a 
result of the presence of friction with a coefficient λ and also the “memory” effect, 
which gives an additional term in the ratio for the total energy of the oscillatory 
system (Figure 3). 

This fact is confirmed by the results of [2]. Consider the following example of a 
nonlinear hereditary oscillator. 

Example 2. Let that in Eq. (1) the right-hand side has the form. 

f ðx tð Þ; tÞ ¼ δ sin ðφtÞ � ax t ð Þ,ð Þ þ bx3 t 

N ξ p 

640 0.0003331017 1.119146497 

1280 0.0001745618 1.102636795 

2560 0.0000906971 1.089811915 

Table 1. 
Results of numerical simulation. 
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Figure 1. 
The oscillogram (a) and the phase trajectory (b) for Example 1 with the parameter values T ¼ 10, N  ¼ 1000: 

Figure 2. 
Oscillogram (a) and phase trajectory (b) for Example 1 with initial conditions xð0Þ ¼ 0:1, x_ ð0Þ ¼ 0:2, and 
δ ¼ 0. 

and we choose the initial conditions (6) to be homogeneous: 

xð0Þ ¼ x_ð0Þ ¼ 0: 

In this case, Eq. (5) describes the Duffing fractional oscillator [18]: 

βð Þt γð Þt 
∂ x η x η t ð Þ ¼ δ sin φt :ð  Þ þ λ∂ ð  Þ þ bx3ð Þ � ax t ð Þ0t 0t 

The explicit finite-difference scheme (9) for this case has the form 

13 

http://dx.doi.org/10.5772/intechopen.81858


Oscillators - Recent Developments 

Figure 3. 
The oscillogram (a) and the phase trajectory (b) for Example 1 with initial conditions xð0Þ ¼  0:1, x_ð0Þ ¼  0:2, 
and δ ¼ 0, λ ¼ 0. 

N ξ p 

640 0.0003619281 1.107545912 

1280 0.0001896841 1.092050182 

2560 0.0000991471 1.079382204 

Table 2. 
Results of numerical simulation. 

x0 ¼ x1 ¼ 0, 

1 ˜ ° 3xkþ1 ¼ ð2Ak þ 1Þxk � xk � ðAk � BkÞxk�1 (21)
Ak þ Bk 

Ak 
k�1 ˜ ° � ∑ aj,k xk�jþ1 � 2xk�j þ xk�j�1Ak þ Bk j¼1 

Bk 
k�1 ˜ ° � ∑ bj,k xk�jþ1 � xk�j�1 þ δ sin ðφkτÞ:

Ak þ Bk j¼1 

For the explicit finite-difference scheme (21), we take the values of the control 
parameters as follows: T ¼ 1, λ ¼ 0:3, δ ¼ 2, and φ ¼ ω ¼ 1. 

Remark. Note that this choice of control parameter values is ensured by the 
condition (14) for Theorems 1 and 2. The results of numerical simulation for 
Example 2 are given in Table 2. 
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Figure 4. 
The oscillogram (a) and the phase trajectory (b) for Example 2. 

Note from Table 2 that for Example 2, with an increase in the number of design 
nodes N, the maximum error ξ in absolute value decreases and the order of com-
putational accuracy p tends to unite. This indicates that the explicit finite-difference 
scheme (21) has the first order of accuracy. 

Let’s perform numerical simulation according to the scheme (21) with the values 
of the following parameters, T ¼ 100, N ¼ 2000, and δ ¼ 50, and leave the 
remaining parameters unchanged. Let us construct an oscillogram and a phase 
trajectory (Figure 3). 

The oscillogram (Figure 4a) has a constant amplitude of a more complex shape at 
its minima and maxima, which is reflected in the phase trajectory (Figure 4b). The 
phase trajectory enters a complex two-loop limit cycle. The presence of such loops, 
apparently, is associated with the effects of memory in the oscillatory system [40]. 

Figure 5 shows the case of free oscillations for Example 2. It is seen that the 
presence of friction and memory effects in the oscillatory system intensify energy 
dissipation, which leads to damping of the oscillations (Figure 5a) and a phase 
trajectory—a twisting spiral (Figure 5b). Indeed, if there is no friction λ ¼ 0 in the 
oscillatory system, we obtain an oscillogram and a phase trajectory as in Figure 6. 

Example 3. Suppose that in Eq. (1) the right-hand side has the form 

7 
f ðx tð Þ; tÞ ¼ bt þ c ∑ an sin ðnxð Þt Þ � ωβð Þt x tð Þ, (22) 

n¼1 

where b is the spring travel speed; c is the surface adhesion energy; ω is the 
Ð1 

cos ðπnτÞdτfrequency of free oscillations; and an ¼ 2n is the coefficients of the cosh 2 ðπτÞ 
0 

expansion of the Fourier series. 
Eq. (5) with the right-hand side of Eq. (22) describes the hereditary stick–slip 

effect [20]. The stick–slip effect is encountered in tribology problems, for example, 
when the movement of a load on a spring along a surface is investigated. Due to 
adhesion, the load adheres to the surface, and due to the tension of the spring, it 
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Figure 5. 
Oscillogram (a) and phase trajectory (b) for Example 3 with initial conditions xð0Þ ¼  0:1, x_ð0Þ ¼  0:2, 
and δ ¼ 0. 

Figure 6. 
Oscillogram (a) and phase trajectory (b) for Example 2 with initial conditions xð0Þ ¼  0:1, x_ð0Þ ¼  0:2, and 
δ ¼ 0, λ ¼ 0. 
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Figure 7. 
Calculated curves obtained from formula (6) from [20] (curve 1) and formula (9) (curve 2): (a) oscillogram, 
(b) oscillator speed, and (c) phase trajectory. 

breaks and slides along it, and its oscillations occur [41, 42]. The stick–slip effect 
can also be incorporated into the mechanical model of an earthquake in the sub-
duction zone of lithospheres plates [43]. 

In [43] it was said that in order to obtain a reliable solution it suffices to take the 
first seven coefficients an in the expansion of the function (22). The values of these 
coefficients are taken from [43] a1 ¼ 0:436, a2 ¼ 0:344, a3 ¼ 0:164, a4 ¼ 0:058, 
a5 ¼ 0:021, a6 ¼ 0:004, and a7 ¼ 0:003. Values of control parameters are 
β t Þ γ t Þ, N ¼ 3000 δ ¼ 50, τ ¼ 0:05,ð Þ ¼ 1:8 � 0:03 sin ðπt ð Þ ¼ 0:6 � 0:04 cos ðπt 
λ ¼ 0:3, b ¼ 1, ω ¼ 1, and xð0Þ ¼ 0, x_ð0Þ ¼ 0:3. 

Figure 7 shows the calculated displacement curves, displacement velocities, and 
phase trajectory. Figure 7a shows the oscillogram for Example 3. It can be seen that 
during the separation, the load experiences oscillations and the rate of such oscilla-
tions in the potential well attenuates rather slowly (Figure 7b). This effect is the 
eradication of the process. The phase trajectory in Figure 7c shows that the poten-
tial wells are stable focuses. 

5. Conclusion 

A mathematical model characterizing a wide class of hereditary oscillators is 
proposed and studied. The model is a differential Cauchy problem with derivatives 
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of fractional-order variables of the Gerasimov-Caputo types (5) and (6). Using the 
theory of finite-difference schemes, a nonlocal explicit finite-difference scheme 
(9) was constructed with the first order of accuracy. Questions of its stability and 
convergence, which are formulated in the form of corresponding theorems, were 
studied. 

The main result of the paper can be formulated as follows: an explicit finite-
difference scheme is conditionally stable and converges if criterion (14) is satisfied. 
With the help of computational examples, it was shown that the scheme (9) has the 
first order of accuracy. It is confirmed that in the case of free oscillations, the 
presence of friction and heredity increases dissipation of energy, which leads to 
attenuation of oscillations. 

One of the continuations of the investigation of the Cauchy problems (5) and 
(6) is a generalization of it: 

βðx tð Þ;tÞ γðx tð Þ;tÞ 
∂ x η ð ð Þ; tÞ∂ x η ð ð Þ; tÞ, xð0Þ ¼ α0, x_ð0Þ ¼ α1:ð  Þ þ λ x t  ð  Þ ¼ f  x t0t 0t 

Another continuation of the research is related to the introduction of other 
memory functions K1ðt � τÞ, K2ðt � τÞ into the model Eq. (1), which leads to 
different model equations with different derivatives of fractional orders, and also 
the Cauchy problems (5) and (6) can be written in terms of the local fractional 
derivative [44–46]. 

The question of the stability of the rest points of dynamical systems described by the 
Cauchy problems (5) and (6) is also interesting, by analogy with the papers [47, 48]. 
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Chapter 2

Quantum Harmonic Oscillator
Coşkun Deniz

Abstract

Quantum harmonic oscillator (QHO) involves square law potential (x2) in the
Schrodinger equation and is a fundamental problem in quantum mechanics. It can
be solved by various conventional methods such as (i) analytical methods where
Hermite polynomials are involved, (ii) algebraic methods where ladder operators
are involved, and (iii) approximation methods where perturbation, variational,
semiclassical, etc. techniques are involved. Here we present the general outcomes of
the two conventional semiclassical approximation methods: the JWKB method
(named after Jeffreys, Wentzel, Kramers, and Brillouin) and the MAF method
(abbreviated for “modified Airy functions”) to solve the QHO in a very good
precision. Although JWKB is an approximation method, it interestingly gives the
exact solution for the QHO except for the classical turning points (CTPs) where it
diverges as typical to the JWKB. As the MAF method, it enables very approximate
wave functions to be written in terms of Airy functions without any discontinuity in
the entire domain, though, it needs careful treatment since Airy functions exhibit
too much oscillatory behavior. Here, we make use of the parity conditions of the
QHO to find the exact JWKB and approximate MAF solutions of the QHO within
the capability of these methods.

Keywords: Schrodinger equation, quantum mechanics, JWKB, MAF

1. Introduction

Time-independent Schrodinger equation (TISE) is an eigenvalue problem in the
form:

Ĥ φj i ¼ E φj i ) �ℏ2

2m
∇2 þ U rð Þ

˜ °
φn ¼ Enφ (1)

where the terms are in the usual meanings, namely, ∇2, the Laplacian operator;
Ĥ, Hamiltonian operator (kinetic energy plus potential energy operators); m, mass;
ℏ, Planck’s constant divided by 2π; φ, wave function (eigenfunction); E, total
energy (eigenvalue); and U(r), function of potential energy [1–7]. Quantum har-
monic oscillator (QHO) is described by the TISE in (1) for the square law potential:

U rð Þ ¼ 1
2
mw2r2 ¼ kr2

2m
≥0 (2)
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1 2 kr2 

U rð Þ ¼  mw r2 ¼ ≥ 0 (2)
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pffiffiffiffiffiffiffiffiffi 
where w ¼ k=m is the natural angular momentum (associated with the angu-

lar frequency f ¼ w= 2π ). Since U rð Þ  ð Þ≥ 0, our eigenvalue problem (or bound-state 
problem) requires En ≥ 0 to give the following: 

∇2φnðEn ≥ 0; rÞ þ f En ≥ 0; rÞ ðEn ≥ 0; rÞ ¼ 0;ð φn (
2m 2m 

� 
1 

� 0 or þ
2 2 

ð Þ  (3)
f Eð n ≥ 0; rÞ ¼ k2ðEn ≥ 0; rÞ ¼  ½En �U rð Þ� ¼  En � mw r ≕ 

ℏ2 ℏ2 2 ð Þ  

The QHO is a very good approximation in solving systems of diatomic molecules 
vibrating under the spring constant [1, 2, 5] and finds various modern physics 
applications such as in [8–10] as stated in a famous quotation: “the career of a young 
theoretical physicist consists of treating the harmonic oscillator in ever-increasing 
levels of abstraction by Sidney Coleman” [10, 11]. Here, U(r) is central potential 
which can be given in Cartesian coordinates (x, y, z) where solutions involve 
Hermite polynomials as in [1–7, 12] or in spherical coordinates (r, θ, ϕ) where 
solutions involve spherical harmonics as in [1, 2, 13]. For simplicity, it is widely 
studied in one dimension (say, in x only), and higher dimensional systems are called 
isotropic harmonic oscillators in 2D or in 3D. The QHO can be solved by various 
conventional methods such as the following: (i) by analytical methods where some 
analytic functions involving Hermite polynomials are involved [1–5]; (ii) algebraic 
methods where ladder operators are involved, that is, [1, 2]; and (iii) by approxi-
mation methods such as perturbation methods, JWKB method, variational 
methods, etc., that is, [1–6, 14]. Brownian study of QHO as an open dynamic 
quantum system in terms of quantum Langevin equation was studied in [15–17]. 
We study here one dimensional and non-frictional, that is, undamped case, and 
present its solution by the two following conventional semiclassical approximation 
methods: (i) the JWKB method (named after the authors, Jeffreys, Wentzel, 
Kramers, and Brillouin, who contributed to the theory) [1–7, 14] and (ii) the MAF 
method (abbreviated from modified Airy function) [3, 18–23]. 

JWKB method is known to give exact eigenenergies for the QHO, but 
eigenfunctions fail at and around the classical turning points (CTPs) where f ¼ 0 
(or, equivalently, En ¼ U rð Þ) in (3) as typical to the JWKB method [1–7, 14]. These 
discontinuities prevent us from using continuity at the boundaries by equating the 
JWKB solutions of two neighboring regions directly at the CTPs to find the 
eigenenergy-dependent coefficients in the general JWKB eigenfunctions (wave 
functions). It also prohibits the use of normalizability of the eigenfunctions between 
�∞ and ∞. To surmount the problem, parity conditions of the problem regarding 
the symmetry of the QHO in the dimensionless form are used, and advanced 
computational software such as Mathematica can be used to achieve these calcula-
tions [3, 4, 14, 24]. Moreover, asymptotic matching is required in the JWKB 
solutions to maintain the normalizability except for the CTPs as discussed 
above [4, 7, 14]. As to the MAF method, it does not exhibit discontinuities at the 
CTPs, though highly oscillating behavior of the Airy functions requires careful 
handling in finding their zeros and the parity treatment used in the JWKB 
solution seems straightforward to be also applicable to the MAF solution of the 
QHO [3, 19–22]. Although it was originally suggested in 1931 by Langer in [25], 
finding zeros of highly oscillatory Airy functions became practical as the advances 
in computational software and the MAF method became widespread by the 1990s 
[3, 18–23]. In this work, we present the general outcomes of the conventional JWKB 
and MAF methods as two semiclassical conventional methods and solve the QHO by 
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using the parity condition of the problem in the dimensionless form pedagogically. 
We will discuss the treatment of parity matching and asymptotic matching in 
solving the QHO by these semiclassical methods. 

2. Exact solution of the QHO in 1D by the analytic method 

The QHO in (3) is a bound-state problem which can be written in 1D for the 
2 2 ¼ kx2potential function in 1D (U xð  Þ ¼ 2

1 mw x ≥ 0) as follows:2m 

″ ð  Þ þx f Eð n ≥ 0; xÞφ xð  Þ ¼ 0nφn (� � 0 or þ (4)ð Þ2m 2m 1 2f Eð n ≥ 0; xÞ ¼ k2ðEn ≥ 0; xÞ ¼  ½En �U xð Þ� ¼  En � mw x2Þ ≕ 
ℏ2 ℏ2 2 ð Þ  

or, simply, 

2m 1 2 2En � mw x φ x (5)ð  Þ ¼ 0n 
″φ xð  Þ þ  

ℏ2n 2 

whose solution by various conventional approaches (such as analytical, alge-
braic, approximation, etc.) is given in any fundamental textbooks, that is, [1–3, 5] 
and whose results can be summarized as follows [14]: 

i. Change of variable in (4) and (5): 
rffiffiffiffiffiffiffiffi 

mw 
y xð  Þ ¼ βx ¼ x (6)

ℏ 

ii. TISE for the QHO in 1D in dimensionless form: 

″ ð  Þ þy k2½λnðEn ≥ 0Þ; y�φn yð  Þ ¼ 0φn( ( )
2En 0 or þ (7)ð Þ  

ð Þ≥ 0; y�≕ k2½λ ð Þ≥ 0; y� ¼ λ � y ; λEn n En 
2 2 2 
n⇔ f ½λ ≕¼n n ℏw ð Þ  

Note that here f ≕ k2 is a function of λn En n ≥ 0 since Enð Þ&y and λ ≥ 0. More-
over, f ðλn; yÞ is an even function as shown in Figure 1 (λ is chosen as continuous 
including the discrete energy values assuming that the eigenenergies have not been 
found yet). 

iii. Exact eigenenergies: 

12ΛEX ≕ Λ ¼ λ ¼ 2n þ 1 ) En ¼ n þ ℏw, n ¼ 0; 1; 2, … (8)n 2 

iv. Exact eigenfunctions (wave functions) in y: 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
y 

φnð Þy ≕ ψ λð n; yÞ ¼  pffiffiffi 1
2n Hnð Þy � 2

2 

, n  ¼ 0; 1; 2, … (9)
π n! 

v. By using (6), we have the wave functions in x: 
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Figure 1. 
Graphs of f ðλ ≥ 0; yÞ and gðλ ≥ 0; yÞ ¼ 0. 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
βxβ -ð Þ2 

φnð Þx ≕ φðβ; λn; xÞ ¼  pffiffiffi Hnð Þ  , n  ¼ 0; 1; 2, … (10)βx 2 

2nπ n! 

We used two different symbols (φ and ψ) to label the functions in two different 
independent variables (in x and in y, respectively). Exact wave functions in (9) (via 
exact eigen energies in (8)) are given for even and odd n values in Figures 3 and 4 
along with the JWKB solutions for comparison. Hn in (9) and (10) is Hermite 
polynomials with indice n (named after the French mathematician Charles 

Rodriguez formula: 
n x -xð Þ2 dn ð 2 ÞHn ð  Þ ¼x ð-1Þ e dxn e 

Generating function: 
Hn ð Þx tn 

exp ð2xt - t2Þ ¼ ∑∞ 
n¼0 n! 

Some of the Hermite polynomials: 
H0 ð  Þ ¼x 1, H1 x x 2 - 1ð  Þ ¼ 2x, H2ð  Þ ¼ 4x 

H3 x 3 - 12x, H4ð  Þ ¼ 16x4 - 48x2 þ 12ð  Þ ¼ 8x x 

Recurrence relations: 
Hnþ1 ¼ 2xHn x xð  Þ - 2nHn-1ð Þ  

H0 ð  Þ ¼x 2nHn-1ð Þxn 

Evenness and oddity 
Hnð-xÞ ¼ ð-1ÞnHnð Þx 

odd, if n isodd 
∴Hn xð  Þ ¼  

even, if n is even 

Orthogonality: R ∞ 0if m 6¼ n x
-∞ e

- 2 
Hmð Þx Hnð Þx dx ¼ 

2n pffiffiffi n! π if m ¼ n 

Table 1. 
Some properties of Hermite polynomials. 
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Hermite). Some of the properties of Hermite polynomials are tabulated in Table 1, 
and calculation of conversion factor β which exhibits a quantization, namely, 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffi� � �1=4 mw� mk k ðn þ 1=2Þk 
β ¼ � ¼ ¼ ¼ ≕ βn, (11)� pffiffi ℏ k ℏ2 ℏw Enw¼ m 

is given along with the related Mathematica codes in [14]. 

3. A review of the JWKB solution of the QHO 

2D plot of Figure 1 is schematically given in Figure 2 for the QHO under study 
(in the dimensionless form) from which we have the following outcomes [14]: 

3.1 JWKB eigenenergies of the QHO 

JWKB eigenenergies can be found by applying the Bohr-Sommerfeld quantiza-
tion formula given by [1–7, 14]: 

~ 
Z � �y2 � � 1 

λJk ð Þ; y dy ¼ n þEn (12)π
2y1 

as follows: 

~~ 
Z Z � �y2¼λn y2¼λn� � � � 1 

λJ λJk ð Þ; y dy ¼ 2 kEn ð Þ; y dy ¼ n þEn π 
2y1¼�λn 0 Z λn 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Z λn 
� 

12 ð Þ � y2dy ¼J En k ð Þ; y dy ¼ n þEn2 ~ 

~ 

~λ λJ 
�λn 0 

λ 

π) 
2 � � (13)R π=2 ~ 2 1 2 π 1 

π⇔λ2θdθ ¼ n þy ≕ sin θ ) ð ÞEn ð ÞEn2 π¼ n þcosJ J�π=2 2 2 2 

~~
pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 

λJ En ð ÞEJn ≕ EJWKB,n ¼ n þ
2

ð Þ ¼ 2n þ 1 or ℏω) 

Figure 2. 
Schematic 2D sketch of f ½λnð Þ≥ 0; y�≕ k2½λnð ≥ 0Þ; y� for a given λn.En En 
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which is already the exact solution given in (8) [1–4, 6, 7, 14]. Results are given 
along with the MAF solutions in Table 2 for comparison. Note that we use the 
following notation for the symmetrical (or even parity (EP)) and antisymmetrical 
(or odd parity (OP)) solutions: 

EJ,nsEJn ¼ 
EJ, na 

~

~ 
~ 

( 
¼ ðns þ 1=2Þπ, ns ¼ 0; 2; 4, … 

¼ ðna þ 1=2Þπ, na ¼ 1; 3; 5, … 
(14) 

where the subscripts “J, ns ” represent J, JWKB, and ns, symmetrical indices 
(ns = even), and similarly, “J, na ” represents J, JWKB, and na, antisymmetrical 
indices (ns ¼odd). 

3.2 JWKB solution of eigenfunctions (wave functions) of the QHO 

Conventional first-order JWKB solution of the QHO given in the normal form in 
(4) or (7) is as follows: 

� R � � R �yt, y yt, ycJ1 exp �i kðλn; yÞdy cJ2 exp i kðλn; yÞdy
φJ ðλn; yÞ ¼  pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

kðλn; yÞ kðλn; yÞ 
~ (15) 

where yt is either of the classical turning points (CTPs: either “y1, on the left” or 
“y2, on the right” depending on the region under question) and cJ1&cJ2 are arbitrary 
JWKB constants. Once solution in any region is found (say, φJII), solution in the 
adjacent region (say, φJIII) can directly be found by the conventional JWKB con-
nection formulas given in [3, 4, 14] without calculating it via (15). The integrals 
here are the definite integrals whose upper and lower values should be chosen as the 
related turning point (either y1 or y2) and the variable y should be in the correct 
ascending integration order. Normally, constant coefficients in the general solutions 
are determined from normalization by applying the boundary conditions of the 

~~~~ 

Index EP OP 
(=MAF 

MAF JWKB* MAF JWKB*index) 

EM, ns 
EJ, ns 

EM, na 
EJ, na 

Zns n ¼ nM ζns 
Zna ζna 

na na 

0 1.20348 0.0603317 0:5603317ℏω 0 0:5ℏω 2.33811 1.01735 1:51735ℏω 1 1:5ℏω 

1 3.27162 2.0115 2:5115ℏω 2 2:5ℏω 4.08795 3.0079 3:5079ℏω 3 3:5ℏω 

2 4.83082 4.0063 4:5063ℏω 4 4:5ℏω 5.52056 5.00508 5:50508ℏω 5 5:5ℏω 

3 6.16988 6.00435 6:50435ℏω 6 6:5ℏω 6.78671 7.00374 7:50374ℏω 7 7:5ℏω 

4 7.37677 8.00332 8.50332 ℏω 8 8:5ℏω 7.94413 9.00295 9:50295ℏω 9 9:5ℏω 

5 8.49195 10.0027 10:5027ℏω 10 10:5ℏω 9.02265 11.0024 11:5024ℏω 11 11.5 ℏω 

6 9.5382 12.0023 12:5023ℏω 12 12:5ℏω 10.0402 13.0021 13:5021ℏω 13 13:5ℏω 

7 10.5299 14.0019 14:5019ℏω 14 14:5ℏω 11.0085 15.0018 15:5018ℏω 15 15:5ℏω 

*JWKB solution is exact. 

Table 2. 
JWKB and MAF eigenenergies. 
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eigenvalue problem. However, it is useless since the boundary conditions corre-
spond to the CTPs at which (and also in a narrow region around) the conventional 
first-order JWKB solutions typically diverge [3, 4, 7, 14]. This might be thought as a 
violation of continuity requirement of the acceptable wave function properties 
concerning continuity, but higher order JWKB approximation can fix it. Now, due 
to the discontinuities at the boundaries between the adjacent regions (such as 
between I and II or between II and III), the unidirectional JWKB connection for-
mulas (surely, for the first-order JWKB) given in the literature [3, 4, 7, 14] cannot 
be used to find the constant coefficients in the general solution in (18) and (19). 
Note that these connection formulas can be used to determine the structure of the 
JWKB solutions in all regions (I, II, and III), but they cannot be used to find the 
constant coefficients (which will be a function of eigenenergy) as explained. 

However, we are fortunately not helpless: since f ½λ ð Þ≥ 0; y�≕ k2½λ ð ≥ 0Þ; y� 
in (7) is an even function (see Figure 2), we should have even and odd-parity 
solutions. If we start by considering the exact solutions in (9) and (10) and 
considering them to be approximate to the JWKB solution (shown with tilde and 
subscript J), we have the following outcomes [14]: 

n En n En 

pffiffiffi 
ψ λð n; yÞ ¼ ½φ βð ; λn; x ! y=βÞ� ¼1OR : φ βð ; λn; xÞ ¼  βψ λð n; y ! βxÞβ (16) 

8 >>>>>>>>< 

8< iÞφ ðβ; λ; 0Þ ¼ � p, p . 0n 

E:P: : φ ðβ; λ; �xÞ ¼ φ ðβ; λ; xÞ, n  ¼ 0, 2, 4, … )n n : ðβ;λ;xÞniiÞ ∂φ ¼ 0
∂x x¼0 8<>>>>>>>>: 

iÞλnðβ; λ; 0Þ ¼ 0 

O:P: : φ ðβ; λ; �xÞ ¼ �φ ðβ; λ; xÞ, n  ¼ 1, 3, 5, … )n n : ðβ;λ;xÞniiÞ ∂φ ¼ � q, q . 0
∂x x¼0 

3 

775 

2 

664 

8 >>>>>>>>>< 

>>>>>>>>>: 

�2�p~β ≃ βJ:E:P: ¼ , n  ¼ 0, 2, 4, … 
φ ð1; λ; yÞn y¼0 

2 ~β≃ βJ ¼ 
�q~βO:P: ≃ βJ:O:P: ¼ , n  ¼ 1, 3, 5, … 

∂φ ð1; λ; yÞn 

∂y y¼0 

) 

(17) 

where p&q are positive real constants regarding the even-parity (EP) and odd-
parity (OP) initial values of the physical system. Remember that we use φ for the x-
system and ψ for the y-system as shown in (16). In finding the constant coefficients, 
we can take �p ¼ �q ¼ 1, and alternating sign can be modified as a parity matching 
as follows [14]: 

9 >>>>>>= 

>>>>>>; 

( 

8 >>>>>>< 

>>>>>>: 

ðasy:m:Þ ðasy:m:Þ
ψ~ ðλn; yÞ ¼ ψ~ ðλn; �yÞ for �∞ , y ≤ � λnJ, I J, III 

ψ~ ðλn; �yÞ for � λn , y ≤ 0 
ψ
ðpar:m:Þ ð Þn � 

J, II 
2~ ðλn; yÞ ¼ ð�1Þ ψ~ ðλn; yÞ ¼ðJ;E:P:Þ J, II 

ψ~ J, IIðλn; yÞ for 0 , y ≤ λn 

ðasy:m:Þ
ψ~ ðλn; yÞ for λ ≤ y , ∞J, III n p¼1 

(18) 
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ðasy:m:Þ ðasy:m:Þ
ψ~ ðλn; yÞ ¼ �ψ~ ðλn; �yÞ for �∞ , y ≤ � λnJ, I J, III 

n�1 �ψ~ J, IIðλn; �yÞ for � λn , y ≤ 0 
ψ ðpar:m:Þ ð Þ �2~ ðλn; yÞ ¼ ð�1Þ ~ ðλn; yÞ ¼ðJ;O:P:Þ ψ J, II 

9 >>>>>>= 

≤for 0 >ψ λ λð Þ; y y~ >J II ,n n >, >>>;ðasy:m:Þ
ψ~ ðλn; yÞ for λ ≤ y , ∞J, III n q¼1 

( 

8 >>>>>>< 

>>>>>>: 

(19) 

where the superscripts (par.m.) and (asy.m.) represent parity matched and 
asymptotically matched JWKB solutions, respectively. Eqs. (18) and (19) tells that we
will take �p ¼ �q ! 1 to find the solutions in 0 ≤ y ≤ y2 ¼ λn ∪ y2 ¼ λn ≤ y , ∞ 
firstly by using (21) for the asymptotic matching and then extending it to the 
second quadrant according to the parity under question. Note that asymptotically 
matched general ðJWKBÞ1 solution can be obtained as follows (see [3, 4, 7, 14] for 
details): 

8 >>< n; y , yt1φðasy:m:Þ 
~ ðλn; yÞ ¼ either k~ 

1JI or ~k2φ~ λ1 φ~ λ2 n; y , yt1 

φ
ðasy:m:Þ 

~ J ðλn; yÞ ¼  φ~ JIIðλn; yÞ ¼ φ~ J λn; yt1 , y , yt2>>:
φ
ðasy:m:Þ 

~ ðλn; yÞ ¼ either k~ 
1JIII φ~ λJ1 n; yt2 , y or k~ 

2φ~ λJ2 n; yt2 , y 

(20) 

so that they exhibit the following asymptotic behaviors: 
8 >< 

ih 
lim φ~ J λn; y , yt1 

¼ φ~ JIðλn; yÞ ¼ 0 
y!�∞

φ
ðasy:mÞ: 

~ J ðλn; yÞ ¼  (21)>: lim φ~ J λn; yt2 , y ¼ φ~ JIIIðλn; yÞ ¼ 0 
y!∞ 

3.2.1 Even-parity (EP) wave functions 

When initial values at x ¼ y ¼ 0 for the EP case in (17), namely (by using (16)), 

ψ~ λn; yÞ y¼0 ¼ 1= 
n offiffiffi p 

n; yÞjy¼0 
¼ 0 , (22)β; ∂yψ~ λð ðJ, II J, II 

is applied to the JWKB solution in (15), we find the following: 

 3 Zy 
A λnð Þ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 4 5, for 0 , y , λiÞ ∂yψ~ ðλn; yÞjy¼0 

¼ 0 )J, II kðλn; yÞdy~ψ~ λII n ¼ λn; y ¼ cosp n
kðλn; yÞ 

0 

p 

(23) 

where the second complementary solution (in the sine form) has been canceled 
and calculation of the integral in the cosine term can be calculated by the similar 
change of variable as in (13) whose result will give ηð y; 0Þ (see Eq. (18) below and 
apply ηðy; 0Þ ¼ η λð n ! y; y ! 0Þ). 

ffiffiffi 
β 

ffiffiffiffiffi s 

iiÞ ψ~ J, IIðλn; yÞjy¼0 
¼ 1= ) AðλnÞ ¼  

λn 

β 
(24) 
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and by using (16), we have. 

2 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi s Zβx ffiffiffi λnp 4 5kðλn; yÞdy , for 0 , x , λn =βψ~ β; λJ, II βψ~ ðλn; y ! βJ, IIð n; xÞ ¼  Þ ¼x cos
kðλn; βxÞ 

0 

(25) 

Now, by applying the JWKB connection formula with a small phase term α, 
we get. 

98< cos ½α λð Þn � exp ½ζ λð n; yÞ� = A λnð Þ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi , for λn , y , ∞, ~ψ~ λIII n ¼ λn; y ¼ 1p
sin ½α λð Þn � exp ½�ζ λð: ;κ λð n; y þ n; yÞ�Þ 

2 
(26) 

and the asymptotically matched (modified) wave function in region III via (20) 
and (21) of [3, 4, 7, 14] gives: 

A λnð Þ  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ψ
ðasy:m:Þ 

~ III sin ½α λð Þ� exp ½�ζ λð Þ�, for λ (27)n n; y n , y , ∞~λn ¼ λn; y ¼ p
2 κ λð n; yÞ 

Abbreviations we use for the EP JWKB solutions here (and also for the OP 
solutions in the next subsection) are as follows [14]: 

8 >>>>>>>>>>>>>>>>< 

nZλ
π π 

α λð nÞ ¼  kðλn; yÞdy þ ¼ η λð n; 0Þ þ4 4 
0 

nZλ � �  ffiffiffiffiffiffiffiffiffiffiffiffiffiffi q2 2λ π λn n y y
sin �1 � λ2 � y2 

nkðλn; yÞdy !¼η λð n; yÞ ¼  (28)4 2 λn 2>>>>>>>>>>>>>>>>: 

y 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
ln 

y þ 
qZy ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2y2 � λq 1y n2λ2y2 � λn; yÞdy !¼ζ λð n; yÞ ¼  κ λð n n2 2 λn 

λn 

ψ
ðasy:m:ÞSince we have already calculated ψ~ ðβ; λn; xÞ and ~ J, II III in the first ~λ ¼ λn; yÞn 

quadrant (0 ≤ y ≤ λn), JWKB solutions in the other regions can be easily written as in 
(18). JWKB wave functions regarding the EP case are given in Figure 3 along with 
the exact solutions for comparison. 

3.2.2 Odd-parity (OP) wave functions 

Similarly, by using the boundary conditions for the OP case in (17), namely (by 
using (16)), 

ffiffiffiffiffi 
3 

q 
ψ~ λ Þ y¼0 ¼ 0; ∂yψ~ ðλ ¼ 1= (29)βJ, IIð n; y J, II n; yÞjy¼0 

, 

and starting with region II. 
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Figure 3. 
Exact and JWKB solutions of EP wave functions (for p ¼ 1). 
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2 3 Zy � � ð ÞB λ ~ n 4 
kðλn; yÞ 

ð Þi ψ~ J, IIðλn; yÞjy¼0 
¼ 0 ) ψ~ II λn ¼ λn; y ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sin kðλn; yÞdy5, for 0 , y , λn 

0 

(30) 

qffiffiffiffiffi qffiffiffiffiffiffiffiffiffi 
3 3ð Þii ∂yψ~ ðλn; yÞjy¼0 

¼ 1= β ) BðλnÞ ¼ 1= λnβ (31)J, II 

connecting to region III in the first quadrant (0 ≤ y ≤ λn) via the JWKB connec-
tion formula. 

8 9 < sin ½α λð Þn � exp ½ζ λð n; yÞ� = � � B λnð Þ  ~ψ~ λn ¼ λn; y ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1 , for λn , y , ∞ (32)J, III 
κ λð n; yÞ: � cos ½α λð Þn � exp ½�ζ λð n; yÞ�;2 

whose asymptotic matching gives. 

ð Þð Þ  B λnψ m:
~ ðλn; yÞ ¼ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi cos ½α λð Þn � exp ½�ζ λð n; yÞ�, for λn , y , ∞ (33)J, III 2 κ λð n; yÞ 

ð Þψ m:Again, since we have already obtained ψ~ ðλn; yÞ and ~ ðλn; yÞ in 0 ≤ y ≤ λn,J, II J, III 
JWKB solutions in the second quadrant can be written in terms of them as shown in 
(19). JWKB wave functions regarding the OP case are given in Figure 3 along with 
the exact solutions for comparison. 

4. The MAF method 

If we follow the QHO in dimensionless form given in (7), we have the following 
properties in MAF theories [3, 18–23]: 

4.1 General structure of the MAF approximation to the bound-state wave 
functions 

Formal MAF method suggests a solution to the TISE in (7) in terms of Airy 
functions as follows: 

8 9 > Fðλn; yÞAi½ξ λð n; yÞ�>> >< = 
ψMAFðλn; yÞ≕ ψ~ Mðλn; yÞ ¼  or > > (34)> >: ;Gðλn; yÞBi½ξ λð n; yÞ� 
) ψ~ ðλn; yÞ ¼ a1Fðλn; yÞAi½ξ λð n; yÞ� þ a2Gðλn; yÞBi½ξ λð n; yÞ�M 

where Ai and Bi represent the Airy functions (namely, Aið Þx and Bið Þx are the 
″linearly independent solutions of the Airy differential equation y x ð Þ ¼ 0 in ð Þ � xy x 

x), a1&a2 are the arbitrary constants which will be found from boundary values, 
and F&G are the functions to be determined. Note that the first variable λn is the 
eigenenergies (constant values quantized by index n) which will also be determined 
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soon. So, for now, we can consider all these functions as one dimensional in only y 
for simplification (say, ψ~ ðλn; yÞ≕ ψ~ ð Þy , ξ λð n; yÞ≕ ξð Þy , Fðλn; yÞ≕ F yð Þ, etc.). If weJ J 

choose one of the linearly independent solutions, say F yð Þ:Ai½ξð Þy �, to substitute in 
the TISE in (4), then it gives: 

F″ð Þy 2F0ð ÞAi0 ξ y �ξ0ð Þ þ F y  Ai0 ξ y �ξ″ð Þy ½ ð Þ  y ð Þ  ½ ð Þ  y n o 
þ ξð Þy ½ξ0ð Þy �2 þ f yð Þ  ¼ 0 (35)þ

F yð Þ  F yð ÞAi½ξð Þy 
Now, with the choice of the last term in (35) as zero, we find the following: 

Z " #2=3ffiffiffiffiffiffiffiffiffiffiffiffi y 3q 
ξð Þy ξ½ 0ð Þy �2 þ f yð Þ ¼ 0 ) ξ y f yð Þdy (36)ð Þ ¼  �

2yt 

Here, the property of the Airy functions, Ai″ ξ Ai ξ , was used [3, 18]. The ð Þ ¼ ξ ð Þ  
integral interval in (36) is also chosen tactically in a fashion that it invokes a 
relationship with the turning point yt (representing the correct order yt1 or yt2 to 
give a non-imaginary result), and it can be written in a more explicit and conven-
tional form (by also using in our two-variable form here) as follows: 

8 >>>>>>>< 

h i2=3 yt1 κ λð R
3 dy , for y ≤ yξ ÞI : n; y t12 y 

h i2=3 h i2=3 yt2 kðλ 
R y 
yt1 

R 
II : � 3 

2 ¼ � 3
2

ξ λð n; yÞ ¼  , for yt1 ≤ y ≤ yt2kðλn; yÞdy dyξ Þn; yy>>>>>>>: 
h 

y 
i2=3R

3 dy , for yt2 ≤ yξ κ λð n; yÞIII : 2 yt2 

p 

(37) 

2where f ðλn; y ≥ 0Þ ¼ k2ðλn; yÞ ¼ �κ ðλn; yÞ and yt1&yt2 are the CTPs at the inter-
face of the regions I � II&II � III, respectively. The remaining terms in (44) and 
(45) are also made zero as follows: 

Starting from the second term, we have. 

02F0Ai0ð Þξ ξ b1ffiffiffiffiffiffiffiffiffiffi 
ξ

þ Ai0ð Þξ ξ″ ¼ 0 ) F yð Þ ¼  (38)
F 0ð Þy 

where b1 is some constant, and finally, making the first term in (35) zero (which 
is the only assumption in the MAF method), we have the following: 

F″ð Þy
P yð Þ ¼  ≈ 0 (39)

F yð Þ  

Or more correctly in two-variable form in our eigenvalue system. 

2
∂yFðλn; yÞ Pðλn; yÞ ¼  (40)
Fðλn; yÞ 

can be thought as a measure of the accuracy of the MAF solution, namely, 
Pðλn; yÞ ! 0, as MAF solution gets more accurate [18]. 

The same results would also be obtained if we had chosen the other linearly 
independent solution, G yð Þ:Bið Þy , in (34). Consequently, using the results found in 

34 



Quantum Harmonic Oscillator 
DOI: http://dx.doi.org/10.5772/intechopen.85147 

(37) and (38), the general solution suggested in (34) can be written explicitly in the 
standard form of the MAF formula as follows: 

~c1 ~c2ψ y pffiffiffiffiffiffiffiffiffiffi ½ ð Þ� þpffiffiffiffiffiffiffiffiffiffi ½ ð Þ� (41)ð  Þ ¼  Ai ξ y Bi ξ y0 0MAF 
ξ ð Þy ξ ð Þy 

or more correctly in two variables here in our study. 

~c1 ~c2ψ ðλn; yÞ ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ai½ξ λð n; yÞ� þpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Bi½ξ λð n; yÞ� (42)MAF 
∂yξ λð n; yÞ ∂yξ λð n; yÞ 

where c1 ¼ a1:b1 and c2 ¼ a2:b2 are the arbitrary constants to be determined 
from the boundary values as mentioned and ∂yξ λð ; yÞ represents the first derivative 
of ξ with respect to y. Using the result in (38), the approximation term Pðλn; yÞ in 
(40) can be rewritten explicitly as follows: 

" #22 33 ∂y ξ λð n; yÞ ∂y ξ λð n; yÞ 
Pðλn; yÞ ¼  � (43)

4 ∂yξ λð n; yÞ 2∂yξ λð n; yÞ 

4.2 MAF solution of eigenenergies 

For a symmetrical f as in Figure 2, we have even-parity (EP) and odd-parity 
(OP) MAF wave functions just as in JWKB method, but now it leads to two differ-
ent MAF quantization formulas with two different MAF universal constants 
regarding EP and OP solutions as given in [3] and as we study in this section. We 
again use the symbolism in (9) (φ⇔ψ) and start with the first quadrant, by applying 
that limy!∞ ¼ 0 requires c2 ¼ 0 in (42), namely, 

~c1ψ ðλn; yÞ≕ ψ~ ðλn; yÞ ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ai½ξ λð n; yÞ�, (44)MAF,n Mn 
∂yξ λð n; yÞ 

where the denominator can be written in the following form [3]: 

1=41 jξ λð n; yÞjpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ (45)
∣ ∂yξ λð n; yÞ∣ �� k2ðλn; yÞ�

�1=4 

i. Even-parity (EP) eigenenergies: if we apply the EP formulas of the exact 
solution in (17), by using (16), to the MAF wave functions, we have the 
following: 

( ) 
�p ψ~ ðλn; yÞMnψ~ ðλn; 0Þ ¼ pffiffiffi ; ∂ j ¼ 0 (46)Mn β ∂y y¼0 

1 ð Þi ψ~ Mðλn; 0Þ ¼ pffiffiffi ) find ~c1 ≕~c1s
β sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
0 0 (47)
ξ ξ Ai½ξ λð n; yÞ�0 0result :) ~c1s ¼ pffiffiffi ) ψ~ Mðλn; yÞ ¼  

βAi½ξ λð � β ½ ð n; yÞ� ð Þn; yÞ ∂yAi ξ λ  Ai ξ0 
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ψ~ ðλn; yÞ ð ÞξAi ξM 0 0
″ 

¼ 0 ) Ai0ðξ0ð Þii ∂ ¼ 0 (48)j Þ �  02∂ y y¼0 2ξ 0 

0 for simplification, namely, ξ 

0 ¼ ∂yyðλ Þ 
″0where we�used ξ0, ξ0, and ξ 

″ 
0 ¼ ξ λð n; 0Þ, 

, and ξ y¼0, respectively. We assumed here ξ0 ¼ ∂yðλ Þn; y n; yy¼0 

φ λð n; 0Þ ¼ 1, and we will use then parity correction for φ λð n; 0Þ ¼ �1 case just as in 
the JWKB calculations. If we take the derivative of (36), we get. 

ξ03ðλn; yÞ þ 2ξ λð n; yÞ ∂yξ λð n; yÞ ∂yyξ λð n; yÞ þ ∂yk
2ðλn; yÞ ¼ 0 (49) 

where the last term vanishes as y ! 0 to give. 

″
0 1ξ 

0 ¼ 0 ) 

whose substitution in (48) gives. 

″ 

ξ0Ai
0ðξ0Þ þ  

1 
Aiðξ0Þ ¼ 0 (51)

4 

Now, by the substitution of ξ0 ! �Zsn, we have. 

Aið�ZsnÞ �ZsnAi0ð�ZsnÞ þ  ¼ 0 (52)
4 

where the subscripts sn stand for s, symmetrical solution (EP), and n, quantiza-
tion order (nth quantization), and Zsn is the nth solution of the differential equation 
in (52) regarding the symmetrical solution. Now, by using the results in (13), we 
find the MAF quantization formula regarding the symmetrical solution:

 !Z � �y2 � � 1 4Z3=2 1 ~ snk λM,sn; y dy ≕ ζsn þ π ) ζsn ¼ � , n  ¼ 1; 2; 3, … (53)
2 3π 20 

where ζ is the universal MAF constants regarding the symmetrical solution sn 

whose values are given in Table 2 along with the JWKB solutions (which are 
already exact) for some n values in comparison. Note that we used ns to represent 
the symmetrical (EP) MAF indices in Table 2. 

ii. Odd-parity (OP) eigenenergies: similarly, if we apply the OP formulas of the 
exact solution in (17), by using (16), to the MAF wave functions, we have the 
following: 

( ) 
�q

ψ~ ðλ; 0Þ ¼ 0; ∂yψ~ Mðλ; yÞj ¼pffiffiffiffiffi (54)M y¼0 3β 

02
0 þ 2ξ (50)ξ 0ξ ¼ �  02 4ξ2ξ 00 

ð Þi ψ~ Mðλ; 0Þ ¼ 0 ) Aiðξ0 ! �ZanÞ ¼ Aið�ZanÞ ¼ 0, n  ¼ 1; 2; 3, … (55) 
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1 Ai ξ 1 ð Þii ∂yψ~ ðλ ; yÞj ¼pffiffiffiffiffi ) Ai0ðξ0Þ �  
ð Þξ″ ¼pffiffiffiffiffi ) find~c1 ≕ ~ (56)M na y¼0 3 0 

0
2

0 
3 

c1a
β 2ξ β0 

where, similarly, the subscripts an stand for a, antisymmetrical (OP), and n, 
quantization order (nth quantization), and Zan is the nth solution of the equation in 
(55) regarding the asymmetrical solutions. Similarly, by using the results in (13), we 
find the MAF quantization formula regarding the antisymmetrical solution:

 !Z � �y2 � � 1 4Z3=2 1 ~ ank λM, an; y dy ≕ ζ þ π ) ζ ¼ � , n  ¼ 1; 2; 3, … (57)an an2 3π 2 

where ζ is the universal MAF constants regarding the antisymmetrical solution an 

whose values are given in Table 2 along with the JWKB solutions (which are 
already exact) for some n values in comparison. Note that we used na to represent 
the antisymmetrical (OP) MAF indices in Table 2. 

4.3 MAF solution of eigenfunctions 

By using a tentative boundary condition with q = 1 for the EP solutions, we have 
found the result in (47), and we said that we would extend it by considering the 
parity matching for q ¼ �q. Consequently, 

ψ
ðpar:m:Þ ð Þ � 

~c1s ~ ðλns ; y ≥ 0Þ ¼ ð�1Þ n 
2 
s pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ai½ξ λð n; yÞ�, ns ¼ 0; 2; 4, …ðevenÞ (58)ðM;E:P:Þ 

∂yξ λð n; yÞ 
or 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
0 ns ξ Ai½ξ λð ; yÞ� 

ψ ðpar:m:Þ ð Þ � 0 ns2~ ðλ ; y ≥ 0Þ ¼ ð�1Þ , ns ¼ 0; 2; 4, …ðevenÞðM;E:P:Þ ns β∂yAi½ξ λð ns ; yÞ� Ai ξð Þ0
(59) 

Similarly, for the antisymmetric parity wave functions, we have. 

na �1 ~ 
ψ
ðpar:m:Þ ð Þ � 

c1a2~ ðλ ; y ≥ 0Þ ¼ ð�1Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Ai½ξ λð n; yÞ�, ns ¼ 1; 3; 5, …ðoddÞðM;O:P:Þ na 
∂yξ λð n; yÞ 

(60) 

where constant coefficients ~c1s and ~c1a represent the related symmetric and 
antisymmetric coefficients, respectively. 

5. MAF solution of the QHO 

Again, we use the schematic sketch given in Figure 2 for the QHO under study. 

5.1 MAF eigenenergies of the QHO 

Since we have tactically used (53)–(57) to resemble the MAF quantization for-
mula to the JWKB quantization formula given in (12), by using the result of 
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calculation of the same integral in (13), we have the following results regarding the 
MAF eigenenergies of the QHO: 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1
E:P: : λM,snðEsnÞ ¼  2ζsn þ 1 or EM,sn ≕ EMAF, sn ¼ ζsn þ 2

ð Þ  π; n  ¼ 1; 2; 3, … ~~ 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 1
O:P: : λM,anðEanÞ ¼  2ζan þ 1 or EM, an ≕ EMAF, an ¼ ζsn þ 2

ð Þ  π; n  ¼ 1; 2; 3, :: ~~ 

(61) 

(62) 

~ 

~ 

~~ 

MAF eigenenergies are given in Table 2 along with the JWKB solutions (which 
are already exact) for some n values in comparison. (Note again that we used ns and 

~ 

na to represent the symmetrical (EP) and antisymmetrical MAF indices in Table 2, 
respectively). 

~

~ 

5.2 MAF eigenfunctions of the QHO 

~

~ 

For the regions IIb and III, we have the following definitions: 

8 
2

λM λ λn 

λM λn; y λ λn ≤ y , ∞ 

λM 

< k2 2; 0 ≤ y ≤λn; yÞ ¼  ¼ � yÞ ¼ k2 n (63)λn; yf ðλn; y ð 2: κ2 2 �¼ y ;n 

~~ 

Calculation of ξ in (37) for the first quadrant gives. 

8 � R � � �2=3 
h R � � i2=3 

ξIIb : � 3 λM; y λM; y 
>> y yt2¼ �  32 , for 0 ≤ y ≤ yk dy k dy< t22 0 y 

ξðλn; yÞ ¼  > h R � � i2=3> 3 y: dy , for yt2 ≤ yξIII : 

~ 

~ 

~~ 

~λM; y 
( " !#)2=3 

32=3 � � 2 y
λM; y λ 

λM; y 

λM ≤ y , ∞ 

κ2 yt28 >>>> , for 0 ≤ y ≤�2yk π � 2arctanξIIb : � þ>>>>< 
M4 k 

~ 
~~ ~ 

¼ ( " #)2=3 

λMλM; y λ � � 
λM;y 

> 2 
Mln32=3>>>>> yκ þ 

yκ>>: , forξIII : 24=3 

(64) 

~ 

~ 
~ 

~~λM (and also EM below) are MAF eigenenergies which become (61) for 
the symmetric (EP) and (62) for the antisymmetric (OP) case accordingly. Calcu-
lation of the constant coefficient in (58) or (59) for the symmetric boundary values 
given in (46) with q = 1 gives. 

ffiffi 
E 

c1s 
E 

where 

p 1=6
2 snE:P: : (65)h i¼ pffiffiffi 4=31=6Ai � 1 2=3β 3πð Þ  3πð Þ4 sn 
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Figure 4. 
Exact and JWKB solutions of OP wave functions (for q ¼ 1). 
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Figure 5. 
Relative and absolute error of EP MAF solutions. 
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Figure 6. 
Relative and absolute error of OP MAF solutions. 
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Similarly, calculation of the constant coefficient in (60) for the antisymmetric 
boundary values given in (54) with q = 1 gives. 

7=6 1=6E 
c1a 

E E E~~ 

~ 

~ 
~ 

3πð Þanh i h in oO:P: : (66)¼ ffiffiffiffiffiffiffi p 4=3 4=3 4=3
3πð Þ2=3Ai0 2=3 2=32β3 1 13πð Þ  Ai � 3πð Þ4 4an an an 

Since the MAF solutions of both EP and OP solutions are very close to the exact 
solutions given in Figures 3 and 4, their absolute and relative error graphs with 
respect to the exact solution are given in Figures 5 and 6. We can also see that there 
are no discontinuities at the CTPs in the MAF solutions when compared with the 
JWKB solutions given in Figures 3 and 4. 

6. Conclusion 

Here we studied the fundamental outcomes of the two conventional semiclassi-
cal approximation methods, namely, JWKB and MAF methods pedagogically, and 
obtained the solutions of the QHO by these semiclassical methods by using the 
parity conditions of the expected solutions by using the dimensionless form of the 
QHO system. We applied the asymptotic matching and parity matching procedure 
to obtain the correct form of semiclassical solutions. As expected, JWKB solutions 
diverge at and around the CTPs, whereas MAF solutions do not. As also expected 
(since being typical), JWKB eigenenergies are exact, whereas MAF eigenenergies 
are unfortunately not but very accurate as expected from an approximation 
method. In the MAF method, function p in (40) or in (43) is assumed zero. Indeed, 
it is very close to zero to give approximate results, and function P in (40) or in (43) 
can be used as an approximation criterion for the MAF method [3, 18]. However, 
improved MAF methods (IMAF) or perturbation corrections concerning the non-
zero P function seem straightforward to improve the accuracy of the MAF solutions 
as in [3, 20, 22]. Normally, for an even potential function in the TISE, EP and OP 
initial values are as given in (17), but due to the conversion factor β in (11) or (16), 
for the QHO in the dimensionless form (in ψ), we have (22) and (29). In our 
notation, we have used the notation, φ⇔ψ , where real physical system is in φ and 
the dimensionless form is in ψ . Since the standard formulation is given according 
to the real physical systems, JWKB and MAF formulas in the literature such as 
in [1–7, 19–23] surely correspond to the initial values β ! 1 in our dimensionless 
form formulation in ψ . Consequently, we hereby present a full JWKB and MAF 
solution concerning the quantized conversion factor β in (11). 
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Chapter 3

Oscillation Criteria of
Two-Dimensional Time-Scale
Systems
Ozkan Ozturk

Abstract

Oscillation and nonoscillation theories have recently gotten too much attention
and play a very important role in the theory of time-scale systems to have enough
information about the long-time behavior of nonlinear systems. Some applications
of such systems in discrete and continuous cases arise in control and stability
theories for the unmanned aerial and ground vehicles (UAVs and UGVs). We deal
with a two-dimensional nonlinear system to investigate the oscillatory behaviors of
solutions. This helps us understand the limiting behavior of such solutions and
contributes several theoretical results to the literature.

Keywords: oscillation, nonoscillation, two-dimensional systems, time scale,
nonlinear system, fixed point theorems

1. Introduction

This chapter analyses the oscillatory behavior of solutions of two-dimensional
(2D) nonlinear time-scale systems of first-order dynamic equations. We also inves-
tigate the existence and asymptotic properties of such solutions. The tools that we
use are the most well-known fixed point theorems to consider the sign of the
component functions of solutions of our system. A time scale, denoted by T, is an
arbitrary nonempty closed subset of the real numbers R, which is introduced by a
German mathematician, Stefan Hilger, in his PhD thesis in 1988 [1]. His primary
purpose was to unify continuous and discrete analysis and extend the results to one
comprehensive theory. For example, the results hold for differential equations
when T ¼ R, while the results hold for difference equations when T ¼ Z. There-
fore, there might happen to be two different proofs and maybe similar in most
cases. In other words, our essential desire is to combine continuous and discrete
cases in one comprehensive theory and remove the obscurity from both. For
more details in the theory of differential and difference equations, we refer the
books [2–4] to interested readers. As for the time-scale theory, we assume most of
the readers are not familiar with the time-scale calculus, and thus we give a concise
introduction to the theory of time scales from the books [5, 6] written by Bohner
and Peterson in 2001 and 2003, respectively.

Two-dimensional dynamical systems have recently gotten too much attention
because of their potential in applications in engineering, biology, and physics (see,
e.g., [7–11]). For example, Bartolini and Pvdvnowski [12] consider a nonlinear
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system and propose a new method for the asymptotic linearization by means of 
continuous control law. Also Bartolini et al. [13, 14] consider an uncertain second-
order nonlinear system and propose a new approximate linearization and sliding 
mode to control such systems. In addition to the nonoscillation for two-dimensional 
systems of first-order equations, periodic and subharmonic solutions are also inves-
tigated in [15–17], and significant contributions have been made. Another type of 
two-dimensional systems of dynamic equations is the Emden-Fowler type equation, 
named after E. Fowler after he did the mathematical foundation of a second-order 
differential equation in a series of four papers during 1914–1931 (see [18–21]). This 
system has several fascinating applications such as in gas dynamics and fluid 
mechanics, astrophysics, nuclear physics, relativistic mechanics, and chemically 
reacting systems (see [9, 22–24]). 

This chapter is organized as follows: In Section 2, we give the calculus of the 
time-scale theory for those who are not familiar with the time scale (see [5]). In 
Section 3, referred to [25, 26], we show the existence and asymptotic behaviors of 
nonoscillatory solutions of a two-dimensional homogeneous dynamical system on 
time scales by using improper integrals and some inequalities. We also give enough 
examples for readers to see our results work nicely. Section 4, referred to [27], 
provides us oscillation criteria for two-dimensional nonhomogeneous time-scale 
systems by using famous inequalities and rules such as comparison theorem and 
chain rules on time scales. Finally, we give a conclusion and provide some exercises 
to the readers to have them comprehend the main results in the last two sections. 

2. Preliminaries 

The examples of the time scales are not restricted with the set of real numbers R 
and the set of integers Z. There are several other time scales which are used in many ˜ ° 
application areas such as qN0 ¼ 1; q; q2; ⋯; , q  . 1 (called q-difference equations 

2[28]), T ¼ hZ, h  . 0, T ¼ N2
0 ¼ 

˜ 
n : n ∈ N0 

° 
, etc. On the other hand, the set of 

rational numbers Q, the set of irrational numbers R\Q, and the open interval ða; bÞ 
are not time scales since they are not closed subsets of R. For the following defini-
tions and theorems in this section, we refer [5], (Chapter 1), and [29] to the readers. 

Definition 2.1 Let T be a time scale. Then, the forward jump operator σ : T ! T 
is defined by 

σð Þt ≔ inffs ∈ T : s . tg for all t ∈ T 

while the backward jump operator ρ : T ! T is given by 

ρð Þt ≔ supfs ∈ T : s , tg for all t ∈ T: 

Finally, the graininess function μ : T ! ½0; ∞Þ is defined by 
μð Þt ≔ σ t for allð Þ � t t ∈ T: 

For a better explanation, the operator σ is the first next point, while the operator 
ρ is the first back point on a time scale. And μ is the length between the next point 
and the current point. So it is always nonnegative. Table 1 shows some examples of 
the forward/backward jump operators and the graininess function for most known 
time scales. 

If t , supT and σ tð Þ ¼ t, then t is said to be right-dense, and if t . infT and 
ρ tð Þ ¼ t, we say t is left-dense. Also, if t is right- and left-dense at the same time, then 
t is said to be dense. In addition to left and right-dense points, it is said to be 
right-scattered when σð Þt . t, and t is called left-scattered when ρð Þt , t. Also, if t is 
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right-and left-scattered at the same time, then t is called isolated. Figure 1 shows the 
classification of points on time scales, clarifying the operators σ, ρ and μ (see [5]). 

Next, we introduce the definition of derivative on any time scale. Note that if 
supT , ∞, then Tκ ¼ T\ðρðsupTÞ; supT�, and Tκ ¼ T if supT ¼ ∞. Suppose that 
f : T ! R is a function. Then f σ : T ! R is defined by 
f σð Þ ¼t f ðσð Þt Þ for all t ∈T: 

Definition 2.2 If there does exist a δ . 0 such that 

∣ gðσð Þt ð Þ � gΔ t ð ð Þ � s ð Þ � s∣ for all ðÞ � g s  ð Þ σ t Þ∣ ≤  ε∣σ t s ∈ t � δ; t þ δÞ∩T, 

for any ε, then g is called delta differentiable on Tκ and gΔ is said to be delta 
derivative of g. Sometimes, delta derivative is referred as Hilger derivative in the 
literature (see [5]). 

Theorem 2.3 Suppose that f , g : T ! R is a function with t ∈Tκ . Then. 

i. g is said to be continuous at t if g is differentiable at t. 

ii. g is differentiable at t and 

gðσð Þt Þ � g tð ÞΔ t 
μð Þtg ð Þ ¼  , 

provided g is continuous at t and t is right-scattered. 

iii. Let t be right-dense, then g is differentiable at t if and only if 

g tð Þ � g sð Þ  
gΔ tð Þ ¼ lim 

s!t t � s 

is equal to a finite number. 

T σ tð Þ  ρ tð Þ  μ tð Þ  

R t t 0 

hZ t þ h t � h h 

N2 
0 

� ffiffi p �2 t þ 1 
pffiffi 

1 þ 2 t 

N0q tq t 
q q � 1ð Þt 

Table 1. 
Examples of most known time scales. 

Figure 1. 
Classification of points. 
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iv. If g tð Þgðσð Þt Þ ¼6 0, then f is differentiable at t with g 

Δf f Δð Þt g tð Þ � f ð Þt gΔð Þt 
t :ð Þ ¼  

g g tð Þgðσð Þt Þ 

If T ¼ R, then f Δ turns out to be the usual derivative f 0 on continuous case, while 

f Δ is reduced to forward difference operator Δf , defined by Δf t ð ð Þð Þ ¼ f t þ 1Þ � f t 
if T ¼ Z: The following example is a good example of time scale applications in 
electrical engineering (see [5], Example 1.39–1.40). 

Example 2.4 Consider a simple electric circuit, shown in Figure 2 with resistor 
R, inductor L, capacitor C and the current I. 

Suppose, we discharge the capacitor periodically every time unit and assume 
that the discharging small δ . 0 time units. Then we can model it as 

P1�δ,δ ¼ ⋃ ½k; k þ 1 � δ� 
k ∈N0 

by using the time scale. Suppose that Q tð Þ is the total charge on the capacitor at 
time t and I tð ) is the current with respect to time t. Then the total charge Q can be 
defined by 

8
bQð Þt if t ∈ ⋃ fk � δg< 

k ∈NQΔ tð Þ ¼  :
I otherwise 

and 

8 >0 if t ∈ ⋃ fk � δg>< k ∈N 
IΔ tð Þ ¼  > 1 R>:� Q T  I t  otherwise,ð  Þ �  ð Þ

LC L 

where �1 , bδ , 0. 
Finally, we introduce the integrals on time scales, but before that, we must give 

the following definition to define delta integrable functions (see [5]). 
Definition 2.5 g : T ! R is said to be right-dense continuous (rd-continuous) if its 

left-sided limits exist at left-dense points in T and it is continuous at right-dense 
points in T. We denote rd-continuous functions by CrdðT; RÞ. The set of functions g 
that are differentiable and whose derivative is rd-continuous is denoted by C1 ðT; RÞ.rd 
Finally, we denote continuous functions by C throughout this chapter. 

Figure 2. 
Electric circuit. 
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Theorem 2.6 ([5], Theorem 1.60) For σ : T ! T and f : T ! R, we have the 
following: 

i. The jump operator σ is rd-continuous. 

ii. If f is continuous, then it is rd-continuous. 

The Cauchy integral is defined by 

Z b 

f ð Þt Δt ¼ F bð  Þ � F að Þ  for all a, b ∈ T: 
a 

The following theorem presents the existence of antiderivatives. 
Theorem 2.7 Every rd-continuous function has an antiderivative. Moreover, F 

given by 

Z t 
F tð Þ ¼  f sð ÞΔs for t ∈ T 

t0 

is an antiderivative of f . 
Similar to the continuous analysis, we have integral properties and some of them 

are presented as follows ([5] or [29]): 
Theorem 2.8 Suppose that h1 and h2 are rd-continuous functions, c, d, e ∈ T and 

β ∈ R. 

i. h1 is nondecreasing if hΔ 
1 ≥ 0. 

R dii. If h1ð Þt ≥ 0 for all c ≤ t ≤ d, then h1ð Þt Δt ≥ 0:c 

R d R d R biii. ½ðβh1ð Þt Þ þ ðβh2ð Þt Þ� ¼ β h1ð Þt Δt þ β h2ð Þt Δt: c c a 

R R d Re eiv. ð Þt Δt ¼ ð Þt Δt þ ð Þt Δt. c h1 c h1 d h1 

R d R d v. h1 t h
Δ t Δt ¼ ðh1h2 ð  Þ � ðh1h2Þ c hΔ t h2 σ t ÞΔtð Þ ð Þ  Þ d ð Þ �  ð Þ  ð ð Þc 2 c 1 

R avi. f ð Þt Δt ¼ 0. a 

Table 2 shows how the derivative and integral are defined for some time scales 
for a, b ∈ T. 

R bT f Δð Þt f tð ÞΔt a 

R bf 0R ð Þt f tð Þdt a 

1Z Δf tð Þ  ∑b
t¼
� 
a f tð Þ  

qN0 Δqf tð Þ  ∑t ∈ ½a;bÞ f tð Þμð Þt 
ℕ0q

Table 2. 
Derivative and integrals for most common time scales. 
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We finish the section by Schauder’s fixed point theorem, proved by Juliusz 
Schauder in 1930, and Knaster fixed point theorem, proved by Knaster in 1928 
(see [30], Theorem 2.A and [31], respectively). 

Theorem 2.9 Schauder’s fixed point theorem. Suppose that S is a nonempty, 
bounded, closed, and convex subset of a Banach space Y and that F : S ! S is a compact 
operator. Then, we conclude that F has a fixed point such that y ¼ Fy. 

Theorem 2.10 The Knaster fixed point theorem. Suppose that ðS; ≤ Þ is a complete 
lattice and that F : S ! S is order preserving, then F has a fixed point such that y ¼ Fy. 
In fact, we say that the set of fixed points of F is a complete lattice. 

Finally, we note that throughout this paper, we assume that T is unbounded 
above and whenever we write t ≥ t1, we mean t ∈ ½t1; ∞ÞT ≔ ½t1; ∞Þ∩ T. 

3. Nonoscillation on a two-dimensional time-scale systems 

This section focuses on the nonoscillatory solutions of a two-dimensional 
dynamical system on time scales. To do this, we consider the system 

8 < xΔ t ð Þf  y t  Þð Þ ¼ p t  ð ð Þ  
(1) 

yΔ t ð Þ ð ð ÞÞ, : ð Þ ¼ r t g x t  

where p, r ∈ Crd ½t0; ∞ÞT; Rþ and f and g are nondecreasing functions such that 
uf ð Þu . 0 and ugð Þu . 0 for u 6¼ 0. 

By a solution of (1), we mean a collection of functions, where 
x, y ∈ C1 ð½t0, ∞ÞT; RÞ, T  ≥ t0 and ðx; yÞ satisfies system (1) for all large t ≥ T:rd 

Note that system (1) is reduced to the system of differential equations when the 
time scale is the set of real numbers R, i.e., f Δ ¼ f 0 (see [32]). And when T ¼ Z, 
system (1) turns out to be a system of difference equations, i.e., f Δ ¼ Δf (see [33]). 
Other versions of system (1), the case T ¼ Z, are investigated by Li et al. [34], 
Cheng et al. [35], and Marini et al. [36]. More details about the continuous and 
discrete versions of system (1) are given in the conclusion section. 

Definition 3.1 A solution ðx; yÞ of system (1) is said to be proper if 

supf∣x sð Þ∣, ∣y sð Þ∣, ∣z sð Þ∣ : s ∈ ½t, ∞ÞTg. 0 

holds for t ≥ t0. 
Definition 3.2 A proper solution ðx; yÞ of (1) is said to be nonoscillatory if the 

component functions x and y are both nonoscillatory, i.e., either eventually positive 
or eventually negative. Otherwise it is said to be oscillatory. 

Suppose that N is the set of all nonoscillatory solutions of system (1). It can 
easily be shown that any nonoscillatory solution ðx; yÞ of system (1) belongs to one 
of the following classes: 

Nþ≔ ðx; yÞ∈ N : xy . 0 eventually 

N�≔ ðx; yÞ∈ N : xy , 0 eventually : 

Let ðx; yÞ be a solution of system (1). Then one can show that the component 
functions x and y are themselves nonoscillatory (see, e.g., [37]). Throughout this 
section, we assume that the first component function x of the nonoscillatory 
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solution ðx; yÞ is eventually positive. The results can be obtained similarly for the 
case x, 0 eventually. 

We obtain the existence criteria for nonoscillatory solutions of system (1) in Nþ 

and N� by using the fixed point theorems and the following improper integrals: 

R ∞ R t R ∞ R tI1 ¼ p tð Þf k1 r sð ÞΔs Δt, I2 ¼ r tð Þg k2 p sð ÞΔs Δt,t0 t0 t0 t0 

R ∞ � R ∞ � R ∞ � R ∞ � 
I3 ¼ t0 

p tð Þf k3 � k4 t r sð ÞΔs Δt, I4 ¼ t0 
r tð Þg k5 t p sð ÞΔs Δt, 

R t R tP tð 0; tÞ ¼  p sð ÞΔs, R tð 0; tÞ ¼  r sð ÞΔs,t t0 0 

where ki, i ¼ 1 � 5 are some constants. 

3.1 Existence of nonoscillatory solutions of (1) in Nþ 

Suppose that ðx; yÞ is a nonoscillatory solution of (1) such that x. 0. Then 
system (1) implies that xΔ . 0 and yΔ . 0 eventually. Therefore, as a result of this, 
we have that x converges to a positive finite number or x! ∞ and similarly y tends 
to a positive finite number or y! ∞. One can have very similar asymptotic behav-
iors when x, 0. Hence, as a result of this information, the following subclasses of 
Nþ are obtained: 

n o 
NþF,F ¼ ðx; yÞ∈ Nþ : lim jx tð Þj ¼ c; lim jy tð Þj ¼ d ,

t!∞ t!∞ 

n o 
NþF,∞ ¼ ðx; yÞ∈ Nþ : lim jx tð Þj ¼ c; lim jy tð Þj ¼ ∞ ,

t!∞ t!∞ 

n o 
Nþ∞,F ¼ ðx; yÞ∈ Nþ : lim jx tð Þj ¼ ∞; lim jy tð Þj ¼ d ,

t!∞ t!∞ 

n o 
Nþ∞,∞ ¼ ðx; yÞ∈ Nþ : lim jx tð Þj ¼ ∞; lim jy tð Þj ¼ ∞ : 

t!∞ t!∞ 

To focus on Nþ, first consider the following four cases for t0 ∈ T : 

1. P tð 0; ∞Þ ¼ ∞ and R tð 0; ∞Þ ¼ ∞ 

2. P tð 0; ∞Þ ¼ ∞ and R tð 0; ∞Þ, ∞ 

3. P tð 0; ∞Þ, ∞ and R tð 0; ∞Þ, ∞ 

4.P tð 0; ∞Þ, ∞ and R tð 0; ∞Þ ¼ ∞ 

Suppose P tð 0; ∞Þ ¼ ∞ and R tð 0; ∞Þ ¼ ∞ and that ðx; yÞ is a nonoscillatory 
solution in Nþ: Integrating the equations of system (1) from t0 to t separately 
gives us 

Z t 
x tð Þ≥ x tð 0Þ þ f ð y tð ÞÞ p sð ÞΔs0 

t0 

and 
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Z t 
y tð Þ≥ y tð 0Þ þ g x t0 Þ ð ÞΔs, t ≥ t0:ð ð Þ  r s  

t0 

Thus, we get x tð Þ !∞ and y tð Þ !∞ as t ! ∞. In view of this information, the 
following theorem is given without any proof. 

Theorem 3.3 Let Pðt0; ∞Þ ¼ ∞ and Rðt0; ∞Þ ¼ ∞. Then any nonoscillatory solution 
of system (1) belongs to Nþ∞,∞. 

Next, we consider the other three cases to obtain the nonoscillation criteria for 
system (1). 

3.1.1 The case Pðt0; ∞Þ ¼ ∞ and Rðt0; ∞Þ, ∞ 

Suppose that ðx; yÞ is a nonoscillatory solution of system (1) such that x . 0 and 
y . 0 eventually. Then by the integration of the first equation of system (1) from t0 

to t, we have that there exists k . 0 

Z t 
x tð Þ≥ x tð 0Þ þ k p sð ÞΔs, t0 ∈ T: (2) 

t0 

Then by taking the limit of (2) as t ! ∞, we have that x diverges. Therefore, we 
have the following lemma in the light of this information. 

Lemma 3.4 Any nonoscillatory solution in Nþ belongs to Nþ∞,F, or N
þ
∞,∞ for 

0 , c, d , ∞. 
It is not easy to give the sufficient conditions for the existence of nonoscillatory 

solutions in Nþ∞,∞. So, we only provide the existence of nonoscillatory solutions in 
Nþ∞,F. 

Theorem 3.5 There exists a nonoscillatory solution in Nþ∞,F if and only if I2 , ∞ 
for all k2 . 0. 

Proof. Suppose that there exists a solution in Nþ∞,F such that x tð Þ. 0, y tð Þ. 0 for 
t ≥ t0, x tð Þ !∞ and y tð Þ ! d as t ! ∞ for d . 0. Since y is eventually increasing, 
there exist k2 . 0 and t1 ≥ t0 such that f ð y tð ÞÞ≥ k2 for t ≥ t1. Integrating the first 
equation from t1 to t, the monotonicity of f yields us 

Z Zt t 

x tð Þ ¼ x tð 1Þ þ  p sð Þf ðy sð ÞÞΔs ≥ k2 p sð ÞΔs, t ≥ t1: (3) 
t1 t1 

Integrating the second equation from t1 to t, the monotonicity of g and (3) 
gives us 

Z Z  Z  t t s 

y tð Þ ¼ y tð 1Þ þ  r sð Þgðx sð ÞÞΔs ≥ r sð Þg k2 p uð ÞΔu Δs, t ≥ t1: (4) 
t1 t1 t1 

So as t ! ∞, we have that I2 , ∞ holds. 
Conversely, suppose that I2 , ∞ for all k2 . 0. Then, there exists a large t1 ≥ t0 

such that 
Z ∞  Z  t c 

r tð Þg k2 p sð ÞΔs Δt , , (5)
2t1 t1 
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where k2 ¼ f cð Þ. Let Y be the set of all bounded and continuous real-valued 
functions y tð Þ on ½t1; ∞ÞT with the supremum norm supt ≥ t1 

∣y tð Þ∣. Then Y is a Banach 
space (see [38]). Let us define a subset Ω of Y such that 

n oc
Ω ≔ y tð Þ∈ Y : ≤ y tð Þ≤ c; t ≥ t1 :

2 

One can prove that Ω is bounded, closed, and also convex subset of Y. Suppose 
that T : Ω ! Y is an operator given by 

Z ∞ �Z �s 

ð ÞTy ð Þ ¼t c � r sð Þg p uð Þf ðy uð ÞÞΔu Δs: (6) 
t t1 

The very first thing we do is to show that T is mapping into itself, i.e., T : Ω ! Ω. 
Z ∞ �Z �sc 

≤ c � r s g ð Þf c  Δs ≤ Ty ð Þ≤ cð Þ  p u  ð ÞΔu ð Þ t
2 t t1 

by using (5) for y ∈ Ω. The second thing we show that T must be continuous on 
Ω: Hence, for y ∈ Ω, suppose that y is a sequence in Ω so that �y � y� ! 0: Thenn n 

∣ Ty t ð Þ t ∣ð Þ �  Ty ð Þn � � � � ��R � � R :R ∞ � s s �≤ r sð Þ�g p uð Þf y  ð Þu Δu � g p uð Þf ðy uð ÞÞΔu �Δst t1 n t1 

Then by the Lebesgue dominated convergence theorem and by the continuity of
f and g, we have that �Ty � Ty� ! 0 as n ! ∞, i.e., T, is continuous. Finally, wen 

show that TΩ is relatively compact, i.e., equibounded and equicontinuous. Since 

�Z t � � Z t � 

0 , Ty t ð Þg p u f  y u  ÞΔu ≤ r t g k2 ð ÞΔu , ∞,ð ÞΔð Þ ¼ r t  ð Þ ð ð Þ  ð Þ  p u  
t1 t1 

we have that Ty is relatively compact by the Arzelá-Ascoli and mean value 
theorems. Therefore, Theorem 2.9 implies that there exists y ∈ Ω such that y ¼ Ty: 
Then we have 

�Z t � 
Δ y ð Þ ¼  Ty t ð Þg ð Þf y u ÞΔu (7)Δ t ð Þ  ð Þ ¼ r t  p u  ð ð Þ  t ≥ t1: 

t1 

R t ΔSetting x tð Þ ¼  t1 
ð Þf y u ÞΔu gives us x ð Þ ¼ p t f y t Þ: Hence, we have that p u  ð ð Þ  t ð Þ  ð ð Þ  

ðx; yÞ is a nonoscillatory solution of system (1) such that x tð Þ ! ∞ and y tð Þ ! c as 
t ! ∞, i.e., Nþ∞,F ¼ ø. 

3.1.2 The case Pðt0; ∞Þ, ∞ and Rðt0; ∞Þ, ∞ 

In this subsection, we show that the existence of nonoscillatory solutions of (1) is 
only possible in NþF, F and N∞

þ 
, ∞ for P tð 0; ∞Þ, ∞ and R tð 0; ∞Þ, ∞, i.e., 

NþF, ∞ ¼ Nþ∞,F ¼ ø: 
Lemma 3.6 Suppose Pðt0; ∞Þ, ∞ and Rðt0; ∞Þ, ∞ and that ðx; yÞ is a 

nonoscillatory solution of system (1). Then xð Þt tends to a finite nonzero number c if and 
only if yð Þt tends to a finite nonzero number d as t ! ∞. 
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Proof. We prove the theorem by assuming x . 0 without loss of generality. 
Therefore by the definition of Nþ, y is also a positive component function of the 
solution ðx; yÞ. By taking the integral of the second equation of system (1) from t0 

to t and by the monotonicity of g and x, we have that there exists a positive 
constant k such that 

Z t 
y tð Þ≤ y tð 0Þ þ k r sð ÞΔs, 

t0 

where k ¼ g cð Þ: Then we have that y is convergent because P tð 0; ∞Þ, ∞ as 
t ! ∞. The sufficiency can be shown similarly. 

Theorem 3.7 Nþ 6¼ ø if and only if I1 , ∞ for all k1 . 0.F,F 

Proof. The necessity part can be shown similar to Theorem 3.5. So for sufficiency, 
suppose I1 , ∞ holds for all k1 . 0. Then choose t1 ≥ t0 such that 

Z ∞ � Z �t c 
p tð Þf k1 r sð ÞΔs Δt , , (8)

2t1 t1 

where k1 ¼ g cð Þ and t ≥ t1: Let X be the Banach space of all bounded real-valued 
and continuous functions on ½t0; ∞ÞT with usual pointwise ordering ≤ and the 
norm sup ∣x tð Þ∣. Let Y be a subset of X such that t ≥ t1 

n o 
Y ≔ x ∈ X : 

c 
≤ x tð Þ≤ c t  ≥ t12 

and F : Ω ! X be an operator such that 

Z t �Z s � 
c ðFxÞ t þ ð Þf ð Þg x u  Δu t ≥ t1:ð Þ ¼  p s  r u  ð ð ÞÞ Δt,
2 t1 t1 

One can easily have that inf B ∈ Y and sup B ∈ Y for any subset B of Y, which 
implies that ðY; ≤ Þ is a complete lattice. First, let us show that F : Y ! Y is an 
increasing mapping. 

c 
≤ Fxð Þ tð Þ≤

2 

Z � Z �t sc þ p sð Þf  g cð Þ  r uð ÞΔu Δt ≤ c,
2 t1 t1 

t ≥ t1, 

that is F : Y ! Y: Note also that for x1 ≤ x2, x1, x2 ∈ Y, we have Fx1 ≤ Fx2, i.e., 
F, which is an increasing mapping. Then by Theorem 2.10, there exists a function 
x ∈ Y such that x ¼ Fx: By taking the derivative of Fx, we have 

�Z t � 
ΔFx t ð Þ  r u g x u Þ , t  ≥ t1:ð Þ  ð Þ ¼ p t f ð Þ ð ð Þ Δu 

t1 

By letting 

Z t 
y tð Þ ¼  r uð Þgðx uð ÞÞΔu, 

t1 

Δ twe have y ð Þ ¼ r tð Þgðx tð ÞÞ, and ðx; yÞ is a nonoscillatory solution of system (1) 
such that x and y have finite limits as t ! ∞. This completes the assertion. 
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Remark 3.8 Suppose that P tð 0; ∞Þ, ∞ and R tð 0; ∞Þ, ∞. Then, as a result of 
this, we have I1 , ∞. So Theorem 3.7 also holds for P tð 0; ∞Þ, ∞ and R tð 0; ∞Þ, ∞. 

Exercise 3.9 Prove Remark 3.8. 

3.1.3 The case Pðt0; ∞Þ, ∞ and Rðt0; ∞Þ ¼ ∞ 

We present the nonoscillation criteria in Nþ under the case P tð 0; ∞Þ, ∞ and 
R tð 0; ∞Þ ¼ ∞ in this subsection. Therefore, we have the following lemma. 

Lemma 3.10 Suppose that Rðt0; ∞Þ ¼ ∞. Then any nonoscillatory solution in Nþ 

belongs to NþF, ∞ or N
þ
∞, ∞, i.e., NF

þ 
,F ¼ Nþ∞,F ¼ ø. 

Exercise 3.11 Prove Lemma 3.10. 
The following theorem shows us the nonexistence of nonoscillatory solutions in 

NþF, ∞: We skip the proof of the following theorem, since it is very similar to the 
proof of Theorem 3.5. 

Theorem 3.12 NþF,∞ 6¼ ø if and only if I1 , ∞ for all k1 . 0. 

3.1.4 Examples 

Examples are great ways to see that theoretical claims actually work. Therefore, 
we provide two examples about the existence of nonoscillatory solutions of system 
(1). But before the examples, we need the following proposition because our exam-
ples consist of scattered points. 

Proposition 1 ([5], Theorem 1.79) Let a, b ∈ T and h ∈ Crd: If ½a; b� consists of only 
isolated points, then 

Z b 

h tð ÞΔt ¼ ∑ μð Þt h tð Þ: 
a t ∈ ½a;bÞT 

Example 3.13 Let T ¼ 2N0 . Consider 

8 >>>< 

� 1t 61 1 

Δqx tð Þ ¼  ðy tð ÞÞ61 

2t � 1 
(9) 

31>>>: Δqy tð Þ ¼  ðx tð ÞÞ5, 
52t 
13 

hðσð Þt Þ�h tð Þwhere Δq is known as a q-derivative and defined as Δqh tð Þ ¼  , whereμð Þt 
μ t ð Þ ¼ 2t, and t ¼ 2nð Þ ¼ t, σ t , (see [5]). In this example, it is shown that we have a 
nonoscillatory solution in Nþ∞,F to highlight Theorem 3.5. Therefore, we need that 
P tð 0; ∞Þ is divergent and R tð 0; ∞Þ is convergent. Indeed, by Proposition 1, we have 

Z T � 1t 61 

Pð1; TÞ ¼  p tð ÞΔt ¼ ∑ � t: 
2t � 11 t ∈ ½1;TÞ

2N0 

Hence, we have Pð1; ∞Þ ¼ ∞ as T tends to infinity. Note that we use the limit 
divergence test to show the divergence of Pð1; ∞Þ. Next, we continue with the convergence 
of Rð1; ∞Þ. To do that, we note 

Z T 1
Rð1; TÞ ¼  r tð ÞΔt ¼ ∑ 13 � t: 

2N0
51 t ∈ ½1;TÞ 2t 
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As T ! ∞, we have 

� �8
∞ 51
∑ , ∞

2 � 2n 
n¼0 

by the geometric series, i.e., Rð1; ∞Þ, ∞. Finally, we have to show I2 , ∞. Let 
k2 ¼ 1: Then we get 

Z T � Z t � Z T 
! 

5
3 � � 1 

r tð Þg k2 p sð ÞΔs Δt ¼ 
1
13 ∑ 

s 61 � s Δt
2s � 11 1 1 2t 5 s ∈ ½ Þ1;t 

2N0 

!3 Z TR T 1 5 1 162 62
≤ ∑ s61 Δt ≤ � t105Δt ¼ ∑ :1 13 13 208

2t 5 2t 5 t105s ∈ 1;t 1 Þ½ Þ  t ∈ ½1;T
2N0 2N0 

So as t ! ∞, we have 

� �208
∞ 1051
∑ , ∞

2n 
n¼0 

by the ratio test. Therefore, I2 , ∞ by the comparison test. One can also show 
that t; 2 � 1 is a solution of system (9) such that x tð Þ !∞ and y tð Þ ! 2 as t ! ∞,t 
i.e., Nþ∞,F 6¼ ø by Theorem 3.5 

pffiffi pffiffi � � 1 1 2 2�1Þn ðExample 3.14 Let T ¼ 2 : n ∈ N0 , f  z  3, g  z  5 , p  t  1 ,ð  Þ ¼ z ð  Þ ¼ z ð Þ ¼  2t 
23 ð3�2t�1Þ3 pffiffi pffiffi 

2ð 2�1Þr tð Þ ¼  1, and t ¼ n in system (1). We show that there exists a nonoscillatory4t 22 5 ð2�2t�1Þ5 

solution in NþF,F. So by Theorem 3.7, we need to show Pðt0; ∞Þ, ∞ and Rðt0; ∞Þ, ∞ 
and I1 , ∞. Proposition 1 gives us 

pffiffi�pffiffiffi �Z T 2 2 � 1 1 1 
p tð ÞΔt ¼ ∑ 1 � ≤ ∑ 2t : 2t 23 30 t ∈ ½0;TÞT 23 ð3 � 2t � 1Þ t ∈ ½0;TÞT 2 

So as T ! ∞, we have 

∞ 1
∑ , ∞n 

3n¼0 2 

by the geometric series, i.e., P tð 0; ∞Þ, ∞. Also 

pffiffiffi�pffiffi �Z T 2 2 � 1 1 1 
r tð ÞΔt ¼ ∑ 

4t 1 � 2 
≤ ∑ 4t : 

5 50 t ∈ ½0;TÞ 2 5 ð2 � 2t � 1Þ t ∈ ½0;TÞT 2T 

Hence, we have 
∞ 1
∑ 2n , ∞ 

5n¼0 2 

as T ! ∞. Note also that I�1 , ∞ if Pðt0;�∞Þ, ∞ and Rðt0; ∞Þ, ∞ (see Remark 
(8)). It can be confirmed that 2 � 2

1 
t ; 3 � 1 is a nonoscillatory solution of2t 
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8 >>>>>>< 
xΔ tð Þ ¼  

ffiffiffi ffiffi p
2 2 � 1 1 

p 

ðy tð ÞÞ3 

332
2t ð3 � 2t � 1Þ 1 

ffiffiffi ffiffiffi p p
2 2 � 1 1 

>>>>>>: yΔ tð Þ ¼  ðx tð ÞÞ5 

552
4t ð2 � 2t � 1Þ 1 

such that x tð Þ ! 2 and y tð Þ ! 3 as t ! ∞, i.e., NF
þ 
,F ¼6 ø by Theorem 3.7. 

3.2 Existence of nonoscillatory solutions of (1) in N� 

Suppose that ðx; yÞ is a nonoscillatory solution of system (1) such that x . 0 
eventually. Then by the first and second equations of system (1) and the similar 
discussion as in Section 3.1, we obtain the following subclasses of N� . 

n

n

n 

o 
N� 

F,F ¼ ðx; yÞ∈ N� : lim x tð Þ ¼ c; lim y tð Þ ¼ �d ,
t!∞ t!∞ 

o 
N� 

F,0 ¼ ðx; yÞ∈ N� : lim x tð Þ ¼ c; lim y tð Þ ¼ 0 ,
t!∞ t!∞ 

o 
N� 

0,F ¼ ðx; yÞ∈ N� : lim x tð Þ ¼ 0; lim y tð Þ ¼ �d ,
t!∞ t!∞ 

N� 
0,0 ¼ ðx; yÞ∈ N� : lim x tð Þ ¼ 0; lim y tð Þ ¼ 0 : 

t!0 t!0 

This section presents us the existence and nonexistence of nonoscillatory solu-
tions of system (1) under the monotonicity condition on f and g. 

Theorem 3.15 Let Rðt0; ∞Þ, ∞. Then there exists a nonoscillatory solution in 
N� 

F, F 6¼ ø if and only if I3 , ∞ for all k3 , 0 and k4 . 0. 
Proof. Suppose NF 

� 
,F ¼6 ø. Then there exists a solution ðx; yÞ∈ N� 

F,F such that 
x . 0, y , 0, x tð Þ ! c1, and y tð Þ ! �d1 as t ! ∞ for 0 , c1 , ∞ and 0 , d1 , ∞. By 
integrating the second equation of system (1) from t to ∞, we obtain 

Z ∞ 

y tð Þ ¼ yð∞Þ �  r sð Þgðx sð ÞÞΔs 
t 

(10)Z ∞ 

≤ � d1 � k4 r sð ÞΔs, where k4 ¼ g cð Þ1 : 
t 

Integrating the first equation from t1 to t, using (10) and the fact that x is 
bounded yield us 

R t c1 ≤ x tð Þ  ¼ x tð 1Þ þ  p sð Þf ðy sð ÞÞΔs 
R t1 

t R ∞≤ x tð 1Þ þ  t1 
p sð Þf �d1 � k4 r uð ÞΔu Δs ≤ x tð Þ1 , t ≥ t1: s 

Therefore, it implies I3 , ∞ as t ! ∞, where �d1 ¼ k3. 
Conversely, suppose that I3 , ∞: Then there exist t1 ≥ t0 and k3 , 0, k4 . 0 such 

that 

Z ∞ Z ∞ �1 
r sð ÞΔs Δt .p tð Þf k3 � k4 (11)

2t0 t 
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3where k4 ¼ g . Let CB be the set of all continuous and bounded real-valued 2 
functions x tð Þ on ½t1; ∞ÞT with the supremum norm supt ≥ t1 

∣x tð Þ∣. Observe that CB is 
a Banach space (see [38]). Suppose that B is a subset of CB such that 

3
B ≔ x tð Þ∈ CB : 1 ≤ x tð Þ≤ ; t ≥ t1 :

2 

We have that B meets the assumptions of Theorem 2.9. Suppose also that 
F : B ! B is an operator such that 

Z ∞ � Z ∞ � 

ðFxÞ t ð Þf k3 � b u g x u  ÞΔu Δs (12)ð Þ ¼ 1 � a s  ð Þ ð ð Þ  
t s 

First, we need to show F is a mapping into itself, i.e., F : B ! B. Indeed, 

� � �Z �Z ∞ s3 3
1 ≤ ðFxÞð Þt ≤ 1 � að Þs f k3 � g bð Þu Δu Δs ≤

2 2t t1 

because x ∈ B and (5) hold. Next, let us verify that F is continuous on B: In order 
to do that, let xn be a sequence in B such that xn ! x, where x ∈ B ¼ B: Then 

∣ðFxn ð Þ � ðFxÞ tÞ t ð Þ∣ 
Z ∞ � � Z ∞ � � Z ∞ �� 

≤ p sð Þ� f k3 � r uð Þg xð nð Þu ÞΔu � f k3 � r uð Þgðx uð ÞÞΔu �Δs: 
t s s 

Therefore, the continuity of f and g and the Lebesgue dominated convergence 
theorem gives us Fxn ! Fx as n ! ∞, which implies F is continuous on B. Finally, 
we prove that FY is equibounded and equicontinuous, i.e., relatively compact. 
Because 

� Z ∞ � 
Δ0 , � ðFxÞ t p t f k3 � ð Þg x u  ÞΔuð Þ ¼ �  ð Þ  r u  ð ð Þ  

t� Z t � 

≤ � p tð Þf k3 � k4 r uð ÞΔu , ∞, 
t1 

we have that Fx is relatively compact. Hence, Theorem 2.9 implies that there 
exists x ∈ B such that x ¼ Fx: Thus, we have x . 0 eventually and x tð Þ ! 1 as 
t ! ∞. Also 

� Z ∞ � 

xΔ t ð ÞΔð Þ ¼ p t f k3 � ð Þg x u ÞΔu t ≥ t1:ð Þ ¼  Fx t ð Þ  r u  ð ð Þ  
t 

Letting 

Z ∞ 

y tð Þ ¼ k3 � r uð Þgðx uð ÞÞΔu , 0, t  ≥ t1 (13) 
t 

and taking the derivative of (13) give yΔ t ð Þ ð ð ÞÞ: So, we conclude that ð Þ ¼ b t g x t 
ðx; yÞ is a nonoscillatory solution of system (1). Finally, taking the limit of Eq. (13) 
results in y tð Þ ! k3 , 0. Therefore, we get N� 

F,F ¼ ø. 
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Theorem 3.16 Suppose Pðt0; ∞Þ, ∞. N� 
0,F 6¼ ø if and only if I4 , ∞ for k5 . 0. 

Exercise 3.17 Prove Theorem 3.16. 
Theorem 3.18 Suppose Pðt0; ∞Þ, ∞: N� 

0,0 6¼ ø if I3 , ∞ and I4 ¼ ∞ for all 
k3 ¼ 0, k4 , 0 and k5 . 0, provided f is odd. 

Proof. Suppose that I3 , ∞, and I4 ¼ ∞. Then there exists t1 ≥ t0 such that 

Z ∞ � Z ∞ � 

p sð Þf �k4 r uð ÞΔu Δs , 1 
t1 s 

and 

Z ∞ � Z ∞ � 
1 

r sð Þg k5 p uð ÞΔu Δs . 
2t1 s 

for t ≥ t1, k4 ¼ �gð Þ1 . Let X be the space that is claimed as in the proof of 
Theorem 3.7. Let Y be a subset of X and given by 

� Z ∞ � 

Y ≔ x ∈ X : c1 a sð ÞΔs ≤ x tð Þ≤ 1 t ≥ t1 , 
t 

1where c1 ¼ f . Define an operator T : Y ! X such that 2 

Z ∞ �Z ∞ � 

ð ÞTx ð Þ ¼t p sð Þf r uð Þgðx uð ÞÞΔu Δt, t ≥ t1: 
t s 

One can show that ðY; ≤ Þ is a complete lattice and T is an increasing mapping 
such that T : Y ! Y. As a matter of fact, 

Z ∞ � Z ∞ � 

Tx ð Þ≤ ð Þf g  1 ð ÞΔuð Þ t p s  ð Þ  r u  Δt ≤ 1, t  ≥ t1 
t s 

and 

Z ∞ �Z ∞ � Z ∞ � � 

ð ÞTx ð Þt ≥ p sð Þf r uð Þg c1 p vð ÞΔv Δu Δs 
t s u 

� �Z ∞1
≥ f p sð ÞΔs,

2 t 

where c1 ¼ k5, i.e., T : Y ! Y: Then by Theorem 2.10, there exists a function 
x ∈ Y such that x ¼ Tx: By taking the derivative of Tx and using the fact that f is 
odd, we have 

� Z ∞ � 
ΔðTxÞ ð Þ ¼ p t f � r u g x u ÞΔu , t  ≥ t1:t ð Þ  ð Þ ð ð Þ  

t 

Setting 
Z ∞ 

y tð Þ ¼ �  r uð Þgðx uð ÞÞΔu 
t 
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Δyields y t ð Þ ð ð ÞÞ ðx; y 0,0, i.e., x andð Þ ¼ b t g x t , and Þ is a solution of system (1) in N� 

y both tend to zero. 
Theorem 3.19 Suppose Rðt0; ∞Þ, ∞. NF 

� 
, 0 ¼6 ø if and only if I3 , ∞, where k3 ¼ 0 

and k4 . 0. 
Exercise 3.20 Prove Theorem 3.19. Hint: Use Theorem 2.10 with the operator 

Z ∞ � Z ∞ � 
1 ðFxÞ t � a s  � ð Þg x u  ÞΔu Δt, t ≥ t1:ð Þ ¼  ð Þf b u ð ð Þ
2 t s 

Examples make results clearer and give more information to readers. Therefore, 
we give the following example to validate our claims. The beauty of our example is 
that we do not only show the theorem holds but also find the explicit solutions, 
which might be very hard for some nonlinear systems. 

2Example 3.21 Consider T ¼ N2
0 ¼ 

� 
n : n ∈ N0 

� 
with the system 

8 1> Δ t 3
1 > x ð Þ ¼  �pffiffi 1 ðy tð ÞÞ> 1 �2> 3> t3 t þ 1 ðt2 þ 1Þ< 

(14)> �pffiffi �4> � t2> t þ 1>> Δ t 5
1 

: y ð Þ ¼  �pffiffi �4� pffiffi� ðx tð ÞÞ , 
5t 
9 

t þ 1 1 þ 2 t 

�pffiffi �2 pffiffi f ðσð Þt Þ�f tð Þwhere f Δ t for σ t t and μ t t (see [5]). First, let ð Þ ¼  ð Þ ¼  þ 1 ð Þ ¼ 1 þ 2μð Þt 
us show Pðt0; ∞Þ, ∞, where t0 ≥ 1. 

Z T pffiffi 
1 � pffiffi� 1 þ 2 t 

p tð ÞΔt ¼ ∑ �pffiffi �2 1 � 1 þ 2 t ≤ ∑ : 
1 t231 t ∈ ½1;TÞ 2 t3 t þ 1 ðt2 þ 1Þ t ∈ ½1;TÞ 2N0 N0 

Since t ¼ n2, as T  ! ∞, we have 

∞ 1 þ 2n
∑ , ∞ 
n¼1 n4 

by the geometric series. Therefore, Pð1; ∞Þ, ∞ by the comparison test. Next, R ∞ we show I4 , ∞. Since Pð1; ∞Þ, ∞, we have p sð ÞΔs , α for t ≥ 1 and 0 , α , ∞.t 
Hence, 

Z T �Z ∞ � Z T 

r tð Þg p sð ÞΔs Δt ≤ α r tð ÞΔt 
1 t 1 

�pffiffi �4 t þ 1 � t2 � pffiffi� ¼ α ∑ �pffiffi �4� pffiffi� � 1 þ 2 t 
t ∈ ½1;TÞN02 t 

9 
t þ 1 1 þ 2 t5 

1
≤ α ∑ 9 : 

t ∈ ½1;TÞ 2 t5 
N0 

So as T tends to infinity, we get 

∞ 1
∑ 18 , ∞, 
n¼1 n 5 
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1i.e., I2 , ∞. Also, note that 
� 
; �1 � 1 

� 
is a solution of system (14) in N� such that xt t2 

tends to zero, while y tends to �1, i.e., N� 
0,F ¼6 ø. 

4. Oscillation of a two-dimensional time-scale systems 

Motivated by [39], this section deals with the system 

( Δ tx ð Þ ¼ a tð Þf ðy tð ÞÞ 
(15) 

y t b t  ð ð ÞÞ þ c tΔð Þ ¼ �  ð Þg x t  ð Þ, 

where a, b ∈ Crd ½t0; ∞ÞT; Rþ , c  ∈ Crd ½t0; ∞ÞT; R and functions f g  have the 
same characteristics as in system (1) and g is continuously differentiable. Note that 
we can rewrite system (15) as a non-homogenous dynamic equations on time scales 
and putting σ on x inside the function g. Therefore, we have the following dynamic 
equation 

� �Δ σa tð ÞxΔ tð Þ  þ b tð Þg xð tð ÞÞ ¼ c tð Þ  (16) 

and systems of dynamical equations 

( 
xΔ tð Þ ¼ a tð Þf  y tð ð ÞÞ 
Δ σy tð Þ ¼ �b tð Þg xð tð ÞÞ þ c tð Þ: 

(17) 

Oscillation criteria for Eq. (16), system (17), and other similar versions of (15) 
and (17) are investigated in [39–42]. A solution ðx; yÞ of system (15) is called 
oscillatory if x and y have arbitrarily large zeros. System (15) is called oscillatory if 
all solutions are oscillatory. 

Before giving the main results, we present some propositions so that we can use 
them in our theoretical claims (see [43], Theorem 4.2 (comparison theorem) and 
[5], Theorem 1.90). 

Proposition 2 Let z1 be a function from T to R and v be a nondecreasing function 
from R to R such that v ∘ z1 is rd-continuous. Suppose also that p ≥ 0 is rd-continuous and 
α ∈ R: Then 

Z t 
z1ð Þt ≤ α þ pð Þτ v zð 1ð Þτ ÞΔτ, t  ≥ t0 

t0 

implies z1ð Þt ≤ z2ð Þt , where z2 solves the initial value problem 

z t ð Þv z2 t Þ z2 
Δð Þ ¼ p t  ð ð Þ , ðt0Þ ¼ z20 . α:2 

Proposition 3 (chain rule). ([5], Theorem 1.90) Let h1 : R ! R be continuously 
differentiable and suppose h2 : T ! R is delta differentiable. Then h1 ∘ h2 : T ! R is 
delta differentiable, and the formula 

�Z 1 � 
Δ � 

hΔ � 
hΔðh1 ∘ h2 t h10 t ð Þ  2 ð Þ  2 tÞ ð Þ ¼  h2ð Þ þ hμ t t dh ð Þ  

0 

holds. 
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For simplicity, set 

Z s Z s 
A tð ; sÞ ¼  að Þu Δu, Bðt; sÞ ¼  b uð ÞΔu, 

t t 

Z s Z s � � 

C tð ; sÞ ¼  ∣c uð Þ∣Δu, Dðt; sÞ ¼  b uð  Þ �  
c uð Þ  

Δu, 
gðx uð ÞÞt t 

Z s yσ Δ 
R 1 g0 Δð Þu x ð Þu ½ ðx uð  Þ þ hμð Þu x ð Þu Þdh� 

Y tð ; sÞ ¼  0 Δu: 
gðx uð ÞÞg xð σð Þu Þt 

Next, note that if ðx; yÞ is a nonoscillatory solution of system (15), then one can 
easily prove that x is also nonoscillatory. This result was shown by Anderson in [37] 
when c tð Þ � 0: Because the proof when c tð Þ�= 0 is very similar to the proof of the 
case c tð Þ � 0, we leave it to the readers. 

Lemma 4.1 Suppose that ðx; yÞ is a nonoscillatory solution of system (15) and 
t1, t2 ∈ T. If there exists a constant K . 0 such that 

H tð Þ≥ K, t ≥ t2, (18) 

where H is defined as 

y tð Þ1H tð Þ ¼ �  þD tð 1; tÞ þ Y tð 1; t2Þ, (19)
gðx tð Þ1 Þ 

then yð Þt ≤ � Kg x t2 Þ, t  ≥ t2.ð ð Þ  
Proof. Suppose that ðx; yÞ is a nonoscillatory solution of system (15). Then, we 

have that x is also nonoscillatory. Without loss of generality, assume that x tð Þ. 0 
for t ≥ t1 ≥ t0, where t1, t0 ∈ T. Integrating the second equation of system (15) from t1 

to t and Theorem 2.8 (v.) gives us 

Z Z � �Δ Zt t ty tð Þ1 y tð Þ  1 c sð Þσb sð ÞΔs ¼ � þ y ð Þs Δs þ Δs: (20)
gðx tð Þ1 Þ gðx tð ÞÞ gðx sð ÞÞ gðx sð ÞÞt1 t1 t1 

By applying Theorem 2.3 (iv) and Proposition 3 to Eq. (20), we have 

Z Zt ty tð Þ1 y tð Þ  c sð Þ
bð Þs Δs ¼ � þ Δs � Y tð 1; tÞ, t  ≥ t1: (21)

gðx tð Þ1 Þ gðx tð ÞÞ gðx sð ÞÞt1 t1 

Rewriting Eq. (21) gives us 

y tð Þ  y tð Þ1� ¼ Dðt1; tÞ �  þ Y tð 1; tÞ, t ≥ t1: (22)
gðx tð ÞÞ gðx tð Þ1 Þ 

Now by using (18) and (19), we get 

y tð Þ  � ≥ K þ Y tð 2; tÞ, t  ≥ t2 ≥ t1: (23)
gðx tð ÞÞ 
Δ t Δ tNote that y tð Þ, 0 and x ð Þ, 0 for t ≥ t2 since y tð Þx ð Þ ¼ a sð Þy sð Þf ðy sð ÞÞ. 0: 

y tð ÞOtherwise, we would have � Þ . 0, which is a contradiction. Let gðx tð Þ  

�v tð Þ  ¼ K þ Y tð 2; tÞ, t ≥ t2: (24)
gðx tð ÞÞ 
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So one can obtain 

� �Δ σ Δ 
R 1 Δ t�v tð Þ  y ð Þt x ð Þt ½g0ðx tð Þ þ hμð Þt x ð ÞÞdh�0¼ . 0, t≥ t2: (25)

g x t Þ ð ð ÞÞ ð σ ð ÞÞð ð Þ  g x t  g x  t 

Because x tð Þ is a positive and v tð Þ is a negative function for t≥ t2, we have 
�y tð Þ  �v tð Þ≥ g x t Þ , i.e., y tð Þ≤ v tð Þ, 0 for t≥ t2: Therefore, we have by (25) that g x tð ð ÞÞ ð ð Þ  

� �Δ R 1σ�v tð Þ  v ð Þt xΔð Þt ½g0ðx tð Þ þ hμð Þt xΔð Þt Þdh�
≥ 0 . 0, t≥ t 

g x t Þ ð ð ÞÞ ð σð ÞÞð ð Þ  g x t  g x  t 2 

since v tð Þ, 0 and xΔð Þt , 0 for t≥ t2: By setting 

Z R 1t σ Δ 0 Δw tð Þ  w ð Þs x ð Þs ½g ðx sð Þ þ hμð Þs x ð Þs Þdh�0¼ K � Δs (26)
g x t Þ 

2 
ð ð ÞÞ ð σ ð ÞÞð ð Þ  g x s  g x  st 

v tð Þ2 ¼ K ¼ w tð Þ2and using (24), we have � 
g x t  Þ : Then, setting g x tð ð Þ2 Þ ð ð Þ2 

1 ¼ v tð Þ  w tð Þ  ð Þt z , z2 ¼ � , h uð  Þ ¼  u
σ 

in Proposition 2, it follows v tð Þ≤ �w tð Þ, whichð ð Þ  g x t  ð ð Þg x t Þ ð ð ÞÞ g x t Þ 
implies y tð Þ≤ � w tð Þ, t≥ t2: Note also by Theorem 2.3 (iv) and Proposition 3 that 

� �Δ σ Δ t 
R 1 Δ tw tð Þ  wΔð Þt w ð Þt x ð Þ  0 g

0ðx tð Þ þ hμð Þt x ð ÞÞdh ¼ � , t≥ t2: (27)
g x tð ð ÞÞ ð σ t g x t Þg xð σg x ð ÞÞ ð ð Þ  ð Þt Þ 

Taking the derivative of (26) and comparing the resulting equation with (27) 
yield us 

wΔð Þt Δ t¼ 0, i:e:, w  ð Þ ¼ 0, t≥ t2: g xð σð Þt Þ 
Therefore, we have 

w tð 2Þ ¼ K � g x t  Þ ¼ w t , i:e:, y t  ð Þ ¼ �K � g x t2 Þ:ð ð Þ2 ð Þ  ð Þ≤ � w t  ð ð Þ  

So the proof is completed. 

4.1 Results for oscillation 

After giving the preliminaries in the previous section, it is presented the condi-
tions for oscillatory solutions in this section. 

Theorem 4.2 Let A tð 0; ∞Þ ¼ ∞, B tð 0; ∞Þ, ∞, and C tð 0; ∞Þ, ∞: Assume 

f uð Þf vð Þ≤ f uv ð Þf ð�vÞ (28)ð Þ≤ � f u  

and 

Z ∞ Δx ð Þs 
Δs, ∞: (29) 

0 
f  g x sð ð ÞÞð Þt

Then system (15) is oscillatory if 
Z ∞ 

a tð Þf  B t  Þ � k � C t  ÞÞ (30)ð ð ; ∞ ð ; ∞ Δt ¼ ∞ 
t0 
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for k ¼ 0. 
Proof. Suppose that system (15) has a nonoscillatory solution ðx; yÞ such that 

x . 0 eventually. Then there exist t1 ≥ t0 and a constant k6 such that gðx tð ÞÞ≥ k6 for 
t ≥ t1 by the monotonicity of g. Then by Eq. (22), we have 

y tð Þ  y tð Þ1¼ -D tð 1; tÞ - Y tð 1; tÞ, t  ≥ t1: (31)
gðx tð ÞÞ gðx tð Þ1 Þ 

Note that Y tð 1; tÞ, ∞. Otherwise, we have a contradiction to the fact that 
x tð Þ. 0 for t ≥ t1 since A tð 0; ∞Þ ¼ ∞. Equality (31) can be rewritten as 

y tð Þ  ¼ γ þDðt; ∞Þ þ Y tð ; ∞Þ, (32)
gðx tð ÞÞ 

y tð 1Þwhere γ ¼ -D tð 1; ∞Þ - Y tð 1; ∞Þ, t  ≥ t1: It can be shown that γ ≥ 0. Oth-gðx tð 1ÞÞ 
γerwise, we can choose a large t2 such that B tð ; ∞Þ≤ - γ, Y tð 2; ∞Þ≤ - , and

 ≤ -γ
  4R ∞ c sð Þ  for t ≥ t2. Then H tð Þ≥ -γ . 0 for t ≥ t2. Then by setting K ¼ -γ 4 4Δs in 

   4t gðx sð ÞÞ 
Lemma 4.1 found, we have y tð Þ≤ - Kg x t2 Þ for t ≥ t2. Integrating the first ð ð Þ  
equation of system (15) from t2 to ∞ and the monotonicity of f yields us 

Z t 

x tð Þ≤ x tð 2Þ þ f ð-Kg x t2 ÞÞ a s  Δs, t ≥ t2:ð ð Þ  ð Þ  
t2 

So as t ! ∞, we have a contradiction to x . 0 eventually. Therefore γ ≥ 0. Then 
by Eq. (32), we have 

Z ∞ Z ∞1 
y tð Þ≥ gðx tð ÞÞ jc sð ÞjΔs , t  ≥ t2:Δs -b sð Þ  

k6 tt 

 
By the first equation of system (15), the monotonicity of f and Eq. (28), we have 

Z ∞  Z ∞1 
xΔð Þt ≥ að Þt f ðgðx tð ÞÞÞf bð Þs Δs -

t 
, t  ≥ t2:c sð ÞjΔs (33)j

k6 t 

Then by Eqs. (33) and (29), we have 

 Z ∞ Z ∞  Z Z Δt t ð Þsx
≤ Δs , ∞a sð Þf b uð ÞΔu - k jc uð ÞjΔu 

f ðgðx sð ÞÞÞt2 s s t2 

where k ¼ 1 
k6 
: But as t ! ∞, this contradicts to Eq. (30). The proof is completed. 

Theorem 4.3 System (15) is oscillatory if Aðt0; ∞Þ ¼ B tð 0; ∞Þ ¼ ∞ and 
Cðt0; ∞Þ, ∞. 

Proof. We use the method of contradiction to prove the theorem. Thus, assume 
there is a nonoscillatory solution ðx; yÞ of system (15) such that the component 
function x is eventually positive. Because g is nondecreasing, we have that there 
exist t1 ≥ t0 and k7 . 0 such that gðx tð ÞÞ≥ k7 for t ≥ t1. Then since C tð 0; ∞Þ, ∞, we 
have that there exists 0 , k8 , ∞ such that 

    Δs 
    ≤ 

Z Zt t1c sð Þ  
∣c sð Þ∣Δs , k8, t  ≥ t1: (34)

k7gðx sð ÞÞt1 t1 
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The first equation of system (15), and the monotonicity of g give us that there 
exist K . 0 and t2 ≥ t1 so large that 

xΔ t ð Þf ð�Kg x t2 Þð Þ≤ a t  ð ð Þ Þ, t  ≥ t2: (35) 

Integrating (35) from t2 to t yields 

Z t 
x tð Þ≤ x tð 2Þ þ k9 ð ÞΔs, where k9 ¼ f ð�Kg x t2 Þa s ð ð Þ Þ, 0, t ≥ t2: 

t2 

As t ! ∞, we have a contradiction to x tð Þ. 0 for t ≥ t2: This proves the asser-
tion. 

Finally, an example is provided to highlight Theorem 4.3 by finding the explicit 
solution of the dynamical system. 

1 ð Þ ð2tþ7ÞExample 4.4 Consider the time scale T ¼ 5Zþ with a t 3 ,ð Þ ¼  tþ4 
2 

5ðtþ1Þ3ðtþ6Þ 
3t

1 ð�1Þ ð�3t5�27t4�125t3�237t2�195t�59Þt5þt4þt3þt2þtþ1 3b tð Þ ¼  z 3, g z  , c t  ,, f  ð  Þ ¼ z ð  Þ ¼ z ð Þ ¼  45ðtþ1Þðtþ4Þðtþ6Þðtþ9Þ 5ðtþ1Þ ðtþ4Þðtþ6Þðtþ9Þ 
and t ¼ 5n, where n ∈ N in system (15). We show that Aðt0; ∞Þ ¼ ∞, Bðt0; ∞Þ ¼ ∞, 
and Cðt0; ∞Þ, ∞. Indeed, 

1 1Z T 3 3ðt þ 4Þ ð2t þ 7Þ ðt þ 4Þ ð2t þ 7Þ
Að5; TÞ ¼  2 Δt ¼ ∑ 2 : 

35 5ðt þ 1Þ3ðt þ 6Þ t ∈ ½5;TÞ ðt þ 1Þ ðt þ 6Þ5Zþ 

So as T ! ∞, we have 

∞ ð5n þ 4Þ31 ð10n þ 7Þ
∑ 2 ¼ ∞ by the limit comparison test: Therefore, Að5; ∞Þ ¼ ∞: 

3n¼1 ð5n þ 1Þ ð5n þ 6Þ 
Similarly, 

Z T t5 þ t4 þ t3 þ t2 þ t þ 1 t5 þ t4 þ t3 þ t2 þ t þ 1
Bð5; TÞ ¼ Δt ¼ ∑ 

5 5ðt þ 1Þðt þ 4Þðt þ 6Þðt þ 9Þ t ∈ ½5;TÞ5Zþ ðt þ 1Þðt þ 4Þðt þ 6Þðt þ 9Þ 

t5 

≥ ∑ : 
t ∈ ½5;TÞ5Zþ ðt þ 1Þðt þ 4Þðt þ 6Þðt þ 9Þ 

Taking the limit as T ! ∞ gives us 

∞ 5 

Bð5; ∞Þ≥ 625 � ∑ 
n ¼ ∞ ð5n þ 1Þð5n þ 4Þð5n þ 6Þð5n þ 9Þn¼1 

by the limit divergence test. Therefore, Bð5; ∞Þ ¼ ∞ by the comparison test. Finally, 
we show Cðt0; ∞Þ, ∞. 

3t5 þ 27t4 þ 125t3 þ 237t2 þ 195t þ 59
Cð5; TÞ ¼  ∑ 4 

t ∈ ½5;TÞ5Zþ ðt þ 1Þ ðt þ 4Þðt þ 6Þðt þ 9Þ 
3 27 125 195 59

≤ ∑ þ þ þ þ : 
t2 t3 t5 t6 t7 

t ∈ ½5;TÞ5Zþ 

So as T ! ∞, we have 

67 

http://dx.doi.org/10.5772/intechopen.83375


� � 

� 

� � 

Oscillators - Recent Developments 

∞ 3 27 125 195 59
Cð5; ∞Þ≤ ∑  þ þ þ þ , ∞ 

n¼1 n2 n3 n5 n6 n7 

by the geometric series. One can also show that 
tþ1 3tð�1Þ ð�1Þ ;tþ1 ðtþ1Þðtþ4Þ is an oscillatory 

solution of system 

8 >>>>< 

>>>>: 

1 
3ðt þ 4Þ ð2t þ 7Þ 1 

xΔ t 2 y ð Þð Þ ¼  3 t 
5ðt þ 1Þ ðt þ 6Þ3 

3tt5 þ t4 þ t3 þ t2 þ t þ 1 ð�1Þ ð�3t5 � 27t4 � 125t3 � 237t2 � 195t � 59ÞΔ 3 ty t x ð Þ þ  ,ð Þ ¼ �  45ðt þ 1Þðt þ 4Þðt þ 6Þðt þ 9Þ 5ðt þ 1Þ ðt þ 4Þðt þ 6Þðt þ 9Þ 
hðσð Þt Þ�hð Þtwhere we define hΔ t for σ t ð Þ ¼ 5 (see [5]). ð Þ ¼  ð Þ ¼ t þ 5 and μ tμð Þt 

5. Conclusion 

This chapter focuses on the oscillation/nonoscillation criteria of two-
dimensional dynamical systems on time scales. We do not only show the oscillatory 
behaviors of such solutions but also guarantee the existence of such solutions, 
which might be challenging most of the time for nonlinear systems. In the first and 
second sections, we present some introductory parts to dynamical systems and 
basic calculus of the time-scale theory for the readers to comprehend the idea 
behind the time scales. In Section 3, we consider 

(
Δ tx ð Þ ¼ p tð Þf ðy tð ÞÞ 
Δ ty ð Þ ¼ r tð Þgðx tð ÞÞ 

and investigate the nonoscillatory behavior of solutions under some 
certain circumstances. Recall that system (1) turns out to be a differential equation 
system 

x0ð Þ ¼t p tð Þf ðy tð ÞÞ 
y0 tð Þ ¼ r tð Þgðx tð ÞÞ 

when T ¼ R. And the asymptotic behaviors of nonoscillatory solutions were 
presented by Li in [32]. Also when T ¼ Z, system (1) is reduced to the difference 
equation system, 

(
Δxn ¼ p f yn n 

Δy ¼ rng xð Þn ,n 

and the existence of nonoscillatory solutions were investigated in [33]. There-
fore, we unify the results for oscillation and nonoscillation theory, which was 
shown in R and Z and extends them in one comprehensive theory, which is called 
time-scale theory. These results were inspired from the book chapter written by 
Elvan Akın and Özkan Öztürk (see [29]). In that book chapter, it was considered a 
second-order dynamical system 

( 
xΔ tð Þ ¼ p tð Þf ðy tð ÞÞ 

(36)Δ ty ð Þ ¼ �r tð Þgðx tð ÞÞ 
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and delay system 

(
x ð Þ ¼ p t f  y t ÞΔ t ð Þ  ð ð Þ  

(37) 
yΔ t r t g xð τ t ÞÞ,ð Þ ¼ � ð Þ ð ð ð Þ  

where τ is rd-continuous function such that τð Þt ≤ t and τ tð Þ !∞ as t! ∞. 
When the latter systems were considered, because of the negative sign of the second 
equation of systems, the subclasses for Nþ an N� would be totally different. So in 
[29], the existence of nonoscillatory solutions in different subclasses was shown. 
Another crucial thing on the results is that it is assumed that f must be an odd 
function for some main results. However, we do not have these strict conditions on 
our results. Another interesting observation for system (37) is that we lose some 
subclasses when we consider the delay in system (37). It is because of the setup 
fixed point theorem and the delay function τ. Therefore, this is a big disadvantage 
of delayed systems on time scales. 

Akın and Öztürk also considered the system 

(
xΔ t ð Þ y t jα sgn y tð Þð Þ ¼ p t j ð Þ  

(38)
Δ t β σy ð Þ ¼ �r tð Þjxðσð Þt Þj sgn x ð Þt , 

where α, β . 0. System (38) is known as Emden-Fowler dynamical systems on 
time scales in the literature that has been mentioned in Section 1 with applications. 
Akın et al. [44, 45] showed the asymptotic behavior of nonoscillatory solutions by 
using α and β relations. 

For example, system (38) turns out to be a system of first-order differential 
equation 

( 0 t α x ð Þ ¼ p tð Þjy tð Þj sgn y tð Þ  

0 t β y ð Þ ¼ �r tð Þjx tð Þj sgn x tð Þ, 
when the time scale T ¼ R. On the other hand, system (38) ends up with the 

system of difference equations 

8< αΔxn ¼ pn y sgn ynn 

: βΔy ¼ �rnjxnþ1j sgn xnþ1,n 

when the time scale T ¼ Z. For both cases, several contributions have been made 
by Zuzana et al. in [46] and [47], respectively. 

Finally, we finish this section with the following tables, showing summaries 
about the existence of nonoscillatory solutions of system (1) in Nþ and N 
(Tables 3 and 4). 

Nþ∞,F ¼ ø P tð 0; ∞Þ ¼ ∞ and R tð 0; ∞Þ, ∞ I2 , ∞ 

NþF,F ¼ ø P tð 0; ∞Þ, ∞ and R tð 0; ∞Þ, ∞ I1 , ∞ 

NþF,∞ ¼ ø P tð 0; ∞Þ, ∞ and R tð 0; ∞Þ ¼ ∞ I1 , ∞ 

Table 3. 
þExistence for (1) in N . 
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N� 
F, F 6¼ ø R t0; ∞ð Þ , ∞ I3 , ∞ 

N� 
0, F 6¼ ø P t0; ∞ð Þ , ∞ I4 , ∞ 

N� 
0, 0 6¼ ø P t0; ∞ð Þ , ∞ I3 , ∞ and I4 ¼ ∞ 

N� 
F, 0 6¼ ø R t0; ∞ð Þ , ∞ I3 , ∞ 

Table 4. 
Existence for (1) in N� . 

A. Appendix 

We give the following exercises to the interested readers that help them prac-
ticing the theoretical results. The examples are in q-calculus which takes too much 
attention recently. Recall from Example 3.13 that Δq is defined as 

f ðtqÞ �  f tð Þ
Δqf ðtÞ ¼  : (39)ðq � 1Þt 

With the help of Eq. (39), we provide the following exercises. 
Exercise 6.1 Let T ¼ 2N0 : Consider the following system: 

8 >>< 

>>: 

1 
7 

1
Δqx tð Þ ¼  ðy tð ÞÞ 

4t2ð1 þ tÞ 1 
7 

(40)
2t

Δqy tð Þ ¼  x tð Þ
4t � 1 

2 � 1 
2t is a nonoscillatory solution of Eq. (40) in NþF, ∞and show that ; t þ 1 6¼ ø 

by checking the conditions given in Theorem 3.12 for k1 ¼ 1. 
Exercise 6.2 Let T ¼ qN0 , q  . 1. Consider the following system: 

8 >>>< 

>>>: 

1 
5 

1
ΔxqðtÞ ¼  

8 
ðy tð ÞÞ 

55qt ð2t2 þ 1Þ 1 

(41) 
q þ 1

Δyq t x tð Þ ¼  ð Þ, 
q2t2ðt þ 1Þ 

and show that there exists a nonoscillatory solution of hðσð Þt Þ�h tð Þwhere ΔhqðtÞ ¼  μð Þt 
1 þ 1 ; �2 � 1 

t t2 , in N� 
F, F 6¼ ø by Theorem 3.15 for k3 ¼ �1 and system (41), given by 

k4 ¼ 1. 
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Chapter 4

Time-Domain Simulation of
Microstrip-Connected Solid-State
Oscillators for Close-Range Noise
Radar Applications
Vladimir Yurchenko and Lidiya Yurchenko

Abstract

We develop time-domain approach for simulation of microstrip-connected
extremely-high frequency (EHF) solid-state oscillators for close-range radars,
including ultrashort-pulse, ultrawide-band (UWB), and noise radars. The circuits
utilize high-speed GaN-based active devices such as Gunn diodes (GD) and
resonant-tunneling diodes (RTD) capable of operating with enhanced power out-
put. Microstrip interconnects produce time-delay coupling in the system that can
create a complicated nonlinear dynamics of oscillations. The circuits can generate
self-emerging trains of ultra-short EHF pulses emitted into an open microstrip
section for further radiation. The arrays of active devices connected in either
parallel (star-case) or series (ladder-case) type of circuits were simulated. Options
for generation of chaotic signals in this kind of systems have been considered. An
infrared-microwave (IR-EHF) oscillator linked to the resonant antenna was simu-
lated. The oscillator consists of an RTD-driven laser diode (LD) joint to the EHF
resonant antenna with a short piece of microstrip section. The oscillator can gener-
ate both the EHF pulse radiation and the EHF modulated IR pulses. Both kinds of
radiation can be emitted in the free space as the trains of correlated IR-EHF radar
pulses. Arrays of oscillators can be used for enhancing the power output of the
system.

Keywords: time-domain simulations, solid-state oscillator, THz, millimeter wave,
time-delay, chaos, distributed systems, active devices, Gunn diode

1. Introduction

Emerging demands for the EHF oscillators capable of generation of ultra-short
pulses and complicated waveforms including chaotic oscillations lead to the devel-
opment of new approaches to the design and analysis of oscillator systems. The EHF
oscillators are of interest for numerous applications. Significant part in these
applications belongs to radar systems including, particularly, close-range and noise
radars, which require ultrashort-pulse, ultrawide-band, and noise oscillation
sources [1, 2]. There are different kinds of the EHF oscillators ranging from micro-
wave power tubes (klystrons, gyrotrons, backward-wave tubes, etc.) to solid-state
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devices (transistor-based circuits, Gunn diodes, etc.) [3, 4], of which only the latter 
are discussed in this chapter. 

Design of oscillators and circuits is conventionally made in frequency domain. A 
significant contribution to the design was made by Kurokawa [5, 6] through 
advancing the negative resistance oscillator concepts and developing stability anal-
ysis methods. He developed the impedance approach to the analysis of oscillator 
systems that makes it possible to design, in particular, multi-device circuits with 
spatial power combining [6]. 

Numerous advances to the design and analysis of oscillators have been made in 
the following years [7–9]. Significant developments are the extension of the 
frequency-domain analysis for the account of nonlinear characteristics of active 
devices [7], the analysis of different impedance and admittance formulations in the 
oscillator design [8], the application of hybrid harmonic-balance approach [9], etc. 
A vast literature exists on the design of oscillators with frequency-domain methods. 

In this line, time-domain oscillator analysis is not a common practice. In order to 
deliver essential information about the oscillators and their dynamics, time-domain 
analysis requires huge amount of numerical simulations of complicated oscillatory 
systems, which have to be made in a broad range of oscillator parameters. 

Despite this difficulty, there are circumstances when such an analysis is a neces-
sity, since no alternative approach can provide adequate information on the oscilla-
tor dynamics in the relevant cases. These are the cases when ultrashort-pulse, 
ultrawide-band, and noise oscillation signals have to be generated [1, 2]. The 
problem exacerbates when signals should have extremely broad frequency spec-
trum extended in the EHF and THz bands. 

Design of generation and transmission systems for this kind of signals inherently 
requires the time-domain approach [10]. For passive components like antennas, 
valuable contributions to mathematics of time-domain modeling that concerns 
ultrashort-pulse and ultrawide-band signals have been made [11, 12]. The oscillators 
are, however, much too complicated unstable and nonlinear systems for the effi-
cient simulations. Nonetheless, time-domain modeling is, in fact, the most mean-
ingful approach to the design of oscillators generating this kind of signals [13, 14], 
though the frequency-domain methods can also be helpful [15]. 

A practical way of making progress in the analysis of these oscillators is to 
consider simplified models, which, despite their simplicity, represent essential fea-
tures of real systems. An important feature of oscillators in the EHF and THz bands 
is their distributed character. Even though active devices and other discrete ele-
ments may be small, their assembly into an operating circuit with extended inter-
connects, resonators, and antenna components makes the entire system to be 
comparable to the radiation wavelength. 

Thus, time delay arises, essentially, due to the delayed coupling between the 
components that makes the circuit to operate as a distributed system. Time delay 
leads to complicated dynamics and, often, to the dynamical chaos in nonlinear 
systems [16] that makes time-delay oscillators to be attractive devices for numerous 
applications. 

A particularly useful simplification arises when making clear distinction 
between discrete and distributed components and defining the model where 
discrete units (circuit elements or blocks of elements) are joined by transmission 
lines (waveguides, microstrips, etc.) in a way that qualitatively represents the actual 
connectivity of components in the entire system. Then, discrete blocks can be 
simulated by local equations in time domain and the effects of transmission lines 
can be accounted by readily available analytic solutions of simplified wave 
equations. The entire system is then suitable for reasonably efficient time-domain 
simulations. 
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We applied the approach to the time-domain analysis of a range of different 
distributed circuits with active devices where we assumed that the transmission 
lines are, typically, the microstrip sections and the active devices are either the 
Gunn diodes or the resonant tunneling diodes in that or another circuit [17–25]. 
Transmission lines introduce time delays in the coupling between discrete units that 
makes the entire circuits to operate as the time-delay oscillators. 

Our microstrip-based oscillator models are qualitatively different from other 
time-delay oscillators usually considered [4]. The difference is that, instead of using 
pre-defined phase delays in the feedback circuits, we consider time-delays that 
emerge self-consistently as a result of backward and forward EM wave propagation 
along the transmission lines with account of their scattering and interference with 
other process, making the effects particularly complicated. The systems take into 
account the fact that, at the frequencies of the EHF and THz range, i.e., for the 
millimeter and sub-millimeter waves, time-delays become unavoidable due to the 
extended structure of oscillator circuits. 

The following Sections present overview of basic results obtained in our time-
domain simulations of extended transmission line time-delay oscillators. 

2. Kinds of circuits and forms of oscillations 

We consider solid-state oscillators that can be presented as a combination of 
both the lumped units (lumped circuit blocks) and distributed microstrip sections 
(pieces of transmission lines) of different configurations. Microstrip sections pro-
vide interconnects between the lumped units and produce time-delay in the cou-
pling between different circuit components. 

The lumped units are built up of discrete active and passive devices whose 
interconnects within each block are of infinitesimal length as compared to the 
typical wavelength λ0 of the electromagnetic (EM) waves emerging in the system as 
a result of complicated self-oscillation process. For this reason, there is no time 
delay arising due to signal propagation between discrete elements, including active 
devices, within each lumped unit. There are neither special time-delay devices of 
other kinds included in the lumped units. The units being used are, in fact, rather 
simple pieces of circuits made up of active devices (Gunn diodes, avalanche diodes, 
resonant tunneling diodes) and passive elements (resistors, capacitors, and 
inductances). 

The distributed sections are the pieces of microwave transmission lines (e.g., 
microstrip lines as representative elements or any other waveguide structures). 
Transmission lines (TL) provide time-delay coupling between the lumped units. 
Time delay appears in the coupling between the lumped units connected by any TL 
section because of some time needed for the EM wave propagation along the section 
between the units. The time delay has to be accounted in the analysis when the 
length dn of the relevant TL section identified by index n is not too small as 
compared to the typical wavelength λ0 of the EM waves propagating along the 
section. 

Schematics of a few circuits being considered are presented in Sections 5, 7, and 
8 below. Depending on the kind of circuits, different types of nonlinear oscillation 
can be excited in time-delay systems. The key elements in these distributed systems 
are the active blocks that contain one or another kind of solid-state active devices. 

We consider the EHF solid-state devices such as Gunn diodes or the resonant 
tunneling diodes (RTD) that can operate in a broad range of frequencies varying 
from, essentially, 10GHz to about 1 THz and more. The operation of these devices 
and oscillators is best understood in terms of the negative resistance oscillator 
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concepts [7, 8]. Typically, we consider the Gunn diode circuits in our models, 
though one example of RTD system is discussed in the Section 8. In practice, the 
most common are the GaAs Gunn diodes but GaN devices are now of greater 
interest due to their potential for high-power and high-frequency operation. 

The Gunn diodes are simulated using the approximation of limited space-charge 
accumulation (LSA) mode. In this mode, the strong-field domain in the Gunn diode 
is bounded to the surface electric contact and can only oscillate near the contact 
rather than travel through the entire structure. Then, the oscillation frequency of 
the Gunn diode can vary in a broad range and achieve rather high values. 

Using the LSA approximation, the device operation can be described in terms of 
the given current-voltage characteristics with negative differential resistance 
(NDR) region. In this model, the current-voltage characteristics of typical Gunn 
diodes, e.g., GaAs diodes, can be presented in the following form [17–24]. 

G eð Þ ¼ G0F eð Þ  (1) 

where G eð Þ is the diode current in relative units, F eð Þ is the function defining the 
shape of the current-voltage characteristics, G eð Þ ¼ G0 I eð Þ=I0, G0 ¼ Z0 I0=V0, 
e ¼ V=V0, I0 and V0 are the scaling factors for the diode current Ið Þe and voltage V, 
respectively, and Z0 is the microstrip wave impedance (I0 and V0 parameters are 
specified by the Gunn diode threshold current and voltage, respectively). 

The Gunn diode self-excitation begins when the voltage V falls in the NDR 
region. We accept the intrinsic impedance of microstrip lines to be Z0 ¼ 50 Ohm 
and use G0 ¼ 2 as a typical Gunn diode parameter (typically, I0 ¼ 0:2A, V0 ¼ 5 V  
for GaAs and I0 ¼ 1:2 A, V0 ¼ 30 V for GaN structures). 

The formulation in terms of the current-voltage characteristics, which is typical 
for the LSA approximation, means that the diode is capable of instant response to 
any external signal. The operation of such a diode is, formally, not limited from 
above by any high frequency value. In reality, though, the high-frequency operation 
is limited by the diode intrinsic capacitance C and the inductance L of the mounting 
contacts. These parameters define the natural intrinsic frequency of the Gunn diode 
when it is mounted in one or another way in the transmission line. Typically, due to 
quite noticeable value of inductance, this intrinsic frequency is lower than the 
highest frequency accessible for the diode operation. 

In our models, we consider both kinds of approximations when the Gunn diode 
is either not limited in the oscillation frequency or, on the contrary, is characterized 
by intrinsic capacitance and inductance, which impose the limit on the diode 
operation frequency. In the latter case, the intrinsic capacitance and inductance are 
defined as the effective components directly connected to the Gunn diode within 
the lumped active unit. 

Early models, for simplicity, did not account for the diode capacitance and 
inductance, thus, ignoring the diode frequency limit. The approximation allowed us 
to significantly simplify the original problems and reduce them to the forms which 
are more accessible for numerical simulations. In this way, we could consider 
self-excitation and nonlinear dynamics of the EM field oscillations in a closed two-
dimensional (2D) rectangular cavity with an active wall [17, 18] and self-emergence 
of trains of pulses emitted from one-dimensional (1D) cavity with such a wall on 
the one side and a dielectric plate as a semi-transparent mirror on the other side 
that makes the cavity an open resonator [19]. These simulations are discussed in 
Section 4. 

Later models took into account the intrinsic frequencies of active devices. When 
applied to 1D microstrip circuits and the networks of circuits with either parallel or 
series connections of branches, we could observe and analyze a series of new effects 
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in self-oscillations of these circuits [20–25]. The circuits and relevant effects are 
considered in Sections 5–8. 

The dominant effect in these circuits, apart from conventional continuous wave 
(CW) generation, is the excitation of trains of short radio-frequency (RF) pulses. 
When using high-speed devices such as GaAs and GaN Gunn diodes in circuits with 
proper other parameters such as a high resonator frequency and a short length of 
microstrip sections, one can achieve self-excitation of short trains of ultra-short 
EHF pulses, which are emitted into an infinite section of another transmission line. 
Self-developing transitions between either the CW or pulse modes of EHF oscilla-
tions are possible, which depend on both the operation conditions and prehistory of 
oscillations, thus, revealing the hysteresis and bistability effects in the time-delay 
EHF oscillators being considered. 

3. Mathematical models and simulation techniques 

Time-domain analysis of nonlinear oscillator systems is based on computer 
simulations for the numerical solutions of oscillatory equations. Typically, ordinary 
differential equations (ODE) for lumped systems or partial differential equations 
(PDE) for distributed structures are in use. For more complicated cases, integral-
differential, difference-differential, difference-integral-differential, and other 
kinds of equations may be needed for the adequate modeling of real oscillator 
systems. The term difference-differential means the equations that account for the 
finite delay in their arguments that appear in some terms of the equations. The 
equations of this kind are also called the equations with deviating arguments. 

In our models, the delay in the electromagnetic coupling between spatially 
separated blocks creates multiple time delays in the evolutionary equations that can 
be derived for the entire oscillator system. The equations are formulated for the 
electromagnetic field, current, and voltage quantities as functions of time and 
spatial coordinates in the given circuits. Using various transformations, the equa-
tions are reduced to some other forms mentioned above to make their numerical 
solution more accessible. 

Specific examples of equations obtained in this way for some of the models are 
presented in the following Sections. Typically, the equations are reduced to one or 
another version of a set of ODEs with time-delay arguments in their terms that 
describe the EM wave coupling in the distributed microstrip circuits. 

For the accurate solution of these equations, we applied a highly efficient and 
reliable Dormand-Prince method of the (5,3) order of accuracy [26]. A publicly 
available software code of the method was amended with our extension that pro-
vided the dynamical storage of dense output of a solution in a long period of time in 
the past so as all the time-delayed values were available. 

Since the past values are requested by solver at some unknown time nodes in the 
storage domain that may exceed the formal time-delay value, we created 
sufficiently large storage domain, applied polynomial interpolation of a high and 
controllable accuracy that uses a big domain and many nodes around the requested 
node, and provided a special control that no limitations are broken. 

Thus, we obtained a unique, highly accurate and reliable software tool for time 
domain simulations of complicated nonlinear dynamics of time-delay oscillators 
that may exhibit dynamical chaos and other unstable transient, oscillatory, and 
evolutionary developments. The tool appeared to be highly efficient for solving the 
time-domain problems arising for our models of time-delay oscillatory systems. 

More generic software tools could also be used for time-domain simulations of 
oscillator circuits. At present, SmartSpice simulation software is available for the 
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engineering applications of time-domain circuit analysis [27] though applicability of 
generic techniques for time-delay problems and complicated circuits is limited. 

The other circuit models that assumed an instant response of active devices 
(excluding the case of 2D cavity) lead to the difference-delay equations rather than 
time-delay ODEs. These equations are solved by direct iteration process. 

In all the problems considered, the initial conditions were spatially uniform 
steady-state solutions that exist at the given initial parameters including the bias 
voltage VB regardless whether the solution is stable or unstable. In case of a stable 
initial condition, when the device voltage VG is out of the NDR region, the bias VB 

is altered with a certain rise time so as to set the device voltage VG in the NDR 
domain where the oscillations begin. In the other cases, when the initial condition 
is unstable due to the initial device voltage VG is set in the NDR region, a minor 
fluctuation of the bias voltage is introduced that initiates the circuit self-excitation 
process. 

4. Early models, dynamical chaos, and pulses 

The early models assumed an instant response of active devices. In this way, 
they ignored any possible frequency limitations imposed by the limited operation 
speed of active devices characterized by the relevant intrinsic frequency f G. So, any 
specific frequencies of emerging oscillations were defined by the passive circuit 
components and nonlinear character of the entire oscillator system. 

The first model [17, 18] is presented by the 2D rectangular cavity (0 < x < D, 
0<  z < A) with perfectly conducting walls, of which one wall (x ¼ D) is covered 
with an active semiconductor layer specified by nonlinear current-voltage (I � V) 
characteristics with NDR domain as defined in Eq. (1). The active layer is used as an 
approximation for, e.g., a dense array of active devices such as the Gunn diodes 
placed on one of the cavity walls inside the cavity. The quantities of interest are the 
electric field in the cavity Ezðx; z; tÞ and the average field U tð Þ at the active layer 
when the external voltage is applied to active devices and the electric field is set in 
the NDR region. Self-excitation is developing in the system when a minor fluctua-
tion of the EM field is introduced in the cavity. 

The evolution of self-excitation may occur in a different manner depending on 
the system parameters. An essential parameter is the coupling coefficient G0 

representing the strength of coupling of the electric field at the cavity wall x ¼ D 
with active devices and, implicitly, the maximum electric current in the active 
layer. In this way, the coefficient defines the EHF power that can be generated by 
active devices. 

The main result obtained in this model is the emergence of the dynamical chaos 
of the EM field in the cavity when the coupling coefficient G0 is made sufficiently 
large [17, 18]. To identify the chaos, three basic criteria have been used: (a) specific 
structure of the Poincare sections, (b) broad-band character of the power spectrum 
of oscillations and (c) sensitive dependence of solutions on the initial conditions. In 
addition, the wavelet analysis was applied to study the evolution of the excited field. 
The Morlet wavelets have been used to scale the frequency band 0:4 ≤ f D=c ≤ 6:4 in 
the time interval of 375 ≤ ct=D ≤ 400 where c is the speed of light. 

Most of simulations were made with a square cavity (A ¼ D). The square cavity 
often generated chaotic dynamics of the Ezðx; z; tÞ field whereas a shorter cavity 
(e.g., A ¼ 0:8D) showed a greater stability. Yet, the main factor controlling the 
emergence of chaos is the coupling coefficient G0. When the coefficient is small, 
e.g., G0 ¼ 0:1 in case of the square cavity, only regular and, essentially, single-
frequency oscillations appear. At the intermediate coupling, e.g., G0 ¼ 1, the 
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co-existence of multi-frequency and chaotic generation is observed. Finally, at the 
very strong coupling when, e.g., G0 ¼ 30, chaotic oscillations dominate. 

Simulations in this 2D model were made using the series expansion of the cavity 
field in spatial modes with time-dependent expansion coefficients in a way, which 
is conceptually similar to formulations developed in [11]. In this way, a set of 
nonlinear ODEs was obtained for the expansion coefficients as unknown functions. 
The active layer I � V characteristics entered this formulation through the bound-
ary conditions imposed at the active wall x ¼ D, where they played a role of 
nonlinear impedance boundary conditions formulated in time domain. Other 
approaches using, e.g., Green’s function formulations and taking into account non-
instant response of active devices, should also be explored. 

The second model [19] is formulated as a 1D open-cavity problem where the 1D 
cavity (0 < x < D) is formed by the first wall at x ¼ D, which is covered with the 
same instant-response active layer as explained above, and the second wall at x ¼ 0, 
which is made as a thin dielectric layer of thickness d (�d < x < 0) that operates as a 
resonant semi-transparent mirror for the cavity field. 

In this case, the problem formulated for the electric field Ezðx; tÞ that exists in 
both the cavity, the dielectric mirror, and the half-space outside the cavity, is 
reduced to a single, though, complicated, delay-difference equation with multiple 
time delays, which is formulated for the auxiliary function gð Þτ where τ ¼ ct=D is 
the time variable t in the relative units. The other functions of interest such as the 
oscillation waveform U1ð Þτ emitted through the dielectric mirror are also defined 
via the function gð Þτ [19]. 

The main result obtained for these structures is that, typically, a train of the EHF 
pulses is self-excited in the 1D oscillator. The basic frequency of the EHF oscillations 
in these pulses is defined by the thickness d and refractive index n of dielectric 
mirror. No intrinsic frequency of active devices is present in this problem since 
active devices are specified by an instant response and impose no frequency limits 
on the emerging self-oscillations. In other cases, depending on the parameters, 
trains of baseband pulses with no carrier frequency are self-excited. 

Characteristic frequencies of the EHF pulses emerging in these structures would 
be, e.g., f ¼ 64 GHz (λ0 ¼ 4:7 mm) at the pulse duration tP ¼ 0:17 ns (the pulse 
frequency width f P ¼ 1=tP ¼ 6 GHz) and the pulse repetition frequency f REP ¼ 3 
GHz should the devices were capable of operation at these frequencies, the 
dielectric mirror made of a MgF2 wafer of thickness d ¼ 1 mm having the refractive 
index n ¼ 2:345 at the extremely low loss tangent tan δ 5 [28], and the ð Þ ¼ 5 � 10� 

resonator length chosen to be D ¼ 25 mm. 

5. Active circuit with a remote resonator antenna 

The model that removes an essential limitation of instant response of active 
devices was investigated in detail in [20]. The model is rigorously formulated in 
terms of the 1D microstrip distributed circuit with spatially separated active and 
passive components, Figures 1 and 2. 

The circuit consists of four basic parts which are (i) an active block G1 made as a 
lumped unit with Gunn diode as an active device, (ii) a remote resonator A0 (we 
assume this is an LC circuit implemented as a lumped block), (iii) a section of 
microstrip line of length D connecting the active block and the resonator (this is a 
distributed part of the circuit), and (iv) an infinite section of microstrip line 
connected to the resonator. The latter allows the waves excited in the circuit to be 
radiated towards the infinity, thus, simulating the radiation into the free space, with 
resonator block A0 operating also as an antenna unit. 
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Figure 1. 
Schematics of a microstrip circuit with Gunn diode active block G1 and a resonator antenna block A0. 

Figure 2. 
Schematics of (a) passive and (b) active blocks of Figure 1 (n ¼ 1). 

Figures 1 and 2 show a more generic version of the system considered in [20]. 
The system of a generic kind includes the stub of the length S that facilitates the 
emergence of self-oscillations and the lumped circuit resistors RA and Rn (n ¼ 1) 
that simulate absorption losses (equations below and the results are presented for a 
simpler case of S ¼ 0 and RA ¼ R1 ¼ 0). 

The governing differential equations and boundary conditions are obtained by 
applying the wave equations to the transmission line sections and the Kirchhoff 
circuit equations to the diode and resonator blocks. The wave equations describe the 
voltage waves P, U, and UA that propagate to the right and to the left in the 
microstrip sections as shown in Figure 1, respectively. They are the unknown 
functions to be found. 

The Kirchhoff equations define boundary conditions imposed at the contact 
points of both the Gunn diode and resonator circuits. They are formulated in terms 
of the voltage and current values at the contact points e , eA , i

� , iA 
� , which are 

defined via the unknown waveforms P, U, and UA. The radiation boundary condi-
tion is applied that ensures no incoming waves in the open microstrip section 
(microstrips are assumed lossless and free of dispersion). 

The initial condition is imposed as the state of no oscillations when the diode 
voltage is set outside the NDR region by the source voltage eB0 . Self-excitation 
appears when the Gunn diode is driven into the NDR region by increasing 
(decreasing) the source voltage eBð Þτ with a certain rise (fall) time TR (TF). 

The time and space variables are used in relative units τ ¼ ct=a and x ¼ x~=a 
where t and x~ are the original time and space variables, respectively, c is the speed 
of wave in the microstrip line, d ¼ D=a is the length of microstrip section in relative 
units, and a is the spatial scale used for normalization. 

The equations for this model are reduced to a set of ODEs with time delays 

U″ τ 
˜ 
U0 τ 

° ð  Þ þU″ðτ � 2dÞ �U″ ðτ � dÞ þ ωL ð  Þ �U0ðτ � 2dÞ þU0 ðτ � dÞ þ e0 ð ÞτA A B 

þω2 
G½Uð  Þ þτ Uðτ � 2dÞ �UAðτ � dÞ � G eð ð Þτ Þ þ G e0ð Þ� ¼ 0, 

(2) 
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˜ ° 
U″ ð  Þ þ 2ωCA U

0 ð  Þ �U0ðτ � dÞ þ ω2 ð  Þ ¼ 0, (3)A τ A τ AUA τ 

eð  Þ ¼τ eBð  Þ �τ U τ ð  Þ � UAðτ � dÞð  Þ þ U τ � 2d 
(4)�ω� 

L 
1½U0 τ ð Þ� � U0 ðð  Þ þ U0 τ � 2d A τ � dÞ� 

where Uð Þτ and UAð Þτ are the unknown wave functions, eð Þτ is the Gunn diode 
voltage at the time τ, ωL ¼ aZ0=cL, ωCA ¼ a=cZ0CA, e0 ¼ eB0 , ω

2 
G ¼ ða=cÞ2 =LC, 

ω2 
A ¼ ða=cÞ2 =LACA, and G eð ð Þτ Þ is the Gunn diode current defined by Eq. (1). Here, 

index A denotes the values related to the resonator antenna block, index n ¼ 1 is 
2dropped, and the other related angular frequencies are ωLA ¼ ωA =ωCA and 

2ωC ¼ ωG =ωL, respectively. 

6. Bistability, hysteresis, and trains of the EHF pulses 

Simulations of oscillators with active circuits and remote resonator antennas 
revealed the existence of two oscillation modes, of which one mode is the CW 
oscillations and the other is the trains of the EHF pulses. The emergence of one or 
another oscillation mode depends on the bias voltage of the Gunn diode circuit. The 
EHF pulse mode arises when the Gunn diode operating voltage VGO  exceeds the 
lower bound V1 of the NDR region but the excess is not significant so as the voltage 
VGO  does not fall deep in the NDR region. The CW oscillations, on the contrary, 
appear when the operating voltage VGO  is set deep in the NDR region [20]. 

An important feature of the effect is the co-existence of both the pulse and the 
CW modes of oscillations in some range of operating voltages. The oscillator can 
generate either the EHF pulses or CW oscillations at the same operating voltage 
VGO  when the latter falls in an intermediate domain VB1 < VGO  < VB2 (PC-domain) 
inside the NDR region V1 < VGO  < V2. At smaller values of operating voltage that fall 
out of this domain but inside the NDR region, V1 < VGO  < VB1, the trains of the EHF 
pulses are self-excited (P-domain). At greater values, VB2 < VGO  < V2, the CW 
oscillations are generated (C-domain). 

The effect means bistability of the oscillation modes in the PC-domain. The kind 
of the mode being excited depends on the history of bias variations, i.e., on the way 
the oscillator is driven to the operating voltage. In this process, the oscillator reveals 
an hysteresis in switching between different modes. When the oscillator is driven 
into the PC-domain through the P-domain starting from small values, the EHF 
pulses are self-excited. On the contrary, when the oscillator is driven through the C-
domain starting from large values, the CW oscillations are generated. 

The PC-domain borders also depend on the direction of driving the operating 
voltage into this domain. So, there are, in fact, two kinds of P, C, and PC domains, 
which could be labeled, e.g., as P-up and P-down, C-up and C-down, and PC-up 
and PC-down domains. The effect is illustrated in Figure 3 that shows the I-V curve 
of the Gunn diode in relative units G eð Þ and the relevant domains of different 
oscillation modes. 

Depending on the speed of driving the diode into the relevant stable domain of 
either the P or C kind, one can excite initially the oscillation mode, which is not 
intrinsic for that domain, e.g., CW oscillations in the P-domain. This mode is, 
however, unstable and after a certain period of time it gradually turns into the 
mode, which is intrinsic for the given domain, e.g., into the pulse mode in P-
domain. Similarly, pulses, which could initially be excited in C-domain, gradually 
transform into the CW oscillations, which remain stable in this domain. The latter 
process is illustrated in Figure 4. 
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Figure 3. 
Gunn diode current-voltage characteristics Gn e (n ¼ 1), differential conductance g ð Þ ¼ dGnð Þeð Þ  e =de, two n 
options for the load lines (curves 1 and 2), the operation point 3, and the voltage regions P, C, and PC, that 
correspond to the emergence of different oscillation modes in the NDR region e1 < e < e2 ([20]; licensed under a 
creative commons attribution (CC BY) license). 

Figure 4. 
Transition from the initial pulses to CW oscillations in the circuit with d ¼ 20 at a very slow switching the bias 
voltage up to eB ¼ 2:1 in the C-up domain ([20]; licensed under a creative commons attribution (CC BY) 
license). 

Let us now consider the properties and the mechanism of emergence of the EHF 
pulses. The time length of each pulse tP appears to be equal to the interval of time 
between pulses ΔtP and each of them is equal to the time of the return trip of the EM 
signal between the active block G1 to the resonator A0. Thus, the EM pulse length 
LP ¼ ctP is twice the length of microstrip section connecting the Gunn diode and the 
resonator, LP ¼ 2D at tP ¼ ΔtP ¼ 2D=c. 

The pulse carrier frequency ω is defined by the intrinsic frequencies of both the 
active block ωG and the resonator ωA. The condition for the emergence of a clear 
train of pulses is the coincidence of frequencies ωG and ωA. The length D of 
microstrip section has to be sufficiently large for the pulse duration tP to be much 
greater than the oscillation period T ¼ 2π=ω. An example of a perfect train of the 
EHF pulses is shown in Figure 5. 

In relative units, our simulations were made, typically, at the parameter values 
ωA ¼ ωG ¼ 1, ωCA ¼ ωC ¼ 10, ωLA ¼ ωL ¼ 0:1,G0 ¼ 2, and the microstrip length d 
chosen in the range of d ¼ 10 � 200. The emerging radiation wavelength in relative 
units was λ ≈ 8. When the normalization length a is chosen to be a ¼ 1 mm, this 
corresponds to the oscillation frequency of f ≈ 37:5 GHz. Then, ωC ¼ 10 and 
ωL ¼ 0:1 at Z0 ¼ 50 Ohm correspond to the capacitance C ¼ 0:07 pF and the 
inductance L ¼ 0:17 nH. 

The emergence of one or another oscillation mode depends on the length d of the 
microstrip section between the Gunn diode and the remote resonator. The longer is 
the section, the easier trains of pulses are excited. Since the oscillations arise and 
decay at a very short time, the emergence of short pulses is possible at sufficiently 
short values of d, e.g., d ¼ 10 at the wavelength λ ¼ 8. 
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Figure 5. 
(a) Train of the EHF pulses and (b) the shape of a single pulse generated by the circuit with d ¼ 200 at the 
oscillation period T ≈ 8 when switching the bias voltage up to eB ¼ 2:0 at the rise-time TR ≈ 400 ([20]; licensed 
under a creative commons attribution (CC BY) license). 

The formation of trains of the EHF pulses can be explained as follows. If the 
circuit is designed so that excitation is possible with no resonator at the site A0, the 
oscillations appear and continue for the time tP until the feedback signal returns 
from the resonator to the active block. 

Then, if the conditions are so that oscillations cannot exist with both the active 
block and the remote resonator engaged, the oscillations cease for the period of time 
ΔtP when the active block receives a feedback signal and, therefore, “feels” the 
presence of the resonator. After that period of time, the feedback disappears, the 
active block does not “feel” any resonator again, and a new pulse of oscillations arises. 

If the system is so that oscillations can exist in the presence of resonator, the 
oscillations, once appeared, would continue as a steady-state process. In this case, 
CW oscillations are excited whose frequency is defined by the Gunn diode and the 
remote resonator circuits. 

The effects described above are tightly connected to a general problem of oscil-
lation quenching and collective behavior of oscillators [29]. They are also related to 
bifurcations observed in square-wave switching in delay-coupled semiconductor 
lasers [30]. It is clear that, despite essentially different governing equations, the 
common feature of time-delay coupling leads to similar consequences in terms of 
nonlinear dynamics of microwave oscillations and optical polarization in these 
cases. 

The generation of trains of pulses discussed above is obtained in the model that 
accounts for non-instant response of devices caused by the capacitance and induc-
tance of active units [20]. These simulations confirm the conclusions of a simpler 
model [19] that the excitation of trains of the EHF pulses is a generic property 
of those oscillators, which are specified by remote location of their resonator 
structures. 

7. Parallel and series connections of active circuits 

One can imagine many kinds of active circuits and distributed networks of 
microstrip connected discrete circuits. There are two basic types of connection of 
active circuits, which are the parallel and series connections, Figures 6 and 7, 
respectively. 
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Figure 6. 
Schematics of a parallel connection of active circuits where, in distinction from [21], different lengths of all 
microstrip sections Dn and stubs Sn are assumed as needed for quasi-chaotic oscillations. 

Figure 7. 
Schematics of a series connection of active circuits where, unlike the case in [22], different lengths of different 
sections Dn are considered. 

The parallel connection [21] is conceptually similar to the case of microwave cavity 
coupling of devices with spatial power combining considered by Kurokawa [6]. 
Spatial power combining is an important issue in this topic [31]. Our time-domain 
simulations of microstrip circuits connected in parallel confirm a possibility of 
increasing the total power output of the system proportional to the number of 
circuits N until a certain limiting value Nmax. At the same time, as typical for the 
circuits with a remote resonator A0 connected to the active blocks Gn, trains of the 
EHF pulses can also be generated in these circuits. 

The series connection of active circuits was also considered and the effect of 
nonlinear power combining was demonstrated [22]. The series connection of cir-
cuits appears to be less promising then the parallel connection since, due to the self-
consistent evolution of the entire system, the basic oscillation frequency, typically, 
decreases with increasing the number of devices. The active blocks in [22] were 
different from those in [21] that, partially, could explain the effect. Nonetheless, the 
increase of the total length of the system in series connection is supposed to be the 
main reason of reducing the basic oscillation frequency. 

Turning back to the parallel connection of active circuits and keeping in mind 
the explanation of the effect of pulsing presented in Section 6, we can consider a 
network of N parallel time-delay branches of Gunn diode circuits with different 
lengths of microstrip sections Dn [23]. With account of different times of arriving of 
time-delayed feedbacks in different branches and strong nonlinear mixing of oscil-
lations in active devices, we can expect the development of complicated and, 
potentially, chaotic or quasi-chaotic oscillations. 

As a test of this possibility, we considered a system of two parallel branches of 
identical active circuits presented in Figure 2, though of different and, generally, 
non-commensurable length of time-delay microstrip sections [23]. In this case, 
despite an apparent simplicity of the system, we observed complicated and, in the 
lower frequency bands, virtually quasi-chaotic nonlinear oscillations, Figure 8. 
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Figure 8. 
(a) A quasi-chaotic signal radiated from a system of two Gunn diode circuits connected in parallel to the 
resonant antenna node by microstrip sections of the length d1 ¼ 200 and d2 ¼ 266:67, respectively, when the 
basic radiation wavelength is λ ¼ 8:6 and (b) the close-up view of a part of this signal [23]. 

The effect is similar to the excitation of chaos in the 2D cavity [17, 18] or in the 
network of dispersive transmission lines where different frequency components 
take different times for the return of the feedback signal. 

Quasi-chaotic character of the radiated wave in the low-frequency band was 
observed in both the Poincare sections and the auto-correlation functions of the 
emerging self-oscillations. When comparing auto-correlation functions of trains of 
the EHF pulses and quasi-chaotic signals arising under the relevant conditions, one 
can see a revival of correlations over the period of pulse repetition in the train of 
pulses and, on the contrary, a significant loss of correlation in the quasi-chaotic 
signal at all the times exceeding the basic period of oscillations, Figure 9. 

Poincare sections plotted for the variables UAð Þτ and dUAð Þτ =dτ show the 
presence of periodicity in the train of the EHF pulses and the lack of long-term 
periodicity in quasi-chaotic signals, Figure 10(a) and (b), respectively. 

The frequency spectrum of the quasi-chaotic signal shows the presence of cha-
otic components around the basic oscillation frequency and in the low-frequency 
band, Figure 11. 

When the trains of the EHF pulses are excited, one can obtain rather short length 
of pulses. Since the process of turning on and off the EHF oscillation pulses is very 
short, one can obtained pulses that consist of just a few oscillations within each 
pulse when the microstrip sections between active circuits and resonant structures 
are sufficiently small, still being of nonzero length. 

As an example, in a single-branch circuit of the kind shown in Figures 1 and 2, 
2 2in case of ωA ¼ ωG ¼ 1, ωCA ¼ 10, ωL ¼ 0:1 (ωLA ¼ ωA =ωCA ¼ 0:1, ωC ¼ ωG =ωL 

¼ 10), S ¼ 0, RA ¼ R ¼ 0, and G0 ¼ 2, only two and four oscillations within each 
pulse were excited when the length of the microstrip section was d ¼ 10 and 
d ¼ 20, respectively, and the radiation wavelength was λ ≈ 8. 
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Figure 9. 
Auto-correlation function of (a) train of pulses of the kind as shown in Figure 5 and (b) quasi-chaotic signal of 
Figure 8 computed over the time interval τ ¼ 1000 � 9000 and τ ¼ 2000 � 20000, respectively [23]. 

Figure 10. 
Poincare sections of (a) pulsed and (b) quasi-chaotic signals processed in Figure 9 [23]. 

One of the oscillators of such a kind was subject to the frequency-domain 
analysis for the comparison with time-domain simulations [24]. The oscillator had a 
single active block, though of slightly different design from those above, and a stub 
of length S. The analysis followed the ideas of the Kurokawa approach when applied 
to an open radiating circuit. 

The frequency-domain analysis in the form adjusted for the radiating circuits 
was found to be capable of predicting small-signal oscillation spectra in either 
single- or multi-frequency cases [24]. At the same time, the approach, naturally, 
failed when strong nonlinear oscillations of more complicated character have been 
developed. 
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Figure 11. 
Frequency spectrum of the waveform presented in Figure 8 [23]. 

8. Resonant tunneling diode and laser diode circuit emitting trains of 
correlated EHF and optical pulses 

Finally, we consider a time-delay version of an interesting oscillator that uses the 
laser diode driven by the resonant tunneling diode. The original form of the oscillator 
was proposed in [32, 33]. The RTD-LD circuit could generate optical (infrared) LD 
signals (pulses, oscillations, or chaos) when the RTD was excited by the external radio 
frequency (RF) bias. The authors made up the oscillator operating at the frequencies 
up to 2 GHz [33] and analyzed it with numerical simulations as a lumped unit. 

The LD used in [33] was an optical communication laser operating at around 
1550 nm IR radiation wavelength with an average output power of 5 mW. The RTD-
LD hybrid circuit was produced with a minimal length of bonding wires b accessible 
with manual manufacture (b ˜ 1 mm) so as to minimize the inductance of the 
system. Using the RTDs of small capacitance, the authors observed self-oscillations 
at the frequencies of 350–400 MHz, 550–590 MHz, and 1.82–2.17 GHz, depending 
on the bonding wire length b and other parameters. The authors made numerical 
simulations of their lumped oscillators and obtained a sufficiently good coincidence 
with experimental results [33]. The lumped circuit model is perfectly valid at these 
oscillator sizes and oscillation frequencies. 

We considered a distributed version of the circuit that transforms the latter into 
an open system of the kind as shown in Figures 1 and 2 of Sections 5 and 6, where 
the Gunn diode is replaced by a monolithic RTD-LD unit and the remote resonator 
block A0 is used as a resonant antenna [25]. At the non-zero length D of the 
microstrip section connecting the RTD-LD unit and the resonant antenna, the 
circuit operates as a time-delay oscillator in a self-excitation mode when the RTD 
bias voltage falls in the NDR domain of the RTD unit. 

Under the oscillation conditions, when using appropriate values of circuit 
parameters and, particularly, choosing the RTD operating at sufficiently high fre-
quencies, e.g., up to 1 THz [34, 35], one can make the circuit to generate a train of 
short EHF pulses UA, which are emitted into an open microstrip section and, 
eventually, radiated into the free space. At the same time, if the LD is also a high-
speed device [36], a similar train of optical pulses would be emitted, which are 
correlated in a perfectly synchronous manner with original EHF pulses. 

The trains of both the EHF and optical pulses can be rapidly turned on and off by 
the external bias digital signal applied to the RTD so as to produce relatively short 
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pieces of trains of EHF pulses. This property, along with a possibility of synchro-
nous generation of both the EHF and optical pulses, can make the dual EHF-optical 
oscillators of this kind attractive for potential applications in various forms of close 
range radar systems. The optical power output of these systems can be increased 
when making reasonably large chip-on-board LD arrays of, e.g., 20 elements or so 
in a way similar to conventional high-power LED arrays. 

There is an optimal range of the length of microstrip section D when the oscilla-
tor generates both the optical and EHF pulses being of a good shape, at the maxi-
mum EHF frequency, and the maximum light intensity. For example, at the device 
frequency f G ¼ f A ¼ 7:6 GHz, the entire range where the effect exists is D ¼ 1 � 20 
mm and the optimal D is about D ¼ 5 mm (d ¼ 5 at the unit length a ¼ 1 mm). 

In addition to the basic form of dual EHF-optical pulse oscillations presented 
above, there is another, a more interesting mode of operation. When having a 
sufficiently large excess in the operation speed of the RTD-LD unit as compared to 
the duration of separate pulses, each optical pulse can also be modulated in power 
by the RTD EHF current. This makes both the EHF and optical pulses carrying the 
same EHF signal, Figure 12. 

Figure 12 shows an example of the EHF pulse radiated by the RTD-LD circuit 
and the relevant EHF-modulated optical pulse. Pulse oscillations have been com-
puted when both the RTD-LD and the resonator circuit intrinsic frequencies are 
f G ¼ f A ¼ 76 GHz assuming ωC ¼ ωCA ¼ 1, ωL ¼ ωLA ¼ 1, and d ¼ 1. In this case, 
the LD electron lifetime parameter is chosen to be tn ¼ 10 ps so that the LD optical 
output could follow more frequent oscillations of the RTD circuit. These values 
assume sufficiently small capacitance and inductance of the devices. At the given 
parameters, they should be about C ¼ CA ¼ 55 fF and L ¼ LA ¼ 80 pH. Despite 
being extremely small, these values become accessible with modern RTD 
technology [34, 35]. When using, instead, the parameters ωC ¼ ωCA ¼ 10 and 
ωL ¼ ωLA ¼ 0:1, we get C ¼ CA ¼ 5:5 fF and L ¼ LA ¼ 0:8 nH that makes, possibly, 
a more realistic system. In this case, we can produce a single oscillation within a 
pulse and a short burst of the EHF oscillations at the pulse length tP ¼ 25 ps and 
tP ¼ 50 ps, respectively [25]. 

Detection of the EHF modulation of optical (IR) pulses is yet another issue. 
Direct detection of the EHF modulation of optical pulses is expected to become 
possible with an RF optical heterodyne photo-detector proposed in [37]. 

Figure 12. 
Excitation of (a) the EHF pulse and (b) the EHF-modulated optical pulse when G0 ¼ 0:5, d ¼ 1, 
f G ¼ f A ¼ 76 GHz, and tP ¼ 0:2 ns [25]. 
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9. Conclusions 

We presented time-domain simulations of distributed time-delay oscillators, 
which show complicated nonlinear dynamics of electromagnetic oscillations gener-
ated by these systems. 

We considered the models that consist of discrete lumped circuits of active and 
passive devices and distributed sections of microstrip lines connecting the lumped 
circuits. The active devices were presented by the Gunn diodes and the resonant 
tunneling diodes operating in the EHF frequency band. Parallel and series connec-
tions of microstrip sections with active devices have been simulated. Other struc-
tures like a 2D microwave cavity with a wall covered with active devices and a 1D 
open resonator made by a similar wall and a thin dielectric mirror have also been 
investigated. 

Simulation models were developed, which rely on the method that reduces 
the problems for the wave equations in structures with active devices to the 
problems with time-delay equations of difference-differential kind. A Dormand-
Prince method of the (5,3) order of accuracy for ordinary differential 
equations was applied and extended for solving time-delay equations arising in 
simulation. 

Time-domain simulations revealed a diversity of dynamical effects in time-
delay oscillators being considered. A possibility of chaotic or quasi-chaotic 
oscillations was observed in a 2D cavity with active devices and in some cases 
of parallel connection of microstrip sections with Gunn diode circuits. 

Self-excitation of trains of the EHF pulses in microstrip structures with 
Gunn diodes and remote resonators have been discovered. A similar kind of 
trains of either the baseband or the EHF pulses were also observed in a more 
simplified model of a 1D cavity with an active layer and a dielectric mirror. 
Bistability in the generation of either the continuous waves or the trains of 
the EHF pulses in the Gunn diode systems with remote resonator was discov-
ered and hysteresis in switching between these generation modes was 
observed. 

A dual kind of the EHF-pulse and the EHF-modulated optical pulse 
generator using an RTD-LD time-delay oscillator has been proposed and investi-
gated. 

The approach based on the splitting of oscillator systems on discrete parts of 
active circuits and distributed parts of propagation sections makes it possible 
time-domain simulations of complex oscillatory structures. The approach has a 
major advantage over exact modeling with common engineering software. It 
allows one to address the problems of time-domain simulation of distributed 
systems with limited computational resources. This makes the analysis of this kind 
of systems feasible that, otherwise, would be out of reach with conventional 
simulation tools. 
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Chapter 5

Oscillator Dampers in Civil
Structures
Yonggang Tan

Abstract

Many kinds of oscillators, springs, and damping system compose vibration
reduction system in civil structures. Since the invention of the tuned mass damper
(TMD) device a century ago, it has become a very important technology in struc-
tural control. TMDs can effectively suppress the response of civil structures under
harmonic or wind excitations. To improve the damping capacity of TMDs in reduc-
ing the vibration of structures under seismic loads, a large mass ratio should be
used, but TMDs are still ineffective in suppressing the seismic peak response of
high-rise buildings. The inerter-based dynamic vibration absorbers (IDVA),
including tuned inerter dampers (TID) and tuned mass-damper-inerter (TMDI),
have been investigated in recent years. The advantage of using a TID and TMDI
comes from the adoption of gearing in the inerter, which equivalently amplifies the
mass. The mass ratio of an inerter is very high; hence, its mechanical properties and
reliability are vital. A novel damper device, accelerated oscillator damper (AOD),
has been proposed recently. Gear transmission systems are used to generate an
amplified kinetic energy of the oscillator to reduce the oscillations of the structures.
The AOD system is superior to the traditional TMD system in short time loading
intervals or under the maximum seismic loads.

Keywords: TMD, AOD, accelerated oscillator damper, inerter-based dynamic
vibration absorber, tuned inerter damper, tuned mass-damper-inerter

1. Introduction

Oscillations are frequent motions between two extreme amounts or more differ-
ent states. The term vibration is formally used to describe mechanical oscillation.
Oscillations occur in dynamic systems in almost every area of science and engineer-
ing, for instance, structural vibration induced by earthquake, water waves and wind,
vibrating strings in musical instruments, and beating of the human heart. Some of the
oscillations are harmful and even destructive; so many devices and facilities have
been used to reduce the undesirable vibrations of structures. Familiar measures of
oscillation reduction are using springs, rubber, viscous dampers, and so on.

The oscillator damper is a kind of device designed for suppressing oscillations in
structures and machines. The principle of oscillator dampers is to use mass oscilla-
tors generating opposite forces acting on the structures to resist their oscillations. In
1909, Frahm [1] proposed the first spring and mass oscillator damper system for
suppressing the mechanical vibration induced by harmonic forces. In 1928, Den
Hartog and Ormondroyd [2] added a certain damping to the Frahm oscillator
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damper model, which is the prototype of tuned mass dampers (TMD). Den Hartog 
[3] provided a detailed description and design formulas for TMD. In the early 
stage, the application of TMD mainly focused on the vibration problem of 
mechanical systems. Since 1971, the TMD systems have been widely used in civil 
structures such as super high-rise buildings, tower buildings, towers and decks of 
cable-stayed bridges, and suspension bridges. These applications show that TMDs 
can effectively reduce structural vibrations induced by wind. However, TMDs 
may encounter some disadvantages in the application of earthquake: large stroke 
and detuning problems and large seismic forces within short time intervals. To 
solve the detuning problem, Xu and Igusa [4] proposed an improved vibration 
absorber, called multiple tuned mass damper (MTMD), which is less sensitive to 
frequency change. Parametric optimization and control efficiency of MTMD sys-
tems were studied, and various design theories were established in the 1990s 
[5–7]. A tuned liquid damper (TLD) is a type of oscillator damper with the solid 
mass being replaced by liquid. The TLD consists of rigid rectangular tanks par-
tially filled with liquid. Its damping effect comes from liquid sloshing forces or 
moments, which can change the dynamic properties of the structure and reduce 
the dynamic response of the system subjected to external excitation [8]. The 
application of TLD for the vibration control of civil structures was studied in the 
late 1980s Fujino et al. [8]. The success of the TLD system in reducing wind-
induced structural vibrations has been well established with the support of 
numerous analytical and experimental studies. 

The tuned inerter damper (TID) is a new form of TMD with the mass being 
replaced by an inerter. The inerter is a two-terminal mechanical device developing a 
resisting force proportional to the relative acceleration of its terminals [9]. A simple 
approach to constitute an inerter is to have a rod sliding in linear bearings, which 
drives a flywheel via a rack, pinion, and gear. The advantage of using a TID comes 
from the adoption of gearing in the inerter, which equivalently amplifies the mass 
[10]. TID can be applied to reduce vibrations in civil structures subjected to base 
excitation. 

In 2015, Giaralis and Marian [11] proposed the generalization of the classical 
TMD, which introduced an inerter: the tuned mass-damper-inerter (TMDI). With 
similar working principle as the TID, the TMDI can be used to reduce structural 
oscillations excited by stochastic loadings [12]. 

Recently, a novel effective device, accelerated oscillator damper (AOD), was 
proposed to suppress the vibrations of civil structures under seismic loads [13]. 
AOD includes oscillator mass, transmission, spring, and viscous damper. The 
kinetic energy of the appended oscillator is proportional to the square of its velocity. 
The rack and gear transmission system enlarged the speed of the oscillator mass. As 
a result, the kinetic energy of the appended oscillator is amplified, leading to the 
kinetic energy of the structures being reduced for the principle of energy conserva-
tion. It was found that the AOD system is superior to the traditional TMD system in 
short time loading intervals or under the maximum seismic loads. 

2. Tuned mass damper 

The concept of TMDs was proposed by Frahm and applied for the patent of the 
United States in 1909. After more than 100 years of development, it has become the 
most popular type of damper. In the early stage, the application of TMD mainly 
focused on the vibration problem of mechanical systems. Since 1971, the TMD 
systems have been widely used in civil structures such as super high-rise buildings, 
tower buildings, towers and decks of cable-stayed bridges, and suspension bridges. 

100 



� � 

� � 

Oscillator Dampers in Civil Structures 
DOI: http://dx.doi.org/10.5772/intechopen.81904 

2.1 Equations of motion of the TMD system 

According to Figure 1, the equations of motion of a single degree of freedom 
(SDOF) structure-TMD system are given as [18] 

M € ð Þ � c _ð Þ �  _ ð Þ  f ð Þ � X tX tð Þ þ KX t x t  X t  � k  x t  ð Þg ¼ P tð Þ  (1) 

_m€ð Þ þ c x t  X t  þ k x t  ð Þg ¼ p tð Þ  (2)x t  _ð Þ �  ð Þ  f ð Þ � X t  

where M is the primary mass, m is the secondary mass, K is the primary spring 
stiffness, k is the secondary spring stiffness, c is the secondary damping, P(t) is the 
force acting on primary mass, and p(t) is the force acting on damper mass. 

For further discussion, other symbols are introduced as follows: 
ω is the frequency of a harmonic excitation; Ω is the natural frequency of primary pffiffiffiffiffiffiffiffiffiffiffi pffiffiffiffiffiffiffiffiffi 

mass, Ω ¼ K=M; ωa is the natural frequency of secondary mass, ωa ¼ k=m; μ is 
the damper mass to primary mass ratio, μ ¼ m=M; g1 is the ratio of excitation fre-
quency to primary mass natural frequency, g1 ¼ ω=Ω; f is the frequency ratio, 
f ¼ ωa =Ω; ζd is the damping ratio of TMD; and ζ is the damping ratio of primary 
mass. 

Den Hartog [3] studied closed form expressions of optimal damper parameters 
f and ζd, which minimize the steady-state response of the primary mass subjected to 
a harmonic excitation. Optimal damper parameters can be calculated by the 
following equations: 

1
f opt ¼ (3)

1 þ μ 
sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

3μ 
ζdopt ¼ (4)

8ð1 þ μÞ 

When the structure is subjected to a harmonic base excitation, the optimal 
damper parameters can be expressed as 

rffiffiffiffiffiffiffiffiffiffiffi 
1 2 � μ

f opt ¼ (5)
1 þ μ 2 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirffiffiffiffiffiffiffiffiffiffiffi 
3μ 2 � μ 

ζdopt ¼ (6)
8 1ð þ μÞ 2 

2.2 Mechanical performance of TMDs 

TMD is a passive energy absorbing device attached to a vibrating primary 
structure to reduce undesirable vibrations [15]. It is found that if a secondary 
system is implemented on a primary structure and its natural frequency is tuned to 
be very close to the dominant mode of the primary structure, a large reduction in 
the dynamic responses of the primary structure can be achieved [14, 16]. Tuned 
mass dampers are effective in reducing the response of structures due to harmonic 
[17] or wind [18] excitations. A steady-state harmonic analysis of the effect of 
detuning with varying excitation frequencies was investigated by Rana and Soong. 
It was found that if the TMD parameters shift away from their optimal values, the 
response control is expected to degrade. 

Although the basic design concept of TMD is very simple, the parameters (mass, 
stiffness, and damping) of the TMD system must be obtained by optimal design 
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Figure 1. 
A schematic representation of the TMD system. 

procedures to attain better control performance. Therefore, the determination of 
optimal design parameters of TMD to enhance the control effectiveness has become 
very crucial [16]. 

TMDs have many advantages, such as simplicity, effectiveness, and low 
cost [19]. However, single tuned mass damper (STMD) is sensitive to the fre-
quency ratio between the TMD and the structure, and it is also sensitive to the 
damping ratio of TMD. As a result, the use of more than one TMD with different 
parameters has been proposed by Xu and Igusa [4] to improve the effectiveness 
and robustness. 

2.3 Multiple tuned mass dampers 

In order to further improve the shortcomings of the robustness and effectiveness 
of TMD, Igusa and Xu proposed a multiple tuned mass damper with multiple 
different dynamic characteristics and a linear distribution of frequency, namely 
MTMD. MTMD and TMD work basically the same way, except that MTMD is 
composed of multiple TMDs. They work together under external load excitation to 
achieve the best vibration absorption. 

As shown in Figure 2, ms is the mass of the primary structure and ks and cs are 
the stiffness and damping of the primary structure respectively; MTMD is mainly 
composed of n TMDs (expressed by subscripts from 1 to n), and the corresponding 
mass, stiffness, and damping parameters (m, k, and c) of each TMD may be differ-
ent (denoted by subscripts from 1 to n). In fact, these parameters are usually 
different for better vibration control, but the frequency of each TMD is centered on 
the frequency of the main control mode. When the main structure is excited by 
external loads, the mass m that is out of phase with the main structure is applied to 
the main structure with a force opposite to the direction of motion, thereby achiev-
ing the purpose of damping. 

The advantages of MTMDs are as follows: (1) compared with TMDs, MTMDs 
are more suitable for controlling structural vibration of frequency changes, because 
TMD is a single frequency, and MTMD is composed of multiple TMDs of different 
frequencies, which can adapt to a wider bandwidth, that is, more robust; (2) 
MTMDs are more achievable than TMDs, because the weight of the mass of a single 
TMD is generally 1–4% of the mass of the main structure (a large concentrated 
load), which may cause local damage to the building where TMD is installed, but 
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Figure 2. 
A schematic representation of the MTMD system. 

MTMD consists of multiple TMDs, effectively dispersing the weight of the mass, is 
small in size and achievable; (3) simple installation, convenient maintenance, and 
low cost. 

However, the parameter optimization of MTMD is more difficult. How many 
TMDs should be used in a structure? How to choose the parameters of each TMD? 
Where each TMD should be installed? All these questions should be solved properly. 
Moreover, the selection of these parameters will be affected by the site conditions, 
so the problem of parameter optimization remains to be further studied. 

TMDs and MTMDs have been installed in high-rise buildings or pedestrian 
bridges to reduce wind-induced vibrations. Typical examples include: the John 
Hancock Tower in Boston, the Citicorp Center Office Building in New York City, 
the Terrace on the Park Building in New York City, and the Taipei 101 Tower in 
Taiwan [16]. 

2.4 Tuned liquid damper 

A tuned liquid damper (TLD) is a type of TMD where the mass is replaced by a 
liquid. The TLD consists of rigid rectangular tanks partially filled with liquid. Its 
damping effect comes from liquid sloshing forces or moments, which can change 
the dynamic properties of the structure and reduce the dynamic response of the 
system subjected to external excitation. By changing the basic sloshing frequency of 
the TLD close to the natural frequency of the structure, the inertia forces could act 
on the opposite direction to the external excitation force, which reduces the 
response of the structure with a TLD. The natural frequency of TLD can be con-
trolled by adjusting the depth of liquid and dimension of container. 

Since TLD has many advantages over other conventional dampers, it attracted a 
lot of attention to reduce vibrations in many applications. It requires little mainte-
nance and is easy to install in civil structures [20]. The response of a typical SDOF 
structure is reduced by approximately 30% if a TLD has a depth ratio of 0.15 and a 
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mass ratio of 4%. The application of TLD has been used as passive control devices to 
control the vibrations of civil structures under dynamic loads induced by wind and 
earthquake. 

2.5 Active tuned mass damper and semi-active tuned mass damper 

With the development of computer technology and modern control theory, 
structural control technology extends from passive control to active control and 
semi-active control. Based on the passive controlled TMD, active tuned mass 
damper (ATMD) was introduced with an active controller using an external source 
of power to generate additional forces on structures, and optimization procedures 
were proposed to compute the required control forces. Therefore, ATMD is effec-
tive in suppressing seismic response and more robust to mistuning with appropriate 
usage of feedback. Since the 1980s, the ATMD control systems for civil engineering 
structures have attracted considerable attention [21]. 

The ATMD control system is composed of three sub-systems, namely sensor, 
control decision maker, and ATMD device. An active control mechanism is 
included between the SDOF corresponding to the building model and the damper 
mass [22]. 

The motion equations of the MDOF building are expressed as 

M x ½ � x ½ � x ¼ F f gu½ � € _ f g  f g þ B0 (7)f g þ C f g þ K 

where [M]n�n,  [C]n�n, and [K]n�n are the mass, damping, and stiffness matrices 
of the structure, respectively; {x}n�1 is the vector that contains the displacement 
degrees of freedom; {F}n�1 is the vector that contains the external excitation forces; 
{B0}n�1 is the vector that describes the location of the control; and u is the scalar 
control; if u =  0, there is no active control input to the structure. 

The semi-active tuned mass damper (semi-ATMD) is a device with time varying 
controllable damping replacing the active controller of ATMD. Compared with 
classical active dampers, the semi-ATMD requires a small amount of active force or 
energy to change the valve of damping, but does not dissipate the total energy of the 
structures directly. In a sense, the semi-ATMD can be more likely treated as a 
passive device rather than pure active tuned mass damper. 

3. Inerter-based dynamic vibration absorber 

3.1 Tuned inerter damper 

The tuned inerter damper (TID) is a new form of TMD with the mass being 
replaced by an inerter. The inerter is, as is illustrated in Figure 3, a two-terminal 
mechanical device developing a resisting force proportional to the relative acceler-
ation of its terminals. A simple approach to constitute an inerter is to have a rod 
sliding in linear bearings, which drives a flywheel via a rack, pinion, and gear. 

TIDs, as are shown in Figure 4, offer a promising alternative to TMDs due to the 
fact that inerters, which produce a force proportional to the relative acceleration of 
their terminals, are geared and can produce a far larger apparent mass than the 
actual device mass. Therefore, the modal damping ratio obtained via TID can be 
higher than that achieved by a traditional viscous damper or TMD. A commercially 
available inerter, the Penske 8760H, has an apparent mass (inertance) to device 
mass ratio of 38 (higher mass ratios have been reported such as 200), whereas TMD 
has a general mass ratio of 10%. 
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Figure 3. 
Schematic representation of the two-terminal flywheel device. 

_ € 

Figure 4. 
Schematic demonstration of TID. 

3.2. Tuned mass damper-inerter 

Tuned mass damper-inerter (TMDI) can be viewed as a generalization of the 
conventional TMD to reduce structural oscillations excited by stochastic loadings. 
TMDI takes advantage of the “mass amplification effect” of the inerter to achieve 
enhanced performance compared to the classical TMD. 

Figure 5 shows the SDOF primary structure incorporating the TMDI system 
configuration. The motion equations of the linear dynamical system shown in 
Figure 5 can be expressed as 

˜ °˛ ˝ ˜ °˛ ˝ 
xTMD xTMDmTMD þ b 0 mTMD þ b 0 þ

0 0 _ 

_ 

_ 

_ 

€x1 x1 

˜ °˛ ˝ ˛ ˝ 
xTMD xTMD 

x1 

m1 m1 

mTMD þ b 0 
(8)þ 

_ 
¼ �  agx10 m1 
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Figure 5. 
SDOF primary structure-TMDI system. 

It was proved that the optimum designed TMDI system is more effective than 
the conventional TMD in reducing the displacement variance of white noise excited 
undamped SDOF primary structures. 

The main application of TMDI is used as passive control devices to suppress the 
vibrations in civil engineering structures under dynamic loads, such as vehicles, 
wind, rain, earthquake, and so on. 

4. Accelerated oscillator damper 

A novel damper device, accelerated oscillator damper (AOD), has been proposed 
recently [13]. The AOD system includes oscillator mass, transmission, spring, and 
viscous damper. As is illustrated in Figure 6, the oscillatory motion of the primary 
structure is transferred by a geared transmission to enlarge the velocity of the sec-
ondary oscillator mass. Rather than driving of a fly-wheel inerter, AOD amplifies and 
transfers the motion of primary structure to another larger secondary oscillator mass 
than inerter mass. Therefore, AOD can obtain similar vibration reduction 

Figure 6. 
Schematic demonstration of the AOD system. 

106 



Oscillator Dampers in Civil Structures 
DOI: http://dx.doi.org/10.5772/intechopen.81904 

effectiveness to TID and TMDI, but the transmission system does not need a very 
high transmission ratio, which is easier to achieve in engineering practice. 

The kinetic energy of the appended oscillator is proportional to the square of its 
velocity, and rack and gear transmission system enlarged the speed of the oscillator 
mass. As a result, the kinetic energy of the oscillator mass is also amplified, leading 
to the kinetic energy of the primary structure being reduced for the principle of 
energy conservation. 

Motion equations of the accelerated oscillator damper system were established 
by Tan [13] as 

2 2kc1 þ r c2 k1 þ r 2 f tð Þ  
x€1 þ x_ 1 þ x1 ¼ (9)2m 2m 2mm1 þ r 2 m1 þ r 2 m1 þ r 2 

where x1 and x_ 1 are the displacement and velocity of the primary structure; 
m1 and m2 are the primary and oscillator mass; k1 is the primary structure stiffness; 
c1 is the primary structure damping constant; f(t) is the external force; r is the 
transmission ratio; x2 and x_ 2 are the displacement and velocity of the oscillator; k2 is 
the appended secondary structure spring stiffness; and c2 is the appended secondary 
structure damping constant. 

A multiple accelerated oscillator damper (MAOD) is defined as multiple AOD 
devices parallelly attached to the primary structure. Both AOD and MAOD systems 
can be regarded as generalized SDOF systems. They have the same motion equation 
forms as the conventional SDOF system. 

The effect of the mass ratio of AOD or MAOD is similar to that of the TMD 
systems, but the ratio of transmission plays more important roles in vibration 
reduction. The AOD or MAOD devices, with the transmission ratio larger than 2, 
can achieve a remarkable damping effect. The mass ratio of the AOD or MAOD 
(sum of total oscillator mass) system can be generally selected below 1%. 

It was found that AOD and MAOD systems are more effective than conventional 
TMD systems in short time loading intervals and the maximum seismic loads. 
Therefore, they can be used to reduce vibrations in civil structures under wind and 
seismic excitations. 

5. Conclusions 

Oscillations, induced by vehicles, wind, water waves, earthquake, and other 
dynamic loadings, are universal type of motions in mechanical structures and civil 
structures. Varieties of vibration reduction devices have been proposed to reduce 
the undesirable oscillations in every field. Oscillator dampers, typically using the 
inertia force of oscillators to suppress the vibrations of primary structures, are often 
used as TMD, MTMD, TLD, ATMD, semi-ATMD, TID, TMDI, AOD, MAOD, and 
so on. 

TMDs are effective in reducing the response of structures due to harmonic or 
wind excitations, but detuning makes the response control degrade. MTMDs are 
more robust than TMDs and adapt to wider bandwidth. TLDs require little mainte-
nance and operating cost and are easy to install in existing building structures. 
Parametric optimization is significant for TMDs, MTMDs, and TLDs because it 
determines the damping efficiency and robustness of the dampers. 

The inerter-based dynamic vibration absorber includes TID and TMDI. The 
advantage of using a TID and TMDI comes from the adoption of gearing in the 
inerter, which equivalently amplifies the mass of dampers. 
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AOD is a mass damper composed of oscillator mass, transmission, spring, and 
viscous damper. The oscillatory motion of the primary structure is transmitted by a 
geared transmission to enlarge the velocity of the secondary oscillator mass. With 
the kinetic energy of the oscillator being amplified, the vibration of the primary 
structures is reduced. The transmission ratio shows more effectiveness in vibration 
reduction than the mass ratio. The AOD system is superior to the traditional TMD 
system in short time loading intervals or under the maximum seismic loads. 

Bridges and high-rise buildings will be subjected to extraordinarily huge loads 
during natural disasters such as hurricanes and earthquakes, and the security of the 
structures will face serious challenges. The application of oscillator dampers can 
reduce the structural damage caused by vibrations to some extent, which prevents 
the civil structures from destruction during natural disasters. 
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Edited by Patrice Salzenstein 

An oscillator is dedicated to the generation of signals. It is used in computers, telecoms, 
watchmaking, astronomy, and metrology. It can be a pendulum, an electronic 

oscillator based on quartz technology, an optoelectronic oscillator, or an atomic 
clock, depending on its application. Since water clocks of antiquity, mechanical clocks 

invented during the thirteenth century, and the discovery of piezoelectricity by 
Jacques and Pierre Curie in 1880, oscillators have made great progress. Tis book does 

not atempt to tell the story of oscillators, but rather provides an overview of particular 
oscillator structures through examples from mathematics to oscillators, and from the 
millimeter scale to the vibration of a building, focusing on recent developments, as we 

live in a time when technology and mathematical analysis play a vital role. 
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