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Preface

Tremendous technological progress has been witnessed in the last few decades 
and this progress is mainly due to advances made in quantum theory (or quantum 
mechanics as it was known). Quantum theory was created at the beginning of the 
twentieth century to decipher the growing number of atomic phenomena. However, 
quantum theory has introduced many unconventional and non-intuitive concepts, 
which cannot directly be exploited for technological applications. Over the years, 
thanks to the contributions of many scientists, the understanding of quantum 
theory has vastly improved and this has led to many of the present-day discoveries. 
The aim of this book is to describe some of the development aspects of quantum 
theory, which may incite or generate further useful applications. After an introduc-
tory chapter, we have focused on particular topics in quantum theory, which are 
discussed in the following chapters of this book.

Chapter 2, by Nicolae A. Enaki, concerns the cooperative spontaneous lasing 
mechanism and its possible quantum retardation effects. The author considers the 
effects of cooperative scattering and two-photon resonances on the decay of three-
level systems involving non-linear dipole type interactions. These effects occurs in 
hydrogen- (or helium-) like atoms with cascade transitions, in which scattering is 
in concurrence with resonance via dipole-forbidden transitions. Also discussed are 
interferences between single and two quantum collective transitions of inverted 
radiative emissions, two particle collective decay rates, time dependence of kinetic 
processes, correlations between radiative emission sources as well as their behaviors 
at short and long periods under retardation effects.

Chapter 3, by V. I. Gerasimenko, discusses new approaches to the evolution of states 
of large quantum particle systems by means of marginal correlation operators. It 
is shown that they are governed by the nonlinear quantum BBGKY hierarchy of 
equations in the Von Neumann dynamical framework of correlation functions. The 
non-perturbative solution of the Cauchy problem to this hierarchy of nonlinear 
evolution equations describes the processes of the creation and the propagation of 
correlations in large quantum particle systems. Described in detail is the collective 
behavior of quantum many particle systems by means of a marginal one-particle 
correlation operator, which is a solution of the generalized quantum kinetic equa-
tion with initial conditions, in particular as condensed states.

Chapter 4, by Jiyoung Kang, Takuya Sumi and Masaru Tateno, aims to explain 
the functional mechanisms of biological macromolecular systems. These mecha-
nisms are due to the electron transfer responsible for the redox regulations and 
the catalytic reactions for hydrogen metabolism and hydrolysis. Electron transfer 
induces dramatic rearrangements of electronic structures as well as internal three-
dimensional structures, which are crucial for biological functions. Two distinct 
types of rearrangement triggers are found by two distinct approaches:

 - Full ab initio quantum mechanics calculations,

 - Hybrid ab initio and molecular dynamics calculations.
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XIV

First, redox regulations and catalytic reactions for hydrogen metabolism and 
hydrolysis by electronic transfer, which are catalyzed by transition metal (4Fe-3S) 
clusters, are obtained using the first approach. Second, dynamic rearrangements of 
the electronic structures occurring in the catalytic reaction of RNA-protein com-
plexes have instead emerged from the second approach on hyper parallel supercom-
puter simulations. Such features are characteristic of the electronic structures in 
biological macromolecular systems.

Chapter 5, by J Socorro, Marco A. Reyes, Carlos Villasen or Mora and Condori Pozo, 
presents new aspects of supersymmetric quantum mechanics. This is a theoretic 
extension of the conventional one-dimensional Schrödinger equation of quantum 
mechanics via the so-called factorization method. Supersymmetry incorporates 
the fermion-boson symmetry into the theory through the so-called supercharge 
operators. Although many properties are known, the authors have brought up some 
features that are susceptible to new insights.

I would like to thank the authors for devoting time and effort to providing high 
quality texts, which are beneficial to a wide audience in perceiving the realm 
of quantum theory and its appearance in technology. My appreciations go to 
Ms Kristina Kardum for her patience and help in guiding this book project through 
the many steps.

Tuong T. Truong
Laboratoire de Physique Théorique et Modélisation,

University of Cergy-Pontoise, Cergy-Pontoise,
France
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Chapter 1

Introductory Chapter: Panorama 
of Contemporary Quantum 
Mechanics - Concepts and 
Applications
Tuong T. Truong

1. Introduction

Quantum mechanics has been around for more than a century. Since its birth at 
the beginning of the twentieth century, it has undergone a tremendous growth. But, 
it is only now that quantum mechanics has emerged in our daily life. This is just a 
normal evolution for any branch of physics. Take for example, the electromagnetic 
theory. It came into existence with the stunning work of James Clerk Maxwell in 
1865 [1], which predicted the existence of radio waves, and this has led to the tre-
mendous development of electronics throughout the twentieth century in the fields 
of communication, detection, and transmission of information and data.

Quantum mechanics is the physics of subatomic phenomena, which has 
remained a mysterious domain for a long time. Its laws have bewildered many 
because they are quite counter-intuitive. Its development has started with the very 
concept of “quantization,” which entails the absorption as well as the emission of 
energy in discrete amounts and not continuous as it is usually perceived in classical 
physics. This milestone principle, established by Max Planck toward the end of 
the nineteenth century, has started a golden age of discoveries during almost three 
decades.

2. The present role of quantum mechanics in technologies

Since then, quantum principles have been at the foundations of our day-to-day 
technologies, such as the transistor, computer chip, LASER, GPS, NMR imaging 
system, LED lamps, solar cells, etc. to name a few. The working of transistors is 
based simultaneously on the quantum description of matter, namely, the wave-
particle duality and the Heisenberg uncertainty principle, which is inherent to 
quantum evolution equations. In recent years, with the appearance of Big data, 
massive exchange of information, and the ensuing cryptography challenges, it 
becomes necessary to turn to quantum engineering to find a way out to manage 
these problems. A full array of “quantum” technologies has been initiated since the 
seminal paper of R. P. Feynman “Simulating Physics with Computers” [2], in which 
the notion of quantum computer was introduced as it is built on new quantum 
engineering (quantum electronics/spintronics).

There is no doubt that quantum principles are here to stay and will continue 
to be at the origin of new technological innovations in coming years. This book 
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is intended to give a first glimpse on a few topics of this fascinating development 
perspective on the future of the real world and to stimulate research in order to 
meet the futures challenges. Most urgent is the investigation into the quantum 
behavior of large systems such as populations of photons or atoms in the regime of 
Bose condensates in which unexpected properties may arise. In particular, some 
macroscopic effects may be explained from microscopic levels, thanks to quantum 
mechanics which governs the evolution rules at the atomic level.

One of the most salient features of modern physics is the inherent existence of 
hidden symmetry in nature. The discovery of such symmetries is often very fruitful 
in the sense that it leads to further discoveries and predictions. Strangely enough, 
even symmetry breaking can also be a source of new phenomena occurrence. This 
is why since decades, one has sought to make quantum mechanics supersymmetric 
and the pursuit of supersymmetry in elementary particles is still ongoing these days 
in large particle accelerators.

Finally, it should be mentioned that quantum mechanics has ushered mankind 
into the area of fictional reality with the search for the realization and exploitation 
of the quantum concept of entanglement. In 1935, analyzing the possible outcome 
of a Gedankenexperiment following the rules of quantum mechanics by Einstein, 
Podolski, and Rosen has arrived at a paradoxical conclusion, known for a long time 
as the EPR Paradox [3]. This is because one can predict the value of a dynamical 
quantity of a system, which has classically nothing to do with a companion system 
on which measurements are performed. Quantum mechanics coins these systems 
as “entangled.” Nowadays, quantum entanglement has been experimentally dem-
onstrated and considered to be the main ingredient in the working of a quantum 
computer.

As computing is an exponentially growing activity in science and technology as 
well as in economics, finance, and management, “classical” computers have reached 
their limits as far as performance and costs are concerned. Quantum computers 
which are based on totally new quantum concepts (superposition and entangle-
ment) with their revolutionary capacity for data storage and speed of calculation 
seem to be the ideal solution to the previous problem. Basic logic gates and circuits 
are cast and discussed in the language of the so-called quantum bits or q-bits 
(instead of classical bits) which are their building blocks. They open the way to 
mastering cyber security in data transfer, Big data mining, and the like.

Thus, our future appeared to be structured by quantum principles via quantum 
technology and engineering, and this book offers a view of what might be the com-
ing reality we will have to deal with.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

5

Introductory Chapter: Panorama of Contemporary Quantum Mechanics - Concepts…
DOI: http://dx.doi.org/10.5772/intechopen.87971

References

[1] Maxwell JC. A dynamical theory of 
the electromagnetic field. Philosophical 
Transactions of the Royal Society of 
London. 1865;155:459-512

[2] Feynman RP. Stimulating physics 
with computers. International 
Journal of Theoretical Physics. 
1982;21(6/7):467-488

[3] Einstein A, Podolsky B, Rosen N. Can 
quantum-mechanical description of 
physical reality be considered complete? 
Physical Review. 1935;47(10):777-780



Panorama of Contemporary Quantum Mechanics - Concepts and Applications

4

Author details

Tuong T. Truong
University of Cergy-Pontoise, Cergy-Pontoise, France

*Address all correspondence to: tuong.truong@u-cergy.fr

is intended to give a first glimpse on a few topics of this fascinating development 
perspective on the future of the real world and to stimulate research in order to 
meet the futures challenges. Most urgent is the investigation into the quantum 
behavior of large systems such as populations of photons or atoms in the regime of 
Bose condensates in which unexpected properties may arise. In particular, some 
macroscopic effects may be explained from microscopic levels, thanks to quantum 
mechanics which governs the evolution rules at the atomic level.

One of the most salient features of modern physics is the inherent existence of 
hidden symmetry in nature. The discovery of such symmetries is often very fruitful 
in the sense that it leads to further discoveries and predictions. Strangely enough, 
even symmetry breaking can also be a source of new phenomena occurrence. This 
is why since decades, one has sought to make quantum mechanics supersymmetric 
and the pursuit of supersymmetry in elementary particles is still ongoing these days 
in large particle accelerators.

Finally, it should be mentioned that quantum mechanics has ushered mankind 
into the area of fictional reality with the search for the realization and exploitation 
of the quantum concept of entanglement. In 1935, analyzing the possible outcome 
of a Gedankenexperiment following the rules of quantum mechanics by Einstein, 
Podolski, and Rosen has arrived at a paradoxical conclusion, known for a long time 
as the EPR Paradox [3]. This is because one can predict the value of a dynamical 
quantity of a system, which has classically nothing to do with a companion system 
on which measurements are performed. Quantum mechanics coins these systems 
as “entangled.” Nowadays, quantum entanglement has been experimentally dem-
onstrated and considered to be the main ingredient in the working of a quantum 
computer.

As computing is an exponentially growing activity in science and technology as 
well as in economics, finance, and management, “classical” computers have reached 
their limits as far as performance and costs are concerned. Quantum computers 
which are based on totally new quantum concepts (superposition and entangle-
ment) with their revolutionary capacity for data storage and speed of calculation 
seem to be the ideal solution to the previous problem. Basic logic gates and circuits 
are cast and discussed in the language of the so-called quantum bits or q-bits 
(instead of classical bits) which are their building blocks. They open the way to 
mastering cyber security in data transfer, Big data mining, and the like.

Thus, our future appeared to be structured by quantum principles via quantum 
technology and engineering, and this book offers a view of what might be the com-
ing reality we will have to deal with.

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

5

Introductory Chapter: Panorama of Contemporary Quantum Mechanics - Concepts…
DOI: http://dx.doi.org/10.5772/intechopen.87971

References

[1] Maxwell JC. A dynamical theory of 
the electromagnetic field. Philosophical 
Transactions of the Royal Society of 
London. 1865;155:459-512

[2] Feynman RP. Stimulating physics 
with computers. International 
Journal of Theoretical Physics. 
1982;21(6/7):467-488

[3] Einstein A, Podolsky B, Rosen N. Can 
quantum-mechanical description of 
physical reality be considered complete? 
Physical Review. 1935;47(10):777-780



Section 2

Many Particle Quantum
Features

7



Section 2

Many Particle Quantum
Features

7



Chapter 2

Cooperative Spontaneous Lasing
and Possible Quantum Retardation
Effects
Nicolae A. Enaki

Abstract

The collective decay effects between the dipole-active three-level subsystems in
the nonlinear interaction with dipole-forbidden transitions, like 2S� 1S of
hydrogen-like radiators, are proposed, taking into consideration the cooperative
exchanges between two species of atoms through the vacuum field in the scattering
and the two-photon resonance processes. One of them corresponds to the situation
when the total energy of the emitted two photons by the three-level radiator in the
cascade configuration enters into the two-photon resonance with another type of
dipole-forbidden transitions of hydrogen-like (or helium-like) atoms. The similar
situation appears in the cooperative scattering between two species of quantum
emitters when the difference of the excited energies of the two dipole-active tran-
sitions of the three-level radiators is in the resonance with the dipole-forbidden
transitions of the Hydrogen-like radiators. These effects are accompanied by the
interference between single- and two-quantum collective transitions of the inverted
radiators from the ensemble. The two-particle collective decay rate is defined in the
description of the atomic correlation functions taking into consideration the phase
retardation between them. The kinetic equations which describe the cooperative
processes as the function of time and correlation are obtained. The behavior of the
system of radiators at short and long time intervals in comparison with the retarda-
tion time between them is studied.

Keywords: 42.50.Fx Cooperative phenomena in quantum optical systems,
32.80.Qk Coherent control of atomic interactions with photons, 03.65.Ud
Entanglement and quantum nonlocality, 03.65.Yz Decoherence, open systems,
quantum statistical methods
2000 AMS Subject Classification: Primary 82C10, 81Q15; Secondary 20G42,
81R15

1. Introduction

The single-photon cooperative emission of the inverted system of radiators
proposed by Dicke [1] opens the new possibilities of this phenomenon in the
description of decay processes in the multilevel system [2] and multi-photon inter-
action of radiators with EMF (see, e.g., [3, 4]). The experimental possibilities [3, 4]
of nonlinear cooperative interaction of radiators with vacuum field remain in the
center of attention of many theoretical models proposed in the last time [5, 6].
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For example, using the classical and quantum approaches in Refs. [7–10], it is given
the quantitative description of two-color super-fluorescence, observed in [2]. In the
recent experiment [11], the cooperative emission of excited atomic oxygen rela-
tively the transition 3p3P ! 3s3S at wavelength 845nm as a result of two-photon
photolysis of atmospheric O2 followed by two-photon excitation of atomic oxygen
by a laser pulse at 226nm is demonstrated.

Combining single- and two-photon processes, this chapter aims to investigate
the cooperative emission of the inverted system of radiators taking into account the
resonance between one- and two-photon cooperative transitions of two three-level
atomic subsystems represented in Figure 1. In this approach, the two dipole-active
species of radiators studied in Refs. [12, 13] are replaced with one three-level atomic
subsystem Ξ (or V) inverted relative to the single-photon emission in the resonance
with 2S - 1S dipole-forbidden transitions of hydrogen (or He)-like sub-ensemble.
This new cooperative effect between two species of radiators occurs when two
three-level emitters enter into two-quantum resonances with other emitters of the
second ensemble inverted relative dipole-forbidden transition. Similar collectiviza-
tion processes can amplify (or inhibit) the collective spontaneous emission rate of
each atomic sub-ensemble. The sign of exchange integral between the two atoms
from different sub-ensembles depends on the retardation time and distance
between them. This problem is connected to the possibilities of amplifying of
entangled quanta and established the coherence between photon pairs. For this, the
cooperative interaction of three-radiator subsystems is proposed in which one of
them is inverted relative to the dipole-forbidden transitions, but another inverted
dipole-active three-level system ignites this transition.

Taking into consideration the elementary acts of two-photon resonance between
radiators, we have demonstrated the increasing of two-photon emission rate in one
of the radiator subsystem comparison with traditional two-photon super-
fluorescence [5]. The mutual influence of two- and single-photon super-fluorescent
processes on the two-photon cooperative emission of the inverted subsystem rela-
tively dipole-forbidden transition depends on the position of atoms in the exchange
potential. Two possibilities of two- and three-particle exchanges through the
vacuum field are represented in Figure 1A–C, taking into consideration the two-
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The resonances between the two-photon transitions of D atomic subsystem and the three-level dipole-active
systems in Ξ (A), V (B), and Λ (C) configurations. The three-level atoms are situated at relative distances rdξ,
rdλ, and rrv. The exchange energies between theD subsystem in the two-photon resonance ω0 ¼ ω1 þ ω2 with the
Ξ subsystem (A) and the scattering resonance 2ω0 ¼ ωa � ωs with V subsystem (B) are given by the expressions
(14) and (17).
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photon resonance and scattering processes between the dipole-forbidden subsystem
D and dipole-active subsystems of Ξ, Λ, and V, respectively. Here, the product of
two vacuum polarizations of the atom Ξ (or V, Λ) comes into resonance with the
polarization of the dipole-forbidden transitions of the D atom.

Using two small parameters in Section 2, we propose the projection
operator method of elimination of the EMF operators from the generalized
equation of atomic subsystems in single- and two-photon resonances. The
possibilities of two-photon cooperative resonance between three-level radiators
situated at a distance compared with the emission wavelength are demonstrated.
Following this description the resonance interaction of a dipole-forbidden atom
and three-level dipole-active radiator in the cascade configuration is described
by the cooperative rate and the exchange integral (13). The similar expression (16)
is obtained in the scattering process of three-level system in V or Λ—
configurations with dipole-forbidden D subsystem represented in Figure 1. In Sec-
tion 3 the spontaneous emission for the two radiators in the cascade or scattering
resonances is given without the de-correlation of the atomic correlation functions
between them.

2. Master equation of cooperative exchange between three-level
radiators in two-quantum exchanges

Let us consider the interaction of three-level subsystems of radiators in V and Ξ
configuration with D dipole-forbidden two-level ensemble through the vacuum of
EMF. The Ξ three-level subsystem in cascade configuration, prepared in excited
state ∣2ξi, can pass into the Dicke super-radiance regime [1] relatively the dipole-
active transitions 2ξ ! ιξ ! 1ξ at frequencies ω2 and ω1 (Figure 1A). According to
Figure 1A, the excited D atom relatively the dipole-forbidden transition 2d ! 1d
passes in the ground state ∣1di simultaneously generating two quanta under the
influence of cooperative decay of the Ξ three-level subsystem. Two-photon
transition of the D-atom takes place through the virtual levels represented by the
notations ∣3di with opposite parity relative to the ground ∣1di and excited ∣2di states,
respectively. This case corresponds to the situation when the emission frequencies
of the dipole-active Ξ radiators and D dipole-forbidden radiators satisfy the reso-
nance condition ω1 þ ω2 ¼ 2ω0. Here ω1 and ω2 are the transition frequencies of the
Ξ dipole-active radiators in Ξ, and ℏωd ¼ 2ℏω0 is the energy distance between the
ground ∣nSi and excited ∣ nþ 1ð ÞSi states of the dipole-forbidden transitions of D
radiator (see Figure 1A).

The similar cooperative emissions can be observed in the two-quantum reso-
nance interactions between the V (or Λ) three-level radiator in two quanta scatter-
ing interactions and the dipole-forbidden transitions of D atoms through the
vacuum field (see Figure 1B,C). In this situation, we consider that the dipole-active
transitions of the three-level radiator in the V (or Λ) configuration satisfy the
scattering condition ωa � ωs ¼ ωd in interaction with the D subsystem. As it is
represented in Figure 1B, the cone of the transition energies of the V or Λ dipole-
active three-level atoms must be larger than the dipole-forbidden transition
∣ nþ 1ð ÞSi � ∣nSi of atoms D, so that two-photon resonance between the two dipole-
active transitions of V atom enters in the exact scattering resonance, ωa � ωs ¼ ωd,
withD atom. This nonlinear transition increases with the decreasing of the detuning
from resonance with virtual ∣3di states of the D two-level system.

The Hamiltonian of the system consists of the free and interaction parts
H ¼ Ĥ0 þ ĤI. Here the free part of this Hamiltonian is represented through the
atomic and field operators:
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photon resonance and scattering processes between the dipole-forbidden subsystem
D and dipole-active subsystems of Ξ, Λ, and V, respectively. Here, the product of
two vacuum polarizations of the atom Ξ (or V, Λ) comes into resonance with the
polarization of the dipole-forbidden transitions of the D atom.

Using two small parameters in Section 2, we propose the projection
operator method of elimination of the EMF operators from the generalized
equation of atomic subsystems in single- and two-photon resonances. The
possibilities of two-photon cooperative resonance between three-level radiators
situated at a distance compared with the emission wavelength are demonstrated.
Following this description the resonance interaction of a dipole-forbidden atom
and three-level dipole-active radiator in the cascade configuration is described
by the cooperative rate and the exchange integral (13). The similar expression (16)
is obtained in the scattering process of three-level system in V or Λ—
configurations with dipole-forbidden D subsystem represented in Figure 1. In Sec-
tion 3 the spontaneous emission for the two radiators in the cascade or scattering
resonances is given without the de-correlation of the atomic correlation functions
between them.

2. Master equation of cooperative exchange between three-level
radiators in two-quantum exchanges

Let us consider the interaction of three-level subsystems of radiators in V and Ξ
configuration with D dipole-forbidden two-level ensemble through the vacuum of
EMF. The Ξ three-level subsystem in cascade configuration, prepared in excited
state ∣2ξi, can pass into the Dicke super-radiance regime [1] relatively the dipole-
active transitions 2ξ ! ιξ ! 1ξ at frequencies ω2 and ω1 (Figure 1A). According to
Figure 1A, the excited D atom relatively the dipole-forbidden transition 2d ! 1d
passes in the ground state ∣1di simultaneously generating two quanta under the
influence of cooperative decay of the Ξ three-level subsystem. Two-photon
transition of the D-atom takes place through the virtual levels represented by the
notations ∣3di with opposite parity relative to the ground ∣1di and excited ∣2di states,
respectively. This case corresponds to the situation when the emission frequencies
of the dipole-active Ξ radiators and D dipole-forbidden radiators satisfy the reso-
nance condition ω1 þ ω2 ¼ 2ω0. Here ω1 and ω2 are the transition frequencies of the
Ξ dipole-active radiators in Ξ, and ℏωd ¼ 2ℏω0 is the energy distance between the
ground ∣nSi and excited ∣ nþ 1ð ÞSi states of the dipole-forbidden transitions of D
radiator (see Figure 1A).

The similar cooperative emissions can be observed in the two-quantum reso-
nance interactions between the V (or Λ) three-level radiator in two quanta scatter-
ing interactions and the dipole-forbidden transitions of D atoms through the
vacuum field (see Figure 1B,C). In this situation, we consider that the dipole-active
transitions of the three-level radiator in the V (or Λ) configuration satisfy the
scattering condition ωa � ωs ¼ ωd in interaction with the D subsystem. As it is
represented in Figure 1B, the cone of the transition energies of the V or Λ dipole-
active three-level atoms must be larger than the dipole-forbidden transition
∣ nþ 1ð ÞSi � ∣nSi of atoms D, so that two-photon resonance between the two dipole-
active transitions of V atom enters in the exact scattering resonance, ωa � ωs ¼ ωd,
withD atom. This nonlinear transition increases with the decreasing of the detuning
from resonance with virtual ∣3di states of the D two-level system.

The Hamiltonian of the system consists of the free and interaction parts
H ¼ Ĥ0 þ ĤI. Here the free part of this Hamiltonian is represented through the
atomic and field operators:
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Ĥ0 ¼ ∑
k
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†
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N

m¼1
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2
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∑
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þ ∑
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∑
Nξ

j¼1
ℏ �1ð ÞαωαΞ̂α

αj,

(1)

where N, Nξ, Nλ, and Nv are the number of atoms in the D, Ξ, Λ, and V
subsystems, respectively; the energies of first and second levels of the Ξ, Λ, and V
three-level subsystems are measured from the third intermediate state ∣ιi. The
operators Ξ1

1, j, Ξ
ι
ι, j, and Ξ2

2, j describe the population of the ground, intermediary,
and excited states of the Ξ atom. The population operators of two excited and
ground states V̂ 2

2, j, V̂
1
1, j, and V̂ ι

ι, j can be introduced for the three-level atom in V
configuration too. The similar expressions for two ground and one excited state can
be introduced for Λ three-level atomic configuration Λ̂2

2, j, Λ̂
1
1, j, and Λ̂ι

ι, j, respec-
tively. The D atoms are considered as a two-level system, the state energy positions
of which are measured from the middle point between the excited and ground

states, respectively, Dz, j ¼ D2
2, j �D1

1, j

� �
=2. The first term of the Hamiltonian

describes the free energy of EMF, the k � k, λmodes of which is initially considered
in the vacuum state ∣0ki. Here âk and â†

k are annihilation and creation operators of
EMF photons with wave vector k, polarization ελ, and the frequency ωk, which

satisfy the commutation relation â†
k; â

†

k
0

h i
¼ δk,k0 .

Taking into consideration the conservation energy laws, ℏ ω1 þ ω2ð Þ ¼ 2ℏω0 and
ℏ ωa � ωsð Þ ¼ 2ℏω0 (according to Figure 1A–C, respectively), we introduce the
interaction Hamiltonian ĤI ¼ ĤI1 þ ĤI2 of the Ξ, Λ, V, and D subsystems with free
EMF. Here ĤI1 describes the single-photon interaction of three-level atoms in the Ξ,
V, and Λ configurations with a vacuum of EMF:

ĤI1 ¼ �∑
k
∑
Nξ

j¼1
μ1ι; gk
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Ξ̂ι

1j þ μ2ι; gk
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�∑
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h i
âk exp i k; rlð Þ½ � þH:c:,

(2)

where ε1ĤΞ1�
I1 � Ξ̂ι

1jâk and ε1ĤΞ2¼
I1 � Ξ̂2

ιjâk represent the two-photon cascade

excitation of Ξ atom through the intermediary state ∣ιi; ε1ĤS�
I1 � Λ̂ι

2, jâk (or

ε1ĤS�
I1 � V̂ 2

ι, jâk) and ε1ĤA�
I1 � Λ̂ι

1, jâk (ε1ĤA�
I1 � V̂ 1

ι, jâk) describe the excitation of Λ
(or V) atom with the absorption of the photons with the energies ℏωs and ℏωa,
respectively. μi, j is dipole momentum transitions between the i and j states of the

atoms. The second part of interaction Hamiltonian, ĤI2, describes the nonlinear
interaction of the dipole-forbidden transition of D two-level system with vacuum
field:

ĤI2 ¼ ∑
k1, k2

∑
N

m¼1
½qs k1; k2ð ÞD̂�

mâ
†
k2
âk1 1� δk1, k2ð Þ exp i k1 � k2; rmð Þ½ �

� qb k1; k2ð ÞD̂þ
mâk2 âk1 exp i k1 þ k2; rmð Þ½ �� þH:c:

(3)
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This interaction is expressed by two-photon emission terms ε2Ĥbþ
I2 � D̂�

mâ
†
k2
â†
k1

and possible scattering of an emitted photon by the Ξ and V subsystems
ε2 �HI2s� � D̂∓

mâ
†
k2
âk1 . The excitation and lowering operators of V, Λ, and Ξ dipole-

active three-level subsystems are described by the operators of U 3ð Þ algebra, which

satisfy the commutation relations Û
α

βj; Û
β0

α0l

h i
¼ δl, j Û

α

α0jδβ,β0 þ Ûβ
β0jδα,α0

n o
. Here the

operator Ûα
βj is equivalent with V and Ξ operators, V̂α

βj and Ξ̂α
βj, respectively. The

inversion D̂lz together with lowering and exciting D̂j
�
operators of D subsystem

belongs to SU 2ð Þ algebra: D̂lz; D̂j
�h i

¼ �D̂l
�
δl, j and D̂

þ
l ; D̂

þ
m

h i
¼ 2δl,mD̂lz. In com-

parison with single-photon interaction of Ξ and V atoms with vacuum field

μi, j; gk
� �

, the nonlinear interaction of D two-level subsystem with EMF in two-

photon and scattering interaction is described by the interaction constants and
second order:

qb k1; k2ð Þ ¼
d31; gk1

� �
d32; gk2
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2ℏ ω32 þ ωk1ð Þ þ
d31; gk2

� �
d32; gk1
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2ℏ ω31 � ωk2ð Þ ,

qs k1; k2ð Þ ¼
d31; gk1

� �
d32; gk2
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ℏ ω32 � ωk1ð Þ þ
d31; gk2

� �
d32; gk1

� �

ℏ ω31 þ ωk1ð Þ ,

where gk ¼ ελ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏωk=V

p
and di, j is dipole momentum transitions between the

levels of theD atom. In the definition of the interaction parts of the Hamiltonian (2)
and (3), we introduced the fictive small parameters ε1 and ε2 which will help us to
establish the contributions of the second and third orders in two-photon decay
rates.

In this section the conditions for which the pure super-fluorescence of the small
number of radiators [14, 15] in the subsystems Ξ, V, and D enters into interaction
during the delay time of cooperative spontaneous emission of each subsystem are
considered, so that inhomogeneous broadening of excited atomic states can be
neglected, τi ≪T2, i. Here τi ¼ τ0=Ni is the collective time for which the polarization
of the i subsystem becomes macroscopic; T2, i is the de-phasing time of the
subsystem i, which includes the reciprocal inhomogeneous and Doppler-broadened
line-width, i � Ξ, V, and D (see, e.g., the papers [15, 16]). These conditions can be
achieved using laser cooling method [17, 18] for three atomic ensembles
represented in Figure 1A,B. Let us suppose that delay time of the super-radiant
pulse is less than T2, i; we will drop the terms connected with de-phasing time T2, i
from the kinetic equations. In order to estimate the three-particle cooperative
interaction, we will examine the situation in which one- and two-quantum interac-
tions with the EMF bath are taken into account simultaneously. In this case it is
necessary to eliminate from the density matrix equation the boson operators of EMF
in nonlinear interaction with atomic subsystem. In comparison with the paper [12],
here we will take into consideration the two-quantum effects connected with the
influence of three-level atomic systems V and Ξ on the two-photon spontaneous
emission of dipole-forbidden D subsystem. In this case instead of two dipole-active
atoms, we can take into consideration only one three-level atom in two-photon
resonance with dipole-forbidden system.

Let P be the projection operator for the complete density matrix �ρ tð Þ on the
vector basis of a free EMF subsystem ρs tð Þ ¼ P�ρ tð Þ and �ρb tð Þ ¼ P�ρ tð Þ, where �ρs tð Þ
and �ρb tð Þ are slower and rapidly oscillating parts of the density matrix, respectively,
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ℏ ωa � ωsð Þ ¼ 2ℏω0 (according to Figure 1A–C, respectively), we introduce the
interaction Hamiltonian ĤI ¼ ĤI1 þ ĤI2 of the Ξ, Λ, V, and D subsystems with free
EMF. Here ĤI1 describes the single-photon interaction of three-level atoms in the Ξ,
V, and Λ configurations with a vacuum of EMF:
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(or V) atom with the absorption of the photons with the energies ℏωs and ℏωa,
respectively. μi, j is dipole momentum transitions between the i and j states of the

atoms. The second part of interaction Hamiltonian, ĤI2, describes the nonlinear
interaction of the dipole-forbidden transition of D two-level system with vacuum
field:
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This interaction is expressed by two-photon emission terms ε2Ĥbþ
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and possible scattering of an emitted photon by the Ξ and V subsystems
ε2 �HI2s� � D̂∓

mâ
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and di, j is dipole momentum transitions between the

levels of theD atom. In the definition of the interaction parts of the Hamiltonian (2)
and (3), we introduced the fictive small parameters ε1 and ε2 which will help us to
establish the contributions of the second and third orders in two-photon decay
rates.

In this section the conditions for which the pure super-fluorescence of the small
number of radiators [14, 15] in the subsystems Ξ, V, and D enters into interaction
during the delay time of cooperative spontaneous emission of each subsystem are
considered, so that inhomogeneous broadening of excited atomic states can be
neglected, τi ≪T2, i. Here τi ¼ τ0=Ni is the collective time for which the polarization
of the i subsystem becomes macroscopic; T2, i is the de-phasing time of the
subsystem i, which includes the reciprocal inhomogeneous and Doppler-broadened
line-width, i � Ξ, V, and D (see, e.g., the papers [15, 16]). These conditions can be
achieved using laser cooling method [17, 18] for three atomic ensembles
represented in Figure 1A,B. Let us suppose that delay time of the super-radiant
pulse is less than T2, i; we will drop the terms connected with de-phasing time T2, i
from the kinetic equations. In order to estimate the three-particle cooperative
interaction, we will examine the situation in which one- and two-quantum interac-
tions with the EMF bath are taken into account simultaneously. In this case it is
necessary to eliminate from the density matrix equation the boson operators of EMF
in nonlinear interaction with atomic subsystem. In comparison with the paper [12],
here we will take into consideration the two-quantum effects connected with the
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Let P be the projection operator for the complete density matrix �ρ tð Þ on the
vector basis of a free EMF subsystem ρs tð Þ ¼ P�ρ tð Þ and �ρb tð Þ ¼ P�ρ tð Þ, where �ρs tð Þ
and �ρb tð Þ are slower and rapidly oscillating parts of the density matrix, respectively,
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P ¼ 1� P. It can be shown that P2 ¼ P and PP ¼ 0. Recognizing that for t ¼ 0
an electronic subsystem does not interact with the EMF, we define the projection
operator P ¼ �ρph 0ð Þ⊗Trph ⋯f g, where the trace is taking over the photon states and
�ρph 0ð Þ ¼ 0j i 0h j represents the density matrix of the vacuum of EMF. In this case
one can represent the slow part of density matrix through the density matrix
�W tð Þ ¼ Trph �ρ tð Þf g of the atomic subsystem �ρs tð Þ ¼ �ρph⊗ �W tð Þ, where
�W 0ð Þ ¼ Trph�ρ 0ð Þ ¼ �ρr 0ð Þ is the density matrix of the prepared state of the atomic
subsystem. The equations for the matrix �ρs tð Þ and �ρb tð Þ are

∂�ρs tð Þ
∂t

¼ �iPLI tð Þ �ρs tð Þ þ �ρb tð Þ� �
, (4)

∂�ρb tð Þ
∂t

¼ �iPLI tð Þ �ρs tð Þ þ �ρb tð Þ� �
, (5)

where L̂I tð Þ ¼ ε1 �HI1 tð Þ;…� �
=ℏ + ε2 �HI2 tð Þ;…� �

=ℏ is the interaction part of
Liouville operator. Following the known procedure of elimination of the rapidly
oscillating part of the density matrix, we integrate Eq. (5) with respect to �ρb tð Þ and
substitute the resulting solution in Eq. (4). After this procedure we obtain the
expression

∂�ρs tð Þ
∂t

¼ �P
ðt

0

dτLI tð ÞU t; t� τð ÞLI t� τð Þρs t� τð Þ, (6)

where the two-time evolution operator is represented by the T product

�U t; t� τð Þ ¼ T exp �iP
Ðt
t�τ

dτ1LI τð Þ
� �

. In comparison with well-known procedure

of the decomposition on the small parameter ε of the right-hand site of expression (6),
here we have two parameters ε1 and ε2. The quantum correlation between the single-
and two-photon interactions of atoms through the vacuum of the EMF can be found in
the third order of the expansion on the small parameter product ε21ε2 of the right-hand
side of Eq. (6). Indeed considering the second and third order of the expansion on
the small parameters ε1 and ε2, we represent the evolution operators �U t; t� τð Þ and
�ρs t� τð Þ in the following approximate form �U t; t� τð Þ≈ 1� iP

Ðt
t�τ

dτ1Li τ1ð Þ and

�ρs t� τð Þ ¼ �ρs tð Þ þ P
Ðτ
0
dτ1L̂i t� τ1ð Þ Ð

t�τ1

0
dτ2L̂i t� τ1 � τ2ð Þ�ρs t� τ1 � τ2ð Þ. Upon

substitution of this expression in Eq. (6), in the third order of small parameter λ, the
equation for ρs tð Þ becomes

∂

∂t
�ρs tð Þ ¼ �P

ðt

0

dτ1L̂i tð Þ L̂i t� τ1ð Þ � i
ðt

t�τ1

dτ2L̂i τ2ð Þ
8<
:

9=
;L̂i t� τ1ð Þ�ρs tð Þ: (7)

Representing the Liouville operator, L̂I tð Þ, through single-, LI1 tð Þ ¼ ε1
�HI1 tð Þ;…� �

=ℏ, and two-photon, λLI2 tð Þ ¼ ε2 �HI2 tð Þ;…� �
=ℏ, interaction parts, we can

observe that in the third order on the decomposition on interaction Hamiltonian,
the main contribution to the right-hand site of Eq. (7) gives the terms proportional
to the ε21ε2. Indeed, taking into consideration that the trace of an odd number of

boson operator is zero, Trph ρ0�a
†
k1
�ak2†�ak3�ak4�ak5

n o
¼ 0, it is not difficult to observe
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that the projection of the operator product ε22ε1P �HI1
�HI2

�HI2 takes the zero value too.
In the third order of the small parameters εi, the contribution of Liouville operator
L̂I1 and L̂I2 must be found from the terms like PL̂I1L̂I2L̂I1�̂ρs tð Þ, which corresponds to
two-photon resonances between the single- and two-photon transitions in the
three-level atomic systems described by the Hamiltonian part (2) and (3), respec-
tively. It is not difficult to observe that second-order decomposition on the interac-
tion Hamiltonian gives zero contributions in the correlations between the Ξ, V, and
D subsystems. This follows from the zero value of the trace of the odd number of

boson operators, Trph �ρ0�a
†
k1
�ak2�ak3†

n o
¼ 0, which corresponds to the projection of

the operator product P �HI1
�HI2P ¼ 0.

Following this procedure of calculation of mean value of boson operators, it is
observed that the two-photon resonance represented in Figure 1A can be described
by the following diagrams:

Δρb3 ¼ iλ3
ðt

0

dτ1
ðτ1

0

dτ2 PL̂
Ξ1�
I1 tð Þ^̂LΞ2�

I1 t� τ2ð ÞL̂bþ
I2 t� τ1ð Þρs tð Þ

n

þPL̂R�
I1 tð ÞL̂S�

I1 t� τ2ð ÞL̂bþ
I2 t� τ1ð Þρs tð Þ

þPL̂
Ξ2�
I1 tð ÞL̂bþ

I2 t� τ2ð ÞL̂Ξ1�
I1 t� τ1ð Þρs tð Þ

þPL̂
Ξ1�
I1 tð ÞL̂bþ

I2 t� τ2ð ÞL̂Ξ2�
I1 t� τ1ð Þρs tð Þ

þPL̂
bþ
I2 tð ÞL̂Ξ1�

I1 t� τ2ð ÞL̂Ξ2�
I1 t� τ1ð Þρs tð Þ

þPL̂bþ
I2 tð ÞL̂Ξ2�

I1 t� τ2ð ÞL̂Ξ1�
I1 t� τ1ð Þρs tð Þ

o
þH:c:

(8)

Here LΞ1�
I1 tð Þ ¼ ε1 �H

Ξ1�
I1 tð Þ;…

h i
=ℏ, LΞ2�

I1 tð Þ ¼ ε1 �H
Ξ2�
I2 tð Þ;…

h i
=ℏ, and

Lb�
I2 tð Þ ¼ ε2 �H

b�
I2 tð Þ;…

h i
=ℏ represent the Liouville operators of the interaction part of

the Ξ and D atoms expressed through EMF annihilation and atomic exciting opera-
tors in the single- and two-quantum interactions.

The scattering resonance can be represented by the diagrams in which the
conservation law ωa � ωs ¼ 2ω0 must take place as represented in Figure 1B:

Δρs3 ¼ i
ðt

0

dτ1
ðτ1

0

dτ2 PLA�
I1 tð ÞLSþ

I1 t� τ2ð ÞLsþ
I2 ðt�

�
τ1Þρs tð Þ

þPLSþ
I1 tð ÞLA�

I1 t� τ2ð ÞLsþ
I2 t� τ1ð Þρs tð Þ

þPLA�
I1 tð ÞLsþ
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I1 t� τ2ð Þρs tð Þ
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I1 t� τ2ð Þρs tð Þ

þPLsþ
I2 tð ÞLA�

I1 t� τ1ð ÞLSþ
I1 t� τ2ð Þρs tð Þ

þPLsþ
I2 tð ÞLSþ

I1 t� τ1ð ÞLA�
I1 t� τ2ð Þρs tð Þg þH:c:,

(9)

where Ls�
I2 tð Þ ¼ ε2 �H

s�
I2 tð Þ;…

h i
=ℏ is the Liouville parts for two-photon

scarpering process of D atomic subsystem and LS�
I1 tð Þ ¼ ε1 �H

S�
I1 tð Þ;…

h i
=ℏ and
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P ¼ 1� P. It can be shown that P2 ¼ P and PP ¼ 0. Recognizing that for t ¼ 0
an electronic subsystem does not interact with the EMF, we define the projection
operator P ¼ �ρph 0ð Þ⊗Trph ⋯f g, where the trace is taking over the photon states and
�ρph 0ð Þ ¼ 0j i 0h j represents the density matrix of the vacuum of EMF. In this case
one can represent the slow part of density matrix through the density matrix
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=ℏ is the interaction part of
Liouville operator. Following the known procedure of elimination of the rapidly
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where the two-time evolution operator is represented by the T product

�U t; t� τð Þ ¼ T exp �iP
Ðt
t�τ

dτ1LI τð Þ
� �

. In comparison with well-known procedure

of the decomposition on the small parameter ε of the right-hand site of expression (6),
here we have two parameters ε1 and ε2. The quantum correlation between the single-
and two-photon interactions of atoms through the vacuum of the EMF can be found in
the third order of the expansion on the small parameter product ε21ε2 of the right-hand
side of Eq. (6). Indeed considering the second and third order of the expansion on
the small parameters ε1 and ε2, we represent the evolution operators �U t; t� τð Þ and
�ρs t� τð Þ in the following approximate form �U t; t� τð Þ≈ 1� iP

Ðt
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substitution of this expression in Eq. (6), in the third order of small parameter λ, the
equation for ρs tð Þ becomes

∂
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;L̂i t� τ1ð Þ�ρs tð Þ: (7)

Representing the Liouville operator, L̂I tð Þ, through single-, LI1 tð Þ ¼ ε1
�HI1 tð Þ;…� �

=ℏ, and two-photon, λLI2 tð Þ ¼ ε2 �HI2 tð Þ;…� �
=ℏ, interaction parts, we can

observe that in the third order on the decomposition on interaction Hamiltonian,
the main contribution to the right-hand site of Eq. (7) gives the terms proportional
to the ε21ε2. Indeed, taking into consideration that the trace of an odd number of

boson operator is zero, Trph ρ0�a
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that the projection of the operator product ε22ε1P �HI1
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�HI2 takes the zero value too.
In the third order of the small parameters εi, the contribution of Liouville operator
L̂I1 and L̂I2 must be found from the terms like PL̂I1L̂I2L̂I1�̂ρs tð Þ, which corresponds to
two-photon resonances between the single- and two-photon transitions in the
three-level atomic systems described by the Hamiltonian part (2) and (3), respec-
tively. It is not difficult to observe that second-order decomposition on the interac-
tion Hamiltonian gives zero contributions in the correlations between the Ξ, V, and
D subsystems. This follows from the zero value of the trace of the odd number of

boson operators, Trph �ρ0�a
†
k1
�ak2�ak3†

n o
¼ 0, which corresponds to the projection of

the operator product P �HI1
�HI2P ¼ 0.

Following this procedure of calculation of mean value of boson operators, it is
observed that the two-photon resonance represented in Figure 1A can be described
by the following diagrams:

Δρb3 ¼ iλ3
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0
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=ℏ represent the Liouville operators of the interaction part of

the Ξ and D atoms expressed through EMF annihilation and atomic exciting opera-
tors in the single- and two-quantum interactions.

The scattering resonance can be represented by the diagrams in which the
conservation law ωa � ωs ¼ 2ω0 must take place as represented in Figure 1B:
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where Ls�
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LA�
I1 tð Þ ¼ ε1 �H

A�
I1 tð Þ;…

h i
=ℏ correspond to the single-photon transitions in Ξ atomic

subsystem described by the Hamiltonian parts (3) and (2), respectively.

So that after the trace on the EMF variables, we obtain Tr ρ̂ph�ak1�ak3�ak2†�ak4†
n o

¼ δk1k2δk3,k4 þ δk1, k4δk3, k2
� �

, Tr ρ̂ph�ak1�ak2†
n o

¼ δk1k2 , and Tr ρph�a
†

k2
�ak4†�ak1�ak3

n o
¼ 0.

We found the correlations between Ξ, V, and D atomic subsystem represented in
Figure 1.

We found the correlations between Ξ, V, and D atomic subsystem represented
in the Figure 1. Following projection technique procedures developed in Refs.
[5, 13, 19], we find the terms of in the right-hand side of the master equation
(7)–(9) for three species of radiators in interaction

d �W tð Þ
dt

¼ d �W0 tð Þ
dt

þ d �W21b tð Þ
dt

þ d �W21s tð Þ
dt

: (10)

First term describes the cooperative single- and two-photon effects in each
subsystem, respectively. Second term describes the exchanges between the single-
photon processes of Ξ three-level subsystem and the two-photon transitions of
the D radiators as this is represented in Figure 1A. The third term describes the
scattering effect of the two radiators represented in Figure 1B.

All parameters and collective exchange integrals between the three-level
radiators in V configuration and dipole-forbidden two-level system D are defined in
the literature [1–12]:

d �W0 tð Þ
dt

¼ 1
2τι,1

∑
Nξ

l, j¼1
χ1 j; lð Þ �Ξ1

ι, j;
�W tð Þ�Ξι

1, l

h i
þ 1
2τι,2

∑
Nξ

l, j¼1
χ2 j; lð Þ �Ξι

2, j;
�W tð Þ�Ξ2

ι, l

h i

þ 1
2τι, a

∑
Nv

l, j¼1
χa j; lð Þ �V

ι

1, j;
�W tð Þ�V 1

ι, l

h i
þ 1
2τι, s

∑
Nv

l, j¼1
χs j; lð Þ �V

ι

2, j;
�W tð Þ�V 2

ι, l

h i

þ 1
2τι, s

∑
Nλ

l, j¼1
χs j; lð Þ �Λ

2
ι, j;

�W tð Þ�Λι

2, l

h i
þ 1
2τι, a

∑
Nλ

l, j¼1
χa j; lð Þ �Λ

2
ι, j;

�W tð Þ�Λι

2, l

h i

þ 1
2τd

∑
N

l, j¼1
χd j; lð Þ �D

�
j ;

�W tð Þ�Dlþ
h i

þH:c:,

(11)

where τι,α ¼ 3ℏc3= 4μ2α, ιω
3
α

� �
is the spontaneous emission time of the dipole-

active transitions ∣αi ! ∣ιi of three-level atom in Ξ and V configurations and
τd ¼ π32ℏ2c6= 42ω7

0d
2
23d

2
31q

2
b ω0;ω0ð Þ� �

is the two-photon spontaneous emission
rate in the D atomic subsystem. This equation can be used for the description of
interaction between the dipole-forbidden and dipole-active subsystems of radiators.
For comparison of the real parts of the single- and two-photon exchange integrals,
we can observe that the second decreases inversely proportional to the square
distance rJl between two D radiators: Re χα j; lð Þ½ � = sin ωαrj, l=c

� �
= ωαrj, l=c
� �

and

Re χd j; lð Þ½ � � sin 2 ω0rj, l=c
� �

= ω0rj, l=c
� �2.

Following the two-parameter approach projection technique proposed in Ref.
[13], HI1 � ε1 and HI2 � ε2, we easily found the three-particle exchanges between
the radiators represented in Figure 1A described by master equation
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d �W21b tð Þ
dt

¼ � i
4τb12d

∑
N

m¼1
∑
Nξ

l¼1
∑
Nξ

j¼1
Ub m; lð Þf

� �D
�
m;

�W tð Þ�Ξ2
ι, l
�Ξι
1, j

h i
þ �D

�
m;

�W tð Þ�Ξι
1, j
�Ξ2
ι, l

h in o

þ U ∗
b j; l;mð Þ �Ξ2

ι, l;
�Ξι
1, j;

�Dm� �W tð Þ
h ih i

þ ½�Ξι
1, j; ½�Ξ

2
ι, l;

�Dm� �W tð Þ��
o
� i
2τb12d

∑
N

m¼1
∑
Nξ

j¼1
∑
Nξ

l¼1
Vb j;m; lð Þ

� �D
�
m
�W tð Þ�Ξ2

ιl;
�Ξι
1, j

h i
þ �D

�
m
�W tð Þ�Ξι

1, j;
�Ξ2
ι, l

h in o

þH:c:

(12)

Here for ωs ≃ωr, we have found the following integrals:

1
τb12d

¼ 4
3

� �2 ω3
s ωrð Þ3μι2μι1d23d31

2ℏ2c6
1

ω32 þ ω2
þ 1
ω31 þ ω1

� �
,

Vb j;m; lð Þ≃ c2 exp �iω2rml=c½ � � 1½ � exp iω1rjm=c
� �� 1

� �
ω1ω2rjmrml

,

Ub j;m; lð Þ ¼ exp �iω1rmj=c
� �

Vb j; l;mð Þ:

(13)

Here 1=τb12d is the three-particle cooperative emission rate of two atoms from Ξ
subsystems and one atom from D ensemble situated at the relatively small distance
rjl ≪ λs rð Þ. Vb j;m; lð Þ is the exchange integral which describes the influence of the m
atom from D ensemble on the single-photon transitions of the j and l radiators from
the Ξ subsystem. Ub j;m; lð Þ is the inverse process of the cooperative action of j and l
radiators from the Ξ ensemble on the two-photon transitions of m radiator from the
D subsystem.

Figure 2.
The real part of exchange integral Vb, defined in expression (14), is plotted as a function of relative distance
between radiators, X ¼ ω0r=c, and relative displacement, Δ ¼ ω1 � ω0ð Þ=ω0.
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dt

: (10)

First term describes the cooperative single- and two-photon effects in each
subsystem, respectively. Second term describes the exchanges between the single-
photon processes of Ξ three-level subsystem and the two-photon transitions of
the D radiators as this is represented in Figure 1A. The third term describes the
scattering effect of the two radiators represented in Figure 1B.

All parameters and collective exchange integrals between the three-level
radiators in V configuration and dipole-forbidden two-level system D are defined in
the literature [1–12]:

d �W0 tð Þ
dt

¼ 1
2τι,1

∑
Nξ

l, j¼1
χ1 j; lð Þ �Ξ1

ι, j;
�W tð Þ�Ξι

1, l

h i
þ 1
2τι,2

∑
Nξ

l, j¼1
χ2 j; lð Þ �Ξι

2, j;
�W tð Þ�Ξ2

ι, l

h i

þ 1
2τι, a

∑
Nv

l, j¼1
χa j; lð Þ �V

ι

1, j;
�W tð Þ�V 1

ι, l

h i
þ 1
2τι, s

∑
Nv

l, j¼1
χs j; lð Þ �V

ι

2, j;
�W tð Þ�V 2

ι, l

h i

þ 1
2τι, s

∑
Nλ

l, j¼1
χs j; lð Þ �Λ

2
ι, j;

�W tð Þ�Λι

2, l

h i
þ 1
2τι, a

∑
Nλ

l, j¼1
χa j; lð Þ �Λ

2
ι, j;

�W tð Þ�Λι

2, l

h i

þ 1
2τd

∑
N

l, j¼1
χd j; lð Þ �D

�
j ;

�W tð Þ�Dlþ
h i

þH:c:,

(11)

where τι,α ¼ 3ℏc3= 4μ2α, ιω
3
α

� �
is the spontaneous emission time of the dipole-

active transitions ∣αi ! ∣ιi of three-level atom in Ξ and V configurations and
τd ¼ π32ℏ2c6= 42ω7

0d
2
23d

2
31q

2
b ω0;ω0ð Þ� �

is the two-photon spontaneous emission
rate in the D atomic subsystem. This equation can be used for the description of
interaction between the dipole-forbidden and dipole-active subsystems of radiators.
For comparison of the real parts of the single- and two-photon exchange integrals,
we can observe that the second decreases inversely proportional to the square
distance rJl between two D radiators: Re χα j; lð Þ½ � = sin ωαrj, l=c

� �
= ωαrj, l=c
� �

and

Re χd j; lð Þ½ � � sin 2 ω0rj, l=c
� �

= ω0rj, l=c
� �2.

Following the two-parameter approach projection technique proposed in Ref.
[13], HI1 � ε1 and HI2 � ε2, we easily found the three-particle exchanges between
the radiators represented in Figure 1A described by master equation
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d �W21b tð Þ
dt

¼ � i
4τb12d

∑
N

m¼1
∑
Nξ

l¼1
∑
Nξ

j¼1
Ub m; lð Þf

� �D
�
m;

�W tð Þ�Ξ2
ι, l
�Ξι
1, j

h i
þ �D

�
m;

�W tð Þ�Ξι
1, j
�Ξ2
ι, l

h in o

þ U ∗
b j; l;mð Þ �Ξ2

ι, l;
�Ξι
1, j;

�Dm� �W tð Þ
h ih i

þ ½�Ξι
1, j; ½�Ξ

2
ι, l;

�Dm� �W tð Þ��
o
� i
2τb12d

∑
N

m¼1
∑
Nξ

j¼1
∑
Nξ

l¼1
Vb j;m; lð Þ

� �D
�
m
�W tð Þ�Ξ2

ιl;
�Ξι
1, j

h i
þ �D

�
m
�W tð Þ�Ξι

1, j;
�Ξ2
ι, l

h in o

þH:c:

(12)

Here for ωs ≃ωr, we have found the following integrals:

1
τb12d

¼ 4
3

� �2 ω3
s ωrð Þ3μι2μι1d23d31

2ℏ2c6
1

ω32 þ ω2
þ 1
ω31 þ ω1

� �
,

Vb j;m; lð Þ≃ c2 exp �iω2rml=c½ � � 1½ � exp iω1rjm=c
� �� 1

� �
ω1ω2rjmrml

,

Ub j;m; lð Þ ¼ exp �iω1rmj=c
� �

Vb j; l;mð Þ:

(13)

Here 1=τb12d is the three-particle cooperative emission rate of two atoms from Ξ
subsystems and one atom from D ensemble situated at the relatively small distance
rjl ≪ λs rð Þ. Vb j;m; lð Þ is the exchange integral which describes the influence of the m
atom from D ensemble on the single-photon transitions of the j and l radiators from
the Ξ subsystem. Ub j;m; lð Þ is the inverse process of the cooperative action of j and l
radiators from the Ξ ensemble on the two-photon transitions of m radiator from the
D subsystem.

Figure 2.
The real part of exchange integral Vb, defined in expression (14), is plotted as a function of relative distance
between radiators, X ¼ ω0r=c, and relative displacement, Δ ¼ ω1 � ω0ð Þ=ω0.
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For two atoms represented in Figure 1A, the simple exchange integral between
these radiators can be obtained from expression (13):

Vb ¼ λ1λ2 exp �2iπr=λ2ð Þ � 1½ � exp 2iπr=λ1ð Þ � 1½ �
2πrð Þ2 , (14)

where λ2 and λ1 are the emission wavelengths in cascade transition of the dipole-
active three radiators in Ξ configuration, situated at distance r. The real part of this
function describes the three-particle decay rate of the system. The dependence of
exchange integral (14) on the relative distance between the Ξ and D atoms (14),
X ¼ ω0r=c and the displacement, Δ ¼ ω1 � ω0ð Þ=ω0 relatively the degenerate
frequency ω0, is plotted in Figure 2. As follows from this dependence, the exchange
integral achieved the maximal radius, when ω1 ¼ ω2, which corresponds to the
situation Δ ¼ 0.

The part of master Equation (10) for resonance scattering interaction between
the absorbed and emitted photons by the dipole-active Λ and V subsystems and D
dipole-forbidden radiators can be obtained from the third-order expansion on the
smallest parameter λ. In this situation, the scattering part of the master equation
represented by the scheme 1 B becomes

d �W21s tð Þ
dt

¼ i
2τ s

sad
∑

m, j, l¼1
Us j;m; lð Þ½�V 1

ι, j;
�V
ι

2, l
�Dm�Ŵ tð Þ�

n

þU ∗
s j;m; lð Þ½�V ι

2, l;
�W tð Þ�V 1

ι, j
�Dm��

o

� i
2τssad

∑
m, j, l¼1

Vs j;m; lð Þ �D
�
m;

�V
ι

2, l
�W tð Þ�V 1

ι, j

h i

þH:c:,

(15)

Figure 3.
The real part of the scattering exchange integrals Vs, defined in expressions (17), is plotted as a function of
relative distance between radiators, X ¼ ω0r=c, and relative scattering frequency, ωs=ω0.
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where

1
τssad

¼ 4
3

� �2 μι2μι1d23d31ω3
s ωað Þ3

c6ℏ2
1

ω32 � ωs
þ 1
ω31 þ ωs

� �
,

Vs j;m:lð Þ ¼ exp �iωsrml=c½ � � 1ð Þ exp iωarmj=c
� �� 1

� �

ωsωa rml=cð Þ rmj=c
� � ,

Us j;m; lð Þ ¼ exp �iωsrml=c½ �Vs j;m:lð Þ:

(16)

First term in Eq. (15) describes the transition of D atom under the influence of
the scattering process of emitted photons of the atoms from V subsystem. This
process is described by exchange integral Vs j;m:lð Þ. The last two terms in master
Eq. (15) describe the scattering process of emitted photons by the V atoms under
the influence of D subsystem.

The similar expression is obtained for the interaction of Λ three-level radiator
with D atom represented in Figure 1C. In this case we must replace the operators of
V subsystem in expression (15) with corresponding transition operators of Λ system
�V
1
ι, j ! Λ̂

ι

1j: �V
ι

2, l ! �Λ
2
ι, l and their Hermit conjugated operators.

For the two atoms, expression (16) was reduced to the simple representation

Vs ¼ λsλa 1� exp �2iπr=λsð Þ½ � 1� exp 2iπr=λað Þ½ �
2πrð Þ2 : (17)

Here the wavelength λs (λa) corresponds to the emitted photons at Stokes or
anti-Stokes frequencies represented in Figure 1. The numerical representation of
the real part of the exchange integral (17) as the function of the relive distance
between the atoms X ¼ ω0r=c and the relative Stokes frequency ωs=ω0 is plotted in
the Figure 3. It is observing the nonsignificant dependence of this exchange integral
on the frequency ωs. The significant dependence on the detuning from resonance
can be observed in the dependence of cooperative rate 1=τssad represented in expres-
sions (16).

In this section we obtained the correlations between dipole-active and dipole-
forbidden subsystems of radiators, where the two-quantum exchange integral has
the same magnitude as the two-photon quantum interaction between atoms of D
subsystem. In the case of the big number of radiators in each subsystem, the
correlated terms, expressions (12) and (15), give the cubic contribution in the
cooperative diagrams of the kinetic equation ε21ε2NN2

ξ. When N ¼ Nξ these terms
can archived the value proportional to the Dicke super-radiance [1] even for the
same small parameters of each subsystem ε1 ¼ ε2. In this case the number of atoms
in each subsystem must achieve the value for which the third order has the same
magnitude as the second order ε2N2 � ε3N3. In conclusion we observe that the
decomposition on the small parameter ε can be regarded as a sum of single- and the
two-photon transition amplitudes proportional to ε1 and ε2, where ε1 � μ1ι; gk

� �
and

ε2 � qb k1; k2ð Þ or qs k1; k2ð Þ. Considering the situation when the two-photon ampli-
tude is smaller than the single-photon amplitude ε2 < ε1, we conclude that beginning
with the third-order term, the correlation diagrams (12) and (15), proportional to
ε21ε2, can play an important role in the two-quantum decay process even for the two-
atomic system consisted from one atom of each subsystems: D and Ξ (or D and V).
For example, in the situation when ε1 ¼ 0:7 and ε2 ¼ 0:25, the magnitude of two-
photon emission, ε22 ¼ 0:0625, becomes smaller than the cooperative magnitude
ε21ε2 ¼ 0:1225Þ. In other words we can find the condition for which we can neglect
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For two atoms represented in Figure 1A, the simple exchange integral between
these radiators can be obtained from expression (13):

Vb ¼ λ1λ2 exp �2iπr=λ2ð Þ � 1½ � exp 2iπr=λ1ð Þ � 1½ �
2πrð Þ2 , (14)

where λ2 and λ1 are the emission wavelengths in cascade transition of the dipole-
active three radiators in Ξ configuration, situated at distance r. The real part of this
function describes the three-particle decay rate of the system. The dependence of
exchange integral (14) on the relative distance between the Ξ and D atoms (14),
X ¼ ω0r=c and the displacement, Δ ¼ ω1 � ω0ð Þ=ω0 relatively the degenerate
frequency ω0, is plotted in Figure 2. As follows from this dependence, the exchange
integral achieved the maximal radius, when ω1 ¼ ω2, which corresponds to the
situation Δ ¼ 0.

The part of master Equation (10) for resonance scattering interaction between
the absorbed and emitted photons by the dipole-active Λ and V subsystems and D
dipole-forbidden radiators can be obtained from the third-order expansion on the
smallest parameter λ. In this situation, the scattering part of the master equation
represented by the scheme 1 B becomes

d �W21s tð Þ
dt

¼ i
2τ s

sad
∑

m, j, l¼1
Us j;m; lð Þ½�V 1

ι, j;
�V
ι

2, l
�Dm�Ŵ tð Þ�

n

þU ∗
s j;m; lð Þ½�V ι

2, l;
�W tð Þ�V 1

ι, j
�Dm��

o

� i
2τssad

∑
m, j, l¼1

Vs j;m; lð Þ �D
�
m;

�V
ι

2, l
�W tð Þ�V 1
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h i

þH:c:,

(15)

Figure 3.
The real part of the scattering exchange integrals Vs, defined in expressions (17), is plotted as a function of
relative distance between radiators, X ¼ ω0r=c, and relative scattering frequency, ωs=ω0.
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where

1
τssad

¼ 4
3

� �2 μι2μι1d23d31ω3
s ωað Þ3

c6ℏ2
1

ω32 � ωs
þ 1
ω31 þ ωs

� �
,

Vs j;m:lð Þ ¼ exp �iωsrml=c½ � � 1ð Þ exp iωarmj=c
� �� 1

� �

ωsωa rml=cð Þ rmj=c
� � ,

Us j;m; lð Þ ¼ exp �iωsrml=c½ �Vs j;m:lð Þ:

(16)

First term in Eq. (15) describes the transition of D atom under the influence of
the scattering process of emitted photons of the atoms from V subsystem. This
process is described by exchange integral Vs j;m:lð Þ. The last two terms in master
Eq. (15) describe the scattering process of emitted photons by the V atoms under
the influence of D subsystem.

The similar expression is obtained for the interaction of Λ three-level radiator
with D atom represented in Figure 1C. In this case we must replace the operators of
V subsystem in expression (15) with corresponding transition operators of Λ system
�V
1
ι, j ! Λ̂

ι

1j: �V
ι

2, l ! �Λ
2
ι, l and their Hermit conjugated operators.

For the two atoms, expression (16) was reduced to the simple representation

Vs ¼ λsλa 1� exp �2iπr=λsð Þ½ � 1� exp 2iπr=λað Þ½ �
2πrð Þ2 : (17)

Here the wavelength λs (λa) corresponds to the emitted photons at Stokes or
anti-Stokes frequencies represented in Figure 1. The numerical representation of
the real part of the exchange integral (17) as the function of the relive distance
between the atoms X ¼ ω0r=c and the relative Stokes frequency ωs=ω0 is plotted in
the Figure 3. It is observing the nonsignificant dependence of this exchange integral
on the frequency ωs. The significant dependence on the detuning from resonance
can be observed in the dependence of cooperative rate 1=τssad represented in expres-
sions (16).

In this section we obtained the correlations between dipole-active and dipole-
forbidden subsystems of radiators, where the two-quantum exchange integral has
the same magnitude as the two-photon quantum interaction between atoms of D
subsystem. In the case of the big number of radiators in each subsystem, the
correlated terms, expressions (12) and (15), give the cubic contribution in the
cooperative diagrams of the kinetic equation ε21ε2NN2

ξ. When N ¼ Nξ these terms
can archived the value proportional to the Dicke super-radiance [1] even for the
same small parameters of each subsystem ε1 ¼ ε2. In this case the number of atoms
in each subsystem must achieve the value for which the third order has the same
magnitude as the second order ε2N2 � ε3N3. In conclusion we observe that the
decomposition on the small parameter ε can be regarded as a sum of single- and the
two-photon transition amplitudes proportional to ε1 and ε2, where ε1 � μ1ι; gk

� �
and

ε2 � qb k1; k2ð Þ or qs k1; k2ð Þ. Considering the situation when the two-photon ampli-
tude is smaller than the single-photon amplitude ε2 < ε1, we conclude that beginning
with the third-order term, the correlation diagrams (12) and (15), proportional to
ε21ε2, can play an important role in the two-quantum decay process even for the two-
atomic system consisted from one atom of each subsystems: D and Ξ (or D and V).
For example, in the situation when ε1 ¼ 0:7 and ε2 ¼ 0:25, the magnitude of two-
photon emission, ε22 ¼ 0:0625, becomes smaller than the cooperative magnitude
ε21ε2 ¼ 0:1225Þ. In other words we can find the condition for which we can neglect
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the decay rate of two-photon emission of the D atom in comparison with the
cooperative effect described by expressions (12) and (15). This possibility to control
the two-photon decay process of D atom with the decay process of Ξ or V excited
three-level atom is given in the next section.

3. Two-photon energy transfer between the two three-level radiators

Master Eq. (10) can be used for the description of cooperative interaction
between the dipole-forbidden and dipole-active radiators in two-photon exchanges.
Indeed passing again from Schrodinger to Heisenberg pictures

Tr Ŵ tð ÞÔ 0ð Þ
h i

¼ Tr Ŵ 0ð ÞÔ tð Þ
h i

, we can obtain from this expression the equation

of the arbitrary atomic operator Ô tð Þ. Let us firstly discuss the nonlinear interaction
in which Ξ and D atoms enter in two-photon resonance as represented in Figure 1A.
Studying the cooperative interaction between the dipole-forbidden and dipole-
active radiators, the closed system of equations for the correlation functions can be
found in such approach. Considering that the numbers of atoms in the each
subsystem are relatively small, we can obtain the following generalized equation for
the arbitrary operator Ob:

d Ob tð Þh i
dt

¼ 1
2τι,1

∑
Nξ

l, j¼1
χ1 j; lð Þ Ξ̂ι

1, l tð Þ Ôb tð Þ; Ξ̂1
ι, j tð Þ

h iD E

þ 1
2τι,2

∑
Nξ

l, j¼1
χ2 j; lð Þ Ξ̂2

ι, l tð Þ Ôb tð Þ; Ξ̂ι
2, j tð Þ

h iD E

þ 1
2τd

∑
N

l, j¼1
χd j; lð Þ D̂

þ
l tð Þ Ôb tð Þ; D̂�

j tð Þ
h iD E

� i
4τb12d

∑
N

m¼1
∑
Nξ

l¼1
∑
Nξ

j¼1

(
Ub m; l; jð Þ½ Ξ̂2

ι, l tð ÞΞ̂ι
1, j tð Þ Ôb tð Þ; D̂�

m tð Þ
h iD E

þ Ξ̂ι
1j tð ÞΞ̂2

ιl tð Þ Ôb tð Þ; D̂�
m tð Þ

h iD E
� þU ∗

b j; l;mð Þ〈
(

Ôb tð Þ; Ξ̂ι
1, j tð Þ

h i
; Ξ̂

2

ι, l
tð Þ

� �

þ Ôb tð Þ; Ξ̂2
ι, l tð Þ

h i
; Ξ̂

ι

1, j
tð Þ

� �)
D̂�

m〉

)

� i
2τb12d

∑
N

m¼1
∑
Nξ

j¼1
∑
Nξ

l¼1
Vb j;m; lð Þ 〈Ξ̂ι

1, j tð Þ½Ξ̂2
ι, l tð Þ; Ôb tð Þ�D̂�

m tð Þ〉
n

þ〈Ξ̂2
ι, l tð Þ½Ξ̂ι

1, j tð Þ; Ôb tð Þ�D̂�
m tð Þ〉

o
þH:c:

(18)

In order to simplify this problem, we analyze below the situation in which we
have only a single atom in each subsystem. In this case we can replace the operator
Ob with the excitation numbers operators N̂α ¼ Ξ̂α

α tð Þ and N̂d ¼ D̂z þ 0:5 of Ξ and
D atoms, respectively. Here α ¼ 1, 2 and ι. When emission frequencies of the one-
photon radiators coincide with ω1 ≃ω2 ≃ω0, the dependence (14) becomes real and
positive defined function Ξ and D radiators. Here exp iω0r=c½ � � 1½ � exp �iω0r=c½ �½
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�1 ¼ 2 1� cos ω0r=cð Þ½ �. According to this expression, the exchange integrals
become

Vb
12d ¼

2ð1� cos 2πr=λ0ð Þ
2πr=λ0ð Þ2 , Ub

12d ¼ exp �iω0r=c½ �Vsrd:

In this case one can introduce the expression exchange rate 1=τbsrd as a function of
the distance between the dipole-active and dipole-forbidden subsystems:

1
τb12d rð Þ ¼

1
τbsrd

2ð1� cos 2πr=λsð Þ
2πr=λsð Þ2 , (19)

where λ0 ¼ c= 2πω0½ �. Taking into account the above definitions and introducing
the correlation functions between the polarizations of Ξ and D atoms F̂b t; rð Þ� �

¼ i Ξ̂2
1 tð ÞD̂�

tð Þ
D E

� D̂
þ
tð ÞΞ̂1

2 tð Þ
D Eh i

and Êb t; xð Þ� � ¼ Ξ̂2
1 tð ÞD̂�

tð Þ
D E

þ D̂
þ
tð ÞΞ̂1

2 tð Þ
D E

,

we obtain the closed system of equations from expression (18):

d
dt

N̂2 t; xð Þ� � ¼ � N̂2 tð Þ� �
τι,2

� 1
4τb12d xð Þ cos xð Þ F̂b t; xð Þ� �� sin xð Þ Ê t; xð Þ� �� �

,

d
dt

N̂ ι t; xð Þ� � ¼ N̂2 t; xð Þ� �
τι,2

� N̂ ι t; xð Þ� �
τι,1

þ 1
2τb12d xð Þ ½ cos xð Þ F̂b t; xð Þ� �

� sin xð Þ Ê t; xð Þ� �� þ F̂b t; xð Þ� �

2τb12d xð Þ ,

d
dt

N̂1 t; xð Þ� � ¼ N̂ ι tð Þ
� �
τι,1

� 1
4τb12d xð Þ cos xð Þ F̂b t; xð Þ� �� sin xð Þ Êb t; xð Þ� �� �

� 1
2τb12d xð Þ F̂b t; xð Þ� �

;

d
dt

N̂d t; xð Þ� � ¼ � N̂d t; xð Þ� �
τd

þ 1
4τb12d xð Þ cos xð Þ F̂b t; xð Þ� �þ sin xð Þ Êb t; xð Þ� �� �

,

d
dt

F̂b t; xð Þ� � ¼ � F̂b t; xð Þ� �
2

1
τd

þ 1
τι,2

� �

� 1
2τb12d xð Þ f cos xð Þ 2 N̂2 t; xð ÞN̂d tð Þ� �� N2 t; xð Þh i�

� N̂d tð Þ N̂ i tð Þ � N̂2 tð Þ� �� �þ 〈N̂d tð Þð1� N̂2 tð Þ � 2N̂ i tð Þ〉�
� 2 N̂d tð ÞN̂ i tð Þ
� �þ 2 N̂d tð ÞN̂2 tð Þ� �g;

d Êb t; xð Þ� �
dt

¼ Êb t; xð Þ� �
2

1
τd

þ 1
τι,2

� �
� 1
2τb12d xð Þ sin xð Þ½2 N̂2 tð ÞN̂d tð Þ� �

� N̂2 tð Þ� �þ N̂d tð Þ N̂ i tð Þ � N̂2 tð Þ� �� �

� N̂d tð Þ 1� N̂2 tð Þ � 2N̂ i tð Þ
� �� ��;

d
dt

N̂2 tð ÞN̂d tð Þ� � ¼ � N̂2 tð ÞN̂d tð Þ� � 1
τι,2

þ 1
τd

� �
,

d
dt

N̂ ι tð ÞN̂d tð Þ� � ¼ N̂2 tð ÞN̂d tð Þ� �
τι,2

� N̂ ι tð ÞN̂d tð Þ� � 1
τι,1

þ 1
τd

� �
:

(20)
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the decay rate of two-photon emission of the D atom in comparison with the
cooperative effect described by expressions (12) and (15). This possibility to control
the two-photon decay process of D atom with the decay process of Ξ or V excited
three-level atom is given in the next section.

3. Two-photon energy transfer between the two three-level radiators

Master Eq. (10) can be used for the description of cooperative interaction
between the dipole-forbidden and dipole-active radiators in two-photon exchanges.
Indeed passing again from Schrodinger to Heisenberg pictures

Tr Ŵ tð ÞÔ 0ð Þ
h i

¼ Tr Ŵ 0ð ÞÔ tð Þ
h i

, we can obtain from this expression the equation

of the arbitrary atomic operator Ô tð Þ. Let us firstly discuss the nonlinear interaction
in which Ξ and D atoms enter in two-photon resonance as represented in Figure 1A.
Studying the cooperative interaction between the dipole-forbidden and dipole-
active radiators, the closed system of equations for the correlation functions can be
found in such approach. Considering that the numbers of atoms in the each
subsystem are relatively small, we can obtain the following generalized equation for
the arbitrary operator Ob:

d Ob tð Þh i
dt

¼ 1
2τι,1

∑
Nξ

l, j¼1
χ1 j; lð Þ Ξ̂ι

1, l tð Þ Ôb tð Þ; Ξ̂1
ι, j tð Þ

h iD E

þ 1
2τι,2

∑
Nξ

l, j¼1
χ2 j; lð Þ Ξ̂2

ι, l tð Þ Ôb tð Þ; Ξ̂ι
2, j tð Þ

h iD E

þ 1
2τd

∑
N

l, j¼1
χd j; lð Þ D̂

þ
l tð Þ Ôb tð Þ; D̂�

j tð Þ
h iD E

� i
4τb12d

∑
N

m¼1
∑
Nξ

l¼1
∑
Nξ

j¼1

(
Ub m; l; jð Þ½ Ξ̂2

ι, l tð ÞΞ̂ι
1, j tð Þ Ôb tð Þ; D̂�

m tð Þ
h iD E

þ Ξ̂ι
1j tð ÞΞ̂2

ιl tð Þ Ôb tð Þ; D̂�
m tð Þ

h iD E
� þU ∗

b j; l;mð Þ〈
(

Ôb tð Þ; Ξ̂ι
1, j tð Þ

h i
; Ξ̂

2

ι, l
tð Þ

� �

þ Ôb tð Þ; Ξ̂2
ι, l tð Þ

h i
; Ξ̂

ι

1, j
tð Þ

� �)
D̂�

m〉

)

� i
2τb12d

∑
N

m¼1
∑
Nξ

j¼1
∑
Nξ

l¼1
Vb j;m; lð Þ 〈Ξ̂ι

1, j tð Þ½Ξ̂2
ι, l tð Þ; Ôb tð Þ�D̂�

m tð Þ〉
n

þ〈Ξ̂2
ι, l tð Þ½Ξ̂ι

1, j tð Þ; Ôb tð Þ�D̂�
m tð Þ〉

o
þH:c:

(18)

In order to simplify this problem, we analyze below the situation in which we
have only a single atom in each subsystem. In this case we can replace the operator
Ob with the excitation numbers operators N̂α ¼ Ξ̂α

α tð Þ and N̂d ¼ D̂z þ 0:5 of Ξ and
D atoms, respectively. Here α ¼ 1, 2 and ι. When emission frequencies of the one-
photon radiators coincide with ω1 ≃ω2 ≃ω0, the dependence (14) becomes real and
positive defined function Ξ and D radiators. Here exp iω0r=c½ � � 1½ � exp �iω0r=c½ �½
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�1 ¼ 2 1� cos ω0r=cð Þ½ �. According to this expression, the exchange integrals
become

Vb
12d ¼

2ð1� cos 2πr=λ0ð Þ
2πr=λ0ð Þ2 , Ub

12d ¼ exp �iω0r=c½ �Vsrd:

In this case one can introduce the expression exchange rate 1=τbsrd as a function of
the distance between the dipole-active and dipole-forbidden subsystems:

1
τb12d rð Þ ¼

1
τbsrd

2ð1� cos 2πr=λsð Þ
2πr=λsð Þ2 , (19)

where λ0 ¼ c= 2πω0½ �. Taking into account the above definitions and introducing
the correlation functions between the polarizations of Ξ and D atoms F̂b t; rð Þ� �

¼ i Ξ̂2
1 tð ÞD̂�

tð Þ
D E

� D̂
þ
tð ÞΞ̂1

2 tð Þ
D Eh i

and Êb t; xð Þ� � ¼ Ξ̂2
1 tð ÞD̂�

tð Þ
D E

þ D̂
þ
tð ÞΞ̂1

2 tð Þ
D E

,

we obtain the closed system of equations from expression (18):

d
dt

N̂2 t; xð Þ� � ¼ � N̂2 tð Þ� �
τι,2

� 1
4τb12d xð Þ cos xð Þ F̂b t; xð Þ� �� sin xð Þ Ê t; xð Þ� �� �

,

d
dt

N̂ ι t; xð Þ� � ¼ N̂2 t; xð Þ� �
τι,2

� N̂ ι t; xð Þ� �
τι,1

þ 1
2τb12d xð Þ ½ cos xð Þ F̂b t; xð Þ� �

� sin xð Þ Ê t; xð Þ� �� þ F̂b t; xð Þ� �

2τb12d xð Þ ,

d
dt

N̂1 t; xð Þ� � ¼ N̂ ι tð Þ
� �
τι,1

� 1
4τb12d xð Þ cos xð Þ F̂b t; xð Þ� �� sin xð Þ Êb t; xð Þ� �� �

� 1
2τb12d xð Þ F̂b t; xð Þ� �

;

d
dt

N̂d t; xð Þ� � ¼ � N̂d t; xð Þ� �
τd

þ 1
4τb12d xð Þ cos xð Þ F̂b t; xð Þ� �þ sin xð Þ Êb t; xð Þ� �� �

,

d
dt

F̂b t; xð Þ� � ¼ � F̂b t; xð Þ� �
2

1
τd

þ 1
τι,2

� �

� 1
2τb12d xð Þ f cos xð Þ 2 N̂2 t; xð ÞN̂d tð Þ� �� N2 t; xð Þh i�

� N̂d tð Þ N̂ i tð Þ � N̂2 tð Þ� �� �þ 〈N̂d tð Þð1� N̂2 tð Þ � 2N̂ i tð Þ〉�
� 2 N̂d tð ÞN̂ i tð Þ
� �þ 2 N̂d tð ÞN̂2 tð Þ� �g;

d Êb t; xð Þ� �
dt

¼ Êb t; xð Þ� �
2

1
τd

þ 1
τι,2

� �
� 1
2τb12d xð Þ sin xð Þ½2 N̂2 tð ÞN̂d tð Þ� �

� N̂2 tð Þ� �þ N̂d tð Þ N̂ i tð Þ � N̂2 tð Þ� �� �

� N̂d tð Þ 1� N̂2 tð Þ � 2N̂ i tð Þ
� �� ��;

d
dt

N̂2 tð ÞN̂d tð Þ� � ¼ � N̂2 tð ÞN̂d tð Þ� � 1
τι,2

þ 1
τd

� �
,

d
dt

N̂ ι tð ÞN̂d tð Þ� � ¼ N̂2 tð ÞN̂d tð Þ� �
τι,2

� N̂ ι tð ÞN̂d tð Þ� � 1
τι,1

þ 1
τd

� �
:

(20)
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Using this system of Eq. (20), we can numerically study the cooperative
nonlinear exchanges through the vacuum field between the Ξ and D radiators
situated at relative distance x. One can observe that the spontaneous generation of
photon pair by the D atom is drastically modified by the time increase of the
cooperative correlation between the radiators. Indeed considering that the decay
rate of the D atom 1=τd is smaller than similar rates of the cascade transition in the Ξ
atom (τd=τξ, i ≃ 6; τd= 4τ12dð Þ ¼ 2), we can numerically represent this dependence as
a function of the relative time, t=τd, and the relative distance between the radiators,
x ¼ 2πr=λ0. As shown in Figure 4A, the decay rate of D atom is drastically modified
at small distances between the radiators which is in accordance with the analytic
expressions (19). Considering that both atoms Ξ and D are prepared in the excited
state, we observe the significant enhancement of the two-photon emission rate of
the D radiator under the influence of the Ξ decay process.

Let us simplify the system of Eq. (20) in order to solve it exactly. Indeed, when
dipole-active Ξ atom is situated at small distance relative to the D radiator (x≪ 1),
the system of Eq. (20) is drastically simplified:

d
dt

N̂2 tð Þ� � ¼ � N̂2 tð Þ� �
τι,2

� F̂b tð Þ� �

4τb12d
,

d
dt

N̂d tð Þ� � ¼ � N̂d tð Þ� �
τd

þ 1
4τb12d

F̂b tð Þ� �
,

d
dt

F̂b tð Þ� � ¼ � F̂b tð Þ� �
2

1
τd

þ 1
τι,2

� �

� 1
2τb12d

½4 N̂2 tð ÞN̂d tð Þ� �þ N̂d tð Þ� �

� N̂2 tð Þ� �� 5 N̂dN̂ i
� ��,

d
dt

N̂2 tð ÞN̂d tð Þ� � ¼ � N̂2 tð ÞN̂d tð Þ� � 1
τι,2

þ 1
τd

� �
,

d
dt

N̂ ι tð ÞN̂d tð Þ� � ¼ N̂2 tð ÞN̂d tð Þ� �
τι,2

� N̂ ι tð ÞN̂d tð Þ� � 1
τι,1

þ 1
τd

� �
:

(21)

The exact solution of this linear system of equation can be represented through
solution of characteristic equation Yα ¼ ∑5

j¼1C
j
α exp Θjt

� �
, where α ¼ 1; 2; 3; 4; 5 and

Yαf g are the atomic functions, Y1 tð Þ ¼ N̂d tð Þ� �
, Y2 tð Þ ¼ N̂2 tð Þ� �

, Y3 tð Þ ¼ F̂b tð Þ� �
,

Y4 tð Þ ¼ N̂2 tð ÞN̂d tð Þ� ��
, and Y5 tð Þ ¼ N̂ ι tð ÞN̂d tð Þ� ��

; the solution of characteristic
equation is

Θ1 ¼ � 1
τ2

þ 1
τd

� �
; Θ2 ¼ � 1

τ1
þ 1
τd

� �
; Θ3 ¼ � 1

2
1
τd

þ 1
τι,2

� �
;

Θ4,5 ¼ � 1
2

1
τι,2

þ 1
τd

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
τd

� 1
τι,2

� �2

� 1
τ212b

s8<
:

9=
;:

(22)

The coefficients Cj
α

� �
are determined from the initial conditions. As follows

from the numerical estimation plotted in Figure 4B and solutions of characteristic
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in Eq. (22), the oscillatory decay of the atomic inversion is possible, when
1=τd ¼ 1=τι,2. In this case the solutions Θ4,5 become complex. We observe such an
oscillation of the atoms inversion of Ξ radiator prepared initially in the excited state.
In this process the rate of energy transfer from Ξ to D atoms represented in
Figure 4B has the oscillator behavior. In the case of the excitation of D, the
coupling between the radiators becomes more effective, when the virtual level of

Figure 4.
(A) The decay rate �d Nd=dth i of the dipole-forbidden transitions of the D radiator under the influence of Ξ
three-level radiator. This solution of Eq. (21) is plotted as function of t=τd and relative distance between the
radiators x ¼ ω1r=c, for the following parameters of the system: N1h i ¼ Nιh i ¼ 0:, N2h i ¼ 1:, Ndh i ¼ 1,
τd=τ1 ¼ τd=τ2 ¼ 6, and τd= 4τ12dð Þ ¼ 2. (B) The decay process of excited state ∣2i of three-level system (thick
line) and the transfer of the excitation from the Ξ radiator to D atom (dashed line) in the process of cascade
emission of Ξ atom situated at relative distance x < < 1 for the same parameters of the system and excitation
conditions: N1h i ¼ Nιh i ¼ 0, N2h i ¼ 1:, and Ndh i ¼ 0.
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Using this system of Eq. (20), we can numerically study the cooperative
nonlinear exchanges through the vacuum field between the Ξ and D radiators
situated at relative distance x. One can observe that the spontaneous generation of
photon pair by the D atom is drastically modified by the time increase of the
cooperative correlation between the radiators. Indeed considering that the decay
rate of the D atom 1=τd is smaller than similar rates of the cascade transition in the Ξ
atom (τd=τξ, i ≃ 6; τd= 4τ12dð Þ ¼ 2), we can numerically represent this dependence as
a function of the relative time, t=τd, and the relative distance between the radiators,
x ¼ 2πr=λ0. As shown in Figure 4A, the decay rate of D atom is drastically modified
at small distances between the radiators which is in accordance with the analytic
expressions (19). Considering that both atoms Ξ and D are prepared in the excited
state, we observe the significant enhancement of the two-photon emission rate of
the D radiator under the influence of the Ξ decay process.

Let us simplify the system of Eq. (20) in order to solve it exactly. Indeed, when
dipole-active Ξ atom is situated at small distance relative to the D radiator (x≪ 1),
the system of Eq. (20) is drastically simplified:

d
dt

N̂2 tð Þ� � ¼ � N̂2 tð Þ� �
τι,2

� F̂b tð Þ� �

4τb12d
,

d
dt

N̂d tð Þ� � ¼ � N̂d tð Þ� �
τd

þ 1
4τb12d

F̂b tð Þ� �
,

d
dt

F̂b tð Þ� � ¼ � F̂b tð Þ� �
2

1
τd

þ 1
τι,2

� �

� 1
2τb12d

½4 N̂2 tð ÞN̂d tð Þ� �þ N̂d tð Þ� �

� N̂2 tð Þ� �� 5 N̂dN̂ i
� ��,

d
dt

N̂2 tð ÞN̂d tð Þ� � ¼ � N̂2 tð ÞN̂d tð Þ� � 1
τι,2

þ 1
τd

� �
,

d
dt

N̂ ι tð ÞN̂d tð Þ� � ¼ N̂2 tð ÞN̂d tð Þ� �
τι,2

� N̂ ι tð ÞN̂d tð Þ� � 1
τι,1

þ 1
τd

� �
:

(21)

The exact solution of this linear system of equation can be represented through
solution of characteristic equation Yα ¼ ∑5

j¼1C
j
α exp Θjt

� �
, where α ¼ 1; 2; 3; 4; 5 and

Yαf g are the atomic functions, Y1 tð Þ ¼ N̂d tð Þ� �
, Y2 tð Þ ¼ N̂2 tð Þ� �

, Y3 tð Þ ¼ F̂b tð Þ� �
,

Y4 tð Þ ¼ N̂2 tð ÞN̂d tð Þ� ��
, and Y5 tð Þ ¼ N̂ ι tð ÞN̂d tð Þ� ��

; the solution of characteristic
equation is

Θ1 ¼ � 1
τ2

þ 1
τd

� �
; Θ2 ¼ � 1

τ1
þ 1
τd

� �
; Θ3 ¼ � 1

2
1
τd

þ 1
τι,2

� �
;

Θ4,5 ¼ � 1
2

1
τι,2

þ 1
τd

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
τd

� 1
τι,2

� �2

� 1
τ212b

s8<
:

9=
;:

(22)

The coefficients Cj
α

� �
are determined from the initial conditions. As follows

from the numerical estimation plotted in Figure 4B and solutions of characteristic
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in Eq. (22), the oscillatory decay of the atomic inversion is possible, when
1=τd ¼ 1=τι,2. In this case the solutions Θ4,5 become complex. We observe such an
oscillation of the atoms inversion of Ξ radiator prepared initially in the excited state.
In this process the rate of energy transfer from Ξ to D atoms represented in
Figure 4B has the oscillator behavior. In the case of the excitation of D, the
coupling between the radiators becomes more effective, when the virtual level of

Figure 4.
(A) The decay rate �d Nd=dth i of the dipole-forbidden transitions of the D radiator under the influence of Ξ
three-level radiator. This solution of Eq. (21) is plotted as function of t=τd and relative distance between the
radiators x ¼ ω1r=c, for the following parameters of the system: N1h i ¼ Nιh i ¼ 0:, N2h i ¼ 1:, Ndh i ¼ 1,
τd=τ1 ¼ τd=τ2 ¼ 6, and τd= 4τ12dð Þ ¼ 2. (B) The decay process of excited state ∣2i of three-level system (thick
line) and the transfer of the excitation from the Ξ radiator to D atom (dashed line) in the process of cascade
emission of Ξ atom situated at relative distance x < < 1 for the same parameters of the system and excitation
conditions: N1h i ¼ Nιh i ¼ 0, N2h i ¼ 1:, and Ndh i ¼ 0.
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the D atom is situated between the excited and ground states (see Figure 4B). As
the virtual states of the D radiator is off from the resonance with the dipole-active
transitions of the Ξ radiators, the excitation of D atom takes place only with the
absorption of both emitted photons by the Ξ atom. The cooperative effects
between the Ξ and D radiators are described by second-order correlation

function G2 ¼ Ê
�
tð ÞÊ�

tð ÞÊþ
tð ÞÊþ

tð Þ
D E

¼ G0
2 þ α F̂b tð Þ� �

. Here G0
2 was derived in

Ref. [5]. The contribution to the second-order correlation function remains
larger than the square value of the first-order correlation function
G1 ¼ E� tð ÞEþ tð Þh i, so that we can conclude that new cooperative effects
between single- and two-photon transitions of D and Ξ subsystems play an
important role in the two-photon decay process. Let us now return to the V
three-level system in scattering interaction with the D system as this is
represented in Figure 1B. In accordance with master Eq. (10) and its analytic
representation (15), we can obtain the following expression for arbitrary atomic
operators Ôs tð Þ.

d Ôs tð Þ
D E

dt
¼ 1

2τι,1
∑
Nv

l, j¼1
χa j; lð Þ V̂

1
ι, l tð Þ Ô

sð Þ
tð Þ; V̂ ι

1, j tð Þ
h iD E

þ 1
2τι,2

∑
Nv

l, j¼1
χs j; lð Þ V̂

2
ι, l tð Þ Ô

sð Þ
tð Þ; V̂ ι

2, j tð Þ
h iD E

þ 1
2τd

∑
N

l, j¼1
χd j; lð Þ D̂

þ
l tð Þ Ô

sð Þ
tð Þ; D̂�

j tð Þ
h iD E

� i
2τssad

∑
N

m¼1
∑
Nv

j¼1
∑
Nv

l¼1
Vs j;m; lð Þ V̂

1
ι, j tð Þ Ô

sð Þ
tð Þ; D̂�

m tð Þ
h i

V̂ ι
2, l tð Þ

D E

þ i
2τssad

∑
m, j, l¼1

Us j;m; lð Þ〈½Ô sð Þ
tð Þ; V̂ 1

ι, j tð Þ�V̂ ι
2l tð ÞD̂�

m tð Þ〉
n

þU ∗
s j;m; lð Þ〈V̂ 1

ι, j tð ÞD̂�
m tð Þ½Ô sð Þ

tð Þ; V̂ ι
2, l tð Þ�〉

o
þH:c:

(23)

The similar expression can be obtained for a Λ three-level system in interaction
with D radiators, doing the substitution V̂ β

α, j ! Λα
βj. For two atoms in each

subsystem, an attractive peculiarity follows from this substitution. If Os tð Þ is the
inversion of the D atom, the direct modification of the D atomic excitation by Λ
three-level atom is equal to zero Λ̂

ι
1, l tð ÞΛ̂2

ι, l tð Þ N̂d tð Þ; D̂�
m tð Þ� �D E

¼ 0 due to the oper-

ator product Λ̂ι
1, l tð ÞΛ̂2

ι, l tð Þ ¼ 0 for the same atom. In order to obtain the closed
system of equation from master Eqs. (15)and (23), we consider the simple interac-
tion of two atoms in the scattering process represented by the analytical scheme of
Figure 1B. In this case we introduce the new indexes }s} and }a} instead of }1} and
}2}, which correspond to the Stokes and anti-Stokes scattering frequencies ωs and
ωa. Considering that the anti-Stokes frequency ωa is larger than Stokes ωs, one can
approximate the exchange integrals (17) with expression

Vs ≃
sin xað Þ

xa
þ i

1� cos xað Þ
xa

: (24)

Here xa ¼ ωar=c. The mean values of the operators N̂s
� � ¼ V̂

2
2

D E
, N̂a
� � ¼ V̂

1
1

D E
,

and N̂d
� �

are considered the populations of excited states of V and D radiators,
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respectively. The functions F̂ s t; xað Þ� � ¼ i V̂
1
2 tð ÞD̂�

tð Þ
D E

� D̂
þ
V̂ 2

1 tð Þ
D Eh i

,

Ês t; xað Þ� � ¼ V̂
1
2 tð ÞD̂�

tð Þ
D E

� D̂
þ
tð ÞV̂ 2

1 tð Þ
D Eh i

, N̂dN̂ s
� �

, and N̂dN̂a
� �

describe the

polarization and population correlations between the atoms Ξ and D. For this
two-atom system, we can obtain the following closed system of equations from
generalized equation (23).

Figure 5.
The decay process of the dipole-forbidden transitions of the D radiator under the influence of V three-level
radiator for following parameter atom for following parameters of the system, Nah i ¼ 0:5, Nsh i ¼ 0:5,
Ndh i ¼ 1, τa=τd ¼ 0:1, τa=τs ¼ 6, and τa=τasd, (A) represents the decay rate�d Nd=dth i and (B) represents the
excitation of the D atom plotted as the numerical solution of the system of Eq. (25) as function of t=τaÞ and
relative distance xa ¼ 2πr=λa in the three-dimensional representation.
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the D atom is situated between the excited and ground states (see Figure 4B). As
the virtual states of the D radiator is off from the resonance with the dipole-active
transitions of the Ξ radiators, the excitation of D atom takes place only with the
absorption of both emitted photons by the Ξ atom. The cooperative effects
between the Ξ and D radiators are described by second-order correlation

function G2 ¼ Ê
�
tð ÞÊ�

tð ÞÊþ
tð ÞÊþ

tð Þ
D E

¼ G0
2 þ α F̂b tð Þ� �

. Here G0
2 was derived in

Ref. [5]. The contribution to the second-order correlation function remains
larger than the square value of the first-order correlation function
G1 ¼ E� tð ÞEþ tð Þh i, so that we can conclude that new cooperative effects
between single- and two-photon transitions of D and Ξ subsystems play an
important role in the two-photon decay process. Let us now return to the V
three-level system in scattering interaction with the D system as this is
represented in Figure 1B. In accordance with master Eq. (10) and its analytic
representation (15), we can obtain the following expression for arbitrary atomic
operators Ôs tð Þ.

d Ôs tð Þ
D E

dt
¼ 1

2τι,1
∑
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l, j¼1
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N
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þ
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h iD E
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m tð Þ½Ô sð Þ
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o
þH:c:

(23)

The similar expression can be obtained for a Λ three-level system in interaction
with D radiators, doing the substitution V̂ β

α, j ! Λα
βj. For two atoms in each

subsystem, an attractive peculiarity follows from this substitution. If Os tð Þ is the
inversion of the D atom, the direct modification of the D atomic excitation by Λ
three-level atom is equal to zero Λ̂

ι
1, l tð ÞΛ̂2

ι, l tð Þ N̂d tð Þ; D̂�
m tð Þ� �D E

¼ 0 due to the oper-

ator product Λ̂ι
1, l tð ÞΛ̂2

ι, l tð Þ ¼ 0 for the same atom. In order to obtain the closed
system of equation from master Eqs. (15)and (23), we consider the simple interac-
tion of two atoms in the scattering process represented by the analytical scheme of
Figure 1B. In this case we introduce the new indexes }s} and }a} instead of }1} and
}2}, which correspond to the Stokes and anti-Stokes scattering frequencies ωs and
ωa. Considering that the anti-Stokes frequency ωa is larger than Stokes ωs, one can
approximate the exchange integrals (17) with expression

Vs ≃
sin xað Þ

xa
þ i

1� cos xað Þ
xa

: (24)

Here xa ¼ ωar=c. The mean values of the operators N̂s
� � ¼ V̂

2
2

D E
, N̂a
� � ¼ V̂

1
1

D E
,

and N̂d
� �

are considered the populations of excited states of V and D radiators,
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respectively. The functions F̂ s t; xað Þ� � ¼ i V̂
1
2 tð ÞD̂�

tð Þ
D E

� D̂
þ
V̂ 2

1 tð Þ
D Eh i

,

Ês t; xað Þ� � ¼ V̂
1
2 tð ÞD̂�

tð Þ
D E

� D̂
þ
tð ÞV̂ 2

1 tð Þ
D Eh i

, N̂dN̂ s
� �

, and N̂dN̂a
� �

describe the

polarization and population correlations between the atoms Ξ and D. For this
two-atom system, we can obtain the following closed system of equations from
generalized equation (23).

Figure 5.
The decay process of the dipole-forbidden transitions of the D radiator under the influence of V three-level
radiator for following parameter atom for following parameters of the system, Nah i ¼ 0:5, Nsh i ¼ 0:5,
Ndh i ¼ 1, τa=τd ¼ 0:1, τa=τs ¼ 6, and τa=τasd, (A) represents the decay rate�d Nd=dth i and (B) represents the
excitation of the D atom plotted as the numerical solution of the system of Eq. (25) as function of t=τaÞ and
relative distance xa ¼ 2πr=λa in the three-dimensional representation.
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〈Êsðt; xaÞ〉
� �

,

d
dt

N̂ s t; xað Þ� � ¼ � 1
τι, s

N̂ s t; xað Þ� �

� 1
2τssad

sin xað Þ
xa

F̂s t; xað Þ� �þ 1� cos xað Þ
xa
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,
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τd
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� �

,

d
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2

1
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τι, s

þ 1
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� �
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τssad

sin xað Þ
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N̂d t; xað ÞN̂ s t; xað Þ� �� 1� N̂d t; xað Þ� �
N̂a t; xað Þ� �� �

,

d
dt

Ês t; xað Þ� � ¼ � 1
2

1
τd

þ 1
τι, s

þ 1
τι,a

� �
Ês t; xað Þ� �

� 1� cos xað Þ
xaτssad

N̂d t; xað ÞN̂s t; xað Þ� �þ 1� N̂d t; xað Þ� �
N̂a t; xað Þ� �� �

d
dt

N̂d t; xað ÞN̂s t; xað Þ� � ¼ � 1
τd

þ 1
τι, s

� �
N̂d t; xað ÞN̂ s t; xað Þ� �

� 1
2τssad

sin xað Þ
xa

F̂s t; xað Þ� �þ 1� cos xað Þ
xa

〈Êsðt; xaÞ〉
� �

,

d
dt

N̂d t; xað ÞN̂a t; xað Þ� � ¼ � 1
τd

þ 1
τιa

� �
N̂d t; xað ÞN̂a t; xað Þ� �

:

(25)

As follows from the system (25), and numerical simulation plotted in Figure 5
the first N̂d

� �
=τd and second terms 1=τssad

� �
F̂ s
� �

describe the generation rate of
entangled photon pairs and scattering rate with absorption of Stokes photon and
generation of two anti-Stokes photons by the system formed from V and D atoms.
When the time tends to infinity, all excited atomic energies E0 ¼ ℏωa þ ℏωs þ ℏωd
of three-level V and two-level D atoms are emitted by the system. Taking into
account the conservation law in the scattering process ωa � ωs � ωd ¼ 0, we observe
that this cooperation between the atoms becomes predominant, when the collective
scattering rate 1=τssad increases. In other words, the probability of absorption of
Stokes photon ℏωs which is accompanied with the generation of the new anti-Stokes
photon ℏωa by D atom becomes possible. In this case two atoms represented in the
Figure 1B can generate an entangled anti-Stokes photons with energy E0 ¼ 2ℏωa.
The possibility of the excitation transfer between the atoms Ξ and D represented in
Figure 4B can be found in the special preparation of the system.
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We can conclude that it is possible to study all cooperations two-photon process
between single atoms in each system represented in Figure 1A–C. For example, the
system of Eqs. (20) and (25) can be solved simultaneously taking into consideration
scattering and two-photon transitions. In this case the effective energy transfer of
the excitation between the atoms Ξ, V, and D radiator prepared in the special initial
states can open the new possibilities of non-resonance interaction between the
atomic subsystems.

4. Conclusions

This chapter proposed the cooperative effects between three-level system and
dipole-forbidden two-level systems in nonlinear interaction through the vacuum
field during the spontaneous emission time. The possibility of cooperative migra-
tion of energy from one excited dipole-active three-level atom to another takes
place with phase retardation effects and depends on the position of atoms in the
system. This excitation transfer from dipole-active to dipole-forbidden subsystems
takes place with phase dependence amplitudes, so that the cooperative excitation of
the system consisted from two species of atoms depends on the retardation of
radiation along the sample and geometry of the system. This follows from the
excited or ground state of one of the radiators represented in Figures 4 and 5. As in
Ref. [20], the exchanges between the Ξ (or V) three-level atom and D take place
with the absorption and emission of two quanta, but in this chapter, we take into
consideration the real and imaginary parts of exchange integrals. In this case, two
correlation functions introduced functions F̂b sð Þ t; xað Þ� �

and Êb sð Þ t; xað Þ� �
, which

modify the dynamics of possible excitation of D atoms by Ξ and V radiators. The
scattering transfer of the energy between the excited state of V three-level radiator
and dipole-forbidden transitions of D two-level atoms are effective when the
dipole-forbidden atom enters in the two-photon resonance with the energy differ-
ence between the two dipole transitions (Figures 1A and 5A). When the atom D is
in the excited state, the emitted Stokes photon by one atom of the V systems can be
absorbed by another radiator from the D subsystem, so that two radiators pass into
the ground state generating two anti-Stokes photons with energies E0 ¼ 2ℏωa. The
opposite situation can be observed when D atom is prepared in the ground state.
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Chapter 3

Processes of Creation and
Propagation of Correlations in
Large Quantum Particle System
Viktor I. Gerasimenko

Abstract

We review new approaches to the description of the evolution of states of large
quantum particle systems by means of the marginal correlation operators. Using the
definition of marginal correlation operators within the framework of dynamics of
correlations governed by the von Neumann hierarchy, we establish that a sequence
of such operators is governed by the nonlinear quantum BBGKY hierarchy. The
constructed nonperturbative solution of the Cauchy problem to this hierarchy of
nonlinear evolution equations describes the processes of the creation and the prop-
agation of correlations in large quantum particle systems. Furthermore, we consider
the problem of the rigorous description of collective behavior of quantum many-
particle systems by means of a one-particle (marginal) correlation operator that is a
solution of the generalized quantum kinetic equation with initial correlations, in
particular, correlations characterizing the condensed states of systems.

Keywords: von Neumann hierarchy, nonlinear quantum BBGKY hierarchy,
quantum kinetic equation, correlation of states, scaling limit
2000 Mathematics Subject Classification: 35Q40; 47D06

1. Introduction

In this chapter, we consider mathematical problems concerning the description
of processes of a creation and a propagation of correlations in quantum many-
particle systems, namely, correlations in quantum systems both finitely and infi-
nitely many particles and the description of correlations by means of the state of
typical particle of large quantum particle system.

As known, the marginal correlation operators give an equivalent approach to the
description of the evolution of states of quantum systems of many particles in com-
parison with marginal density operators [1]. The physical interpretation of marginal
correlation operators is that the macroscopic characteristics of fluctuations of mean
values of observables are determined by them on the microscopic level [1, 2].

Traditionally marginal correlation operators are introduced by means of the
cluster expansions of the marginal density operators [2–4]. In articles [5, 6] an
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Abstract

We review new approaches to the description of the evolution of states of large
quantum particle systems by means of the marginal correlation operators. Using the
definition of marginal correlation operators within the framework of dynamics of
correlations governed by the von Neumann hierarchy, we establish that a sequence
of such operators is governed by the nonlinear quantum BBGKY hierarchy. The
constructed nonperturbative solution of the Cauchy problem to this hierarchy of
nonlinear evolution equations describes the processes of the creation and the prop-
agation of correlations in large quantum particle systems. Furthermore, we consider
the problem of the rigorous description of collective behavior of quantum many-
particle systems by means of a one-particle (marginal) correlation operator that is a
solution of the generalized quantum kinetic equation with initial correlations, in
particular, correlations characterizing the condensed states of systems.
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1. Introduction

In this chapter, we consider mathematical problems concerning the description
of processes of a creation and a propagation of correlations in quantum many-
particle systems, namely, correlations in quantum systems both finitely and infi-
nitely many particles and the description of correlations by means of the state of
typical particle of large quantum particle system.

As known, the marginal correlation operators give an equivalent approach to the
description of the evolution of states of quantum systems of many particles in com-
parison with marginal density operators [1]. The physical interpretation of marginal
correlation operators is that the macroscopic characteristics of fluctuations of mean
values of observables are determined by them on the microscopic level [1, 2].

Traditionally marginal correlation operators are introduced by means of the
cluster expansions of the marginal density operators [2–4]. In articles [5, 6] an
approach based on the definition of the marginal correlation operators within the
framework of dynamics of correlations governed by the von Neumann hierarchy
was developed. As a result of which, it is established that the marginal correlation
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operators are governed by the hierarchy of nonlinear evolution equations, known as
the quantum nonlinear BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierar-
chy, and its solution is represented in the form of series, the generating operator of
every term of which are the corresponding-order cumulant of groups of nonlinear
operators of the von Neumann hierarchy for correlation operators [7].

In the chapter, we also consider the problem of the rigorous description of the
evolution of correlations in quantum many-particle systems by means of a one-
particle (marginal) density operator that is a solution of the generalized quantum
kinetic equation with initial correlations [8]. We remark that initial states specified
by correlations are typical for the condensed states of many-particle systems in
contrast to their gaseous state [1].

We note that in modern researches, the conventional approach to the problem of
the rigorous derivation of kinetic equations lies in the construction of various
scaling limits of a solution of equations, describing the evolution of the state of
many-particle systems [9], in particular, a mean field limit of a perturbative solu-
tion of the BBGKY hierarchy for a sequence of marginal density operators [10–17].

2. Dynamics of quantum correlations

As known [1, 2], quantum systems of fixed number of particles are described in
terms of observables and states. The functional of the mean value of observables
defines a duality between observables and states, and as a consequence, there exist
two approaches to the description of the evolution of quantum systems, namely, in
terms of observables that are governed by the Heisenberg equation and in terms of
states governed by the von Neumann equation for the density operator, respec-
tively. An equivalent approach to the description of states of quantum systems is
given by means of operators determined by the cluster expansions of the density
operator which are interpreted as correlation operators. In this section we consider
fundamental equations describing the evolution of correlations of quantum systems
with a finite number of particles.

2.1 Preliminaries

We denote by FH ¼ ⊕∞
n¼0H

⊗n the Fock space over the Hilbert space H, where
H⊗n � Hn is the n-particle Hilbert space. Let L1 Hnð Þ be the space of trace class
operators f n � f n 1;…; nð Þ∈L1 Hnð Þ that satisfy the symmetry condition
f n 1;…; nð Þ ¼ f n i1;…; inð Þ for arbitrary i1;…; inð Þ∈ 1;…; nð Þ and are equipped with the
norm

∥ f n∥L1 Hnð Þ ¼ Tr1,…,n∣ f n 1;…; nð Þ∣,

where Tr1,…,n are partial traces over 1,…, n particles. We denote by L1
0 Hnð Þ the

everywhere dense set of finite sequences of degenerate operators with infinitely
differentiable kernels with compact supports.

On the space of trace class operators L1 Hnð Þ, it is defined as the one-parameter
mapping G∗

n tð Þ

R1 ∍ t↦G∗
n tð Þ f n ≐  e�itHn f ne

itHn , (1)

where the following units are used:m ¼ 1 is the mass of a particle, h ¼ 2πћ ¼ 1 is
a Planck constant, and the self-adjoint operator Hn is the Hamiltonian of n particles,
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obeying Maxwell-Boltzmann statistics. Further an inverse group to group (1) will
be denoted by G∗

n

� ��1 tð Þ ¼ G∗
n �tð Þ.

On its domain of the definition, the infinitesimal generator N ∗
n of the group of

operators (1) is determined in the sense of the strong convergence of the space
L1 Hnð Þ by the operator

lim
t!0

1
t
G∗
n tð Þ f n � f n

� � ¼ �i Hn f n � f nHn
� �

≐  N ∗
n f n, (2)

that has the following structure: N ∗
n ¼ ∑n

j¼1N
∗ jð Þ þ ϵ∑n

j1 , j2 ¼ 1N
∗
int j1; j2
� �

, where

the operator N ∗ jð Þ is a free motion generator of the von Neumann equation (the
dual operator to the generator of the Heisenberg equation for observables) [2], the
operator N ∗

int is defined by means of the operator of a two-body interaction poten-
tial Φ by the formula N ∗

int  j1; j2
� �

 f n ≐ � i Φ  j1; j2
� �

 f n � f nΦ  j1; j2
� �� �

, and we
denoted a scaling parameter by ϵ.0.

Let the symbol∑P: 1;…; sð Þ ¼ ∪ jXj
denote the sum over all possible partitions P of the

set 1;…; sð Þ into ∣P∣ nonempty mutually disjoint subsets Xj, and the set
X1f g;…; X∣P∣

� �� �
consists from elements which are subsets Xj ⊂ 1;…; sð Þ of the set

1;…; sð Þ, i.e., ∣ X1f g;…; X∣P∣
� �� �

∣ ¼ ∣P∣. On the space L1 FHð Þ ¼ ⊕∞
n¼0 L1 Hnð Þ of

sequences f ¼  f 0;  f 1;…;  f n;…
� �

of trace class operators f n ∈L1 Hnð Þ and f 0 ∈C, the
following nonlinear one-parameter mapping is defined:

G t; 1;…; sjfð Þ≐ ∑
P: 1;…; sð Þ¼∪ jXj

A∣P∣ t; X1f g;…; X∣P∣
� �� � Y

Xj ⊂P

f ∣Xj∣ Xj
� �

, s≥ 1, (3)

where the generating operator A∣P∣ tð Þ of this expansion is the ∣P∣th-order
cumulant of the groups of operators (1) defined by the following expansion [2]:

A∣P∣ t; X1f g;…; X∣P∣
� �� �

≐ ∑
P0: X1f g;…; X∣P∣f gð Þ¼ ∪ kZk

�1ð Þ∣P0∣�1 jP0j � 1ð Þ!
Y

Zk ⊂P0
G∗
∣θ Zkð Þ∣ t; θ Zkð Þð Þ,

(4)

and θ is the declusterization mapping: θ X1f g;…; X∣P∣
� �� �

≐ 1;…; sð Þ.
Below we adduce the examples of mapping expansions (3):

G t; 1j fð Þ ¼ A1 t; 1ð Þ f 1 1ð Þ,
G t; 1; 2j fð Þ ¼ A1 t; 1; 2f gð Þ f 2 1; 2ð Þ þ A1þ1 t; 1; 2ð Þ f 1 1ð Þ f 1 2ð Þ,
G t; 1; 2; 3jfð Þ ¼ A1 t; 1; 2; 3f gð Þ f 3 1; 2; 3ð Þ þ A1þ1 t; 1; 2; 3f gð Þ f 1 1ð Þ f 2 2; 3ð Þþ
A1þ1 t; 2; 1; 3f gð Þ f 1 2ð Þ f 2 1; 3ð Þ þ A1þ1 t; 3; 1; 2f gð Þ f 1 3ð Þ f 2 1; 2ð Þþ
A3 t; 1; 2; 3ð Þ f 1 1ð Þ f 1 2ð Þ f 1 3ð Þ:

For f s ∈L1 Hsð Þ, s≥ 1, the mapping G t; 1;…; sj fð Þ is defined, and, according to the
inequality

∥A∣P∣ t; X1f g;…; X∣P∣
� �� �

 f s∥L1 Hsð Þ ≤ ∣P∣! e∣P∣∥ f s∥L1 Hsð Þ,

the following estimate is true:

∥G t; 1;…; sj fð Þ∥L1 Hsð Þ ≤ s ! e2scs, (5)

where c � e3max 1;maxP: 1;…;sð Þ¼ ∪ iXi∥ f ∣Xi∣∥L1 H∣Xi ∣ð Þ
� �

. On the space L1 FHð Þ, one-
parameter mapping (3) is a bounded strong continuous group of nonlinear operators.
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operators are governed by the hierarchy of nonlinear evolution equations, known as
the quantum nonlinear BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierar-
chy, and its solution is represented in the form of series, the generating operator of
every term of which are the corresponding-order cumulant of groups of nonlinear
operators of the von Neumann hierarchy for correlation operators [7].

In the chapter, we also consider the problem of the rigorous description of the
evolution of correlations in quantum many-particle systems by means of a one-
particle (marginal) density operator that is a solution of the generalized quantum
kinetic equation with initial correlations [8]. We remark that initial states specified
by correlations are typical for the condensed states of many-particle systems in
contrast to their gaseous state [1].

We note that in modern researches, the conventional approach to the problem of
the rigorous derivation of kinetic equations lies in the construction of various
scaling limits of a solution of equations, describing the evolution of the state of
many-particle systems [9], in particular, a mean field limit of a perturbative solu-
tion of the BBGKY hierarchy for a sequence of marginal density operators [10–17].

2. Dynamics of quantum correlations

As known [1, 2], quantum systems of fixed number of particles are described in
terms of observables and states. The functional of the mean value of observables
defines a duality between observables and states, and as a consequence, there exist
two approaches to the description of the evolution of quantum systems, namely, in
terms of observables that are governed by the Heisenberg equation and in terms of
states governed by the von Neumann equation for the density operator, respec-
tively. An equivalent approach to the description of states of quantum systems is
given by means of operators determined by the cluster expansions of the density
operator which are interpreted as correlation operators. In this section we consider
fundamental equations describing the evolution of correlations of quantum systems
with a finite number of particles.

2.1 Preliminaries

We denote by FH ¼ ⊕∞
n¼0H

⊗n the Fock space over the Hilbert space H, where
H⊗n � Hn is the n-particle Hilbert space. Let L1 Hnð Þ be the space of trace class
operators f n � f n 1;…; nð Þ∈L1 Hnð Þ that satisfy the symmetry condition
f n 1;…; nð Þ ¼ f n i1;…; inð Þ for arbitrary i1;…; inð Þ∈ 1;…; nð Þ and are equipped with the
norm

∥ f n∥L1 Hnð Þ ¼ Tr1,…,n∣ f n 1;…; nð Þ∣,

where Tr1,…,n are partial traces over 1,…, n particles. We denote by L1
0 Hnð Þ the

everywhere dense set of finite sequences of degenerate operators with infinitely
differentiable kernels with compact supports.

On the space of trace class operators L1 Hnð Þ, it is defined as the one-parameter
mapping G∗

n tð Þ

R1 ∍ t↦G∗
n tð Þ f n ≐  e�itHn f ne

itHn , (1)

where the following units are used:m ¼ 1 is the mass of a particle, h ¼ 2πћ ¼ 1 is
a Planck constant, and the self-adjoint operator Hn is the Hamiltonian of n particles,
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obeying Maxwell-Boltzmann statistics. Further an inverse group to group (1) will
be denoted by G∗

n

� ��1 tð Þ ¼ G∗
n �tð Þ.

On its domain of the definition, the infinitesimal generator N ∗
n of the group of

operators (1) is determined in the sense of the strong convergence of the space
L1 Hnð Þ by the operator

lim
t!0

1
t
G∗
n tð Þ f n � f n

� � ¼ �i Hn f n � f nHn
� �

≐  N ∗
n f n, (2)

that has the following structure: N ∗
n ¼ ∑n

j¼1N
∗ jð Þ þ ϵ∑n

j1 , j2 ¼ 1N
∗
int j1; j2
� �

, where

the operator N ∗ jð Þ is a free motion generator of the von Neumann equation (the
dual operator to the generator of the Heisenberg equation for observables) [2], the
operator N ∗

int is defined by means of the operator of a two-body interaction poten-
tial Φ by the formula N ∗

int  j1; j2
� �

 f n ≐ � i Φ  j1; j2
� �

 f n � f nΦ  j1; j2
� �� �

, and we
denoted a scaling parameter by ϵ.0.

Let the symbol∑P: 1;…; sð Þ ¼ ∪ jXj
denote the sum over all possible partitions P of the

set 1;…; sð Þ into ∣P∣ nonempty mutually disjoint subsets Xj, and the set
X1f g;…; X∣P∣

� �� �
consists from elements which are subsets Xj ⊂ 1;…; sð Þ of the set

1;…; sð Þ, i.e., ∣ X1f g;…; X∣P∣
� �� �

∣ ¼ ∣P∣. On the space L1 FHð Þ ¼ ⊕∞
n¼0 L1 Hnð Þ of

sequences f ¼  f 0;  f 1;…;  f n;…
� �

of trace class operators f n ∈L1 Hnð Þ and f 0 ∈C, the
following nonlinear one-parameter mapping is defined:

G t; 1;…; sjfð Þ≐ ∑
P: 1;…; sð Þ¼∪ jXj

A∣P∣ t; X1f g;…; X∣P∣
� �� � Y

Xj ⊂P

f ∣Xj∣ Xj
� �

, s≥ 1, (3)

where the generating operator A∣P∣ tð Þ of this expansion is the ∣P∣th-order
cumulant of the groups of operators (1) defined by the following expansion [2]:

A∣P∣ t; X1f g;…; X∣P∣
� �� �

≐ ∑
P0: X1f g;…; X∣P∣f gð Þ¼ ∪ kZk

�1ð Þ∣P0∣�1 jP0j � 1ð Þ!
Y

Zk ⊂P0
G∗
∣θ Zkð Þ∣ t; θ Zkð Þð Þ,

(4)

and θ is the declusterization mapping: θ X1f g;…; X∣P∣
� �� �

≐ 1;…; sð Þ.
Below we adduce the examples of mapping expansions (3):

G t; 1j fð Þ ¼ A1 t; 1ð Þ f 1 1ð Þ,
G t; 1; 2j fð Þ ¼ A1 t; 1; 2f gð Þ f 2 1; 2ð Þ þ A1þ1 t; 1; 2ð Þ f 1 1ð Þ f 1 2ð Þ,
G t; 1; 2; 3jfð Þ ¼ A1 t; 1; 2; 3f gð Þ f 3 1; 2; 3ð Þ þ A1þ1 t; 1; 2; 3f gð Þ f 1 1ð Þ f 2 2; 3ð Þþ
A1þ1 t; 2; 1; 3f gð Þ f 1 2ð Þ f 2 1; 3ð Þ þ A1þ1 t; 3; 1; 2f gð Þ f 1 3ð Þ f 2 1; 2ð Þþ
A3 t; 1; 2; 3ð Þ f 1 1ð Þ f 1 2ð Þ f 1 3ð Þ:

For f s ∈L1 Hsð Þ, s≥ 1, the mapping G t; 1;…; sj fð Þ is defined, and, according to the
inequality

∥A∣P∣ t; X1f g;…; X∣P∣
� �� �

 f s∥L1 Hsð Þ ≤ ∣P∣! e∣P∣∥ f s∥L1 Hsð Þ,

the following estimate is true:

∥G t; 1;…; sj fð Þ∥L1 Hsð Þ ≤ s ! e2scs, (5)

where c � e3max 1;maxP: 1;…;sð Þ¼ ∪ iXi∥ f ∣Xi∣∥L1 H∣Xi ∣ð Þ
� �

. On the space L1 FHð Þ, one-
parameter mapping (3) is a bounded strong continuous group of nonlinear operators.
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2.2 The von Neumann hierarchy for correlation operators

The evolution of all possible states of a quantum system of non-fixed, i.e., arbitrary
but finite, number of identical particles, obeying the Maxwell-Boltzmann statistics,
can be described by means of the sequence g tð Þ ¼ g0; g1 tð Þ;…; gs tð Þ;…

� �
∈L1 FHð Þ of

the correlation operators gs tð Þ ¼ gs t; 1;…; sð Þ, s≥ 1, governed by the Cauchy problem of
the von Neumann hierarchy [5]:

∂

∂t
gs t; 1;…; sð Þ ¼ N ∗

s gs t; 1;…; sð Þþ

ϵ ∑
P: 1;…;sð Þ¼X1 ∪X2

∑
i1 ∈X1

∑
i2 ∈X2

N ∗
int i1; i2ð Þg∣X1∣ t;X1ð Þg∣X2∣ t;X2ð Þ,

(6)

gs tð Þ
��
t¼0 ¼ g0,εs , s≥ 1, (7)

where ϵ,0 is a scaling parameter, the symbol ∑P: 1;…;sð Þ¼X1 ∪X2
means the sum

over all possible partitions P of the set 1;…; sð Þ into two nonempty mutually disjoint
subsets X1 and X2, and the operator N ∗

s is defined on the subspace L1
0 Hsð Þ by

formula (2).
We remark that correlation operators can be introduced by means of the cluster

expansions [2] of the density operators (the kernel of a density operator is known as
a density matrix) governed by a sequence of the von Neumann equations, and
hence, they describe the evolution of states by an equivalent method in comparison
with the density operators. For quantum systems of fixed number of particles, the
state is described by finite sequence of correlation operators governed by a
corresponding system of the von Neumann equations (6).

A solution (nonperturbative solution) of the Cauchy problem of the von Neu-
mann hierarchy for correlation operators (6) and (7) is represented by group of
nonlinear operators (3)

g t; 1;…; sð Þ ¼ G t; 1;…; sjg 0ð Þð Þ, s≥ 1, (8)

where a sequence of initial correlation operators (7) is denoted by
g 0ð Þ ¼ g0; g

0,ϵ
1 ;…; g0,ϵn ;…

� �
and g0 ∈C.

We remark, if at initial time there are no correlations between particles, i.e., in
the case of initial states, satisfying a chaos condition [2], a sequence of initial
correlation operators takes the form g 0ð Þ ¼ 0; g0,ϵ1 ;0;…;0;…

� �
. Then solution (8) of

the Cauchy problem of the von Neumann hierarchy (6) and (7) is represented by
the following expansions:

gs t; 1;…; sð Þ ¼ As t; 1;…; sð Þ
Ys
i¼1

g0,ϵ1 ið Þ, s≥ 1,

where the operator As tð Þ is the sth-order cumulant of groups of operators (1)
determined by the expansion

As t; 1;…; sð Þ ¼ ∑
P: 1;…;sð Þ¼∪ iXi

�1ð Þ∣P∣�1 jPj � 1ð Þ!
Y
Xi ⊂P

G∗
∣Xi∣ t;Xið Þ, (9)

and we used notations accepted in formula (3).
We remark also that nonperturbative solution (8) of the Cauchy problem of

the von Neumann hierarchy (6) and (7) can be transformed to the perturbation
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(iteration) expansion as a result of the application of analogs of the Duhamel
equation to cumulants (4) of groups of operators (1).

The following statement is true [6]. In the case of bounded interaction potentials
for t∈R, a solution of the Cauchy problem of the von Neumann hierarchy (6) and
(7) is determined by a sequence of correlation operators represented by formula
(8). If g0,ϵn ∈L1

0 Hnð Þ⊂L1 Hnð Þ, it is a strong solution, and for arbitrary initial data
g0,ϵn ∈L1 Hnð Þ, it is a weak solution.

The stated above results can be extended to quantum systems of bosons and
fermions like in paper [6].

3. The evolution of correlations in large quantum particle systems

An equivalent approach in describing the states of quantum systems of many
particles consists in describing states by means of marginal density operators
governed by the BBGKI hierarchy or by means of operators determined by their
cluster expansions, which are interpreted as marginal correlation operators [1]. On
the microscopic scale, the macroscopic characteristics of fluctuations of observables
are directly determined by the marginal correlation operators. Such approach allows
us to describe the evolution of correlations in quantum systems both with finite and
infinite number of particles.

3.1 The hierarchy of evolution equations for marginal correlation operators

Traditionally marginal correlation operators are determined by means of the
cluster expansions of the marginal density operators [2–4]. We introduce the mar-
ginal correlation operators in the framework of the solution of the Cauchy problem
for the von Neumann hierarchy (6) and (7) by the following series expansions:

Gs t; 1;…; sð Þ≐ ∑
∞

n¼0

1
n!

Trsþ1,…, sþn G t; 1;…; sþ njg 0ð Þð Þ, s≥ 1: (10)

According to estimate (5), series (10) exists and the following estimate holds:
∥Gs tð Þ∥L1 Hsð Þ ≤ s! 2e2ð Þscs∑∞

n¼0 2e2ð Þncn, where

c � e3max 1;maxP: 1;…;sð Þ¼ ∪ iXi∥g∣Xi∣ 0ð Þ∥L1 H∣Xi ∣ð Þ
� �

.

We remark that the macroscopic characteristics of fluctuations of observables
are directly determined by marginal correlation operators (10), for example, the
functional of the dispersion of the additive-type observables, i.e.,

A 1ð Þ ¼ 0; a1 1ð Þ;…;∑n
i1¼1a1 i1ð Þ;…

� �
, is represented by the formula [1]

A 1ð Þ � A 1ð Þ
D E� �2� �

tð Þ ¼ Tr1 a21 1ð Þ � A 1ð Þ
D E2

tð Þ
� �

G1 t; 1ð Þ
þ Tr1,2a1 1ð Þa1 2ð ÞG2 t; 1; 2ð Þ,

where A 1ð Þ
D E

tð Þ ¼ Tr1a1 1ð ÞG1 t; 1ð Þ is a mean-value functional of the additive-

type observable [2].
Then the evolution of all possible states of large quantum particle systems,

obeying the Maxwell-Boltzmann statistics, can be described by means of the
sequence G tð Þ ¼ I;G1 tð Þ;G2 tð Þ;…;Gs tð Þ;…ð Þ∈L1 FHð Þ of marginal correlation oper-
ators governed by the Cauchy problem of the following hierarchy of nonlinear
evolution equations (the nonlinear quantum BBGKY hierarchy):
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2.2 The von Neumann hierarchy for correlation operators

The evolution of all possible states of a quantum system of non-fixed, i.e., arbitrary
but finite, number of identical particles, obeying the Maxwell-Boltzmann statistics,
can be described by means of the sequence g tð Þ ¼ g0; g1 tð Þ;…; gs tð Þ;…

� �
∈L1 FHð Þ of

the correlation operators gs tð Þ ¼ gs t; 1;…; sð Þ, s≥ 1, governed by the Cauchy problem of
the von Neumann hierarchy [5]:

∂

∂t
gs t; 1;…; sð Þ ¼ N ∗

s gs t; 1;…; sð Þþ

ϵ ∑
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where ϵ,0 is a scaling parameter, the symbol ∑P: 1;…;sð Þ¼X1 ∪X2
means the sum

over all possible partitions P of the set 1;…; sð Þ into two nonempty mutually disjoint
subsets X1 and X2, and the operator N ∗

s is defined on the subspace L1
0 Hsð Þ by

formula (2).
We remark that correlation operators can be introduced by means of the cluster

expansions [2] of the density operators (the kernel of a density operator is known as
a density matrix) governed by a sequence of the von Neumann equations, and
hence, they describe the evolution of states by an equivalent method in comparison
with the density operators. For quantum systems of fixed number of particles, the
state is described by finite sequence of correlation operators governed by a
corresponding system of the von Neumann equations (6).

A solution (nonperturbative solution) of the Cauchy problem of the von Neu-
mann hierarchy for correlation operators (6) and (7) is represented by group of
nonlinear operators (3)

g t; 1;…; sð Þ ¼ G t; 1;…; sjg 0ð Þð Þ, s≥ 1, (8)

where a sequence of initial correlation operators (7) is denoted by
g 0ð Þ ¼ g0; g

0,ϵ
1 ;…; g0,ϵn ;…

� �
and g0 ∈C.

We remark, if at initial time there are no correlations between particles, i.e., in
the case of initial states, satisfying a chaos condition [2], a sequence of initial
correlation operators takes the form g 0ð Þ ¼ 0; g0,ϵ1 ;0;…;0;…

� �
. Then solution (8) of

the Cauchy problem of the von Neumann hierarchy (6) and (7) is represented by
the following expansions:

gs t; 1;…; sð Þ ¼ As t; 1;…; sð Þ
Ys
i¼1

g0,ϵ1 ið Þ, s≥ 1,

where the operator As tð Þ is the sth-order cumulant of groups of operators (1)
determined by the expansion

As t; 1;…; sð Þ ¼ ∑
P: 1;…;sð Þ¼∪ iXi

�1ð Þ∣P∣�1 jPj � 1ð Þ!
Y
Xi ⊂P

G∗
∣Xi∣ t;Xið Þ, (9)

and we used notations accepted in formula (3).
We remark also that nonperturbative solution (8) of the Cauchy problem of

the von Neumann hierarchy (6) and (7) can be transformed to the perturbation
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(iteration) expansion as a result of the application of analogs of the Duhamel
equation to cumulants (4) of groups of operators (1).

The following statement is true [6]. In the case of bounded interaction potentials
for t∈R, a solution of the Cauchy problem of the von Neumann hierarchy (6) and
(7) is determined by a sequence of correlation operators represented by formula
(8). If g0,ϵn ∈L1

0 Hnð Þ⊂L1 Hnð Þ, it is a strong solution, and for arbitrary initial data
g0,ϵn ∈L1 Hnð Þ, it is a weak solution.

The stated above results can be extended to quantum systems of bosons and
fermions like in paper [6].

3. The evolution of correlations in large quantum particle systems

An equivalent approach in describing the states of quantum systems of many
particles consists in describing states by means of marginal density operators
governed by the BBGKI hierarchy or by means of operators determined by their
cluster expansions, which are interpreted as marginal correlation operators [1]. On
the microscopic scale, the macroscopic characteristics of fluctuations of observables
are directly determined by the marginal correlation operators. Such approach allows
us to describe the evolution of correlations in quantum systems both with finite and
infinite number of particles.

3.1 The hierarchy of evolution equations for marginal correlation operators

Traditionally marginal correlation operators are determined by means of the
cluster expansions of the marginal density operators [2–4]. We introduce the mar-
ginal correlation operators in the framework of the solution of the Cauchy problem
for the von Neumann hierarchy (6) and (7) by the following series expansions:

Gs t; 1;…; sð Þ≐ ∑
∞

n¼0

1
n!

Trsþ1,…, sþn G t; 1;…; sþ njg 0ð Þð Þ, s≥ 1: (10)

According to estimate (5), series (10) exists and the following estimate holds:
∥Gs tð Þ∥L1 Hsð Þ ≤ s! 2e2ð Þscs∑∞

n¼0 2e2ð Þncn, where

c � e3max 1;maxP: 1;…;sð Þ¼ ∪ iXi∥g∣Xi∣ 0ð Þ∥L1 H∣Xi ∣ð Þ
� �

.

We remark that the macroscopic characteristics of fluctuations of observables
are directly determined by marginal correlation operators (10), for example, the
functional of the dispersion of the additive-type observables, i.e.,

A 1ð Þ ¼ 0; a1 1ð Þ;…;∑n
i1¼1a1 i1ð Þ;…

� �
, is represented by the formula [1]

A 1ð Þ � A 1ð Þ
D E� �2� �

tð Þ ¼ Tr1 a21 1ð Þ � A 1ð Þ
D E2

tð Þ
� �

G1 t; 1ð Þ
þ Tr1,2a1 1ð Þa1 2ð ÞG2 t; 1; 2ð Þ,

where A 1ð Þ
D E

tð Þ ¼ Tr1a1 1ð ÞG1 t; 1ð Þ is a mean-value functional of the additive-

type observable [2].
Then the evolution of all possible states of large quantum particle systems,

obeying the Maxwell-Boltzmann statistics, can be described by means of the
sequence G tð Þ ¼ I;G1 tð Þ;G2 tð Þ;…;Gs tð Þ;…ð Þ∈L1 FHð Þ of marginal correlation oper-
ators governed by the Cauchy problem of the following hierarchy of nonlinear
evolution equations (the nonlinear quantum BBGKY hierarchy):

35

Processes of Creation and Propagation of Correlations in Large Quantum Particle System
DOI: http://dx.doi.org/10.5772/intechopen.82836



∂

∂t
Gs t; 1;…; sð Þ ¼ N ∗

s Gs t; 1;…; sð Þþ
ϵ ∑
P: 1;…;sð Þ¼X1 ∪X2

∑
i1 ∈X1

∑
i2 ∈X2

N ∗
int i1; i2ð ÞG∣X1∣ t;X1ð ÞG∣X2∣ t;X2ð ÞÞþ

ϵTrsþ1 ∑
i∈Y

N ∗
int i; sþ 1ð ÞðGsþ1 t; 1;…; sþ 1ð Þþ

∑
P : 1;…; sþ 1ð Þ ¼ X1 ∪X2,

i∈X1; sþ 1∈X2

G∣X1∣ t;X1ð ÞG∣X2∣ t;X2ð ÞÞ,
(11)

Gs tð Þjt¼0 ¼ G0,ϵ
s , s≥ 1, (12)

where ϵ.0 is a scaling parameter and we use accepted in hierarchy (6) notations.
If G 0ð Þ ¼ I;G0,ϵ

1 1ð Þ;…;G0,ϵ
s 1;…; sð Þ;…� �

is a sequence of initial marginal correla-
tion operators (12), then a nonperturbative solution of the Cauchy problem (11)
and (12) is represented by the following sequence of self-adjoint operators:

Gs t; 1;…; sð Þ ¼ ∑
∞

n¼0

1
n!

Trsþ1,…, sþnA1þn t; 1;…; sf g; sþ 1;…; sþ njG 0ð Þð Þ, s≥ 1,

(13)

where the generating operator A1þn t; 1;…; sf g; sþ 1;…; sþ njG 0ð Þð Þ of this series
is the 1þ nð Þth-order cumulant of groups of nonlinear operators (3):

A1þn t; 1;…; sf g; sþ 1;…; sþ njG 0ð Þð Þ≐
∑

P: 1;…;sf g;sþ1;…;sþnð Þ¼ ∪ kXk

�1ð Þ∣P∣�1 jPj � 1ð Þ!G t; θ X1ð Þj…G t; θ X∣P∣
� �jG 0ð Þ� �

…
� �

, n≥0,

(14)

and composition of mappings (3) of the corresponding noninteracting groups of
particles we denote by G t; θ X1ð Þj…G t; θ X∣P∣

� �jG 0ð Þ� �
…

� �
, for example,

G t; 1jG t; 2j fð Þð Þ ¼ A1 t; 1ð ÞA1 t; 2ð Þ f 2 1; 2ð Þ,
G t; 1; 2jG t; 3j fð Þð Þ ¼ A1 t; 1; 2f gð ÞA1 t; 3ð Þ f 3 1; 2; 3ð Þþ
A2 t; 1; 2ð ÞA1 t; 3ð Þ  f 1 1ð Þ f 2 2; 3ð Þ þ f 1 2ð Þ f 2 1; 3ð Þ� �

:

Below we adduce the examples of expansions (14). The first-order cumulant of
the groups of nonlinear operators (3) is the same group of nonlinear operators, i.e.,

A1 t; 1;…; sf gjG 0ð Þð Þ ¼ G t; 1;…; sjG 0ð Þð Þ:
In the case of s ¼ 2, the second-order cumulant of nonlinear operators (3) has

the structure

A1þ1 t; 1; 2f g; 3jG 0ð Þð Þ ¼ G t; 1; 2; 3jG 0ð Þð Þ � G t; 1; 2jG t; 3jG 0ð Þð Þð Þ ¼
A1þ1 t; 1; 2f g; 3ð ÞG0,ϵ

3 1; 2; 3ð Þ þ A1þ1 t; 1; 2f g; 3ð Þ � A1þ1 t; 2; 3ð ÞA1 t; 1ð Þð ÞG0,ϵ
1 1ð ÞG0, ϵ

2 2; 3ð Þþ
A1þ1 t; 1; 2f g; 3ð Þ � A1þ1 t; 1; 3ð ÞA1 t; 2ð Þð ÞG0,ϵ

1 2ð ÞG0,ϵ
2 1; 3ð Þþ

A1þ1 t; 1; 2f g; 3ð ÞG0,ϵ
1 3ð ÞG0,ϵ

2 1; 2ð Þ þ A3 t; 1; 2; 3ð ÞG0,ϵ
1 1ð ÞG0,ϵ

1 2ð ÞG0,ϵ
1 3ð Þ,

where the operator

A3 t; 1; 2; 3ð Þ ¼ A1þ1 t; 1; 2f g; 3ð Þ � A1þ1 t; 2; 3ð ÞA1 t; 1ð Þ � A1þ1 t; 1; 3ð ÞA1 t; 2ð Þ
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is the third-order cumulant (9) of groups of operators (1).
In the case of initial data specified by the sequence of marginal correlation

operators

G cð Þ ¼ 0;G0,ϵ
1 ;0;…;0;…

� �
, (15)

i.e., initial states satisfying a chaos property [9], according to definition (14),
marginal correlation operators (13) are represented by the following series
expansions:

Gs t; 1;…; sð Þ ¼ ∑
∞

n¼0

1
n!

Trsþ1,…, sþnAsþn t; 1;…; sþ nð Þ
Ysþn

i¼1

G0,ϵ
1 ið Þ, s≥ 1, (16)

where the generating operator Asþn tð Þ is the sþ nð Þth-order cumulant (9) of
groups of operators (1).

We note that within the framework of the description of states by means of
marginal density operators defined by cluster expansions over marginal correlation
operators

F0,ϵ
s 1;…; sð Þ ¼ ∑

P: 1;…;sð Þ¼∪ iXi

Y
Xi ⊂P

G0,ϵ
∣Xi∣ Xið Þ, s≥ 1,

initial states described like to sequence (15) is specified by the sequence
F cð Þ ¼ I, F0,ϵ

1 1ð Þ,…,
� Qn

i¼1 F
0,ϵ
1 ið Þ,…Þ, and in the case of sequence (16), the marginal

density operators are represented by the following series expansions (a
nonperturbative solution of the quantum BBGKY hierarchy [2]):

Fs t; 1;…; sð Þ ¼ ∑
∞

n¼0

1
n!

Trsþ1,…, sþnA1þn t; 1;…; sf g; sþ 1;…; sþ nð Þ
Ysþn

i¼1

F0,ϵ
1 ið Þ, s≥ 1,

where the generating operator A1þn tð Þ is the 1þ nð Þth-order cumulant of groups
of operators (1).

One of the possible methods to derive series expansion (13) for the marginal
correlation operators lies in the substitution of the cluster expansions of groups of
nonlinear operators (3) over cumulants (14) and the sequence of initial correlation
operators g 0ð Þ ¼ I, g0,ϵ1 1ð Þ,…,

�
g0,ϵn 1;…; nð Þ,…Þ determined by means of the mar-

ginal correlation operators

g0,ϵs 1;…; sð Þ≐ ∑
∞

n¼0
�1ð Þn 1

n!
Trsþ1,…, sþn G0,ϵ

sþn 1;…; sþ nð Þ, s≥ 1, (17)

into the definition of marginal correlation operators (10). Indeed, developing
the generating operators of series (13) as the following cluster expansions:

G t; 1;…; sþ njfð Þ ¼ ∑
P: 1;…;sþnð Þ¼∪ kXk

A∣X1∣ t;X1j … A∣X∣P∣ ∣ t;X∣P∣j f
� �

…
� �

, n≥0, (18)

according to definition (17), we derive expressions (13). The solutions of recur-
sive relations (18) are represented by expansions (14).

We remark that on the space L1 FHð Þ, the generating operator (14) of series
expansion (13) can be represented as the 1þ nð Þth-order reduced cumulant of the
groups of nonlinear operators (3) of the von Neumann hierarchy [2]:
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∂

∂t
Gs t; 1;…; sð Þ ¼ N ∗

s Gs t; 1;…; sð Þþ
ϵ ∑
P: 1;…;sð Þ¼X1 ∪X2

∑
i1 ∈X1

∑
i2 ∈X2

N ∗
int i1; i2ð ÞG∣X1∣ t;X1ð ÞG∣X2∣ t;X2ð ÞÞþ

ϵTrsþ1 ∑
i∈Y

N ∗
int i; sþ 1ð ÞðGsþ1 t; 1;…; sþ 1ð Þþ

∑
P : 1;…; sþ 1ð Þ ¼ X1 ∪X2,

i∈X1; sþ 1∈X2

G∣X1∣ t;X1ð ÞG∣X2∣ t;X2ð ÞÞ,
(11)

Gs tð Þjt¼0 ¼ G0,ϵ
s , s≥ 1, (12)

where ϵ.0 is a scaling parameter and we use accepted in hierarchy (6) notations.
If G 0ð Þ ¼ I;G0,ϵ

1 1ð Þ;…;G0,ϵ
s 1;…; sð Þ;…� �

is a sequence of initial marginal correla-
tion operators (12), then a nonperturbative solution of the Cauchy problem (11)
and (12) is represented by the following sequence of self-adjoint operators:

Gs t; 1;…; sð Þ ¼ ∑
∞

n¼0

1
n!

Trsþ1,…, sþnA1þn t; 1;…; sf g; sþ 1;…; sþ njG 0ð Þð Þ, s≥ 1,

(13)

where the generating operator A1þn t; 1;…; sf g; sþ 1;…; sþ njG 0ð Þð Þ of this series
is the 1þ nð Þth-order cumulant of groups of nonlinear operators (3):

A1þn t; 1;…; sf g; sþ 1;…; sþ njG 0ð Þð Þ≐
∑

P: 1;…;sf g;sþ1;…;sþnð Þ¼ ∪ kXk

�1ð Þ∣P∣�1 jPj � 1ð Þ!G t; θ X1ð Þj…G t; θ X∣P∣
� �jG 0ð Þ� �

…
� �

, n≥0,

(14)

and composition of mappings (3) of the corresponding noninteracting groups of
particles we denote by G t; θ X1ð Þj…G t; θ X∣P∣

� �jG 0ð Þ� �
…

� �
, for example,

G t; 1jG t; 2j fð Þð Þ ¼ A1 t; 1ð ÞA1 t; 2ð Þ f 2 1; 2ð Þ,
G t; 1; 2jG t; 3j fð Þð Þ ¼ A1 t; 1; 2f gð ÞA1 t; 3ð Þ f 3 1; 2; 3ð Þþ
A2 t; 1; 2ð ÞA1 t; 3ð Þ  f 1 1ð Þ f 2 2; 3ð Þ þ f 1 2ð Þ f 2 1; 3ð Þ� �

:

Below we adduce the examples of expansions (14). The first-order cumulant of
the groups of nonlinear operators (3) is the same group of nonlinear operators, i.e.,

A1 t; 1;…; sf gjG 0ð Þð Þ ¼ G t; 1;…; sjG 0ð Þð Þ:
In the case of s ¼ 2, the second-order cumulant of nonlinear operators (3) has

the structure

A1þ1 t; 1; 2f g; 3jG 0ð Þð Þ ¼ G t; 1; 2; 3jG 0ð Þð Þ � G t; 1; 2jG t; 3jG 0ð Þð Þð Þ ¼
A1þ1 t; 1; 2f g; 3ð ÞG0,ϵ

3 1; 2; 3ð Þ þ A1þ1 t; 1; 2f g; 3ð Þ � A1þ1 t; 2; 3ð ÞA1 t; 1ð Þð ÞG0,ϵ
1 1ð ÞG0, ϵ

2 2; 3ð Þþ
A1þ1 t; 1; 2f g; 3ð Þ � A1þ1 t; 1; 3ð ÞA1 t; 2ð Þð ÞG0,ϵ

1 2ð ÞG0,ϵ
2 1; 3ð Þþ

A1þ1 t; 1; 2f g; 3ð ÞG0,ϵ
1 3ð ÞG0,ϵ

2 1; 2ð Þ þ A3 t; 1; 2; 3ð ÞG0,ϵ
1 1ð ÞG0,ϵ

1 2ð ÞG0,ϵ
1 3ð Þ,

where the operator

A3 t; 1; 2; 3ð Þ ¼ A1þ1 t; 1; 2f g; 3ð Þ � A1þ1 t; 2; 3ð ÞA1 t; 1ð Þ � A1þ1 t; 1; 3ð ÞA1 t; 2ð Þ
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is the third-order cumulant (9) of groups of operators (1).
In the case of initial data specified by the sequence of marginal correlation

operators

G cð Þ ¼ 0;G0,ϵ
1 ;0;…;0;…

� �
, (15)

i.e., initial states satisfying a chaos property [9], according to definition (14),
marginal correlation operators (13) are represented by the following series
expansions:

Gs t; 1;…; sð Þ ¼ ∑
∞

n¼0

1
n!

Trsþ1,…, sþnAsþn t; 1;…; sþ nð Þ
Ysþn

i¼1

G0,ϵ
1 ið Þ, s≥ 1, (16)

where the generating operator Asþn tð Þ is the sþ nð Þth-order cumulant (9) of
groups of operators (1).

We note that within the framework of the description of states by means of
marginal density operators defined by cluster expansions over marginal correlation
operators

F0,ϵ
s 1;…; sð Þ ¼ ∑

P: 1;…;sð Þ¼∪ iXi

Y
Xi ⊂P

G0,ϵ
∣Xi∣ Xið Þ, s≥ 1,

initial states described like to sequence (15) is specified by the sequence
F cð Þ ¼ I, F0,ϵ

1 1ð Þ,…,
� Qn

i¼1 F
0,ϵ
1 ið Þ,…Þ, and in the case of sequence (16), the marginal

density operators are represented by the following series expansions (a
nonperturbative solution of the quantum BBGKY hierarchy [2]):

Fs t; 1;…; sð Þ ¼ ∑
∞

n¼0

1
n!

Trsþ1,…, sþnA1þn t; 1;…; sf g; sþ 1;…; sþ nð Þ
Ysþn

i¼1

F0,ϵ
1 ið Þ, s≥ 1,

where the generating operator A1þn tð Þ is the 1þ nð Þth-order cumulant of groups
of operators (1).

One of the possible methods to derive series expansion (13) for the marginal
correlation operators lies in the substitution of the cluster expansions of groups of
nonlinear operators (3) over cumulants (14) and the sequence of initial correlation
operators g 0ð Þ ¼ I, g0,ϵ1 1ð Þ,…,

�
g0,ϵn 1;…; nð Þ,…Þ determined by means of the mar-

ginal correlation operators

g0,ϵs 1;…; sð Þ≐ ∑
∞

n¼0
�1ð Þn 1

n!
Trsþ1,…, sþn G0,ϵ

sþn 1;…; sþ nð Þ, s≥ 1, (17)

into the definition of marginal correlation operators (10). Indeed, developing
the generating operators of series (13) as the following cluster expansions:

G t; 1;…; sþ njfð Þ ¼ ∑
P: 1;…;sþnð Þ¼∪ kXk

A∣X1∣ t;X1j … A∣X∣P∣ ∣ t;X∣P∣j f
� �

…
� �

, n≥0, (18)

according to definition (17), we derive expressions (13). The solutions of recur-
sive relations (18) are represented by expansions (14).

We remark that on the space L1 FHð Þ, the generating operator (14) of series
expansion (13) can be represented as the 1þ nð Þth-order reduced cumulant of the
groups of nonlinear operators (3) of the von Neumann hierarchy [2]:
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U1þn t; 1;…; sf g; sþ 1;…; sþ njG 0ð Þð Þ≐
∑
n

k¼0
�1ð Þk n!

k! n� kð Þ! ∑
P: θ 1;…;sf gð Þ;sþ1;…;sþn�kð Þ¼∪ iXi

A∣P∣ t; X1f g;…; X∣P∣
� �� �

∑
k

k1¼0

k!
k1! k� k1ð Þ!… ∑

k∣P∣�2

k∣P∣�1¼0

k∣P∣�2!

k∣P∣�1! k∣P∣�2 � k∣P∣�1
� �

!
G0,ϵ

∣X1∣þk�k1
ðX1,

sþ n� kþ 1,…, sþ n� k1Þ…G0,ϵ
∣X∣P∣ ∣þk∣P∣�1

X∣P∣; sþ n� k∣P∣�1 þ 1;…; sþ n
� �

, n≥0,

(19)

as examples, we adduce the simplest examples of reduced cumulants (19):

U1 t; 1;…; sf gjG 0ð Þð Þ ¼ G t; 1;…; sjG 0ð Þð Þ ¼
∑

P: 1;…;sð Þ¼∪ iXi

A∣P∣ t; X1f g;…; X∣P∣
� �� � Y

Xi ⊂P

G0,ε
∣Xi∣ Xið Þ,

U1þ1 t; 1;…; sf g; sþ 1jG 0ð Þð Þ ¼ ∑
P: 1;…;sþ1ð Þ¼∪ iXi

A∣P∣ t; X1f g;…; X∣P∣
� �� � Y

Xi ⊂P

G0,ε
∣Xi∣ Xið Þ�

∑
P: 1;…;sð Þ¼∪ iXi

A∣P∣ t; X1f g;…; X∣P∣
� �� �

∑
∣P∣

j¼1
G0,ε

∣Xj∣þ1 Xj; sþ 1
� � Y

Xi ⊂P,

Xi 6¼ Xj

G0,ε
∣Xi∣ Xið Þ:

We note also that a nonperturbative solution of the nonlinear quantum BBGKY
hierarchy (13) or in the form of series expansions with generating operators (19)
can be transformed to the perturbation (iteration) series as a result of the
application of analogs of the Duhamel equation to cumulants (4) of groups of
operators (1).

The following statement is true [7]. If maxn≥ 1∥G0,ϵ
n ∥L1 Hnð Þ , 2e3ð Þ�1, then in the

case of bounded interaction potentials for t∈R, a solution of the Cauchy problem of
the nonlinear quantum BBGKY hierarchy (11) and (12) is determined by a sequence
of marginal correlation operators represented by series expansions (13). If
G0,ϵ

n ∈L1
0 Hnð Þ⊂L1 Hnð Þ, it is a strong solution, and for arbitrary initial data

G0,ϵ
n ∈L1 Hnð Þ, it is a weak solution.

3.2 A mean field asymptotic behavior of marginal correlation operators

Now we deal with a scaling asymptotic behavior of the constructed marginal
correlation operators in a mean field limit in the case of initial state satisfied
condition (15).

Let us observe that if f s ∈L1 Hsð Þ, then for arbitrary finite time interval for an
asymptotically perturbed first-order cumulant (9) of the groups of operators (1),
i.e., for the strongly continuous group (1), the following equality is valid:

lim
ϵ!0

∥G∗
s t; 1;…; sð Þ f s �

Ys
j¼1

G∗
1 t; jð Þ f s∥L1 Hsð Þ ¼ 0:

As a result of this for the sþ nð Þth-order cumulants of asymptotically perturbed
groups of operators (1), the following equalities are true:

lim
ϵ!0

∥
1
ϵn

Asþn t; 1;…; sþ nð Þ f sþn∥L1 Hsþnð Þ ¼ 0, s≥ 2: (20)
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We assume the existence of a mean field limit for initial marginal correlation
operator (or a one-particle density operator) in the following sense:

lim
ϵ!0

∥ϵG0,ϵ
1 � g01∥L1 Hð Þ ¼ 0: (21)

Then, taking into account equality (20), and since the nth term of series expan-
sion (16) for s-particle marginal correlation operator is determined by the sþ nð Þth-
order cumulant of asymptotically perturbed groups of operators (1), we establish
the property of the propagation of initial chaos (15):

lim
ϵ!0

∥ϵsGs tð Þ∥L1 Hsð Þ ¼ 0, s≥ 2: (22)

If for the initial marginal correlation operator equality (21) holds, then in the
case of s ¼ 1 for series expansion (16), the following equality is true:

lim
ϵ!0

∥ϵG1 tð Þ � g1 tð Þ∥L1 Hð Þ ¼ 0,

where for arbitrary finite time interval, the limit one-particle marginal correla-
tion operator g1 t; 1ð Þ is given by the norm convergent series on the space L1 Hð Þ

g1 t; 1ð Þ ¼ ∑
∞

n¼0

ðt

0

dt1…
ðtn�1

0

dtnTr2,…,nþ1G
∗
1 t� t1; 1ð ÞN ∗

int 1; 2ð Þ
Y2
j1¼1

G∗
1 t1 � t2; j1
� �

…

Yn
in¼1

G∗
1 tn � tn; inð Þ ∑

n

kn¼1
N ∗

int kn; nþ 1ð Þ
Ynþ1

jn¼1

G∗
1 tn; jn
� �Ynþ1

i¼1

g01 ið Þ:
(23)

In series expansion (23), the operator N ∗
int j1; j2
� �

is defined according to formula
(2), and the group of operators G∗

1 tð Þ is defined by (1). For bounded interaction
potential, series (23) is norm convergent on the space L1 Hð Þ under the condition
that t, t0 � 2∥Φ∥L H2ð Þ∥g01∥L1 Hð Þ

� ��1
.

As a result of differentiation in the sense of the norm convergence of the space
L1 Hð Þ by the time variable of the operator represented by series expansion (23), we
conclude that limit one-particle marginal correlation operator (23) is governed by
the Cauchy problem of the quantum Vlasov kinetic equation:

∂

∂t
g1 t; 1ð Þ ¼ N ∗ 1ð Þg1 t; 1ð Þ þ Tr2N

∗
int 1; 2ð Þg1 t; 1ð Þg1 t; 2ð Þ, (24)

g1 tð Þ��t¼0 ¼ g01 : (25)

Then for pure states we derive the Hartree equation [2], indeed, in terms of the
kernel g1 t; q; q0ð Þ ¼ ψ t; qð Þψ t; q0ð Þ of operator (23), describing a pure-state, quantum
kinetic equation (24) is reduced to the Hartree equation

i
∂

∂t
ψ t; qð Þ ¼ � 1

2
Δqψ t; qð Þ þ

ð
dq0Φ q� q0ð Þ ψ t; q0ð Þj j2ψ t; qð Þ,

where the function Φ is a two-body interaction potential.
We note that in the case of pure states, kinetic equation (24) can be reduced

to the nonlinear Schrödinger equation [12] or to the Gross-Pitaevskii kinetic
equation [13].
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U1þn t; 1;…; sf g; sþ 1;…; sþ njG 0ð Þð Þ≐
∑
n

k¼0
�1ð Þk n!

k! n� kð Þ! ∑
P: θ 1;…;sf gð Þ;sþ1;…;sþn�kð Þ¼∪ iXi

A∣P∣ t; X1f g;…; X∣P∣
� �� �

∑
k

k1¼0

k!
k1! k� k1ð Þ!… ∑

k∣P∣�2

k∣P∣�1¼0

k∣P∣�2!

k∣P∣�1! k∣P∣�2 � k∣P∣�1
� �

!
G0,ϵ

∣X1∣þk�k1
ðX1,

sþ n� kþ 1,…, sþ n� k1Þ…G0,ϵ
∣X∣P∣ ∣þk∣P∣�1

X∣P∣; sþ n� k∣P∣�1 þ 1;…; sþ n
� �

, n≥0,

(19)

as examples, we adduce the simplest examples of reduced cumulants (19):

U1 t; 1;…; sf gjG 0ð Þð Þ ¼ G t; 1;…; sjG 0ð Þð Þ ¼
∑

P: 1;…;sð Þ¼∪ iXi

A∣P∣ t; X1f g;…; X∣P∣
� �� � Y

Xi ⊂P

G0,ε
∣Xi∣ Xið Þ,

U1þ1 t; 1;…; sf g; sþ 1jG 0ð Þð Þ ¼ ∑
P: 1;…;sþ1ð Þ¼∪ iXi

A∣P∣ t; X1f g;…; X∣P∣
� �� � Y

Xi ⊂P

G0,ε
∣Xi∣ Xið Þ�

∑
P: 1;…;sð Þ¼∪ iXi

A∣P∣ t; X1f g;…; X∣P∣
� �� �

∑
∣P∣

j¼1
G0,ε

∣Xj∣þ1 Xj; sþ 1
� � Y

Xi ⊂P,

Xi 6¼ Xj

G0,ε
∣Xi∣ Xið Þ:

We note also that a nonperturbative solution of the nonlinear quantum BBGKY
hierarchy (13) or in the form of series expansions with generating operators (19)
can be transformed to the perturbation (iteration) series as a result of the
application of analogs of the Duhamel equation to cumulants (4) of groups of
operators (1).

The following statement is true [7]. If maxn≥ 1∥G0,ϵ
n ∥L1 Hnð Þ , 2e3ð Þ�1, then in the

case of bounded interaction potentials for t∈R, a solution of the Cauchy problem of
the nonlinear quantum BBGKY hierarchy (11) and (12) is determined by a sequence
of marginal correlation operators represented by series expansions (13). If
G0,ϵ

n ∈L1
0 Hnð Þ⊂L1 Hnð Þ, it is a strong solution, and for arbitrary initial data

G0,ϵ
n ∈L1 Hnð Þ, it is a weak solution.

3.2 A mean field asymptotic behavior of marginal correlation operators

Now we deal with a scaling asymptotic behavior of the constructed marginal
correlation operators in a mean field limit in the case of initial state satisfied
condition (15).

Let us observe that if f s ∈L1 Hsð Þ, then for arbitrary finite time interval for an
asymptotically perturbed first-order cumulant (9) of the groups of operators (1),
i.e., for the strongly continuous group (1), the following equality is valid:

lim
ϵ!0

∥G∗
s t; 1;…; sð Þ f s �

Ys
j¼1

G∗
1 t; jð Þ f s∥L1 Hsð Þ ¼ 0:

As a result of this for the sþ nð Þth-order cumulants of asymptotically perturbed
groups of operators (1), the following equalities are true:

lim
ϵ!0

∥
1
ϵn

Asþn t; 1;…; sþ nð Þ f sþn∥L1 Hsþnð Þ ¼ 0, s≥ 2: (20)

38

Panorama of Contemporary Quantum Mechanics - Concepts and Applications

We assume the existence of a mean field limit for initial marginal correlation
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lim
ϵ!0

∥ϵG0,ϵ
1 � g01∥L1 Hð Þ ¼ 0: (21)
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∞
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ðt

0
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0
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Y2
j1¼1

G∗
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� �
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Yn
in¼1

G∗
1 tn � tn; inð Þ ∑

n

kn¼1
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Ynþ1

jn¼1

G∗
1 tn; jn
� �Ynþ1

i¼1
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L1 Hð Þ by the time variable of the operator represented by series expansion (23), we
conclude that limit one-particle marginal correlation operator (23) is governed by
the Cauchy problem of the quantum Vlasov kinetic equation:

∂
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∗
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Then for pure states we derive the Hartree equation [2], indeed, in terms of the
kernel g1 t; q; q0ð Þ ¼ ψ t; qð Þψ t; q0ð Þ of operator (23), describing a pure-state, quantum
kinetic equation (24) is reduced to the Hartree equation
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∂
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2
Δqψ t; qð Þ þ

ð
dq0Φ q� q0ð Þ ψ t; q0ð Þj j2ψ t; qð Þ,

where the function Φ is a two-body interaction potential.
We note that in the case of pure states, kinetic equation (24) can be reduced

to the nonlinear Schrödinger equation [12] or to the Gross-Pitaevskii kinetic
equation [13].
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4. The description of processes of a creation and a propagation of
correlations by means of kinetic equations

In this section we consider mathematical problems concerning the description of
processes of creation and propagation of correlations within framework of the state
of typical particle of quantum systems of many particles; in other words, an
approach to the description of evolution of correlations by means of quantum
kinetic equations is developing.

4.1 Marginal correlation functionals of the state

Further we shall consider the case of initial states specified by a one-particle
marginal density operator with correlations, namely, initial states specified by the
following sequence of marginal correlation operators:

G cð Þ ¼ I;G0,ϵ
1 1ð Þ; gϵ2 1; 2ð Þ

Y2
i¼1

G0,ϵ
1 ið Þ;…; gϵn 1;…; nð Þ

Yn
i¼1

G0,ϵ
1 ið Þ;…

 !
, (26)

where the operators gϵn 1;…; nð Þ � gϵn ∈L1
0 Hnð Þ, n≥ 2 specified the initial correla-

tions. We remark that such assumption about initial states is intrinsic for the kinetic
description of many-particle systems. On the other hand, initial data (26) is typical
for the condensed states of large quantum systems of particle, for example, the
equilibrium state of the Bose condensate satisfies the weakening of correlation
condition with the correlations which characterize the condensed state [1].

For initial states specified in terms of a one-particle density operator and correlation
operators (26), the evolution of states given within the framework of the sequence
G tð Þ ¼ I;G1 tð Þ;…;Gs tð Þ;…ð Þ ofmarginal correlation operators (13) can be described by
means of the sequenceG tjG1 tð Þð Þ ¼ I;G1 tð Þ;G2 tjG1 tð Þð Þ;…;Gs tjG1 tð Þð Þ,…ð Þ of mar-
ginal correlation functionals:Gs t; 1;…; sjG1 tð Þð Þ, s≥ 2, with respect to the one-particle
correlation operatorG1 tð Þ governed by the kinetic equation [8].

In the case under consideration, the marginal correlation functionals
Gs tjG1 tð Þð Þ, s≥ 2 are defined with respect to the one-particle (marginal) density
operator

G1 t; 1ð Þ ¼

∑
∞

n¼0

1
n!

Tr2,…,1þnA1þn t; 1;…; nþ 1ð Þ ∑
P : 1;…; nþ 1ð Þ ¼ ∪ iXi

Y
Xi ⊂P

gϵ∣Xi∣ Xið Þ
Ynþ1

i¼1

G0,ϵ
1 ið Þ,

(27)

where the generating operator A1þn tð Þ is the 1þ nð Þ � th-order cumulant (4) of
the groups of operators (1), and these functionals are represented by the series
expansions:

Gs t; 1;…; sjG1 tð Þð Þ ¼

∑
∞

n¼0

1
n!

Trsþ1,…, sþnGsþn t; θ 1;…; sf gð Þ; sþ 1;…; sþ nð Þ
Ysþn

i¼1

G1 t; ið Þ, s≥ 2,
(28)

where the sþ nð Þth-order generating operator Gsþn tð Þ, n≥0 of this series is
determined by the following expansion:
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Gsþn t; θ 1;…; sf gð Þ; sþ 1;…; sþ nð Þ ¼
n!∑

n

k¼0
�1ð Þk ∑

n

n1¼1
… ∑

n�n1�…�nk�1

nk¼1

1
n� n1 �…� nkð Þ!�

�Asþn�n1�…�nk t; θ 1;…; sf gð Þ; sþ 1;…; sþ n� n1 �…� nkð Þ�
Yk
j¼1

∑
Dj : Zj ¼ ∪ ljXlj ,

∣Dj∣ ≤ sþ n� n1 �…� nj

1
∣Dj∣!

∑
sþn�n1�…�nj

i1 6¼… 6¼i∣Dj ∣¼1

Y
Xlj ⊂Dj

1
∣Xlj ∣!

�A1þ∣Xlj ∣
t; ilj ;Xlj

� �
:

(29)

In formula (29) the sum of all possible dissections [18] of the linearly ordered set
Zj � sþ n� n1 �…� nj þ 1;…; sþ n� n1 �…� nj�1

� �
on no more than

sþ n� n1 �…� nj linearly ordered subsets is denoted by ∑Dj:Zj¼∪ lj Xlj
, and the

sþ nð Þth-order scattering cumulant is defined by the formula

�Asþn t; θ 1;…; sf gð Þ; sþ 1;…; sþ nð Þ≐Asþn t; 1;…; sþ nð Þgϵsþn 1;…; sþ nð Þ
Ysþn

i¼1

A�1
1 t; ið Þ,

where the operator gϵsþn 1;…; sþ nð Þ is specified initial correlations (26) and
notations accepted above were used. We adduce simplest examples of generating
operators (29):

Gs t; θ 1;…; sf gð Þð Þ ¼ �As t; θ 1;…; sf gð Þð Þ ¼ As t; 1;…; sð ÞÞgϵs 1;…; sð Þ
Ys
i¼1

A�1
1 t; ið Þ,

Gsþ1 t; θ 1;…; sf gð Þ; sþ 1ð Þ ¼ Asþ1 t; 1;…; sþ 1ð Þgϵsþ1 1;…; sþ 1ð Þ
Ysþ1

i¼1

A�1
1 t; ið Þ�

As t; 1;…; sð Þgϵs 1;…; sð Þ
Ys
i¼1

A�1
1 t; ið Þ∑

s

j¼1
A2 t; j; sþ 1ð Þgϵ2 j; sþ 1ð ÞA�1

1 t; jð ÞA�1
1 t; sþ 1ð Þ:

A method of the construction of marginal correlation functionals (28) is based
on the application of kinetic cluster expansions [2] to the generating operators of
series (13). If ∥G1 tð Þ∥L1 Hð Þ , e� 3sþ2ð Þ, then for arbitrary t∈R series expansion (28)

converges in the norm of the space L1 Hsð Þ.
We emphasize that marginal correlation functionals (28) describe all the possi-

ble correlations generated by dynamics of large quantum particle system with initial
correlations by means of a one-particle density operator.

4.2 The generalized quantum kinetic equation with initial correlations

Now we establish the evolution equation for one-particle (marginal) density
operator (27). As a result of the differentiation over time variable of the operator
represented by series expansion (27) in the sense of the norm convergence of the
space L1 Hð Þ, then due to the application of the kinetic cluster expansions [19] to the
generating operators of obtained series expansion, for one-particle density operator
(27), we derive the following identity:
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description of many-particle systems. On the other hand, initial data (26) is typical
for the condensed states of large quantum systems of particle, for example, the
equilibrium state of the Bose condensate satisfies the weakening of correlation
condition with the correlations which characterize the condensed state [1].

For initial states specified in terms of a one-particle density operator and correlation
operators (26), the evolution of states given within the framework of the sequence
G tð Þ ¼ I;G1 tð Þ;…;Gs tð Þ;…ð Þ ofmarginal correlation operators (13) can be described by
means of the sequenceG tjG1 tð Þð Þ ¼ I;G1 tð Þ;G2 tjG1 tð Þð Þ;…;Gs tjG1 tð Þð Þ,…ð Þ of mar-
ginal correlation functionals:Gs t; 1;…; sjG1 tð Þð Þ, s≥ 2, with respect to the one-particle
correlation operatorG1 tð Þ governed by the kinetic equation [8].

In the case under consideration, the marginal correlation functionals
Gs tjG1 tð Þð Þ, s≥ 2 are defined with respect to the one-particle (marginal) density
operator

G1 t; 1ð Þ ¼

∑
∞

n¼0

1
n!

Tr2,…,1þnA1þn t; 1;…; nþ 1ð Þ ∑
P : 1;…; nþ 1ð Þ ¼ ∪ iXi

Y
Xi ⊂P

gϵ∣Xi∣ Xið Þ
Ynþ1

i¼1

G0,ϵ
1 ið Þ,

(27)

where the generating operator A1þn tð Þ is the 1þ nð Þ � th-order cumulant (4) of
the groups of operators (1), and these functionals are represented by the series
expansions:
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n
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ble correlations generated by dynamics of large quantum particle system with initial
correlations by means of a one-particle density operator.
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Now we establish the evolution equation for one-particle (marginal) density
operator (27). As a result of the differentiation over time variable of the operator
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space L1 Hð Þ, then due to the application of the kinetic cluster expansions [19] to the
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∂

∂t
G1 t; 1ð Þ ¼ N ∗ 1ð ÞG1 t; 1ð Þ þ ϵTr2N

∗
int 1; 2ð ÞG1 t; 1ð ÞG1 t; 2ð Þ

þ ϵTr2N
∗
int 1; 2ð ÞG2 t; 1; 2jG1 tð Þð Þ,

(30)

where the second part of the collision integral in equality (30) is determined in
terms of the marginal correlation functional represented by series expansions (28)
in the case of s ¼ 2. This identity we treat as the quantum kinetic equation, and we
refer to this evolution equation as the generalized quantum kinetic equation with
initial correlations.

We emphasize that the coefficients in an expansion of the collision integral of
the non-Markovian kinetic equation (30) are determined by the operators specified
initial correlations (26).

On the space L1 Hð Þ for the Cauchy problem of the established generalized
quantum kinetic equation with initial correlations, the following statement is true
[19]. If ∥G0,ϵ

1 ∥L1 Hð Þ , e 1þ e9ð Þð Þ�1, a global in time solution of the Cauchy problem
of kinetic equation (30) is determined by series expansion (27). For initial data
G0,ϵ

1 ∈L1
0 Hð Þ, it is a strong solution, and for an arbitrary initial data, it is a weak

solution.
The proof of this existence statement is similar to the proof in the case of the

generalized quantum kinetic equation given in [18].

4.3 On a propagation of initial correlations in a mean field limit

Further we establish the mean field asymptotic behavior of constructed marginal
correlation functionals (28) in the case of initial states specified by the one-particle
density operator with correlations (26).

We assume the existence of a mean field limit of an initial one-particle density
operator in sense (21) and for initial correlation operators as follows:

lim
ϵ!0

∥gϵn � gn∥L1 Hnð Þ ¼ 0, n≥ 2: (31)

Then in consequence of the validity of equalities (20) for one-particle density
operator (27), the following statement is true [8]. If conditions (21) and (31) hold,
then for series expansion (27) the equality holds:

lim
ϵ!0

∥ϵG1 tð Þ � g1 tð Þ∥L1 Hð Þ ¼ 0,

where for finite time interval, the limit one-particle density operator g1 tð Þ is
represented by the following norm convergent series on the space L1 Hð Þ:
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…
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Y
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g∣Xi∣ Xið Þ
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g01 ið Þ: (32)

In series expansion (32), the operator N ∗
int j1; j2
� �

is defined according to formula
(2), and the group of operators G∗

1 tð Þ is defined by (1). For bounded interaction
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potentials series (32) is norm convergent on the space L1 Hð Þ under the condition
that t, t0 � 2∥Φ∥L H2ð Þ∥g01∥L1 Hð Þ

� ��1
.

For marginal correlation functionals (28), the following statement is true [8].
Under conditions (21) and (31) on initial state (26), there exists a mean field limit of
marginal correlation functionals (28) in the following sense:

lim
ϵ!0

∥ϵsGs t; 1;…; sjG1 tð Þð Þ � gs t; 1;…; sjg1 tð Þ� �
∥L1 Hsð Þ ¼ 0, s≥ 2,

where the limit marginal correlation functionals gs tjg1 tð Þ� �
, s≥ 2, are represented

by the expansions
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G∗
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Ys
j¼1

g1 t; jð Þ, (33)

and, respectively, the limit one-particle density operator g1 tð Þ is represented by
series expansion (32).

The proof of these statements is based on the validity of equality (20) for
cumulants of asymptotically perturbed groups of operators (1) and the explicit
structure of the generating operators of series expansions (28) of marginal correla-
tion functionals and of series expansion (27).

We remark that limit marginal correlation functionals (32) and (33) are a solu-
tion of the Cauchy problem of the quantum Vlasov hierarchy of nonlinear evolution
equations [6], which describes a mean field asymptotic behavior of marginal corre-
lation operators in the case of arbitrary initial states, namely,

∂

∂t
gs t; 1;…; sð Þ ¼ ∑

s
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g∣X1∣ t;X1ð Þg∣X2∣ t;X2ð ÞÞ,

  gs  tð Þ��t¼0 ¼ g0s , s≥ 1,

where we used notations similar to accepted above.
It should be noted that limit marginal correlation functionals (33) describe the

process of the evolution of correlations of large quantum particle systems by means
of a one-particle density operator in a mean field approximation.

Similar to the derivation of kinetic equation (30), we establish that the one-particle
density operator represented by series expansion (32) is a solution of the Cauchy
problem of the Vlasov-type quantum kinetic equation with initial correlations:

∂

∂t
g1 t; 1ð Þ ¼ N ∗ 1ð Þg1 t; 1ð Þþ

Tr2N
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int 1; 2ð Þ
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� �Y2
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1

� ��1 t; i2ð Þg1 t; 1ð Þg1 t; 2ð Þ, (34)

g1 tð Þ��t¼0 ¼ g01 , (35)

and consequently, for pure states we derive the Hartree-type equation with
initial correlations. We point out that Eq. (34) is the non-Markovian quantum
kinetic equation.

Thus, we established that a mean field behavior of processes of the creation of
correlations and the propagation of initial correlations in large quantum particle
systems are governed by kinetic equation (34).
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Moreover, in the case under consideration, the processes of the creation of
correlations generated by dynamics of many-particle systems and the propagation
of initial correlations are described by the constructed marginal functionals of the
state (28) governed by the non-Markovian generalized kinetic equation with initial
correlations (26).

5. Conclusion

In this chapter the process of a creation and a propagation of correlations in
quantum many-particle systems has been described by means of the Cauchy prob-
lem of the quantum BBGKY hierarchy of nonlinear equations (11) and (12).
A nonperturbative solution for a sequence of marginal correlation operators is
represented in the form of series (13) the generating operator of every term of
which are corresponding-order cumulant (14) of groups of nonlinear operators (3).
In the case of initial state specified by a sequence of the marginal correlation
operators that satisfy chaos property (15), the correlations generated by dynamics
of large quantum particle system (16) are completely determined by the
corresponding-order cumulants (4) of groups of operators (1). The obtained results
can be extended to large quantum systems of bosons and fermions like in paper [6].

In the case of initial state satisfied condition (15), a mean field asymptotic
behavior of the processes of a creation and a propagation of correlations was
described. It was directly proven the property called the propagation of initial chaos
(22), which underlies in mathematical derivation of effective evolution equations of
systems of infinitely many particles [16].

The problem of the rigorous description of collective behavior of quantum
many-particle systems by means of a one-particle (marginal) correlation operator
that is a solution of the generalized quantum kinetic equation [18] with initial
correlations [19], for instance, the initial correlations, characterizing the condensed
states [1], or initial correlations that influence on ultrafast relaxation processes in
plasmas [4] has been also considered.

In particular, such an approach to the derivation of the Vlasov-type quantum
kinetic equation with initial correlations (34) from underlying dynamics governed
by the generalized quantum kinetic equation with initial correlations (30) enables
to construct the higher-order corrections to the mean field evolution of large quan-
tum systems of particle.

We note that in paper [20] other approach to the description of the propagation
of initial correlations of large quantum particle systems in a mean field limit was
developed, namely, the process of the propagation of initial correlations was
described within the framework of the evolution of marginal observables governed
by the dual BBGKY hierarchy [2, 21].
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Chapter 4

Recent Progresses in Ab Initio
Electronic Structure Calculation
toward Understandings of
Functional Mechanisms of
Biological Macromolecular
Systems
Jiyoung Kang,Takuya Sumi and Masaru Tateno

Abstract

In this chapter, we present recent advances of theoretical analyses toward
understandings of functional mechanisms of biological macromolecular systems,
employing ab initio electronic structure calculations. Two distinct types of triggers
to invoke dramatic rearrangements of electronic structures in the reaction centers
are revealed by full ab initio quantum mechanics (QM) calculations (first example)
and hybrid ab initio QM/molecular mechanics (MM) molecular dynamics (MD)
calculations (second example). First, we demonstrate dramatic rearrangements of
molecular orbitals (MOs) induced by binding of a hydroxyl ion (OH�) to the
[4Fe-3S] cluster found in hydrogenases, which catalyzes both dissociation and
production of dihydrogen (H2). This induces the significant delocalization of
the LUMO, resulting in formation of electron transfer pathways required for the
catalysis. Thus, in organisms, just a tiny species (e.g. OH� ligand) can play a key
role for the biological functions. Second, we indicate dynamical rearrangements
of MOs occurring in the enzymatic reactions of RNA-protein complexes. As the
catalysis proceeds, the reactive MOs, which do not belong to the frontier orbitals in
the initial stages of the reaction, are dramatically reconstituted in the hybrid ab
initio QM/MM MD simulations, resulting in the frontier orbitals, which is a feature
characteristic to biological macromolecular systems.

Keywords: density functional theory (DFT), electron delocalization,
aminoacyl-tRNA synthetase (aaRS), transfer RNA (tRNA), hybrid ribozyme/
protein catalyst, catalysis, enzyme, molecular evolution

1. Introduction

Why are the theoretical analyses employing ab initio quantum mechanics (QM)
calculations required to understand biological systems? In an organism, so many
catalytic reactions are present, for example, transcription, DNA replication and
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role for the biological functions. Second, we indicate dynamical rearrangements
of MOs occurring in the enzymatic reactions of RNA-protein complexes. As the
catalysis proceeds, the reactive MOs, which do not belong to the frontier orbitals in
the initial stages of the reaction, are dramatically reconstituted in the hybrid ab
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1. Introduction

Why are the theoretical analyses employing ab initio quantum mechanics (QM)
calculations required to understand biological systems? In an organism, so many
catalytic reactions are present, for example, transcription, DNA replication and
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repair, protein biosynthesis, respiration, photosynthesis, and synthesis and degra-
dation of biological compounds (metabolites) such as amino acids, nucleotide, and
lipid. In order to understand the mechanisms of biological functions, analyses of the
electronic structure changes for the catalytic reactions are essential.

Up to date, QM calculations have been employed to understand many biochem-
ical reactions, although the system sizes of such macromolecular systems are huge.
In this section, we will briefly introduce several substantial issues in QM methods
that have frequently been employed in analyses of biological systems. From bio-
chemical and biophysical points of view, these descriptions are also relevant to the
construction of the QM models, spin assignments, selection of QM/MM methods,
the QM calculation methods, basis sets, and so on.

1.1 Construction of QM model system

To obtain precise geometric and electronic structures employing the QM calcula-
tions, high-quality three-dimensional (3D) structures are indispensable. In most
studies of biological macromolecular systems, the initial 3D structures for the theo-
retical analyses are retrieved from Protein Data Bank (PDB) website (https://www.rc
sb.org/), which provides 3D structures of biological macromolecules analyzed
employing X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy,
and electron microscope (EM) experiments. Currently, the PDB site contains more
than 129,300 X-ray structures, 12,300 NMR structures, and 2400 EM structures.

Although state-of-the-art methodologies, such as the X-ray free electron laser
(XFEL) and cryo-EM, provide high-quality 3D structures, the resolution of most
experimental structures is still insufficient to observe hydrogen atoms. Indeed, only
0.5% of X-ray and EM structures are under 1.0 Å resolutions, and 80.3% are in the
range of 1.4–2.8 Å resolutions. Thus, one needs to attach the hydrogen atoms in
chemically appropriate manners. This is also an important issue, and so we need
enough time to carefully identify the appropriate configurations for attachments of
hydrogen atoms.

Since the computation costs of QM calculations are too large to include the entire
biological macromolecular systems, QM models are usually extracted and thereby
include the numbers of atoms in the ranges of 50–100 atoms. The truncated
boundary carbons of the QM models are usually capped by the methyl group. Other
crucial moieties in the systems, which can significantly affect geometric and elec-
tronic structures of the active centers, such as ligands of the transition metal bind-
ing sites and hydrogen-bonded waters, should also be included in the extracted QM
models. Notably, to overcome the increase of computational costs by including
large environmental moieties into the QM models such as the bulk water molecules
as the solvent, hybrid quantum mechanics and molecular mechanics (MM) (i.e.,
classical mechanics) schemes have been developed up to date (the hybrid QM/MM
calculation method is discussed in Section 1.3).

1.2 Spin assignments of the system

As mentioned, we require 3D structures of the calculation models, basis sets, the
(total) charges, spin multiplicities, and initial wave functions of the systems, to
perform the QM calculations. Since the QM calculations may also suffer from the
nonlinear, initial guess, and local minimum problems, starting from appropriate
initial 3D structures and wave functions is very important to obtain the correct
states. In particular, the total spin of the system including multiple transition metals
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must be explored by carefully providing multiple combinations of spin assignments
and thereby should be determined by identifying the spin state with the optimal
total energy value among all of those spin states.

To provide the total spin assignments, it is convenient to divide the systems into
some fragmental moieties, such as a transition metal and its coordinated ligands as a
subsystem, which leads to spin assignments for a part of the QM models. Although
this could be helpful to get a reasonable solution, there is no warranty of the
convergence and acquisition of the correct solution. In Section 2, we discuss more
details of this issue.

1.3 Hybrid functional in density functional theory (DFT) calculation

Hybrid functional approximation was introduced by Becke [1] in 1993 and has
become one of the most popular computational approaches. By incorporating a
portion of the exact exchange energy originated from the Hartree-Fock theory
coupled with the exchange-correlation energies, the hybrid functional approach
improves molecular properties that poorly described with simple ab initio func-
tionals, such as bond lengths, vibration frequencies, and atomization energies [2].
In general, a hybrid functional is described as a linear combination of the Hartree-
Fock exact exchange energy functional and the exchange-correlation density func-
tionals; their weights are determined by a fitting procedure such as to reproduce
experimental or highly advanced calculated thermochemical data.

Becke proposed the following exchange-correlation approximation [1],

EXC ¼ ELSDA
XC þ a0 Eexact

X � ELSDA
X

� �þ aX EB88
X � ELSDA

X

� �þ aC EPW91
X � ELSDA

X

� �
, (1)

where a0, ax, and ac are the parameters determined by the fitting procedure (i.e.,
a0 = 0.20, ax = 0.72, and ac = 0.81). Herein, subscripts X and C represent the
exchange and correlation, respectively, ELSDA

XC represents the exchange-correlation
energy within the framework of the local spin-density approximation (LSDA), Eexact

X

is the exact exchange energy, and EB88
X and EPW91

X are the gradient corrections for the
exchange by Becke and Perdew-Wang, respectively.

The B3LYP functional, which has been one of the most widely used functionals
in molecular quantum calculation fields, employs the nonlocal correlation provided
by the LYP expression (Lee-Yang-Parr) and the Becke88 exchange functional [3],
and VWN local-density approximation that was constructed by Volsko, Wilk, and
Nusair (VWN) [4]. Thus, the general formula of the hybrid functionals can be
written as follows (this is exploited in Gaussian software; http://gaussian.com/dft/),

EXC ¼ P2EHF
X þ P1 P4ESlater

X þ P3ΔEnon�local
X

� �þ P6Elocal
C þ P5Enon�local

C : (2)

Various combinations of nonlocal exchange functionals and correlation func-
tionals can be employed here. In the B3LYP functional, the Becke’s three-parameter
functional and the LYP correlation functional were combined with the following
parameters,

P1 ¼ 1, P2 ¼ 0:2, P3 ¼ 0:72, P4 ¼ 0:8, P5 ¼ 0:81, P6 ¼ 1: (3)

In an attempt to improve the B3LYP functional, the long-range correlations are
incorporated into the cam-B3LYP [5] and LC-BLYP [6] functionals. However, to
the best of our experiences on applying to biological macromolecular systems,
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To obtain precise geometric and electronic structures employing the QM calcula-
tions, high-quality three-dimensional (3D) structures are indispensable. In most
studies of biological macromolecular systems, the initial 3D structures for the theo-
retical analyses are retrieved from Protein Data Bank (PDB) website (https://www.rc
sb.org/), which provides 3D structures of biological macromolecules analyzed
employing X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy,
and electron microscope (EM) experiments. Currently, the PDB site contains more
than 129,300 X-ray structures, 12,300 NMR structures, and 2400 EM structures.

Although state-of-the-art methodologies, such as the X-ray free electron laser
(XFEL) and cryo-EM, provide high-quality 3D structures, the resolution of most
experimental structures is still insufficient to observe hydrogen atoms. Indeed, only
0.5% of X-ray and EM structures are under 1.0 Å resolutions, and 80.3% are in the
range of 1.4–2.8 Å resolutions. Thus, one needs to attach the hydrogen atoms in
chemically appropriate manners. This is also an important issue, and so we need
enough time to carefully identify the appropriate configurations for attachments of
hydrogen atoms.

Since the computation costs of QM calculations are too large to include the entire
biological macromolecular systems, QM models are usually extracted and thereby
include the numbers of atoms in the ranges of 50–100 atoms. The truncated
boundary carbons of the QM models are usually capped by the methyl group. Other
crucial moieties in the systems, which can significantly affect geometric and elec-
tronic structures of the active centers, such as ligands of the transition metal bind-
ing sites and hydrogen-bonded waters, should also be included in the extracted QM
models. Notably, to overcome the increase of computational costs by including
large environmental moieties into the QM models such as the bulk water molecules
as the solvent, hybrid quantum mechanics and molecular mechanics (MM) (i.e.,
classical mechanics) schemes have been developed up to date (the hybrid QM/MM
calculation method is discussed in Section 1.3).

1.2 Spin assignments of the system

As mentioned, we require 3D structures of the calculation models, basis sets, the
(total) charges, spin multiplicities, and initial wave functions of the systems, to
perform the QM calculations. Since the QM calculations may also suffer from the
nonlinear, initial guess, and local minimum problems, starting from appropriate
initial 3D structures and wave functions is very important to obtain the correct
states. In particular, the total spin of the system including multiple transition metals
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must be explored by carefully providing multiple combinations of spin assignments
and thereby should be determined by identifying the spin state with the optimal
total energy value among all of those spin states.

To provide the total spin assignments, it is convenient to divide the systems into
some fragmental moieties, such as a transition metal and its coordinated ligands as a
subsystem, which leads to spin assignments for a part of the QM models. Although
this could be helpful to get a reasonable solution, there is no warranty of the
convergence and acquisition of the correct solution. In Section 2, we discuss more
details of this issue.

1.3 Hybrid functional in density functional theory (DFT) calculation

Hybrid functional approximation was introduced by Becke [1] in 1993 and has
become one of the most popular computational approaches. By incorporating a
portion of the exact exchange energy originated from the Hartree-Fock theory
coupled with the exchange-correlation energies, the hybrid functional approach
improves molecular properties that poorly described with simple ab initio func-
tionals, such as bond lengths, vibration frequencies, and atomization energies [2].
In general, a hybrid functional is described as a linear combination of the Hartree-
Fock exact exchange energy functional and the exchange-correlation density func-
tionals; their weights are determined by a fitting procedure such as to reproduce
experimental or highly advanced calculated thermochemical data.

Becke proposed the following exchange-correlation approximation [1],
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a0 = 0.20, ax = 0.72, and ac = 0.81). Herein, subscripts X and C represent the
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is the exact exchange energy, and EB88
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X are the gradient corrections for the
exchange by Becke and Perdew-Wang, respectively.

The B3LYP functional, which has been one of the most widely used functionals
in molecular quantum calculation fields, employs the nonlocal correlation provided
by the LYP expression (Lee-Yang-Parr) and the Becke88 exchange functional [3],
and VWN local-density approximation that was constructed by Volsko, Wilk, and
Nusair (VWN) [4]. Thus, the general formula of the hybrid functionals can be
written as follows (this is exploited in Gaussian software; http://gaussian.com/dft/),
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Various combinations of nonlocal exchange functionals and correlation func-
tionals can be employed here. In the B3LYP functional, the Becke’s three-parameter
functional and the LYP correlation functional were combined with the following
parameters,

P1 ¼ 1, P2 ¼ 0:2, P3 ¼ 0:72, P4 ¼ 0:8, P5 ¼ 0:81, P6 ¼ 1: (3)

In an attempt to improve the B3LYP functional, the long-range correlations are
incorporated into the cam-B3LYP [5] and LC-BLYP [6] functionals. However, to
the best of our experiences on applying to biological macromolecular systems,
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selection of functionals is not so simple, and thus, careful investigations based on
computational trials are required to determine them. In the following two examples
described in this chapter, such examinations were actually performed, and thereby,
the B3LYP functional was adopted.

1.4 Hybrid QM/MM calculation scheme

In 1976, Warshel and Levitt [7] developed a QM/MM method, in which QM
calculation is combined with classical mechanics calculation, to obtain the electronic
structures of the QM region with consideration of the environmental effects, such
as protein, membrane, and solvent water molecules. In this strategy, the QM calcu-
lation is adopted to the active site (QM region), and for the remainder of the
system, the MM calculation is adopted (MM regions) (Figure 1).

Great progresses have been achieved up to date for improvement of QM/MM
calculation algorithms and their applications to biological systems [8–21]. Impor-
tance of the environments has been reported from many QM/MM studies. For
example, polarization from MM region affects both electronic structure and geo-
metric structure [22]. Recently, we reported that in huge biological macromolecular
systems such as complexes of aminoacyl-tRNA synthetases (aaRSs) and their cog-
nate tRNAs, dynamical, geometrical changes induced dramatical rearrangements of
the electronic structures in the catalytic sites, which thus generated the productive
states in the reactions [23–25] (see Section 3). By contrast, in Section 2, full
(ab initio) QM calculations were solely employed for the analysis of the electronic
structures of a transition metal cluster found in proteins, since in most cases, such a
structure is buried in protein environments.

1.5 Energy expression for QM/MM calculation

In the framework of QM/MMmethodology, an entire system is divided into two
regions: QM region, which is described by quantum mechanics principles, and MM
region, which is described by molecular mechanics (i.e., classical mechanics). Due

Figure 1.
Hybrid QM/MM modeling of a biological macromolecular system (i.e., valyl-tRNA synthetase (ValRS) in
complex with the cognate tRNA; see Section 3).
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to the presence of the interactions between QM and MM regions, the total energy of
the entire system can be formally written as follows:

E ESð Þ ¼ E QMð Þ þ E MMð Þ þ E QM=MMð Þ (4)

The inclusion of the energy term of QM-MM interactions, E(QM/MM), enables
a more realistic description of the system, compared with isolated QM calculations.
In terms of the treatment of the electrostatic interaction between the QM and MM
regions, QM/MM methodologies are divided into two groups, subtractive and addi-
tive schemes. Herein, we discuss the advantages and disadvantages of the QM/MM
methodologies in the comparison of these two schemes.

Subtractive schemes consist of the three steps as follows: (1) an MM calculation
on the entire system, (2) a QM calculation on the QM region, and (3) an MM
calculation on the QM region. Then, QM/MM energy of the entire system can be
formulated as follows:

Esub ESð Þ ¼ EMM ESð Þ þ EQM QMð Þ � EMM QMð Þ (5)

The subscript indicates the type of calculation (QM or MM calculation), and the
region on which the calculation is performed is described in parentheses. An
advantage of the subtractive schemes is simplicity. Explicit descriptions of interac-
tions between QM and MM regions are not required. In addition, artifacts that
might be caused by using link atom schemes to cap the truncated bonds at the QM-
MM boundary (described below) can be avoided. On the other hand, disadvantages
of the subtractive schemes are the following. (1) Force fields are required for
describing the QM region that often includes ligands and intermediate structures of
enzymatic reactions; in general, reliable force fields of the molecules are not pre-
pared, and additional QM calculations should be carried out for the parameteriza-
tion every time a new system is studied. (2) The electrostatic interactions between
the QM and MM regions are described at molecular mechanics level; that is, the
interactions are calculated by the Coulomb interactions between fixed atomic
charges in the QM and MM regions. Such descriptions cannot represent polarization
of the QM region induced by the environment surrounding the QM region.

On the other hand, the additive schemes can take into account the polarization
effects. The energy expression for the additive schemes is given in Eq. (6):

Eadd ESð Þ ¼ EMM MMð Þ þ EQM QMð Þ þ EQM=MM QM;MMð Þ (6)

A characteristic feature of this scheme is the presence of the energy term with
respect to the interactions between QM and MM regions, described as follows:

EQM=MM QM;MMð Þ ¼ Eelec
QM=MM QM;MMð Þ

þ Ebonded
QM=MM QM;MMð Þ þ EvdW

QM=MM QM;MMð Þ
(7)

To calculate electrostatic interactions, that is, the first term in the left side of
Eq. (7), one-electron integrals in the QM Hamiltonian incorporating MM partial
charges can be used.
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described in this chapter, such examinations were actually performed, and thereby,
the B3LYP functional was adopted.

1.4 Hybrid QM/MM calculation scheme

In 1976, Warshel and Levitt [7] developed a QM/MM method, in which QM
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(ab initio) QM calculations were solely employed for the analysis of the electronic
structures of a transition metal cluster found in proteins, since in most cases, such a
structure is buried in protein environments.
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to the presence of the interactions between QM and MM regions, the total energy of
the entire system can be formally written as follows:

E ESð Þ ¼ E QMð Þ þ E MMð Þ þ E QM=MMð Þ (4)

The inclusion of the energy term of QM-MM interactions, E(QM/MM), enables
a more realistic description of the system, compared with isolated QM calculations.
In terms of the treatment of the electrostatic interaction between the QM and MM
regions, QM/MM methodologies are divided into two groups, subtractive and addi-
tive schemes. Herein, we discuss the advantages and disadvantages of the QM/MM
methodologies in the comparison of these two schemes.

Subtractive schemes consist of the three steps as follows: (1) an MM calculation
on the entire system, (2) a QM calculation on the QM region, and (3) an MM
calculation on the QM region. Then, QM/MM energy of the entire system can be
formulated as follows:

Esub ESð Þ ¼ EMM ESð Þ þ EQM QMð Þ � EMM QMð Þ (5)

The subscript indicates the type of calculation (QM or MM calculation), and the
region on which the calculation is performed is described in parentheses. An
advantage of the subtractive schemes is simplicity. Explicit descriptions of interac-
tions between QM and MM regions are not required. In addition, artifacts that
might be caused by using link atom schemes to cap the truncated bonds at the QM-
MM boundary (described below) can be avoided. On the other hand, disadvantages
of the subtractive schemes are the following. (1) Force fields are required for
describing the QM region that often includes ligands and intermediate structures of
enzymatic reactions; in general, reliable force fields of the molecules are not pre-
pared, and additional QM calculations should be carried out for the parameteriza-
tion every time a new system is studied. (2) The electrostatic interactions between
the QM and MM regions are described at molecular mechanics level; that is, the
interactions are calculated by the Coulomb interactions between fixed atomic
charges in the QM and MM regions. Such descriptions cannot represent polarization
of the QM region induced by the environment surrounding the QM region.

On the other hand, the additive schemes can take into account the polarization
effects. The energy expression for the additive schemes is given in Eq. (6):

Eadd ESð Þ ¼ EMM MMð Þ þ EQM QMð Þ þ EQM=MM QM;MMð Þ (6)

A characteristic feature of this scheme is the presence of the energy term with
respect to the interactions between QM and MM regions, described as follows:

EQM=MM QM;MMð Þ ¼ Eelec
QM=MM QM;MMð Þ

þ Ebonded
QM=MM QM;MMð Þ þ EvdW
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(7)

To calculate electrostatic interactions, that is, the first term in the left side of
Eq. (7), one-electron integrals in the QM Hamiltonian incorporating MM partial
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The symbols qj are the MM partial charges located at Rj. Qk are the nuclear
charges of the QM atoms at Rk, and ri represents electron positions. N, M, and L
represent number of electrons, MM atoms to be incorporated into the one-electron
integrals, and QM atoms, respectively. Using the additive scheme, the electronic
structures of the QM region are affected by the charge distribution of the environ-
ment. An advanced approach is to consider polarization of the MM region by the
QM region (i.e., to allow the partial charges to be changed according to changes in
the electronic structure of the QM region). However, polarizable force fields with
broader applications have not yet emerged, while many efforts to account for the
polarization effects were made [26, 27].

2. Ab initio QM analysis of electron transfer (ET) mechanisms in
hydrogenase

2.1 [NiFe] hydrogenase

Hydrogenase is an enzyme that can catalyze dihydrogen (H2) to water molecules
and its reverse process [28]. Due to the reversible oxidation properties in the H2

catalysis, hydrogenase has been focused in biotechnological devices, such as gener-
ation of H2 from solar energy [29]. However, most [NiFe] hydrogenases, which are
classified as standard hydrogenase, are sensitive to the explosion of the O2; that is,
their activities decrease in an aerobic condition. By contrast, some hydrogenases
preserve their activities even in the presence of O2, which are referred to as O2-
tolerance.

Herein, we focus on membrane-bound [NiFe]-hydrogenases (MBHs), which are
O2-tolerant hydrogenases. The 3D structures and active sites of MBHs are very
similar to those of the standard hydrogenases except for the transition metal (iron)
binding site that are located in the proximity of the catalytic center where Ni and Fe
are bound, which are referred to as the proximal and [NiFe] active clusters, respec-
tively (Figure 2).

Although the mechanisms of the O2-tolerance still remained to be resolved, the
structural differences of the proximal clusters between MBHs and the standard
hydrogenases were suggested to be responsible for the O2-tolerance mechanisms.
More specifically, the proximal cluster of the standard hydrogenase contains
[4Fe-4S]-4Cys cluster, while that of MBH contains [4Fe-3S]-6Cys cluster
(Figure 2). In fact, two cysteine residues in MBH are replaced with glycine (Gly)
residues in the standard [NiFe]-hydrogenases.

In addition, for the proximal cluster of MBH, three charge states have been
reported; that is, the reduced, oxidized, and superoxidized states. Moreover, the 3D
structure of the proximal cluster in MBH is also changed depending on those redox
states. Moreover, combined crystallographic and spectroscopic analyses have
recently suggested that a hydroxyl ion (OH�) was attached to a Fe ion in the
superoxidized states of the proximal cluster in Ralstonia eutropha MBH [30]. How-
ever, its functional role has still remained to be clarified.

In this section, we first introduce the way of how we investigated the electronic
structures of the proximal cluster of Ralstonia eutropha MBH. Herein, systematic
exploration of spin combinations of the proximal cluster was essential to obtain the
reliable calculation data. For the calculation models, we constructed two structural
models of the proximal cluster in the presence and absence of the hydroxyl ion and
compared their detailed electronic structures, to reveal the functional role of the
hydroxyl ion. To evaluate the total energy of various spin states and the electronic
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structures of the optimum energy states in the presence and absence of the hydroxyl
ion, we employed full (ab initio) QM calculations with the use of the B3LYP func-
tional as mentioned above (see Section 1.3).

2.2 Exploration of spin assignments

To build structural models, we employed the atomic coordinates of the proximal
cluster in the superoxidized state of the crystal structure of Ralstonia eutropha MBH
(PDB ID: 4IUD). Our computation models included the iron-sulfur cluster (i.e.,

Figure 2.
Stereoview of the 3D structures of the entire structure (A) and proximal cluster (B) of Ralstonia eutropha
MBH, and schematic representation of model 2 (C). © Kim et al. [31].
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classified as standard hydrogenase, are sensitive to the explosion of the O2; that is,
their activities decrease in an aerobic condition. By contrast, some hydrogenases
preserve their activities even in the presence of O2, which are referred to as O2-
tolerance.

Herein, we focus on membrane-bound [NiFe]-hydrogenases (MBHs), which are
O2-tolerant hydrogenases. The 3D structures and active sites of MBHs are very
similar to those of the standard hydrogenases except for the transition metal (iron)
binding site that are located in the proximity of the catalytic center where Ni and Fe
are bound, which are referred to as the proximal and [NiFe] active clusters, respec-
tively (Figure 2).

Although the mechanisms of the O2-tolerance still remained to be resolved, the
structural differences of the proximal clusters between MBHs and the standard
hydrogenases were suggested to be responsible for the O2-tolerance mechanisms.
More specifically, the proximal cluster of the standard hydrogenase contains
[4Fe-4S]-4Cys cluster, while that of MBH contains [4Fe-3S]-6Cys cluster
(Figure 2). In fact, two cysteine residues in MBH are replaced with glycine (Gly)
residues in the standard [NiFe]-hydrogenases.

In addition, for the proximal cluster of MBH, three charge states have been
reported; that is, the reduced, oxidized, and superoxidized states. Moreover, the 3D
structure of the proximal cluster in MBH is also changed depending on those redox
states. Moreover, combined crystallographic and spectroscopic analyses have
recently suggested that a hydroxyl ion (OH�) was attached to a Fe ion in the
superoxidized states of the proximal cluster in Ralstonia eutropha MBH [30]. How-
ever, its functional role has still remained to be clarified.

In this section, we first introduce the way of how we investigated the electronic
structures of the proximal cluster of Ralstonia eutropha MBH. Herein, systematic
exploration of spin combinations of the proximal cluster was essential to obtain the
reliable calculation data. For the calculation models, we constructed two structural
models of the proximal cluster in the presence and absence of the hydroxyl ion and
compared their detailed electronic structures, to reveal the functional role of the
hydroxyl ion. To evaluate the total energy of various spin states and the electronic
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structures of the optimum energy states in the presence and absence of the hydroxyl
ion, we employed full (ab initio) QM calculations with the use of the B3LYP func-
tional as mentioned above (see Section 1.3).

2.2 Exploration of spin assignments

To build structural models, we employed the atomic coordinates of the proximal
cluster in the superoxidized state of the crystal structure of Ralstonia eutropha MBH
(PDB ID: 4IUD). Our computation models included the iron-sulfur cluster (i.e.,

Figure 2.
Stereoview of the 3D structures of the entire structure (A) and proximal cluster (B) of Ralstonia eutropha
MBH, and schematic representation of model 2 (C). © Kim et al. [31].
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[4Fe-3S]) and six Fe-coordinated cysteine (Cys) residues (i.e., Cys17, Cys19,
Cys20, Cys120, Cys115, and Cys149). Moreover, we also included three amino acid
residues (i.e., Ser21, Glu76, and His229), two crystal water molecules, and OH� ion,
all of which are coordinated to the iron-sulfur cluster.

Six amino acid residues (Cys17, Cys115, Cys120, Cys149, Glu76, and His229)
were truncated by Cα atoms with the attachment of methyl groups (▬CH3). As
mentioned in the last section, we constructed another similar model that did not
include the OH� ion to reveal its effects, and thus 103 and 101 atoms were included
in our structural models. These are referred to as the original (model 2) and
Δ(OH�) (model 1) models, respectively (Figure 2).

Spectroscopic experiments elucidated the formal charge and total spin of the
[4Fe-3S] cluster in the superoxidized state as +5 and 1/2, respectively [32]. For each
of the iron and sulfur ions in the [4Fe-3S] proximal cluster, we set the formal charge
as Fe2+ or Fe3+, and S2�, as found in the previous study [32]. Thus, the core consists
of three Fe3+, one Fe2+, and 3S2� ions.

Then, we constructed simple small fragmental models that were extracted from
the 3D structure of the proximal cluster core: each of three Fe ions labeled as Fe2,
Fe3, and Fe4 form a tetrahedral structure in the [4Fe-3S] proximal cluster, while
the other Fe ion labeled as Fe1 form bipyramidal structures together with SCys19,
SCys17, S1, (O atom of the hydroxyl ion), and S2 atoms (Figure 2).

Thus, we built small models including only the core atoms (i.e., Fe1, SCys19,
SCys17, S1, and S2) in the presence and absence of the OH� and evaluated the total
energy values of the models. The analysis revealed that the optimum spin states
with the minimum total energies were composed of the high spin states of Fe ions,
which is consistent with the previous experimental data [33].

Herein, to specify the spin assignments of the [4Fe-3S] cluster, we represent
them employing the nomenclature, BSij; that is, BS is an abbreviation of the broken
symmetry state, and i and j indicate the (serial) numbers of Fe ions, as follows. Due
to the two constraints, that is, (1) Fe ions take the high spin states as found above,
and (2) the total spin sum is 1/2 (experimental data), the possible spin combinations
of Fe ions are deduced as 5/2, �4/2, and � 5/2. We adopt the indices i and j that
should be corresponding to the spin states of �4/2 and �5/2 (of Fe), respectively
[34]. For example, BS12 represents that spin of Fe1 and Fe2 are assigned to the �4/2
and �5/2, respectively, and thus, 5/2 spin state is assigned to Fe3 and Fe4. Thus,
BS12 represents (Fe1, Fe2, Fe3, Fe4) = (�4/2, �5/2, +5/2, +5/2).

Based on these considerations, we found that 12 spin assignments are possible
for each structural model, and thus, we performed 24 QM calculations, to identify
the optimal spin states of the [4Fe-3S] proximal cluster in the presence and absence
of the hydroxyl ion. We employed the Gaussian09 package for all QM calculations
with the B3LYP functional [3, 35]. For the [4Fe-3S] core and atoms that are coordi-
nated to the Fe ions, the triple-ζ valence polarized (TZVP) basis set [36, 37] was
adopted, and for the other atoms, the 6-311G** basis set [38] was employed. We
performed geometry optimization with all hydrogen atoms being movable.

As a result of the analysis, we found that the total energy of BS12, BS21, BS13,
and BS31 was smaller than the other states in model 1 and that the total energy of
BS12, BS21, BS34, and BS43 was lower than the other states in model 2. Thus, we
indicated that the favorable spin assignments were depending on the presence and
absence of hydroxyl ion in the proximal cluster.

Note here that in previous studies employing DFT calculations and the simple
iron-sulfur clusters, such as [2Fe2S], [3Fe4S], and [4Fe4S], BSij and BSji were
shown to be identical [39, 40]. However, this equivalence of BSij and BSji was not
satisfied in the present case, since the [4Fe-3S] proximal cluster in the MBH is
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distorted, compared with the simple Fe-S clusters that were analyzed in the previ-
ous studies. Moreover, the attachment of the hydroxyl ion (model 2) induced the
distinct electronic structures when we compared with those of model 1 and the
standard iron-sulfur clusters. Thus, due to the distorted geometrical structure and
attachment of the hydroxyl ion, the equivalence of BSij and BSji cannot be assured
in the present case. In fact, BS34 and BS43 of models 1 and 2 were definitely
different in the total energy by 7.78 and 1.77 kcal/mol, respectively (here, the
optimum total energy is set to 0 kcal/mol).

In this manner, we determined the optimal spin states of the proximal cluster of
the MBH in the presence and absence of the hydroxyl ion, as the lowest energy
states, that is, BS12 and BS34 of models 1 and 2, respectively. In the subsequent
part, we describe the electronic structures of these spin states.

2.3 Functional role of OH�

In the presence of O2, the inactive form is induced with respect to the [NiFe]
catalytic site of MBHs (i.e., the Ni-B state). For the reactivation of the catalysis, the
[NiFe] active site is required to be changed to another state (i.e., the Ni-SI state)
[41]. Two recovery mechanisms have been suggested up to date. First, Volbeda
et al. [42] suggested that formation of a dimer enhanced the reactivation of MBHs;
that is, one that is inactivated can be recovered by the other that is activated in the
dimer. In this mechanism, at least two electrons should be transferred from the
activated MBH to the inactivated MBH, and then the received electrons are trans-
ferred through the distal, medial, proximal clusters, and the [NiFe] active site [42].

In the second mechanism suggested by Kurkin et al. [43], the reduction of the
[NiFe] active site in the presence of H2 reactivates the inactive MBH, although the
process requires a few seconds (note here that the O2-sensitive hydrogenases such
as the standard [NiFe] hydrogenase require over 1 h to be reactivated). In this
reactivation process, H2 cleavage reaction induces the Ni-SI state from the Ni-B
state of the [NiFe] active site, and four electrons should be transferred from the
[NiFe] active site to the proximal and medial clusters [43]. Notably, the directions
of the electron transfers (ETs) are opposing between these two mechanisms that
have been suggested so far.

To describe the differences of the electronic structures of the proximal cluster in
the presence (model 2) and absence (model 1) of the hydroxyl ion [31], we focus on
the lowest unoccupied molecular orbital (LUMO) here, since LUMO could be
closely related to the ET, which is required to occur in both reactivation mecha-
nisms as mentioned above. In fact, comparison of the LUMOs of models 1 and 2 led
us to identify the effects of the hydroxyl ion on the LUMOs: In the absence of the
hydroxyl ions (model 1), the LUMO was localized on Fe4 and SCys20, whereas in the
presence of the hydroxyl ion (model 2), the LUMO was delocalized on SCys17, SCys19,
SCys20, NCys20, the hydroxyl ion, Fe1, Fe2, and Fe4 (Figure 3A and B).

To further approach the substantial meanings of differences found in the
calculated electronic structures, we also investigated the ET pathways by
adopting an empirical simulation methodology, which can identify possible ET
pathways by minimizing the penalties of the steps mediated by covalent bonds,
hydrogen bonds, and spaces [44, 45]. Based on the aforementioned two ET pro-
cesses, which have been suggested so far, that is, (1) the medial to proximal clusters
and (2) the [NiFe] active site to proximal cluster, we examined the validity of these
two ET pathways.

As a result of the analysis, we revealed that the optimal ET pathways were
significantly overlapped with the delocalized LUMOs of model 2, which means that
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[4Fe-3S]) and six Fe-coordinated cysteine (Cys) residues (i.e., Cys17, Cys19,
Cys20, Cys120, Cys115, and Cys149). Moreover, we also included three amino acid
residues (i.e., Ser21, Glu76, and His229), two crystal water molecules, and OH� ion,
all of which are coordinated to the iron-sulfur cluster.

Six amino acid residues (Cys17, Cys115, Cys120, Cys149, Glu76, and His229)
were truncated by Cα atoms with the attachment of methyl groups (▬CH3). As
mentioned in the last section, we constructed another similar model that did not
include the OH� ion to reveal its effects, and thus 103 and 101 atoms were included
in our structural models. These are referred to as the original (model 2) and
Δ(OH�) (model 1) models, respectively (Figure 2).

Spectroscopic experiments elucidated the formal charge and total spin of the
[4Fe-3S] cluster in the superoxidized state as +5 and 1/2, respectively [32]. For each
of the iron and sulfur ions in the [4Fe-3S] proximal cluster, we set the formal charge
as Fe2+ or Fe3+, and S2�, as found in the previous study [32]. Thus, the core consists
of three Fe3+, one Fe2+, and 3S2� ions.

Then, we constructed simple small fragmental models that were extracted from
the 3D structure of the proximal cluster core: each of three Fe ions labeled as Fe2,
Fe3, and Fe4 form a tetrahedral structure in the [4Fe-3S] proximal cluster, while
the other Fe ion labeled as Fe1 form bipyramidal structures together with SCys19,
SCys17, S1, (O atom of the hydroxyl ion), and S2 atoms (Figure 2).

Thus, we built small models including only the core atoms (i.e., Fe1, SCys19,
SCys17, S1, and S2) in the presence and absence of the OH� and evaluated the total
energy values of the models. The analysis revealed that the optimum spin states
with the minimum total energies were composed of the high spin states of Fe ions,
which is consistent with the previous experimental data [33].

Herein, to specify the spin assignments of the [4Fe-3S] cluster, we represent
them employing the nomenclature, BSij; that is, BS is an abbreviation of the broken
symmetry state, and i and j indicate the (serial) numbers of Fe ions, as follows. Due
to the two constraints, that is, (1) Fe ions take the high spin states as found above,
and (2) the total spin sum is 1/2 (experimental data), the possible spin combinations
of Fe ions are deduced as 5/2, �4/2, and � 5/2. We adopt the indices i and j that
should be corresponding to the spin states of �4/2 and �5/2 (of Fe), respectively
[34]. For example, BS12 represents that spin of Fe1 and Fe2 are assigned to the �4/2
and �5/2, respectively, and thus, 5/2 spin state is assigned to Fe3 and Fe4. Thus,
BS12 represents (Fe1, Fe2, Fe3, Fe4) = (�4/2, �5/2, +5/2, +5/2).

Based on these considerations, we found that 12 spin assignments are possible
for each structural model, and thus, we performed 24 QM calculations, to identify
the optimal spin states of the [4Fe-3S] proximal cluster in the presence and absence
of the hydroxyl ion. We employed the Gaussian09 package for all QM calculations
with the B3LYP functional [3, 35]. For the [4Fe-3S] core and atoms that are coordi-
nated to the Fe ions, the triple-ζ valence polarized (TZVP) basis set [36, 37] was
adopted, and for the other atoms, the 6-311G** basis set [38] was employed. We
performed geometry optimization with all hydrogen atoms being movable.

As a result of the analysis, we found that the total energy of BS12, BS21, BS13,
and BS31 was smaller than the other states in model 1 and that the total energy of
BS12, BS21, BS34, and BS43 was lower than the other states in model 2. Thus, we
indicated that the favorable spin assignments were depending on the presence and
absence of hydroxyl ion in the proximal cluster.

Note here that in previous studies employing DFT calculations and the simple
iron-sulfur clusters, such as [2Fe2S], [3Fe4S], and [4Fe4S], BSij and BSji were
shown to be identical [39, 40]. However, this equivalence of BSij and BSji was not
satisfied in the present case, since the [4Fe-3S] proximal cluster in the MBH is
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distorted, compared with the simple Fe-S clusters that were analyzed in the previ-
ous studies. Moreover, the attachment of the hydroxyl ion (model 2) induced the
distinct electronic structures when we compared with those of model 1 and the
standard iron-sulfur clusters. Thus, due to the distorted geometrical structure and
attachment of the hydroxyl ion, the equivalence of BSij and BSji cannot be assured
in the present case. In fact, BS34 and BS43 of models 1 and 2 were definitely
different in the total energy by 7.78 and 1.77 kcal/mol, respectively (here, the
optimum total energy is set to 0 kcal/mol).

In this manner, we determined the optimal spin states of the proximal cluster of
the MBH in the presence and absence of the hydroxyl ion, as the lowest energy
states, that is, BS12 and BS34 of models 1 and 2, respectively. In the subsequent
part, we describe the electronic structures of these spin states.

2.3 Functional role of OH�

In the presence of O2, the inactive form is induced with respect to the [NiFe]
catalytic site of MBHs (i.e., the Ni-B state). For the reactivation of the catalysis, the
[NiFe] active site is required to be changed to another state (i.e., the Ni-SI state)
[41]. Two recovery mechanisms have been suggested up to date. First, Volbeda
et al. [42] suggested that formation of a dimer enhanced the reactivation of MBHs;
that is, one that is inactivated can be recovered by the other that is activated in the
dimer. In this mechanism, at least two electrons should be transferred from the
activated MBH to the inactivated MBH, and then the received electrons are trans-
ferred through the distal, medial, proximal clusters, and the [NiFe] active site [42].

In the second mechanism suggested by Kurkin et al. [43], the reduction of the
[NiFe] active site in the presence of H2 reactivates the inactive MBH, although the
process requires a few seconds (note here that the O2-sensitive hydrogenases such
as the standard [NiFe] hydrogenase require over 1 h to be reactivated). In this
reactivation process, H2 cleavage reaction induces the Ni-SI state from the Ni-B
state of the [NiFe] active site, and four electrons should be transferred from the
[NiFe] active site to the proximal and medial clusters [43]. Notably, the directions
of the electron transfers (ETs) are opposing between these two mechanisms that
have been suggested so far.

To describe the differences of the electronic structures of the proximal cluster in
the presence (model 2) and absence (model 1) of the hydroxyl ion [31], we focus on
the lowest unoccupied molecular orbital (LUMO) here, since LUMO could be
closely related to the ET, which is required to occur in both reactivation mecha-
nisms as mentioned above. In fact, comparison of the LUMOs of models 1 and 2 led
us to identify the effects of the hydroxyl ion on the LUMOs: In the absence of the
hydroxyl ions (model 1), the LUMO was localized on Fe4 and SCys20, whereas in the
presence of the hydroxyl ion (model 2), the LUMO was delocalized on SCys17, SCys19,
SCys20, NCys20, the hydroxyl ion, Fe1, Fe2, and Fe4 (Figure 3A and B).

To further approach the substantial meanings of differences found in the
calculated electronic structures, we also investigated the ET pathways by
adopting an empirical simulation methodology, which can identify possible ET
pathways by minimizing the penalties of the steps mediated by covalent bonds,
hydrogen bonds, and spaces [44, 45]. Based on the aforementioned two ET pro-
cesses, which have been suggested so far, that is, (1) the medial to proximal clusters
and (2) the [NiFe] active site to proximal cluster, we examined the validity of these
two ET pathways.

As a result of the analysis, we revealed that the optimal ET pathways were
significantly overlapped with the delocalized LUMOs of model 2, which means that
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the attachment of the hydroxyl ion to Fe1 may promote the ETs (Figure 3C). This
also means that the attachment of the hydroxyl ion creates the ET pathways in the
proximal cluster by inducing the electron delocalization of the LUMO, thus forming

Figure 3.
Stereoview of the LUMOs in terms of the optimal spin states of models 1 (BS12) (A) and 2 (BS34) (B). In
model 1 (i.e., Δ(OH�)), the LUMOs are localized on Fe4 and SCys20 atoms. By contrast, in model 2 (i.e.,
involving OH�), the LUMO is distributed and thus principally composed of SCys17, SCys19, SCys20, NCys20, the
hydroxyl ion, Fe1, Fe2, and Fe4. To investigate the relationships between the effects of the hydroxyl ion and the
ET mechanisms, the plausible ET pathways obtained by an empirical method (i.e., pathway) to search for the
ET pathways (C) are compared with the distribution of the LUMO of model 2, which is identical to that shown
in panel (B) (note that the directions for rendering of the structures are identical in the panels (A) and (B),
while those are different between the panels (A)/(B) and (C)). The blue line with an arrow shows the ET
pathway from the [NiFe] active site to the proximal cluster, and the red line with an arrow shows the ET
pathway from the medial to proximal clusters. © Kim et al., [31].
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the SCys17-HO�-SCys19-Fe4 segmental electronic field, which is a main component of
the delocalized LUMO in the presence of the OH�.

The origin and formation mechanisms of the delocalized LUMO are a very
interesting issue. However, the limitation of space here does not allow us to describe
it, and so for the detailed descriptions on this issue, see text and Figure 6(a) in our
report [31].

To the best of our knowledge, this is the first work to have revealed the mecha-
nisms of creation of the ET pathways in biological macromolecular systems [31].
Note here that a tiny molecular species, that is, OH�, is a trigger to generate the ET
pathways. Thus, organisms regulate the functions employing such a subtle factor
but thereby dramatically change their physiological status. The present achieve-
ments could further be a solid basis toward sophisticated rational design of novel
catalysts, reactions, and functional materials, through regulations of the elaborately
constituted orbital-based electronic structures.

3. Hybrid ab initio QM/MM molecular dynamics simulation

In the last section, we presented the effects of the attachment of a hydroxyl
ligand on the electronic structure of the proximal cluster in the MBH and also
showed that the effects could be closely related to the ET and recovery from the
inactive form of the [NiFe] active site (i.e., the O2-tolerance of the MBH). Thus, the
tiny species dramatically changes the electronic structures of the enzymes, as
discussed above.

In this section, we demonstrate that electronic structures are dynamically
changed as catalytic reactions proceed. In order to investigate such dynamical
properties of electronic structures in biological macromolecular systems, we built a
hybrid ab initio QM/MM molecular dynamics (MD) calculation system on
superparallel computers. This computational system enabled us to evaluate dynam-
ical transitions of electronic structures in catalytic sites involving the environmental
structures such as protein moieties, nucleic acid (RNA and DNA) moieties, mem-
brane moieties, and solvent [17, 22, 46, 47].

We introduce editing reaction of aminoacyl-tRNA synthetase (aaRS), which
forms a protein family composed of twenty enzymes, divided into two classes, that is,
classes I and II [48]. Here, we focus on two class I aaRSs, that is, leucyl-tRNA
synthetase (LeuRS) and valyl-tRNA synthetase (ValRS). We performed hybrid ab
initio QM/MMMD simulations and thereby revealed that as the reactions proceeded,
dynamical rearrangements of molecular orbitals (MOs) occurred, which was critical
for both covalent bond formation and cleavage. We emphasize here that such dra-
matic transitions of electronic structures would be characteristic in catalytic reactions
of biological macromolecular systems, as also indicated in hydrogenase.

3.1 Aminoacyl-tRNA synthetases (aaRSs)

In the central dogma, which demonstrates the flow of the genetic information
(e.g., from gene coded in genome DNA toward protein), the adaptation between a
codon (i.e., combination of three nucleotide bases) and an amino acid (aa) is
required in the protein biosynthesis (i.e., translation), while synthesis of messenger
RNA (mRNA) (i.e., transcription) occurs based on the rules of base pairing (e.g. the
Watson-Crick and wobble base pairs). Thereby, base sequences of genes are
converted to amino acid sequences of proteins. Here, aaRSs play a critical role by
correctly recognizing and attaching both specific amino acid and cognate tRNA,
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the SCys17-HO�-SCys19-Fe4 segmental electronic field, which is a main component of
the delocalized LUMO in the presence of the OH�.

The origin and formation mechanisms of the delocalized LUMO are a very
interesting issue. However, the limitation of space here does not allow us to describe
it, and so for the detailed descriptions on this issue, see text and Figure 6(a) in our
report [31].

To the best of our knowledge, this is the first work to have revealed the mecha-
nisms of creation of the ET pathways in biological macromolecular systems [31].
Note here that a tiny molecular species, that is, OH�, is a trigger to generate the ET
pathways. Thus, organisms regulate the functions employing such a subtle factor
but thereby dramatically change their physiological status. The present achieve-
ments could further be a solid basis toward sophisticated rational design of novel
catalysts, reactions, and functional materials, through regulations of the elaborately
constituted orbital-based electronic structures.

3. Hybrid ab initio QM/MM molecular dynamics simulation

In the last section, we presented the effects of the attachment of a hydroxyl
ligand on the electronic structure of the proximal cluster in the MBH and also
showed that the effects could be closely related to the ET and recovery from the
inactive form of the [NiFe] active site (i.e., the O2-tolerance of the MBH). Thus, the
tiny species dramatically changes the electronic structures of the enzymes, as
discussed above.

In this section, we demonstrate that electronic structures are dynamically
changed as catalytic reactions proceed. In order to investigate such dynamical
properties of electronic structures in biological macromolecular systems, we built a
hybrid ab initio QM/MM molecular dynamics (MD) calculation system on
superparallel computers. This computational system enabled us to evaluate dynam-
ical transitions of electronic structures in catalytic sites involving the environmental
structures such as protein moieties, nucleic acid (RNA and DNA) moieties, mem-
brane moieties, and solvent [17, 22, 46, 47].

We introduce editing reaction of aminoacyl-tRNA synthetase (aaRS), which
forms a protein family composed of twenty enzymes, divided into two classes, that is,
classes I and II [48]. Here, we focus on two class I aaRSs, that is, leucyl-tRNA
synthetase (LeuRS) and valyl-tRNA synthetase (ValRS). We performed hybrid ab
initio QM/MMMD simulations and thereby revealed that as the reactions proceeded,
dynamical rearrangements of molecular orbitals (MOs) occurred, which was critical
for both covalent bond formation and cleavage. We emphasize here that such dra-
matic transitions of electronic structures would be characteristic in catalytic reactions
of biological macromolecular systems, as also indicated in hydrogenase.

3.1 Aminoacyl-tRNA synthetases (aaRSs)

In the central dogma, which demonstrates the flow of the genetic information
(e.g., from gene coded in genome DNA toward protein), the adaptation between a
codon (i.e., combination of three nucleotide bases) and an amino acid (aa) is
required in the protein biosynthesis (i.e., translation), while synthesis of messenger
RNA (mRNA) (i.e., transcription) occurs based on the rules of base pairing (e.g. the
Watson-Crick and wobble base pairs). Thereby, base sequences of genes are
converted to amino acid sequences of proteins. Here, aaRSs play a critical role by
correctly recognizing and attaching both specific amino acid and cognate tRNA,
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thereby forming aminoacyl-tRNA (i.e., aa-tRNAaa). This crucial catalytic reaction is
referred to as aminoacylation.

If aaRSs misattach noncognate amino acids (or tRNAs) to the specific tRNAs (or
amino acids), then the noncognate amino acids are incorporated into the protein as
an incorrect amino acid residue, which is different from the correct one coded in the
gene, since the tRNA recognizes its cognate codon by making base pairs between
the codon (in mRNA) and the anticodon moiety of the tRNA. It should be noted
here that only aaRSs determine the relationship between amino acids and codons
for biosynthesis of proteins.

Based on the 3D structures, aaRSs are classified into two classes, that is, classes I
and II [49, 50]. More specifically, catalytic cores of class I aaRSs contain the classical
nucleotide-binding fold (i.e., the Rossmann fold). By contrast, the active sites of
class II aaRSs possess an antiparallel β sheet flanked by α helices, which is the
architecture completely different from the Rossmann fold. Based on the structural
similarity of the catalytic and noncatalytic domains, each class is further classified
into three subclasses a, b, and c [51, 52].

3.2 Editing reaction of aaRSs

As mentioned above, high translational fidelity is essential in the decoding of
genetic information from mRNA (i.e., base sequences) to protein (i.e., amino acid
sequences). Notably, the aminoacylation reaction of aaRSs consists of two steps;
that is, (1) activation of the amino acid yielding aminoacyl adenylate and
(2) transfer of amino acid moiety of the aminoacyl adenylate to the 30-end of the
tRNA. However, misactivated amino acids and misaminoacylated tRNAs are gen-
erated occasionally, since some amino acids are structurally similar (e.g., leucine
(Leu), isoleucine (Ile), and valine (Val)).

To ensure the translational fidelity, some aaRSs possess editing functions to
correct such errors [53–60]. Correspondingly, two types of editing reactions are
known, that is, pre- and posttransfer editing reactions, which hydrolyze a
misactivated amino acid and misaminoacylated tRNA, respectively. Herein, we
focus on the posttransfer editing reaction, since the catalytic mechanisms were
remained to be elucidated for the last some decades.

3.3 Ab initio QM/MM MD simulation of editing reaction

For the Leu system, we constructed a structural model of LeuRS in complex with
a misaminoacylated tRNALeu (i.e., valyl-tRNALeu), where the 30-end nucleotide
(adenine 76; A76) is bound to the active site for the editing reaction in the connec-
tive polypeptide (CP) 1 domain [22] (Figure 4). Then, we performed classical MD
simulation and succeeded in identification of the nucleophilic water for the editing
reaction [23]. Employing this structural model, we performed hybrid ab initio QM/
MM MD simulations with the use of our QM/MM interface program [47] that
connects QM and MM calculation engines (i.e., GAMESS [61] and AMBER [62],
respectively).

To determine the reaction path, we employed an adiabatic mapping approach, in
which hybrid ab initio QM/MMMD simulations were performed to enhance the
conformational sampling, together with hybrid ab initio QM/MM geometry optimiza-
tion being employed to reach the potential energy surface. This scheme enabled us to
conduct more effective explorations of both conformations and electronic structures
than previous schemes that employ only geometry optimizations [63]. We assumed
some possible reaction pathways and performed hybrid ab initio QM/MMMD simu-
lation for each pathway, which provided the estimation of the energy barrier
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Figure 4.
(A) (Left) Entire 3D structure of the ValRS�thereonyl-tRNAVal complex is shown as an example of structures of
class Ia aaRSs (i.e., involving the Leu, Val, and Ile systems). (Right) Catalytic site of the editing reaction is
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depending on the reaction pathway. Thus, we determined the optimal reaction path-
way and thereby elucidated the mechanism of the editing reaction (Figure 4).

As a result of the analysis, we discovered a novel catalytic mechanism, as fol-
lows: the editing reaction was revealed to be driven by the O30 of the ribose moiety
of the 30-end nucleotide A76, which acts as the general base to activate the nucleo-
philic water. Surprisingly, the editing of the LeuRS�valyl-tRNALeu complex was
revealed to be ribozymal [63, 65, 66].

Furthermore, we found that this ribozyme reaction was enhanced by protein,
through the formation of a hydrogen bond with the catalytic core of tRNALeu. Since
the catalytic cores of the conventional protein-dependent ribozymes such as ribo-
some and group I intron [67] are purely composed of RNAs [64], this finding, that
is, direct contributions of the protein moiety on the ribozymal reaction, is novel,
and thus, we referred to the LeuRS�valyl-tRNALeu complex as a “hybrid ribozyme/
protein catalyst” (Figure 4).

A very recent experimental study conducted by Dulic et al. experimentally
showed that the defective mutation of the O30 atom (i.e., 30-OH of A76 was replaced
with 30-H) significantly reduced the activity of the Leu system (�104-fold rate
reduction) (Table 1) [68], and thus, the hybrid ribozyme/protein catalyst mecha-
nism has been reasserted by the biochemical experiments.

Can we generalize this novel, hybrid ribozyme/protein catalytic reaction mech-
anism of the LeuRS�valyl-tRNALeu complex? Considering structural similarity of
class Ia aaRSs, which involves LeuRS, valyl-tRNA synthetase (ValRS), and
isoleucyl-tRNA synthetase (IleRS), they may share a common editing mechanism
with LeuRS. However, an experimental conflict has still been left to be resolved as
follows. While the aforementioned modification of the O30 reduced the editing
reaction in the Leu system [63, 68], the identical modification was not severe in
the reduction of the editing activity with respect to the Val and Ile systems
(Table 1) [69].

To resolve this discrepancy of the experiments, we constructed a structural
model of the complex of ValRS and misaminoacylated tRNA [63] and thereby
suggested that the hybrid ribozyme/protein catalyst mechanism was also shared in
the editing reaction of the Val system [25]. Furthermore, to explain how the variant
Val system can maintain its catalytic activity (Table 1), we constructed a structural
model involving the variant tRNAVal in which the 30-OH (reactive) of A76 was

shown (stereoview). The crystal structure of the complex (1IVS) is colored yellow (for amino acid and RNA
backbones), green (for amino acid side chains), and orange (for nucleic acids). The crystal structure of the
isolated CP1 domain (1WK9) is colored light blue (for amino acid backbone) and magenta (for amino acid
side chains). (B, C) Schematic representations of fundamental reaction schemes of hybrid ribozyme/protein
catalyst (left) and their variant systems. The black circles (broken line) show the catalytic site, and the
macromolecules involving the catalysts are colored red. The mechanisms of the editing reactions in both Leu and
Val systems are revealed to be common by our recent studies: Interestingly, the editing reaction is ribozymal
together with assists of protein moiety (left panels in (B-C)), which is referred to as hybrid ribozyme/protein
catalysis [63]. The ribozymal factor (i.e., 30-OH of A76 of tRNA) activates the nucleophilic water molecule (as
represented by the red arrow), and the protein (LeuRS and ValRS) moiety promotes the catalysis (the blue
arrow) [63]. Nevertheless, in the “defective” mutated systems (i.e., replacements of the aforementioned 30-OH
with 30-H), reductions of the editing activities were experimentally revealed to be distinct. In the Leu system
(B), the editing activity significantly decreased by the mutation, whereas in the Val and Ile systems, those were
preserved. Our modeling studies elucidated that these were due to the absence and presence of compensation
mechanisms in the Leu and Val/Ile protein moieties, respectively. Actually, in our previous study, we
constructed the atomistic structural model of the Val system (i.e., the ValRS�threonyl-tRNAVal

(misaminoacylated) complex) and showed that for the Val system with a “defective” ribozymal activator of
tRNAVal, the protein (ValRS) moiety could activate the nucleophilic water molecule (the red arrow), which is
referred to as the protein enzyme (note that the definition of protein enzyme described here is different from that
employed by Cech [64]). As discussed in the text, this transition from the hybrid ribozyme/protein catalyst
toward the protein enzyme may fill a gap found in the evolutionary transition from the RNA world to the
current RNP world, which could possibly occur in primordial biological macromolecular systems. © Sakabe
et al., [25].
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replaced with the 30-H (unreactive). Based on this analysis [25], we suggested that
the editing activity of the variant Val system is maintained by an amino acid residue
of ValRS acting as the possible general base (Figure 4). More specifically, Asp276 of
ValRS can replace the functional role of 30-OH of A76 (i.e., activation of the nucle-
ophilic water).

In this manner, the hybrid ribozyme/protein catalysts are operated in both Leu
and Val systems. Moreover, this suggested that in the “defective” Val system that
contains “unreactive” ribozymal functional group (i.e., 30-OH of A76 is replaced
with 30-H), the function of a hybrid ribozyme/protein catalyst can be transferred to
a protein enzyme. This could also be related to the evolutional transition from RNA
enzymes (the RNA world) to protein enzymes (assisted by RNA) (the RNP world),
intermediated by hybrid ribozyme/protein catalysts.

We further suggested that the ribozymal mechanism that we discovered is
common in the editing reaction of various aaRS systems beyond the classes
(Table 1) [63]. In fact,Thermus thermophilus IleRS (class Ia) [77], Pyrococcus abyssi
ThrRS (class IIa) [72, 74, 75, 78], and Enterococcus faecalis ProRS (class IIa) [71]
showed the similar binding mode of the nucleophilic water in the catalytic site.
Furthermore, Kumar et al. also suggested that the editing reaction of the complex of
prolyl-tRNA synthetase (ProRS) and alanyl-tRNAPro exhibited a similar mecha-
nism, in which the 20-OH group of A76 of tRNAPro was involved in the substrate
binding and the activation of the nucleophilic water [71].

These data are summarized in Figure 4 and Table 1. In this section, we further
discuss the dynamical aspects of the electronic structures in the editing reaction of
Leu and Val systems, investigated by hybrid ab initio QM/MM MD simulations of
the LeuRS�valyl-tRNALeu and ValRS�threonyl-tRNAVal complexes, respectively.

Class Species Attached
site

Activator Reduction
rate

Reference

LeuRS Ia T.
thermophirus

O20 30-OH —

LeuRS Ia E. coli O20 Δ(30-OH)a 104-fold [68]

LeuRS
(D342A)

Ia E. coli O20 30-OH 3-fold [68]

ValRS Ia E. coli O20 Δ(30-OH)a and
D276

10-fold [69]

IleRS Ia E. coli O30 Δ(20-OH)b and
E327

5-fold [69, 70]

ProRS IIa E. coli O30 Δ(20-OH)b 103-fold [71]

ThrRS IIa E. coli O30 Δ(His73)c,d 104-fold [72, 73]

ThrRS IIa Pyrococcus
abyssi

O30 20-OH — [74, 75]

PheRS IIc E. coli O20 Δ(30-OH)a 300-fold [76]

© Sakabe et al., [25].
aΔ(30-OH) represents the replacement of 30-OH group of A76 with 30-H atom.
bΔ(20-OH) represents the replacement of 20-OH group of A76 with 20-H atom.
cE. coli ThrRS acts as a protein enzyme.
dEscherichia coli ThrRS acts as a protein enzyme (see Figure 4C).

Table 1.
Summary of the nucleophile activators and the reduction rate of hybrid ribozyme/protein catalysts (i.e., LeuRS,
ValRS, IleRS, PheRS, ProRS, Pyrococcus abyssi ThrRS, and ribosome) and a variant aaRS (D342 of E. coli
LeuRS is replaced with Ala).
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depending on the reaction pathway. Thus, we determined the optimal reaction path-
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revealed to be ribozymal [63, 65, 66].
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through the formation of a hydrogen bond with the catalytic core of tRNALeu. Since
the catalytic cores of the conventional protein-dependent ribozymes such as ribo-
some and group I intron [67] are purely composed of RNAs [64], this finding, that
is, direct contributions of the protein moiety on the ribozymal reaction, is novel,
and thus, we referred to the LeuRS�valyl-tRNALeu complex as a “hybrid ribozyme/
protein catalyst” (Figure 4).

A very recent experimental study conducted by Dulic et al. experimentally
showed that the defective mutation of the O30 atom (i.e., 30-OH of A76 was replaced
with 30-H) significantly reduced the activity of the Leu system (�104-fold rate
reduction) (Table 1) [68], and thus, the hybrid ribozyme/protein catalyst mecha-
nism has been reasserted by the biochemical experiments.

Can we generalize this novel, hybrid ribozyme/protein catalytic reaction mech-
anism of the LeuRS�valyl-tRNALeu complex? Considering structural similarity of
class Ia aaRSs, which involves LeuRS, valyl-tRNA synthetase (ValRS), and
isoleucyl-tRNA synthetase (IleRS), they may share a common editing mechanism
with LeuRS. However, an experimental conflict has still been left to be resolved as
follows. While the aforementioned modification of the O30 reduced the editing
reaction in the Leu system [63, 68], the identical modification was not severe in
the reduction of the editing activity with respect to the Val and Ile systems
(Table 1) [69].

To resolve this discrepancy of the experiments, we constructed a structural
model of the complex of ValRS and misaminoacylated tRNA [63] and thereby
suggested that the hybrid ribozyme/protein catalyst mechanism was also shared in
the editing reaction of the Val system [25]. Furthermore, to explain how the variant
Val system can maintain its catalytic activity (Table 1), we constructed a structural
model involving the variant tRNAVal in which the 30-OH (reactive) of A76 was
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macromolecules involving the catalysts are colored red. The mechanisms of the editing reactions in both Leu and
Val systems are revealed to be common by our recent studies: Interestingly, the editing reaction is ribozymal
together with assists of protein moiety (left panels in (B-C)), which is referred to as hybrid ribozyme/protein
catalysis [63]. The ribozymal factor (i.e., 30-OH of A76 of tRNA) activates the nucleophilic water molecule (as
represented by the red arrow), and the protein (LeuRS and ValRS) moiety promotes the catalysis (the blue
arrow) [63]. Nevertheless, in the “defective” mutated systems (i.e., replacements of the aforementioned 30-OH
with 30-H), reductions of the editing activities were experimentally revealed to be distinct. In the Leu system
(B), the editing activity significantly decreased by the mutation, whereas in the Val and Ile systems, those were
preserved. Our modeling studies elucidated that these were due to the absence and presence of compensation
mechanisms in the Leu and Val/Ile protein moieties, respectively. Actually, in our previous study, we
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(misaminoacylated) complex) and showed that for the Val system with a “defective” ribozymal activator of
tRNAVal, the protein (ValRS) moiety could activate the nucleophilic water molecule (the red arrow), which is
referred to as the protein enzyme (note that the definition of protein enzyme described here is different from that
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replaced with the 30-H (unreactive). Based on this analysis [25], we suggested that
the editing activity of the variant Val system is maintained by an amino acid residue
of ValRS acting as the possible general base (Figure 4). More specifically, Asp276 of
ValRS can replace the functional role of 30-OH of A76 (i.e., activation of the nucle-
ophilic water).

In this manner, the hybrid ribozyme/protein catalysts are operated in both Leu
and Val systems. Moreover, this suggested that in the “defective” Val system that
contains “unreactive” ribozymal functional group (i.e., 30-OH of A76 is replaced
with 30-H), the function of a hybrid ribozyme/protein catalyst can be transferred to
a protein enzyme. This could also be related to the evolutional transition from RNA
enzymes (the RNA world) to protein enzymes (assisted by RNA) (the RNP world),
intermediated by hybrid ribozyme/protein catalysts.

We further suggested that the ribozymal mechanism that we discovered is
common in the editing reaction of various aaRS systems beyond the classes
(Table 1) [63]. In fact,Thermus thermophilus IleRS (class Ia) [77], Pyrococcus abyssi
ThrRS (class IIa) [72, 74, 75, 78], and Enterococcus faecalis ProRS (class IIa) [71]
showed the similar binding mode of the nucleophilic water in the catalytic site.
Furthermore, Kumar et al. also suggested that the editing reaction of the complex of
prolyl-tRNA synthetase (ProRS) and alanyl-tRNAPro exhibited a similar mecha-
nism, in which the 20-OH group of A76 of tRNAPro was involved in the substrate
binding and the activation of the nucleophilic water [71].

These data are summarized in Figure 4 and Table 1. In this section, we further
discuss the dynamical aspects of the electronic structures in the editing reaction of
Leu and Val systems, investigated by hybrid ab initio QM/MM MD simulations of
the LeuRS�valyl-tRNALeu and ValRS�threonyl-tRNAVal complexes, respectively.

Class Species Attached
site

Activator Reduction
rate

Reference

LeuRS Ia T.
thermophirus

O20 30-OH —

LeuRS Ia E. coli O20 Δ(30-OH)a 104-fold [68]

LeuRS
(D342A)

Ia E. coli O20 30-OH 3-fold [68]

ValRS Ia E. coli O20 Δ(30-OH)a and
D276

10-fold [69]

IleRS Ia E. coli O30 Δ(20-OH)b and
E327

5-fold [69, 70]

ProRS IIa E. coli O30 Δ(20-OH)b 103-fold [71]

ThrRS IIa E. coli O30 Δ(His73)c,d 104-fold [72, 73]

ThrRS IIa Pyrococcus
abyssi

O30 20-OH — [74, 75]

PheRS IIc E. coli O20 Δ(30-OH)a 300-fold [76]

© Sakabe et al., [25].
aΔ(30-OH) represents the replacement of 30-OH group of A76 with 30-H atom.
bΔ(20-OH) represents the replacement of 20-OH group of A76 with 20-H atom.
cE. coli ThrRS acts as a protein enzyme.
dEscherichia coli ThrRS acts as a protein enzyme (see Figure 4C).

Table 1.
Summary of the nucleophile activators and the reduction rate of hybrid ribozyme/protein catalysts (i.e., LeuRS,
ValRS, IleRS, PheRS, ProRS, Pyrococcus abyssi ThrRS, and ribosome) and a variant aaRS (D342 of E. coli
LeuRS is replaced with Ala).
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3.4 Dynamic rearrangement of MOs in the editing reactions

For both Leu and Val systems, we suggested that the editing reactions occur in a
similar manner [25, 63]. Actually, in both systems, the reactions were shown to be
initiated by opening of the “H-gate”: The H-gate is defined by a dihedral angle,
C40–C30–O30–HO30 of A76, and its opening represents the rotation of the dihedral
angle by �100°, which thus leads to the nucleophilic attack of the water molecule.

For the Val system, employing the hybrid ab initio QM/MM calculations, we
evaluated the electronic structures for the two distinct H-gate states, that is, the
opened and closed states [25, 63]. The resultant data showed that the LUMO was
located in the C atom in both closed and opened H-gate states (Figure 5). By
contrast, the energy levels of the MOs that include the 2p orbital of oxygen atom of
the nucleophilic water (Ow) (i.e., the “reactive” MO) were different depending on
the two distinct states of the H-gate: In the opened H-gate state, we observed the
MO as HOMO�6, while in the closed H-gate state, the MO was observed as
HOMO�11, for which the energy level was much lower compared with that of the
former state.

Figure 5.
Schematic picture of the H-gate closed and H-gate open states (A). Stereoview of LUMO and molecular orbitals
(MOs) of the catalytic site including the nucleophilic water molecule for H-gate closed and H-gate opened
conformations. HOMO-11 for H-gate closed and HOMO-6 for H-gate opened conformations. The ribose and
threonine moieties of the substrate, Val215, Asp276, Asp279, and the three water molecules are included as the
QM region. (B) Energy diagrams concerning the LUMOs and HOMO-11 (HOMO-6) in H-gate closed state
(H-gate opened state). © Sakabe et al. [25].
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In this manner, as the reaction proceeds, the energy level of the reactive MO
seems to go up (Figure 5). Thus, if the nucleophilic attack would be achieved, the
energy level of the reactive MO in the nucleophilic water could be raised up to that
of the HOMO, which would thus result in hybridization of the HOMO and LUMO.
In fact, the similar dynamical rearrangements in the electronic structure were also
observed in our hybrid ab initio QM/MM calculations of the editing reaction occur-
ring in the LeuRS�valyl-tRNALeu complex [65, 66].

For the Leu system, we further investigated the overall mechanism of the editing
reaction employing the hybrid ab initio QM/MM MD simulations. Based on the
orbital analysis of the trajectory of the hybrid MD simulations, we found more
detailed dynamical properties of the electronic structures (Figure 6): In the initial
stage of the editing reaction, the HOMO did not contain the 2p orbital of the Ow

atom of the nucleophilic water, even though it attacked the C atom, which seemed
to be inconsistent with the frontier orbital theory (FOT) [79].

However, when H-gate was open (state 3), the nucleophilic water approached
the C atom, and the energy level of an MO that most contained the 2p orbital of Ow

was elevated to HOMO�9 from the HOMO�14 observed in state 1. This elevation
decreased the energy difference between the LUMO, which contained the reactive
moiety (i.e., atomic orbitals of the carbonyl group of the substrate and the O20 atom

Figure 6.
Schematic representation of the reaction states of editing mechanism of LeuRS system is shown in (A). Energy
diagram of the editing (B) and molecular orbitals (C) of states 1, 4, 5, 6, and 7 are shown.© Kang et al., [66].
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of A76), and the MO involving the 2p orbital of Ow, from 7.0 eV to 6.2 eV. In state 4,
this energy gap further decreased to 5.4 eV, and the MO involving 2p orbital of Ow

became the HOMO, while the LUMO remained to be localized on the C atom.
In this stage, both HOMO and LUMO were the reactive MOs responsible for the

catalytic reaction, and thus, the electronic structure was fully consistent with the
FOT. In fact, the Ow�C covalent bond was formed by the interaction between the
2p orbital of Ow (HOMO) and the 2p orbital of C (LUMO). Here, we referred to
such dynamical rearrangements of the electronic structure as the dynamical induc-
tion of the reactive MOs for the HOMO and LUMO, that is, DIRH and DIRL,
respectively [65, 66].

In our preliminary studies of other biological macromolecular systems, we have
also observed the DIRH and DIRL mechanisms (unpublished data). Future theoret-
ical and experimental analyses are amenable to examine the generality of this
picture on dynamical rearrangements of electronic structures occurring in the reac-
tion cycles of biological macromolecular systems. In addition, aaRSs are closely
relevant to the molecular evolution and the origin of life, which should thus be
considered from ab initio QM calculations. So, the present achievements are also
related to those evolutional issues, although we do not describe them herein due to
space limitation (for more details, see the literature [25]).

4. Conclusions

In this chapter, we introduced investigations employing ab initio QM calcula-
tions and hybrid ab initio QM/MM MD calculations. For the latter, a catalytic
reaction site is considered at ab initio QM level, and the other parts, such as the
remainder in protein structures and solvent water molecules, are considered at MM
(i.e., classical) level, and thus, we can consider the entire system with reasonable
computational costs, to evaluate the electronic structure of the catalytic active site.
In both analyses of biological macromolecular systems, we revealed the significant
reconstitutions of the electronic structures in the reaction cycles.

In the first example, we demonstrated the detailed electronic structures of a
crucial functional site, the proximal cluster, in the MBH, which contains multiple
transition metals as [4Fe-3S] and is closely related to the ET. We analyzed the
effects of the OH� ion that was experimentally identified in the proximal cluster, to
the ET mechanisms. Thereby, we revealed that the OH� ion created the ET path-
ways by inducing the delocalization of the LUMO of the proximal cluster.

This means that tiny molecular species (e.g., OH�) can induce dramatic
rearrangements of the electronic structure in the biological macromolecular sys-
tems, which thus generates the ET pathways. This is the first work to point out the
mechanisms to create the ET pathways in biological macromolecular systems. In
this manner, organisms regulate the biological functions employing such a subtle
factor but thereby dramatically change their physiological status.

In the second example, we investigated dynamical changes of the electronic
structures in the catalytic reaction cycles of the LeuRS�valyl-tRNALeu and ValRS�-
threonyl-tRNAVal complexes, employing our hybrid ab initio QM/MM MD calcula-
tion system, which is a state-of-the-art theoretical technique to elucidate the
functional mechanisms of biological macromolecular systems. As a consequence,
we revealed that the dynamical geometrical changes induced the dramatic
rearrangemets of the electronic structures.

Thereby, the reactive MOs, which are positioned energetically far from the
Fermi levels in the initial stages of the reaction cycles, are dynamically rearranged,
but those MOs become the HOMO and LUMO, as the reaction cycles proceed. Thus,
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this reaction stage is followed by the subsequent phase of the covalent bond forma-
tion and cleavage. The obtained picture could be found in functional mechanisms of
other various biological macromolecular systems, and thus, the generality of the
presented novel picture is further amenable to future theoretical and experimental
works. Thereby, this picture could be considered to be a characteristic feature in
biological macromolecular systems.
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Chapter 5

Supersymmetric Quantum
Mechanics: Two Factorization
Schemes and Quasi-Exactly
Solvable Potentials
José Socorro García Díaz, Marco A. Reyes,
Carlos Villaseñor Mora and Edgar Condori Pozo

Abstract

We present the general ideas on supersymmetric quantum mechanics (SUSY-
QM) using different representations for the operators in question, which are
defined by the corresponding bosonic Hamiltonian as part of SUSY Hamiltonian
and its supercharges, which are defined as matrix or differential operators. We
show that, although most of the SUSY partners of one-dimensional Schrödinger
problems have already been found, there are still some unveiled aspects of the
factorization procedure which may lead to richer insights of the problem involved.

Keywords: supersymmetric quantum mechanics, quasi-exactly solvable potentials

1. Introduction

We present the general ideas on supersymmetric quantum mechanics (SUSY-
QM) using different representations for the operators in question, which are
defined by the corresponding bosonic Hamiltonian as part of SUSY Hamiltonian
and its supercharges, Q̂

�
and Q

� þ
, which are defined as matrix or differential

operators. We show that, although most of the SUSY partners of one-dimensional
Schrödinger problems have already been found [1], there are still some unveiled
aspects of the factorization procedure which may lead to richer insights of the
problem involved. In particular, we refer to the factorization of the Hamiltonian in
terms of two non-mutually adjoint operators [2, 3].

In this work, we try three main schemes; the first one consists on finding the
eigenvalue Schrödinger equation in one dimension using the matrix representation
via the appropriate factorization with ladder-like operators and finding the one
parameter isospectral equation for this one. In this scheme, the wave function is
written as a supermultiplet. Continuing with the Schrödinger model, we extend
SUSY to include two-parameter factorizations, which include the SUSY factoriza-
tion as particular case. As examples, we include the case of the harmonic oscillator
and the Pöschl-Teller potentials. Also, we include the steps for the two-dimensional
case and apply it to particular cases. The second scheme uses the differential repre-
sentation in Grassmann numbers, where the wave function can be written as an
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n-dimensional vector or as an expansion in Grassmann variables multiplied by
bosonic functions. We apply the scheme in two bosonic variables a particular
cosmological model and compare the corresponding solutions found. The third
scheme tries on extensions to the SUSY factorization and to the case of quasi-
exactly solvable potentials; we present a particular case which does not form part
of the class of potentials found using Lie algebras.

To establish the different approaches presented here, we will briefly describe
the different main formalisms applied to supersymmetric quantum mechanics,
techniques that are now widely used in a rich spectrum of physical problems,
covering such diverse fields as particle physics, quantum field theory, quantum
gravity, quantum cosmology, and statistical mechanics, to mention some of them:

• In one dimension, SUSY-QM may be considered an equivalent formulation of
the Darboux transformation method, which is well-known in mathematics
from the original paper of Darboux [4], the book by Ince [5], and the book by
Matweev and Salle [6], where the method is widely used in the context of the
soliton theory. An essential ingredient of the method is the particular choice of
a transformation operator in the form of a differential operator which
intertwines two Hamiltonian and relates their eigenfunctions. When this
approach is applied to quantum theory, it allows to generate a huge family of
exactly solvable local potential starting with a given exactly solvable local
potential [7]. This technique is also known in the literature as isospectral
formalism [7–10].

• Those defined by means of the use of supersymmetry as a square root [11–14],
in which the Grassmann variables are auxiliary variables and are not identified
as the supersymmetric partners of the bosonic variables. In this formalism, a
differential representation is used for the Grassmann variables. Also the
supercharges for the n-dimensional case read as

Q̂
� ¼ ψμ �ℏ∂qμ þ ∂S

∂qμ

� �
, Q̂

þ ¼ ψν �ℏ∂qν � ∂S
∂qν

� �
, (1)

where S is known as the superpotential function which are related to the
physical potential under consideration, when the Hamiltonian density is
written as the Hamilton-Jacobi equation, and the algebra for the variables ψμ

and ψν is

ψμ;ψνf g ¼ ημν, ψμ;ψνf g ¼ 0, ψμ;ψνf g ¼ 0: (2)

There are two forms where the equations in 1D are satisfied: in the literature we
find either the matrix representation or the differential operator scheme. However
for more than one dimensions, there exist many applications to cosmological
models, where the differential representation for the Grassmann variables is widely
applied [14–18]. There are few works in more dimensions in the first scheme [19];
we present in this work the main ideas to build the 2D case, where the supercharge
operators become 4� 4 matrices.

2. Factorization method in one dimension: matrix approach

We begin by introducing the main ideas for the one-dimensional quantum
harmonic oscillator. The corresponding Hamiltonian is written in operator form as
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ĤB ¼ 1
2
p̂2 þ 1

2
ω2
Bq̂

2 (3)

where q̂ is the generalized coordinate and p̂ is the associated momentum, the
canonical commutation relation between this quantities being q̂; p̂½ � ¼ i. We intro-
duce two new operators, known as the creation and annihilation operators âþ, â�,
respectively, defined as

â� ¼ 1ffiffiffiffiffiffiffiffi
2ωB

p p̂ � iωBq̂ð Þ, âþ ¼ 1ffiffiffiffiffiffiffiffi
2ωB

p p̂ þ iωBq̂ð Þ: (4)

This Hamiltonian can be written in terms of the anti-commutation relation
between these operators as

ĤB ¼ ωB

2
âþ; â�� �

: (5)

The symmetric nature of ĤB under the interchange of â� and âþ suggests that
these operators satisfy Bose-Einstein statistics, and it is therefore called bosonic.

Now, we build the operators b̂
�
and b̂

þ
that obey similar rules to operators

â�, âþ changing ;½ �⇆ ;f g, that is,

b̂
�
; b̂

þn o
¼ 1; b̂

�
; b̂

�n o
¼ b̂

þ
; b̂

þn o
¼ 0, (6)

and in analogy to (5), we define the corresponding new Hamiltonian as

ĤF ¼ ωF

2
b̂
þ
; b̂

�h i
: (7)

The antisymmetric nature of ĤF under the interchange of b̂
�
and b̂

þ
suggests

that these operators satisfy the Fermi-Dirac statistics, and it is called fermionic.

These operators b̂
�
and b̂

þ
admit a matrix representations in terms of Pauli

matrices that satisfy all rules defined above, that is,

b̂
� ¼ σ�, b̂

þ ¼ σþ, σ� ¼ 1
2

σ1 � iσ2ð Þ (8)

with σþ; σ�½ � ¼ σ3, σ� ¼ 0 0

1 0

� �
, σþ ¼ 0 1

0 0

� �
, σ1 ¼

0 1

1 0

� �
,

σ2 ¼
0 �i
i 0

� �
, σ3 ¼

1 0

0 �1

� �
.

Now, consider both Hamiltonians as a composite system, that is, we consider the
superposition of two oscillators, one being bosonic and one fermionic, with energy
ET ¼ EB þ EF

ET ¼ ωB nB þ 1
2

� �
þ ωF nF � 1

2

� �
¼ ωBnB þ ωFnF þ 1

2
ωB � ωFð Þ: (9)

When we demand that both frequencies are the same, ωB ¼ ωF ¼ ω, we
introduce a new symmetry, called supersymmetry (SUSY); we can see that the
simultaneous creation of a quantum fermion nF ! nF þ 1ð Þ causes the destruction
of quantum boson nB ! nB � 1ð Þ and vice versa, in the sense that the total energy is
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n-dimensional vector or as an expansion in Grassmann variables multiplied by
bosonic functions. We apply the scheme in two bosonic variables a particular
cosmological model and compare the corresponding solutions found. The third
scheme tries on extensions to the SUSY factorization and to the case of quasi-
exactly solvable potentials; we present a particular case which does not form part
of the class of potentials found using Lie algebras.

To establish the different approaches presented here, we will briefly describe
the different main formalisms applied to supersymmetric quantum mechanics,
techniques that are now widely used in a rich spectrum of physical problems,
covering such diverse fields as particle physics, quantum field theory, quantum
gravity, quantum cosmology, and statistical mechanics, to mention some of them:

• In one dimension, SUSY-QM may be considered an equivalent formulation of
the Darboux transformation method, which is well-known in mathematics
from the original paper of Darboux [4], the book by Ince [5], and the book by
Matweev and Salle [6], where the method is widely used in the context of the
soliton theory. An essential ingredient of the method is the particular choice of
a transformation operator in the form of a differential operator which
intertwines two Hamiltonian and relates their eigenfunctions. When this
approach is applied to quantum theory, it allows to generate a huge family of
exactly solvable local potential starting with a given exactly solvable local
potential [7]. This technique is also known in the literature as isospectral
formalism [7–10].

• Those defined by means of the use of supersymmetry as a square root [11–14],
in which the Grassmann variables are auxiliary variables and are not identified
as the supersymmetric partners of the bosonic variables. In this formalism, a
differential representation is used for the Grassmann variables. Also the
supercharges for the n-dimensional case read as

Q̂
� ¼ ψμ �ℏ∂qμ þ ∂S

∂qμ

� �
, Q̂

þ ¼ ψν �ℏ∂qν � ∂S
∂qν

� �
, (1)

where S is known as the superpotential function which are related to the
physical potential under consideration, when the Hamiltonian density is
written as the Hamilton-Jacobi equation, and the algebra for the variables ψμ

and ψν is

ψμ;ψνf g ¼ ημν, ψμ;ψνf g ¼ 0, ψμ;ψνf g ¼ 0: (2)

There are two forms where the equations in 1D are satisfied: in the literature we
find either the matrix representation or the differential operator scheme. However
for more than one dimensions, there exist many applications to cosmological
models, where the differential representation for the Grassmann variables is widely
applied [14–18]. There are few works in more dimensions in the first scheme [19];
we present in this work the main ideas to build the 2D case, where the supercharge
operators become 4� 4 matrices.

2. Factorization method in one dimension: matrix approach

We begin by introducing the main ideas for the one-dimensional quantum
harmonic oscillator. The corresponding Hamiltonian is written in operator form as
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ĤB ¼ 1
2
p̂2 þ 1

2
ω2
Bq̂

2 (3)

where q̂ is the generalized coordinate and p̂ is the associated momentum, the
canonical commutation relation between this quantities being q̂; p̂½ � ¼ i. We intro-
duce two new operators, known as the creation and annihilation operators âþ, â�,
respectively, defined as

â� ¼ 1ffiffiffiffiffiffiffiffi
2ωB

p p̂ � iωBq̂ð Þ, âþ ¼ 1ffiffiffiffiffiffiffiffi
2ωB

p p̂ þ iωBq̂ð Þ: (4)

This Hamiltonian can be written in terms of the anti-commutation relation
between these operators as

ĤB ¼ ωB

2
âþ; â�� �

: (5)

The symmetric nature of ĤB under the interchange of â� and âþ suggests that
these operators satisfy Bose-Einstein statistics, and it is therefore called bosonic.

Now, we build the operators b̂
�
and b̂

þ
that obey similar rules to operators

â�, âþ changing ;½ �⇆ ;f g, that is,

b̂
�
; b̂

þn o
¼ 1; b̂

�
; b̂

�n o
¼ b̂

þ
; b̂

þn o
¼ 0, (6)

and in analogy to (5), we define the corresponding new Hamiltonian as

ĤF ¼ ωF

2
b̂
þ
; b̂

�h i
: (7)

The antisymmetric nature of ĤF under the interchange of b̂
�
and b̂

þ
suggests

that these operators satisfy the Fermi-Dirac statistics, and it is called fermionic.

These operators b̂
�
and b̂

þ
admit a matrix representations in terms of Pauli

matrices that satisfy all rules defined above, that is,

b̂
� ¼ σ�, b̂

þ ¼ σþ, σ� ¼ 1
2

σ1 � iσ2ð Þ (8)

with σþ; σ�½ � ¼ σ3, σ� ¼ 0 0

1 0

� �
, σþ ¼ 0 1

0 0

� �
, σ1 ¼

0 1

1 0

� �
,

σ2 ¼
0 �i
i 0

� �
, σ3 ¼

1 0

0 �1

� �
.

Now, consider both Hamiltonians as a composite system, that is, we consider the
superposition of two oscillators, one being bosonic and one fermionic, with energy
ET ¼ EB þ EF

ET ¼ ωB nB þ 1
2

� �
þ ωF nF � 1

2

� �
¼ ωBnB þ ωFnF þ 1

2
ωB � ωFð Þ: (9)

When we demand that both frequencies are the same, ωB ¼ ωF ¼ ω, we
introduce a new symmetry, called supersymmetry (SUSY); we can see that the
simultaneous creation of a quantum fermion nF ! nF þ 1ð Þ causes the destruction
of quantum boson nB ! nB � 1ð Þ and vice versa, in the sense that the total energy is
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unaltered. The ground energy state is exact and no degenerate. The degeneration
appears from n = 1, where it is double degenerate.

In this way, we have the super-Hamiltonian Ĥsusy, written as

Ĥsusy ¼ ω

2
âþ; â�� �þ ω

2
b̂
þ
; b̂

�h i
¼ ω

2
âþ; â�� �

I þ ω

2
σ3 ¼ ω

â � âþ 0

0 âþâ�

 !

¼ Ĥ� 0

0 Ĥþ

 !
,

(10)

where I is a 2� 2 unit matrix and where the two components of Ĥsusy in (10) can
be written independently as

Ĥþ ¼ 1
2
p̂2 þ 1

2
ω2q2 � ω
� � � ωâþâ� (11)

Ĥ� ¼ 1
2
p̂2 þ 1

2
ω2q2 þ ω
� � � ωâ�âþ: (12)

From Eqs. (18) and (19), we can see that Ĥþ and Ĥ� are the same representation
of one Hamiltonian with a constant shifting ω in the energy spectrum.

The question is, what are the generators for this SUSY Hamiltonian? The answer
is, considering that the degeneration is the result of the simultaneous destruction
(creation) of quantum boson and the creation (destruction) of quantum fermion,

the corresponding generators for this symmetry must be written as â�b̂
þ
(or âþb̂

�
).

Therefore we introduce the following generators, called supercharges Q̂
�
and Q̂

þ
,

defined as

Q̂
� ¼

ffiffiffiffiffiffi
2ω

p
â�b̂

þ ¼
ffiffiffiffiffiffi
2ω

p 0 â�

0 0

� �
, Q̂

þ ¼
ffiffiffiffiffiffi
2ω

p
âþb̂

� ¼
ffiffiffiffiffiffi
2ω

p 0 0

âþ 0

� �
,

(13)

implying that

Ĥsusy ¼ 1
2

Q̂
þ
; Q̂

�n o
(14)

and satisfying the following relations

Q̂
�
; Q̂

�n o
¼ Q̂

þ
; Q̂

þn o
¼ 0; Q̂

�
; Ĥsusy

h i
¼ Q̂

þ
; Ĥsusy

h i
¼ 0: (15)

We can generalize this procedure for a certain function W(q), and at this point,

we can define two new operators Â
�
and Â

þ
with a property similar to (4),

Â
� ¼ 1ffiffiffiffiffiffi

2ω
p p̂ � iωW qð Þð Þ, Â

þ ¼ 1ffiffiffiffiffiffi
2ω

p p̂ þ iωW qð Þð Þ: (16)

In order to obtain the general solutions, we can use an arbitrary potential in
Eq. (3), that is,

ĤB ¼ 1
2
p̂2 þ V qð Þ: (17)

78

Panorama of Contemporary Quantum Mechanics - Concepts and Applications

The Hamiltonians Ĥ
þ
and Ĥ

�
determine two new potentials,

Ĥþ ¼ 1
2
p̂2 þ Vþ ¼ 1

2
p̂2 þ 1

2
W2 � dW

dq

� �
(18)

Ĥ� ¼ 1
2
p̂2 þ V� ¼ 1

2
p̂2 þ 1

2
W2 þ dW

dq

� �
, (19)

where the potential term V+(q) is related to the superpotential function W(q)
via the Riccati equation

Vþ ¼ 1
2

W2 � dW
dq

� �
, (20)

(modulo constant ϵ, which is related to some energy eigenvalue) and

V� ¼ 1
2 W2 þ dW

dq

� �
¼ Vþ þ dW

dq , with the same spectrum, except for the ground

state, which is related to the energy potential Vþ.
In a general way, let us now find the general form of the function W. The

quantum equation (17) applied to stationary wave function ui becomes

� 1
2
d2ui
dq2

þ V qð Þui ¼ Eiui, (21)

where Ei are the energy eigenvalues. Considering the transformation
W qð Þ ¼ � dln ui qð Þ½ �

dq and introducing it into (18), we have that

V qð Þ � Ei ¼ 1
2

W2 � dW
dq

� �
¼ 1

2ui

dui

dq

� �2

�
dui
dq

� �2
� ui d

2ui
dq2

2u2
i

¼ 1
2ui

d2ui

dq2
:

Then, this equation is the same as the original one, Eq. (21), that is, W is related
to an initial solution of the bosonic Hamiltonian. What happens to the isopotential

V� qð Þ ¼ 1
2 W2 þ dW

dq

� �
? Considering that

2V� ¼ W2 þ dW
dq

� Ŵ
2 þ dŴ

dq
¼ 2V̂�,

the question is, what is Ŵ if we know the function W? Finding it we can build a
family of potentials V̂� depending on a free parameter λ, the supersymmetric
parameter that, to some extent, plays the role of internal time. Following the
procedure Ŵ ¼ Wþ 1

y qð Þ, where the function y(q) satisfy the linear differential

equation dy
dq � 2Wy ¼ 1, the solution implies

y qð Þ ¼ λþ Ð u2
i dq

u2i
, ! Ŵ ¼ W þ u2

i

λþ Ð u2
i dq

: (22)

The family of potentials V̂þ can be built now as

V̂þ � Ei ¼ 1
2

Ŵ
2 � dŴ

dq

 !
¼ V� þ dŴ

dq
: (23)
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unaltered. The ground energy state is exact and no degenerate. The degeneration
appears from n = 1, where it is double degenerate.

In this way, we have the super-Hamiltonian Ĥsusy, written as
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From Eqs. (18) and (19), we can see that Ĥþ and Ĥ� are the same representation
of one Hamiltonian with a constant shifting ω in the energy spectrum.

The question is, what are the generators for this SUSY Hamiltonian? The answer
is, considering that the degeneration is the result of the simultaneous destruction
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the corresponding generators for this symmetry must be written as â�b̂
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�
).

Therefore we introduce the following generators, called supercharges Q̂
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and Q̂
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,

defined as
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âþb̂

� ¼
ffiffiffiffiffiffi
2ω

p 0 0
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,
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implying that

Ĥsusy ¼ 1
2
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and satisfying the following relations
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�
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þ
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¼ 0; Q̂

�
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¼ Q̂

þ
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h i
¼ 0: (15)

We can generalize this procedure for a certain function W(q), and at this point,

we can define two new operators Â
�
and Â

þ
with a property similar to (4),

Â
� ¼ 1ffiffiffiffiffiffi

2ω
p p̂ � iωW qð Þð Þ, Â

þ ¼ 1ffiffiffiffiffiffi
2ω

p p̂ þ iωW qð Þð Þ: (16)

In order to obtain the general solutions, we can use an arbitrary potential in
Eq. (3), that is,

ĤB ¼ 1
2
p̂2 þ V qð Þ: (17)
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, (19)

where the potential term V+(q) is related to the superpotential function W(q)
via the Riccati equation
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dq
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, (20)

(modulo constant ϵ, which is related to some energy eigenvalue) and

V� ¼ 1
2 W2 þ dW

dq

� �
¼ Vþ þ dW

dq , with the same spectrum, except for the ground

state, which is related to the energy potential Vþ.
In a general way, let us now find the general form of the function W. The

quantum equation (17) applied to stationary wave function ui becomes

� 1
2
d2ui
dq2

þ V qð Þui ¼ Eiui, (21)

where Ei are the energy eigenvalues. Considering the transformation
W qð Þ ¼ � dln ui qð Þ½ �

dq and introducing it into (18), we have that

V qð Þ � Ei ¼ 1
2
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dq

� �
¼ 1

2ui

dui

dq

� �2

�
dui
dq

� �2
� ui d

2ui
dq2

2u2
i

¼ 1
2ui

d2ui

dq2
:

Then, this equation is the same as the original one, Eq. (21), that is, W is related
to an initial solution of the bosonic Hamiltonian. What happens to the isopotential

V� qð Þ ¼ 1
2 W2 þ dW

dq

� �
? Considering that

2V� ¼ W2 þ dW
dq

� Ŵ
2 þ dŴ

dq
¼ 2V̂�,

the question is, what is Ŵ if we know the function W? Finding it we can build a
family of potentials V̂� depending on a free parameter λ, the supersymmetric
parameter that, to some extent, plays the role of internal time. Following the
procedure Ŵ ¼ Wþ 1

y qð Þ, where the function y(q) satisfy the linear differential

equation dy
dq � 2Wy ¼ 1, the solution implies

y qð Þ ¼ λþ Ð u2
i dq

u2i
, ! Ŵ ¼ W þ u2

i

λþ Ð u2
i dq

: (22)

The family of potentials V̂þ can be built now as

V̂þ � Ei ¼ 1
2

Ŵ
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dq
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¼ V� þ dŴ

dq
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Finally

û ¼ g λð Þ ui

λþ Ð u2
i dq

(24)

is the isospectral solution of the Schrödinger-like equation for the new family
potential (23), with the condition g λð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ λþ 1ð Þp
, which in the limit

λ ! �∞, g λð Þ ¼ λ, ûi ! ui:

This λ parameter is included not for factorization reasons; in particular, in
quantum cosmology the wave functions are still nonnormalizable, and λ is used as a
decoherence parameter embodying a sort of quantum cosmological dissipation (or
damping) distance.

2.1 Two-dimensional case

We useWitten’s idea [20] to find the supersymmetric supercharge operators Q�

and Qþ that generate the super-Hamiltonian Hsusy. Using Eqs. (13)–(15), we can
generalize the one-dimensional factorization scheme. We define the two-
dimensional Hamiltonian as

ĤB x; y
� � ¼ 1

2
p̂2
x þ

1
2
p̂2
y þ V xð Þ þ V y

� �
, (25)

where the Schrödinger-like equation can be obtained as the bosonic sector of this
super-Hamiltonian in the superspace, i.e., when all fermionic fields are set equal to
zero (classical limit).

In two dimensions, the supercharges are defined by the tensorial products

Q� ¼
ffiffiffi
2

p
d � ⊗ σþ; Qþ ¼

ffiffiffi
2

p
d

���
���
þ
⊗ σ� (26)

with

d � ¼ a� 0

0 b�

� �
; d

����
����
þ
¼ aþ 0

0 bþ

� �
, (27)

where σ� are the same as in (8). From Eq. (26) we have that the supercharges
are 4� 4 matrices

Q̂
þ ¼

ffiffiffi
2

p
0 0 0 0

0 0 0 0

aþ 0 0 0

0 bþ 0 0

2
6664

3
7775 Q̂

� ¼
ffiffiffi
2

p
0 0 a� 0

0 0 0 b�

0 0 0 0

0 0 0 0

2
6664

3
7775 (28)

where the super-Hamiltonian, (14), can be written as

Hsusy ¼
a�aþ 0 0 0

0 b�bþ 0 0

0 0 aþa� 0

0 0 0 bþb�

0
BBB@

1
CCCA ¼

H1
� xð Þ 0 0 0

0 H1
� yð Þ 0 0

0 0 H2
þ xð Þ 0

0 0 0 H2
þ yð Þ

0
BBBB@

1
CCCCA
, (29)
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where

a� ¼ 1ffiffiffi
2

p d
dx

þW xð Þ
� �

, aþ ¼ 1ffiffiffi
2

p � d
dx

þW xð Þ
� �

(30)

b� ¼ 1ffiffiffi
2

p d
dx

þ Z y
� �� �

, bþ ¼ 1ffiffiffi
2

p � d
dx

þ Z yð Þ
� �

(31)

and V x; y
� � ¼ W xð Þ þ Z y

� �
.

The Riccati equation (20) is written in 2D as

Vþ x; y
� � ¼ Vþ1 xð Þ þ Vþ2 y

� � ¼ 1
2

W2 � dW
dx

� �
þ 1
2

Z2 � dZ
dy

� �
, (32)

and, using separation variables, we get

V1 xð Þ � 1
2

W2 xð Þ � dW
dx

� �
¼ C0 (33)

V2 y
� �� 1

2
Z2 y
� �� dZ

dy

� �
¼ �C0: (34)

In general, we find that each potential Vþi satisfies

1
2
d2

dx2
ui xð Þ þ Vþiui xð Þ ¼ Eiui xð Þ, i ¼ 1, 2, (35)

and we can find the isopotential as W ¼ � 1
u1

du1
dx , when u1 is known.

Following the same steps as in the 1D case, we find that the solutions (22)
are the same in this case. So, the general solution for Ŵ is Ŵ ¼ Wþ 1

y xð Þ, with

y ¼ u�2
1 xð Þ E1 þ

Ð
u2
1 xð Þdx� �

. The general solution for the superpotential Ŵ xð Þ is

Ŵ ¼ � 1
u1

du1

dx
þ u21
λ1 þ

Ð
u2
1 dx

¼ Wp þ d
dx

Ln λ1 þ I1ð Þ½ � (36)

where Wp ¼ � 1
u1

du1
dx and I1 ¼

Ð
u21 dx.

In the same manner, we have that

Ẑ ¼ � 1
u2

du2

dy
þ u22
λ2 þ

Ð
u2
2 dy

¼ Zp þ d
dy

Ln λ2 þ I2ð Þ½ � (37)

with Zp ¼ � 1
u2

su2
dy and I2 ¼

Ð
u2
2 dy.

On the other hand, using the Riccati equation, we can build a generalization for
the isopotential, using the new potential Ŵ, as

V̂þ1 x; λ1ð Þ ¼ 1
2

Ŵ
2 � Ŵ

0� �
¼ Vþ xð Þ � 2u1 du1

dx

λ1 þ I1
þ u4

1

λ1 þ I1ð Þ2 : (38)

For the other coordinate, we have
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. The general solution for the superpotential Ŵ xð Þ is

Ŵ ¼ � 1
u1

du1

dx
þ u21
λ1 þ

Ð
u2
1 dx

¼ Wp þ d
dx

Ln λ1 þ I1ð Þ½ � (36)

where Wp ¼ � 1
u1

du1
dx and I1 ¼

Ð
u21 dx.

In the same manner, we have that

Ẑ ¼ � 1
u2

du2

dy
þ u22
λ2 þ

Ð
u2
2 dy

¼ Zp þ d
dy

Ln λ2 þ I2ð Þ½ � (37)

with Zp ¼ � 1
u2

su2
dy and I2 ¼

Ð
u2
2 dy.

On the other hand, using the Riccati equation, we can build a generalization for
the isopotential, using the new potential Ŵ, as

V̂þ1 x; λ1ð Þ ¼ 1
2

Ŵ
2 � Ŵ

0� �
¼ Vþ xð Þ � 2u1 du1

dx

λ1 þ I1
þ u4

1

λ1 þ I1ð Þ2 : (38)

For the other coordinate, we have
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V̂þ2 y; λ2ð Þ ¼ 1
2

Ẑ
2 � dẐ

dy

 !
¼ Vþ yð Þ �

2u2 du2
dy

λ2 þ I2
þ u42

λ2 þ I2ð Þ2 : (39)

The general solutions for ûi depend on the initial solutions to the original
Schrödinger equations in the variables (x,y), that is, u1 ¼ u1 xð Þ, u2 ¼ u2 y

� �
, being

û1 x; λ1ð Þ ¼ C1 λ1ð Þ u1
λ1 þ I1

, û2 y; λ2ð Þ ¼ C2 λ2ð Þ u2
λ2 þ I2

, (40)

where the variables Ci λið Þ have the sameproperties that g λð Þ obtained in the 1D case.

2.2 Application to cosmological Taub model

The Wheeler-DeWitt equation for the cosmological Taub model is given by

∂
2Ψ
∂α2

� ∂
2Ψ
∂β2

þ e4αV βð ÞΨ ¼ 0 (41)

where V βð Þ ¼ 1
3 e�8β � 4e�2β
� �

. These equations can be separated using
x1 ¼ 4α� 8β and x2 ¼ 4α� 2β, rendering

� ∂
2f1 x1ð Þ
∂x21

þ 1
144

ex1 f1 x1ð Þ ¼ ω2

4
f 1 x1ð Þ, � ∂

2f2 x2ð Þ
∂x22

þ 1
9
ex2f2 x2ð Þ ¼ ω2f2 x2ð Þ,

(42)

where the parameter ω is the separation constant. These equations possess the
solutions

f1 ¼ Kiω
1
6
e
x1
2

� �
, f2 ¼ L2iω

2
3
e
x2
2

� �
þ K2iω

2
3
e
x2
2

� �
(43)

where K (or I) is the modified Bessel function of imaginary order and the
function L is defined as

L2iω ¼ πi
2sinh 2ωπð Þ I2iω þ I�2iωð Þ:

Using Eqs. (38) and (39), we obtain the isopotential for this model

V̂ x1ð Þ ¼ Vþ x1ð Þ � 2KiωK0
iω

λ1 þ I1
þ K4

iω

λ1 þ I1ð Þ2 ,

V̂ x2ð Þ ¼ Vþ x2ð Þ � 2 L2iω þ K2iωð Þ L2iω þ K2iωð Þ0
λ2 þ I2

þ L2iω þ K2iωð Þ4
λ2 � I2ð Þ2 :

(44)

Using Eq. (40) we can obtain general solutions for the functions f1 and f2 in the
following way

f̂ 1 ¼
C1Kiω

1
6 e

x1
2

� �

λ1 þ I1
, f̂ 2 ¼

C2 L2iω
2
3 e

x2
2

� �
þ K2iω

2
3 e

x2
2

� �h i

λ2 þ I2
: (45)
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3. Differential approach: Grassmann variables

The supersymmetric scheme has the particularity of being very restrictive,
because there are many constraint equations applied to the wave function. So, in
this work and in others, we found that there exist a tendency for supersymmetric
vacua to remain close to their semiclassical limits, because the exact solutions found
are also the lowest-order WKB-like approximations and do not correspond to the
full quantum solutions found previously for particular models [14–18].

Maintaining the structure of Eqs. (13)–(16), taking the differential representa-
tion for the fermionic operator b̂ $ ψμ for convenience in the calculations, and
changing the function W ! ∂S

∂qμ, the supercharges for the n-dimensional case read as

Q̂
� ¼ ψμ Pμ þ i

∂S
∂qμ

� �
, Q̂

þ ¼ ψν Pν � i
∂S
∂qν

� �
, (46)

where S is known as the superpotential functions which are related to the
physical potential under consideration, when the Hamiltonian density is written as
the Hamilton-Jacobi equation, and the following algebra for the variables ψμ and ψν

(similar to Eq. (6))

ψμ;ψνf g ¼ ημν, ψμ;ψνf g ¼ 0, ψμ;ψνf g ¼ 0: (47)

These rules are satisfied when we use a differential representation for these
ψμ,ψν variables in terms of the Grassmann numbers, as

ψμ ¼ ημν
∂

∂θν
, ψν ¼ θν, (48)

where ημν is a diagonal constant matrix, its dimensions depending on the inde-
pendent bosonic variables that appear in the bosonic Hamiltonian. Now the super-
Hamiltonian is written as

HS ¼ 1
2

Q̂
þ
; Q̂

�n o
¼ H0 þ ℏ

2
∂
2S

∂qμ∂qν
ψμ;ψν½ �, (49)

where H0 ¼ □þ U qμð Þ is the quantum version of the classical bosonic Hamilto-
nian, □ is the d’Alembertian in three dimension when we have three bosonic
independent coordinates, and U qμð Þ is the potential energy in consideration.

The superspace for three-dimensional model becomes q1; q2; q3; θ
0; θ1; θ2

� �
,

where the variables θi are the coordinate in the fermionic space, as the Grassmann
numbers, which have the property of θiθj ¼ �θjθi, and the wave function has the
representation

Ψ ¼ Aþ þ B0θ
0, 1 dimension (50)

Ψ ¼ Aþ þ B0θ
0 þ B1θ

1 þA�θ0θ1, 2 dimensions (51)

Ψ ¼ Aþ þ Bνθ
ν þ 1

2
ϵμνλCλθμθν þA�θ0θ1θ2, 3 dimensions (52)

where the indices μ, ν, λ values are 0, 1, and 2 and A�,Bν and Cλ are bosonic
functions which depend on the bosonic coordinates qμ and not on the Grassmann
numbers. Here, the wave function representation structure is set in terms of 2n
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components, for n independent bosonic coordinates, with half of the terms coming
from the bosonic (fermionic) contribution into the wave function.

It is well-known that the physical states are determined by the applications of

the supercharges Q̂
�
and Q̂

þ
on the wave functions, that is,

Q̂
�
Ψ ¼ 0, Q̂

þ
Ψ ¼ 0, (53)

where we use the usual representation for the momentum Pμ ¼ �iℏ ∂

∂qμ. Consid-
ering the 2D case, the last second equation gives

θ0 :
∂Aþ
∂q0

� Aþ
∂S
∂q0

� �
¼ 0, (54)

θ1 :
∂Aþ
∂q1

� Aþ
∂S
∂q1

� �
¼ 0, (55)

θ0θ1 :
∂B1

∂q0
� B1

∂S
∂q0

� �
� ∂B0

∂q1
� B0

∂S
∂q1

� �
¼ 0: (56)

From (54)–(55), we obtain the relation ∂Aþ
∂qμ � Aþ ∂S

∂qμ ¼ 0 with the solution

Aþ ¼ aþeS:
On the other hand, the first equation in (53) gives

θ0 :
∂A�
∂q1

þ A�
∂S
∂q1

� �
¼ 0, (57)

θ1 :
∂A�
∂q0

þ A�
∂S
∂q0

� �
¼ 0, (58)

free term : � ∂B0

∂q0
þ B0

∂S
∂q0

� �
þ ∂B1

∂q1
þ B1

∂S
∂q1

� �
¼ 0: (59)

The free term equation is written as ημν ∂μBν þ Bν∂μS
� � ¼ 0, and taking the ansatz

Bμ ¼ e�S
∂νfþ qμð Þ, Eq. (56) is fulfilled, so we obtain for the free term,

□fþ þ 2ημν∇μS∇νfþ ¼ 0, (60)

with the solution to fþ ¼ h q1 � q2ð Þ, with h an arbitrary function depending of its
argument. However, this function f must depend on the potential under consideration.

Also, Eqs. (57) and (58) are written as

∂A�
∂qμ

þ A�
∂S
∂qμ

¼ 0,
1
A�

∂A�
∂qμ

¼ � ∂S
∂qμ

! ∂LnA�
∂qμ

¼ � ∂S
∂qμ

(61)

whose solution is A� ¼ a�e�S. In this way, all functions entering the wave
function are

A� ¼ a�e�S, B0 ¼ e�S
∂0 fþð Þ, B1 ¼ e�S

∂1 fþð Þ:

3.1 The unnormalized probability density

To obtain the wave function probability density Ψj j2 in this supersymmetric
fashion, we need first to integrate over the Grassmann variables θi. This procedure
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is well-known [21], and here we present the main ideas. Let Ψ1 and Ψ2 be two
functions that depend on Grassmann numbers; the product <Ψ1,Ψ2 > is defined as

<Ψ1,Ψ2 > ¼
ð

Ψ1 θ ∗ð Þð Þ ∗Ψ2 θ ∗ð Þ e�∑iθ
∗
i θiΠidθ ∗

i dθi, Cθi⋯θrð Þ ∗ ¼ θ ∗
r ⋯θ ∗

i C
∗ ,

and the integral over theGrassmannnumbers is
Ð
θ ∗
i θi⋯θmθ

∗
mdθ

∗
mdθm⋯dθ ∗

i dθi ¼ 1.
In 2D, the main contributions to the term e�∑iθ

∗
i θi come from

e�∑iθ
∗
i θi ¼ e�∑iθiθ

∗
i ¼ 1þ θ0θ ∗0 þ θ1θ ∗ 1 þ θ0θ ∗0θ1θ ∗ 1,

and using that
Ð
θdθ ¼ 1, and

Ð
dθ ¼ 0, which act as a filter, we obtain that

Ψj j2 ¼ A ∗
þAþ þ B ∗

0 B0 þ B ∗
1 B1 þA ∗

�A�:

By demanding that Ψj j2 does not diverge when ∣q0∣, ∣q1∣ ! ∞, only the contri-
bution with the exponential e�2S will remain.

4. Beyond SUSY factorization

Although most of the SUSY partners of 1D Schrödinger problems have been
found [1], there are still some unveiled aspects of the factorization procedure. We
have shown this for the simple harmonic oscillator in previous works [2, 3] and will
proceed here in the same way for the problem of the modified Pöschl-Teller poten-
tial. The factorization operators depend on two supersymmetric type parameters,
which when the operator product is inverted, allow us to define a new SL operator,
which includes the original QM problem.

The Hamiltonian of a particle in a modified Pöschl-Teller potential is [1, 22]

Hmþ1Ψ ¼ � ℏ2

2μ
d2

dx2
� α2m mþ 1ð Þ

cosh 2αx

 !
Ψ ¼ EΨ , (62)

where α>0 and the integer m is greater than 0. To shorten the algebraic equa-
tions, we shall set ℏ2

2μ ¼ 1.
The eigenvalue problem may be solved using the Infeld and Hull’s (IH) factor-

izations [23],

Aþ
mþ1A

�
mþ1ψ

m
m�n ¼ Hmþ1 þ ϵmþ1ð Þψm

m�n, (63)

A�
mA

þ
mψ

m
m�n ¼ Hmþ1 þ ϵmð Þψm

m�n, (64)

where the IH raising/lowering operators are given by

A∓
m ¼ k x;mð Þ∓ d

dx
(65)

and where k x;mð Þ ¼ αm tanh αx; also ϵm ¼ α2m2, and n is the eigenvalue index,

Ψn ¼ ψm
m�n, En ¼ �ϵm�n ¼ �α2 m� nð Þ2, n ¼ 0; 1; 2…<m: (66)
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Beginning with the zeroth-order eigenfunctions, the eigenfunctions can be
found by successive applications of the raising operator, which only increases the
value of the upper index. That is,

ψℓ
ℓ xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αΓ ℓþ 1

2

� �
ffiffiffi
π

p
Γ ℓð Þ

s
cosh �ℓαx: (67)

We repeatedly apply the creation operator A�
sþ1ψ

s
ℓ ¼ ψ sþ1

ℓ . Note that from (63)
and (64), A�

mA
þ
m and Aþ

mA
�
m give different Hamiltonian operators.

4.1 Two-parameter factorization of the Pöschl-Teller Hamiltonian

Following our previous work [2, 3], we define two non-mutually adjoint
first-order operators,

Bm ¼ η�1
m

d
dx

þ βm, B ∗
m ¼ �ηm

d
dx

þ βm, (68)

where βm and ηm are functions of x, and we require that Bmþ1B ∗
mþ1 ¼ Hmþ1þ

ϵmþ1. Then βmþ1 and ηmþ1 are the solutions of

� η0

η
þ β

η
� βη ¼ 0,

β0

η
þ β2 ¼ � α2m mþ 1ð Þ

cosh 2αx
þ ϵ: (69)

By multiplying the first equation by β=η and adding, we have that

βmþ1

ηmþ1

� �
þ βmþ1

ηmþ1

� �2

¼ � α2m mþ 1ð Þ
cosh 2αx

þ ϵmþ1: (70)

This Riccati equation was found in [24]; it has the solution β=η ¼ D tanh αx,
with ϵ ¼ D2, and two possible values for D, D ¼ α mþ 1ð Þ, � αm. If we simply set
ηm ! 1, we recover the factorization (63).

The constant ϵ is usually related to the lowest energy eigenvalue, but here the
two different values come from the index asymmetry in the factorizations (63) and
(64). Following Ref. [24], we solve for D ¼ α mþ 1ð Þ.

The general solution to the pair of coupled equations (69) is

ηmþ1 xð Þ ¼ 1þ γ2 sech
2 mþ1ð Þαx

1þ γ1
Ð x
0 sech2 mþ1ð Þαydy

� �2

2
64

3
75
�1=2

, (71)

and

βmþ1 xð Þ ¼ α mþ 1ð Þ tanh αxþ γ1 sech
2 mþ1ð Þαx

1þ γ1
Ð x
0 sech2 mþ1ð Þαy dy

" #
� ηmþ1 xð Þ, (72)

where γ1 has to satisfy ∣γ1∣< 2αΓ mþ 3=2ð Þ= ffiffiffi
π

p
Γ mþ 1ð Þð Þ. The corresponding

condition on γ2 involves transcendental functions, but one may use γ2 > � 1þ γ21 to
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determine the γ1; γ2ð Þ parameter space. When γ1 ¼ γ2 ¼ 0 we recover the original IH
raising/lowering operators.

4.2 Reversing the operator product: new Sturm-Liouville operator

Now we invert the first-order operators’ product, keeping in mind Eq. (64),

B ∗
mBm ¼ � d2

dx2
þ 2

η0m
ηm

d
dx

þ V0 þ ϵm � ηmβ
0
m � β0m

ηm

� �
: (73)

Then we can define a new Sturm-Liouville (SL) eigenvalue problem
LΦn þ ω xð ÞEnΦn ¼ 0, where

L ¼ d
dx

η�2
m

d
dx

� �
þ ϵm � β2m
� �

1þ η�2
m

� �� α2m mþ 1ð Þ sech2 αxð Þ (74)

Φn ¼ ϕm
m�n � B ∗

m ψm�1
m�n, (75)

with the weight function ω xð Þ ¼ η�2
m xð Þ.

This new SL operator is isospectral to the original PT problem. The zeroth-order
eigenfunction is easily found by solving Bϕ0 ¼ d

dx þ βmηm
� �

Φ0 ¼ 0 which gives

Φ0 ¼ ηm xð Þ � sechmþ1 αxð Þ
1þ γ1

Ð x
0 sech2 mþ1ð Þ αyð Þdy

: (76)

4.3 Regions in the two-parameter space

We may recover the original QM problem when γ1 ¼ γ2 ¼ 0, the origin of the
two-parameter space. Moreover, the SUSY partner of the PT problem arises when
one sets γ2 ¼ 0, moving along the horizontal axis. In this case, L becomes

L ¼ d2

dx2
þ α2λ λþ 1ð Þ sech2 αxð Þ � 2S21 αxð Þ � 4αλ tanh αxð ÞS1 αxð Þ (77)

where λ ¼ mþ 1, with S1 αxð Þ ¼ γ1 sech
2λ αxð Þ

1þγ1
Ð x

0
sech2λαydy

, and ω xð Þ ¼ 1. These in turn

define a SUSY PT problem

� d2

dx2
þ ~V xð Þ

" #
Φn ¼ EnΦn xð Þ (78)

where the partner SUSY potentials are given by

~V ¼ �α2λ λþ 1ð Þ sech2 αxð Þ þ 2S21 αxð Þ þ 4αλ tanh αxð ÞS1 αxð Þ: (79)

The zeroth-order eigenfunction is defined by B�ϕ0 ¼ 0, that is,

ϕ0 ¼ sechλ αxð Þ
1þ γ1

Ð x
0 sech2λ αyð Þdy : (80)
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5. Quasi-exactly solvable potentials

In exactly solvable problems, the whole spectrum is found analytically, but the
vast majority of problems have to be solved numerically. A new possibility arises
with the class of QES potentials, where a subset of the spectrum may be found
analytically [25–27]. QES potentials have been studied using the Lie algebraic
method [25]: Manning [28], Razavy [29], and Ushveridze [30] potentials belong to
this class (see also [31]). These are double-well potentials, which received much
attention due to their applications in theoretical and experimental problems. Fur-
thermore, hyperbolic-type potentials are found in many physical applications, like
the Rosen-Morse potential [32], Dirac-type hyperbolic potentials [33],
bidimensional quantum dot [34], Scarf-type entangled states [35], etc. QES poten-
tials’ classification has been given by Turbiner [25] and Ushveridze [30].

Here we show that the Lie algebraic procedure may impose strict restrictions on
the solutions: we shall construct here analytical solutions for the Razavy-type
potential V xð Þ ¼ V0 sin h4 xð Þ � k sin h2 xð Þ� �

based on the polynomial solutions of
the related confluent Heun equation (CHE) and show that in that case the energy
eigenvalues diverge when k ! �1, a feature solely of the procedure. We shall also
show that other QES potentials may be found that do not belong to any of the
potentials found using the Lie algebraic method.

5.1 A Razavy-type QES potential

Let us consider Schrödinger’s problem for the Razavy-type potential
V xð Þ ¼ V0 sin h4 xð Þ � k sin h2 xð Þ� �

,

�ℏ2

2μ
d2ψ xð Þ
dx2

þ V0 sinh 4 λxð Þ � k sin h2 λxð Þ� �
ψ xð Þ ¼ Eψ xð Þ: (81)

For simplicity, we set μ ¼ ℏ ¼ λ ¼ 1 [35, 36].
Here the potential function is the hyperbolic Razavy potential

V xð Þ ¼ 1
2 ζ cosh 2xð Þ �Mð Þ2, with V0 ¼ 2ζ2, where M energy levels are found if M

is a positive integer [29]. It may also be viewed as the Ushveridze potential V xð Þ ¼
2ξ2 sinh 4 xð Þ þ 2ξ ξ� 2 γ þ δð Þ � 2ℓ½ �sinh 2 xð Þ þ 2 δ� 1

4

� �
δ� 3

4

� �
csch2 xð Þ � 2 γ�ð 1

4Þ
γ � 3

4

� �
sech2 xð Þ, when γ ¼ 1

4 and δ ¼ 3
4, or vice versa [30], which is QES if

ℓ ¼ 0; 1; 2,⋯ (with δ≥ 1
4). El-Jaick et al. showed that it is also QES if ℓ ¼half-integer

and γ, δ ¼ 1
4 ,

3
4 [37].

In the case of the Razavy potential, the solutions obtained by Finkel et al. are

ψση x;ERð Þ∝ sinh xð Þ12 1�σ�ηð Þ cosh xð Þ12 1�σþηð Þe�
ζ
2 cosh 2xð Þ ∑

n

j¼0

P̂
ση

j ERð Þ
2jþ η�σþ1

2

� �
!
cosh 2j xð Þ

(82)

with the parameters σ; ηð Þ ¼ �1;0ð Þ or 0;�1ð Þ, the energy eigenvalues being the
roots of the polynomials Pση

jþ1 ERð Þ, satisfying the three-term recursive relations

P̂ση
jþ1 ¼ ER � bj

� �
P̂ση
j ERð Þ � ajP̂

ση
j�1 ERð Þ, j≥0 (83)

with ER ¼ 2E, and
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aj ¼ 16ζj 2j� σ þ ηð Þ j� n� 1ð Þ
bj ¼ �4j jþ 1� σ þ 2ζð Þ þ 2nþ 1ð Þ 2 n� σð Þ þ 3ð Þ þ ζ ζ � 2ηþ 4nð Þ: (84)

5.2 Symmetric solutions for V xð Þ ¼ V0 sinh 4 xð Þ

To find the even solutions to Eq. (81) with k ¼ 0, let us set β xð Þ ¼ cosh 2 xð Þ, to
get

β β � 1ð Þ d
2ψ

dβ2
þ β � 1

2

� �
dψ
dβ

þ 1
4

2E� 2V0β
2 þ 4V0β � 2V0

� � ¼ 0 (85)

and to ensure that ψ xð Þ vanishes as x ! �∞, let ψ xð Þ ¼ e�
α
2βf βð Þ. Previous works

may not include square-integrable solutions to the Razavy potential [38–40]. By
requiring α2 ¼ 2V0, we obtain [41]

β β � 1ð Þ d
2f

dβ2
þ �αβ β � 1ð Þ þ β � 1

2

� �� �
df
dβ

þ α2β

4
� αβ

2
þ α

4
þ E

2
� α2

4

� �
f ¼ 0:

(86)

We shall look for rank N polynomial solutions: f βð Þ ¼ f 0 for N ¼ 0, or
f βð Þ ¼ f 0

QN
i¼1 β � βið Þ for N >0, the βi being the roots of the resulting polynomial

in Eq. (86). Sometimes the N ¼ 0 solution is not even considered [35].
The highest power of β in Eq. (86) fix α to α ¼ 4N þ 2. The energy eigenvalues

and the roots satisfy

E ¼ 1
2

α2 þ α 4∑
N

i¼1
βi � 1� 4N

� �
� 4N2

� �
(87)

∑
N

i 6¼j

2
βi � βj

þ�αβ2i þ αþ 1ð Þβi � 1
2

β2i � βi
¼ 0, i ¼ 1, 2,…, n: (88)

V0 is found to depend on the order of the polynomial, V0 ¼ 2 2N þ 1ð Þ2 for
even solutions, and solutions with different N cannot be scaled one into the other
due to the sinh 4 xð Þ dependence of the potential function. The highest solution
order is n ¼ 2N, and we use subindexes N; nf g to label eigenvalues/eigenfunctions.

For N ¼ 0, f βð Þ ¼ 1, we get V0 ¼ 2, E0,0 ¼ 1, and the (unnormalized) ground-
state eigenfunction ψ0,0 xð Þ ¼ e� cosh 2 xð Þ. For N ¼ 2, f βð Þ ¼ f 0 β � β1ð Þ β � β2ð Þ,
equating to zero the coefficients of the polynomial P βð Þ, we get the coupled
equations

α2

4
� 5α

2
¼ 0

3þ β1 þ β2ð Þ � α2

4
þ 3α

2

� �
þ � α2

4
þ 9α

2
þ E

2

� �
¼ 0

�3� β1 þ β2ð Þ � α2

4
þ 5α

4
þ E

2
þ 1

� �
þ β1β2

α2

4
� α

2

� �
¼ 0

1
2

β1 þ β2ð Þ þ β1β2 � α2

4
þ α

4
þ E

2

� �
¼ 0:

(89)

89

Supersymmetric Quantum Mechanics: Two Factorization Schemes and Quasi-Exactly Solvable…
DOI: http://dx.doi.org/10.5772/intechopen.82254



5. Quasi-exactly solvable potentials

In exactly solvable problems, the whole spectrum is found analytically, but the
vast majority of problems have to be solved numerically. A new possibility arises
with the class of QES potentials, where a subset of the spectrum may be found
analytically [25–27]. QES potentials have been studied using the Lie algebraic
method [25]: Manning [28], Razavy [29], and Ushveridze [30] potentials belong to
this class (see also [31]). These are double-well potentials, which received much
attention due to their applications in theoretical and experimental problems. Fur-
thermore, hyperbolic-type potentials are found in many physical applications, like
the Rosen-Morse potential [32], Dirac-type hyperbolic potentials [33],
bidimensional quantum dot [34], Scarf-type entangled states [35], etc. QES poten-
tials’ classification has been given by Turbiner [25] and Ushveridze [30].

Here we show that the Lie algebraic procedure may impose strict restrictions on
the solutions: we shall construct here analytical solutions for the Razavy-type
potential V xð Þ ¼ V0 sin h4 xð Þ � k sin h2 xð Þ� �

based on the polynomial solutions of
the related confluent Heun equation (CHE) and show that in that case the energy
eigenvalues diverge when k ! �1, a feature solely of the procedure. We shall also
show that other QES potentials may be found that do not belong to any of the
potentials found using the Lie algebraic method.

5.1 A Razavy-type QES potential

Let us consider Schrödinger’s problem for the Razavy-type potential
V xð Þ ¼ V0 sin h4 xð Þ � k sin h2 xð Þ� �

,

�ℏ2

2μ
d2ψ xð Þ
dx2

þ V0 sinh 4 λxð Þ � k sin h2 λxð Þ� �
ψ xð Þ ¼ Eψ xð Þ: (81)

For simplicity, we set μ ¼ ℏ ¼ λ ¼ 1 [35, 36].
Here the potential function is the hyperbolic Razavy potential

V xð Þ ¼ 1
2 ζ cosh 2xð Þ �Mð Þ2, with V0 ¼ 2ζ2, where M energy levels are found if M

is a positive integer [29]. It may also be viewed as the Ushveridze potential V xð Þ ¼
2ξ2 sinh 4 xð Þ þ 2ξ ξ� 2 γ þ δð Þ � 2ℓ½ �sinh 2 xð Þ þ 2 δ� 1

4

� �
δ� 3

4

� �
csch2 xð Þ � 2 γ�ð 1

4Þ
γ � 3

4

� �
sech2 xð Þ, when γ ¼ 1

4 and δ ¼ 3
4, or vice versa [30], which is QES if

ℓ ¼ 0; 1; 2,⋯ (with δ≥ 1
4). El-Jaick et al. showed that it is also QES if ℓ ¼half-integer

and γ, δ ¼ 1
4 ,

3
4 [37].

In the case of the Razavy potential, the solutions obtained by Finkel et al. are

ψση x;ERð Þ∝ sinh xð Þ12 1�σ�ηð Þ cosh xð Þ12 1�σþηð Þe�
ζ
2 cosh 2xð Þ ∑

n

j¼0

P̂
ση

j ERð Þ
2jþ η�σþ1

2

� �
!
cosh 2j xð Þ

(82)

with the parameters σ; ηð Þ ¼ �1;0ð Þ or 0;�1ð Þ, the energy eigenvalues being the
roots of the polynomials Pση

jþ1 ERð Þ, satisfying the three-term recursive relations

P̂ση
jþ1 ¼ ER � bj

� �
P̂ση
j ERð Þ � ajP̂

ση
j�1 ERð Þ, j≥0 (83)

with ER ¼ 2E, and

88

Panorama of Contemporary Quantum Mechanics - Concepts and Applications

aj ¼ 16ζj 2j� σ þ ηð Þ j� n� 1ð Þ
bj ¼ �4j jþ 1� σ þ 2ζð Þ þ 2nþ 1ð Þ 2 n� σð Þ þ 3ð Þ þ ζ ζ � 2ηþ 4nð Þ: (84)

5.2 Symmetric solutions for V xð Þ ¼ V0 sinh 4 xð Þ

To find the even solutions to Eq. (81) with k ¼ 0, let us set β xð Þ ¼ cosh 2 xð Þ, to
get

β β � 1ð Þ d
2ψ

dβ2
þ β � 1

2

� �
dψ
dβ

þ 1
4

2E� 2V0β
2 þ 4V0β � 2V0

� � ¼ 0 (85)

and to ensure that ψ xð Þ vanishes as x ! �∞, let ψ xð Þ ¼ e�
α
2βf βð Þ. Previous works

may not include square-integrable solutions to the Razavy potential [38–40]. By
requiring α2 ¼ 2V0, we obtain [41]

β β � 1ð Þ d
2f

dβ2
þ �αβ β � 1ð Þ þ β � 1

2

� �� �
df
dβ

þ α2β

4
� αβ

2
þ α

4
þ E

2
� α2

4

� �
f ¼ 0:

(86)

We shall look for rank N polynomial solutions: f βð Þ ¼ f 0 for N ¼ 0, or
f βð Þ ¼ f 0

QN
i¼1 β � βið Þ for N >0, the βi being the roots of the resulting polynomial

in Eq. (86). Sometimes the N ¼ 0 solution is not even considered [35].
The highest power of β in Eq. (86) fix α to α ¼ 4N þ 2. The energy eigenvalues

and the roots satisfy

E ¼ 1
2

α2 þ α 4∑
N

i¼1
βi � 1� 4N

� �
� 4N2

� �
(87)

∑
N

i 6¼j

2
βi � βj

þ�αβ2i þ αþ 1ð Þβi � 1
2

β2i � βi
¼ 0, i ¼ 1, 2,…, n: (88)

V0 is found to depend on the order of the polynomial, V0 ¼ 2 2N þ 1ð Þ2 for
even solutions, and solutions with different N cannot be scaled one into the other
due to the sinh 4 xð Þ dependence of the potential function. The highest solution
order is n ¼ 2N, and we use subindexes N; nf g to label eigenvalues/eigenfunctions.

For N ¼ 0, f βð Þ ¼ 1, we get V0 ¼ 2, E0,0 ¼ 1, and the (unnormalized) ground-
state eigenfunction ψ0,0 xð Þ ¼ e� cosh 2 xð Þ. For N ¼ 2, f βð Þ ¼ f 0 β � β1ð Þ β � β2ð Þ,
equating to zero the coefficients of the polynomial P βð Þ, we get the coupled
equations

α2

4
� 5α

2
¼ 0

3þ β1 þ β2ð Þ � α2

4
þ 3α

2

� �
þ � α2

4
þ 9α

2
þ E

2

� �
¼ 0

�3� β1 þ β2ð Þ � α2

4
þ 5α

4
þ E

2
þ 1

� �
þ β1β2

α2

4
� α

2

� �
¼ 0

1
2

β1 þ β2ð Þ þ β1β2 � α2

4
þ α

4
þ E

2

� �
¼ 0:

(89)

89

Supersymmetric Quantum Mechanics: Two Factorization Schemes and Quasi-Exactly Solvable…
DOI: http://dx.doi.org/10.5772/intechopen.82254



Solving these, we find that V0 ¼ 50, and the three possible eigenvalues,
E2,0 ¼ 2:6301, E2,2 ¼ 19:0121, and E2,4 ¼ 43:2490.

5.3 Antisymmetric solutions

In order to find antisymmetric solutions to Eq. (86), we set f βð Þ ¼ sinh xð Þg βð Þ,
to obtain

β β � 1½ � d
2g

dx2
þ �αβ2 þ αþ 2ð Þβ � 1

2

� �
dg
dx

þ �αþ α2

4

� �
β þ � α2

4
þ α

4
þ E

2
þ 1
4

� �� �
g ¼ 0:

(90)

This CHE can be solved in power series: g βð Þ ¼ g0 if N ¼ 0, or
g βð Þ ¼ g0

QN
i¼1 β � βið Þ for N >0. Then, α ¼ 4 N þ 1ð Þ, and

E ¼ 1
2

α2 þ α 4∑
N

i¼1
βi � 1� 4N

� �
� 4N2 � 4N � 1

� �
: (91)

Here, V0 ¼ 8 N þ 1ð Þ2, and all even and odd solutions have different V0. The
maximum solutions order is n ¼ 2N þ 1. For example, for N ¼ 3 we get α ¼ 16,
V0 ¼ 128, and

β1 þ β2 þ β3ð Þ 3α� α2

4

� �
þ � α2

4
þ 13α

4
þ E

2
� 49

4

� �
¼ 0

β1 þ β2 þ β3ð Þ α2

4
� 9α

4
� E

2
� 25

4

� �
þ β1β2 þ β2β3 þ β3β1ð Þ α2

4
� 2α

� �
� 15

2
¼ 0

3 β1 þ β2 þ β3ð Þ þ β1β2 þ β2β3 þ β3β1ð Þ � α2

4
þ 5α

4
þ 9
4
þ E

2

� �
þ β1β2β3 � α2

4
þ α

� �
¼ 0

� 1
2

β1β2 þ β2β3 þ β3β1ð Þ � β1β2β3
α2

4
� α

4
� E

2
� 1
4

� �
¼ 0:

(92)

We find four eigenvalues, E3,1 ¼ 12:8152, E3,3 ¼ 40:4568, E3,5 ¼ 75:7246, and
E3,7 ¼ 117:003.

6. The potential function V xð Þ ¼ V0 sinh 4 xð Þ � k sinh 2 xð Þ� �

Now we apply our analysis to the problem with V xð Þ ¼ V0 sinh 4 xð Þ � kð
sinh 2 xð ÞÞ, which is a symmetric double well if k>0. To find even solutions, we set
again β xð Þ ¼ cosh 2 xð Þ and ψ βð Þ ¼ e�

α
2βf βð Þ, with α2 ¼ 2V0,

β β � 1ð Þ d
2f

dβ2
þ �αβ β � 1ð Þ þ β � 1

2

� �� �
df
dβ
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þ α2β

4
1þ kð Þ � αβ

2
þ α

4
þ E

2
� α2

4
1þ kð Þ

� �
f ¼ 0: (93)

We now find that V0 ¼ 2 2Nþ1ð Þ2
1þk , k varying freely. For example, if N ¼ 0,

E0,0 ¼ 1= 1þ kð Þ, and no negative energy eigenvalues may exist. For N ¼ 1 the two
energy eigenvalues found are

E ¼
9� 1þ kð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kð Þ2 þ 36

q

1þ k
(94)

meaning that for k> 3=2 we will have negative eigenvalues. Note that for N >0,
it is always possible to find a zero-energy ground state, a feature that may have
cosmological implications [18].

For the case with N ¼ 2, choosing k ¼ 4, the energy eigenvalues are
E2,0 ¼ �3:74456, E2,2 ¼ 1:00000, and E2,4 ¼ 7:74456. The corresponding
eigenfunctions are plotted in Figure 1.

Now, to find the antisymmetric eigenfunctions, we set f βð Þ ¼ sinh xð Þ g βð Þ, to
get the CHE

β β � 1ð Þ d
2g

dβ2
þ �αβ2 þ αþ 2ð Þβ � 1

2

� �
dg
dβ

þ β
α2

4
1þ cð Þ � α

� �
þ α

4
þ E

2
� α2

4
1þ cð Þ þ 1

4

� �� �
g ¼ 0 :

(95)

For N ¼ 0 we get that α ¼ 4= 1þ kð Þ and E1 ¼ 6= 1þ kð Þ � 1=2, such that if
k> 11, we may find negative energy eigenvalues. For N ¼ 2, α ¼ 12= 1þ kð Þ, if we
set k ¼ 5, the energy eigenvalues found are E2,1 ¼ �7:11693, E2,3 ¼ 1:08119, and
E2,5 ¼ 9:53574. The eigenfunctions are plotted in Figure 1.

Note that in this case E1 � E0ð Þ=E0 ¼ 0:0052, and it is not possible to distin-
guish these eigenvalue’s lines from each other in Figure 1 for antisymmetric

Figure 1.
Left: the three even eigenfunctions (narrow solid lines) found analytically for k ¼ 4 and N ¼ 2, together with
the corresponding eigenvalues (dashed lines). Right: the three odd eigenfunctions (narrow solid lines) found
analytically for k ¼ 5 and N ¼ 2, together with the corresponding eigenvalues (dashed lines). The unsolved
eigenvalues are shown in dotted lines.
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again β xð Þ ¼ cosh 2 xð Þ and ψ βð Þ ¼ e�

α
2βf βð Þ, with α2 ¼ 2V0,

β β � 1ð Þ d
2f

dβ2
þ �αβ β � 1ð Þ þ β � 1

2

� �� �
df
dβ

90

Panorama of Contemporary Quantum Mechanics - Concepts and Applications

þ α2β

4
1þ kð Þ � αβ

2
þ α

4
þ E

2
� α2

4
1þ kð Þ

� �
f ¼ 0: (93)

We now find that V0 ¼ 2 2Nþ1ð Þ2
1þk , k varying freely. For example, if N ¼ 0,

E0,0 ¼ 1= 1þ kð Þ, and no negative energy eigenvalues may exist. For N ¼ 1 the two
energy eigenvalues found are

E ¼
9� 1þ kð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kð Þ2 þ 36

q

1þ k
(94)

meaning that for k> 3=2 we will have negative eigenvalues. Note that for N >0,
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eigenvalues, implying quasi-degenerate eigenstates. A similar effect is seen in the
symmetric case.

6.1 The case with k ¼ �1

As was seen in Section VI, the ground-state energy diverges as 1= 1þ kð Þ and as
k ! �1, and this also happens to all higher-order even eigenvalues (see Eq. (94)).
This is a strange behavior, since it is clear that the potential function has a rather
simple functional form for any value of k: a single or double well with infinite
barriers. We can see that this is only a characteristic due to the analytical solution
procedure, coming from the fact that the potential strength V0 is also divergent
when k ! �1.

6.2 Unclassified QES potentials

Finally, we would like to emphasize that there should be other potential func-
tions which may not be classified form the Lie algebraic method [25].

Indeed, let us consider Schrödinger’s problem with the potential function

V xð Þ ¼ α2

2
cosh 2 xð Þ � 3α

2
cosh xð Þ þ α

cosh xð Þ : (96)

For this problem, the ground-state eigenfunction and eigenvalue are given by

ψ ¼ ψ0e
�α cosh xð Þ cosh xð Þ, E ¼ α2 � 1

2
(97)

while this particular problem does not belong to the class of potentials found
using the Lie algebraic method. Similar potentials may be found which do not
belong to that class, leaving space for further developments.
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