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Preface

The ideas presented in this book are new scientific theories based largely upon a
spate of very recent astronomical observations. These theories include: a cosmolog-
ical model that appears to be superior, in many respects, to the inflationary
‘concordance model’; proposed thermal stability criteria for a generic quantum
black hole; theoretical constraints concerning black hole binary graviton emissions;
theoretical effects of abelian vortices on space-time; and a proposed solution to the
mystery of the observed asymmetry between universal matter and antimatter.

Beginning with NASA’s 1990 deployment of the Hubble Space Telescope, an inge-
nious variety of observational platforms (Earth-based and space-based) have been
rapidly approaching the theoretical limits of spectral observation. Thus, there is a
widespread consensus that we are now in a ‘golden age’ of astronomy and cosmol-
ogy. Unless radically new laws of physics are still left to be discovered, it is doubtful
that scientists of the future will be able to look much farther into space and time
than our current generation.

Nevertheless, even if that proves to be the case, we will long continue to refine our
thinking and understanding of what we are now observing. Vigorous scientific
debate about the inner workings of black holes and the precise conditions of the
early universe will likely continue unabated. This is a good thing. The new ideas
presented in this book have been selected in order to inspire others that, regardless
of the impending limits of observation, the scientific creative process will continue.

Eugene Tatum
Independent Researcher,

Bowling Green, Kentucky, USA
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Chapter 1

Introductory Chapter: Black Holes, 
The Singularity Problem, and The 
Universe
Eugene Terry Tatum

1. Black holes

Black holes are arguably the most fascinating and mysterious objects in the 
known universe. Our fascination is heightened by the recent imaging, for the first 
time, of the event horizon of a galactic supermassive black hole. This was a monu-
mental feat of ingenuity and engineering on the part of contemporary astronomers, 
mathematicians, computer programmers, and physicists. And it was, equally, a 
monumental achievement of the human mind, dating back to the work of Albert 
Einstein in the early days of the twentieth century.

As first recognized by German physicist Karl Schwarzschild in 1916, Einstein’s 
general theory of relativity predicts the existence of a particularly strange phe-
nomenon occurring inside the radius of any celestial object whose mass becomes 
equal to rc2/2G. It was soon apparent that an object satisfying the Schwarzschild 
metric should not allow anything, including light, to escape from within this 
“horizon” radius.

2. Singularity problem

Stranger still, it eventually became apparent that such an object had no obvi-
ous means of stabilizing itself at any given radius of gravitational collapse, no 
matter how small! Effectively, an empty black “hole” would be created inside the 
Schwarzschild radius, with the exception of an infinitely small and infinitely dense 
“singularity” at the hole’s geometric center. This was a strange prediction of general 
relativity that even Einstein could not accept. After all, what could “infinitely 
small” and “infinitely dense” even mean?!

Infinity may be an acceptable concept to a mathematician, but physicists tend to 
abhor the idea of real objects with infinite properties. Accordingly, we would prefer 
to invoke real or imagined principles of quantum physics in order to avoid the conun-
drum presented by an infinite singularity. This has become the primary inspiration 
for developing theories of quantum gravity collectively known as loop quantum grav-
ity. It is also a primary motivation for the intrinsically beautiful, although somewhat 
abstract, hyperdimensional and mathematically complex collection of string theories. 
Unfortunately, there is not, as of yet, a fully coherent and provable theory of quantum 
gravity upon which we can hope to understand the inner workings of a black hole, 
to say nothing of the gravitational conditions at the inception of the universe. This 
singularity problem is just one of the many puzzling things about black holes and the 
very early universe, some of which are addressed in this book.
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3. Universe

In the 1960s, English mathematical physicists Roger Penrose and Stephen 
Hawking cleverly extended the black hole singularity problem to our expanding uni-
verse. They proved that a backward time extrapolation of the expansion should inev-
itably lead to the same problem implied at the geometric center of a Schwarzschild 
black hole. Thus, allowing for the time symmetry of general relativity, the implica-
tion of their work [1–3] was that our universe has this feature, and perhaps others, in 
common with a nonrotating, electrically neutral, black hole. Whether the universe 
could be a time-reversed black hole-like object (sometimes referred to as a “white 
hole”) has been a subject of vigorous debate over the last 50 years [4–11].

When one rearranges the Schwarzschild formula, it is readily apparent that the M/r 
ratio (the ratio of the gravitational mass to Schwarzschild’s horizon radius) of an equili-
brated, nonrotating, electrically neutral black hole must equal c2/2G. This ratio (approxi-
mately 6.73 × 1026 kg/m in metric units) is effectively a constant of nature incorporating 
two of the most fundamental constants of nature, Maxwell’s speed of light and Newton’s 
gravitational constant. Furthermore, one could make a strong argument that this math-
ematical relationship is a reliable signature of a black hole or black hole-like object.

One of the features surprisingly in common between Schwarzschild black holes 
and the observable universe has been documented fairly recently and has been a sub-
ject of great interest to myself and others. A series of astronomical observations since 
the early 1990s [12–15] allow one to calculate a reasonably accurate M/r ratio value for 
the observable universe. If so inclined, the interested reader can skip the foundational 
references indicated and simply look up the relevant numbers on the Wikipedia link 
entitled “observable universe.” The mass M of the observable universe is now esti-
mated to be 1.5 × 1053 kg, and the radius r of the observable universe is now estimated 
to be 4.4 × 1026 m. One can readily see that this implies a current M/r ratio value for 
the observable universe of approximately 3.4 × 1026 kg/m. Consequently, the M/r ratio 
values for an equilibrated Schwarzschild black hole and the expanding observable universe 
are of the same order of magnitude. One should let that sink in.

4. A useful model

The above calculation made from recently published observations was unavailable 
to an earlier generation of physicists. This new result, in combination with the time-
symmetric properties of general relativity enshrined within Hawking’s singularity 
theorem, provides an excellent starting point for exploring the heuristic cosmology 
model of the universe I present in this book. It is believed to be the first cosmology 
model of its kind, namely, that which solely incorporates in its assumptions reason-
able speculations about black hole time reversal. Thus, Hawking’s singularity theorem 
is the founding principle of this model which I call flat space cosmology.

So far, this model appears to be quite accurate with respect to correlations 
between its embedded predictions at any particular point in cosmic time and a vari-
ety of astronomical observations. It is my hope that the reader will begin with this 
chapter and be inspired to study the model further. The competing “concordance 
model” incorporating inflationary cosmology may not be the last word after all!

5. A sense of wonder

As the reader delves further into this book, it is also my hope that he or she will 
have a sense of wonder for how far we have come in understanding black holes and 
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the rules governing the expansion of our universe. That so much of our universe is 
actually comprehensible was a wonder to even Albert Einstein. However, as the new 
ideas presented in this book clearly show, there are still many creative avenues for 
further exploration.
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A Heuristic Model of the Evolving
Universe Inspired by Hawking
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Abstract

A heuristic model of universal expansion is presented which uses, as its founding
principle, Stephen Hawking’s singularity theorem. All assumptions of this model are
intrinsically linked to Hawking’s theorem and its implications with respect to the
time-symmetric properties of general relativity. This is believed to be the first
mathematical model constructed in such a way, and it is remarkably accurate with
respect to current astrophysical observations. This model’s apparent superiority to
standard inflationary cosmology is emphasized throughout, including its accurate
derivations of the observed Hubble parameter value and CMB anisotropy. The
model definition of cosmic entropy not only correlates the observed temperature
anisotropy but also may have implications for resolving the cosmological constant
problem and the mystery of dark energy. Moreover, the model has a temperature
curve which is more favorable for the remarkably early formation of quasars and
galaxies. Possible deep connections to Verlinde’s “emergent gravity” theory are also
discussed.

Keywords: flat space cosmology, cosmology theory, cosmic inflation, dark energy,
cosmic flatness, CMB anisotropy, cosmic entropy, black holes, cosmic dawn,
Rh = ct model

1. Introduction and background

A heuristic mathematical model of the evolving universe, for the purpose of this
chapter, is one which tracks its global parameters (Hubble parameter, radius, mass,
energy, entropy, average temperature, temperature anisotropy, etc.) as a function
of cosmic time. For it to be useful, such a model should be consistent with every-
thing we currently observe about the universe as a global object and extend these
parameters indefinitely into the past and future. In assembling such a model, it is
particularly useful to start with a founding principle on which some or, preferably,
all of the starting assumptions can be based. For this particular model, the founding
principle is based upon the groundbreaking work of Roger Penrose [1] and Stephen
Hawking [2, 3] concerning the similar theoretical nature of astrophysical and cos-
mological singularities. This founding principle is Hawking’s singularity theorem.

Hawking’s singularity theorem implies that our universe, following time-
symmetric properties of general relativity, could be treated mathematically as if it
were a cosmological black hole-like object moving backward in time (i.e., expanding

5
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1. Introduction and background

A heuristic mathematical model of the evolving universe, for the purpose of this
chapter, is one which tracks its global parameters (Hubble parameter, radius, mass,
energy, entropy, average temperature, temperature anisotropy, etc.) as a function
of cosmic time. For it to be useful, such a model should be consistent with every-
thing we currently observe about the universe as a global object and extend these
parameters indefinitely into the past and future. In assembling such a model, it is
particularly useful to start with a founding principle on which some or, preferably,
all of the starting assumptions can be based. For this particular model, the founding
principle is based upon the groundbreaking work of Roger Penrose [1] and Stephen
Hawking [2, 3] concerning the similar theoretical nature of astrophysical and cos-
mological singularities. This founding principle is Hawking’s singularity theorem.

Hawking’s singularity theorem implies that our universe, following time-
symmetric properties of general relativity, could be treated mathematically as if it
were a cosmological black hole-like object moving backward in time (i.e., expanding
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from a singularity state as opposed to collapsing to a singularity state). Unfortu-
nately, although Hawking’s theorem was rigorously logical, he never actually put
together a predictive mathematical cosmological model based upon his theorem.
What is presented in this chapter is believed to be the first such model.

This author was sufficiently intrigued by the potential implications of Hawking’s
singularity theorem that he teamed up with two Indian physicists (U.V.S.
Seshavatharam and S. Lakshminarayana) in 2015 to publish the seminal papers [4–6]
on this model. For reasons to be discussed below, this model is called “flat space
cosmology” (FSC). The current five basic assumptions of FSC are presented below.

2. The five basic assumptions of flat space cosmology

1. The cosmic model is an ever-expanding sphere such that the cosmic horizon
always translates at speed of light cwith respect to its geometric center at all times
t. The observer is operationally defined to be at this geometric center at all times t.

2. The cosmic radius Rt and total mass Mt follow the Schwarzschild formula
Rt ffi 2GMt=c2at all times t.

3. The cosmic Hubble parameter is defined by Ht ffi c=Rt at all times t.

4.Incorporating our cosmological scaling adaptation of Hawking’s black hole
temperature formula, at any radius Rt, cosmic temperature Tt is inversely
proportional to the geometric mean of cosmic total mass Mt and the Planck
mass Mpl. Rpl is defined as twice the Planck length (i.e., as the Schwarzschild
radius of the Planck mass black hole). With subscript t for any time stage of
cosmic evolution and subscript pl for the Planck scale epoch and incorporating
the Schwarzschild relationship between Mt and Rt,
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5. Total cosmic entropy follows the Bekenstein-Hawking black hole entropy
formula [7, 8]:

St ffi πR2
t

L2
p

(2)

The rationale for these basic assumptions is closely tied to Hawking’s singularity
theorem as it might pertain to a time-reversed Schwarzschild cosmological black
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hole-like object. From the centrally located observer’s point of view, outwardly
moving photons traveling along geodesics at the cosmic boundary (i.e., the fastest-
moving “particles” of the expansion) are infinitely redshifted and thus define the
observational event horizon. Therefore, as given in assumption 3, the truly global
Hubble parameter value can always be defined as speed of light c divided by the
ever-increasing Schwarzschild radius Rt. While the first equation of assumption 4
closely resembles Hawking’s black hole temperature formula, it is modified so that
cosmological mass scales in Planck mass units. This is thought to be more appropri-
ate for a scaling cosmological model, as opposed to the relatively static thermody-
namics of an astrophysical (i.e., stellar) black hole.

As described in some detail in the seminal FSC papers, the first three assump-
tions allow for perpetual Friedmann’s critical density (i.e., perpetual global spatial
flatness) of the expanding FSC cosmological model from its inception. It should be
emphasized that these assumptions were not adopted for this particular purpose.
However, this unexpected and fortuitous outcome is perhaps the most important
feature of this model. By dividing the Schwarzschild mass (defined in terms of
cosmic radius Ro) by the spherical volume and substituting c2/Ro

2 with Ho
2,

Friedmann’s critical mass density ρ0 = 3H2
0

8πG is achieved for any given moment of
theoretical observation (hence the subscript “o”) in cosmic time. So, perpetual
Friedmann’s critical density and global spatial flatness from inception is a fundamental
feature of the FSC model. Our model was named for this important feature.

This perpetual spatial flatness feature, as well as the finite properties of light-
speed expansion of the cosmic horizon, obviates the need for an inflationary solu-
tion to the cosmological “flatness problem” and the “horizon problem.” It also
avoids the disturbing and incredible “infinite multiverse” implications inherent
within inflationary cosmic models. The problems of the required new physics of the
“inflaton” field, and of the “past-incomplete” nature [9] of inflationary models, are
also avoided in the FSC model. Many of these differentiating features of FSC with
respect to standard inflationary models were discussed at length in a recent FSC
summary paper [10].

Figure 1.
Cosmic radius, temperature, and mass as a function of cosmic time.
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Based upon the relations proceeding from the top equation of assumption 4, and
the model Hubble parameter definition of assumption 3, an FSC log graph can be
presented in Figure 1.

A color-coded overlay of cosmic epochs evolving from the Planck scale epoch, as
believed to be the case from particle physics experiments and quantum field theory,
is presented in Figure 2.

In both figures, there is a tight correlation between cosmic temperature and time
elapsed since the Planck scale epoch (not shown) at approximately the 10�43 s mark
of cosmic expansion.

3. FSC correlations with astronomical observations

The following temperature-dependent cosmological parameters can be easily
calculated in the FSC model. The only free parameter in any of these equations is
the cosmic temperature. Furthermore, by incorporating the values of T0, ħ, c, G, kB,
Lp, and π to as many decimal places as known, any of these FSC parameters can be
shown to closely match astronomical observations:

R ffi ℏ3=2c7=2

32π2k2BT
2G1=2 R0 ffi ℏ3=2c7=2

32π2k2BT
2
0G

1=2 (3)

H ffi 32π2k2BT
2G1=2

ℏ3=2c5=2
H0 ffi 32π2k2BT

2
0G

1=2

ℏ3=2c5=2
(4)

t ffi ℏ3=2c5=2

32π2k2BT
2G1=2 t0 ffi ℏ3=2c5=2

32π2k2BT
2
0G

1=2 (5)

Figure 2.
Particle physics epochs as a function of cosmic time and temperature.
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M ffi ℏ3=2c11=2

64π2k2BT
2G3=2 M0 ffi ℏ3=2c11=2

64π2k2BT
2
0G

3=2 (6)

Mc2 ffi ℏ3=2c15=2

64π2k2BT
2G3=2 M0c2 ffi ℏ3=2c15=2

64π2k2BT
2
0G

3=2 (7)

Current parameters are calculated in the right-hand column. The currently
observed cosmic temperature value T0 = 2.72548 K. Accordingly, the theoretical
current FSC Hubble parameter value at this temperature is.

H0 ¼ 2:167862848658891 x 10�18 s�1 66:89325791854758 km:s�1:Mpc�1� �

This derived theoretical global Ho value fits the 2018 Planck Collaboration
observational global Ho value of 67.36 +/� 0.54 km.s�1.Mpc�1 (68% confidence
interval for TT, TE, EE + lowE + lensing) [11] and the DES 2018 Ho value of
67.77 � 1.30 km s�1.Mpc�1 (SN + BAO) [12]. Since the Planck observational value
was obtained partially with the aid of extraordinarily precise observations of the
CMB black body radiation spectrum, this may be as close as we can come in the
foreseeable future to a truly global Hubble parameter measurement. And yet, the
above theoretical Ho calculation is based solely upon this one carefully measured free
parameter: T0 = 2.72548 K. This is a remarkable result!

Therefore, one should have great confidence that the following cosmological
parameters incorporating the FSC-derived Ho value are also highly accurate:

t0 ffi 1
H0

¼ 4:61283794 x 1017 s 14:61694684� 109 sidereal years
� �

(multiplying by 1 sidereal year per 3.155814954 � 107 s)
This value is simply the reciprocal of the above-derived Hubble parameter value,

as one would expect for the perpetually spatially flat FSC cosmic model in compar-
ison with the standard inflationary model. For reasons not elaborated here, any
inflationary model would be expected to calculate a slightly younger cosmic age.
13.8 billion years is now consensus for the standard inflationary model:

R0 ffi c
H0

¼ 1:38289402 x 1026 m 14:617201 � 109 light� years
� �

(multiplying by 1 Julian light-year per 9.4607304725808 � 1015 m)
This current cosmic radius value correlates with current cosmic time by Ro = cto.

Therefore, FSC is a Rh = ct cosmological model. Later discussion in this chapter will
focus on the extremely good statistical fit between Rh = ct models and the accumu-
lated Type Ia supernovae light curve data purported to “prove” the existence of
cosmic acceleration:

Vol0 ¼ 4π
3

c
H0

� �3

¼ 1:10778456� 1079 m3

M0 ¼ c3

2GH0
¼ 9:31126529� 1052 kg

This total mass number can be compared very favorably to a rough estimate
made from astronomical observations. The visible matter consists of roughly 100
billion galaxies averaging roughly 100 billion stars each, of average star mass equal
to roughly 1.4 � 1030 kg (70% of solar mass), totaling to roughly 1.4 � 1052 kg.
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The 2015 Planck Collaboration report indicates a universal matter ratio of approxi-
mately 5.5 parts dark matter to 1 part visible (baryonic) matter. This brings the total
estimated matter in the observable universe to approximately 9.1 � 1052 kg. A
recent study [13] of average mass density of intergalactic dust gives a value of
approximately 10�30 kg.m�3. Since this is approximately 1 part intergalactic dust to
1000 parts galactic and perigalactic matter, intergalactic dust does not appreciably
modify the estimated total observational mass of matter given above. Accordingly,
this observational estimate is remarkably close to the above FSC theoretical
calculation of total cosmic mass attributed to positive energy (i.e., gravitationally
attractive) matter.

According to the FSC Friedmann equations (referenced below), the positive
matter mass-energy is equal in absolute magnitude, and opposite in sign, to the
negative (dark) energy at all times. This is a 50/50 percentage ratio as opposed to
the approximately 30/70 ratio implied by yet unproven, and supposedly dark
energy-dominating, cosmic acceleration. However, without definitively proving
cosmic acceleration, standard inflationary cosmology cannot claim this 30/70 ratio!
(Please see the discussion and relevant references in the last two paragraphs of this
section):

M0c2 ¼ c5

2GH0
¼ 8:3685479 x 1069 J

ρ0 ¼ 3H2
0

8πG
¼ 8:40530333 x 10�27 kg:m�3 critical mass density

� �

This closely approximates the observational cosmic mass density calculation of
critical density:

ρ0c
2 ¼ 3H2

0c
2

8πG
¼ 7:554309896 x 10�10 J:m�3 critical mass� energy density

� �

This closely approximates the observational cosmic mass-energy density and the
observational vacuum energy density. They are equal in absolute magnitude, and
opposite in sign, in FSC.

A recent paper [14] has integrated the FSC model into the Friedmann equations
containing a Lambda Λ cosmological term. Thus, FSC has been shown to be a scalar
dynamic Λ dark energy model of the wCDM type (wherein equation of state term w
is always equal to �1.0). Furthermore, it is well-known that a sufficiently realistic
Rh = ct model, such as FSC, can fit within the tightest constraints of the Supernova
Cosmology Project (SCP) data. The following open-source graph (Figure 3) from
the SCP is offered as proof [15].

One can readily see (by the “flat” line intersection) that a realistic spatially flat
universe model such as FSC is an excellent fit with all such SCP observations to date.

Currently, there is no certainty about the percentage of the critical density
which is attributable to dark matter. Those with knowledge of the observational
studies of the ratio of dark matter to visible matter realize the difficulty of deter-
mining a precise co-moving value for this ratio at the present time. Galactic and
perigalactic distributions of dark matter can be surprisingly variable, as evidenced
by the 29 March 2018 report in Nature [16] of a galaxy apparently completely
lacking in dark matter! Although the 2015 Planck Collaboration consensus is a large-
scale approximate ratio of 5.5 parts dark matter to 1 part visible matter, this can only
be considered as a rough estimate of the actual co-moving ratio, particularly if this
ratio varies significantly over cosmic time. A 9.2-to-1 actual ratio in approximately
co-moving galaxies (i.e., those within about 100 million light-years of the Milky
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Way galaxy) remains a possibility and would change the ratio of total matter mass-
energy to dark energy to essentially unity (i.e., 50% matter mass-energy and 50%
dark energy). Thus, the intersection zone of tightest constraints shown in Figure 3
should then correlate with 0.5 Omega_ m and 0.5 Omega_Λ. This is one of several
important testable predictions discriminating the FSC model from the standard
inflationary cosmology model. Precise measurements of approximately co-moving
galaxies are in order, for comparison with the CMB observational Planck Collabo-
ration result.

The question of dark energy density dominance over total matter energy density
remains in doubt, at the present time, in the scientific literature. Several recent
papers [17–21] have clearly shown that cosmic acceleration, as opposed to the
cosmic coasting of Rh = ct models, is not yet proven. These are not, of course,
refutations of the existence of dark energy as it may be defined by general relativity.
Rather, they are statistical analyses placing some doubt on dark energy dominance
and thus cosmic acceleration. These papers are well worth reading.

4. Superiority of FSC compared to inflationary cosmology

As detailed in the recent FSC summary paper [10], there are at least 11 categories
in which FSC appears to be superior to standard inflationary cosmology. What
makes FSC so powerful in this regard is its ability to make very specific predictions
for observations which can be used to falsify the theory if FSC is incorrect. To date,
FSC as a global parameter observational predictor has not been falsified.

Standard inflationary cosmology, on the other hand, has largely been cobbled
together from observations and would be difficult to falsify because it makes few,
if any, falsifiable predictions. The reader should remember that the various
theories of cosmic inflation contained ad hoc adjustments to accommodate

Figure 3.
SCP supernovae, BAO, and CMB data.
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Way galaxy) remains a possibility and would change the ratio of total matter mass-
energy to dark energy to essentially unity (i.e., 50% matter mass-energy and 50%
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Figure 3.
SCP supernovae, BAO, and CMB data.
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observations [22, 23] and that the presumed “inflaton” energy field of inflation was
invented before the actual cosmological vacuum energy now called dark energy was
discovered approximately two decades later. It is notable that, rather than attempt
to apply the newly discovered dark energy as a scalar quantity also at work in the
early universe, standard inflationary cosmologists have generally assumed the dark
energy field to be something entirely distinct from their theoretical inflaton energy
field. There has also been an assumption that the post-inflationary energy density of
the vacuum must have been a constant over the great span of cosmological time.
And yet, the theoretical discrepancies created by this “cosmological constant prob-
lem” [24, 25] are considered by many to be the most embarrassing problem in all of
physics. A discussion of this problem is included later.

What follows are several selected categories of particular importance from the
FSC summary paper. The reader is encouraged to read this paper for the full
discussion as to how FSC appears to be superior to standard inflationary cosmology,
particularly in terms of falsifiability.

4.1 Cosmic dawn and the formation of the first quasars and galaxies

As noted in several recent papers [26, 27], standard inflationary cosmology
cannot easily explain the surprisingly early formation of the first quasars and
galaxies. As detailed in a recent FSC paper [28], temperature curve differences
between the two models are such that cosmic dawn, at z redshifts of about 15–20,
occurred in the FSC model much earlier than in standard inflationary cosmology.
A comparison of the two temperature curves is shown below in Figure 4, with
features of the standard inflationary model as illustrated in Bowman’s recent
paper [29].

The blue line is the radiation temperature (TR) curve expected in standard
inflationary cosmology, and the green line is the radiation temperature curve
expected in FSC. The dashed red line represents the spin temperature (TS), and the
solid red line represents the baryonic gas temperature (TG).

One should note how these cosmic times differ with respect to a given model’s
radiation temperature. Judging from these temperature curve differences, cosmic
dawn in FSC would have been at about 20–50 million years after the Planck
epoch as opposed to the standard inflationary cosmology cosmic dawn at about

Figure 4.
Cosmic temperature vs. time in standard cosmology (blue) and FSC (green).
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110–250 million years. Thus, FSC, by the relative flatness of its temperature curve,
allows for considerably more time between the formation of the first stars and the
formation of the first quasars and galaxies.

4.2 Predictions pertaining to primordial gravity waves

FSC is a steadily expanding cosmology model, which would not be expected to
produce inflationary B-mode primordial gravity waves. There is nothing “explo-
sive” about the FSC early universe in comparison with the standard inflationary
early universe. Thus, FSC predicts that inflationary B-mode primordial gravity
waves will never be detected. Such unequivocal detection of inflationary waves
would falsify FSC. The continued failure to detect such waves, if the sensitivity of
detection methods can be made sufficiently high, should be considered to strongly
favor FSC over standard inflationary cosmology.

4.3 Predicting the magnitude of CMB temperature anisotropy

The angular power spectrum of the CMB clearly fits with a spatially flat uni-
verse. As noted following the BOOMERanG Collaboration report [30] of CMB
anisotropy observations, their results are “closely fitting the theoretical predictions
for a spatially flat cosmological model with an exactly scale invariant primordial
power spectrum for the adiabatic growing mode” [31]. Furthermore, the COBE
DMR experiment [32] measured a CMB RMS temperature variation of 18 micro-
Kelvins. This translates to a dT/T anisotropy value of (0.000018)/2.725 equal to
0.66� 10�5. This measurement fits within the range of FSC temperature anisotropy
predictions for the beginning and ending of the recombination/decoupling epoch
[33]. This result clearly favors FSC.

4.4 Predicting the Hubble parameter value

In standard inflationary cosmology, the Hubble parameter value can only be
determined by observation. That is to say that there is no theoretical ability within
standard cosmology to derive a Hubble parameter value. The FSC model, on the
other hand, predicts the current global Ho value to be 66.89 kilometers per second
per megaparsec. This fits the 2018 Planck Collaboration [11] and 2018 DES [12]
Hubble parameter values. Therefore, this category strongly favors FSC in compari-
son with standard inflationary cosmology.

4.5 Quantifiable entropy and the entropic arrow of time

One of the problems within the standard inflationary model is in quantifying
cosmic entropy. Entropy is typically defined in terms of the total number of possible
microstates and the probability of a given set of conditions with respect to that
number of microstates. These values are impossible to quantify in an infinite-sized
inflationary universe or multiverse. FSC, on the other hand, is a finite model with a
spherical horizon surface area. And, since the Bekenstein-Hawking definition of
black hole entropy applies to the FSC model, values for cosmic entropy can be
calculated for any time, temperature, or radius of the FSC model. Thus, the “entro-
pic arrow of time” is clearly defined and quantified in the FSC model. The quanti-
fiable entropy of the FSC model allows for model correlations with cosmic entropy
theories, such as those of Roger Penrose [34] and Erik Verlinde. Thus, the entropy
rules of FSC potentially allow for falsifiability. This feature favors the FSC model,
particularly with respect to Verlinde’s “emergent gravity” theory (see below).
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4.6 Clues to the nature of gravity, dark energy, and dark matter

The reader is referred to the recent FSC paper [35] with this title for an in-depth
discussion of how cosmic entropy in the FSC model may provide tantalizing clues
with respect to the fundamental nature of gravity. In short, the FSC model appears
to be the cosmological model correlate to Verlinde’s “emergent gravity” theory
[36, 37]. Verlinde’s landmark paper from 2011 provides strong theoretical support
for gravity being an emergent property of cosmic entropy. The corresponding FSC
paper makes a case for the correctness of Verlinde’s theory. As discussed in the FSC
paper, if gravity is an emergent property of cosmic entropy, then one might enter-
tain the possibility that dark energy and dark matter could also be emergent prop-
erties of cosmic entropy. For instance, perhaps galactic and perigalactic features
attributed to dark matter (such as platelike galactic rotation and gravitational
lensing) could be an unexpected large-scale effect of the entropy of the known
galactic baryonic matter. If this turns out to be the correct interpretation, then
gravity, dark energy, and dark matter might be as difficult to define at the quantum
level as “quantum consciousness” within two connected neurons.

The recent observations of Brouwer et al. [38] appear to be in support of
Verlinde’s “emergent gravity” theory as it pertains to dark matter. The discovery of
quantum gravity, other than quantum gravity somehow connected to entropy at the
quantum level, would falsify Verlinde’s “emergent gravity” theory. At present,
standard inflationary cosmology, by virtue of its inability to precisely define cosmic
entropy, has no capacity to incorporate Verlinde’s theory. This appears to favor
FSC, particularly in light of the above-mentioned recent observational findings.

4.7 The cosmological constant problem

The “cosmological constant problem” is a long-standing problem in theoretical
physics. It underscores standard cosmology’s inability to unify general relativity
with quantum field theory (QFT). Excellent expositions on this subject have been
provided by Weinberg [24] and Carroll [25]. QFT theorists calculate a cosmological
constant value which differs from observational measurements of the vacuum
energy density by a magnitude of approximately 10121! Suffice it to say, this dis-
crepancy is so large that it is often referred to as the most embarrassing problem in
all of theoretical physics.

In standard inflationary cosmology, it has been assumed that the post-inflationary
energy density of the cosmic vacuum must be constant, rather than scalar, over the
remainder of cosmic time. However, general relativity does indeed allow for the
vacuum energy density to be a dynamic scalar over time, so long as Ʌ = 3Ht

2/c2.
Cosmological models incorporating scaling vacuum energy density are called “quin-
tessence”models. FSC is one such model. In FSC, the vacuum energy density scales
downward by 121.26 logs of 10 over the cosmic time interval since the Planck epoch.
Perhaps of even greater interest is that the Bekenstein-Hawking cosmic entropy value
scales upward in direct proportion to the expanding surface area of the cosmic
horizon. If one were to count the current number of Planck radius microstates within
the FSC horizon, the model indicates this entropy number to be 10121.26. Thus, by its
implication of a possible relationship between vacuum energy (i.e., dark energy) and
total cosmic entropy (as discussed in Section 4.6), FSC also offers a possible explana-
tion for the magnitude difference between the Planck epoch vacuum energy density
calculated by QFT theorists and today’s observed vacuum energy density of approx-
imately 10�9 J.m�3. Since the FSC model stipulates these values and standard infla-
tionary cosmology has no basis for deriving them, the FSC model appears to be
superior with respect to potentially resolving the cosmological constant problem.

14

New Ideas Concerning Black Holes and the Universe

4.8 Dark matter and dark energy quantitation

As reported by the Planck Collaboration, the ratio of dark matter to visible
(baryonic) matter is observed to be approximately 5.5 parts dark matter to 1 part
visible matter. However, there are already significant differences observed between
the dark matter-to-visible matter ratios in the galaxies quite near to us (essentially
co-movers) and the above dark matter-to-visible matter ratio determined from
Planck CMB observations. Perhaps this ratio is scalar over the great span of cosmic time.
If the co-mover ratio is ultimately found to be approximately 9.2, as predicted by FSC,
one can then conclude that total matter energy density at present is equal in absolute
magnitude to dark energy density. This equality of opposite sign energy densities is
what one would expect for a spatially flat universe. Otherwise, if one energy density
dominated the other, there should be detectable global spatial curvature
corresponding to the dominating energy density. One could, in fact, make a strong
case that the spatial flatness of the CMB proves the equality of total matter and dark
energy densities at the time of the recombination/decoupling epoch. This should
nullify any Planck Collaboration conclusions (such as dark energy dominance)
which are obviously contrary to their own observations of spatial flatness.

Despite the fact that FSC and standard inflationary cosmology differ somewhat
with respect to the percentages of total matter vs. dark energy predicted for the co-
moving universe, there is one thing about this energy density partition on which
everyone agrees: it is truly remarkable that total matter energy density and dark
energy density are of the same order of magnitude at the present time. As physicist I. I.
Rabi once famously remarked, “Who ordered that?!” This is often referred to as the
cosmological “coincidence problem.” Standard cosmology simply accepts this coin-
cidence problem with no further explanation or rationale. However, FSC stipulates
perpetual equality of absolute magnitude of these two energy densities as a require-
ment for a perpetually spatially flat universe. One can consider this expectation of
energy density equality to be a falsifiable FSC prediction with respect to future
measurements of total matter energy density in comparison with dark energy den-
sity. An in-depth statistical analysis of approximate co-movers with the Milky Way
should give us a better idea of the dark matter-to-visible matter ratio in the current epoch.

With respect to standard cosmology’s current belief in cosmic acceleration due
to dark energy, the reader is referred to the references [17] thru [21] mentioned
earlier. Cosmic acceleration is clearly not proven at the present time, despite the
indisputable presence of dark energy as definable within general relativity. There
are relative differences in luminosity distance and angular diameter distance for-
mulae in standard inflationary cosmology and Rh = ct modified Milne-type models
(like FSC). Two comparative graphs from FSC reference [39] are shown in
Figures 5 and 6.

The significance of the relative luminosity distance and relative angular diame-
ter distance comparisons between these two competing models is paramount. An
observer of distant Type Ia supernovae expects particular luminosity distances and
angular diameter distances to correspond with particular redshifts. If, instead, he or
she observes greater-than-expected luminosity distances (i.e., unexpected “dim-
ming” of the supernovae) or greater-than-expected angular diameter distances, this
can easily be misinterpreted by a standard inflationary model proponent as indica-
tive of cosmic acceleration. However, entirely predictable supernova luminosity dis-
tances within a realistic Milne-type universe containing matter, as opposed to a standard
model universe, could be one possible explanation for the Type Ia supernovae observations
since 1998. Obviously, cosmic acceleration would not then be required to explain these
observations. This possibility, combined with the standard model tension problem
presented above (i.e., spatial flatness and dark energy dominance cannot both be
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true at the same time), and the FSC stipulation of what standard model proponents
refer to as the “coincidence problem,” strongly favors FSC with respect to its pre-
dictions concerning dark matter and dark energy quantitation.

4.9 Requirements for new physics

Cosmic inflation theory was invented before the spatial-flattening effects (on
positively curved space-time) of cosmic vacuum energy (dark energy) were dis-
covered in 1998 [40–42]. Guth [43] and others [44, 45] believed at the time of its
invention that a special energy field with inflating features (called by Guth the
“inflaton”) was required within the initial 10�32 s of universal expansion. It was
believed that this energy field was necessary in order to flatten out a presumed
highly curved space-time during and immediately following the inception of
expansion. Thus, inflation appeared to be a clever solution to the cosmological
“flatness problem,” as well as the cosmological “horizon problem.” The latter prob-
lem was presumed at the time to exist because most cosmologists believed, without
any real evidence, that the universe is infinite and thus otherwise difficult to explain
in terms of its remarkable homogeneity in all observational directions.

For reasons mentioned near the end of the “Introduction and Background”
section, FSC solves these cosmological problems without requiring an inflationary
epoch. In contrast to inflationary models, in which the total cosmic matter

Figure 6.
Relative angular diameter distances vs. z for standard (blue) and Milne (red).

Figure 5.
Relative luminosity distances vs. redshift z for standard (blue) and Milne (red).
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generation is exclusively limited to within a tiny fraction of a second of the Big
Bang, the FSC model is a perpetual matter-generating model with some similarities to
the model presented in the 2019 publication entitled “A Perpetual Mass-Generating
Planckian Universe” by Sapar [46]. This concept of perpetual matter generation has
a long tradition going back at least to Hoyle, although Hoyle’s particular matter-
generating theory was falsified by the discovery of the cosmic microwave back-
ground in the 1960s. Here it is important to recognize that the mystery of matter
generation is inherent in all cosmology models. FSC simply models perpetual
matter generation, while inflationary models imply, without any real evidence, that
all universal matter was nearly instantaneously created.

This author speculates that the negative energy (i.e., gravitationally repelling)
vacuum may be continually diluted of its original highly concentrated Planckian
energy during cosmic expansion and that gravitationally attracting positive energy
in the form of matter is continually created as an offset. This would be in keeping
with the spatial curvature rules of general relativity. One should remember that,
according to general relativity, a flat space-time is flat precisely because it contains
net zero total energy. Furthermore, a globally and perpetually spatially flat universe
which begins from a net zero total energy state (Guth’s “free lunch” idea) would
presumably maintain net zero total energy throughout its expansion. Otherwise, a
fully self-contained universe, such as a FSC universe, would violate conservation
of energy.

Despite the ongoing mystery of matter generation in all cosmology models, for
the arguments made above, and for the perpetual matter generation rationale
offered in Dr. Sapar’s paper, this category appears to favor FSC in comparison with
standard inflationary cosmology.

5. Summary and conclusions

This chapter has introduced the reader to the heuristic FSC cosmology model.
Like all useful heuristics, FSC provides a means for accurately calculating a variety
of parameters. The founding principle for the construction of this model is
Hawking’s singularity theorem. Accordingly, all assumptions of this model are
intrinsically linked to Hawking’s theorem and its implications with respect to widely
accepted time-symmetric properties of general relativity. Black holes and black
hole-like objects are now known to exist. Furthermore, we know that such objects
range over a remarkably wide, fractal-like scale. Our universe may simply be the
largest of these objects which can be observed, albeit from the inside!

Beginning with Penrose and Hawking, the black hole-like properties of the
universe have continued to fascinate and surprise us. Our current golden age of
astrophysical observations and new theories certainly promises even more surprises
ahead.
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true at the same time), and the FSC stipulation of what standard model proponents
refer to as the “coincidence problem,” strongly favors FSC with respect to its pre-
dictions concerning dark matter and dark energy quantitation.

4.9 Requirements for new physics

Cosmic inflation theory was invented before the spatial-flattening effects (on
positively curved space-time) of cosmic vacuum energy (dark energy) were dis-
covered in 1998 [40–42]. Guth [43] and others [44, 45] believed at the time of its
invention that a special energy field with inflating features (called by Guth the
“inflaton”) was required within the initial 10�32 s of universal expansion. It was
believed that this energy field was necessary in order to flatten out a presumed
highly curved space-time during and immediately following the inception of
expansion. Thus, inflation appeared to be a clever solution to the cosmological
“flatness problem,” as well as the cosmological “horizon problem.” The latter prob-
lem was presumed at the time to exist because most cosmologists believed, without
any real evidence, that the universe is infinite and thus otherwise difficult to explain
in terms of its remarkable homogeneity in all observational directions.

For reasons mentioned near the end of the “Introduction and Background”
section, FSC solves these cosmological problems without requiring an inflationary
epoch. In contrast to inflationary models, in which the total cosmic matter

Figure 6.
Relative angular diameter distances vs. z for standard (blue) and Milne (red).

Figure 5.
Relative luminosity distances vs. redshift z for standard (blue) and Milne (red).
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generation is exclusively limited to within a tiny fraction of a second of the Big
Bang, the FSC model is a perpetual matter-generating model with some similarities to
the model presented in the 2019 publication entitled “A Perpetual Mass-Generating
Planckian Universe” by Sapar [46]. This concept of perpetual matter generation has
a long tradition going back at least to Hoyle, although Hoyle’s particular matter-
generating theory was falsified by the discovery of the cosmic microwave back-
ground in the 1960s. Here it is important to recognize that the mystery of matter
generation is inherent in all cosmology models. FSC simply models perpetual
matter generation, while inflationary models imply, without any real evidence, that
all universal matter was nearly instantaneously created.

This author speculates that the negative energy (i.e., gravitationally repelling)
vacuum may be continually diluted of its original highly concentrated Planckian
energy during cosmic expansion and that gravitationally attracting positive energy
in the form of matter is continually created as an offset. This would be in keeping
with the spatial curvature rules of general relativity. One should remember that,
according to general relativity, a flat space-time is flat precisely because it contains
net zero total energy. Furthermore, a globally and perpetually spatially flat universe
which begins from a net zero total energy state (Guth’s “free lunch” idea) would
presumably maintain net zero total energy throughout its expansion. Otherwise, a
fully self-contained universe, such as a FSC universe, would violate conservation
of energy.

Despite the ongoing mystery of matter generation in all cosmology models, for
the arguments made above, and for the perpetual matter generation rationale
offered in Dr. Sapar’s paper, this category appears to favor FSC in comparison with
standard inflationary cosmology.

5. Summary and conclusions

This chapter has introduced the reader to the heuristic FSC cosmology model.
Like all useful heuristics, FSC provides a means for accurately calculating a variety
of parameters. The founding principle for the construction of this model is
Hawking’s singularity theorem. Accordingly, all assumptions of this model are
intrinsically linked to Hawking’s theorem and its implications with respect to widely
accepted time-symmetric properties of general relativity. Black holes and black
hole-like objects are now known to exist. Furthermore, we know that such objects
range over a remarkably wide, fractal-like scale. Our universe may simply be the
largest of these objects which can be observed, albeit from the inside!

Beginning with Penrose and Hawking, the black hole-like properties of the
universe have continued to fascinate and surprise us. Our current golden age of
astrophysical observations and new theories certainly promises even more surprises
ahead.
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Chapter 3

Thermal Stability Criteria of a
Generic Quantum Black Hole
Aloke Kumar Sinha

Abstract

Thermodynamics of black holes were studied by Hawking, Bekenstein et al.,
considering black holes as classical spacetimes possessing a singular region hidden
behind an event horizon. In this chapter, in contrast, we treat black hole from the
perspective of a generic theory of quantum gravity, using certain assumptions
which are consistent with loop quantum gravity (LQG). Using these assumptions
and basic tenets of equilibrium statistical mechanics, we have derived criteria for
thermal stability of black holes in any spacetime dimension with arbitrary number
of charges (‘hairs’), irrespective of whether classical or quantum. The derivation of
these thermal stability criteria makes no explicit use of classical spacetime geometry
at all. The only assumption is that the mass of the black hole is a function of its
horizon area and all the ‘hairs’ (i.e. charge, angular momentum, any other types of
hairs). We get a series of inequalities between derivatives of the mass function with
respect to the area and other ‘hairs’ as the thermal stability criteria. These criteria
are then tested in detail against various types of black holes in various dimensions.
This permits us to predict the region of the parameter space of a given black hole in
which it may be stable under Hawking radiation.

Keywords: black hole thermodynamics, thermal stability, saddle-point
approximation, quantum gravity, multicharged black hole
PAC numbers: 04.70.-s, 04.70.Dy

1. Introduction

Semiclassical analysis has made the claim that non-extremal, asymptotically flat
black holes are thermally unstable due to decay under Hawking radiation. Their
instability is allegedly due to negativity of their specific heat [1, 2], as deduced from
semiclassical mnemonics based on the classical metric. These black holes become
hotter and hotter as they lose mass. This is a complete thermal runaway process.
Note, however, that semiclassical analysis depends explicitly on the classical black
hole metric and, as such, is inherently a ‘case-by-case’ analysis. This limitation
implies that general results about thermal stability of black holes under Hawking
decay cannot be obtained from such an analysis. For some asymptotically flat
general relativistic black holes, semiclassical analysis has yielded the understanding
that their specific heat, defined semiclassically from their metric, is negative, and
hence the black holes must be thermally unstable under Hawking decay. However,
there is little to glean from this approach which holds in general.
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This interesting fact has motivated the study of thermal stability of black holes,
from a perspective that is inspired by a definite proposal for quantum spacetime
(like loop quantum gravity (LQG) [3, 4]) rather than on semiclassical assumptions.
In the vicinity of a black hole horizon, gravity is very strong. So, a nonperturbative
quantum theory of gravity is required to describe black holes from a quantum
perspective. LQG is one of the promising candidates having this feature. A consis-
tent understanding of the issue of quantum black hole entropy has been obtained
through LQG [5, 6], where not only has the Bekenstein-Hawking area law been
retrieved for macroscopic (astrophysical) black holes, but a whole slew of correc-
tions to it, due to quantum spacetime fluctuations that have been derived as well
[7, 8], with the leading correction being logarithmic in area with the coefficient
�3=2. LQG plays only a motivational role in our work. Many of the assumptions,
actually are made independently of LQG, are justified on the ground that LQG
might provide situations where these assumptions are valid.

The implications of this quantum perspective on the thermal stability of black
holes from decay due to Hawking radiation have therefore been an important aspect
of black hole thermodynamics beyond semiclassical analysis and also somewhat
beyond the strict equilibrium configurations that isolated horizons represent. Clas-
sically a black hole in general relativity is characterized by its mass (M), charge (Q)
and angular momentum (J). Intuitively, therefore, we expect that thermal behav-
iour of black holes will depend on all of these parameters. For a given classical
metric characterizing a black hole, the mass can be derived explicitly to be a
function of the charge and angular momentum. However, the quantum spacetime
perspective frees us from having to use classical formulae for this functional
dependence of the mass. Instead, the assumption is simply this: the mass is a
function of the horizon area, along with the charge and angular momentum.

The simplest case of vanishing charge and angular momentum has been investi-
gated longer than a decade ago [9–11]. The obtained condition for thermal stability
exactly matches with the condition, derived from semiclassical analysis. That con-
dition has been derived from positivity of specific heat. This exact matching hap-
pens as the black holes have neither rotation nor charge. We are going to establish in
this chapter that even if a black hole has at least one of those, the conditions for
thermal stability are more elaborate. This is already obvious when one considers
charged black holes ([12]). Therefore the conditions start to differ from classical
ones. This is due to the fact that black holes are treated quantum mechanically. The
earlier work has been generalized, via the idea of thermal holography ([13, 14]) and
the saddle-point approximation to evaluate the canonical partition function
corresponding to the horizon, retaining Gaussian thermal fluctuations. The conse-
quence is a general criterion of thermal stability as an inequality connecting area
derivatives of the mass and the microcanonical entropy. This inequality is nontrivial
when the microcanonical entropy has corrections (of a particular algebraic sign)
beyond the area law, as is the case for the loop quantum gravity calculation of the
microcanonical entropy [15]. The generalized stability criterion indeed ‘predicts’
the thermal instability of asymptotically flat Reissner-Nordstrom black holes
contrasted with the thermal stability of anti-de Sitter Reissner-Nordstrom black
holes (for a range of cosmological constants).

In this chapter, this approach is generalized to quantum black holes carrying
both charge and angular momentum. The inclusion of rotation poses challenges in
the LQG formulation [16–19] of isolated horizons. However, the general under-
standing of nonradiant rotating isolated horizons has parallels in these assays. We
do not review this body of work, but realize that the thermal stability behaviour of
rotating radiant black holes may be qualitatively different from that of the
nonrotating ones.
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We have calculated the partition function for rotating charged black hole.
Thereafter we have got several inequalities as criteria for thermal stability of such
black hole. We interpret these criteria and show how they are related to various
thermodynamical quantities. We also show how the stability criteria for
nonrotating and neutral black holes can be derived from these seven conditions in
appropriate limit.

Beyond the standard general relativity theory corresponding to 3þ 1ð Þ dimen-
sional spacetime, higher-dimensional theories of gravity are currently under exten-
sive scrutiny. Consequently black hole solutions are also being considered in those
theories [20]. Such black holes have additional charges (hairs) beyond the tradi-
tional hairs—electric charge and angular momentum1. A black hole can be
completely designated by its charge (Q), mass or area (A) and angular momentum
(J). Quantum mechanically, a black hole can have many extra hairs, i.e. many
charges, which contribute to its mass [22–28]. Higher-dimensional black holes too
have many new charges which contribute to its mass [29]. We also consider all such
hairs of black holes, together. We generalize the analysis of thermal stability of
3þ 1ð Þ dimensional charged rotating black holes, for black holes with arbitrary
number of hairs in any spacetime dimension. We find that the process of generali-
zation is reasonably straightforward, except for calculational complications.

2. Quantum algebra and black hole spectrum

Like for all quantum systems, an operator algebra of fundamental observables is
required to have a proper quantum description of black holes. Classically, generic
black holes are represented by four parameters M,Q, J,Að Þ, with three of them
being independent. So, this naturally raises the question of the choice of the triva-
lent subset of classical variables that are promoted to quantum operators. Hence
that three will be the fundamental observables of the quantum theory of black hole,
and the remaining variable would correspond to a secondary observable.

Now, it is not possible to have a rotating, charged black hole without any mass,
i.e. M ¼ 0 with Q, J 6¼ 0. In fact an uncharged, nonrotating black hole does have
mass, i.e. M 6¼ 0 with Q ¼ J ¼ 0. Therefore, charge and angular momentum are
additional structures that can be imposed on a black hole. Hence they are preferably
fundamental observables in a quantum theory of black hole.

We can choose any one between area (A) and mass (M) as the third fundamen-
tal observable. We choose area Að Þ as the third fundamental observable. So, mass
(M) becomes the secondary observable, i.e. M ¼ M A,Q, Jð Þ. So, the algebraic
approach of black hole quantization gives bQ,bJ, bA as quantum operators of funda-

mental observables and cM bHb

� �
as quantum operator of secondary observable. All

these correspond to the isolated horizon of a black hole.
It is physically obvious that both area and charge should be invariant under SO

(3) rotations and area should also be invariant under U(1) gauge transformation.
Now, angular momentum is the generator for rotation (SO 3ð Þ Group), and charge is
the generator of the U(1) global gauge group. These give

bA,bJ
h i

¼ bA, Q
h i

¼ bQ,bJ
h i

¼ 0 (1)

1 ‘No hair’ theorem [21–29] for black holes states that black hole cannot have any hair classically
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Since cM bHb

� �
is a quantum operator of secondary observable (M A, J,Qð Þ),

Eq. (1) can be extended as

bA,bJ
h i

¼ bA, bQ
h i

¼ bA,cM
h i

¼ bQ,bJ
h i

¼ cM, bQ
h i

¼ bJ,cM
h i

¼ 0 (2)

Hence, bA,bJ, bQ can have simultaneous eigenstate. This implies the fact that a
black hole can have definite values of charge, area and angular momentum up to
thermodynamical and quantum fluctuation. In fact these eigenvalues of bA,bJ, bQ are
precisely the values that are used in the classical metric of a black hole to express
mass (M) as a function of them.

3. Thermal holography

Quantum black holes associated with an ambient thermal reservoir have been
considered in the past [9–11, 13, 30]. In this approach key results of LQG like the
discrete spectrum of the area operator [3, 4] have been used, and the main assump-
tion was that the thermal equilibrium configuration is indeed an isolated horizon
(IH) whose microcanonical entropy, including quantum spacetime fluctuations, has
already been computed via LQG. The idea was to study the interplay between
thermal and quantum fluctuations, and a criterion for thermal stability of such
horizons has been obtained [11, 13, 14], using a ‘thermal holographic’ description
involving a canonical ensemble and incorporating Gaussian thermal fluctuations.
The generalization to horizons carrying charge has also been attempted, using a
grand canonical ensemble, even though a somewhat ad hoc mass spectrum has been
assumed [10].

Here, we attempt to generalize the thermal holography for nonrotating electri-
cally charged quantum radiant horizons discussed in [12], to the situation when the
horizon has both charge and angular momentum, without any ad hoc assumptions
on the mass spectrum. Such a generalization completes the task set out in [9, 13] to
include charge and angular momentum simultaneously in consideration of thermal
stability of the horizon under Hawking radiation. A comparison with semiclassical
thermal stability analysis of black holes [31] is made wherever possible.

3.1 Mass associated with horizon

Black holes at equilibrium are represented by isolated horizons, which are inter-
nal boundaries of spacetime. Hamiltonian evolution of this spacetime gives the first
law associated with isolated horizon (b), assumed to be a null hypersurface with the
properties of a ‘one-way membrane’ [16, 32]. The law is given as

δEt
h ¼

κt

8π
δAh þΦtδQh þ ΩtδJh (3)

where Et
h is the energy function associated with the horizon; κt, Φt and Ωt are,

respectively, the surface gravity, electric potential and angular velocity of the hori-
zon; and Qh,Ah and Jh are, respectively, the charge, area and angular momentum of
the horizon. The label ‘t’ denotes the particular time evolution field (tμ) associated
with the spatial hypersurface chosen. κt, Φt and Ωt are defined for this particular
choice of time evolution vector field tμ. The family of time evolution vector fields
tμ½ � satisfying such first laws on the horizon are the permissible time evolution
vector fields. These evolution vector fields also need to satisfy other boundary
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conditions. Each of these time evolution vector fields associates an energy function
with the horizon which is a function of area, charge and angular momentum, i.e. Et

h
is a function of Ah, Qh and Jh.

The advantage of the isolated (and also the radiant or dynamical) horizon
description is that one can associate with it a massMt

h, related to the ADM energy of
the spacetime through the relation

Et
ADM ¼ Mt

h þHt
rad (4)

where Ht
rad is the Hamiltonian associated with spacetime between the horizon

and asymptopia. It is the Hamiltonian of the covariant phase space, which is the
space of various classes of solutions of the Einstein equations admitting internal
boundaries. For stationary spacetimes the global time-like Killing field ξμð Þ is the
time evolution vector field. There is nothing between the internal boundary and
asymptopia for stationary spacetimes; hence Hξ

rad ¼ 0. Actually, Hξ
rad generates

evolution along ξμ. So, for the stationary black hole, Hξ
rad must vanish as a first-class

constraint on the phase space [16, 33]. This gives Mξ
h ¼ Eξ

ADM. This implies that for
stationary black hole spacetimes, the ADMmass equals the energy of the black hole.
Hence it is legitimate to identify Eξ

h with the horizon massMh in the stationary case.
The difference for an arbitrary nonstationary case is that Ht

rad 6¼ 0. Thus it can be
called as the mass associated with the isolated horizon. So, an isolated horizon does
not require stationarity, and therefore admits Ht

rad 6¼ 0, and hence admits a mass
defined locally on the horizon, since the theory is topological and insensitive to
small metric deformations.

Clearly, the horizon mass is not affected by boundary conditions at asymptopia.
It is defined locally on the horizon without knowing the asymptotic structure at all.
The asymptotic conditions only modify the energy associated with asymptopia and
the bulk equation of motion (Einstein equations) [16, 34]. This Hamiltonian frame-
work above is also applicable for both asymptotically flat and AdS spacetimes.

3.2 Quantum geometry

The boundary conditions of a classical spacetime with boundary determine the
boundary degrees of freedom and their dynamics. For a quantum spacetime, fluc-
tuations of the boundary degrees of freedom have a ‘life’ of their own [5, 6].
Therefore the Hilbert space of a quantum spacetime with boundary has the tensor
product structure H ¼ Hb ⊗Hv, where the subscript b vð Þ denotes the boundary
(bulk) component.

Thus, a generic quantum state (∣Ψi) can be expanded as

∣Ψi ¼
X
b, v

Cb,v∣χbi⊗ ∣ψvi (5)

where ∣χbi is the boundary part of the full quantum state and ∣ψvi denotes the
bulk component of the full quantum state.

The total Hamiltonian operator ( bH) acting on the generic state (∣Ψi) is given as

bH∣Ψi ¼ cHb ⊗ Iv þ Ib ⊗ cHv

� �
∣Ψi (6)

where, respectively, Ib Ivð Þ is the identity operator on Hb Hvð Þ and cHb cHv

� �
is the

Hamiltonian operator on Hb Hvð Þ.
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� �
is the

Hamiltonian operator on Hb Hvð Þ.
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In the presence of electric charge and rotation, ∣ψvi will be the composite bulk
state. Hence, these bulk states are annihilated by the full bulk Hamiltonian, i.e.

cHv∣ψvi ¼ 0 (7)

This is the quantum version of the classical Hamiltonian constraint [4].
The charge operator ( bQ) for a black hole is defined as

bQ ∣Ψi ¼ bQ b ⊗bIv þ bIb ⊗ bQ v

� �
∣Ψi (8)

where, respectively, bQb and bQv are corresponding charge operators for the
boundary states (∣χbi) and the bulk states (∣ψvi).

Classically, the charge of a black hole is defined on the horizon, i.e. the internal
boundary of the spacetime (e.g. one can see how charge can be properly defined for
spacetimes admitting internal boundaries in Einstein-Maxwell or Einstein-Yang-
Mills theories in [32]). There is no charge associated with the bulk black hole
spacetime, i.e. Qv≈0, which is basically the Gauss law constraint for
electrodynamics. Hence, its quantum version is of the form:

bQ v∣ψvi ¼ 0 (9)

Like the charge operator, angular momentum operator (bJ) of a black hole can be
defined as

bJ∣Ψi ¼ bJb ⊗bIv þ bIb ⊗bJv
� �

∣Ψi (10)

where, respectively, bJb and bJv are corresponding angular momentum operators
for the boundary states (∣χbi) and the bulk states (∣ψvi).

A generic quantum bulk Hilbert space is invariant under local spacetime rota-
tions, as a part of local Lorentz invariance. Angular momentum is the generator of
spacetime rotation. Therefore it implies that bulk states are annihilated by angular
momentum operator, i.e.

bJv∣ψvi ¼ 0 (11)

Hence Eqs. (7), (9) and (11) together give

cHv � βΦcQv � βΩ bJv
h i

∣ψvi ¼ 0 (12)

where β,Φ and Ω can be any function. But we will see that those will correspond
to inverse temperature, electric potential and angular velocity, respectively, in
afterwards.

3.3 Grand canonical partition function

We now consider a grand canonical ensemble of quantum spacetimes with
horizons as boundaries, in contact with a heat bath, at some (inverse) temperature
β. We will assume that this grand canonical ensemble of massive rotating charged
black holes can exchange energy, angular momentum and charge with the heat
bath. Therefore the grand canonical partition function is then given as
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ZG ¼ Tr exp �β bH þ βΦ bQ þ βΩbJ
� �� �

(13)

over all states. bQ is the charge operator for the black hole and Φ is the
corresponding electrostatic potential. Similarly bJ is the angular momentum operator
for the black hole, and Ω is the corresponding angular velocity.

The above definition, together with Eqs. (5), (6), (8), (10) and (12), yields

ZG ¼
X
b, v

Cb,vj j2 ψvj⊗ χbjexp �β bH þ βΦ bQ þ βΩbJ
� �

jχb
D E

⊗ jψv

D E

¼
X
b, v

Cb,vj j2 ψvjexp �β bHv þ βΦ bQv þ βΩbJv
� �

jψv

D E
χbjexp �β bHb þ βΦ bQb þ βΩbJb

� �
jχb

D E

¼
X
b, v

Cb,vj j2 ψvjψvh i χbjexp �β bHb þ βΦ bQb þ βΩbJb
� �

jχb
D E

¼
X
b

X
v

Cb,vj j2 ψvjψvh i
 !

hχb∣expð�β bHb þ βΦ bQb þ βΩbJb∣χbi

¼
X
b

Cbj j2 χbjexp �β bHb þ βΦ bQb þ βΩbJb
� �

jχb
D E

(14)

assuming that the boundary states can be normalized through the squared normP
v cvbj j2 ψvjψvh i ¼ Cbj j2. This is analogous to the canonical ensemble scenario

described in [13].
The partition function thus turns out to be completely determined by the

boundary states (ZGb), i.e.

ZG ¼ ZGb ¼ Trbexp �βcHb þ βΦcQb þ βΩ bJb
� �

(15)

In LQG, quantum black holes are represented by spin network, collection of
graphs with links and vertices. For black holes with large area, the major contribu-
tion to the entropy comes from the lowermost spins. Hence, only spin 1=2 contri-
bution for all punctures is taken into account which yields A � N for a total of
N,N≫ 1 punctures on the horizon. This leads to the equispaced area spectrum as an
approximation. Of course the higher spins contribute, but their contribution is
exponentially suppressed.

So, spectrum of the boundary Hamiltonian is a function of the discrete area
spectrum. But the complete spectrum of the boundary Hamiltonian operator is still
unknown in LQG. So, we will assume that the spectrum of the boundary Hamilto-
nian operator is also a function of the discrete charge spectrum and the discrete
angular momentum spectrum associated with the horizon, respectively.2 Quantum
mechanically, the total charge of a black hole has to be proportional to some
fundamental charge, i.e. the black hole is made of such charge particle. Hence the
charge spectrum is taken to be equispaced due to quantization [17–19, 35, 36]. In
fact angular momentum spectrum can also be considered as equispaced in the
macroscopic spectrum limit of the black hole [37], in which we are ultimately
interested.

It has already been shown in Subsection (II) that area, charge and angular
momentum operators of a black hole commute among them. This implies that they

2 Actually this second assumption follows from the discussion in Subsection (III.A) [16, 32] for

spacetimes admitting weakly isolated horizons where there exists a mass function determined by the area

and charge associated with the horizon. This is an extension of that assumption to the quantum domain.
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In the presence of electric charge and rotation, ∣ψvi will be the composite bulk
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bQ ∣Ψi ¼ bQ b ⊗bIv þ bIb ⊗ bQ v

� �
∣Ψi (8)

where, respectively, bQb and bQv are corresponding charge operators for the
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� �

∣Ψi (10)

where, respectively, bJb and bJv are corresponding angular momentum operators
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Hence Eqs. (7), (9) and (11) together give

cHv � βΦcQv � βΩ bJv
h i

∣ψvi ¼ 0 (12)

where β,Φ and Ω can be any function. But we will see that those will correspond
to inverse temperature, electric potential and angular velocity, respectively, in
afterwards.

3.3 Grand canonical partition function

We now consider a grand canonical ensemble of quantum spacetimes with
horizons as boundaries, in contact with a heat bath, at some (inverse) temperature
β. We will assume that this grand canonical ensemble of massive rotating charged
black holes can exchange energy, angular momentum and charge with the heat
bath. Therefore the grand canonical partition function is then given as
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ZG ¼ Tr exp �β bH þ βΦ bQ þ βΩbJ
� �� �

(13)

over all states. bQ is the charge operator for the black hole and Φ is the
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for the black hole, and Ω is the corresponding angular velocity.
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ZG ¼
X
b, v

Cb,vj j2 ψvj⊗ χbjexp �β bH þ βΦ bQ þ βΩbJ
� �

jχb
D E

⊗ jψv

D E

¼
X
b, v

Cb,vj j2 ψvjexp �β bHv þ βΦ bQv þ βΩbJv
� �

jψv

D E
χbjexp �β bHb þ βΦ bQb þ βΩbJb

� �
jχb

D E

¼
X
b, v

Cb,vj j2 ψvjψvh i χbjexp �β bHb þ βΦ bQb þ βΩbJb
� �

jχb
D E

¼
X
b

X
v

Cb,vj j2 ψvjψvh i
 !

hχb∣expð�β bHb þ βΦ bQb þ βΩbJb∣χbi

¼
X
b

Cbj j2 χbjexp �β bHb þ βΦ bQb þ βΩbJb
� �

jχb
D E

(14)

assuming that the boundary states can be normalized through the squared normP
v cvbj j2 ψvjψvh i ¼ Cbj j2. This is analogous to the canonical ensemble scenario

described in [13].
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boundary states (ZGb), i.e.
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� �

(15)
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and charge associated with the horizon. This is an extension of that assumption to the quantum domain.
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are simultaneously diagonalizable. Therefore working in a basis in which area,
charge and angular momentum operators are simultaneously diagonal, the partition
function (15) can be written as

ZG ¼
X
k, l,m

g k, l,mð Þ exp �β E Ak,Ql, Jmð Þ �ΦQl � ΩJmð Þð Þ (16)

where g k, l,mð Þ is the degeneracy corresponding to the area eigenvalue Ak, the
charge eigenvalue Ql and the angular momentum eigenvalue Jm. k, l,m are the
quantum numbers corresponding to eigenvalues of area, charge and angular
momentum, respectively. In the macroscopic spectra limit of quantum isolated
horizons, i.e. regime of the large area, charge and angular momentum eigenvalues
k≫ 1, l≫ 1,m≫ 1ð Þ, application of the Poisson resummation formula (9) gives

ZG ¼
ð
dxdydzg A xð Þ,Q yð Þ, J zð Þð Þexp �β E A xð Þ,Q yð Þ, J zð Þð Þ �ΦQ yð Þ �ΩJ zð Þð Þð Þ

(17)

where x, y, z are, respectively, the continuum limit of k, l,m, respectively.
Now, A, Q and J are, respectively, functions of x, y and z alone. Therefore

we have

dx ¼ dA
Ax

, dy ¼ dQ
Q y

, dz ¼ dJ
Jz

where Ax � dA
dx and so on.

So, the partition function, in terms of area, charge and angular momentum as
free variables, can be written as follows:

ZG ¼
ð
dA dQ dJ exp S Að Þ � β E A,Q, Jð Þ �ΦQ � ΩJð Þ½ �, (18)

where, following [38], the microcanonical entropy of the horizon is defined by
expS Að Þ � g A xð Þ,Q yð Þ, J zð Þð Þ

dA
dx

dQ
dy

dJ
dz

and is a function of horizon area (A) alone, as has been

established within LQG [5, 6, 15] .

4. Stability against Gaussian fluctuations

4.1 Saddle-point approximation

The equilibrium configuration of a black hole is given by the saddle point
(A,Q, J) in the three-dimensional space of integration over area, charge and angular
momentum. The idea now is to examine the grand canonical partition function for
fluctuations a ¼ A� A

� �
, q ¼ Q �Q

� �
, j ¼ J � J

� �
around the saddle point, in

order to determine the stability of the equilibrium isolated horizon under Hawking
radiation. We restrict our attention to Gaussian fluctuations, as per common prac-
tice in equilibrium statistical mechanics, with the motivation towards extremizing
the free energy for the most probable configuration. Taylor expanding Eq. (18)
about the saddle point yields
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ZG ¼ exp S A
� �� βM A,Q, J

� �þ βΦQ þ βΩJ
� �

�
ð
da dq dj expf� β

2
½ MAA � SAA

β

� �
a2 þ MQQ

� �
q2 þ 2MAQ

� �
aq

þ MJJ
� �

j2 þ 2MAJ
� �

ajþ 2MQJ
� �

qj�g,

(19)

where M A,Q, J
� �

is the mass of equilibrium isolated horizon. Here

MAQ � ∂
2M

∂A∂Q

���
A,Q,Jð Þ, etc.

We assume, just like in LQG, observables used here are self-adjoint operators
over the boundary Hilbert space, and hence their eigenvalues are real [3]. It
suffices therefore to restrict integrations over the spectra of these operators to the
real axes.

Now, in the saddle-point approximation, the coefficients of terms linear in a, q, j
vanish by definition of the saddle point. These imply that

β ¼ SA
MA

,Φ ¼ MQ ,Ω ¼ MJ (20)

Of course these derivatives are calculated at the saddle point.

4.2 Quantum correction of black hole entropy

Note that in the stability criteria derived in the last section, first- and second-
order derivatives of the microcanonical entropy of the horizon at equilibrium play a
crucial role, in making some of the criteria nontrivial. Thus, corrections to the
microcanonical entropy beyond the Bekenstein-Hawking area law, arising due to
quantum spacetime fluctuations, might play a role of some significance. It has been
shown that [15] the microcanonical entropy for macroscopic isolated horizons has
the form:

S ¼ SBH � 3
2
logSBH þO S�1

BH

� �
(21)

SBH ¼ A
4AP

,AP � Planck area,A � black hole area (22)

In Ref. [15] the above formula was derived for nonrotating, uncharged black
holes in (3 + 1) spacetime dimension. But it has already been shown that the above
formula equally holds in the case of black holes with charge [33]. Actually black hole
entropy depends on the degrees of freedom on its horizon. It is purely a geometrical
property of the isolated horizon. Adding charge to the black hole does not alter this
geometry at all. In fact it is also shown that results from analysis for isolated
horizons with charge is similar to that with angular momentum, except for certain
technical issues [33, 35, 39]. Therefore the above formula will be taken to be valid
for charged, rotating black holes as well.

4.3 Stability criteria

Convergence of the integral (19) implies that the Hessian matrix (H) has to be
positive definite, where
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established within LQG [5, 6, 15] .
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The equilibrium configuration of a black hole is given by the saddle point
(A,Q, J) in the three-dimensional space of integration over area, charge and angular
momentum. The idea now is to examine the grand canonical partition function for
fluctuations a ¼ A� A

� �
, q ¼ Q �Q
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, j ¼ J � J

� �
around the saddle point, in

order to determine the stability of the equilibrium isolated horizon under Hawking
radiation. We restrict our attention to Gaussian fluctuations, as per common prac-
tice in equilibrium statistical mechanics, with the motivation towards extremizing
the free energy for the most probable configuration. Taylor expanding Eq. (18)
about the saddle point yields
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over the boundary Hilbert space, and hence their eigenvalues are real [3]. It
suffices therefore to restrict integrations over the spectra of these operators to the
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vanish by definition of the saddle point. These imply that
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quantum spacetime fluctuations, might play a role of some significance. It has been
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the form:
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(21)

SBH ¼ A
4AP
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H ¼

βMAA A,Q, J
� �� SAA A

� �
βMAQ A,Q, J

� �
βMAJ A,Q, J

� �
:1in

βMAQ A,Q, J
� �

βMQQ A,Q, J
� �

βMJQ A,Q, J
� �

:1in

βMAJ A,Q, J
� �

βMJQ A,Q, J
� �

βMJJ A,Q, J
� �

0
BBBB@

1
CCCCA

(23)

The necessary and sufficient conditions for a real symmetric square matrix to be
positive definite are that determinants of all principal square submatrices and the
determinant of the full matrix are positive [40–42]. This condition leads to the
following ‘stability criteria:

MAA A,Q, J
� �� SAA A

� �
β

> 0 (24)

MQQ A,Q, J
� �

> 0 (25)

MJJ A,Q, J
� �

> 0 (26)

MQQ A,Q, J
� �

MJJ A,Q, J
� �� MJQ A,Q, J

� �� �2
> 0 (27)

MJJ A,Q, J
� �

MAA A,Q, J
� �� SAA A

� �
β

 !
� MAJ A,Q, J

� �� �2
> 0 (28)

MQQ A,Q, J
� �

MAA A,Q, J
� �� SAA A

� �
β

 !
� MAQ A,Q, J

� �� �2
> 0 (29)

"
MAA A,Q, J

� �� SAA A
� �
β

 !
MQQ A,Q, J

� �
MJJ A,Q, J
� �� MJQ A,Q , J

� �� �2� �

�MAQ A,Q, J
� �

MAQ A,Q , J
� �

MJJ A,Q, J
� ��MJQ A,Q , J

� �
MAJ A,Q, J

� �� �

þMAJ A,Q, J
� �

MAQ A,Q, J
� �

MJQ A,Q , J
� ��MQQ A,Q, J

� �
MAJ A,Q, J

� �� �
#
> 0

(30)

Of course, (inverse) temperature β is assumed to be positive for a stable
configuration.

Now, the temperature is defined as T � 1
β ¼ MA

SA
(from Eq. (20)).

Eqs. (21) and (22) together yield

SA ¼ 1
4AP

� 3
2A

(31)

This is positive for macroscopic black holes (A > > AP). So, positivity of MA

implies the positivity of β for macroscopic black holes. The relation T ¼ MA
SA

implies that

dT
dA

¼ βMA

SAð Þ2 MAA � SAA
β

� �
(32)

So, the positivity of the quantity MAA � SAA
β

� �
, which is a stability criteria (24),

means the positivity of dT
dA. In words, a stable black hole becomes hotter as it grows
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in size. If this is violated, as, for example, in the case of the standard Schwarzschild
black hole ([9]), thermal instability is inevitable.

Eq. (20) implies that MQQ ¼ dΦ
dQ. So, positivity of MQQ is an artefact of the fact

that accumulation of charge increases the electric potential of the black hole. This is
a feature of a stable black hole (25).

Similarly, Eq. (20) shows that MJJ ¼ dΩ
dJ . So, positivity of MJJ implies that the

gathering of angular momentum helps the black hole to rotate faster. Hence this is
the case with stable black holes (26).

The convexity property of the entropy follows from the condition of conver-
gence of partition function under Gaussian fluctuations [9, 31, 38]. The thermal
stability is related to the convexity property of entropy. Hence, the above condi-
tions are correctly the conditions for thermal stability. For chargeless, nonrotating
horizons, Eq. (24) reproduces the thermal stability criterion and condition of posi-
tive specific heat (i.e. variation of black hole mass with temperature) given in
([13]), as expected. Actually for a chargeless, nonrotating black hole, both the mass
and the temperature are functions of the horizon area (A) only. So, the specific heat
(C) of the black hole is given as

C � dM
dT

¼ SAð Þ2
βMAA � SAAð Þ (33)

For charged, nonrotating black holes, Eqs. (24), (25) and (29) describe the
stability, in perfect agreement with [12], while (24), (26) and (28) describe the
thermal stability criteria for uncharged rotating radiant horizons. The new feature
for black holes with both charge and angular momentum is that not only does the
specific heat have to be positive for stability, but the charge and the angular
momentum play important roles as well.

5. Thermal stability of higher-dimensional black holes with arbitrary
hairs

5.1 Thermal holography

In this section, we present a generalization of thermal holography for rotating
electrically charged quantum radiant horizons discussed in [43], to the situation
when the horizon has arbitrary number of hairs [44]. This section of the chapter
will of course have substantial overlap with some of the appropriate previous
sections of this chapter, so for brevity we focus on the novel aspects here.

5.1.1 Mass associated with horizon

Isolated horizons (b) represent black holes at equilibrium. These isolated hori-
zons are the internal boundaries of spacetime. The first law associated with isolated
horizon (b) comes from the Hamiltonian evolution of this spacetime. The law is
given as

δEt
h ¼

κt

8π
δAh þ Pt

iδC
i
h (34)

Here, Einstein summation convention is used, i.e. summation over repeated
indices i from 1 to n (=total number of hairs) is implied. Et

h is the energy function
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Of course, (inverse) temperature β is assumed to be positive for a stable
configuration.

Now, the temperature is defined as T � 1
β ¼ MA

SA
(from Eq. (20)).

Eqs. (21) and (22) together yield

SA ¼ 1
4AP

� 3
2A

(31)

This is positive for macroscopic black holes (A > > AP). So, positivity of MA

implies the positivity of β for macroscopic black holes. The relation T ¼ MA
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implies that

dT
dA

¼ βMA

SAð Þ2 MAA � SAA
β

� �
(32)
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β

� �
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in size. If this is violated, as, for example, in the case of the standard Schwarzschild
black hole ([9]), thermal instability is inevitable.

Eq. (20) implies that MQQ ¼ dΦ
dQ. So, positivity of MQQ is an artefact of the fact

that accumulation of charge increases the electric potential of the black hole. This is
a feature of a stable black hole (25).

Similarly, Eq. (20) shows that MJJ ¼ dΩ
dJ . So, positivity of MJJ implies that the

gathering of angular momentum helps the black hole to rotate faster. Hence this is
the case with stable black holes (26).

The convexity property of the entropy follows from the condition of conver-
gence of partition function under Gaussian fluctuations [9, 31, 38]. The thermal
stability is related to the convexity property of entropy. Hence, the above condi-
tions are correctly the conditions for thermal stability. For chargeless, nonrotating
horizons, Eq. (24) reproduces the thermal stability criterion and condition of posi-
tive specific heat (i.e. variation of black hole mass with temperature) given in
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(C) of the black hole is given as

C � dM
dT

¼ SAð Þ2
βMAA � SAAð Þ (33)

For charged, nonrotating black holes, Eqs. (24), (25) and (29) describe the
stability, in perfect agreement with [12], while (24), (26) and (28) describe the
thermal stability criteria for uncharged rotating radiant horizons. The new feature
for black holes with both charge and angular momentum is that not only does the
specific heat have to be positive for stability, but the charge and the angular
momentum play important roles as well.

5. Thermal stability of higher-dimensional black holes with arbitrary
hairs

5.1 Thermal holography

In this section, we present a generalization of thermal holography for rotating
electrically charged quantum radiant horizons discussed in [43], to the situation
when the horizon has arbitrary number of hairs [44]. This section of the chapter
will of course have substantial overlap with some of the appropriate previous
sections of this chapter, so for brevity we focus on the novel aspects here.

5.1.1 Mass associated with horizon

Isolated horizons (b) represent black holes at equilibrium. These isolated hori-
zons are the internal boundaries of spacetime. The first law associated with isolated
horizon (b) comes from the Hamiltonian evolution of this spacetime. The law is
given as

δEt
h ¼

κt

8π
δAh þ Pt

iδC
i
h (34)

Here, Einstein summation convention is used, i.e. summation over repeated
indices i from 1 to n (=total number of hairs) is implied. Et

h is the energy function
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associated with the horizon. κt and Pt
i are, respectively, the surface gravity associ-

ated with the area of horizon (Ah) and the potential corresponding to the charge
(hair) Ci

h. For example, if Ci
h is the angular momentum (Jh), then Pt

i will be the
angular velocity (Ωt). The label ‘t’ denotes the particular time evolution field (tμ)
associated with the spatial hypersurface chosen. Et

h is assumed here to be a function
of Ah and all Ci

h.
The advantage of the isolated (and also the radiant or dynamical) horizon

description is that one can associate with it a massMt
h, related to the ADM energy of

the spacetime through the relation

Et
ADM ¼ Mt

h þ Et
rad (35)

where Et
rad is the energy associated with spacetime between the horizon and

asymptopia. An isolated horizon admits Et
rad 6¼ 0, and hence a mass is defined locally

on the horizon.

5.1.2 Quantum algebra and quantum geometry

We consider a quantum black hole with n charges (hairs) C1, … ,Cn. These
charges are independent of each other. Therefore, respectively, the corresponding

operators cC1, … , cCn are also independent of each other, i.e.

cCi, cC j
h i

¼ 0, for i 6¼ j (36)

These charges are intrinsic to the black holes and independent of the horizon
area (A) of the black hole, if we choose the mass (M) of the black hole to be a
dependent variable which depends on the horizon area and the charges. This
implies

bA,cCi
h i

¼ 0, ∀i ¼ 1 1ð Þn (37)

where bA is the area operator of the black hole.
Choosing mass (M) to be the dependent variable implies that mass (M) is a

function of area (A) and all the charges (C1, … ,Cn), i.e.M ¼ M A,C1, … ,Cn� �
. This

gives

cM,cCi
h i

¼ 0, cM, bA
h i

¼ 0 ∀i ¼ 1 1ð Þn (38)

where cM is the mass operator of the black hole. Eqs. (36)–(38) together imply
that a black hole with a given mass can simultaneously be an eigenstate of its area

operator ( bA) and all the charge operators (cC1, … , cCn). So, we can consider that a
black hole of given mass M has specified area A and specified charges C1, … ,Cn.

The Hilbert space of a generic quantum spacetime is given as H ¼ Hb ⊗Hv,
where b vð Þ denotes the boundary (bulk) space. A generic quantum state is thus
given as

∣Ψi ¼
X
b, v

Cb,v∣χbi⊗ ∣ψvi (39)
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Now, the full Hamiltonian operator ( bH), operating on H, is given by

bH∣Ψi ¼ cHb ⊗ Iv þ Ib ⊗ cHv

� �
∣Ψi (40)

where, respectively, Ib Ivð Þ is the identity operator on Hb Hvð Þ and cHb cHv

� �
is the

Hamiltonian operator on Hb Hvð Þ.
Now, the bulk Hamiltonian operator annihilates bulk physical states:

cHv∣ψvi ¼ 0 (41)

The charge operators cCis are each an infinitesimal generator of a continuous
transformation on the bulk Hilbert space. For example, electric charge operator ( bQ)
is the generator of local U 1ð Þ transformation, and angular momentum operator (bJ)
is the generator of local spatial rotation. So, the assumption that bulk quantum
spacetime is invariant under all these transformations implies that bulk spacetime is
free of any charge (hair). This gives

cCi
v∣ψvi ¼ 0 (42)

where cCi
v is the bulk charge operator corresponding to the charge Ci.

So Eqs. (41) and (42) together produce

cHv � βPi
cCi
v

h i
∣ψvi ¼ 0: (43)

where β can be any function, but we treat it as inverse temperature of the black
hole afterwards.

5.2 Grand canonical partition function

We now consider the black hole with the contact of a heat bath, at some
(inverse) temperature β, with which it can exchange energy, charge, angular
momentum and all quantum hairs. The grand canonical partition function of the
black hole is given as

ZG ¼ Tr exp �β bH þ βPi
cCi

� �� �
(44)

where the trace is taken over all states. This definition, together with Eqs. (39)
and (43) yield

ZG ¼
X
b, v

Cb,vj j2 ψvjψvh i χbjexp �βcHb þ βPi
cCi

� �
jχb

D E

¼
X
b

Cbj j2 χbjexp �βcHb þ βPi
cCi

� �
jχb

D E
,

(45)

assuming that the boundary states are normalized. The partition function thus
turns out to be completely determined by the boundary states (ZGb), i.e.
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turns out to be completely determined by the boundary states (ZGb), i.e.
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Z ¼ ZGb ¼ Trbexp �β bH þ βPi
cCi

� �

¼
X

l, k1, … , kn

g l, k1, … , knð Þ exp �β E Al,C1
k1 , … ,Cn

kn

� �
�
Xn
i¼1

PiCi
ki

 ! !
:

(46)

where g l, k1, … , knð Þ is the degeneracy corresponding to energy

E Al,C1
k1 , … ,Cn

kn

� �
and l, ki are the quantum numbers corresponding to area and

charge Ci, respectively. Here, the spectrum of the boundary Hamiltonian operator is
assumed to be a function of area and all other charges of the boundary, considered
here to be the horizon. Following [12], it is further assumed that these ‘hairs’ have a
discrete spectrum. In the macroscopic limit of the black hole, they all have large
eigenvalues, i.e. (l, ki > > 1), so that application of the Poisson resummation for-
mula (9) gives

ZG ¼
ð
dx

Yn
i¼1

ð
dyiÞgðA xð Þ,C1 y1

� �
, … ,Cn yn

� �
 !

exp �β EðA xð Þ,C1 y1
� �

, … ,Cn yn
� �Þ�� �

�
Xn
i¼1

PiCi yi
� �

!!
:

(47)

where x, yi are, respectively, the continuum limits of l, ki, respectively.
Following [12], we now assume that the macroscopic spectrum of the area and

all charges are linear in their arguments, so that a change of variables gives, with
constant Jacobian, the result

ZG ¼
ð
dA

Yn
i¼1

ð
dCi

 !
exp S Að Þð

�β E A,C1, … ,Cn� �� PiCi� ��
,

(48)

where, following [38], the microcanonical entropy of the horizon is defined by

expS Að Þ � g A xð Þ,C y1
� �

, … ,C yn
� �� �

dA
dx

dC1

dy1
… dCn

dyn

(49)

5.3 Saddle-point approximation

The equilibrium configuration of black hole is given by the saddle point

(A,C
1
, ,C

n
) in the nþ 1ð Þ dimensional space of integration over area and n charges.

This configuration is identified with an isolated horizon, as already mentioned. The
idea now is to examine the grand canonical partition function for fluctuations a ¼
A� A
� �

and ci ¼ Ci � C
i

� �
around the saddle point, in order to determine the

stability of the equilibrium isolated horizon under Hawking radiation. We restrict
our attention to Gaussian fluctuations. Taylor expanding Eq. (48) about the saddle
point yields
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ZG ¼ exp S A
� �� βM A,C

1
, … ,C

n
� �

þ βPiC
i

h i

�
ð
dA

Yn
i¼1

ð
dCi

 !
expf� 1

2
½ βMAA � SAAð Þa2 þ 2

Xn
i¼1

βMACiaci

þ
Xn
i¼1

Xn
j¼1

βMCiC jcic j�g,

(50)

where M A,C
1
, … ,C

n
� �

is the mass of equilibrium isolated horizon.

Here MACi � ∂
2M=∂A∂Ci

��
A,C

1
,… ,C

n
� �, etc.

Now, in the saddle-point approximation, the coefficients of terms linear in a, ci

vanish by definition of the saddle point. These imply that

β ¼ SA
MA

, Pi ¼ MCi (51)

Of course these are evaluated at the saddle point.

5.4 Stability criteria

Convergence of the integral (50) implies that the Hessian matrix (H) has to be
positive definite, where

H ¼

βMAA � SAA βMAC1 βMAC2 … … … βMACn

βMAC1 βMC1C1 βMC1C2 … … … βMC1Cn

βMAC2 βMC2C1 βMC2C2 … … … βMC2Cn

:… … :… … … … … … … :… …

βMACn βMCnC1 βMCnC2 … … … βMCnCn

0
BBBBBB@

1
CCCCCCA

(52)

Here, all the derivatives are calculated at the saddle point. Hence the stability
criteria, i.e. the criteria for positive definiteness of Hessian matrix, are given as

D1 > 0,D2 > 0, :… ,Dnþ1 > 0 (53)

where

D1 ¼ βMAA � SAA, D2 ¼
βMAA � SAA βMAC1

βMAC1 βMC1C1

�����

�����,

D3 ¼
βMAA � SAA βMAC1 βMAC2

βMAC1 βMC1C1 βMC1C2

βMAC2 βMC2C1 βMC2C2

��������

��������
, ::… ,Dnþ1 ¼ Hj j

(54)

where ∣H∣ ¼ determinant of the Hessian matrix H.
Of course, (inverse) temperature β is assumed to be positive for a stable config-

uration. We again find that temperature must increase with horizon area, inherent
in the positivity of the quantity (βMAA � SAA).
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ZG ¼ exp S A
� �� βM A,C

1
, … ,C

n
� �
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i

h i

�
ð
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Yn
i¼1

ð
dCi

 !
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2
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þ
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j¼1
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1
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n
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where
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�����

�����,
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��������

��������
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where ∣H∣ ¼ determinant of the Hessian matrix H.
Of course, (inverse) temperature β is assumed to be positive for a stable config-
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The convexity property of the entropy follows from the condition of conver-
gence of partition function under Gaussian fluctuations [9, 31, 38]. The thermal
stability is related to the convexity property of entropy. Hence, the above condi-
tions are correctly the conditions for thermal stability. For rotating charged hori-
zons, Eqs. (53) and (54) reproduce the thermal stability criterion with n ¼ 2, i.e.
D1 > 0,D2 > 0,D3 > 0 with the identification that charge of the black hole (Q)=C1

and angular momentum of the black hole (J)=C2. It can be easily checked that these
three conditions correctly reproduce the earlier ([43]) seven conditions of thermal
stability of charged rotating black holes. Eqs. (53) and (54) necessarily tell us that
thermal stability of black hole is a consequence of the interplay among all the
charges of the black hole.

Now, we are going to show that Eqs. (53) and (54) correctly produce the criteria
of stability for charged rotating black holes (24)–(30), taking n ¼ 2.

Consider the following integral,

I ¼
ð ð ð

dxdydzexp � ax2 þ by2 þ cz2 þ 2dxyþ 2eyzþ 2fzx
� �� �

Define U � ax2 þ by2 þ cz2 þ 2dxyþ 2eyzþ 2fzx
� �

Now, we can rewrite the argument of the exponential (U) part as

U ¼ a xþ d
a
yþ f

a
z

� �2

þ ab� d2
� �

a
yþ e� df=a

ab� d2
� �

=a
� � z

 !2

þ ac� f 2

a
� e� df=að Þ2

ab� d2
� �

=a
� �

 !
z2

(55)

Considering the notations, given in Eqs. (53) and (54), we can write

U ¼ D1 xþ d
a
yþ f

a
z

� �2

þD2

D1
yþ e� df=a

ab� d2
� �

=a
� � z

 !2

þD3

D2
z2 (56)

where

D1 ¼ a

D2 ¼ ab� d2� �

D3

D2
¼ abc� cd2 � bf2 � ae2 þ 2dfe
� �

ab� d2� �

¼ ac� f2

a
� e� df=að Þ2

ab� d2� �
=a

� �

(57)

So, we have

I ¼
ð ð ð

dxdydzexp � D1 xþ d
a
yþ f

a
z

� �2

þD2

D1
yþ e� df=a

ab� d2
� �

=a
� � z

 !2

þD3

D2
z2

0
@

1
A

0
@

1
A

(58)
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Consider the following change of variables:

x
y
z

0
B@

1
CA ¼

1
d
a

f
a

0 1
e� df=a
ab� d2
� �

=a
� �

0 0 1

0
BBBBB@

1
CCCCCA

x
y
z

0
B@

1
CA (59)

Therefore Eqs. (58) and (59) together give

I ¼
ð ð ð

dxd ydz A � exp � D1x2 þD2

D1
y2 þD3

D2
z2

� �� �
(60)

where A is the Jacobian of the transformation matrix, i.e.

A ¼

1
d
a

f
a

0 1
e� df=a
ab� d2
� �

=a
� �

0 0 1

������������

������������
¼ 1

(61)

I ¼
ð ð ð

dxd ydz exp � D1x2 þD2

D1
y2 þD3

D2
z2

� �� �
(62)

This expression explicitly shows that I will be converging if and only if
D1 > 0,D2 > 0,D3 > 0. This is what we have claimed in this section as the condition
for thermal stability of rotating charged black holes.

From the expression (57), we get:

1) If D1 > 0,D2 > 0, then b > 0.

2) If D1 > 0,D2 > 0,D3 > 0, then ac� f 2
� �

> 0. Consequently, c > 0.

3) The expression of D3 can be rearranged as

D3 ¼ abc� cd2 � bf 2 � ae2 þ 2dfe
� �

¼ ab2c� bcd2 � b2 f 2 � abe2 þ 2bdfe
� �

=b

¼ ab� d2
� �

bc� e2
� �� bf � edð Þ2

� �
=b

(63)

So, the positivity of b, D2 ¼ ab� d2
� �

and D3 implies that bc� e2ð Þ > 0.
Therefore these conditions for thermal stability described by
D1 > 0,D2 > 0,D3 > 0 are same as those described by inequalities (24–30) for
rotating charged black holes.

For an n dimensional matrix, the total number of submatrices including the
whole matrix Nsð Þ is given as

Ns ¼ nC1 þ nC2 þ :… … þ nCn

¼ 2n � 1
(64)
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and angular momentum of the black hole (J)=C2. It can be easily checked that these
three conditions correctly reproduce the earlier ([43]) seven conditions of thermal
stability of charged rotating black holes. Eqs. (53) and (54) necessarily tell us that
thermal stability of black hole is a consequence of the interplay among all the
charges of the black hole.

Now, we are going to show that Eqs. (53) and (54) correctly produce the criteria
of stability for charged rotating black holes (24)–(30), taking n ¼ 2.

Consider the following integral,

I ¼
ð ð ð

dxdydzexp � ax2 þ by2 þ cz2 þ 2dxyþ 2eyzþ 2fzx
� �� �

Define U � ax2 þ by2 þ cz2 þ 2dxyþ 2eyzþ 2fzx
� �

Now, we can rewrite the argument of the exponential (U) part as

U ¼ a xþ d
a
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(55)

Considering the notations, given in Eqs. (53) and (54), we can write

U ¼ D1 xþ d
a
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where

D1 ¼ a
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So, we have
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Consider the following change of variables:
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Therefore Eqs. (58) and (59) together give

I ¼
ð ð ð

dxd ydz A � exp � D1x2 þD2

D1
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D2
z2

� �� �
(60)

where A is the Jacobian of the transformation matrix, i.e.

A ¼

1
d
a

f
a

0 1
e� df=a
ab� d2
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0 0 1
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(61)

I ¼
ð ð ð

dxd ydz exp � D1x2 þD2

D1
y2 þD3

D2
z2

� �� �
(62)

This expression explicitly shows that I will be converging if and only if
D1 > 0,D2 > 0,D3 > 0. This is what we have claimed in this section as the condition
for thermal stability of rotating charged black holes.

From the expression (57), we get:

1) If D1 > 0,D2 > 0, then b > 0.

2) If D1 > 0,D2 > 0,D3 > 0, then ac� f 2
� �

> 0. Consequently, c > 0.

3) The expression of D3 can be rearranged as

D3 ¼ abc� cd2 � bf 2 � ae2 þ 2dfe
� �

¼ ab2c� bcd2 � b2 f 2 � abe2 þ 2bdfe
� �

=b

¼ ab� d2
� �

bc� e2
� �� bf � edð Þ2

� �
=b

(63)

So, the positivity of b, D2 ¼ ab� d2
� �

and D3 implies that bc� e2ð Þ > 0.
Therefore these conditions for thermal stability described by
D1 > 0,D2 > 0,D3 > 0 are same as those described by inequalities (24–30) for
rotating charged black holes.

For an n dimensional matrix, the total number of submatrices including the
whole matrix Nsð Þ is given as

Ns ¼ nC1 þ nC2 þ :… … þ nCn

¼ 2n � 1
(64)
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Now, any generic quadratic expression of n variables can be rearranged by
redefining variables as an quadratic expression without any cross term, i.e. of the

form
Pn
i¼1

aix2i .

Thus if we consider the positivity of determinants of the all submatrices of
Hessian (including itself), then we have to check 2nþ1 � 1

� �
conditions for testing

thermal stability of a black hole with n charges. On the other hand, if we follow the
different procedure set in this chapter, then nþ 1ð Þ conditions have to be checked
for testing thermal stability of a black hole with n charges. Obviously 2nþ1 � 1

� �
is

greater than nþ 1ð Þ for n≥ 1, i.e. black hole with at least one charge. But there are
certain advantages of checking these additional criteria, i.e. positivity of
submatrices of Hessian matrix. This is very useful for studying ‘Quasi Stable’ black
holes, especially for studying the fluctuations of charges for such black holes [45].
But this is beyond the scope of this chapter. In fact the issue of thermal fluctuations
for stable black holes is also interesting [46]. A stable black hole has to satisfy all the
stability criteria. So, a simple inequality, i.e. determinant of a submatrix of Hessian
matrix, may be negative. This can be easily checked, and the corresponding black
hole is concluded to be unstable under Hawking radiation.

6. Discussions

The novelty of our approach is that it is purely based on quantum aspects of
spacetime. Classical metric has not been used anywhere in the analysis. The con-
struction of the partition function is based on LQG, e.g. the use of Chern-Simons
states, the splitting up of the total Hilbert space, etc. and also on the Hamiltonian
formulation of spacetimes admitting weakly isolated horizons. The entropy correc-
tion also follows from the quantum theory.

In this analysis of thermal stability of black holes, two physically reasonable
assumptions are made. In classical Hamiltonian GR, total Hamiltonian vanishes. So,
it is considered that the total quantum Hamiltonian operator annihilates the bulk
states of quantum matter coupled spacetime. A similar argument follows for the
assumption of the quantum constraint on the volume charge operator. These two
assumptions may be considered to be one due to their fundamental similarity, and
they ultimately give rise to a single quantum constraint.

In Section (III.C), a second assumption is made regarding the eigenvalue spec-
trum of the energy of the black hole. The classical mass associated with the horizon
is a function of horizon area, charge and angular momentum. These horizon area,
charge and angular momentum are the functions of the local fields on the horizon.
So, quantization of the classical horizon area, charge and angular momentum will
definitely lead to a well-defined boundary Hamiltonian operator. The existence of a
quantum boundary Hamiltonian operator, acting on the boundary Hilbert space of
the black hole, is an assumption as the exact form of such a Hamiltonian operator is
still unknown. But the fact that its eigenvalue spectrum is a function of eigenvalue
spectra of the area, charge and angular momentum operators are an obvious
assumption, as it is bound to happen if such a boundary Hamiltonian operator
exists. It follows from the classical analogue—the mass associated with the horizon
must be a function of the horizon area, charge and angular momentum for a
consistent Hamiltonian evolution.

In this chapter, we have derived the criteria for thermal stability of charged
rotating black holes, for horizon areas that are largely relative to the Planck area (in
these dimensions). We also generalize it for black holes with arbitrary hairs in any
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spacetime dimension. Like earlier, results of LQG and equilibrium statistical
mechanics of the grand canonical ensemble are sufficient for our analysis. The only
assumption is that the mass of the black hole is a function of its horizon area and all
the hairs. The obtained stability criteria can be applied to check the thermal stability
of any black hole whose mass is given as function of its charges, and in fact this has
been done [43] for various black holes as well.
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Chapter 4

The Black Hole Binary Gravitons
and Related Problems
Miroslav Pardy

Abstract

The energy spectrum of graviton emitted by the black hole binary is calculated
in the first part of the chapter. Then, the total quantum loss of energy is calculated
in the Schwinger theory of gravity. In the next part, we determine the electromag-
netic shift of energy levels of H-atom electrons by calculating an electron coupling
to the black hole thermal bath. The energy shift of electrons in H-atom is deter-
mined in the framework of nonrelativistic quantum mechanics. In the last section,
we determine the velocity of sound in the black hole atmosphere, which is here
considered as the black hole photon sea. Derivation is based on the thermodynamic
theory of the black hole photon gas.
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1. The graviton spectrum of the black hole binary

In 1916, Schwarzschild published the solution of the Einstein field equations [1]
that were later understood to describe a black hole [2, 3], and in 1963, Kerr gener-
alized the solution to rotating black holes [4]. The year 1970 was the starting point
of the theoretical work leading to the understanding of black hole quasinormal
modes [5–7], and in the 1990s, higher-order post-Newtonian calculations [8] were
performed and later the extensive analytical studies of relativistic two-body
dynamics were realized [9, 10]. These advances, together with numerical relativity
breaks through in the past decade [11–13]. Numerous black hole candidates have
now been identified through electromagnetic observations [14–16]. The black hole
binary and their rotation and mergers are open problem of the astrophysics, and it is
the integral part of the binary black hole physics.

The binary pulsar system PSR B1913+16 (also known as PSR J1915+1606) dis-
covered by Hulse and Taylor [17] and subsequent observations of its energy loss by
Taylor and Weisberg [18] demonstrated the existence of gravitational waves [19].

By the early 2000s, a set of initial detectors was completed, including TAMA
300 in Japan, GEO600 in Germany, the Laser Interferometer Gravitational-Wave
Observatory (LIGO) in the United States, and Virgo in Italy. In 2015, Advanced
LIGO became the first of a significantly more sensitive network of advanced
detectors (a second-generation interferometric gravitational wave detector) to
begin observations [20].
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Taylor and Hulse, working at the Arecibo Radiotelescope, discovered the radio
pulsar PSR B1913+16 in a binary, in 1974, and this is now considered as the best
general relativistic laboratory [21].

Pulsar PSR B1913+16 is the massive body of the binary system where each of the
rotating pairs is 1.4 times the mass of the Sun. These neutron stars rotate around
each other in an orbit not much larger than the Sun’s diameter, with a period of
7.8 h. Every 59 ms, the pulsar emits a short signal that is so clear that the arrival time
of a 5 min string of a set of such signals can be resolved within 15 μs.

A pulsar model based on strongly magnetized, rapidly spinning neutron stars
was soon established as consistent with most of the known facts [22]; its
electrodynamical properties were studied theoretically [23] and shown to be
plausibly capable of generating broadband radio noise detectable over interstellar
distances. The binary pulsar PSR B1913+16 is now recognized as the harbinger of a
new class of unusually short-period pulsars, with numerous important applications.

Because the velocities and gravitational energies in a high-mass binary pulsar
system can be significantly relativistic, strong-field and radiative effects come into
play. The binary pulsar PSR B1913+16 provides significant tests of gravitation
beyond the weak-field, slow-motion limit [24, 25].

We do not repeat here the derivation of the Einstein quadrupole formula in the
Schwinger gravity theory [26]. We show that just in the framework of the
Schwinger gravity theory, it is easy to determine the spectral formula for emitted
gravitons and the quantum energy loss formula of the binary system. The energy
loss formula is general, including black hole binary, and it involves arbitrarily
strong gravity.

Since the measurement of the motion of the black hole binaries goes on, we hope
that sooner or later the confirmation of our formula will be established.

1.1 The Schwinger approach for the problem

Source methods by Schwinger are adequate for the solution of the calculation of
the spectral formula of gravitons and energy loss of binary. Source theory [27, 28]
was initially constructed to describe the particle physics situations occurring in
high-energy physics experiments. However, it was found that the original formula-
tion simplifies the calculations in the electrodynamics and gravity, where the inter-
actions are mediated by photon and graviton, respectively. The source theory of
gravity forms the analogue of quantum electrodynamics because, while in QED the
interaction is mediated by the photon, the gravitational interaction is mediated by
the graviton [29]. The basic formula in the source theory is the vacuum-to-vacuum
amplitude [30]:

0þj0�h i ¼ e
i
ℏW Sð Þ, (1)

where the minus and plus symbols refer to any time before and after the region of
space–time with action of sources. The exponential form is postulated to express the
physically independent experimental arrangements, with result that the associated
probability amplitudes multiply and the correspondingW expressions add [27, 28].

In the flat space-time, the field of gravitons is described by the amplitude (1)
with the action (c ¼ 1 in the following text) [31]

W Tð Þ ¼ 4πG
ð

dxð Þ dx0ð Þ Tμν xð ÞDþ x� x0ð ÞTμν x0ð Þ � 1
2
T xð ÞDþ x� x0ð ÞT x0ð Þ

� �
,

(2)
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where the dimensionality of W Tð Þ has the dimension of the Planck constant ℏ
and Tμν is the momentum and energy tensor that, for a particle trajectory x ¼ x tð Þ,
is defined by the equation [32]

Tμν xð Þ ¼ pμpν

E
δ x� x tð Þð Þ, (3)

where pμ is the relativistic four-momentum of a particle with a rest mass m and

pμ ¼ E; pð Þ (4)

pμpμ ¼ �m2, (5)

and the relativistic energy is defined by the known relation

E ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p , (6)

where v is the three-velocity of the moving particle.
Symbol T xð Þ in Eq. (2) is defined as T ¼ gμνT

μν, and Dþ x� x0ð Þ is the graviton
propagator whose explicit form will be determined later.

1.2 The power spectral formula in general

It may be easy to show that the probability of the persistence of vacuum is given
by the following formula [27]:

0þj0�h ij j2 ¼ exp � 2
ℏ

ImW
� �

¼d exp �
ð
dtdω

1
ℏω

P ω; tð Þ
� �

, (7)

where the so-called power spectral function P ω; tð Þ has been introduced [27]. For
the extraction of the spectral function from Im W, it is necessary to know the
explicit form of the graviton propagator Dþ x� x0ð Þ. This propagator involves the
graviton property of spreading with velocity c. It means that its mathematical form
is identical with the photon propagator form. With regard to Schwinger et al. [33],
the x-representation of D kð Þ in Eq. (2) is as follows:

Dþ x� x0ð Þ ¼
ð

dkð Þ
2πð Þ4 e

ik x�x0ð ÞD kð Þ, (8)

where

D kð Þ ¼ 1

∣k2∣� k0
� �2 � iϵ

, (9)

which gives

Dþ x� x0ð Þ ¼ i
4π2

ð∞
0
dω

sinω∣x� x
0 ∣

∣x� x0 ∣
e�iω∣t�t0∣: (10)

Now, using Eqs. (2), (7), and (10), we get the power spectral formula in the
following form:
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P ω; tð Þ ¼ 4πGω
Ð

d xð Þ d x0ð Þdt0 sinω∣ x� x0∣
∣ x� x0 ∣

cosω t� t0ð Þ

� Tμν x; tð ÞTμνð x0; t0Þ � 1
2
gμνT

μνð x; tÞgαβTαβð x0; t0Þ
� �

:

(11)

1.3 The power spectral formula for the binary system

In the case of the binary system with masses m1 and m2, we suppose that they
move in a uniform circular motion around their centre of gravity in the xy plane,
with corresponding kinematical coordinates:

x1 tð Þ ¼ r1 i cos ω0tð Þ þ j sin ω0tð Þ� �
(12)

x2 tð Þ ¼ r2 i cos ω0tþ πð Þ þ j sin ω0tþ πð Þ� �
(13)

with

vi tð Þ ¼ dxi=dt, ω0 ¼ vi=ri, vi ¼ ∣vi∣ i ¼ 1; 2ð Þ: (14)

For the tensor of energy and momentum of the binary, we have

Tμν xð Þ ¼ pμ1p
ν
1

E1
δ x� x1 tð Þð Þ þ pμ2p

ν
2

E2
δ x� x2 tð Þð Þ, (15)

where we have omitted the tensor tGμν, which is associated with the massless,
gravitational field distributed all over space and proportional to the gravitational
constant G [32].

After the insertion of Eq. (15) into Eq. (11), we get [33]

Ptotal ω; tð Þ ¼ P1 ω; tð Þ þ P12 ω; tð Þ þ P2 ω; tð Þ, (16)

where (t0 � t ¼ τ)

P1 ω; tð Þ ¼ Gω
r1π

ð∞
�∞

dτ
sin 2ωr1 sin ω0τ=2ð Þ½ �

sin ω0τ=2ð Þ cosωτ

� E2
1 ω2

0r
2
1 cosω0τ � 1

� �2 � m4
1

2E2
1

� �
,

(17)

P2 ω; tð Þ ¼ Gω
r2π

ð∞
�∞

dτ
sin 2ωr2 sin ω0τ=2ð Þ½ �

sin ω0τ=2ð Þ cosωτ

� E2
2 ω2

0r
2
2 cosω0τ � 1

� �2 � m4
2

2E2
2

� �
,

(18)

P12 ω; tð Þ ¼ 4Gω
π

ð∞
�∞

dτ
sinω r21 þ r22 þ 2r1r2 cos ω0τð Þ� �1=2

r21 þ r22 þ 2r1r2 cos ω0τð Þ� �1=2 cosωτ

� E1E2 ω2
0r1r2 cosω0τ þ 1

� �2 � m2
1m

2
2

2E1E2

� �
:

(19)

1.4 The quantum energy loss of the binary

Using the following relations

ω0τ ¼ φþ 2πl, φ∈ �π; πð Þ, l ¼ 0, � 1, � 2,… (20)
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∑
l¼∞

l¼�∞
cos 2πl

ω

ω0
¼ ∑

∞

l¼�∞
ω0δ ω� ω0lð Þ, (21)

we get for Pi ω; tð Þ, with ω being restricted to positive:

Pi ω; tð Þ ¼ ∑
∞

l¼1
δ ω� ω0lð ÞPil ω; tð Þ: (22)

Using the definition of the Bessel function J2l zð Þ

J2l zð Þ ¼ 1
2π

ðπ
�π

dφ cos z sin
φ

2

� �
cos lφ, (23)

from which the derivatives and their integrals follow, we get for P1l and P2l the
following formulae:

Pil ¼ 2Gω
ri

ðE2
i v2i � 1
� �� m4

i

2E2
i

 !ð2vil
0

dxJ2l xð Þ

þ 4E2
i v2i � 1
� �

v2i J
0
2l 2vilð Þ þ 4E2

i v
4
i J

000
2l 2vilð ÞÞ, i ¼ 1, 2:

(24)

Using r2 ¼ r1 þ ϵ, where ϵ is supposed to be small in comparison with radii r1
and r2, we obtain

r21 þ r22 þ 2r1r2 cosφ
� �1=2 ≈ 2a cos

φ

2

� �
, (25)

with

a ¼ r1 1þ ϵ
2r1

� �
: (26)

So, instead of Eq. (19), we get

P12 ω; tð Þ ¼ 2Gω
aπ

ð∞
�∞

dτ
sin 2ωa cos ω0τ=2ð Þ½ �

cos ω0τð Þ=2� cosωτ

� E1E2 ω2
0r1r2 cosω0τ þ 1

� �2 � m2
1m

2
2

2E1E2

� �
:

(27)

Now, we can approach the evaluation of the energy loss formula for the binary
from the power spectral of Eqs. (24) and (27). The energy loss is defined by the
relation

� dU
dt

¼
ð
P ωð Þdω ¼

ð
dω∑

i, l
δ ω� ω0lð ÞPil þ

ð
P12 ωð Þdω ¼ � d

dt
U1 þ U2 þ U12ð Þ:

(28)

From [34] we have Kapteyn’s formula:

∑
∞

l¼1

J2l 2lvð Þ
l2

¼ v2

2
: (29)

After differentiating the last relation with respect to v, we have
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From [34] we have Kapteyn’s formula:

∑
∞

l¼1

J2l 2lvð Þ
l2

¼ v2

2
: (29)

After differentiating the last relation with respect to v, we have

49

The Black Hole Binary Gravitons and Related Problems
DOI: http://dx.doi.org/10.5772/intechopen.82659



∑
∞

l¼1
lJ00

0
2l 2lvð Þ ¼ 0: (30)

From [34] we learn other Kapteyn’s formulae:

∑
∞

l¼1
2l J02l 2lvð Þ ¼ v

1� v2ð Þ2 , (31)

and

∑
∞

l¼1
l
ð2lv
0

J2l xð Þdx ¼ v3

3 1� v2ð Þ3 : (32)

So, after the application of Eqs. (30), (31) and (32) to Eqs. (24) and (28), we get

� dUi

dt
¼ Gm2

i v
3
iω0

3ri 1� v2i
� �3 13v2i � 15

� �
: (33)

Instead of using Kapteyn’s formulae for the interference term, we will perform
a direct evaluation of the energy loss of the interference term by the ω-integration
in (27) [35]. So, after some elementary modification in the ω-integral, we get

� dU12

dt
¼
ð∞
0

P ωð Þdω ¼

A
ð∞
�∞

dτ
ð∞
�∞

dωωe�iωτ sin 2ωa cosω0τ½ � B C cosω0τ þ 1ð Þ2 �D
cos ω0τ=2ð Þ

" #
,

(34)

with

A ¼ G
aπ

, B ¼ E1E2, C ¼ v1v2, D ¼ m2
1m

2
2

2E1E2
: (35)

Using the definition of the δ-function and its derivative, we have, instead of
Eq. (34), with v ¼ aω0

� dU12

dt
¼ Aω0π

ð∞
�∞

dx
B C cos xþ 1ð Þ2 �D
h i

cos x=2ð Þ

� δ0 x� 2v cos x=2ð Þð Þ � δ0 xþ 2v cos x=2ð Þð Þ½ �:

(36)

According to the Schwinger article [36], we express the delta function as follows:

δ x� 2v cos x=2ð Þð Þ ¼ ∑
∞

n¼0

�2v cos x=2ð Þð Þn
n!

d
dx

� �n

δ xð Þ: (37)

Then

δ0 x� 2v cos x=2ð Þð Þ ¼ ∑
∞

n¼0

�2v cos x=2ð Þð Þn
n!

d
dx

� �nþ1

δ xð Þ ¼ (38)

and it means that
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δ0 xþ 2v cos x=2ð Þð Þ � δ0 x� 2v cos x=2ð Þð Þ½ �
cos x=2ð Þ ¼

�2ð Þ∑
∞

n¼1

2vð Þ2n�1 cos x=2ð Þð Þ2 n�1ð Þ

2n� 1ð Þ!
d
dx

� �2n

δ xð Þ
(39)

Now, we can write Eq. (36) in the following form after some elementary
operations:

� dU12

dt
¼ Aω0π

ð∞
�∞

dx B C cos xþ 1ð Þ2 �D
� �

� �2ð Þ∑
∞

n¼1

2vð Þ2n�1 cos x=2ð Þð Þ2 n�1ð Þ

2n� 1ð Þ!
d
dx

� �2n

δ xð Þ,
(40)

where B C cos xþ 1ð Þ2 �D
� �

can be written as follows:

B C cos xþ 1ð Þ2 �D
� �

¼
4BC2ð cos 4 x=2ð Þ þ 4CB� 4BC2� �ð cos 2 x=2ð Þ þ BC2 � 2CBþ B�D

� �
:

(41)

After the application of the per partes method, we get from Eq. (40) the
following mathematical object:

� dU12

dt
¼ �2ð ÞA 4BC2� �

ω0π

ð∞
�∞

dxδ xð Þ∑
∞

n¼1

d
dx

� �2n

2vð Þ2n�1 cos x=2ð Þð Þ2nþ2

2n� 1ð Þ!

� 2A 4CB� 4BC2� �
ω0π

Ð∞
�∞ dxδ xð Þ∑

∞

n¼1

d
dx

� �2n

2vð Þ2n�1 cos x=2ð Þð Þ2n
2n� 1ð Þ!

� 2A BC2 � 2CBþ B�D
� �

ω0π
Ð∞
�∞ dxδ xð Þ∑

∞

n¼1

d
dx

� �2n

2vð Þ2n�1 cos x=2ð Þð Þ2 n�1ð Þ

2n� 1ð Þ! :

(42)

We get after some elementary operations
Ð
δ f xð Þ ¼ f 0ð Þ

J1 ¼ ∑
∞

n¼1

d
dx

� �2n

2vð Þ2n�1 cos x=2ð Þð Þ2nþ2

2n� 1ð Þ!

�����
x¼0

¼ ∑
∞

n¼0
f nð Þv2n ¼ F v2

� �
, (43)

J2 ¼ ∑
∞

n¼1

d
dx

� �2n

2vð Þ2n�1 cos x=2ð Þð Þ2n
2n� 1ð Þ!

�����
x¼0

¼ ∑
∞

n¼0
g nð Þv2n ¼ G v2

� �
(44)

and

J3 ¼ ∑
∞

n¼1

d
dx

� �2n

2vð Þ2n�1 cos x=2ð Þð Þ2 n�1ð Þ

2n� 1ð Þ!

�����
x¼0

¼ ∑
∞

n¼0
h nð Þv2n ¼ H v2

� �
(45)

where f , g, h, F, G,H are functions which must be determined.
So we get instead of Eq. (41) the following final form:

� dU12

dt
¼ �2ð ÞA 4BC2� �

ω0πG v2
� �� 2A 4CB� 4BC2� �

ω0πF v2
� �

� 2A �2CBþ BC2 þ B�D
� �

ω0πH v2ð Þ
(46)
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Now, we can write Eq. (36) in the following form after some elementary
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d
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where B C cos xþ 1ð Þ2 �D
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can be written as follows:

B C cos xþ 1ð Þ2 �D
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¼
4BC2ð cos 4 x=2ð Þ þ 4CB� 4BC2� �ð cos 2 x=2ð Þ þ BC2 � 2CBþ B�D

� �
:

(41)

After the application of the per partes method, we get from Eq. (40) the
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∞
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2n� 1ð Þ!

�����
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∞
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� �
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�����
x¼0
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n¼0
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� �
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2n� 1ð Þ!

�����
x¼0

¼ ∑
∞

n¼0
h nð Þv2n ¼ H v2

� �
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where f , g, h, F, G,H are functions which must be determined.
So we get instead of Eq. (41) the following final form:

� dU12

dt
¼ �2ð ÞA 4BC2� �

ω0πG v2
� �� 2A 4CB� 4BC2� �

ω0πF v2
� �

� 2A �2CBþ BC2 þ B�D
� �

ω0πH v2ð Þ
(46)
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Let us remark that we can use simple approximation in Eq. (41) as follows:
cos x=2ð Þð Þ2nþ2 ≈ cos x=2ð Þð Þ2, cos x=2ð Þð Þ2n ≈ cos x=2ð Þð Þ2, cos x=2ð Þð Þ2 n�1ð Þ

≈ cos x=2ð Þð Þ2. Then, after using the well-known formula

d
dx

� �2n

cos 2 x=2ð Þ ¼ 1
2
cos xþ πnð Þ (47)

and

1
2
cos xþ πnð Þ

����
x¼0

¼ 1
2

�1ð Þn: (48)

So, instead of Eq. (46), we have

� dU12

dt
¼ Aω0π 2BCþ BC2 þ B�D

� �
∑
∞

n¼1

2vð Þ2n�1 �1ð Þn
2n� 1ð Þ! : (49)

2. Energy shift of H-atom electrons due to the black hole thermal bath

We here determine the electromagnetic shift of energy levels of H-atom elec-
trons by calculating an electron coupling to the black hole thermal bath. The energy
shift of electrons in H-atom is determined in the framework of nonrelativistic
quantum mechanics.

The Gibbons-Hawking effect is the statement that a temperature can be associ-
ated to each solution of the Einstein field equations that contain a causal horizon.

Schwarzschild space-time involves an event horizon associated with tempera-
ture T of a black hole of mass M. We consider here the influence of the heat bath of
the Gibbons-Hawking photons on the energy shift of H-atom electrons.

The analogical problems are solved in the scientific respected journals. There is a
general conviction of an analogy between the black hole and the hydrogen atom.
Corda [37] used the model where Hawking radiation is a tunneling process. In his
article the emission is expressed in terms of the black hole quantum levels. So, the
Hawking radiation and black hole quasinormal modes by Corda [38] are analogical
to hydrogen atom by Bohr.

In this model [39] the corresponding wave function is written in terms of a
unitary evolution matrix. So, the final state is a pure quantum state with no infor-
mation loss. Black hole is defined as the quantum systems, with discrete quantum
spectra, with Hooft’s assumption that Schrödinger equations are universal for all
universe dynamics.

Thermal photons by Gibbons and Hawking are blackbody photons, with the
Planck photon distribution law [40–42], derived from the statistics of the oscillators
inside of the blackbody. Later Einstein [43] derived the Planck formula from the
Bohr model of atom where photons and electrons have the discrete energies related
with the Bohr formula ℏω ¼ Ei � Ef , Ei, Ef being the initial and final energies of
electrons.

Now, we determine the modification of the Coulomb potential due to blackbody
photons. At the start, the energy shift in the H-atom is the potential V0 xð Þ, gener-
ated by nucleus of the H-atom. The potential at point V0 xþ δxð Þ is [44, 45]

V0 xþ δxð Þ ¼ 1þ δx∇þ 1
2

δx∇ð Þ2 þ…

� �
V0 xð Þ: (50)
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The average of the last equation in space enables the elimination of the so-called
the effective potential:

V xð Þ ¼ 1þ 1
6

δxð Þ2TΔþ…

� �
V0 xð Þ, (51)

where δxð Þ2T is the average value of the square coordinate shift caused by the
thermal photons. The potential shift follows from Eq. (51):

δV xð Þ ¼ 1
6

δxð Þ2TΔV0 xð Þ: (52)

The shift of the energy levels is given by the standard quantum formula [44]:

δEn ¼ 1
6

δxð Þ2T ψnΔV0ψnð Þ: (53)

In case of the Coulomb potential, which is the case of the H-atom, we have

V0 ¼ � e2

4π∣x∣
: (54)

Then for the H-atom we can write

δEn ¼ 2π
3

δxð Þ2T
e2

4π
ψn 0ð Þj j2, (55)

where we used the following equation for the Coulomb potential

Δ
1
∣x∣

¼ �4πδ xð Þ: (56)

The motion of electron in the electric field is evidently described by elementary
equation:

δ€x ¼ e
m
ET, (57)

which can be transformed by the Fourier transformation into the following
equation

δxTωj j2 ¼ 1
2

e2

m2ω4

� �
E2
Tω, (58)

where the index ω concerns the Fourier component of the above functions.
Using Bethe idea [46] of the influence of vacuum fluctuations on the energy

shift of electron, the following elementary relations were applied by Welton [45],
Akhiezer et al. [44] and Berestetzkii et al. [47]:

1
2
E2
ω ¼ ℏω

2
, (59)

and in case of the thermal bath of the blackbody, the last equation is of the
following form [48]:

E2
Tω ¼ ϱ ωð Þ ¼ ℏω3

π2c3

� �
1

e
ℏω
kT � 1

, (60)
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ture T of a black hole of mass M. We consider here the influence of the heat bath of
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general conviction of an analogy between the black hole and the hydrogen atom.
Corda [37] used the model where Hawking radiation is a tunneling process. In his
article the emission is expressed in terms of the black hole quantum levels. So, the
Hawking radiation and black hole quasinormal modes by Corda [38] are analogical
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In this model [39] the corresponding wave function is written in terms of a
unitary evolution matrix. So, the final state is a pure quantum state with no infor-
mation loss. Black hole is defined as the quantum systems, with discrete quantum
spectra, with Hooft’s assumption that Schrödinger equations are universal for all
universe dynamics.

Thermal photons by Gibbons and Hawking are blackbody photons, with the
Planck photon distribution law [40–42], derived from the statistics of the oscillators
inside of the blackbody. Later Einstein [43] derived the Planck formula from the
Bohr model of atom where photons and electrons have the discrete energies related
with the Bohr formula ℏω ¼ Ei � Ef , Ei, Ef being the initial and final energies of
electrons.

Now, we determine the modification of the Coulomb potential due to blackbody
photons. At the start, the energy shift in the H-atom is the potential V0 xð Þ, gener-
ated by nucleus of the H-atom. The potential at point V0 xþ δxð Þ is [44, 45]

V0 xþ δxð Þ ¼ 1þ δx∇þ 1
2
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The average of the last equation in space enables the elimination of the so-called
the effective potential:

V xð Þ ¼ 1þ 1
6

δxð Þ2TΔþ…
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V0 xð Þ, (51)

where δxð Þ2T is the average value of the square coordinate shift caused by the
thermal photons. The potential shift follows from Eq. (51):

δV xð Þ ¼ 1
6

δxð Þ2TΔV0 xð Þ: (52)

The shift of the energy levels is given by the standard quantum formula [44]:

δEn ¼ 1
6

δxð Þ2T ψnΔV0ψnð Þ: (53)

In case of the Coulomb potential, which is the case of the H-atom, we have

V0 ¼ � e2

4π∣x∣
: (54)

Then for the H-atom we can write

δEn ¼ 2π
3

δxð Þ2T
e2

4π
ψn 0ð Þj j2, (55)

where we used the following equation for the Coulomb potential

Δ
1
∣x∣

¼ �4πδ xð Þ: (56)

The motion of electron in the electric field is evidently described by elementary
equation:

δ€x ¼ e
m
ET, (57)

which can be transformed by the Fourier transformation into the following
equation

δxTωj j2 ¼ 1
2

e2

m2ω4

� �
E2
Tω, (58)

where the index ω concerns the Fourier component of the above functions.
Using Bethe idea [46] of the influence of vacuum fluctuations on the energy

shift of electron, the following elementary relations were applied by Welton [45],
Akhiezer et al. [44] and Berestetzkii et al. [47]:

1
2
E2
ω ¼ ℏω

2
, (59)

and in case of the thermal bath of the blackbody, the last equation is of the
following form [48]:

E2
Tω ¼ ϱ ωð Þ ¼ ℏω3

π2c3

� �
1

e
ℏω
kT � 1

, (60)
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because the Planck law in (60) was written as

ϱ ωð Þ ¼ G ωð Þ <Eω> ¼ ω2

π2c3

� �
ℏω

e
ℏω
kT � 1

, (61)

where the term

<Eω> ¼ ℏω

e
ℏω
kT � 1

(62)

is the average energy of photons in the blackbody and

G ωð Þ ¼ ω2

π2c3
(63)

is the number of electromagnetic modes in the interval ω,ωþ dω.
Then,

δxTωð Þ2 ¼ 1
2

e2

m2ω4

� �
ℏω3

π2c3

� �
1

e
ℏω
kT � 1

, (64)

where δxTωð Þ2 involves the number of frequencies in the interval ω;ωþ dωð Þ.
So, after some integration, we get

δxð Þ2T ¼
ðω2

ω1

1
2

e2

m2ω4

� �
ℏω3

π2c3

� �
dω

e
ℏω
kT � 1

¼ 1
2

e2

m2

� �
ℏ

π2c3

� �
F ω2 � ω1ð Þ, (65)

where F ωð Þ is the primitive function of the omega-integral with

1
ω

1

e
ℏω
kT � 1

, (66)

which is not elementary, and it is not in the tables of integrals.
Frequencies ω1 and ω2 can be determined from the field of thermal photons. It

was performed for the Lamb shift [44, 47] caused by the interaction of the
Coulombic atom with the field fluctuations. The Bethe-Welton method is valid here
too and so we take Bethe-Welton frequencies. It means an electron does not
respond to the fluctuating field if the frequency is much less than the atom binding
energy given by the Rydberg constant [49] ERydberg ¼ α2mc2=2. So, the lower
frequency limit is

ω1 ¼ ERydberg=ℏ ¼ α2mc2

2ℏ
, (67)

where α≈ 1=137 is so-called the fine structure constant.
The second frequency follows from the cutoff, determined by the neglection of

the relativistic effect in our theory. So, we write

ω2 ¼ mc2

ℏ
: (68)

If we express the thermal function in the form of the geometric series

1

e
ℏω
kT � 1

¼ q 1þ q2 þ q3 þ ::…
� �

; q ¼ e�
ℏω
kT , (69)

54

New Ideas Concerning Black Holes and the Universe

ðω2

ω1

q 1þ q2 þ q3 þ ::…
� � 1

ω
dω ¼ ln ∣ω∣þ ∑

∞

k¼1

� ℏω
kT

� �k
k!k

þ :…; q ¼ e�
ℏω
kT (70)

and the first thermal contribution is

Thermal contribution ¼ ln
ω2

ω1
� ℏ
kT

ω2 � ω1ð Þ, (71)

then, with Eq. (55)

δEn ≈
2π
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π2c3

� �
ln
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kT
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� �

ψn 0ð Þj j2, (72)

where according to Sokolov et al. [50]

ψn 0ð Þj j2 ¼ 1
πn2a20

(73)

with

a0 ¼ ℏ2

me2
: (74)

Let us only remark that the numerical form of Eq. (72) has deep experimental
astrophysical meaning.

Haroche [51] and his group performed experiments with the Rydberg atoms in a
cavity. We used here Gibbons-Hawking black hole for the determination of the
energy shift of H-atom electrons in the black hole gas.

3. Velocity of sound in the black hole photon gas

We have seen that the black hole can be modeled by the blackbody, and it means
that there is the velocity of sound in the Gibbons-Hawking black hole thermal bath.
So, let us derive the sound velocity from the thermodynamics of photon gas and
energy mass relation.

In order to be pedagogically clear, we start with the derivation of the speed of
sound in the real elastic rod.

Let A be the cross-section of the element Adx of a rod on the axis x. Let φ x; tð Þ be
the deflection of Adx at point x at time t. The shift of the Adx at point xþ dx is
evidently

φþ ∂φ

∂x
dx: (75)

Now, we suppose that the force tension F x; tð Þ acting on the Adx of the rod is
given by Hooke’s law:

F x; tð Þ ¼ EA
∂φ

∂x
, (76)

where E is Young’s modulus of elasticity. We easily derive that

F xþ dxð Þ � F xð Þ≈EA
∂
2φ

∂x2
dx: (77)
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because the Planck law in (60) was written as
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ℏω

e
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, (61)

where the term

<Eω> ¼ ℏω

e
ℏω
kT � 1

(62)

is the average energy of photons in the blackbody and

G ωð Þ ¼ ω2

π2c3
(63)

is the number of electromagnetic modes in the interval ω,ωþ dω.
Then,
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, (64)

where δxTωð Þ2 involves the number of frequencies in the interval ω;ωþ dωð Þ.
So, after some integration, we get
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π2c3

� �
F ω2 � ω1ð Þ, (65)

where F ωð Þ is the primitive function of the omega-integral with

1
ω

1

e
ℏω
kT � 1

, (66)

which is not elementary, and it is not in the tables of integrals.
Frequencies ω1 and ω2 can be determined from the field of thermal photons. It

was performed for the Lamb shift [44, 47] caused by the interaction of the
Coulombic atom with the field fluctuations. The Bethe-Welton method is valid here
too and so we take Bethe-Welton frequencies. It means an electron does not
respond to the fluctuating field if the frequency is much less than the atom binding
energy given by the Rydberg constant [49] ERydberg ¼ α2mc2=2. So, the lower
frequency limit is

ω1 ¼ ERydberg=ℏ ¼ α2mc2

2ℏ
, (67)

where α≈ 1=137 is so-called the fine structure constant.
The second frequency follows from the cutoff, determined by the neglection of

the relativistic effect in our theory. So, we write

ω2 ¼ mc2

ℏ
: (68)

If we express the thermal function in the form of the geometric series

1

e
ℏω
kT � 1

¼ q 1þ q2 þ q3 þ ::…
� �

; q ¼ e�
ℏω
kT , (69)
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The mass of Adx is ϱAdx, where ϱ is the mass density of the rod and the
dynamical equilibrium is expressed by Newton’s law of force:

ϱAdxφtt ¼ EAφxxdx (78)

or

φtt � v2φxx ¼ 0, (79)

where

v ¼ E
ϱ

� �1=2

(80)

is the velocity of sound in the rod.
The complete solution of Eq. (79) includes the initial and boundary conditions.

We suppose that Eq. (80) is of the universal validity also for gas in the cylinder
tube. If ΔL=Lð Þ is the relative prolongation of a rod, then an analogue for the tube of
gas is ΔV=V, F ! Δp, where V is the volume of a gas and p is gas pressure. Then,
the modulus of elasticity as the analogue of Eq. (76) is

E ¼ � dp
dV

V: (81)

The sound in ideal gas is the adiabatic thermodynamic process with no heat
exchange. This is the model of the sound spreading in the gas of blackbody photons.
Such process is described by the thermodynamic equation:

pVκ ¼ const, (82)

where κ is the Poisson constant defined as κ ¼ cp=cv, with cp, cv being the specific
heat under constant pressure and under constant volume.

After differentiation of Eq. (82), we get the following equation:

dpVκ þ κVκ�1dV ¼ 0, (83)

or

dp
dV

¼ �κ
p
V
: (84)

After inserting Eq. (84) into Eq. (81), we get from Eq. (80) the so-called
Newton-Laplace formula:

v ¼
ffiffiffiffiffiffi
κ
p
ϱ

r
, (85)

with ϱ being the gas mass density.
The equilibrium radiation density has the Stefan-Boltzmann form:

u ¼ aT4; a ¼ 7; 5657:10�16 J
K4m3

: (86)

Then, with regard to the thermodynamic definition of the specific heat,

cv ¼ ∂u
∂T

� �

V
¼ 4aT3: (87)
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Similarly, with regard to the general thermodynamic theory,

cp ¼ cv þ ∂u
∂V

� �

T
þ p

� �
∂V
∂T

� �

p
¼ cv, (88)

because ∂V
∂T

� �
T ¼ 0 for photon gas, and in such a way, κ ¼ 1 for photon gas.

According to the theory of relativity, there is a relation for mass and energy,
namely, m ¼ E=c2. At the same time, the pressure and the internal energy of the
blackbody gas are related as p ¼ u=3. So, in our case

ϱ ¼ u=c2 ¼ aT4

c2
; p ¼ u

3
: (89)

So, after the insertion of formulae in Eq. (88) into Eq. (85), the final formula for
the sound velocity in photon blackbody sea is the following:

v ¼ c
ffiffiffi
κ

3

r
¼ c

3

ffiffiffi
3

p
, (90)

which was derived by Partovi [52] using the QED theory of the photon gas. We
correctly derived v=c < 1.

So, we have performed the derivation of the velocity of sound in the relic photon
sea. It is not excluded that the relic sound can be detected by the special micro-
phones of Bell Laboratories. If we use van der Waals equation of state or the
Kamerlingh Onnes virial equation, the obtained results will be modified with regard
to the basic results.

Our derivation of the light velocity in the blackbody photon gas was based on
the classical thermodynamic model with the adiabatic process (δQ ¼ 0), controlling
the spreading of sound in the gas. Partovi [52] derived additional radiation correc-
tions to the Planck distribution formula and the additional correction to the speed of
sound in the relic photon sea. His formula is of the form

vsound ¼ 1� 88π2α2

2025
T
Te

� �4
" #

cffiffiffi
3

p , (91)

where α is the fine structure constant and Te ¼ 5:9 G Kelvin. We see that our
formula is the first approximation in the Partovi expression.

There is the Boltzmann statistical theory of transport of sound energy in a
gas [53]. After the application of this theory to the photon gas or relic photon
gas, we can obtain results involving the cross-section of the photon-photon
interaction [47]:

σγγ ¼ 4, 7α4
c
ω

� �2
; ℏω≪mc2, (92)

and

σγγ ¼ 973
10125π

α2r2e
ℏω
mc2

� �6

; ℏω≫mc2, (93)

where re ¼ e2=mc2 ¼ 2; 818� 10�13 cm is the classical radius of electron and
α ¼ e2=ℏc is the fine structure constant with numerical value 1=α ¼ 137;04.

57

The Black Hole Binary Gravitons and Related Problems
DOI: http://dx.doi.org/10.5772/intechopen.82659



The mass of Adx is ϱAdx, where ϱ is the mass density of the rod and the
dynamical equilibrium is expressed by Newton’s law of force:

ϱAdxφtt ¼ EAφxxdx (78)

or

φtt � v2φxx ¼ 0, (79)

where

v ¼ E
ϱ

� �1=2

(80)

is the velocity of sound in the rod.
The complete solution of Eq. (79) includes the initial and boundary conditions.

We suppose that Eq. (80) is of the universal validity also for gas in the cylinder
tube. If ΔL=Lð Þ is the relative prolongation of a rod, then an analogue for the tube of
gas is ΔV=V, F ! Δp, where V is the volume of a gas and p is gas pressure. Then,
the modulus of elasticity as the analogue of Eq. (76) is

E ¼ � dp
dV

V: (81)

The sound in ideal gas is the adiabatic thermodynamic process with no heat
exchange. This is the model of the sound spreading in the gas of blackbody photons.
Such process is described by the thermodynamic equation:

pVκ ¼ const, (82)

where κ is the Poisson constant defined as κ ¼ cp=cv, with cp, cv being the specific
heat under constant pressure and under constant volume.

After differentiation of Eq. (82), we get the following equation:

dpVκ þ κVκ�1dV ¼ 0, (83)

or

dp
dV

¼ �κ
p
V
: (84)

After inserting Eq. (84) into Eq. (81), we get from Eq. (80) the so-called
Newton-Laplace formula:

v ¼
ffiffiffiffiffiffi
κ
p
ϱ

r
, (85)

with ϱ being the gas mass density.
The equilibrium radiation density has the Stefan-Boltzmann form:

u ¼ aT4; a ¼ 7; 5657:10�16 J
K4m3

: (86)

Then, with regard to the thermodynamic definition of the specific heat,

cv ¼ ∂u
∂T

� �

V
¼ 4aT3: (87)

56

New Ideas Concerning Black Holes and the Universe

Similarly, with regard to the general thermodynamic theory,

cp ¼ cv þ ∂u
∂V

� �

T
þ p

� �
∂V
∂T

� �

p
¼ cv, (88)

because ∂V
∂T

� �
T ¼ 0 for photon gas, and in such a way, κ ¼ 1 for photon gas.

According to the theory of relativity, there is a relation for mass and energy,
namely, m ¼ E=c2. At the same time, the pressure and the internal energy of the
blackbody gas are related as p ¼ u=3. So, in our case

ϱ ¼ u=c2 ¼ aT4

c2
; p ¼ u

3
: (89)

So, after the insertion of formulae in Eq. (88) into Eq. (85), the final formula for
the sound velocity in photon blackbody sea is the following:

v ¼ c
ffiffiffi
κ

3

r
¼ c

3

ffiffiffi
3

p
, (90)
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4. Discussion and summary

We have derived the spectral density of gravitons and the total quantum loss of
energy of the black hole binary. The energy loss is caused by the emission of
gravitons during the motion of the two black hole binaries around each other under
their gravitational interaction. The energy loss formulae of the production of grav-
itons are derived here by the Schwinger method. Because the general relativity and
theory of gravity do not necessarily contain the last valid words to be written about
the nature of gravity and it is not, of course, a quantum theory [21], they cannot
give the answer on the production of gravitons and the quantum energy loss,
respectively. So, this article is the original text that discusses the quantum energy
loss caused by the production of gravitons by the black hole binary system. It is
evident that the production of gravitons by the binary system forms a specific
physical situation, where a general relativity can be seriously confronted with the
source theory of gravity.

This article is an extended version of an older article by the present author [33],
in which only the spectral formulae were derived. Here we have derived the quan-
tum energy loss formulae, with no specific assumption concerning the strength of
the gravitational field. We hope that future astrophysical observations will confirm
the quantum version of the energy loss of the binary black hole.

In the next part of the chapter, the electromagnetic shift of energy levels of H-
atom electrons was determined by calculating an electron coupling to the Gibbons-
Hawking electromagnetic field thermal bath of the black hole. The energy shift of
electrons in H-atom is determined in the framework of nonrelativistic quantum
mechanics.

In the last section, we have determined the velocity of sound in the blackbody
gas of photons inside of the black hole. Derivation was based on the thermodynamic
theory of the photon gas and the Einstein relation between energy and mass. The
spectral form for the n-dimensional blackbody was not here considered. The text is
based mainly on the author articles published in the international journals of phys-
ics [33, 54, 55].

There is the fundamental problem concerning the maximal mass of the black
hole. The theory of the space–time with maximal acceleration constant was derived
by authors [56, 57]. In this theory the maximal acceleration constant is the analogue
of the maximal velocity in special theory of relativity. Maximal acceleration deter-
mines the maximal black hole mass where the mass of the black hole is restricted by
maximal acceleration of a body falling in the gravity field of the black hole.

Another question is what is the relation of our formulae to the results obtained
by LIGO (Laser Interferometer Gravitational-Wave Observatory)? LIGO is the
largest and most sensitive interferometer facility ever built. It has been periodically
upgraded to increase its sensitivity. The most recent upgrade, Advanced LIGO
(2015), detected for the first time the gravitational wave, with sensitivity far above
the background noise. The event with number GW150914 was identified with the
result of a merger of two black holes at a distance of about 400 Mpc from Earth
[58]. Two additional significant detections, GW151226 and GW170104, were
reported later. We can say that at this time it is not clear if the LIGO results involve
information on the spectrum of gravitons calculated in this chapter.
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Chapter 5

Applications of the Abelian Vortex
Model to Cosmic Strings and the
Universe Evolution
Mikael Souto Maior de Sousa and Anderson Alves de Lima

Abstract

Due to the wide range of applications and effects of the Abelian vortex model
of Nielsen and Olesen in the many areas of physics, ranging from condensed matter
to astrophysical effects, some work in the literature is necessary to approach this
topic in a succinct form that the undergraduate student in both physics and related
areas has the possibility to know and understand. The mechanisms associated with
this vortex model indicate him as a strong candidate for the source for the
topological defects proposed by Vilenkin.

Keywords: cosmic string, curved space-time, relativity, field theory

1. Introduction

According to the Big Bang theory, the universe is expanding and cooling.
During its expansion, the spontaneous breaks of fundamental symmetries led the
universe to undergo a series of phase transitions. In high-energy physics models, the
formation of topological defects, caused by transitions, such as domain walls,
monopoles, and cosmic strings, among others, is predicted to occur according to the
reference [1, 2].

The cosmic string is among the most studied types of topological defects,
although recent observations of cosmic background radiation have discarded it as
the primary source for primordial density perturbations. Such a defect still serves as
one of the contributions of this disturbance. This type of defect also serves as a
possible source for explaining a considerable number of astrophysical effects, such
as: bursts of gamma rays, where the energy scale of the string in which the symme-
try is broken, on an energy scale of the order of 1014 GeV, explains the rate,
duration, and fluency of gamma ray bursts [3]; high-frequency gravitational wave
emissions, which have as a consequence of these emissions the stochastic set of
gravitational waves generated by a cosmological network of non-Gaussian loops
[4]; and the generation of high-energy cosmic rays [5]. The cosmic rays of high-
energy particles may have originated during the process of collapse and/or annihi-
lation of topological defects associated with the great unification theories.

In condensed matter physics, it is well known that superconductors almost
completely exclude any external magnetic field if it is less than a critical value
(Meissner effect) [6]. However, for type 2 superconducting, which are formed by
materials in which the transition to the superconducting state is gradual, in the
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presence of an intermediate state, if the external field is increased to a certain value
greater than the critical value, such field. This superconductor passes through a
magnetic flux tube form. These phenomena are called magnetic flux vortices which,
in turn, are quantized.

The possibility of the theoretical existence of such vortices was first demon-
strated by Abrikosov [7]. He showed that these naturally occur as solutions to the
Ginsburg-Landau theory of superconductivity in the presence of an external mag-
netic field. Following this theory, the existence of such objects was verified exper-
imentally, and many of their properties were rigorously investigated in [6]. Some
years later, Nielsen and Olesen [8] showed, starting from the relativistic field theory
model with spontaneous break of symmetry, more specifically of the Abelian Higgs
model interacting with a field of gauge, that this system presents solutions with
cylindrical symmetry carrying a magnetic flux. These configurations correspond to
vortex solutions.

The analysis of the influence of this system on space-time geometry was
performed by Garfinkle [9] and Laguna [10]. In their works, the authors coupled
the energy-momentum tensor, associated to the Nielsen-Olesen model, with the
Einstein field equations. In this sense, they have shown that the vortex has an
internal structure characterized by the nonzero magnetic flux that runs along it, the
extent of which is determined by the energy scale at which the symmetry is broken.
Two scale lengths appear naturally, one related to the extent of the magnetic flux
which, in turn, is proportional to the inverse of the vector field mass, mv, east field,
which acquires mass due to the Higgs mechanism; and the other associated with the
inverse of the scalar field mass, ms, the latter, as a measure of the point where the
scalar field decreases to its vacuum value. Moreover, the authors also analyzed the
geometry of space-time and verified that asymptotically the surface perpendicular
to the vortex corresponds to Minkowski’s space-time minus a slice, resulting in a
space with an angular deficit.

A special vortex solution satisfying the Bogomolny-Prasad-Sommerfield (BPS)
boundary [11, 12] shows the masses of the scalar field and of the same caliber field,
that is, ms = mv. For this case, Linet [13] was able to find an exact solution for the
metric tensor, which is determined in terms of the energy density of the cosmic
string. In this limit, the surface perpendicular to the line of the solution of vortex
has a conical structure and, the space-time surrounding, corresponds to the
space-time of an idealized cosmic string.

At great distances, the space-time generated by a cosmic string has, in its origin
and in the orthogonal plane to the disposition of this object, a conical topology with
a planar angle deficit proportional to the linear density of mass of this cosmic string.
In quantum field theory, the nontrivial topology of this object induces non-vanish
vacuum expected values for physical observables. These vacuum polarization
effects can be interpreted as a modification in the quantum levels of the lower
energy state of a theory. In quantum field theory, induced by a conic structure, they
were the targets of many works published. For example, we can observe several
published works, taking into account the case for scalar fields [14–19] and fermionic
fields [20–22] interacting with vector fields. Another induced physical observable,
due to the presence of this defect, is the current and charge density, which will
serve as the source for Maxwell’s equations. Such an object considering fermionic
fields is seen in [23–26].

2. The general relativity and the space-time

The general relativity theory is a geometric theory of gravitation published by
Albert Einstein in 1915 and the current description of gravitation in modern physics.
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It is a set of hypotheses that generalizes Newton’s special relativity and the universal
gravitation law providing a unified description of gravity as a geometric property
of the space-time. In particular, the “curvature of space-time” is directly related to
the energy and moment of any matter and radiation present. The relation is speci-
fied by Einstein’s field equations, a system of partial differential equations.

All geometric information about the space-time would be contained in this
mathematical object called, formally, metric tensor, gμν. In other words, the distri-
bution of matter and energy tells how the geometry of space-time [27] must be. The
equation proposed by Einstein for the theory of General Relativity is given by the
expression below

Rμν � 1
2
gμνR ¼ 8πTμν: (1)

Here, Rμν is the Ricci tensor that is obtained from the Riemann tensor, R ¼ gμνRμν

is the scalar of curvature, and Tμν is the energy-momentum tensor. In order to
introduce the idea of the metric structure of the space-time, we will briefly review
the necessary basic concepts, such as inertial frame and interval of events [27].

Let us suppose that an inertial frame S is described in Cartesian coordinates (t, x,
y, z). In this frame, we have the line element ds being infinitesimal and having its
own time interval (event) given by

ds2 ¼ dt2 � dx2 � dy2 � dz2: (2)

But if we consider a non-inertial reference system, S0, for example, the line
element will not be given, in general, by the sum of the squares of the coordinate
differentials. In this case, for a better understanding, let us consider an event in a
rotating frame, around the z axis, whose angular frequency of rotation is ω. Let
(t0, x0, y0, z0) be the coordinates of this new S0 referential. The relation between both
reference frames may be illustrated by Figure 1.

The general coordinate transformations between the both reference frames S
and S0 are given as follow,

x ¼ x0 cos ωtð Þ � y0sen ωtð Þ (3)

Figure 1.
The relation between S and S0 reference frame with angular velocity ω around the z = z0 axis.
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y ¼ x0sen ωtð Þ þ y0 cos ωtð Þ (4)

z ¼ z0: (5)

In this way, taking into account the derivative of the Eqs. (3)–(5) and putting
them in the Eq. (2), the line element will take the form expressed by

ds2 ¼ 1� ω2 x
02 þ y

02
� �h i

dt2 þ 2ωdt y0dx0 � x0dy0ð Þ � d r! 02: (6)

We see, therefore, that the line element is not only the sum or difference of the
squares of the differential coordinates.

Looking to the Eq. (2), we identify that ds2 ¼ ημνdxμdxν, where we have the
metric signature given by ημν ¼ 1;�1;�1;�1ð Þ being the four-vector position

xμ ¼ t;� r!
� �

. On the other hand, looking into Eq. (6), when non-inertial coordi-

nate systems are used, the line element will include terms that are products of the
different coordinate differentials. So, we can write the line element as follows

ds2 ¼ gμν xð Þdxμdxν: (7)

Now, gμν xð Þ represents a set of ten functions of the space and time coordinates
and it is symmetric, i.e., gμν xð Þ ¼ gνμ xð Þ. The system described by Eq. (7) is called
“curved system” and corresponds to an accelerated reference system. The functions
gμν xð Þ contain all the geometric properties of the space-time. For the case where we
deal with inertial frames, we just have gμν xð Þ ¼ ημν.

Einstein showed that accelerated referential are equivalent to gravitational fields
so that gravitational effects will be described by the metric tensor, gμν xð Þ. In this
case, the gravitation can be understood as a deviation in the metric of the space-
time plane. Moreover, this metric is not fixed arbitrarily but will depend on the local
distribution of matter.

In fact, this equivalence is verified only locally. In a non-inertial system, given a
metric gμν xð Þ, we can always reduce it globally to the Galileo form, Eq. (2), by
means of a suitable coordinate transformation. On the other hand, a gravitational
field cannot be eliminated globally by a coordinate transformation, and the metric
can only be reduced to the flat form (Minkowski) only in a very small finite region
of the space, i.e., locally. When such a situation occurs, the space-time is called
pseudo-Riemannian space-time.

3. Cosmic strings

It is believed that fluctuations that gave rise to the large-scale structures of the
Universe must have a primordial origin, that is, they are associated with the first
moments after the Big Bang. The existing theories for structure formation in the
Universe fall into two categories.

One of them based on amplification of quantum fluctuations in a scalar field
during inflation. The other one based on a phase transition with symmetry breaking
in the primordial universe that gives rise to the formation of topological defects.

Seen from the moment of creation, the Universe goes through phase successions.
The transitions between the first of these phases occur when the Universe is dom-
inated by a quantum gravitation whose exact contours are unknown but during
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which the interactions are thought to be unified and characterized by a high degree
of symmetry. These transitions imply symmetry breaks and can have important
implications including the formation of topological defects such as the formation of
cosmic strings or initiation of a period of exponential inflation.

A cosmic string is an object that can be obtained from an infinitely concentrated
distribution of matter, with linear density of mass μ [2]. In the case of a certain
distribution being located on the z-axis, the energy-momentum tensor, in cylindri-
cal coordinates, is given by

Tβ
ν ¼ μ diag 1;0;0; 1ð Þδ 2ð Þ r!

� �
: (8)

Here, δ 2ð Þ r!
� �

is a two-dimensional Dirac delta function. Geometrically, a topo-

logical defect can be characterized by a space-time whose metric associated with
this defect has the corresponding Riemann-Christoffel tensor null at all points,
except for the defect, i.e., the space-time has conical singularity. In other words, it
may be characterized by a bending tensor, which is proportional to a delta function
supported on the defect.

We want that the Eq. (8) generates a geometry with cylindrical symmetry. For
that, our goal is to find a solution to Einstein’s equations describing the gravitational
field of an ideal cosmic string with linear mass density μ along the z-axis. In this
sense, the string will have no dependence over time, so it is a temporal invariant.
We will also admit a symmetry of the string in relation to the azimuth angle, and
finally that it remains invariant by boosts. Thus, the most general line element, in
cylindrical coordinates, which exhibits such symmetry and maintains invariance by
boosts transformations along the z-axis, is given by

ds2 ¼ A2 rð Þdt2 � dr2 � B2 rð Þdϕ2 � A2 rð Þdz2: (9)

Using Eq. (1), taking into account the metric tensor given in Eq. (9), we can
calculate the Christoffel symbols and obtain a set of non-linear differential equa-
tions given by

Rt
t ¼ Rz

z ¼
A

0 0
rð Þ

A rð Þ þ A0 rð ÞB0 rð Þ
A rð ÞB rð Þ � A0 rð Þ

A rð Þ
� �2

, (10)

Rr
r ¼ 2

A
0 0
rð Þ

A rð Þ þ B0 rð Þ
B rð Þ , (11)

Rr
r ¼

B00 rð Þ
B rð Þ þ 2

A0 rð ÞB0 rð Þ
A rð ÞB rð Þ : (12)

Solving these equations, we get the following solutions

A0 rð Þ ¼ d
dr

A rð Þ ¼ 0;
B00 rð Þ
B rð Þ ¼ 1

B rð Þ
d2

dr2
B rð Þ ¼ �8πμ: (13)

The above solution provides the following line element [2, 14]

ds2 ¼ dt2 � dr2 � 1� 4μð Þdϕ2 � dz2: (14)

Redefining the angular coordinate in Eq. (14), where we use the substitution
ϕ0 ¼ ϕ=q with q�1 ¼ 1� 4μð Þ, we have
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ds2 ¼ dt2 � dr2 � dϕ02 � dz2, (15)

where the angular coordinate varies in the range 0; 2πq
� �

, so that space-time is

now locally flat except for r ¼ 0, which means except under the defect. This line
element, from a global point of view, corresponds to Minkowski’s space-time minus
one piece subtended by the angle 8πμ. The quantity μ has great importance in string
theory since it characterizes the intensity of the gravitational interaction and its
value obtained from the Great Unification Theories is comprised in the order of
10�6 [28, 29]. Then, space-time generated by a cosmic string has the shape of a cone
in the perpendicular plane to the string. Being flat itself, it satisfies Einstein’s
equations in every region where Tβ

ν ¼ 0.
The effect of the string is therefore to introduce a deficit in the azimuthal angle

given by Δϕ ¼ 8πμ, generating in the surface (t, z) = constants, a conical geometry
instead of a flat geometry, which will be pointed in the limit of the string internal
structure going to zero. In this case, the corresponding space-time is conic and best
described in cylindrical coordinates due to the symmetry of the problem. The
geometry described above has many interesting features, such as:

• Absence of Newtonian gravitational potential although this does not imply the
absence of gravitational effects, that is, a particle placed in the presence of a
cosmic string will not be attracted to it, whatever the order of magnitude of the
mass density of the string, which is quite different from that predicted by
Newton’s gravitational string of matter; in other words, the cosmic strings have
zero gravitational potential [30].

• It can act as a gravitational lens as shown in Figure 2, that is, due to the conic
nature of space-time around the cosmic string, double images of objects located
behind the string can be formed in relation to an observer [2].

• Gravitational analog of the Aharonov-Bohm effect, due to the movement of test
particles in space-time of cosmic strings through the study of geodesics [31].

• Electrostatic self-interaction [13] that arises due to the gravitational field
inducing a curvature in space-time, and this curvature causes distortions in the
field lines of the electrostatic potential generated by a charged particle, causing
this particle to undergo a finite force upon itself.

Figure 2.
Representation of the light way coming from the infinity and “curving” due to the presence of a cosmic string.
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4. The Higgs mechanism

Most of the symmetries observed in nature are not exact. For example, Isospin is
not an exact symmetry of nature, because the proton and the neutron do not have
the same mass. One way to study symmetry breaks in field theory with symmetry
breaking is to introduce the Lagrangian terms with small coefficients that explicitly
perform the break. In this section, we will be interested in a symmetry breaking
which the Lagrangian is symmetric under the action of a group of transformations
but the state of less energy is not.

To understand how spontaneous symmetry breaking appears in many Abelian
field theories, we will start considering the simple case, that is, the Lagrangian for a
complex scalar field given by

L ¼ ∂νφ∂
νφ ∗ � V φj jð Þ, (16)

where V φj jð Þ ¼ μ2φφ ∗ þ λ φ ∗φð Þ2, being λ the self-coupling constant. To this
theory, making the transformation over the scalar field is as follows

φ ! φ0 ¼ φ eiqα and φ ∗ ! φ0 ∗ ¼ φ ∗ e�iqα: (17)

Here, the parameter α does not depend on the point, and we can see that the
derivative in Eq. (16) goes to

∂νφ ! ∂νφ
0 ¼ ∂νφð Þ eiqα and ∂νφ

∗ ! ∂νφ
0 ∗ ¼ ∂νφ

∗ð Þ e�iqα^ ¼ U ∂νφð Þ: (18)

Putting Eqs. (17) and (18) into Eq. (14), we see that

L ! L0 ¼ L: (19)

As we may see, these transformations under the fields keep the Lagrangian
unchanged. The transformations over the fields and their derivatives that do not
depend on the point are named global gauge transformation.

On the other hand, let us consider that the parameter α now depends on the
point, it means, α � α xð Þ ! U xð Þ ¼ eiqα xð Þ. These kinds of transformation are called
local gauge transformation.

This way the transformation over the derivatives, Eq. (18), becomes

∂νφ ! ∂νφ
0 ¼ ∂ν φ eiqα xð Þ

� �
¼ ∂νφð Þeiqα xð Þ þ iq ∂να xð Þð Þφ: (20)

As we can see, the field derivative does not transform as the field itself. The
second term that appears in Eq. (20) turns the Lagrangian as not invariant by these
transformations over the fields. This way, to turn this theory unchanged by trans-
formations where the parameter now depends on the point, we have to add new
fields called “compensating fields,” Aν xð Þ. Doing this we also have to redefine the
derivative concept, and this way, we have

∂ν ! Dν ¼ ∂ν þ iqAν xð Þ: (21)

In Eq. (21), we have the covariant derivative. Now, under transformations over
the fields, the fields derivative will transform itself like the own fields, which means

Dνφ ! Dνφð Þ0 ¼ U xð ÞDνφ: (22)

69

Applications of the Abelian Vortex Model to Cosmic Strings and the Universe Evolution
DOI: http://dx.doi.org/10.5772/intechopen.86570



ds2 ¼ dt2 � dr2 � dϕ02 � dz2, (15)

where the angular coordinate varies in the range 0; 2πq
� �

, so that space-time is

now locally flat except for r ¼ 0, which means except under the defect. This line
element, from a global point of view, corresponds to Minkowski’s space-time minus
one piece subtended by the angle 8πμ. The quantity μ has great importance in string
theory since it characterizes the intensity of the gravitational interaction and its
value obtained from the Great Unification Theories is comprised in the order of
10�6 [28, 29]. Then, space-time generated by a cosmic string has the shape of a cone
in the perpendicular plane to the string. Being flat itself, it satisfies Einstein’s
equations in every region where Tβ

ν ¼ 0.
The effect of the string is therefore to introduce a deficit in the azimuthal angle

given by Δϕ ¼ 8πμ, generating in the surface (t, z) = constants, a conical geometry
instead of a flat geometry, which will be pointed in the limit of the string internal
structure going to zero. In this case, the corresponding space-time is conic and best
described in cylindrical coordinates due to the symmetry of the problem. The
geometry described above has many interesting features, such as:

• Absence of Newtonian gravitational potential although this does not imply the
absence of gravitational effects, that is, a particle placed in the presence of a
cosmic string will not be attracted to it, whatever the order of magnitude of the
mass density of the string, which is quite different from that predicted by
Newton’s gravitational string of matter; in other words, the cosmic strings have
zero gravitational potential [30].

• It can act as a gravitational lens as shown in Figure 2, that is, due to the conic
nature of space-time around the cosmic string, double images of objects located
behind the string can be formed in relation to an observer [2].

• Gravitational analog of the Aharonov-Bohm effect, due to the movement of test
particles in space-time of cosmic strings through the study of geodesics [31].

• Electrostatic self-interaction [13] that arises due to the gravitational field
inducing a curvature in space-time, and this curvature causes distortions in the
field lines of the electrostatic potential generated by a charged particle, causing
this particle to undergo a finite force upon itself.

Figure 2.
Representation of the light way coming from the infinity and “curving” due to the presence of a cosmic string.

68

New Ideas Concerning Black Holes and the Universe

4. The Higgs mechanism

Most of the symmetries observed in nature are not exact. For example, Isospin is
not an exact symmetry of nature, because the proton and the neutron do not have
the same mass. One way to study symmetry breaks in field theory with symmetry
breaking is to introduce the Lagrangian terms with small coefficients that explicitly
perform the break. In this section, we will be interested in a symmetry breaking
which the Lagrangian is symmetric under the action of a group of transformations
but the state of less energy is not.

To understand how spontaneous symmetry breaking appears in many Abelian
field theories, we will start considering the simple case, that is, the Lagrangian for a
complex scalar field given by

L ¼ ∂νφ∂
νφ ∗ � V φj jð Þ, (16)

where V φj jð Þ ¼ μ2φφ ∗ þ λ φ ∗φð Þ2, being λ the self-coupling constant. To this
theory, making the transformation over the scalar field is as follows

φ ! φ0 ¼ φ eiqα and φ ∗ ! φ0 ∗ ¼ φ ∗ e�iqα: (17)

Here, the parameter α does not depend on the point, and we can see that the
derivative in Eq. (16) goes to

∂νφ ! ∂νφ
0 ¼ ∂νφð Þ eiqα and ∂νφ

∗ ! ∂νφ
0 ∗ ¼ ∂νφ

∗ð Þ e�iqα^ ¼ U ∂νφð Þ: (18)

Putting Eqs. (17) and (18) into Eq. (14), we see that

L ! L0 ¼ L: (19)

As we may see, these transformations under the fields keep the Lagrangian
unchanged. The transformations over the fields and their derivatives that do not
depend on the point are named global gauge transformation.

On the other hand, let us consider that the parameter α now depends on the
point, it means, α � α xð Þ ! U xð Þ ¼ eiqα xð Þ. These kinds of transformation are called
local gauge transformation.

This way the transformation over the derivatives, Eq. (18), becomes

∂νφ ! ∂νφ
0 ¼ ∂ν φ eiqα xð Þ

� �
¼ ∂νφð Þeiqα xð Þ þ iq ∂να xð Þð Þφ: (20)

As we can see, the field derivative does not transform as the field itself. The
second term that appears in Eq. (20) turns the Lagrangian as not invariant by these
transformations over the fields. This way, to turn this theory unchanged by trans-
formations where the parameter now depends on the point, we have to add new
fields called “compensating fields,” Aν xð Þ. Doing this we also have to redefine the
derivative concept, and this way, we have

∂ν ! Dν ¼ ∂ν þ iqAν xð Þ: (21)

In Eq. (21), we have the covariant derivative. Now, under transformations over
the fields, the fields derivative will transform itself like the own fields, which means

Dνφ ! Dνφð Þ0 ¼ U xð ÞDνφ: (22)

69

Applications of the Abelian Vortex Model to Cosmic Strings and the Universe Evolution
DOI: http://dx.doi.org/10.5772/intechopen.86570



Hence, the total Lagrangian will change by the addiction of the dynamic of these
“compensating fields” and its dynamic is given by the term L Aνð Þ where we have
only Aν interacting among itself, this way we get

L ¼ L φ;φ ∗ ;Dνφ; Dνφð Þ ∗ð Þ þ L Aνð Þ, (23)

where

L φ;φ ∗ ;Dνφ; Dνφð Þ ∗ð Þ ¼ Dνφ Dνφð Þ ∗ � V φj jð Þ (24)

L Aνð Þ ¼ � 1
4
FμνFμν: (25)

Note that Fμν ¼ ∂μAν � ∂νAμ is the Maxwell electromagnetic tensor, and the
“compensating field” is the four-vector potential of the electromagnetism, and this
way, the parameter q is the electron charge. In Eq. (23), we have a U(1) invariant
theory that couples photons with the charged matter. This theory is the known
quantum electrodynamics theory.

In general, the Higgs-Kibble mechanism is a process that generates mass for the
gauge fields in this theory. Taking into account Eq. (23) with the parameters λ>0
and μ2 < 0, this theory presents the spontaneous symmetry breaking. In this case,
there exist a “ring” of degenerated vacuum states given by the minimal potential.
This “ring” of degenerated vacuum values is parameterized as

φ0 ¼
ffiffiffiffiffiffiffi
μ2j j
2λ

r
eiΛ: (26)

The study around a vacuum value state can be done by taking the scalar field

φ ¼ 1ffiffiffi
2

p vþ η xð Þ þ iξ xð Þ½ �: (27)

Being v ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
μ2j j=λp

, substituting Eq. (27) in Eq. (23), we have

L ¼ � 1
4
FμνFμν � q2v2

2
AνAν þ 1

2
∂νηð Þ2 þ 1

2
∂νξð Þ2 � λv2η2 � qvAνξ: (28)

The term AνAν that appears in Eq. (28) shows that the gauge field now acquires
mass. Besides that we also can see in Eq. (28) that a massive scalar field, η, with
mass m2

η ¼ 2λv2 and a Goldstone scalar field appear. However, the Goldstone scalar
field does not present physical relevance and may be reabsorbed through a gauge
field redefinition. Taking the gauge field redefinition given by

Bν ¼ Aν � q∂νξ, (29)

we may rewrite Eq. (28) as

L ¼ � 1
4
FμνFμν � q2v2

2
BνBν þ 1

2
∂νηð Þ2 � λv2η2, (30)

where

Fμν ¼ ∂μBν � ∂νBμ ¼ ∂μAν � ∂νAμ: (31)

The Bν field presents mass mB ¼ qv, non-vanishing.
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4.1 Topological defects

Topological defects are stable configurations of matter formed during phase
transitions in the primordial universe. As already mentioned, during the early
phases of the Universe, the material components are in physical states characterized
by high degrees of symmetry and it is thought that the interactions will be unified.
The cooling of the Universe, due to expansion, promotes the conditions for some of
these symmetries to break, it is said, spontaneously.

This happens in much the same way as a pencil which, standing vertically and
only resting on its sharp beak, drops down on a flat, oriented surface in any
direction. The symmetry of rotation that exists around the axis of the pencil van-
ishes and, furthermore, the point where the tip was supported separates all possible
positions from the topped pencil and is said to be a topological defect. (A classic
example of a break in symmetry is the ferromagnetic transitions in Landau theory.)
According to the types of symmetries that are broken, various types of topological
defects may form, including walls, cosmic strings, monopoles, and textures. The
type of defect formed is determined by the symmetry properties of the material and
the nature of the phase transition.

To describe the idealized cosmic strings, i.e., static cosmic strings with infinite
matter distribution along the z-axis and whose internal structure may be negligible,
we will use the Nielsen and Olesen model. In this sense, by coupling the energy-
momentum tensor associated with this theory to the Einstein field equations of
general relativity, we study the influence of this model on space-time geometry. In
fact, Laguna [10] and Garfinkle [9] did this, and in their works, they had shown
that the space-time generated by the Nielsen-Olesen model was equivalent to space-
time generated by a cosmic string. Thus, for a better understanding of the nature of
a cosmic string, it is necessary to understand a little about models in field theory
with spontaneous break of symmetry, as with the model proposed by Nielsen
and Olesen.

Domain walls are two-dimensional objects that form when a discrete symmetry
is broken during a phase transition. A network of walls effectively divides the
Universe into several “cells.” This type of defect has some very peculiar properties,
one being that the gravitational field of a wall is repulsive rather than attractive.
These objects may be represented as follow in Figure 3.

Cosmic strings are one-dimensional objects that form when an axial or cylindri-
cal symmetry is broken. They are very thin and can extend along the visible
Universe. These objects may be represented as follow in Figure 4.

Figure 3.
Domain walls associated with models where there is more than a minimum.
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L ¼ � 1
4
FμνFμν � q2v2

2
AνAν þ 1

2
∂νηð Þ2 þ 1

2
∂νξð Þ2 � λv2η2 � qvAνξ: (28)

The term AνAν that appears in Eq. (28) shows that the gauge field now acquires
mass. Besides that we also can see in Eq. (28) that a massive scalar field, η, with
mass m2

η ¼ 2λv2 and a Goldstone scalar field appear. However, the Goldstone scalar
field does not present physical relevance and may be reabsorbed through a gauge
field redefinition. Taking the gauge field redefinition given by

Bν ¼ Aν � q∂νξ, (29)

we may rewrite Eq. (28) as

L ¼ � 1
4
FμνFμν � q2v2

2
BνBν þ 1

2
∂νηð Þ2 � λv2η2, (30)

where

Fμν ¼ ∂μBν � ∂νBμ ¼ ∂μAν � ∂νAμ: (31)

The Bν field presents mass mB ¼ qv, non-vanishing.

70

New Ideas Concerning Black Holes and the Universe

4.1 Topological defects

Topological defects are stable configurations of matter formed during phase
transitions in the primordial universe. As already mentioned, during the early
phases of the Universe, the material components are in physical states characterized
by high degrees of symmetry and it is thought that the interactions will be unified.
The cooling of the Universe, due to expansion, promotes the conditions for some of
these symmetries to break, it is said, spontaneously.

This happens in much the same way as a pencil which, standing vertically and
only resting on its sharp beak, drops down on a flat, oriented surface in any
direction. The symmetry of rotation that exists around the axis of the pencil van-
ishes and, furthermore, the point where the tip was supported separates all possible
positions from the topped pencil and is said to be a topological defect. (A classic
example of a break in symmetry is the ferromagnetic transitions in Landau theory.)
According to the types of symmetries that are broken, various types of topological
defects may form, including walls, cosmic strings, monopoles, and textures. The
type of defect formed is determined by the symmetry properties of the material and
the nature of the phase transition.

To describe the idealized cosmic strings, i.e., static cosmic strings with infinite
matter distribution along the z-axis and whose internal structure may be negligible,
we will use the Nielsen and Olesen model. In this sense, by coupling the energy-
momentum tensor associated with this theory to the Einstein field equations of
general relativity, we study the influence of this model on space-time geometry. In
fact, Laguna [10] and Garfinkle [9] did this, and in their works, they had shown
that the space-time generated by the Nielsen-Olesen model was equivalent to space-
time generated by a cosmic string. Thus, for a better understanding of the nature of
a cosmic string, it is necessary to understand a little about models in field theory
with spontaneous break of symmetry, as with the model proposed by Nielsen
and Olesen.

Domain walls are two-dimensional objects that form when a discrete symmetry
is broken during a phase transition. A network of walls effectively divides the
Universe into several “cells.” This type of defect has some very peculiar properties,
one being that the gravitational field of a wall is repulsive rather than attractive.
These objects may be represented as follow in Figure 3.

Cosmic strings are one-dimensional objects that form when an axial or cylindri-
cal symmetry is broken. They are very thin and can extend along the visible
Universe. These objects may be represented as follow in Figure 4.

Figure 3.
Domain walls associated with models where there is more than a minimum.
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Monopoles have dimension zero, that is, are punctual, and form when a spher-
ical symmetry is broken. In field theory with non-abelian gauge symmetriy broken
may appear defects like magnetic monopole. These objects may be represented as
follow in Figure 5.

Whenever there is the possibility that cosmic strings or other topological
defects form in a cosmological phase transition, they actually form. This circum-
stance had been first pointed out by Kibble, and therefore, in a cosmological con-
text, the process of the formation of defects became to be known as the “Kibble
mechanism” [1].

One fact regarding the universe inflation period is that the causal effects in the
early universe can only propagate at the speed of light c. This means that in the
instant t, regions of the Universe separated more than a distance d = ct cannot know
anything about each other. In a phase transition with symmetry breaking, different
regions of the Universe will fall into different minimum potentials. This way, we

Figure 4.
Cosmic strings associated with models in which a set of minimums is not connected.

Figure 5.
Representation of a magnetic monopole defect. They are expected to be supermassive and have a magnetic
charge.
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actually think that topological defects are precisely the “boundaries” between these
regions corresponding to different minimum potentials and their formation is thus
an inevitable consequence of the phase transition.

4.2 Vortex model in field theory

The model proposed by Nielsen and Olesen for Abelian vortices, in the context
of general relativity, generates a geometric structure similar to that of a cosmic
string. In this sense, this object is a strong candidate to describe mathematically the
cosmic strings; that is, they are strong candidates for the sources for this type of
defect. However, Nielsen and Olesen, starting from a relativistic theory of fields, in
1973, have shown that it is possible to obtain solutions of vortices [8] starting from
the Lagrangian density of the Abelian Higgs model, which is expressed by

L ¼ � 1
4
FβνFβν þDνφ Dνφð Þ ∗ � μ2φφ ∗ � λ φφ ∗ð Þ2: (32)

Note that Dν ¼ ∂ν þ ieAν is the covariant derivative, Fβν ¼ ∂βAν � ∂νAβ is the
electromagnetism Maxwell’s tensor, and λ φφ ∗ð Þ2 is the auto-interaction term; when
this term is put, this theory starts to present a infinity degenerated vacuum, i.e., the
theory has infinite states of lower energy, which satisfies the condition

φj j2 ¼ m2= 2λð Þ. This way, for a particular choice vacuum configuration φ ¼
ffiffiffiffiffi
m2

2λ

q
,

the local gauge symmetry is broken.
It is known that the action for this theory is written as

S ¼
Z

d4x L φ;φ ∗ ;Dνφ; Dνφð Þ ∗ ;Aμ;A ∗
μ

� �
: (33)

In Eq. (17) using the Hamilton’s principle, we get the following equations of
motion. For φ xð Þ, we get

∂L
∂φ

� ∂μ
∂L

∂ ∂μφ
� �

 !
¼ 0: (34)

For Aμ, we have

∂L
∂Aμ � ∂

α ∂L
∂ ∂

αAμð Þ
� �

¼ 0: (35)

Now using Eq. (16) into Eqs. (18) and (35), we have the following system of
differential equations

∂
νFβν ¼ jβ ¼ � ie

2
φ ∗

∂βφ� φ∂βφ
∗� �� e2Aβφφ

∗ (36)

DνDνφ ¼ λφ φφ ∗ �m2

λ

� �
: (37)

For a vortex in the z-direction, the components associated with the vector
potential, in the Cartesian coordinate system, are Aμ ¼ 0;Ax;Ay;0

� �
. For this con-

figuration, the component of the tensor Fβν that interests us is F12, because from it
we can calculate the flux that passes through the plane x; yð Þ. Parametrizing the
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q
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It is known that the action for this theory is written as

S ¼
Z
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λ

� �
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Higgs field by φ ¼ φj j exp iχð Þ, the flux, Φ, passing through an area bounded by a
closed curve C, is given by

Φ ¼
Z

dxdyF12 ¼
I

C
dxiAi ¼ � 1

q

I

C
dxi∂iχ: (38)

Here, we use, in Eq. (38), the fact that the line integral is carried out on the
closed curve C, very far from the magnetic flux and that jμ ¼ 0. The equations of
motion presented in Eqs. (36) and (37) are coupled differential equations in first
order that are hard to find solutions. However, the standard procedure to solve
these equations, at least numerically, is to assume the following cylindrical ansatz,
with symmetry along the z-axis for the fields [8]

Aμ ¼ 0;0;A rð Þθ̂;0� �
and φ r; θð Þ ¼ f rð Þeinθ: (39)

This procedure reduces Eqs. (36) and (37) to

� 1
r
d
dr

r
d
dr

f rð Þ
� �

þ n
r
� qA rð Þ

� �2
þ λ f 2 rð Þ �m2

λ

� �� �
¼ 0, (40)

� d
dr

1
r
d
dr

A rð Þ
� �

þ q2A rð Þ � nq
r

� �
f rð Þ ¼ 0: (41)

There exist no analytical solutions to these equations. On the other hand, we can
find many vortex properties by general and numerical considerations under both
equations. From the general point of view, it is possible to show that these equations
present solutions as asymptotically well-defined. For points closer to its nucleus, we
have f rð Þ≈A rð Þ ! 0. For points pretty distant from the vortex nucleus, it is
observed that the functions f rð Þ and A rð Þ may be approximated in first order to

f rð Þ ! mffiffiffi
λ

p and A rð Þ ! n
qr

: (42)

By using computational methods we can solve numerically Eqs. (40) and (41),
and in Figure 6, we can see their behavior.

Figure 6.
H(r) and φ rð Þ represent, respectively, the behavior of the magnetic field and the scalar field.
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From Figure 6, we can see that two mass scale come up, first of them is
ms ¼

ffiffiffi
2

p
m that is related with the mass of the scalar field dislocated; it means

φ0 ¼ φ�m=
ffiffiffi
λ

p
. The second one is related with the photon mass, mv ¼ qm=

ffiffiffi
λ

p
,

remember that the photon acquires mass because of the Higgs mechanism. Note
that two length scales also appear in Figure 6. The first one δ ¼ 1=mv is related
with the range of the electromagnetic field. The second latter, ξ = 1/ms, is related
with the space scale for the Higgs field arrive its own vacuum value.

In the literature Eqs. (23) and (24) form a system of coupled-equations and this
system do not have exact solutions, but asymptotically we may solve these equa-
tions. The solutions that present finite linear density of energy, follow reference
[32], are given by

f rð Þ ! mffiffiffi
λ

p 1� k e�
r
ξ

� �
and A rð Þ ! n

qr
1� k e�

r
δ

� �
, (43)

where k is a constant of proportionality.
On the other hand, Garfinkle [9], in 1985, studied the gravitational effects

associated with the vortices of Nielsen and Olesen. For this purpose, he used the
energy tensor, Tβν, obtained from the Lagrangian of the Abelian Higgs model,
Eq. (16). In the context of the general relativity, he used this tensor as source of the
Einstein equations. In this case, a static metric, with cylindrical symmetry, can be
written as

ds2 ¼ eadt2 � dr2 � ecdϕ2 � ebdz2, (44)

where a, b, and c are functions of the radio r satisfying the relations

a 0ð Þ ¼ b 0ð Þ ¼ 0 and lim
r!0

ec

r2
¼ 1: (45)

Given the metric, Eq. (44), solving the Einstein field equations for the energy-
momentum tensor of Nielsen and Olesen, Garfinkle had found, as in flat space-
time, symmetrically cylindrical static solutions which he represented as vortices.
It also showed that, asymptotically, the space-time around a vortex become the
Minkowski space-time minus a slice corresponding that one shown in Figure 2.
This means that, asymptotically, the vortex can be seen as a cosmic string
containing a magnetic field around it.

5. Conclusions

Throughout this work, we introduced some reasons why cosmic string-like
topological defects have been studied in energy physics and condensed matter. In
fact the quantum effects on the fields of matter are caused due to the non-trivial
topology of these objects giving rise to polarization effects. By understanding the
vacuum as a state of lower energy, the effects of vacuum polarization can be
understood as changes in the scale of this lower energy. Such effects in quantum
field theory are seen by calculating the vacuum expected values, VEV, of certain
observables, such as the induced current density [23] and the energy-momentum
tensor of the matter fields [19] induced. These observables serve as sources for the
Maxwell equations in the case of induced current density and for the Einstein
equations in the case of the energy-momentum tensor. In the latter case, the source
of the Einstein equations no longer consists of the classical energy-momentum
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tensor, Tμν, but rather the energy-momentum quantizer, Tμν

� �
, which will result in

certain fixes in the metric tensor [33].
We have also seen that in an inertial frame, the space-time is described by the

Minkowski metric, Eq. (1), which consists of a singular and diagonal metric. How-
ever, when we move to accelerated frames, the metric becomes point dependent,
consisting of a set of ten space-time coordinate functions, containing all informa-
tion about the geometry of the range. In this way, we can see that accelerated
frames are equivalent to gravitational fields, so that gravitational effects can be
described by the metric tensor, gμν xð Þ. Thus, the gravitation may be understood as a
deviation in the metric of the flat space-time. Moreover, this metric is not fixed
arbitrarily but will depend on the distribution of local matter.

Furthermore, the cosmic string is an object whose density of matter is infinitely
concentrated in a line whose mass density is μ. With this object, which can be
described by the energy-momentum tensor given in Eq. (7), the deformation
caused in the space-time is conical and the metric described by this density of
matter is given by Eq. (15), which consists of a Minkowskian metric with cylindrical
symmetry, less than a slice equal to 8πμ, which corresponds to the planar angle
deficit orthogonal to the axis of symmetry of the cosmic string.

Finally, we have seen that such idealized objects can be described through the
Abelian vortices models proposed by Nielsen and Olesen. They showed that by the
abelian Higgs model, Eq. (32), assuming a cylindrical ansatz, Eq. (39), It is possible
the obtaining a set of two coupled second order differential equation, as it was
showed in Eqs. (40) and (41), although they do not have a closed analytic form, but
that may be obtained numerical and asymptotic solutions, Eq. (27). In this way, it is
observed that two length scales appear naturally from this theory. One associated
with the inverse of the mass of the scalar field, ξ � 1=ms, and the other one related
to the inverse of the mass of the vector field, δ � 1=mv, which acquires mass due to
the mechanism of Higgs. Also in the scope of the Abelian vortices, Linet [13] and
Garfinkle [9], starting from the energy-momentum tensor associated to the Nielsen
and Olesen model as the source of the Einstein field equations, they obtained a
metric associated to this model, and they found a metric described by a cosmic
string. The internal structure of this object is delimited by the scale of energy in
which the Higgs field decays to its vacuum value.
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Chapter 6

Mystery of the Missing Antimatter
Golden Gadzirayi Nyambuya

“Nothing is too wonderful to be true
if it is consistent with the Laws of Nature.”

— Michael Faraday (1791-1867)

Abstract

The Lorentz invariant Dirac equation upon which our deepest understanding of
the most fundamental Quantum Mechanics is based—exhibits perfect discrete
symmetries of Charge Conjugation Cð Þ, Parity Pð Þ and Time Tð Þ reversal. Not only
does the Dirac equation obey these three symmetries C;P;Tð Þ, but also all the
possible combinations of these symmetries, i.e., CT, CP, PT and CPT. When it
comes to the C-symmetry, what this means is that—contrary to physical and natural
reality—the Universe must contain equal portions of matter and antimatter.
Obviously—this state of affairs that the Dirac equation leads to predictions that are
contrary of observations—this—is based on the notion that the Dirac equation in
its bare form as handed to us by Dirac is a correct description of reality on this front.
In this chapter, we present a fundamental theoretical argument to the effect that:
a symmetry violating curved spacetime version of the Dirac equation may be a
perdurable solution to this long standing conundrum.

Keywords: Dirac equation: original, curved spacetime, antimatter, CP violation

1. Introduction

Perhaps persuaded and subsequently subdued by its rare, esoteric, exquisite and
touchstone beauty—if one where to proceed therefrom and “religiously” believe in
the verbatim predictions of the Dirac [1, 2] equation, then, they have every reason
to wonder why the Universe is predominated by matter, with little—if any—anti-
matter existing naturally. The antimatter that we observe in cosmic rays is produced
in the high energy collisions of matter particles. This antimatter produced in these
collisions has very short life-times, lasting anything to the order of 10�22 s. The bare
Dirac equation predicts that during the moment of creation, i.e., during the so-
called Big Bang, matter and antimatter should have been produced in equal pro-
portions. However, today, it vividly appears that everything we see—from the
smallest life forms on Earth to the largest stellar objects in the distant heavens, is
made almost entirely of matter [3]. If the assumption that matter and antimatter
were created in equal portions during the so-called Big Bang, surely, something
must have happened to tip the balance. As such, the answer to the question of
Where did the antimatter disappear to? is one of the greatest challenges in physics
today [3]. Physicists and scientists in general, want to know what happened to the
antimatter, or why we see an acute asymmetry between matter and antimatter.
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While wondering of where the antimatter disappeared to, one must on the other
hand smile because if indeed this antimatter where still present, you the reader
would not be able to read this book because life would not have been possible as the
Universe would have been nothing more than a radiation bath, because, whenever
matter and antimatter meet, they annihilate to form electromagnetic radiation. So,
the Universe would have been filled with photons. Hence, it is really good that
antimatter did—somehow—disappear from the Universe. Be that as it may, we still
have to ask why it disappeared—why? It is in asking and seeking answers to such
questions that our understanding of the inner workings of the Universe deepens.

While the term antimatter was first coined by the German-born British physicist
—Sir Franz Arthur Friedrich Schuster (1851–1934) [4] on 8 August 1898 in a rather
whimsical letter to the journal Nature; in its modern form and understanding,
antimatter was first predicted in 1930 by one of the finest, greatest and towering
intellectual figures in English history—Paul Adrian Maurice Dirac (1902–1984) [5].
Contrary to Sir Schuster’s [4] antimatter, Dirac’s [5] antimatter particles have the
same mass as their matter counterparts—albeit—with equal but opposite electric
charge. For example, an Electron’s antimatter counterpart is the positively charged
Positron, and that of the Proton is the negatively charged anti-Proton. Matter and
antimatter particles are always produced in pairs. If they come into contact, they
annihilate with one another in burst of radiation leaving behind pure energy. Dur-
ing the first fractions of a second of the Big Bang—physicists believe that the hot
and dense Universe was buzzing with particle-antiparticle pairs popping-in-and-out
of existence in equal proportions; thus, if matter and antimatter are created and
destroyed together, it seems reasonable that the Universe should today contain
nothing but a leftover relic of energy. It was the American physicist—Carl David
Anderson (1905–1991) [6], who first positively detected the Position (i.e., the
antimatter partner of the Electron) in the laboratory in 1932. The discovery was
soon confirmed by Giuseppe Occhialini and Patrick Blackett [7], thus leading
Anderson to co-receive the 1936 Nobel Prize in Physics.

Once it was clear that Dirac’s antimatter is real, the question naturally arose—
where is this antimatter? The idea that took center-stage in trying to answer this
question is Sakharov’s [8] hypothesis that we are going to discuss in Section 4. In a
nutshell, Sakhorov’s [8] hypothesis imagines a Universe perfectly symmetric in its
matter-antimatter constitution and due to some subtle underlying processes, this
symmetry is broken. To give a vague picture of this symmetry breaking—consider
for example a coin spinning on a table. Neglecting the third side of the coin which is
the edge and only considering the side—head and tail, this coin when tossed can
land on either on its heads or its tails. One thing that is clear is that while the coin is
still spinning before it actually lands, it cannot be defined as “heads” or “tails” until
it stops spinning and falls to one side. A fair and unbiased coin has a 50–50 chance
of landing on either its head or tail. Thus, if a statistically large sample of these
coins is spun in exactly the same way, half should land on their heads while the
other half land on tails. In pretty much the same way, half of the oscillating
particles in the early Universe should have decayed as matter and the other half as
antimatter.

Now—in the afore-described scenario, if say a marble rolled across a table of the
spinning coins, surely, it would cause an imbalance in the 50–50 ratio of heads and
tails—in simple terms, the marble would disrupt the whole system insofar as the
outcome is concerned. There would an imbalance of either more heads than tails or
more tails than heads. In the same fashion, some unknown mechanism [e.g.,
Sakhorov’s [8] conditions] could have interfered with the initial balance of matter-
antimatter that existed in the nascence of the Universe causing an imbalance that
may have led to the majority of antimatter decaying to matter. This is the
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predominant thinking amongst the majority of physicists as to how the present
matter-antimatter asymmetry should have come about and manifested.

The thinking that the Universe should have started-off in state of balance
between matter and antimatter assumes obviously assumes that the Dirac equation
in is bare form is the correct description of reality. We will argue in favor of a
revision of the Dirac equation. We explore what we believe to be an equivalent of
the Dirac equation on a curved spacetime. As we apply the Dirac equation in its bare
form, we must be mindful that this equation does not incorporate gravity. Thus, it
may very well be that, once we involve gravity, the scenario may very well be
different. In actual fact, we shall do exactly that. We shall consider a set of curved
spacetime Dirac equations that we proposed in the Foundations of Physics journal
some 10 years back [9]. From these equations, we shall argue that if gravity is
considered, it is possible that the Universe was created from the onset as a Universe
exclusively filled with matter and with no antimatter. We think the fault squarely
lies in the Dirac equation and notNature—for, there is no antimatter that is missing,
because it was never there to begin with.

Of the Dirac equation and its alleged fallibility, it must be said once again that
this equation is one of the most successful equations in entire History of Physics. It is
the most fundamental foundational basis of all Quantum Field Theories (QFTs)
such as Quantum Electrodynamics (QED), Quantum Flavor (QFD) and Quantum
Chromodynamics (QCD). It is so successful so much that, it is unimaginable for one
to consider its revision—it is more like one trying to revise Newton’s Laws of Motion.
Through the centuries, Newton’s Laws of Motion have been tested rigorously and
found to be correct and the only imaginable, reasonable and logical thing one can do
is to extend these into newer domains like what Einstein [10] did with the “pro-
mulgation” of his Special Theory of Relativity (STR).

In trying to comprehend the obvious embarrassment facing the beautiful andmost
successful Dirac equation—vis—the issue of matter-antimatter asymmetry, we must
remember and be fully cognizant of the fact that the Dirac equation is an equation
that is based on the flat Minkowski spacetime—gravity is not present in Minkowski
spacetime hence it is not present in the Dirac equation. Thus, while this equation has
been successful, this obvious fragment contradiction with physical and natural reality
when it comes to the missing antimatter—this, may very well be an issue whose
perdurable answer is to be found in the “complete version of the Dirac equation” and
this kind of equation should most certainly be the curved spacetime version of it. In-
tandem with the afore-stated philosophical approach to the “Dirac equation and the
missing antimatter,” the approach presented in the present chapter cannot be said to
be a revision of the Dirac equation, but an extension of this equation in the domain of
curved spacetime. This extended version violates C, P, T-symmetries and their com-
binations (i.e., CT, CP, PT and CPT), thus placing it on a sure pedestal to deliver an
alternative view on this very important matter of the missing antimatter.

2. Dirac equation

In the present section, we will present an exposition of the Dirac equation and
demonstrate only one of its symmetries, namely, the C-symmetry—because—this
symmetry is the most relevant in our quest for the missing antimatter. As a starting
point, it is important to ask “Why and how did Dirac come to discover the equation
that now indelibly bares his name?” As is well known—history has recorded that
Dirac embarked on the quest for the Dirac equation after it was noted that, the then
and only known relativistic quantum equation—the Klein [11] and Gordon [12]
Eq. (hereafter Klein-Gordon equation)—possessed both negative and positive
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2. Dirac equation

In the present section, we will present an exposition of the Dirac equation and
demonstrate only one of its symmetries, namely, the C-symmetry—because—this
symmetry is the most relevant in our quest for the missing antimatter. As a starting
point, it is important to ask “Why and how did Dirac come to discover the equation
that now indelibly bares his name?” As is well known—history has recorded that
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energy solutions and in the case of the negative energy solutions, the resulting
quantum probability was negative. At any rate imaginable, negative probabilities
are not only meaningless, but nonsense.1 So, Dirac embarked on his esoteric quest
with in mind the aim of getting reed of the negative energy solution together with
them—their negative probabilities. As fate would have it, Dirac famously achieved
on tackling the latter and serendipitously failed on the former—albeit—it is in this
failure that his agile brilliance manifested and out-shined thus placing him on a very
rare and unique pedestal as one of the finest minds to ever walk the face of the
planet Earth.

The Klein-Gordon equation is harnessed from the usual Einstein [10] energy-
momentum equation:

ημνp
μpν ¼ E2

c20
� p2 ¼ m2

0c
2
0, (1)

where ημν is usual flat Minkowski metric of spacetime, pμ is the four momentum,
E is the energy, m0 is the rest mass of the particle and c0 is the speed of Light in
vacuo. Upon a canonical quantization procedure is applied to Eq. (1), the resulting
quantum mechanical equation—which is the Klein-Gordon equation—is:

ημν∂
μ
∂
νΨ ¼ ∇2Ψ� 1

c20

∂
2Ψ
∂t2

¼ m0c0
ℏ

� �2
Ψ (2)

where Ψ is the quantummechanical wavefunction of the particle in question and
∂
μ is the Laplacian operator. Because the Klein-Gordon equation quadratic in the
derivatives, Dirac realized that this should be the source of the negative probabili-
ties. So, he imagined that an equation that is linear in the derivative would to be job
of not only getting reed of the ugly negative probabilities, but the negative energy
solutions as-well. He was right on the former and wrong on the latter.

Direct from the beautiful world of his esoteric imagination, Dirac wrote down an
equation that was in-sync with his desideratum, i.e., an equation that is linear in the
derivatives and demanded of it that when it is “squared,” it would reduce to the
well-known Klein-Gordon equation. Dirac’s sleight of mindworked as he managed to
obtain an equation that is so rich, it is still being studied to this day. Written in its
“covariant” form, the Dirac equation is given by:

iℏγμ∂
μψ ¼ m0c0ψ , (3)

where: i ¼ ffiffiffiffiffiffi�1
p

, ℏ is Planck’s normalized constant and:

ψ ¼

ψ0

ψ1

ψ2

ψ3

0
BBB@

1
CCCA ¼ ψL

ψR

� �
, (4)

is the 4� 1 Dirac four component wavefunction and the left- and right-handed
bispinors ψL and ψR are such that:

1

It is interesting to note that Dirac and another great mind, the American theoretical physicist—Richard

Phillips Feynman (1918–1988), famously tried and monumentally failed to make sense of negative

probabilities.
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ψL ¼ ψ0

ψ1

� �
and ψR ¼ ψ2

ψ3

� �
, (5)

and:

γ0 ¼ I 2 0

0 �I 2

� �
, γi ¼ 0 σi

�σi 0

� �
, (6)

are the 4� 4 Dirac gamma matrices where I 2 and 0 are the 2 � 2 identity and
null matrices respectively. Throughout this chapter, the Greek indices will be
understood to mean: μ, ν,… ¼ 0; 1; 2; 3, while the lower case English alphabet
indices: i, j, k… ¼ 1; 2; 3.

3. C-symmetry of the Dirac equation

For latter instructive purposes,2 we will now demonstrate that the Dirac Eq. (3)
observes C-symmetry. To that end, we shall start off in the usual manner by placing
the Dirac particle ψ inside an external magnetic field whose electromagnetic four
vector potential is Aμ

ex. So doing, Eq. (3) will transform to:

iℏγμ ∂
μ þ ieAμ

ex

� �
ψ ¼ m0c0ψ : (7)

Now, we will have to switch the external magnetic field by reversing the elec-
tromagnetic four vector potential is Aμ

ex, i.e., A
μ
ex ↦ � Aμ

ex. So doing, Eq. (7) will
transform to:

iℏγμ ∂
μ � ieAμ

ex

� �
ψ ¼ m0c0ψ : (8)

Now, if the Dirac Eq. (3) is symmetric under electrical charge conjugation, there
must exist a set of permissible mathematical operations that when applied to
Eq. (8), they will lead us back to Eq. (7). The first such permissible mathematical
operations is to apply the complex-operation on both-sides of Eq. (7): this complex
operation will restore the sign in the coefficient of Aμ

ex, i.e.,

�iℏγ ∗
μ ∂

μ þ ieAμ
ex

� �
ψ ∗ ¼ m0c0ψ ∗ : (9)

Now, in-order to revert back to Eq. (7), we need to find a set of permissible
mathematical operations that will remove the complex operation on γ ∗

μ . This can be
done because of the following Algebra:

γ0γ2γ
∗
μ ¼ �γμγ0γ2: (10)

The removal of the complex-operation on γ ∗
μ is achieved by multiplying on both-

sides of Eq. (9) by γ0γ2, i.e.,

�iℏγ0γ2γ
∗
μ ∂

μ þ ieAμ
ex

� �
ψ ∗ ¼ m0c0γ0γ2ψ

∗ , (11)

2

That is, for the benefit of the worked presented in Section 8.
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and using the fact Eq. (10), it follows that Eq. (11) will reduce to:

iℏγμ ∂
μ þ ieAμ

ex

� �
γ0γ2ψ

∗ð Þ ¼ m0c0 γ0γ2ψ
∗ð Þ: (12)

Now, Eq. (12) can be re-written as:

iℏγμ ∂
μ þ ieAμ

ex

� �
ψ c ¼ m0c0ψ c, (13)

where: ψ c ¼ γ0γ2ψ
∗ , is the antiparticle. Except for the intercharge of ψ with ψ c,

Eq. (13) is the same equation as the original Eq. (7), the meaning of which is that
the Dirac equation is symmetric under charge conjugation, since the same law
that applies to matter ψð Þ also applies to antimatter ψ cð Þ.

4. Sakholov conditions

In 1967, exiled Soviet (dissident and) nuclear scientist—Andrei Dmitriev
Sakharov (1921–1989), described three minimum conditions which are required for
any baryogenesis to occur, regardless of the exact mechanism leading to the excess
of baryonic matter. In his seminal paper which laid the foundations for all future
attempts to explain the matter excess of the Universe, Sakharov [8] did not list the
conditions explicitly. Instead, he described the evolution of a Universe which goes
from a Baryon-excess (B-excess) while contracting in a Big Crunch to an anti-B-
excess after the resultant Big Bang. In summary, his three key assumptions are now
known as they Sakharov Conditions, and these are [3]:

1. At least one B-number violating process.

2.C and B ¼ 0-violating processes.

3. Interactions outside of thermal equilibrium.

These conditions must be met by any explanation in which B ¼ 0ð Þ during the
Big Bang but is very high in the present day. They are necessary but not sufficient-
thus scientists seeking an explanation of the currently obtaining matter asymmetry
on this basis (Sakharov conditions) must describe the specific mechanism through
which baryogenesis happens. Much theoretical work in cosmology and high-energy
physics revolves around finding physical processes and mechanism which fit the
three Sakharov preconditions and correctly predicting the observed baryon density.
Sakharov’s conditions can be proven by means of Quantum Mechanics and
Statistical Physics [3].

4.1 B-number violation

We know that electric charge is a conserved quantity. The total electric charge
before an interaction is always equal to the electric after the interaction. In exactly
the same manner, it turns out that one can assign a charge that we call “Baryon
Number” (B-number) to quarks, and experiments have demonstrated that this
charge is also conserved. All quarks carry a B-number charge ofþ1=3, while all anti-
quarks carry a B-number charge of �1=3, and everything else—i.e., Leptons,
intermediate gauge Bosons, etc.; carry a B-number charge of 0. For all interaction
so far observed in Nature, B-number is conserved and the World is yet to be
furnished with evidence to the contrary if indeed B-number violation exists.
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While both electric charge and B-number are conserved physical quantities, the
difference, however, between these two is that, B-number conservation is consid-
ered an “Accidental Symmetry of Nature” because in constructing the Standard
Model, one does not build in B-number conservation explicitly. It is not a require-
ment for a reasonable Standard Model, but it just so happens that when one exam-
ines the evidence from numerous experiments, B-number is always conserved
somehow. Because B-number conservation is a fact of experience, it very well may
be that, there exists yet to be discovered interactions where B-number conservation
is not upheld. From an exploration stand-point, there simply is no reason why
B-number violation should be ruled out and not be considered a possibility—
especially in the light of the Sakholov conditions, hence, some physicists expect
that B-number violating processes [e.g., Proton decay p↦ eþπ0; p↦ μþπ0] might
exist in order to explain the matter-antimatter asymmetry.

The idea of B-number violation is central to the so-called Grand Unified Theo-
ries, i.e., a GUT in physics is a model in particle physics in which, at exceedingly
high energies ≳1016GeV

� �
, the three known gauge interactions—the Electromag-

netic, Weak, and the Strong interactions, or forces which define Standard Model are
merged into one single unified force or interaction where in the GUT interactions
are characterized by one larger gauge symmetry group. The first true GUT was
proposed by Howard Georgi and Sheldon Glashow in 1974 [13] and few months
latter in the same journal by Jogesh Pati and Abdus Salam (1926–1996) [14]. There
is currently no hard experimental evidence [15–18] that Nature is described by a
GUT as Proton decay has not been observed. Without B-number violation, it is not
possible for any system to evolve from a state with: B ¼ 0, to a state with: B 6¼ 0.

4.2 P and CP-violation

The idea behind CP-symmetry is that the equations of particle physics are
invariant under mirror inversion and this leads naturally to the prediction that the
mirror image of a reaction (such as a chemical reaction or radioactive decay) should
occur at the same rate as the original reaction. It was not until 1956 that, along with
the sacrosanct law of conservation of energy and conservation of momentum, P-
symmetry was believed to be one of the Fundamental Geometric Conservation Laws of
Nature. After a careful and critical review of the existing experimental data by
Tsung-Dao Lee and Chen-Ning Yang [19] revealed that while P-symmetry had
been verified in decays by the Strong or Electromagnetic interactions, it was
untested in the Weak interaction, thus they (Lee and Yang [19]) proposed several
experiments to rectify this, and simultaneously, they found a perdurable solution
for this puzzle.

The first such experiment that Lee and Yang [19] proposed was the β-decay of
Cobalt 60 nuclei whose decay is as follows:

60
27 Co↦

60
28Ni ∗ þ e� þ νe þ 2γ: (14)

Assuming parity is violated in this interaction (Eq. (14)), the Electrons ought to
be ejected differently before and after the parity transformation. The landmarking
experiment was soon undertaken by Wu et al. [20] the following year in 1957.

In their experiment, Wu et al. [20] aligned the spins of a sample of 60
27 Co with an

external magnetic field. The sample was cooled to � 0:003 K (Houston in Lide [21]
pp. 111–115) in-order to ensure that as many nuclear spins as is possible would align.
Wu et al. [20] then proceeded to count the resulting decay products of the atoms
along with the direction of their propagation. After a parity transformation was
applied, by means of flipping the magnetic field direction, the same measurements
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were taken once again. The results were anything but surprising and ground-
breaking. Rather than the Electrons being emitted in the same relative direction
before and after the parity transformation, it was observed the Electrons had a
“preferred” direction a certain direction and the effect was not small but pro-
nounced—with a γ-ray polarization of �60%, that is to say, �60% of the γ-ray were
emitted in one direction, whereas 40% were emitted in the other. If P-symmetry
was indeed conserved, Electrons would have no preferred direction of decay
relative to the nuclear spin. Further, Wu et al. [20] observed that Electrons in their
experiment were emitted in a direction preferentially opposite to that of the γ-rays.
That is to say, most of the Electrons favored a very specific direction of decay,
opposite to that of the nuclear spin. The clear meaning of these results is that
P-symmetry was violated as suggested by Lee and Yang [19], thus conclusively
demonstrating that Weak interactions do indeed violate P-symmetry.

Apart from the Co60 experiment, Lee and Yang [19] suggested as well that this
same test of P-violation could be made in the decay of the πþ and μþ, i.e., the
reactions:

πþ ↦ μþ þ νμ

μþ ↦ eþ þ νe þ νμ:
(15)

As pointed out by Garwin et al. [22], parity conservation/violation can be tested
in this decay chain because if P-symmetry is indeed broken, there should be an
asymmetry in the polarization of the Muons along the direction of motion as this
can be determined from the distribution of Electrons from the decay of the Muons.
Experimentalists were initially skeptical that any sizeable effect of this would be
measured somehow. However, after hearing of the magnitude of the asymmetry
discovered by Wu et al. [20], and liaising with her in private (see e.g., Ref. [23]),
Garwin et al. [22] undertook the experiment in February of 1957, the results of
which they published directly after Wu et al. [20] in the same journal with the
papers stuck to each other back-to-back. Ambler et al. [24], also conducted a similar
experiment which coroborated Garwin et al. [22] and Wu et al.’s [20] results. In
both Garwin et al. and Ambler et al. experiments, they observed angular distribu-
tion of the Electrons was as predicted by Lee and Yang [19], thus confirming that—
indeed, parity is not conserved in the Weak interactions.

Having realized that P-symmetry was indeed violated—in an act of desperation—
it was proposed in 1957 by the great Soviet theoretical physicist—Lev Davidovich
Landau (1908–1968), that CP-symmetry was the true symmetry of Nature to be
found between matter and antimatter, i.e., this symmetry would be conserved (see
e.g., Lee et al. [25]). This proposal made use of the symmetry of a quantum
mechanical system emanating from the subtle structure of Hilbert Space, that, if
some symmetry say S can be found such that the combined PS-symmetry remains
unbroken, then this is the true symmetry of Nature. Based on this, CP-symmetry
was proposed as the desired symmetry to restore order and as we now know, this
did not happen as Christenson et al. [26] demonstrated that CP-symmetry was
indeed violated. In-order to explain the matter-antimatter asymmetry, what
become the central focus is the extent to which this CP-symmetry occurred as it is
believed (e.g., by Aaij et al. [27], amongst a host of many others) that this is not
sufficient to account for matter-antimatter asymmetry.

4.3 Interactions outside of thermal equilibrium

The expansion [28] and ultimate accelerated expansion [29, 30] of the Universe
provides the necessary platform for nonequilibrium conditions needed by the third
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of Sakholov’s conditions requiring that there be interactions occurring outside of
thermal equilibrium [3]. Actually, during most of the history of the Universe,
cosmic expansion is the only source of nonequilibrium [3]. Thermal equilibrium is a
time translation invariant state in which the expectation values of all observables
are constant, therefore it requires a deviation from equilibrium to evolve from:
B ¼ 0, to the desired state with: B 6¼ 0 [3].

5. Current experimental and observational efforts

Gamma-ray line radiation at 511 keV is the pristine signature of Electron-
Positron annihilation eþe� ↦ γγð Þ and for the past 40 years, such radiation has been
known [31] to come from the Galactic Center. Weidenspointner et al. [32] of the
European Space Agency (ESA) using the INTEGRAL satellite have reported a dis-
tinct radiation asymmetry in the 511 keV line emission coming from the inner
Galactic disk (� 10� 50° from the Galactic Centre). This asymmetry
Weidenspointner et al. [32] say resembles an asymmetry in the distribution of low
mass X-ray binaries with strong emission at Photon energies >20 keV, indicating
that they may be the dominant origin of the Positrons. This observation by
Weidenspointner et al. [32] may explain the origin of a giant antimatter cloud
surrounding the Galactic Center. Stellar nucleosynthesis [33–35], accreting compact
objects [36–39], and even the annihilation of exotic dark-matter particles [40] have
long been suggested as possible causes of this 511 keV line emission. In our view,
this is interesting but does not help much in the resolution of the matter-antimatter
as the question will always arise as why this antimatter is no uniformly spread.

On a recent interesting note, Neri [41] presented the first and long sought
evidence for CP-violation in the baryon sector as this is much closer to home where
it can be linked to baryon number and ultimately to B-number violation. Neri [41]
noted differences in the behavior of matter and antimatter in K and B meson
decays, but not yet in any baryon decay. Such differences Neri [41] says are associ-
ated with the noninvariance of fundamental interactions under the combined CP-
transformations, specifically CP-violation. In their ground breaking work, Neri [41]
examined the decay products of matter and antimatter baryons (a particles
containing three quarks) and looked at the spatial distribution of the resulting
daughter particles within the detector. Specifically, Neri [41] looked for a very rare
decay of the λ0b particle (which contains an up quark, down quark and bottom
quark) into a Proton and three Pions, which contain an up quark and anti-down
quark, i.e., p↦ π�πþπ� and p↦ π�KþK� final states. Based on data from � 6000
decays with a statistical significance corresponding to 3:3-sigma level including
systematic uncertainties, Neri [41] find a difference in the spatial orientation of the
daughter particles of the matter and antimatter λ0b . At a 3:3-sigma level of confi-
dence, chances of this being a just a statistical fluctuation (and not a new property
of nature) is one out of a thousand. The traditional threshold for discovery is 5-
sigma level of confidence, which equates to odds of one out of more than a million.

6. Current theoretical efforts

We are of the view that theoretical effort on the problem of matter-antimatter
asymmetry can be classified into two groups, the first of which are those efforts that
seek to modify or extend the Dirac equation so that it is applicable on a curved
spacetime and particle physics theories that try an solve this problem from with the
Standard Model. We must say that—except for the efforts presented in Refs. [9, 42]
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were taken once again. The results were anything but surprising and ground-
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The expansion [28] and ultimate accelerated expansion [29, 30] of the Universe
provides the necessary platform for nonequilibrium conditions needed by the third
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in the case of those efforts that seek to modify or extend the Dirac equation into the
domain of curved spacetimes, these efforts have not been linked to the problem of
matter-antimatter asymmetry.

6.1 Modified Dirac equation theories

There are several curved spacetime versions of the Dirac equation cf. [43–51]
that have been proposed each with their unique taste and flavor in how it is arrived
at. In our humble and modest view; save for the introduction of a seemingly
mysterious four vector potential Aμ, what makes the curved spacetime version of
the Dirac equations presented in Nyambuya [9] stand-out over other attempts is
that the method used in arriving at these curved spacetime Dirac equations [9] is
exactly the same as that used by Dirac [1, 2] in arriving at the Dirac equation. As
will be demonstrated shortly in Section 7, this method used in Ref. [9] appears to us
as the most straight forward and logical manner in which to arrive a curved
spacetime version of the Dirac equation. All that has been done in Ref. [9], is to
decompose the general Riemann metric gμν in a manner that allows us to apply
Dirac’s [1, 2] prescription at arriving at the Dirac equation. Apart from this attempt
[9]; attempts by e.g., Refs. cf. [43–51] that have been made to date, seek a curved
spacetime version of the Dirac equation not from the fundamental curved

spacetime energy-momentum equation gμνp
μpν ¼ m2

0c
4

� �
, but take the Dirac equa-

tion as their point of departure. Our said approach (first presented in Ref. [9]) is
new. In Section 7, we will present this new curved spacetime Dirac equation and
proceed thereafter to demonstrate how this equation can be used to proffer a
solution to this relatively long-standing matter-antimatter problem.

6.2 Modified Standard Model approach

According to Robson [52] who has developed a viable alternative to the SM-model
called the Generation Model (GM) of particle physics [53–59], the matter-antimatter
asymmetry problem can be solved within the framework of GM, where one can
demonstrate that this asymmetry problem can be understood in terms of the com-
posite leptons and quarks of the GM. According to Robson [52], one notes from this
GM that there is essentially no matter-antimatter asymmetry in the present Universe
and that the observed hydrogen-antihydrogen asymmetry may be understood in
terms of statistical fluctuations associated with the complex many-body processes
involved in the formation of either a hydrogen atom or an antihydrogen atom.

In Robson’s [52] GM, the original antimatter created in the Big Bang is now
contained within the stable composite Leptons, the Electrons and Neutrinos, and the
stable composite quarks, the weak eigenstate up and down quarks that comprise the
Protons and neutrons, within the hydrogen, helium and heavier atoms of the universe.
Thus there is no matter-antimatter asymmetry in the present universe. However,
there does exist a hydrogen-antihydrogen asymmetry where the present Universe
consists predominantly of hydrogen atoms and virtually no antihydrogen atoms—
and, as afore-stated—with the hydrogen-antihydrogen asymmetry understood in
terms of statistical fluctuations associated with the complex many-body processes.

7. Curved spacetime Dirac equation

Our general feeling about the Dirac equation is that once it was discovered, it
was taken up “very fast” and used as a most fundamental basis for building almost
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all—if not all—aspects of QFTs. In the literature, there are no real visible efforts at
an attempt on a curved spacetime version of the Dirac equation in the early stages of
the Dirac’s discovery of the Dirac equation. The major reason why the Dirac equa-
tion was taken up fast is that, at its birth—which was also the triumphant moment
of its coronation and inauguration—it astoundingly explained, in a subtly natural
and exquisitely brilliant manner, the quantum mystery of the origins of spin and as-
well, the then inexplicable gyromagnetic ratio of the Electron.

In the present section, we will give an exposition of the curved spacetime Dirac
equation that we first presented in Ref. [9]. In this said attempt, the composite
symmetric metric tensor of general relativity gμν consisting of 10 potentials, is
decomposed into a metric that can be described by a four vector potential Aμ, i.e.,
gμν ¼ AμAν. Certainly, this is a reduction in complexity—i.e., from 10 potentials to
only 4. At the time of our proposal, we were unsure how to interpret this descrip-
tion of the metric using a four vector because the only four vector potential that we
know to describe a force is the Electromagnetic four vector potential.

However, if we are to still to the facts that gμν describes the gravitational field,
then, logic dictates that the gravitational field must be capable of being described by
a four vector potential as suggested by this decomposition of the metric. Latter, it
become clear that indeed, the gravitational field must be describable using a four
vector potential and the proof of this has been given by Hera [60] and Behera [61]
in their different theorems. We will not go into these theorems but hope that the
reader will visit these very important proofs and convince themselves that indeed,
the gravitational field must be describable (somehow) by a four vector potential.
Assuming that gravity can be described by a four vector potential, we shall now
proceed to present an exposition of the aforesaid curved spacetime Dirac equation
that where first presented in Ref. [9]. What is new in this exposition is that, the
gravitational four vector potential Aμ is consider for two cases, where in one case,
these vector is a real function, while in the other, it is a complex function. It is in the
case where this potential is complex that we are going to find the present proposed
solution the matter-antimatter conundrum.

7.1 Real valued gravitational four vector potential

We shall begin by expanding gμνp
μpν into its 16 components—albeit, effectively

10 components and this is because of the symmetries of the metric, i.e., gμν ¼ gνμ;
the four momentum space line element equation: gμνp

μpν ¼ m2
0c

2
0, is such that:

gμνp
μpν ¼ g00

E2

c20

� �
þ g11p

1p1 þ g22p
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(16)

The terms sandwiched between gμνp
μpν and m2

0c
2
0 are the expanded terms—the

effective 10 components mentioned above. Upon canonical quantization, Eq. (16)
becomes:
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where c0 is the speed of Light in vacuo. As first presented in Ref. [9]: in our quest
for a curved spacetime Dirac equation which upon squaring would result in the
above equation, we noted that if: gμν∝AμAν (which is mathematically and logically
permissible), one can write down an equivalent curved spacetime Dirac equation.
We noted that there are three configurations of the metric tensor, gμν, that would do
this. So, we decided to introduce a subscript for that would identify the metric
tensor with the particular configuration, where in the new metric tensor, we now
have g að Þ

μν , with a ¼ 1; 2; 3ð Þ being the label of these three configurations. With the

metric now written as g að Þ
μν , Eq. (17), now becomes:
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(18)

so that written without the expanded terms, the curved spacetime Klein-Gordon
equation would be:

g að Þ
μν ∂

μ
∂
νΨ ¼ m0c0

ℏ

� �2
Ψ: (19)

These three configurations [representing three configurations of spacetimes that
we have called the (1) Quadratic Spacetime, (2) Parabolic Spacetime and (3)
Hyperbolic Space, respectively] of the metric tensor are:

g 1ð Þ
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h i
¼

þA0A0 0 0 0

0 �A1A1 0 0
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In a general, written in a condensed form, these three metric tensors g 1ð Þ
μν , g

2ð Þ
μν

and g 3ð Þ
μν , are such that:
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where—further: in a much more compact form, this metric can be written as:
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where:
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and the 4� 4 matrices γ að Þ
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The λa’s in Eq. (26) are defined such that when:

a ¼
1, then λ1 ¼ 0ð Þ : Quadratic  Spacetime QSTð Þ:
2, then λ2 ¼ þ1ð Þ : Parabolic  Spacetime PSTð Þ:
3, then λ3 ¼ �1ð Þ : Hyperbolic  Spacetime HSTð Þ:

8>><
>>:

(27)

The index “a” is not an active index as are the Greek indices. This index labels a
particular curvature of spacetime, i.e., whether spacetime is flat,3 positive or nega-
tively curved as defined by the resulting metric g að Þ

μν which is given in Eq. (23). So, in
the end, the resulting and desired curved spacetime Dirac equation is:

iℏA að Þ
μ ∂

μψ ¼ m0c0ψ , (28)

where it is understood thatAμ is a real valued gravitational four vector function.
In the subsequent section, we will show that the above equation with a complex
valued gravitational four vector function violates C-symmetry. A violation of C-
symmetry is all one needs to explain the whereabouts of the missing antimatter.

Multiplication by iℏA að Þ
ν ∂

ν
� �

from the left on the left handside of Eq. (28) and on

the right by m0c0 and this is on the understanding that these operators are identical
—i.e., iℏA að Þ

ν ∂
ν � m0c0I4: one will lead to the curved spacetime Klein-Gordon

equation provided:

A að Þ
ν ∂

νA að Þ
μ ¼ 0: (29)

Therefore, the above equation enters into this theory as a gauge condition to be
met by the real-valued gravitational four-vector potential A að Þ

μ .

3

By flat, it here is not meant that the spacetime is Minkowski flat, but that the metric has no off diagonal

terms. On the same footing, by positively curved spacetime, it meant that metric has positive off diagonal

terms and likewise, a negatively curved spacetime, it meant that metric has negative off diagonal terms.
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where c0 is the speed of Light in vacuo. As first presented in Ref. [9]: in our quest
for a curved spacetime Dirac equation which upon squaring would result in the
above equation, we noted that if: gμν∝AμAν (which is mathematically and logically
permissible), one can write down an equivalent curved spacetime Dirac equation.
We noted that there are three configurations of the metric tensor, gμν, that would do
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tensor with the particular configuration, where in the new metric tensor, we now
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∂
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∂
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c20

� �
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11 ∂
1
∂
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22 ∂
2
∂
2Ψþ g að Þ

33 ∂
3
∂
3Ψ

þ 2g að Þ
01 ∂

0
∂
1Ψþ 2g að Þ

02 ∂
0
∂
2Ψþ 2g að Þ

03 ∂
0
∂
3Ψ

þ 2g að Þ
12 ∂

1
∂
2Ψþ 2g að Þ

13 ∂
1
∂
3Ψþ 2g að Þ

23 ∂
2
∂
3Ψ ¼ m0c0

ℏ

� �2Ψ,

(18)

so that written without the expanded terms, the curved spacetime Klein-Gordon
equation would be:

g að Þ
μν ∂

μ
∂
νΨ ¼ m0c0

ℏ

� �2
Ψ: (19)

These three configurations [representing three configurations of spacetimes that
we have called the (1) Quadratic Spacetime, (2) Parabolic Spacetime and (3)
Hyperbolic Space, respectively] of the metric tensor are:
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μν

h i
¼

þA0A0 0 0 0

0 �A1A1 0 0

0 0 �A2A2 0

0 0 0 �A3A3

0
BBB@

1
CCCAI4, (20)

g 2ð Þ
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h i
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1
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I4, (21)
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h i
¼
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�A3A0 �A3A1 þA3A2 �A3A3

0
BBBB@

1
CCCCA
I4: (22)

In a general, written in a condensed form, these three metric tensors g 1ð Þ
μν , g

2ð Þ
μν

and g 3ð Þ
μν , are such that:

g að Þ
μν

h i
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þA0A0 λaA0A1 λaA0A2 λaA0A3
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λaA3A0 λaA3A1 λaA3A2 �A3A3

0
BBBB@

1
CCCCA
I4, (23)
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where—further: in a much more compact form, this metric can be written as:

g að Þ
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2
A að Þ

μ A að Þ
ν þA að Þ

ν A að Þ
μ

� �
¼ 1

2
A að Þ

μ ;A að Þ
ν

n o
∈R, (24)
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A að Þ
μ ¼ γ að Þ

μ Aμ, (25)
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I 2 0

0 �I 2

0
@

1
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2∣λa∣

p
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p
σk �2λaI 2

0
@

1
A:

(26)

The λa’s in Eq. (26) are defined such that when:

a ¼
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8>><
>>:

(27)

The index “a” is not an active index as are the Greek indices. This index labels a
particular curvature of spacetime, i.e., whether spacetime is flat,3 positive or nega-
tively curved as defined by the resulting metric g að Þ

μν which is given in Eq. (23). So, in
the end, the resulting and desired curved spacetime Dirac equation is:

iℏA að Þ
μ ∂

μψ ¼ m0c0ψ , (28)

where it is understood thatAμ is a real valued gravitational four vector function.
In the subsequent section, we will show that the above equation with a complex
valued gravitational four vector function violates C-symmetry. A violation of C-
symmetry is all one needs to explain the whereabouts of the missing antimatter.

Multiplication by iℏA að Þ
ν ∂

ν
� �

from the left on the left handside of Eq. (28) and on

the right by m0c0 and this is on the understanding that these operators are identical
—i.e., iℏA að Þ

ν ∂
ν � m0c0I4: one will lead to the curved spacetime Klein-Gordon

equation provided:

A að Þ
ν ∂

νA að Þ
μ ¼ 0: (29)

Therefore, the above equation enters into this theory as a gauge condition to be
met by the real-valued gravitational four-vector potential A að Þ

μ .
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By flat, it here is not meant that the spacetime is Minkowski flat, but that the metric has no off diagonal

terms. On the same footing, by positively curved spacetime, it meant that metric has positive off diagonal

terms and likewise, a negatively curved spacetime, it meant that metric has negative off diagonal terms.
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7.2 Complex valued gravitational four vector potential

We shall now assume that the gravitational four vector field is complex valued

and we shall denote it as: ~A
að Þ
ν and ~Aν. In this event where we have a complex

valued gravitational four vector field, the metric will have to be defined as:

g að Þ
μν ¼ 1

2
~A

að Þ†
μ

~A
að Þ
ν þ ~A

að Þ†
ν

~A
að Þ
μ

� �
¼ 1

2
~A

að Þ†
μ ; ~A

að Þ
ν

n o
, (30)

where—as before:

~A
að Þ
μ ¼ ~γ að Þ

μ Aμ, (31)

and the new 4� 4 ~γ-matrices are such that:

~γ að Þ
0 ¼

0 I 2

�I 2 0

 !
, ~γ að Þ

k ¼ 1
2

iλa∣λa∣
ffiffiffiffiffiffiffi
2∣λa∣

p
σk 2λaI 2

�2λaI 2 iλa∣λa∣
ffiffiffiffiffiffi
2∣a∣

p
σk

 !
: (32)

Written in full as is the case in Eq. (23), the metric g að Þ
μν for a complex valued

gravitational four vector potential Aμ is such that:

g að Þ
μν

h i
¼

þA†
0A0 λaA†

0A1 λaA†
0A2 λaA†

0A3

λaA†
1A0 �A†

1A1 λaA†
1A2 λaA†

1A3

λaA†
2A0 λaA†

2A1 �A†
2A2 λaA†

2A3

λaA†
3A0 λaA†

3A1 λaA†
3A2 �A†

3A3

0
BBBBB@

1
CCCCCA
I4: (33)

With the ~γ-matrices defined; in-order for g að Þ
μν ∈R, the gravitational four vector

potential will have to be defined in the de Broglie-Bohm [62–64] polar form as follows:

Aμ ¼ ϕμ exp
iS
ℏ

� �
, (34)

where: ϕμ ¼ ϕμ r; tð Þ∈R, is a differentiable, uniform continuous, and integrable
four-vector-valued function; S ¼ S r; tð Þ∈R, is a zero rank scalar that is also a
differential, uniform continuous and integrable function. With Aμ defined as it
defined above, it follows that:

~A
∗
μ
~Aν ¼ ~A

∗
ν
~Aμ ¼ ϕμϕν ∈R, (35)

hence:

g að Þ
μν ¼ 1

2
~A

að Þ†
μ ; ~A

að Þ
ν

n o
¼ 1

2
~γ að Þ†
μ ;~γ að Þ

ν

n o
~A

∗
μ
~Aν ¼

1
2

~γ að Þ†
μ ;~γ að Þ

ν

n o
ϕμϕν ∈R: (36)

So, in the end, the resulting and desired curved spacetime Dirac equation is:

iℏ ~A
að Þ
μ ∂

μψ ¼ m0c0ψ , (37)

where it is understood that ~Aμ is to be a complex valued gravitational four
vector function. In the subsequent section, we will show that the above equation
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with a complex valued gravitational four vector function violates C-symmetry. A
violation of C-symmetry is all one needs to explain the whereabouts of the missing

antimatter. Multiplication by iℏA að Þ
ν ∂

ν
� �†

from the left on the left handside of

Eq. (37) and on the right by m0c0ð Þ† and this is on the understanding that these

operators are identical—i.e., iℏA að Þ
ν ∂

ν
� �†

� m0c0ð Þ†I4: one will be led to the curved

spacetime Klein-Gordon equation provided:

~A
að Þ†
ν ∂

ν ~A
að Þ
μ ¼ 0: (38)

Therefore—as before, i.e., as in Eq. (29), the above Eq. (38) enters into this

theory as a gauge condition to be met by the gravitational four vector potential ~A
að Þ
μ .

8. Symmetries of the curved spacetime Dirac equation

We will demonstrate that the complex valued gravitational four vector potential
curved spacetime Dirac Eq. (37) violates C-symmetry. To that end, we shall start off
in the usual manner by placing the curved spacetime Dirac particle ψ inside an
external magnetic field whose electromagnetic four vector potential is Aμ

ex. So
doing, Eq. (37) will transform to:

iℏ ~A
að Þ
μ ∂

μ þ ieAμ
ex

� �
ψ ¼ m0c0ψ : (39)

Now, we will have to switch the external magnetic field by reversing the elec-
tromagnetic four vector potential is Aμ

ex, i.e., A
μ
ex ↦ � Aμ

ex. So doing, Eq. (39) will
transform to:

iℏ ~A
að Þ
μ ∂

μ � ieAμ
ex

� �
ψ ¼ m0c0ψ : (40)

Now, if Eq. (37) is symmetric under electrical charge conjugation, there must
exist a set of permissible mathematical operations that when applied to Eq. (40),
they will lead us back to Eq. (39). The first such permissible mathematical opera-
tions is to apply the complex-operation on both-sides of Eq. (39): this complex
operation will restore the sign in the coefficient of Aμ

ex, i.e.,

�iℏ ~A
∗
μ ~γ

að Þ ∗
μ ∂

μ þ ieAμ
ex

� �
ψ ∗ ¼ m0c0ψ ∗ (41)

Now, in-order to revert back to Eq. (39), we need to find a set of permissible
mathematical operations that will remove the complex operation on the terms: ~A

∗
μ

and ~γ að Þ ∗
μ . We can remove the complex-operation on ~γ að Þ ∗

μ because of the following
Algebra:

γ0γ2~γ
að Þ ∗
μ ¼ �~γ að Þ

μ γ0γ2: (42)

The removal of the complex-operation on ~γ að Þ ∗
μ is achieved by multiplying on

both-sides of Eq. (41) by γ0γ2, i.e.,

�iℏ ~A
∗
μ γ0γ2~γ

að Þ ∗
μ ∂

μ þ ieAμ
ex

� �
ψ ∗ ¼ m0c0γ0γ2ψ

∗ , (43)
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ν and ~Aν. In this event where we have a complex

valued gravitational four vector field, the metric will have to be defined as:
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where—as before:
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p
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Written in full as is the case in Eq. (23), the metric g að Þ
μν for a complex valued

gravitational four vector potential Aμ is such that:
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With the ~γ-matrices defined; in-order for g að Þ
μν ∈R, the gravitational four vector

potential will have to be defined in the de Broglie-Bohm [62–64] polar form as follows:

Aμ ¼ ϕμ exp
iS
ℏ

� �
, (34)

where: ϕμ ¼ ϕμ r; tð Þ∈R, is a differentiable, uniform continuous, and integrable
four-vector-valued function; S ¼ S r; tð Þ∈R, is a zero rank scalar that is also a
differential, uniform continuous and integrable function. With Aμ defined as it
defined above, it follows that:

~A
∗
μ
~Aν ¼ ~A

∗
ν
~Aμ ¼ ϕμϕν ∈R, (35)

hence:
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μν ¼ 1
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~A

að Þ†
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að Þ
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¼ 1
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~γ að Þ†
μ ;~γ að Þ

ν

n o
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∗
μ
~Aν ¼

1
2

~γ að Þ†
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ν

n o
ϕμϕν ∈R: (36)

So, in the end, the resulting and desired curved spacetime Dirac equation is:

iℏ ~A
að Þ
μ ∂

μψ ¼ m0c0ψ , (37)

where it is understood that ~Aμ is to be a complex valued gravitational four
vector function. In the subsequent section, we will show that the above equation

94

New Ideas Concerning Black Holes and the Universe

with a complex valued gravitational four vector function violates C-symmetry. A
violation of C-symmetry is all one needs to explain the whereabouts of the missing

antimatter. Multiplication by iℏA að Þ
ν ∂

ν
� �†

from the left on the left handside of

Eq. (37) and on the right by m0c0ð Þ† and this is on the understanding that these

operators are identical—i.e., iℏA að Þ
ν ∂

ν
� �†

� m0c0ð Þ†I4: one will be led to the curved

spacetime Klein-Gordon equation provided:
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að Þ†
ν ∂

ν ~A
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μ ¼ 0: (38)

Therefore—as before, i.e., as in Eq. (29), the above Eq. (38) enters into this

theory as a gauge condition to be met by the gravitational four vector potential ~A
að Þ
μ .

8. Symmetries of the curved spacetime Dirac equation

We will demonstrate that the complex valued gravitational four vector potential
curved spacetime Dirac Eq. (37) violates C-symmetry. To that end, we shall start off
in the usual manner by placing the curved spacetime Dirac particle ψ inside an
external magnetic field whose electromagnetic four vector potential is Aμ

ex. So
doing, Eq. (37) will transform to:
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ψ ¼ m0c0ψ : (39)

Now, we will have to switch the external magnetic field by reversing the elec-
tromagnetic four vector potential is Aμ

ex, i.e., A
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ex. So doing, Eq. (39) will
transform to:
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μ � ieAμ
ex
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ψ ¼ m0c0ψ : (40)

Now, if Eq. (37) is symmetric under electrical charge conjugation, there must
exist a set of permissible mathematical operations that when applied to Eq. (40),
they will lead us back to Eq. (39). The first such permissible mathematical opera-
tions is to apply the complex-operation on both-sides of Eq. (39): this complex
operation will restore the sign in the coefficient of Aμ

ex, i.e.,

�iℏ ~A
∗
μ ~γ

að Þ ∗
μ ∂

μ þ ieAμ
ex

� �
ψ ∗ ¼ m0c0ψ ∗ (41)

Now, in-order to revert back to Eq. (39), we need to find a set of permissible
mathematical operations that will remove the complex operation on the terms: ~A

∗
μ

and ~γ að Þ ∗
μ . We can remove the complex-operation on ~γ að Þ ∗

μ because of the following
Algebra:

γ0γ2~γ
að Þ ∗
μ ¼ �~γ að Þ

μ γ0γ2: (42)

The removal of the complex-operation on ~γ að Þ ∗
μ is achieved by multiplying on

both-sides of Eq. (41) by γ0γ2, i.e.,
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μ γ0γ2~γ
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μ þ ieAμ
ex

� �
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and using the fact Eq. (42), it follows that Eq. (43) will reduce to:

iℏ ~A
∗
μ ~γ

að Þ
μ ∂

μ þ ieAμ
ex

� �
γ0γ2ψ

∗ð Þ ¼ m0c0 γ0γ2ψ
∗ð Þ: (44)

Now, Eq. (44) can be re-written as:

iℏ ~A
∗
μ ~γ

að Þ
μ ∂

μ þ ieAμ
ex

� �
ψ c ¼ m0c0ψ c, (45)

where: ψ c ¼ γ0γ2ψ
∗ , is the antiparticle. Now, in-order for the above equation to

revert back to the original Eq. (39), there is need for the gravitational four vector,
~Aμ, to be real, i.e., ~A

∗
μ ¼ ~Aμ. If this condition ~A

∗
μ ¼ ~Aμ

� �
cannot be met because

Aμ is a complex valued function, then, the curved spacetime Dirac equation is not
symmetric under charge conjugation, hence it will violate C-symmetry.

9. General discussion

Tremendous effort and thrust has been put on experimental and observational
attempts whose aim is to procure the necessary evidence to support Sakholov’s [8]
hypothesis of the sine-quo-non conditions needed to be met in-order to explain the
clearly obvious matter dominance observed in the Universe. Little or no effort has
been put—let alone suggested, that, perhaps, the fault (solution) may lay in the
very Physical Law that we have used to probe and understand the Universe and this
law is the all-symmetric Dirac equation. It is quite understandable why this may be
the case—the Dirac equation is so successful so much that, it is easy to be “blinded”
by this success to an extent that one cannot—with suspicion—point the “little prick-
ling finger” at it. In the present chapter, we have had to gather the necessary
courage and temerity to do just that.

From what has been presented above, it is clear that from a theoretical stand-
point, all one would need in-order to explain the missing antimatter is to proceed
and henceforth make the hypothesis that the gravitational four vector, Aμ, is a
complex field. This would mean that during the moment of creation, either matter
is produced, with no antimatter, or, antimatter is produced, with no matter! Thus,
in the framework of the foregoing curved spacetime version of the Dirac equation,
the Universe is pristinely asymmetric in its matter-antimatter constitution right
from the moment of creation. There would be no need to have the Sakholov
conditions, or, any other exogenous mechanism or condition in-order for one to
explain the matter-antimatter asymmetry. This alternative way at looking at this
long standing problem appears to be the simplest way out of this ponderous and
vexing conundrum of the missing antimatter. To accept this solution requires one to
accept the proposed curved spacetime Dirac equations.

Sakholov’s [8] hypothesis starts off by accepting the Dirac Eq. (3) in its bare
form, the meaning of which is that it assumes a perfectly symmetric Universe which
then proceeds to become asymmetric once the Sakholov’s [8] conditions are met.
Sakholov’s [8] conditions require C, CP, B-number violating processes and the
existence of nonthermodynamic equilibrium. The point here is that—what is
needed is that a section of the symmetric matter-antimatter soup meets Sakholov’s
[8] criterion of having these processes and once this is the case, the Universe can
then proceed from a state with: B ¼ 0, to a state with: B 6¼ 0. In a perfectly matter-
antimatter symmetric Universe, these processes may require certain physical con-
ditions of energy and temperature in-order to trigger them, thus leading to a
matter-antimatter asymmetric Universe.
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However, in the suggestion being made here-in, we envisage a Universe where
matter is created via the C-symmetry violating curved spacetime Dirac Eq. (37)
where the Universe is created containing only matter and no antimatter and this
will come about because of the phase factor in the gravitational four vector field:
A að Þ

μ ¼ ϕμeiS=ℏ; that is to say, for so long as at the moment of creation, this phase
factor is not equal to zero S 6¼ 0, the Universe will be completely asymmetric in its
matter-antimatter constitution. Even if the Universe where evolve to from a state
with: S 6¼ 0, to a state with: S ¼ 0, at a latter time in its evolution, the Universe
will—throughout its entire evolution—still be asymmetric in its matter-antimatter
constitution. In the end, no experiments will be need to find these C, CP, B-number
violating processes. All we would need is to test the curved spacetime Dirac
equation where our matter-antimatter asymmetry is being championed.

In-closing: insofar as accepting the proposed curved spacetime Dirac Eq. (37), it
is important to note that the way these equations have been “derived” is exactly the
same-way Dirac arrived at his equation. All we have done in this proposed curved
spacetime Dirac Eq. (37) is to note that the metric tensor of spacetime gμν, can be
decomposed in such a manner that at its most fundamental and simplest level, it can
be represented by a four vector Aμ. This gravitational four vector potential, Aμ,
will have to represent the gravitational field. On this, one may object because the
GTR—which is not only the current best model of gravitation, but the most
successful model of gravitation; describes gravity as tensor field that is represented
by not four, but 10 potentials.
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and using the fact Eq. (42), it follows that Eq. (43) will reduce to:

iℏ ~A
∗
μ ~γ

að Þ
μ ∂

μ þ ieAμ
ex

� �
γ0γ2ψ

∗ð Þ ¼ m0c0 γ0γ2ψ
∗ð Þ: (44)

Now, Eq. (44) can be re-written as:

iℏ ~A
∗
μ ~γ

að Þ
μ ∂

μ þ ieAμ
ex

� �
ψ c ¼ m0c0ψ c, (45)

where: ψ c ¼ γ0γ2ψ
∗ , is the antiparticle. Now, in-order for the above equation to

revert back to the original Eq. (39), there is need for the gravitational four vector,
~Aμ, to be real, i.e., ~A

∗
μ ¼ ~Aμ. If this condition ~A

∗
μ ¼ ~Aμ

� �
cannot be met because

Aμ is a complex valued function, then, the curved spacetime Dirac equation is not
symmetric under charge conjugation, hence it will violate C-symmetry.

9. General discussion

Tremendous effort and thrust has been put on experimental and observational
attempts whose aim is to procure the necessary evidence to support Sakholov’s [8]
hypothesis of the sine-quo-non conditions needed to be met in-order to explain the
clearly obvious matter dominance observed in the Universe. Little or no effort has
been put—let alone suggested, that, perhaps, the fault (solution) may lay in the
very Physical Law that we have used to probe and understand the Universe and this
law is the all-symmetric Dirac equation. It is quite understandable why this may be
the case—the Dirac equation is so successful so much that, it is easy to be “blinded”
by this success to an extent that one cannot—with suspicion—point the “little prick-
ling finger” at it. In the present chapter, we have had to gather the necessary
courage and temerity to do just that.

From what has been presented above, it is clear that from a theoretical stand-
point, all one would need in-order to explain the missing antimatter is to proceed
and henceforth make the hypothesis that the gravitational four vector, Aμ, is a
complex field. This would mean that during the moment of creation, either matter
is produced, with no antimatter, or, antimatter is produced, with no matter! Thus,
in the framework of the foregoing curved spacetime version of the Dirac equation,
the Universe is pristinely asymmetric in its matter-antimatter constitution right
from the moment of creation. There would be no need to have the Sakholov
conditions, or, any other exogenous mechanism or condition in-order for one to
explain the matter-antimatter asymmetry. This alternative way at looking at this
long standing problem appears to be the simplest way out of this ponderous and
vexing conundrum of the missing antimatter. To accept this solution requires one to
accept the proposed curved spacetime Dirac equations.

Sakholov’s [8] hypothesis starts off by accepting the Dirac Eq. (3) in its bare
form, the meaning of which is that it assumes a perfectly symmetric Universe which
then proceeds to become asymmetric once the Sakholov’s [8] conditions are met.
Sakholov’s [8] conditions require C, CP, B-number violating processes and the
existence of nonthermodynamic equilibrium. The point here is that—what is
needed is that a section of the symmetric matter-antimatter soup meets Sakholov’s
[8] criterion of having these processes and once this is the case, the Universe can
then proceed from a state with: B ¼ 0, to a state with: B 6¼ 0. In a perfectly matter-
antimatter symmetric Universe, these processes may require certain physical con-
ditions of energy and temperature in-order to trigger them, thus leading to a
matter-antimatter asymmetric Universe.
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However, in the suggestion being made here-in, we envisage a Universe where
matter is created via the C-symmetry violating curved spacetime Dirac Eq. (37)
where the Universe is created containing only matter and no antimatter and this
will come about because of the phase factor in the gravitational four vector field:
A að Þ

μ ¼ ϕμeiS=ℏ; that is to say, for so long as at the moment of creation, this phase
factor is not equal to zero S 6¼ 0, the Universe will be completely asymmetric in its
matter-antimatter constitution. Even if the Universe where evolve to from a state
with: S 6¼ 0, to a state with: S ¼ 0, at a latter time in its evolution, the Universe
will—throughout its entire evolution—still be asymmetric in its matter-antimatter
constitution. In the end, no experiments will be need to find these C, CP, B-number
violating processes. All we would need is to test the curved spacetime Dirac
equation where our matter-antimatter asymmetry is being championed.

In-closing: insofar as accepting the proposed curved spacetime Dirac Eq. (37), it
is important to note that the way these equations have been “derived” is exactly the
same-way Dirac arrived at his equation. All we have done in this proposed curved
spacetime Dirac Eq. (37) is to note that the metric tensor of spacetime gμν, can be
decomposed in such a manner that at its most fundamental and simplest level, it can
be represented by a four vector Aμ. This gravitational four vector potential, Aμ,
will have to represent the gravitational field. On this, one may object because the
GTR—which is not only the current best model of gravitation, but the most
successful model of gravitation; describes gravity as tensor field that is represented
by not four, but 10 potentials.
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