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Preface

This volume is a collection of chapters dedicated to the investigation of manifolds. Research
in this area, in particular differentiable manifolds, which often have physical applications,
forms an integral part of mathematics research. In addition to the significant interest mani‐
folds hold for pure mathematicians, manifolds also have very important applications to
many areas of modern applied mathematics and the physical sciences. As the book will
show, there are numerous applications to such diverse areas as partial differential equa‐
tions, dynamical systems, and even constructing computer images. Manifolds II: Theory and
Applications is basically divided into two groups. The first part is broken down into a group
of three chapters underlying theoretical aspects of manifolds and a group of three chapters
directed toward applications of manifolds to applied areas of science.

The first group presents chapters of a theoretical nature on the ideas behind manifold regu‐
larization and conformal anti-invariant submersions whose total manifolds are locally prod‐
uct Riemannian. There is also a chapter on the generalized Weierstrass system for inducing
mean curvature surfaces in Euclidean three-space. This area has seen a lot of activity recent‐
ly and the chapter is written with both mathematicians and physicists in mind.

The last three chapters form a collection of chapters that touch on manifolds in a very ap‐
plied manner, such as manifold-based robot motion generation.

The book has been put together by an international group of invited authors. It is a pleasure
to thank them for their hard work and significant contributions. I gratefully acknowledge
the assistance provided by Mr. Nino Popović, who was the author service manager through‐
out the publishing process, as well as the IntechOpen for the opportunity to edit this volume
that examines the subject of manifolds.

Professor Paul Bracken
Department of Mathematics

University of Texas, USA
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The Generalized Weierstrass System in Three-
Dimensional Euclidean Space

Paul Bracken
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Provisional chapter

The Generalized Weierstrass System in
Three-Dimensional Euclidean Space

Paul Bracken

Additional information is available at the end of the chapter

Abstract

In this chapter, some recent advances in the area of generalizedWeierstrass representations
will be given. This is an approach to the theory of surfaces in Euclidean three space.
Weierstrass representations permit the explicit construction of surfaces in the designated
space. The discussion proceeds in a novel and introductorymanner. The inducing formulas
for the coordinates of a surface are derived and important conservation laws are formu-
lated. These lead to the inducing mechanism of a surface in terms of solutions to a system
of two-dimensional Dirac equations. A set of fundamental forms as well as expressions for
the mean and Gaussian curvatures are derived. The Cartan moving frame picture is also
formulated to put everything in a broader perspective. A connection with the nonlinear
sigmamodel is presented, which has important applications in physics. Some relationships
are established between integrable systems and geometry by way of conclusion.

Keywords: metric, tensor, manifold, Weierstrass representation, curvature, evolution
equation
Mathematics Subject Classification: 35Q51,53A10

1. Introduction

The theory of immersions and deformations of surfaces has been an important area of study as
far as classical differential geometry is concerned. An inducing mechanism for describing
minimal surfaces imbedded in three-dimensional Euclidean space was first put forward by
Enneper and Weierstrass in the nineteenth century [1]. Their basic ideas have been extended
and generalized by Konopelchenko and colleagues [2–4]. The connection between certain
classes of constant mean curvature surfaces and the trajectories of an infinite-dimensional
Hamiltonian system was put forward first by Konopelchenko and Taimanov [2], and has

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.
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distribution, and reproduction in any medium, provided the original work is properly cited.
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Abstract 

In this chapter, some recent advances in the area of generalized Weierstrass representations 
will be given. This is an approach to the theory of surfaces in Euclidean three space. 
Weierstrass representations permit the explicit construction of surfaces in the designated 
space. The discussion proceeds in a novel and introductory manner. The inducing formulas 
for the coordinates of a surface are derived and important conservation laws are formu-
lated. These lead to the inducing mechanism of a surface in terms of solutions to a system 
of two-dimensional Dirac equations. A set of fundamental forms as well as expressions for 
the mean and Gaussian curvatures are derived. The Cartan moving frame picture is also 
formulated to put everything in a broader perspective. A connection with the nonlinear 
sigma model is presented, which has important applications in physics. Some relationships 
are established between integrable systems and geometry by way of conclusion. 

Keywords: metric, tensor, manifold, Weierstrass representation, curvature, evolution 
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Mathematics Subject Classification: 35Q51,53A10 
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The theory of immersions and deformations of surfaces has been an important area of study as 
far as classical differential geometry is concerned. An inducing mechanism for describing 
minimal surfaces imbedded in three-dimensional Euclidean space was first put forward by 
Enneper and Weierstrass in the nineteenth century [1]. Their basic ideas have been extended 
and generalized by Konopelchenko and colleagues [2–4]. The connection between certain 
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proved to be very useful in investigating types of questions related to this and other types of 
spaces and in higher dimensions [5, 6]. 

Surfaces and their dynamics play a very crucial and important role in a great number of 
phenomena which arise in the physical sciences in general. A longer introduction and more 
examples can be found in [7, 8]. They appear in the study of surface waves, shock waves, 
deformations of membranes, as well as in many problems in hydrodynamics connected with 
the motion of boundaries between regions of differing densities and viscosities. At the present 
time, they are appearing in string theory models [9–11] and in the study of integrable systems 
in general [12, 13]. A special case is that of surfaces which have zero mean curvature. These 
surfaces are usually referred to as minimal surfaces. The work of Weierstrass and Enneper 
originally concerned itself with the construction of minimal surfaces in three-dimensional 
Euclidean space [14, 15]. 

It is the intention here to present an introduction to the work of Konopelchenko and referred to 
presently as the generalized Weierstrass representation. The work presents both mathematical 
and physical developments in the area which should be relevant to both physicists and 
mathematicians. The development starts by studying a coupled system of two-dimensional 
Dirac equations in terms of two complex functions that involves a mass term that depends on 
two coordinates of the space. This equation can then be decomposed into a system of two 
simpler equations and their respective complex conjugates. By looking at such things as 
conservation laws, inducing formulas which specify the coordinates of a surface in Euclidean 
three space can be deduced, as well as the first and second fundamental forms pertaining to 
the surface. A remarkable result of this development is that the mass which appears in the 
Dirac system becomes related to the mean curvature of the surface. One might say this 
indicates that mass is a consequence of geometry in this type of model. To fit these develop-
ments in the larger picture of modern differential geometry, the Cartan moving frame for the 
system is formulated out of which emerges another remarkable result. Namely, the two-
dimensional Dirac equation is a way of writing an affine connection on the surface. Finally, by 
investigating the Gauss map, it is shown that there is a mathematical way of proceeding from 
the Dirac system and the nonlinear sigma model in two dimensions [16, 17]. The whole 
construction leads to a very deep link between nonlinear evolution equations and geometry 
as a whole [18, 19]. The paper finishes with some interesting examples and outlook for further 
work. 

2. Two-dimensional Dirac equation and construction of surfaces 

The process of inducing surfaces in three-dimensional space can be generalized by establishing 
a system of Dirac equations in terms of a mass parameter and two complex valued functions 
called ψ1 and ψ2. In Euclidean space in two dimensions, the Dirac equation can be written in ˜ °  
terms of the set of Pauli matrices σμ as follows: 

˛ ˝ 
Ψ ¼ i σ1∂x þ σ2∂y Ψ þ mΨ ¼ 0: (1) 



� � � � 

� � 

� � � � 

� �� � �� �� �� 

�� �� �� �� 
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In (1), the mass term m has been generalized to be a real function of x and y, which are the 
Cartesian coordinates of the space. Let us introduce two complex operators defined to be 

1 1 
∂ ¼ ∂x � i∂y , ∂ ¼ ∂x þ i∂y : (2) 

2 2 

In terms of a complex variable z ¼ x þ iy, we also define ∂ ¼ ∂=∂z and ∂ ¼ ∂=∂z: A, and spinor 
wavefunction Ψ is specified in terms of two components ψ1 and ψ2 as 

ψ1 : (3) Ψ ¼ 
ψ2 

Using (2), the Dirac equation can be developed in terms of the two components of Ψ and their 
complex conjugates to give the following coupled first-order system of equations: 

i i 
∂ψ1 ¼ mψ2, ∂ψ1 ¼ �  m ψ2, 2 2 (4) 

i i 
∂ψ2 ¼ mψ1, ∂ ψ2 ¼ �  mψ1: 2 2 

The Dirac equation in the form (4) leads to a variety of differential constraints. The first of 
which is given by 

i i 
ψ1∂ψ1 þ ψ1∂ψ2 ¼ ψ1 � m ψ2 þ ψ2 m ψ1 ¼ 0, 

2 2 

as well as its complex conjugate equation. There is also the expression for a new real variable p 

þ ψ2 

i i 2 2 ψ1∂ψ2 � ψ2∂ψ1 ¼ ψ1 ¼ m mp, 
2 2 

and its complex conjugate. This also serves to define the real function P 

p ¼ ψ1 þ ψ2 
2 2 

: (5) 

A system of conservation laws can also be formulated 

ψ1∂ψ1 � ψ2∂ ψ2 ¼ 0, ψ1∂ψ2 þ ψ1∂ ψ2 ¼ 0, (6) 

as well as their complex conjugate equations. The complex quantity S is defined as follows: 

i i 
ψ2∂ψ1 � ψ1∂ψ2 ¼ pS, ψ1∂ψ2 � ψ2∂ψ1 ¼ pS: (7) 

2 2 

Let Φ be the two-by-two matrix spinor given by
 ! 

ψ1 �ψ2 Φ ¼ , (8) 
ψ2 ψ1 

http://dx.doi.org/10.5772/intechopen.82631
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defining the real variable u so that p in (5) is given by p ¼ eu , and it follows that 

      2   2 p ¼ eu ¼ det Φ ¼ ψ1 þ ψ2 : (9) 

Clearly, we have Φ Φ† ¼ pI and there follows another differential constraint: 

p∂u ¼ ψ1∂ψ1 þ ψ2∂ψ2: (10) 

Differentiating (8) exteriorly, we obtain that 

 ! 
∂ψ1 -∂ψ2 dΦ ¼ dz þ 
∂ψ2 ∂ψ1

∂ψ1 

∂ψ2 

! 
-∂ ψ2 d z: 
∂ ψ1 

(11) 

Consequently, we find that 

0 1 0 1 
∂ψ1 -∂ψ2 1 ψ1 ψ2 1 -1 ¼ @ A @ dΦ � Φ Adz þ 

p p ∂ψ2 ∂ψ1 -ψ2 ψ1 
"  !  ! # 

2∂u iS 0 im 1 ¼ dz þ d z : 
2 im 0 iS 2∂u

0 
∂ψ1 @ 
∂ψ2 

1 0 
-∂ ψ2 ψ1 A @ 
∂ ψ1 -ψ2 

1 
ψ2 Ad z 
ψ1 (12) 

Taking the derivative ∂ of pS in (7) and substituting system (4), we obtain that 

    
∂ðpSÞ ¼ -m ψ1∂ψ1 þ ψ2∂ mψ2 -mψ2∂ψ2 þ ψ1∂ mψ1

¼ -m ψ1∂ψ1 -mψ2∂ψ2 þ p∂m: 

It follows that 

  -1p-1∂ðpSÞ ¼ -mp-1∂p þ ∂m ¼ p∂ p m : 

Let us summarize this as 

  -1p-1∂ðpSÞ ¼ p∂ p m : (13) 

Proceeding in a similar fashion, we calculate the following two derivatives: 

� � � �   1         2   2   2 ∂ p-1ψ1 ¼ - ψ1 ∂ψ1 - ψ1ψ2∂ψ2 þ ψ1 þ ψ2 ∂ψ1 p2 

    ψ2 i ¼ -ψ1∂ψ2 þ ψ2∂ψ1 ¼ S p-1ψ2 , 
p2 2 

(14) 



� �� �� �� � �� �� �� � � 

� � � � 

� � � � � � � � 

� � 

� � � � 

� � � � 

� �� � �� �� �� � � 

� � � � 

� � � � 

�� �� �� �� � � 
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and as well, we have 

∂ψ2 þ ψ1 ∂ψ2 þ ψ2 

1 2 2 2 ∂ p �1ψ2 �ψ1ψ2∂ψ1 � ψ2 ∂ψ2 ; ¼ 2p 
(15) 

i ψ1 �1ψ1 �ψ2∂ ψ1 þ ψ1∂ψ2 S p  ¼ ¼ : 
2 p 

It should be pointed out that the systems (14) and (15) are summarized here 

∂ p �1ψ1 ¼ 
i 
2 
S p  �1ψ2 , ∂ p �1ψ2 ¼ 

i 
2 
S p  �1ψ1 : (16) 

By comparing with (4), it look very much like a Dirac system in their own right if S is thought 
of as a mass variable. Another quantity, a current, was found in [20] and has the form 

J ¼ pS: 

It is possible to construct a vector representation of Φ as well. A matrix such as Φ represents 
a rotation matrix multiplied by a scaling in R3 as follows V ¼ viσi ! V 0 ¼ ΦVΦ† . So the matrix 
Φ can be represented by means of a multiple of an orthogona1 3 � 3 real matrix. The 
matrix elements can be found by using the inner product in V, namely hV1; V2i ¼ ð1=2Þ Tr 
½V1V2�, then 

Tr σiΦσjΦ† : 
2 
1 

ςj i ¼ (17) 

ςj i defines a 3 � 3 matrix which can be written down by using the usual representation of the 

Pauli matrices. In particular, the matrix formed out of the following combinations will be very 
useful: 

1 1 
ψ2 
1 � ψ 

2 
2; 

2 
2 � i ψ2

1 þ ψ ς1 � i ; 2ψ1ψ2 ςþ ¼ ς2 ffiffiffi ffiffiffi 
2 

ð  Þ ¼  p p , 
2 

1 1 
ψ 
2 2 
1 � ψ2

2; i ψ1 þ ψ2 ; 2ψ1ψ2 , (18) 
2 ς1 þ i ς� ¼ ς2 ffiffiffi ffiffiffi 

2 
ð  Þ ¼  p p 

2 

� ψ2 
2 2 ς3 ¼ �ψ1ψ2 � ψ1ψ2; i ψ1ψ2 � ψ1ψ2 ψ1 ; : 

In terms of matrices, ς and ς† are represented as: 

0 1 

CCCCCCCA 

, 

1 i 2 
ψ2 
1 þ ψ 

2 
2 ψ2 

1 � ψ 2ψ1ψ2 ffiffiffi � ffiffiffi p p 2 BBBBBBB@ 

2 2 

1 i (19) ς ¼ 2 2 
2ψ1ψ2 

� ψ2 

ψ ψ ffiffiffi ffiffiffi p 1 � ψ2 p 2 1 þ ψ2 
2 2 2 

�ψ1ψ2 � ψ1ψ2 i ψ1ψ2 � ψ1ψ2 
2 2 ψ1 

http://dx.doi.org/10.5772/intechopen.82631


8 Manifolds II - Theory and Applications 

0 1   1     
2 2 
1 - ψ 

2 
ψ2 
1 þ ψ ψ - ψ1ψ2 þ ψ1ψ2 pffiffiffi 

2 2 2 2 

1 

CCCCCCCCA 

ς† ¼ 

BBBBBBBB@ 

      i i 2 2 
2 ψ2 

1 þ ψ i ψ1ψ2 - ψ1ψ2 ψ ffiffiffi - ffiffiffi p p 1 - ψ2 
2 2 2 

l2 ψ1

l ll l2 l ll

 

- ψ2

pffiffiffi pffiffiffi 
2 2 ψ1ψ2 ψ1ψ2 

Given this explicit representation, it is now possible to evaluate 

 
p - -2 2dς  ς† ¼ p ∂ς  ς†dz þ ∂ς  ς†dz (20) : 

To obtain an expression for (20), both matrices (19) can be expressed in Maple. Apply the 

operator mapð Þ∂ to ς, right multiply by ς† then substitute system (4) of known derivatives to 
obtain the matrix 

pffiffiffi     0 1 
2 ψ2∂ψ2 þ ψ1∂ψ1 ψ1∂ψ2 - ψ2∂ψ1 p 0 2 p 

BBBBBBB@ 

CCCCCCCA 

i 2 0 0 - pffiffiffi mp 
2 (21) 

i 2 
pffiffiffi     
2 ψ2∂ψ1 - ψ1∂ψ2 p ψ2∂ψ2 þ ψ1∂ψ1 - pffiffiffi mp 

2 
p 

  
Similarly, applying map ∂ to ς then right multiplying by ς† yields 

0 

p 

1 

CCCCCCA 

i 2 0 0 - pffiffiffi mp  
2 BBBBBB@ 

pffiffiffi 
2 

  
ψ2∂ ψ1 - ψ1∂ψ2 

  
(22) 2 ψ1∂ψ1 þ ψ2∂ψ2 0 p -

  2 p 
i ffiffiffi p2S p 

i ffiffiffi mp  
2 

ψ1∂ ψ1 þ ψ2∂ψ2 p 
2 

By (20) and the differential constraints, the vector representation of the Maurer-Cartan form 
can be expressed as: 

1 0 
i 0 1 

i 2∂u 0 - pffiffiffi S BBBBBBBBB@ 

CCCCCCCCCA 

0 0 - pffiffiffi m 
2 

2 CCCCCCCA 

BBBBBBB@ 

i i p -2dςς† ¼ 0 2∂ u dz þ dz: (23) pffiffiffi S 0 0 m 
2 2 

i i i i ∂u - pffiffiffi S pffiffiffi m 
2 2 ∂ u - pffiffiffi m pffiffiffi S 

2 2 



  

� � 

� � � � 

� � � � 
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According to the properties of the inner product, we can write Ei ¼ ςjiσj ¼ Φ†σiΦ and calculate 

that 
h i � � 1 � � � � 1 � � � �† 

dςiςj ¼ dEi; Ej ¼ Tr d Φ†σiΦ Φ†σjΦ ¼ Tr dΦ†σiσjΦ þ dΦ†σiσjΦ : (24) 
2 2 

If a conserved current can be constructed whose components are divergence free, then a differ-
ential one-form exists with values in R3 that will induce a surface upon quadrature. Such a 
current will be given from the global symmetries of the Lagrangian by means of Noether’s 
theorem. Making the transformations ψ1 !�ψ2 and ψ2 ! ψ1 in system (4), it is seen to remain 
invariant. This can be thought of as a charge conjugation. The same solutions are obtained if we 
put Φ instead of Ψ in the Dirac equation (2). So Φ multiplied on the right by any constant 
nonsingular matrix is a solution of the equation if Φ is. This implies the full symmetry group is 
GLð2CÞ. The transformation above is a member of this group, so can be thought of as a continu-
ous transformation. In terms of matrix Φ, the Lagrangian of the Dirac equation can be written as 

1 � � � � � � 
L ¼ Tr Φ†Φ ¼ i ψ1∂ψ2 � iψ2∂ψ1 þ iψ2∂ψ1 � iψ1∂ ψ2 þm �ψ1 

�2 þ �ψ2 
�2 

: (25) 
2 

The currents that correspond to the generators of SUð Þ2 are found to be proportional to the 
components of ςþ and ς�; hence, the required conservation law is 

∂ς� þ ∂ςþ ¼ 0: (26) 

Alternatively, the Dirac equation and its Hermitian conjugate which are given by 

Φ† iσ1∂x þ iσ2∂y þm Φ ¼ 0 Φ† i ∂ xσ1 þ i ∂ yσ2 �m Φ ¼ 0, (27) 

may be added to obtain 

∂x Φ
†σ1Φ þ ∂y Φ

†σ2Φ ¼ 0: (28) 

Now to describe the surface, define the R3-valued differential form 

i i 
dr ¼ pffiffiffi ςþ dz þpffiffiffi ς�dz (29) 

2 2 

which is real since ς� ¼ ςþ. The differential form (29) is closed under substitution of conserva-
tion law (26) since 

d2 i i i � � 
r ¼ pffiffiffi ∂ςþ dz ∧ dz �pffiffiffi ∂ς�dz ∧ dz ¼ pffiffiffi ∂ςþ þ ∂ς� dz ∧ dz ¼ 0: (30) 

2 2 2 

By Poincare’s lemma, the form is exact since every loop in C can be collapsed to a point. 
Therefore, the desired expression for a surface will result when the form is integrated along a 

path Γ1 in the ðz; zÞ plane from a fixed point z0. The components are 

http://dx.doi.org/10.5772/intechopen.82631
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    i 2 i 2 
dx1 ¼ ψ1

2 - ψ dz - ψ1 - ψ2 dz, 2 2 2 2
    1 2 1 2 (31) dx2 ¼ ψ1

2 þ ψ dz þ ψ1 þ ψ2 dz, 2 2 2 2  
dx3 ¼ i ψ1ψ2dz - ψ1ψ2dz : 

Combining the first two equations in (31) and integrating from z0, the coordinates of a surface 

in R3 are obtained by integrating over any path Γ1 in the ðz; zÞ plane 
ð   0 x1 þ ix2 ¼ i ψ1

2dz0 þ ψ2
2dz 

Γ ð   
2 2 0 x1 - ix2 ¼ -i ψ2dz
0 þ ψ1dz , (32) 

Γ ð   0 x3 ¼ i ψ1ψ2dz
0 - ψ1ψ2dz : 

Γ 

In the end, we have set z0 to be zero, and it may be repeated; the integrals are independent of Γ 
due to the conservation laws. In (31) and (32), r is the point of the surface with coordinates 
ðx1; x2; x3Þ∈ R3 and ς3 is normal to the surface. 

3. Fundamental forms and Cartan moving frame 

The necessary information to write down the traditional data for a surface has been obtained. 
Since ς2i ¼ 0 and ςþ • ς- ¼ 0, the first fundamental form is given by 

I ¼ dr • dr ¼ p2dz ⊗ dz (33) 

or in a matrix representation,
  2p 0 1  

I ¼ : 
2 1 0  

The inverse of (33) is given by
  

2 0 1 
I-1 ¼ (34) 

p2 1 0 

It is therefore a conformal immersions with isothermal coordinates ζ1, ζ2. The second funda-
mental form of the surface can also be calculated and using ς3 • dr ¼ 0,

  p   
II ¼ -d p-1ς3 • dr ¼ -p-1dς3 • dr ¼ - Sdz ⊗ dz þ 2mdz ⊗ dz þ Sdz ⊗ dz (35) 

2 
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and in matrix form, 

p 
� 
S m 

� 

II ¼ �  : 
2 m S 

Collecting (34) and (35), we have 

0 1 2 � � 0 � �� � � � 
p S m BB p2 CC 1 S m 0 1  1 m S  

II � I�1 ¼ �  @ A ¼ �  ¼ �  : 
2 m S 2 p m S 1 0  p S m 0 

p2 

The usual definitions give the mean curvature H and the Gaussian curvature as well 

1 � � m 
H ¼ Tr II � I�1 ¼ �  , (36) 

2 p 

� � 2 � � 1 2 j jS 
K ¼ det II � I�1 ¼ m2 � j jS ¼ H2 � : (37) 

p2 p2 

Equation (36) relates the mean curvature H to the mass parameter in the Dirac equation. 
Konopelchenko obtains the expression 

K ¼ �4p�2∂∂u, (38) 

which is known as the Gauss-Riemann curvature. It has been shown however that it is 
equivalent to (37) in accord with Gauss’ Theorem Egregium. 

It is interesting to note that since the difference between the principal curvatures is given as 

2 ðΔκÞ ¼ 4 H2 � K , (39) 

2 it also holds that since H2 � K ¼ p�2j jS , 

2 
∣Δκ∣ ¼ ∣S∣: 

p 

Thus, the modulus of S is a measure of the local deformation from a spherical surface 
as m is a measure of the local deformation from the case of a minimal surface, so 

κ ¼ �p�1ðm � jSjÞ. 
A fixed referential frame in R3 has been implicitly used up to now. By varying the frame with 
some solution of Dirac system (4), a whole set of surfaces is obtained that may be deduced 
from each other by means of a rigid motion. Cartan developed a powerful method referred to 
as the moving frame method to avoid this awkward process. 

http://dx.doi.org/10.5772/intechopen.82631
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By introducing differential 1-forms also called Pfaffian forms, we define the system 

dr ¼ ωjej, dej ¼ ωi
jej, i, j ¼ þ, � , 3: (40) 

This is the first system of structure equations introduced by Cartan. The vectors ei satisfy 
orthonormality conditions 

2 2 2 2 eþ ¼ 0, eþ � e� ¼ p , e� � e3 ¼ 0, e3 ¼ p : (41) 

Differentiating relations (41) and using structure equations (40), the following relations among 
the differential forms are obtained 

˜ ° 
2 de ¼ 0, 2eþ � deþ ¼ 0, 2eþ ω

j 
þej ¼ 0, þ 

2eþ � ω�þe� ¼ 0 ω� ¼ 0: □ þ 

de2 ¼ 0, 2e� � de� ¼ 0, 2e� � 
˛ 
ω� 

j ej 
˝ ¼ 0, ˛ ˝ 

2e� ω�
þeþ ¼ 0, ωþ ¼ 0: □ 

deþ � e� þ eþ � de� ¼ 2pdp, 
ωþþeþ � e� þ ω��eþ � e� ¼ 2pdp, 

ω�� þ ωþþ ¼ 2∂u, □ 

deþ � e3 þ eþ � de3 ¼ 0, 
ω3 

j þ ω� ¼ 0: □ 3 

de� � e3 þ e�ω
j 
3ej ¼ 0, 

ω3 þ ωþ ¼ 0: □ � 3 

3e3 � de3 ¼ p2du ω3
3 ¼ du: □ 

This collection of results is summarized all together below 

ωþ ¼ ω� ¼ 0, � þ 

ω3 
� þ ωþ 

3 ¼ ω3
þ þ ω� 

3 ¼ 0, (42) 
ω�� þ ωþþ ¼ 2du, ω3

3 ¼ du: 

As eþ ¼ e� and e3 ¼ e3, it is found that 

ω3 
þ ¼ ω3 

�, ωþþ ¼ ω��: (43) 

Assuming structure equations (40) are integrable, differentiating and substituting dei where 
ever possible, compatibility equations are obtained which are referred to as the second system 
of structure equations, that is first we have 

dωjej � ωj ∧ dej ¼ 0, 

hence 

dωs ¼ ωj ∧ ωs 
j , 
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and next 

dωj
iej � ωj

i ∧ dej ¼ 0, 

hence 

dωj
i ¼ ωj

i ∧ ωs
j : 

Let us summarize these as the pair 

dωs ¼ ωj ∧ ωs
j , dωs

i ¼ ωj
i ∧ ωj

s: (44) 

The second equality is always true as long as the frames are given, and the first is the 
equivalent, expressed in the formalism of a moving frame, of the requirement that the form dr 
be exact. Writing dr as 

dr ¼ 
i i ffiffiffi p eþdz � ffiffiffi p e�d z ¼ ωjej: 
2 2

(45) 

Let us identify the forms 

ωþ ¼ 
i ffiffiffi p dz, 
2

i 
ω� ¼ �  ffiffiffi p d z, 

2
ω3 ¼ 0, ωþ ¼ ω�: (46) 

The equations for the remaining one-forms can be represented by writing the structure equa-
tion in the form 

de ¼ Ωe: (47) 

In (47), Ω is represented by the 3 � 3 matrix of forms 

0 1 
ωþ ω� ω3 
þ þ þ 

Ω ¼ @B ωþ ω� ω3 AC (48) 

ωþ ω� ω3 
3 3 3 

Since e � e† ¼ p2I, (47) can be right multiplied by e† to obtain 

Ω ¼ p�2 de � e†: (49) 

This implies that Ω can be identified with the Maurer-Cartan form given in (22). Introduce the 
vector of differential forms Θ as 

Θ ¼ ðωþ; ω�; 0Þ, dΘ ¼ 0: (50) 

In terms of Θ the compatibility equations take the form 

dΘ ¼ ⊖ ∧ Ω, dΩ ¼ Ω ∧ Ω: (51) 

http://dx.doi.org/10.5772/intechopen.82631
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It is clear from the Maurer-Cartan form that it can be decomposed in the following manner 

Ω ¼ M1dz þ M2d z, (52) 

where M1 and M2 are defined to be the matrices 
0 0 1 1 i i 0 0 2 ∂u 0 S  ffiffiffi  ffiffiffi m p p CCCCCCCA 

, M2 ¼ 

BBBBBBB@ 

CCCCCCCA 

BBBBBBB@ 

2 2 
i i 0 2∂u S 0 0 ffiffiffi : (53) M1 ffiffiffi p m p 
2 2 

i i S m S ∂ u ∂u ffiffiffi m ffiffiffi i  ffiffiffi ffiffiffi  p p p p 
2 2 2 2 

The first structure equation in (33) is then 

∂e ¼ M1e, ∂e ¼ M2e: (54) 

This corresponds to the Gauss-Weingarten equation and the second compatibility equation 

∂M1  ∂M2 þ ½M1; M2 ¼  0, (55) 

is also known as the Gauss-Codazzi-Mainardi equations. All of these have been seen here 
before in (37) and (45). It has been shown that many nonlinear partial differential equations 
can be expressed within this formalism. In a spinor representation, the corresponding repre-
sentation in the form of matrices can be obtained out of the Maurer-Cartan form 

    
2∂u iS 0 im  1 1 

Z1 ¼ Z2 ¼ : (56) 
2 im 0 

, 
2 iS 2∂u 

In terms of these matrices, the linear system is 

∂Φ ¼ Z1Φ, ∂Φ ¼ Z2Φ, 

∂Z1  ∂Z2 þ ½Z1; Z2 ¼  0: (57) 

The differential form Ω is a connection and actually an affine connection on R3. It is flat on the 
surface. This is the meaning of the second system of structure equations. This means that the 
two-dimensional Dirac equation can be regarded as a way of expressing an affine connection. 

Two make further progress, Ω can be used in the following way. As ω3 ¼ 0, from the compat-
ibility equation for dω3, we have 

ωþ ∧ ω3 
þ þ ω ∧ ω3

 ¼ 0: 

On account of Cartan’s lemma, both ω3 
þ and ω3

 are equal to a linear combination of ωþ and ω 

ω3 ¼ hþþωþ þ hþ ω , ω3 ¼ h þωþ þ h  ω , (58) þ  
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where h�þ ¼ hþ�, as can be seen by substituting ω3 
þ and ω3 

� into the constraint above. Since 

0 
i 

0 1 
i 

1 

CCCCCCCA 

dz: 

2∂u 0 S 0 0 p ffiffiffi ffiffiffi m p 

Ω ¼ 

BBBBBBB@ 

CCCCCCCA 

dz þ 

BBBBBBB@ 

2 2 
i i 

∂u 0 0 0 S (59) ffiffiffi ffiffiffi m p p 
2 2 

i i i i 
∂u ∂u S S ffiffiffi m ffiffiffi ffiffiffi ffiffiffi m p p p p 

2 2 2 2 

Using ωþ, ω� and ω3 from (46), we have 

ω3 
þ ¼ hþþ 

i ffiffiffi p 
2

dz þ hþ� 
i � ffiffiffi p 
2

i i 
d z ¼ �  ffiffiffi p Sdz � ffiffiffi p md z: 

2 2
(60) 

This relation implies that 

hþþ ¼ �S, hþ� ¼ �m, (61) 

and moreover, it follows that 

ω3 
� ¼ h�þωþ þ h��ω� ¼ h�þ 

i ffiffiffi p 
2

dz þ h�� 
i � ffiffiffi p 
2

d z ¼ 
i i ffiffiffi p mdz þ ffiffiffi p Sd z: 
2 2

This implies that 

h�þ ¼ m, h�� ¼ �S: (62) 

It is important to note that these coefficients can be used together with the structure equations 
to express the fundamental forms of the surface in terms of Pfaffian forms. The first funda-
mental form is given as 

2 I ¼ 2p2ωþ ⊗ ω� ¼ 2p 
1 

dz ⊗ dz, (63) 
2 

and the second fundamental form can be written as 

II ¼ �p ωþ ⊗ ω3 
þ þ ω� ⊗ ω3 

� (64) ¼ �p hð þþωþ ⊗ ωþ þ ðhþ� þ h�þÞωþ ⊗ ω� þ h��ω� ⊗ ω�Þ: 

The element of surface is given by 

dS ¼ ip2ωþ ∧ ω� , (65) 

and the corresponding surface element on the Gauss map is 

dσ ¼ iω3 
� ∧ ω3 

þ ¼ i hð þ�h�þ � hþþh��Þωþ ∧ ω�: (66) 
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The total curvature would be the ratio of the former to the latter, 

K ¼ p�2ðhþ�h�þ � hþþh��Þ: (67) 

Finally, the mean curvature is given as 

1 
H ¼ �  ðhþ� þ h�þÞ: (68) 

2p 

4. The Gauss map and nonlinear Sigma model 

Under the condition that a given moving frame is integrable, the surface is defined up to a 
translation. Conversely, given the three vectors which constitute the frame, only one is deter-
mined uniquely by the surface, and that is the normal vector. For this reason, it is often referred 
to as the Gauss or spherical map, as it maps the parameter plane to the sphere of radius one in 
two dimensions. The map in this instance is given as 

ϕ ¼ 
e 
p 
3 , (69) 

so the north pole corresponds to ψ2 ¼ 0, while the south pole to ψ1 ¼ 0. If the first column of 

Φ† is considered as well as the associated fundamental field 

ψ2 r ¼ �  , (70) 
ψ1 

˜ ˜ ˜2 then dividing the numerator and denominator by ˜ψ1 in (69), we obtain 

° ˛ 1 2 ϕ ¼ r þ r; iðr � rÞ; 1 � j jr : (71) 2 1 þ j jr 

This quantity is a function of only r. It may be thought that r plays the role of stereographic 
projection of the Gauss map from the south pole. Moreover, for a minimal surface where 
m ¼ 0, it is readily shown that r is an analytic function of z. 

Using the differential constraints, the derivatives of r are found to be 

m S 
∂r ¼ �ip , ∂r ¼ ip : (72) 2 2ψ2 

2ψ1 1 

By using derivatives (72), the following three relations can be worked out 

∂r∂r ∂r∂r ∂r∂r 
4 ° ˛2 ¼ m2 , 4 ° ˛2 ¼ mS, 4 ° ˛2 ¼ j jS 2: (73) 

2 2 2 1 þ j jr 1 þ j jr 1 þ j jr 
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Thus, the quantities m and S can be written as a function of only r. It may be asked, can the 
component of the Maurer-Cartan form ∂u be written in a similar way? Starting with the 
differential constraint for ∂u,

 ! 
1 � � � � ψ1 � �u=2 ∂u ¼ ψ1∂ψ1 þ ψ2∂ψ2 ¼ e u=2∂ ψ1; �ψ2 e : (74) 
p ψ2 

� �� �† 
Since the spinor product ψ1; �ψ2 ψ1; �ψ2 ¼ eu , we have

 !  !  ! h � �i ψ1 1 � � ψ1 
� � ψ1 �u=2 �u=2 �u � �u=2 ∂ e ψ1; �ψ2 e ¼ �  ∂u ψ1; �ψ2 e þ e u=2∂ ψ1; �ψ2 e : �ψ2 2 �ψ2 �ψ2 

Combining these last two results, we obtain

 ! h i ψ1 1 � � �u=2 �u=2 ∂u ¼ ∂ e ψ1; �ψ2 e : (75) 
2 �ψ2 

u=2 If we define the spinor α ¼ e� ψ1; �ψ2 which satisfies α α† ¼ 1, (75) becomes 

1 
∂u ¼ ∂αα†: (76) 

2 

Let us show that α can be expressed as a function of r. Using the definition of r, a parameter-
ization for α exists as

 !1=2 
1 ψ1 α ¼qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1; rÞ : (77) 

2 ψ2 1 þ j jr 

To obtain an expression for ψ1, use differential constraint (2) its conjugate and (70) to arrive at 

2 i 
ψ1∂r ¼ �  pm: (78) 

2 

Dividing this by its complex conjugate gives α as a function of r as 

� �1=4 1 ∂r ið2nþ1Þπ=4 α ¼qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð1; rÞ e , n ∈ Z: (79) 
2 ∂r 1 þ j jr 

Inserting α into the expression for ∂u provides expressions for ∂u and ∂u 

∂r ∂r ∂r 
∂ ¼ 2 log � : (80) 

∂ r ∂ r ∂ r 
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Differentiating the components of α with respect to z, we find that 
˛ ˝  ðr∂r þ r∂ rÞ 1 ∂r 

∂αα† ¼ �  ˜ ° þ ˜ ° ∂ log 2 2 
2 1  þ j jr 2 4 1  þ j jr ∂r 

˜ ° 
2 2 ˛ ˝  �rr2∂r � r r ∂r þ 2r 1 þ j jr ∂ r 2j jr ∂r þ ˜ ° þ ˜ ° ∂ log 2 2 
2 1  þ j jr 2 4 1  þ j jr ∂ r 

˛ ˝  �r ∂r þ r∂ r 1 ∂r ¼ ˜ ° þ ∂ log : 
2 4 ∂ r 2 1  þ j jr 

Returning to the expression for ð1=2Þ∂u, we can now write 
˛ ˝  

1 1 ∂r 1 r∂r � r∂r 
∂u ¼ ∂ log þ , (81) 2 2 4 ∂r 2 1 þ j jr 

˛ ˝  
1 1 ∂r 1 r∂r � r∂r 
∂u ¼ �  ∂ log þ (82) 2 2 4 ∂ r 2 1 þ j jr 

There is no simple integral of the second term in general. It may be stated that ð1=2Þ∂u has the 
form of a potential with a fixed gauge, because r is given as a function of z and z, so the 
directions of the axes eþ and e� have been fixed so that a gauge transformation is a rotation of 
them. 

Suppose it is asked under what condition a given complex function rðz; zÞ is the Gauss map of 
some surface. A necessary condition can be obtained by working out the compatibility condi-
tion for the linear system (81) and (82), that is, first 

˛ ˝  
1 ∂r ∂ r ∂r þ r∂∂r � ∂r ∂ r � r∂ ∂r r∂r � r∂ r 

∂∂u ¼ �  ∂∂ log þ � ˜ ° ðr∂ r þ r∂rÞ 2 2 2 ∂ r 1 þ j jr 2 1 þ j jr 
˜ ° ̇ ˆ ˛ ˝  2 ∂r∂r � ∂r∂r � ∂r∂rr2 þ ∂r∂ rr2 � 1 þ j jr r∂∂r � r∂∂r 1 ∂r ¼ �  ∂∂ log þ ˜ ° , 

2 ∂ r 2 2 
1 þ j jr 

and the result for the other mixed derivative is 
˜ ° ̇ ˆ ˛ ˝  2 ∂r∂r � ∂ r∂r þ 1 þ j jr r∂∂ r � r∂∂r þ r2∂r∂r � r2∂r∂ r 1 ∂r 

∂∂u ¼ ∂∂ log þ ˜ ° : 
2 ∂ r 2 2 

1 þ j jr 

Equating these mixed partial derivatives, the necessary condition takes the form 
˜ ° ̇ ˆ ˛ ˝  2 1 þ j jr r∂∂ r � r∂∂r þ r2∂r∂r � r2∂r∂ r ∂r 

∂∂ log þ 2 ˜ ° : (83) 2 ∂ r 2 1 þ j jr 
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If it is satisfied, it has the implication that 

∂r∂ r � ∂r∂ r 
∂∂u ¼ � �2 : (84) 

2 1 þ j jr 

Using the previous expressions (73) for the derivatives of r, this can be put into the form of the 
Gauss equation. Consequently, one of the integrability conditions is fulfilled. Since

 !  ! 
∂r∂ r � ∂r∂ r 1 r∂r � r∂r 1 r∂r � r∂r � ¼ ∂ þ ∂ , (85) �2 2 2 2 2 1 þ j jr 2 1 þ j jr 1 þ j jr 

it follows that
 !  ! 

1 r∂r � r∂r 1 r∂r � r∂r ∂r∂r � ∂r∂r 1 
∂∂u ¼ ∂ þ ∂ ¼ � �2 ¼ p2K: (86) 

2 1 þ j jr 2 2 1 þ j jr 2 2 4 1 þ j jr 

Due to cancelations, some shorthand expressions might be quoted 
!  !  ! ! 

r∂r r ∂r r∂r r∂r ∂r∂r � ∂r∂r 
∂∂u ¼ ∂ þ ∂ � ¼ ∂ � þ ∂ ¼ � : (87) 2 2 2 2 �2 1 þ j jr 1 þ j jr 1 þ j jr 1 þ j jr 2 1 þ j jr 

The integrability condition can be expressed in the form of a zero curvature condition
 !  ! 

∂∂r r∂r ∂∂r r∂ r 
∂ � 2 � ∂ � 2 ¼ 0: (88) 

∂r 1 þ j jr 2 ∂ r 1 þ j jr 2 

It is clear that provided we have 

2r 
Bðr; rÞ ¼ ∂∂r � ∂r∂r ¼ 0, (89) 2 1 þ j jr 

the condition is satisfied automatically. This may be recognized as the equation describing the 
nonlinear sigma model. As well it is the equation which is satisfied by the Gauss map of a 
constant mean curvature surface which is harmonic. 

It is well known that for a given Gauss map r such that ∂r ¼ 0, there is a one parameter family 
of surfaces called the associated family which is obtained through the transformation 

ψ1 ! q1=2ψ1, ψ2 ! q1=2ψ2: (90) 

This keeps p and r invariant if q is a complex constant of modulus one. If m ¼ 0, it is not 
possible since m would not stay real. In the latter case, the only allowed values are q ¼ einπ . To 

construct the surface, take α and replace the phase factor by q1=2, so p ¼ 1, and we obtain 
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1=2 1=2 q q r 
ψ1 ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi , ψ2 ¼  qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi : (91) 

2 2 1 þ j jr 1 þ j jr 

Substituting (91) into the inducing formulae (30), the Weierstrass representation for q ¼ 1 can 
be observed. 

Finally, using (36) and recalling that

 ∂H ¼  p ð Þ, ψ2 i 
(92) 2∂ pS 1∂r ¼ pS 

2 

the second equation in (92) is differentiated with respect to ∂ to obtain, 

imψ1ψ2∂r þ ψ2
1∂∂r ¼ 

i ð Þ: ∂ pS (93) 
2 

Taking the conjugate of the first expression in (72) then solving for ψ2
1 and substituting into (93) 

we have 

ψ1ψ2 ∂∂r 2 ∂r þ ¼  m p 1∂ pS : 1  ð Þ  (94) 
p ∂r

     2 2 Using (70) and the relation  ψ1 =p ¼ 1= 1 þ j jr , we obtain the desired result 

∂∂r r∂r H 1∂H ¼  2 2 : (95) 
∂ r 1 þ j jr

 1 Differentiating J ¼ pS with respect to ∂ then multiplying by pS , we obtain ð Þ  

 ψ1ψ2 1 ∂∂r ∂r ψ1ψ2 1 ∂∂r ð ÞpS 1∂ðpSÞ ¼ m 2 ∂r þ ∂r ¼ m 2 ∂r þ 
pS S ∂∂r ∂ r pS S ∂r

 ! 
m ∂r ∂∂r r∂r ∂∂r ∂r ¼  2 ¼  2r 2 : S ∂r ∂r 1 þ j jr 2 ∂r 1 þ j jr 

To obtain this, the first two derivatives in (73) have been used to write ∂r=∂r ¼ S=m. Summa-
rizing these calculations, the following relations have been proved: 

∂∂r r∂r B ∂∂r ∂r B H 1∂H ¼  2 2 ¼ , J 1∂J ¼  2r 2 ¼ : (96) 
∂r 1 þ j jr ∂ r ∂r 1 þ j jr ∂r 

Thus, for the parameters that are proportional to a power of p, the logarithmic derivatives can 
still be computed. For a constant mean curvature surface ∂H ¼ 0 and so Bðr; rÞ ¼ 0 hence 



 

The Generalized Weierstrass System in Three-Dimensional Euclidean Space 21 
http://dx.doi.org/10.5772/intechopen.82631 

∂J ¼ ∂J ¼ 0, (97) 

and the current is conserved, of J is a holomorphic function. 

5. Summary and conclusions 

It should be said that this work has deep implications for the study of manifolds and their 
relationship with integrable systems in general [21–24]. It would be worth illustrating this 
more clearly as a way to conclude. As a particular example, consider the case of a spherical 
surface for which S ¼ 0 so that 

2m 
K ¼ H2 ¼ , (98) 

p 

where K is now a constant and the Gauss equation simplifies to 

∂∂u þm2 ¼ 0: (99) 

If we choose K ¼ 1, this implies that m ¼ p; hence m ¼ eu and (99) is then the nonlinear 
Liouville equation 

2u ¼ ∂∂u þ e 0 

is obtained in terms of the only remaining variable u. This procedure has resulted in a 
1 nonlinear equation with a link to surfaces. Since p� m ¼ 1, the Codazzi-Mainardi equation is 

trivially satisfied. 

Due to the spinor representation of the Maurer-Cartan form, from which Z1 and Z2 are 
deduced, for any nonsingular matrix τ, there is a gauge transformation given by [19] 

Φ ! τ Φ, 

1 Z1 ! τZ1τ�1 þ ∂τ � τ� , (100) 

Z2 ! 1 τZ2τ�1 þ ∂τ � τ� , 

for which the nonlinear zero curvature equation still holds. For example, suppose we take 

!  ! 
1=2 eu=2 λ 0 0 �u=2 τ ¼ e : (101) 

λ1=2 e�u=2 0 0 

2 In (101), λ can be thought of as a complex spectral parameter that satisfies j jλ ¼ 1. Starting 
with (8), we find that 
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 ! 
1=2 1=2 

λ ψ1 �λ ψ2 Φ0 λ ¼ τ Φ ¼ , det Φ0 λ ¼ 1: (102) 
λ1=2e�uψ2 λ1=2e�uψ1 

It is straightforward to calculate that 

τZ1τ�1 ¼ 
1 
2 

� 
2∂u 

iλ 

� 
0 

, 
0 

∂τ ¼ 

� 
0 

0 

� 
0 

, �λ1=2e�u∂u 
∂τ � τ�1 ¼ 

� 
0 

0 

� 
0 

, �∂u 

Therefore, we get 

τZ1τ�1 þ ∂ττ�1 ¼ 

� 
1 2∂u 

2 iλ 

� 
0 

�2∂u 
, 

and proceeding in a similar fashion, one finds 
 ! 

τZ2τ�1 þ ∂ττ�1 ¼ 
1 
2 

0 

0 

2u iλe
0

: 

The linear system for the case in which S ¼ 0 and m ¼ p is given by 

∂Φ0 λ ¼ 
1 
2 

� 
2∂u 

iλ 

� 
0 

Φ0 λ, �2∂u 
∂Φ0 λ ¼ 

1 
2 

0 

0 

 ! 
2u iλe

Φ0 λ, 0
(103) 

~ ~ ~ 

where Φ0 λ is given by (102). Other choices for the gauge function τ will lead to other systems: 

~ 

for example, taking
 !  ! � � �λ1=2e�u 1=2 1=2 1 1 �1 λ 0 1 λ 

τ ¼ pffiffiffi ¼ pffiffiffi (104) 
λ1=2e�u 1=2 

λ1=2 2 1 0 0 2 λ e�u 

an AKNS type system is obtained 

2u 2u 1 �iλ 4∂u � iλ λ �e e 
Φ ¼ Φλ, Φ ¼ i Φλ: ∂ ∂ (105) 

4 4∂u þ iλ iλ 4 2u 2u �e e 

Therefore, hierarchies may be generated and this linear system which is derived from the Dirac 
equation and used to create surfaces provides the link between nonlinear evolution equations 
and geometry. 
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Abstract 

The aim of this chapter is to study conformal anti-invariant submersions from almost 
product Riemannian manifolds onto Riemannian manifolds as a generalization of anti-
invariant Riemannian submersion which was introduced by B. Sahin. We investigate the 
integrability of the distributions which arise from the definition of the new submersions 
and the geometry of foliations. Moreover, we find necessary and sufficient conditions for 
this submersion to be totally geodesic and in order to guarantee the new submersion, we 
mention some examples of such submersions. 

Keywords: conformal submersion, almost product Riemannian manifold, 
vertical distribution, conformal anti-invariant submersion 
2010 Mathematics Subject Classification: primary 53C15; secondary 53C40 

1. Introduction 

Immersions and submersions, which are special tools in differential geometry, also play a 
fundamental role in Riemannian geometry, especially when the involved manifolds carry an 
additional structure (such as contact, Hermitian and product structure). In particular, Rie-
mannian submersions (which we always assume to have connected fibers) are fundamentally 
important in several areas of Riemannian geometry. For instance, it is a classical and important 
problem in Riemannian geometry to construct Riemannian manifolds with positive or non-
negative sectional curvature. Riemannian submersions between Riemannian manifolds are 
important geometric structures. Riemannian submersions between Riemannian manifolds 
were studied by O’Neill [1] and Gray [2]. In [3], the Riemannian submersions were considered 
between almost Hermitian manifolds by Watson under the name of almost Hermitian submersions. 

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 
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In this case, the Riemannian submersion is also an almost complex mapping and consequently the 
vertical and horizontal distributions are invariant with respect to the almost complex structure of 
the total manifold of the submersion. The study of anti-invariant Riemannian submersions from 
almost Hermitian manifolds was initiated by Şahin [4]. In this case, the fibers are anti-invariant with 
respect to the almost complex structure of the total manifold. This notion extended to different total 
spaces see: [5–14]. 

On the other hand, as a generalization of Riemannian submersion, horizontally conformal ˜ ° ˜ ° 
submersions are defined as follows [15]: Suppose that M; gM and B; gB are Riemannian 

manifolds and π : M ! B is a smooth submersion, then π is called a horizontally conformal 
submersion, if there is a positive function λ such that 

λ2gMðX; YÞ ¼ gBðπ∗X; π∗YÞ 
˛ ˝ 

⊥ for every X, Y ∈ Γ ðkerπ∗Þ : It is obvious that every Riemannian submersion is a particular 

horizontally conformal submersion with λ ¼ 1. We note that horizontally conformal submer-
sions are special horizontally conformal maps which were introduced independently by 
Fuglede [16] and Ishihara [17]. We also note that a horizontally conformal submersion 
π : M ! B is said to be horizontally homothetic if the gradient of its dilation λ is vertical, i.e., 

HðgradλÞ ¼ 0 (1) 

⊥ at p ∈ M, where H is the projection on the horizontal space ðkerπ∗Þ . For conformal submer-
sion, see: [15, 18, 19]. 

One can see that Riemannian submersions are very special maps comparing with conformal 
submersions. Although conformal maps do not preserve distance between points contrary to 
isometries, they preserve angles between vector fields. This property enables one to transfer 
certain properties of a manifold to another manifold by deforming such properties. 

Recently, we introduced conformal anti-invariant submersions [20] and conformal semi-
invariant submersions [21] from almost Hermitian manifolds, and gave examples and investi-
gated the geometry of such submersions (see also [22, 23]). We showed that the geometry of 
such submersions is different from their counterpart anti-invariant Riemannian submersions 
and semi-invariant Riemannian submersions. In the present paper, we define and study con-
formal anti-invariant submersions from almost product Riemannian manifolds, give examples 
and investigate the geometry of the total space and the base space for the existence of such 
submersions. 

Our work is structured as follows: Section 2 is focused on basic facts for conformal submersions 
and almost product Riemannian manifolds. The third section is concerned with definition of 
conformal anti-invariant submersions, investigating the integrability conditions of the horizon-
tal distribution and the vertical distribution. In Section 4, we study the geometry of leaves of 
the horizontal distribution and the vertical distribution. In Section 5, we find necessary and 
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sufficient conditions for a conformal anti-invariant submersion to be totally geodesicness. The 
last section, we give some examples of such submersions. 

2. Preliminaries 

In this section we recall several notions and results which will be needed throughout the 
chapter. 

Let M be a m-dimensional manifold with a tensor F of a type (1,1) such that 

F2 ¼ I, ðF 6¼ IÞ: 

Then, we say that M is an almost product manifold with almost product structure F. We put 

1 1 
P ¼ ðI þ FÞ, Q  ¼ ðI � FÞ: 

2 2 

Then we get 

P þQ ¼ I, P2 ¼ P, Q2 ¼ Q, PQ ¼ QP ¼ 0, F  ¼ P �Q: 

Thus P and Q define two complementary distributions P and Q. We easily see that the 
eigenvalues of F are +1 or �1. If an almost product manifold M admits a Riemannian metric g 
such that 

gðFX; FY ð (2) Þ ¼ g X; YÞ 

for any vector fields X and Y on M, then M is called an almost product Riemannian manifold, 
denoted by ðM; g; FÞ: Denote the Levi-Civita connection on M with respect to g by ∇: Then, M 
is called a locally product Riemannian manifold [24] if F is parallel with respect to ∇, i.e., 

∇XF ¼ 0, X  ∈ ΓðTMÞ: (3) 

Conformal submersions belong to a wide class of conformal maps that we are going to recall 
their definition, but we will not study such maps in this paper. 

Definition 2.1 ([15]) Let φ : ðMm; gÞ ! ðNn; hÞ be a smooth map between Riemannian manifolds, and 
let x ∈ M. Then φ is called horizontally weakly conformal or semi conformal at x if either 

(i) dφ ¼ 0, or x 

˜ ˜ °° ⊥ (ii) dφ maps horizontal space Hx ¼ ker dφ conformally onto Tφ∗ 
N, i.e., dφ is surjective and x x x 

there exists a number Λð Þx ¼6 0 such that 
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h dφ X; dφ Y ¼ Λ x g X; YÞ ðX; Y ∈ HxÞ: (4) ð Þ ð x x 

Note that we can write the last equation more sufficiently as 

φ∗h � � ð Þ Hx �Hx ¼ Λð Þx g : x x Hx�Hx 

A point x is of type (i) in Definition if and only if it is a critical point of φ; we shall call a point of 
type (ii) a regular point. At a critical point, dφ has rank 0; at a regular point, dφ has rank n and x x 

φ is submersion. The number Λð Þx is called the square dilation (of φ at x); it is necessarily non-pffiffiffiffiffiffiffiffiffiffi 
negative; its square root λ x Λ x is called the dilation (of φ at x). The map φ is called ð Þ ¼  ð Þ  
horizontally weakly conformal or semi conformal (on M) if it is horizontally weakly conformal at 
every point of M. It is clear that if φ has no critical points, then we call it a (horizontally) 
conformal submersion. 

Next, we recall the following definition from [18]. Let π : M ! N be a submersion. A vector 

field E on M is said to be projectable if there exists a vector field E� on N, such that dπðExÞ ¼  
� for all x ∈ M. In this case E and E� are called π� related. A horizontal vector field Y on Eπð Þx 

ðM; gÞ is called basic, if it is projectable. It is well known fact, that is, Z� is a vector field on N, 

then there exists a unique basic vector field Z on M, such that Z and Z� are π� related. The 

vector field Z is called the horizontal lift of Z� . 

The fundamental tensors of a submersion were introduced in [1]. They play a similar role to 
that of the second fundamental form of an immersion. More precisely, O’Neill’s tensors T and 
A defined for vector fields E, G on M by 

AEG ¼ V∇M 
HE 

1 HG þH∇M 
HE 

1 VG (5) 

TEG ¼ H∇M 
VE 

1 VG þ V∇M 
VE 

1 HG (6) 

where V and H are the vertical and horizontal projections (see [25]). On the other hand, from 
(5) and (6), we have 

∇M1 W ¼ TVW þ ∇̂ VW (7) V 

∇V
M1 X ¼ H∇V

M1 X þ TVX (8) 

∇M
X 

1 V ¼ AXV þ V∇M
X 

1 V (9) 

∇M1 Y ¼ H∇M1 Y þ AXY (10) X X 

⊥ ^ for X, Y ∈ Γ ðkerπ∗Þ and V,W ∈ Γðkerπ∗Þ, where ∇VW ¼ V∇M1 W . If X is basic, then V 

H∇M1 X ¼ AXV. It is easily seen that for x ∈ M, X ∈ Hx and Vx the linear operators TV , V 

AX : TXM ! TXM are skew-symmetric, that is 
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g TVE; GÞ ¼ �g E; TVGÞ and g AXE; GÞ ¼ �g E; AXGÞ ð ð ð ð 

for all E, G ∈ TxM. We also see that the restriction of T to the vertical distribution Tj is V�V 

exactly the second fundamental form of the fibers of π. Since TV is skew symmetric, we get π 
which has totally geodesic fibers if and only if T � 0. For the special case when π is horizon-
tally conformal we have the following: 

Proposition 2.1 ([18]) Let π : ðMm; gÞ ! ðNn; hÞ be a horizontally conformal submersion with dilation 
∇ and X, Y be horizontal vectors, then 

˛ ˜ °˝ 

AXY ¼ 
1
2 

V½X; Y� � λ2g X; YÞgradV λ 

1
2 : (11) ð 

We see that the skew-symmetric part of Aj kerπ∗
⊥ ⊥ measures the obstruction integrability ð Þ �ðkerπ∗ Þ 

⊥ of the horizontal distribution ðkerπ∗Þ . 
˙ ˆ ˙ ˆ 

Let M; gM and N; gN be Riemannian manifolds and suppose that π : M ! N is a smooth 

map between them. The differential of π∗ of π can be viewed a section of the bundle ˙ ˆ ˙ ˆ 
Hom TM; π�1TN ! M, where π�1TN is the pullback bundle which has fibers π�1TN ¼ p ˙ ˆ 
Tπð Þp N, p ∈ M. Hom TM; π�1TN has a connection ∇ induced from the Levi-Civita connection 

∇M and the pullback connection. Then the second fundamental form of π is given by 

∇π∗ : ΓðTMÞ � ΓðTMÞ ! ΓðTNÞ 

defined by 

˙ ˆ ð∇π∗ÞðX; YÞ ¼ ∇X 
ππ∗ðYÞ � π∗ ∇X

MY (12) 

for X, Y ∈ ΓðTMÞ, where ∇π is the pullback connection. It is known that the second fundamen-
tal form is symmetric. 

˙ ˆ ˙ ˆ 
Lemma 2.1. [26] Let M; gM and N; gN be Riemannian manifolds and suppose that φ : M ! N is a 
smooth map between them. Then we have 

∇φ 
Xφ∗ðYÞ � ∇Y 

φφ∗ðXÞ � φ∗ð½X; Y�Þ ¼ 0 (13) 

for X, Y ∈ ΓðTMÞ. 
Finally, we recall the following lemma from [15]. 

Lemma 2.2. Suppose that π : M ! N is a horizontally conformal submersion. Then, for any horizontal 
vector fields X,Y and vertical fields V,W we have. 
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(i) ð∇π∗ÞðX; YÞ ¼ Xð ln λÞπ∗Y þ Yð ln λÞπ∗X � gMðX; YÞπ∗ðgrad ln λÞ; 
(ii) ð∇π∗ÞðV; WÞ ¼ �π∗ðTVWÞ; 

˜ ° 
(iii) ð∇π∗ÞðX; VÞ ¼ �π∗ ∇X

MV ¼ �π∗ðAXVÞ. 

3. Conformal anti-invariant submersions from almost product Riemannian 
manifolds 

In this section, we define conformal anti-invariant submersions from an almost product Rie-
mannian manifold onto a Riemannian manifold, investigating the geometry of distributions 

ðkerπ∗Þ and ðkerπ∗Þ⊥ and obtain the integrability conditions for the distribution ðkerπ∗Þ⊥ for 
such submersions. 

˜ ° ˜ ° 
Definition 3.1. Let M1; g1; F be an almost product Riemannian manifold and M2; g2 be a Rie-
mannian manifold. A horizontally conformal submersion π : M1 !M2 with dilation λ is called 
conformal anti-invariant submersion if the distribution kerπ∗ is anti-invariant with respect to F, i.e., 

⊥ Fðkerπ∗Þ ⊆ ðkerπ∗Þ : 
˜ ° ˜ ° 

Let π : M1; g1; F ! M2; g2 is a conformal anti-invariant submersion from an almost prod-˜ ° ˜ ° 
uct Riemannian manifold M1; g1; F to a Riemannian manifold M2; g2 : First of all, from 

Definition 3.1, we have Fðkerπ∗Þ⊥ ∩ kerπ∗ ¼6 0: We denote the complementary orthogonal distri-

bution to Fðkerπ∗Þ in ðkerπ∗Þ⊥ by μ: Then we have 

⊥ ðkerπ∗Þ ¼ Fðkerπ∗Þ⊕ μ: (14) 

˜ ° ˜ ° 
Proposition 3.1. Let M1; g1; F be an almost product Riemannian manifold and M2; g2 be a 
Riemannian manifold. Then μ is invariant with respect to F. 

˜ °  
Proof. For Z ∈ Γ μ and V ∈ Γðkerπ∗Þ, by using (2), we have g1ðFZ; FVÞ ¼ 0, which show that FZ 

is orthogonal to Fkerπ∗. On the other hand, since FV and Z are orthogonal we get g1ðFV; ZÞ ¼  
g1ðV; FZÞ ¼ 0 which shows that FZ is orthogonal to kerπ∗: This completes proof. □ 

˛ ˝ 
For Z ∈ Γ ðkerπ∗Þ⊥ , we have 

FZ ¼ BZ þ CZ, (15) 

˛ ˝ ˜ °  
where BZ ∈ Γðkerπ∗Þ and CZ ∈ Γ μ : On the other hand, since π∗ ðkerπ∗Þ⊥ ¼ TM2 and π is a 

˛ ˝ 
conformal submersion, using (15) we derive 

λ 
1
2 g2ðπ∗FV; π∗CZÞ ¼ 0 for any Z ∈ Γ ðkerπ∗Þ⊥ 

and V ∈ Γðkerπ∗Þ, which implies that 
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˜ °  
TM2 ¼ π∗ðFkerπ∗Þ⊕ π∗ μ : (16) 

Lemma 3.1. Let π be a conformal anti-invariant submersion from a locally product Riemannian ˜ ° ˜ ° 
manifold M1; g1; F onto a Riemannian manifold M2; g2 . Then we have 

g1ðCW; FVÞ ¼ 0 (17) 

and 

˜ 
∇M1 

° 
CW ; FV ¼ �g1ðCW; FAZVÞ (18) g1 Z 

˛ ˝ 
for Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ. 

˛ ˝ 
Proof. For W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ, using (2) we have 

g1ðCW ; FVÞ ¼ g1ðFW � BW; FVÞ ¼ g1ðFW; FVÞ 
˛ ˝ 

⊥ due to BW ∈ Γðkerπ∗Þ and FV ∈ Γ ðkerπ∗Þ : Hence g1ðFW ; FVÞ ¼ g1ðW; VÞ ¼ 0 which is (17). 

Since M1 is a locally product Riemannian manifold, differentiating (3.4) with respect to Z, we 
get 

˜ ° ˜ ° 
g1 ∇Z

M1 CW ; FV ¼ g1 CW; F∇Z
M1 V 

˛ ˝ 
for Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ: Then using (9) we have 

˜ ° ˜ ° 
g1 ∇

M1 CW; FV ¼ �g1ðCW; FAZVÞ � g1 CW ; FV∇M1 V : Z Z 

Since FV∇M1 V ∈ ΓðFkerπ∗Þ, we obtain (18). □ Z 

We now study the integrability of the distribution ðkerπ∗Þ⊥ and then we investigate the geome-

try of the leaves of kerπ∗ and ðkerπ∗Þ⊥ . We note that it is known that the distribution kerπ∗ is 
integrable. 

˜ ° ˜ ° 
Theorem 3.1. Let π : M1; g1; F ! M2; g2 is a conformal anti-invariant submersion from an ˜ ° ˜ ° 
almost product Riemannian manifold M1; g1; F to a Riemannian manifold M2; g2 : Then the follow-
ing assertions are equivalent to each other; 

(a) ðkerπ∗Þ⊥ is integrable, 

1 ˜ ° ð Þb ∇π 
W π∗CZ � ∇π 

Zπ∗CW; π∗FV ¼ g1ðAZBW � AW BZ � CWð ln λÞZ þ CZð ln λÞW ; FVÞ 
λ2 g2 

(19) 
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˜ 
for any Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ. 

˜ ° ˜ ° 
Proof. For W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ, we see from Definition 3.1, FV ∈ Γ ðkerπ∗Þ⊥ and 

˜ ° ˛ ˝ 
FW ∈ Γ kerπ∗ ⊕ μ . Thus using (2) and (3), for Z ∈ Γ ðkerπ∗Þ⊥ we obtain 

˛ ˝ ˛ ˝ 
∇M1 ∇M1 ð½Z; W �; VÞ ¼ g1 FW; FV � g1 W FZ; FV : g1 Z 

Further, from (15) we get 
˛ ˝ ˛ ˝ ˛ ˝ ˛ ˝ 
∇M1 ∇M1 ∇M1 ∇M1 g1ð½Z; W�; VÞ ¼ g1 BW; FV þ g1 CW; FV � g1 W BZ; FV � g1 W CZ; FV : Z Z 

Using (9), (10) and if we take into account π is a conformal submersion, we arrive at 

1 ˛ ˛ ˝ ˝ 1 ˛ ˛ ˝ ˝ 
∇M1 ∇M1 g1ð½Z; W �; VÞ ¼ g1ðAZBW � AW BZ; FVÞ þ

λ2 g2 π∗ Z CW ; π∗FV � 
λ2 g2 π∗ W CZ ; π∗FV : 

Thus, from (12) and Lemma 2.2 we derive 

g1ð½Z; W�; VÞ ¼ g1ðAZBW � AW BZ; FVÞ � g1ðHgrad ln λ; ZÞg1ðCW; FVÞ 
� g1ðHgrad ln λ; CWÞg1ðZ; FVÞ þ g1ðZ; CWÞg1ðHgrad ln λ; FVÞ 

1 ˛ ˝ þ ∇π 
Zπ∗CW; π∗FV þ g1ðHgrad ln λ; WÞg1ðCZ; FVÞ λ2 g2 

þ g1ðHgrad ln λ; CZÞg1ðW; FVÞ � g1ðW; CZÞg1ðHgrad ln λ; FVÞ 
1 ˛ ˝ � ∇W 

π π∗CZ; π∗FV : 
λ2 g2 

Moreover, using (17), we obtain 

g1ð½Z; W�; VÞ ¼g1ðAZBW � AW BZ � CWð ln λÞZ þ CZð ln λÞW ; FVÞ 
1 ˛ ˝ � ∇W 

π π∗CZ � ∇π 
Zπ∗CW; π∗FV 

λ2 g2 

which proves ð Þa ⇔ ð Þb . □ 

From Theorem 3.1, we deduce the following characterization. 

Theorem 3.2. Let π be a conformal anti-invariant submersion from a locally product Riemannian ˛ ˝ ˛ ˝ 
manifold M1; g1; F onto a Riemannian manifold M2; g2 . Then any two conditions below imply the 
three; 

i. ðkerπ∗Þ⊥ is integrable. 
˛ ˝  

ii. λ is a constant on Γ μ : 

˛ ˝ 
iii. g2 ∇W 

π π∗CZ � ∇Z 
ππ∗CW; π∗FV ¼ λ2g1ðAZBW � AW BZ; FVÞ 
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˜ 
for Z,W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ. 

Proof. From Theorem 3.1, we have 

g1ð½Z; W�; VÞ ¼g1ðAZBW � AW BZ � CWð ln λÞZ þ CZð ln λÞW; FVÞ 
1 ˛ ˝ � ∇W 

π π∗CZ � ∇π 
Zπ∗CW; π∗FV : 

λ2 g2 

˜ ° 
for Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ. Now, if we have (i) and (iii), then we arrive at 

�g1ðHgrad ln λ; CWÞg1ðZ; FVÞ þ g1ðHgrad ln λ; CZÞg1ðW; FVÞ ¼ 0: (20) 

Now, taking W ¼ FV in (20) for V ∈ Γðkerπ∗Þ, using (17), we get 

�g1ðHgrad ln λ; CðFVÞÞg1ðZ; FVÞ þ g1ðHgrad ln λ; CZÞg1ðFV; FVÞ ¼ 0: 

˛ ˝  
Hence λ is a constant on Γ μ . Similarly, one can obtain the other assertions. □ 

We say that a conformal anti-invariant submersion is a conformal Lagrangian submersion if 

Fðkerπ∗Þ ¼ ðkerπ∗Þ⊥ : From Theorem 3.1, we have the following result. 

Corollary 3.1. Let π be a conformal Lagrangian submersion from a locally product Riemannian ˛ ˝ ˛ ˝ 
manifold M1; g1; F onto a Riemannian manifold M2; g2 . Then the following assertions are equiva-
lent to each other: 

i. ðkerπ∗Þ⊥ is integrable 

ii. AZFW ¼ AWFZ 

iii. ð∇π∗ÞðZ; FWÞ ¼ ð∇π∗ÞðW; FZÞ 
˜ ° 

for Z, W ∈ Γ ðkerπ∗Þ⊥ . 

˜ ° ˜ ° 
Proof. For Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ, we see from Definition 3.1, FV ∈ Γ ðkerπ∗Þ⊥ 

and FW ∈ Γðkerπ∗Þ. From Theorem 3.1 we have 

g1ð½Z; W�; VÞ ¼g1ðAZBW � AW BZ � CWð ln λÞZ þ CZð ln λÞW; FVÞ 
1 ˛ ˝ � ∇W 

π π∗CZ � ∇π 
Zπ∗CW; π∗FV : 

λ2 g2 

Since π is a conformal Lagrangian submersion, we derive 

g1ð½Z; W�; VÞ ¼ g1ðAZBW � AW BZ; FVÞ 

which shows ð Þi ⇔ ð Þii : On the other hand, using Definition 3.1 and (9) we arrive at 
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1 1 
g1ðAZBW ; FVÞ � g1ðAW BZ; FVÞ ¼  ðπ∗AZBW ; π∗FVÞ �  ðπ∗AW BZ; π∗FVÞ 

λ2 g2 λ2 g2 

1 ˜ ˜ ° ° 1 ˜ ˜ ° ° ¼ 
λ2 g2 π∗ ∇M

Z 
1 BW ; π∗FV � 

λ2 g2 π∗ ∇M
W 

1 BZ ; π∗FV : 

Now, using (12) we obtain 

1 ˛ ˜ ˜ ° ° ˜ ˜ ° °˝ 
∇M1 ∇M1 g2 π∗ Z BW ; π∗FV � g2 π∗ W BZ ; π∗FV 

λ2 

˜ ° ˜ ° ¼ 
λ 

1
2 g2 �ð∇F∗ÞðZ; BWÞ þ ∇Z 

ππ∗BW ; π∗FV � 
λ 

1
2 g2 �ð∇F∗ÞðW; BZÞ þ ∇π 

W π∗BZ; π∗FV : 

Since BZ, BW ∈ Γðkerπ∗Þ, we derive 

1 
g1ðAZBW; FVÞ � g1ðAW BZ; FVÞ ¼  ðð∇F∗ÞðW ; BZÞ � ð∇F∗ÞðZ; BWÞ; π∗FVÞ 

λ2 g2 

which tells that ðiiÞ⇔ iii □ ð Þ: 

4. Totally geodesic foliations 

In this section, we shall investigate the geometry of leaves of ðkerπ∗Þ and ðkerπ∗Þ⊥ . For the 

geometry of leaves of the horizontal distribution ðkerπ∗Þ⊥ , we have the following theorem. 
˜ ° ˜ ° 

Theorem 4.1. Let π : M1; g1; F ! M2; g2 is a conformal anti-invariant submersion from an ˜ ° ˜ ° 
almost product Riemannian manifold M1; g1; F to a Riemannian manifold M2; g2 : Then the following 

assertions are equivalent to each other; 

i. ðkerπ∗Þ⊥ defines a totally geodesic foliation on M1. 

1 ˜ ° ˜ ° 
ii. � 

λ2 g2 ∇Z 
ππ∗CW; π∗FV ¼ g1 AZBW � CWð ln λÞZ þ g1ðZ; CWÞ ln λ; FV 

˙ ˆ 
for Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ. 

˙ ˆ 
Proof. For Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ, by using (3), (9), (10), (14) and (15) we have 

˜ ° ˜ ° 
∇M1 ∇M1 g1 W; V ¼ g1ðAZBW ; FVÞ þ g1 CW; FV : Z Z 

Since π is a conformal submersion, using (12) and Lemma 2.2 we arrive at 
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˜ 
∇M1 

° 1 
g1 Z W; V ¼ g1ðAZBW; FVÞ �  

λ2 g1ðHgrad ln λ; ZÞg2ðπ∗CW; π∗FVÞ 

1 � ðHgrad ln λ; CW ðπ∗Z; π∗FVÞ 
λ2 g1 Þg2 

1 þ ðZ; CWÞg2ðπ∗ðHgrad ln λÞ; π∗FVÞ 
λ2 g1 

1 ˜ ° þ ∇π 
Zπ∗CW; π∗FV : 

λ2 g2 

Moreover, using Definition 3.1 and (17) we obtain 

˜ ° ˜ ° 1 ˜ ° 
g1 ∇Z

M1 W; V ¼ g1 AZBW � CWð ln λÞZ þ g1ðZ; CWÞ ln λ; FV þ
λ2 g2 ∇Z 

ππ∗CW; π∗FV 

which proves ð Þi ⇔ ð Þii . □ 

From Theorem 4.1, we also deduce the following characterization. 

Theorem 4.2. Let π be a conformal anti-invariant submersion from a locally product Riemannian ˜ ° ˜ ° 
manifold M1; g1; F onto a Riemannian manifold M2; g2 . Then any two conditions below imply the 
three; 

i. ðkerπ∗Þ⊥ defines a totally geodesic foliation on M1. 

ii. π is horizontally homothetic submersion. 
˜ ° 

iii. g2 ∇Z 
ππ∗CW; π∗FV ¼ λ2g1ðAZFV; BWÞ 
˛ ˝ 

for Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ. 
˛ ˝ 

Proof. For Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ, from Theorem 4.1, we have 

˜ ° ˜ ° 1 ˜ ° 
g1 ∇

M
Z 

1 W; V ¼ g1 AZBW � CWð ln λÞZ þ g1ðZ; CWÞ ln λ; FV þ
λ2 g2 ∇

π 
Zπ∗CW; π∗FV : 

Now, if we have (i) and (iii), then we obtain 

�g1ðHgrad ln λ; CWÞg1ðZ; FVÞ þ g1ðHgrad ln λ; FVÞg1ðZ; CWÞ ¼ 0: (21) 

Now, taking Z ¼ CWÞ in (4.1) and using (17), we get 

g1ðHgrad ln λ; FVÞgMðCW; CWÞ ¼ 0: 

Thus, λ is a constant on ΓðFkerπ∗Þ. On the other hand, taking Z ¼ FV in (25) and using (17) we 
derive 
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g1ðHgrad ln λ; CWÞg1ðFV; FVÞ ¼ 0: 

˜ °  
From above equation, λ is a constant on Γ μ . Similarly, one can obtain the other assertions. □ 

For conformal Lagrangian submersion, we have the following result. 

Corollary 4.1. Let π be a conformal Lagrangian submersion from a locally product Riemannian ˜ ° ˜ ° 
manifold M1; g1; F onto a Riemannian manifold M2; g2 . Then the following assertions are equiva-
lent to each other; 

i. ðkerπ∗Þ⊥ defines a totally geodesic foliation on M1. 

ii. AZBW ¼ 0 

iii. ð∇π∗ÞðZ; FVÞ ¼ 0 
˛ ˝ 

for Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ. 
˛ ˝ 

Proof. For Z, W ∈ Γ ðkerπ∗Þ⊥ and V ∈ Γðkerπ∗Þ, from Theorem 4.1, we have 

˜ ° ˜ ° 1 ˜ ° 
∇M1 ∇π g1 Z W; V ¼ g1 AZBW � CWð ln λÞZ þ g1ðZ; CWÞ ln λ; FV þ

λ2 g2 Zπ∗CW; π∗FV : 

Since π is a conformal Lagrangian submersion, we derive 

˜ 
∇M1 

° 
g1 W; V ¼ g1ðAZBW ; FVÞ Z 

which shows ð Þi ⇔ ð Þii : On the other hand, using Definition 3.1 and (9) we arrive at 

1 1 ˜ ˜ ° ° 
g1ðAZBW; FVÞ ¼  

λ2 g2ðπ∗ðAZBWÞ; π∗FVÞ ¼  
λ2 g2 π∗ ∇Z

M1 BW ; π∗FV : 

Now, using (12) we obtain 

1 ˜ ˜ ° ° 1 ˜ ° 
π∗ ∇M1 BW ; π∗FV ¼ �ð∇π∗ÞðZ; BWÞ þ ∇π 

Zπ∗BW ; π∗FV 
λ2 g2 Z λ2 g2 

1 ¼ �  ðð∇π∗ÞðZ; BWÞ; π∗FVÞ 
λ2 g2 

which tells that ii ð Þ: □ ð Þ⇔ iii 

For the totally geodesicness of the foliations of the distribution kerπ∗. 
˜ ° ˜ ° 

Theorem 4.3. Let π : M1; g1; F ! M2; g2 is a conformal anti-invariant submersion from an ˜ ° ˜ ° 
almost product Riemannian manifold M1; g1; F to a Riemannian manifold M2; g2 : Then the follow-
ing assertions are equivalent to each other; 
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i. kerπ∗ defines a totally geodesic foliation on M1. 

1 ˜ ° 
ii. � ∇π ðTVFU; BZÞ þ g1ðU; V ðHgrad ln λ; FCZÞ 

λ2 g2 FU π∗FV; π∗FCZ ¼ g1 Þg1 

˛ ˝ 
for V,U ∈ Γðkerπ∗Þ and Z ∈ Γ ðkerπ∗Þ⊥ . 

˛ ˝ 
Proof. For Z ∈ Γ ðkerπ∗Þ⊥ and V,U ∈ Γðkerπ∗Þ, by using (2), (3), (8) and (15) we get 

˜ ° ˜ ° 
g1 ∇V

M1 U; Z ¼ g1ðTVFU; BZÞ þ g1 H∇V
M1 FU; CZ : 

Since ∇M1 is torsion free and ½V; FU�∈ Γðkerπ∗Þ we obtain 

˜ ° ˜ ° 
g1 ∇

M1 U; Z ¼ g1ðTVFU; BZÞ þ g1 ∇
M1 : V FUV; CZ 

Using (3) and (10) we have 

˜ ° ˜ ° 
∇M1 ∇M1 U; Z ¼ g1ðTVFU; BZÞ þ g1 g1 V FUFV; FCZ 

here we have used that μ is invariant. Since π is a conformal submersion, using (12) and 
Lemma 2.2 we obtain 

˜ ° 1 
∇M1 g1 V U; Z ¼ g1ðTVFU; BZÞ þ

λ2 g1ðHgrad ln λ; FUÞg2ðπ∗FV; π∗FCZÞ 
1 � ðHgrad ln λ; FVÞg2ðπ∗FU; π∗FCZÞ 
λ2 g1 

1 þg1ðFU; FVÞ ðπ∗ðHgrad ln λÞ; π∗FCZÞ 
λ2 g2 

1 ˜ ° þ ∇FU 
π π∗FV; π∗FCZ : 

λ2 g2 

Moreover, using Definition 3.1 and (17), we obtain 

˜ ° 1 ˜ ° 
∇M1 ∇π g1 V U; Z ¼ g1ðTVFU; BZÞ þ g1ðU; VÞg1ðHgrad ln λ; FCZÞ þ

λ2 g2 FUπ∗FV; π∗FCZ 

which proves ð Þi ⇔ ðiiÞ. □ 

From Theorem 4.3, we deduce the following result. 

Theorem 4.4. Let π be a conformal anti-invariant submersion from a locally product Riemannian manifold ˜ ° ˜ ° 
M1; g1; F onto a Riemannian manifold M2; g2 . Then any two conditions below imply the three; 

i. kerπ∗ defines a totally geodesic foliation on M1 

˜ °  
ii. λ is a constant on Γ μ 

1 ˜ ° 
iii. � ∇π 

FU π∗FV; π∗FCZ ¼ g1ðTVFU; BZÞ 
λ2 g2 
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˜ 
for V,U ∈ Γðkerπ∗Þ and Z ∈ Γ ðkerπ∗Þ⊥ . 

˜ ° 
Proof. For V,U ∈ Γðkerπ∗Þ and Z ∈ Γ ðkerπ∗Þ⊥ , from Theorem 4.3 we have 

˛ ˝ 1 ˛ ˝ 
g1 ∇

M
V 

1 U; Z ¼ g1ðTVFU; BZÞ þ g1ðU; VÞg1ðHgrad ln λ; FCZÞ þ
λ2 g2 ∇

π 
FUπ∗FV; π∗FCZ : 

Now, if we have (i) and (iii), then we obtain 

g1ðU; VÞg1ðHgrad ln λ; FCZÞ ¼ 0: 

˛ ˝  
From above equation, λ is a constant on Γ μ . Similarly, one can obtain the other assertions. □ 

If π is a conformal Lagrangian submersion, then (16) implies that TM2 ¼ π∗ðFkerπ∗Þ. Hence we 
have the following corollary: 

Corollary 4.2. Let π be a conformal Lagrangian submersion from a locally product Riemannian ˛ ˝ ˛ ˝ 
manifold M1; g1; F onto a Riemannian manifold M2; g2 . Then the following assertions are equiva-
lent to each other; 

i. kerπ∗ defines a totally geodesic foliation on M1. 

ii. TVFU ¼ 0 
˜ ° 

for V,U ∈ Γðkerπ∗Þ and Z ∈ Γ ðkerπ∗Þ⊥ . 

Proof. From Theorem 4.3 we have 

˛ ˝ ˛ ˝ 
g1 ∇

M
V 

1 U; Z ¼ g1ðTVFU; BZÞ þ g1ðU; VÞg1ðHgrad ln λ; FCZÞ þ
λ 

1
2 g2 ∇FU 

π π∗FV; π∗FCZ : 

˜ ° 
for V,U ∈ Γðkerπ∗Þ and Z ∈ Γ ðkerπ∗Þ⊥ . Since π is a conformal Lagrangian submersion, we get 

˛ 
∇M1 

˝ 
g1 U; Z ¼ g1ðTVFU; BZÞ V 

which shows ð Þi ⇔ ðiiÞ: □ 

5. Totally geodesicness of the conformal anti-invariant submersion 

In this section, we shall examine the totally geodesicness of a conformal anti-invariant submer-
sion. We give a necessary and sufficient condition for a conformal anti-invariant submersion to 
be totally geodesic map. Recall that a smooth map π between two Riemannian manifolds is 
called totally geodesic if ∇π∗ ¼ 0 [15]. 
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˜ ˜ 
Theorem 5.1. Let π : M1; g1; F ! M2; g2 is a conformal anti-invariant submersion from an ˜ ° ˜ ° 
almost product Riemannian manifold M1; g1; F to a Riemannian manifold M2; g2 : π is totally 

geodesic map if and only if. 

(a) π is a horizontally homothetic map, 

(b) TUFV ¼ 0 and H∇M1 FV ∈ ΓðFkerπ∗Þ, U 

(c) AZFV ¼ 0 and H∇M1 FV ∈ ΓðFkerπÞ Z 

˛ ˝ 
for Z,W,Z ∈ Γ ðkerπ∗Þ⊥ and U,V ∈ Γðkerπ∗Þ. 

˜ °  
Proof. (a) For any Z, W ∈ Γ μ , from Lemma 2.2 we derive 

ð∇π∗ÞðZ; WÞ ¼ Zð ln λÞπ∗W þWð ln λÞπ∗Z � g1ðZ; WÞπ∗ðgrad ln λÞ: 

It is obvious that if π is a horizontally homothetic map, it follows that ð∇π∗ÞðZ; WÞ ¼ 0: 
Conversely, if ð∇π∗ÞðZ; WÞ ¼ 0, taking W ¼ FZ in above equation, we get 

Zð ln λÞπ∗FZ þ FZð ln λÞπ∗Z � g1ðZ; FZÞπ∗ðgrad ln λÞ ¼ 0: (22) 

Taking inner product in (31) with π∗FZ, we obtain 

g1ðgrad ln λ; ZÞλ2g1ðFZ; FZÞ þ g1ðgrad ln λ; FZÞλ2g1ðZ; FZÞ � g1ðZ; FZÞλ2g1ðgrad ln λ; FZÞ ¼ 0: 
(23) 

˜ °  
From (32), λ is a constant on Γ μ : On the other hand, for U, V ∈ Γðkerπ∗Þ, from Lemma 2.2 we 

have 

ð∇π∗ÞðFU; FVÞ ¼ FUð ln λÞπ∗FV þ FVð ln λÞπ∗FU � g1ðFU; FVÞπ∗ðgrad ln λÞ: 

Again if π is a horizontally homothetic map, then ð∇π∗ÞðFU; FVÞ ¼ 0: Conversely, if 
ð∇π∗ÞðFU; FVÞ ¼ 0, putting U instead of V in above equation, we derive 

2FUð ln λÞπ∗FU � g1ðFU; FUÞπ∗ðgrad ln λÞ ¼ 0: (24) 

Taking inner product in (33) with π∗FU and since π is a conformal submersion, we have 

g1ðFU; FUÞλ2g1ðgrad ln λ; FUÞ ¼ 0: 

˛ ˝ 
From above equation, λ is a constant on ΓðFkerπ∗Þ: Thus λ is a constant on Γ ðkerπ∗Þ⊥ : 

(b) For any U, V ∈ Γðkerπ∗Þ, using (3) and (12) we have 
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˜ 
∇M1 ð∇π∗ÞðU; VÞ ¼ ∇π 

Uπ∗V � π∗ V U 

˜ 
F∇M1 

° ¼ �π∗ FV : U 

Then from (7) and (8) we arrive at 

˜ ° ð∇π∗ÞðU; VÞ ¼ �π∗ FTUFV þ CH∇M1 FV : U 

From above equation, ð∇π∗ÞðU; VÞ ¼ 0 if and only if 

˜ ° 
π∗ FTUFV þ CH∇M1 FV ¼ 0 (25) U 

Since π is non-singular, this implies TUFV ¼ 0 and H∇M1 FV ∈ ΓðFkerπ∗Þ: U 

˜ °  
(c) For Z ∈ Γ μ and V ∈ Γðkerπ∗Þ, from (3) and (12) we get 

ð∇π∗ÞðZ; VÞ ¼ ∇π 
Zπ∗V � π∗ 

˜ 
∇M1 V 

° 
Z 

¼ �π∗ 
˜ 
F∇M1 FV 

° 
: Z 

Using (9) and (10) we have 

˜ ° ð∇π∗ÞðZ; VÞ ¼ π∗ FAZFV þ CH∇M1 FV : Z 

Thus ð∇π∗ÞðZ; VÞ ¼ 0 if and only if 

˜ ° 
π∗ FAZFV þ CH∇M1 FV ¼ 0: Z 

Then, since π is a linear isomorphism between ðkerπ∗Þ⊥ and TM2, ð∇π∗ÞðZ; VÞ ¼ 0 if and only if 

AZFV ¼ 0 and H∇M1 FV ∈ ΓðFkerπ∗Þ: Thus proof is complete. □ Z 

Here we present another result on conformal anti-invariant submersion to be totally geodesic. 

Theorem 5.2 Let π be a conformal anti-invariant submersion from a locally product Riemannian ˜ ° ˜ ° 
manifold M1; g1; F onto a Riemannian manifold M2; g2 . If π is a totally geodesic map then 

˜ ˜ ° ˜ °° 
∇π 

Zπ∗W2 ¼ π∗ F AZFW1 þ V∇Z
M1 BW2 þ AZCW2 þ C H∇M

Z 
1 FW1 þ AZBW2 þH∇Z

M1 CW2 

˛ ˝ ˛ ˝ 
for any Z ∈ Γ ðkerπ∗Þ⊥ and W ¼W1 þW2 ∈ ΓðTMÞ, where W1 ∈ Γðkerπ∗Þ and W2 ∈ Γ ðkerπ∗Þ⊥ . 
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Proof. Using (3) and (12) we have 

˜ ° ð∇π∗ÞðZ; WÞ ¼ ∇π 
Zπ∗W � π∗ F∇M1 FW Z 

˛ ˝ 
for any Z ∈ Γ ðkerπ∗Þ⊥ and W ∈ ΓðTM1Þ. Then from (9), (10) and (15) we get 

˜ ð∇π∗ÞðZ; WÞ ¼ ∇π 
Zπ∗W2 � π∗ FAZFW1 þ BH∇M1 FW1 þ CH∇M1 FW1 þ BAZBW2 Z Z 

þCAZBW2 þ FV∇M1 BW2 þ FAZCW2 þ BH∇M1 CW2 þ CH∇M1 CW2Þ Z Z Z 

˛ ˝ 
⊥ for any W ¼W1 þW2 ∈ ΓðTMÞ, where W1 ∈ Γðkerπ∗Þ and W2 ∈ Γ ðkerπ∗Þ . Thus taking into 

account the vertical parts, we find 

˜ ˜ ° ð∇π∗ÞðZ; WÞ ¼ ∇Z 
ππ∗W2 � π∗ F AZFW1 þ V∇M1 BW2 þ AZCW2 Z 

˜ ° þC H∇M1 FW1 þ AZBW2 þH∇M1 CW2 Þ Z Z 

which gives our assertion. □ 

6. Examples 

In this section, we now give some examples for conformal anti-invariant submersions from 
almost product Riemannian manifolds. 

Example 6.1. Every anti-invariant Riemannian submersion is a conformal anti-invariant submersion 
with λ ¼ I, where I is the identity function [7]. 

We say that a conformal anti-invariant submersion is proper if λ 6¼ I. We now present an 
example of a proper conformal anti-invariant submersion. Note that given an Euclidean space 

R4 with coordinates ðx1; …; x4Þ, we can canonically choose an almost product structure F on R4 

as follows: 

˙ ˆ 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

F a1 þ a2 þ a3 þ a4 ¼ a3 þ a4 þ a1 þ a2 , 
∂x1 ∂x2 ∂x3 ∂x4 ∂x1 ∂x2 ∂x3 ∂x4 

a1, …, a4 ∈ R: (26) 

Example 6.2. Let π be a submersion defined by 

π : R4 ! R2 

ðx1 ;x2;x3;x4 Þ ð cos x1sinh x2; sin x1cosh x2Þ: 
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Then it follows that 
kerπ∗ ¼ spanfV1 ¼ ∂x3; V2 ¼ ∂x4g 

and 

⊥ ðkerπ∗Þ ¼ spanfX1 ¼ ∂x1; X2 ¼ ∂x2g: 

Hence, we have FV1 ¼ X1 and FV2 ¼ X2 imply that Fðkerπ∗Þ ¼ ðkerπ∗Þ⊥ : Also by direct computa-
tions, we get 

π∗X1 ¼ � sin x1sinh x2∂y1 þ cos x1cosh x2∂y2, 

π∗X2 ¼ cos x1cosh x2∂y1 þ sin x1sinh x2∂y2: 

Hence, we have 
2 g2ðπ∗X1; π∗X1Þ ¼  sin 2x1sinh 2x2 þ cos x1cosh 2x2 g1ðX1; X1Þ, 

2 g2ðπ∗X2; π∗X2Þ ¼  sin 2x1sinh 2x2 þ cos x1cosh 2x2 g1ðX2; X2Þ, 

where g1 and g2 denote the standard metrics (inner products) of R4 and R2. Thus π is a 
2 conformal anti-invariant submersion with λ2 ¼ sin 2x1sinh 2x2 þ cos x1cosh 2x2 : 

Example 6.3. Let π be a submersion defined by 

π : R4 ! � R2 � ðx1;x2 ;x3 ;x4 Þ ex3 sin x4 e
x3 cos x4 pffiffi ; pffiffi : 

2 2 

Then it follows that 
kerπ∗ ¼ spanfV1 ¼ ∂x1; V2 ¼ ∂x2g 

and 

⊥ ðkerπ∗Þ ¼ spanfW1 ¼ ∂x3; W2 ¼ ∂x4g: 

Hence we have FV1 ¼W1 and FV2 ¼W2 imply that Fðkerπ∗Þ ¼ ðkerπ∗Þ⊥ : Also by direct computa-
tions, we get 

ex3 sin x4 ex3 cos x4 π∗W1 ¼ pffiffiffi ∂y1 þ pffiffiffi ∂y2, 2 2 

ex3 cos x4 ex3 sin x4 π∗W2 ¼ pffiffiffi ∂y1 � pffiffiffi ∂y2: 2 2 
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Hence, we have � �2 
ðπ∗W1; π∗W1Þ ¼  pe

x3ffiffi ðW1; W1Þ, g2 2 
g1 

� �2 
ex3 g2ðπ∗W2; π∗W2Þ ¼  pffiffi g1ðW2; W2Þ, 2 

where g1 and g2 denote the standard metrics (inner products) of R4 and R2. Thus π is a 

conformal anti-invariant submersion with λ ¼ pex3ffiffi 
2
. 
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Abstract

Semi-supervised learning (SSL) that can make use of a small number of labeled data with
a large number of unlabeled data to produce significant improvement in learning perfor-
mance has been received considerable attention. Manifold regularization is one of the
most popular works that exploits the geometry of the probability distribution that gener-
ates the data and incorporates them as regularization terms. There are many representa-
tive works of manifold regularization including Laplacian regularization (LapR), Hessian
regularization (HesR) and p-Laplacian regularization (pLapR). Based on the manifold
regularization framework, many extensions and applications have been reported. In the
chapter, we review the LapR and HesR, and we introduce an approximation algorithm of
graph p-Laplacian. We study several extensions of this framework for pairwise constraint,
p-Laplacian learning, hypergraph learning, etc.

Keywords: Laplacian regularization, Hessian regularization, p-Laplacian regularization,
semi-supervised learning, manifold learning

1. Introduction

In practical applications, it is generally laborious to obtain the labeled samples, though vast
amounts of unlabeled samples are easily achieved and provide auxiliary information. Semi-
supervised learning (SSL), which takes the full advantages of unlabeled data, is specifically
designed to improve learning performance. In representative semi-supervised learning algo-
rithms, it is usually assumed that the intrinsic geometry of the data distribution is supported
on the low-dimensional manifold.

The popular manifold learning methods include principal components analysis (PCA),
multidimensional scaling (MDS) [1, 2], generative topological mapping (GTM) [3], locally
linear embedding (LLE) [4], ISOMAP [5], Laplacian eigenmaps (LE) [6], Hessian eigenmaps
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(HLLE) [7], and local tangent space alignment (LTSA) [8]. PCA aims to find the low-
dimensional linear subspace which captures the maximum proportion of the variation within 
the data. MDS aims to place each object in N-dimensional space such that the between-object 
distances are preserved as well as possible. GTM can be seen as a nonlinear form of principal 
component analysis or factor analysis. LLE assumes a given sample can be reconstructed by its 
neighbors, represents the local geometry and then seeks a low-dimensional embedding. 
ISOMAP incorporates the geodesic distances imposed by a weighted graph. LE preserves 
neighbor relations of pairwise samples by manipulations on an undirected weighted graph. 
HLLE obtains the final low-dimensional representations by applying eigenanalysis to a matrix, 
which is built by estimating the Hessian over neighborhood. LTSA [8] exploits the local 
tangent information as a representation of the local geometry, and this local tangent informa-
tion is then aligned to provide a global coordinate. Regularization is a key idea in the theory of 
splines [9] and is widely used in machine learning [10] (e.g., support vector machines). In 2006, 
Belkin et al. [11] proposed the manifold regularization framework by introducing a new 
regularization term to exploit the geometry of the probability distribution. Based on this 
framework, many successful manifold regularized semi-supervised learning (MRSSL) algo-
rithms have been reported. 

Laplacian regularization (LapR) [11, 12] is one prominent manifold regularization-based SSL 
algorithm, which approximates the manifold by using the graph Laplacian. Putting the simple 
calculation and prominent performance together, the LapR-based SSL algorithms have been 
widely used in many applications. Liu et al. [13] introduced Laplacian regularization for local 
structure preserving and proposed manifold regularized kernel logistic regression (KLR) for 
web image annotation. Luo et al. [14] employed manifold regularization to smooth the func-
tions along the data manifold for multitask learning. Ma et al. [15] proposed a local structure 
preserving method that effectively integrates Laplacian regularization and pairwise con-
straints for human action recognition. Hu et al. [16] introduced graph Laplacian regularization 
for joint denoising and superresolution of generalized piecewise smooth images. 

Hessian regularization [17] (HesR) has attracted considerable attentions and has shown empir-
ically to perform well in practical problems [18–26]. Liu et al. [27] incorporated both Hessian 
regularization and sparsity constraints into auto-encoders and proposed a new auto-encoder 
algorithm called Hessian regularized sparse auto-encoders (HSAE). Liu et al. [28] proposed 
multi-view Hessian regularized logistic regression for action recognition. While the null space 
of the graph Laplacian along the underlying manifold is a constant function, HesR steers the 
learned function varying linearly in reference to the geodesic distance. In result, HesR can be 
more accurate to describe the underlying manifold of data and achieves the better learning 
performance than LapR-based ones [18]. However, the stability of Hessian estimation depends 
mostly on the quality of the local fit for each data point, which leads to inaccurate estimation 
particularly when the function is heavily oscillating [17]. 

As a nonlinear generalization of the standard graph Laplacian, discrete p-Laplacian has been 
well studied in mathematics community and solid properties have been investigated by previ-
ous work [29, 30]. Meanwhile, graph p-Laplacian has been proved having the advantages for 
exploiting the manifold of data distribution. Bühler et al. [31] provided a rigorous proof of the 
approximation of the second eigenvector of p-Laplacian to the Cheeger cut which indicates the 
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superiority of graph p-Laplacian in local geometry exploiting. Luo et al. [32] proposed full 
eigenvector analysis of p-Laplacian and obtain a natural global embedding for multi-class 
clustering problems, instead of using greedy search strategy implemented by previous 
researchers. Liu et al. [33] proposed p-Laplacian regularized sparse coding for human activity 
recognition. 

In this chapter, we first present some related work, and then introduce several extensions 
based on the manifold regularization framework. Specifically, we present the approximation 
of graph p-Laplacian and the p-Laplacian regularization framework. 

Notations: We present some notations that will be used throughout this chapter. We use L
0 0  
as 

the novel graph Laplacian constructed by the traditional graph Laplacian L and the side 

information. Lp, Lhp and L represent the graph p-Laplacian, hypergraph p-Laplacian and p 

ensemble graph p-Laplacian, respectively. 

2. Related works 

This section reviews some related works on manifold regularization, pairwise constraints and 
hypergraph learning. 

2.1. Manifold regularization framework 

In semi-supervised learning, assume that N training samples X containing l labeled samples �� �� �� �� l lþu xi; yi and u unlabeled samples xj are available. The labeled samples are pairs i¼1 j¼lþ1 

generated from probability distribution, while unlabeled samples are simply drawn according 
to the marginal distribution. To utilize marginal distribution induced by unlabeled samples, 
we assume that if two points x1, x2 are close in the intrinsic geometry of marginal distribution, 
then the labels of x1 and x2 are similar. 

Manifold regularized method introduces appropriate penalty term ∥f ∥2 and reproducing I 

kernel Hilbert spaces (RKHS) norm ∥f ∥2 that is used to control the complexity of the intrinsic K 

geometric structure of the function and the complexity of the classification model, respectively. 
By incorporating two regularization terms, the standard framework aims to minimize the 
following function: 

l 1 X � � 2 2 f ∗ ¼ argmin V xi; yi; f þ ΥAk kf K þ ΥI k kf I : (1) 
f EΗΚ l i¼1 

where V is some loss function, such as the hinge loss function max 0; 1 � yif xð Þi for support 
vector machines (SVM). The parameters ΥA and ΥI balance the loss function and two regular-

2 ization terms. For semi-supervised learning, the manifold regularization term k kf I is a key to 

smooth function along the manifold estimated from the unlabeled samples. 
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2.2. Pairwise constraints 

Pairwise constraints (side information) [34, 35] is a type of supervised information that specify 
whether a pair of data samples belong to the same class (must-link constraints) or different 
classes (cannot-link constraints). Compared with class labels, pairwise constraints can provide 
us weak and more general supervised information. Currently, it has been widely used in semi-
supervised clustering [36, 37], distance metric learning [38], feature selection [39] and dimen-
sion reduction [40, 41].

  n     n Donate X ¼ f gxi 1 as data set with Y ¼ yi as class labels. Let M ¼ xi; xj be the pairwise i¼ i¼1    
must-link constraints set and C ¼ xi; xj be the pairwise cannot-link constraints set, that is,

    
M ¼ xi; xj jxi and xj belong to the same class

    
C ¼ xi; xj jxi and xj belong to different classes : 

Defined on the pairwise must-link constraint set and the cannot-link constraint set, we con-
struct similarity matrices SM and SC, respectively:

   
1, if xi; xj ∈ M 

SM ¼ (2) ij 0, otherwise
   

1, if xi; xj ∈ C 
SCij ¼ : (3) 

0, otherwise 

Then, the must-link Laplacian matrix LM is given by LM ¼ DM - SM , and the cannot-link Lapla-
cian matrix LC is given by LC ¼ DC - SC . Where DM and DC are two diagonal matrices with DM ¼ ii Pn Pn 

j¼1 Sij
M and Dii

C ¼ j¼1 Sij
C , respectively. 

Ding et al. [42] introduced pairwise constraints into spectral clustering algorithm. Especially, 
they revised the distances between sample points by the distance matrix D, where Dij ¼ (   
0 if xi; xj ∈ M  . 
∞ if xi; xj ∈ C 

Kalakech et al. [43] developed a semi-supervised constraint score by using both pairwise 
constraints and local properties of the unlabeled data. 

n oN 
Luo et al. [44] denoted the training set with side information by xi; xj; yij , where yij ¼ ±1 

i, j¼1 

indicates xi and xj are similar or dissimilar. The side information was utilized by denoting the h i 
loss function yij 1 - ∥xi - xj∥2 , where Am is the metric in the m’th heterogeneous domain. Am 

2.3. Hypergraph learning 

Hypergraph [45] is a generalization of a simple graph. Compared with simple graphs, a 
hypergraph illustrates the complex relationship by hyperedges that connect three or more 
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Figure 1. The block scheme of hypergraph. Left: A simple graph in which two points are joined together by an edge if 
they are highly similar. A hypergraph completely illustrates the complex relationship among points by hyperedges. Right:
The H matrix of the hypergraph. The entry vi; ej is set to 1 if a hyperedge ej contains vi, or 0 otherwise. 

vertices (see in Figure 1). Thus, the hypergraph contains more local structure information in 
comparison to simple graph. Hypergraph has been widely used in image classification [46], 
ranking [47] and video segmentation [48]. 

Let G ¼ ðV; EÞ denote a hypergraph with the vertex set V and the hyperedge set E. Denote the 
weight associated with each hyperedge e as w eð Þ. The degree d vð Þ of a vertex is defined by P 
d vð  Þ ¼  ð Þ. The degree of a hyperedge e is denoted as δ e j j. Denote the vertex-w e  ð Þ ¼  e fe∈ Ejv∈ eg 
edge incident matrix H by a ∣V∣ � ∣E∣ matrix, where entry h vð ; eÞ ¼ 1 if v∈ e, and h vð ; eÞ ¼ 0 
otherwise. By these definitions, we have: 

X X 
d vð Þ ¼  ð Þh vð ; eÞ, δ e h v; eÞ: w e  ð Þ ¼  ð (4) 

e∈ E v∈ V 

Then, we denote Dv as the diagonal matrices consisting of vertex degree, De as the diagonal 
degree matrices of each hyperedge and W as the diagonal matrix of edge weights. Then, the 
hypergraph Laplacian can be defined. 

A number of different methods have been used in the literature to build the graph Laplacian of 
hypergraphs. The first category includes star expansion [49], clique expansion [49], 
Rodriquez’s Laplacian [50], etc. These methods aim to construct a simple graph from the 
original hypergraph, and then partitioning the vertices by spectral clustering techniques. The 
second category of approaches defines a hypergraph Laplacian using analogies from the 
simple graph Laplacian. Representative methods in this category include Bolla’s Laplacian 
[51], Zhou’ normalized Laplacian [52], etc. According to [52], the normalized hypergraph 

Laplacian Lhp is defined as 

�1=2 Lhp ¼ I �Dv�1=2HWDe 
�1HTDv : (5) 
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It is worth noting that Lhp is positive semi-definite. The adjacency matrix of hypergraph Whp 

can be formulated as follows: 

Whp ¼ HWHT �Dv: (6) 

For a simple graph, the edge degree matrix De is replaced by 2I. Thus, the standard graph 
Laplacian is 

1 
2 L ¼ I � Dv�2

1 
HWHTDv�

1 

2 � � (7) 
1 1=2WhpDv�1=2 ¼ I �Dv� : 
2 

3. LapR-based SSL 

Laplacian regularization is one of most prominent manifold regularization methods that 
utilizes the graph Laplacian matrix to characterize the manifold structure. In this section, we 
introduce the traditional Laplacian support vector machines (LapSVM) and Laplacian kernel 
least squares (LapKLS) as examples of Laplacian regularization algorithms. Then, we extend 

the algorithms by building the novel graph Laplacian L
0 0  
which combines the traditional graph 

Laplacian L with the side information to boost locality preservation. 

3.1. LapSVM and LapKLS 

As previously mentioned, the manifold regularization framework is built by Eq. (1). The 
traditional LapSVM solves this optimization problem with the hinge loss function 

l 1 X� � ΥI 2 f ∗ 1 � yif xi þ ΥAk k  fTLf: (8) ð  Þ ¼ arg min ð Þ  f K þ 
f EΗΚ l þ ðl þ uÞ2 

i¼1 

T where f is given as f ¼ ½f xð Þ1 ; f xð Þ2 ; ⋯; f xð lþuÞ� , L is the graph Laplacian with L ¼ D �W , Pn where Wij is weight vector, the diagonal matrix D is given by Dii ¼ j¼1 Wij. 

According to the representer theorem, the solution of the above problem can be expressed as below: 

lþu 

f ∗ x α∗ 
i Kðxi; xÞ 

X
ð Þ ¼  : (9) 

i¼1 

where K is the kernel function. Therefore, we rewrite the objective function as 

l 1 X� � ΥI f ∗ 1 � yif xi þ þ ΥAαT Kα þ 2 α
T KLKα: (10) ð Þ ¼ arg min ð Þ  

f EΗΚ l i¼1 ðl þ uÞ 

By employing the least square loss in Eq. (10), we can present the locality preserved kernel 
least squares model defined in Eq. (11) as follows 
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l 1 X� �2 ΥI f ð∗Þ ¼  min yi � f xð Þi þ ΥAαT Kα þ αT KLKα: (11) 2 f EΗΚ l ðl þ uÞ i¼1 

Taking the derivation to the objective functions, we can get the solution of α. 

3.2. Pairwise constraints-combined manifold regularization 

Assume that samples with the similar features tend to have the similar class labels, combining 
the Laplacian regularization and pairwise constraints is a good way to exploit the local 
structure and boost the classification results. Therefore, we introduce the pairwise constraints 
into traditional LapR. Particularly, we introduce three combination strategies based on experi-
ences. Finally, we present the locality preserved support vector machines and kernel least 
squares respectively. 

According to the definition, we can compute the must-link Laplacian matrix LM and the 

cannot-link Laplacian matrix LC . The first two forms of the combination are defined on the 
traditional graph Laplacian L and must-link constraints and can be written as 

L
0 0  ¼ L LM þ αΙ (12) 

and 

L
0 0  ¼ L þ αLM (13) 

respectively, where α is the parameter to balance the weight between the two types of 
Laplacian matrices. 

Based on the cannot-link constraints C, we can compute the similarity matrix S as Sij ¼ 

�1, if xi; xj ∈ C 
. The third form of the combination is defined on the traditional graph 

1, otherwise 
Laplacian and pairwise cannot-link constraints and can be written as 

L
0 0  ¼ L:∗S: (14) 

Actually, there are other combination strategies using both the must-link and cannot-link 
constraints to get a better result than traditional methods. However, the performance is no 
better than the result using one only from the experiences. Therefore, we just put these three 
proposed graph Laplacian into practice. 

Introducing the novel graph Laplacian L
0 0  
to SVM, we rewrite the learning model as follows: 

l 1 X� � 2 ΥI 0 0  
f ð∗Þ ¼  arg min 1 � yif xð Þi k kf fTL f: (15) þ þ ΥA K þ 2 f EΗΚ l i¼1 ðl þ uÞ 

According to the representer theorem, the solution of the above problem can be expressed as 
below: 
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lþu X
f ∗ ð  Þ ¼x α∗ 

i Kðxi; xÞ: (16) 
i¼1 

Therefore, we rewrite the objective function as 

l 1 X� � ΥI 0 0  
f ∗ 1 � yif xi þ þ ΥAαT Kα þ 2 α

T KL Kα: (17) ð  Þ ¼ arg min ð Þ  
f EΗΚ l ðl þ uÞ i¼1 

By employing the least square loss in Eq. (17), we can present the locality preserved kernel 
least squares model defined in Eq. (18) as follows 

l 1 X� �2 ΥI 0 0  
f ∗ yi � f xi þ ΥAΥAαT Kα þ αT KL Kα: (18) ð  Þ ¼ min ð Þ  2 f EΗΚ l ðl þ uÞ i¼1 

We compare our proposed local structure preserving algorithms with the traditional well-
known Laplacian algorithms on CAS-YNU-MHAD dataset [53]. CAS-YNU-MHAD dataset 
contains 10 human actions including jumping up, jumping forward, running, walking S, 
walking quickly, walking, standing up, sitting down, lying down and typing. Figure 2 shows 
the examples. In experiments, we choose the data from four sensors (be placed in the right 
shoulder, left forearm, left hand and spine) to construct multi-view features. Ninety percent 
data of per action are randomly selected as the training data, and the rest for testing. 

In semi-supervised classification experiments, we randomly select a certain percentage (10, 20, 
30, 50%) samples of training data as labeled data. All the classification methods are measured by 
the average precision (AP) [54] based on the testing data. Note that the supervised information 

Figure 2. Three examples from 10 actions, jumping up, walking S and sitting down (up to bottom). 
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Figure 3. The total classification result under 10% labels (a) KLS, (b) SVM. 

Figure 4. The total classification result under 20% labels (a) KLS, (b) SVM. 

(labeled information and side information) are randomly selected from training set. To avoid any 
potential bias induced by data selecting, the above process is repeated for five times. 

For the first two proposed algorithms using the must-link constraints, we first determine the 
parameter α which balances the traditional graph Laplacian and the must-link Laplacian matrix.˜ ° 
The parameter α of novel methods is tuned from the candidate set eiji ¼ �10, � 9, � 8, ⋯, 10 

through cross-validation. In addition, the regularization parameters ΥA,ΥI are chosen from ˜ ° 
10�8; ; 10�7; ; 10�6;⋯; ; 106; ; 107; ; 108 through cross-validation on the training data. We verify 

the AP performance to select the proper parameters. Note that the parameter α may be different 
for the same classifier to get the best performance under the different proportion of side 
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information. In results, the legend NewLapKLS-1 represents the kernel least squares classifier 
0 0  ˜ ° 

using algorithm L ¼ L LM þ αΙ , NewLapSVM-2 stands for the support vector machines clas-
M sifier using algorithm L

0 0  ¼ Lþ αL , and so on. 

Figure 3 shows the classification results achieved by KLS and SVM classifiers under the 10% 
labeled samples. We can see two main points. First, our proposed three local structure preserv-
ing algorithms with pairwise constraints usually get the overall better performances than the 
well-known semi-supervised methods (LapKLS and LapSVM) without side information. Sec-
ond, we can clearly see, in most cases, the results gradually become better with the increase of 
side information. From Figures 4–6, we can get the analogous observations for our proposed 

Figure 5. The total classification result under 30% labels (a) KLS, (b) SVM. 

Figure 6. The total classification result under 50% labels (a) KLS, (b) SVM. 
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Figure 7. The result of jumping up with the different proportion of side information by LapKLS, LapSVM, NewLapKLS-1 
and NewLapSVM-1. 

methods compared with their counterparts. These observations indicate that our proposed 
learning model can better explore and exploit the local structure by taking advantage of the 
geometrical structure information in the pairwise constraints and manifold regularization. 
What we can note is that the classification results have slight fluctuation with more side 
information when the number of class labels is large. These observations suggest it is critical 
to select parameters for our proposed methods. 

To investigate whether the single action of CAS-YNU-MHAD can get the outperformance, we 
choose jumping up as an example in Figure 7. We can find that, our proposed algorithm 
consistently performs better than the previous algorithm without side information. Especially, 
we can see, the classification result can get a significant development when the number of 
labeled samples is limited. 

4. HesR-based SSL 

Although LapR has received extensive attention, it is observed that the null space of the graph 
Laplacian along the underlying manifold is a constant function that possibly results in poor 
generalization. In contrast to Laplacian, Hessian can properly exploit the intrinsic local geom-
etry of the data manifold. In recent works [23–26, 28], HesR based SSL algorithms have been 
proved to achieve better performance than LapR based ones. 

Hessian matrix can be computed by the following four steps. 

Step 1: Neighborhood construction. Using k-neighborhood to define neighbors in Euclidean 
distance for each input point xi, we get neighborhood matrix Ni. 

Step 2: Create local tangent coordinates. Conduct singular value decomposition on neighbor-
hood matrix Ni ¼ UDV. The first d columns of V (Vi ¼ ½v1; v2; …; vd�) mean the tangent 
coordinates of data points xi. 
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Step 3: Build local Hessian estimator. Apply Gram-Schmidt procedure on the matrix ½1; Vi; Qi� 
with the first column is a vector of ones, Qi ¼ vi⊠vj is a matrix of mðm þ 1Þ=2 1 ≤ i ≤ j ≤ d 

columns to get Mb k
i . Then taking the last mðm þ 1Þ=2 columns of Mb k as Hi. i 

Step 4: Construct Hessian matrix H. A symmetric matrix H is constructed with the entry P P 
Hij ¼ l r Hr

l 
, iH

l
r, j. 

The HesR model can be expressed in: 

l 
2 ΥI 1 X � � 

f ∗ V xi; yi; f f fTHf: ð  Þ ¼ arg min þ ΥAk k  (19) K þ 2 f EΗΚ l ðl þ uÞ i¼1 

Hessian has been widely utilized in improving the SSL classification performance. Liu et al. [18] 
present multi-view Hessian discriminative sparse coding (mHDSC) which seamlessly integrates 
Hessian regularization with discriminative sparse coding for multi-view learning problems. In 
[24], HesR was employed into support vector machine to boost the classifier. In [19], HesR was 
integrated into multi-view learning for image annotation, extensive experiments on the PASCAL 
VOC’07 dataset validate the effectiveness of HesR by comparing it with LapR. 

5. pLapR-based SSL 

Although the p-Laplacian has nice theoretical foundations, it is still a strenuous work to 
approximate graph p-Laplacian, which extremely limits the applications of p-Laplacian regu-
larization. In this section, we provide an effect and efficient fully approximation of graph p-
Laplacian, which significantly lows down the computation cost. Then we integrate the approx-
imated graph p-Laplacian into manifold regularization framework and develop p-Laplacian 
regularization. Based on the pLapR, several extended algorithms were proposed. 

5.1. pLapR 

The graph p-Laplacian is approximated by getting all eigenvectors and eigenvalues of p-

Laplacian [55]. Assume that f ∗1, f  ∗2 , ⋯, f  ∗K are K eigenvectors of p-Laplacian Δw associated p 

with unique eigenvalues λ∗ 
1, λ

∗ 
2, ⋯, λK 

∗ . Luo et al. [32] introduced an approximation for full 
eigenvectors of p-Laplacian by solving the following p-Laplacian embedding problem: 

P p 
X ijwij�f ik � f kj � 

min F JEðFÞ ¼  
∥f k∥p (20) 

k p 

s:t: F T F ¼ I: 

Solving the Eq. (20) with the gradient descend optimization, we can then obtain the full eigenvalues 

Λ∗ ¼ λ1 
∗ ; λ∗ 

2; ⋯; λ∗ of p-Laplacian associated with the eigenvectors F∗ ¼ f ∗1; f ∗2; ⋯; f ∗K by K P p 

ij
wij jf i �f jj λp ¼ . Finally, the graph p-Laplacian approximated by Lp ¼ F ∗ΛF ∗T . 
2∥f ∥pp 
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We introduce the approximation graph p-Laplacian into a regularizer to exploit the intrinsic 
local geometry of the data manifold. Therefore, in p-Laplacian regularization framework, the 
optimization problem in Eq. (1) becomes 

l 1 X � � ΥI 2 f ∗ ¼ argmin V xi; yi; f þ ΥAk kf fTLpf: (21) K þ 2 f EΗΚ l i¼1 ðl þ uÞ 

Here, Lp is the graph p-Laplacian. 

The proposed pLapR can be applied to variant MRSSL-based applications with different 
choices of loss function. Here, we apply pLapR to support vector machines (SVM) and kernel 
least squares (KLS) as examples. 

Applying the hinge loss function in p-Laplacian learning, the p-Laplacian support vector 
machines (pLapSVM) solves the following optimization problem: 

l 1 X� � ΥI f ∗ 2 ¼ arg min 1 � yif xð Þi þ ΥAk kf fTLpf: (22) þ K þ 2 f EΗΚ l ðl þ uÞ i¼1 

The representer theorem has been proved exist and has the general form in Eq. (16). Hence the 
optimization problem (21) can be expressed as 

l 1 X� � ΥI f ∗ ¼ arg min 1 � yif xð Þi þ þ ΥAαT Kα þ 2 α
T KLpKα: (23) 

f EΗΚ l ðl þ uÞ i¼1 

We outline the KLS with p-Laplacian regularization. For p-Laplacian kernel least squares 
(pLapKLS), it solves the following optimization problem 

l 1 X� �2 ΥI f ∗ ¼ min yi � f xð Þi þ ΥAαT Kα þ αT KLpKα: (24) 2 f EΗΚ l ðl þ uÞ i¼1 

To evaluate the effectiveness of the proposed pLapR, we apply pLapSVM and pLapKLS to 
scene recognition on the Scene 67 database [56] and Scene 15 data set [57]. Figure 8 illustrates 
the framework of pLapR for scene recognition. 

The Scene 67 data set contains 15,620 indoor scene images collected from different sources 
including online image search tools, online photo sharing sites and the LabelMe dataset. Partic-
ularly, these images can be categorized into 67 classes covering 5 big scene groups (i.e., stores, 
home, public spaces, leisure and working place). Some example images are shown in Figure 9. 

Scene 15 data set is composed of 15 scene categories, totally 4485 images. Each category has 200– 
400 images. The images contain not only indoor scenes, such as living room, kitchen, and store, 
but also outdoor scenes, such as forest, mountain, tall building, open country, and so on (see in 
Figure 10). 

For Scene 67 dataset, we randomly select 80 images of each class to form the training set and 
the rest as testing set. For Scene 15 dataset, 100 images per class are randomly selected as the 
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Figure 8. The framework of pLapR for indoor scene recognition. 

Figure 9. Some example images of Scene 67 database. The dataset totally has 67 indoor scene categories that can be 
grouped into 5 big scene groups. Each row demonstrates one big scene group. 

training set, and the rest for testing. In semi-supervised experiments, a certain percentage (10, 
20, 30, 50%) samples of training set are randomly assigned as labeled data. To avoid any bias 
introduced by the random partitioning of samples, the above assignment is carried out for five 
times independently. 
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Figure 10. Some example images of Scene 15 data set. The dataset totally has 15 scene categories. 

˜ 
The regularization parameters that is, γA and γI are tuned from the candidate set 10iji ¼ �10, 
�9, � 8, ⋯, 10g and the parameter p for pLapR from the candidate set f1; 1:1; 1:2; ⋯; 3g through 
cross-validation on the training data with 10% labeled sample, respectively. The performance is 
measured by the average precision (AP) for single class and mean average precision (mAP) for 
overall classes. Firstly, we show the mAP boxplot of the pLapR on Scene 67 dataset when p ¼ 2 and 
the standard LapR for comparison in Figure 11. We can clearly see that the performance of pLapR 
with p ¼ 2 is similar to standard LapR, which demonstrates that the graph p-Laplacian with p ¼ 2 
becomes the standard graph Laplacian. 

Figure 12 illustrates the performance of pLapKLS with different p values. The upper subfigure 
is the performance of the Scene 67 database. We observe that the best performance of indoor 
scene classification on the Scene 67 dataset can be obtained with p ¼ 1:1. The lower subfigure is 
the performance of the Scene 15 database and the best performance is achieved when p = 1. 

Figure 11. mAP of pLapR(p = 2) and LapR on Scene 67 dataset. Each subfigure reports the results under different labeled 
samples. In each subfigure, the y-axis is the mAP over all scene classes, and the x-axis is different classifiers. 
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Figure 12. mAP results of pLapKLS under different p with 10% labeled sample.The y-axis is the mAP over all classes, and 
the x-axis is the parameter p. 

Then we evaluate the performance of the pLapR with the representative LapR and HesR. 
Figure 13 and Figure 14 show the mAP performance on Scene 67 data set and Scene 15 data 
set, respectively. The four subfigures of upper row are KLS methods, and the lower four ones 
are SVM methods. From the results of two data sets, we can see that the pLapR outperforms 
both LapR and HesR especially when only a small number of samples labeled. 

To discuss the AP performance of different algorithms for single class, we show the results 
of several classes of Scene 15 data set including mountain, open country, tall building and 
industrial. Each subfigure corresponds on single scene class. The upper four subfigures are 
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Figure 13. mAP of different algorithms on Scene 67 data set. The four subfigures of upper row are KLS methods, and the 
lower four ones are SVM methods. 

KLS methods, and the lower four ones are SVM methods. In each subfigure, the y-axis is the 
AP results and the x-axis is the number of labeled samples. From the AP results, we can find 
that, in most cases, the pLapR performs better than the traditional methods including LapR 
and HesR (Figure 15). 

Figure 14. mAP of different algorithms on Scene 15 data set. The four subfigures of upper row are KLS methods, and the 
lower four ones are SVM methods. 
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Figure 15. AP of different methods on several classes of Scene 15 data set including mountain, open country, tall building 
and industrial. Each subfigure corresponds on single scene class. The upper four subfigures are KLS methods, and the 
lower four ones are SVM methods. In each subfigure, the y-axis is the AP results and the x-axis is the number of labeled 
samples. 

5.2. Hypergraph p-Laplacian (HpLapR) 

In this subsection, we propose a hypergraph p-Laplacian regularized method for image recogni-
tion. The hypergraph and p-Laplacian [31, 58, 59] both provide convincing theoretical evidence to 
better preserve the local structure of data. However, the computation of hypergraph p-Laplacian 
is difficult. We provide an effect and efficient approximation algorithm of hypergraph p-
Laplacian. Considering the higher order relationship of samples, the hypergraph p-Laplacian 
regularizer is built for preserving local structures. Hypergraph p-Laplacian regularization 
(HpLapR) is also introduced to logistic regression for remote sensing image recognition. 

˜ ° 
f ∗hp1 ; ⋯; ; f ∗hpn Assume that hypergraph p-Laplacian has n eigenvectors F ∗hp ¼ ; ; f ∗hp2 asso-

˜ ° 
λ ∗hp;λ ∗hp;⋯;λ∗hp ciated with unique eigenvalues λ∗hp ¼ , we compute the approximation of 1 2 n 

¼ F ∗hpλ∗hpF ∗hp
T 

hypergraph p-Laplacian Lhp by Lhp . Thus, it is important to obtain all eigen-p p 

vectors and eigenvalues of hypergraph p-Laplacian. 

Although a complete analysis of hypergraph p-Laplacian is challenging, we can easily generate 
a hypergraph with a group of hyperedges [52]. In detail, we construct hypergraph Laplacian 

Lhp and compute adjacency matrix Whp by Eq. (5) and Eq. (6), respectively. 

Following the study on plapR [31, 55], eigenvalue and the corresponding eigenvector on 
hypergraph p-Laplacian can be computed by the following hypergraph p-Laplacian embed-
ding problem: 



� � 

� � 
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P p hp�f hpk � f hpk� X � � � � ijwij i j 
F hp min F hpJE ¼ 

∥f hpk∥p (25) 
k p 

F hp
T 
F hp ¼ I s:t: 

Solving the problem of Eq. (25) with the gradient descend optimization. We can also get the 
P � �p 

hp � f hpk f hpk 
� 

w � � � 
ij ij i j 

1 ; λ
hp 
2 ; ⋯; λhp full eigenvalue λhp ¼ λhp by λhp ¼ . n k ∥f hpk∥p 

p 

¼ F hpλhpF hp
T 

Finally, the approximation of Lhp can be solved by Lhp . p p 

According to the manifold regularization framework, the proposed HpLapR can be written as 
the following optimization problem: 

lX � � 2 fTLhp f ∗ ¼ arg min 
1 

V xi; yi; f þ ΥAk kf K þ 
ΥI f: (26) 2 p 

f EΗΚ l ðl þ uÞ i¼1 

Here, Lhp is hypergraph p-Laplacian. We employ the proposed HpLapR with logistic regression. p 

Substitute logistic loss function in Eq. (26), the HpLapR can be rewritten as 

l � � �� X �yif xð Þi 2 fTLhp f ∗ ¼ arg min 
1 

log 1 þ e þ ΥAk kf K þ 
ΥI fT : (27) 2 p 

f EΗΚ l ðl þ uÞ i¼1 

According to the representer theorem, the solution of (27) w.r.t. f exists and can be expressed 
by Eq. (16). Thus, we finally construct the HpLapR as the following optimization problem: 

l � � �� X �yiKðxi ;xÞα αT KLhp f ∗ ¼ arg min 
1 

log 1 þ e þ ΥAαT Kα þ 
ΥI Kα: (28) 2 p 

f EΗΚ l ðl þ uÞ i¼1 

Apply the conjugate gradient algorithm, we can get the solution of the optimized f . 

To evaluate the effectiveness of the proposed HpLapR, we compare HpLapR with other local 
structure preserving algorithms including LapR, HLapR and pLapR. Figure 16 illustrates the 
framework of HpLapR for UC-Merced data set. 

UC-Merced data set [60] consists of totally 2100 land-use images collected from aerial 
orthoimage with the pixel resolution of one foot. These images were manually selected into 
21 classes: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residen-
tial, forest, freeway, golf course, harbor, intersection, medium density residential, mobile home 
park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts 
(see in Figure 17). 

In our experiments, we extract high-level visual features using the deep convolution neural 
network (CNN) [61]. We randomly choose 50 images per class as training samples and the rest 
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Figure 16. The framework of HpLapR for remote sensing image classification. 

Figure 17. Class examples of UC-Merced data set. The dataset totally has 21 remote sensing categories that can be simply 
grouped into six groups according to the distinction of land use. Each column represents one group. 

as testing samples. For hypergraph construction, we regard each sample in the training set as a 
vertex, and generate a hyperedge for each vertex with its k nearest neighbors (so the hyperedge 
connects k þ 1 samples) [62]. It is worthy to notice that, for our experiments, the kNN-based 
hyperedges generating method is implemented only in six groups, not in the overall training 
samples. For example, for a sample of baseball diamond, the vertices of the corresponding 
hyperedge are chosen from the first group (baseball diamond, golf course and tennis courts) of 
Figure 17. The setting of class labels is as same as pLapR. 

We conduct the experiments on the data set to obtain the proper modal parameters. The 
neighborhood size k of a hypergraph varies in a range f5; 6; 7; ⋯; 15g through cross-validation. 
The setting of regularization parameters γA,γI and p are as same as pLapR experiments. 
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Figure 18. Performance of mAP with different p values on validation set. 

Figure 18 illustrates the mAP performance of pLapR and HpLapR on the validation set when p 
varies. The x-axis is the parameter p and the y-axis is mAP for performance measure. We can 
see that the best mAP performance for pLapR can be obtained when p ¼ 2:3, while the best 
performance of HpLapR is achieved when p = 2.6. 

We compare our proposed HpLapR with the representative LapR, HLapR and pLapR. From 
Figure 19, we can observe that, HpLapR outperforms other methods especially when only a 
small number of samples are labeled. This suggests that our proposed method has the superiority 
to preserve the local structure of the data because it integrates hypergraph learning with graph p-
Laplacian. To evaluate the effectiveness of HpLapR for single class, Figure 20 shows the AP 
results of different methods on several land-use classes including beach, dense residential, free-
way and tennis court. From Figure 20, we can find that, in most cases, HpLapR performs better 
than both pLapR and HLapR, while pLapR and HLapR consistently outperforms than LapR. 

5.3. Ensemble p-Laplacian regularization (EpLapR) 

As a natural nonlinear generalization of graph Laplacian, p-Laplacian has been proved having 
the rich theoretical foundations to better preserve the local structure. However, it is difficult to 
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Figure 19. mAP performance of different algorithms. 

determine the fitting graph p-Lapalcian, that is, the parameter p that is a critical factor for the 
performance of graph p-Laplacian. In this section, we develop an ensemble p-Laplacian regu-
larization to fully approximate the intrinsic manifold of the data distribution. EpLapR incor-
porates multiple graphs into a regularization term in order to sufficiently explore the 
complementation of graph p-Laplacian. Specifically, we construct a fused graph by introducing 
an optimization approach to assign suitable weights on different p-value graphs. Then, we 
conduct semi-supervised learning framework on the fused graph. 

Lp Assume a set of candidate graph p-Laplacian 1; ⋯; Lp , according to the manifold regulariza-m 

tion framework, the proposed EpLapR can be written as the following optimization problem: 

l ΥI 1 X � � 
f ∗ 2 ¼ argmin V xi; yi; f þ ΥAkf kK þ fT Lf: (29) 

f EΗΚ l i¼1 
n2 

Pm Pm 
where L is the optimal fused graph with L ¼ μkL

p
k , s:t: μk ¼ 1, μk ≥ 0, for k ¼ 1, ⋯, m. 

k¼1 k¼1 
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Figure 20. AP performance of different methods on several classes. 

To avoid the parameter μk overfitting to one graph [63], we make a relaxation by changing μk 

to μγ 
k , and obtain the optimization problem as:.

 ! 
l 

2 ΥI
m 1 X � � X 

f ∗ ¼ arg minf EΗΚ 
V xi; yi; f þ ΥAk kf K þ n2 

fT μγ 
k L

p
k f: 

l i¼1 k¼1 (30) 
m X

s:t: μk ¼ 1, μk ≥ 0, for k ¼ 1, ⋯, m  
k¼1 

The representor theorem presents us with the existence and the general form of Eq. (16) under 
a fixed μ. Therefore, we rewrite the objective function as

 ! 
1 l � � ΥI

m 

¼ arg minf EΗΚ 
V xi; yi; f þ ΥAαT Kα þ k L

p Kα: f ∗ 
X 

αT K 
X 

μγ 
2 k l ðl þ uÞ i¼1 k¼1 (31) 

m X
s:t: μk ¼ 1, μk ≥ 0, for k ¼ 1, ⋯, m  

k¼1 
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Figure 21. mAP performance of different algorithms on KLS method. 

Here, an alternating optimization procedure is utilized to minimize f ∗ . 

We compare EpLapR with other local structure preserving algorithms including LapR, HesR 
and pLapRon UC-Merced data set. We apply the support vector machines and kernel least 
squares for remote sensing image classification. 

In the experiments, we apply the parameter setting as the same as pLapR, and the experiment 
of pLapR is conducted with p ¼ 2:8. For EpLapR, we created two graph p-Laplacian sets. For 
the first set (EpLapR-3G), we choose p ¼ f2:5; 2:7; 2:8g, which led to 3 graphs. For another one 
(EpLapR-5G), with 5 graphs where p ¼ f2:4; 2:5; 2:6; 2:7; 2:8g. 
We compare our proposed EpLapR with the representative LapR, HesR and pLapR. 
Figures 21 and 22 demonstrate the mAP results of different algorithms on KLS methods 
and SVM methods, respectively. We can see that, in most cases, the EpLapR outperforms 
LapR, HesR and pLapR, which shows the advantages of EpLapR in local structure of 
preserving. 
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Figure 22. mAP performance of different algorithms on SVM method. 

6. Conclusions 

In this chapter, we show the LapR, HesR, pLapR and present several extensions based on the 
manifold regularization framework. We propose a local structure preserving method that 
effectively integrates manifold regularization and pairwise constraints. We develop an efficient 
approximation algorithm of graph p-Laplacian and propose p-Laplacian regularization to 
preserve the local geometry. Considering the hypergraph contains more local grouping infor-
mation in comparison to simple graph, we propose hypergraph p-Laplacian regularization to 
preserve the geometry of the probability distribution. In practical application of p-Laplacian 
regularization model, it is difficult to determine the optimal graph p-Lapalcian because the 
parameter p usually chose by cross validation method which lacks the ability to approximate 
the optimal solution. Therefore, we propose an ensemble p-Laplacian regularization to better 
approximate the geometry of the data distribution. 
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7. Expectations 

In the general image recognition, images are naturally represented by multi-view features, 
such as color, shape and texture. Each view of a feature summarizes a specific characteristic of 
the image, and features for different views are complementary to one another. Therefore, in the 
future work, we will study the multi-view p-Laplacian regularization to effectively explore the 
complementary properties of different features from different views. Meanwhile, we will try to 
combine the p-Laplacian learning with the deep learning to get a more effective p-Laplacian 
learning algorithm. 
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Abstract

Manifold learning theory has seen a surge of interest in the modeling of large and exten-
sive datasets in medical imaging since they capture the essence of data in a way that
fundamentally outperforms linear methodologies, the purpose of which is to essentially
describe things that are flat. This problematic is particularly relevant with medical imag-
ing data, where linear techniques are frequently unsuitable for capturing variations in
anatomical structures. In many cases, there is enough structure in the data (CT, MRI,
ultrasound) so a lower dimensional object can describe the degrees of freedom, such as in
a manifold structure. Still, complex, multivariate distributions tend to demonstrate highly
variable structural topologies that are impossible to capture with a single manifold learn-
ing algorithm. This chapter will present recent techniques developed in manifold theory
for medical imaging analysis, to allow for statistical organ shape modeling, image seg-
mentation and registration from the concept of navigation of manifolds, classification, as
well as disease prediction models based on discriminant manifolds. We will present the
theoretical basis of these works, with illustrative results on their applications from various
organs and pathologies, including neurodegenerative diseases and spinal deformities.

Keywords: manifold learning, medical imaging, discriminant manifolds, piecewise
geodesic regression, spine deformities, neurodegenerative diseases, shape modeling

1. Introduction

Learning on large medical imaging datasets is an emerging discipline driven from the avail-
ability of vast amounts of raw data in many of today’s biomedical studies. However, chal-
lenges such as unbalanced data distributions, complex multivariate data and highly variable
structural topologies demonstrated by real-world samples makes it much more difficult to
efficiently learn the associated representation. An important goal of scientific data analysis in
medicine, particularly in neurosciences or oncology, is to understand the behavior of biological
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process or physiological/morphological alterations. This introduces the need to synthesize 
large amounts of multivariate data in a robust manner and raises the fundamental question of 
data reduction: how to discover meaningful representations from unstructured high-dimen-
sional medical images. 

Several approaches have attempted to understand how dimension reduction and regression 
establishes the relationship in subspaces and finally determine statistics on manifolds that 
optimally describe the relationships between the samples [1]. However, certain assumptions 
based on the representation of shapes and images using smooth manifolds are made in most 
cases, which frequently will not be adequate in the presence of medical imaging data and often 
perturbed by nuisance articulations, clutter or varying contrast. 

High-dimensional classification methods have shown promise to measure subtle and spatially 
complex imaging patterns that have diagnostic value [2, 3]. Defining statistics on a manifold is 
not a straightforward process when simple statistics cannot be directly applied to general 
manifolds [4]. But while Euclidean estimators have been used for vector spaces, none have 
been adapted for multimodal data lying in different spaces. Still, there has been interest in the 
characterization of data in a Riemann space [5, 6]. Unfortunately, manifold-valued metrics 
based on the centrality theory or the geometric median [7] often lacks robustness to outliers. 

A related topic lies in dimensionally reduced growth trajectories of various anatomical sites 
which have been investigated in neurodevelopment of newborns for example, based on geo-
desic shape regression to compute the diffeomorphisms with image time series of a population 
[8]. These regression models were also used to estimate spatiotemporal evolution of the 
cerebral cortex [9]. The concept of parallel transport curves in the tangent space from low-
dimensional manifolds proposed by Schiratti et al. [10] was used to analyze shape morphology 
[11] and adapted for radiotherapy response [12]. Regression models were proposed for both 
cortical and subcortical structures, with 4D varifold-based learning framework with local 
topography shape morphing being proposed by Rekik et al. [13]. 

This chapter presents several manifold learning methodologies designed to address challenges 
encountered in medical imaging. In Section 2, we present an articulated shape inference model 
from nonlinear embeddings, expressing the global and local shape variations of the spine and 
vertebrae composing it, introduced in [14]. We then present in Section 3 a probabilistic model 
from discriminant manifolds to classify the neurodegenerative stage of Alzheimer’s disease. 
Finally, a piecewise-geodesic transport curve in the tangent space from low-dimensional mani-
folds designed for the prediction of correction in spinal surgeries is shown in Section 4, 
introducing a time-warping function controlling the rate of shape evolution. We conclude this 
article in Section 5. 

2. Shape inference through navigating manifolds 

Statistical models of shape variability have been successful in addressing fundamental vision 
tasks such as segmentation and registration in medical imaging. However, the high dimen-
sionality and complex nonlinear underlying structure unfortunately makes the commonly 
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used linear statistics inapplicable for anatomical structures. Manifold learning approaches 
map high-dimensional observation data that are presumed to lie on a nonlinear manifold, onto 
a single global coordinate system of lower dimensionality. 

Inferring a model from the underlying manifold is not a novel concept but far from being trivial. 
In this section, we model both global statistics of the articulated model and local shape variations 
of vertebrae based on local measures in manifold space. We describe a spine inference/segmen-
tation method from CT and MR images, where the model representation is optimized through a 
Markov Random Field (MRF) graph, balancing prior distribution with image data. 

2.1. Data representation 

Our spine model S ¼ fs1; …; sLg consists of an interconnection of L vertebrae. For each verte-n o 
i bra si, we recover a triangular mesh with vertices vjjj ¼ 1; …; V , where the jth vertex corre-

sponds to approximately the same location from one shape to another and V the number of 
vertices. Additionally, every si is annotated with landmarks on each model to rigidly register 
each object to its upper neighbor. Hence, an articulated deformable model (ADM) is 
represented by a vector of local intervertebral rigid transformations A ¼ ½T1; T2; …; TL�. To 
perform global shape modeling of S, we convert A to an absolute representation Aabs ¼ 
½T1; T1 ∘ T2; …; T1 ∘ T2 ∘ … ∘ TL� using recursive compositions. The transformations are 
expressed in the local coordinate system (LCS) of the lower vertebra. Center of transformation 
is the intersection of all three vertebral axes, following anteroposterior, cranial-caudal and left-
right directions. Rigid transformations described here are the combination of a rotation matrix 
R, a translation t and scaling s. We formulate the rigid transformation T ¼ fs; R; tg of a 

triangular mesh model as y ¼ sRx þ t where x, y, t ∈ ℜ3. 

2.2. Manifold embedding 

For nonlinear embeddings, we rely on the absolute vector representation Aabs as given previ-

ously. Let us now consider N articulated shape models expressed by the feature vectors Ai 
abs, of 

dimensionality D. The aim is to create a low-dimensional manifold consisting of N points Yi, 
Yi ∈ ℜd , i ∈ ½1; N� where d ≪ D based on [15]. In such a framework, if an adequate number of 
data points is available, then the underlying manifold M is considered to be “well-sampled.” 
Therefore, it can represent the underlying population structure. In the sub-cluster corres-
ponding to a pathological population, each point of the training set and its neighbors would 
lie within a locally linear patch as illustrated in Figure 1. 

The main limitation of embedding algorithms is the assumption of Euclidean metrics in the 
ambient space to evaluate similarity between sample points. Thus, a metric in the space of 
articulated structures is defined so that it accommodates for anatomical spine variability and 
adopts the intrinsic nature of the Riemannian manifold geometry allowing us to discern 
between articulated shape deformations in a topological invariant framework. For each point, 
the K closest neighbors are selected using a distortion metric which is particularly suited for 

geodesics. The metric dM Aabs 
i ; Aj estimates the distance of articulated models i, j where abs 
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Figure 1. Representation of intervertebral transformations in manifold space. 

Ai 
abs. The distance measure for absolute representations can therefore be expressed as a sum of 

articulation deviations 

� � L � � L L � � 
dM Ai ¼ dM Ti

k; T
j ¼ ∥tik � tk∥ þ dG Ri

k; R
j 
: (1) 

X X X 
abs; A

j 
abs k

j 
k 

k¼1 k¼1 k¼1 

While for the translation, the L2 norm is chosen, geodesical distances are used between rotation
�1 

neighborhoods. This is expressed as dG Ri
k; R

j ¼ ∥ log Ri Rj ∥F where the log map is k k k 

used to map a point in the manifold to the tangent plane. 

Afterwards, the manifold reconstruction weights are estimated by assuming the local geome-
try of the patches can be described by linear coefficients that permit the reconstruction of every 
model point from its neighbors. In order to determine the value of the weights, the reconstruc-
tion errors are measured using the following objective function: 

2 
N K X� X � 

εðWÞ ¼  �Ai WijA
j � (2) � abs � abs� 

i¼1 � j¼1 � 

8 
<Wij ¼ 0 abs not neighbor > if Ai Aabs 

j 

subject to X (3) Wij ¼ 1 for every i: >: 
j 

Thus, ε Wð Þ  sums the squared distances between all data points and their corresponding 

reconstructed points. The weights Wij represent the importance of the jth data point to the 

reconstruction of the ith element. 
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The algorithm maps each high-dimensional Ai to a low-dimensional Yi. These internal abs 

coordinates are found with a cost function minimizing the reconstruction error: 

N K 

Yi � 

N N 

X 
������ 

X 

X

X 

WijYj 

2 

ΦðYÞ ¼  
i¼1 j¼1 

(4) 

¼ MijYT
i Yj 

i¼1 j¼1 

with M as a sparse and symmetric N �N matrix enclosing the reconstruction weights Wij such 
T that M ¼ ðI �WÞ ðI �WÞ, and Y spanning the Yi ’s. The optimal embedding, up to a global 

rotation, is obtained from the bottom d þ 1 eigenvectors of M and helps to minimize the cost 
function Φ Yð Þ  as a simple eigenvalue problem. The d eigenvectors form the d embedding 
coordinates. The coordinates Yi can be translated by a constant displacement without affecting 
the overall cost Φ Y . The eigenvector corresponding to the smallest eigenvalue corresponds to ð Þ  

the mean value of the embedded data Y0 ¼ P 
y1; …; yd , yi ¼ 0, ∀i. This can be discarded with 

Yi ¼ 0 to obtain an embedding centered at the origin. Hence, a new ADM can be inferred in 
the embedded d-space as a low-dimensional point Ynew by finding its optimal manifold 
coordinates yi. 

To obtain the articulation vector for a new embedded point in the ambient space (image 
domain), one has to determine the representation in high-dimensional space based on its 
intrinsic coordinates. We first assume an explicit mapping f : M ! ℜD from manifold space 

M to the ambient space ℜD . The inverse mapping of Yi is then performed by estimating the 

relationship between ℜD and M as a joint distribution, such there exists a smooth functional 
which belongs to a local neighborhood. Theoretically the manifold should follow the condi-
tional expectation: 

ð 
f Yð iÞ � E Ai Þ ¼ Yi ¼ Ai absjMðAi 

pðYi; AiÞ 
ð Þ  pM Ai 
Yi ð Þ  

dD (5) 

P 

which captures the overall trend of the data in D-space. Here, both pM Ai 
ð Þ  (marginal Yi ð Þ  

Þ (joint density) are unknown. Based on the Nadaraya-Watson 

kernel regression [16], 
density of M Ai ð ð Þ) and p Yi; Ai 

Þ ¼ 1 ðYi K we replace densities by kernel functions as pM Aið Þ  j ∈ N ð Þi P Þ ¼ K 
1 Gh Yi; Yj and pðYi; Ai j ∈ N ð Þi Gh Yi; Yj Gg Ai; Aj [17]. The Gaussian regression kernels 

G require the neighbors Aj ð Þ to determine the bandwidths h, g so it includes all K abs of j ∈ N i 
data points (N ð Þi representing the neighborhood of i). Plugging these estimates in Eq.(5), this 
gives: 

P 

P 
j ∈ N ð Þi Yi; Yj Ai; Aj 

ð 1 Gh Gg K f NWðYiÞ ¼  Ai dD: (6) 1 
j ∈ N ð Þi Gh Yi; Yj K 
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By assuming G is symmetric about the origin, we propose to integrate in the kernel regression 
estimator, the manifold-based distortion metric dM which is particularly suited for geodesic 
metrics and articulated diffeomorphisms. This generalizes the expectation such that the obser-
vations Y are defined in manifold space M: 

P � � 
j∈ N ð Þi G Yi; Yj dM Aabs 

i ; Aabs 
j 

f Þ ¼ argmin P � � (7) NWðYi 
Ai j∈ N ð Þi G Yi; Yj 

abs 

which integrates the distance metric dM Ai defined in Eq. (1) and updates f ð Þ  abs; A
j 

NW Yi abs 

using the closest neighbors of point Yi in the manifold space. This constrains the regression to 

be valid for similar data points in its vicinity since locality around Yi preserves locality in Ai 
abs. 

2.3. Optimization on manifold 

Once an appropriate modeling of spine shape variations is determined with a manifold, a 
successful inference between the image and manifold must be accomplished. We describe here 
how a new model is generated. We search the optimal embedded manifold point Y ¼ 

y1; …; yd of the global spine model. Such a strategy offers an ideal compromise between the 

prior constraints, as well as the individual shape variations described by the weight vector 
W ¼ ðw1; …; wnÞ in a localized sub-patch. The energy E of inferring the model S in the image I 
is a function of the set of displacement vectors Δ in the manifold space for global shape 
representation. This involves: (a) a data-related term expressing the image cost and (b) a global 
prior term measuring deformation between low-dimensional vectors with shape models. The 
third term represents (c) a higher-order term which is expressed by the reconstruction weights 
Ω for local vertebra modeling. The energy E can be expressed as the following combination of 
a global and local optimization: 

E S0; I ; Δ; Ω ¼ V Y0 þ Δ; I þ α VðN; ΔÞ þ β VðH; Δ; ΩÞ: (8) 

The global alignment of the model with the target image primarily drives the deformation of 
the model. The purpose is to estimate the set of articulations describing the global spine model 
by determining its optimal representation Y0 in the embedded space. This is performed by 
obtaining the global representation using the mapping in (7) so that: f ð i þ ΔÞ ¼  NW Y 

f y1 þ δ1; …; yd þ δd . This allows to optimize the model in manifold space coordinates NW 

while retrieving the articulations in I . The global cost can be expressed as: 

� � � �� �� �� 
V Y0 þ Δ; I ¼ V f  y1 þ δ1; …; yd þ δd ; I : (9) NW 

The inverse transform allows to obtain Ai 
abs þD, with D as deformations in the image space. 

Since the transformations Ti are implicitly modeled in the absolute representation A0 
abs, we can 

formally consider the singleton image-related term as a summation of costs associated with 
each L vertebra of the model: 
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L � � X � � � � ∗ V A0 ¼ Vi si T0 þ di ; I (10) abs þD; I i 
i¼1 

where Viðs; I 
P 

nT ð Þ∇I vi Þ ¼  vi ð Þ  minimizes the distance between mesh vertices of the vi ∈ s i 

inferred shape and gradient image I by a rigid transformation. Here, ni is the normal pointing 
outwards and ∇I við Þ the image gradient at vi. 

The prior constraint for the rigid alignment are pairwise potentials between neighboring 
models yi such that the difference in manifold coordinates is minimal with regards to a prior 
distribution of neighboring distances P: 

X X 
0 0 αVðN; ΔÞ ¼ α Vij yi þ δi; yj þ δj; P : (11) 

i ∈ G j ∈ N ð Þi 

This term represents the smoothness term of the global cost function to ensure that the 
deformation δi applied to point coordinates are regular, with Vij ¼ ð0; 1Þ a distance assigning 

function based on the distances to P. 

One can integrate the global data and prior terms along with local shape terms parameterized 
as the higher-order cliques, by combining (9), (11): 

� � � �� �� � 
E S0; I ; Δ; Ω ¼ V f  NW y1 þ δ1; …; yd þ δd ; IÞ 

X X � � X � � 0 0 0 (12) þ α Vij y þ δi; yj þ δj þ β Vc w þ ωc : i c 
i ∈ G j ∈ N ð Þi c ∈ C 

The optimization strategy of the resulting MRF (12) in the continuous domain is not a straight-
forward problem. The convexity of the solution domain is not guaranteed, while gradient-
descent optimization approaches are prone to nonlinearity and local minimums. We seek to 

assign the optimal labels LΔ ¼ fl1; …; ldg and LΩ ¼ fl1; …; lng which are associated to the 
quantized space Δ of displacements and local weight parameters Ω respectively. We consider 

0 0 that displacing the coordinates of point y by δli is equivalent to assigning label li to yi . An i 

incremental approach is adopted where in each iteration t we look for the set of labels that 
0 P 

δli t improves the current solution s.t. yti ¼ y þ , which is a temporal minimization problem. i t 

Then (12) can be rewritten as: 

� � � �� �� � 
Et LΔ t�1 t�1 ; LΩ ¼ V f  NW y ; l1 

Δ; …; y ; lΔ ; IÞ 1 d d 
X X X � 

t�1 t�1 
� � t�1 

� (13) þ α Vij yi ; yj ; li 
Δ; lj 

Δ þ β Vc wc ; lc 
Ω : 

i ∈ G j ∈ N ð Þi c ∈ C 

We solve the minimization of the higher-order cliques in (13) by transforming them into 
quadratic functions [18]. We apply the FastPD method [19] which solves the problem by 
formulating the duality theory in linear programming. 
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2.4. Results 

Manifold learning. The manifold was built from a database containing 711 scoliotic spines 
demonstrating several types of deformities. Each spine model in the database was obtained 
from biplanar radiographic stereo-reconstructions. It is modeled with 12 thoracic and 5 lumbar 
vertebrae (17 in total), represented by 6 landmarks on each vertebra (4 pedicle extremities and 
2 endplate center points) which were manually identified by an expert on the radiographic 
images. The resulting manifold is shown in Figure 2. 

Adaptation of the articulated model was done on two different data sets. The first consisted of 
volumetric CT scans (512 ˜ 512 ˜ 251, resolution: 0:8 ˜ 0:8 mm, thickness: 1 ° 2 mm) of the 
lumbar and main thoracic regions obtained from 21 different patients acquired for operative 
planning purposes. The MR dataset comprised multi-parametric volumetric data 
(256 ˜ 256 ˜ 160, resolution: 1:3 ˜ 0:9 mm, thickness: 1 mm) of 8 patients acquired for diag-
nostic purposes. For this study, only the T1 sequence was selected for the experiments. All 
patients on both datasets (29 in total) had 12 thoracic and 5 lumbar vertebrae. Both CT and MR 
data were manually annotated with 3D landmarks by an expert in radiology, corresponding to 
left and right pedicle tips as well as midpoints of the vertebral body. Segmentation of the 
vertebrae from the CT and MR slices were also made by the same operator. 

CT imaging experiments. We first evaluated the model accuracy in CT images by computing 
the correspondence of the inferred vertebral mesh models to the segmented target structures. 
As a preprocessing step, a rough thresholding was performed on the whole volume to filter 
out noise artifacts. The overall surface-to-surface comparison results between the inferred 3D 

Figure 2. Low-dimensional manifold embedding of the spine dataset comprising 711 models exhibiting various types of 
deformities. The sub-domain was used to estimate both the global shape pose costs and individual shape instances based 
on local neighborhoods. 
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vertebral models issued from the articulated model and from known segmentations were first 
calculated. The mean errors are 2:2 � 1:5 mm (range: 0:6 � 5:4 mm) for thoracic vertebra and 
2:8 � 1:9 mm (range: 0:7 � 8:1 mm) for lumbar vertebra. 

MR imaging experiments. For the experiments involving the segmentation of 3D spine 
models from MR images, the surface-to-surface comparison showed encouraging results (tho-
racic: 2:9 � 1:8 mm, lumbar: 3:0 � 1:9 mm) based on differences to ground-truth. As in the 
previous experiments with CT imaging, ground-truth data was generated by manually 
segmenting the structures models which were validated by an expert in radiology. As difficult 
as the CT inference is, the MR problem represent an even greater challenge as the image 
resolution is more limited and interslice spacing is increased compared to CT. Modeling of 
the statistical properties of the shape variations and global pose becomes even more important 
in this case, as it relies heavily in the nonlinear distribution of the patient morphology. 

3. Probabilistic modeling of discriminant nonlinear manifolds in the 
identification of Alzheimer’s 

Neurodegenerative pathologies, such as Alzheimer’s disease (AD), are linked with morpho-
logical and metabolic alterations which can be assessed from medical imaging and biological 
data. Recent advances in machine learning have helped to improve classification and progno-
sis rates, but lack a probabilistic framework to measure uncertainty in the data. In this section, 
we present a method to identify progressive mild cognitive impairment (MCI) and predict 
their conversion to AD from MRI and positron emitting tomography (PET) images. We show a 
discriminative probabilistic manifold embedding where locally linear mappings transform 
data points in low-dimensional space to corresponding points in high-dimensional space. A 
discriminant adjacency matrix is constructed to maximize the separation between different 
clinical groups, including MCI converters and nonconverters, while minimizing the distance in 
latent variables belonging to the same class. 

3.1. Probabilistic model for discriminant manifolds 

Manifold learning algorithms are based on the premise that data are often of artificially high 
dimension and can be embedded in a lower dimensional space. However the presence of 
outliers and multiclass information can on the other hand affect the discrimination and/or 
generalization ability of the manifold. We propose to learn the optimal separation between 
four classes (1) normal controls, (2) nonconverter MCI patients, (3) converter MCI patients and 
(4) AD patients, by using a discriminant graph-embedding. Here, n labeled points Y ¼ ˛˜ °˝n yi; li defined in RD are generated from the underlying manifold M, where li denotes i¼1 

the label (NC, cMCI, nMCI or AD). For the labeled data, there exists a low-dimensional (latent) 
n representation of the high-dimensional samples such that X ¼ fðxi; liÞgi¼1 defined in Rd . We 

assume here that the mapping Mi ∈ RD�d between high and low-dimensional spaces is locally 
linear, such that tangent spaces in local neighborhoods can be estimated with yj � yi and 
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xj � xi, representing the pairwise differences between connected neighbors i, j. Therefore the 

relationship can be established as yj � yi ≈ Mi xj � xi . 

In order to effectively discover the low-dimensional embedding, it is necessary to maintain the 
local structure of the data in the new embedding. The graph G ¼ ðV; WÞ is an undirected 
similarity graph, with a collection of nodes V connected by edges, and the symmetric matrix 
W with elements describing the relationships between the nodes. The diagonal matrix D and P 
the Laplacian matrix L are defined as L ¼ D �W, with Dði; iÞ ¼  j 6¼iW ij∀i. 

Using the theoretical framework from [20], we can determine a distribution of linear maps 
associated with the low-dimensional representation to describe the data likelihood for a specific 
model: 

Z Z  
log pðYjGÞ ¼  log pðY; M; XjGÞdxdM (14) 

This joint distribution can be separated into three prior terms: the linear maps, latent variables 
and the likelihood of the high dimensional points Y: 

pðY; M; XjGÞ ¼ pðYjM; X; GÞpðMjGÞpðXjGÞ (15) 

We now define the discriminant similarity graphs establishing neighborhood relationships, as 
well define each of the three prior terms included in the joint distribution. 

Within and between similarity graphs: In our work, the geometrical structure of M can be 
modeled by building a within-class similarity graph Ww for feature vectors of same group and 
a between-class similarity graph Wb, to separate features from all four classes. When constru-
cting the discriminant locally linear latent variable embedding, elements are partitioned into 
Ww and Wb classes. The intrinsic graph G is first created by assigning edges only to samples of 
the same class (ex: nMCI). Each sample is therefore reconstructed only from feature vectors of 
the same clinical group. Local reconstruction coefficients are incorporated in the within-class 
similarity graph, such that Ww is defined as: 

1 if yi ∈ N w yj or yj ∈ N w yi Wwi,j ¼ (16) 
0, otherwise: 

with N w containing neighbors of the same class. Conversely, Wb depicts the statistical proper-
ties to be avoided in the inference process. Distances between samples from different clinical 
groups are computed as: 

1 if yi ∈ N b yj or yj ∈ N b yi Wbi,j ¼ (17) 
0, otherwise 

with N b containing neighbors having different class labels from the ith sample. The objective 
is to transform points to a new manifold M of dimensionality d, i.e., yi ! xi, by mapping 

connected samples from the same group in Ww as close as possible to the class cluster, while 
moving NC, nMCI, cMCI and AD samples of Wb as far away from one another. 
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Model components: The prior added on the latent variables X are located at the origin of the 
low-dimensional domain, while minimizing the Euclidean distance of neighboring points that 
are associated with the neighborhood of high-dimensional points and maximizing the distance 
between coordinates of different classes. In order to set the variables with an expected scale α 
and H representing the probability density function, the following log prior is defined: 

0 1 
Xn X X n n 

log pðXjW; αÞ ¼ �  
1 @α∥xi∥ þ Wwi,j ∥yi � yj∥

2 � Wbi,j ∥yi � yj∥
2A� log HX (18) 

2 i¼1 j¼1 j¼1 

The prior added to the linear maps defines how the tangent planes described in low and high 
dimensional spaces are similar based on the Frobenius norm. This prior ensures smooth mani-
folds: 

0 1 
2 � n � n n � � X XX 1 � � log pðMjWÞ ¼ � @� xi� � Wwi,j �Wbi,j ∥Mi �Mj∥2 A� log HM (19) F 2 � � 

i¼1 i¼1 j¼1 F 

Finally, approximation errors from the linear mapping Mi between low and high-dimensional 
domains are penalized by including the following log likelihood: 

n n n 

log pðYjX; W; γÞ ¼ ∥ yi∥
2 � 

1 
Wwi,j Δð Þi; j TγIΔ i; j

X XX 
ð Þ  

2 i¼1 i¼1 j¼1 
(20) 

n 

þ 
1 

Wbi,j Δ i; j TγIΔ i; j log Hy 

Xn X
ð Þ  ð Þ �  

2 i¼1 j¼1 

with Δ i; j the difference in Euclidean distance between pairs of neighbors in high and low-ð Þ  
dimensional space and γ the update parameter for the EM inference. Samples of y are drawn 
from a multivariate normal distribution. 

3.2. Variational inference 

The objective is to infer the low-dimensional coordinates and linear mapping function for the 
described model, as well as the intrinsic parameters of the model Φ ¼ ðα; γÞ. This is achieved 
by maximizing the marginal likelihood of: 

Z Z  
pðY; M; XjW; ΦÞ 

log pðYjW; ΦÞ ¼  rðM; XÞ log dxdM: (21) 
rðM; XÞ 

By assuming the posterior rðM; XÞ ð Þ  ð Þ, a varia-can be factored in separate terms r M and r X 
tional expectation maximization algorithm can be used to determine the model’s parameters, 
which are initialized with Φ. The E-step updates the independent posteriors r X and r M , ð Þ  ð Þ  
while the parameters of Φ are updated in the M-step by maximizing Eq. (21). 

The discriminant latent variable model can then be used to perform the mapping of new image 
feature vectors to the manifold. The variational EM algorithm described in the previous section 
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can be used to transform a set of new input points yq without changing the overall neighbor-

hood graph structure, by finding the distribution of the local linear map yq and it is low-

dimensional coordinate using the E-step explained above. Once the manifold representation 
xq is obtained, a cluster analysis finds the corresponding class in the manifold, yielding a 

prediction of the input feature vector yq. 

3.3. Experiments 

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database with 1.5 or 3.0 T 
structural MR images (adni.loni.usc.edu) and FDG-PET images. For this study, 187 subjects 
with both MRI and PET images during a 24 month period were used to train the probabilistic 
manifold model, including 46 AD patients, 94 MCI patients, and 47 normal controls. During 
the follow-up period, 43 MCI subjects converted to AD and 56 remained stable. All groups are 
matched approximately by age (mean of 76:7 � 5:4) and gender. Images were non-rigidly 
registered to a standard template, which was then segmented using FSL-FIRST automatic 
segmentation [21]. 

A 9-fold cross-validation was performed to assess the performance of the method. The optimal 
manifold dimensionality was set at d ¼ 8, when the trend of the nonlinear residual reconstruc-
tion error stabilized for the entire training set. We evaluated the classification performance of 
the proposed method for discriminating between cMCI and nMCI patients, by training the 
model with MRI, PET and with MRI + PET biomarkers from the ROIs illustrated in Figure 3. 
Figure 4 presents ROC curves obtained by the proposed and comparative methods such as 
SVM (nonlinear RBF kernel), LLE and LL-LVM [20]. The discriminative nature of the proposed 
framework clearly shows an improvement to standard learning approaches models which 
were trained using MRI only, PET only and combined multimodal features. It illustrates that 
increased accuracy (77.4%) can be achieved by combining MRI and PET features, showing the 
benefit of extracting complementary features from the dataset for prediction purposes. When 
comparing the performance of the proposed method to the other learning methods (SVM, LLE, 

Figure 3. Selected FSL segmented brain regions for feature selection on (left) MRI and (right) PET images. 

https://adni.loni.usc.edu
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Figure 4. ROC curves comparing the SVM, LLE and LL-LVM with the proposed method for cMCI/nMCI prediction 
using MRI, PET and multimodality data. 

LL-LVM), the probabilistic model integrating similarity graphs shows a statistically significant 
improvement ðp < 0:01Þ to all three approaches based on paired t-test. 

4. Spatiotemporal manifold prediction model for surgery prediction 

In this final section, we present a statistical framework for predicting the surgical outcomes 
following spine surgery of adolescents with idiopathic scoliosis. A discriminant manifold is 
first constructed to maximize the separation between responsive and nonresponsive groups of 
patients. The model then uses subject-specific correction trajectories based on articulated trans-
formations in order to map spine correction profiles to a group-average piecewise-geodesic 
path. Spine correction trajectories are described in a piecewise-geodesic fashion to account for 
varying times at follow-up exams, regressing the curve via a quadratic optimization process. 
To predict the evolution of correction, a baseline reconstruction is projected onto the manifold, 
from which a spatiotemporal regression model is built from parallel transport curves inferred 
from neighboring exemplars (Figure 5). 

Figure 5. Proposed prediction framework for spine surgery outcomes. In the training phase, a dataset of spine models are 
embedded in a spatiotemporal manifold M, into responsive (R) or nonresponsive (NR) groups. During testing, an unseen 
baseline 3D spine reconstruction yq is projected on M using f NW based on Nadaraya-Watson kernels. The closest samples 

to the projected point x are selected to regress the spatiotemporal curve γ used for predicting the correction due with 
surgery. 
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4.1. Discriminant embedding of spine models 

We propose to embed a collection of nonresponsive (NR) and (2) responsive (R) patients to 
surgery which will offer a maximal separation between the classes, by using a discriminant �� ��n graph-embedding. Here, n labeled points Y ¼ yi; li; ti defined in RD are embedded in i¼1 

the low-dimensional manifold M, where li describes the label (NR or R) and ti defines the time 
of follow-up. We assume that for the sampled data, an underlying manifold of the high-

n dimensional data exists such that X ¼ fðxi; li; tiÞgi¼1 defined in Rd . We rely on the assumption 

that a locally linear mapping Mi ∈ RD�d exists, where local neighborhoods are defined as 
tangent planes estimated with yj � yi and xj � xi, describing the paired distances between 

linked neighbors i, j. Hence, the relationship can be established as yj � yi ≈ Mi xj � xi . 

Because the discriminant manifold structure in Rd requires to maintain the local structure of 
the underlying data, a undirected similarity graph G ¼ ðV; WÞ is built, where each node V are 
connected to each other with edges that are weighted with the graph W. The overall structure 
of M is therefore defined with Ww for feature vectors belonging to the same class and Wb, 
which separate features from both classes. During the embedding of the discriminant locally 
linear latent manifold, data samples are divided between Ww and Wb. 

4.2. Piecewise-geodesic spatiotemporal manifold 

Once sample points xi are in manifold space, the objective is to regress a regular and smooth 
piecewise-geodesic curve γ : ½t1; tN� that accurately fits the embedded data describing the 
spatiotemporal correction following surgery within a 2 year period. For each sample data xi, 
the K closest individuals demonstrating similar baseline features are identified from the 

embedded data, creating neighborhoods N xq with measurements at different time points, 
thus creating a low-dimensional Riemannian manifold where data points xi, j, with i denoting a 

particular individual, j the time-point measurement and j ¼ 0 the preoperative model. By 
assuming the manifold domain is complete and piecewise-geodesic curves are defined for each 

time trajectories, time-labeled data can be regressed continuously in RD , thereby creating 

smooth curves in time intervals described by samples in Rd . 

However, due to the fact the representation of the continuous curve is a variational problem of 
infinite dimensional space, the implementation follows a discretization process which is 
derived from the procedure in [22], such that: 

Kd tN 1 XX � � � � �� 
Eð  Þ ¼γ wi∥γ ti, j � xi, j � xi,0 � xq ∥2 

Kd i¼1 j¼0 
(22) 

Kd Kd X X 
þ 
λ

αi∥vi∥2 þ 
μ

βi∥ai∥
2: 

2 2 i¼1 i¼1 

This minimization process simplifies the problem to a quadratic optimization, solved with LU

decomposition. The piecewise nature is represented by the term Kd ∈ N xq , defined as 
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samples along γ. The first component of Eq.(22) is a penalty term to minimize the geodesic 
distance between samples xi, j and the regressed curve, where wi are weight variables based on 

sample distances. This helps regress a curve that will lie close to xi, j, shifted by xq in order to 

have the initial reconstructions co-registered. The second term represents the velocity of the 
curve (defined by vi, approximating γ_ ð Þti ), minimizing the L2 distance of the 1st derivative of γ. 
By minimizing the value of the curve’s first derivatives, this prohibits any discontinuities or 
rapid transitions of the curve’s direction, and is modulated by αi. Finally, an acceleration 

penalty term (defined by ai) focuses on the 2nd derivative of γ with respect to ti by minimizing˜ ° 
the L2 norm. The acceleration is modulated by βi. Estimates for vi and ai (weighted by λ; μ , 
respectively), are generated using geometric finite differences. These estimates dictates the 
forward and backward step-size on the regressed curve, leading to directional vectors in M 
as shown in [22]. In order to minimize E γ , a nonlinear conjugate gradient technique defined ð Þ  

in the low-dimensional space Rd is used, thus avoiding convergence and speed issues. The 
regressed curve γ is therefore defined for all time points, originating at t0. The curve creates a 
group average of spatiotemporal transformations based on individual correction trajectories. 

4.3. Prediction of spine correction 

Finally, to predict the evolution of spine correction from an unseen preoperative spine model, 
we use the geodesic curve γ : RD !M modeling the spatiotemporal changes of the spine, 
where each point x ∈ M is associated to a speed vector v defined with a tangent plane on the 
manifold such that v ∈ TxM. 

Based on Riemannian theory, an exponential mapping function at x with velocity v can be 

defined from the geodesics such that eMð Þv . Using this concept, parallel transport curves x 

defined in Tx can help define a series of time-index vectors along γ as proposed by [10]. The 
collection of parallel transport curves allows to generate an average trajectory in ambient space 

RD, describing the spine changes due to the corrective forces of tethering. The general goal is to 
begin the process at the preoperative sample, and navigate the piecewise-geodesic curve 
describing correction evolution in time, where one can extract the appearance at any point 
(time) in RD using the exponential mapping. For implementation purposes, the parallel trans-
port curve are constrained within a smooth tubular boundary perpendicular to the curve (from 
an ICA) to generate the spatiotemporal evolution in the coordinate system of the preoperative 
model. 

Hence, given the manifold at time t0 with v defined in the tangent plane and the regressed 
piecewise-geodesic curve γ, the parallel curve is obtained as: 

˛ ˝ 
, s ∈ Rd ηv M ðγ; sÞ ¼ e xγ, t0, sð Þv : (23) γð Þs 

Therefore by repeating this mapping for manifold points seen as samples of individual pro-
gression trajectories along γð Þs , an evolution model can be generated. Whenever a new sample 
is embedded, new samples points along γð Þs , denoted as ηvðγ; �Þ can be generated parallel to 
the regressed piecewise curve in M, capturing the spatiotemporal changes in correction. 
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A time warp function allowing s to vary along the geodesic curve is described as ϕi tð Þ ¼  

θiðt � t0 � τiÞ þ t0. Here, we propose to incorporate a personalized acceleration factor based 
on the spine maturity and flexibility derived from the spine bending radiographs and Risser 
grade. A coefficient θi ¼ Ci � Ri describing the change in Cobb angle Ci between poses, and 
modulated by the Risser grade Ri. This coefficient regulates the rate of correction based on the 
K neighboring samples. Finally, to take under account the relative differences between the 
group-wise samples and the query model once mapped onto the regressed curve, a time-shift 
parameter τi is incorporated in the warp function. 

For spine correction evolution, displacement vectors vi are obtained by a PCA of the hyper-
plane crossing Txi M in manifold M [10]. Hence, for any query sample xq which represents the 

mapped preoperative 3D reconstruction (prior to surgery), the predicted model at time tk can ˜ ° 
be regressed from the piecewise-geodesic curve generated from embedded samples x in N xq 

such that: 
˜ ° 

y ¼ ηvq ð Þ  (24) q, tk γ; ϕi tk þ εq, tk 

which yields a predicted postoperative model y in high-dimensional space RD , and εq, tk q, tk 

a zero-mean Gaussian distribution. The generated model offers a complete constellation of 
interconnected vertebral models composing the spine shape S, at first-erect (FE), 1 or 2-
year visits, including landmarks on vertebral endplates and pedicle extremities, which can 
be used to capture the local shape morphology with the correction process. 

4.4. Experiments 

The discriminant manifold was trained from a database of 438 3D spine reconstructions 
generated from biplanar images [23], originating from 131 patients demonstrating several 
types of deformities with immediate follow-up (FE), 1 and 2 year visits. Patients were recruited 
from a single center prospective study. Patients were divided in two groups, with the first 
group composed of 94 responsive patients showing a reduction in Cobb angle over or equal to 
10 ∘ between the FE and follow-up visit. The second group was composed of 37 nonresponsive 
(NP) patients with a reduction of less than 10 ∘ . We evaluated the geometrical accuracy of the 
predictive manifold for 56 unseen surgical patients (mean age 12 � 3, average main Cobb 

FE visit 1-year visit 2-year visit 

3D RMS Dice Cobb 3D RMS Dice Cobb 3D RMS Dice Cobb 

Biomec. sim 3.3 � 1.1 85 � 3.4 2.8 � 0.8 3.6 � 1.2 84 � 3.6 3.2 � 0.9 4.1 � 2.3 82 � 3.9 3.6 � 1.0 

LL-LVM [20] 3.6 � 1.4 83 � 4.0 3.8 � 1.5 4.7 � 3.3 79 � 4.4 5.5 � 2.6 6.6 � 4.4 71 � 5.9 7.0 � 3.9 

Deep AE [24] 4.1 � 1.5 80 � 4.4 5.1 � 2.7 5.0 � 1.9 77 � 4.9 5.8 � 3.0 6.3 � 4.6 72 � 5.7 6.6 � 4.2 

Proposed 2.4 � 0.8 92 � 2.7 1.8 � 0.5 2.9 � 0.9 90 � 2.8 2.0 � 0.7 3.2 � 1.3 87 � 3.1 2.1 � 0.6 

Predictions are evaluated at FE, 1 and 2-years. 

Table 1. 3D RMS errors (mm), dice (%) and cobb angles (o) for the proposed method, and compared with biomechanical 
simulations, locally linear latent variable models (LL-LVM) and deep auto-encoders (AE). 
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angle on the frontal plane at the first visit was 47 � 10 ∘ ), with predictions at t ¼ 0 (FE), t ¼ 12 
and t ¼ 24 months. For the predicted models, we evaluated the 3D root-mean-square differ-
ence of the vertebral landmarks generated, the Dice coefficients of the vertebral shapes and in 
the main Cobb angle. The results are shown in Table 1. Results were confronted to other 
techniques such as biomechanical simulations performed on each subject using finite element 
modeling with ex-vivo parameters [25], a locally linear latent variable model [20] and a deep 
auto-encoder network [24]. Results from the predicted geometrical models show the regressed 
spatiotemporal geodesic curve yields anatomically coherent structures, with accurate local 
vertebral morphology. 

5. Discussion 

Algorithms capable of extracting clinically relevant and meaningful descriptions from medical 
imaging datasets have become of widespread interest to theoreticians as well as practitioners 
in the medical field, accelerating the pace in recent years involving varied fields such as in 
machine learning, geometry, statistics and genomics to propose new insights for the analysis of 
imaging and biologic datasets. Towards this end, manifold learning has demonstrated a 
tremendous potential to learn the underlying representation of high-dimensional, complex 
imaging datasets. 

We presented frameworks describing longitudinal, multimodal image features from neuroim-
aging data using a Bayesian model for discriminant nonlinear manifolds to predict the conver-
sion of progressive MCI to Alzheimer’s disease. This probabilistic method introduces class-
dependent latent variables which is based on the concept that local structure is transformed 
from manifold to the high-dimensional domain. This variational learning method can ulti-
mately assess uncertainty within the manifold domain, which can lead to a better understand-
ing of relationships between converters and nonconverters for patients with MCI. 

Finally, a prediction method for the outcomes of spine surgery using geodesic parallel trans-
port curves generated from probabilistic manifold models was presented. The mathematical 
models allow to describe patterns in a nonlinear and discriminant Riemannian framework by 
first distinguishing nonprogressive and progressive cases, followed by a prediction of struc-
tural evolution. The proposed model provides a way to analyze longitudinal samples from a 
geodesic curve in manifold space, thus simplifying the mixed effects when studying group-
average trajectories. 
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Abstract

In view of the problem that notable flexible displacement will occur for parallel manipulators
when operating at high speed, the composite controller based on the integral manifold and
high-gain observer is proposed for trajectory tracking and the 3RRR parallel manipulator is
taken as the object. Based on the stiffness matrix, the small variable is introduced to decom-
pose the rigid-flexible coupling dynamic model into slow and fast subsystem. For the slow
subsystem, the backstepping control is applied for rigid motion tracking. In order to account
for the links’ flexible displacement the corrective torque is deduced, and the compensation
for the flexible displacement is realized. For the fast subsystem, the sliding mode control is
utilized to suppress the vibration. The high-gain observer is designed to avoid the measure-
ment of the curvature rate of flexible links. Also, the stability of the overall system is proven
with the Lyapunov stability theorem and the upper bound of the small variable is obtained.
At last, the proposed composite controller together with the singular perturbation control
and the rigid body model-based backstepping control are simulated, and vibration suppres-
sion and tracking performances are compared to validate the proposed control scheme.

Keywords: parallel manipulator, integral manifold, high-gain observer,
composite control, sliding mode control, backstepping control, vibration suppression

1. Introduction

Parallel manipulators (PMs) possess advantages of high precision, high stiffness, and large load-
to-weight ratio; they have attracted wide attention and have been widely used in industries such
as high-speed handling, motion simulation, and electronic manufacturing [1]. However, in order
to increase efficiency, PMs are increasingly used in high-speed and heavy-duty operations. In
order to reduce costs and energy consumption, the lightweight design of the mechanical body
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will be the inevitable choice. However, in the high-speed or heavy-duty application, the light-
weight mechanical body will produce significant elastic deformation and vibration. Therefore, 
the end-effector’s movement consists of the rigid-body motion and the elastic displacement 
caused by elastic deformation and vibration. Using conventional control methods for rigid-body 
manipulators will not guarantee good tracking accuracy of flexible manipulator’s end-effector. 
Therefore, it is of great significance to improve the tracking accuracy of high-speed lightweight 
PMs by considering the flexibility of members to establish the dynamic model for rigid-flexible 
coupling and carrying out research on high-precision control algorithms. 

Many scholars have conducted extensive and in-depth studies on modeling methods for 
manipulators with flexible links. Dwivedy et al. [2] reviewed the dynamic modeling of robots 
with flexible links. Due to the presence of link flexibility, the system will exhibit nonminimum 
phase characteristics when selecting the end-effector of the manipulator as the output. The 
literature [3–5] redefines the output of the manipulator’s end position by taking the link 
elasticity into account, and uses the control algorithm for the rigid-body manipulator to 
control the new output; however, this method can only realize the point-to-point position 
control and cannot guarantee tracking control of the end trajectory [6]. The singular perturba-
tion method is another effective method to deal with the nonminimum phase characteristics of 
manipulators with elastic links. The small parameters are introduced to reduce the order of 
rigid-flexible coupling models, which are decomposed into two subsystems, the fast and the 
slow, and two subcontrollers are designed using compound control algorithm. The controller 
of the system realizes the control of the rigid body motion and the rapid suppression of the 
elastic vibration. However, as the deformation increases, the singularity perturbation algo-
rithm shows a deficiency and the algorithm cannot compensate for the elastic displacement 
[7–9]. Khorasani [10] proposed an integral manifold method by high-order approximation of 
fast subsystem variables, which greatly improved the vibration suppression effect. By intro-
ducing the elastic displacement into the end of the manipulator and designing the corrective 
torque, Moallem et al. [11] realized the trajectory tracking precision control and vibration 
suppression of the two-degree-of-freedom serial robot. Based on the above method, Fotouhi 
et al. [12–16] studied the trajectory tracking control of the flexible joint robot, the flexible robot 
with the single link, the rigid-flexible hybrid robot, and the two-bar flexible robot by simplify-
ing the selection of correction moments, and show good results. 

Due to the existence of the closed-chain structure, the dynamic model of PMs is complex when 
considering the flexibility of the links. Therefore, the research on the vibration suppression and 
trajectory tracking control is very limited. Zhang et al. [7] used assumption mode method and 
Lagrange equation to model 3PRR PMs with flexible passive links, and adopted singular 
perturbation compound control to suppress vibration. However, the influence of the elastic 
displacement of the links on the moving platform is not considered in the model, and the 
elastic displacement compensation and the rate of change of the elastic links are not processed 
when the algorithm is designed. Therefore, the trajectory tracking effect needs to be improved. 
Existing research has not yet been found for the above issues. In the research of trajectory 
tracking control based on integral manifold, no relevant research has been found for PMs. The 
control algorithms for the slow subsystem in the existing research are feedback linearization 
methods, and the fast subsystem is PD control or pole placement. In order to taking into 
accounts of the elastic deformation and vibration of high-speed PMs due to the flexibility of 
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links and improve the tracking accuracy and dynamic performance, this chapter introduces the 
integral manifold based on the rigid-flexible coupling model of the 3RRR PM, the hypothesis 
of small deformation and the velocity mapping in the previous paper [17], and the high-order 
rigid-flexible coupling model is transformed into two subsystems, then a composite control 
algorithm based on sliding mode variable structure control and backstepping control is pro-
posed. At the same time, a high-gain observer is introduced to the curvature rate caused by the 
flexibility. Finally, simulation studies are conducted to verify the feasibility of the algorithm. 

2. The dynamic model of the 3RRR PM 

The structure of the 3RRR parallel manipulator was shown in Figure 1, which consists of three 
branches, and each branch composed of one active link and passive link, the end of which is 
the moving platform. The coordinates and the parameters are given in Figure 2, O� XY and 
G� xGyG are the coordinate frames attached with the base and moving platform, with O and G 

as the origin, respectively. θi and βi are the angles of the active and passive links, i ¼ 1, 2, 3, the 

position and attitude of the moving platform are depicted as η ¼ x y  ϕ 
T in the base frame. 

According to our previously published paper [17], the flexibility of passive links can be 
neglected, so only the deformation of active links is considered here, which can be expressed 

n k k as δi ¼ 
P 

k¼1 α
k
i mi , i ¼ 1, 2, 3, where αk

i and mi are the shape function and the curvature of the 

kth point in the ith active link, respectively, where k ¼ 1. According to [17], after ignoring 
the deformation of the passive links and adding the parameters of the motors and reducers, 
the dynamic model of the PM can be expressed as: 

� �� � � �� �  T ðM11Þ0 þ ðM11Þ1 M12 η€ 0 0  η f 1 þ Mf 1mþ Mf 2m_ Jpθτ 0 þ þ � �  ¼ (1) T M12 M22 m€ 0 K  m f 2 0 þ Mf 3m_ 0 

Figure 1. The 3RRR PM. 
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Figure 2. Coordinates of the 3RRR PM. 

where Jm and Jg are the moment of inertia of the motor and the reducer, and K ¼ diagð½ks; ks; ks]Þ 
is the stiffness matrix, while ks and ig are the link’s stiffness and the reduction ratio, respectively,    
τ represents the driving torque, M 0 and f 0 are the mass matrix and quadratic terms in the 11 0 1 0 

dynamic equation derived from [17], while the item corresponding to m is neglected. 

3. Integral manifold-based model reduction of the high-speed PM 

From the dynamic model (1), the state variables are defined as below [15],
 

η 

m=ε 

X1 ¼ η, X2 ¼ 
(2) 

z1 ¼ m=ε2 , z2 ¼ 

T T where z ¼ ½z1 z2] and X ¼ ½X1 X2 ] are state variables of the slow subsystem, ε ∈ R is the 
small parameter larger than zero, which are used for subsequent model reduction and time 
scale transformation. From the state variables (2) and the system Eq. (1), the state equation of 
the perturbed form can be expressed as: 

_
( 
X 1 ¼ X2, 
_X 2 ¼ J11J

T 
pθτ  J11f 1  ~ (3) 

J12f 2  J12 kz1; 

~ 
z1 ¼ z2, 

kz1: 

( 
ε 

(4) 
z2 ¼ JT12Jp 

T 
θτ  JT12f 1  J22f 2  J22 ε 

  
~k ¼ ksε2 is the stiffness coefficient, J ¼ 

mass matrix M. 

For Eq. (4), the integral manifold is defined as [15, 18], 

JT 
12 where J11 J12; J22 is the inverse matrix of the 
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a zðt ∗ ; ε ð 1ðt ∗ ; εÞ; X2ðt ∗ ; ε ð Þ; εÞ ) zðt; εÞ ¼ h ðX Þ; X2ðt; εÞ; τ t Þ (5) Þ ¼ h X  Þ; τ t ∗ 
1ðt; ε ð Þ; ε 

Eq. (5) can be interpreted that if the fast subsystem variables arrive at the integral manifold 
trajectory at the moment t*, then for the moment ∀t > t∗, the variable will always remain on the 
manifold trajectory. In order to ensure the above conditions valid, the additional control vari-
ables are added in the control system. 

Due to the small variable ε close to 0, the integral manifold h and the moment τ are all 
functions of ε, Taylor expansion of the above variables is available as, 

8 a >h1 ≈ h1 ¼ h10 þ εh11ðX1; X2; tÞ þ… þ εph1pðX1; X2; tÞ < 
a h2 ≈ h2 ¼ h20 þ εh21ðX1; X2; tÞ þ… þ εph2pðX1; X2; tÞ (6) >: τ ≈ τ0 þ ετ1ðX1; X2; tÞ þ… þ εpτpðX1; X2; tÞ: 

∂jhi where h1 and h2 are the approximations of h1 
aand h2 

a, and hij ¼ 
a 

jε¼0 is the derivative of the j!∂εj 

integral manifold with respect to the small variable ε, while i ¼ 1, 2 j ¼ 0, 1, 2, …p, and p ∈ Nþ 

is the approximation order. Since the elastic displacement of the link is ε2 times of the state 
variable z of the fast subsystem, so p should be at least 2 when the elastic displacement can be 
accounted in the end trajectory, the p is selected 2 here. 

The inverse matrix of the mass matrix, the Coriolis force and the centrifugal force terms are 
functions of the small variable ε, the Taylor expansion of the inverse matrix about ε can be 
expressed as, 

�
J11 ¼ ðJ11Þ0, J12 ¼ ðJ12Þ0 (7) 
J22 ¼ ðJ22Þ0 þ ðJ22Þ2ε2=2 

The centrifugal and inertial force after the expansion of Eq. (1) can be expressed as, 

8 � � � �  � �  � �  < f 1 ¼ f 1 þ f 1 h10 þ f 1 h_ 10 ε2=2, 0 20 21 (8) : _ f 2 ¼ f 2 þ ε2 f 2 h10=2: 0 21 

Substituting Eqs. (6) through (8) into Eq. (4), we can obtain, 
8 �1 � �  � �  > ~ T T T >h10 ¼ J k J pθτ0 � J � J f 2 , f 1 ð Þ  > 22 12J 12 0 22 0 0 > 0 > > �1 < ~ T T _ h11 ¼ J22k J12Jpθτ1 � h20 , 

0 � � � � � � � � � > �1 � � � �  � �  � �  > > ~ T T _ T _ _ >h12 ¼ J k J pθτ2 � h21 � J f 1 h10 þ f 1 h10 =2� J Þ f 2 þ h10 =2 � J Þ f 2 h10=2 , > 22 12J 12 20 21 ð 22 2 0 ð 22 0 21 > 0 : 
h20 ¼ 0, h21 ¼ h_ 10, h22 ¼ h_ 11: 

(9) 

When the flexibility of the links is ignored, the small variable ε ¼ 0 is valid. Substituting h1 into 
Eq. (3), the differential equation of the slow subsystem can be obtained as, 
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( 
X 1 ¼ X2 
_ 

� � (10) _ �1 �1 X 2 ¼ ðM11Þ0 J
T M 110 f 1 pθτ0 � ð Þ  0 

where X1 and X2 represent variables of the slow subsystem, for the convenience of description, 
X1 and X2 are replaced by X1 and X2 in the following expressions, 

According to the integral manifold, the deviation of the fast subsystem variable can be 
expressed as, 

( 
X f 1 ¼ z1 � h10 � εh11 � ε2h12 

(11) 
X f 2 ¼ z2 � h20 � εh21 � ε2h22 

Multiply the Eq. (11) with ε, derive and substitute it into Eq. (6). According to Eq. (9), the fast 
subsystem equation can be obtained by substituting hij, 

8 _ > εX f 1 ¼ X f 2, >
_ JT ~ ε2 JT 

� � 
εX f 2 ¼ pθτf � J22 kX f 1 � J22 2 þ X f 1=2� 12J

T ð Þ0 ð Þ  12 f 1 (12) 20 >>: � � � � � � 
ε JT þ ð  Þ  X f 2=2: 12 f 1 21 J22 0 f 2 21 

For the slow and fast subsystems represented by Eqs. (10) and (12), the composite control 
algorithm is designed as shown in Figure 3. For the slow subsystem, the backstepping control 
is used to achieve the tracking control of the rigid body motion. At the same time, according to 
the velocity mapping relationship, the mapping relationship between the elastic deformation of 
the links and the elastic displacement of the moving platform is established. The motion of the 
moving platform is obtained according to the rigid-body motion and the elastic displacement, 
and the elastic torque compensation is realized by designing the correction torque τ1 and τ2. For 
fast subsystems, the sliding mode control is used to ensure the manifold valid. Considering the 
difficulty of measuring the rate of curvature change of the links, a high-gain observer will be 
designed to estimate the rate of curvature change based on the curvature value. The algorithm 
design will be based on the control structure shown in Figure 3. 

Figure 3. Scheme of the controller. 
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4. The backstepping algorithm-based slow subsystem control 

The backstepping control is a recursive control algorithm for complex nonlinear systems. The 
original system is decomposed into subsystems that do not exceed the system order. The 
control design is realized by establishing Lyapunov functions step by step for each subsystem, 
and the stability of the system is ensured [19]. First, define the position error as, 

ð13Þ 

where Xd is the command signal, define the amount of virtual control as, 

ð14Þ 

where c1 is a constant greater than zero and the velocity error e2 can be defined as, 

ð15Þ 

Based on the position error, define the Lyapunov function as, 

ð16Þ 

Deriving Eq. (16) can be obtained, 

ð17Þ 

According to the velocity error (15) in conjunction with Eq. (17), the Lyapunov function is 
defined as, 

ð18Þ 

Deriving the above formula and substituting the relevant parameters, the derivative of the 
Lyapunov function can be expressed as, 

˛ ˜ ° ° 
_ T T T T �1JT �1 T T V 2 ¼ �c1e1 e1 þ e1 e2 þ e e_2 ¼ e ðM11Þ pθτ0 � ðM11Þ f 1 þ c1e_1 � X€ d � c1e1 e1 þ e1 e2 2 2 0 0 0 

(19) 

According to Eq. (19), the control torque of the slow subsystem is 

˛ ˝�1˛ ˝ ˜ ° ˜ ° 
τ0 ¼ JT 

pθ f 1 0 þ ðM11Þ0 �c1e_1 þ X€ d � c2e2 � e1 

(20) ˛ ˝�1˛˜ ° ˜ ¼ JT 
pθ f 1 0 þ ðM11Þ0 X€ d � ðc1 þ c2Þe_1 � ðc1c2 þ 1Þe1ÞÞ 

where c2 is a positive real number, and substitute Eq. (20) into Eq. (19), the derivative of the 
Lyapunov function of the slow subsystem can be expressed as: 

_ T T V ¼ �c1e1 e1 þ c2e2 e2 ≤ 0 (21) 
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Therefore, according to the Lyapunov stability principle, the slow subsystem is stable with the 
torque τ0. Due to the existence of the elasticity, the end position of the PM can be expressed as: 

r ¼ X1 þ f 3ðη; h10; h11; h12; εÞ: (22) 

where f 3 is the elastic displacement of the center G of the moving platform induced by the 

elastic deformation and vibration of the links, which is the elastic displacement of the end-
effector of the moving platform. 

According to the velocity mapping relationship, the acceleration of the moving platform 
generated by the elastic motion can be expressed as, 

f€ 
3 ¼ ε2J� 

pθ 
1ϕl h10 þ εh11 þ ε2h12 =l1 þ ε2J� 

pθ 
1 ϕl h10 þ εh_ 11 þ ε2h12 =l1: (23) 

where J�1 is the time derivative of J� 
pθ 
1. pθ 

The flexibility examined in this chapter is within a small deformation range, and the elastic 
displacement f 3 of the end-effector of the moving platform due to the elastic displacement of 
the rod can be simplified as, 

ð24Þ 

Make the second derivative of Eq. (22), when considering the rigid-flexible coupling motion, 
the acceleration of the end-effector of the moving platform can be expressed as, 

r€ ¼ X€ d þ ðc1 þ c2Þ X_ d � η_ þ ðc1c2 þ 1ÞðXd � ηÞ þM� 
11
1JT 

pθ ετ1 þ ε2τ2
 ! 

þ ε2 J�1 € _ =l1 �M�1 _ ε2 
pθ ϕlh10 þ Jp 

� 
θ 
1 ϕlh10 11 f 1 20h10 þ f 1 21h10 =2 (25) 

�1 ε2 �1 € _ þ J12ðJ22Þ0 ðJ22Þ2 f 2 þ h10 =2 þ J12ðJ22Þ0 h10ε2 þ J12 f 2 h10ε2=2: 0 21 

Defining the position error e3 ¼ Xd � r and velocity error e4 ¼ e_3 of the end-effector of the 
moving platform, Eq. (25) can be transformed as, 
8 

e_3 ¼ e4 >> �1 > € > e_4 ¼ �ðc1 þ c2Þ ð Þe3 �M�1 ετ1 þ ε2τ2 Þ > e4 � c1c2 þ 1 11 J
T 
pθ � ε2J12ðJ22 0 h10 ><  ! 

> � ε2 J� 
pθ 
1ϕlh

€
10 þ J�1 ϕlh

_ 
10 =l1 þ ε2M�1 f 1 h10 þ f 1 h_ 10 =2 � ε2ðc1c2 þ 1ÞJp 

� 
θ 
1ϕlh10=l1 pθ 11 20 21 >>>>: �1 ÞJ�1 _ _ ð Þ  Þ 0 =2 � ε2ð 21 � ε2J12 J22 0 ðJ22 2 f 2 þ h10 c1 þ c2 pθ ϕlh10=l1 � ε2J12 f 2 h10=2 

(26) 

According to Eq. (26), define the Lyapunov function, 
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ð27Þ 

Derivative of Eq. (27) with respect to time can be obtained as, 

ð28Þ 

Let the coefficient of ε and ε2 be zero, and the corrective torque is, 

τ1 ¼ 0, 
� � � � � � � �1 � �  � �  

τ2 ¼ �  Jp 
T 
θ M11 ðc1 þ c2Þ Jp 

� 
θ 
1ϕlh

_ 
10 =l1 þ ðc1c2 þ 1ÞJp 

� 
θ 
1ϕlh10=l1 �M� 

11
1 f 1 20h10 þ f 1 21h

_ 
10 =2 

�1 �1 € J�1 € _ _ ð Þ Þ Þ þ J12 J22 0 ðJ22 2 f 2 þ h10 =2 þ J12ðJ22 0 h10 þ pθ ϕlh10 þ J�1 ϕlh10 =l1 þ J12 f 2 h10=2 pθ 21 

(29) 

_ T At this time, V ¼ �e ð Þe4 ≤ 0 is valid, and the system is stable, which means the elastic 4 c1 þ c2 

displacement compensation for the end-effector’s pose is realized by designing the corrective torque. 

5. Sliding mode variable structure-based fast subsystem control 

Define a new time scale tf ¼ t=ε, and the fast subsystem differential Eq. (12) can be expressed as, 
8 >dX f 1 >> ¼ X f 2, < dtf 

(30) >dX f 2 
� � � � � �  

: Þ0X f 1 � ε2 Þ2 þ JT f 1 X f 1=2 � εJT f 1 X f 2=2 >> 
dtf 
¼ J12

T JT 
pθτf � ðJ22 ðJ22 12 20 12 21 

The latter two terms of the second equation contain small parameter ε, and the control amount 
is small compared to other terms, which can be regarded as the disturbance, so the disturbance 
term can be expressed as, 

� �  � � �  � � � 
Δ1 ¼ ε2 Þ2 þ JT X f 1=2 � ε JT Þ X f 2=2: (31) ðJ22 12 f 1 20 12 f 1 21 þ ðJ22 0 f 2 21 

Due to the existence of the disturbance term, the fast subsystem adopts sliding mode variable 
structure control, and the sliding mode surface is selected as, 

S t (32) ð Þ ¼ Kf X f 1 þ X f 2: 

where K1 is a positive number, the derivation of the upper sliding surface can be obtained, 
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_Sð Þ ¼t Kf X þ JT12J
T 
pθτf � ðJ22Þ0X f 1 � Δ1: (33) 

According to the sliding surface, the Lyapunov function is defined as, 

V4 ¼ 1=2STS: (34) 

Derivative of the above equation with respect to time can be obtained as, 

V_ 4 ¼ STS_ ¼ ST Kf X f 2 þ J12
T JT 

pθτf � ðJ22Þ0X f 1 � Δ1 (35) 

According to Eq. (35), the fast subsystem control law designed as, 

� ��1
τf ¼ JT12J

T 
pθ �Kf X f 2 þ ðJ22Þ0X f 1 � Kf S þ Δ1 sgn ð ÞS : (36) 

where sgn ð Þ� is the sign function, substituting Eq. (36) into (35) can be obtained, 

_V 4 ¼ ST Kf X þ JT Þ ¼ �Δ1j jS � Δ1S � STKf S ≤ � STKf S ≤ 0 (37) 12J
T 
pθτf � ðJ22 0X f 1 � Δ1 

Therefore, according to the Lyapunov stability principle, the fast subsystem is convergent with 
torque of (36). The symbolic function will cause jitter to the system. To reduce the generation of 
jitter, the saturation function satð Þ� is substituted for the symbol function. The saturation 
function can be defined as [20], 

8 > 1, s1 > Δ2; < 
satðs1Þ ¼  s1=Δ2, j j ≤ Δ2; s1 (38) >: �1, s1 < �Δ2: 

where Δ2 is the buffer layer. 

6. The high-gain observer for the curvature change rate 

The curvature can be obtained by strain gage measurement of the stress of the links, and the 
change rate of curvature is directly related to the rate of change of stress, and generally cannot 
be directly measured. In order to avoid direct measurement of the change rate of curvature, 
this chapter will design a high-gain observer to observe the curvature change rate by measur-
ing the curvature. It can be known from Eq. (11) that the fast subsystem variable X f 1 corre-
sponds to the curvature, which can be directly converted by measuring the stress. X f 2 

corresponds to observed curvature change rate. According to the literature [21, 22] and the 
formula (4), the observer can be expressed as, 
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X f 1 ¼ X f 2 þ X f 1 
^ ^ _̂ 

8 
1 >>>< Hp X f 1 � ε , 
ε1 

(39) 
1 >>>: X f 2 ¼ X f 1 

represent the estimated values of X f 1 and X f 2, respectively, ε1 

X f 1 ¼ X f 1 � X f 1, 

^ 

X X X ¼ � : f 2 f 2 f 2 

^

^ 

~

~ 

_̂ Hv X f 1 � ε : 
ε2 
1 

X f 1 X f 2 

minimum positive number, Hp and Hv are the constant matrix, the observer tracking error is 
defined as, 

^ ^ where and is the 

8< 
(40) : 

~ 

~ 

To prove the stability of the system, new variables of error are defined as, 

~ 

~ 

X f 1, 

~ 

Zf 2 ¼ ε1X f 2: 

~ 

~_ 

Z f 2 �HpZ f 1, 

Z f 2 ¼ �Hv 

Z~ ¼ f 1 

8< 
(41) : 

Substitute the above equation into (39), the state observer can be expressed as, 
8 >< Z~ ¼ _ 

f 1 εε1 

(42) >: JT12J
T 
pθτf � ðJ22 0X f 1 � Δ1 εε1 Þ Z f 1 þ εε2 

1 

~_ 

The Eq. (42) can be rewritten as, 

Z f JT 
12J

T 
pθτf � ðJ22 Þ 0X f 1 � Δ1 ¼ A0 Zf þ εε21B0 (43) εε1 

~ 

and B0 ¼ 

: 

�Hp I3�3 

�Hv 03�3 

03�3 

I3�3 
where A0 ¼ . All eigenvalues of A0 can be guaranteed negative 

~ 

~ ~ 

by selecting Hp and Hv, which means that A0 is the Hurwitz matrix. Define a new Lyapunov 

function as, 

T 
Z f P1Zf : 

Z f 

V6 ¼ (44) 

~ _ 

where P1 is the positive definite symmetry matrix, the derivation is expressed as, 

V 6 ¼ 
�T 1 T 

AT 
0 P1 þ P1A0 Zf þ 2εε21 � J12

T JT 
pθτf � ðJ22 BT 

0 P1 
~Z 

εε1 
f 0X f 1 � Δ1 (45) Þ : 

Since A0 is a Hurwitz matrix, there is a positive definite matrix P1, which makes, 
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AT
0 P1 þ P1A0 ¼ �I3�3: (46) 

V 6 can be rewritten as, 

V 6 ≤ � Z f : 

_V 6 ≤ 0 is established, which 

~ _ 

_ 

1 
εε1 

2 þ 2ε1 Z~ f 
�T 

pθτf � ðJ22 JT 
12J

T BT 
0 P1 0X f 1 � Δ1 (47) Þ 

According to Eq. (47), when ε21 satisfied the following relationship, 
means the high-gain observer gradually converges, 

2 
�T 

JT Þ BT 
12J

T 
pθτf � ðJ22 0X f 1 � Δ1 0 P1 

Z f ~ ε2 
1 ≤ (48) : 

ε 

Therefore, according to Eq. (48), the upper bound of the small parameter can be obtained, and 
the fast subsystem torque can be expressed as, 

��1 
X̂ f 2 þ ðJ22 τf ¼ JT12J

T 
pθ �Kf 

^ ^ ^ S þ Δ1sat S : 0X f 1 � Kf (49) Þ 

S ¼ Kf X f 1 þ X f 2. 
subsystem can be expressed as, 

^ 

εξ_ ¼ Aξξ þ hξ (50) 

~ 

^ 

where 

^ 

Zf � 

where According to Eq. (12) and (42), the error equation of the fast 

# " h 03�3 I3�3 Aξ11 Aξ12 �T T 
ξ ¼ X f , X f ¼ X f 1 X f 2 , Aξ ¼ ,Aξ11 ¼ �K2 , 

f �2Kf 0 A0=ε1 

2 3 # " ^ S Δ1sat � Δ1 03�3 03�3 
Aξ12 ¼ , hξ ¼ 64 

75 : ðJ22Þ0 � Kf 
2 �2Kf εε1B0 JT12J

T 
pθτf � ðJ22Þ0X f 1 � Δ1 

_ 

According to Eq. (50), the Lyapunov function can be defined as: 

V5 ¼ εξT Pξξ (51) 

where Pξ is the symmetric positive definite matrix, Eq. (51) is derived as, 

Pξξ: V5 ¼ εξT Aξ 
TPξ þ PT 

ξ Aξ ξ þ 2hξ 
TPξξ þ εξT (52) 

Since Aξ11 and A0 are Hurwitz matrix, for a given symmetric positive definite matrix Sξ, there 
is a symmetric positive definite matrix Pξ that satisfies the following conditions, 

AT 
ξ Pξ þ PT 

ξ Aξ ¼ �Sξ: (53) 
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According to the Rayleigh-Ritz inequality, 

2 �ξTSξξ ≤ � λmin Sξ k k , (54) ð Þ ξ 

�hT 
ξ Pξξ� ≤ ðχ0 þ χ1ε1Þ ξ , �P_ ξ� ≤ χ2: 

� � k k  (55) 

where λminð Þ� represents the minimum eigenvalues of the corresponding matrix. χ0, χ1, and χ2 

are positive real numbers. According to Eqs. (53) through (55), Eq. (52) can be expressed as, 

_V 5 ≤ � λmin Sξ k kξ þ εχ2k k þ 2 χ0 þ χ1ε1Þ ξ : 2 ξ 2 ð k k  (56) 

_ According to Eq. (56), when V 5 ≤ 0, the small parameters in the high-gain observer satisfied 
0 ≤ ε1 ≤ ε1max, the fast subsystem based on the high-gain observer is stable, and the upper 
bound of the small parameter satisfies the following requirements, 

ð ð Þ ξ � εχ2 ξ � Þ (57) ε1max ≤ λmin Sξ k k  k k  2χ0 =χ1: 

7. Stability proof of the system 

The abovementioned integral manifold is used to reduce the rigid-flexible coupling system of 
high-speed PM, and the complex high-order system is decomposed into a slow subsystem 
describing the rigid body motion and a fast subsystem of elastic deformation, and the 
backstepping control and sliding mode variable structure control are adopted for two subsystems, 
respectively, and designed a high-gain observer to solve the problem that the elastic displacement 
change rate is difficult to measure, and proved the stability of each subsystem. However, the 
stability of each subsystem does not guarantee the stability of the overall system. Therefore, it is 
necessary to synthesize the subsystems to prove the stability of the overall system. Substituting 
Eqs. (9), (20), and (29) into kinetic Eq. (3), the systematic error equation can obtained, 

e_s ¼ Ases þ hs, εξ_ ¼ Aξξ þ hξ: (58) 

where 

� �T 0 03�3 I3�3 _ es ¼ X1 � Xd X 1 � X_ d , hs ¼ , As ¼ , 
hs1 �ðc1c2 þ 1ÞI3�3 �ðc1 þ c2ÞI3�3 

J�1 _ J�1 hs1 ¼ J11J
T 
pθτf � J12X f 1 � ε2J11M11 ðc1 þ c2Þ pθ ϕlh10=l1 þ ðc1c2 þ 1Þ pθ ϕlh10=l1

 ! ! 
1 € 1 _ þ J� 

pθ ϕlh10 þ J� 
pθ ϕlh10 =l1 : 

According to the error equation, define the Lyapunov function that contains the overall system 
as, 

T V6 ¼ e Pses þ εξTPξξ: (59) s 
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where Ps and Pξ are the symmetric positive definite matrix, the derivative of Eq. (59) can be 
obtained, 

V_ 6 ¼ eT ATPs þ PTAs es þ ξT Aξ 
TPξ þ PT 

ξ Aξ ξ þ 2hTPses þ 2hT 
ξ Pξξ þ εξTP_ ξξ: (60) s s s s 

Since As is a Hurwitz matrix, for a given symmetric positive definite matrix Ss, there is a 
symmetric positive definite matrix Ps that satisfies the following conditions, 

ATPs þ PTAs ¼ �Ss: (61) s s 

_ According to Eqs. (53) and (61), V 6 can be rewritten as, 

_ T _ V 6 ¼ �e Sses � ξTSξξ þ 2hTPses þ 2hξ 
TPξξ þ εξTPξξ (62) s s 

According to the Rayleigh-Ritz inequality, we can obtain, 

�eT λminð Þ es 
2 , Sses ≤ � Ss k k  (63) s 

�ξTSξξ ≤ � λminð Þ ξ , (64) Sξ k k2 

�hT 
s Pses � ≤ χ3 þ χ4ε þ χ5ε

2 es k k, (65) k k ξ 

� � 2 �hT 
ξ Pξξ� ≤ ξ : (66) χ6 þ χ7ε þ χ8ε

2 k k  

where χiði ¼ 0; 1; …6Þ is positive. According to the inequality relationship shown by Eqs. (63) 
_ to (66), V 6 satisfied the following relationship, 

ð Þ  � χ3 þ χ4ε þ χ5ε2 k k  λmin Ss es 
V_ 6 ≤ � ½ es ξ � �  � � � � : k k  k k  � χ3 þ χ4ε þ χ5ε

2 � ξ λminðSξÞ � 2 χ6 þ χ7ε þ χ8ε2 χ2ε k k  

(67) 

_ The condition that the closed-loop system is asymptotically stable is V 6 ≤ 0, from the above 
_ equation, the condition of V 6 ≤ 0 is that the coefficient matrix is positive, that is, 

λmin Ss ðSξÞ �  � ≥ 0: ð Þ λmin 2 χ6 þ χ7ε þ χ8ε
2 χ2εÞ �  χ3 þ χ4ε þ χ5ε

2�2 
(68) 

Ignoring the influence of high-order terms of O 
� 
ε2
� 
, when the maximum value of the small 

parameter ε satisfied, 
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

�λb þ λb 
2 þ 4λaλc 

εmax ¼ : (69) 
2λa 

_V 6 ≤ 0 is valid, where 
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>< 

>: 

ð Þχ8 þ χ2 

λb ¼ �2λminð Þχ7 � λminð Þ  (70) 
λa ¼ λmin Ss 4 þ 2χ3χ5, 

Ss Ss χ2 � 2χ3χ4, 
λc ¼ λmin Ss λminðSξÞ � 2λmin Ss 3: ð Þ  ð Þχ6 � χ2 

According to Eq. (67), when the value of ε satisfied 0 < ε ≤ εmax, the overall system is stable. 

8. Algorithm simulations 

When the Taylor expanding order p ¼ 0 is valid, the integral manifold (IM) is equivalent to the 
singular perturbation (SP). In order to verify the composite control proposed in this chapter, 
this section compares it with the singular perturbation control and the backstepping (BS) 
control considering only the rigid-body dynamic model. The above algorithm simulation will 
be carried out under the SIMULINK module of the MATLAB software, and the ode15s integral 
will be selected. According to formula (29), in the composite control algorithm based on the 
integral manifold and observer, the desired trajectory of the end-effector of the moving plat-
form needs to satisfy the fourth derivative continuous, and at the same time to reduce the 
impact to the system at the beginning and end point of the desired trajectory. The nine-order 
polynomial shown in Eq. (71) is used to ensure that the velocity, acceleration, and the third and 
fourth derivatives at the start and end points are zero. 

8 >< 125t5=t5 
d � 420t6=t6 

d þ 540t7=t7 
d � 315t8=t8 

d þ 70t9=t9 
d p x ¼ A0 þ p x0, 

p ¼ p (71) y y0, 
ϕ ¼ 0: 

pffiffiffi 

>: 

where the running time td is 0.06 s, the starting position px0 ¼ 187:5, py0 ¼ 187:5= 3, and the 
3 amplitude A0 ¼ 30 of the desired trajectory. Take ε2 ¼ 1=ks, Δ1 ¼ 1 � 10� , c1 ¼ c2 ¼ 50, 

Δ2 ¼ 0:05, Hp ¼ diagð½40; 40; 40�Þ, Hv ¼ diagð½400; 400; 400�Þ, Kf ¼ diagð½60; 60; 60�Þ. According 

to Eq. (57), take ε1 ¼ 0:001. The parameters added and modified in [17] are as follows: the height 
and thickness of the links are 30 and 5 mm, respectively, the reduction ratio is 20, and the 

moment of inertia between the motor and the reducer is 284:1 kg �mm2. 

To describe the control performance of the end-effector, an average error is introduced, and is 
defined as, 

8 >>>>>>>>>< 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi vu u ut 
ðtd 

td 
0 

2 2 CRð Þ1 þ CRð Þ2 dt 
1 

tM ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi (72) vu u ut 

>>>>>>>>>: 

ðtd 

td 
0 

1 
CRð Þ3 2dt rM ¼ 
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where CR represents the performance index of the three directions of the moving platform, trM 

and rM are the average error of the translation direction and the rotation direction. 

According to Eq. (24), the elastic displacement f 3 of the moving platform can be calculated. vi 
and vm represent the maximum elastic displacement and the average elastic displacement in all 
directions of the moving platform during operation, vend indicates the elastic displacement at the 
end point (residual vibration). For the same expected input, the magnitude of the elastic dis-
placement of the moving platform can reflect the vibration suppression effect of the three control 
algorithms. The elastic displacements in all directions are shown in Figures 4 and 5, which shows 
that the maximum elastic displacement amplitude in all directions is reduced by more than 28% 
compared with the backstepping control, and the composite control is reduced by 4.75, 33.42, 
and 33.52% compared with the singular perturbation. The average elastic displacement for the 
translational direction decreases from 1.579 and 1.112 mm for backstepping control and singular 
perturbation to 0.970 mm for composite control. For the rotational direction, 0.0014 and 
9.863 ˜ 10 °4 rad from backstepping control and singular perturbation drops to 6.872 ˜ 10 °4 rad 
of the composite control. Compared with the above algorithm, the elastic displacement of the 
composite control decreases by more than 14% in both directions. Compared with the 
backstepping control, when the composite control and the singular perturbation algorithm are 
used, the residual vibration is greatly reduced, and both algorithms are close to zero. 

Figure 4. Flexible displacement of moving platform. (a) Displacement of X direction. (b) Displacement of Y direction. (c) 
Displacement of rotational direction. 
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Figure 5. Vibration of the moving platform. (a) Flexible displacement of all directions. (b) Residue vibration of all directions. 

The tracking error is the difference between the actual output and the desired output of the end 
of the moving platform. tr indicates the maximum tracking error in all directions of the 
moving platform during the whole running process, trm indicates the average tracking error 
of the translational and rotational directions, tend is the tracking error at the end point. As 
shown in Figures 6 and 7, compared with the singular perturbation and backstepping control, 

Figure 6. Trajectory error of directions. (a) Trajectory error of X direction. (b) Trajectory error of Y direction. (c) Trajectory 
error of rotational direction. 
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Figure 7. Tracking error of the moving platform. (a) Trajectory error of directions. (b) Residue error of directions. 

the composite control based on the integral manifold and the observer has obvious advantages 
in trajectory tracking. For the maximum tracking error, the X direction decreased by 85.56 and 
91.41%, and the Y direction decreased by 57.55 and 90.57%, while the rotation direction 
decreased by 53.34 and 61.5%, respectively. For the average tracking error, the translation 
direction decreased by 88.2 and 92.62%, the rotational direction decreased by 37.26 and 
49.57%, respectively; in the tracking error of the end point, the X direction decreased by 92.8 
and 72.34%, and the Y direction decreased by 89.73 and 83.62%, respectively, while the rota-
tional direction decreased by 85.96 and 70.85%, respectively. For the tracking error at the end 
point, the singular perturbation method is significantly worse than the backstepping controller 
in all directions. This is mainly because the singular perturbation algorithm only considers the 
vibration suppression, and the cost of the vibration suppression is at the cost of sacrificing the 
trajectory tracking due to the delay of the adjustment. It can be seen from the above analysis 
that in the aspect of trajectory tracking accuracy, the composite control based on integral 
manifold and observer has significant advantages. 

9. Conclusions 

1. Decompose the rigid-flexible coupling dynamic model into fast and slow subsystems 
based on the integral manifold, and employ the sliding mode control and backstepping 
control to design the fast and slow subsystem controllers, respectively, and compensate the 
elastic displacement at the end of the manipulator. A high-gain observer estimates the rate 
of change of curvature, which in turn enables trajectory tracking control of high-speed PM. 

2. The Lyapunov function is selected to prove the asymptotic stability of the slow subsystem, 
fast subsystem, high-gain observer, and the overall system. The conditions for selecting the 
integral manifold and the small parameters of the observer are given. 

3. Apply MATLAB-SIMULINK to establish a comparison simulation to verify the performance 
of the proposed compound control algorithm. The simulation results show that the composite 
control algorithm has obvious advantages in vibration suppression and trajectory tracking. 
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Abstract 

In order to make an autonomous robot system more adaptive to human-centered envi-
ronments, it is effective to let the robot collect sensor values by itself and build controller 
to reach a desired configuration autonomously. Multiple sensors are often available to 
estimate the state of the robot, but they contain two problems: (1) sensing ranges of each 
sensor might not overlap with each other and (2) sensor variable can contain redundancy 
against the original state space. Regarding the first problem, a local coordinate defini-
tion based on a sensor value and its extension to unobservable region is presented. This 
technique helps the robot to estimate the sensor variable outside of its observation range 
and to integrate regions of two sensors that do not overlap. For a solution to the sec-
ond problem, a grid-based estimation of lower-dimensional subspace is presented. This 
estimation of manifold allows the robot to have a compact representation, and thus the 
proposed motion generation method can be applied to the redundant sensor system. 
In the case of image feature spaces with a high-dimensional sensor signal, a manifold 
estimation-based mapping, known as locally linear embedding (LLE), was applied to an 
estimation of distance between robot body and an obstacle.

Keywords: robot motion generation, redundant sensors, limited observation range, 
manifold by constraint

1. Introduction 

Robotics is gathering attention for various applications such as autonomous navigation
and manipulation of objects. It is highly expected that autonomous robots can act closer
to humans, for example, in household environment. In reality, however, it is still very dif-
ficult to make those robots achieve various tasks in environments, which are not specifically
structured for the robots. One of the reasons for this is that processes of recognition and
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motion generation are all specifically designed according to individual specific cases. In
unstructured environments, robots have to adapt to various changes of conditions in both
recognition and motion control processes, which requires reconstruction of software by the
human designers.

One possible approach to this problem, which might be promising but not straightforward, is 
to let the robot learn to build its representation for task execution based on its own experience 
(for example, discussed in the context of developmental robotics [1, 2]). In this approach, 
task-specific designs are omitted in recognition processes, which is quite different from the 
conventional robotics, where objects, robots, and environments are described by their coor-
dinates (typically Cartesian) in world coordinate systems. For example, a mobile robot can 
achieve a navigation task based only on its information of distance sensors, while distance 
sensor information is normally converted to position of the robot based on its environmental 
map in simultaneous localization and mapping (SLAM) applications [3–5].

When we try to build a framework to allow an autonomous robot to build a state space for 
motion generation, the idea of manifold where only local coordinate systems are defined and 
relations among them are described is suitable for the purpose. The reason is that one kind of 
sensor does not provide thorough information about the robot system and its environment, 
and multiple sensors are often required to cover various situations, whereas relations among 
multiple sensor signals are not known in advance. Thus, an application of approximating 
manifold for robot motion generation is presented in this chapter.

First, an integration of multiple sensor spaces is presented. The proposed integration method 
is based on an idea that the system dynamics is continuous over a sensor signal space with 
respect to the control input. Redundant sensor signals are mapped onto a lower-dimensional 
subspace using a simple grid-based parameterization method, which was applied to a naviga-
tion problem of a mobile robot equipped with several distance sensors measuring distances 
to a wall. Second, an application of locally linear embedding (LLE) [6] to mapping from a 
high-dimensional image feature space to a low-dimensional space in robotic motion planning 
task is presented. No prior knowledge on the robot appearance is used in the method, and it 
was shown that the obtained low-dimensional space reflected the spatial relation between the 
robot hand and the object.

2. Integration of multiple sensor spaces with mapping to manifold 

In this section, a motion generation method using an integration of multiple sensor spaces is 
presented. Multiple sensors are often required to realize thorough understanding about the 
environment, but they often do not overlap with each other; in the case of visual recognition 
as an example, occlusion and restriction of the viewing range often cause an incomplete state 
identification. In the case of tactile and proximity sensors, their detection ranges are limited 
and provide useful information only in limited cases, when they are close to objects or envi-
ronments. On the other hand, occlusion often occurs when the sensor is close to an object. 
Robots can identify their surroundings by integrating multimodal sensors, but it causes a 
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problem of integrating information of multiple different sensors whose detection ranges do 
not overlap among each other.

A standard way to integrate multiple sensor information in robotics is to rely on sensor mod-
els and calibrations, but they require a preparation cost by human designers. For realizing 
highly adaptive autonomous robots, following properties are required:

• Integration of multimodal sensor spaces, each of which has its specific sensing range (pos-
sibly not overlapping with each other).

• Relying only on sensing and actuating information of the robot itself, without using world 
coordinate system models.

A motion generation framework based on multiple sensors with limited sensing ranges has 
been presented in [7]. In order to integrate two sensor spaces, an idea of extending a sen-
sor space was proposed, borrowing an idea from diffusion-based learning [8, 9]. The char-
acteristic of the proposed framework is that it can generate desired trajectory and motion 
without a problem-specific knowledge. It is known that the similar class of problems has 
been discussed using partially observable Markov decision processes (POMDPs) [10–13]. The 
proposed framework does not take the noise or perceptual aliasing into account, but the pro-
posed framework is simpler.

2.1. Problem definition of motion generation with multiple sensors

Let x ∈ X denote the state of the robot system, where X ⊂ ℝn denotes the state space. Observation 
vectors are denoted by s ∈ s (1), …,s (h) ∈ s (h), where h denotes the number of sensors and S (i) ⊂ ℝn 

denotes the observation variable space for sensor i. The control input (motor command) to the 
system is denoted by u ∈ ℝn. The dynamics of the system is expressed as

x = F(x)u, F(x) ∈ ℝn×n, (1)

where F(x) is a smooth function, which will be approximated locally. Each sensor’ sens-
ing range is limited. X (i) ⊂ X denotes a subset of state space where sensor i is in its sensing 
range. Mapping from X (i) to S (i) is assumed to be injective and smooth, where all mappings are 
unknown. It is also assumed that there is no noise in the observation and the robot can judge 
whether each sensor is in its sensing range.

The task of the robot is to move from an initial configuration x  to x , where the information 
start goal

of the target configuration is given as an observation vector sensed at x
goal

. That is, the target 
sensor value is given to the robot as s (h) where j satisfies x ∈ X (j). As indicated in Figure 1, a 

goal goal 

single sensor does not cover both x  and x , nor is it guaranteed that the sensing range of one 
start goal

sensor does not overlap with that of another sensor. Thus, the robot must find a trajectory that 
goes through a subset of the state space where no sensor signal can be observed.

The second aspect of the problem is that observation variable itself contains redundancy. Let 
m denote the dimension of the observation variable and the redundancy means m > n, which 
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Figure 1. Motion from a sensing range of a sensor to another range.

is depicted in Figure 2 with the case m = 3 and n = 2. The observation variables are constrained 
on a two-dimensional manifold. Knowing the fact of constraint on a manifold, lower dimen-
sion can be obtained by approximating the manifold.

2.2. Integration of multiple sensor spaces 

The robot first acquires the mapping from the control input to an observation vector by col-
lecting samples by random motion within each sensor’s detection range. The basic idea of 
the integration is to first extend the mapping from outside the sensing range as indicated in 
Figure 3. The robot repeats motion in and out of the sensing range and compares the resultant 
observation and a predicted observation. That is, the robot estimates the observation using the 
information of its sequential motion and the input-observation mapping.

Figure 2. Redundant sensor information and constraint on a manifold.
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Figure 3. Estimation of Jacobian of observation variable dynamics outside observation range of a sensor.

The process of extension of a sensor space can be understood as a construction of a “virtual” 
observation space. The virtual observation space overlaps with another sensor space. When a 
task to reach a destination is given to the robot, it generates a motion from the current sensor 
space to the other sensor space including the destination, which is based on the representa-
tion of the virtual observation space. This framework basically works on the basis that the 
dimensions of the sensor spaces are equal. To relax the condition, we also discuss the way to 
deal with a case of redundant sensor space where an observation vector has higher dimension 
than the state vector.

2.3. Dimension reduction of the observation vector 

Dimension reduction of sensor variable is based on a grid-based parameterization, as shown 
in Figure 4. Basic idea of the parameterization is similar to an active contour model used in 
image processing [14]. The nodes in a two-dimensional grid fit along the surface of samples 
by minimizing an energy representing closeness to the samples. By extending and fixing the 
nodes on the ends of the grid to the end of samples, iterative updates minimizing the energy 
lead the grids to fit the samples while spreading to cover the sample region. Once the lower-
dimensional grid is created, it is used to parameterize the original sensor signal by another 
vector, in the example case, in two-dimensional vector.

2.4. Motion generation by integrating two observation spaces 

Using the extrapolation of Jacobian in the observable region to outside the viewing range, vir-
tual observation variables can be obtained. As shown in Figure 5, the robot starts motion from 
a viewing range of sensor i. The target is given as a variable of sensor j. Using the extrapola-
tion, the closest grid in the virtual sensor space of sensor i can be calculated. First, the robot 
is controlled to aim at the grid in the virtual sensor space using Jacobian of sensor i. After it 
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Figure 4. An example of a grid-based parameterization of sensor space with three-dimensional sensor variable. Input in 
the three-dimensional space is mapped onto a two-dimensional vector.

Figure 5. Motion generation by integrating two observation space, starting from a sensor space aiming at another sensor 
space and finally reaching the target.

reaches the viewing range of sensor j, it switches to the Jacobian of sensor j to finally reach the 
precise target position in the space of sensor j.

2.5. Simulation results 

Consider a mobile robot with five proximity sensors, as shown in Figure 6. The robot is 
equipped with three proximity sensors on the front of its body that are grouped as sensor 1. 
The robot has two proximity sensors on its right side. They are grouped as sensor 2. A wall 
that has an infinite length is located in the environment. Each proximity sensor provides a 
value that is proportional to the distance to the wall. When the distance is longer than its sens-
ing range, the wall cannot be detected. This situation is assumed to be detected by the robot. 
The control input to the system is the angular velocities of the two wheels.
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Figure 6. Mobile robot navigation problem where five distance sensors are available to detect a relative configuration 
against a wall.

In this problem setting, the relative position of the robot to the wall can be expressed by two
parameters; its distance to the wall and its relative orientation to the wall. When the robot is
moving parallel to the wall, sensor 2 detects the configuration of the robot. In this case, sensor
1 is out of its sensing range. Sensor 1 provides configuration information when the robot is
facing the wall. However, in this case, the observation variables s (1) = [s s s

3]
T are redundant for

1 2

the purpose of specifying the 2-DOF configuration relative to the wall. The mapping method
of manifold is applied to the space of sensor 1. The radius of the wheels is 0.02 (m), and the
distance between the two wheels is 0.04 (m). The initial state of the robot is set where the
robot faces perpendicular to the wall at a distance of 1 (m), and final destination of the robot is
specified so that the robot comes close to the wall where only sensor 2 is in its detection range.

Figure 7(a) shows samples of the observation variables of sensor 1, which was obtained
by the offline random data collection. The three-dimensional vectors are distributing on a

Figure 7. Collected sensor variables with three distance sensors (a) and estimated two-dimensional manifold based on 
the samples (b).
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Figure 8. Realized trajectories of the robot in sensor space 1 (a), virtual sensor space of sensor 1 (b), and the viewing 
range of sensor 2 (c).

two-dimensional surface of the redundancy described above. Nodes of the approximation sur-
face were initially located around the center of the samples. The approximation surface obtained
by the proposed method is depicted in Figure 7(b), where the nodes correspond to crosses on the
curves. It can be confirmed that the nodes covered the samples by spreading and fitting them.

The trajectory obtained by the proposed method in the observation variable spaces is shown 
in Figure 8. The line drawn on the approximation surface in Figure 8(a) indicates the initial 
part of the trajectory in the observation variable space for sensor 1, where a circle in the figure 
indicates the initial configuration. Figure 8(b) shows the trajectory drawn in the space of sen-
sor 1 obtained by the proposed dimension-reduction method. Figure 8(c) shows the last part 
of the trajectory in the space of sensor 2.

The trajectory generated in the world coordinate by the robot is depicted in Figure 9. The line 
of y = 0 indicates the wall. The initial configuration of the robot is apart from the wall and it 

Figure 9. Trajectory of the mobile robot in the world coordinate view.
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finally reached the target configuration, directing parallel to the wall. It can be seen that there 
is an intermediate part in the trajectory, where none of the distance sensors were detecting the 
wall, as drawn in thick lines in the trajectory.

It was assumed in the proposed method that the robot knows the dimension of the state 
vector. This problem can be resolved by applying statistical methods such as principal com-
ponent analysis (PCA) [15], which allows to detect the appropriate dimension of the robot 
system’s dynamics. Though PCA is a linear framework, which is valid only in the case where 
linear dimension reduction can be applied to the whole state space, nonlinear extensions of 
the dimension-reduction methods have been also developed, such as Kernel PCA [16] and 
ISOMAP [17]. The surface-approximation scheme applied in this chapter for the dimension-
reduction problem can be replaced to other nonlinear mapping methods, which will be one 
of our future works.

3. Manifold learning approach toward constructing state 
representation for robot motion generation 

Monocular and stereo cameras are widely used as external sensors for robot systems. In the 
real-world application of robot systems, however, measurement of 3D configurations of 
objects suffers from the following difficulties:

1. 3D configuration measurement, in general, inherently requires precise measurement of the 
shape of an object, but the whole shape of an object cannot be measured directly because 
the process is normally unilateral.

2. It is very important for object manipulation of a robot that the spatial relation between a 
robot and an object is precisely identified. But while the robot hand is approaching to the 
object and getting close to it, occlusion is very likely to occur.

3. In real applications, objects very often deform by contact with the robot, which requires spe-
cific model for mathematical analysis. But it is difficult to precisely model the deformation.

In the research field of developmental robotics, measurement of the 3D configuration in the 
world coordinate is not regarded as a sole way to represent the state for a robot. If a robot can 
build a suitable representation of its environment based by its own way, the total process of 
robot recognition and motion generation will be freed from the problems mentioned above 
(e.g., see [18] as a learning approach).

Thus, an approach to the interest of building a representation of a robot from images for 
motion planning and control in an adaptive way without any predefined knowledge [19] 
is presented in this section. To consider relation between the robot and its environment, 
image features based on scale invariant feature transform (SIFT) [20] are used. As a related 
research, an image feature-based learning of robot behavior was presented [21]. However, 
it did not deal with relation between an object and the robot with a quantitative representa-
tion. In the presented method, a manifold learning method is applied to acquisition of state 
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representation. It allows not only to classify state of the robot but also to evaluate closeness to 
a certain situation. In addition, it is verified that the representation acquired by the method is 
used for motion generation of collision avoidance.

As a means of manifold learning, locally linear embedding (LLE) [6] is used. The manifold 
learning is suitable because the system dynamics property can hold only in a local region in 
the problem of robot motion generation. A vector generation based on SIFT features matching 
is proposed for the application of LLE to deal with the problem that keypoints of SIFT are not 
consistently observed throughout the image sequences. The proposed method is evaluated 
using a humanoid robot with real images after verification of LLE state representation genera-
tion with simulated images.

3.1. Problem definition of manifold learning from an image

Figure 10 shows images obtained by CCD camera attached at the head of a robot. These 
images are input to the system. Humanoid robot NAO [22] is considered in the experiment. 
The images contain part of the body (arm) of the robot, an object that has possibility to contact 
with the robot, and other objects that are not affected by the robot motion (background). 
Shoulder roll joint and shoulder pitch joint are controlled, while other two joints are fixed 
throughout the experiment. This implies that the motion of the robot arm is constrained on a 
plane that is vertical to optical axis of the CCD camera.

The right hand of Figure 10 also shows image features extracted from the images as depicted 
by circles. Keypoints of SIFT are used as image features. No explicit knowledge on properties 
of image features is assumed in the problem. That is, the robot does not have label informa-
tion of the object, backgrounds, or robot’s body in the image in advance. The robot collects 
images while moving its arm randomly. Position of the object is also differed irrelevantly to 
the configuration of the robot arm.

Figure 10. Experimental setup of a humanoid robot with an object (left). Images and SIFT keypoints extracted as circles 
with different scales indicated by circles (right).
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The objective for the robot is to construct a space that provides the following utilities:

1. Estimation of closeness between its hand and the object

2. Prediction of collision between its hand and the object

The first utility allows the robot to plan its motion so that its hand does not to come too close
to the object while the robot tries to reach some configuration, avoiding collision with obstacles.
The second utility is expected to contribute to the ability to predict collision prior to its motion by
integrating it into other techniques, for example, prediction of robot’s hand in the image space.

3.2. Manifold learning based on SIFT image features 

Manifold learning by LLE is applied to the vectors represented by positions of SIFT key-
points. Each keypoint contains 128-dimensional feature vector that is used to classification 
and matching to the keypoints in other image frames. By the matching process, a keypoint can 
be tracked through multiple image frames given that it is extracted in those images. However, 
in the application of robot motion sequence, each feature vector corresponding to a keypoint 
is not consistent through sequences of image frames. The arm, which consists of serial links, 
inevitably changes its posture while it is moving toward a certain configuration. By assuming 
that each keypoint tracks a certain part of the arm, we proposed a method for matching and 
labeling using self-organizing map (SOM) [23].

Although feature vectors of a keypoint differ by the change of the robot’s configuration in 
the image frames, it is likely that those feature vectors in images with small differences in 
image pixel level are similar. By using topological neighbor of SOM generated by image pixel 
information, correspondence between keypoint labels can be found. By finding correspon-
dence between neighbor nodes, labels that correspond to the same part of the real world are 
integrated into one label.

3.3. Motion generation based on manifold learning 

Dynamic programming with discrete state representation [10] is applied for motion generation.
The state for motion generation is defined by the joint angle space. The discrete state is given
by discretizing the joint angles of the robot two-dimensional grids. Actions are defined as four
directional transitions from a grid to its adjacent grids. Reward is defined as 0 for reaching
the desired configuration, −100 for colliding with the object, and −1 at every step otherwise.
Collision with the object is predicted using the obtained LLE representation as described below.

3.4. Simulation results 

We first tested basic property of LLE in conditions similar to the experimental problem set-
ting. Virtual keypoints were generated as shown in Figure 11(a). As an assumption, an object 
and the robot hand is captured in an image frame with the size of 400 × 400 [pix]. There were 
10 keypoints to be detected on the object, 10 on the robot hand, and 5 in the background. Both 
the positions of the object and the hand were varied randomly with uniform distribution. 
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Figure 11. Simulated keypoints (a) and result of LLE with distance information between robot hand and object (b).

Total number of images was 1000. Number of keypoints was 25. To simulate matching error 
of keypoints, position information of 10% of the keypoints in the data vector was removed.

The result of mapping by LLE is depicted in Figure 11(b). Y
1
, Y

2
, and Y

3 
in the figure correspond to

low-dimensional vector y and hence they do not have units. The colors of the points denote dis-
tances between the object and the hand in the corresponding images, where the original distance
information in pixel with maximum 550 pixel was converted to 64 levels. It can be seen in the fig-
ure that one direction in the feature space reflects the distance between the object and the hand.

3.5. Experiment of LLE mapping and motion generation with real images 

The three-dimensional mapping constructed by the proposed method is depicted in Figure 12. 
Each point, indicated by a circle or a cross, indicates a vector obtained by converting the image 
feature vector by LLE. A cross denotes an image corresponding to a situation where the hand 
contacts with the object. A circle denotes an image without any contact. It can be seen that in 
the space, crosses are concentrating around a certain region. Distance between the object and 
the hand, however, could not be clearly seen in the obtained map.

For verification, some test images that are independent from the training process of LLE map-
ping generation were mapped onto the generated space. Test samples are drawn by boxes in
the figure. Corresponding images are also displayed. It is observed that the image with its robot
hand, the most distant from the object, is located in the space at the furthest position from the
region of the dense crosses. Images with its hand closer to the object are located also closer to
the “contact” region. But there is a jump at the last step to contact with the object into the region
with dense crosses. Thus, the spatial relation between the hand and the object was reflected to a
certain level, but not directly reflecting the distance between the hand and the object in the real
world.

Classification of collisions was also evaluated based on the generated map information. Using 
the mapping collision between the hand and the object was predicted by whether an image 
is included in the sphere whose center is the average of the samples indicated by the crosses. 
The optimal radius was set as r = 0.74, which was found empirically so that the discrimination 
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Figure 12. LLE mapping by real images with test samples.

performance was the best. The classification result is shown in Table 1. For comparison 
between linear and nonlinear methods, a linear mapping was also implemented. The clas-
sification result based on the mapping principal component analysis (PCA) is depicted in 
Table 2. It can be seen that nonlinear mapping brought conspicuous difference of classifica-
tion performance.

A sequence of snapshots of motion generated by DP is shown in Figure 13. Grid sizes for 
the discrete state space were set as 8 × 12. Collision was predicted by a correct recognition 
result for images adopted in Table 1. (1) in the figure denotes the initial configuration of the 
robot hand. The tip of the hand is located above the object in (11), corresponding to the target 
configuration. It can be seen that the robot hand could reach a destination while avoiding 
collision with the object, given that an appropriate evaluation of closeness (or collision) to the 
object is achieved.

Collision (%) No collision (%) 

Recognized as collision 95/115 (82.6) 111/617 (18.0)

Recognized as no collision 20/115 (17.4) 506/617 (82.0)

Table 1. Prediction of collision with LLE.

Collision (%) No collision (%) 

Recognized as collision 63/115 (54.8) 132/617 (21.4)

Recognized as no collision 52/115 (45.2) 485/617 (78.6)

Table 2. Prediction of collision with PCA.

http://dx.doi.org/10.5772/intechopen.80973
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Figure 13. Snapshots of motion a motion sequence achieved by the proposed motion generation.

4. Conclusion 

Two kinds of application of manifold were presented in this chapter. In the first application, 
coordinate systems obtained from sensor signals are directly used for motion control of the 
robot. In the second application, an intermediate representation, spatial relation between the 
robot hand and the object, was built using a manifold learning method. One important advan-
tage of these approaches, in comparison with the end-to-end motion learning approaches such 
as deep learning (e.g., [24]), is that we can analyze and evaluate the obtained representation. 
In order to apply the approach of manifold learning to more complex robot motion problems, 
it will be required to consider multiple resolutions, disappearance of features (as discussed 
in [25]), multiple relations among variables (e.g., discussed in [26]), and connecting different 
modalities with discontinuous dynamics (such as contact and noncontact switching).
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