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harm to users and manufacturers. Most of modern design and analysis tools are targeted at
custom integrated circuits that are costly and time prohibitive to implement at high level
designs. The purpose of this book is to provide a review on advanced digital system design
and simulation through computer aided design (CAD) and machine learning tools. We
present the practical applications of CAD and machine learning modeling and synthesis in
digital system design to construct a basis for effective design and provide a tutorial of digi‐
tal systems functionality. We review theoretical principles, discrete mathematical models,
computer simulations and machine learning methods in related areas. In this book, imple‐
mentation of frequency analysis methods is presented at software and hardware levels. Var‐
iable Digital Filter (VDF) is presented as one of the vastly used hardware processing tools in
the field of digital systems. A detailed description is provided on the advanced design meth‐
ods of VDFs. Practical application of field-programmable gate array (FPGA) in a control sys‐
tem is presented in this book and an evolutionary algorithm is presented for functional
verification of FPGA design. Deep learning has been used as an efficient tool for compres‐
sion of digital networks and increasing the processing speed. Some of the useful deep learn‐
ing methods have been introduced and the applications of them is presented in digital
system design and verification. Several architectures are introduced and evaluated includ‐
ing general regression neural networks and convolutional neural networks.

As the editor of the book, I would like to acknowledge the contribution of the authors. These
efforts allowed the updated materials in the field of digital systems to be available for the
researchers and users in this field.

Dr. Vahid Asadpour
Sadjad University of Technology

Research Scientist at University of California Los Angeles (UCLA)
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Abstract

Fourier transform profilometry (FTP) is an established non-contact method for 3D sensing
in many scientific and industrial applications, such as quality control and biomedical
imaging. This phase-based technique has the advantages of high resolution and noise
robustness compared to intensity-based approaches. In FTP, a sinusoidal grating is
projected onto the surface of an object, the shape information is encoded into a deformed
fringe pattern recorded by a camera. The object shape is decoded by calculating the
Fourier transform, filtering in the spatial frequency domain, and calculating the inverse
Fourier transform; afterward, a conversion of the measured phase to object height is
carried out. FTP has been extensively studied and extended for achieving better slope
measurement, better separation of height information from noise, and robustness to
discontinuities in the fringe pattern. Most of the literature on FTP disregards the software
implementation aspects. In this chapter, we return to the basics of FTP and explain in
detail the software implementation in LabVIEW, one of the most used data acquisition
platforms in engineering. We show results on three applications for FTP in 3D metrology.

Keywords: 3D reconstruction, Fourier transform profilometry, FTP, LabVIEW

1. Introduction

Three-dimensional (3D) shape measurement techniques are widely used in many different fields
such as mechanical engineering, industry monitoring, robotics, biomedicine, dressmaking,
among others [1]. These techniques can be classified as passive, like in stereo vision in which
two or more cameras are used to obtain the 3D reconstruction of a scene, or as active, like in
fringe projection profilometry (FPP) in which a projection device is used to project a pattern onto
the object to be reconstructed. When compared with other 3D measurement techniques, FPP has
the advantages of high measurement accuracy and high density. There are two types of FPP
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methods: phase shifting and Fourier-transform profilometry (FTP). Phase-shifting methods offer
high-resolution measurement at the expense of projecting several patterns onto the object [2–4],
whereas FTP is popular because only one deformed fringe pattern image is needed [5]. For this
reason, FTP has been used in many dynamic applications [6] such as vibration measurement of
micromechanical devices [7] and measurement of real-time deformation fields [8].

FTP was proposed by Takeda et al. [5, 9] in 1982 and has since become one of the most used
methods [3, 10]. Its main advantages are full-field analysis, high precision, noise-robustness
[11], among others. In FTP, a Ronchi grating, or a sinusoidal grating, or a fringe pattern from a
digital projector is projected onto an object, and the depth information of the object is encoded
into the deformed fringe pattern recorded by an image acquisition device as shown in Figure 1.
The surface shape can be decoded by calculating the Fourier transform, filtering in the spatial
frequency domain, and calculating the inverse Fourier transform. Compared with other fringe
analysis methods, FTP can accomplish a fully automatic distinction between a depression and
an elevation of the object shape. It requires no fringe order assignments or fringe center
determination, and it needs no interpolation between fringes because it gives height distribu-
tion at each pixel over the entire field. Since FTP requires only one or two images of the
deformed fringe pattern, it has become one of the most popular methods for real-time 3D
reconstruction of dynamic scenes.

Although FTP has been extensively studied and used in many applications, to the best of our
knowledge a complete reference in which the implementation details are fully described is
nonexistent. In this chapter, we describe the FTP fundamentals and the implementation of an
FTP system in LabVIEW one of the most used engineering development platforms for data
acquisition and laboratory automation. The chapter is organized as follows. In Section 2 we
describe the FTP fundamentals and a general calibration method, in Section 3 we describe how
FTP is implemented in LabVIEW, and finally in Section 4 we show three applications of FTP
for 3D reconstruction.

Figure 1. Fringe projection system.
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2. FTP fundamentals

There are many implementations of FPP. However, all share the same underlying principle. A
typical FPP setup consists of a projection device and a camera as shown in Figure 1. A fringe
pattern is projected onto a test object, and the resulting image is acquired by the camera from a
different direction. The acquired fringe pattern image is distorted according to the object shape.
In terms of information theory, it is said that the object shape is encoded into a deformed fringe
pattern acquired by the camera. The object shape is recovered/decoded by comparison to the
original (undeformed) fringe pattern image. Therefore, the phase shift between the reference and
the deformed image contains the information of the object shape.

By projecting a fringe pattern onto the reference plane, the fringe pattern (with period p0 ¼1=f 0)
on the reference plane observed through the camera can be modeled as

g0 x; yð Þ ¼ a0 x; yð Þ þ b0 x; yð Þcos 2πf 0xþ ϕ0 x; yð Þ� �
: (1)

Likewise, when the object is placed on the reference plane, the deformed fringe pattern obser-
ved through the camera is given by

g x; yð Þ ¼ a x; yð Þ þ b x; yð Þcos 2πf 0xþ ϕ x; yð Þ� �
, (2)

where a0 x; yð Þ and a x; yð Þ represent the non-uniform background illumination, b0 x; yð Þ and
b x; yð Þ the contrast of the fringe pattern. f 0 is the fundamental frequency of the observed fringe
pattern (also called carrier frequency). ϕ0 x; yð Þ and ϕ x; yð Þ are the original phase modulation
on the reference plane Rwhere z x; yð Þ ¼ 0 and the phase modulations resulting from the object
height distribution, respectively. a x; yð Þ, b x; yð Þ and ϕ x; yð Þ are assumed to vary much slower
than the spatial carrier frequency f 0. The principle of FTP is shown schematically in Figure 2.
The input fringe pattern from Eqs. (1) and (2) can be rewritten using Euler’s formula in the
following form

Figure 2. Principle of the filtering via Fourier transform (FT) method. IFT, inverse FT.
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g x; yð Þ ¼ a x; yð Þ þ c x; yð Þexp 2πif 0x
� �þ c∗ x; yð Þexp �2πif 0x

� �
, (3)

with

c x; yð Þ ¼ 1
2
b x; yð Þexp iϕ x; yð Þ� �

, (4)

where ∗ denotes a complex conjugate.

Next, the phase of the fringe patterns is recovered using the Fourier Transform method. Using
one-dimensional notation for simplicity, when we compute the Fourier transform of Eqs. (1)
and (2) the Fourier spectrum of the fringe signals splits intro three spectrum components
separated from each other, which gives

G f x; y
� � ¼ A f x; y

� �þ C f x � f 0; y
� �þ C∗ f x þ f 0; y

� �
, (5)

as shown in two dimensions in Figure 2. With an appropriate filter function, for instance, a
Hanning filter, the spectra are filtered to let only the fundamental component C f x � f 0; y

� �
. A

Hanning window is given by [11],

H f x
� � ¼ 0:50 1þ cos βπ

f x � f 0
f c

� �� �
, (6)

where f c is the cutoff frequency at a 50% attenuation ratio, β ¼ 1=2 and f x varies from f 0 � f c=β
to f 0 þ f c=β. The inverse Fourier Transform is applied to the filtered component, and a complex
signal is obtained

bg0 x; yð Þ ¼ 1
2
b x; yð Þexp i 2πf 0xþ ϕ0 x; yð Þ� �� �

, (7)

bg x; yð Þ ¼ 1
2
b x; yð Þexp i 2πf 0xþ ϕ x; yð Þ� �� �

: (8)

The variable related to height distribution is the phase change Δϕ x; yð Þ [9]:
Δϕ x; yð Þ ¼ Φ x; yð Þ � Φ0 x; yð Þ ¼ ϕ x; yð Þ � ϕ0 x; yð Þ, (9)

with

Φ0 x; yð Þ ¼ tan�1
ℑ bg0 x; yð Þ½ �
ℜ bg0 x; yð Þ½ �
� �

, (10)

Φ x; yð Þ ¼ tan�1
ℑ bg x; yð Þ½ �
ℜ bg x; yð Þ½ �
� �

, (11)

where ℑ :½ � and ℜ :½ � denote the imaginary and the real part, respectively. The phases obtained
from Eqs. (10) and (11) are wrapped into the principal value �π;π½ �. The wrapped phase is

Digital Systems6

unwrapped by using a suitable phase unwrapping algorithm [12] that gives the desired phase
map as shown in Figure 2. The phase map Δϕ x; yð Þ is proportional to the height of the object
surface.

2.1. System calibration

The calibration of FPP systems plays an essential role in the accuracy of the 3D reconstructions.
Here we describe a simple yet extensively used calibration called the reference-plane-based
technique, i.e., to convert the unwrapped phase map Δϕ x; yð Þ to height z.

The optical axis geometry of the FTP measurement system is depicted in Figure 3. The optical

axis E
0
p � Ep of a projector lens crosses the optical axis E

0
c � Ec of a camera lens at a point O on a

reference plane R. This reference plane is normal to the optical axis E
0
c � Ec and serves as a

reference to measure the height of the object z x; yð Þ. d is the distance between the projector and
the camera, l0 is the distance between the camera and the reference plane. The fringe pattern
image (with period p) is formed by the projector lens on plane I through point O. p is related to
the carrier frequency by f 0 ¼ 1=p0 ¼ cosθ=p. The height of the object surface is measured
relative to R. From the point of view of the projector, point A on the object surface has the
same phase value as point C on the reference plane R, ΦA ¼ ΦR

C, where the superindex R
denotes a point on the reference plane. On the camera sensor, point A on the object surface
and point D on the reference plane are imaged on the same pixel. By subtracting the reference
phase map from the object phase map, we obtain the phase difference at this specific pixel

Figure 3. Fringe projection system.
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� �
, (5)

as shown in two dimensions in Figure 2. With an appropriate filter function, for instance, a
Hanning filter, the spectra are filtered to let only the fundamental component C f x � f 0; y

� �
. A

Hanning window is given by [11],
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� �� �
, (6)

where f c is the cutoff frequency at a 50% attenuation ratio, β ¼ 1=2 and f x varies from f 0 � f c=β
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2
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, (7)
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2
b x; yð Þexp i 2πf 0xþ ϕ x; yð Þ� �� �

: (8)

The variable related to height distribution is the phase change Δϕ x; yð Þ [9]:
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Φ0 x; yð Þ ¼ tan�1
ℑ bg0 x; yð Þ½ �
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� �

, (10)
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� �

, (11)

where ℑ :½ � and ℜ :½ � denote the imaginary and the real part, respectively. The phases obtained
from Eqs. (10) and (11) are wrapped into the principal value �π;π½ �. The wrapped phase is
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unwrapped by using a suitable phase unwrapping algorithm [12] that gives the desired phase
map as shown in Figure 2. The phase map Δϕ x; yð Þ is proportional to the height of the object
surface.

2.1. System calibration

The calibration of FPP systems plays an essential role in the accuracy of the 3D reconstructions.
Here we describe a simple yet extensively used calibration called the reference-plane-based
technique, i.e., to convert the unwrapped phase map Δϕ x; yð Þ to height z.

The optical axis geometry of the FTP measurement system is depicted in Figure 3. The optical

axis E
0
p � Ep of a projector lens crosses the optical axis E

0
c � Ec of a camera lens at a point O on a

reference plane R. This reference plane is normal to the optical axis E
0
c � Ec and serves as a

reference to measure the height of the object z x; yð Þ. d is the distance between the projector and
the camera, l0 is the distance between the camera and the reference plane. The fringe pattern
image (with period p) is formed by the projector lens on plane I through point O. p is related to
the carrier frequency by f 0 ¼ 1=p0 ¼ cosθ=p. The height of the object surface is measured
relative to R. From the point of view of the projector, point A on the object surface has the
same phase value as point C on the reference plane R, ΦA ¼ ΦR

C, where the superindex R
denotes a point on the reference plane. On the camera sensor, point A on the object surface
and point D on the reference plane are imaged on the same pixel. By subtracting the reference
phase map from the object phase map, we obtain the phase difference at this specific pixel

Figure 3. Fringe projection system.
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ΔΦAD ¼ ΦA � ΦR
D ¼ ΦR

C � ΦR
D ¼ ΦR

CD: (12)

The triangles ΔEpEcA and ΔCDA are similar, and the height AB of point A on the object surface
relative to the reference plane can be related to the distance between points C and D

Δz x; yð Þ ¼ AB ≈
l0
d
CD∝ΔΦR

CD ¼ ΦA � ΦR
D: (13)

Combining Eqs. (12) and (13) a proportional relation between the phase map and the surface
height can be obtained for any point x; yð Þ

Δz x; yð Þ∝Δϕ x; yð Þ ¼ Φ x; yð Þ � Φ0 x; yð Þ, (14)

where Φ x; yð Þ is the object phase map and Φ0 x; yð Þ is the reference plane phase map. Assuming
the reference plane has a depth of z0, the depth value for each measured point can be
represented as

z x; yð Þ ¼ z0 þ k0 � Φ x; yð Þ � Φ0½ �, (15)

where k0 is a constant determined through calibration and z0 is usually set to 0.

We have shown how the object surface height is related to the recovered phase through FTP.
The model described by Eq. (15) has many underlying assumptions and is often extended to
cover more degrees of freedom. Moreover, a general calibration process in FPP can be carried
out employing the methodology shown in Figure 4. First, we propose a model that best
describes the system, while also considering metrological requirements such as speed, robust-
ness, accuracy, flexibility and reconstruction scale. Some authors have proposed to use several
calibration models based on polynomial or fractional fitting functions [13, 14], bilinear inter-
polation by look-up table (LUT) [15] and stereo triangulation [16–18]. These calibration models
require different strategies or techniques that allow relating metric coordinates with phase
values. In step II, we select or design a strategy that fits the proposed calibration model and
characteristics of the elements to a given experimental setup, such as the type of projector (i.e.,
analog or digital projection) and camera (i.e., monochrome or color). These strategies consist in
projecting and capturing fringe patterns onto 3D-objects [19] or 2D-targets [16, 20] with highly
accurate known measurements. In some cases, the calibration consists in displacing the targets
along the z axis using a linear translation stage [19]. The purpose is to obtain a correspondence
between a metric coordinate system and the phase images captured with the camera. In step
III, the correspondences are used to calculate the parameters that are part of the proposed

Figure 4. General calibration methodology.
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model, and the best data obtained in step II. Finally in step IV, with the complete model, we
can find mathematical expressions that convert phase maps to XYZ-coordinates.

3. LabVIEW implementation

In this section, we explain the details of the FTP software implementation in LabVIEW.
LabVIEW stands for Laboratory Virtual Instrument Engineering Workbench and is a system-
design platform and development environment for a visual programming language from
National Instruments [21]. It allows integrating hardware, acquiring and analyzing data, and
sharing results. Because it is a visual programming language based on function blocks, it is a
highly intuitive integrated development environment (IDE) for engineers and scientists famil-
iar with block diagrams and flowcharts. Every LabVIEW block diagram also has an associated
front panel, which is the user interface of the application.

The acquisition and processing strategies described in this section require the installation of the
following software components:

• NI vision acquisition software, which installs NI-IMAQdx. This software driver allows
the integration of cameras with different control protocols such as USB3 Vision, GigE
Vision devices, IEEE 1394 cameras compatible with IIDC, IP (Ethernet) and DirectShow
compatible USB devices (e.g., cameras, webcams, microscopes, scanners). NI vision
acquisition software also includes the driver NI-IMAQ for acquiring from analog cam-
eras, digital parallel and Camera Link, as well as NI Smart Cameras. This hardware
compatibility is the main advantage of using LabVIEW for vision systems. This compati-
bility greatly facilitates the development of applications for different types of cameras and
busses.

• NI vision development module (VDM). This package provides machine vision and
image processing functions. It includes IMAQ Vision, a library of powerful functions for
vision processing. In this library, there is a group of VIs that analyze and process images in
the frequency domain. We will make use of these functions throughout the entire chapter.

NI VDM and Vision Acquisition Software are supported on the following operating systems:

• Windows 10; Windows 8.1; Windows 7 (SP1) 32-bit; Windows 7 (SP1) 64-bit; Windows
Embedded Standard 7 (SP1); Windows Server 2012 R2 64-bit; Windows Server 2008 R2 (SP1)
64-bit.

3.1. Image acquisition

There are two primary ways to obtain images in LabVIEW: loading an image file or acquiring
directly from a camera. The wiring diagram in Figure 5(a) illustrates how to perform a
continuous (grab) acquisition in LabVIEW using Vision Acquisition Software. A Grab acquisi-
tion begins by initializing the camera specified by the Camera Name Control and configuring
the driver for acquiring images continuously. Using IMAQ Create, we create a temporary

Fourier Transform Profilometry in LabVIEW
http://dx.doi.org/10.5772/intechopen.78548

9



ΔΦAD ¼ ΦA � ΦR
D ¼ ΦR

C � ΦR
D ¼ ΦR

CD: (12)

The triangles ΔEpEcA and ΔCDA are similar, and the height AB of point A on the object surface
relative to the reference plane can be related to the distance between points C and D

Δz x; yð Þ ¼ AB ≈
l0
d
CD∝ΔΦR

CD ¼ ΦA � ΦR
D: (13)

Combining Eqs. (12) and (13) a proportional relation between the phase map and the surface
height can be obtained for any point x; yð Þ

Δz x; yð Þ∝Δϕ x; yð Þ ¼ Φ x; yð Þ � Φ0 x; yð Þ, (14)

where Φ x; yð Þ is the object phase map and Φ0 x; yð Þ is the reference plane phase map. Assuming
the reference plane has a depth of z0, the depth value for each measured point can be
represented as

z x; yð Þ ¼ z0 þ k0 � Φ x; yð Þ � Φ0½ �, (15)

where k0 is a constant determined through calibration and z0 is usually set to 0.

We have shown how the object surface height is related to the recovered phase through FTP.
The model described by Eq. (15) has many underlying assumptions and is often extended to
cover more degrees of freedom. Moreover, a general calibration process in FPP can be carried
out employing the methodology shown in Figure 4. First, we propose a model that best
describes the system, while also considering metrological requirements such as speed, robust-
ness, accuracy, flexibility and reconstruction scale. Some authors have proposed to use several
calibration models based on polynomial or fractional fitting functions [13, 14], bilinear inter-
polation by look-up table (LUT) [15] and stereo triangulation [16–18]. These calibration models
require different strategies or techniques that allow relating metric coordinates with phase
values. In step II, we select or design a strategy that fits the proposed calibration model and
characteristics of the elements to a given experimental setup, such as the type of projector (i.e.,
analog or digital projection) and camera (i.e., monochrome or color). These strategies consist in
projecting and capturing fringe patterns onto 3D-objects [19] or 2D-targets [16, 20] with highly
accurate known measurements. In some cases, the calibration consists in displacing the targets
along the z axis using a linear translation stage [19]. The purpose is to obtain a correspondence
between a metric coordinate system and the phase images captured with the camera. In step
III, the correspondences are used to calculate the parameters that are part of the proposed

Figure 4. General calibration methodology.

Digital Systems8

model, and the best data obtained in step II. Finally in step IV, with the complete model, we
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3. LabVIEW implementation

In this section, we explain the details of the FTP software implementation in LabVIEW.
LabVIEW stands for Laboratory Virtual Instrument Engineering Workbench and is a system-
design platform and development environment for a visual programming language from
National Instruments [21]. It allows integrating hardware, acquiring and analyzing data, and
sharing results. Because it is a visual programming language based on function blocks, it is a
highly intuitive integrated development environment (IDE) for engineers and scientists famil-
iar with block diagrams and flowcharts. Every LabVIEW block diagram also has an associated
front panel, which is the user interface of the application.

The acquisition and processing strategies described in this section require the installation of the
following software components:

• NI vision acquisition software, which installs NI-IMAQdx. This software driver allows
the integration of cameras with different control protocols such as USB3 Vision, GigE
Vision devices, IEEE 1394 cameras compatible with IIDC, IP (Ethernet) and DirectShow
compatible USB devices (e.g., cameras, webcams, microscopes, scanners). NI vision
acquisition software also includes the driver NI-IMAQ for acquiring from analog cam-
eras, digital parallel and Camera Link, as well as NI Smart Cameras. This hardware
compatibility is the main advantage of using LabVIEW for vision systems. This compati-
bility greatly facilitates the development of applications for different types of cameras and
busses.

• NI vision development module (VDM). This package provides machine vision and
image processing functions. It includes IMAQ Vision, a library of powerful functions for
vision processing. In this library, there is a group of VIs that analyze and process images in
the frequency domain. We will make use of these functions throughout the entire chapter.

NI VDM and Vision Acquisition Software are supported on the following operating systems:
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3.1. Image acquisition

There are two primary ways to obtain images in LabVIEW: loading an image file or acquiring
directly from a camera. The wiring diagram in Figure 5(a) illustrates how to perform a
continuous (grab) acquisition in LabVIEW using Vision Acquisition Software. A Grab acquisi-
tion begins by initializing the camera specified by the Camera Name Control and configuring
the driver for acquiring images continuously. Using IMAQ Create, we create a temporary
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memory location for the acquired image. This function returns an IMAQ image reference to the
buffer in memory where the image is stored. The reference is the input to the IMAQ Grab VI
for starting the acquisition. The grabbed image is displayed on the LabVIEW front panel using
an Image Indicator (see Figure 5(b)), which points to the location in memory referenced by
the IMAQ image reference. A while loop statement allows adding each grabbed image to the
image indicator as a single frame. Finally, the image acquisition is finished by calling the
IMAQ close VI that releases resources associated with the camera and the interface.

The acquired image is written to a file in a specified format by using the IMAQWrite File 2 VI.
The graphics file formats supported by this function are BMP (windows bitmap), JPEG, PNG
(portable network graphics), and TIFF (tagged image file format). However, note that lossy
compression formats, such as JPEG, introduce image artifacts and should be avoided to ensure
accurate image-based measurements. The saved image can be displayed in a secondary image
indicator by enabling the Snapshot option. When enabling the Snapshot Mode, the Image
Display control continues to display the image as it was when the image was saved during
the Case Structure execution, even when the inspection image has changed. To configure the
Image Display control for working in Snapshot Mode, right-click on the control on the front
panel and enable the Snapshot option.

Another way to acquire an image using a camera is presented in the Figure 6. This example uses
the NI Vision Acquisition Express to perform the acquisition stage. The Vision Acquisition
Express VI is located in the Vision Express palette in LabVIEW, and it is commonly used to
quickly develop image acquisition applications due to its versatility and intuitive development
environment. Double-clicking on the Vision Acquisition Express VI makes a configuration win-
dow appear which allows choosing a device from the list of available acquisition sources,
selecting an acquisition type, and configuring the acquisition settings. Concerning the acquisition
types, there are four mainmodes: single acquisition with processing, continuous acquisition with
inline processing, finite acquisition with inline processing and finite acquisition with post-
processing. The last two acquisition types are similar, except that for a finite acquisition with
post-processing the images are only available after they are all acquired. The configuration of the

Figure 5. Grab acquisition in LabVIEW. (a) Block diagram. (b) Image indicator in front panel.
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acquisition settings is one of the most relevant processes during configuration and allows the
simultaneous manipulation of camera attributes like Exposure Time, Trigger Mode, Gain,
Gamma Factor, among others. For this example, we configured the acquisition for working in a
continuous acquisition with inline processing mode, which continuously acquires images until
an event stops the acquisition. Additionally, the Exposure Time attribute can be modified during
the acquisition process by using a Numeric Control. As with the example in Figure 5, the
captured image is displayed in a secondary image indicator during the Case Structure execution.

In Fringe Projection systems, the manipulation of certain camera attributes (e.g., the Exposure
Time attribute) is required to capture high-quality images and to enable to work under
different lighting environments with different constraints. In the example above, we intro-
duced the possibility of manipulating camera attributes during acquisition using the Vision
Acquisition Express. This manipulation of attributes is also possible by programming a simple
snap, grab, or sequence operation based on low-level VIs (as in the example in Figure 5) using
IMAQdx property nodes. The attribute manipulation requires providing the property node
with the name of the attribute we want to modify and identifying the attribute representation,
which can be an integer, float, Boolean, enumeration, string or command. In general, cameras
share many attributes; however, they often have specific attributes depending on the manu-
facturer. These attributes should be known beforehand to ensure good acquisition control. At
the development stage, LabVIEW does not know or display the name of the attributes or
representations. Furthermore, if the documentation is not available, we suggest using the
Measurement and Automation Explorer (MAX). MAX is a tool that allows the configuration
of different acquisition parameters and is useful when it is required to manipulate attributes of
a device with a specific interface within the LabVIEW programming environment. For exam-
ple, suppose we want to modify the exposure time of our camera (Basler Aca 1600-60gm), but
we do not have information about supported attributes. Here is where MAX becomes a

Figure 6. Continuous acquisition using IMAQ vision acquisition express. (a) Block diagram. (b) Image indicator in front
panel.
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memory location for the acquired image. This function returns an IMAQ image reference to the
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for starting the acquisition. The grabbed image is displayed on the LabVIEW front panel using
an Image Indicator (see Figure 5(b)), which points to the location in memory referenced by
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image indicator as a single frame. Finally, the image acquisition is finished by calling the
IMAQ close VI that releases resources associated with the camera and the interface.

The acquired image is written to a file in a specified format by using the IMAQWrite File 2 VI.
The graphics file formats supported by this function are BMP (windows bitmap), JPEG, PNG
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compression formats, such as JPEG, introduce image artifacts and should be avoided to ensure
accurate image-based measurements. The saved image can be displayed in a secondary image
indicator by enabling the Snapshot option. When enabling the Snapshot Mode, the Image
Display control continues to display the image as it was when the image was saved during
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panel and enable the Snapshot option.
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types, there are four mainmodes: single acquisition with processing, continuous acquisition with
inline processing, finite acquisition with inline processing and finite acquisition with post-
processing. The last two acquisition types are similar, except that for a finite acquisition with
post-processing the images are only available after they are all acquired. The configuration of the
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acquisition settings is one of the most relevant processes during configuration and allows the
simultaneous manipulation of camera attributes like Exposure Time, Trigger Mode, Gain,
Gamma Factor, among others. For this example, we configured the acquisition for working in a
continuous acquisition with inline processing mode, which continuously acquires images until
an event stops the acquisition. Additionally, the Exposure Time attribute can be modified during
the acquisition process by using a Numeric Control. As with the example in Figure 5, the
captured image is displayed in a secondary image indicator during the Case Structure execution.

In Fringe Projection systems, the manipulation of certain camera attributes (e.g., the Exposure
Time attribute) is required to capture high-quality images and to enable to work under
different lighting environments with different constraints. In the example above, we intro-
duced the possibility of manipulating camera attributes during acquisition using the Vision
Acquisition Express. This manipulation of attributes is also possible by programming a simple
snap, grab, or sequence operation based on low-level VIs (as in the example in Figure 5) using
IMAQdx property nodes. The attribute manipulation requires providing the property node
with the name of the attribute we want to modify and identifying the attribute representation,
which can be an integer, float, Boolean, enumeration, string or command. In general, cameras
share many attributes; however, they often have specific attributes depending on the manu-
facturer. These attributes should be known beforehand to ensure good acquisition control. At
the development stage, LabVIEW does not know or display the name of the attributes or
representations. Furthermore, if the documentation is not available, we suggest using the
Measurement and Automation Explorer (MAX). MAX is a tool that allows the configuration
of different acquisition parameters and is useful when it is required to manipulate attributes of
a device with a specific interface within the LabVIEW programming environment. For exam-
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powerful tool for vision system developers. This attribute verification is done by selecting the
desired attribute from the Camera Attributes tab in the Measurement and Automation
Explorer and identifying its name (i.e., ExposureTimeAbs) and representation (i.e., floating-
point format). Therefore, the section of the block diagram inside a red box in Figure 5 can be
modified in order to allow setting the ExposureTimeAbs attribute value using a Property
Node as shown in Figure 7.

Both acquisition methods have their advantages and disadvantages concerning their imple-
mentation in vision systems. On the one hand, the use of the NI Vision Acquisition Express
allows to quickly and easily develop acquisition applications, even without having a high
knowledge of the tools for image acquisition offered by LabVIEW. However, this could be a
disadvantage if our purpose is to have complete control over the acquisition. On the other
hand, the low-level VIs provide greater control and versatility over the application develop-
ment, but the implementation of vision systems based on low-level VIs can be a complicated
task for novice users of NI Vision Acquisition Software and LabVIEW.

Once the acquired fringe image file has been written to disk, it is loaded for processing. The
block diagram in Figure 8 illustrates how to perform this procedure in LabVIEW. The IMAQ
ReadFile VI opens and reads an image from a file stored on the computer into an image
reference. The loaded pixels are converted automatically into the image type supplied by
IMAQ Create VI. From now on we refer to the Fringe Image to the loaded fringe image.

3.2. Fringe pattern projection

In the previous section, we described several acquisition methods for capturing images from a
camera in LabVIEW. However, in fringe projection systems there are many different fringe
pattern projection technologies and choosing the correct one becomes extremely important for
an accurate three-dimensional reconstruction. A fringe pattern projector can be considered as
an analog device (e.g., LED pattern projector) or as a digital device (e.g., DLP, LCoS, and LCD
digital display technologies). LED pattern projectors are ideal for high-resolution three-
dimensional reconstruction applications. If equipped with an objective lens and a stripe pat-
tern reticle, these projectors offer great versatility for manipulating the optics of the system and
obtaining results according to the metrological requirements. The main disadvantage of this
type of projection system is the impossibility of manipulating the projected fringe pattern.
Therefore, its use is often restricted to techniques in which only a single fringe image is
necessary to obtain the 3D information, such as in the case of FTP.

Figure 7. Setting the ExposureTimeAbs attribute value using a property node.
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Fringe Projection systems can also take advantage of a computer to generate sinusoidal fringe
patterns that are projected using a digital projector. The key to a successful 3D reconstruction
system based on digital fringe projection focuses on generating high-quality fringes to meet the
metrological requirements. Ideally, assuming the projector is linear in that it projects grayscale
values ranging from 0 to 255 (0 black, and 255 white), the computer-generated fringe patterns
can be described as follows,

I i; jð Þ ¼ 255
2

1þ cos
2πi
pd
þ φ

� �� �
, (16)

where pd represents the number of pixels per fringe period, φ refers to the phase shift, and i; jð Þ
are the pixel indices. Eq. (16) is implemented using the numeric functions provided by the NI
LabVIEW Base Package. An example of a pattern generator block diagram is shown in Figure 9.
In this program the Numeric Indicators enable the modification of the fringe pitch and the
phase shift according to the application requirements.

An alternative to a block diagram implementation of Eq. (16) LabVIEW provides a MathScript
RT Module as a scripting language. The module allows the combination of textual and graph-
ical approaches for algorithm development. In Figure 10 we provide an example on how to
use the MathScript RT Module for fringe generation in LabVIEW.

Once the fringe images have been generated, they are sent to a digital video projector for projec-
tion. A video projector is essentially a second monitor. Therefore the fringe image is displayed by

Figure 8. Reading an image file in LabVIEW.

Figure 9. Block diagram for fringe pattern generation.
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using the External Display VIs provided by the NI Vision Development Module. Here, we use
IMAQ WindDraw VI to display the image in an external image window. The image window
appears automatically when the VI is executed. Having beforehand the information from all the
available displays on the computer, including their resolution and bounding rectangles, we set the
position of the image window to be displayed on the desired monitor. This setting is done with
IMAQ WindMove VI. Additionally, using IMAQ WindSetup VI the appearance and attributes of
the window can be modified to hide the title bar. Note that the default value for this attribute is
TRUE which shows the title bar. The block diagram in Figure 11 illustrates a projection stage in
LabVIEW. Here, we use a Property Node for obtaining the information about all the monitors on
the computer. The Disp.AllMonitors property Returns information about their bounding rectan-
gles and bit depths.

3.3. Phase retrieval

Phase retrieval is carried out by Fourier transform profilometry. In LabVIEW, the IMAQ FFT
VI computes the discrete Fourier transform of the fringe image. This function creates a com-
plex image in which low frequencies are located at the edges, and high frequencies are
grouped at the center of the image. Note that for the IMAQ FFT VI a reference to the destina-
tion image must be specified and configured as a Complex(CSG) image. Once the deformed
fringe pattern is 2-D Fourier transformed, the resulting spectra are converted into a complex

Figure 10. Fringe pattern generation example using the LabVIEW MathScript RT module.

Figure 11. Second monitor configuration in LabVIEW.

Digital Systems14

2D array to perform the filtering procedure, thus obtaining the fundamental frequency spec-
trum in the frequency domain. The following step is to compute the inverse Fourier transform
of the fundamental component. The Inverse FFT VI is for computing the inverse discrete
Fourier transform (IDFT) of a complex 2D array. By using this function, we calculate the
inverse FFT of the fundamental component which contains the 3D information. Finally, we
obtain the phase by applying Eq. (11). Here, we use Complex To Re/Im Function to break the
complex 2D array into its rectangular components and Inverse Tangent(2 Input) Function for
performing the arctangent operation. With the example in Figure 12(a) we illustrate the phase
retrieval process in LabVIEW. In this figure, the Fringe Image and Hanning W refer to the
fringe pattern image shown in Figure 12(b) and the Hanning window filter array, respectively.
The resultant wrapped phase map is shown in Figure 12(c).

3.4. Hanning filter design

In Section 2 we showed that in FTP a filtering procedure is performed to obtain the fundamen-
tal frequency spectrum in the frequency domain. Once the Fourier transform is computed, the
resultant spectrum is filtered by a 2-D Hanning window defined by Eq. (6). In LabVIEW, the
IMAQ Select Rectangle VI is commonly used to specify a rectangular region of interest (ROI) in
an image. We use the IMAQ Select Rectangle VI for manually selecting the region in the
Fourier spectrum corresponding to the fundamental frequency component. Here, the image is
displayed in an external display window and through the use of the rectangle tools, provided
by the IMAQ Select Rectangle VI, we estimate the optimal size and location of the filtering

Figure 12. Phase retrieval process in LabVIEW. (a) Block diagram. (b) Fringe pattern image. (c) Wrapped phase map.
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window that guarantees the separation between the fundamental frequency component and
other unwanted contributions. The block diagram shown in Figure 13(a) indicates the IMAQ
Select Rectangle VI to manually select the region corresponding to the first order spectrum.
The Fringe Image is the fringe pattern image in Figure 12(b). The IMAQ FFT VI computes the

Figure 13. Manual selection of the filtering window. (a) Block diagram. (b) External display window and rectangle tools.

Figure 14. Hanning filter design in LabVIEW. (a) Continuation of the block diagram in Figure 13(a). (b) Fourier transform
magnitude spectra displayed by the external window in Figure 13(b). dx and dy relate to the size in x and y of the filtering
window, respectively. (c) 2D-hanning window.
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discrete Fourier transform of the Fringe Image. The resultant complex spectrum is displayed
using an external display window as shown in Figure 13(b). By using the selection tools
located on the right side of the window, we can manually select the rectangular area of interest.

The IMAQ Select Rectangle VI returns the coordinates (i.e., left, top, right and button) of the
chosen rectangle as a cluster. Therefore, it is necessary to access each element from the cluster
to extract the window information. For this reason, we add the Unbundle By Name function to
the block diagram which unbundles a cluster element by name. Based on this information, we
calculate the size and location of the Hanning window filter. Finally, using the Hanning
Window VI two 1-D Hanning windows are created whose lengths correspond to the size of x
and y of the filtering window, respectively. The two-dimensional Hanning window is obtained
by the separable product of these two 1-D Hanning windows [22]. The block diagram in
Figure 14(a) illustrates the filtering design stage in LabVIEW. dx and dy, in Figure 14(b), relate
to the size in x and y of the selected filtering window, respectively. Finally, the obtained 2D
Hanning window is shown in Figure 14(c).

3.5. Phase unwrapping

The phase unwrapping process is carried out comparing the wrapped phase at neighborhoods
and adding, or subtracting, an integer number of 2π, thus obtaining a continuous phase. This
definition is for the one-dimensional phase unwrapping process. However, for two-dimensional
(2-D) phase unwrapping this is not readily applicable, and additional steps must be taken to

Figure 15. Bidimensional phase unwrapping in LabVIEW. (a) Wrapped phase map. (b) Unwrapped phase map.
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obtain the unwrapped solution. The conventional approach for 2-D phase unwrapping can be
accomplished by applying 1-D phase unwrapping first row-wise followed by 1-D phase
unwrapping column-wise in two steps. The block diagram in Figure 15(a) illustrates this process.
Here, the Unwrap Phase VI unwraps a 1D-phase array by eliminating discontinuities whose
absolute values exceed π. Thus, a for loop is required to compute the continuous phase for each
row of the 2-D wrapped phase array. For 1-D phase unwrapping column-wise, we use the
Transpose Matrix Function to calculate the conjugate transpose of the resultant array before
executing the for loop statement. Figure 15(b) and (c) show a wrapped phase map and its
unwrapped counterpart, respectively. In addition to this approach, many 2D phase-unwrapping
algorithms have been proposed, especially to address discontinuities and noise [12]. These other
methods can also be implemented in LabVIEW either with block diagrams, using math scripts,
with precompiled C++ code in .dll files, or via integration of external functions with other
environments such as MATLAB. However, an explanation of the details of these other appro-
aches is beyond the scope of this chapter.

4. Applications

FPP is often used as a non-contact surface analysis technique in industry inspection. In this
section, we show the 3D surface reconstruction of a dented steel pipe. A dent is a permanent
plastic deformation of the cross-section of the pipe. In the example shown in Figure 16 the dent
was produced penetrating the pipe with a diamond cone indenter. In Figure 16(a) and (b) we
show the tested object, and the deformed fringe pattern image, respectively. The goal is to
measure the depth of the dent with high accuracy and to obtain the surface shape of the pipe
for subsequent deformation analysis. In Figure 16(c) and (d), we show the wrapped, and
unwrapped phases obtained by FTP, respectively. The unwrapped phase map is converted
to metric coordinates using a calibration model. In Figure 17(a), we show the reconstructed
pipe shape with the texture map. A profile across the reconstructed pipe, thought the dent, is
shown in Figure 17(b). Analyzing this profile, we can measure the depth of the dent to
approximately 4 mm.

Figure 16. FTP analysis of a indented pipe. (a) Texture image. (b) Deformed fringe pattern. (c) Wrapped phase.
(d) Unwrapped phase.

Digital Systems18

Another application of FPP is in facial metrology, where several patterns are projected onto the
face to obtain a 3D digital model. 3D shape measurement of faces plays an important role in
several fields like in the biomedical sciences, biometrics, security, and entertainment. Human
face models are widely used in medical applications for 3D facial expression recognition [24]
and measurement of stretch marks [25]. Usually, the main challenge is the movement of the
patient. The movement can produce errors or noise in the 3D reconstruction affecting its
accuracy. Hence, 3D scanning techniques that require few images in the reconstruction process,
like FTP, are commonly used. In Figure 18 we show an experimental result of reconstructing a
live human face. The captured image with the deformed fringe pattern is shown in Figure 18(a).
In Figure 18(b) and (c)we show the 3D geometry acquired rendered in shaded mode and with
texture mapping, respectively. Note that several facial regions with hairs, like the eyebrows,
are reconstructed with high detail. While other areas, under shadows, like the right side of the
nose, are not correctly reconstructed.

Finally, another area where FPP has frequently been used is in cultural heritage preservation. The
preservation of cultural heritage works requires accurately scanning sculptures, archeological
remains, paintings, etc. In Figure 19we show the 3D reconstruction of a sculpture replica.

Figure 17. (a) 3D reconstructed shape. (b) Cross section of the 3D reconstruction.

Figure 18. (a) Fringe pattern onto face. (b) 3D rendered model in shaded mode. (c) 3D rendered model with color texture
mapping.
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Abstract

Variable digital filters are widely used in a number of applications of signal processing
because of their capability of self-tuning frequency characteristics such as the cutoff frequency
and the bandwidth. This chapter introduces recent advances on variable digital filters, focus-
ing on the problems of design and realization, and application to adaptive filtering. In the
topic on design and realization, we address two major approaches: one is the frequency
transformation and the other is the multi-dimensional polynomial approximation of filter
coefficients. In the topic on adaptive filtering, we introduce the details of adaptive band-
pass/band-stop filtering that include the well-known adaptive notch filtering.
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1. Introduction

Digital filter is well known as one of the essential and fundamental components in signal
processing devices. In addition, many signal processing applications such as digital audio
equipment and telecommunication systems sometimes require simultaneous realization of
digital filtering and real-time control of filter characteristics. Such requirements can be fulfilled
by means of variable digital filters (VDFs). Research on VDFs emerged in the 1970s and since
then, many results have been reported. Among them, details of the results until the 1990s are
widely reviewed in [1].

The problems that should be solved in development of VDFs are essentially the same as those in
digital filters of fixed characteristics. Hence, research topics onVDFs aswell as fixed characteristic
filters are broadly classified into three categories [2]: the approximation problem, the realization
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problem, and the implementation problem. Moreover, in the field of VDFs, application-oriented
results have also been actively reported. One of the famous applications is adaptive notch filters,
which have been studied since the 1980s and the details will be reviewed in this chapter.

In the sequel, fundamentals of VDFs are first reviewed. Then, recent results on VDFs are
introduced and discussed with focus on the approximation problem, the realization problem,
and the applications. Such topics include some results proposed by the authors of this chapter.

2. Fundamentals of VDFs

2.1. Definition

VDFs are defined as the frequency selective digital filters (e.g., low-pass filters and band-pass
filters) of which frequency characteristics can be changed in real time by means of controlling
some parameters. A popular example of such VDFs is shown in Figure 1, which is the variable
low-pass filter (VLPF) of which cutoff frequency can be changed by controlling the single param-
eter η. Another example shown in Figure 2 is the variable band-pass filter (VBPF), where the
bandwidth is fixed and the pass-band center frequency can be changed by the single parameter ξ.

It should be noted that VDFs are different from “filters with variable (adjustable) coefficients”
which are used in adaptive filtering. Details of the differences are as follows:

• In the case of general adaptive filtering, all filter coefficients are changed by an adaptive
algorithm. On the other hand, most of the coefficients of a VDF are fixed or given as some
functions of a few variable parameters. For example, in the VLPF of Figure 1, only the single
parameter η can be changed, and the other coefficients are fixed or given as functions of η.

• VDFs are different from general adaptive filters with respect to the mechanism of chang-
ing the frequency characteristics. In VDFs, the characteristics are changed but the fre-
quency selectivity such as the low-pass and the band-pass shape is preserved. In other
words, VDFs control the frequency characteristics under the constraint of preservation of
frequency selectivity. On the other hand, general adaptive filters do not require this con-
straint. This means that such adaptive filters converge to optimal ones of which character-
istics do not necessarily possess frequency selectivity.

Figure 1. Example of VLPF.
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2.2. How to obtain VDFs

This subsection reviews the procedure to obtain VDFs. The required procedure is basically the
same as that in the case of fixed characteristic filters, where three important problems must be
considered as shown in Figure 3: approximation, realization, and implementation [2]. In this
chapter, we pay special attention to the approximation problem and the realization problem.
The approximation problem is to obtain an input-output characterization such as transfer
function from a prescribed specification of a VDF. The realization problem is to determine a
structure (i.e., an appropriate set of adders and multipliers or an appropriate list of primitive
operations for filtering) corresponding to the input-output characterization.

In the approximation problem for VDFs, the required task is to describe an input-output
relationship (e.g., transfer function) of the VDF in such a manner that the description includes
variable parameters. For example, consider the approximation problem for the VLPF shown in
Figure 1. If one wishes to obtain this VLPF as an FIR filter, the approximation problem is to
describe the transfer function in the form of

H z; ηð Þ ¼
XN

k¼0
hk ηð Þz�k (1)

and it is also necessary to describe each coefficient hk ηð Þ as a function of η. Therefore, the
approximation problem for this VLPF is to determine a set of functions hk ηð Þf g 0 ≤ k ≤Nð Þ.
Similarly, if one wishes to obtain IIR-type VLPF, it is necessary to describe the transfer function
in the form of

Figure 2. Example of VBPF.

Figure 3. Procedure to obtain VDF.

Recent Advances in Variable Digital Filters
http://dx.doi.org/10.5772/intechopen.79198

25



problem, and the implementation problem. Moreover, in the field of VDFs, application-oriented
results have also been actively reported. One of the famous applications is adaptive notch filters,
which have been studied since the 1980s and the details will be reviewed in this chapter.

In the sequel, fundamentals of VDFs are first reviewed. Then, recent results on VDFs are
introduced and discussed with focus on the approximation problem, the realization problem,
and the applications. Such topics include some results proposed by the authors of this chapter.

2. Fundamentals of VDFs

2.1. Definition

VDFs are defined as the frequency selective digital filters (e.g., low-pass filters and band-pass
filters) of which frequency characteristics can be changed in real time by means of controlling
some parameters. A popular example of such VDFs is shown in Figure 1, which is the variable
low-pass filter (VLPF) of which cutoff frequency can be changed by controlling the single param-
eter η. Another example shown in Figure 2 is the variable band-pass filter (VBPF), where the
bandwidth is fixed and the pass-band center frequency can be changed by the single parameter ξ.

It should be noted that VDFs are different from “filters with variable (adjustable) coefficients”
which are used in adaptive filtering. Details of the differences are as follows:

• In the case of general adaptive filtering, all filter coefficients are changed by an adaptive
algorithm. On the other hand, most of the coefficients of a VDF are fixed or given as some
functions of a few variable parameters. For example, in the VLPF of Figure 1, only the single
parameter η can be changed, and the other coefficients are fixed or given as functions of η.

• VDFs are different from general adaptive filters with respect to the mechanism of chang-
ing the frequency characteristics. In VDFs, the characteristics are changed but the fre-
quency selectivity such as the low-pass and the band-pass shape is preserved. In other
words, VDFs control the frequency characteristics under the constraint of preservation of
frequency selectivity. On the other hand, general adaptive filters do not require this con-
straint. This means that such adaptive filters converge to optimal ones of which character-
istics do not necessarily possess frequency selectivity.

Figure 1. Example of VLPF.

Digital Systems24

2.2. How to obtain VDFs

This subsection reviews the procedure to obtain VDFs. The required procedure is basically the
same as that in the case of fixed characteristic filters, where three important problems must be
considered as shown in Figure 3: approximation, realization, and implementation [2]. In this
chapter, we pay special attention to the approximation problem and the realization problem.
The approximation problem is to obtain an input-output characterization such as transfer
function from a prescribed specification of a VDF. The realization problem is to determine a
structure (i.e., an appropriate set of adders and multipliers or an appropriate list of primitive
operations for filtering) corresponding to the input-output characterization.

In the approximation problem for VDFs, the required task is to describe an input-output
relationship (e.g., transfer function) of the VDF in such a manner that the description includes
variable parameters. For example, consider the approximation problem for the VLPF shown in
Figure 1. If one wishes to obtain this VLPF as an FIR filter, the approximation problem is to
describe the transfer function in the form of

H z; ηð Þ ¼
XN

k¼0
hk ηð Þz�k (1)

and it is also necessary to describe each coefficient hk ηð Þ as a function of η. Therefore, the
approximation problem for this VLPF is to determine a set of functions hk ηð Þf g 0 ≤ k ≤Nð Þ.
Similarly, if one wishes to obtain IIR-type VLPF, it is necessary to describe the transfer function
in the form of

Figure 2. Example of VBPF.

Figure 3. Procedure to obtain VDF.

Recent Advances in Variable Digital Filters
http://dx.doi.org/10.5772/intechopen.79198

25



H z; ηð Þ ¼
PM

k¼0 bk ηð Þz�k
1þPN

m¼1 am ηð Þz�m (2)

and to determine the filter coefficients as the functions am ηð Þf g 1 ≤m ≤Nð Þ and bk ηð Þf g
1 ≤ k ≤Mð Þ.

3. Research topics on VDFs

This section introduces research topics on VDFs from the viewpoints of the approximation
problem and the realization problem. Two methods have been widely used for approximation
and realization of VDFs: one is based on the variable transformation of transfer functions and
the other is based on the multi-dimensional (M-D) polynomial approximation of filter coeffi-
cients. In the sequel details of these two methods are reviewed and some recent results on
these two methods are introduced.

3.1. VDFs based on variable transformation of transfer functions

In this method, we first need to design the transfer function of “prototype filter,” which is
usually low pass, and its coefficients are fixed (i.e., variable parameters are not included in this
transfer function). Next, we apply a variable transformation to this prototype transfer function
and obtain a desired VDF, where the variable transformation makes use of a function which
includes variable parameters that are associated with the components to be changed in fre-
quency characteristics. Many approaches exist for variable transformations, and the most
famous approach is the frequency transformation [3]. The frequency transformation makes
use of all-pass functions for the variable transformation. Although details of the frequency
transformation are well reviewed in [1], this chapter will also review this topic with some
additional discussions. This is because many results using the frequency transformation have
been still reported in recent years and some of such results include the authors’ works.

Now, consider again the VLPF shown in Figure 1. If frequency transformation is used to obtain
this VLPF, the first step is to prepare the transfer function of a prototype low-pass filter. Such a
transfer function is denoted by Hp zð Þ. Then, applying the following frequency transformation
to Hp zð Þ, we can obtain the desired VLPF with the transfer function H z; ηð Þ:

H z; ηð Þ ¼ Hp zð Þ��z�1 T z;ηð Þ

T z; ηð Þ ¼ z�1 � η
1� ηz�1

(3)

where T z; ηð Þ is the first-order all-pass function. By changing the value of η in H z; ηð Þ, we can
control the cutoff frequency of the VLPF. If η > 0, the cutoff frequency becomes lower than that
of the prototype filter. The converse holds if η < 0. Stability of this VLPF is guaranteed if the
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prototype filter is stable and ∣η∣ < 1 is satisfied. Also, note that ∣T ejω; η
� �

∣ ¼ 1 holds for any η
and ω because T z; ηð Þ is all-pass.
We next discuss the realization problem for this VLPF. From the realization point of view, Eq. (3)
means that a block diagram of this VLPF can be obtained by replacing each delay element z�1 in
the prototype filter with the all-pass filter T z; ηð Þ. However, in most cases, such replacement
causes delay-free loops and results in H z; ηð Þ with unrealizable block diagram. To explain this
problem, consider a second-order IIR prototype filter with the transfer function given by

Hp zð Þ ¼ b0 þ b1z�1 þ b2z�2

1þ a1z�1 þ a2z�2
(4)

and the block diagram given by the direct form as in Figure 4(a). Applying the aforementioned
replacement of delay elements with T z; ηð Þ yields the VLPF of which the block diagram
corresponds to Figure 4(b). It is now clear that Figure 4(b) includes delay-free loops, and
hence it is impossible to implement this block diagram. It is well known that delay-free loops
can be avoided by means of mathematical manipulations of transfer function or difference
equation. However, such manipulations are not good solutions in the case of VDF realization.
For example, applying z�1  T z; ηð Þ to Hp zð Þ given by Eq. (4) and then performing mathemat-
ical manipulations, we obtain the transfer function of the second-order VLPF as follows:

H z; ηð Þ ¼ b00 ηð Þ þ b01 ηð Þ þ b02 ηð Þ
1þ a01 ηð Þ þ a02 ηð Þ

a01 ηð Þ ¼ �2ηþ a1 1þ η2
� �� 2a2η

1� a1ηþ a2η2

a02 ηð Þ ¼ η2 � a1ηþ a2
1� a1ηþ a2η2

b00 ηð Þ ¼ b0 � b1ηþ b2η2

1� a1ηþ a2η2

b01 ηð Þ ¼ �2b0ηþ b1 1þ η2
� �� 2b2η

1� a1ηþ a2η2

b02 ηð Þ ¼ b0η2 � b1ηþ b2
1� a1ηþ a2η2

:

(5)

If we implement the VLPF using this description, the computational cost significantly increases
because the filter coefficients a01 ηð Þ, a02 ηð Þ, b00 ηð Þ, b01 ηð Þ and b02 ηð Þ must be recalculated according
to the change of η. In particular, the filter coefficients in Eq. (5) are rational polynomials that
require divisions for recalculation of filter coefficients, causing very high implementation cost.

One of the popular methods to overcome this problem is the Taylor approximation-based
description [4]. This method applies the first-order Taylor series approximation to all of the
rational polynomials of filter coefficients in VDFs, under the assumption that the absolute
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values of all variable parameters are small. For example, in the case of Eq. (5), it is assumed
that ∣η∣≪ 1 and the filter coefficients are approximated to

a01 ηð Þ ≈ a1 þ a21 � 2� 2a2
� �

η

a02 ηð Þ ≈ a2 þ a1a2 � a1ð Þη
b00 ηð Þ ≈ b0 þ a1b0 � b1ð Þη
b01 ηð Þ ≈ b1 þ a1b1 � 2b0 � 2b2ð Þη
b02 ηð Þ ≈ b2 þ a1b2 � b1ð Þη:

(6)

These new coefficients do not require divisions, and hence the VLPF can be realized in terms of
additions and multiplications, as shown in Figure 5. In addition, this realization does not

Figure 4. Problem in realization of VLPF based on the frequency transformation: (a) second-order prototype filter, and
(b) VLPF given by applying z�1  T z; ηð Þ to the prototype filter.
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require recalculation of filter coefficients even if the value of η is changed. This is because all of
the multipliers except for η in this block diagram are realized as fixed coefficients.

Although the VLPFs based on the Taylor approximation provide an effective realization
method, they have a serious drawback that the range of variable cutoff frequency is quite
limited. This limitation is due to the assumption of ∣η∣≪ 1, which means that the approxima-
tion error becomes larger as the cutoff frequency of the VLPFs goes far from that of the
prototype filter. In addition, the VLPFs may become unstable if the value of ∣η∣ is inappropriately
large. In order to overcome these problems, some alternative methods are proposed [4–6]. All of
these methods make use of low sensitivity structures for realization of block diagrams for the
prototype filter. Then the replacement z�1  T z; ηð Þ and the Taylor approximation are applied
to such block diagrams, leading to the desired VDFs. Although the methods given by [4–6] can
be applied to the limited classes of transfer functions, the Taylor approximation error becomes
smaller than the standard VDFs based on the direct form. This approach is also extended to the
2-D VDFs [7].

There are some other approaches for the reduction of the Taylor approximation error. In [8],
the approach based on wave digital filters is presented. Although this approach requires the
knowledge of analog filter theory, very high precision is attained in the resultant VDFs, and
hence the variable cutoff frequency can be controlled in relatively wide range. In [9], state-
space representation is used for construction of the block diagram of the prototype filter, and
series approximations are applied to avoid the significant increase of the implementation cost
of frequency transformation-based VDFs. This approach does not need any restriction that
appeared in the conventional methods, and hence the method of [9] can be applied to arbitrary
transfer functions and arbitrary state-space structures. Furthermore, in [10], the VDFs based on
the combination of frequency transformation and coefficient decimation are proposed, and it is

Figure 5. Second-order VLPF based on the frequency transformation and first-order Taylor series approximation.
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shown through FPGA implementation and performance evaluation that the proposed method
attains very low cost for hardware implementation.

As discussed above, the problem of delay-free loops is an important issue in the approxima-
tion/realization of frequency transformation-based VDFs. It should be noted that, however,
this problem does not always happen. In general, this problem happens if the all-pass function
in the frequency transformation has a nonzero constant term in the numerator. This case
corresponds to the VDFs with variable bandwidth. In other words, the problem of delay-free
loops does not happen when the VDFs have fixed bandwidth, as shown in Figure 2.

We conclude this subsection with a summary of the merits and the drawbacks of the frequency
transformation-based VDFs. The merits are as follows:

• Variable characteristics can be easily obtained because the theory of controlling cutoff
frequency is based on the simple variable transformations.

• If Taylor approximation is not carried out, the frequency transformation preserves many
useful properties on the shape of magnitude responses. For example, when a prototype
low-pass filter is the Butterworth filter that possesses the monotonic and maximally flat
magnitude response, the VDFs given by applying frequency transformations to this pro-
totype filter also possess the monotonic and maximally flat magnitude responses.

• The aforementioned merit facilitates the design of adaptive band-pass or band-stop filters
because the cost function for adaptive filtering becomes unimodal, leading to an adaptive
algorithm that converges to the globally optimal solution. Details will be discussed in the
next section.

• Compared with the VDFs based on the M-D polynomial approximation, the frequency
transformation-based VDFs require much less computational cost in the filtering.

Next, the drawbacks are summarized as follows:

• As stated earlier, if the bandwidth needs to be variable in VDFs, the frequency transfor-
mation causes delay-free loops and this problem must be appropriately solved.

• If one wishes to obtain VDFs with multiple passbands or stopbands such as VBPFs,
VBSFs, and variable multi-band filters, it is necessary to use high-order all-pass functions
for the frequency transformation. As a result, the order of VDFs becomes higher than that
of the prototype filter. For example, the order of the frequency transformation-based
VBPFs and VBSFs becomes doubled as compared with the order of the prototype filter.

• Linear-phase VDFs cannot be obtained because the all-pass functions to be used in the
frequency transformation are IIR filters. Even if a prototype filter is FIR, applying the
frequency transformations simply results in IIR-type VDFs.

• Realization of variable characteristics is quite limited. To be specific, the frequency trans-
formation can provide only the VDFs with variable cutoff frequencies. In other words,
other components such as the transition bandwidth and the stopband attenuation cannot
be controlled.
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3.2. VDFs based on M-D polynomial approximation of filter coefficients

To the authors’ best knowledge, the VDFs based on the M-D polynomial approximation of
filter coefficients have been most actively studied [11–23] in the field of VDFs. One of the
significant benefits of this approach over the frequency transformation-based VDFs is that
many kinds of variable characteristics as well as variable cutoff frequencies can be attained.
For example, this approach can provide VLPFs with variable transition bandwidth and vari-
able stopband attenuation, as shown in Figure 6. In addition, since this approach is applicable
to FIR filters as well as IIR filters, linear-phase characteristics and variable group delay can be
attained in VDFs.

The first step to obtain this type of VDFs is to determine a set of K variable parameters
ψ1;ψ2;⋯;ψK

� �
which correspond to the desired variable components of frequency characteris-

tics such as cutoff frequency, transition bandwidth, and stopband attenuation. Such variable
parameters are referred to as spectral parameters. After this step, filter coefficients of the desired
VDFs are described as M-D polynomials with respect to these variable parameters. For example,
the transfer function of an N-th order VDF with K variable parameters is described by

H z;ψ1;ψ2;⋯;ψK

� � ¼
XN
n¼0

hn ψ1;ψ2;⋯;ψK

� �
z�n (7)

and each filter coefficient hn ψ1;ψ2;⋯;ψK

� �
is described in terms of the followingM-Dpolynomial:

hn ψ1;ψ2;⋯;ψK

� � ¼
XMψ1

mψ1¼0

XMψ2

mψ2¼0
⋯
XMψK

mψK¼0
cn mψ1

;mψ2
;⋯mψK

� �
ψ
mψ1
1 ψ

mψ2
2 ⋯ψ

mψK
K : (8)

The approximation problem for this kind of VDFs is to determine the set of coefficients
cn mψ1

;mψ2
;⋯mψK

� �� �
for 0 ≤n ≤N. Here, it should be noted that Mψ1

,Mψ2
,⋯,MψK

denote the
orders of the M-D polynomials that, respectively, correspond to the variables ψ1,ψ2,⋯,ψK.

In order to obtain the set cn mψ1
;mψ2

;⋯mψK

� �� �
, the standard approach is based on the

Figure 6. Example of VLPF based on the M-D polynomial approximation of filter coefficients.
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shown through FPGA implementation and performance evaluation that the proposed method
attains very low cost for hardware implementation.

As discussed above, the problem of delay-free loops is an important issue in the approxima-
tion/realization of frequency transformation-based VDFs. It should be noted that, however,
this problem does not always happen. In general, this problem happens if the all-pass function
in the frequency transformation has a nonzero constant term in the numerator. This case
corresponds to the VDFs with variable bandwidth. In other words, the problem of delay-free
loops does not happen when the VDFs have fixed bandwidth, as shown in Figure 2.

We conclude this subsection with a summary of the merits and the drawbacks of the frequency
transformation-based VDFs. The merits are as follows:

• Variable characteristics can be easily obtained because the theory of controlling cutoff
frequency is based on the simple variable transformations.

• If Taylor approximation is not carried out, the frequency transformation preserves many
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low-pass filter is the Butterworth filter that possesses the monotonic and maximally flat
magnitude response, the VDFs given by applying frequency transformations to this pro-
totype filter also possess the monotonic and maximally flat magnitude responses.

• The aforementioned merit facilitates the design of adaptive band-pass or band-stop filters
because the cost function for adaptive filtering becomes unimodal, leading to an adaptive
algorithm that converges to the globally optimal solution. Details will be discussed in the
next section.

• Compared with the VDFs based on the M-D polynomial approximation, the frequency
transformation-based VDFs require much less computational cost in the filtering.

Next, the drawbacks are summarized as follows:

• As stated earlier, if the bandwidth needs to be variable in VDFs, the frequency transfor-
mation causes delay-free loops and this problem must be appropriately solved.

• If one wishes to obtain VDFs with multiple passbands or stopbands such as VBPFs,
VBSFs, and variable multi-band filters, it is necessary to use high-order all-pass functions
for the frequency transformation. As a result, the order of VDFs becomes higher than that
of the prototype filter. For example, the order of the frequency transformation-based
VBPFs and VBSFs becomes doubled as compared with the order of the prototype filter.

• Linear-phase VDFs cannot be obtained because the all-pass functions to be used in the
frequency transformation are IIR filters. Even if a prototype filter is FIR, applying the
frequency transformations simply results in IIR-type VDFs.

• Realization of variable characteristics is quite limited. To be specific, the frequency trans-
formation can provide only the VDFs with variable cutoff frequencies. In other words,
other components such as the transition bandwidth and the stopband attenuation cannot
be controlled.
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Figure 6. Example of VLPF based on the M-D polynomial approximation of filter coefficients.
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minimization of an error function with respect to approximation of a prescribed ideal
characteristic of the desired VDF and a curve fitting method to describe the desired M-D
polynomials.

In realization of the VDFs given as above, Farrow structure [24] is widely used. To explain this,
consider a simple VDF with a single variable parameter ψ1. The transfer function of this VDF is
given by

H z;ψ1

� � ¼
XN
n¼0

hn ψ1

� �
z�n

¼
XN
n¼0

XMψ1

mψ1¼0
cn mψ1

� �
ψ
mψ1
1 z�n

(9)

which can be rewritten as

H z;ψ1

� � ¼
XMψ1

mψ1¼0

XN
n¼0

cn mψ1

� �
z�n

 !
ψ
mψ1
1 : (10)

Now, by using the following definition

Hmψ1
zð Þ ¼

XN
n¼0

cn mψ1

� �
z�n, 0 ≤mψ1

≤Mψ1
, (11)

the description of the VDF H z;ψ1

� �
becomes

H z;ψ1

� � ¼
XMψ1

mψ1¼0
Hmψ1

zð Þψmψ1
1 : (12)

Using this description, we can realize H z;ψ1

� �
by means of the Farrow structure as shown in

Figure 7. The block diagram of Figure 7 is interpreted as the parallel combination of the set of
N-th order FIR filters with fixed coefficients and the weights ψ1. Since these N-th order FIR

Figure 7. Realization of M-D polynomial approximation-based VDF based on the Farrow structure.
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filters do not include ψ1, recalculation of their coefficients according to the change of ψ1 is not
required. In this sense, the Farrow structure is suitable for the implementation of M-D polyno-
mial approximation-based VDFs.

A drawback of the M-D polynomial approximation-based VDFs is the high computational cost
in the filtering because the filter coefficients are described by M-D polynomials. In addition,
this approach limits the range of variable characteristics. As in the case of frequency transfor-
mation with Taylor approximation, this limitation comes from the M-D polynomial approxi-
mation. Furthermore, since this approach requires a number of filters with fixed coefficients,
their hardware implementation may cause an increase of characteristic degradations that
comes from finite wordlength effects such as coefficient sensitivity and roundoff noise. How-
ever, such degradations can be suppressed by using high accuracy filter structures, and this
approach has been recently proposed by the authors [23].

3.3. VDFs based on other approaches

In addition to the aforementioned two approaches, many other methods have also been
presented in the literature. In [25], VDFs with variable bandwidth without delay-free loops
can be achieved at low cost by means of cascade connection of a single subfilter. In [26–28], by
applying the frequency response masking and the fast filterbank to design of VDFs, significant
reduction of implementation cost over the VDFs with the Farrow structure is attained.

Also, VDFs for adaptive filtering have been widely studied. One of the famous methods in
such VDFs is the variable notch filters with second-order IIR transfer functions. All of these
variable notch filters successfully provide the variable characteristics by simple mechanism
without delay-free loops or increase of computational cost. Other adaptive-filter-oriented
VDFs include notch filters with variable attenuation at the notch frequency, comb filters with
variable bandwidth, and variable attenuation. Details of these topics will be addressed in the
next section.

4. Research topics on VDFs for adaptive filtering

In this section, we first pay attention to adaptive notch filters (ANFs) that are the special case of
adaptive band-stop or band-pass filters. The ANFs are the most famous application of VDFs to
adaptive signal processing, and many results on the ANFs have been reported since the 1980s.
In addition to the ANFs, this section also introduces some other types of VDFs that are applied
to adaptive filtering.

4.1. ANF based on all-pass filter

As shown in Figure 8, an ANF plays a central role in automatic detection and suppression of
an unknown sinusoid immersed in a wide-band signal such as white noise. In order to detect
and suppress the sinusoid, the ANF is controlled by an adaptive algorithm in such a manner
that the notch frequency ω0 of the ANF converges to the unknown frequency ωs of the
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minimization of an error function with respect to approximation of a prescribed ideal
characteristic of the desired VDF and a curve fitting method to describe the desired M-D
polynomials.

In realization of the VDFs given as above, Farrow structure [24] is widely used. To explain this,
consider a simple VDF with a single variable parameter ψ1. The transfer function of this VDF is
given by
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filters do not include ψ1, recalculation of their coefficients according to the change of ψ1 is not
required. In this sense, the Farrow structure is suitable for the implementation of M-D polyno-
mial approximation-based VDFs.

A drawback of the M-D polynomial approximation-based VDFs is the high computational cost
in the filtering because the filter coefficients are described by M-D polynomials. In addition,
this approach limits the range of variable characteristics. As in the case of frequency transfor-
mation with Taylor approximation, this limitation comes from the M-D polynomial approxi-
mation. Furthermore, since this approach requires a number of filters with fixed coefficients,
their hardware implementation may cause an increase of characteristic degradations that
comes from finite wordlength effects such as coefficient sensitivity and roundoff noise. How-
ever, such degradations can be suppressed by using high accuracy filter structures, and this
approach has been recently proposed by the authors [23].

3.3. VDFs based on other approaches

In addition to the aforementioned two approaches, many other methods have also been
presented in the literature. In [25], VDFs with variable bandwidth without delay-free loops
can be achieved at low cost by means of cascade connection of a single subfilter. In [26–28], by
applying the frequency response masking and the fast filterbank to design of VDFs, significant
reduction of implementation cost over the VDFs with the Farrow structure is attained.

Also, VDFs for adaptive filtering have been widely studied. One of the famous methods in
such VDFs is the variable notch filters with second-order IIR transfer functions. All of these
variable notch filters successfully provide the variable characteristics by simple mechanism
without delay-free loops or increase of computational cost. Other adaptive-filter-oriented
VDFs include notch filters with variable attenuation at the notch frequency, comb filters with
variable bandwidth, and variable attenuation. Details of these topics will be addressed in the
next section.

4. Research topics on VDFs for adaptive filtering

In this section, we first pay attention to adaptive notch filters (ANFs) that are the special case of
adaptive band-stop or band-pass filters. The ANFs are the most famous application of VDFs to
adaptive signal processing, and many results on the ANFs have been reported since the 1980s.
In addition to the ANFs, this section also introduces some other types of VDFs that are applied
to adaptive filtering.

4.1. ANF based on all-pass filter

As shown in Figure 8, an ANF plays a central role in automatic detection and suppression of
an unknown sinusoid immersed in a wide-band signal such as white noise. In order to detect
and suppress the sinusoid, the ANF is controlled by an adaptive algorithm in such a manner
that the notch frequency ω0 of the ANF converges to the unknown frequency ωs of the
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sinusoid. Hence, the ANF can be considered as the VDF with variable notch frequency, and the
value of ω0 at the steady state becomes the estimate of the frequency ωs of the sinusoid.
Therefore, ANFs are used not only for the detection/suppression of a sinusoid, but also for
the frequency estimation.

Although the ANF shown in Figure 8 is intended to suppress a sinusoid, the ANF is also
capable of enhancement of the sinusoid and suppression of the white noise. This can be
achieved by using a peaking filter, which is also called a resonator or an inverse notch filter,
as an adaptive filter instead of using a notch filter. Alternatively, the notch filter can also be
used: in this case, the sinusoid can be enhanced by subtracting the output of the notch filter
from the input signal.1 Such systems together with the ones shown in Figure 8 are widely used
in many practical applications such as radar, sonar, telecommunication system with the sup-
pression of narrowband interference and howling suppressor in speech processing.

In the sequel, we explain the fundamentals of ANFs, that is, their problem statement and the
mechanism of control of the notch frequency. As shown in Figure 8, the problem statement of
ANFs usually describes the input signal as the sum of a sinusoid and a white noise. Hence, the
input signal, denoted by u nð Þ, is given by

u nð Þ ¼ A sin ωsnþ ϕ
� �þ w nð Þ (13)

where A and ωs are, respectively, the amplitude and frequency of the unknown sinusoid, and ϕ
is the random initial phase uniformly distributed in 0; 2π½ Þ. The signal w nð Þ is a zero-mean white
noise, and it is uncorrerated to ϕ. Based on this setup, let y nð Þ be the output signal of the ANF.

Figure 8. Detection and suppression of sinusoid using ANF.

1
Note that this approach depends on the characteristic of a notch filter, and hence the use of an inappropriate notch filter
may result in failure of enhancement of a sinusoid. The reason of this lies in the fact that the signal which is obtained by
subtracting the output of a band-stop filter from the input is not necessarily equivalent to the output of a band-pass filter.
However, in the case of the ANF based on a second-order all-pass filter, the frequency characteristic of the notch filter
satisfies complementary properties that allow us to successfully obtain a signal equivalent to the band-pass-filtered signal
by subtracting the notch-filtered signal from the input.
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There are some methods to describe the transfer function of the notch filter for adaptive
filtering. In this chapter we focus on the one based on the second-order all-pass filter [29]. This
notch filter is described by the following transfer function

H z; η; ξð Þ ¼ 1
2

1þ T z; η; ξð Þð Þ (14)

where T z; η; ξð Þ is the second-order all-pass filter of the form

T z; η; ξð Þ ¼ η� 1þ ηð Þξz�1 þ z�2

1� 1þ ηð Þξz�1 þ ηz�2
: (15)

Hence Eq. (14) is described as

H z; η; ξð Þ ¼ 1þ η
2

1� 2ξz�1 þ z�2

1� 1þ ηð Þξz�1 þ ηz�2
: (16)

In this notch filter, the parameter η determines the 3-dB notch width, and the parameter ξ
determines the notch frequency ω0. This means that the notch filter given in this way can
control the notch width and the notch frequency independently. Also, it is interesting to note
that this notch filter can be interpreted as a VDF given by the frequency transformation [30]: it
is clear that this notch filter is obtained by applying the frequency transformation
z�1  T z; η; ξð Þ to the prototype filter of the form

Hp zð Þ ¼ 1
2

1þ z�1
� �

: (17)

To be more precise, this notch filter has the same transfer function as that of the second-order
Butterworth band-stop filter [31]. Therefore this notch filter has unity gain at ω ¼ 0 and ω ¼ π,
and zero gain at ω0. In addition, the magnitude response of this notch filter is monotonically
decreasing in 0 < ω < ω0 and monotonically increasing in ω0 < ω < π.

Figure 9 shows the block diagram of ANF based on this notch filter. As stated earlier, when
the ANF attains steady state, the component of the sinusoid in the input u nð Þ is suppressed at

Figure 9. ANF based on the second-order all-pass filter.
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sinusoid. Hence, the ANF can be considered as the VDF with variable notch frequency, and the
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Therefore, ANFs are used not only for the detection/suppression of a sinusoid, but also for
the frequency estimation.

Although the ANF shown in Figure 8 is intended to suppress a sinusoid, the ANF is also
capable of enhancement of the sinusoid and suppression of the white noise. This can be
achieved by using a peaking filter, which is also called a resonator or an inverse notch filter,
as an adaptive filter instead of using a notch filter. Alternatively, the notch filter can also be
used: in this case, the sinusoid can be enhanced by subtracting the output of the notch filter
from the input signal.1 Such systems together with the ones shown in Figure 8 are widely used
in many practical applications such as radar, sonar, telecommunication system with the sup-
pression of narrowband interference and howling suppressor in speech processing.
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input signal, denoted by u nð Þ, is given by
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where A and ωs are, respectively, the amplitude and frequency of the unknown sinusoid, and ϕ
is the random initial phase uniformly distributed in 0; 2π½ Þ. The signal w nð Þ is a zero-mean white
noise, and it is uncorrerated to ϕ. Based on this setup, let y nð Þ be the output signal of the ANF.
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may result in failure of enhancement of a sinusoid. The reason of this lies in the fact that the signal which is obtained by
subtracting the output of a band-stop filter from the input is not necessarily equivalent to the output of a band-pass filter.
However, in the case of the ANF based on a second-order all-pass filter, the frequency characteristic of the notch filter
satisfies complementary properties that allow us to successfully obtain a signal equivalent to the band-pass-filtered signal
by subtracting the notch-filtered signal from the input.
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filtering. In this chapter we focus on the one based on the second-order all-pass filter [29]. This
notch filter is described by the following transfer function

H z; η; ξð Þ ¼ 1
2

1þ T z; η; ξð Þð Þ (14)

where T z; η; ξð Þ is the second-order all-pass filter of the form

T z; η; ξð Þ ¼ η� 1þ ηð Þξz�1 þ z�2

1� 1þ ηð Þξz�1 þ ηz�2
: (15)

Hence Eq. (14) is described as

H z; η; ξð Þ ¼ 1þ η
2

1� 2ξz�1 þ z�2

1� 1þ ηð Þξz�1 þ ηz�2
: (16)
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the output signal y nð Þ. Here, it should be noted that many adaptive algorithms assume that the
notch width is fixed, and that only the notch frequency ω0 is controlled to estimate the
frequency of the sinusoid. For this reason, we focus on how to control ω0.

The most standard method to control ω0 is based on the minimization of a cost function by
means of the gradient descent method. Although this is similar to general adaptive filters,
ANFs differ from the general adaptive filters in that the cost function to be used in ANFs is the
mean square output, that is, E y2 nð Þ� �

. In other words, ANFs do not usually deal with the error
signal between a reference signal and the filter output.2 Since ANFs control ω0, the cost
function E y2 nð Þ� �

must be formulated as a function of ω0. This can be successfully achieved

and, in addition, E y2 nð Þ� �
becomes unimodal if the input signal is given as in Eq. (13) and the

ANF has monotonic magnitude response. Therefore, in such a case, the optimal notch fre-
quency that minimizes E y2 nð Þ� �

can be successfully found by the gradient descent method. In
fact, the optimal value of ω0 coincides with ωs if the all-pass-based ANF is used [32–34]. Hence,
using the gradient of E y2 nð Þ� �

with respect to ω0 in an adaptive algorithm allows ω0 to
converge to ωs, leading to detection/suppression of the sinusoid.

Remark 1 If the transfer function of the ANF is not based on the all-pass function, the optimal value of
ω0 may slightly deviate from ωs. In other words, the frequency estimation is biased. This topic will be
addressed in the next subsection.

However, the gradient descent method has a serious drawback that the convergence speed
becomes very slow when the initial value of ω0 is distant from ωs. To overcome this problem,
many strategies have been proposed. In [32–34], the normalized lattice structure is applied to
construct the notch filter, and the adaptive algorithm makes use of the state variable of the
normalized lattice structure instead of the information of the gradient. This approach is
called the Simplified Lattice Algorithm (SLA) and successfully accelerates the convergence
speed at low computational cost. Furthermore, in [35], the authors have extended the SLA
and proposed a new algorithm called the Affine Combination Lattice Algorithm (ACLA),
and it has been proved that the ACLA achieves faster convergence than the SLA. Other
approaches to improve the convergence speed include the methods based on the least square
algorithm with forgetting factor [36], parallel combination of multiple notch filters with
different notch width [37, 38], and construction of additional monotonically increasing
function for the gradient [39, 40].

There are many other important research topics on the ANFs. One of them is the theoretical
analysis of the behavior of ANFs at steady state. In [41], a steady-state analysis is presented for
ANFs based on the one-multiplier lattice structure. This analysis enables us to evaluate the
performance of ANFs such as the accuracy of frequency estimation. Also, in [42], the authors
propose a unified method on the steady-state analysis of frequency estimation MSE (mean
square error) for the SLA and the ACLA. As another research topic, in [43] fundamental
frequency estimation using inverse notch filter is proposed.

2
Although some literature refers to y nð Þ as the error signal, in the authors’ opinion this terminology is incorrect. This is
because the error in ANFs should be defined as the difference between the frequency of the sinusoid and its estimate, i.e.
ωs � ω0. This quantity clearly differs from y nð Þ.
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4.2. ANFs based on other approaches

Other types of ANFs have also been well studied. For example, the following second-order
notch filter [44] is very well known:

H z; r; að Þ ¼ 1þ az�1 þ z�2

1þ arz�1 þ r2z�2
(18)

where a and r correspond to the parameters that, respectively, control the notch frequency and
the notch width. Hence, in this case, the parameter a is controlled by an adaptive algorithm to
estimate ωs. This notch filter is designed by the famous method called the constrained poles
and zeros (CPZ), and this notch filter has been most widely used for ANFs [44–51].

Since the transfer function of this notch filter is different from that of the all-pass-based notch
filter, the properties of these notch filters are also somewhat different. For example, the all-
pass-based notch filter has the unity peak gain, whereas the peak gain of the CPZ-based notch
filter depends on the notch width. This also makes the difference with respect to the value of
E y2 nð Þ� �

, see [52] for the details. Another difference between these two notch filters is that the
all-pass-based ANFs provide unbiased frequency estimation, whereas the CPZ-based ANFs do
not. Although this fact shows a drawback of the CPZ-based ANFs, many adaptive algorithms
to reduce the bias have been proposed for the CPZ-based ANFs.

In addition to the CPZ-based notch filters, there exist many other types of notch filters. In
[53, 54], the specific second-order transfer function is constructed in such a manner that it
corresponds to a lattice structure. In [55–58], the bilinear transformation to a second-order
analog filter is applied to the notch filter design. In [59], the frequency transformation is used
to design a notch filter, but the prototype filter used here is different from Eq. (17).

4.3. Adaptive filtering based on high-order VBPFs/VBSFs

All of the adaptive filters that were addressed in previous subsections are based on second-
order VDFs. On the other hand, there exist some results on high-order VDFs in adaptive signal
processing. Needless to say, second-order ANFs have a drawback that it is difficult to realize
sharp cutoff characteristics, causing insufficient frequency selectivity and relatively poor
signal-to-noise ratio (SNR) at the output signal. On the other hand, in [31], the authors improve
the output SNR by means of higher-order VBPFs or VBSFs instead of using second-order notch
filters in the adaptive filtering. As shown in Figure 10, high-order filters can realize sharper
cutoff characteristics than second-order filters and provide higher output SNR.

Compared with ANFs, little has been studied on the adaptive filtering based on the high-
order VDFs. To the authors’ best knowledge, the most significant work is found in [60–63],
where fourth-order Butterworth VBPF and VBSF are applied to adaptive filtering, and their
center frequencies are controlled by adaptive algorithms. Furthermore, the convergence
characteristics are also theoretically analyzed. In this work, it is also claimed that the use of
much higher-order VDFs for adaptive filtering is almost impossible because higher-order
transfer functions involve mathematically more complicated descriptions, and hence it is
conjectured that formulations of filter coefficients with variable characteristics and adaptive
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the output signal y nð Þ. Here, it should be noted that many adaptive algorithms assume that the
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. In other words, ANFs do not usually deal with the error
signal between a reference signal and the filter output.2 Since ANFs control ω0, the cost
function E y2 nð Þ� �

must be formulated as a function of ω0. This can be successfully achieved

and, in addition, E y2 nð Þ� �
becomes unimodal if the input signal is given as in Eq. (13) and the

ANF has monotonic magnitude response. Therefore, in such a case, the optimal notch fre-
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control of them become very complicated. However, in the authors’ recent work [31], we
have successfully realized adaptive filtering based on higher-order VBPFs/VBSFs, where we
have derived a gradient descent method-based adaptive algorithm for arbitrary-order
VBPFs/VBSFs in a simple form by means of frequency transformation in terms of the block
diagram as well as the mathematical description. As a result, it is demonstrated in [31] that
the use of higher-order VBPFs/VBSFs for adaptive filtering leads to higher output SNR than
the use of ANFs.

As stated above, adaptive band-pass/band-stop filtering based on high-order VBPFs/VSFs can
be realized in a simple manner. However, there are still many open problems such as mathe-
matical discussion of convergence of the adaptive algorithm, improvement of convergence
speed, and suppression of large quantization errors that are generated due to the nature of
high-order narrowband filters. Although the problem of quantization errors can be solved by
means of the state-space-based VBPFs/VBSFs [64], further investigations are need to cope with
the other problems.

4.4. Other VDFs for adaptive filtering

In addition to the ANFs and higher-order adaptive band-pass/band-stop filtering, many appli-
cations of other VDFs to adaptive filtering have been presented. In [65], adaptive filtering based
on the cascade connection of second-order all-pass filters is proposed. This method is shown to
be superior to the standard ANF-based methods for the detection of multiple sinusoids. Another

Figure 10. Example of adaptive band-pass filtering: (a) using second-order VBPF, and (b) using high-order VBPF.
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approach for the detection of multiple sinusoids is also proposed in [66–68], where comb filters
with variable bandwidth and variable notch gain are applied to adaptive filtering.

Furthermore, adaptive filtering based on VLPFs can be found in the literature [69]. It should be
noted that, in general, realization of adaptive low-pass filtering is much more difficult than
adaptive notch filtering or adaptive band-pass/band-stop filtering. The reason of this lies in the
difficulty in the problem setup that can describe a unimodal cost function. However in the
work of [69], a unimodal cost function is successfully obtained by considering the detection of
passband-edge frequency of a low-pass filtered signal and using the approach of weighted cost
function.

5. Conclusion

This chapter has reviewed recent research activities on VDFs with focus on the approximation
problem, the realization problem, and the applications to adaptive filtering. Since this chapter
has paid attention to 1-D VDFs with variable magnitude responses, the introduction of other
types of VDFs such as M-D VDFs and variable fractional-delay filters has been omitted. For a
similar reason, VDF applications other than adaptive filtering have also been omitted. Although
VDFs have been studied for a long time, many elegant results are still being proposed, and hence
the research on VDFs will continue to be an active area of investigation.
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approach for the detection of multiple sinusoids is also proposed in [66–68], where comb filters
with variable bandwidth and variable notch gain are applied to adaptive filtering.
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Abstract

Electrostatic discharge (ESD) has been an issue in devices, circuits, and systems for elec-
tronics for many decades, as early as the 1970s, and continued to be an issue until today. In
this chapter, the issue of ESD protection design and methods for Application-Specific
Integrated Circuits (ASICs) will be discussed. The chapter will discuss ESD design in an
ASIC environment. The discussion will address ESD design layout, design rules and
practices, and the method of integration of ESD protection into the ASIC design practice.
Part of the methodology is the floor planning of an ASIC design, I/O library, integration of
ESD into I/O cells, power distribution, and placement of power pads, in both array and
peripheral design methodologies. As part of the ASIC I/O design, guard rings and latch-
up interactions will be highlighted.

Keywords: electrostatic discharge, latch-up, ASICs, ASIC I/O integration, ASIC power
distribution

1. Introduction

Electrostatic discharge (ESD) design, practices, and methods are a fundamental to the imple-
mentation of an ASIC design environment [1–28]. The integration of ESD and latch-up in an
ASIC environment is typically a top-down design flow. In the ASIC environment, the chip size,
the number of I/O circuits, the bus location, placement of the I/O cells, and integration of the
ESD elements and power are all synthesized. The top-down design flow is as follows:

• Functional definition

• Technology decision
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• I/O definition with ESD network and guard ring definition

• Power pad definition with ESD power clamp and guard ring definition

• Core function placement

• Number of I/O

• I/O placement

• Power pads and number of ESD power clamps required

• Core to core ESD networks

• Core to core guard rings

• I/O to core guard rings

2. Electrostatic discharge

Electrostatic discharge (ESD) is a common form of component-level failure from manufacturing,
shipping, and handling in an ASIC environment [1–8]. Two of the tests used in the qualification
and release process of an ASIC design system are the human body model (HBM) and the
charged-device model (CDM) standards [1–8].

2.1. Human body model

The human body model (HBM) is the most widely established standard for the qualification
and release of semiconductor components in the semiconductor industry [1–4, 6–8]. The HBM
test is integrated into the qualification and release process of the quality and reliability teams
for components in ASIC organizations, corporations, and foundries. The model was intended
to represent the interaction of the electrical discharge of a human being, who is charged, with a
component or an object. The charged source then touches a component or an object using a
finger. The physical contact between the charged human being and the component or object
allows for current transfer between the human being and the object.

HBM failure mechanisms typically are associated with failures on the ASIC peripheral cir-
cuitry of a semiconductor chip that are connected to signal pins. HBM ESD networks are used
to establish an alternative current path to avoid failure of the ASIC peripheral circuitry. HBM
failures can also occur on the power rails due to inadequate bus widths and ESD power clamps
between the power rails. HBM failures can occur in both passive and active semiconductor
components. The failure signature is typically isolated to a single device or a few elements in a
given current path where the current exceeded the power to failure of the circuit elements. ESD
circuits are designed to be responsive to HBM pulse widths; specifically, the RC-triggered ESD
power clamp is a vulnerable ESD circuit.

An example of an ESD protection network is known as a dual-diode network [1–4, 7, 8]. The
dual-diode ESD network is a commonly used network for complementary metal-oxide
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semiconductor (CMOS) technology. A first p-n diode element is formed in an n-well region
where the p-anode is the p-diffusion implant of the p-channel MOSFET device and the
n-cathode is the n-well region connected to the power supply VDD. This is sometimes referred
to as the “up diode.” A second p-n diode element is formed in a p-well or p-substrate region
where the n-cathode is the n-diffusion implant of the n-channel MOSFET device or the n+/n-
well implant, and the p-anode is the p-well region or p-substrate region connected to the
power supply VSS. This is sometimes referred to as the “down diode.” This circuit provides a
“forward bias” ESD protection solution for positive and negative ESD pulse events to the two
power rails VDD and VSS. An advantage of the dual-diode ESD network for ASIC environ-
ments is that it is easy to migrate from technology generation to technology generation and
is scalable.

In an ASIC design methodology, the ESD network is integrated within the I/O library element.
The I/O cell can contain a bond pad, guard rings, ESD network, receiver, and off-chip driver
(OCD) elements [2, 3, 7, 8].

2.2. Charged-device model

The charged-device model (CDM) is an electrostatic discharge (ESD) test method that is part of
the qualification of semiconductor components in an ASIC design system [6]. The CDM event
is associated with the charging of the semiconductor component through different charging
processes. Charging of the package can be achieved through direct contact charging or field-
induced charging processes. The field-induced charging method is called the field-induced
charged-device model (FI-CDM).

Charged-device ESD solutions utilize an additional circuit element local to the receiver net-
work. For CDM protection, an additional resistor and second dual diode are added, where the
second stage element is adjacent to the MOSFET receiver. The purpose of the second stage
element is to divert the electric charge in the substrate adjacent to the MOSFET receiver to the
bond pad without destruction of the receiver dielectric and circuitry.

2.2.1. CDM and long-narrow ASIC I/O

In an ASIC environment, each generation attempts to squeeze in as many I/O circuits on the
periphery, by reducing the width of the I/O cell, and compensate by increasing the height of
the ASIC I/O cell [11–15]. With the long-narrow ASIC I/O cell, the receiver network is moved
farther away from the bond pad and the first stage of the ESD network. As a result, the second
dual-diode stage is even more necessary to achieve excellent CDM ESD results.

3. ASIC requirements

In an ASIC environment, there are rules and requirements that are established in the design
methodology. These rules and requirements for ESD design, latch-up design layout, to application
issues of placement of power, placement of grounds. Additionally, the power sequencing for
power down and power up is specified in the methodology. These fundamental ASIC rules have
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induced charging processes. The field-induced charging method is called the field-induced
charged-device model (FI-CDM).

Charged-device ESD solutions utilize an additional circuit element local to the receiver net-
work. For CDM protection, an additional resistor and second dual diode are added, where the
second stage element is adjacent to the MOSFET receiver. The purpose of the second stage
element is to divert the electric charge in the substrate adjacent to the MOSFET receiver to the
bond pad without destruction of the receiver dielectric and circuitry.

2.2.1. CDM and long-narrow ASIC I/O

In an ASIC environment, each generation attempts to squeeze in as many I/O circuits on the
periphery, by reducing the width of the I/O cell, and compensate by increasing the height of
the ASIC I/O cell [11–15]. With the long-narrow ASIC I/O cell, the receiver network is moved
farther away from the bond pad and the first stage of the ESD network. As a result, the second
dual-diode stage is even more necessary to achieve excellent CDM ESD results.

3. ASIC requirements

In an ASIC environment, there are rules and requirements that are established in the design
methodology. These rules and requirements for ESD design, latch-up design layout, to application
issues of placement of power, placement of grounds. Additionally, the power sequencing for
power down and power up is specified in the methodology. These fundamental ASIC rules have
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a significant influence on the ESD circuits, ESD design methodology, and ESD circuit placement.
Additionally, the ASIC system must achieve latch-up specification objectives.

3.1. ESD protection-level requirements

In a release of an ASIC system, there are qualification expectations of ESD protection levels.
Each ASIC I/O cell is tested for ESD and CDM test processes, and the entire I/O library is to
achieve above the desired protection levels for qualification. In the past, the desired protection
levels for HBM and CDM were >4000 V HBM and > 500 V CDM; with technology scaling,
these objectives have been changed to lower levels.

3.1.1. ESD design rules

ESD design rules of the physical dimensions of the ESD networks are typically contained
within the technology design manual. The ASIC library is required to fulfill the technology
ESD design manual rule set. The ESD design rules provide the circuit, layout, and physical
dimensions.

3.2. Latch-up requirements

Latch-up requirements are also needed for the qualification of an ASIC design system [5]. The
latch-up requirements used in all corporations and foundries are in the JEDEC latch-up spec-
ification and test method.

3.2.1. Latch-up design rules

As ASIC systems became more complex with integration of system on chips (SOC), the
number of latch-up design rules has increased. Historically, latch-up rules consisted of four
rules—(1) the distance between a PFET and its corresponding n-well contact, (2) the distance
between an NFET and its closest substrate contact, (3) spacing of PFET to n-well edge, and
lastly (4) spacing of NFET to n-well edge [5]. With scaling, there were many additional rules
established between ESD and I/O, I/O to I/O, PFET to core logic, and NFET to core logic. With
complexity, more guard rings were added to isolate the different regions of an ASIC imple-
mentation.

3.3. ASIC application requirements

In the definition of an ASIC system, there are many application rules and requirements that are
established. These include area requirements, power distribution, and power sequencing.

3.3.1. Area requirements

In an ASIC system, there is a given chip area specified for the I/O circuitry [9–15]. This is
planned as a certain percentage of the total chip area. Additionally, the ESD networks also can
only be a certain defined percentage of the I/O cell. Typically, the ESD area desired is less than
20–25% of the total I/O cell area.
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3.3.2. Power-up: sequence dependent

ASIC system can define the sequencing requirements for the power and the signal pins. Some
ASIC systems can have a sequence-dependent power up and shutdown. In these systems, the
ESD networks are not to be “on” during power up or power down.

3.3.3. Power-up: sequence independent and hot plugging

ASIC system can define the sequencing requirements for the power and the signal pins.
Some ASIC systems require sequence-independent power up and shutdown. In these sys-
tems, the ESD networks are not to be “on” during power-up or power down. In this case, the
ESD networks must not be forward biased in power up or power down. As a result, new
sequence-independent ESD networks that do not forward bias were required. A sequence-
independent ESD network was implemented into a 0.5-um ASIC system with significant
success with a floating well control network [2, 3, 9].

3.3.4. Power distribution and placement requirements

ASIC methodologies establish requirements for the frequency of placement of “power cells”
and “ground cells” to support the I/O and core circuitry. For example, some corporations
stated that their ASIC system must be a power cell for every fourth or fifth I/O location. This
provided a significant opportunity for ESD protection, since an “ESD power clamp” can be
placed in the area allocating for the VDD and VSS power pins. As the frequency of placement
of the ESD power clamps increases, the series resistance loss of the power bus or ground bus
decreases; this allows for a lower resistance path for the current to flow through the complete
network, providing improved ESD robustness [2, 3, 7, 8].

3.3.5. Frequency bandwidth

As ASIC technology transitions to advanced technology nodes, the application frequency is
increased. From an ESD perspective, the expectation from ASICs is that the capacitance
loading of the ESD network must be reduced to not impact the frequency bandwidth of the
I/O networks. This can be achieved through semiconductor process modification, layout and
design, and reduction of the size of the ESD networks. Through ESD novelty and innovation,
the frequency bandwidth of signal inputs can be realized without reduction of ESD reliability
concern.

3.3.6. Input leakage and IDD limitations

An additional concern is the input leakage requirements and IDD limitations. Input leakage
can be minimized through proper design of ESD networks through process, circuit topology,
and layout innovations. A larger concern is the ESD power clamps on the VDD power supply.
It is critical to limit the number of ESD power clamps to not impact the IDD leakage limit for
the application.
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a significant influence on the ESD circuits, ESD design methodology, and ESD circuit placement.
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3.1. ESD protection-level requirements
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In the definition of an ASIC system, there are many application rules and requirements that are
established. These include area requirements, power distribution, and power sequencing.

3.3.1. Area requirements

In an ASIC system, there is a given chip area specified for the I/O circuitry [9–15]. This is
planned as a certain percentage of the total chip area. Additionally, the ESD networks also can
only be a certain defined percentage of the I/O cell. Typically, the ESD area desired is less than
20–25% of the total I/O cell area.
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3.3.2. Power-up: sequence dependent
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ASIC systems can have a sequence-dependent power up and shutdown. In these systems, the
ESD networks are not to be “on” during power up or power down.

3.3.3. Power-up: sequence independent and hot plugging

ASIC system can define the sequencing requirements for the power and the signal pins.
Some ASIC systems require sequence-independent power up and shutdown. In these sys-
tems, the ESD networks are not to be “on” during power-up or power down. In this case, the
ESD networks must not be forward biased in power up or power down. As a result, new
sequence-independent ESD networks that do not forward bias were required. A sequence-
independent ESD network was implemented into a 0.5-um ASIC system with significant
success with a floating well control network [2, 3, 9].

3.3.4. Power distribution and placement requirements

ASIC methodologies establish requirements for the frequency of placement of “power cells”
and “ground cells” to support the I/O and core circuitry. For example, some corporations
stated that their ASIC system must be a power cell for every fourth or fifth I/O location. This
provided a significant opportunity for ESD protection, since an “ESD power clamp” can be
placed in the area allocating for the VDD and VSS power pins. As the frequency of placement
of the ESD power clamps increases, the series resistance loss of the power bus or ground bus
decreases; this allows for a lower resistance path for the current to flow through the complete
network, providing improved ESD robustness [2, 3, 7, 8].

3.3.5. Frequency bandwidth

As ASIC technology transitions to advanced technology nodes, the application frequency is
increased. From an ESD perspective, the expectation from ASICs is that the capacitance
loading of the ESD network must be reduced to not impact the frequency bandwidth of the
I/O networks. This can be achieved through semiconductor process modification, layout and
design, and reduction of the size of the ESD networks. Through ESD novelty and innovation,
the frequency bandwidth of signal inputs can be realized without reduction of ESD reliability
concern.

3.3.6. Input leakage and IDD limitations

An additional concern is the input leakage requirements and IDD limitations. Input leakage
can be minimized through proper design of ESD networks through process, circuit topology,
and layout innovations. A larger concern is the ESD power clamps on the VDD power supply.
It is critical to limit the number of ESD power clamps to not impact the IDD leakage limit for
the application.
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4. ASIC I/O

In ASIC I/O design, ESD protection is integral in the definition and methodology. In the
following section, this will be discussed.

4.1. I/O and ESD integration

In the definition of an ASIC I/O, the off-chip driver (OCD), the receiver, and ESD circuitry are
co-designed to integrate the networks into a common physical space [7]. This requires plan-
ning in the methodology to allocate the right percentage of area for each of these elements.
Different methodologies are used depending on the foundry or corporation.

4.2. I/O and ESD design integration and synthesis

In one methodology, the ASIC system supported different off-chip driver (OCD) sizes by
adjusting the number of MOSFET fingers that were connected. The number of MOSFET
fingers used was the maximum driver strength for the I/O library providing different
impedance as well. There are many options on what can be done in this methodology.

For example, there can be a 20, 30, and 50 Ω impedance OCD circuit offering, by attaching a
different number of MOSFET fingers in a given I/O cell. In one method, the residual MOSFET
OCD fingers were grounded and used as a “grounded gate NMOS” ESD network. In this case,
the residual MOSFET fingers act as a natural ESD protection and utilize the “unused” section
of the OCD. The advantage of this method is that the unused portion of the I/O is utilized. In a
second embodiment, instead of grounding the residual MOSFET fingers, a dummy inverter
load was attached to keep the residual fingers “off” or in a low logic state. Using a dummy
inverter, the MOSFET gates that are not grounded, and “turn-on” from MOSFET snapback at
the same impedance state as the MOSFET OCD. In this fashion, both the active and residual
elements work together for ESD protection [7, 8].

Figure 1. RC-triggered ESD power clamp.
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4.3. I/O and ESD power clamp integration

ASIC methodologies establish requirements for the frequency of placement of “power cells”
and “ground cells” to support the I/O and core circuitry [2–4, 7, 8, 11–15]. This provided a
perfect opportunity for ESD protection, since an “ESD power clamp” can be placed in the area
allocating for the power pins, the VDD pin location (Figure 1).

At one time, prior to the invention of ESD power clamps, it was just as empty areas; it was
realized that the ESD power clamps can be placed in these regions. As the frequency of place-
ment of the ESD power clamps increases, the series resistance loss of the power bus or ground
bus decreases; this allows for a lower resistance path for the current to flow through the complete
network, providing improved ESD robustness.

4.4. Ground-to-ground ESD networks

ESD networks are required between ground power rails for every independent domain. In an
ASIC system, analog and digital circuits are in separate power domains [7, 8, 11–18]. These
domains must be interconnected through ground-to-ground ESD networks. These networks
must be bidirectional to allow current to flow in both directions. These networks do not have
to be symmetric (e.g., m diodes in one direction and n diodes in the opposite direction). These
ground-to-ground ESD networks can be placed in the VSS pin location.

4.5. Master/slave ESD systems

In some ASIC embodiments, the ESD power clamps are integrated across the entire system. In
this type of system, there is one “master,”which triggers the set of ESD power clamps on all in
parallel (Figure 2) [2, 3, 7, 8]. A “master ESD power clamp” contains the trigger network that
then sends a signal to turn on all the “slave ESD power clamps.” This system has the advan-
tage of turning on all ESD power clamps in parallel across the entire ASIC system, significantly
lowering the “on-resistance” of the single ESD power clamp. The disadvantage of this system
is an ESD signal bus (from the master clamp to the slave clamps) must be distributed with the
ASIC power busses around the complete chip (Figure 3).

Figure 2. Master/slave ESD system.
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4. ASIC I/O
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of the OCD. The advantage of this method is that the unused portion of the I/O is utilized. In a
second embodiment, instead of grounding the residual MOSFET fingers, a dummy inverter
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inverter, the MOSFET gates that are not grounded, and “turn-on” from MOSFET snapback at
the same impedance state as the MOSFET OCD. In this fashion, both the active and residual
elements work together for ESD protection [7, 8].

Figure 1. RC-triggered ESD power clamp.
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4.3. I/O and ESD power clamp integration

ASIC methodologies establish requirements for the frequency of placement of “power cells”
and “ground cells” to support the I/O and core circuitry [2–4, 7, 8, 11–15]. This provided a
perfect opportunity for ESD protection, since an “ESD power clamp” can be placed in the area
allocating for the power pins, the VDD pin location (Figure 1).

At one time, prior to the invention of ESD power clamps, it was just as empty areas; it was
realized that the ESD power clamps can be placed in these regions. As the frequency of place-
ment of the ESD power clamps increases, the series resistance loss of the power bus or ground
bus decreases; this allows for a lower resistance path for the current to flow through the complete
network, providing improved ESD robustness.

4.4. Ground-to-ground ESD networks

ESD networks are required between ground power rails for every independent domain. In an
ASIC system, analog and digital circuits are in separate power domains [7, 8, 11–18]. These
domains must be interconnected through ground-to-ground ESD networks. These networks
must be bidirectional to allow current to flow in both directions. These networks do not have
to be symmetric (e.g., m diodes in one direction and n diodes in the opposite direction). These
ground-to-ground ESD networks can be placed in the VSS pin location.

4.5. Master/slave ESD systems

In some ASIC embodiments, the ESD power clamps are integrated across the entire system. In
this type of system, there is one “master,”which triggers the set of ESD power clamps on all in
parallel (Figure 2) [2, 3, 7, 8]. A “master ESD power clamp” contains the trigger network that
then sends a signal to turn on all the “slave ESD power clamps.” This system has the advan-
tage of turning on all ESD power clamps in parallel across the entire ASIC system, significantly
lowering the “on-resistance” of the single ESD power clamp. The disadvantage of this system
is an ESD signal bus (from the master clamp to the slave clamps) must be distributed with the
ASIC power busses around the complete chip (Figure 3).
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Electrostatic Discharge Protection and Latch-Up Design and Methodologies for ASIC Development
http://dx.doi.org/10.5772/intechopen.81033

53



5. ASIC I/O and latch-up: guard ring integration

In ASIC design methodologies, the I/O must address both ESD and latch-up [11–15]. Latch-up
of the ASIC I/O can occur with improper design of the outer guard rings and internal guard
rings in a given ASIC I/O cell.

5.1. I/O outer guard ring

In some ASIC methodologies, a guard ring is placed around the entire I/O cell region. This
leads to a natural “frame” for the circuit. It serves as a source to collect internal current injected
from inside the I/O circuit or external current being injected from outside the I/O circuit. In
other methodologies, this outer guard ring is overlapped or integrated with the adjacent I/O
cell; this is not detrimental and saves space [7, 8].

Additionally, even further methodologies, there is no “ring” around the entire circuit but only
on the top and bottom. This can lead to I/O to I/O interaction, which is not desirable.

5.2. I/O circuit to adjacent I/O circuit

In ASIC I/O design, ESD and latch-up problems can occur when the design is “fully popu-
lated” versus “partially populated.” In digital applications, typically the design is fully popu-
lated and is “I/O limited.” But, in some analog applications, in core-dominated designs, the
core establishes the chip size (e.g., core-dominated design), leading to a partially populated
periphery.

Figure 3. Master/slave ESD system floor plan.
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5.2.1. Fully populated I/O periphery

In the case of a chip perimeter that is fully populated by I/O cells, concerns about latch-up
events between adjacent I/O can be evaluated and tested (Figure 4). In this case, guard rings
can be placed between the I/O cells, and latch-up interaction can be quantified [7, 8].

5.2.2. Partially populated I/O periphery

In the case of a chip perimeter that is not fully populated, concerns about latch-up events
between I/O and adjacent cells can occur. In many ASIC systems, decoupling capacitors can be
placed adjacent to an I/O cell. An n-well decoupling capacitor has a large n-well region that
can serve as a cathode to a lateral pnpn formed by an adjacent PFET to form a pnpn. In this low
populated system, new latch-up rules are needed to avoid CMOS latch-up in ASIC environ-
ments without full populated I/O cells.

5.2.3. Adjacency latch-up rules

In some design methodologies, it is necessary to verify what the adjacent circuit is [11–15]. In a
fully populated I/O ring, the adjacent circuit will be another I/O cell. In this case, it is well
understood. But, in cases where it is not populated, additional rules may be required to avoid
latch-up between adjacent circuits. The most common failure was latch-up between an I/O cell
and a decoupling capacitor [7–8].

Figure 4. I/O to I/O latch-up test structure.

Electrostatic Discharge Protection and Latch-Up Design and Methodologies for ASIC Development
http://dx.doi.org/10.5772/intechopen.81033

55



5. ASIC I/O and latch-up: guard ring integration
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from inside the I/O circuit or external current being injected from outside the I/O circuit. In
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5.2.1. Fully populated I/O periphery

In the case of a chip perimeter that is fully populated by I/O cells, concerns about latch-up
events between adjacent I/O can be evaluated and tested (Figure 4). In this case, guard rings
can be placed between the I/O cells, and latch-up interaction can be quantified [7, 8].

5.2.2. Partially populated I/O periphery

In the case of a chip perimeter that is not fully populated, concerns about latch-up events
between I/O and adjacent cells can occur. In many ASIC systems, decoupling capacitors can be
placed adjacent to an I/O cell. An n-well decoupling capacitor has a large n-well region that
can serve as a cathode to a lateral pnpn formed by an adjacent PFET to form a pnpn. In this low
populated system, new latch-up rules are needed to avoid CMOS latch-up in ASIC environ-
ments without full populated I/O cells.

5.2.3. Adjacency latch-up rules

In some design methodologies, it is necessary to verify what the adjacent circuit is [11–15]. In a
fully populated I/O ring, the adjacent circuit will be another I/O cell. In this case, it is well
understood. But, in cases where it is not populated, additional rules may be required to avoid
latch-up between adjacent circuits. The most common failure was latch-up between an I/O cell
and a decoupling capacitor [7–8].
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5.3. ESD to I/O circuit

Proper isolation between the ESD circuit contained within the I/O cell and the I/O circuit
itself is necessary to avoid CMOS latch-up. The I/O circuit may contain an NFET pull-down,
a PFET pull-up, and ballasting resistor bank. This is achievable by proper guard rings
around the ESD network and the choice of what elements are placed adjacent to the ESD
device. Note that there are multiple elements in an I/O circuit, and the choice of what is
placed adjacent to the ESD network has to be co-synthesized with the power bus placement
for the I/O cell (e.g., bond pad, VDD, VSS, AVDD, and AVSS). Since the ESD network
typically has an element for positive and negative polarity pulse events, both the VDD and
the VSS must be local to the ESD network and likewise for the PFET and NFET OCD
elements.

For negative polarity ESD events, the n-diffusion or n-well resistor banks will be in parallel
with the ESD elements, and the adjacency to their respective guard rings is key to provide
“current sharing” and avoid “current robbing” of the ESD event. It was found by matching
the space between n-type elements, and the guard rings provided maximum ESD results.

5.4. I/O to core circuitry

To avoid interaction between the I/O circuitry and the core circuitry, additional guard rings
have been placed to isolate the I/O from the core circuits. The core circuits are very sensitive to
CMOS latch-up since they have no guard rings surrounding the MOSFETs. To avoid latch-up
issues between the I/O and core circuitry, additional requirements are established [5]:

• Latch-up space design rule between PFET OCD circuit and core circuits

• Latch-up space design rule between NFET OCD circuit and core circuits

• N+ guard ring of specified width between I/O region and core circuitry

• P+ substrate guard ring of specified width between I/O region and core circuitry

5.5. Core-to-core circuitry

Latch-up can occur between different core regions. This occurs when cores are placed adjacent
to each other, where there is no design rule check, and when there is no history of the cores
being adjacent in prior designs. An example is between a PFET-dominated core and a bank of
decoupling capacitors with an n-well plate (Figure 5) [7, 8].

To avoid latch-up interaction between the circuitry of cores, additional guard rings, moats,
substrate contacts, and space can be added in the design (Figure 6) [7, 8].

5.6. Digital, analog, and RF core circuitry

Latch-up and noise can occur between digital, analog, and radio frequency (RF) cores placed
on the same substrate in an ASIC design. This occurs when cores are placed adjacent to each
other, where there is no design rule check, and when there is no history of the cores being
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placed close together. To avoid latch-up and noise interaction between digital and analog
circuits, large guard rings, moats, substrate contacts, and spaces are added. The space between
the digital and analog cores can be significant and as large as 40 to 100 um. In these designs,
the power grids and grounds are also separated and spatially isolated [7, 8].

5.7. Internal ESD networks: digital to analog signals

In mixed signal (MS) and system-on-chip (SOC) ASIC designs, there are signal lines that
transfer from the digital core to the analog core. The power grids and ground planes are
physically isolated to improve noise isolation. Digital core driver circuits transmit signals to
analog core receiver networks in the analog section of the semiconductor chip. With the

Figure 5. Latch-up between peripheral I/O and adjacent decoupling capacitors.

Figure 6. Digital to analog integration with moa.
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5.3. ESD to I/O circuit

Proper isolation between the ESD circuit contained within the I/O cell and the I/O circuit
itself is necessary to avoid CMOS latch-up. The I/O circuit may contain an NFET pull-down,
a PFET pull-up, and ballasting resistor bank. This is achievable by proper guard rings
around the ESD network and the choice of what elements are placed adjacent to the ESD
device. Note that there are multiple elements in an I/O circuit, and the choice of what is
placed adjacent to the ESD network has to be co-synthesized with the power bus placement
for the I/O cell (e.g., bond pad, VDD, VSS, AVDD, and AVSS). Since the ESD network
typically has an element for positive and negative polarity pulse events, both the VDD and
the VSS must be local to the ESD network and likewise for the PFET and NFET OCD
elements.

For negative polarity ESD events, the n-diffusion or n-well resistor banks will be in parallel
with the ESD elements, and the adjacency to their respective guard rings is key to provide
“current sharing” and avoid “current robbing” of the ESD event. It was found by matching
the space between n-type elements, and the guard rings provided maximum ESD results.

5.4. I/O to core circuitry

To avoid interaction between the I/O circuitry and the core circuitry, additional guard rings
have been placed to isolate the I/O from the core circuits. The core circuits are very sensitive to
CMOS latch-up since they have no guard rings surrounding the MOSFETs. To avoid latch-up
issues between the I/O and core circuitry, additional requirements are established [5]:

• Latch-up space design rule between PFET OCD circuit and core circuits

• Latch-up space design rule between NFET OCD circuit and core circuits

• N+ guard ring of specified width between I/O region and core circuitry

• P+ substrate guard ring of specified width between I/O region and core circuitry

5.5. Core-to-core circuitry

Latch-up can occur between different core regions. This occurs when cores are placed adjacent
to each other, where there is no design rule check, and when there is no history of the cores
being adjacent in prior designs. An example is between a PFET-dominated core and a bank of
decoupling capacitors with an n-well plate (Figure 5) [7, 8].

To avoid latch-up interaction between the circuitry of cores, additional guard rings, moats,
substrate contacts, and space can be added in the design (Figure 6) [7, 8].

5.6. Digital, analog, and RF core circuitry

Latch-up and noise can occur between digital, analog, and radio frequency (RF) cores placed
on the same substrate in an ASIC design. This occurs when cores are placed adjacent to each
other, where there is no design rule check, and when there is no history of the cores being
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placed close together. To avoid latch-up and noise interaction between digital and analog
circuits, large guard rings, moats, substrate contacts, and spaces are added. The space between
the digital and analog cores can be significant and as large as 40 to 100 um. In these designs,
the power grids and grounds are also separated and spatially isolated [7, 8].

5.7. Internal ESD networks: digital to analog signals

In mixed signal (MS) and system-on-chip (SOC) ASIC designs, there are signal lines that
transfer from the digital core to the analog core. The power grids and ground planes are
physically isolated to improve noise isolation. Digital core driver circuits transmit signals to
analog core receiver networks in the analog section of the semiconductor chip. With the

Figure 5. Latch-up between peripheral I/O and adjacent decoupling capacitors.

Figure 6. Digital to analog integration with moa.
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separation of the digital and analog grounds, and physical space separation, overvoltage of the
analog receiver can occur due to the voltage drops in the signal line and the ground connec-
tions (Figure 7).

One of the solutions is to place an “internal ESD network” on the internal signal line between
the digital driver circuit and the analog receiver. This can be achieved by adding a resistor to
the signal line and a grounded gate NMOS prior to the analog receiver (Figure 8).

A second solution is to place “third part” inverter stages and ground-to-ground connections
between the digital and analog cores. This methodology has less performance or signal impact
and is a more migratable solution (Figure 9) [7–8].

Figure 7. Digital to analog core internal signal lines requiring internal ESD.

Figure 8. Internal ESD networks between cores.

Digital Systems58

6. Array I/O versus peripheral I/O architectures

In high pin count environments, the I/O networks can be distributed with the core of a
semiconductor chip instead of the periphery. This is referred to as “array I/O” where the I/O
cells are placed in an array fashion throughout the core. This has a large advantage for wiring,
and performance, but alters the ESD and latch-up methods and needs.

6.1. Array I/O and ESD

In an array I/O environment, the I/O and ESD are co-integrated into the same I/O cell within
the semiconductor chip and ASIC core. A significant change in the ESD results is that the ESD
failure distribution is dependent on the wire width from the bond pad to the I/O cell. In this
fashion, a “transfer wire” extends from the bond pad to the I/O cell. The ESD failure mecha-
nism can be the wiring itself and may limit the robustness of the system. The wiring choices on
how to get from the bond pad to the ESD network are also key to the robustness of the ASIC
system. The ESD robustness of the system can be “wiring limited.”

6.2. Array I/O and latch-up

A key issue in an array I/O environment is the onset of latch-up [7, 8]. All the circuitry
surrounding the I/O cell is core circuitry with no guard rings placed around them. Latch-up
can occur from the injection of carriers into the substrate from the ESD network into the
surrounding circuitry (Figure 10). Solutions to avoid this issue are as follows:

• Wider guard rings around the I/O cell to capture carriers

Figure 9. Third-party circuits between digital and analog cores.
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• Different guard ring structures with higher efficiency of carrier capture (e.g., trench,
moats, etc.)

• Decreasing the n-well and p-well contact placement in the core circuitry adjacent to the
I/O cell

7. Advanced technology nodes

Electrostatic discharge (ESD) will be an issue in ASIC technology as we evolve to new technol-
ogies, new devices, and 2.5D and 3D systems. These transitions will have a significant effect on
ESD protection in the future.

7.1. 2.5D and 3D ASIC systems

In today’s applications, migration to 2.5D and 3D systems has begun. In 2.5D applications,
there are a significant number of wire bonds that interconnect the stacked chips. This has
implications to electrical overstress (EOS) and wire-bond reliability. In 3D applications, the
introduction of through-silicon via (TSV) technology changes the interrelation of how current
flows through the multi-chip design; this has an influence on power grid design, placement of
the TSV structure, and ESD devices. ESD design may require co-design with the power and
ground placement of the multi-chip ASIC system.

7.2. Silicon on insulator (SOI)

Silicon on insulator (SOI) has been a mainstream technology since 2000 [1–3]. Microprocessors
have beendesignedwith excellent ESDprotection levels inpartiallydepletedSOI technology. From
anESDperspective, newSOIESDstructureswere integrated, aswell as addressingnewSOI failure
mechanisms, since these structures behaved differently than bulk ESD elements [29, 30].

Figure 10. An example of array I/O and latch-up propagation in the core circuitry.
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7.3. FinFET

Presently, the FinFETdevice is being integrated into advanced sub-25 nm technologies [31–33].
With the FinFET structure, the layout and guard ring strategy will be influenced leading to
different ESD layouts and designs. In the future, the direction may include both bulk and SOI
FinFETs, which will respond differently for ESD and for latch-up. With the scaling of the
FinFET structure, the shallow trench isolation (STI) will be scaled leading to higher parasitic
bipolar current gain in the FinFET technology [33].

8. Closing comments and summary

Electrostatic discharge (ESD) has been a crucial issue in ASIC design flow and release and will
continue to be an issue as semiconductor devices are scaled below 20 nm in both future and
present-day nanotechnology era. As technologies migrate to sub-25 nm technology, ESD, latch-
up, and EOS will be an issue for both bulk and SOI FinFET technologies.
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Abstract

Brushless direct current (BLDC) motors are the pillar of advanced controllers. This chap-
ter presents a portion of the central thoughts hidden plan of FPGA based BLDC motor 
controller. It covers a considerable amount of ground, yet at a genuinely essential level 
to make central ideas clear. This chapter gives a great strategy which is useful to aid 
the outline and control of financially savvy, productive brushless direct current (BLDC) 
motors. Speed Control of BLDC motor utilizing PIC microcontrollers requires more 
equipment, and with the accessibility of FPGA adaptable highlights inspired to build 
up a financially savvy and dependable control with variable speed go. In this chapter, 
utilizing an algorithm which utilizes the Resolver signals caught from the motor is cre-
ated with the assistance of Resolver to Digital converters. The VHDL program produces 
the terminating beats required to drive the MOSFETs of three stage completely controlled 
scaffold converter driven by drivers. The provided outline procedure is observed to be 
great and proficient.

Keywords: BLDC, FPGA, MOSFET, RDC, VHDL

1. Introduction

Brushless direct current (BLDC) motor controllers have received considerable attention in 
the past few years. The desirable features of brushed DC torque motors like torque-speed 
characteristics, accurate speed control are maintained in the BLDC motor approach, the prob-
lems posed by brush DC motors like arcing, which cause high EMI and frequent changes of 
brushes and commutators have been eliminated or minimized.
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1.1. History of brushless DC motor

Most punctual confirmation of brushless DC motor was in 1962, directly after Wilson and 
Trickey shaped a “DC Machine with Solid State Commutation”. It was in this way created 
owing to summit torque, summit reaction drive for claim to fame dedications, for example, 
tape and circle drives for PCs, mechanical autonomy and situating frameworks and in fly-
ing machine where brush wear was grievous because of low stickiness. In conjunction with 
approach denoting equivalence capable and changeless magnet stuffs with high power, high 
voltage transistors in the ahead of schedule to mid-1980s the capacity to create such a motor 
reasonable turned into a realism.

Impressive primary substantial brushless DC motors of 50 hp. were composed at POWERTEC 
Industrial Corporation in the late 1980s by Robert E. Lordo. Today, the greater part of the 
significant motor makers makes brushless DC motors. Brushless DC drives take a shot at the 
same standard as all DC motors yet the motor is worked “back to front” along with the fields 
on top of pole of the motor and its “armature” all things considered. The fields turn and effec-
tive “armature” stays stationary.

Keeping in mind the end goal to copy the activity of the commutator, an encoder was mounted 
in contact with the pole of the motor to intellect the position of the fields on the pole. The con-
troller “meets” the attractive position data and decides through the basic rationale of which 
motor lead ought to have current setting off to a winding and which motor lead ought to give 
back the current from the winding.

1.2. Construction and operation of the BLDC motor

A BLDC motor comprises of a stator made out of covered steel stacked up to convey the wind-
ings. The brushless motors are for the most part controlled by utilizing a three stage power 
semiconductor span. In numerous motors, the essential quantities of loops are imitated to 
have littler introduction steps and littler torque swells.

A BLDC motor configured in a star pattern with three coils is considered here. The rotor in a 
typical BLDC motor is made out of permanent magnets. Increasing the number of poles does 
give better torque at the cost of reduced maximum possible speed [1, 2]. The motor requires 
a rotor position sensor for beginning and giving legitimate substitution succession to turn 
on the force gadgets in the inverter span. In light of the rotor position, the force gadgets are 
commutated successively for each 60°.

The replacement succession for BLDC motors has three windings. The first is empowered 
to positive force (current goes into the winding), the second twisting is for negative force 
(current ways out from the winding) and the third one is in a non-invigorated condition. The 
cooperation between the attractive field produced by the stator loops and the lasting magnets 
makes the required torque.

The BLDC motor drive framework comprises of a DC power supply changed on to the stator 
stage windings of the motor through an inverter by force exchanging gadgets. The discovery 
of rotor position decides the exchanging arrangement of the inverter. Three-stage inverters are 
for the most part used to control these motors, requiring a rotor position sensor for beginning 
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and giving the correct recompense grouping to stator windings. These position sensors can 
be Hall sensors, Resolvers, or Absolute position optical encoders. Though sensorless BLDC 
motor control is feasible using back-EMFs, they have some disadvantages. But still, sensorless 
control of BLDC motor has been receiving great interest.

1.3. Electronic commutation

With a specific end goal to make the motor pivot, the curls are invigorated in a pre-characterized 
succession, making the motor turn in one course. Running the grouping in the converse request 
makes the motor keep running the other way. The course of the current decides the introduc-
tion of the attractive field created by the loop.

The attractive field pulls in and repulses the changeless magnet rotor. By changing the present 
stream in the curls and in this way the extremity of the attractive fields at the right minute 
and in the right succession, the motor turns. Rotation of the current through the stator curls 
is alluded to as ‘commutation’.

A three-phase BLDC motor has six steps of commutation. In six-step commutation, only two out 
of the three BLDC motor windings are used at a time, as shown in Figure 1 using a three-phase 
half-bridge inverter arrangement.

Figure 1. Six stages of commutation.
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Steps are equivalent to 60 electrical degrees, and so, six steps make a full, 360° rotation. When 
each of the six states in the recompense arrangement has been executed, the grouping is 
rehashed to proceed with the revolution of the motor. This succession speaks to a full electri-
cal turn. For motors with numerous post matches, the electrical revolution does not relate to 
mechanical turn.

In a BLDC motor, the commutation is achieved using feedback sensors. Hall Effect Sensors, 
Resolvers and Optical encoders are commonly used feedback sensors. In this research work, 
a resolver fitted to the motor shaft has been used as the feedback device, whose two signals 
are converted to a precise shaft position, using a resolver to digital converter (AD2S83) with 
a resolution of 12-bits.

1.3.1. Three phase inverter

The BLDC motor control comprises of creating DC streams in the motor stages. This control 
is subdivided into two free operations: in the first place, stator and rotor flux synchronization, 
and after that control of the present worth. Both operations are acknowledged through the 
three-stage inverter portrayed in the accompanying plan. The flux synchronization has been 
gotten from the position data originating from resolver. From the position, the controller char-
acterizes the proper pair of MOSFET, which must be driven. The direction of the current to a 
settled 60° reference can be figured it out as shown in Table 1 and circuit shown in Figure 2 
respectively.

1.3.2. Resolvers

Resolvers are transducers that convert the angular position and/or angular velocity of a rotat-
ing shaft to an electrical signal. They deliver signals proportional to the sine and cosine of 
the shaft angle. When the rotor is excited with a reference voltage of the form A sin(ωt), the 
voltages induced across the two stator windings are of the form:

  S1 − S2 = A sin  (ωt)  sin  (θ)   (1)

  S2 − S4 = A sin  (ωt)  cos  (θ)   (2)

where ‘ θ ’ is the shaft angle of the rotor. The two resolver signal outputs form the input to a 
Resolver to Digital Converter (RDC), which digitizes the shaft angle information into a digital 
format, for further processing by FPGA for the electronic commutation.

1.3.3. Resolver to digital converter

The resolver mounted on the motor shaft takes a shot at the transformer standard. The essen-
tial twisting is on the resolver’s rotor and relying upon its pole edge, the prompted voltage 
in the two auxiliary windings are moved by 90°. The position information is obtained in a 
digital format using an Analog Devices Resolver to Digital Converter (RDC) [3]. The RDC also 
provides velocity signal in analog form with a 32.5 rps/V dc.
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1.3.4. Field programmable gate array (FPGA)

The Spartan-3 FPGA [4] with advanced process technology delivers more functionality in 
BLDC motor controller. The Spartan-3 family is a superior alternative to mask programmed 
ASICs and avoids the high initial cost, lengthy development cycles, and the inherent inflex-
ibility of conventional ASICs. FPGA programmability permits modifications in the field with-
out disturbing the hardware setup.

The Spartan-3 XC3S400 gadget comprises of 896 Configurable Logic Blocks (CLBs) contains 
RAM-based Look-Up Tables (LUTs) to actualize rationale and capacity components so that 
there will be no need of outer memory. Info/yield Blocks (IOBs) control the stream of infor-
mation between the 116 I/O sets. Computerized Clock Manager (DCM) squares give self-
aligning, completely advanced answers for conveying, deferring, duplicating, partitioning, 
and stage moving clock signals.

Figure 2. Three phase inverter and stator coil excitation.

Sectors degree Coil excitation MOSFET ON

0–60° W-V T5, T4

60–120° W-U T5, T2

120–180° V-U T3, T2

180–240° V-W T3, T6

240–300° U-W T1, T6

300–360° U-V T1, T4

Table 1. Sector degree versus coil excitation.
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1.4. Implementation of BLDC motor controller on FPGA

The Spartan-3 XC3S400 FPGA has a very good alternative to mask programmed ASICs and 
avoids the high cost and lengthy development process of BLDC motor controller.

1.4.1. Implementation of open loop BLDC motor controller on FPGA

The FPGA works like a controller to read the information from resolver to digital converter 
and to perform suitable electronic commutation. The controller is implemented for the con-
stant speed by controlling the width of the PWM signal. The scheme of FPGA role in open 
loop BLDC motor controller is shown in Figure 3.

1.4.2. Implementation of closed loop BLDC motor controller on FPGA

The FPGA forms a controller to read-in resolver to digital converter, perform electronic com-
mutation by reading the servo error from the analog to digital converter.

The speed control function is implemented by controlling the width of the PWM gated pulses. 
This plan of FPGA part in BLDC motor speed controller is appeared in Figure 4.

1.4.2.1. Speed controller of BLDC motor

The variable velocity control of a BLDC motor is acquired by utilizing inverter yield which 
has a variable recurrence and variable voltage source. The speed of the motor is related to the 
number of poles and frequency of the supplied voltage as below:

  N = 120f / P  (3)

where N—speed in rpm, P—number of poles and f—frequency of the supply.

The selected BLDC motor for this work has six numbers of poles and tested for 1000 rpm 
speed with a 50 Hz power supply. The period of this supply is 20 ms and the duration of each 

Figure 3. FPGA as open loop BLDC motor controller.
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stage of the six step commutation is 3.33 ms. Thus, the set frequency is configured according 
to the rpm required.

The variable voltage is obtained, using PWM technique by modifying the width of the pulses. 
This variable voltage sends variable current to the stator coils based on the required torque 
of the load.

In this work, a hybrid approach has been selected for the BLDC motor speed controller. The 
speed and the current loops have been implemented by using an operational amplifier. The 
digitized error is read by using the FPGA to compute the pulse width of the waveform to 
be sent to the gate control of MOSFETs. A closed loop speed controller requires a reference 
speed to follow. The motor speed is fed back to determine the error between the reference 
speed and motor speed. This error in speed is amplified and fed to a current loop where the 
actual motor current measured with LEM sensor is compared for the determination of the 
torque error. This error is amplified and fed to a 8-bit Analog to Digital Converter (Model 
ADC.0800). This digitized error is fed to the FPGA to determine the PWM width so as to 
control the stator voltage and current to the stator coils. This speed-controller scheme is 
shown in Figure 5.

The generated gated signals are passed on through opto-isolators to the MOSFET gate driv-
ers. The three-phase full bridge circuit drives the motor. This BLDC motor has a resolver 
mounted on its rotor shaft to provide its angular position. This motor delivers a rated torque 
of 0.41 Nm at the rated speed of 7000 rpm.

Figure 4. FPGA as closed loop BLDC motor controller.

Figure 5. Block diagram of speed control of a BLDC motor.
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stage of the six step commutation is 3.33 ms. Thus, the set frequency is configured according 
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The gate pulses generated from the FPGA are given to the driver circuit which consists of 
MOSFET- based inverter bridge. When the motor starts rotating, the coils are energized cor-
respondent with the sequence.

The three phase currents are controlled to incorporate a quasi-square waveform in order to 
synchronize with back EMF to produce the constant torque. The resolver provides the motor 
shaft position in terms of sine and cosine waveforms.

The resolver feedback signals are in analog form, which is converted in to digital form with the 
help of resolver- to- digital converter (RDC). The RDC outputs are fed to the FPGA for further 
processing. The controller provides two error signals Velocity feedback and Current feedback.

2. Summary

FPGA has been interfaced to a RDC for position feedback information of the motor shaft. The 
electronic commutation sequence is generated and loaded into the output port to drive the three-
phase inverter. The speed control is implemented with suitable analog electronics in conjunc-
tion with PWM determination, both for duty cycle and frequency by the FPGA. Mathematical 
modeling of the BLDC motors has been implemented and the MATLAB Simulink simulation is 
carried out to determine the static and dynamic response of the drive system.

Because of their elite brushless DC motors are increasing wide acknowledgment in telescope 
drive framework. The velocity control for a brushless DC engine has been outlined and incor-
porated into a FPGA. Keeping in mind the end goal to control motor torque, current controller 
is composed and executed in a FPGA SPARTAN-3.
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1. Proposed techniques for functional verification of digital systems

New applications in different areas, such as the automotive industry, robotics, IoT, and
smartphones, among others, require increasingly complex digital devices. This implies the
use of new techniques to reduce the design time of the devices, ensuring useful functionality
according to the specification. It is important to know that manual simulation and functional
verification require much time and expertise, so it has been necessary to develop software tools
that improve performance, reduce manufacturing times, decrease verification costs, and
increase the confidence level of the RTL implementations. In addition, new systems use a large
amount of computational resources and new algorithms that increase the complexity of digital
systems and require new methods to analyze and evaluate the device under verification
(DUV). Several works of researchers on functional coverage methods have been made. Most
studies use the following philosophies: static (methods based on logical or mathematical
techniques), dynamic (methods based on simulation), and hybrid methods (combining static
and dynamic). Next, works based on meta-heuristic and data mining algorithms report differ-
ent methods for verification.

To perform verification of digital systems, different approaches have applied heuristic algo-
rithms, for example, genetic algorithms (GA) that apply the evolution theory, where individ-
uals within a population adapt to the conditions to the environment, compete for resources,
and generate the evolution of the population through operators such as selection, crossing and
mutation. Most of the time, the generation of pseudorandom tests produces worse results than
this generation of test sequences. For example, authors in [1] perform a PowerPC architecture
verification using genetic algorithms by generating pseudorandom custom instructions and
encoding a sequence of instructions with a fixed length. The population size is small to reduce
system simulation time. In the same way, in [2] the authors presented an implemented method
to generate directed tests through a genetic algorithm, and a cell represents the chromosome in
a uniform random distribution in two limits; the different parameters of the method were not
fully automated; therefore, extensive knowledge of the evolutionary framework by the user is
needed. In addition, in [3], the authors configure a genetic algorithm, which is included in a
software platform to improve the functional coverage in a device. In this latter, chromosome
coding is based on established instructions, and the proposed method helps to achieve uncov-
ered tasks and increases the hit rate in the test of hard cases, improving the results of the
pseudorandom test generation.

Some works have implemented ant colony optimization (ACO) and particle swarm optimiza-
tion (PSO). On the one hand, the ACO uses the imitation of the behavior of ants seeking better
paths from the initial place to the food place; ants get their food by means of pheromones and,
in this way, other ants walk the paths and can provide positive feedback. In [4], a method
based on the ACO that combines the pseudorandom test generation with a software platform
that generates the digital system states is presented. The results show a reduction in computa-
tional complexity compared to random generation and other heuristics based on GA. On the
other hand, the PSO algorithm is based on the interaction between the particles in the swarm.
For instance, the authors in [5] present a verification method by using branches as a coverage
metric and a PSO algorithm to perform the validation of RTL implementations.
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Other algorithms have been applied; for example, in [6], the authors used Bayesian networks in a
functional verification method, and this type of networks is a model based on probabilistic
graphs that are composed of random variables or nodes and edges that represent dependencies
between them. The verification has feedback and the ability to cover hard cases and increase the
coverage rate of progress, even though a manual configuration for the process was required.
Other techniques were proposed for hardware verification based on meta-heuristics [7], where a
differential evolution (DE) algorithm is applied; the verification is based on a coverage model
using coverpoints and the algorithm is used to generate test vector sequences.

Works have improved the functional coverage using data mining. In [8], the authors proposed
a learning methodology where knowledge from test is extracted. The extracted data is reused
to generate tests with similar values to other important ones and cover new assertions. The
method is applied to perform a constrained random verification of a processor and reports
improvements in assertions coverage through the information extracted in the verification. The
authors in [9] proposed an automatic learning method of rules regarding micro-architectural
behavior of the instructions, and these rules were embedded in a stimuli generator tool. The
method is applied in a microprocessor, improves the quality of the test cases generated and
reaches interesting coverage events. In addition, [10] describes a method based on decision
trees. In this method, before activating the sentences, they go through an engineering of formal
verification to filter the candidate alterations in the output, generating automating RTL
sentences. The proposed method was divided into two spaces: static and dynamic techniques.
Static analysis techniques were used to direct the data mining process. In addition, Hidden
Markov Models (HMM) are statistical methods that use probability measurements for sequen-
tial models of the data represented by sequences.

Other techniques used in functional verification are based on mutations that are changes of the
RTL implementation, and such coverage metrics are used to drive the verification progress
during simulation. For example, in [11] the authors proposed a methodology to verify a
microprocessor using mutations. To test the vector sequences, the design simulation is
performed first, then a set of mutations is added, and the verification is executed. Finally, a
comparison of the results is made. One of the problems occurs when a large number of
mutations are added because the verification time is increased.

In this chapter, an alternative hybrid method that uses coverage models is presented. This
method represents the device behavior through CoverPoints, and fitness functions focused on
sets of specific behavioral regions. In particular, a PSO algorithm with a re-initialization
mechanism (BPSOr) is described. The method represents a hybrid technique that uses a
simulation tool and meta-heuristic algorithms through a proposed verification interface.

2. Functional verification elements

In large-scale electronic integration design, functional verification is the verification process of
a design logic that complies with specific rules design for its operation and manufacturing in
an integrated circuit. The functional verification answers the question: “Does the proposed
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electronics design meet the desired design and functionality requirements?” A complex task
with times and high computational efforts is presented mainly in VLSI design. The functional
verification is adjacent to a deeper design verification that, in addition to functional verifica-
tion, adopts nonfunctional aspects such as time, design and power, implemented in the design
of mixed circuits for signal processing.

There are different elements which work during the functional verification process. A verifica-
tion system usually consists of several types of components:

1. Test generators are used in the stages of the functional verification where the test vectors
are used to detect a fault presented in the specifications and the generation of the code.
These generators use a full SAT type of NP resolution that is computationally expensive. In
other types of generators, the vectors are created manually, for instance, the patented
graphics-based generator (GBM). In short, modern generators create random vectors that
are applied statistically on the design verification. Therefore, the users of the generators do
not clearly specify the requirements to the test generation.

2. The supervisors interpret the stimuli produced by the vector generator for the DUV inputs.
Generators create entries with a high level of abstraction, for example, transactions or
instructions in assembly language. Supervisors convert this entry into inputs for the DUV
as defined in the design interface specification.

3. The simulators (software tool) excite the circuits under verification to obtain their outputs,
depending on the current state of the design and the input vectors injected (verification
vectors). In this case, the software tool has a description of the design network list.

4. The monitor converts the state of design and its outputs into an abstraction transaction
level that will be stored in a score-board database for later verification.

5. The verifier validates the score-board data. In some cases, the generator produces the
expected results, in addition to the inputs. For those cases, the verifier must validate actual
results that match the expected results.

6. The supervisor is included in the verification environment and manages all the above
components together.

Figure 1 shows a pseudorandom test generation scheme where the functional coverage is used
as coverage metric. The verification is done using constraints for the stimuli during the device
simulation. After a specific number of iterations, the coverage information is reviewed by

Figure 1. HDL verification through pseudorandom test generation.
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identifying the holes produced and, then adding more constraints. Finally, the process is
executed until a stop criterion is met.

Verification is a very difficult task due to a large volume of possible test cases that exist even in
a simple design. The verification can be attacked by many methods:

1. The logical simulation executes the logic of a circuit before building it to obtain its approx-
imate behavior.

2. Simulation acceleration applies special-purpose hardware to the logic simulation problem.

3. Programmable logic creates a version of a system; this is expensive and even much slower
than real hardware and orders of magnitude faster than simulation. For example, they can
be used to start the operating system in a processor.

4. Formal verification attempts to prove mathematically that certain requirements are met or
that certain undesired behaviors cannot occur.

5. Automated verification uses automation to adapt the test bench to changes in the register
transfer level code.

6. Specific HDL versions and other heuristics are used to find common problems.

Different methodologies have been proposed in order to perform the functional verification.
Three different philosophies have been suggested in order to perform the functional verifica-
tion: static methods (formal methods), dynamic methods (which are based on simulation) and
hybrid methods (which does not fall in formal and informal methods). Every philosophy
contains different strategies in order to test the digital system functionality. For example,
formal methods perform the verification using mathematical expressions to give a formal
description of the device’s behavior. Examples are model checking, theorem proving, etc.

During the verification based on dynamic methods, the stimuli are used to exercise the func-
tionality, and test benches are also implemented and added to the verification environment.
These methods are very scalable and practical. Due to the greater constant complexity of the
devices, the use of these methods in the industry is very common. On the other hand, even if
the designs are completely verified, it is not easy to guarantee that there are no errors.

Hybrid methods make up the third category, combining the formal and dynamic techniques.
This type of methods is focused on increasing the coverage obtained from the bottleneck
guiding the search through the full coverage space. A disadvantage is that its design requires
broad background about verification techniques.

2.1. Problems solution through meta-heuristic algorithms

Searching directly for test vectors sets that appropriately evaluate and examine the functional-
ity of the developed devices is not trivial. For example, for the deterministic methods, the
consumption of resources is generally growing exponentially, which depends on the size and
architecture of the circuit. Consequently, other solutions have been proposed, i.e., methods that
use meta-heuristic are mainly applied to decrease the computational complexity when verify-
ing the device.
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Meta-heuristics methods are algorithms to find a global solution using local approximations
and heuristics. A meta-heuristic represents a top-level strategy which guides the heuristics to
solve a problem. Frequently, not all search details are specified and can be adjusted according
to a specific problem. Alternatively, there are general techniques to handle the directed search
where optimal local solutions will be avoided; they are employed in the verification context.
For instance, in genetic algorithms, a population of individuals is used as an initial set of
solutions. The fitness value of a test sequence represents how good an individual is. In
addition, the search for solutions is directed by an individual’s combination that uses a set of
operators.

There are different definitions of meta-heuristics; commonly, a meta-heuristic can be defined as
a process that drives other heuristics through a combination of elements to explore and exploit
the search spaces. Besides that, it uses learning strategies to manage the information obtained
and achieve optimal solutions. Some examples of meta-heuristics are ant colony, artificial bee
colony algorithm, genetic algorithms, etc. Many works have used this type of algorithms to
find solutions to different problems. Its applicability is suitable in optimization problems
where the computation of cost functions is so expensive and influenced by a type of noise.
Consequently, meta-heuristics are techniques that find good solutions in large search spaces.

2.2. Automated functional verification in digital systems

In this work, the functional verification of the devices is designed and executed automatically.
Moreover, when the functional verification uses the coverage data that is produced from each
simulation, it is named as “directed functional verification.” A fundamental aspect is the
coverage information (integrity measurement) for the test sets and represents the data where
the revision is made in the verification. In addition, the analysis of this process allows the
generation of new test sequences to evaluate other coverage regions.

The verification by simulation of the device is carried out when the expected functionality is
translated into the implementation of RTL according to the specification and the criteria of the
designer. Then, the device is reviewed through a series of steps, for example, checkers, moni-
tors, test-benches, etc. In the end, the verification platform gives the coverage results that
express the percentage of functionality verified. When reviewing the functional verification
definition in [12], the RTL implementation of a device based on a set of features and opera-
tional requirements should be provided, to execute the verification, which is composed of the
process that guarantees the device implementation that complies with each feature given in the
specification.

Automated functional verification involves different elements such as coverage models, con-
trol flow graphs, test sequences, and cost functions, among other elements. When these ele-
ments interact, a system of test vector generation is formed. Some verification methods use this
type of scheme to perform verification of digital devices.

An important case occurs when the test generation uses feedback information to explore new
behavior regions, when this happens it is named as coverage-directed test generation. There
are different definitions, for instance, according to [12], this generation allows to produce
different test sequences to exercise different functionalities (characteristics of the coverage

Digital Systems78

models) of the device. Therefore, this process occurs when a test sequence is injected into the
input of a device and then a new function value is exercised. Then, the value obtained is stored.
Finally, all device states are reviewed and a new test is generated.

In other words, first, a test vector sequence is injected into the input of the device; then, if a new
feature from the intended behavior is covered, the test sequence and the value of the feature
exercised are stored. Later, the device states are reviewed and another test vector is produced
to verify the “DUV.” After this, all the states are verified and the values of coverage metrics are
analyzed.

Figure 2 shows the main steps in the automation of the directed test generation. In this scheme,
a verification plan based on based on a functional specification is needed, which describes
what characteristics of the device will be verified and how it will be done.

2.3. Functional coverage models and coverage metrics

A functional coverage model can be described as a functional coverage space where the device
behavior is captured. This means that it represents a coverage space that contains the interre-
lationships that exist between inputs, outputs, tasks, events, conditions and characteristics,
which could show the correct functionality of a device with a confidence degree of a device.
The coverage model is designed based on the implementation or device specification and a
coverage metric or coverage structure.

A coverage metric consists of a heuristic to measure what part of the device behavior has been
verified correctly. The main objective of this measure is to reflect which parts of the function-
ality have been met with correct execution during the processing of the information by the
device, i.e., functional coverage (verify that all characteristics meet the specification), statement
coverage (verify if the lines of code in the HDL implementation are exercised), branch coverage
(analyze if the paths are traveled through the branches during the simulation), and finite-state
machine (check how many states have been covered correctly).

The models are fundamental components of the verification process. A coverage model using
stimuli, events, constraints, and CoverPoints is generated. It means that the coverage models
are representations that map the intended behavior through characteristics, inputs, outputs,
and its interrelations. A coverage model can be based on coverage points (CoverPoints).
CoverPoints represent the values of each variable in a coverage model.

A coverage model can be defined as the different characteristics to represent the device
behavior according to a functional specification that has different constraints. In particular,

Figure 2. Automation of directed test generation.
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Figure 2. Automation of directed test generation.
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the way of representing the behavior affects the granularity of the model, that is, a model with
more characteristics can represent the original intention more efficiently, and as a consequence,
it has a higher level of granularity. The accuracy of that model describes the implementation.
The coverage model may contain explicit and implicit device behavior features. Moreover, the
models are designed according to the device specification and implementation. Figure 3 shows
a coverage model where fidelity of a model determines how closely the model defines the
actual requirements of a device behavior.

3. Verification method using BPSOr algorithm

The proposed verification method uses the BPSOr algorithm, which is based on several psy-
chological aspects and social elements. In this social-cognitive context, individuals must inter-
act among them, where the best performance occurs within the particle group and previous
behaviors. Each individual is a particle, each particle group is a neighborhood, and each
cognitive and social particle behavior is influenced by an improved performance from the
groups.

At this point, two proposals are presented: lbest (local-best) and gbest (global-best). In the first
proposal, the particle with the best performance in its groups affects to the remaining parts. In
the second proposal, the swarm is important, because particles are connected among them,
where the best performance of a particle from the swarm affects it and the results are
improved.

In the swarm, each dimension is analyzed, and there are two main computational problems:
memory and velocities; the first one establishes the best particle location, comparing the actual
position and other better ones by means of the search. In addition, a key metric is the rate of
change, which is computed for the particle based on the velocities to obtain gbest (the best
global) and lbest (the best local solution). Incremental changes in both learning and attitude are
simulated, providing the granularity of the search in the problem space. On the one hand,
speed represents changes in probabilities, which may have the value “1” or “0.” On the other

Figure 3. Functional coverage model.
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hand and considering the particle dimension, the attitude of the changes represents the prob-
ability, which can be “1” or “0.” For these reasons, the sigmoid function S Vidð Þ [13] transforms
velocities to probability values and obtains a zero state for each particle, see Eq. 1. If vid is high,
the particle bit will probably be 1, and if the vid is low, the particle bit will probably be 0, where
vid is a value in the range Vmin;Vmax½ � ¼ 0:0; 1:0½ �, ensuring that two possible values take the
dimension bit (for the sequences): “1” or “0.”

S Vidð Þ ¼ 1
1þ exp �vidð Þ (1)

It is important to control the influence (from paths by each particle and other particles in the
population), because the particles can move to the regions where the fitness variables have the
best values. In this case, the pseudorandom values have produced better results when they are
the mutation operators in the genetic algorithms. If the PSO algorithm is expressed in real
numbers, a great number of problems are presented in binary domains, requiring extra oper-
ations for converting real values to binary values.

In binary versions, the PSO algorithm uses binary data directly with a re-initialization process,
see Algorithm 1. The latter is composed of instructions or rules, where a particle is represented

by a set and its elements are binary sequences. In this algorithm, in the first step, the position xi
!

and velocity G xi
!� �

are initialized and computed for each particle. In the second step, G xi
!� �

and its best previous position pid are compared. If G xi
!� �

is better, then its best position pid is

equal to xid. In this case, the velocities vid are compared. For every particle dimension, xid has a
value “0” when rid position fitness is less than s vid tð Þð Þ (from sigmoidal speed function), but it
has a value “1.” These steps are executed until stop condition is reached.

Algorithm 1. Pseudocode of Binary PSO with a re-initialization process (BPSOr).
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In this pseudocode, Vmax and Vmin are constraints of each probability of change, where each
position of the particle is considered, and the re-initialization process avoids local solutions
and covers new behavior regions. This process is based on population-based measures, and if
the best global performance is greater than the best current performance of the swarm, then the
swarm of particles is initialized again. Consequently, the best particle position and the best
particle of the population are stored. In addition, both the current positions and particle
velocities are re-initialized. To re-initialize the velocities, a probability value is computed,
whose aim is to avoid a convergence in an optimal local solution.

The main aspect of this algorithm is the decision when the bit string has a value of 1 or 0,
which is based on the probability and is defined as a function of personal and social factors,
see Eq. 2, where: (a) vid t� 1ð Þ is a measure of the current probability (individual predispo-
sition) for the decision of 1 or 0; (b) φ1 and φ2 are positive random numbers, which are
obtained form an uniform distribution, and they represent predefined upper limits; (c) r1
and r2 are positive random numbers, which can take some value from 0 to 1; (d) xid tð Þ
describes the current state, when a bit-string d is analyzed for the individual i; (e) t repre-
sents the current discrete time, and t� 1 represents the previous discrete time; (f) pid is the
variable that represents the best state and has a value of 1 if the individuals with the best
success are located when xid is 1 and 0 in otherwise; (g) pgd is the best neighbor and has a

value of 1 if the best success is reached by some number at the moment of examining the
neighborhood with state 1 and has a value of 0 in the other case; and (h) rid describes a
vector or data structure of random numbers, which are obtained by using an uniform
distribution among 0.0 and 1.0, and Pre represents the re-initialization factor with real value
in the unit interval 0.0 to 1.0.

vt tð Þ ¼ vid t� 1ð Þ þ r1� φ1 pid � xid t� 1ð Þ� �þ r2� φ2 pgd � xid t� 1ð Þ
� �

(2)

Figure 4. Flow diagram of BPSOr algorithm.
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Figure 4 shows the flow diagram of BPSOr algorithm. The different advantages of the binary
PSO algorithm with re-initialization (BPSOr) enable to produce test sequences, operating in the
verification context and analyzing the devices, which are being verified.

4. Test vector generation method

A proposed interface based on heuristic algorithms and a software tool is used. Moreover,
some steps to verify the digital systems are performed. The description of the test generation
method implemented in this work is shown in Algorithm 2. Firstly, the device parameters
must be configured and initiated. In the same way, for the meta-heuristic process, several
parameters are initiated and assigned based on the operational requirements (specifications)
and implementation. Then, the set of device parameters are initialized.

Algorithm 2. General method of generation of test vector sequences.

In this case, BPSOr algorithm generates the test sequences; then, a simulation tool to evaluate
them is used. The coverage information from device simulation is reviewed and saved. Then,
the fitness variables are computed and the best values are stored, which are used in the new
iteration.

Local-best topology was implemented in the verification method to perform different experi-
ments. The scheme of this topology is shown in Figure 5 where test vector sequences are
clustering in some sets representing groups of particles; in this case, the particles or test
sequences are affected by its fitness value and the best in its neighborhood. The best particle
consists of the test sequence with the best fitness value in the group. Additionally, each test
sequence or particle can communicate with others in its group. Later, in every iterations, the
set of particles is directed toward the best particle in the swarm.

Global-best configuration is represented in Figure 6; in this topology, each particle is affected
by the best solution in the swarm. All particles are included in the same group and they move
toward the best solution. After every algorithm iteration, the test sequence with the best
performance guides to the others through the search space.

On the other hand, the fitness function used in the algorithms is shown in Eq. 3. This function
is focused on the percentage of holes produced in specific CoverPoints (Peh). Therefore, the
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problem is translated to maximize the number of points covered and, at the same time,
minimize the percentage of holes in specific behavior regions.

f 1 ¼MAX
1
Peh

� �
(3)

Test generation sequences are produced in the verification environment to verify the devices.
In the beginning, a new binary sequence is tested and analyzed in the device, running the

Figure 5. Groups of test vector sequences using the local-best topology.

Figure 6. Groups of test vector sequences using the global-best topology.
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respective simulation. Then, after the last sequence is completed, the cost values are quantified.
Their calculation dependents of the points and holes are determined during the respective
simulation. The information obtained is delivered to the generator module of test sequences.
Therefore, a new sequence is generated and the process is repeated while the stop condition is
not reached.

The proposed verification system is composed of several modules that are connected through
an interface between C and SystemVerilog languages. Figure 7 shows a scheme where the
system couples the device under verification and the verification process is performed at the
RTL level.

5. Case study

The proposed verification method is validated through different experiments using two digital
systems. Additionally, the performance of the BPSOr, genetic algorithm, PSO, and random test
generation is compared. RTL implementation of the devices was employed as benchmarks in
the verification platform. The applicability of this type of method focuses on the block-level
verification of IP cores because the automatic verification depends on the controllability degree
of events generated from the stimulus during the device simulation. PSO algorithm with a re-
initialization mechanism can be more complex computable, however, because this algorithm

Figure 7. Proposed scheme.
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achieves fine solutions very quickly, the verification time could be reduced. The best scenarios
with different features of BPSOr algorithm will be presented.

Devices such as a UART-IP core were employed in order to perform its verification. The
UART-IP can be used as a transmitter and receiver. A 16-bit address bus and an 8-bit data bus
are included in the IP core. Its verification was based on the functional specification and the
RTL code implementation. The coverage model was implemented using 785 bins in 12
CoverPoints. The initialization and configuration were performed based on the specification.
Besides, the verification of a FIFO memory was performed using a coverage model with 784
bins. The memory is often contained in devices such as processors, UARTs, interfaces, and so
on. Its implementation was designed in Verilog language and the configuration of the signals
was controlled according to the features described in the functional specification.

To develop the proposed experiments, different values of parameters were used, which were
included in several scenarios. Therefore, a scenario consists of a set of parameters that are used
for the meta-heuristic algorithm. In the case of BPSOr algorithm, the parameters such as
topology (global or local), velocity values, number of particles, and ϕ value were modified.
Additionally, running a scenario of a defined number of times with a specific parameter
configuration is defined as an experiment. The size of the swarm used was among 3 and 16
particles. Also, “global-best” and “local-best” topologies were implemented in the algorithm.
The ϕ variable was modified with values from 2.0 to 4.0 for the scenarios. On the other hand,
the evaluation of the test sequences was performed using two fitness functions, which are
based on the coverage obtained. Basically, these functions get the CoverPoints and the holes
generated at the run-time. When the simulation of a device ends, the coverage produced is sent
to the test generator module and, finally, a new test is generated.

The results obtained are expressed in the best scenarios where information such as the best, the
average, the total iterations, etc. are included. In addition, the binary test sequences were
evaluated by modifying their number of elements or length. For example, if a particle is
composed of two sequences, then its height is equal to 2.

The obtained results from the best scenarios will be presented to analyze the BPSOr perfor-
mance. Furthermore, a genetic algorithm (GA) with elitism feature was implemented. Some
algorithm parameters such as crossover percentage, mutation percentage, maximal number of
evaluations, and population size were modified. A stop criterion was defined using the total
number of evaluations. Besides, all CoverPoints were clustered focusing in the points that
required to be exercised.

The experiments were performed using a computer with Linux Fedora Core 23. The features of
the computer are as follows: Processor model: Intel Core i7-4790 K CPU-4 GHz., RAM: 8 GB,
CPU: 4298.5 MHz, and Cache: 8192 KB. Additionally, all experiments were performed over a
Linux Fedora Operating System, where the verification platform was successfully installed.
After this, the obtained data were saved and reviewed. The obtained results from simulations
were handled as statistical information to obtain the best fitness values.

When the verification process is performed, some characteristics could not be exercised due to
different factors; for instance, if the behavior regions have the same cost values, then the fitness
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functions could not give a difference regarding to other regions. Even, if more algorithm
iterations are used, then the test sequences generated will cover the same behavior regions
and the holes will not be covered. It is important to design strategies by focusing on the regions
that are not easily covered. One strategy consists of a group the CoverPoints in sets with
different weights to produce higher behavior areas. In addition, efficient search algorithms
are required. Therefore, meta-heuristic algorithms can guide the search usefully and exercise
all functionality of the device.

5.1. Experiments

The functional verification method based on meta-heuristic algorithms can test the functional-
ity regions by focusing on specific behavior parts that can required more exploration. In these
experiments, the verification method is used to verify two different digital systems. First, to
show the performance of the GA a set of experiments will be developed. The genetic algorithm
used was a binary version where the best individual remained in the next epoch (elitism).
Table 1 contains the parameters used for three different scenarios. Each experiment was run 30
times and then the coverage percentages and average time were stored. For instance, in the
first case, a population of 100 individuals was configured with a crossover of 0.5 percentage
and a mutation of 0.001 percentage.

Table 2 shows the obtained results for four best scenarios. Reviewing the results, in the third
scenario, a few number of iterations was required in order to reach 100 coverage percentage.
Besides, the average time used was 160.46 minutes.

Parameters GA scenarios

1 2 3 4

Crossover percentage 0.5 0.5 0.45 0.45

Mutation percentage 0.001 0.001 0.0005 0.003

Population size 150 120 100 100

f f 1 f 1 f 1 f 1

Table 1. GA algorithm settings for four different scenarios.

Final values 1 2 3 4

Best value 100 100 100 100

Worst value 95.44 97.13 99.08 98.30

Average value 98.23 99.12 99.87 99.62

Average evaluations 8090 7944 7353 7623

Average Time (min) 178.09 173.05 160.46 165.36

Table 2. Results obtained using a genetic algorithm in the platform to verify a UART-IP core.
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Table 3 shows the four best scenarios using the BPSOr algorithm to perform the verification of
a IP-UART core. One of the parameters that was changed is the swarm size. In this case, 3, 6, 9,
and 12 particles were used in the proposed method. For example, in the first scenario, the
parameters used were: 9 particles, 3 neighborhoods, ϕ = 4.0, global-best topology, and the f 1
cost function.

After, the experiments were performed, the obtained information was reviewed and the best
results for the four scenarios are presented in Table 4. According to these results, using the
fourth scenario, the average number of iterations was 1065 in 23.085 minutes to achieve 100
coverage percentage.

Table 5 contains the obtained results for four algorithms: GA, pseudorandom, BPSO, BPSOr,
etc. In these experiments, different parameters over the verification platform were changed. In
addition, four of the best scenarios are presented showing the best, worst, and average cover-
age. Also, the average number of iterations and the average time are added.

Commonly, the pseudorandom test generation is used to exercise the device functionality
during the functional verification. Reviewing the results, at the start, the coverage percentage
was increased very quickly. However, after achieving a coverage threshold percentage, more
iterations to increase the coverage were needed. For instance, in the case of the UART-IP core,
percentages over 95% were obtained.

According to the results the use of meta-heuristic algorithms to guide the search during the
functional verification of digital systems is a good alternative because the behavior areas can

Parameters BPSOr scenarios

1 2 3 4

Number of particles 9 6 12 3

Number of neighborhoods 2 2 4 1

ϕ max 4 4 4 4

Topology G-best G-best G-best G-best

f f1 f1 f1 f1

Table 3. Configuration parameters of the BPSOr algorithm for four scenarios using the UART-IP core for two sequence
solutions.

Scenario Number of evaluations Best value Worst value Average Time (min)

1 2137 100 100 100 46.53

2 1608 100 100 100 37.12

3 2719 100 100 100 60.954

4 1065 100 100 100 23.085

Table 4. Results obtained for four different scenarios using the BPSOr algorithm in the proposed platform with a UART-
IP core.
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be covered very quickly. In the case of genetic algorithms, the population of individuals can
evolve by modifying the test sequences to exercise new features of the device. One of the
problems is that the guide is based on the evaluations of all population which evolves by
means of operators such as mutation, crossover, etc.; when the population size increases, most
number of evaluations in each epoch is required; thus, the simulation time is increased. During
the functional verification, percentages over 99% were reached using the UART-IP core and the
FIFO memory using less time than pseudorandom generation.

On the other hand, when the BPSOr algorithm was used in the verification platform, more
functionality was exercised requiring less number of evaluations. Different from the original
version of PSO, the BPSOr algorithm can re-initialize the particle swarm based on the current
best coverage percentage and the number of iterations performed on run time. It means, if the
coverage percentage is not increased, then the best solution, the best particle positions, and the
positions and velocities of the particles are reinitialized. This mechanism is used to avoid to fall
in local optima solutions and guide the search to behavior regions not explored. In addition, in
most of the experiments, the coverage results obtained with BPSOr algorithm were higher than
PSO algorithm. It is important to mention that meta-heuristics can be useful techniques to
guide the test generation during the verification of devices.

6. Conclusions

Complexity of digital systems is constantly increasing; therefore, the implementation of new
methods to improve the confidence and reduce the time of design is required. In this chapter, a
verification method based on the use of meta-heuristic algorithms is described. Techniques
such as genetic algorithms and particle swarm optimization algorithms were used to verify the
digital systems, and a comparison was presented. Also, elements such as coverage models,
fitness functions, and software tools are included. According to the results, the use of meta-
heuristic algorithms such as the BPSOr algorithm and fitness functions can be useful to
exercise the device functionality by focusing on behavior regions that have not been covered.
In the case of GA, the coverage results obtained show that a lower number of iterations than
pseudorandom test generation is required. Although in the best coverage scenarios a coverage
percentage of 100 was obtained, it was observed that when increasing the number of

Final values Binary GA pseudorandom BPSOr BPSO

Best value 100 96.09 100 100

Worst value 99.08 94.53 100 100

Average value 99.87 95.27 100 100

Average evaluations 7353 8000 2137 2194

Average Time (min) 160.46 174.73 46.538 48.755

Table 5. Functional coverage results obtained using genetic algorithms, pseudorandom generation algorithms, PSO and
BPSOr to verify a UART-IP core.
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individuals, the number of iterations used was increased; thus, more time was used in each
iteration. The PSO algorithm obtained higher coverage percentages than GA and pseudoran-
dom generation. A main characteristic is that a fewer number of individuals or particles than
GA are required. In the case of the BPSOr algorithm, the number of iterations required was less
than PSO and GA in most of experiments; therefore, the verification time was reduced.
Consequently, hybrid verification methods can improve the performance during the functional
verification at block level of digital systems.
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Abstract

While deep learning delivers state-of-the-art accuracy on many artificial intelligence 
tasks, it comes at the cost of high computational complexity due to large parameters. 
It is important to design or develop efficient methods to support deep learning toward 
enabling its scalable deployment, particularly for embedded devices such as mobile, 
Internet of things (IOT), and drones. In this chapter, I will present a comprehensive sur-
vey of several advanced approaches for efficient deep learning in network compression 
and acceleration. I will describe the central ideas behind each approach and explore the 
similarities and differences between different methods. Finally, I will present some future 
directions in this field.

Keywords: deep learning, deep neural networks, network compression, network 
acceleration, artificial intelligence

1. Introduction

With the rapid development of modern computing power and large data collection technique, 
deep neural networks (DNNs) have pushed artificial intelligence limits in a wide range of 
inference tasks, including but not limited to visual recognition [1], face recognition [2], speech 
recognition [3], and Go game [4]. For example, visual recognition method proposed in [5] 
achieves 3.57% top-5 test error on the ImageNet LSVRL-2012 classification dataset, while face 
recognition system [6] achieves over 99.5% accuracy on the public face benchmark LFW [7], 
which both have surpassed human-level performance (5.1% on ImageNet [8] and 97.53% on 
LFW [9], respectively).
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These powerful methods usually rely on DNNs containing millions or even billions of param-
eters. For example, the “very deep” VGG-16 [10], which achieves very impressive performance 
on ImageNet LSVRC 2014, uses a 16-layer deep network containing 138 million parameters 
and takes more than 500 MB in storing the model. Beyond the remarkable performance, there 
is increasing concern that the larger number of parameters consumes considerable resources 
(e.g., storage, memory, and energy), which hinders their practical deployment. First, for a 
deep neural network (DNN) usage on mobile, the storage bandwidth is very critical both for 
model size and data computation. For example, the mobile-first companies (such as Facebook 
and Baidu) are very care about the sizes of the uploaded file, while mobile sensor data compa-
nies (such as Google and Microsoft) usually build largely cloud powered systems with limited 
mobile computation. Second, for a DNN usage in cloud, memory bandwidth demand is very 
important to save transmission and power. Therefore, smaller models via DNN compression 
at least mean that they (1) are easier to download from App Store, (2) need less bandwidth to 
update to an autonomous car, (3) are easier to deploy on embedded hardware with limited 
memory, (4) need less communication across servers during distributed training, and (5) need 
less energy cost to perform face recognition.

The objective of efficient methods is to improve the efficiency of deep learning through smaller 
model size, higher prediction accuracy, faster prediction speed, and lower power consump-
tion. Toward this end, a feasible solution is performing model compression and acceleration 
to optimized well-trained networks. In this chapter, I will first introduce some background 
of deep neural networks in Section 2, which provides us the motivation toward efficient 
algorithms. Then, I will present a comprehensive survey of recent advanced approaches for 
efficient deep learning in network compression and acceleration, which are mainly grouped 
into five categories, including network pruning category in Section 3, network quantization 
category in Section 4, network parameter structuring category in Section 5, network distilla-
tion category in Section 6, and compact network design category in Section 7. After that, I will 
discuss some future directions in this field in Section 8. Finally, Section 9 gives the conclusion.

2. Background

In this section, a brief introduction and analysis are given with some classic networks as 
examples on the structure of deep networks, computation and storage complexity, weight 
distribution, and memory bandwidth. This analysis inspires the behind motivation of model 
compression and acceleration approaches.

Recently, deep convolutional neural networks (CNNs) have become very popular due to their 
powerful representational capacity. A deep convolutional neural network (CNN) usually has 
a hierarchical structure of a number of layers, containing multiple blocks of convolutional lay-
ers, activation layers, and pooling layers, followed by multiple fully connected layers. Figure 1 
gives the structures of two classic CNNs, where (a) AlexNet [1] and (c) VGG-16 [10] consist of 
eight and sixteen layers, respectively. The two networks are larger than 200 MB and 500 MB, 
which makes them difficult to deploy on mobile devices. The convolutional layers dominate 
most of the computational complexity since they need a lot of multiplication-and-addition 
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(MAC) operations to extract local pattern, while they contain less weights due to weight shar-
ing and local connectivity. By contrast, fully connected layers contain most of the weights 
since dense matrix-vector multiplications are very resource-intense. In addition, an activation 
layer (such as ReLU) contains a nonlinear function to activate or suppress some neurons. It 
can make the network more sparse and robust again to over-fitting while reducing the num-
ber of connections. A pooling layer is followed by a convolutional layer and aims to merge 
semantically similar features to reduce the memory.

As shown in Table 1, the complexity of CNNs could be spitted into two parts: (1) the compu-
tational complexity of a CNN is dominated by the convolutional layers and (2) the number of 
parameters is mainly related to the fully connected layers. Therefore, most model acceleration 
approaches focus on decreasing the computational complexity of the convolutional layers, 
while the model compression approaches mainly try to compress the parameters of the fully 
connected layers.

Figure 1. The structures of two classic deep networks. AlexNet (a) and VGGNet (b) all contain multiple convolutional 
layers (red), activation layers, and pooling layers (yellow), followed by multiple fully connected layers (green). The input 
and loss layer are marked in mazarine and blue, respectively.

Network Computational complexity Parameter complexity

MACs Conv (%) FC (%) Size Conv (%) FC (%)

AlexNet 724 M 91.9 8.1 61 M 3.8 96.2

VGG-16 15.5G 99.2 0.8 138 M 10.6 89.4

GoogleNet 1.6G 99.9 0.1 6.9 M 85.1 14.9

ResNet-50 3.9G 100 0 25.5 M 100 0

Table 1. The computational and parameter complexities and distributions for deep CNNs.
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approaches focus on decreasing the computational complexity of the convolutional layers, 
while the model compression approaches mainly try to compress the parameters of the fully 
connected layers.

Figure 1. The structures of two classic deep networks. AlexNet (a) and VGGNet (b) all contain multiple convolutional 
layers (red), activation layers, and pooling layers (yellow), followed by multiple fully connected layers (green). The input 
and loss layer are marked in mazarine and blue, respectively.

Network Computational complexity Parameter complexity

MACs Conv (%) FC (%) Size Conv (%) FC (%)

AlexNet 724 M 91.9 8.1 61 M 3.8 96.2

VGG-16 15.5G 99.2 0.8 138 M 10.6 89.4

GoogleNet 1.6G 99.9 0.1 6.9 M 85.1 14.9

ResNet-50 3.9G 100 0 25.5 M 100 0

Table 1. The computational and parameter complexities and distributions for deep CNNs.
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DNNs are known to be over-parameterized for facilitating convergence to good local minima 
of the loss function during model training [11]. Therefore, such redundancy can be removed 
from the trained networks in the test or inference time. Moreover, each layer contains lots of 
weights near zero value. Figure 2 shows the probability distribution of the weights in two 
layers of AlexNet and VGG-16, respectively, where the weights are scaled and quantized into 
[−1, 1] with 32 levels to convenient visual display. It can be seen that the distribution is biased: 
most of the (quantized) weights on each layer are distributed around zero-value peak. This 
observation demonstrates that the weights can be reduced through weight coding, such as 
Huffman coding.

The memory bandwidth of a CNN model refers to the inference processing and greatly 
impacts the energy consumption, especially when running on embedded or mobile devices. 
To analyze the memory bandwidth of a trained CNN model, a simple but effective way is 
applied here by performing forward testing on multiple images and then analyzing the range 
of each layer output. The memory of each layer is dependent on bit width of each feature and 

Figure 2. The probability distribution of weights in two layers of AlexNet and VGG-16. It is shown that the weight 
distribution is around a zero-value peak.
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the number of output features. 1000 images from ImageNet dataset are randomly selected to 
perform inference with AlexNet and VGG-16, respectively; the mean range of output features 
on each layer are shown in Figure 3. It shows that the ranges of memory bandwidths in 
each layer are different and variable. Inspired by that, network compression and acceleration 
approaches can be designed to dynamically control the memory allocation in network layers 
by evaluating the ranges of each layer. Following these observations, many efficient methods 
for network compression and acceleration have been proposed, and several survey papers 
could be found in [12–14]. As shown in Figure 4, these approaches are grouped into five main 
categories according to their scheme for processing deep networks: pruning, quantization, 
approximation, distillation, and densification. In the following sections, I will introduce the 
advanced approaches in these categories.

3. Network pruning

DNNs are known to be over-parameterized for facilitating convergence to good local minima 
of the loss function during network training [11]. Therefore, the optimally trained deep net-
works usually contain redundancy on parameters. Inspired by that, network pruning category 
aims to remove such redundancy from the pre-trained networks in the inference time. In this 

Figure 3. The memory bit-width range of each layer of AlexNet (left) and VGG-16 (right).

Figure 4. The main categories of network compression and acceleration approaches.
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way, pruning approaches are applied to prune the unimportant or unnecessary parameters to 
significantly increase the sparsity of the parameters. Recently, many approaches are proposed, 
which consist of regular pruning approaches and irregular pruning approaches. As stated in 
[13], regular pruning refers to fine-gained pruning, while irregular pruning approaches are 
further categorized into four classes according to the pruning levels: vector level, kernel level, 
group level, and filter level. Figure 5 shows different pruning methods. The core of network 
pruning is measuring the importance of weights or parameters.

Fine-grained pruning is the most popular approaches used in network pruning. It removes any 
unimportant parameters in convolutional kernels by using an irregular manner. In early work, 
LeCun et al. proposed optimal brain damage, a fine-grained pruning technique that estimates the 
saliency of the parameters by using the approximate second-order derivatives of the loss function 
w.r.t the parameters and then removes the parameters at a low saliency. This technique shows 
to work better than the naive approach. Later, Hassibi and Stork [15] came up with optimal 
brain surgeon, which performed much better than optimal brain damage although costing much 
more computational consumption. Recently, Chaber and Lawrynczuk [16] applied optimal brain 
damage for pruning recurrent neural models. Han et al. developed a method to prune unimport-
ant connection and then retrain the weights to reduce storage and computation [17]. Later, they 
proposed a hybrid method, called Deep Compression [18], to compress deep neural networks 
with pruning, quantization, and Huffman coding. On the ImageNet dataset, the method reduced 
the storage required by AlexNet by 35× from 240 MB to 6.9 MB and VGG-16 by 49× from 552 MB 
to 11.3 MB both without loss of accuracy. Recently, Guo et al. [19] improved Deep Compression 
via dynamic network surgery which incorporated connection splicing into the whole process to 
avoid incorrect pruning. For face recognition, Sun et al. [20] proposed to iteratively learn sparse 
ConvNets. Instead of removing individual weights, Srinivas et al. [21] proposed to remove one 
neuron at a time. They presented a systematic way to remove the redundancy by wiring similar 
neurons together. In general, these irregular pruning approaches could achieve efficient com-
pression of model sizes, but the memory footprint still has not been saved.

Figure 5. Different pruning methods for a convolutional layer that has three convolutional filters of size 3 × 3 × 3 [13].
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Different from fine-grained pruning, vector-level and kernel-level pruning remove vectors 
in the convolutional kernels and 2D-convolutional kernels in the filters in a regular manner, 
respectively. Anwar et al. [22] proposed pruning a vector in a fixed stride via intra-kernel 
strided pruning. Mao et al. [23] explored different granularity levels in pruning. Group-level 
pruning aims to remove network parameters according to the same sparse pattern on the 
filters. In this way, convolutional computation can be efficiently implemented with reduced 
matrix multiplication. Lebedev and Lempitsky [24] revised brain damage-based pruning 
approach in a group-wise manner. Their approach added group-wise pruning to the train-
ing process to speed up the convolutional operations by using group-sparsity regularization. 
Similarly, Wen et al. [25] pruned groups of parameters by using group Lasso. Filter-level 
pruning aims to remove the convolutional filters or channels to thin the deep networks. Since 
the number of input channels is reduced after a filter layer is pruned, such pruning is more 
efficient for accelerating network inference. Polyak and Wolf proposed two compression 
strategies [26]: one based on eliminating lowly active channels and the other on coupling 
pruning with the repeated use of already computed elements. Luo et al. [27] proposed ThiNet 
to perform filter-level pruning. The pruning is guided by feature map, and the channels are 
selected by minimizing the construction error between two successive layers. Similarly, He 
et al. [28] applied an iterative two-step algorithm to prune filters by minimizing the feature 
maps. Generally speaking, these regular pruning (vector-level, kernel-level, group-level, and 
filter-level) approaches are more suitable for hardware implementations.

4. Network quantization

Typically, DNNs apply floating-point (such as 32-bit) precision for training and inference, 
which may lead to a large cost in memory, storage, and computation. To save the cost, net-
work quantization category uses reduced precision to approximate network parameters. 
These approaches consist of scalar or vector quantization and fixed-point quantization (see 
Figure 4).

Scalar or vector quantization techniques are originally designed for data compression, where a 
codebook and a set of quantization codes are used to represent the original data. Considering 
that the size of codebook is much smaller than the original data, the original data could be effi-
ciently compressed via quantization. Inspired by that, scalar or vector quantization approaches 
are applied to represent the parameters or weights of a deep network for compressing. In [29], 
Gong et al. applied k-means clustering to the weights or conducting product quantization and 
achieved a very good balance between model size and recognition accuracy. They achieved 
16–24× compression of the network with only 1% loss of accuracy on ImageNet classification 
task. Wu et al. [30] proposed quantized CNN to simultaneously speedup the computation and 
reduce the storage and memory overhead of CNN models. This method obtains 4–6× speedup 
and 15–20× compression with 1% loss of accuracy on ImageNet. With the quantized CNN 
model, even mobile devices can accurately classify images within 1 second. Soulié et al. [31] 
proposed compressing deep network during the learning phase by adding an extra regulariza-
tion term and combining product quantization of the network parameters.
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Different from scalar and vector quantization approaches, fixed-point quantization approaches 
directly reduce the precision of parameters without codebooks. In [32], Dettmers proposed 
8-bit approximation algorithms to make better use of the available bandwidth by compressing 
32-bit gradients and nonlinear activations to 8-bit approximations, which obtains a speedup 
of 50×. In [33], Gupta et al. used only 16-bit wide fixed-point number representation when 
using stochastic rounding and incur little to no degradation in the classification accuracy. Lin 
et al. [34] proposed a fixed-point quantizer design by formulating an optimization problem to 
identify optimal fixed-point bit-width allocation across network layers. The approach offered 
larger than 20% reduction in the model size without performance loss, and the performance 
continued to improve after fine-tuning. Beyond fixed-point quantization with reduced preci-
sion, an alternative is using binary or ternary precision to lower the parameter representation. 
Soudry et al. [35] proposed Expectation Propagation (EP) algorithm to train multilayer neural 
networks. The algorithm has the advantages of parameter-free training and discrete weights, 
which are useful for large-scale parameter tuning and efficient training implementation on 
precision limited hardware, respectively. Courbariaux et al. [36] introduced BinaryConnect 
to provide deep neural network learning with binary weights. BinaryConnect acts as regu-
larizer like other dropout schemes. The approach obtained near state-of-the-art results on 
permutation-invariant MNIST, CIFAR-10, and SVHN. Esser et al. [37] proposed training with 
standard backpropagation in binary precision by treating spikes and discrete synapses as 
continuous probabilities. They trained a sparse connected network running on the TrueNorth 
chip, which achieved a high accuracy of 99.42% on MNIST dataset with ensemble of 64 and 
92.7% accuracy with ensemble of 1. Hubara et al. [38] introduced a method to train Binarized 
Neural Networks (BNNs) at run-time. In trained neural networks, both the weights and acti-
vations are binary. BNNs achieved near state-of-the-art results on MNIST, CIFAR-10, and 
SVHN. Moreover, BNNs achieved competitive results on the challenging ImageNet dataset 
(36.1%, top 1 using AlexNet) while drastically reducing memory consumption (size and 
number of accesses) and improving the speed of matrix multiplication at seven times. Later, 
Rastegari et al. [39] proposed XNOR-Net for ImageNet classification. They proposed two 
approximations to standard CNNs with binary-weight-networks and XNOR-Networks. The 
first approximation achieved 32× memory saving by replacing 32-bit floating-point weights 
with binary values. The second approximation enabled both the filters and the activations 
being binary. Moreover, it approximated convolutions using primarily binary operations. In 
this way, it achieved 58× faster convolutional operations and 32× memory savings while a 
much higher classification accuracy (53.8%, top 1 using AlexNet) than BNNs. Beyond the 
great reductions on network sizes and convolutional operations, these binarization schemes 
are based on simple matrix approximations and ignore the effect of binarization on the loss. To 
address this problem, Hou et al. [40] recently proposed a loss-aware binarization method by 
directly minimizing the loss w.r.t. the binarized weights with a proximal Newton algorithm 
with diagonal Hessian approximation. This method achieved good binarization performance 
and was robust for wide and deep networks. Motivated by local binary patterns (LBP), Xu 
et al. [41] proposed an efficient alternative to convolutional layers called local binary convo-
lution (LBC) for facilitate binary network training. Compared to a standard convolutional 
layer, the LBC layer affords significant parameter savings, 9×–169× in the parameter numbers, 
as well as 9×–169× savings in model size. Moreover, the resulting CNNs with LBC layers 
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achieved comparable performance on a range of visual classification tasks, such as MNIST, 
SVHN, CIFAR-10, and ImageNet. Targeting at more faithful inference and better trade-off 
for practical applications, Guo et al. [42] introduced network sketching for pursuing binary-
weight CNNs. They applied a coarse-to-fine model approximation by directly exploiting the 
binary structure in pre-trained filters and generated binary-weight models via tensor expan-
sion. Moreover, an associative implementation of binary tensor convolutions was proposed 
to further speedup the generated models. After that, the resulting models outperformed 
the other binary-weight models on ImageNet large-scale classification task (55.2%, top 1 by 
using AlexNet). In order to reduce the accuracy loss or even improve accuracy, Zhu et al. [43] 
proposed Trained Ternary Quantization (TTQ) to reduce the precision of weights in neural 
networks to ternary values. TTQ trained the models from scratch with both ternary values 
and ternary assignment, while network inference only needed ternary values (2-bit weights) 
and scaling factors. The resulting models achieved an improved accuracy of 57.5%, top 1, 
using AlexNet on ImageNet large-scale classification task against full-precision model (57.2%, 
top 1, using AlexNet). TTQ was argued to be viewed as sparse binary-weight networks, which 
can potentially be accelerated with custom circuit. Generally speaking, the binary or ternary 
quantization approaches can greatly save the costs on model sizes, memory footprint, and 
computation, which make them friendly for hardware implementations. However, the accu-
racy needs to be improved especially in large-scale classification problems.

5. Network approximation

As stated in Section 2, the most computational cost of network inference comes from the 
convolution operators. In general, the convolutional kernel of a convolutional layer is rep-
resented with a 4D tensor, such as K∈Rwxhxcxs, where w and h are the width and height of the 
kernel filter, c is the number of input channels, and s indicates the target number of feature 
maps. The convolutional operation is performed by first transforming the kernel into a t-D 
(t = 1,2,3,4) tensor and then computed with efficient mathematical algorithm, such as by using 
Basic Linear Algebra Subprograms (BLAS). Inspired by that, network approximation aims to 
approximate the operation with low-rank decomposition.

Some approaches approximate 2D tensor by using singular value decomposition (SVD). 
Jaderberg et al. [44] decomposed the spatial dimension w × h into w × 1 and 1 × h filters, which 
achieved a 4.5× speedup for a CNN trained on a text character recognition dataset, with only 
an accuracy drop of 1%. Observing that the computation is dominated by the convolution 
operations in the lower layers of the network, Denton et al. [45] exploited the redundancy 
present within the convolutional filters to derive approximations that significantly reduce 
the required computation. The approach delivered 2× speedup on both CPU and GPU while 
keeping the accuracy within 1% of the original network on object recognition tasks. In [46], 
the authors proposed using a sparse decomposition to reduce the redundancy in model 
parameters. They obtained maximum sparsity by exploiting both interchannel and intrachan-
nel redundancy and performing fine-tuning to minimize the recognition loss, which zeros 
out more than 90% of parameters and with a less than 1% loss of accuracy on the ImageNet. 
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the authors proposed using a sparse decomposition to reduce the redundancy in model 
parameters. They obtained maximum sparsity by exploiting both interchannel and intrachan-
nel redundancy and performing fine-tuning to minimize the recognition loss, which zeros 
out more than 90% of parameters and with a less than 1% loss of accuracy on the ImageNet. 
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Inspired by that the convolutional layer can be calculated with matrix-matrix multiplication; 
Figurnov et al. [47] used loop perforation technique to eliminate redundant multiplication, 
which allows to reduce the inference time by 50%.

By successive 2D tensor decompositions, 3D tensor decompositions can be obtained directly. 
Zhang et al. [48] applied the strategy that conducts a 2D decomposition on the first weight 
tensor after SVD. Their approach had been used to accelerate very deep networks for object 
classification and detection tasks. Another 3D tensor decomposition, Tucker decomposition 
[49], was proposed to compress deep CNNs for mobile applications by performing SVD 
along the input channel dimension for the first tensor after 2D decomposition. To further 
reduce complexity, a block-term decomposition [50] method based on low-rank and group 
sparse decomposition was proposed by approximating the original weight tensor by the sum 
of some smaller subtensors. By rearranging these subtensors, the block-term decomposi-
tion can be seen as a Tucker decomposition where the second decomposed tensor is a block 
diagonal tensor.

4D tensor decomposition can be obtained by exploring the low-rank property along the chan-
nel dimension and the spatial dimension. This is used in [51], and the decomposition is CP 
decomposition. The CP decomposition can achieve a very high speedup, for example, as 4.5× 
speedup for the second layer of AlexNet at only 1% accuracy drop.

Beyond low-rank tensor decomposition approaches which are performed in original space 
domain, there are some network approximation approaches by processing parameter approx-
imation in transformation domain. In [52], Wang et al. proposed CNNPack to compress the 
deep networks in frequency domain. CNNPack treated convolutional filters as images and 
then decomposed their representations in the frequency domain as common parts shared 
by other similar filters and their individual private parts (i.e., individual residuals). In this 
way, a large number of low-energy frequency coefficients in both parts can be discarded to 
produce high compression without significantly compromising accuracy. Moreover, the com-
putational burden of convolution operations in CNNs was relaxed by linearly combining 
the convolution responses of discrete cosine transform (DCT) bases. Later, Wang et al. [53] 
extended frequency domain method to the compression of feature maps. They proposed to 
extract intrinsic representation of the feature maps and preserve the discriminability of the 
features. The core is employing circulant matrix to formulate the feature map transformation. 
In this way, both online memory and processing time were reduced. Another transformation 
domain scheme is hashing, such as HashedNets [54] and FunHashNN [55].

In general, network approximation category focuses on accelerating network inference and 
reducing network sizes at a minimal performance drop. However, the memory footprint usu-
ally cannot be reduced.

6. Network distillation

Different from the above approaches which compress a pretrained deep network, network dis-
tillation category aims to train a smaller network to simulate the behaviors of a more complex 
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pre-trained deep network or the ensemble of multiple pre-trained deep networks. The train-
ing applies a teacher-student learning manner. Early work proposed by [56] proposed model 
compression, where the main idea was to use a fast and compact model to approximate the 
function learned by a slower, larger but better-performing model. Later, Hinton et al. proposed 
knowledge distillation [57] that trained a smaller neural network (called student network) by 
taking the output of a large, capable, but slow pre-trained one (called teacher network). The 
main strength of this idea comes from using the vast network to take care of the regularization 
process facilitating subsequent training operations. However, this method requires a large pre-
trained network to begin with which is not always feasible. In [58], the authors extended this 
method to allow the training of a student that is deeper and thinner than the teacher, using not 
only the outputs but also the intermediate representations learned by the teacher as hints to 
improve the training process and final performance of the student. Inspired by these methods, 
Luo et al. [59] proposed to utilize the learned knowledge of a large teacher network or its 
ensemble as supervision to train a compact student network. The knowledge is represented by 
using the neurons at the higher hidden layer, which preserve as much information as the label 
probabilities but are more compact. When using an ensemble of DeepID2+ as teacher, a mim-
icked student is able to outperform it and achieves 51.6× compression ratio and 90× speedup 
in inference, making this model applicable on mobile devices. Lu et al. [60] investigated the 
teacher-student training for small-footprint acoustic models. Shi et al. [61] proposed a task-
specified knowledge distillation algorithm to derive a simplified model with preset computa-
tion cost and minimized accuracy loss, which suits the resource-constraint front-end systems 
well. The knowledge distillation method relied on transferring the learned discriminative 
information from a teacher model to a student model. The method first analyzed the redun-
dancy of the neural network related to a priori complexity of the given task and then trains a 
student model by redefining the loss function from a subset of the relaxed target knowledge 
according to the task information. Recently, Yom et al. [62] defined the distilled knowledge in 
terms of flow between layers and computed it with the inner product between features from 
two layers. The knowledge distillation idea was used to compress networks for object detec-
tion tasks [63–65].

Generally speaking, the network distillation approaches achieve a very high compression 
ratio. Another advantage of these approaches is making the resulting deep networks more 
interpretable. One issue needed to be addressed is reducing the accuracy drop ever improv-
ing the accuracy.

7. Network densifying

Another direct category for obtaining network compression and acceleration is to design 
more efficient but low-cost network architecture. I call this category as “network densify-
ing,“ which aims to design compact deep networks to provide high accurate inference. In 
recent years, several approaches have been proposed following this line. The general ideas 
to achieve this goal include the usage of small filter kernels, grouping convolution, and 
advanced regularization.
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Lin et al. [66] proposed Network-In-Network (NIN) architecture, where the main idea is 
using 1 × 1 convolution to increase the network capacity while making the computational 
complexity small. NIN also removed the fully connected layers instead of a global average 
pooling to reduce the storage requirement. The idea of 1 × 1 convolution is spread wide 
used in many advanced networks such as GoogleNet [67], ResNet [68], and DenseNet [69]. 
In [70], Iandola et al. designed a small DNN architecture termed SqueezeNet that achieves 
AlexNet-level accuracy on ImageNet but with 50× fewer parameters. In addition, with model 
compression techniques, SqueezeNet can be compressed to less than 1 MB (461× smaller than 
AlexNet). By using multiple group convolution, ResNeXt [71] achieved much higher accu-
racy than ResNet when costing the same computation. MobileNet [72] applied depth-wise 
convolution to reduce the computation cost, which achieved a 32× smaller model size and 
a 27× faster speed than VGG-16 model with comparable accuracy on ImageNet. ShuffleNet 
[73] introduced the channel shuffle operation to increase the information change within the 
multiple groups. It achieved about 13× speedup over AlexNet with comparable accuracy. 
DarkNet [74, 75] was proposed to facilitate object detection tasks, which applied most of the 
small convolutional kernels.

Moreover, some advanced regularization techniques are used to enhance the sparsity and 
robustness of deep networks. Dropout [76] and DropConnect [77] are widely exploited in 
many networks to increase the sparsity of activations for memory saving and weights for 
model size reduction, respectively. The activations neurons, including rectified Liner Unit 
(ReLU) [1], and its extends such as P-ReLU [78] are used to increase the sparsity of activations 
for memory saving while provide a speedup for model training, therefore they can facilitate 
the design of more compact networks.

8. Conclusions and future directions

It is necessary to develop efficient methods for deep learning via network compression and 
acceleration for facilitating the real-world deployment of advanced deep networks. In this 
chapter, I give a survey of recent network compression and acceleration approaches in five 
categories. In the following, I further introduce a few directions in the future in this literature 
including hybrid scheme for network compression, network acceleration for other visual tasks, 
hardware-software codesign for on-device applications, and more efficient distillation methods.

• Hybrid scheme for network compression. Current network compression approaches 
mainly focus on one single scheme, such as by using network quantization and network 
approximation. This processing leads to insufficient compression or large accuracy loss. It 
is necessary to exploit a hybrid scheme to combine the advantages from each network com-
pression category. Some attempts can be found in [18, 79], which have demonstrated good 
performance.

• Network acceleration for other visual tasks. Most current approaches aim to compress 
and accelerate deep networks for image classification tasks, such as ImageNet large-scale 
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object classification, MNIST handwriting recognition, CIFAR object recognition, and so 
on. Very little effort have been attempted for other visual tasks, such as object detection, 
object tracking, semantic segmentation, and human pose estimation. Generally, direct 
using network acceleration approaches for image classification in these visual tasks may 
encounter a sharp drop on performance. The reason may come from that these visual 
tasks requires more complex feature representation or richer knowledge than image 
classification. The work has provided an attempt in facial landmark localization [80]. 
Therefore, this challenging problem on network acceleration for other visual tasks is one 
of the future directions.

• Hardware-software codesign for on-device applications. To realize the practical deploy-
ment on resource-limited devices, the network compression and acceleration algorithms 
should take the hardware design into consideration besides software algorithm modeling. 
The requirements from recent on-device applications such as autopiloting, video surveil-
lance, and on-device AI enable tht it is highly desirable to design hardware-efficient deep 
learning algorithm according to the specific hardware platforms. This co-design scheme 
will be one future direction.

• More effective distillation methods. Network distillation methods have proven efficient 
for model compression in widespread fields beyond image classification, for example, 
machine translation [81]. However, these methods usually suffer from accuracy drop in 
inference, especially for complex inference tasks. Considering its efficacy, it is necessary 
to develop more effective distillation methods to extend their applications. Recent works 
[82–84] have given some attempts. Therefore, developing more effective distillation meth-
ods is one of the future directions in this field.
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Abstract

Due to the recent trend of intelligent systems and their ability to adapt with varying
conditions, deep learning becomes very attractive for many researchers. In general, neural
network is used to implement different stages of processing systems based on learning
algorithms by controlling their weights and biases. This chapter introduces the neural
network concepts, with a description of major elements consisting of the network. It also
describes different types of learning algorithms and activation functions with the exam-
ples. These concepts are detailed in standard applications. The chapter will be useful for
undergraduate students and even for postgraduate students who have simple back-
ground on neural networks.
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1. Introduction

The artificial neural network is a computing technique designed to simulate the human brain’s
method in problem-solving. In 1943, McCulloch, a neurobiologist, and Pitts, a statistician,
published a seminal paper titled “A logical calculus of ideas immanent in nervous activity” in
Bulletin of Mathematical Biophysics [1], where they explained the way how brain works and
how simple processing units—neurons—work together in parallel to make a decision based on
the input signals.

The similarity between artificial neural networks and the human brain is that both acquire the
skills in processing data and finding solutions through training [1].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.80416

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



[80] Zeng D, Zhao F, Shen W, Ge S. Compressing and accelerating neural network for facial  
point localization. Cognitive Computation. 2018;10(2):359-367. DOI: 10.1007/s12559-017- 
9506-0

[81] Kim Y, Rush AM. Sequence-level knowledge distillation. In: Proceedings of the 
Conference on Empirical Methods in Natural Language Processing (EMNLP '16). 1-4 
November 2016; Austin, Texas; 2016. pp. 1317-1327

[82] Lopez-Paz D, Bottou L, Schölkopf B, Vapnik V. Unifying distillation and privileged 
information. In: International Conference on Learning Representations (ICLR '16). 2-4 
May 2016; San Juan; 2016. pp. 1-10

[83] Hu Z, Ma X, Liu Z, et al. Harnessing deep neural networks with logic rules. In: Proceedings 
of the 54th Annual Meeting of the Association for Computational Linguistics (ACL '16).  
7-12 August 2016; Berlin, Germany; 2016. pp.1-11

[84] Luo Z, Jiang L, Hsieh JT, et al. Graph Distillation for Action Detection with Privileged 
Information [Internet]. Available from: https://arxiv.org/abs/1712.00108 [Accessed: 
December 30, 2017]

Digital Systems114

Chapter 7

Neural Network Principles and Applications

Amer Zayegh and Nizar Al Bassam

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.80416

Provisional chapter

Neural Network Principles and Applications

Amer Zayegh and Nizar Al Bassam

Additional information is available at the end of the chapter

Abstract

Due to the recent trend of intelligent systems and their ability to adapt with varying
conditions, deep learning becomes very attractive for many researchers. In general, neural
network is used to implement different stages of processing systems based on learning
algorithms by controlling their weights and biases. This chapter introduces the neural
network concepts, with a description of major elements consisting of the network. It also
describes different types of learning algorithms and activation functions with the exam-
ples. These concepts are detailed in standard applications. The chapter will be useful for
undergraduate students and even for postgraduate students who have simple back-
ground on neural networks.

Keywords: neural network, neuron, digital signal processing, training, supervised
learning, unsupervised learning, classification, time series

1. Introduction

The artificial neural network is a computing technique designed to simulate the human brain’s
method in problem-solving. In 1943, McCulloch, a neurobiologist, and Pitts, a statistician,
published a seminal paper titled “A logical calculus of ideas immanent in nervous activity” in
Bulletin of Mathematical Biophysics [1], where they explained the way how brain works and
how simple processing units—neurons—work together in parallel to make a decision based on
the input signals.

The similarity between artificial neural networks and the human brain is that both acquire the
skills in processing data and finding solutions through training [1].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.80416

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Neural network’s architecture

To illustrate the structure of the artificial neural network, an anatomical and functional look
must be taken on the human brain first.

The human brain consists of about 1011 computing units “neurons” working in parallel and
exchanging information through their connectors “synapses”; these neurons sum up all infor-
mation coming into them, and if the result is higher than the given potential called action
potential, they send a pulse via axon to the next stage. Human neuron anatomy is shown in
Figure 1 [2].

In the same way, artificial neural network consists of simple computing units “artificial neu-
rons,” and each unit is connected to the other units via weight connectors; then, these units
calculate the weighted sum of the coming inputs and find out the output using squashing
function or activation function. Figure 2 shows the block diagram of artificial neuron.

Figure 1. Human neuron anatomy.
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Based on the block diagram and function of the neural network, three basic elements of neural
model can be identified:

1. Synapses, or connecting links, have a weight or strength where the input signal xi
connected to neuron k is multiplied by synaptic weight wwki.

2. An adder for summing the weighted inputs.

3. An activation function to produce the output of a neuron. It is also referred to as a
squashing function, in that it squashes (limits) the amplitude range of the output signal to
a finite value.

The bias bk has the effect of increasing or decreasing the net input of the activation function,
depending on whether it is positive or negative, respectively.

Mathematically, the output on the neuron k can be described as

yk ¼ φ
Xm

i¼1
xi:wki þ bk

 !
(1)

where

x1, x2, x3,……, xm are the input’s signals.

wk1, wk2, wk3,…, wkm are the respective weights of neuron.

bk is the bias.

φ is the activation function.

To clarify the effect of the bias on the performance of the neuron, the output given in Eq. (1) is
processed in two stages, where the first stage includes the weighted inputs and the sum which
is donated as Sk:

Figure 2. Block diagram of artificial neuron.
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Sk ¼
Xm

i¼1
xi:wki (2)

Then, the output of adder will be given in Eq. (3):

vk ¼ Sk þ bk (3)

Figure 3. Effect of bias.

Figure 4. Neuron structure with considering bias as input [1].
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where the output of neuron will be

yk ¼ φ vkð Þ (4)

Depending on the value of the bias, the relationship between the weighted input and adder
output will be modified [3] as shown in Figure 3.

Bias could be considered as an input signal x0 fixed at +1 with synaptic weight equal to the bias
bk as shown in Figure 4 [3].

3. Types of activation function

Activation function defines the output of neuron as the function to the adder’s output vk. The
following sections describe the different activation functions:

3.1. Linear function

Where neuron output is proportional to the input as shown in Figure 5.

And, it can be described by

yk ¼ vk (5)

3.2. Threshold (step) function

This activation function is described in Figure 6 where the output of neuron is given by

yk ¼
1 if vk ≥ 0

0 if vk < 0

(
(6)

Figure 5. Linear activation function.
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In neural computation, such a neuron is referred to as the McCulloch-Pitts model in recognition
of the pioneering work done by McCulloch and Pitts (1943); the output of the neuron takes on
the value of 1 if the induced local field of that neuron is nonnegative and 0 otherwise. This
statement describes the all-or-none property of the McCulloch-Pitts model [4].

3.3. Sigmoid function

The most common type of activation functions in neural network is described by

yk ¼
1

1þ evk
(7)

Figure 7 shows the sigmoid activation function, it is clearly observed that this function has
nonlinear nature and it can produce analogue output unlike threshold functions which pro-
duce output in discrete range [0, 1].

Also, we can note that sigmoid activation function is limited between 0 and 1 and gives an
advantage over linear activation function which produces output form �∞ to þ∞ [5].

3.4. Tanh activation function

This activation function has the advantages of sigmoid function, while it is characterized by
output range between �1 and 1 as shown in Figure 8.

The output is described by

yk ¼
2

1þ e�2vk
� 1 (8)

Figure 6. Threshold activation function.
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4. Neural network models

The manner in which the neurons of a neural network are structured is intimately linked with
the learning algorithm used to train the network [1]. Three main models can be identified for
the neural network.

4.1. Single-layer feedforward neural network

In a layered neural network, the neurons are organized in the form of layers [1]. The simplest
structure is the single-layer feedforward network that consists of input nodes connected

Figure 7. Sigmoid activation function.

Figure 8. Tanh activation function.
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directly to the single layer of neurons. The node outputs are based on the activation function as
shown if Figure 9.

Mathematically, the inputs will be presented as vectors with dimensions of 1� i, while the
weights will be presented as a matrix with dimensions of i� k, and outputs will be presented
as a vector with dimensions of 1� k as given in Eq. (9):

y1; y2;…; yk
� � ¼ x1; x2;…; xi½ �

w11 w21 ⋯ wk1

⋮ ⋱ ⋮

w1k w2k ⋯ wik

2
664

3
775

2
664

3
775 (9)

4.2. Multilayer feedforward neural network

The second class of a feedforward neural network distinguishes itself by the presence of one or
more hidden layers, whose computation nodes are correspondingly called hidden neurons as
shown in Figure 10.

Figure 9. Single-layer neural network.
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By adding one or more hidden layers, the network is enabled to extract higher-order statistics
from its input [1].

5. Neural network training

The process of calibrating the values of weights and biases of the network is called training of
neural network to perform the desired function correctly [2].

Learning methods or algorithms can be classified into:

5.1. Supervised learning

In supervised learning, the data will be presented in a form of couples (input, desired output),
and then the learning algorithm will adapt the weights and biases depending on the error
signal between the real output of network and the desired output as shown in Figure 11.

Figure 10. Multilayer feedforward neural network.
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As a performance measure for the system, we may think in terms of the mean squared error or
the sum of squared errors over the training sample defined as a function of the free parameters
(i.e., synaptic weights) of the system [1].

5.2. Unsupervised learning

To perform unsupervised learning, a competitive learning rule is used. For example, we may
use a neural network that consists of two layers—an input layer and a competitive layer. The
input layer receives the available data. The competitive layer consists of neurons that compete
with each other (in accordance with a learning rule) for the “opportunity” to respond to
features contained in the input data (Figure 12) [1].

6. Neural networks’ applications in digital signal processing

Digital signal processing could be defined using field of interest statement of the IEEE Signal
Processing Society as follows:

Signal processing is the enabling technology for the generation, transformation, extraction, and
interpretation of information. It comprises the theory, algorithms with associated architectures
and implementations, and applications related to processing information contained in many
different formats broadly designated as signals. Signal processing uses mathematical, statistical,

Figure 11. Supervised learning.

Figure 12. Unsupervised learning.
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computational, heuristic, and/or linguistic representations, formalisms, modelling techniques
and algorithms for generating, transforming, transmitting, and learning from signals. [6].

Based on this definition, many neural network structures could be developed to achieve the
different processes mentioned in the definition.

6.1. Classification

One of the most important applications of an artificial neural network is classification, which
can be used in different digital signal processing applications such as speech recognition,
signal separation, and handwriting recognition and detection [7].

The objects of interest can be classified according to their features, and classification process
could be considered as probability process, since the classification of any object under a given
class depends on the likelihood that the object belongs to the class more than the probability of
belonging to the other classes [8].

Assume that X is the vector of features for the objects of interest which could be classified into
classes c∈ψ where ψ is the pool of classes. Then, classification will be applied as follows:

X belongs to the class ci if P cijXð Þ > P CjjX
� �

when i 6¼ j (10)

To decrease the difficulty of solving probability equations in Eq. (10), discriminant function is
used, and then Eq. (10) will be.

Qi Xð Þ > Qj Xð Þ if cijXð Þ > P CjjX
� �

when i 6¼ j (11)

Classification process will be described using Eq. (12)

X belongs to the class ci if Qi Xð Þ > Qj Xð Þ (12)

One of the examples of classification is QPSK modulator output detection, where detection is
considered as a special case of classification.

Assume that the received signal is X:

X ¼ sþ n (13)

where n is normally the distributed noise signal and s is the transmitted signal.

The output of QPSK modulator is shown in Figure 13, where the samples are arranged in four
classes.

By adding white Gaussian noise, the received signal will be as shown in Figure 14.

The neural network shown in Figure 15 is used to detect and demodulate the received signal,
where the network consists of one hidden layer with five neurons and an output layer with
two neurons.
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Figures 16 and 17 show the performance of neural network evaluated using mean squared
error (MSE) criteria.

6.2. Time series prediction

A series is a sequence of values as a function of parameter; in the case of time series, the values
will be as a function of the time. So, many applications use time series to express their data, for
example, metrology, where the temperature is described as time series [7].

The interesting problem in time series is the future prediction of the series values; neural
networks can be used to predict the future results in series in three ways [9]:

• Predict the future values based on the past values of the same series; this way can be
described by
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Figures 16 and 17 show the performance of neural network evaluated using mean squared
error (MSE) criteria.
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6.3. Independent component analysis

The goal of the independent component analysis (ICA) is to separate the linearly mixed
signals. ICA is a type of blind source separation when the separation is performed without
the pre-information about the source of signals or the signal-mixing coefficients. Although the
problem of separating the blind source, in general, is not specified, the solution of use can be
obtained under some assumptions [10].

ICA model assumes that n independent signals si tð Þ where i ¼ 1, 2, 3,…:, n are mixed using
matrix:

A ¼

a11 a12

a21 a22

… a1n

… a2n
⋮ ⋮

an1 an2

⋱ ⋮

⋯ ann

2
66664

3
77775

(17)

Then, mixed signal xi tð Þ could be expressed as

xi tð Þ ¼
Xn

i¼1

Xn

j¼1
aijsj tð Þ (18)

As the separation process is blind, that is, both aij and sj tð Þ are unknown; thus, ICA assumes
that the mixed signals are statistically independent and have non-Gaussian distribution [11].

Neural network shown in Figure 19 is used to estimate the unmixing matrix W .

Figure 16. MSE of training, validation, and test vs no. of epochs.
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The separated signals yi tð Þ are given as

y ¼Wx (19)

W ¼

w11 w12

w21 w22

⋯ w1n

⋯ w2n

⋮ ⋮

wn1 wn2

⋱ ⋮

⋯ ⋱

2
66664

3
77775

(20)

Different methods could be applied to findW , for example, natural gradient based defineW as

Figure 17. Training parameters and results.
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dW
dt
¼ η tð Þ 1� f y tð Þð ÞgT y tð Þð Þ� �

W (21)

where η tð Þ is the training factor and both f and g are the odd functions.

Figure 18. Time series prediction.

Figure 19. ICA neural network [12].
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Abstract

Nowadays, computational intelligence (CI) receives much attention in academic and indus-
try due to a plethora of possible applications. CI includes fuzzy logic (FL), evolutionary
algorithms (EA), expert systems (ES) and artificial neural networks (ANN). Many CI com-
ponents have applications in modeling and control of dynamic systems. FL mimics the
human reasoning by converting linguistic variables into a set of rules. EA are metaheuristic
population-based algorithms which use evolutionary operations such as mutation, cross-
over, and selection to find an optimal solution for a given problem. ES are programmed
based on an expert knowledge to make informed decisions in complex tasks. ANN models
how the neurons are connected in animal nervous systems. ANN have learning abilities and
they are trained using data to make intelligent decisions. Since ANN have universal approx-
imation abilities, they can be used to solve regression, classification, and forecasting prob-
lems. ANNs are made of interconnected layers where every layer is made of neurons and
these neurons have connections with other neurons. These layers consist of an input layer,
hidden layer/layers, and an output layer.
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algorithms which use evolutionary operations such as mutation, crossover, and selection to
find an optimal solution for a given problem. ES are programmed based on an expert knowl-
edge to make informed decisions in complex tasks. ANN model how the neurons are
connected in animal nervous systems. ANN have learning abilities and they are trained using
data to make intelligent decisions. Since ANN have universal approximation abilities [1], they
can be used to solve regression, classification, and forecasting problems. ANNs are made of
interconnected layers where every layer is made of neurons, and these neurons have connec-
tions with other neurons. These layers consist of an input layer, hidden layer/layers, and an
output layer. ANN have two major types as shown in Figure 1: feed-forward neural network
(FFNN) and recurrent neural network (RNN). In FFNN, the data can only flow from the input
to hidden layer, while in RNN, the data can flow in any direction. The output of a single-
hidden-layer FFNN can be written as

Y ¼ WHO h xWIH þ bIð Þð Þ þ bO (1)

where Y is the network output, WHO is the hidden-output layers weights matrix, h is the
hidden layer activation function, x is the input vector, WIH is the input-hidden layers weights
matrix, bI is the input layer bias vector, and bO is the hidden layer bias vector.

The output of a single-hidden-layer RNN with a recurrent hidden layer can be written as

Y ¼ WHO h x WIH þ ht�1 WHH þ bIð Þð Þ þ bO (2)

The training of neural networks involves modifying the neural network parameters to reduce
a given error function. Gradient descent (GD) [2, 3] is the most common ANN training
method:

θnew ¼ θold � λ
∂E
∂θ

(3)

Figure 1. Feed-forward and recurrent networks.
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where θ are the network parameters, λ is the learning rate, and E is the error function:

E ¼ 1
N

XN

I¼1
y� tð Þ2 (4)

where N is the number of samples, y is the network output, and t is the network target.

2. General regression neural network (GRNN)

The general regression neural network (GRNN) is a single-pass neural network which uses a
Gaussian activation function in the hidden layer [4]. GRNN consists of input, hidden, summa-
tion, and division layers.

The regression of the random variable y on the observed values X of random variable x can be
found using

E yjX½ � ¼
Ð∞
�∞ yf X; yð ÞdyÐ∞
�∞ f X; yð Þdy (5)

where f X; yð Þ is a known joint continuous probability density function.

When f X; yð Þ is unknown, it should be estimated from a set of observations of x and y. f X; yð Þ
can be estimated using the nonparametric consistent estimator suggested by Parzen as follows:

f̂ X;Yð Þ ¼ 1
2π pþ1ð Þ=2 σ pþ1ð Þ

1
n

Xn

i¼1
e�

X�Xið ÞT X�Xið Þ
2σ2 e�

Y�Yið Þ2
2σ2 (6)

where n is the number of observations, p is the dimension of the vector variable, and x and σ
are the smoothing factors.

Substituting (6) into (5) leads to

Ŷ Xð Þ ¼
Pn

i¼1 e
� X�Xið ÞT X�Xið Þ

2σ2

Pn
i¼1 e

� X�Xið ÞT X�Xið Þ
2σ2

Ð∞
�∞ ye�

Y�Yið Þ2
2σ2 dy

Ð∞
�∞ e�

Y�Yið Þ2
2σ2 dy

(7)

After solving the integration, the following will result:

Ŷ Xð Þ ¼
Pn

i¼1 ye
� X�Xið ÞT X�Xið Þ

2σ2

Pn
i¼1 e

� X�Xið ÞT X�Xið Þ
2σ2

(8)

2.1. Previous studies

GRNN was used in different applications related to modeling, system identification, predic-
tion, and control of dynamic systems including: feedback linearization controller [5], HVAC
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process identification and control [6], modeling and monitoring of batch processes [7], cooling
load prediction for buildings [8], fault diagnosis of a building’s air handling unit [9], intelligent
control [10], optimal control for variable-speed wind generation systems [11], annual power
load forecasting model [12], vehicle sideslip angle estimation [13], fault diagnosis for methane
sensors [14], fault detection of excavator’s hydraulic system [15], detection of time-varying
inter-turn short circuit in a squirrel cage induction machine [16], system identification of
nonlinear rotorcraft heave mode [17], and modeling of traveling wave ultrasonic motors [18].

Some significant modifications of GRNN include using fuzzy c-means clustering to cluster the
input data of GRNN [19], modified GRNN which uses different types of Parzen estimators to
estimate the density function of the regression [20], density-driven GRNN combining GRNN,
density-dependent kernels and regularization for function approximation [21], GRNN to
model time-varying systems [22], adapting GRNN for modeling of dynamic plants [23] using
different adaptation approaches including modifying the training targets, and adding a new
pattern and dynamic initialization of σ.

2.2. GRNN training algorithm

GRNN training is rather simple. The input weights are the training inputs transposed, and the
output weights are the training targets. Since GRNN is an associative memory, after training,
the number of the hidden neurons is equal to the number of the training samples. However,
this training procedure is not efficient if there are many training samples, so one of the
suggested solutions is using a data dimensionality reduction technique such as clustering or
principal component analysis (PCA). One of the novel solutions to data dimensionality reduc-
tion is using an error-based algorithm to grow GRNN [24] as explained in Algorithm 1. The
algorithm will check whether an input is required to be included in the training, based on
prediction error before training GRNN with that input. If the prediction error without includ-
ing that input is more than the certain level, then GRNN should be trained with it.
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2.2.1. Reducing data dimensionality using clustering

Clustering techniques can be used to reduce the data dimensionality before feeding it to the
GRNN. k-means clustering is one of the popular clustering techniques. The k-means clustering
algorithm is explained in Algorithm 2. Also, results of comparing GRNN performance before
and after applying k-means algorithm are shown in Table 1. Although the training and testing
errors will increase, there are large reductions in the network size.

The aim of the algorithm is to minimize the distance objective function:

J ¼
XN

i¼1

XM

j¼1
xi � cj
�� ��2 (9)

2.2.2. Reducing data dimensionality using PCA

PCA can be used to reduce a large dataset into a smaller dataset which still carries most of the
important information from the large dataset. In a mathematical sense, PCA converts a num-
ber of correlated variables into a number of uncorrelated variables. PCA algorithm is explained
in Algorithm 3.

2.3. GRNN output algorithm

After GRNN is trained, the output of GRNN can be calculated using

Dataset Training error after/before k-means
MSE

Testing error after/before k-means
MSE

Size reduction %

Abalone 0.0177/0.002 0.0141/0.006 99.76

Building energy 0.047/3.44e-05 0.0165/0.023 99.76

Chemical sensor 0.241/0.016 0.328/0.034 97.99

Cholesterol 0.050/4.605e-05 0.030/0.009 92

Table 1. Using GRNN with k-means clustering.
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2.2.1. Reducing data dimensionality using clustering

Clustering techniques can be used to reduce the data dimensionality before feeding it to the
GRNN. k-means clustering is one of the popular clustering techniques. The k-means clustering
algorithm is explained in Algorithm 2. Also, results of comparing GRNN performance before
and after applying k-means algorithm are shown in Table 1. Although the training and testing
errors will increase, there are large reductions in the network size.

The aim of the algorithm is to minimize the distance objective function:

J ¼
XN

i¼1

XM

j¼1
xi � cj
�� ��2 (9)

2.2.2. Reducing data dimensionality using PCA

PCA can be used to reduce a large dataset into a smaller dataset which still carries most of the
important information from the large dataset. In a mathematical sense, PCA converts a num-
ber of correlated variables into a number of uncorrelated variables. PCA algorithm is explained
in Algorithm 3.

2.3. GRNN output algorithm

After GRNN is trained, the output of GRNN can be calculated using

Dataset Training error after/before k-means
MSE

Testing error after/before k-means
MSE

Size reduction %

Abalone 0.0177/0.002 0.0141/0.006 99.76

Building energy 0.047/3.44e-05 0.0165/0.023 99.76

Chemical sensor 0.241/0.016 0.328/0.034 97.99

Cholesterol 0.050/4.605e-05 0.030/0.009 92

Table 1. Using GRNN with k-means clustering.
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D ¼ X�Wið ÞT X�Wið Þ (10)

Ŷ ¼
PN

i¼1 WoeðD=2σ2Þ
PN

i¼1 e D=2σ2ð Þ (11)

where D is the Euclidean distance between the input X and the input weights Wi, Wo is the
output weight, and σ is the smoothing factor of the radial basis function.

GRNN output calculation is explained in Algorithm 4.

Other distance measures can be also used such as Manhattan (city block), so (10) will become

D ¼ X�Wi (12)

Dataset Training error after/before PCA MSE Testing error after/before PCA MSE Size reduction %

Abalone 0.197/0.002 0.188/0.006 99.8

Building energy 0.061/3.44e-05 0.049/0.023 99.6

Chemical sensor 0.241/0.016 0.328/0.034 98.3

Cholesterol 0.026/4.605e-05 0.028/0.009 92

Table 2. Using GRNN with PCA.
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3. Estimation of GRNN smoothing parameter (σ)

Since σ is the only free parameter in GRNN and suitable values of it will improve GRNN
accuracy, it should be estimated. Since there is no optimal analytical solution for finding σ,
numerical approaches can be used to estimate it. The holdout method is one of the suggested
methods. In this method, samples are randomly removed from the training dataset; then using
the GRNNwith a fixed σ, the output is calculated using the removed samples; then the error is
calculated between the network outputs and the sample targets. This procedure is repeated for
different σ values. The smoothing parameter (σ) with the lowest sum of errors is selected as the
best σ. The holdout algorithm is explained in Algorithm 5.

Other search and optimization methods might be also used to find σ. For instance, genetic
algorithms (GA) and differential evolution (DE) are suitable options. Algorithm 6 explains
how to find σ using DE or GA. Also, the results of using DE and GA are depicted in Figure 2.
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Both of GA and DE can find a good approximation of σ within 100 iterations only; however,
DE converges faster since it is a vectorized algorithm.

4. GRNN vs. back-propagation neural networks (BPNN)

There are many differences between GRNN and BPNN. Firstly, GRNN is single-pass learning
algorithm, while BPNN needs two passes: forward and backward pass. This means that
GRNN consumes significantly less training time. Secondly, the only free parameter in GRNN
is the smoothing parameter σ, while in BPNN more parameters are required such as weights,
biases, and learning rates. This also indicates that GRNN quick learning abilities and its
suitability for online systems or for system where minimal computations are required. Also,
another difference is that since GRNN is an autoassociative memory network, it will store all
the distinct input/output samples while BPNN has a limited predefined size. This size growth

Figure 2. DE and GA used to estimate GRNN σ. (a) Estimation of σ using DE (b) MSE evolution when using DE to
estimate s (c) Estimation of σ using GA (d) MSE evolution when using GA to estimate σ.
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issue is resolved by either using clustering or PCA (read Sections 2.21 and 2.2.2). Finally,
GRNN is based on the general regression theory, while BPNN is based on gradient-descent
iterative optimization method.

To show the advantages of GRNN over BPNN, a comparison is held using standard regression
datasets built inside MATLAB software [25]. For all the datasets, they are divided 70% for
training and 30% for testing. After training the network with the 70% training data, the output
of the neural network is found using the remaining testing data. The most notable advantage
of GRNN over BPNN is the shorter training time which confirms its selection for dynamic
systems modeling and control. Also, GRNN has less testing error which means it has better
generalization abilities than BPNN. The comparison results are summarized in Table 3.

5. GRNN in identification of dynamic systems

System identification is the process of building a model of unknown/partially known dynamic
system based on observed input/output data. Gray-box and black-box identification are two
common approaches of system identification. In the gray-box approach, a nominal model of a
dynamic system is known, but its exact parameters are unknown, so an identifier is used to
find these parameters. In the black-box approach, the identification is based only on the data.
Examples of black-box identification include fuzzy logic (FL) and neural networks (NN).
GRNN can be used to identify dynamic systems quickly and accurately. There are two
methods to use GRNN for system identification: the batch mode (off-line training) and sequen-
tial mode (online training). In the batch mode, all the observed data is available before the
system identification, so GRNN can be trained with a big chunk of the data, while in the
sequential mode only a few data samples are available for identification.

5.1. GRNN identification in batch training mode

In the batch mode, the observed data should be divided into training, validation, and testing.
GRNNwill be fed with all the training data to identify the system. Then in the validation stage,
the network should be tested with different data, usually randomly selected, and the error is

Type Dataset Training time (sec) Training error (MSE) Testing error (MSE)

GRNN Abalone 0.621 0.342 0.384

BPNN Abalone 1.323 0.436 0.395

GRNN Building energy 0.630 0.0731 0.628

BPNN Building energy 1.880 0.1152 0.631

GRNN Chemical sensor 0.701 0.888 1.316

BPNN Chemical sensor 1.473 0.228 1.584

GRNN Cholesterol 0.801 0.037 0.172

BPNN Cholesterol 2.099 0.061 0.215

Table 3. GRNN vs. BPNN training and testing performance.
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recorded for every validation test. Then the validation process is repeated several times.
Usually 10 times is standard. And then the average validation error is found based on all the
validation tests. This validation procedure is called k-fold cross validation a standard tech-
nique in machine learning (ML) applications. To test the generalization ability of an identified
model, a new dataset is used called testing dataset. Based on the model performance in the
testing stage, one can decide whether the model is suitable or not.

5.1.1. Batch training GRNN to identify hexacopter attitude dynamics

In this example, GRNN is used to identify the attitude (pitch/roll/yaw) of a hexacopter drone
based on real flight test data in the free flight mode. The data consist of three inputs: rolling,
pitching, and yawing control values and three outputs: rolling, pitching, and yawing rates. The
dataset contains 6691 data samples with a sample rate of 0.01 seconds. A total of 4683 samples
are used to train GRNN in the batch mode, and the remaining data samples (2008) are used for
testing. The results of hexacopter attitude identification are shown in Figure 3(a–c). The results
are accurate with very low error. MSE in training stage is 0.001139 and 0.00258 in the testing
stage. Also, the training time was only 0.720 seconds.

Figure 3. Attitude identification of hexacopter in batch training: (a) rolling rate identification, (b) pitching rate identifica-
tion, and (c) yawing rate identification.
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5.2. GRNN identification in sequential training mode

In sequential training, the data flow once at a time which makes using the batch training
procedures impossible. So GRNN should be able to find the system model from only the
current and past measurements. So it is a prediction problem. Since GRNN converges to a
regression surface even with a few data samples and since it is accurate and quick, it can be
used in the online dynamic systems identification.

5.2.1. Sequential training GRNN to identify hexacopter attitude dynamics

To use GRNN in sequential mode, it is preferred to use the delayed output of the plant as an
input in addition to the current input as shown in Figure 4. The same data which was used for
batch mode is used in the sequential training. The inputs to GRNN are the control values of

Figure 4. Sequential training GRNN.

Figure 5. Attitude identification of hexacopter in sequential training: (a) rolling rate identification, (b) pitching rate
identification, and (c) yawing rate identification.
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rolling, pitching, and yawing and the delayed rolling, pitching, and yawing rates. The results
of using GRNN in the sequential training mode are shown in Figure 5(a–c). The results of
sequential training are more accurate than the results in batch training.

6. GRNN in control of dynamic systems

The aim of adding a closed-loop controller to the dynamic systems is either to reach the desired
performance or stabilize the unstable system. GRNN can be used in controlling dynamic
systems as a predictive or feedback controller. GRNN in control systems can be used as either
supervised or unsupervised. When GRNN is trained as a predictive then the controller input
and output data are known, so this is a supervised problem. On the other hand, if GRNN is
utilized as a feedback controller (see Figure 6) without being pretrained, only the controller
input data is known so GRNN have to find the suitable control signal u.

6.1. GRNN as predictive controller

To utilize GRNN as a predictive controller, it should be trained with input-output data from
another controller. For example, training a GRNNwith a proportional integral derivative (PID)
controller input/output data as shown in Figure 7. Then the trained GRNN can be used as a
controller.

6.1.1. Example 1: GRNN as predictive controller

If we have a discrete time system Liu [26] described as

Figure 6. Unsupervised learning problem in control.

Figure 7. Training GRNN as predictive controller.
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y kþ 1ð Þ ¼ 0:8∗ sin y kð Þð Þ þ 15∗u kð Þ (13)

The desired reference is yd kð Þ ¼ 2∗ sin 0:1πtð Þ.
The perfect control law can be written as

u kð Þ ¼ yd kþ 1ð Þ
15

� 0:8∗ sin y kð Þð Þ
15

(14)

To train GRNN as a predictive controller, the system described in (13) and (14) is simulated for
50 seconds. Then the controller output u and the plant output ywere stored.GRNN is trainedwith
the plant output as input and the controller output as output. For any time step the plant output is
fed to GRNN, and the controller output u is estimated. The estimated controller output byGRNN
and the perfect controller output are almost identical as shown in Figure 8. Also, the tracking
performance after using GRNN as a predictive controller is very accurate as shown in Figure 9.

6.2. GRNN as an adaptive estimator controller

Since GRNN has robust approximation abilities, it can be used to approximate the dynamics of
a given system to find the control law especially if the system is partially known or unknown.

Assume there is a nonlinear dynamic system written as

_x ¼ f x; tð Þ þ buþ d (15)

where _x is the derivative of the states, f x; tð Þ is a known function of the states, b is the input
gain, and d is the external disturbance.

Figure 8. Perfect vs. estimated GRNN controller output.
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The perfect control law can be written as

u ¼ 1
b

_x � f x; tð Þ � dð Þ (16)

If f x; tð Þ is unknown, then the control law in (16) cannot be found; hence, the alternative is
using GRNN to estimate the unknown function f x; tð Þ. To derive the update law of GRNN
weights, let us define the objective function as MSE error function as follows:

E ¼ 1
2

ŷ � yð Þ2 (17)

where ŷ is the estimation of GRNN and y is the optimal value of f x; tð Þ. To derive the update
law of the GRNN weights, the error should be minimized with respect to GRNN weights W :

∂E
∂W
¼ ŴH � y
� �

∗H (18)

where Ŵ is the GRNN current hidden-output layers weights and H is the hidden layer output,
so the update law of GRNN weights will be

Wiþ1 ¼Wi þH ŴH � y
� �

(19)

6.3. Example 2: using GRNN to approximate the unknown dynamics

Let us consider the same discrete as in example 1:

Figure 9. GRNN tracking performance.
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y kþ 1ð Þ ¼ f kð Þ þ 15∗u kð Þ (20)

The desired reference is yd kð Þ ¼ 2∗ sin 0:1πtð Þ
where f kð Þ is unknown nonlinear function.

The perfect control law can be written as

u kð Þ ¼ �f kð Þ
15
þ yd kð Þ

15
(21)

GRNN is used to estimate the unknown function f kð Þ. With applying the update law in (19),
f kð Þ is estimated with an acceptable accuracy as shown in Figure 10. MSE between the ideal
and the estimated f kð Þ is 0.0033. The accurate controller tracking performance is also shown
Figure 11.

6.4. GRNN as an adaptive optimal controller

GRNN has learning abilities which means it is suitable to be an adaptive intelligent controller.
Rather than approximating the unknown function in the control law (16), one can use GRNN
to approximate the whole controller output as shown in Figure 12. The same update law as in
(19) can be used to update GRNN weights to approximate the controller output u.

6.4.1. Example 3: using GRNN as an adaptive controller

Let us consider the same discrete system as in (13):

y kþ 1ð Þ ¼ 0:8∗ sin y kð Þð Þ þ 15∗u kð Þ

Figure 10. Using GRNN to estimate the unknown dynamics.
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Figure 11. GRNN tracking performance for example 2.

Figure 12. Training GRNN as an adaptive controller.

Figure 13. GRNN tracking performance for example 3.
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with the same desired reference yd kð Þ ¼ 2∗ sin 0:1πtð Þ, but in this case GRNN is used to estimate
the full controller output u as shown in Figure 14 and the tracking performance is shown in
Figure 13.

6.4.2. Example 4: using GRNN as an adaptive controller

Let us use GRNN to control a more complex discrete plant [27] described as

y kþ 1ð Þ ¼ 0:2 cos 0:8 y kð Þ þ y k� 1ð Þð Þð Þ þ 0:4 sin 0:8 y k� 1ð Þ þ y kð Þ þ 2u kð Þ þ u k� 1ð Þð Þð Þ
þ 0:1 9þ y kð Þ þ y k� 1ð Þð Þ þ 2 u kð Þ þ u k� 1ð Þð Þ

ð1þ cos y kð Þð Þ
(22)

Figure 14. GRNN Estimated control law for example 3.

Figure 15. GRNN as an adaptive controller in Example 4.
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Figure 11. GRNN tracking performance for example 2.

Figure 12. Training GRNN as an adaptive controller.

Figure 13. GRNN tracking performance for example 3.
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with the same desired reference yd kð Þ ¼ 2∗ sin 0:1πtð Þ, but in this case GRNN is used to estimate
the full controller output u as shown in Figure 14 and the tracking performance is shown in
Figure 13.
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The desired reference in this case is

yd kð Þ ¼ 0:8þ 0:05 sin πk=50ð Þ þ sin πk=100ð Þ þ sin sin πk=150ð Þð Þð Þ

The tracking performance of adaptive GRNN is shown in Figure 15.

7. MATLAB examples

In this section, GRNN MATLAB code examples are provided.

7.1. Basic GRNN Commands in MATLAB

In this example, GRNN is trained to find the square of a given number.

To design a GRNN in MATLAB:

Firstly, create the inputs and the targets and specify the spread parameter:

Secondly, create GRNN:

To view GRNN after creating it:

The results are shown in Figure 16.

To find GRNN output based on a given input:

The result is 17.

Digital Systems150

7.2. The holdout method to find σ

Figure 16. View GRNN in MATLAB.
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