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Preface

Mineral exploration (and the bearing rocks) is a catalyst for increased investment and in‐
come in the world. Using many different geophysical and geological methods, it is easy to
find minerals in different places around the world. The continuous development of different
methods for finding and handling mineral-bearing rocks using different physical and chem‐
ical approaches has led to a huge revolution in the knowledge of various micro-mineral
components, which has increased the  importance of minerals.

This book consists of various chapters written by scientists and researchers from different
countries. This book is divided into five chapters organized into two basic parts: (1) dealing
with mineral exploration via geophysical methods and (2) the importance of some economic
mineral deposits. The book includes an introductory chapter on mineral exploration from
the point of view of geophysicists. The first part of this book includes two chapters to illus‐
trate the importance of using geophysical methods to investigate minerals and their bearing
rocks. The second part contains three chapters including the importance of clay and the sev‐
eral minerals contained within (with a very small particle size), as well as uranium, which
contains radioactive elements and has an importance in safe nuclear energy and in generat‐
ing electricity in different countries. Finally, the law of distribution and the formation of
minerals and ore in rocks from the mining stage and extraction to the marketing process.

This book will hopefully inspire readers, researchers, geologists, geophysicists, and the min‐
ing community to look further into the frontier topics of minerals and it opens new possible
research paths for further development.

I would like to thank Almighty Allah for helping me with this book. It is my most pleasant
duty to express my sincere gratitude to my parents’ souls, brothers and sisters whose contri‐
bution cannot be put in words but can only be felt deeply in the heart. I would also like to
thank my wife (Prof. Amany Fekry), my daughters (Sama, Salma, Sally), my colleagues, and
all those who have credited me for completing this work in the appropriate style. I would also
like to thank Prof. Dr. Mohamed Othman El Khosht, Cairo University President and Prof. Dr.
Abd El Hamid Wagdi El Manawi, Dean of the Faculty of Science, for their continuous support
in our scientific and practical life. Finally, I wish to express my sincere gratitude to the pub‐
lisher and Mrs. Jasna Božić, Author Service Manager, for her patience during this project.

Khalid S. Essa
Faculty of Science

Cairo University, Egypt
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Introductory Chapter: Mineral Exploration from the 
Point of View of Geophysicists

Khalid S. Essa and Marc Munschy
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1. Introduction

Mineral exploration is vital in many countries to increase the income of their people, and their 
economy relies upon discovering minerals. The minerals excavated are iron, copper, gold, sil-
ver, molybdenum, zinc, coal, uranium, sulfide, tin, chromite, potash, etc. From the point of 
view of geophysicists, geophysical methods are playing an important role in mineral investiga-
tion, groundwater investigation and hydrocarbon exploration [1–3]. Geophysical methods are 
grouped into two different kinds which are passive and active methods. Passive techniques 
measured the Earth’s natural fields as gravity, magnetic and self-potential (SP), while active 
methods distinguish variabilities of physical parameters in the Earth’s layers produced by non-
natural sources like seismic, electrical resistivity, induced polarization methods, etc. Various 
geophysical techniques rely upon different physical properties in the subsurface or deeper. The 
selection of a particular method relies on various parameters including cost, efficiency, acces-
sibility, and type of application. In addition, a single choice of a geophysical method in any 
application occasionally provides poorly constrained results. So, a combination of two or more 
approaches certifies much more consistent results. This methodology is called integrated geo-
physical approach that ensures more prominent precision and higher consistency of results. It 
has to be emphasized that geophysical models are generally not unique regarding geometry 
(shape, size, and depth) of the buried structures. The spatial location of the buried sources and 
their depth can also be precisely assessed by some mathematical ways [4].

2. Geophysical methods: selection and objectives

The worth of geophysical techniques in mineral investigation relies on the variability of 
physical properties as well as on local geological environment, topography, etc. Each region 
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Mineral/rock Density (g cm−3) Magnetic susceptibility (10−6 SI)

Gold 19.28 −0.14

Chromite 4.80 3000–120,000

Iron 7.87 3,900,000

Copper 8.90 −9.63

Graphite 2.16 −80 to 200

Hematite 5.26 500–40,000

Magnetite 5.20 1,000,000–5,700,000

Pyrite 5.01 35–5000

Sphalerite 4.08 −31 to 750

Rock salt 2.5–2.6 −0.01 × 10–3

Dolomite 2.87 −10 to 940

Granite 2.64 0–50,000

Table 2. Density and magnetic susceptibility of some minerals and rocks.

tends to have its own distinct geophysical identity requiring the adoption of appropriate geo-
physical methods. Typically, more than one method is used in one survey, to decrease the 
ambiguity in deciphering the nature of unknown resources below the surface. Some impor-
tant geophysical methods (Table 1) have been chosen in this chapter to demonstrate how we 
use these methods in mineral exploration.

3. Gravity method

The gravity method studies anomalies of the Earth’s gravitational field due to changes in den-
sities below the surface. Density changes (density contrast) are induced by an occurrence of 

Geophysical 
methods

Measured field Physical properties Units Typical minerals and 
applications

Exploration depth

Gravity Natural gravity 
field of the Earth

Density mGal Sulfides including 
sphalerite, barite, mining, 
hydrology, plate tectonics

All

Magnetic Natural magnetic 
field of the Earth

Magnetic 
susceptibility

Remanent 
magnetization

nT Magnetite, ultramafics, 
iron-rich rocks, basin 
analysis, plate tectonics

Until curie 
isotherm

Self-potential Natural telluric 
current

Electrical 
conductivity

mV Metallic sulfides, 
serpentinite, graphite, 
water-filled shears, salt 
water

A few hundred 
meters

Table 1. Main natural geophysical methods and their essentials in mineral exploration.

Minerals4

a causative body (target source) within the surrounding rocks. Rock densities are considered 
as one of the variables of all geophysical parameters. The density of rocks is dependent on 
both mineral composition and porosity. Table 2 shows examples of some mineral and rock 
density values. Gravity method can be used from the land to the air and in marine environ-
ment. Gravity anomalies are due to anomalous density within the Earth. Gravity method has 
wide-ranging uses in mineral, hydrocarbon, cave, geothermal, and archeological investiga-
tions [5–7]. The target of gravity interpretation is to locate and characterize the buried min-
eral source parameters, in particular, the density contrast, depth, and shape [8–10]. Several 
methodologies are used to interpret gravity data [11–14]. More recently, three-dimensional 
modeling and inversion of gravity data provide more accurate results. In these days, new 
nonconventional methods are used such as particle swarm optimization, very fast simulated 
annealing, genetic algorithm, forced neural network, and differential evolution algorithm. 
Table 2 demonstrates value of the density of rock and mineral examples.

4. Magnetic method

Magnetic method is one of the oldest branches of geophysics and used in many exploration 
issues such as mineral and ores as massive sulfide, iron, gold, and porphyry copper deposits. 
Magnetic data interpretation has shown its efficiency in the identification of deep and shal-
low structures known to employ a structural control on mineralization occurrences [15, 16]. 
Uniform geological models (geologic contacts, thin sheets, cylinders, and spheres) are frequently 
employed in magnetic inversion to estimate the body factors (the amplitude factor, the depth, the 
index angle, the location of the origin, and the shape) and have a vital role in many exploration 
issues. These models cannot be an exact geologically representation, but are generally a good 
tool in magnetic interpretation to calculate, in particular, the body parameters. Several elucida-
tion approaches of the magnetic data above inhomogeneous geological structures have been 
recognized. These approaches can be characterized into four categories as follows: Category I 
is the well-known two- and three-dimensional magnetic modeling and inversion for irregular 
structures. Category II is recognized by using residual magnetic anomalies only. Category III 
is relied upon using not only the residual but also the measured magnetic data. Category IV 
is dependent on utilizing the metaheuristic algorithms like the particle swarm optimization 
(PSO) method, the genetic algorithm (GA) method, the differential evolution algorithm (DEA) 
method, the simulated annealing algorithm (SAA) method, the ant colony optimization (ACO) 
method, and the neural network (NN) method. Magnetization directionally consists of adding 
induced and remanent components. Induced magnetization depends on the magnetic suscep-
tibility of the material (Table 2) and the magnitude and direction of the Earth’s magnetic field, 
whereas remanent magnetization reflects the past magnetic history of the material.

5. Self-potential method

Self-potential (SP) is one of the passive geophysical techniques that measure the natural Earth’s 
surface electric potential happening by many reasons like the difference between minerals 
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and their hosting, bioelectric generation from plants, and electrochemical and electrokinetic. 
Sato and Mooney [17] demonstrated that this potential has different types as electrokinetic 
potential produced from the stream of a fluid with certain electrical properties going through 
a pipe or permeable medium with various electrical properties. In addition, several another 
mechanisms (diffusion, mineralization, etc.) produced this SP. The self-potential method has 
a wide range in different applications in exploration of geophysics, hydrogeophysics, and 
environmental problems and mineral exploration such as metallic sulfides, magnetite, graph-
ite, and uranium. Several assessable elucidation approaches of the SP data over the buried 
geologic structures have been established. These approaches can be classified into two catego-
ries. The first category is usually dependent on using simple geological models (spheres and 
cylinders) to appraise the parameters for buried structures and has a vigorous role in many 
investigation problems as linear and nonlinear least squares methods, moving average and 
gradient methods, depth-horizontal curve method. These models are not wholly geologically 
perfect, but they are often useful in SP interpretation to calculate the body parameters. The 
second category is dependent on two- and three-dimensional modeling and inversion meth-
ods. However, a portion of these methods requires good initial parameters, using a few data 
point and distances, and requires more time.

Finally, the three potential methods (gravity, magnetic, and self-potential) mentioned above 
have been used to evaluate the source parameters but are suffering of ill-posedness and 
nonuniqueness in finding a global solution [18]. The usage of simple geometrical structures 
in gravity, magnetic, and self-potential inversion helps in overcoming some of these limita-
tions, gives an optimal fit for the buried structures, and plays a vigorous role in solving many 
investigation problems.

6. Case studies

6.1. Gravity anomaly of chromite deposit body

Figure 1 shows the gravity anomaly of length 180 m over a chromite deposit body in the chro-
mite region of the Camaguey Area, Cuba [19]. This chromite deposits are found in a complex 
geological environment involving serpentinized peridotite and dunite with slight quantities 
of gabbro, troctolite, and anorthosite. This complex environment affected by metamorphic 
rocks and superimposed by upper Cretaceous volcanic rocks with limestone and radiolarian 
cherts. Severe compressive stresses, started in late Cretaceous or early Eocene time, deformed 
both the sedimentary rocks and the underlying ultramafic complex and culminated in exten-
sive thrust faulting, probably in the late middle Eocene. Uplift and erosion have detached the 
overlying rocks from the serpentine except in synclinal areas, the largest of which extends 
from Central Lugareño to Loma Yucatan. This gravity anomaly has been interpreted by uti-
lizing different inversion methods as demonstrated in Table 3. Table 3 demonstrated that 
the estimated chromite deposit body parameters, amplitude factor (A), depth (z), location of 
the body (d), and the shape (q) by utilizing these approaches, have a reasonable agreement 
especially the depth with that obtained from drilling.
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6.2. Magnetic anomaly over an olivine diabase dike

Figure 2 demonstrates the magnetic anomaly profile of length 2200 m above an olivine dia-
base dike from the Pishabo Lake, Canada, and this site is made out of plagioclase, purplish-
brown augite, pale green olivine, apatite, some biotite, and large patches of magnetite [20]. 
This magnetic anomaly has been interpreted by using various inversion algorithms such as 
moving average method, parametric inversion method, and the PSO method. The elucidation 
procedure and their produced results are mentioned in Table 4. The predicted parameters  
(M which represents the amplitude factor, z is the depth, θ is the magnetization angle, d is the 
origin location, and q is the shape) of the body by using these inversion methods have a good 
agreement together.

Figure 1. The gravity anomaly of chromite deposit body (Cuba).

Parameters Drilling 
information

Essa method 
[21]

Biswas 
method [9]

Ekinci et al. 
method [22]

Essa and Munschy 
method [23]

A (mGal m2) — 412.33 16.80 288.25 408.25

z (m) 21.00 21.02 42.30 23.23 21.15

d (m) — — −2.40 58.73 0.63

q (dimensionless) — 1.5 1.0 1.5 1.47

Table 3. The results obtained for interpreting gravity anomaly of chromite deposit body (Cuba) using different inversion 
methods.
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Parameters McGrath and 
Hood method 
[20]

Abdelrahman et al. 
method [24]

Abdelrahman et al. 
method [25]

Biswas 
method [26]

Essa method

M (nT) — — 1429.0 1411.8 1380.8

z (m) 304 318.9 320 324 305.9

θ (o) — — 37.5 −37.9 38.5

d (m) — 2.86 — 1.7 2.22

q (dimensionless) — 1.0 1.0 1.0 0.98

Table 4. The results obtained for interpreting magnetic anomaly over an olivine diabase dike from the Pishabo Lake, 
Canada.

6.3. Self-potential anomaly of sulfide orebody

Figure 3 displays the self-potential anomaly of a sulfide orebody in the Sariyer area which 
is located about 18 km north to Istanbul, Turkey, and characterized by an outcropping of 
andesite, pyrite veins, and cupriferous waters. The area of this investigation is characterized 
by a steep surface gradient. In 1951, the sulfide orebodies had been explored by utilizing 

Figure 2. The magnetic anomaly over an olivine diabase dike from the Pishabo Lake, Canada.
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geophysical techniques where it found to lie under unmineralized schist or alluvium with 
a depth of 23 m and elongated as a spheroid dimension [21]. This profile has a length of 
160 m and has been subjected to many interpretation methods to estimate the sulfide orebody 
parameters (K is the amplitude factor, z is the depth, θ is the polarization angle, d is the origin 
location, and q is the shape). The estimated results are displayed in Table 5. The estimated 
parameters of this source by exploiting these methods have a good covenant together.

7. Conclusions

The chapter discussed the importance of the geophysical methods, especially gravity, mag-
netic, and self-potential methods, in mineral and ore exploration which are considered as an 

Figure 3. The self-potential anomaly of a sulfide orebody in the Sariyer Area, Turkey.

Parameters Abdelrahman et al. 
method [27]

Asfahani and Tlas 
method [28]

Biswas and Sharma 
method [29]

Essa method

K (mV × m2) 3245.0 4695.6 2855.4 3447.1

z (m) 24.5 22.6 28.0 25.4

θ (o) −51.2 −82.9 −70.3 −58.9

d (m) — — −2.5 −0.5

q (dimensionless) 1.5 1.0 1.5 1.5

Table 5. The results obtained for interpreting self-potential anomaly of a sulfide orebody in the Sariyer Area, Turkey.
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important issue for many countries to increase their incomes. The results of the published 
information described in the state of arts mentioned above by the three case studies revealed 
the pervasiveness of these methods and its capability of elucidating gravity, magnetic, and self-
potential data associated with shallow and deep mineralized bodies.
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Abstract

In the present study, analytic signal amplitude (ASA) or total gradient (TG) inversion of 
self-potential anomalies has been carried out using very fast simulated annealing (VFSA) 
global optimization technique. The results of VFSA optimization demonstrate the applica-
tion and efficacy of the proposed method for idealized synthetic hypothetical models and 
real single and multiple geological structures. The model parameters deciphered here are 
the amplitude coefficient (k), horizontal location (x0), depth of the body (z), and shape (q). 
Inversion of the model parameter suggests that constraining the horizontal location and the 
shape factor offers the most reliable results. Investigation of convergence rate, histogram, 
and cross-plot examination suggest that the interpretation method developed for the self-
potential anomalies is stable and the model parameters are within the estimated ambiguity. 
Inversion of synthetic noise-free and noise-corrupted data for single structures and mul-
tiple structures in addition to real field information exhibits the viability of the method. The 
model parameters estimated by the present technique were in good agreement with the 
real parameters. The method has been used to invert two field examples (Sulleymonkoy 
anomaly, Ergani, Turkey, Senneterre area of Quebec, Canada) with application of subsur-
face mineralized bodies. This technique can be very much helpful for mineral or ore bodies 
investigation of idealized geobodies buried within the shallow and deeper subsurface.

Keywords: self-potential, total gradient, idealized bodies, VFSA, uncertainty estimation, 
ore exploration

1. Introduction

The self-potential (SP) technique has an important significance in mineral and ore explora-
tions [1–8]. The method has an extensive range of application, viz., mining industries [9–12], 
sulfide, graphite exploration, and groundwater exploration [13, 14], study of groundwater 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



[21] Essa KS. A new algorithm for gravity or self-potential data interpretation. Journal of 
Geophysics and Engineering. 2011;8:434-446

[22] Ekinci Y, Balkaya C, Göktürkler G, Turan S. Model parameter estimations from residual 
gravity anomalies due to simple-shaped sources using differential evolution algorithm. 
Journal of Applied Geophysics. 2016;129:133-147

[23] Essa KS, Munschy M. Gravity data interpretation using the particle swarm optimization 
method with application to mineral exploration. Journal of Earth System Science. 2019; 
In press

[24] Abdelrahman EM, Soliman KS, El-Araby TM, Abo-Ezz ER, Essa KS. A least-squares stan-
dard deviation method to interpret magnetic anomalies due to thin dikes. Near Surface 
Geophysics. 2009;7:41-46

[25] Abdelrahman EM, Abo-Ezz ER, Essa KS. Parametric inversion of residual magnetic 
anomalies due to simple geometric bodies. Exploration Geophysics. 2012;43:178-189

[26] Biswas A. Interpretation of gravity and magnetic anomaly over thin sheet-type struc-
ture using very fast simulated annealing global optimization technique. Modeling Earth 
Systems and Environment. 2016;2:30

[27] Abdelrahman EM, Saber HS, Essa KS, Fouda MA. A least-squares approach to depth 
determination from numerical horizontal self-potential gradients. Pure and Applied 
Geophysics. 2004;161:399-411

[28] Asfahani J, Tlas M. Interpretation of self-potential anomalies by developing an approach 
based on linear optimization. Geosciences and Engineering. 2016;5:7-21

[29] Biswas A, Sharma SP. Interpretation of self-potential anomaly over idealized body and 
analysis of ambiguity using very fast simulated annealing global optimization. Near 
Surface Geophysics. 2015;13:179-195

Minerals12

Chapter 2

Inversion of Amplitude from the 2-D Analytic Signal of
Self-Potential Anomalies

Arkoprovo Biswas

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79111

Provisional chapter

DOI: 10.5772/intechopen.79111

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Inversion of Amplitude from the 2-D Analytic Signal of 
Self-Potential Anomalies

Arkoprovo Biswas

Additional information is available at the end of the chapter

Abstract

In the present study, analytic signal amplitude (ASA) or total gradient (TG) inversion of 
self-potential anomalies has been carried out using very fast simulated annealing (VFSA) 
global optimization technique. The results of VFSA optimization demonstrate the applica-
tion and efficacy of the proposed method for idealized synthetic hypothetical models and 
real single and multiple geological structures. The model parameters deciphered here are 
the amplitude coefficient (k), horizontal location (x0), depth of the body (z), and shape (q). 
Inversion of the model parameter suggests that constraining the horizontal location and the 
shape factor offers the most reliable results. Investigation of convergence rate, histogram, 
and cross-plot examination suggest that the interpretation method developed for the self-
potential anomalies is stable and the model parameters are within the estimated ambiguity. 
Inversion of synthetic noise-free and noise-corrupted data for single structures and mul-
tiple structures in addition to real field information exhibits the viability of the method. The 
model parameters estimated by the present technique were in good agreement with the 
real parameters. The method has been used to invert two field examples (Sulleymonkoy 
anomaly, Ergani, Turkey, Senneterre area of Quebec, Canada) with application of subsur-
face mineralized bodies. This technique can be very much helpful for mineral or ore bodies 
investigation of idealized geobodies buried within the shallow and deeper subsurface.

Keywords: self-potential, total gradient, idealized bodies, VFSA, uncertainty estimation, 
ore exploration

1. Introduction

The self-potential (SP) technique has an important significance in mineral and ore explora-
tions [1–8]. The method has an extensive range of application, viz., mining industries [9–12], 
sulfide, graphite exploration, and groundwater exploration [13, 14], study of groundwater 
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flow in pumping wells [15, 16], geothermal exploration [17–19], fluid flow in the vadose zone 
[20, 21], uranium mineralization [2–4], engineering and environmental applications [22–24], 
archeological investigations [25], cave detection [26], earthquake prediction [27], hydraulic 
fracturing [28], brine contamination [29], spring flow [30], delineation of buried paleochan-
nels [31], volcanic eruptions [32, 33], and paleoshear zones [34].

In general, most of the interpretation of SP anomaly is carried out assuming simple geometri-
cal shapes (for example, 3-D sphere, 2-D horizontal or vertical cylinder, and 2-D sheet) buried 
at variable depth generated by different mineral or ore bodies [2, 3, 7, 34–47]. Numerous 
interpretation techniques have been developed over the last two decades considering various 
interpretation methods [38, 40, 48–53]. For instance, graphical methods [42, 54], the nomo-
grams [42], logarithmic curve matching [41, 55], characteristic points, [43, 45, 56], least square 
method [38, 57], Fourier analysis [58], 3-D topography effect [59, 60], gradient and derivative 
study [61], moving average residual anomalies [62], modular neural networks [49], particle 
swarm optimization [63], depth from extreme point [64], differential evolution [65], Genetic-
Price algorithm [66], spectral and tomographic approach [67], second horizontal gradient [68], 
and spectral methods [69] were too applied for the elucidation of SP data. A detailed review of 
the SP background, theoretical modeling, inversion, and its application in mineral exploration 
can be found after Biswas [1].

Among various interpretation and inversion techniques mentioned above, for the most part, 
inverse modeling intends to do the best interpretation of the model parameters. It is very 
familiar in geophysical data that the nonuniqueness problem, nonlinearity, and ill-posed 
nature of the SP anomaly inversion make the processing and elucidation rather cumbersome. 
Also, in linear problems for SP data, the presence of less number of well-known numbers 
rather than the number of unidentified geological model parameters often shows an uncer-
tainty, which creates the interpretation quite difficult [70]. Subsequently, the inversion prob-
lems of SP anomaly firmly need a few limitations, a priori information with a specific aim to 
improve interpretable and reasonable model parameters [1]. However, in almost every case, 
the measured SP anomaly was interpreted without considering the analytical signals or total 
gradient derived from SP measurements.

The main objective of the present work is to interpret the analytic signal amplitude (ASA) 
or the total gradient (TG) of SP anomaly over different idealized or causative body, which 
satisfies the Laplace’s condition. It is well known that the analytical signals derived from SP 
anomaly are correctly known as the TG [71–74]. The interpretation of ASA or TG derived 
from SP has been sparsely done in the present literature. It was only interpreted using ant 
colony optimization (ACO) [75]. In the current work, very fast simulated annealing (VFSA) 
was applied to decide the different model parameters associated with idealized subsurface 
bodies for ASA or TG from SP anomalies. The present inversion method has an advantage 
over other approaches for its pliability and its proficiency to converge toward global optima. 
The method has an ability to avoid from getting stuck in local minima and it has very high 
resolution, faster calculation as well as less memory without negotiating the resolution of the 
model parameters [2, 3, 35, 76–80]. Moreover, it does not need a priori information for the 
elucidation of SP anomalies.

Minerals14

In this study, inversion using VFSA algorithm was performed with the help of synthetic 
noise-free and noise-corrupted synthetic data using single and multiple structures and two 
field data from Sulleymonkoy anomaly, Ergani, Turkey, Senneterre area of Quebec, Canada. 
The results from the present method were compared with other well-established SP anomaly 
interpretations, such as ACO techniques. The present method used as a comprehensive 
method for quantitative elucidation of SP anomalies derived after various subsurface ideal-
ized geobodies.

2. Methodology

2.1. Forward modeling

Following Nabighian [71], the 2-D analytical signal amplitude (ASA) or the total gradient 
(TG) of SP anomaly is given as.

  (1)

where Vx and Vy are the horizontal and vertical derivatives of the SP anomalies, respectively. 
The 2-D ASA of few of the idealized geobodies can be estimated following the general expres-
sion of SP anomaly ASA (x) for idealized causative bodies (horizontal/vertical cylinder, 
sphere, inclined sheet, etc.) at any point on the surface of the earth (Figure 1) [70, 71, 74, 75], 
which is given by the equation:

  (2)

where k is the amplitude coefficient/factor related to the physical properties of the source, z is 
the depth from the surface to the top of the body (sphere, cylinder, sheet, line of poles, point 
pole), x0 (i = 1, …,N) is the horizontal position coordinate on the surface, and q is the shape 
factor. The shape factors (q) for horizontal/vertical cylinder, sphere, inclined sheet, line of 
poles, and point poles are 1, 1.5, 1, 0.5, and 1, respectively. The total derivation of the ASA or 
TG anomaly can be found in various literatures [71–75, 81].

The above equation can be used to interpret single structure. However, in order to interpret 
the numerous structures, the expression (2) can be rewritten as [36]:

  (3)

where ASAj (xi) is the SP anomaly at xi location for jth body and M is the number of bodies.

2.2. Global optimization

Several global optimization approaches have been effectively used in interpretation of differ-
ent geophysical data (e.g., [35–37, 75, 77, 82–86]). In the present study, an alternative method 
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Figure 1. A diagram showing cross-sectional views, geometries, and parameters for (a) sphere, (b) cylinder, and (c) sheet-
type structure.

Minerals16

of simulated annealing (SA) which is called as very fast simulated annealing (VFSA) was 
applied in the present study to elucidate the total gradient SP anomaly. VFSA is different 
from SA in terms of faster cooling schedule due to its finer Cauchy probability distribu-
tion for the arbitrary selection of every model parameter. VFSA takes any value in a model 
space, whereas SA does it in a predefined model space and hence the resolution increases for 
VFSA. Moreover, in VFSA optimization process, it does not recall all models and hence needs 
very small memory [35, 87, 88]. In every geophysical inversion, the main objective is to mini-
mize the error function or the misfit. In the present work, the misfit (φ) between the observed 
and calculated/model response was used for SP data interpretation because of the fact that 
the objective function gets affected (increases) near zero crossing of SP anomaly (after [78]).

  φ =   1 __ N    ∑ 
i=1

  
N
      (  

 v  i  0  −  v  i  c  ______________  
  |  v  i  0  |   +  ( v  max  0   −  v  min  0  )  / 2

  )    
2

   (4)

where N is the number of data point,  and  are the ith observed and model responses and 
 and  are the maximum and minimum values of the observed response, respectively.

For the present inversion of SP data using VFSA optimization process, different parameters 
such as initial temperature, cooling schedule, number of iterations, and number of moves per 
temperature were taken as 1.0, 0.4, 2000, and 50. To find out the global/optimum solution, 
probability density function (PDF) was taken within 60.65% limit and ambiguity study has also 
been carried out based on the techniques developed by Mosegaard and Tarantola [89], Sen and 
Stoffa [90]. The details of the inversion process can be found in different literatures such as Sen 
and Stoffa [77], Sharma [86], Sharma and Biswas [78], Biswas [82], and Biswas [5]. Because in 
the earlier studies, the VFSA algorithm has established a very good performance as a powerful 
optimization method for estimating multidimensional and multimodal error functions. Hence, 
this optimization strategy is applied for SP data enhancement and regularization. The present 
VFSA algorithm for interpretation of ASA or TG of SP anomaly was carried out in Windows 8 
environment using MS FORTRAN Developer studio on a simple desktop PC with Intel Core i7 
processor. For each step of optimization, an overall of 106 forward computations (2000 iteration 
× 50 number of moves × 10 VFSA runs) were accomplished and accepted models were stored in 
memory. The total time required (not CPU time) to compute a sole inversion is 35 s.

3. Results and discussion

3.1. Parameter search range

An appropriate selection of initial guess values or the search range for every model param-
eters is a significant objective of any inversion approach. For the quantitative elucidation of SP 
anomaly from ASA, the horizontal position of the source is found from the highest anomaly, 
the depth from half width [71], and the size of the amplitude from highest amplitude and 
depth. Srivastava and Agarwal [70] stated that the most stable parameter for interpretation of 
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SP anomaly is the horizontal location, which changes very little. Moreover, it was discussed 
earlier that limiting the shape factor also gives the consistent results in terms of ambiguity 
and error [35]. Hence, in order to find the accurate or the true value of each model parameter, 
initially the search ranges for each model parameters were kept wide so as to find out the 
most probable solution. Next, the search spaces were reduced to find the more appropriate 
results. When the model parameter gives the utmost results and very least error, the location 
(x0) and the shape factor (q) were fixed to their real/true values to further reduce the error in 
the amplitude and the depth so as to find the actual depth of the subsurface bodies and reduce 
ambiguity in the final interpretation.

3.2. Synthetic examples

The VFSA inversion technique was utilized considering synthetic noise-free and noise-corrupted 
data (10 and 20% random noise) for self-potential anomaly for various subsurface structures 
derived from the ASA anomaly. At first, every model parameter was inverted for every data. 
Synthetic hypothetical data were produced utilizing Eq. (2) for different idealized geobodies, 
and 10 and 20% random noise is corrupted to the synthetic data. VFSA inversion was applied 
utilizing noise-free and noisy data to retrieve the genuine model parameters and analyze the 
impact of noise on the deciphered model parameters. In general, a reasonable search range/
space for every model parameter was chosen and one VFSA run was performed. Thereafter, 
the best possible convergence of every model parameter was studied (k, x0, z, and q) and misfit.

Next, to acquire the mean model, 10 VFSA runs were executed. At that point, histograms were 
constructed from the retrieved models whose misfit error was lesser than 10−4. Then, a statisti-
cal mean model was calculated utilizing models that have misfit lesser than 10−4, which also 
exist inside one standard deviation. Besides, cross-plots were also developed and analyzed 
to check whether the model parameters were inside the high PDF region (60.65%). Further, 
noises were also added in the data and the process was repeated again where the misfit error 
was lower than 10−2. Finally, the comparison between the observed and model responses was 
shown for every model. This process was applied for each hypothetical synthetic noise-free, 
noisy, and field cases.

3.2.1. Model 1 (sphere)

Inversion of the SP data was performed as said above utilizing synthetic noise-free data 
for sphere-like structure. Figure 2 demonstrates the convergence example for every model 
parameter. Figure 3a demonstrates the histogram for every model parameter (k, x0, and z). The 
histogram uncovers that all the parameters of the body can be very much interpretable after 
inversion. Moreover, very less ambiguity in the interpretation of the main three model param-
eters was found. The cross-plots analysis (Figure 4a) demonstrated that the model parameters 
were near their true value (green). The final estimated model parameters were within the 
ambiguity limits and inside the high PDF region (red). The fittings between the observed and 
model response are shown in Figure 6a. The deduced model parameters and mean model 
are shown in Table 1. Next, another model was also selected to see the variation in the ampli-
tude, location, and depth. Inversion was repeated the same way as discussed above. Figure 3b 
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shows the histogram for the three model parameters. Figure 5a demonstrates the cross-plots 
for this model as well. The fittings between the observed and model response are shown in 
Figure 6b, and the elucidated parameters and mean model are shown in Table 2.

3.2.2. Model 2 (horizontal and vertical cylinder)

Another synthetic example for horizontal and vertical cylinder-like body was taken for inver-
sion of the SP data. Figure 7a shows the histogram for every model parameter (k, x0, and z). 

Figure 2. Convergence pattern for various model parameters and misfit.
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The histogram shows that all the parameters of the cylindrical structure can be very much 
elucidated. The cross-plots analysis (Figure 8a) demonstrates that the model parameters were 
near their true value (green) and the final expected model parameters were within the ambi-
guity limits and within high PDF region (red). Observed and model response fits are shown 
in Figure 10a. The elucidated parameters and mean model are shown in Table 3. Similarly, 
for the sphere-like structure, another model was selected to see the variation in the model 
parameters. Figure 7b demonstrates the histogram for the three model parameters. Figure 9a 

Figure 3. (a and b) Histograms of all accepted models having misfit <10−4 for noise-free synthetic data for sphere and 
(c and d) histograms of all accepted models having misfit <10−2 for noisy synthetic data (10 and 20% random noise) for 
sphere.

Minerals20

demonstrates the cross-plots of this model. Observed and model responses are shown in 
Figure 10b, and the elucidated parameters and mean model are shown in Table 4.

3.2.3. Model 3 (inclined sheet)

A synthetic example for 2-D inclined sheet-type body was also taken for inversion of the SP 
data. Figure 11a shows the histogram for every model parameter (k, x0, and z). The cross-plots 
(Figure 12a) also demonstrate that the model parameters are near their actual value (green) and 
the final plausible model parameters lie inside the estimated ambiguity limits and inside high 
PDF region (red). Observed and model response fits are shown in Figure 14a. The elucidated 

Figure 4. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (10% random) data for sphere.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −5000 −10,000 to 0 −5002.2 ± 27.4 −4907.7 ± 152.2

x0 (m) 200 0–300 200.0 ± 0.0 200.0 ± 0.0

z (m) 20 0–50 20.0 ± 0.0 19.9 ± 0.3

q 1.5 0–2 1.5 ± 0.0 1.5 ± 0.0

Misfit 6.6 × 10−9 9.4 × 10−5

Table 1. Actual model parameters, search range, and interpreted mean model for noise-free, 10% random noise with 
uncertainty for sphere.
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The histogram shows that all the parameters of the cylindrical structure can be very much 
elucidated. The cross-plots analysis (Figure 8a) demonstrates that the model parameters were 
near their true value (green) and the final expected model parameters were within the ambi-
guity limits and within high PDF region (red). Observed and model response fits are shown 
in Figure 10a. The elucidated parameters and mean model are shown in Table 3. Similarly, 
for the sphere-like structure, another model was selected to see the variation in the model 
parameters. Figure 7b demonstrates the histogram for the three model parameters. Figure 9a 

Figure 3. (a and b) Histograms of all accepted models having misfit <10−4 for noise-free synthetic data for sphere and 
(c and d) histograms of all accepted models having misfit <10−2 for noisy synthetic data (10 and 20% random noise) for 
sphere.
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demonstrates the cross-plots of this model. Observed and model responses are shown in 
Figure 10b, and the elucidated parameters and mean model are shown in Table 4.

3.2.3. Model 3 (inclined sheet)

A synthetic example for 2-D inclined sheet-type body was also taken for inversion of the SP 
data. Figure 11a shows the histogram for every model parameter (k, x0, and z). The cross-plots 
(Figure 12a) also demonstrate that the model parameters are near their actual value (green) and 
the final plausible model parameters lie inside the estimated ambiguity limits and inside high 
PDF region (red). Observed and model response fits are shown in Figure 14a. The elucidated 

Figure 4. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (10% random) data for sphere.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −5000 −10,000 to 0 −5002.2 ± 27.4 −4907.7 ± 152.2

x0 (m) 200 0–300 200.0 ± 0.0 200.0 ± 0.0

z (m) 20 0–50 20.0 ± 0.0 19.9 ± 0.3

q 1.5 0–2 1.5 ± 0.0 1.5 ± 0.0

Misfit 6.6 × 10−9 9.4 × 10−5

Table 1. Actual model parameters, search range, and interpreted mean model for noise-free, 10% random noise with 
uncertainty for sphere.
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Figure 6. Fittings between the observed and model responses for sphere—(a) noise-free synthetic data; (b) noise-free 
synthetic data; (c) 10% random noisy synthetic data; and (d) 20% random noisy synthetic data.

Figure 5. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (20% random) data for sphere.
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Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −7500 −10,000 to 0 −7497.4 ± 34.6 −7037.4 ± 151.6

x0 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.0

z (m) 30 0–50 30.0 ± 0.0 29.9 ± 0.3

q 1.5 0–2 1.5 ± 0.0 1.5 ± 0.0

Misfit 4.2 × 10−8 7.1 × 10−4

Table 2. Actual model parameters, search range, and interpreted mean model for noise-free, 20% random noise with 
uncertainty for sphere.

Figure 7. (a and b) Histograms of all accepted models having misfit < 10−4 for noise-free synthetic data for cylinder and 
(c and d) histograms of all accepted models having misfit < 10−2 for noisy synthetic data (20 and 10% random noise) for 
cylinder.
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Figure 6. Fittings between the observed and model responses for sphere—(a) noise-free synthetic data; (b) noise-free 
synthetic data; (c) 10% random noisy synthetic data; and (d) 20% random noisy synthetic data.
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data) (green), and models with PDF > 60.65% (red) for noisy (20% random) data for sphere.

Minerals22

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)
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z (m) 30 0–50 30.0 ± 0.0 29.9 ± 0.3

q 1.5 0–2 1.5 ± 0.0 1.5 ± 0.0

Misfit 4.2 × 10−8 7.1 × 10−4

Table 2. Actual model parameters, search range, and interpreted mean model for noise-free, 20% random noise with 
uncertainty for sphere.

Figure 7. (a and b) Histograms of all accepted models having misfit < 10−4 for noise-free synthetic data for cylinder and 
(c and d) histograms of all accepted models having misfit < 10−2 for noisy synthetic data (20 and 10% random noise) for 
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parameters and mean model are given in Table 5. Another model was selected to see the varia-
tion in the model parameters. Figure 11b displays the histogram for the three model param-
eters. Figure 13a shows the cross-plots of this model. Observed and model response fits are 
shown in Figure 14b, and the elucidated parameters and mean model are shown in Table 6.

3.3. Noise analysis

To see the effectiveness of the present inversion results, the synthetic noise-free data must be 
corrupted with different degrees of noises and reinterpreted using the inversion method to 
check its performance and robustness of the method. Hence, 10 and 20% random noise was 
added to the data for sphere, cylinder, and sheet-type structure, and the procedure was repeated 
again to examine the effect of noise. Figure 3c and d displays the histogram for noise-corrupted 

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −7500 −10,000 to 0 −7497.9 ± 23.7 −7357.3 ± 122.8

x0 (m) 200 0–300 200.0 ± 0.0 200.0 ± 0.0

z (m) 30 0–50 30.0 ± 0.0 31.1 ± 0.4

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 5.2 × 10−11 9.8 × 10−4

Table 3. Actual model parameters, search range, and interpreted mean model for noise-free, 20% random noise with 
uncertainty for horizontal/vertical cylinder.

Figure 8. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (10% random) data for cylinder.
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sphere-like structure. Figures 4b and 5b show the cross-plots for noisy data. Tables 1 and 2 
show the interpreted mean model for noisy data and the fits between the observed and model 
response for noisy model are shown in Figure 6c and d. For horizontal and vertical cylinder-like 
structure, again noise was corrupted with the two models mentioned above. Figure 7c and d  
shows the histogram for noise-corrupted horizontal/vertical-like structure. Figures 8b and 9b 
show the cross-plots for noisy data. Tables 3 and 4 show the interpreted mean model for noisy 
data and the fits between the observed and model response for noisy model are shown in 
Figure 10c and d. Also, for 2-D inclined sheet-type structure, the same amount of noise was 

Figure 9. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (20% random) data for cylinder.

Figure 10. Fittings between the observed and model responses for cylinder—(a) noise-free synthetic data; (b) noise-free 
synthetic data; (c) 10% random noisy synthetic data; and (d) 20% random noisy synthetic data.

Inversion of Amplitude from the 2-D Analytic Signal of Self-Potential Anomalies
http://dx.doi.org/10.5772/intechopen.79111

25



parameters and mean model are given in Table 5. Another model was selected to see the varia-
tion in the model parameters. Figure 11b displays the histogram for the three model param-
eters. Figure 13a shows the cross-plots of this model. Observed and model response fits are 
shown in Figure 14b, and the elucidated parameters and mean model are shown in Table 6.

3.3. Noise analysis

To see the effectiveness of the present inversion results, the synthetic noise-free data must be 
corrupted with different degrees of noises and reinterpreted using the inversion method to 
check its performance and robustness of the method. Hence, 10 and 20% random noise was 
added to the data for sphere, cylinder, and sheet-type structure, and the procedure was repeated 
again to examine the effect of noise. Figure 3c and d displays the histogram for noise-corrupted 

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −7500 −10,000 to 0 −7497.9 ± 23.7 −7357.3 ± 122.8

x0 (m) 200 0–300 200.0 ± 0.0 200.0 ± 0.0

z (m) 30 0–50 30.0 ± 0.0 31.1 ± 0.4

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 5.2 × 10−11 9.8 × 10−4

Table 3. Actual model parameters, search range, and interpreted mean model for noise-free, 20% random noise with 
uncertainty for horizontal/vertical cylinder.

Figure 8. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (10% random) data for cylinder.

Minerals24

sphere-like structure. Figures 4b and 5b show the cross-plots for noisy data. Tables 1 and 2 
show the interpreted mean model for noisy data and the fits between the observed and model 
response for noisy model are shown in Figure 6c and d. For horizontal and vertical cylinder-like 
structure, again noise was corrupted with the two models mentioned above. Figure 7c and d  
shows the histogram for noise-corrupted horizontal/vertical-like structure. Figures 8b and 9b 
show the cross-plots for noisy data. Tables 3 and 4 show the interpreted mean model for noisy 
data and the fits between the observed and model response for noisy model are shown in 
Figure 10c and d. Also, for 2-D inclined sheet-type structure, the same amount of noise was 

Figure 9. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (20% random) data for cylinder.

Figure 10. Fittings between the observed and model responses for cylinder—(a) noise-free synthetic data; (b) noise-free 
synthetic data; (c) 10% random noisy synthetic data; and (d) 20% random noisy synthetic data.
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Figure 11. (a and b) Histograms of all accepted models having misfit < 10−4 for noise-free synthetic data for cylinder 
and (c, d) histograms of all accepted models having misfit < 10−2 for noisy synthetic data (10 and 20% random noise) 
for sheet.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) −1000 −2000 to 0 −999.6 ± 3.3 −963.1 ± 22.6

x0 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.0

z (m) 20 0–50 20.0 ± 0.0 19.6 ± 0.4

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 5.9 × 10−9 1.6 × 10−4

Table 4. Actual model parameters, search range, and interpreted mean model for noise-free, 10% random noise with 
uncertainty for horizontal/vertical cylinder.
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corrupted in the models mentioned above. Figure 11c and d shows the histogram for noise-
corrupted inclined sheet-type structure. Figures 12b and 13b illustrate the cross-plots for noisy 
data. Tables 5 and 6 show the interpreted mean model for noisy data and the fits between 
the observed and model response for noisy model are shown in Figure 14c and d. It can be 
seen from the study of histogram and cross-plots that the model parameters are interpreted 
very precisely, and it also advocates that the appraised model parameters for all structures are 
inside the ambiguity limits and within high PDF region. This also suggests that the inversion 
methodology developed for the elucidation of SP anomalies can precisely decide every model 
parameter and even if the data are highly corrupted with different degrees of noises.

3.4. Effect of complicated structure

It is significant to mention that that, in nature (field examples), it is very difficult to get an 
idealized geobody or structure. Moreover, the structures are mostly corrupted with different 

Figure 12. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (10% random) data for sheet.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) 100 0–200 100.1 ± 0.4 96.3 ± 1.2

x0 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.0

z (m) 40 0–50 40.0 ± 0.0 40.6 ± 0.4

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 4.7 × 10−7 8.1 × 10−5

Table 5. Actual model parameters, search range, and interpreted mean model for noise-free, 10% random noise with 
uncertainty for sheet.
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Figure 11. (a and b) Histograms of all accepted models having misfit < 10−4 for noise-free synthetic data for cylinder 
and (c, d) histograms of all accepted models having misfit < 10−2 for noisy synthetic data (10 and 20% random noise) 
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corrupted in the models mentioned above. Figure 11c and d shows the histogram for noise-
corrupted inclined sheet-type structure. Figures 12b and 13b illustrate the cross-plots for noisy 
data. Tables 5 and 6 show the interpreted mean model for noisy data and the fits between 
the observed and model response for noisy model are shown in Figure 14c and d. It can be 
seen from the study of histogram and cross-plots that the model parameters are interpreted 
very precisely, and it also advocates that the appraised model parameters for all structures are 
inside the ambiguity limits and within high PDF region. This also suggests that the inversion 
methodology developed for the elucidation of SP anomalies can precisely decide every model 
parameter and even if the data are highly corrupted with different degrees of noises.

3.4. Effect of complicated structure

It is significant to mention that that, in nature (field examples), it is very difficult to get an 
idealized geobody or structure. Moreover, the structures are mostly corrupted with different 

Figure 12. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (10% random) data for sheet.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) 100 0–200 100.1 ± 0.4 96.3 ± 1.2

x0 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.0

z (m) 40 0–50 40.0 ± 0.0 40.6 ± 0.4

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 4.7 × 10−7 8.1 × 10−5

Table 5. Actual model parameters, search range, and interpreted mean model for noise-free, 10% random noise with 
uncertainty for sheet.
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degree of noises. Also, there might be multiple structures within the subsurface of different 
types. In those cases, the anomaly from multiple structures will be very difficult to interpret. 
To test whether the inversion method can accurately identify the multiple structures, three 
different structures were taken and forward responses have been computed using Eqs. (2) 

Figure 14. Fittings between the observed and model responses for sheet—(a) noise-free synthetic data; (b) noise-free 
synthetic data; (c) 10% random noisy synthetic data; and (d) 20% random noisy synthetic data.

Figure 13. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit 
< threshold (10−4 for noise-free data) (green), and models with PDF > 60.65% (red) for noise-free data, (b) cross-plots 
between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noisy 
data) (green), and models with PDF > 60.65% (red) for noisy (20% random) data for sheet.
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and (3). Single structure and multiple structures from the forward modeling are shown in 
Figure 15a. Inversion of the synthetic data was carried out the same way as for the single 
model examples. Fits between the observed and model response are also shown in Figure 15a. 
Moreover, to investigate the effect of noisy data, only 20% random noise was corrupted in 
the data and inversion was repeated. Figure 15b displays the fits between the observed and 
model response for noisy data. Table 7 shows the interpreted model parameters for each 
structure derived from the multiple anomalies. Both noise-free and noisy data are shown 
in Table 7. It can be seen from Table 7 that the misfit is quite less for noise-free and noise-
corrupted data. Histogram and cross-plots show alike as revealed in other examples for single 
structures. However, it is not presented here for brevity.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) 500 0–1000 500.0 ± 1.6 493.5 ± 10.5

x0 (m) 200 0–300 200.0 ± 0.0 200.0 ± 0.0

z (m) 20 0–50 20.0 ± 0.0 19.5 ± 0.3

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 2.0 × 10−9 6.2 × 10−4

Table 6. Actual model parameters, search range, and interpreted mean model for noise-free, 20% random noise with 
uncertainty for sheet.

Figure 15. Fittings between the observed and model responses for multiple structure—(a) noise-free synthetic data; (b) 
20% random noisy synthetic data.
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degree of noises. Also, there might be multiple structures within the subsurface of different 
types. In those cases, the anomaly from multiple structures will be very difficult to interpret. 
To test whether the inversion method can accurately identify the multiple structures, three 
different structures were taken and forward responses have been computed using Eqs. (2) 
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data) (green), and models with PDF > 60.65% (red) for noisy (20% random) data for sheet.
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and (3). Single structure and multiple structures from the forward modeling are shown in 
Figure 15a. Inversion of the synthetic data was carried out the same way as for the single 
model examples. Fits between the observed and model response are also shown in Figure 15a. 
Moreover, to investigate the effect of noisy data, only 20% random noise was corrupted in 
the data and inversion was repeated. Figure 15b displays the fits between the observed and 
model response for noisy data. Table 7 shows the interpreted model parameters for each 
structure derived from the multiple anomalies. Both noise-free and noisy data are shown 
in Table 7. It can be seen from Table 7 that the misfit is quite less for noise-free and noise-
corrupted data. Histogram and cross-plots show alike as revealed in other examples for single 
structures. However, it is not presented here for brevity.

Model parameters Actual value Search range Mean model (noise-free) Mean model (noisy data)

k (mV) 500 0–1000 500.0 ± 1.6 493.5 ± 10.5

x0 (m) 200 0–300 200.0 ± 0.0 200.0 ± 0.0

z (m) 20 0–50 20.0 ± 0.0 19.5 ± 0.3

q 1.0 0–2 1.0 ± 0.0 1.0 ± 0.0

Misfit 2.0 × 10−9 6.2 × 10−4

Table 6. Actual model parameters, search range, and interpreted mean model for noise-free, 20% random noise with 
uncertainty for sheet.

Figure 15. Fittings between the observed and model responses for multiple structure—(a) noise-free synthetic data; (b) 
20% random noisy synthetic data.
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3.5. Field example

To demonstrate the efficiency of the present method, two field examples from Turkey and 
Canada were taken for interpretation. The field anomaly of ASA/TG from SP anomaly was 
taken from the earlier published literatures as described below:

3.5.1. Sulleymonkoy anomaly, Ergani, Turkey

This field example was taken from the Sulleymonkoy SP anomaly, Ergani, Turkey [91]. The 
ASA or TG anomaly was derived following Srivastava and Agarwal [70] (Figure 18). The 
anomaly was interpreted by many workers using different interpretation methods [38, 92–96]. 
The SP anomaly data were interpreted using the VFSA global optimization technique in this 
study. The TG anomaly shows a large magnitude peak anomaly with two small anomalies. 
In the present case, initially the main peak anomaly was interpreted considering a single 
structure. The depth obtained by the present study for single body was found to be 34.5 m 
on the horizontal location of 66.3 m, and the structure was interpreted as a cylindrical body. 
Histogram plot for single body (Figure 16a) also shows that the model parameters were pre-
cisely determined. Analysis of cross-plots (Figure 17a) also shows that the assessed model 
parameters were within the ambiguity limits. Next, considering multiple structures, the 
inversion process was repeated again for three different structures considering three peak 
values. Analysis of histogram plot for multiple bodies (Figure 16b–d) also shows that the 
model parameters were precisely determined. Investigation of cross-plots (Figure 17b–d) 
also shows that the estimated model parameters were within the uncertainty limits and 

Model 
parameters

Actual 
value

Search 
range

Sheet Actual 
value

Search 
range

Sphere Actual 
value

Search 
range

H/V cylinder

Multiple bodies—noise-free

k (mV) 200 0–500 200.2 ± 0.6 6000 1000–
10,000

6003.5 ± 26.2 500 100–1000 500.3 ± 1.6

x0 (m) 100 0–200 100.0 ± 0.0 200 0–300 200.0 ± 0.0 300 50–200 300.0 ± 0.0

z (m) 30 0–50 30.0 ± 0.1 40 0–50 40.0 ± 0.0 30 0–100 30.0 ± 0.1

q 1.0 0–2 1.0 ± 0.0 1.5 0–2 1.5 ± 0.0 1.0 0–2 1.0 ± 0.0

Misfit 7.4 × 10−8 3.3 × 10−7 1.6 × 10−8

Multiple bodies—20% random noise

k (mV) 200 0–500 205.4 ± 4.3 6000 1000–
10,000

6316.9 ± 133.6 500 100–1000 485.4 ± 11.0

x0 (m) 100 0–200 100.0 ± 0.0 200 0–300 200.0 ± 0.0 300 50–200 300.0 ± 0.0

z (m) 30 0–50 30.5 ± 0.5 40 0–50 41.4 ± 0.4 30 0–100 29.7 ± 0.5

q 1.0 0–2 1.0 ± 0.0 1.5 0–2 1.5 ± 0.0 1.0 0–2 1.0 ± 0.0

Misfit 7.8 × 10−4 9.9 × 10−4 1.2 × 10−3

Table 7. Actual model parameters, search range, and interpreted mean model for noise-free and 20% random noise with 
uncertainty for multiple structure.
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more precise than considering single body using the whole TG anomaly. However, the depth 
obtained for the peak anomaly was found to be 28.5 m on the location of 63.9 m consider-
ing multiple structures. The depth obtained by other workers such as Yungul [91] as 38.8 m, 
Bhattacharya and Roy [94] as 40.0 m, Agarwal [92] as 30.1 m, Sundararajan and Srinivas [96] 

Figure 16. (a) Histograms of all accepted models having misfit < 10−2 for field data—single body and (b–d) histograms 
of all accepted models having misfit < 10−2 for field data—multiple bodies—Sulleymonkoy anomaly, Ergani, Turkey.
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3.5.1. Sulleymonkoy anomaly, Ergani, Turkey

This field example was taken from the Sulleymonkoy SP anomaly, Ergani, Turkey [91]. The 
ASA or TG anomaly was derived following Srivastava and Agarwal [70] (Figure 18). The 
anomaly was interpreted by many workers using different interpretation methods [38, 92–96]. 
The SP anomaly data were interpreted using the VFSA global optimization technique in this 
study. The TG anomaly shows a large magnitude peak anomaly with two small anomalies. 
In the present case, initially the main peak anomaly was interpreted considering a single 
structure. The depth obtained by the present study for single body was found to be 34.5 m 
on the horizontal location of 66.3 m, and the structure was interpreted as a cylindrical body. 
Histogram plot for single body (Figure 16a) also shows that the model parameters were pre-
cisely determined. Analysis of cross-plots (Figure 17a) also shows that the assessed model 
parameters were within the ambiguity limits. Next, considering multiple structures, the 
inversion process was repeated again for three different structures considering three peak 
values. Analysis of histogram plot for multiple bodies (Figure 16b–d) also shows that the 
model parameters were precisely determined. Investigation of cross-plots (Figure 17b–d) 
also shows that the estimated model parameters were within the uncertainty limits and 

Model 
parameters

Actual 
value

Search 
range

Sheet Actual 
value

Search 
range

Sphere Actual 
value

Search 
range

H/V cylinder

Multiple bodies—noise-free

k (mV) 200 0–500 200.2 ± 0.6 6000 1000–
10,000

6003.5 ± 26.2 500 100–1000 500.3 ± 1.6

x0 (m) 100 0–200 100.0 ± 0.0 200 0–300 200.0 ± 0.0 300 50–200 300.0 ± 0.0

z (m) 30 0–50 30.0 ± 0.1 40 0–50 40.0 ± 0.0 30 0–100 30.0 ± 0.1

q 1.0 0–2 1.0 ± 0.0 1.5 0–2 1.5 ± 0.0 1.0 0–2 1.0 ± 0.0

Misfit 7.4 × 10−8 3.3 × 10−7 1.6 × 10−8

Multiple bodies—20% random noise

k (mV) 200 0–500 205.4 ± 4.3 6000 1000–
10,000

6316.9 ± 133.6 500 100–1000 485.4 ± 11.0

x0 (m) 100 0–200 100.0 ± 0.0 200 0–300 200.0 ± 0.0 300 50–200 300.0 ± 0.0

z (m) 30 0–50 30.5 ± 0.5 40 0–50 41.4 ± 0.4 30 0–100 29.7 ± 0.5

q 1.0 0–2 1.0 ± 0.0 1.5 0–2 1.5 ± 0.0 1.0 0–2 1.0 ± 0.0

Misfit 7.8 × 10−4 9.9 × 10−4 1.2 × 10−3

Table 7. Actual model parameters, search range, and interpreted mean model for noise-free and 20% random noise with 
uncertainty for multiple structure.

Minerals30

more precise than considering single body using the whole TG anomaly. However, the depth 
obtained for the peak anomaly was found to be 28.5 m on the location of 63.9 m consider-
ing multiple structures. The depth obtained by other workers such as Yungul [91] as 38.8 m, 
Bhattacharya and Roy [94] as 40.0 m, Agarwal [92] as 30.1 m, Sundararajan and Srinivas [96] 

Figure 16. (a) Histograms of all accepted models having misfit < 10−2 for field data—single body and (b–d) histograms 
of all accepted models having misfit < 10−2 for field data—multiple bodies—Sulleymonkoy anomaly, Ergani, Turkey.
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as 36 m, and Srivastava and Agarwal [95] as 28.9 m. Moreover, the estimated uncertainty was 
less considering multiple structures rather than a single body. Table 8 shows a comparison 
between the different model parameters and misfit. Figure 18 shows the comparison between 
the observed TG anomaly and the model response.

Figure 17. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < 
threshold (10−2 for noise-free data) (green), and models with PDF > 60.65% (red) for field data—single body, (b–d) cross-
plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for 
noise-free data) (green), and models with PDF > 60.65% (red) for field data—multiple bodies—Sulleymonkoy anomaly, 
Ergani, Turkey.
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as 36 m, and Srivastava and Agarwal [95] as 28.9 m. Moreover, the estimated uncertainty was 
less considering multiple structures rather than a single body. Table 8 shows a comparison 
between the different model parameters and misfit. Figure 18 shows the comparison between 
the observed TG anomaly and the model response.

Figure 17. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < 
threshold (10−2 for noise-free data) (green), and models with PDF > 60.65% (red) for field data—single body, (b–d) cross-
plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for 
noise-free data) (green), and models with PDF > 60.65% (red) for field data—multiple bodies—Sulleymonkoy anomaly, 
Ergani, Turkey.
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3.5.2. Senneterre area of Quebec, Canada

A total gradient of SP anomaly (Figure 6a) over a massive sulfide ore deposits in the Senneterre 
area of Quebec, Canada [97], was considered for this study. The anomaly was interpreted using 
enhanced local wave number technique by Srivastava and Agarwal [95] and regularized inver-
sion by Mehanee [7] without considering TG. However, the anomaly was reinterpreted by 
Srivastava et al. [75] using ACO technique. Srivastava et al. [75] considered six anomalies from 
the TG. This anomaly was also elucidated using the present inversion method to retrieve the 
model parameters considering four peak anomalies, which were quite distinct. Investigation of 
histogram plot for multiple bodies (Figure 19a–d) also shows that the model parameters were 
precisely determined. Examination of cross-plots (Figure 20a–d) also shows that the appraised 
mean model parameters were within the ambiguity limits. The depth obtained by using the 
VFSA method was found to be 10.5, 4.6, 3.7, and 4.3 m, respectively. The depths obtained by 
Srivastava et al. [75] for the four bodies are 5, 4.2, 3.8, and 4.3 m, respectively. The assessed 
parameters in this study are in respectable agreement with the other work. Moreover, in the 
present work, all four anomalies were interpreted as multiple structures and not indepen-
dently. The estimated model parameters are shown in Table 9 along with misfit. A comparison 
between the observed anomaly and model responses are shown in Figure 21.

3.6. Conclusions

It is well known that the local search inversion or the optimization has faster convergence rate. 
However, while trying to search the global optima, it can be trapped in the local minima. Hence, 
selection of initial guess is very important for global optimization studies. In case of compli-
cated structure, absence of a priori information also hampers the final solution. However, global 
optimization methods search the best possible solution and try to find out the exact solution 

Figure 18. Fittings between the observed and model responses for Sulleymonkoy anomaly, Ergani, Turkey.

Minerals34

within a multidimensional model space. Moreover, apart from global optimization method, a 
statistical method can also be applied to find out the ambiguity associated with the final results.

In this study, an effort was made to examine the relevance and adequacy of VFSA on the 
parameter appraisals from ASA or TG of SP anomalies. In this method, the experimental 
studies were executed utilizing hypothetically derived data and field data. The elucidation 
of the amplitude coefficient, location, depth, and shape of a subsurface structure from TG 

Figure 19. (a) Histograms of all accepted models having misfit < 10−2 for field data—single body and (b–d) histograms of 
all accepted models having misfit < 10−2 for field data—multiple bodies—Senneterre area of Quebec, Canada.
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3.5.2. Senneterre area of Quebec, Canada
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area of Quebec, Canada [97], was considered for this study. The anomaly was interpreted using 
enhanced local wave number technique by Srivastava and Agarwal [95] and regularized inver-
sion by Mehanee [7] without considering TG. However, the anomaly was reinterpreted by 
Srivastava et al. [75] using ACO technique. Srivastava et al. [75] considered six anomalies from 
the TG. This anomaly was also elucidated using the present inversion method to retrieve the 
model parameters considering four peak anomalies, which were quite distinct. Investigation of 
histogram plot for multiple bodies (Figure 19a–d) also shows that the model parameters were 
precisely determined. Examination of cross-plots (Figure 20a–d) also shows that the appraised 
mean model parameters were within the ambiguity limits. The depth obtained by using the 
VFSA method was found to be 10.5, 4.6, 3.7, and 4.3 m, respectively. The depths obtained by 
Srivastava et al. [75] for the four bodies are 5, 4.2, 3.8, and 4.3 m, respectively. The assessed 
parameters in this study are in respectable agreement with the other work. Moreover, in the 
present work, all four anomalies were interpreted as multiple structures and not indepen-
dently. The estimated model parameters are shown in Table 9 along with misfit. A comparison 
between the observed anomaly and model responses are shown in Figure 21.

3.6. Conclusions

It is well known that the local search inversion or the optimization has faster convergence rate. 
However, while trying to search the global optima, it can be trapped in the local minima. Hence, 
selection of initial guess is very important for global optimization studies. In case of compli-
cated structure, absence of a priori information also hampers the final solution. However, global 
optimization methods search the best possible solution and try to find out the exact solution 

Figure 18. Fittings between the observed and model responses for Sulleymonkoy anomaly, Ergani, Turkey.
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within a multidimensional model space. Moreover, apart from global optimization method, a 
statistical method can also be applied to find out the ambiguity associated with the final results.

In this study, an effort was made to examine the relevance and adequacy of VFSA on the 
parameter appraisals from ASA or TG of SP anomalies. In this method, the experimental 
studies were executed utilizing hypothetically derived data and field data. The elucidation 
of the amplitude coefficient, location, depth, and shape of a subsurface structure from TG 

Figure 19. (a) Histograms of all accepted models having misfit < 10−2 for field data—single body and (b–d) histograms of 
all accepted models having misfit < 10−2 for field data—multiple bodies—Senneterre area of Quebec, Canada.
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anomaly can be very much established utilizing the present technique. Synthetic data tests 
were performed utilizing both noise-free and noisy information sets derived from ideal-
ized geobodies. The present work reveals, while interpreting every single model parameter 
(amplitude coefficient, location, depth, shape) together, the VFSA method produces excellent 
results. Moreover, multiple model bodies were interpreted very efficiently.

Figure 20. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit  
< threshold (10−2 for noise-free data) (green), and models with PDF > 60.65% (red) for field data—single body, (b–d) cross-
plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noise-
free data) (green), and models with PDF > 60.65% (red) for field data—multiple bodies—Senneterre area of Quebec, Canada.
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anomaly can be very much established utilizing the present technique. Synthetic data tests 
were performed utilizing both noise-free and noisy information sets derived from ideal-
ized geobodies. The present work reveals, while interpreting every single model parameter 
(amplitude coefficient, location, depth, shape) together, the VFSA method produces excellent 
results. Moreover, multiple model bodies were interpreted very efficiently.

Figure 20. (a) Cross-plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit  
< threshold (10−2 for noise-free data) (green), and models with PDF > 60.65% (red) for field data—single body, (b–d) cross-
plots between amplitude coefficient (k), depth (z), shape location (x0) for all models having misfit < threshold (10−2 for noise-
free data) (green), and models with PDF > 60.65% (red) for field data—multiple bodies—Senneterre area of Quebec, Canada.
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The subsequent histogram and cross-plots investigation proposes that the acquired param-
eters were within the high probability and less uncertainty. This is also supported by the 
rapid and stable convergence rate of the present inversion method. The viability of this 
approach has been effectively demonstrated employing noise-free and noisy data. The suit-
ability of this technique for useful application in mineral investigation has been addition-
ally shown on two field cases (Sulleymonkoy anomaly, Ergani, Turkey, Senneterre area of 
Quebec, Canada). The field data were presumed to be formed due to different idealized 
geological bodies as mentioned in the published literature. The technique can be utilized 
to understand numerous structures from the anomaly. The assessed inverse parameters for 
the field examples were observed to be in fair agreement with other alternate techniques 
such as PSO.

It is noteworthy to mention that the present work does not get affected by wide search range. 
Other studies suggested that the search range must be carried out by the workers to under-
stand the effect of search range and the solution.
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The minerals with unique properties such as natural clay minerals (NCMs) have promis-
ing approach in environmental and industrial sphere. In fact, under some specific condi-
tions the NCMs could be used either as effective adsorbent material or alternative source
of minerals. This chapter presents an outline of a general review of factors that affect the
application ability of NCMs and a descriptive analysis of NH4
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behavior and extraction of rare earth elements (REE) by an ion-exchange with NH4

+ ions
onto NCMs. Clays and NCMs both effectively remove various contaminants from aque-
ous solution and serve as alternative sources of minerals, as extensively discussed in this
chapter. This review compiles thorough literature of current research and highlights the
key findings of adsorption (NH4

+ and REE) that use different NCMs as adsorbents or
alternative sources of minerals (i.e., REE). The review confirmed that NCMs excellently
remove different cations pollutants and have significant potential as alternative source of
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1. Introduction

Natural clay minerals (NCMs) have gained considerable attention due to their unique proper-
ties and their use in huge range of industrial and environmental applications [1, 2]. NCMs are
unique in the sense that these minerals are studied by, and used in, many disciplines for
essential and applied research [3, 4]. These minerals are nontoxic to ecosystem and play
important role in the development of human civilization. They have been utilized in agricul-
tural applications, engineering and construction applications, environmental remediation,
geology, pharmaceuticals, food processing and many other industrial applications [2, 5]. The
economic benefits look evident due to the fact that NCMs are widespread, and inexpensive
compared with other raw materials [6]. For these reasons, NCMs research is being actively
pursued by many scientists and in several countries, and the future of clay science seems
exciting, and promising.

1.1. Structure and composition of the NCMs

NCMs can arguably be considered as phyllosilicate class, containing layered structures of shared
octahedral aluminum and tetrahedral silicon sheets, water molecules and hydrated cations that
can move in and out of the interlayer spaces [7, 8]. Commonly, isomorphous substitution of one
cation with another (of similar size but with lesser charge, such as Al3+ for Si4+ or Mg2+ for Al3+)
within crystal structures leads to a charge imbalance in silicate NCMs, which accounts for the
permanent negative charge on NCMs particles, hence the ability of clays to attract cations to the
surface. Amphoteric▬OH groups at the surface/edge of clays (i.e., silanol and aluminol groups)
could also contribute to surface charge (pH-dependent reversible charge).

The physical and chemical properties of any particular NCMs are structure and composition
dependent. A general review of the structure and composition of the various NCMs are
essentially hydrous aluminum silicates that sometimes with variable amounts of iron, magne-
sium, alkali metals, alkaline earths, and other cations found on or near some planetary surfaces
[9]. The atomic structure of NCMs consists of two basic units, an octahedral sheet and a
tetrahedral sheet. The octahedral sheet is comprised of closely packed oxygens and hydroxyls
in which aluminum, iron, and magnesium atoms are arranged in octahedral coordination
(Figure 1a). The second structural unit is the silica tetrahedral layer in which the silicon atom

Figure 1. Diagrammatic sketch of the octahedral (a) and the tetrahedral sheet (b).
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is equidistant from four oxygens or possibly hydroxyls arranged in a tetrahedron with the
silicon atom in the center (Figure 1b). NCMs are usually classified based on their structure and
layer type [10]. The classification of Grim becomes the basis for outlining the nomenclature
and the differences between the various NCMs [3]. Although, it is not possible to compress the
discussion of structure and classification of NCMs in this chapter, a simple classification of
NCMs is available in literatures, NCMs can be divided into four main groups: kaolinite group,
illite group, smectite group, and vermiculite group.

The structure and composition of the major industrial NCMs are different even though they
are each comprised of octahedral and tetrahedral sheets as their basic building blocks. The
arrangement and composition of the octahedral and tetrahedral sheets account for most of the
differences in their physical and chemical properties. Therefore, for their applications an
understanding of the structure, physical and chemical properties attributes of the individual
clay minerals is important. The huge variety of physical and chemical properties of NCMs
provides unlimited scope for future application, particularly in environment protection or as
minerals resources. A general review of the structure and composition of the NCMs are given
in this chapter. A more detailed discussions of the structures of the various NCMs were
discussed in literature [5, 9–13].

1.2. Properties and factors that affect the application ability of natural clay minerals

The use of NCMs for specific applications depends on its type of structure (1.1 or 2.1 layer type)
and on its chemical composition [14]. The identity of all the material present in NCMs should be
determined in order to evaluate their properties. The most important characteristic of NCMs is
the cation exchange capacity (CEC). CEC is to measure the capacity of NCMs to exchange
cations from the solution [15], which depends on the volume of the total layer charge. Since the
surface layer charge is the function of pH, thus, CEC also changes with pH and regularly CEC is
measured at pH 7 [16, 17]. The popular metallic cations found in exchange positions in NCMs
are Ca2+, Mg2+, Na+, and K+. The presence of charge in NCMs play important role for cation
exchange and the swelling properties of the minerals. The hydrolysis of Si▬OH or Al▬OH
bonds along the NCMs lattices supplies the surface charge. Depending on the silica structure
and the solution pH, the net surface charge can be either positive or negative. The tetrahedral
and octahedral sheets of NCMs usually have a charge. The charge in the NCMs occurs in two
forms: structural and surface charge. The structural charge is permanent and present due to ion
substitutions, which arises inside the interior of the layers. The surface charges, generally in
NCMs depend on the pH value, with 2:1 layer, the surface charge creates on the basal surface of
the tetrahedral sheets while the surface charge for layer type 1:1, derives from both of tetrahedral
and octahedral sheets. Also, the edges of both 1:1 and 2:1 layer contribute to the surface charge
[16]. Several books have explained the details of the structure and properties of NCMs such as
Handbook of Clay Science, edited by Bergaya et al. [13].

Furthermore, the presence of amount of exchangeable ions, non-NCMs, soluble salts, and
quality of their texture are factors which can affect their properties and applications. The
presence of cations in octahedral sheet, and isomorphic substitutions in the octahedral and
tetrahedral sheets result in net charge deficits. Varying according to the sheet unit, and
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presence of cations in octahedral sheet, and isomorphic substitutions in the octahedral and
tetrahedral sheets result in net charge deficits. Varying according to the sheet unit, and
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ultimately, in different mineral phases giving rise to varied technical behavior. The textural
differences between structurally and chemically identical NCMs also affect their adsorptive
properties [15, 17, 18].

The type and amount of non-clay minerals are present with NCMs affect their properties and
applications. Non-clay minerals commonly associated with the NCMs include quartz, feld-
spar, mica, calcite, dolomite, opal C-T, and minor amounts of heavy and trace minerals such as
ilmenite, rutile, brookite, anatase, leucoxene, sphene, tourmaline, zircon, kyanite, goethite,
hematite, magnetite, garnet, augite, florencite, apatite, andalusite, and barite. Subsequently,
when developing applications for NCMs, it is necessary to take these factors into consider-
ation. It is important to know the specific properties of NCMs one is using in order to ensure
that it is appropriate for one’s needs or to better understand their mechanism behavior during
experimental process.

1.3. Techniques of NCMs characterization

There is increasing trend in the popularity of productive research in the field of NCMs.
Characterization of NCMs is given significance as they are mainly used as cation exchangers,
sorbents/hosts, and catalysts. Usually, the characterization of a number of techniques has to be
done in order to get comprehensive details of the NCMs.

Moreover, the multitude of techniques also accelerates the process of development of NCMs,
particularly as catalysts, as different aspects are discovered. Extensive research in the field of
instrumentation has resulted in advanced techniques of analysis that have helped in character-
ization of molecular sieves in general and NCMs in particular. In common, the characterization
of NCMs should provide information about; (i) chemical composition; (ii) structure and mor-
phology; (iii) ability to adsorb and retain molecules, and (iv) ability to chemically convert these
molecules.

The techniques for NCMs characterization, include X-ray diffraction (XRD), transmission
electron microscopy (TEM), electron-beam-based microscopy, scanning electron microscopy
(SEM) with energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR)
spectroscopy, X-ray fluorescence (XRF), magic angle spinning (MAS) nuclear magnetic reso-
nance (NMR) spectroscopy (MASNMR), X-ray photoelectron spectroscopy (XPS) analyses, N2

adsorption-desorption isotherms and zeta potential analysis to obtain the mineralogical and
physicochemical parameters.

XRD is generally used to identify the presence and quantitative determination of crystalline
NCMs. SEM is useful for morphological analysis and chemical analyses at specific locations.
The chemical compositions are determined using XRF. IR and NMR provide insight into acid
sites and framework structure. It is not possible to compress the discussion of such techniques
and research done on their scope and development. Literatures provide useful insight into
various characterization techniques for NCMs [5, 13, 15].

Here, we compile research data from various publications related to the use of different
NCMs-based adsorbents and the leaching technology generations for REE extraction, notably
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thorough literature of our current researches. In the first part of this chapter, general structure,
properties and the factors that affect the application ability of NCMs are discussed. The
techniques of NCMs characterization are also summarized. The main goal of this review is to
explain why an understanding of the structure and surface properties of the individual NCMs
are so important. This chapter provides an elaborate information about the different NCMs as
effective adsorbents in environment protection and their importance for the extraction of rare
earth elements in ion adsorption clays. It has also adequately summarized the role of factors
that affect adsorption (i.e., NH4

+ and REE) and extraction behavior of REE onto NCMs.

2. Adsorption behavior of contaminants and recovery of rare earth
elements adsorbed on natural clay minerals

In environment protection, NCMs have been used in the elimination and storage of hazardous
chemicals [14, 19, 20]. NCMs have the catalytic capability to neutralize certain organic hazard-
ous chemicals [15, 20, 21]. The ability of NCMs to contain hazardous substances depends on
their cation exchange capacity (CEC) while the process of retaining toxic materials mainly
occurs by the ion exchange and/or adsorption. Due to their high cation exchange capacity,
NCMs are very effective for the adsorption of cations from the solution. Although the NCMs
are electronegatively charged [22], these minerals still can adsorb organic and non-ionic sub-
stances in significant amounts. The adsorption characteristics are dependent upon the chemi-
cal/structural makeup of the adsorbent, the Si/Al ratio, cation type; number and location are
particularly influential in adsorption. The adsorption capacity of NCMs can be improved by
modification with inorganic salts (NaCl, CaCl2, BaCl2, NH4Cl, AlCl, FeCl3), cationic surfac-
tants, acid, base and organic [23, 24]. Consequently, the NCMs become hydrophobic and
organophilic, which led to the enhancement of the adsorption of non-ionic and organic com-
pounds [25, 26]. Notably, in our brief studies of NH4

+ and REE adsorption, we used non-
modified NCMs, to better understand the natural system reactivity of NCMs, and also the
modification of natural minerals at a larger scale may increase the processing cost; thus,
reliable water treatment by using non-modified clay minerals is highly desirable. Therefore,
utilization of NCMs would solve disposal problem, and also access to inexpensive materials in
the wastewater treatment. Moreover, due to low cost of NCMs, there is no need to regenerate
them; which provide more advantages in using NCMs as an adsorbent materials.

2.1. A brief review of adsorption of NH4
+

Nitrogen compounds in aqueous environments are commonly found in the form of ammo-
nium ions (NH4

+). Important sources of NH4
+ include effluent from the application in agricul-

tural practices and industrial processes resulting in algal bloom in lakes and rivers [27, 28].
NH4

+ concentration, in certain surface waters serving as a source of potable water, is much
higher than the permissible level, due to large quantities of industrial and municipal wastewa-
ter being discharged into existing water resources [29–31]. Also, the NH4

+ concentration for
most fish species must not exceed 1.5 mg [32, 33]. Therefore, complete removal of NH4

+ is
required due to its toxicity to the majority of aquatic lives.
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ultimately, in different mineral phases giving rise to varied technical behavior. The textural
differences between structurally and chemically identical NCMs also affect their adsorptive
properties [15, 17, 18].

The type and amount of non-clay minerals are present with NCMs affect their properties and
applications. Non-clay minerals commonly associated with the NCMs include quartz, feld-
spar, mica, calcite, dolomite, opal C-T, and minor amounts of heavy and trace minerals such as
ilmenite, rutile, brookite, anatase, leucoxene, sphene, tourmaline, zircon, kyanite, goethite,
hematite, magnetite, garnet, augite, florencite, apatite, andalusite, and barite. Subsequently,
when developing applications for NCMs, it is necessary to take these factors into consider-
ation. It is important to know the specific properties of NCMs one is using in order to ensure
that it is appropriate for one’s needs or to better understand their mechanism behavior during
experimental process.

1.3. Techniques of NCMs characterization

There is increasing trend in the popularity of productive research in the field of NCMs.
Characterization of NCMs is given significance as they are mainly used as cation exchangers,
sorbents/hosts, and catalysts. Usually, the characterization of a number of techniques has to be
done in order to get comprehensive details of the NCMs.

Moreover, the multitude of techniques also accelerates the process of development of NCMs,
particularly as catalysts, as different aspects are discovered. Extensive research in the field of
instrumentation has resulted in advanced techniques of analysis that have helped in character-
ization of molecular sieves in general and NCMs in particular. In common, the characterization
of NCMs should provide information about; (i) chemical composition; (ii) structure and mor-
phology; (iii) ability to adsorb and retain molecules, and (iv) ability to chemically convert these
molecules.

The techniques for NCMs characterization, include X-ray diffraction (XRD), transmission
electron microscopy (TEM), electron-beam-based microscopy, scanning electron microscopy
(SEM) with energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR)
spectroscopy, X-ray fluorescence (XRF), magic angle spinning (MAS) nuclear magnetic reso-
nance (NMR) spectroscopy (MASNMR), X-ray photoelectron spectroscopy (XPS) analyses, N2

adsorption-desorption isotherms and zeta potential analysis to obtain the mineralogical and
physicochemical parameters.

XRD is generally used to identify the presence and quantitative determination of crystalline
NCMs. SEM is useful for morphological analysis and chemical analyses at specific locations.
The chemical compositions are determined using XRF. IR and NMR provide insight into acid
sites and framework structure. It is not possible to compress the discussion of such techniques
and research done on their scope and development. Literatures provide useful insight into
various characterization techniques for NCMs [5, 13, 15].

Here, we compile research data from various publications related to the use of different
NCMs-based adsorbents and the leaching technology generations for REE extraction, notably
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thorough literature of our current researches. In the first part of this chapter, general structure,
properties and the factors that affect the application ability of NCMs are discussed. The
techniques of NCMs characterization are also summarized. The main goal of this review is to
explain why an understanding of the structure and surface properties of the individual NCMs
are so important. This chapter provides an elaborate information about the different NCMs as
effective adsorbents in environment protection and their importance for the extraction of rare
earth elements in ion adsorption clays. It has also adequately summarized the role of factors
that affect adsorption (i.e., NH4

+ and REE) and extraction behavior of REE onto NCMs.

2. Adsorption behavior of contaminants and recovery of rare earth
elements adsorbed on natural clay minerals

In environment protection, NCMs have been used in the elimination and storage of hazardous
chemicals [14, 19, 20]. NCMs have the catalytic capability to neutralize certain organic hazard-
ous chemicals [15, 20, 21]. The ability of NCMs to contain hazardous substances depends on
their cation exchange capacity (CEC) while the process of retaining toxic materials mainly
occurs by the ion exchange and/or adsorption. Due to their high cation exchange capacity,
NCMs are very effective for the adsorption of cations from the solution. Although the NCMs
are electronegatively charged [22], these minerals still can adsorb organic and non-ionic sub-
stances in significant amounts. The adsorption characteristics are dependent upon the chemi-
cal/structural makeup of the adsorbent, the Si/Al ratio, cation type; number and location are
particularly influential in adsorption. The adsorption capacity of NCMs can be improved by
modification with inorganic salts (NaCl, CaCl2, BaCl2, NH4Cl, AlCl, FeCl3), cationic surfac-
tants, acid, base and organic [23, 24]. Consequently, the NCMs become hydrophobic and
organophilic, which led to the enhancement of the adsorption of non-ionic and organic com-
pounds [25, 26]. Notably, in our brief studies of NH4

+ and REE adsorption, we used non-
modified NCMs, to better understand the natural system reactivity of NCMs, and also the
modification of natural minerals at a larger scale may increase the processing cost; thus,
reliable water treatment by using non-modified clay minerals is highly desirable. Therefore,
utilization of NCMs would solve disposal problem, and also access to inexpensive materials in
the wastewater treatment. Moreover, due to low cost of NCMs, there is no need to regenerate
them; which provide more advantages in using NCMs as an adsorbent materials.

2.1. A brief review of adsorption of NH4
+

Nitrogen compounds in aqueous environments are commonly found in the form of ammo-
nium ions (NH4

+). Important sources of NH4
+ include effluent from the application in agricul-

tural practices and industrial processes resulting in algal bloom in lakes and rivers [27, 28].
NH4

+ concentration, in certain surface waters serving as a source of potable water, is much
higher than the permissible level, due to large quantities of industrial and municipal wastewa-
ter being discharged into existing water resources [29–31]. Also, the NH4

+ concentration for
most fish species must not exceed 1.5 mg [32, 33]. Therefore, complete removal of NH4

+ is
required due to its toxicity to the majority of aquatic lives.
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For these reasons, the prevention of nitrogen pollution with NH4
+ removal from wastewater is

of great importance [34–36]. Various methods including air stripping, biological methods and
activated carbon have been used for NH4

+ removal [37]. However, these techniques are not
suitable for use in the removal of low contaminants concentrations, which cause damage both
to the environment and life [31]. Additionally, high costs, poor regeneration and uncertainty of
outcome are some of the frequently encountered limitations in the application of these
methods [36, 38, 39]. Furthermore, contingency on temperature and climate conditions consti-
tutes another disadvantage in this process.

Compared with the above mentioned methods, high safety, low cost [34, 40, 41] and relative
simplicity of application and operation are some of the attributes that are attracting an increas-
ing focus on the use of adsorption method for environment applications [33, 42, 43]. Adsorp-
tion process is a suitable technique for pollutants removal from wastewater, because of the
significant advantages like low-cost, profitability, availability, and effectiveness than other
methods. This method is easy to operate and equally effective in the removal of toxic contam-
inants, even at low concentrations [44].

2.1.1. Investigations of NH4
+ adsorption properties of six natural clay minerals

This research presented six types of NCMs-based adsorbents namely kaolinite, halloysite,
montmorillonite, vermiculite, palygorskite, and sepiolite were examined and compared in the
same study [44]. The study illustrated that among all the NCMs studied, vermiculite and
montmorillonite have the highest ammonium adsorption capacities. The study revealed that
the cation exchange is the main mechanism for the NH4

+ adsorption. Negatively charged
surface, specific surface area, water absorption process and surface morphology of NCMsmight
also contribute to the high adsorption capacities. Adsorption kinetics showed that the adsorp-
tion behavior followed the pseudo-second-order kinetic model whereas the isotherms fitted the
Langmuir model. The insights obtained in this study are useful for applications of NCMs in
environmental remediation. The results illustrated that the structure and surface properties of
NCMs are the key factors that affect the adsorption capacities for NH4

+. The study concluded
that the NCMs have significant potential as economic, safe and effective adsorbent materials for
the NH4

+ adsorption from the aqueous solution at low concentrations.

2.2. A brief review of adsorption/extraction of rare earth elements

2.2.1. Adsorption of rare earth elements (REE)

REE group consists of 17 elements and is divided into two categories namely the light rare
earths (L-REE) and the heavy rare earths (H-REE). REE have been used widely in metallurgy,
chemical engineering, electronics and electrooptics, medicine, biomedicine, for manufacturing
of magnetostriction materials and lasers [45–47]. Its applications in advanced technologies are
increasing [48]. In modern societies, the rare earth elements (REE) are considered because of
their unique physical and chemical properties. REE will be of substantial attention for the
foreseeable future, with demand likely to grow.
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Therefore, due to the increasing use of REE in industries, determination of REE has been of a
recent increasing concern. Several analytical techniques were used to determine REE in sam-
ples such as inductively coupled plasma-mass spectrometry (ICP-MS) [49], neutron activation
(INAA) [50]. Energy dispersive X-ray fluorescence (EDXRF) [51] and inductively coupled
plasma optical emission spectroscopy (ICP-OES) [52]. Research should continue to play an
important role in the search for rare earth ore deposits and their extraction, ensuring that as
little damage is done to the environment as conceivable.

Various techniques have been used for removal of REE ions from aqueous systems such as
solid-phase extraction, solvent extraction, ion exchange, ion-selective electrodes [53–59] and
adsorption [60–62]. Adsorption method is the best technique because of low cost, simplicity of
design and operation. The ion-adsorption type rare earths ore, is mainly located in China and
REE in these deposits were released by weathering of REE-rich granites and subsequently
adsorbed by NCMs.

Recently, there has been a significant interest in adsorption of rare earth elements with NCMs
[1, 63–65]. Piasecki and Sverjensky [66] also had studied REE speciation/distribution on wide
ranges of pH and ionic strength. They concluded that most of the surface-adsorbed lantha-
nides occur as simple “clay-REE” or as hydrolyzed “clay-O-REE2+” species.

NCMs are electronegative, saturated with cations such as Na+, K+, Ca2+, and Mg2+ are capable
of exchanging cations such as REE to the surface. Previous researches have shown that REE
contained in NCMs are mainly present as physisorbed ions, which can be easily recovered by a
simple ion-exchange procedure [66, 67]. It is evident that the adsorption of REE ions on NCMs
would have great influence on the mineralization process and the leaching process of the ion-
adsorption type rare earths ore.

2.2.2. Extraction of REE from ion adsorption clays

The ion-adsorption type rare earths ore are generally formed by weathering of REE rich host
rocks (granitic or igneous) and transfer into an aqueous solution which percolates through the
weathering body and are adsorbed onto NCMs [68–71]. This provides evidence that NCMs
have the ability of adsorbing lanthanide ions released/solubilized during weathering [72].
However, although, the NCMs deposits containing adsorbed lanthanides which are of sub-
stantially lower grade than other types of REE mineral resources, the economic benefits look
remarkable, because NCMs are abundant in surface layers in nature, easier ionic exchange of
REE, ease of mining and processing [66, 73]. It is thus evident that the adsorption of rare earth
ions on NCMs would have great influence on the mineralization process and the leaching
process of the ion-adsorption type rare earths ore.

During the past 45 years, the leaching technology in REE extraction were investigated [64, 74, 75].
The extraction of REE has been a long tradition in China using the concept of ion-exchange
leaching. In the ion adsorption clays 60–90% of the REE are adsorbed onto NCMs [71] and the
adsorbed REE on NCMs could be easily recovered by leaching with monovalent salt solutions.
Recently, the ion-adsorption rare earth ores have the focus of most research endeavors as an
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For these reasons, the prevention of nitrogen pollution with NH4
+ removal from wastewater is

of great importance [34–36]. Various methods including air stripping, biological methods and
activated carbon have been used for NH4

+ removal [37]. However, these techniques are not
suitable for use in the removal of low contaminants concentrations, which cause damage both
to the environment and life [31]. Additionally, high costs, poor regeneration and uncertainty of
outcome are some of the frequently encountered limitations in the application of these
methods [36, 38, 39]. Furthermore, contingency on temperature and climate conditions consti-
tutes another disadvantage in this process.

Compared with the above mentioned methods, high safety, low cost [34, 40, 41] and relative
simplicity of application and operation are some of the attributes that are attracting an increas-
ing focus on the use of adsorption method for environment applications [33, 42, 43]. Adsorp-
tion process is a suitable technique for pollutants removal from wastewater, because of the
significant advantages like low-cost, profitability, availability, and effectiveness than other
methods. This method is easy to operate and equally effective in the removal of toxic contam-
inants, even at low concentrations [44].

2.1.1. Investigations of NH4
+ adsorption properties of six natural clay minerals

This research presented six types of NCMs-based adsorbents namely kaolinite, halloysite,
montmorillonite, vermiculite, palygorskite, and sepiolite were examined and compared in the
same study [44]. The study illustrated that among all the NCMs studied, vermiculite and
montmorillonite have the highest ammonium adsorption capacities. The study revealed that
the cation exchange is the main mechanism for the NH4

+ adsorption. Negatively charged
surface, specific surface area, water absorption process and surface morphology of NCMsmight
also contribute to the high adsorption capacities. Adsorption kinetics showed that the adsorp-
tion behavior followed the pseudo-second-order kinetic model whereas the isotherms fitted the
Langmuir model. The insights obtained in this study are useful for applications of NCMs in
environmental remediation. The results illustrated that the structure and surface properties of
NCMs are the key factors that affect the adsorption capacities for NH4

+. The study concluded
that the NCMs have significant potential as economic, safe and effective adsorbent materials for
the NH4

+ adsorption from the aqueous solution at low concentrations.

2.2. A brief review of adsorption/extraction of rare earth elements

2.2.1. Adsorption of rare earth elements (REE)

REE group consists of 17 elements and is divided into two categories namely the light rare
earths (L-REE) and the heavy rare earths (H-REE). REE have been used widely in metallurgy,
chemical engineering, electronics and electrooptics, medicine, biomedicine, for manufacturing
of magnetostriction materials and lasers [45–47]. Its applications in advanced technologies are
increasing [48]. In modern societies, the rare earth elements (REE) are considered because of
their unique physical and chemical properties. REE will be of substantial attention for the
foreseeable future, with demand likely to grow.
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Therefore, due to the increasing use of REE in industries, determination of REE has been of a
recent increasing concern. Several analytical techniques were used to determine REE in sam-
ples such as inductively coupled plasma-mass spectrometry (ICP-MS) [49], neutron activation
(INAA) [50]. Energy dispersive X-ray fluorescence (EDXRF) [51] and inductively coupled
plasma optical emission spectroscopy (ICP-OES) [52]. Research should continue to play an
important role in the search for rare earth ore deposits and their extraction, ensuring that as
little damage is done to the environment as conceivable.

Various techniques have been used for removal of REE ions from aqueous systems such as
solid-phase extraction, solvent extraction, ion exchange, ion-selective electrodes [53–59] and
adsorption [60–62]. Adsorption method is the best technique because of low cost, simplicity of
design and operation. The ion-adsorption type rare earths ore, is mainly located in China and
REE in these deposits were released by weathering of REE-rich granites and subsequently
adsorbed by NCMs.

Recently, there has been a significant interest in adsorption of rare earth elements with NCMs
[1, 63–65]. Piasecki and Sverjensky [66] also had studied REE speciation/distribution on wide
ranges of pH and ionic strength. They concluded that most of the surface-adsorbed lantha-
nides occur as simple “clay-REE” or as hydrolyzed “clay-O-REE2+” species.

NCMs are electronegative, saturated with cations such as Na+, K+, Ca2+, and Mg2+ are capable
of exchanging cations such as REE to the surface. Previous researches have shown that REE
contained in NCMs are mainly present as physisorbed ions, which can be easily recovered by a
simple ion-exchange procedure [66, 67]. It is evident that the adsorption of REE ions on NCMs
would have great influence on the mineralization process and the leaching process of the ion-
adsorption type rare earths ore.

2.2.2. Extraction of REE from ion adsorption clays

The ion-adsorption type rare earths ore are generally formed by weathering of REE rich host
rocks (granitic or igneous) and transfer into an aqueous solution which percolates through the
weathering body and are adsorbed onto NCMs [68–71]. This provides evidence that NCMs
have the ability of adsorbing lanthanide ions released/solubilized during weathering [72].
However, although, the NCMs deposits containing adsorbed lanthanides which are of sub-
stantially lower grade than other types of REE mineral resources, the economic benefits look
remarkable, because NCMs are abundant in surface layers in nature, easier ionic exchange of
REE, ease of mining and processing [66, 73]. It is thus evident that the adsorption of rare earth
ions on NCMs would have great influence on the mineralization process and the leaching
process of the ion-adsorption type rare earths ore.

During the past 45 years, the leaching technology in REE extraction were investigated [64, 74, 75].
The extraction of REE has been a long tradition in China using the concept of ion-exchange
leaching. In the ion adsorption clays 60–90% of the REE are adsorbed onto NCMs [71] and the
adsorbed REE on NCMs could be easily recovered by leaching with monovalent salt solutions.
Recently, the ion-adsorption rare earth ores have the focus of most research endeavors as an
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alternative source of REE, the results of leaching efficiencies has been reported [66, 71, 73, 75,
76]. Based on these findings, (NH4)2SO4 was identified as the best a lixiviant of REE from
NCMs.

2.2.3. Investigations of adsorption/extraction behavior for REE onto natural clay minerals

Four natural clay minerals namely kaolinite, montmorillonite, muscovite and illite were system-
atically investigated and compared for their adsorption/extraction behavior for REE [77]. The
study reported that the montmorillonite exhibits highest adsorption and regeneration efficien-
cies for REE while kaolinite has highest extractions efficiencies for both REE light and heavy in
the order of kaolinite > illite > montmorillonite > muscovite. Also study found that the lack
extractions of REE from muscovite than other NCMs are believed to presence of iron oxide and
biotite mineral (produce iron oxide as a result of its alteration) associated with muscovite. The
leaching process of the REE is a kind of the reversibility of the ion-exchange process, it was
evident that the cation exchange and negatively charged surfaces are the mechanism for REE
adsorption. It was concluded that NH4

+ is lacking as a lixiviant from NCMs since NCMs are
associated with iron oxide, particularly, either with NCMs containing iron (i.e., biotite) or
minerals which always associate with biotite such as muscovite. The important role of the pH
in extraction of REE from NCMs was evidenced, when REE-NCMs come into contact with the
NH4

+ solution, the pH is rapidly increased from the initial pH solution for both montmorillonite
and muscovite, leading to the decrease of the availability of ion-exchangeable REE with NH4

+

ions. That is one of the factors that influence the reduction in the REE extraction from montmo-
rillonite and muscovite when compared with those of kaolinite and illite. The results illustrated
that the structure and surface properties of NCMs are also the key factors that affect the rare
earth leaching, consequently identifying the types of NCMs and associated impurities in clay
materials is important for getting the best leaching system [77].

3. Conclusion

NCMs have gained a significant interest among the scientific community, because of their
abundance, low cost and their unique properties. In this regard, a systematic comparison
study under identical experimental conditions could help to better understand the influence
of structure and properties of NCMs on their adsorptive/extraction behaviors towards contam-
inants and elements in leaching process. Adsorption is a very promising and efficient technol-
ogy for the removal of hazardous contaminants from water source, thus NCMs have been
successfully used as an adsorbent materials and alternative source of minerals. Batch adsorp-
tion experiments have demonstrated that the contact time, initial pollutants concentration,
adsorbent dosage and solution pH have significant effects on contaminants adsorption/
desorption. Among all the NCMs studied, montmorillonite and vermiculite exhibit the highest
adsorption efficiencies towards NH4

+ and REE. The presence of iron oxide with NCMs found
to help enhance REE adsorption (REE-Fe-oxides), meanwhile it also influences the extraction of
REE because REE-Fe-oxides cannot be easily recovered by monovalent salt solutions using the
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concept of ion exchange i.e., NH4
+. The structure and surface properties of NCMs are the key

factors that affect the adsorption capacities for contaminants and extraction of minerals (i.e.,
REE). The review suggests that NCMs can be considered as ideal adsorbents and alternative
source of minerals owing to their low cost, abundant, high safety, and good adsorption
efficiencies. Identifying the types of NCMs and associated impurities in clay materials is
important either for getting the best adsorption or the best leaching system. Thus, when
developing applications for NCMs, it is essentially to take these factors into consideration.
However, further study is necessary to establish the process parameters to generate better
quality of products. Also, modification and thermal treatment of natural clay minerals could
provide potential future applications in water treatment.
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atically investigated and compared for their adsorption/extraction behavior for REE [77]. The
study reported that the montmorillonite exhibits highest adsorption and regeneration efficien-
cies for REE while kaolinite has highest extractions efficiencies for both REE light and heavy in
the order of kaolinite > illite > montmorillonite > muscovite. Also study found that the lack
extractions of REE from muscovite than other NCMs are believed to presence of iron oxide and
biotite mineral (produce iron oxide as a result of its alteration) associated with muscovite. The
leaching process of the REE is a kind of the reversibility of the ion-exchange process, it was
evident that the cation exchange and negatively charged surfaces are the mechanism for REE
adsorption. It was concluded that NH4

+ is lacking as a lixiviant from NCMs since NCMs are
associated with iron oxide, particularly, either with NCMs containing iron (i.e., biotite) or
minerals which always associate with biotite such as muscovite. The important role of the pH
in extraction of REE from NCMs was evidenced, when REE-NCMs come into contact with the
NH4

+ solution, the pH is rapidly increased from the initial pH solution for both montmorillonite
and muscovite, leading to the decrease of the availability of ion-exchangeable REE with NH4

+

ions. That is one of the factors that influence the reduction in the REE extraction from montmo-
rillonite and muscovite when compared with those of kaolinite and illite. The results illustrated
that the structure and surface properties of NCMs are also the key factors that affect the rare
earth leaching, consequently identifying the types of NCMs and associated impurities in clay
materials is important for getting the best leaching system [77].

3. Conclusion

NCMs have gained a significant interest among the scientific community, because of their
abundance, low cost and their unique properties. In this regard, a systematic comparison
study under identical experimental conditions could help to better understand the influence
of structure and properties of NCMs on their adsorptive/extraction behaviors towards contam-
inants and elements in leaching process. Adsorption is a very promising and efficient technol-
ogy for the removal of hazardous contaminants from water source, thus NCMs have been
successfully used as an adsorbent materials and alternative source of minerals. Batch adsorp-
tion experiments have demonstrated that the contact time, initial pollutants concentration,
adsorbent dosage and solution pH have significant effects on contaminants adsorption/
desorption. Among all the NCMs studied, montmorillonite and vermiculite exhibit the highest
adsorption efficiencies towards NH4

+ and REE. The presence of iron oxide with NCMs found
to help enhance REE adsorption (REE-Fe-oxides), meanwhile it also influences the extraction of
REE because REE-Fe-oxides cannot be easily recovered by monovalent salt solutions using the

Minerals56

concept of ion exchange i.e., NH4
+. The structure and surface properties of NCMs are the key

factors that affect the adsorption capacities for contaminants and extraction of minerals (i.e.,
REE). The review suggests that NCMs can be considered as ideal adsorbents and alternative
source of minerals owing to their low cost, abundant, high safety, and good adsorption
efficiencies. Identifying the types of NCMs and associated impurities in clay materials is
important either for getting the best adsorption or the best leaching system. Thus, when
developing applications for NCMs, it is essentially to take these factors into consideration.
However, further study is necessary to establish the process parameters to generate better
quality of products. Also, modification and thermal treatment of natural clay minerals could
provide potential future applications in water treatment.
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Abstract

The incipient use of theoretical methods in the research of geomaterials reveals the 
great power of such methodology in the determination of the mineral properties. 
These methods provide a safe, accurate and cheap manner of obtaining these proper-
ties. Uranium-containing minerals are highly radiotoxic, and their experimental studies 
demand a careful handling of the samples used. However, theoretical methods are free 
of such inconveniences and may be used in the complete characterization of this type 
of minerals. Theoretical methods are not only a complement to the use of other experi-
mental techniques but also a powerful predictive tool. The structural, mechanical and 
Raman spectroscopic properties of uranyl-containing materials, including rutherfordine 
soddyite, schoepite and uranophane-α, were studied by means of theoretical solid-state 
methods based on density functional theory using plane waves and pseudopotentials. A 
new norm-conserving relativistic pseudopotential for uranium atom developed in recent 
works was employed. These minerals are among the most important secondary phases 
arising from corrosion of spent nuclear fuel under the final geological disposal condi-
tions. The computed crystal structures of these materials as well as the corresponding 
and X-ray powder patterns were found to be in excellent agreement with the experimen-
tal information. Therefore, the optimized structures of these minerals were employed to 
study the mechanical properties and stability of these minerals. These properties were 
obtained using the finite deformation technique. All these minerals were found to be 
mechanically stable since the corresponding Born stability conditions were satisfied. A 
large amount of relevant mechanical data were reported including bulk, Young and Shear 
moduli, Poisson ratios, ductility and hardness indices, anisotropy measures as well as 
longitudinal and transversal wave velocities. The large volume expansion and mechani-
cal stress resulting from the corrosion of spent nuclear fuel during storage emphasize 
the great relevance of the mechanical information of the waste components. Finally, the 
computation of vibrational properties of these minerals is studied. The computed Raman 
spectra of these materials were found to be in good agreement with their experimental 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 4

Theoretical Studies of the Structural, Mechanical and
Raman Spectroscopic Properties of Uranyl-Containing
Minerals

Francisco Colmenero Ruiz

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/

Provisional chapter

DOI: 10.5772/intechopen.80360

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Theoretical Studies of the Structural, Mechanical and 
Raman Spectroscopic Properties of Uranyl-Containing 
Minerals

Francisco Colmenero Ruiz

Additional information is available at the end of the chapter

Abstract

The incipient use of theoretical methods in the research of geomaterials reveals the 
great power of such methodology in the determination of the mineral properties. 
These methods provide a safe, accurate and cheap manner of obtaining these proper-
ties. Uranium-containing minerals are highly radiotoxic, and their experimental studies 
demand a careful handling of the samples used. However, theoretical methods are free 
of such inconveniences and may be used in the complete characterization of this type 
of minerals. Theoretical methods are not only a complement to the use of other experi-
mental techniques but also a powerful predictive tool. The structural, mechanical and 
Raman spectroscopic properties of uranyl-containing materials, including rutherfordine 
soddyite, schoepite and uranophane-α, were studied by means of theoretical solid-state 
methods based on density functional theory using plane waves and pseudopotentials. A 
new norm-conserving relativistic pseudopotential for uranium atom developed in recent 
works was employed. These minerals are among the most important secondary phases 
arising from corrosion of spent nuclear fuel under the final geological disposal condi-
tions. The computed crystal structures of these materials as well as the corresponding 
and X-ray powder patterns were found to be in excellent agreement with the experimen-
tal information. Therefore, the optimized structures of these minerals were employed to 
study the mechanical properties and stability of these minerals. These properties were 
obtained using the finite deformation technique. All these minerals were found to be 
mechanically stable since the corresponding Born stability conditions were satisfied. A 
large amount of relevant mechanical data were reported including bulk, Young and Shear 
moduli, Poisson ratios, ductility and hardness indices, anisotropy measures as well as 
longitudinal and transversal wave velocities. The large volume expansion and mechani-
cal stress resulting from the corrosion of spent nuclear fuel during storage emphasize 
the great relevance of the mechanical information of the waste components. Finally, the 
computation of vibrational properties of these minerals is studied. The computed Raman 
spectra of these materials were found to be in good agreement with their experimental 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



counterparts when they were available for comparison. These results demonstrate the 
power of the theoretical methods in the research of uranium-containing minerals.

Keywords: uranyl-containing minerals, spent nuclear fuel, density functional theory, 
crystal structures, X-ray diffraction, mechanical properties, Raman spectroscopy, 
rutherfordine, soddyite, uranophane-α, schoepite

1. Introduction

Nuclear energy covers a fundamental fraction of the increasing electricity requirements due to 
the growing populations and consumption. It provides a continuous and sustainable energy 
source independent of the climate and local conditions and free of CO2 emissions and other 
greenhouse gases causing global warming [1–3]. However, nuclear power installations pro-
duce high-level radioactive nuclear waste (HLRW) whose management is very complicated 
and can be a source of high ecological damage [1–4]. Special care must be dedicated to the 
avoidance of nuclear accidents [5]. The need of extreme care to avoid environmental issues 
must be extended to the uranium ore mining and nuclear fuel production [6–8].

Spent nuclear fuel (SNF) will be stored in an underground deep geological repository (DGR). 
We expect that the barriers protecting the HLRW will be ineffective after a time period of the 
order of thousands of years [9] after closure. At this moment, groundwater will enter in contact 
with the waste and the reducing conditions in the DGR will not be preserved. An oxidative envi-
ronment will appear in a layer near the SNF surface having a thickness of about 50 μm [10]. The 
concentration of oxidized species as hydrogen peroxide [11] near the SNF surface will augment 
because of the radiolysis of water originated by the intense alpha radiation produced by the 
SNF [12–15]. Uranium in the matrix of the SNF then oxidizes from U(IV) to U(VI) and dissolves 
into the water forming uranyl groups (UO2

2+). Secondary phases, that is, alteration products, on 
the spent fuel surface will appear due to the precipitation of these uranyl groups. The composi-
tion of these secondary phases will depend on the local physico-chemical conditions (mainly 
the pH and electrochemical potential) and the concentrations of reactive species present [16].

The secondary phases of SNF are more easily studied by analyzing natural uranyl-containing 
minerals [17] found as alteration products of uraninite [18], since this mineral is a natural ana-
logue of the SNF matrix. The different alteration products of natural uraninites and its parage-
netic sequence under different geochemical conditions were first described by Frondel [19, 20],  
and it is still widely accepted nowadays [16, 18, 21–24]. In this sequence, the uranyl oxide 
hydrates appear first, then the uranyl silicates and, less frequently, the uranyl phosphates, 
although the specific alteration products depend on the local conditions. Uranyl carbonates 
may precipitate where the evaporation is significant, and the carbon dioxide partial pressure 
is large [17, 25].

The release and the concomitant environmental impact of the fission products and transuranic 
elements present in the SNF to the biosphere [8, 26–41] can be diminished by retention pro-
cesses of these contaminants in the crystal structures of these secondary phases. The precise 
knowledge of their unit cells [27, 28] is essential because it may be a used to understand and 
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evaluate the incorporation of these elements into their crystal structures [8, 26–41]. Besides, 
the long-term performance assessment of DGRs requires the development of identification 
procedures and the characterization of the physical properties of these alteration products, 
which is a great challenge from the experimental point of view not only because these materi-
als are very complicated involving the most elements of the periodic table but also due to its 
radiotoxicity [1].

An experimental technique is appropriate for the identification of uranyl-containing materials 
if fulfills the following demands [42]: (1) the samples do not require any special preparation; 
(2) the technique must allow the analysis of a very small amount of sample and, (3) it must be 
a non-destructive technique. X-ray diffraction [43] and Raman spectroscopic [44] techniques 
satisfy these criteria. Raman spectroscopy can differentiate among closely related compounds 
and provides structural information, but the extraction of this information requires a reliable 
assignment of the main bands in the Raman spectrum and models to interpret the values of 
the Raman shifts. Raman spectroscopy has been already used to characterize the secondary 
phases of SNF, but the nuclear Raman database is still under development. The excellent 
works performed by Frost et al. [45–51] should be underlined.

Theoretical solid-state calculations allow a safe and complete characterization of uranyl-
containing materials free of the inconveniences associated to their radiotoxicity [42, 52–63]. 
However, the application of these methods to the study of mineral phases containing Rare 
Earth Elements is difficult not only due to the complexity of these materials but also to the 
high level of theory needed to describe these materials [64, 65]. The number of valence elec-
trons in the outer shells, which should be described explicitly, is very large and occupy high 
angular momentum orbitals. The inner electrons of these elements must be described by 
using relativistic pseudopotentials. Since an accurate pseudopotential specific for the ura-
nium atom suitable for the realization of vibrational studies of solids was not available, a new 
norm-conserving relativistic pseudopotential was developed recently [42, 52]. The use of this 
pseudopotential has permitted to perform a large series of studies about the crystal chemistry 
and bonding of the uranium atom in these systems.

The theoretical studies have allowed to confirm the crystal structures of many of these materi-
als determined from X-ray diffraction data by structure refinement, which have never been 
studied using theoretical methods [54, 55]. The knowledge of the crystal structures of uranyl-
containing minerals has experienced a large improvement in the last times [24] due to the 
use of charge-coupled device (CCD) detectors for X-ray diffraction [66]. These detectors have 
allowed to perform reliable structural determinations of small size crystals and of materi-
als comprising large unit cells, both cases being frequent for this kind of mineral phases.  
However, the determination of the hydrogen atom positions in many of these structures has 
not been possible. Two important examples are schoepite [56] and becquerelite phases [63].  
The hydrogen atom positions in these structures were successfully determined theoretically 
[56, 63]. The calculations were performed using theoretical solid-state methods based on den-
sity functional theory using plane waves and pseudopotentials [67].

Similarly, as was noted by Weck et al. [68, 69], the existence of a great amount of information 
on the formation, thermodynamic stability, and phase transformations of alteration phases 
formed at the SNF surface is in contrast with the paucity of data regarding the mechanical 
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counterparts when they were available for comparison. These results demonstrate the 
power of the theoretical methods in the research of uranium-containing minerals.
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evaluate the incorporation of these elements into their crystal structures [8, 26–41]. Besides, 
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using relativistic pseudopotentials. Since an accurate pseudopotential specific for the ura-
nium atom suitable for the realization of vibrational studies of solids was not available, a new 
norm-conserving relativistic pseudopotential was developed recently [42, 52]. The use of this 
pseudopotential has permitted to perform a large series of studies about the crystal chemistry 
and bonding of the uranium atom in these systems.

The theoretical studies have allowed to confirm the crystal structures of many of these materi-
als determined from X-ray diffraction data by structure refinement, which have never been 
studied using theoretical methods [54, 55]. The knowledge of the crystal structures of uranyl-
containing minerals has experienced a large improvement in the last times [24] due to the 
use of charge-coupled device (CCD) detectors for X-ray diffraction [66]. These detectors have 
allowed to perform reliable structural determinations of small size crystals and of materi-
als comprising large unit cells, both cases being frequent for this kind of mineral phases.  
However, the determination of the hydrogen atom positions in many of these structures has 
not been possible. Two important examples are schoepite [56] and becquerelite phases [63].  
The hydrogen atom positions in these structures were successfully determined theoretically 
[56, 63]. The calculations were performed using theoretical solid-state methods based on den-
sity functional theory using plane waves and pseudopotentials [67].

Similarly, as was noted by Weck et al. [68, 69], the existence of a great amount of information 
on the formation, thermodynamic stability, and phase transformations of alteration phases 
formed at the SNF surface is in contrast with the paucity of data regarding the mechanical 
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stability and properties of these phases. This is surprising since the underlying atomistic 
deformation modes and interactions determine thermodynamic phase stability and transfor-
mation. Except the theoretical studies of Weck et al. [68, 69] on the uranyl peroxide hydrates, 
studtite and metastudtite, and the studies of the mechanical behavior of uranium dioxide 
[70–72], no experimental or computational studies have reported the mechanical properties 
of these phases. Furthermore, the Born conditions of mechanical stability of the correspond-
ing structures have not been analyzed. Whereas the lack of the experimental data could be 
related to the special care needed to handle these radioactive minerals, computational data 
have not been reported because of the difficulties in the application of theoretical methods to 
uranium-containing solids. However, from the computed structures, the mechanical proper-
ties and stability of rutherfordine, soddyite, uranophane, schoepite and becquerelite mineral 
phases were reported recently [54–56, 63], based on the computed elasticity tensor. The elastic 
constant tensor of an inorganic compound provides a complete description of the response 
of the material to external stresses in the elastic limit [73] and is usually correlated with many 
mechanical properties such as the bulk and shear moduli, stiffness coefficients and anisotropy 
factors. The corresponding equations of state were also determined [54–56, 63].

Density Functional Perturbation Theory [74–76] allows the accurate determination of the 
vibrational Raman spectra with relatively small cost/performance ratios. Thus, although the 
computations required are generally quite expensive, these methods permit to perform a 
complete and rigorous assignment of the Raman vibrational bands. Whereas in the experi-
mental works, the assignment is usually performed in an incomplete manner and by using 
empirical arguments, the theoretical methods provide graphical representations of the vibra-
tional motions of the atoms in the corresponding normal modes. However, due to the lack 
of a good pseudopotential for uranium atom, there were very few published works on the 
theoretical vibrational spectra of uranium-containing solids [77–81] and the unique spectral 
features considered in these studies were the vibrational band wavenumbers.

This chapter provides mainly a review of the calculated structures, X-ray and mechanical prop-
erties of uranyl-containing minerals. The computed structures, shown together, display the 
most common coordination structures of the uranium atom in these minerals and give a clear 
introduction to the crystal chemistry of uranyl ion. Furthermore, because there were not experi-
mental values for a large fraction of the mechanical properties obtained in our previous works, 
the theoretical techniques were shown to have a highly predictive value. The data provided 
by these mechanical property calculations are within the most important mineral information, 
which is usually given to characterize a given mineral and the values reported together permit 
to extract the range of values which is likely to find for other uranyl-containing minerals. Finally, 
an example of the computed vibrational Raman spectrum for soddyite uranyl silicate mineral is 
provided to show the accuracy of the calculated spectra and how it was used to complement the 
experimental work in the assignment of the bands of the observed spectrum [54].

2. Methods

The generalized gradient approximation (GGA) together with PBE functional [82] supple-
mented with Grimme empirical dispersion correction [83], were used to study the soddyite, 
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uranophane-α and schoepite mineral phases. The introduction of dispersion corrections 
improved significantly the computed structural and vibrational properties as a result of the 
better description of the hydrogen bonding present in the corresponding structures. For the 
case of rutherfordine mineral, the specialized version of PBE functional for solid materials, 
PBEsol [84], was used instead. These functionals are implemented in CASTEP program [85], 
a module of the Materials Studio package [86], which was employed to model the structures 
of the materials considered. The pseudopotentials used for H, C, O, Si, and Ca atoms in the 
unit cells of these minerals were standard norm-conserving pseudopotentials [87] given in 
CASTEP code (00PBE-OP type). The norm-conserving relativistic pseudopotential for U atom 
was generated from first principles as shown in previous works [42, 52]. Whereas our uranium 
atom pseudopotential includes scalar relativistic effects, the corresponding pseudopotentials 
used for H, C, O, Si, and Ca atoms do not include them. This pseudopotential has been used 
extensively in the research of uranyl-containing materials [42, 52–63].

2.1. Crystal structures and mechanical properties

The atomic positions and cell parameters were optimized by using the Broyden-Fletcher-
Goldfarb-Shanno method [67, 88] with a convergence threshold on atomic forces of 0.01 eV/Å. 
The kinetic energy cut-off and k-point mesh [89] were chosen to ensure good convergence 
for computed structures and energies. The structures of the minerals considered in this work 
were optimized in calculations with augmented complexity by increasing these parameters. 
The precise calculation parameters used to determine the final results may be found in the 
corresponding articles [42, 53–56].

The elastic constants required to calculate the mechanical properties and to study the mechan-
ical stability of the crystal structures were obtained from stress-strain relationships using the 
finite deformation method. Finite programmed symmetry-adapted strains [73] are used in 
this method to extract the individual constants from the stress tensor obtained as response of 
the system to the applied strains. This stress-based method was shown to be more efficient 
than the energy-based methods and the use of DFPT technique for the calculation of the elas-
ticity tensor [90].

The elastic modulus and the corresponding derivatives with respect to pressure for the min-
eral phases rutherfordine, soddyite, uranophane-α and schoepite were calculated by fitting 
lattice volumes and associated pressures to a fourth-order Birch-Murnaghan equation of state 
(EOS) [91]. The lattice volumes near the equilibrium geometry were determined by optimizing 
the structure at several applied pressures with values in the range −1.0 and 12 GPa. EOSFIT 
5.2 code [92] was used to adjust the results to the selected equation of state.

2.2. Vibrational Raman spectra

The vibrational spectra were calculated using the linear response density functional perturba-
tion theory (DFPT) [74–76] implemented in the CASTEP code in the same way as in previous 
works [42, 54–57, 93, 94]. The phonon frequencies at the gamma point of the Brillouin zone 
were determined using atomic displacement perturbations. Raman intensities are third-order 
derivatives of total energy with respect to atomic positions and laser electric field (twice). 
These are calculated in CASTEP [95] by using a combination of perturbation theory to evaluate 
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features considered in these studies were the vibrational band wavenumbers.

This chapter provides mainly a review of the calculated structures, X-ray and mechanical prop-
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introduction to the crystal chemistry of uranyl ion. Furthermore, because there were not experi-
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the theoretical techniques were shown to have a highly predictive value. The data provided 
by these mechanical property calculations are within the most important mineral information, 
which is usually given to characterize a given mineral and the values reported together permit 
to extract the range of values which is likely to find for other uranyl-containing minerals. Finally, 
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provided to show the accuracy of the calculated spectra and how it was used to complement the 
experimental work in the assignment of the bands of the observed spectrum [54].
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The kinetic energy cut-off and k-point mesh [89] were chosen to ensure good convergence 
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were optimized in calculations with augmented complexity by increasing these parameters. 
The precise calculation parameters used to determine the final results may be found in the 
corresponding articles [42, 53–56].

The elastic constants required to calculate the mechanical properties and to study the mechan-
ical stability of the crystal structures were obtained from stress-strain relationships using the 
finite deformation method. Finite programmed symmetry-adapted strains [73] are used in 
this method to extract the individual constants from the stress tensor obtained as response of 
the system to the applied strains. This stress-based method was shown to be more efficient 
than the energy-based methods and the use of DFPT technique for the calculation of the elas-
ticity tensor [90].

The elastic modulus and the corresponding derivatives with respect to pressure for the min-
eral phases rutherfordine, soddyite, uranophane-α and schoepite were calculated by fitting 
lattice volumes and associated pressures to a fourth-order Birch-Murnaghan equation of state 
(EOS) [91]. The lattice volumes near the equilibrium geometry were determined by optimizing 
the structure at several applied pressures with values in the range −1.0 and 12 GPa. EOSFIT 
5.2 code [92] was used to adjust the results to the selected equation of state.
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The vibrational spectra were calculated using the linear response density functional perturba-
tion theory (DFPT) [74–76] implemented in the CASTEP code in the same way as in previous 
works [42, 54–57, 93, 94]. The phonon frequencies at the gamma point of the Brillouin zone 
were determined using atomic displacement perturbations. Raman intensities are third-order 
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the second derivatives with respect to applied fields and finite differences to evaluate the third 
derivatives with respect to atomic displacement. The frequencies presented in this work have 
not been scaled to correct for anharmonicity and remaining errors of the theoretical treatment 
employed, such as incomplete treatment of electron correlation and basis set truncation [96].

3. Results and discussion

The unit cell parameters and internal atomic positions were first optimized using initial 
atomistic models based in the atomic coordinates given by several authors [97–100]. From the 
optimized structures, we have obtained both the structural parameters as well as the X-ray 
powder patterns. Then, the mechanical properties, the EOS, the vibrational Raman spectrum 
and thermodynamic and optic properties were determined [42, 53–56].

3.1. Crystal structures

3.1.1. Rutherfordine

Christ et al. [101, 102] presented two possible orthorhombic structures for rutherfordine. The 
first is consistent with Pmmn symmetry and the second with Imm2 symmetry. The structure 
was later refined by Finch et al. [97]. We considered both orthorhombic structures for ruther-
fordine. The results found were nearly the same and the energy difference for the optimized 
structures was less than 0.001 eV. Therefore, only the results obtained for the Imm2 structure 
are described in detail here. The results for the Pmmn structure may be found in Ref. [42]. The 
results encountered [42] pointed that both structures may be simultaneously present in nature 
in accordance with the suggestion of Christ et al. [101, 102].

The computed structure of rutherfordine is shown in Figure 1A and B. It contains approxi-
mately linear UO2

2+ uranyl ions that are coordinated by six O atoms arranged at the equatorial 
vertices of uranyl hexagonal bipyramids. These O atoms belong to four carbonate ligands, 
and U is bonded with two carbonate ions in a bidentate manner and two in a monodentate 
manner. Each uranyl polyhedron is linked to two other uranyl polyhedra in a trans arrange-
ment by edge sharing, resulting in chains of polyhedra. Adjacent chains are linked by the 
sharing of equatorial vertices between uranyl polyhedra, which results in a sheet structure 
that contains triangular voids. Carbonate triangles occupy one half of the voids, such that 
they share the equatorial edges of two adjacent uranyl hexagonal bipyramids and single ver-
tices of two additional uranyl polyhedra (see Figure 1A). The resulting sheets or layers are 
electroneutral, and adjacent sheets in rutherfordine are bonded together by van der Waals 
forces. The UO2CO3 layers are staggered with respect to the layer above or below, such that 
uranyl units lie above and below a carbonate carbon atom in adjacent layers. Layers are sepa-
rated by a distance of about 4.6 Å. The structure is similar for Imm2 and Pmmn structures. For 
the Pmmn structure the carbonate triangles in contiguous sheets point in opposite directions 
while in the Imm2 one they point in the same direction (see Figure 1B, where two contiguous 
sheets in the structure of rutherfordine are shown).
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3.1.2. Uranophane-α

The unit cell of uranophane-α has monoclinic symmetry [98]. Stohl and Smith [103] categorized 
naturally occurring uranyl silicates according to the uranium to silicon ratio, which in part 
determines the structures of these minerals. Most uranyl silicate minerals have 1:1 uranium 
to silicon ratio and are sheet silicates [27, 28, 98, 103]. Uranyl silicate sheets are composed of 
[(UO2)2(SiO4)2]−4 units bound at the equatorial edges (see Figure 1C). A sheet, [(UO2)(SiO4)]n

−2n, 
contains UO7 pentagonal bipyramids and SiO3OH tetrahedra. Charge compensating cations, 
calcium in uranophane, lie in the interlayer space between the sheets (see Figure 1D). Two 
uranyl silicate sheets are connected by CaO2(OH)(H2O)4 polyhedra (distorted pentagonal 
bipyramid). The Ca atom ligands are four water molecules, two uranyl oxygen atoms belong-
ing to the upper and the lower sheets, and one OH group of SiO3OH tetrahedra. One water 
molecule is out of the Ca polyhedra. While this water molecule is described as free or crystal-
lization water, the four water molecules belonging to the Ca atom coordination sphere are 
referred to as structural water. Hydrogen bonds reinforce the bonding between the uranyl 
silicate sheets, the Ca atom, and the free water. As it can be seen in Figure 1D, the upper sheet 
SiO3OH tetrahedra have free OH groups pointing downwards and the lower sheet tetrahedra 
have OH groups pointing upwards, which belong to the Ca atom coordination sphere.

Figure 1. Structures of rutherfordine and uranophane-α minerals; (A) view of a sheet in the structure of rutherfordine from 
[010]; (B) two contiguous sheets in the structure of rutherfordine; (C) view of a 2 × 2 × 2 supercell of uranophane-α from [001] 
showing a uranyl silicate sheet composed of UO7 pentagonal bipyramids and SiO3OH tetrahedra; (D) view of a 2 × 2 × 2 
supercell from [010] showing two uranyl silicate sheets connected by CaO2(OH)(H2O)4 polyhedra. One water molecule is 
out of the Ca coordination polyhedra (free water). Color code: U—blue, O—red, C—gray, Ca—yellow, H—white.
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sheets in the structure of rutherfordine are shown).

Minerals70

3.1.2. Uranophane-α

The unit cell of uranophane-α has monoclinic symmetry [98]. Stohl and Smith [103] categorized 
naturally occurring uranyl silicates according to the uranium to silicon ratio, which in part 
determines the structures of these minerals. Most uranyl silicate minerals have 1:1 uranium 
to silicon ratio and are sheet silicates [27, 28, 98, 103]. Uranyl silicate sheets are composed of 
[(UO2)2(SiO4)2]−4 units bound at the equatorial edges (see Figure 1C). A sheet, [(UO2)(SiO4)]n

−2n, 
contains UO7 pentagonal bipyramids and SiO3OH tetrahedra. Charge compensating cations, 
calcium in uranophane, lie in the interlayer space between the sheets (see Figure 1D). Two 
uranyl silicate sheets are connected by CaO2(OH)(H2O)4 polyhedra (distorted pentagonal 
bipyramid). The Ca atom ligands are four water molecules, two uranyl oxygen atoms belong-
ing to the upper and the lower sheets, and one OH group of SiO3OH tetrahedra. One water 
molecule is out of the Ca polyhedra. While this water molecule is described as free or crystal-
lization water, the four water molecules belonging to the Ca atom coordination sphere are 
referred to as structural water. Hydrogen bonds reinforce the bonding between the uranyl 
silicate sheets, the Ca atom, and the free water. As it can be seen in Figure 1D, the upper sheet 
SiO3OH tetrahedra have free OH groups pointing downwards and the lower sheet tetrahedra 
have OH groups pointing upwards, which belong to the Ca atom coordination sphere.

Figure 1. Structures of rutherfordine and uranophane-α minerals; (A) view of a sheet in the structure of rutherfordine from 
[010]; (B) two contiguous sheets in the structure of rutherfordine; (C) view of a 2 × 2 × 2 supercell of uranophane-α from [001] 
showing a uranyl silicate sheet composed of UO7 pentagonal bipyramids and SiO3OH tetrahedra; (D) view of a 2 × 2 × 2 
supercell from [010] showing two uranyl silicate sheets connected by CaO2(OH)(H2O)4 polyhedra. One water molecule is 
out of the Ca coordination polyhedra (free water). Color code: U—blue, O—red, C—gray, Ca—yellow, H—white.

Theoretical Studies of the Structural, Mechanical and Raman Spectroscopic Properties…
http://dx.doi.org/10.5772/

71



3.1.3. Soddyite

While most uranyl silicate minerals have 1:1 uranium to silicon ratio and are sheet silicates  
[27, 28, 103], soddyite exhibits a 2:1 uranium to silicon ratio and framework crystal structure [99]. 
The computed structure is shown in Figure 2A and B. Figure 2A shows a view of the unit cell 
from [001]. Figure 2B is a view of a 2 × 2 × 1 supercell along [110] where only a subset of atoms 
is retained in order to show a clearer view of the soddyite structure. As in the case of the other 
uranyl silicate considered, uranophane-α, U atoms display pentagonal bipyramid coordination, 
UO6(H2O), and Si atoms present tetrahedral coordination, SiO4. The U bipyramids are connected 
by sharing two non-adjacent edges of the equatorial plane to form zigzag chains (see Figure 2B). 
The single unshared equatorial vertex of the bipyramid is occupied by H2O. All the water mol-
ecules are crystallization water, that is, belong to the coordination structure of uranium atom. 
The chains are parallel to [110] plane and are cross bonded through two opposite edges of the 
SiO4 tetrahedra; i.e. adjacent uranyl silicate chains are directly linked as each tetrahedron shares 
two edges with bipyramids from two different chains. Moreover, the cohesion of the structure is 
enhanced by a pattern of hydrogen bonds involving the water molecules and the uranyl O atoms.

3.1.4. Schoepite

The computed structure of schoepite is displayed in Figure 2C and D. There are eight sym-
metrically distinct uranium sites in the structure of this mineral [100] (see Figure 2D). All 
U atoms are coordinated by seven anions in pentagonal bipyramidal arrangements. Each 

Figure 2. Structure of soddyite and schoepite minerals; (A) view of the unit cell of soddyite from [001]; (B) view of a 
2 × 2 × 1 supercell of soddyite from [110], retaining only a subset of atoms (a single chain of U bipyramids cross bonded 
to other chains through two opposite edges of the SiO4 tetrahedra is shown); (C) view of the full unit cell of schoepite 
from [100]; and (D) view of a schoepite sheet from [001] direction. Color code: U—blue, Si—brown, O—red, H—yellow.
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pentagonal bipyramid, referred to as UO7 below, consists of two apical O2− anions and five 
equatorial anions, O2− or OH−. While the uranium atoms U2 and U6 (see Figure 2D) have a 
coordination environment of UO2(OH)5, the coordination for the remaining uranium atoms 
is UO2O(OH)4. The most stable configuration around a uranyl, UO2

2+ group has a pentagonal 
arrangement of equatorial anions as predicted for uranyl oxyhydroxides by Evans in 1963 
[104]. The UO7 pentagonal bipyramids share edges to form dimers, which in turn, link by 
sharing edges to form staggered ribbons along the [100] direction. Then, these ribbons cross-
link in the [010] direction by sharing edges and corners of the polyhedra. This results in a 
strongly bonded sheet of stoichiometry [(UO)8O2(OH)12] parallel to plane {001}. This sheet 
constitutes the structural unit of schoepite, which stacks along the [001] direction. As the 
sheets are neutral, they are linked together by H-bonding only, through a complex network 
of H-bonding involving interlayer H2O groups and O2− or OH− groups in the structural sheet.

The structure within the uranium oxide hydroxide layers is basically the same in schoepite 
[100] metaschoepite [105] and many other uranium(VI) complex oxides, such as fourmari-
erite [106]. While most equatorial O2− and OH− groups are shared as vertices of three UO7 
polyhedra, the O atoms in some hydroxyl groups bridge two uranyl polyhedra alone [105]. 
The corresponding sections of the layers not occupied by the pentagons of the UO7 groups 
have a bow-tie-like motif (see Figure 2D) connected centrally at the bridging hydroxyl. There 
are 12 H2O groups in schoepite interlayer. Ten of these H2O groups are located at the apices 
of two distorted pentagons and the remaining two water molecules are not members of the 
pentagonal rings and are located between the pentagonal rings. The pentagonal rings vertices 
are nearly at the positions of the equatorial anions in the U1 and U7 polyhedra from the two 
adjacent sheets. The general hydrogen bond structure described by Finch et al. [100] was 
properly reproduced by present theoretical calculations, confirming the suggested hydrogen 
bond structure. Besides, our results provided the locations for the hydrogen atoms in the full 
unit cell, which were never precisely obtained by either theoretical or experimental methods.

3.1.5. Unit cell parameters

As it has been mentioned in Section 2, the structures of these materials were determined in 
calculations with augmented complexity. Table 1 gives the final lattice parameters, volumes 
and densities obtained compared with the experimental ones [97–100]. As it can be seen, the 
theoretical calculations reproduce the experimental information accurately. The errors in the 
computed volumes and densities with respect to experimental data were very small, 0.1, 0.3, 
0.4 and 2.1% for rutherfordine, soddyite, uranophane-α and schoepite, respectively.

3.2. X-ray powder patterns

The X-ray powder diffractograms of these minerals were calculated from the computed 
structures using CuKα radiation (λ = 1.540598 Å). It must be outlined that the computation 
of the X-ray powder pattern of a given material does not require any additional optimiza-
tion or response calculation. Their determination may be made directly from the optimized 
atomic positions and unit cell parameters [107]. The calculated patterns are compared in 
Figure 3 with the X-ray diffractograms computed from the experimental geometries of 
rutherfordine, soddyite and uranophane-α [97–99] (Figure 3A–C). The comparison of the 
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arrangement of equatorial anions as predicted for uranyl oxyhydroxides by Evans in 1963 
[104]. The UO7 pentagonal bipyramids share edges to form dimers, which in turn, link by 
sharing edges to form staggered ribbons along the [100] direction. Then, these ribbons cross-
link in the [010] direction by sharing edges and corners of the polyhedra. This results in a 
strongly bonded sheet of stoichiometry [(UO)8O2(OH)12] parallel to plane {001}. This sheet 
constitutes the structural unit of schoepite, which stacks along the [001] direction. As the 
sheets are neutral, they are linked together by H-bonding only, through a complex network 
of H-bonding involving interlayer H2O groups and O2− or OH− groups in the structural sheet.

The structure within the uranium oxide hydroxide layers is basically the same in schoepite 
[100] metaschoepite [105] and many other uranium(VI) complex oxides, such as fourmari-
erite [106]. While most equatorial O2− and OH− groups are shared as vertices of three UO7 
polyhedra, the O atoms in some hydroxyl groups bridge two uranyl polyhedra alone [105]. 
The corresponding sections of the layers not occupied by the pentagons of the UO7 groups 
have a bow-tie-like motif (see Figure 2D) connected centrally at the bridging hydroxyl. There 
are 12 H2O groups in schoepite interlayer. Ten of these H2O groups are located at the apices 
of two distorted pentagons and the remaining two water molecules are not members of the 
pentagonal rings and are located between the pentagonal rings. The pentagonal rings vertices 
are nearly at the positions of the equatorial anions in the U1 and U7 polyhedra from the two 
adjacent sheets. The general hydrogen bond structure described by Finch et al. [100] was 
properly reproduced by present theoretical calculations, confirming the suggested hydrogen 
bond structure. Besides, our results provided the locations for the hydrogen atoms in the full 
unit cell, which were never precisely obtained by either theoretical or experimental methods.

3.1.5. Unit cell parameters

As it has been mentioned in Section 2, the structures of these materials were determined in 
calculations with augmented complexity. Table 1 gives the final lattice parameters, volumes 
and densities obtained compared with the experimental ones [97–100]. As it can be seen, the 
theoretical calculations reproduce the experimental information accurately. The errors in the 
computed volumes and densities with respect to experimental data were very small, 0.1, 0.3, 
0.4 and 2.1% for rutherfordine, soddyite, uranophane-α and schoepite, respectively.

3.2. X-ray powder patterns

The X-ray powder diffractograms of these minerals were calculated from the computed 
structures using CuKα radiation (λ = 1.540598 Å). It must be outlined that the computation 
of the X-ray powder pattern of a given material does not require any additional optimiza-
tion or response calculation. Their determination may be made directly from the optimized 
atomic positions and unit cell parameters [107]. The calculated patterns are compared in 
Figure 3 with the X-ray diffractograms computed from the experimental geometries of 
rutherfordine, soddyite and uranophane-α [97–99] (Figure 3A–C). The comparison of the 
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patterns derived directly from the structures is free of all possible interferences since both 
are determined under identical conditions. The agreement in line positions and intensities is 
very good. Nevertheless, the direct comparison of the calculated and experimental patterns 
was also very good [42, 54, 55]. Program XPowder [108] using the PDF-2 database [109] 
recognized the calculated spectra as those of the corresponding materials using low toler-
ance limits for the spectral differences. In the case of schoepite mineral, the X-ray powder 
spectrum was computed using REFLEX code included in Materials Studio package [86] 
and the results are compared in Figure 3D with the experimental X-ray diffractogram from 
the record 100188 of the RRUFF database [110] which corresponds to a natural schoepite 
mineral from Shinkolobwe mine, Katanga, Congo. The agreement of the computed and 
experimental diffractograms is excellent.

3.3. Mechanical properties

3.3.1. Mechanical stability

The elastic tensor, needed for the calculation of mechanical properties and to study the 
mechanical stability of a crystal structure, was calculated at the optimized equilibrium struc-
ture from stress-strain relationships, by using the finite deformation method implemented in 
CASTEP program. Materials with orthorhombic (rutherfordine, soddyite and schoepite) and 
monoclinic (uranophane-α) unit cells have 9 and 13 non-degenerate elastic constants, C(i,j) in 
the symmetric stiffness matrix [68, 73], respectively. The computed values of these constants 
are given in Refs. [53–56].

For orthorhombic systems, a set of necessary and sufficient Born [111, 112] conditions for 
mechanical stability are known [68, 113]. These conditions can be expressed as a set of alge-
braic inequalities among products of elastic constants and were properly satisfied by the com-
puted stiffness tensors of rutherfordine, soddyite and schoepite [53, 54, 56]. For monoclinic 
crystals, a set of necessary (but not sufficient) Born criteria for mechanical stability can also 
be written in terms of the stiffness matrix elements [68]. These conditions were fully satisfied 
by the computed elastic tensor of uranophane-α [55]. The generic necessary and sufficient 

Material Source a (Å) b (Å) c (Å) α β γ Vol. (Å3) Dens.  
(g/cm3)

Rutherfordine Calc. [42] 4.8267 9.3639 4.2727 90 90 90 193.1 5.675

Exp. [97] 4.840 9.273 4.298 90 90 90 192.9 5.682

Soddyite Calc. [54] 8.0780 11.4253 18.8380 90 90 90 1738.6 5.104

Exp. [99] 8.334 11.212 18.668 90 90 90 1744.4 5.088

Uranophane-α Calc. [55] 6.6689 7.0022 15.8684 90 98.07 90 733.7 3.8766

Exp. [98] 6.665 7.002 15.909 90 97.27 90 736.5 3.8618

Schoepite Calc. [56] 14.2740 16.8076 14.4841 90 90 90 3474.9 4.993

Exp. [100] 14.337 16.813 14.731 90 90 90 3550.9 4.886

Table 1. Lattice parameters of rutherfordine, soddyite, uranophane-α and schoepite.
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Born criterion of stability is that all eigenvalues of the C matrix be positive [113]. The C matrix 
was diagonalized numerically, and all eigenvalues were found to be positive. Since the Born 
conditions were satisfied by the computed elastic tensors of all the materials studied, their 
mechanical stability was inferred [53–56].

Figure 3. X-ray powder patterns of the materials under study using CuKα radiation: (A) rutherfordine; (B) soddyite; (C) 
uranophane-α; and (D) schoepite.
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patterns derived directly from the structures is free of all possible interferences since both 
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The dynamical stability should also be analyzed to study the stability of the material in a 
complete form. A necessary and sufficient condition for the dynamical stability of a structure 
is that all of its phonon modes have positive frequencies for all wave vectors [113]. Since 
the fulfillment of this condition was also verified from the phonon calculations employed to 
determine the thermodynamic properties of these materials [53, 59, 62], their crystal struc-
tures were found to be mechanically and dynamically stable.

If the stiffness matrix of a material has a diagonal element associated to a certain direction which 
is much smaller than the other ones, it may be suggested that the thermal expansion of the 
material will occur predominantly along this direction. This feature was found to occur in the 
case of rutherfordine, uranophane-α and schoepite [53, 55, 56] all of them being layered uranyl-
containing minerals, along the direction perpendicular to the sheets characterizing their struc-
tures. This is consistent with the fact that the intersheet space in layered materials increase to a 
large extent as temperature increases due to the fact that the sheets are generally bonded only 
by weak van der Waals forces (rutherfordine [53]) or by hydrogen bonding among the sheets 
and water molecules present in their interlayer space (uranophane-α and schoepite [55, 56]).

3.3.2. Mechanical properties

If single crystal samples are not available, the measurement of the individual elastic constants 
is not possible. Instead, the polycrystalline bulk modulus (B) and shear modulus (G) may be 
determined experimentally. The Voigt [114] and Reuss [115] schemes were used to compute 
the isotropic elastic properties of polycrystalline aggregates of these materials [53–56]. In 
Voigt method for calculating the elastic moduli, the strain throughout the aggregate of crys-
tals is considered uniform, and the relations expressing the stress are averaged over all pos-
sible lattice orientations. While the strain is assumed to be uniform throughout the aggregate 
of crystals in Voigt’s method, Reuss approximation considers the stress to be uniform and 
the averaging of the relations expressing the strain is carried out. As shown by Hill [116], the 
Reuss and Voigt approximations result in lower and upper limits, respectively, of polycrystal-
line constants and practical estimates of the polycrystalline bulk and shear moduli in the Hill 
approximation can be computed using average formulas. The formulae for these approxima-
tions may be found in several sources [68, 117]. Although the differences between the results 
obtained for rutherfordine, soddyite and schoepite in the Reuss and Voigt approximations 
was generally small, this difference was found to be quite large for rutherfordine. This reason 
for this behavior is that rutherfordine is a highly anisotropic material showing large differ-
ences between the values of the elastic constants along different directions [53, 68].

The Reuss scheme provided the best results when the computed bulk moduli were compared 
with that determined from the equation of state (EOS) as it occurred in other works by other 
authors [118, 119]. In the case of uranophane-α, the Hill approximation gave the best results 
[55]. The values of the mechanical properties computed in in the Reuss approximation for 
rutherfordine, soddyite and schoepite and in the Hill approximation for uranophane-α, are 
given in Table 2. CASTEP code gave a numerical estimate of the error in the computed bulk 
moduli, B, of 0.94, 2.31, 2.45 and 2.28 GPa for rutherfordine, soddyite, uranophane and scho-
epite, respectively, and, consequently, our final values of the bulk moduli computed from the 
elastic constants are, 17.97 ± 0.94, 58.41 ± 2.31, 59.20 ± 2.45 and 34.53 ± 2.28 GPa, respectively.
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While the elasticity theory is very well understood and mathematically well founded, it is 
difficult to visualize how the elastic properties vary with the strain orientation, except for the 
simplest cases of isotropic materials. In order to address this difficulty, the ElAM software of 
Marmier et al. [120] was used to obtain detailed tridimensional representations of the most 
important elastic properties, which are shown in Figure 4 for schoepite [56]. In Figure 4A, the 
property displayed is the inverse of the bulk modulus (the compressibility) instead of the bulk 
modulus. As it can be seen in Figure 4A, the vertical direction (c axis) is the most compressible 
one in accordance with the previous discussion on the results of the stiffness matrix C matrix. 
Also, it must be noted that the corresponding tridimensional representations of the elastic 
properties of metaschoepite mineral, including those of the shear modulus, are very similar 
to those reported in Figure 4. This means that although the dehydration from schoepite to 
metaschoepite leads to a change of space symmetry [97, 105] the transformation is not shear 
induced, as occurs for the dehydration of studtite to metastudtite [69]. This behavior is the 
expected one, since the structures of schoepite and metaschoepite are very similar, the main 
changes being the differences in the arrangements of the interlayer water molecules and asso-
ciated hydrogen bonds [105].

In general, a large value of shear moduli is an indication of the more pronounced directional 
bonding between atoms. Shear modulus represents the resistance to plastic deformation while 
the bulk modulus represents the resistance to fracture [117, 121]. Young modulus defines the 
relationship between stress (force per unit area) and strain (proportional deformation) in a 
material, that is, E = σ/ε. Pugh [122] introduced the proportion of bulk to shear modulus of 
polycrystalline phases (D = B/G) as a measure of ductility from the interpretation of the shear 
and bulk modulus given above. The value separating ductile and brittle materials is 1.75, i.e., if 
D > 1.75, the material behaves in a ductile manner, otherwise the material behaves in a brittle 
manner [68]. The Poisson ratio, ν, can be also utilized to measure the malleability of crystalline 
compounds, and is closely related to the Pugh’s ratio. The Poisson ratio is close to 0.33 (1/3) 
for ductile materials, while it is generally much less than 0.33 for brittle materials. As it can be 
seen for rutherfordine, soddyite, uranophane and schoepite we find ratios D of 0.92, 1.62, 1.62, 
and 1.49, respectively. Similarly, the calculated Poisson ratios, ν are 0.10, 0.24, 0.24, 0.23, respec-
tively. These values are smaller than 1.75 (D) and 0.33 (ν), corresponding to brittle materials. For 
comparison, studtite and metastudtite uranyl peroxide minerals were found to be ductile [68].

Property Rutherfordine Soddyite Uranophane-α Schoepite

B 17.97 58.41 59.20 34.53

G 19.47 36.00 36.52 23.17

E 42.92 89.60 90.88 56.80

ν 0.10 0.24 0.24 0.23

D 0.92 1.62 1.62 1.49

H 9.47 6.24 6.33 4.88

Table 2. Computed bulk, modulus, shear modulus, Young modulus, Poisson ratio, Pugh’s ratio, and Vickers hardness 
(B, G, E, ν, D, and H) for rutherfordine, soddyite, uranophane-α and schoepite [53–56].
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The dynamical stability should also be analyzed to study the stability of the material in a 
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If single crystal samples are not available, the measurement of the individual elastic constants 
is not possible. Instead, the polycrystalline bulk modulus (B) and shear modulus (G) may be 
determined experimentally. The Voigt [114] and Reuss [115] schemes were used to compute 
the isotropic elastic properties of polycrystalline aggregates of these materials [53–56]. In 
Voigt method for calculating the elastic moduli, the strain throughout the aggregate of crys-
tals is considered uniform, and the relations expressing the stress are averaged over all pos-
sible lattice orientations. While the strain is assumed to be uniform throughout the aggregate 
of crystals in Voigt’s method, Reuss approximation considers the stress to be uniform and 
the averaging of the relations expressing the strain is carried out. As shown by Hill [116], the 
Reuss and Voigt approximations result in lower and upper limits, respectively, of polycrystal-
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approximation can be computed using average formulas. The formulae for these approxima-
tions may be found in several sources [68, 117]. Although the differences between the results 
obtained for rutherfordine, soddyite and schoepite in the Reuss and Voigt approximations 
was generally small, this difference was found to be quite large for rutherfordine. This reason 
for this behavior is that rutherfordine is a highly anisotropic material showing large differ-
ences between the values of the elastic constants along different directions [53, 68].

The Reuss scheme provided the best results when the computed bulk moduli were compared 
with that determined from the equation of state (EOS) as it occurred in other works by other 
authors [118, 119]. In the case of uranophane-α, the Hill approximation gave the best results 
[55]. The values of the mechanical properties computed in in the Reuss approximation for 
rutherfordine, soddyite and schoepite and in the Hill approximation for uranophane-α, are 
given in Table 2. CASTEP code gave a numerical estimate of the error in the computed bulk 
moduli, B, of 0.94, 2.31, 2.45 and 2.28 GPa for rutherfordine, soddyite, uranophane and scho-
epite, respectively, and, consequently, our final values of the bulk moduli computed from the 
elastic constants are, 17.97 ± 0.94, 58.41 ± 2.31, 59.20 ± 2.45 and 34.53 ± 2.28 GPa, respectively.
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While the elasticity theory is very well understood and mathematically well founded, it is 
difficult to visualize how the elastic properties vary with the strain orientation, except for the 
simplest cases of isotropic materials. In order to address this difficulty, the ElAM software of 
Marmier et al. [120] was used to obtain detailed tridimensional representations of the most 
important elastic properties, which are shown in Figure 4 for schoepite [56]. In Figure 4A, the 
property displayed is the inverse of the bulk modulus (the compressibility) instead of the bulk 
modulus. As it can be seen in Figure 4A, the vertical direction (c axis) is the most compressible 
one in accordance with the previous discussion on the results of the stiffness matrix C matrix. 
Also, it must be noted that the corresponding tridimensional representations of the elastic 
properties of metaschoepite mineral, including those of the shear modulus, are very similar 
to those reported in Figure 4. This means that although the dehydration from schoepite to 
metaschoepite leads to a change of space symmetry [97, 105] the transformation is not shear 
induced, as occurs for the dehydration of studtite to metastudtite [69]. This behavior is the 
expected one, since the structures of schoepite and metaschoepite are very similar, the main 
changes being the differences in the arrangements of the interlayer water molecules and asso-
ciated hydrogen bonds [105].

In general, a large value of shear moduli is an indication of the more pronounced directional 
bonding between atoms. Shear modulus represents the resistance to plastic deformation while 
the bulk modulus represents the resistance to fracture [117, 121]. Young modulus defines the 
relationship between stress (force per unit area) and strain (proportional deformation) in a 
material, that is, E = σ/ε. Pugh [122] introduced the proportion of bulk to shear modulus of 
polycrystalline phases (D = B/G) as a measure of ductility from the interpretation of the shear 
and bulk modulus given above. The value separating ductile and brittle materials is 1.75, i.e., if 
D > 1.75, the material behaves in a ductile manner, otherwise the material behaves in a brittle 
manner [68]. The Poisson ratio, ν, can be also utilized to measure the malleability of crystalline 
compounds, and is closely related to the Pugh’s ratio. The Poisson ratio is close to 0.33 (1/3) 
for ductile materials, while it is generally much less than 0.33 for brittle materials. As it can be 
seen for rutherfordine, soddyite, uranophane and schoepite we find ratios D of 0.92, 1.62, 1.62, 
and 1.49, respectively. Similarly, the calculated Poisson ratios, ν are 0.10, 0.24, 0.24, 0.23, respec-
tively. These values are smaller than 1.75 (D) and 0.33 (ν), corresponding to brittle materials. For 
comparison, studtite and metastudtite uranyl peroxide minerals were found to be ductile [68].

Property Rutherfordine Soddyite Uranophane-α Schoepite

B 17.97 58.41 59.20 34.53

G 19.47 36.00 36.52 23.17

E 42.92 89.60 90.88 56.80

ν 0.10 0.24 0.24 0.23

D 0.92 1.62 1.62 1.49

H 9.47 6.24 6.33 4.88

Table 2. Computed bulk, modulus, shear modulus, Young modulus, Poisson ratio, Pugh’s ratio, and Vickers hardness 
(B, G, E, ν, D, and H) for rutherfordine, soddyite, uranophane-α and schoepite [53–56].
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Hardness of these systems is computed according to a recently introduced empirical scheme 
[123], which correlates the Vickers hardness and the Pugh’s ratio (D = B/G). Vickers hardness, 
H, values of polycrystalline rutherfordine, soddyite, uranophane and schoepite are given 
in Table 2. Rutherfordine is a material characterized by a quite large hardness, 9.5, and the 
three other materials have intermediate hardness values 6.2, 6.2, and 4.8. For comparison, 
we obtained the hardness of studtite and metastudtite [52] using the elasticity data of Weck 
et al. [68]. These systems, characterized by much larger D ratios, have much smaller hardness 
(smaller than one). The two uranyl silicates studied, uranophane and soddyite, have very 
similar hardness values of about 6.2 [54, 55].

In order to assess the elastic anisotropy of these minerals, shear anisotropic factors were 
obtained. These factors provide a measure of the degree of anisotropy in the bonding between 
atoms in different planes and are very important to study the material durability [117, 121]. 
Shear anisotropic factors for the {100} (A1), {010} (A2), and {001} (A3) crystallographic planes 

Figure 4. Schoepite elastic properties as a function of the orientation of the applied strain: (a) compressibility; (b) young 
modulus; (c) shear modulus; and (d) Poisson ratio.
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were computed. For an isotropic crystal, the factors A1, A2, and A3 must be one, while any value 
smaller or greater than unity is a measure of the degree of elastic anisotropy possessed by the 
crystal. For example, for uranophane [55], the computed anisotropy factors were A1 = 0.44 < A2  
= 0.51 < A3 = 0.64 and, consequently, the {100} plane is shown to be the most anisotropic one.

The recently introduced universal anisotropy index [124], AU, is another important measure 
of crystal anisotropy. The departure of AU from zero defines the extent of single crystal anisot-
ropy and accounts for both the shear and the bulk contributions unlike all other existing 
anisotropy measures. Thus, AU represents a universal measure to quantify the single crystal  
elastic anisotropy. Rutherfordine, soddyite, uranophane, schoepite studtite and metastudtite 
are characterized by universal anisotropy indices of 8.81, 0.50, 0.81, 0.78, 2.17 and 1.44 [53–56, 
68]. Therefore, while rutherfordine is strongly anisotropic [53] and studtite and metastudtite 
have quite large anisotropies [68], soddyite, uranophane and schoepite have very small 
anisotropies [54–56] (AU = 0 corresponds to a perfectly isotropic crystal).

A set of fundamental physical properties may be estimated with the calculated elastic con-
stants. For example, VL and VT, the transverse and longitudinal elastic wave velocities in the 
polycrystalline materials may be determined in terms of the bulk and shear moduli [68]. The 
values obtained are presented in Table 3.

3.3.3. Equations of state

Unit cell volumes were determined by calculating the optimal structures at 17 different applied 
pressures between −1.0 and 12.0 GPa. The computed volume and pressure values were fitted to 
fourth-order Birch-Murnaghan [91] equations of state (EOS) by employing the EOSFIT 5.2 pro-
gram [92]. The values found for bulk modulus and its first and second derivatives, respectively, 
at the temperature of 0 K (B, B′, and B″) are given in Table 4. The corresponding values of the 

Velocity component Rutherfordine Soddyite Uranophane Schoepite Studtite Metastudtite

VT (km/s) 2.367 2.708 3.069 2.217 1.74 1.69

VL (km/s) 3.820 4.671 5.276 3.759 3.31 3.50

Table 3. Transverse and longitudinal elastic wave velocities of rutherfordine, soddyite, uranophane, schoepite studtite 
and metastudtite [53–56, 68].

Property Rutherfordine Soddyite Uranophane Schoepite

B (GPa) 19.03 ± 0.36 60.07 ± 0.67 59.96 ± 2.1 35.17 ± 0.39

B′ 15.34 ± 0.72 4.19 ± 0.60 2.29 ± 1.11 7.39 ± 0.40

B″ (GPa−1) −7.43 ± 1.32 0.25 ± 0.20 −0.25 ± 0.19 −1.31 ± 0.22

Table 4. Bulk modulus and its first and second derivatives at the temperature of 0 K (B, B′, and B″) for rutherfordine, 
soddyite, uranophane and schoepite [53–56] determined from fits to a fourth-order Birch-Murnaghan EOS.
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were computed. For an isotropic crystal, the factors A1, A2, and A3 must be one, while any value 
smaller or greater than unity is a measure of the degree of elastic anisotropy possessed by the 
crystal. For example, for uranophane [55], the computed anisotropy factors were A1 = 0.44 < A2  
= 0.51 < A3 = 0.64 and, consequently, the {100} plane is shown to be the most anisotropic one.

The recently introduced universal anisotropy index [124], AU, is another important measure 
of crystal anisotropy. The departure of AU from zero defines the extent of single crystal anisot-
ropy and accounts for both the shear and the bulk contributions unlike all other existing 
anisotropy measures. Thus, AU represents a universal measure to quantify the single crystal  
elastic anisotropy. Rutherfordine, soddyite, uranophane, schoepite studtite and metastudtite 
are characterized by universal anisotropy indices of 8.81, 0.50, 0.81, 0.78, 2.17 and 1.44 [53–56, 
68]. Therefore, while rutherfordine is strongly anisotropic [53] and studtite and metastudtite 
have quite large anisotropies [68], soddyite, uranophane and schoepite have very small 
anisotropies [54–56] (AU = 0 corresponds to a perfectly isotropic crystal).

A set of fundamental physical properties may be estimated with the calculated elastic con-
stants. For example, VL and VT, the transverse and longitudinal elastic wave velocities in the 
polycrystalline materials may be determined in terms of the bulk and shear moduli [68]. The 
values obtained are presented in Table 3.

3.3.3. Equations of state

Unit cell volumes were determined by calculating the optimal structures at 17 different applied 
pressures between −1.0 and 12.0 GPa. The computed volume and pressure values were fitted to 
fourth-order Birch-Murnaghan [91] equations of state (EOS) by employing the EOSFIT 5.2 pro-
gram [92]. The values found for bulk modulus and its first and second derivatives, respectively, 
at the temperature of 0 K (B, B′, and B″) are given in Table 4. The corresponding values of the 
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Table 3. Transverse and longitudinal elastic wave velocities of rutherfordine, soddyite, uranophane, schoepite studtite 
and metastudtite [53–56, 68].

Property Rutherfordine Soddyite Uranophane Schoepite

B (GPa) 19.03 ± 0.36 60.07 ± 0.67 59.96 ± 2.1 35.17 ± 0.39

B′ 15.34 ± 0.72 4.19 ± 0.60 2.29 ± 1.11 7.39 ± 0.40

B″ (GPa−1) −7.43 ± 1.32 0.25 ± 0.20 −0.25 ± 0.19 −1.31 ± 0.22

Table 4. Bulk modulus and its first and second derivatives at the temperature of 0 K (B, B′, and B″) for rutherfordine, 
soddyite, uranophane and schoepite [53–56] determined from fits to a fourth-order Birch-Murnaghan EOS.
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Figure 5. Experimental and calculated Raman spectra of soddyite mineral [54].

Figure 6. Experimental and theoretical Raman spectra of soddyite mineral. (A) Region: 3800–3000 cm−1; (B) region: 
1800–1300 cm−1; (C) region: 1400–700 cm−1; (D) region: 700–0 cm−1.
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bulk modulus of rutherfordine, soddyite, uranophane and schoepite obtained from the elastic 
constants are 17.97 ± 0.94, 58.41 ± 2.31, 59.20 ± 2.45 and 34.53 ± 2.28 GPa, respectively [53–56].

3.4. Vibrational Raman spectra

The vibrational Raman spectrum of soddyite was computed using DFPT and fully assigned 
[54]. In this section, we will provide a brief resume of the results obtained in order to show a 
representative example of the theoretical procedure used to characterize this mineral phase 
and assign the main bands in its Raman spectrum.

The Raman spectrum recorded in the wavenumber range of 3600–0 cm−1 is compared with the one 
obtained theoretically in Figure 5 and, as it may be observed, the calculated spectrum resembles 
closely the experimental one. The calculated spectrum was determined at ambient temperature 
using a laser radiation wavelength of 532 nm and a full width at half maximum of 20 cm−1.

The number of contributions of a given band in the experimental spectrum was obtained by 
using the second derivative method [42, 54]. In Figure 6, the experimental and theoretical 
Raman spectra are displayed in four zones: (A) OH stretching vibration region from 3800 to 
3000 cm−1 (Figure 6A); (B) H2O bending region 1800–1300 cm−1 (Figure 6B); (C) uranyl UO2

2+ 
and silicate SiO4

4− fundamental vibrations region from 1400 to 700 cm−1 (Figure 6C); and (D) 
low wavenumber region from 700 to 0 cm−1 (Figure 6D). The wavenumbers of both spectra 
and the computed intensities and assignments are given in Table 5. The Raman shift values 
and assignments performed by Frost et al. [45, 48] are also provided in the table. The results 
obtained in each region are described separately in what follows.

a. OH stretching vibrations region. In this region, we found one broad band with two 
contributing bands placed at about 3488 and 3398 cm−1. The corresponding calculated 
Raman shifts were 3443 and 3353 cm−1. These two bands were attributed to antisymmet-
ric and symmetric water stretching vibrations, respectively. Although the difference of 
computed and experimental shifts is quite large, it should be noted that the infrared OH 
stretching frequencies determined for isolated uranyl silicate clusters have much larger 
errors in comparison with the experimental data [125]. The low intensity band at wave-
number 3147 cm−1 is not found in the calculated spectrum. This band was also found 
by Frost et al. [46] at 3158 cm−1 and it is probably an overtone band (2ν1, ν1 = 1584 cm−1) 
[93, 94].

b. H2O bending vibration region. The wavenumber obtained for the water bending vibra-
tion, was found at about 1584 cm−1, comparable to the computed value of 1495 cm−1. Frost 
et al. [45, 48] encountered an additional shoulder placed at 1596 cm−1. This was ascribed to 
water absorbed on the sample surface [54].

c. Uranyl UO2
2+ and silicate SiO4

4− fundamental vibration regions. The experimental band at 
1024 cm−1, is associated to the one calculated at 995 cm−1, which was assigned to the SiO4

4− 
asymmetric stretching vibration. This vibration is shown in Figure 7A. Similar values for 
the wavenumber of this band were found by Frost et al. [45, 48] and Biwer et al. [126] (1025 
and 1018 cm−1, respectively). The most intense band in the observed Raman spectrum is 
located about 830 cm−1 and computed at 807 cm−1. This band was found to be placed at 824 
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bulk modulus of rutherfordine, soddyite, uranophane and schoepite obtained from the elastic 
constants are 17.97 ± 0.94, 58.41 ± 2.31, 59.20 ± 2.45 and 34.53 ± 2.28 GPa, respectively [53–56].

3.4. Vibrational Raman spectra

The vibrational Raman spectrum of soddyite was computed using DFPT and fully assigned 
[54]. In this section, we will provide a brief resume of the results obtained in order to show a 
representative example of the theoretical procedure used to characterize this mineral phase 
and assign the main bands in its Raman spectrum.

The Raman spectrum recorded in the wavenumber range of 3600–0 cm−1 is compared with the one 
obtained theoretically in Figure 5 and, as it may be observed, the calculated spectrum resembles 
closely the experimental one. The calculated spectrum was determined at ambient temperature 
using a laser radiation wavelength of 532 nm and a full width at half maximum of 20 cm−1.

The number of contributions of a given band in the experimental spectrum was obtained by 
using the second derivative method [42, 54]. In Figure 6, the experimental and theoretical 
Raman spectra are displayed in four zones: (A) OH stretching vibration region from 3800 to 
3000 cm−1 (Figure 6A); (B) H2O bending region 1800–1300 cm−1 (Figure 6B); (C) uranyl UO2

2+ 
and silicate SiO4

4− fundamental vibrations region from 1400 to 700 cm−1 (Figure 6C); and (D) 
low wavenumber region from 700 to 0 cm−1 (Figure 6D). The wavenumbers of both spectra 
and the computed intensities and assignments are given in Table 5. The Raman shift values 
and assignments performed by Frost et al. [45, 48] are also provided in the table. The results 
obtained in each region are described separately in what follows.

a. OH stretching vibrations region. In this region, we found one broad band with two 
contributing bands placed at about 3488 and 3398 cm−1. The corresponding calculated 
Raman shifts were 3443 and 3353 cm−1. These two bands were attributed to antisymmet-
ric and symmetric water stretching vibrations, respectively. Although the difference of 
computed and experimental shifts is quite large, it should be noted that the infrared OH 
stretching frequencies determined for isolated uranyl silicate clusters have much larger 
errors in comparison with the experimental data [125]. The low intensity band at wave-
number 3147 cm−1 is not found in the calculated spectrum. This band was also found 
by Frost et al. [46] at 3158 cm−1 and it is probably an overtone band (2ν1, ν1 = 1584 cm−1) 
[93, 94].

b. H2O bending vibration region. The wavenumber obtained for the water bending vibra-
tion, was found at about 1584 cm−1, comparable to the computed value of 1495 cm−1. Frost 
et al. [45, 48] encountered an additional shoulder placed at 1596 cm−1. This was ascribed to 
water absorbed on the sample surface [54].

c. Uranyl UO2
2+ and silicate SiO4

4− fundamental vibration regions. The experimental band at 
1024 cm−1, is associated to the one calculated at 995 cm−1, which was assigned to the SiO4

4− 
asymmetric stretching vibration. This vibration is shown in Figure 7A. Similar values for 
the wavenumber of this band were found by Frost et al. [45, 48] and Biwer et al. [126] (1025 
and 1018 cm−1, respectively). The most intense band in the observed Raman spectrum is 
located about 830 cm−1 and computed at 807 cm−1. This band was found to be placed at 824 
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and 828 cm−1 by Biwer et al. [126] and Frost et al. [48], respectively. As it can be observed 
in Figure 7B, it must be assigned to uranyl symmetric stretching vibrations. There are 
two very close bands in the theoretical spectrum at 874 and 873 cm−1. Frost et al. [48] also 
encountered a pair of bands in this region at 909 and 897 cm−1, which were assigned to 
uranyl symmetric stretching vibrations. From in our theoretical results, we believe that the 
band at 909 cm−1 should be associated to the computed band at 873 cm−1, which is assigned 
to symmetric stretching silicate vibrations. Frost et al. [48] also found a band at 791 cm−1, 
which was assigned it to water librational vibrations. This band, however, is close to the 
computed one at 799 cm−1, which is attributed to uranyl symmetric stretching vibrations.

d. Low wavenumber region. The theoretical bands placed at 610 and 579 cm−1 can be compared 
with the experimental one located at 592 cm−1. These bands are attributed to water libra-
tional vibrations (twisting and rocking, respectively). Frost et al. [48], assigned the 591 cm−1 

Band name Exp. Raman 
shift (cm−1) 
[this work]

Exp. Raman shift (cm−1)

Frost et al. [48] shift/
assignment

Calc. 
Raman 
shift 
(cm−1)

Irr. rep. 
(D2h)

Int. (Å4) Assignation

OH stretching region

a 3488 3516/ν(OH) 3443 B2g 3229.1 νa(OH)

b 3398 3414/ν(OH) 3353 Ag 27818.8 νs(OH)

c 3147 3158/ν(OH) — — — —

H2O bending region

d 1584 1584, 1596/δ(H2O) 1495 Ag 433.8 δ(H2O)

UO2
2+ and SiO4

4− fundamental vibrations region

e 1024 1025/νa(SiO4
4−) 995 B1g 750.1 νa(SiO4

4−)

— 909, 897/νa(UO2
2+) 874 B2g 53.5 νa(UO2

2+) + ρ(H2O)

873 Ag 583.7 νs(SiO4
4−)

f 830 838, 828, 820/νs(UO2
2+) 807 Ag 8054.0 νs(UO2

2+)

— 791/ ℓ (H2O) 799 B1g 387.3 νs(UO2
2+)

Low wavenumber region

g 592 591/δ(SiO4
4−) 610 Ag 168.6 t(H2O)

579 B2g 138.4 ρ(H2O)

h 460 459/δ(SiO4
4−) 431 Ag 323.3 δ(SiO4

4−)

i 289 310/— 299 B1g 54.8 Τ(SiO4
4−)

296 Ag 39.6 t(SiO4
4−)

295 B3g 308.3 ρ(SiO4
4−)

j 103 111, 102/— 50 B2g 54.5 δop(U-OH2)

Table 5.  Experimental and calculated Raman band wavenumbers, calculated intensities and assignments. Raman shifts 
and assignments performed by Frost et al. [48] are also given in the table.
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band to silicate bending vibrations. This last type of vibration is found in the computed 
spectrum at the wavenumber of 431 cm−1, which can be compared to the observed band 
at 460 cm−1. The wavenumbers of this band encountered by Biwer et al. [126] and Frost 
et al. [48], were 457 and 459 cm−1, respectively. While Biwer et al. [126], assigned this band 
to equatorial uranium-oxygen stretching vibrations, Frost et al. [48], ascribed it to silicate 
bending vibrations. The last assignment agrees with our assignment. The free silicate ion 
value for this vibration is 527 cm−1 [54]. The theoretical bands situated at 299, 296 and 
295 cm−1 were mainly assigned to a silicate translation the first, and the other ones to dif-
ferent silicate deformation vibrations (twisting and rocking). They can be compared to the 
observed band placed at 289 cm−1. Finally, the low wavenumber theoretical band situated 
at 50 cm−1 can be approximately mapped to the experimental shift of 103 cm−1.

4. Conclusions

The results presented in the published papers [42, 53–63] show that the theoretical computa-
tions are an extremely powerful tool in the research of uranium-containing compounds. Once 
the proper relativistic norm-conserving pseudopotential has been generated [42, 52], the struc-
tural information, the X-ray powder patterns, the vibrational Raman spectra and mechani-
cal and thermodynamic properties of these substances can be determined. This result is very 
significant because, if we have access to the adequate computational resources, very accurate 
results can be obtained despite the large size of the systems and the fact that the level of theory 
required to describe them is very high [64, 65]. The use of these methods is free of the difficul-
ties of the experimental methods associated to the radiotoxicity of these compounds requiring 
a careful management of the samples. Thus, the theoretical calculations allow the safe study of 
secondary phases of spent nuclear fuel in definitive disposal conditions. The natural samples 
used in the experimental studies are generally mixtures of several minerals and the theoretical 
treatment allows to study pure substances. Furthermore, the synthesis of these compounds is 
very complex and generally produces samples with low crystallinity.

Figure 7. Pictures of the vibrational motions of the atoms is some Raman active normal modes of soddyite [54].
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and 828 cm−1 by Biwer et al. [126] and Frost et al. [48], respectively. As it can be observed 
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two very close bands in the theoretical spectrum at 874 and 873 cm−1. Frost et al. [48] also 
encountered a pair of bands in this region at 909 and 897 cm−1, which were assigned to 
uranyl symmetric stretching vibrations. From in our theoretical results, we believe that the 
band at 909 cm−1 should be associated to the computed band at 873 cm−1, which is assigned 
to symmetric stretching silicate vibrations. Frost et al. [48] also found a band at 791 cm−1, 
which was assigned it to water librational vibrations. This band, however, is close to the 
computed one at 799 cm−1, which is attributed to uranyl symmetric stretching vibrations.

d. Low wavenumber region. The theoretical bands placed at 610 and 579 cm−1 can be compared 
with the experimental one located at 592 cm−1. These bands are attributed to water libra-
tional vibrations (twisting and rocking, respectively). Frost et al. [48], assigned the 591 cm−1 
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band to silicate bending vibrations. This last type of vibration is found in the computed 
spectrum at the wavenumber of 431 cm−1, which can be compared to the observed band 
at 460 cm−1. The wavenumbers of this band encountered by Biwer et al. [126] and Frost 
et al. [48], were 457 and 459 cm−1, respectively. While Biwer et al. [126], assigned this band 
to equatorial uranium-oxygen stretching vibrations, Frost et al. [48], ascribed it to silicate 
bending vibrations. The last assignment agrees with our assignment. The free silicate ion 
value for this vibration is 527 cm−1 [54]. The theoretical bands situated at 299, 296 and 
295 cm−1 were mainly assigned to a silicate translation the first, and the other ones to dif-
ferent silicate deformation vibrations (twisting and rocking). They can be compared to the 
observed band placed at 289 cm−1. Finally, the low wavenumber theoretical band situated 
at 50 cm−1 can be approximately mapped to the experimental shift of 103 cm−1.

4. Conclusions

The results presented in the published papers [42, 53–63] show that the theoretical computa-
tions are an extremely powerful tool in the research of uranium-containing compounds. Once 
the proper relativistic norm-conserving pseudopotential has been generated [42, 52], the struc-
tural information, the X-ray powder patterns, the vibrational Raman spectra and mechani-
cal and thermodynamic properties of these substances can be determined. This result is very 
significant because, if we have access to the adequate computational resources, very accurate 
results can be obtained despite the large size of the systems and the fact that the level of theory 
required to describe them is very high [64, 65]. The use of these methods is free of the difficul-
ties of the experimental methods associated to the radiotoxicity of these compounds requiring 
a careful management of the samples. Thus, the theoretical calculations allow the safe study of 
secondary phases of spent nuclear fuel in definitive disposal conditions. The natural samples 
used in the experimental studies are generally mixtures of several minerals and the theoretical 
treatment allows to study pure substances. Furthermore, the synthesis of these compounds is 
very complex and generally produces samples with low crystallinity.

Figure 7. Pictures of the vibrational motions of the atoms is some Raman active normal modes of soddyite [54].
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The theoretical solid-state methods may be used, in conjunction with experimental tech-
niques, as an interpretative tool of the experimental structural and vibrational data or as 
a predictive tool to determine the structural, vibrational, mechanical and thermodynamic 
properties of these substances. The understanding of the structures of these compounds 
is very important itself to characterize them and to evaluate the possible incorporation of 
transuranic elements and fission products into the structures of uranyl minerals [8, 26–41]. 
The assignment of the main bands in the vibrational spectra of these compounds, per-
formed usually by the experimentalist in an empirical way, can be made in a rigorous form 
since the theoretical methods produce microscopic scale views of the motion of the atoms 
in the corresponding normal vibrational states. In the systems studied the theoretical cal-
culations has permitted the correct assignment of the bands of the full Raman spectrum for 
the first time. The main bands used to fingerprint these minerals were put into correspon-
dence with specific structural data.

The calculated mechanical properties obtained for rutherfordine, soddyite and uranophane 
and schoepite minerals [53–56] have demonstrated the mechanical stability of their structures. 
Besides, a large amount of relevant mechanical data of these minerals were reported, includ-
ing bulk modulus and its derivatives, elastic coefficients, shear and Young moduli, Poisson 
ratios, ductility and hardness indices, and elastic anisotropy measures. Their equations of 
state where also determined by fitting lattice volumes and pressures to a fourth order Birch-
Murnaghan equation of state. The importance of the availability of these mechanical data 
cannot be overlooked. The large volume expansion of the SNF resulting from SNF corrosion 
during storage [127, 128] will cause a very large stress upon the waste matrix and therefore 
the mechanical behavior of the waste components is extremely relevant.
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1. Introduction

Large-scale industrialization and urbanization with greater consumption of mineral and energy
resources since the “Industrial Revolution” have greatly depleted high-grade resources available
at shallow depths of crust [1–3]. Therefore, more intensive search for these finite resources is
necessary at greater depths and for lower grades besides optimal mining, processing, and
marketing in order to maintain sustainable development of economy and society and to have
higher national growth. Mineral resources include high-grade marketable ores and/or associated
low-grade ores which require blending and/or beneficiation to market the mined and/or
processed products at profit [4, 5].

Rocks and ores comprise of multielement/multimineral materials containing more than three
constituents (C > 3), some of which need separation and/or beneficiation to remove
nonmarketable gangue minerals and waste materials [1, 6]. We are interested in static charac-
terization (invariant in time) of the heterogeneous solids (rocks/ores) which can be achieved
through sampling of adequate material (>representative elementary volume (REV) [7]) from
the rock/ore, where REV means the minimum volume/weight that represents elementary
volume. Thus, integration of any random variable (fractional constituent, x with 0 < x < 1) over
the REV provides stable and unbiased statistics representing the characteristics of an equiva-
lent statistically isotropic homogeneous sample. The probability density functions (PDFs)
corresponding to the random fractional constituents (such as minerals, molecules, elements,
or isotopes) of the rock/ore are having a binomial distribution for major and minor constituents
which reduces to a Poisson distribution for trace constituents. Realistic and accurate PDFs are
essential for optimal exploration, mining, mine planning, processing, blending, beneficiation,
and marketing of the concerned mineral resource. In contrast to rocks and ores, mineral
geochemistry involves sampling of (homogeneous) minerals which would be much smaller in
volume than REV for geochemical analysis and inference [8].

Major, minor, or trace fractional constituents (x; 0 < x < 1) of rocks and ores are Gaussianized
using the log(x) pre-transformation since 1954 as advocated by Ahrens [9]. However, this log
(x) pre-transformation is not always valid for major constituents and not necessarily indepen-
dent for these constituents; hence, a slight modification introducing multiplicative random
errors and independence of transformed random constituents, such as log(x/(1 � x)), would
be useful for all three levels of constituents [10, 11]. Rocks and ores usually contain 5–6
minerals (some at major and minor and a few at trace levels) and about 10–12 major elements
and a large number of trace elements, which can be explained by thermodynamic principles
for closed systems having 2 degrees of freedom. However, open systems have a larger number
of degrees of freedom and hence a larger number of phases (minerals).

From statistical viewpoint, the main problems of geochemical analysis and inference of such
data (without pre-transformation) are:

• Constituents are usually weight, volume, area, or length fractions but not numbers as
needed in statistics and probability.
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• Weight fractions are not necessarily equal to volume, area, or length fractions (as given in
stereology textbooks) since rocks/ores contain finite pore spaces.

• Statistics obtained in 3D space are not equal to corresponding statistics on length or
number basis unless the total measure tends to be infinite (but sample size is finite).

• Probability distributions of constituents are not Gaussian for statistical hypotheses tests
and inferences.

Four additional and more complex problems include:

i. Constant sum or closure: This constraint on fractional constituents induces spurious
negative correlations among the constituents within samples which confound statistical
and geochemical inference.

ii. Data matrix has a rank (C-1) and is not full rank (C) to have a unique inverse.

iii. Fractional constituents are not independent as required for parameter (such as mean and
variance of order); two are finite and hence useful for parameter estimation for mean and
variance, and all higher-order cumulants are zeros and hence dropped.

iv. Parameter estimation, hypotheses tests, and risk analyses are simple and straightforward
on Gaussian data.

Mineral resources are non-replaceable national assets which should be optimally utilized for
sustainable economic growth, social benefits, and improvements in health and life quality without
jeopardizing present ecology/environment for future growth. Mineral resources are characteristi-
cally nonrenewable and form prime assets for stable economy and quality of life [2]. Optimal
extraction and marketing strategies must be evolved under dynamic conditions of high risks in
estimation of reserves and grades of marketable as well as lean-grade resources for optimizing the
net profits at present value under highly fluctuating pricing and marketing conditions and also
resource augmentation through exploration efforts and/or technological substitutions and proper
waste disposals and of learning and updating. The main aim of the mining industry is to
maximize the accrued profits using the concept of net present value (NPV) while simultaneously
minimizing damage to ecology and environment, and improving the social and health needs of
the local community seems essential to achieve conservation of high-grade ores and sustainable
development. Capital must be generated at a faster rate than deployment for new discoveries or
for R&D efforts for technological substitutions, and the accumulated capital thus helps in indus-
trial and social growths and safeguards and improves life quality of people [1, 11–14].

Mineral resources not only comprise high-grade directly marketable ores but also contain
considerable lean-grade nonmarketable ores as well as waste materials of little economic value
which must be suitably treated and properly disposed to protect ecology/environment. Min-
eral deposits, including high- and/or lean-grade resources, are generally finite nonrenewable
resources which will be exhausted under constant/varying rates of extraction in some finite
time, called terminal time to exhaustion, T. This terminal time can be extended by augmentation
by exploration, blending, and/or beneficiation of lean ores and technological substitutions but
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ii. Data matrix has a rank (C-1) and is not full rank (C) to have a unique inverse.

iii. Fractional constituents are not independent as required for parameter (such as mean and
variance of order); two are finite and hence useful for parameter estimation for mean and
variance, and all higher-order cumulants are zeros and hence dropped.

iv. Parameter estimation, hypotheses tests, and risk analyses are simple and straightforward
on Gaussian data.

Mineral resources are non-replaceable national assets which should be optimally utilized for
sustainable economic growth, social benefits, and improvements in health and life quality without
jeopardizing present ecology/environment for future growth. Mineral resources are characteristi-
cally nonrenewable and form prime assets for stable economy and quality of life [2]. Optimal
extraction and marketing strategies must be evolved under dynamic conditions of high risks in
estimation of reserves and grades of marketable as well as lean-grade resources for optimizing the
net profits at present value under highly fluctuating pricing and marketing conditions and also
resource augmentation through exploration efforts and/or technological substitutions and proper
waste disposals and of learning and updating. The main aim of the mining industry is to
maximize the accrued profits using the concept of net present value (NPV) while simultaneously
minimizing damage to ecology and environment, and improving the social and health needs of
the local community seems essential to achieve conservation of high-grade ores and sustainable
development. Capital must be generated at a faster rate than deployment for new discoveries or
for R&D efforts for technological substitutions, and the accumulated capital thus helps in indus-
trial and social growths and safeguards and improves life quality of people [1, 11–14].

Mineral resources not only comprise high-grade directly marketable ores but also contain
considerable lean-grade nonmarketable ores as well as waste materials of little economic value
which must be suitably treated and properly disposed to protect ecology/environment. Min-
eral deposits, including high- and/or lean-grade resources, are generally finite nonrenewable
resources which will be exhausted under constant/varying rates of extraction in some finite
time, called terminal time to exhaustion, T. This terminal time can be extended by augmentation
by exploration, blending, and/or beneficiation of lean ores and technological substitutions but
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is still finite time. Here we consider resource augmentation through blending and/or benefici-
ation of lean-grade ores that cannot otherwise be marketed and create ecological hazards, and
these techniques are much less risky than exploration efforts or R&D effort for substitutions.
Hence, it would be optimal to extract resources with suitable treatments of blending and/or
beneficiation of lean-grade ores that are inevitably associated with ore deposits. However, ore
extraction rates and subsequent blending/beneficiation processes must be dynamically opti-
mized, and the net present value of resource is maximized to provide a stable and viable
industrial growth with benefits to all including mine owners, national and state governments,
and public at large. Therefore, proper planning, extraction, and marketing policies would
insure maximal national and social growths as well as sustainable life quality of people [2, 3, 5].

Mineral resources are considered to be national or state government properties and are usually
allocated/leased to national and/or private parties for a fixed time period for extraction of ores.
Ill effects of such allocations (such as many scams) can be overcome through various regula-
tions, taxations, and royalty schemes. It is suggested that heavy penalty clauses must be
included in these regulations so that parties involved would not try to break these laws.
Market complexities do induce high fluctuations in future prices and costs and involve great
risks in all mining operations. Risk-aversionist mine owners and mineral traders may plead for
non optimal rapid depletion of valuables by nonrenewable high-grade ores. Hence, time paths
generated by resource markets are not necessarily at equilibrium, and these paths are generally
not the most efficient or optimal paths. Therefore, analyses of these past price and demand
data must be performed with much care and foresight to provide sound decisions.

Policy measures are basic to operation of economic and market systems since they could
reduce market volatility and increase accuracy of future expectations. Better forecast tech-
niques such as ARIMA (p, d, q) for nonseasonal and SARIMA (P, D, Q) for seasonal time series
data [10, 15] and widespread dissemination of these forecasts would be most useful to avert
risks. Reduction of government secrecy about future intentions/policies and maintaining
longer-term economic policies would yield better stability and benefits. When global price
becomes low, mineral exporters should be adequately compensated for their loss and/or be
provided with liberal credit facilities. If the terminal date of exhaustion, T, of a mine be known
(or estimable with accuracy), then optimal extraction rate/depletion policy can be achieved for
a closed economy with no import/export. Optimal rate of resource depletion depends on
factors, such as discount rate, elasticity of marginal utility and substitute, and productivity of
substitutes. But the generated model would still be extremely rough as accurate estimates of
most of these technological parameters are not available.

Resource allocation for R&D activity to develop natural/technological substitute materials for
scarce and exhaustible mineral resources is useful and very important. But, we know that
finding a substitute is a random process where the date of invention is extremely uncertain
(purely random) and may take as much as 20 years (lifetime of a mine). Hence, total cost of
R&D may become very high, especially for small mines, and they should concentrate on small
technological researches to improve mining, blending, beneficiation, marketing, etc. rather
than to find technological substitutes. In any case, postponing intensive R&D activities to the
last 5/6 years of a mine would be economically viable and prudent especially in a developing
economy as India [14].
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Although there exists extensive but finite low-grade resources which can be upgraded to
marketable products by suitable blending and/or beneficiation techniques, this only extends
life of mine which will finally be exhausted. The prime high-grade deposits are much less
available and will be depleted in finite terminal time T (say, maximum of 70 years). Therefore,
it would be prudent to estimate optimal rates of extraction, so that the net present value after
discounting of the mine is maximized in the long run. Even if technological substitutes can be
found in the future, the date of availability and amounts of product are random variables with
unknown probability densities for any accurate estimation of their parameters [6, 16].

Optimal decisions are necessary at all stages of mining and marketing operations which are
listed as follows:

a. Mining stage: Methodology adopted; mine plans in 3D based on the lowest mineable
assay surfaces and associated risk factors; blocking of high-grade, lean-grade, and waste
materials; dynamic extraction rates; horizontal and vertical extensions

b. Blending and beneficiation: Optimal lowest crushing and beneficiation sizes needed for
blending and beneficiation [17]; identification of high-grade, lean-grade, and waste blocks
for optimal mining and storing, etc.; conservation of high-grade ore blocks

c. Waste management: Wastes develop at mining, blending, and beneficiation stages;
optimal treatment and safe disposal avoiding health hazards and damage to ecology

d. Marketing: Optimal classes of marketable ores by suitable mix of high-grade and lean-
grade ores; future marketing of lean ores in situ or in dumps using blending and/or ore
beneficiation

Thus, mining of nonrenewable resources (metallic, nonmetallic, industrial rocks, gems, etc.)
are highly complex nonlinear risky dynamic processes and not yet completely understood or
solved. The main problems are (i) how to allocate exhaustible resource so as to make its
marginal social value equal for all uses and constant over time and (ii) how government
should plan and conduct project exercises to achieve these goals. We highlight the utilization
of nonmarketable lean ores by optimal blending and/or beneficiation techniques which would
maximize economic growth, improve social benefits, and preserve ecology and environment
(see Refs. [2, 8, 17–19] for more details).

2. Mathematical and statistical theory

2.1. Probability space and distribution for fractional constituents

Fractional constituents (x; 0 < x < 1) belong to a C-dimensional positive real space and cannot
be viewed geometrically if the number of constituents, C, is greater than three which is most
frequent in rocks and ores. Aitchison [7] and his coworkers [20] have proposed that fractional
constituents belong to a C-dimensional Simplex. They have used rather complex pre-
transforms such as log ratio (lr), centered log ratio (clr), and isometric log ratio (ilr) to
Gaussianize the PDFs for statistical analyses. However, Carranza [21] has shown that these
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is still finite time. Here we consider resource augmentation through blending and/or benefici-
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generated by resource markets are not necessarily at equilibrium, and these paths are generally
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Policy measures are basic to operation of economic and market systems since they could
reduce market volatility and increase accuracy of future expectations. Better forecast tech-
niques such as ARIMA (p, d, q) for nonseasonal and SARIMA (P, D, Q) for seasonal time series
data [10, 15] and widespread dissemination of these forecasts would be most useful to avert
risks. Reduction of government secrecy about future intentions/policies and maintaining
longer-term economic policies would yield better stability and benefits. When global price
becomes low, mineral exporters should be adequately compensated for their loss and/or be
provided with liberal credit facilities. If the terminal date of exhaustion, T, of a mine be known
(or estimable with accuracy), then optimal extraction rate/depletion policy can be achieved for
a closed economy with no import/export. Optimal rate of resource depletion depends on
factors, such as discount rate, elasticity of marginal utility and substitute, and productivity of
substitutes. But the generated model would still be extremely rough as accurate estimates of
most of these technological parameters are not available.

Resource allocation for R&D activity to develop natural/technological substitute materials for
scarce and exhaustible mineral resources is useful and very important. But, we know that
finding a substitute is a random process where the date of invention is extremely uncertain
(purely random) and may take as much as 20 years (lifetime of a mine). Hence, total cost of
R&D may become very high, especially for small mines, and they should concentrate on small
technological researches to improve mining, blending, beneficiation, marketing, etc. rather
than to find technological substitutes. In any case, postponing intensive R&D activities to the
last 5/6 years of a mine would be economically viable and prudent especially in a developing
economy as India [14].
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materials; dynamic extraction rates; horizontal and vertical extensions
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blending and beneficiation [17]; identification of high-grade, lean-grade, and waste blocks
for optimal mining and storing, etc.; conservation of high-grade ore blocks

c. Waste management: Wastes develop at mining, blending, and beneficiation stages;
optimal treatment and safe disposal avoiding health hazards and damage to ecology

d. Marketing: Optimal classes of marketable ores by suitable mix of high-grade and lean-
grade ores; future marketing of lean ores in situ or in dumps using blending and/or ore
beneficiation

Thus, mining of nonrenewable resources (metallic, nonmetallic, industrial rocks, gems, etc.)
are highly complex nonlinear risky dynamic processes and not yet completely understood or
solved. The main problems are (i) how to allocate exhaustible resource so as to make its
marginal social value equal for all uses and constant over time and (ii) how government
should plan and conduct project exercises to achieve these goals. We highlight the utilization
of nonmarketable lean ores by optimal blending and/or beneficiation techniques which would
maximize economic growth, improve social benefits, and preserve ecology and environment
(see Refs. [2, 8, 17–19] for more details).

2. Mathematical and statistical theory

2.1. Probability space and distribution for fractional constituents

Fractional constituents (x; 0 < x < 1) belong to a C-dimensional positive real space and cannot
be viewed geometrically if the number of constituents, C, is greater than three which is most
frequent in rocks and ores. Aitchison [7] and his coworkers [20] have proposed that fractional
constituents belong to a C-dimensional Simplex. They have used rather complex pre-
transforms such as log ratio (lr), centered log ratio (clr), and isometric log ratio (ilr) to
Gaussianize the PDFs for statistical analyses. However, Carranza [21] has shown that these
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complex pre-transformations still do not solve the rank problem (rank is C-1 instead of C) and
inherent spurious negative correlations among the constituents within any sample. This is due
to the fact that fractional constituents (x; 0 < x < 1) belong to interior points of the simplex but
not to apexes, hyper-edges, hyperplanes, and some sub-compositional hyperplanes of this
C-dimensional simplex [6, 11].

From measure theory, fractional constituents (x; 0 < x < 1) belong to the open interval (0, 1) and
have a binomial/Poisson (not Gaussian) distribution excluding the non-admissible points 0
and 1 on this line. Since the fractional constituents are averaged values over the sampled REV
and REV is much larger than the specific constituent, this random variable (rv) x can be
considered to be a continuous rather than a discrete binomial/Poisson rv. It is absolutely
necessary; otherwise, the rock/ore is not a C-dimensional simplex. In such a system, additive
probability measure is not applicable, and a multiplicative probability model (odds ratio)
leading to a log-Gaussian or lognormal model (as proposed by Ahrens in [9]) would be
appropriate with some modification such that the log (odds ratios) of the constituents becomes
independent and Gaussian (homogeneous variances).The simple modification for log (odds) as
proposed in Sahu [10, 11, 16] is the following arguments:

If x is lognormal with mean (μ) and variance (σ2), then its complement (1 � x) is also a
fractional constituent. Hence, it would also follow lognormal distribution using theory of
linear addition (or subtraction) of Gaussian random variables to be Gaussian (that is sums of
Gaussian pdfs are closed/remain Gaussian). Therefore, we obtain log(x/(1 � x)) to be Gauss-
ian, and this pre-transformation involves only one constituent (x) of the rock/ore, which
makes log(x/(1 � x)) transform to be independent of all other constituents in the rock/ore
[4, 10, 11, 16].

This log(x/(1 � x)) pre-transformation Gaussianizes the pdfs of fractional concentrations while
simultaneously eliminating the other four crucial drawbacks (i)–(iv) of binomial/Poisson
distributions as listed earlier. Mathematical proof based on measure-theoretic analysis is
given by Le Cam [22], Le Cam and Yang [23], and Sahu [11]. The author and his many students
have used the log(x/(1 � x)) pre-transformation to Gaussianize fractional concentrat-
ions (x) in geochemistry and apply to exploration, estimation, modeling, and hypothesis test-
ing for several Indian ore deposits including those of gold, iron ores, lead-zinc, copper,
phosphate, etc.

However, other log ratios such as lr, central-lr, and isometric-lr, proposed by Aitchison [7, 20],
are not independent since the denominator constituent includes the numerator constituent as
well, and, hence, the rank of data matrix still remains (C-1) or less (and not full rank of C, as is
needed for its unique inverse) (see also [16, 21]).

2.2. Optimal extraction rates

2.2.1. General considerations

An exhaustible mineral deposit may be characterized by initial reserve, S0, at present time, t0,
and rate of extraction, Rt, (t > o), at time t (t>t0). The reserve at time t is St, given by
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St ¼ S0 �
ðt

0

Rt dt (1)

Thus, the definite integral of Rt dtð Þ from 0 to t is less than the initial reserve, So (2)

Therefore,dSt=dt ¼ �Rt,with S0 known and St >¼ 0: (3)

Eq. 2 gives in lim(t- -> 0); Rt=0. However, Rt cannot be predicted as present market price
fluctuates over time and market price controls both economic extraction rates to keep profits
positive and the terminal time to exhaustion, T, of mine. Assuming Rt to be constant (R) over
time T, then Eq. (1) gives

R ¼ S0=T,where St ¼ 0 i:e:;mine reached exhaustionð Þ: (4)

In mining and many other industries, usually time is discretized to mainly years but further
into quarters, months, etc. Let price at time t be pt and rate of return/interest denoted as r. Price
at time t + u,

p tþuð Þ ¼ 1þ rt u pt
� �

for r tð Þ > 0: (5)

In limit u tending to 0, we have a support price of:

dpt=dt
� �

=pt ¼ rt (6)

However, Eq. (6) does not include costs of mining, transportation, and marketing and, hence,
is not useful in practice. We must maximize the net present value of property as.

PtSt ¼ R τ exp : �r τ� tð Þð Þ dt,�
(7)

where PR
t is spot price, pt is initial reserve stock, and R(τ) is extraction probability subject to

the condition:

ð∞

t

R τð Þd τð Þf g ¼ St: (8)

If R*(τ) is the optimal (maximal) solution to Eq. 6, then.

dpt=dt
� �

St þ pt dSt=dtð Þ ¼ rptSt � PR
t Rt

∗Þ: (9)

From Eq. 7 we get St = �R*, and hence we can write.

dpt=dt� rpt
� � ¼ pt–P

R
t

� �
Rt

∗=Stð Þ: (10)

Under competitive market stock price is equal to flow price (market equilibrium),

pt = PR
t , and Eq. (10) yields (dpt/dt)/ pt = r which is the Hotelling Rule [24].
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makes log(x/(1 � x)) transform to be independent of all other constituents in the rock/ore
[4, 10, 11, 16].

This log(x/(1 � x)) pre-transformation Gaussianizes the pdfs of fractional concentrations while
simultaneously eliminating the other four crucial drawbacks (i)–(iv) of binomial/Poisson
distributions as listed earlier. Mathematical proof based on measure-theoretic analysis is
given by Le Cam [22], Le Cam and Yang [23], and Sahu [11]. The author and his many students
have used the log(x/(1 � x)) pre-transformation to Gaussianize fractional concentrat-
ions (x) in geochemistry and apply to exploration, estimation, modeling, and hypothesis test-
ing for several Indian ore deposits including those of gold, iron ores, lead-zinc, copper,
phosphate, etc.

However, other log ratios such as lr, central-lr, and isometric-lr, proposed by Aitchison [7, 20],
are not independent since the denominator constituent includes the numerator constituent as
well, and, hence, the rank of data matrix still remains (C-1) or less (and not full rank of C, as is
needed for its unique inverse) (see also [16, 21]).

2.2. Optimal extraction rates

2.2.1. General considerations

An exhaustible mineral deposit may be characterized by initial reserve, S0, at present time, t0,
and rate of extraction, Rt, (t > o), at time t (t>t0). The reserve at time t is St, given by
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time T, then Eq. (1) gives
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dpt=dt
� �

=pt ¼ rt (6)
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The price of mineral resource is expected to rise in the future with increasing population and
consequent increase in demand as compared to the interest rate, r; the value of reserve (or
stock) or maximum present value of sales is independent of the actual extraction policy
provided the entire stock is exhausted over time. Thus Rt* is not time-invariant (constant) but
varies with time t. Static and dynamic optimization of extraction rates, Rt*, are discussed in
Sahu [2, 14], respectively.

2.3. Socially managed exhaustible resource

Let R = D(p) be the market demand decline curve for resource flow. Since dD(p)/dt is negative,
we can invert to obtain p = D�R= B(R) for convenience. The gross rate of consumer surplus
at R is.

ÐR
0
B dR=dtð Þ(d(dR/dt)). Planning board must maximize the present discounted value at an

extraction rate Rt(t > = 0) in order to maximize the integral:

ðt

0

e�rt SRt0 B dR=dtð Þ d dR=dtð Þ� �
dt, (11)

subject to the constraints St = S0 –
Ðt
0
Rτdτ and Rt and St both greater than and equal to 0 for t > = 0.

A feasible extraction policy (rate of extraction being positive at all times) is efficient if and only

if S0 =
Ð∞
0
Rtdt. We obtain the optimal solution as (dpt/dt)/pt = r. As desired, this efficient optimal

extraction policy satisfies the condition of S0 =
Ð∞
0
Rtdt.

2.4. Reserve exhaustion at infinite time horizon

Assuming demand is linearly increasing with time, so pt = A– B.Rt, where A and B both > 0.
As long as reserves are positive, market equilibrium price holds and spot price will be
given by.

pt ¼ p0e
rt: (12)

Then, we obtain Rt = A/B – [( p0e
rt)/B], which gives Rt = 0 for pt> = A.

Reserve will be exhausted at future time. Time of exhaustion, T, will be at A where demand
falls to zero.
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Initial price p0* is given by p0*e
rt = A, and then, exhaustion time, T, is obtained from the relation:

ðT

0

TRtdt ¼
ðT

0

A=Bð Þ– p0∗e
rt=B

� �� �
dt ¼ S0: (13)

The above analyses show that mineral resources (including lean-grade ores) are exhaustible.

2.5. Independent versus dependent sample data

Natural phenomena are very complex and may not follow simpler mathematical and probabi-
listic assumptions necessary for analyses, estimation, tests, and decisions needed by scientists,
technologists, and managers. For example, rocks and ores in the crust are heterogeneous,
anisotropic, and inelastic materials at different scales such as microscopic, mesoscopic (hand
specimens), and megascopic (outcrops) levels which make the sample size (REV) vary
according to the scale of heterogeneity.

Geological processes are often nonlinear which needs complex linearization pre-transformations
for mathematical and statistical analyses. Data are often non-Gaussian, need Gaussian/normal
prior transform for simpler univariate (scalars) or multivariate (vectors) statistical analyses, are
temporally/spatially dependent, and need complex time series analyses (wavelet and/or
geostatistical analyses). Because of these complexities and of space constraints, these advanced
methods are omitted here, but we give a few summary tables for guiding the readers.

More details on the nonlinear, stationary, nonstationary, and seasonal time series at time-,
frequency-(Fourier), and time-frequency/wavelet domains are given in Sahu [15]. Whereas
nonlinear models are in use for several hundreds of years, time series models are in use for
about 100 years and were popularized by Box and Jenkins in 1970 and 1984, but wavelet
models are currently very popular [25] (Tables 1 and 2).

Statistics Fourier transform Wavelet transform

Variance Frequency spectrum Wavelet spectrum

VAR (E(X2)) S(X) (w) = X X* = (|X|)2 W(X)(s, τ) = (|X|)2

Covariance Cross-spectrum Wavelet cross-spectrum

COV (E(XY)) S(X,Y) (ω) = XY* W(X,Y) (s,τ) = XY*

Correlation coefficient Coherency Wavelet coherency

r = E(XY)/{E(X*2) E(Y*2)} γ = S(XY)(ω)/Sq.rt.S(X)(ω)S(Y)(ω) Ґ = W(XY)(s,τ)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W X s; τð ÞW Yð Þ s, τð Þðp

Coeff. of determination Coherence Wavelet coherence

r2; r as above γ 2; γ defined as above Ґ2; Ґ as defined above

Table 1. Equivalent statistics for statistical (independent samples), Fourier (time series) (dependent samples), and
wavelet analyses (dependent samples).
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The price of mineral resource is expected to rise in the future with increasing population and
consequent increase in demand as compared to the interest rate, r; the value of reserve (or
stock) or maximum present value of sales is independent of the actual extraction policy
provided the entire stock is exhausted over time. Thus Rt* is not time-invariant (constant) but
varies with time t. Static and dynamic optimization of extraction rates, Rt*, are discussed in
Sahu [2, 14], respectively.

2.3. Socially managed exhaustible resource

Let R = D(p) be the market demand decline curve for resource flow. Since dD(p)/dt is negative,
we can invert to obtain p = D�R= B(R) for convenience. The gross rate of consumer surplus
at R is.

ÐR
0
B dR=dtð Þ(d(dR/dt)). Planning board must maximize the present discounted value at an

extraction rate Rt(t > = 0) in order to maximize the integral:

ðt

0

e�rt SRt0 B dR=dtð Þ d dR=dtð Þ� �
dt, (11)

subject to the constraints St = S0 –
Ðt
0
Rτdτ and Rt and St both greater than and equal to 0 for t > = 0.

A feasible extraction policy (rate of extraction being positive at all times) is efficient if and only

if S0 =
Ð∞
0
Rtdt. We obtain the optimal solution as (dpt/dt)/pt = r. As desired, this efficient optimal

extraction policy satisfies the condition of S0 =
Ð∞
0
Rtdt.

2.4. Reserve exhaustion at infinite time horizon

Assuming demand is linearly increasing with time, so pt = A– B.Rt, where A and B both > 0.
As long as reserves are positive, market equilibrium price holds and spot price will be
given by.

pt ¼ p0e
rt: (12)

Then, we obtain Rt = A/B – [( p0e
rt)/B], which gives Rt = 0 for pt> = A.

Reserve will be exhausted at future time. Time of exhaustion, T, will be at A where demand
falls to zero.
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Initial price p0* is given by p0*e
rt = A, and then, exhaustion time, T, is obtained from the relation:

ðT

0

TRtdt ¼
ðT

0

A=Bð Þ– p0∗e
rt=B

� �� �
dt ¼ S0: (13)

The above analyses show that mineral resources (including lean-grade ores) are exhaustible.

2.5. Independent versus dependent sample data

Natural phenomena are very complex and may not follow simpler mathematical and probabi-
listic assumptions necessary for analyses, estimation, tests, and decisions needed by scientists,
technologists, and managers. For example, rocks and ores in the crust are heterogeneous,
anisotropic, and inelastic materials at different scales such as microscopic, mesoscopic (hand
specimens), and megascopic (outcrops) levels which make the sample size (REV) vary
according to the scale of heterogeneity.

Geological processes are often nonlinear which needs complex linearization pre-transformations
for mathematical and statistical analyses. Data are often non-Gaussian, need Gaussian/normal
prior transform for simpler univariate (scalars) or multivariate (vectors) statistical analyses, are
temporally/spatially dependent, and need complex time series analyses (wavelet and/or
geostatistical analyses). Because of these complexities and of space constraints, these advanced
methods are omitted here, but we give a few summary tables for guiding the readers.

More details on the nonlinear, stationary, nonstationary, and seasonal time series at time-,
frequency-(Fourier), and time-frequency/wavelet domains are given in Sahu [15]. Whereas
nonlinear models are in use for several hundreds of years, time series models are in use for
about 100 years and were popularized by Box and Jenkins in 1970 and 1984, but wavelet
models are currently very popular [25] (Tables 1 and 2).

Statistics Fourier transform Wavelet transform

Variance Frequency spectrum Wavelet spectrum

VAR (E(X2)) S(X) (w) = X X* = (|X|)2 W(X)(s, τ) = (|X|)2

Covariance Cross-spectrum Wavelet cross-spectrum

COV (E(XY)) S(X,Y) (ω) = XY* W(X,Y) (s,τ) = XY*

Correlation coefficient Coherency Wavelet coherency

r = E(XY)/{E(X*2) E(Y*2)} γ = S(XY)(ω)/Sq.rt.S(X)(ω)S(Y)(ω) Ґ = W(XY)(s,τ)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W X s; τð ÞW Yð Þ s, τð Þðp

Coeff. of determination Coherence Wavelet coherence

r2; r as above γ 2; γ defined as above Ґ2; Ґ as defined above

Table 1. Equivalent statistics for statistical (independent samples), Fourier (time series) (dependent samples), and
wavelet analyses (dependent samples).
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3. Mineral exploration

Finite natural resources including metallic and nonmetallic ores, hydrocarbons, and industri-
ally usable earth materials have been exploited since the emergence of mankind on the earth,
and hence, surface and near-surface deposits are facing exhaustion/near exhaustion. The
ever-increasing demands for improving living standards have resulted in present rapid rate of
exploitation of ores and hydrocarbons with corresponding critical deterioration of the environ-
ment inducing high health risks. Therefore, at present there is an acute need for intensifying
exploration for new concealed and/or partially concealed ore deposits at greater depths.

Geochemical exploration is one of the cheapest and important tools for detecting such hidden
targets both at regional and local scales in the initial stage and at local scale during the mine
development and production stages. Optimal exploration of any region must include integra-
tion of relevant available information on geology, geochemistry, and geophysics in order to
delineate homogeneous regions within heterogeneous crustal rocks, ores and mineralizations,
and surfaces. Homogeneity can be achieved through clustering by nearest neighbor (NN),
fractal, or inverse distance weighting methods.

At the exploration stage when sample data are sparse, the purpose is to delineate, either
directly by the element or through its pathfinder(s), regional and local (positive) anomalies

Stationary parameters Tests Linear prediction Linear methods Limitations

Univariate statistical: random IID scalars as inputs

Mean, variance,
correlation coefficient

t, Chi-sq, F, r, R^2
LR

Conf. limits of the
parameters

ANOVA, ANCOVA Samples,
independent

Multivariate statistical: random IID vectors as inputs

Mean, cov�/corrln.
Matrices

T^2, Chi-sq, F, R^2 LR, partial
corrln.

Conf. limits of the
parameters

PCA, FA, CCA,
MANOVA
LDF, CLASSIF,
MANCOVA

Samples,
independent

Univariate time series models with random IID scalars as inputs having constant lag data

Mean vector, acv, acf,
spectrum

WN, AR, MA, ARMA nonst:
ARIMA

Conf. limits of the
parameters

ARMA(p,q), d = 0:
ARIMA(p,d > 0,q)

Other
information
lost

Multivariate time series models with random IID vectors as inputs having constant lag data

Mean vector, acv, acf,
spectra

WN, AR, MA, ARMA Tr. Fn.
forecasts, upgrade

One- and multi-
step times

Tr. Fns with delay Heterogeneity

Univariate geostatistical models with random IID scalars as inputs having local stationarity (d = 0)

Mean, sill, range, nugget Model validation Nil Interpolation, kriging Extreme values

Multivariate geostatistical models with random IID vectors as inputs having local stationarity (d = 0)

Multiple spectra,
coherency

Model validation Nil Interpolation, kriging, co-
kriging

Extreme values

Table 2. Comparison of linear statistical, time series, and geostatistical models for RVs.
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which generally include many ore targets, whereas at the mine development and/or produc-
tion stages, large sets of closely spaced data become available for better statistical analyses
using time series, fractals, etc. to estimate regional or local background(s) for delineation of
such targets. Future actions at exploration stage include recommendations of intensive explo-
ration and a few test-drilling at high positive anomalies to make mine feasibility studies, if
desired, and to suggest mining and ore beneficiation methodologies to be adopted. In produc-
tion stage, the purpose of geochemical exploration would be to find additional local targets for
drilling and mining (if it is ore grade). Thus geochemical exploration plays very important
roles in identifying subsurface targets of ore as well as hydrocarbon deposits and their subse-
quent exploitation.

3.1. Univariate statistical methods

Exploitable ore deposits and hydrocarbon resources are associated with crustal rocks and rock
systems at shallow depths. Valuable mineralizations are emplaced along with the formation of
these rocks (syngenetic deposits) or later formed/intruded into these rocks (epigenetic
deposits) through their pores and/or fractures (faults). Some deposits may be deformed,
modified, or weathered by several earth processes and at several later times (tectonic phases).
For mathematical and statistical purposes, ore deposits can be characterized for geochemical
purposes and subsequent statistical analyses. Rocks comprise p > 1 number of mineral phases
which sometimes include valuable ore minerals and waste/gangue minerals. Minerals can be
geochemically characterized by their elemental, molecular, and isotopic constituents that form
major (>10%), minor (1–10%), or trace (<1%) amounts in them on volume or weight basis.

However, the main problems for statistical analysis of geochemical data are as follows:

i. Rank is not full rank (i.e., not p; but p-1 or less) as total sum on volume/weight basis is
1.0/100% (closure constraint) which introduces spurious negative correlations among the
constituents both among and within samples. The data are not independent for usual
statistical studies but are dependent [10, 11]. Besides, samples with 0 and 100% should be
deleted as they are not admissible for further analyses [18].

ii. Frequency distribution of constituents is on weight/volume basis and not on number
basis as needed for statistical analysis. The distributions are not Gaussian but binomial
(log(x/(1 � x))-normal) for major and minor components and Poisson having lognormal
distribution for trace components [18].

Unfortunately, binomial and Poisson distributions, being discrete, are not that easily amenable
for statistical analyses and hypotheses tests as it is for Gaussian distributions. For large sample
(N > 50), binomial and Poisson distributions can be Gaussianized using the central limit
theorem, but this method is sampling intensive and hence very costly to be practical and
useful. A better alternative as suggested by Sahu [10, 11, 15, 16, 18] is to use log-odds pre-
transform as Gaussian distribution of (fractional) major or minor constituents which reduces to
simple log transformation of fractional values for trace constituents. These log-odds transforms
also simultaneously make all the constituents independent of others in the rock/ore sample
and thus eliminates the rank problem/closure constraint.
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3. Mineral exploration

Finite natural resources including metallic and nonmetallic ores, hydrocarbons, and industri-
ally usable earth materials have been exploited since the emergence of mankind on the earth,
and hence, surface and near-surface deposits are facing exhaustion/near exhaustion. The
ever-increasing demands for improving living standards have resulted in present rapid rate of
exploitation of ores and hydrocarbons with corresponding critical deterioration of the environ-
ment inducing high health risks. Therefore, at present there is an acute need for intensifying
exploration for new concealed and/or partially concealed ore deposits at greater depths.

Geochemical exploration is one of the cheapest and important tools for detecting such hidden
targets both at regional and local scales in the initial stage and at local scale during the mine
development and production stages. Optimal exploration of any region must include integra-
tion of relevant available information on geology, geochemistry, and geophysics in order to
delineate homogeneous regions within heterogeneous crustal rocks, ores and mineralizations,
and surfaces. Homogeneity can be achieved through clustering by nearest neighbor (NN),
fractal, or inverse distance weighting methods.

At the exploration stage when sample data are sparse, the purpose is to delineate, either
directly by the element or through its pathfinder(s), regional and local (positive) anomalies

Stationary parameters Tests Linear prediction Linear methods Limitations

Univariate statistical: random IID scalars as inputs

Mean, variance,
correlation coefficient

t, Chi-sq, F, r, R^2
LR

Conf. limits of the
parameters

ANOVA, ANCOVA Samples,
independent

Multivariate statistical: random IID vectors as inputs

Mean, cov�/corrln.
Matrices

T^2, Chi-sq, F, R^2 LR, partial
corrln.

Conf. limits of the
parameters

PCA, FA, CCA,
MANOVA
LDF, CLASSIF,
MANCOVA

Samples,
independent

Univariate time series models with random IID scalars as inputs having constant lag data

Mean vector, acv, acf,
spectrum

WN, AR, MA, ARMA nonst:
ARIMA

Conf. limits of the
parameters

ARMA(p,q), d = 0:
ARIMA(p,d > 0,q)

Other
information
lost

Multivariate time series models with random IID vectors as inputs having constant lag data

Mean vector, acv, acf,
spectra

WN, AR, MA, ARMA Tr. Fn.
forecasts, upgrade

One- and multi-
step times

Tr. Fns with delay Heterogeneity

Univariate geostatistical models with random IID scalars as inputs having local stationarity (d = 0)

Mean, sill, range, nugget Model validation Nil Interpolation, kriging Extreme values

Multivariate geostatistical models with random IID vectors as inputs having local stationarity (d = 0)

Multiple spectra,
coherency

Model validation Nil Interpolation, kriging, co-
kriging

Extreme values

Table 2. Comparison of linear statistical, time series, and geostatistical models for RVs.
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which generally include many ore targets, whereas at the mine development and/or produc-
tion stages, large sets of closely spaced data become available for better statistical analyses
using time series, fractals, etc. to estimate regional or local background(s) for delineation of
such targets. Future actions at exploration stage include recommendations of intensive explo-
ration and a few test-drilling at high positive anomalies to make mine feasibility studies, if
desired, and to suggest mining and ore beneficiation methodologies to be adopted. In produc-
tion stage, the purpose of geochemical exploration would be to find additional local targets for
drilling and mining (if it is ore grade). Thus geochemical exploration plays very important
roles in identifying subsurface targets of ore as well as hydrocarbon deposits and their subse-
quent exploitation.

3.1. Univariate statistical methods

Exploitable ore deposits and hydrocarbon resources are associated with crustal rocks and rock
systems at shallow depths. Valuable mineralizations are emplaced along with the formation of
these rocks (syngenetic deposits) or later formed/intruded into these rocks (epigenetic
deposits) through their pores and/or fractures (faults). Some deposits may be deformed,
modified, or weathered by several earth processes and at several later times (tectonic phases).
For mathematical and statistical purposes, ore deposits can be characterized for geochemical
purposes and subsequent statistical analyses. Rocks comprise p > 1 number of mineral phases
which sometimes include valuable ore minerals and waste/gangue minerals. Minerals can be
geochemically characterized by their elemental, molecular, and isotopic constituents that form
major (>10%), minor (1–10%), or trace (<1%) amounts in them on volume or weight basis.

However, the main problems for statistical analysis of geochemical data are as follows:

i. Rank is not full rank (i.e., not p; but p-1 or less) as total sum on volume/weight basis is
1.0/100% (closure constraint) which introduces spurious negative correlations among the
constituents both among and within samples. The data are not independent for usual
statistical studies but are dependent [10, 11]. Besides, samples with 0 and 100% should be
deleted as they are not admissible for further analyses [18].

ii. Frequency distribution of constituents is on weight/volume basis and not on number
basis as needed for statistical analysis. The distributions are not Gaussian but binomial
(log(x/(1 � x))-normal) for major and minor components and Poisson having lognormal
distribution for trace components [18].

Unfortunately, binomial and Poisson distributions, being discrete, are not that easily amenable
for statistical analyses and hypotheses tests as it is for Gaussian distributions. For large sample
(N > 50), binomial and Poisson distributions can be Gaussianized using the central limit
theorem, but this method is sampling intensive and hence very costly to be practical and
useful. A better alternative as suggested by Sahu [10, 11, 15, 16, 18] is to use log-odds pre-
transform as Gaussian distribution of (fractional) major or minor constituents which reduces to
simple log transformation of fractional values for trace constituents. These log-odds transforms
also simultaneously make all the constituents independent of others in the rock/ore sample
and thus eliminates the rank problem/closure constraint.
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So, all univariate normal/Gaussian (UNIV) (if N > 20) and multivariate statistical analysis
(MND) with full-rank models can be applied (if N > 33) as desired. There exist other
pre-transformations in literature such as log ratio [7, 20], but this is still not full rank and
uncorrelated as desired in statistical theory [21]. After Gaussian pre-transformation of geo-
chemical constituents in the sample using log-odds, linear or nonlinear statistical methods of
time series or spatial series or time-spatial series (which include geostatistics (= ARIMA(p,1,q))
as a special case) or fractal/multi-fractal which are nonlinear models can be used to estimate
regional/local background values from which regional/local anomalies can be identified [26].

Further actions should include:

i. Intensive geochemical investigations (including a few drillings) made at positive anoma-
lies (prospects)

ii. Feasibility for exploitation

iii. Financial decisions for optimal mining and beneficiation (of low-grade ores) and mine
remediation measure [14, 17].

3.1.1 Anomaly detection using log-odds, i.e., log (x/(1 � x)); 0 < x < 1, where x is fractional assay of
geochemical constituent by linear and nonlinear modeling

Exploration and initial
development stages

Advanced development and production

A. Graphical univariate multivariate methods

Background: < av. x + 2σ Less than av. vector x + 2σ

Anomaly: not less than av. x + 2σ Not less than av. vector x + 2σ

Breakpoint in cdf of X in probit Breakpoint in cdf of vector X (probits)

Above 3 for pathfinder element(s) Above 3 for pathfinder elements

B. Fractal/multifractals (nonlinear methods which have their first term as linear)

c-N, c-L, c-A, and c-V use log–log
plots

c-N, c-L, c-A, and c-V use log–log plots

Breakpoints give regional and/or local background values from which local and/or regional anomalies and targets can be
identified for further exploration

Interpolation: by inverse distance,
spline

Interpolation: by inverse distance, time series signal, fractals/multifractals, RBF,
SV, kriging, spline

Singularity index gives robust backgrounds that are stable which yield good targets

Fractal analysis in conjunction with neuro-fuzzy-genetic analysis and other soft computing techniques can yield very
good to excellent ore targets

Elemental concentrations in multicomponent (p > 1) rock and/or ore mineralizations are in
different proportions (major >10%; minor 1–10%; trace levels <1%) which either have binomial
distributions for major/minor proportions or reduce to Poisson distribution for trace constituents.
These concentrations are spatially/temporally, as well as within each sample, dependent, and
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hence statistical methods dealing with independent data are not strictly applicable. Indepen-
dence of various constituents within any sample can be achieved through log (odds ratio)
transformation for each constituent which simultaneously achieves Gaussian probability dis-
tribution, so that univariate normal (UNIV) theory and multivariate normal distribution
(MND) theory (using linear theory) become applicable. Multivariate (p > 1 or vectors) theory
reduces to univariate theory when a number of random variables become one (p = 1, or scalar),
so univariate model is included under multivariate model. Population parameters like mean
vector (μ) and covariance matrix (D) are then estimated for each population, and appropriate
statistical tests are performed to take suitable statistical and geological decisions. Ore mineral-
ization exists in the crust and is a three-dimensional (3D) static (not time-varying) phenome-
non which can be modeled as a multivariate normal system through Gaussianization of log
(odds) of constituent fractions present in rock/ore/soil samples. Mineralization processes are
extremely complex, nonhomogeneous, and nonlinear to be analyzed directly. Therefore, these
must be partitioned into homogeneous subsystems having strong dependence within but very
weak interactions among the populations (groups). Two types of univariate hypotheses
include (i) sample mean that belongs to a given population (null or Ho) which is tested against
alternative hypotheses (H1) and (ii) variances that are homogeneous (equal, Ho) or not (H1).
Two kinds of errors made for any decision are (i) Type I or α error of rejection of Ho when true
and (ii) Type II or error of acceptance of H1 when false. It is prudent to test more powerful
(1–β) error being maximized for a given Type 1 error; these procedures are extendable for
MND models.

Multiple and polynomial regressions (correlations) are strictly univariate model having only one
random error but generally included under multivariate model because matrix methods are
essential to solve them as it is necessary in MND analyses. However, F tests cannot be reliable
for polynomial regressions, since powers of variable cannot be Gaussian when the variable is
Gaussian. However, any power function relation of dependent variable(Y) with predictor vari-
able(s) (X) can be linearized using log(Y) pre-transformation for statistical analyses.

3.2. Multivariate statistical analysis

This is appropriate for analyzing multiple correlated measurements (random vectors) made on
one or more samples and on one or more (homogeneous) populations/groups. If a p-variate
(p � 1) Gaussian random vector (X) is measured on N-independent samples of a population,
then the mathematical model has multivariate normal distribution (MND) which is character-
ized as all linear compounds of the variables being also MND as the rank of vector X may/may
not be equal to its order (p). MND methods are classified on the basis of the number of
populations (one or more) and number of sets of random vectors (one or more).

Four classes thus form:

• One population and one set of variables: MND methods are principal component analysis
(PCA), factor analysis (FA), and cluster analysis (CA).

• One population but more than one set of variables: MND methods are multiple regres-
sions (correlations), polynomial regressions, and canonical correlation.
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So, all univariate normal/Gaussian (UNIV) (if N > 20) and multivariate statistical analysis
(MND) with full-rank models can be applied (if N > 33) as desired. There exist other
pre-transformations in literature such as log ratio [7, 20], but this is still not full rank and
uncorrelated as desired in statistical theory [21]. After Gaussian pre-transformation of geo-
chemical constituents in the sample using log-odds, linear or nonlinear statistical methods of
time series or spatial series or time-spatial series (which include geostatistics (= ARIMA(p,1,q))
as a special case) or fractal/multi-fractal which are nonlinear models can be used to estimate
regional/local background values from which regional/local anomalies can be identified [26].

Further actions should include:

i. Intensive geochemical investigations (including a few drillings) made at positive anoma-
lies (prospects)

ii. Feasibility for exploitation

iii. Financial decisions for optimal mining and beneficiation (of low-grade ores) and mine
remediation measure [14, 17].

3.1.1 Anomaly detection using log-odds, i.e., log (x/(1 � x)); 0 < x < 1, where x is fractional assay of
geochemical constituent by linear and nonlinear modeling

Exploration and initial
development stages

Advanced development and production

A. Graphical univariate multivariate methods

Background: < av. x + 2σ Less than av. vector x + 2σ

Anomaly: not less than av. x + 2σ Not less than av. vector x + 2σ

Breakpoint in cdf of X in probit Breakpoint in cdf of vector X (probits)

Above 3 for pathfinder element(s) Above 3 for pathfinder elements

B. Fractal/multifractals (nonlinear methods which have their first term as linear)

c-N, c-L, c-A, and c-V use log–log
plots

c-N, c-L, c-A, and c-V use log–log plots

Breakpoints give regional and/or local background values from which local and/or regional anomalies and targets can be
identified for further exploration

Interpolation: by inverse distance,
spline

Interpolation: by inverse distance, time series signal, fractals/multifractals, RBF,
SV, kriging, spline

Singularity index gives robust backgrounds that are stable which yield good targets

Fractal analysis in conjunction with neuro-fuzzy-genetic analysis and other soft computing techniques can yield very
good to excellent ore targets

Elemental concentrations in multicomponent (p > 1) rock and/or ore mineralizations are in
different proportions (major >10%; minor 1–10%; trace levels <1%) which either have binomial
distributions for major/minor proportions or reduce to Poisson distribution for trace constituents.
These concentrations are spatially/temporally, as well as within each sample, dependent, and
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hence statistical methods dealing with independent data are not strictly applicable. Indepen-
dence of various constituents within any sample can be achieved through log (odds ratio)
transformation for each constituent which simultaneously achieves Gaussian probability dis-
tribution, so that univariate normal (UNIV) theory and multivariate normal distribution
(MND) theory (using linear theory) become applicable. Multivariate (p > 1 or vectors) theory
reduces to univariate theory when a number of random variables become one (p = 1, or scalar),
so univariate model is included under multivariate model. Population parameters like mean
vector (μ) and covariance matrix (D) are then estimated for each population, and appropriate
statistical tests are performed to take suitable statistical and geological decisions. Ore mineral-
ization exists in the crust and is a three-dimensional (3D) static (not time-varying) phenome-
non which can be modeled as a multivariate normal system through Gaussianization of log
(odds) of constituent fractions present in rock/ore/soil samples. Mineralization processes are
extremely complex, nonhomogeneous, and nonlinear to be analyzed directly. Therefore, these
must be partitioned into homogeneous subsystems having strong dependence within but very
weak interactions among the populations (groups). Two types of univariate hypotheses
include (i) sample mean that belongs to a given population (null or Ho) which is tested against
alternative hypotheses (H1) and (ii) variances that are homogeneous (equal, Ho) or not (H1).
Two kinds of errors made for any decision are (i) Type I or α error of rejection of Ho when true
and (ii) Type II or error of acceptance of H1 when false. It is prudent to test more powerful
(1–β) error being maximized for a given Type 1 error; these procedures are extendable for
MND models.

Multiple and polynomial regressions (correlations) are strictly univariate model having only one
random error but generally included under multivariate model because matrix methods are
essential to solve them as it is necessary in MND analyses. However, F tests cannot be reliable
for polynomial regressions, since powers of variable cannot be Gaussian when the variable is
Gaussian. However, any power function relation of dependent variable(Y) with predictor vari-
able(s) (X) can be linearized using log(Y) pre-transformation for statistical analyses.

3.2. Multivariate statistical analysis

This is appropriate for analyzing multiple correlated measurements (random vectors) made on
one or more samples and on one or more (homogeneous) populations/groups. If a p-variate
(p � 1) Gaussian random vector (X) is measured on N-independent samples of a population,
then the mathematical model has multivariate normal distribution (MND) which is character-
ized as all linear compounds of the variables being also MND as the rank of vector X may/may
not be equal to its order (p). MND methods are classified on the basis of the number of
populations (one or more) and number of sets of random vectors (one or more).

Four classes thus form:

• One population and one set of variables: MND methods are principal component analysis
(PCA), factor analysis (FA), and cluster analysis (CA).

• One population but more than one set of variables: MND methods are multiple regres-
sions (correlations), polynomial regressions, and canonical correlation.
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• One set of variables but more than one population: MND methods include MANOVA,
discriminant functions (DF: linear, quadratic), and classification function (CF).

• More than one set of variables and populations: MANCOVA.

Constituents of rocks/ores/soils are constrained to 1.0 or 100% which form a mathematically
induced dependence structure (not geologically interpretable or meaningful) but have a bino-
mial/Poisson distribution with heteroskedastic (or unequal) variances. Gaussianization of mar-
ginal distributions are often performed, but this does not guarantee that the joint distribution
of random vector belongs to MND. So, MND theory must be tested through which all linear
combinations (esp. principal components, multiple/partial/canonical regression components)
of the random measurements are MND. However, MND theory is very robust, and if N is
fairly large, then the random vector may be accepted to have MND.

The parameters of a multivariate r.v. can be estimated for any homogeneous population by its
mean vector (μ) and dispersion (correlation) matrix (D/R) using MLE. Null hypothesis of
homogeneity of population mean vectors (H2) conditional on homogeneity of dispersion
matrices is given by T^2 test:

T2 ¼ N m� μð ÞT D� 1 m� μð Þ,with N� p
� �

T2= N� 1ð Þ (14)

is F, p,(N-p) distributed with m being sample mean. Homogeneity test for covariance matrices
(H1) of different populations is more involved (Box test).

Matrix operations are essential for multivariate analysis. Matrix A is a rectangular array of
numbers with p rows and q columns, where a (i,j) is its ijth element. Addition and scalar
multiplication are straightforward, but matrix multiplication requires that the number of
columns of the pre-matrix must be equal to the number of rows of the post-matrix; otherwise
multiplication is not defined.

If AB = C exists, then the elements c(i,j) = sum over r (a(i,r) x b(r,j)).

But in general multiplication is not commutative and AB not equal to BA, so pre- or post-
multiplication of the matrix must be specified. However, multiplication is associative: A
(BC) = (AB)C = ABC. Transposed matrix A^T has the rows and columns interchanged in A, so
(AB)^T = B^TA^T.

If X and Y are two conformable column vectors, then their inner product is given by X*Y.

If A is (m � n) matrix, then A.x is a column vector. A* is conjugate transpose of complex matrix
A, then (AB)* = B* A*, and so on.

Rank of matrix is the number of independent columns (or rows) in the matrix. A square matrix
of order m is nonsingular, if its rank (m) is less than its order (p). A unique inverse matrix A-1
exists if A is nonsingular, then AA^-1 = A^-1 A = I (identity matrix). If unique inverses of A and
B exist, then (AB)^-1 = B^-1 A^-1; also (A)^-1 = ATand (A*)^-1 = (A^-1)*. Unitary matrix, A* has
A*.A = I = A.A* and so, A* = A^-1. If A is a real nonsingular, square matrix is said to be
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orthogonal if A^T A = A A ^T = I, so A^-1 = A^T. A Hermitian matrix has A^-1 = A*. Elemen-
tary operations on columns (rows) of a matrix can give simpler form to interpret and compute,
but its rank is preserved.

Determinant of a square matrix A (=aij) can be obtained by expanding the element (a(i,j)) of a
row (column) by multiplying its cofactor and summing over all elements of the row (column)
or by multiplying the eigenvalues of A. Generalized inverse of a singular matrix (rank less than
its order) is denoted as A-, and then A A� A = A A� is not necessarily unique.

A�A = H with H2 = H (idempotent).

If A� = A, we get det A = r(A) = r(H) = trace(H). If A� exists, then r(A�) ≥ r(A).

Quadratic form (Q) of matrix plays an important role in MND analysis and is given by Q = XT

A X with A = [(a(ij) + a(ji))/2] which is a symmetric matrix. If (XTA X) is >0, it is positive definite
(pd), =0 (null), and it is negative definite (nd) and semi-definite if 0 is included in the product.
For any nonsingular linear transformation, Q remains definite and invariant. Every positive
definite matrix A can be decomposed into CCT where CT is inverse(C^-1) of the linear trans-
form matrix. A necessary and sufficient condition for A to be positive definite (p.d.) is that its
determinant is positive. This summary on multivariate analysis is based on Sahu [16].

3.2.1. Principal component and factor analysis

This method is for single population and one set of random variables. Original vectors in p-
dimensional space are linearly transformed to a smaller m-dimensional subspace of principal
components which are orthogonal. Mathematically, a real symmetric covariance (correlation)
matrix is diagonalized (all correlations become zero) such that the principal diagonal yields the
eigenvalues (variances) along the orthogonal eigenvectors (directions). In factor analysis, some
of the smaller nonsignificant eigenvalues are deleted as negligible error components without
losing information. The retained eigenvectors are rotated orthogonally in the lower common
factor space (m < <p), so the new correlations (loadings) become easily interpretable (either
near 1 highly loaded/correlated or near zero loadings if uncorrelated) as rotated factors.
Rotation of orthogonal factors in the lower space is made by standard varimax program [27].
Cluster analysis can be made to obtain homogeneous groups by using similarity or distance
matrices, but this process is rather empirical and needs great care for accuracy.

Eigen-structure of correlation (dispersion) matrix (R or D) is achieved through powering the
matrix to a very high index (say 64 or 128) so that the largest eigenvalue dominates over the
rest and corresponding eigenvector is obtained by a few iteration. The effect of the first
eigenvalue is subtracted from the matrix to obtain the residual matrix which is again powered
to high index to get next eigenvalue and eigenvector. This sequence is continued till all
information of R (or D) are extracted and residual matrix becomes zero matrix. However,
before running the eigen-structure analysis, null hypothesis R = I must be tested for statistical
significance by a chi-square test with p(p-1)/2 d.f. at 0.05 level.

The test quantity is given by– N� 1ð Þ– 1=6ð Þ 2pþ 5
� �� �

ln jRjð Þ�: (15)
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• One set of variables but more than one population: MND methods include MANOVA,
discriminant functions (DF: linear, quadratic), and classification function (CF).

• More than one set of variables and populations: MANCOVA.
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ginal distributions are often performed, but this does not guarantee that the joint distribution
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combinations (esp. principal components, multiple/partial/canonical regression components)
of the random measurements are MND. However, MND theory is very robust, and if N is
fairly large, then the random vector may be accepted to have MND.
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mean vector (μ) and dispersion (correlation) matrix (D/R) using MLE. Null hypothesis of
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T2 ¼ N m� μð ÞT D� 1 m� μð Þ,with N� p
� �

T2= N� 1ð Þ (14)

is F, p,(N-p) distributed with m being sample mean. Homogeneity test for covariance matrices
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Spectral decomposition of matrix gives.

R ¼ Λ1 v1 v1Tð Þ þΛ2 v2 v2Tð Þ þ…þΛ p vp vpT
� � ¼ Σ Rj over all pj: (16)

If m components are found to be statistically significant, then the rest (p-m) components are
noise and are deleted. So, total variance explained is sum R(j) of first m components, and rank
of R is now m (<< p).

Multiplication of all eigenvalues gives |R| and sum of all eigenvalues is called trace of R.

Principal factors (f(j); j = 1 to m) are computed dividing the retained eigenvectors by the square
root of their eigenvalues. Thus each factor becomes equally important as the other with a
variance of 1 for all j. Factor structure S = V (Λ)^ -1/2 and predicted R by all factors is S*S^T;
residual error is R- S*S^T. The number of significant principal components (m) retained as
factors is the most important.

A chi-square test of determinant of residual matrix, res (A) with (p-m)(p-m-1)/2 d.f., is given by.

� N� 1ð Þ–1=6 2pþ 5
� �� 2=3 mð Þ� �

ln jRj= Π of m eigenvalues p� sum m eigenvalues
� �� �

=
�

p�m
� �g p�m

� ���, (17)

which is tested at 0.05 level.

Another method is to plot jth eigenvalue vs. j to get inflection point giving m factors or to plot
standard deviation of cum. Eigenvalues are computed on independent replicate samples of
size N from the same population vs. j to get a minimum at which cum. Eigenvalue of 85% or
more gives m. This second procedure, given in 1973 by the author, is a second-order criteria for
deciding the common factor space (m) [16]. Varimax rotation is absolutely necessary to elimi-
nate non-interpretable intermediate loadings in the range of 0.2–0.5 in any unrotated eigenvec-
tor of principal component.

Factor j is interpreted by the rotated loadings in the jth rotated eigenvector as follows:

i. Absolute value of loadings close to unity is statistically significant and identifies the
factor in terms of the input variables, and loadings near zero are nonsignificant and do
not contribute to this factor (but may identify some other factor on which they are
strongly loaded).

Correlation matrix can be computed over N samples to give R-mode R showing correlations
among the random variables or over the p variables to give Q-mode R showing correlations
among N samples. However, either R or Q correlation matrices have the same information and
hence give finally the same inferences/decisions. But the order of R in R-mode is p << N; hence
computationally R-mode analyses are preferred/cheaper. The rotated eigenvalues are different
from the variances from corresponding eigenvalues, although the total variance (= Cumulative
Eigenvalue) of m(<< p) retained factors is conserved by orthogonal rotations as can be easily
demonstrated by matrix theory [16].
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3.2.2. Multiple regression (correlation) and canonical correlation

Multiple (including polynomial) regression (correlation) yields linear prediction of dependent
(criterion) variable(Y) from the knowledge of the predictors (X). The slope of regression line
b = (Var x)^ -1 Cov (x,y) if X and Y are scalars (univariate analysis), which is extended to vector
random variables as b = Cov(x)^ -1 Cov (x, y) if X is a vector random variable and Y is a scalar
random variable. Multiple correlation exists if multiple correlation coefficient R is statistically
significant, and R2 indicates the sum of squares explained by predictors and (1-R2) indicates
noise sum of squares.

F test can be made with (p-1) and (N-p) as degrees of freedom. However, since elements of X
are mutually correlated (not independent), the effect of each element of X on Y is highly
confounded and not possible to correctly interpret. Partial correlations remove the effects for
other elements mathematically to give correct inferences for correlation of Y with ith element, x
(i), of X, and hence, it is preferred over multiple correlations. In canonical correlation, two or
more sets of variables are needed: one set is criterion, the other set predictor, and the third set
control which can be kept mathematically constant. In contrast to principal component ana-
lyses, the eigen-structure is computed along the maximum covariances (not along maximum
variances). The total correlation matrix R (with y as the pth r.v.) is partitioned into X of order
(p-1), and hence we get the real nonsymmetric matrix as R22-1 R21 R11-1 R21 which is the
product of two real symmetric matrices: B = R22 and A = R21 R11-1 R12.

Mathematically we solve the eigen-structure of (A –ΛB) = 0 or of eigen-structure of B-1 A V = V
(Λ). Eigen-structure of B-1 A can be done through two stages:

i. Eigen-structure of real symmetric matrix B to give Λ1 and obtain B^-(1/2).

ii. Eigen-structure of symmetric matrix (B^-1/2 A B^-1/2) gives Λ2 and eigenvector U2.
Eigenvalues of B^-1A are the same as that of (B^-1/2 A B^-1/2), and hence sought vector,
V, is given by B^-1/2 U2.

Statistical significance of diagonal elements of canonical eigenvalues (Λ2) can be assessed as
follows:

i. Proportion explained by Λj = Λj/ (trace Λ2)

ii. Bartlett Lamda statistic = Product (j = 1 to p2) of (1 – Λj), where p2 is dimension of
predictor vector

The null hypothesis that criterion and predictor sets are uncorrelated is assessed through chi-
square with p(1) x p(2) d.f. as: - [(N-1) – (1/2) (p(1) + p(2) + 1)] ln (Λ).

If null hypothesis of no correlation is rejected, then the effects of the first canonical root (Λ1) is
subtracted; the rest p(2) -1 canonical roots tested as:

Product (j = r + 1 to p(2)) (1 – Λj) as a chi-square with degrees of freedom, d.f. = (p(1) -1). (p(2)-1).

Chi� square ¼ � N� 1ð Þ þ½ p 1ð Þ þ p 2ð Þ þ 1
� �� �

ln Λ1 residualð Þ: (18)
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Spectral decomposition of matrix gives.

R ¼ Λ1 v1 v1Tð Þ þΛ2 v2 v2Tð Þ þ…þΛ p vp vpT
� � ¼ Σ Rj over all pj: (16)

If m components are found to be statistically significant, then the rest (p-m) components are
noise and are deleted. So, total variance explained is sum R(j) of first m components, and rank
of R is now m (<< p).

Multiplication of all eigenvalues gives |R| and sum of all eigenvalues is called trace of R.

Principal factors (f(j); j = 1 to m) are computed dividing the retained eigenvectors by the square
root of their eigenvalues. Thus each factor becomes equally important as the other with a
variance of 1 for all j. Factor structure S = V (Λ)^ -1/2 and predicted R by all factors is S*S^T;
residual error is R- S*S^T. The number of significant principal components (m) retained as
factors is the most important.

A chi-square test of determinant of residual matrix, res (A) with (p-m)(p-m-1)/2 d.f., is given by.

� N� 1ð Þ–1=6 2pþ 5
� �� 2=3 mð Þ� �

ln jRj= Π of m eigenvalues p� sum m eigenvalues
� �� �

=
�

p�m
� �g p�m

� ���, (17)

which is tested at 0.05 level.

Another method is to plot jth eigenvalue vs. j to get inflection point giving m factors or to plot
standard deviation of cum. Eigenvalues are computed on independent replicate samples of
size N from the same population vs. j to get a minimum at which cum. Eigenvalue of 85% or
more gives m. This second procedure, given in 1973 by the author, is a second-order criteria for
deciding the common factor space (m) [16]. Varimax rotation is absolutely necessary to elimi-
nate non-interpretable intermediate loadings in the range of 0.2–0.5 in any unrotated eigenvec-
tor of principal component.

Factor j is interpreted by the rotated loadings in the jth rotated eigenvector as follows:

i. Absolute value of loadings close to unity is statistically significant and identifies the
factor in terms of the input variables, and loadings near zero are nonsignificant and do
not contribute to this factor (but may identify some other factor on which they are
strongly loaded).

Correlation matrix can be computed over N samples to give R-mode R showing correlations
among the random variables or over the p variables to give Q-mode R showing correlations
among N samples. However, either R or Q correlation matrices have the same information and
hence give finally the same inferences/decisions. But the order of R in R-mode is p << N; hence
computationally R-mode analyses are preferred/cheaper. The rotated eigenvalues are different
from the variances from corresponding eigenvalues, although the total variance (= Cumulative
Eigenvalue) of m(<< p) retained factors is conserved by orthogonal rotations as can be easily
demonstrated by matrix theory [16].
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This test is continued until nonsignificance is achieved.

i. A thumb rule: a canonical correlation < absolute 0.30 is statistically nonsignificant and
hence dropped.

Multiple regression with standardized variables z can be written as z (hat) = b1 z1 + b2
z2 + … + bp zp and multiple correlation coefficients Rp. 1,2,…, (p-1) = R are similar to
product–moment correlation coefficient (r) having the range of [�1,+1] for linear regression of
scalars, but R has a range from 0 to 1.

R2 explains a major part of the variance of criterion and (1-R2) gives the error variance of
regression. Therefore, F test with (p-1) df in numerator and (n-p) df as the denominator is
applicable for the quantity R2 (N-p)/(1-R2)(p-1).The (p*p) correlation matrix R can be
partitioned into R11 with order (p-1), and the last criterion (scalar) z(p) has a variance of 1.0.
The multiple slope vector b = R11^-1 R12.

However, high values and high significance of any bj do not imply true importance of zj since
other predictor z’s confound the multiple correlation slopes. Hence partial correlation of
criterion with a zj keeping all other predictors mathematically constant is absolutely necessary
for any statistical/geological inference.

Polynomial regression is similar to multiple regression, but powers of predictor of random
variables and the interaction terms are included. High degree of polynomial regressions is very
difficult to interpret, and also if X is Gaussian, then its powers and interactions cannot be
Gaussian, precluding the use of F test for the regression equations. So, unless theory dictates
such polynomial regression, it should be avoided, and in any case, the degree should be as low
as possible (say, second order).

Multiple partial correlation matrix R2:1 ¼ r21:jkf g ¼ residual r22:jk= res r22:jj x r22:kkð Þ 1=2:
(19)

For a trivariate-random variable, system res r22 = 1- r212 and res r23.j = res r23.j/(1 – r212)1/2.
So, r21.3j = res r23j/(1 – r212)1/2, a well-known result in statistical theory. The output of partial
correlation analysis can be arranged as: R = [(R21/ R32.1) (R21.3/R33)].

An example of partial correlation would clarify many of these concepts developed above.

The following random variables were measured in 33 thin sections from 33 sandstone samples.

• The variables were X1 = phi long axis of grains (which has Gaussian distribution).

• X2 = matrix percent.

• X3 = porosity percent as reported by Griffiths in 1967, (p.468).

The multiple correlation matrix R was found with r12 = .8813**, r13 = �.7094**, and
r23 = �.66771**. Here, ** means statistical significance at 0.01 level.

We compute partial correlation r13.2 = (r13 – r12 x r23)/(1– r122)1/2. Partial correlations
between X1 X3, X1 X2, and X21.3 are similarly computed, and we get r21.3 = .6439**,
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r31.2 = �.3862**, but r23.1 = �.2222 NS instead of �.6671**. [Here, superscript ** means
statistical significance at 0.01 level.]

Therefore, r23.1 is nonsignificant indicating X2 and X3 are truly independent (uncorrelated)
rather than correlated or possessing a negative multiple correlation. This fallacy of multiple
correlation coefficients must always be noted and true inference must be sought through
computation of partial correlations.

Comments: Although X1 has a Gaussian distribution, X2 and X3 possess closure constraints
(ranging from 0 to 100% or 0 to 1 as fractions) and not Gaussian but binomial. X2 and X3
should be Gaussianized by the prior transformation log (xj %/ (100% – xj,%)) for j = 2,3.
Multiple correlations should have been computed with original X1 and the new transformed-
Gaussianized X2 and X3 variables.

3.2.3. MANOVA: discrimination and classification

MANOVA is similar to ANOVA for vector random variable X. In ANOVA (scalar r.v), two
types of tests are necessary to test equality of main effects:

i. When interactions are nonsignificant, the interaction variances are pooled with error
variance, and a pooled error variance is calculated to yield the F test.

ii. When interaction variance is significant, then its variance is used to test main effects by F
test.

In MANOVA, treatment variance is divided by the pooled error variance to give F test since
interaction variance is nonsignificant. But if interaction variance is significant, then
MANCOVA methods are used to test main effects (F test) by dividing treatment variance by
interaction variance (not error variance).

Populations (groups) are not necessarily homogeneous in mean vectors and covariance matri-
ces. Two situations can arise.

a. Covariance matrices are homogeneous, and testing is done to find homogeneity of mean
vectors (H2 test; linear discriminant functions (LDFs) and MDFs as hyperplanes) or other-
wise.

b. At least one covariance matrix is different; we have to use nonlinear quadratic hypersur-
faces (QDF) to delineate regions of each population. If both the mean vectors and covari-
ance matrices are utilized together, then the procedure is called classification.

We decompose an ith vector of kth group X(ki) from grand mean m as x(ki) = X(ki) –m = (m(k) –m) +
(X(ki)–m(k)), where m(k) and m are the mean vectors for kth population and all populations,
respectively. So any data is the sum of main effects (among-group) and within-group deviations
(X(ki)- m(ki)).

The SSCP is then Σ x(ki) x(ki)
T = Sum (m(k) –m) (m(k)-m)T + Sum (X(ki)- m(k))

T, summed over i = 1
to N(k) and k = 1 to g groups. Symbolically, T = A + W, where only two matrices are indepen-
dent because of closure constraint. We get W�1T = W�1A + I, having only one independent
matrix, W�1 A, for further analysis as identity matrix (I) is a constant. If covariances
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This test is continued until nonsignificance is achieved.

i. A thumb rule: a canonical correlation < absolute 0.30 is statistically nonsignificant and
hence dropped.

Multiple regression with standardized variables z can be written as z (hat) = b1 z1 + b2
z2 + … + bp zp and multiple correlation coefficients Rp. 1,2,…, (p-1) = R are similar to
product–moment correlation coefficient (r) having the range of [�1,+1] for linear regression of
scalars, but R has a range from 0 to 1.

R2 explains a major part of the variance of criterion and (1-R2) gives the error variance of
regression. Therefore, F test with (p-1) df in numerator and (n-p) df as the denominator is
applicable for the quantity R2 (N-p)/(1-R2)(p-1).The (p*p) correlation matrix R can be
partitioned into R11 with order (p-1), and the last criterion (scalar) z(p) has a variance of 1.0.
The multiple slope vector b = R11^-1 R12.

However, high values and high significance of any bj do not imply true importance of zj since
other predictor z’s confound the multiple correlation slopes. Hence partial correlation of
criterion with a zj keeping all other predictors mathematically constant is absolutely necessary
for any statistical/geological inference.

Polynomial regression is similar to multiple regression, but powers of predictor of random
variables and the interaction terms are included. High degree of polynomial regressions is very
difficult to interpret, and also if X is Gaussian, then its powers and interactions cannot be
Gaussian, precluding the use of F test for the regression equations. So, unless theory dictates
such polynomial regression, it should be avoided, and in any case, the degree should be as low
as possible (say, second order).

Multiple partial correlation matrix R2:1 ¼ r21:jkf g ¼ residual r22:jk= res r22:jj x r22:kkð Þ 1=2:
(19)

For a trivariate-random variable, system res r22 = 1- r212 and res r23.j = res r23.j/(1 – r212)1/2.
So, r21.3j = res r23j/(1 – r212)1/2, a well-known result in statistical theory. The output of partial
correlation analysis can be arranged as: R = [(R21/ R32.1) (R21.3/R33)].

An example of partial correlation would clarify many of these concepts developed above.

The following random variables were measured in 33 thin sections from 33 sandstone samples.

• The variables were X1 = phi long axis of grains (which has Gaussian distribution).

• X2 = matrix percent.

• X3 = porosity percent as reported by Griffiths in 1967, (p.468).

The multiple correlation matrix R was found with r12 = .8813**, r13 = �.7094**, and
r23 = �.66771**. Here, ** means statistical significance at 0.01 level.

We compute partial correlation r13.2 = (r13 – r12 x r23)/(1– r122)1/2. Partial correlations
between X1 X3, X1 X2, and X21.3 are similarly computed, and we get r21.3 = .6439**,
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r31.2 = �.3862**, but r23.1 = �.2222 NS instead of �.6671**. [Here, superscript ** means
statistical significance at 0.01 level.]

Therefore, r23.1 is nonsignificant indicating X2 and X3 are truly independent (uncorrelated)
rather than correlated or possessing a negative multiple correlation. This fallacy of multiple
correlation coefficients must always be noted and true inference must be sought through
computation of partial correlations.

Comments: Although X1 has a Gaussian distribution, X2 and X3 possess closure constraints
(ranging from 0 to 100% or 0 to 1 as fractions) and not Gaussian but binomial. X2 and X3
should be Gaussianized by the prior transformation log (xj %/ (100% – xj,%)) for j = 2,3.
Multiple correlations should have been computed with original X1 and the new transformed-
Gaussianized X2 and X3 variables.

3.2.3. MANOVA: discrimination and classification

MANOVA is similar to ANOVA for vector random variable X. In ANOVA (scalar r.v), two
types of tests are necessary to test equality of main effects:

i. When interactions are nonsignificant, the interaction variances are pooled with error
variance, and a pooled error variance is calculated to yield the F test.

ii. When interaction variance is significant, then its variance is used to test main effects by F
test.

In MANOVA, treatment variance is divided by the pooled error variance to give F test since
interaction variance is nonsignificant. But if interaction variance is significant, then
MANCOVA methods are used to test main effects (F test) by dividing treatment variance by
interaction variance (not error variance).

Populations (groups) are not necessarily homogeneous in mean vectors and covariance matri-
ces. Two situations can arise.

a. Covariance matrices are homogeneous, and testing is done to find homogeneity of mean
vectors (H2 test; linear discriminant functions (LDFs) and MDFs as hyperplanes) or other-
wise.

b. At least one covariance matrix is different; we have to use nonlinear quadratic hypersur-
faces (QDF) to delineate regions of each population. If both the mean vectors and covari-
ance matrices are utilized together, then the procedure is called classification.

We decompose an ith vector of kth group X(ki) from grand mean m as x(ki) = X(ki) –m = (m(k) –m) +
(X(ki)–m(k)), where m(k) and m are the mean vectors for kth population and all populations,
respectively. So any data is the sum of main effects (among-group) and within-group deviations
(X(ki)- m(ki)).

The SSCP is then Σ x(ki) x(ki)
T = Sum (m(k) –m) (m(k)-m)T + Sum (X(ki)- m(k))

T, summed over i = 1
to N(k) and k = 1 to g groups. Symbolically, T = A + W, where only two matrices are indepen-
dent because of closure constraint. We get W�1T = W�1A + I, having only one independent
matrix, W�1 A, for further analysis as identity matrix (I) is a constant. If covariances
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(correlations) among the groups are equal (H1 true), the dispersion among the groups is (D
(A)) = A/(g-1), and dispersion within groups is D(W) = W/(N-g) where N is the total data over g
populations.

The null hypothesis H2: μ(k) = μ for all k = 1,…,g. and m = (sum Xki over all I and k)/N. Rao [28]
proposed F test as follows:

s ¼ p2 g� 1ð Þ2 � 4
� �

= p2 þ g� 1ð Þ2–5
� �n o1=2

;n 1ð Þ ¼ p g� 1ð Þ;n 2ð Þ

¼ s N� 1ð Þ– p∗ s� 1ð Þ þ 1
� �

=2
� �

– p s� 1ð Þ � 2
� �

=2:
(20)

Let y = (|W|/|T|)�s. Then, F(n(1),n(2)) = ((1-y)/y) (n(2)/n(1)) and tested for statistical significance.

H2 true, if F test is nonsignificant, means all mean vectors are equal.

3.2.4. Linear discriminant function

For two groups, g-1 = 1; hence there can be only one LDF, linear discriminant function
(hyperplane). But for multi-groups g-1 is more than one, so we can have several LDFs, some
of which may not be significant (should be dropped), but we also need the angles between the
accepted (significant) LDFs (hyperplanes).

The retained LDFs form a subspace within the original p-dimensional space, and samples may
be projected onto this subspace for visual studies. Optimal solution is to maximize the ratio W-
1A (nonsymmetric real matrix) in the common discriminant subspace defined by vector v s.t.;
the ratio of (Λ) = (vT A v/ VTWV) is maximized with the constraint vTv.

The maximum values are the eigenvalues of W^-1 A: that is we solve (W^-1A) V = VΛ.

Since W is full rank, W^-1 is unique and can be decomposed as U Λ1 U^T, so W-1/2 = U(Λ1^-1
U^T).

Then, eigenvalues of W^-1 A = eigenvalues of W^-1/2 A W^-1/2, but B has a different eigen-
vector U2.

Since B is symmetric, its eigen-structure is U2Λ2U2^T, and the eigenvector matrix V of W-1A is
obtained as V = W^-1/2 U2 and has eigenvalue matrix Λ2.

The number of LDFs to be retained are obtained by statistical significance tests for elements
Λ2,j where j = 1 to (g-1) or p whichever is minimum (= rank of W-1Amatrix). The importance of
jth discriminant function (if retained as significant) can also be judged by the ratio of Λ2,j/trace
Λ2 where this ratio ranges from 0 to 100%.

Also, each Λ2,j can be tested as a canonical correlation of discriminant vector vj with any
population (group) as the criterion (Y). The eigenvectors in V should be normalized (to vector
with magnitude 1), and the angle between the ith and jth linear discriminants J(i) and J(k) is
given by (θ(i,j)) = Cos-1(v(ik). v(jk)). These angles are not necessarily orthogonal since W-1A is
a nonsymmetric matrix. Discriminant scores which can be computed as v(i)T x(jk) for each
retained eigenvector ji and xjk are the kth sample of jth group.
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These scores can be projected onto the common discriminant subspace for visual perusal. A
chi-square test of significance of discrimination amount for remaining m-k discriminants after
accepting the first k significant discriminants can be assessed and tested as –(N–(p + g)/2)ln Λ*
with df = (p-k) (g-k-1), and Λ* is the product of 1/(1 + Λj) for j = (k + 1 to m).

This chi-square test should be nonsignificant to stop analysis. Usually two discriminants are
most useful for visual representation of projection of LDFs as straight lines in the discriminant
space, but 3D projections can be made if three discriminants are significant and required
[16, 29].

3.2.5. Quadratic discriminant function (QDF)

If at least one covariance matrix is unequal among the groups, then pooling of covariance
matrices to give a common (homogeneous) covariance matrix is inadmissible. Then, discrimi-
nant is nonlinear and hypersurface given by μ(1) D(1)

�1 μ(1)
T – μ(2) D(2)

�1 μ(2)
Twhich reduces to

LDF if D(1) = D(2) = D and QDF = LDF = (μ(1) – μ(2)) D
�1 (μ(1) – μ2)

T as was derived under LDF
theory. If a number of samples N(1) and N(2) are large, LDF is sufficiently robust for applica-
tions. Also, for QDF,F, test is inapplicable to find its significance.

MANCOVA methods (not discussed here) are more involved but necessary and proven to be
useful for multi-element ores and for multiple populations (groups) in order to discriminate
and/or classify.

4. Some applications

Statistics in the technology of twenty-first century and along with current capability of com-
puters will be essential, beneficial, and most useful to mining and mineral processing indus-
tries. A log (x/(1 � x)) pre-transformation of fractional concentrations (x; 0 < x < 1) yields the
desired independence and Gaussian pdf of each constituent in the rock or ore. This is necessary
for characterization/estimation of parameters of each pdf and for hypotheses of tests and
inference. Univariate and multivariate statistical models are used for single and multiple pre-
transformed random variables, respectively. These models are useful for geochemical explora-
tion, mining, mine planning, mineral processing, and beneficiation and for marketing such that
maximal profits with minimum environmental damage can be achieved to obtain sustainable
economic and societal growth.

Some applications of statistical (Gaussian) technology to mineral industry are listed below (not
exhaustive) for getting the feel of different scenarios involved:

Exploration

a. Detection of positive anomalies for further intensive search

b. Detection of negative anomalies for use as sinks for toxic materials/elements
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(correlations) among the groups are equal (H1 true), the dispersion among the groups is (D
(A)) = A/(g-1), and dispersion within groups is D(W) = W/(N-g) where N is the total data over g
populations.

The null hypothesis H2: μ(k) = μ for all k = 1,…,g. and m = (sum Xki over all I and k)/N. Rao [28]
proposed F test as follows:

s ¼ p2 g� 1ð Þ2 � 4
� �

= p2 þ g� 1ð Þ2–5
� �n o1=2

;n 1ð Þ ¼ p g� 1ð Þ;n 2ð Þ
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� �
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� �
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� �

=2:
(20)

Let y = (|W|/|T|)�s. Then, F(n(1),n(2)) = ((1-y)/y) (n(2)/n(1)) and tested for statistical significance.

H2 true, if F test is nonsignificant, means all mean vectors are equal.

3.2.4. Linear discriminant function

For two groups, g-1 = 1; hence there can be only one LDF, linear discriminant function
(hyperplane). But for multi-groups g-1 is more than one, so we can have several LDFs, some
of which may not be significant (should be dropped), but we also need the angles between the
accepted (significant) LDFs (hyperplanes).

The retained LDFs form a subspace within the original p-dimensional space, and samples may
be projected onto this subspace for visual studies. Optimal solution is to maximize the ratio W-
1A (nonsymmetric real matrix) in the common discriminant subspace defined by vector v s.t.;
the ratio of (Λ) = (vT A v/ VTWV) is maximized with the constraint vTv.

The maximum values are the eigenvalues of W^-1 A: that is we solve (W^-1A) V = VΛ.

Since W is full rank, W^-1 is unique and can be decomposed as U Λ1 U^T, so W-1/2 = U(Λ1^-1
U^T).

Then, eigenvalues of W^-1 A = eigenvalues of W^-1/2 A W^-1/2, but B has a different eigen-
vector U2.

Since B is symmetric, its eigen-structure is U2Λ2U2^T, and the eigenvector matrix V of W-1A is
obtained as V = W^-1/2 U2 and has eigenvalue matrix Λ2.

The number of LDFs to be retained are obtained by statistical significance tests for elements
Λ2,j where j = 1 to (g-1) or p whichever is minimum (= rank of W-1Amatrix). The importance of
jth discriminant function (if retained as significant) can also be judged by the ratio of Λ2,j/trace
Λ2 where this ratio ranges from 0 to 100%.

Also, each Λ2,j can be tested as a canonical correlation of discriminant vector vj with any
population (group) as the criterion (Y). The eigenvectors in V should be normalized (to vector
with magnitude 1), and the angle between the ith and jth linear discriminants J(i) and J(k) is
given by (θ(i,j)) = Cos-1(v(ik). v(jk)). These angles are not necessarily orthogonal since W-1A is
a nonsymmetric matrix. Discriminant scores which can be computed as v(i)T x(jk) for each
retained eigenvector ji and xjk are the kth sample of jth group.
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These scores can be projected onto the common discriminant subspace for visual perusal. A
chi-square test of significance of discrimination amount for remaining m-k discriminants after
accepting the first k significant discriminants can be assessed and tested as –(N–(p + g)/2)ln Λ*
with df = (p-k) (g-k-1), and Λ* is the product of 1/(1 + Λj) for j = (k + 1 to m).

This chi-square test should be nonsignificant to stop analysis. Usually two discriminants are
most useful for visual representation of projection of LDFs as straight lines in the discriminant
space, but 3D projections can be made if three discriminants are significant and required
[16, 29].

3.2.5. Quadratic discriminant function (QDF)

If at least one covariance matrix is unequal among the groups, then pooling of covariance
matrices to give a common (homogeneous) covariance matrix is inadmissible. Then, discrimi-
nant is nonlinear and hypersurface given by μ(1) D(1)

�1 μ(1)
T – μ(2) D(2)

�1 μ(2)
Twhich reduces to

LDF if D(1) = D(2) = D and QDF = LDF = (μ(1) – μ(2)) D
�1 (μ(1) – μ2)

T as was derived under LDF
theory. If a number of samples N(1) and N(2) are large, LDF is sufficiently robust for applica-
tions. Also, for QDF,F, test is inapplicable to find its significance.

MANCOVA methods (not discussed here) are more involved but necessary and proven to be
useful for multi-element ores and for multiple populations (groups) in order to discriminate
and/or classify.

4. Some applications

Statistics in the technology of twenty-first century and along with current capability of com-
puters will be essential, beneficial, and most useful to mining and mineral processing indus-
tries. A log (x/(1 � x)) pre-transformation of fractional concentrations (x; 0 < x < 1) yields the
desired independence and Gaussian pdf of each constituent in the rock or ore. This is necessary
for characterization/estimation of parameters of each pdf and for hypotheses of tests and
inference. Univariate and multivariate statistical models are used for single and multiple pre-
transformed random variables, respectively. These models are useful for geochemical explora-
tion, mining, mine planning, mineral processing, and beneficiation and for marketing such that
maximal profits with minimum environmental damage can be achieved to obtain sustainable
economic and societal growth.

Some applications of statistical (Gaussian) technology to mineral industry are listed below (not
exhaustive) for getting the feel of different scenarios involved:

Exploration

a. Detection of positive anomalies for further intensive search

b. Detection of negative anomalies for use as sinks for toxic materials/elements
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c. Decision on pathfinders using factor model for single-element and canonical correlation
for multiple-elemental ores

d. Decision on feasibility of mining using open-pit or underground mining method

Mining

a. Development of optimal mine plans using concentration contours and risk analysis

b. Decision on lateral and vertical extensions to present mine plans

Beneficiation

a. Decision on lower limit of assay for grinding

b. Decision on optimal beneficiation process and system to be installed

c. Locating high-grade ore zones for conservation for later blending and marketing

d. Waste management decisions and related operation planning

Marketing

a. Optimal classification of ore grades by separation and/or beneficiation/blending

b. Marketing of nonmarketable ores in situ or in dumps by blending and/or beneficiation in
the future

Example 1: Estimation of ore reserves and average assays.

In the past spatial distributions of assays and their pdfs were not accounted for, and simple
calculations yielded these quantities based on geometry of ore body and arithmetic averaging
of assays within mineable ores. The geology of syngenetic ore deposits produces uni- or multi-
metal binomial/Poisson distribution having homogeneous variances, whereas epigenetic ore
deposits are likely to possess bimodal (low assays in host rock and higher assays in ore zones)
distributions that need separate treatments. A log (x/(1 � x)) pre-transformation of fractional
assays achieves linearity, Gaussianity, and homoscedasticity of variance with elimination of
spurious negative correlations among the constituents [15, 16].

4.1. Syngenetic deposits

The lower limit of assay value for mineable ore is given by lower than 95% confidence limit of
mean which should be marketable as well. Multi-metal ores are converted to single metal ore
through addition of equivalent prices of these metals or by using a principal component of the
mineable/marketable elements. The associated risk factor should be evaluated for use of lower
than 95% confidence limit.

4.2. Epigenetic deposits

Bimodal Gaussian pdfs which can result as the mean in host rocks may be much less than in
ore body. Univariate/multivariate discriminant function (LDF) easily separates these two

Minerals116

modes for separate calculation of reserves and average assays. Since mineable ore zones may
lie within ore body, or partly in ore body and host rock, the geometry of mineable ore zone can
be complicated. A 3D mine model is necessary to delimit mineable zones, and this may be
achieved through a computer system. The associated risk factor for mining should also be
computed as indicated above.

4.3. Spatially correlated samples on log(x/(1 � x)) basis

This situation often arises in development and production stages when a large number of
geochemical data becomes available. The data is having signal (mineralized assay) and noise
(random errors) and time (spatial) series model which separated the signal needed for average
assay computation from the Gaussian noise giving the confidence limits to the average assay.

Models may be nonstationary (ARIMA (p,d,q) which is made stationary (ARMA(p,0,q) by
differencing the data ‘d’ times. Integration of location data over the spatial domain gives the
total volume and of signal gives the average assay. Such integration can be done block-wise to
obtain block reserves and block average assays. More details of general time series modeling
are given in Sahu [15]. Geo-statistical models are a special case of time series models belonging
to the ARIMA (p,1,q) if assay values are linearized prior to analysis but otherwise are generally
nonlinear since log (x/(1 � x)) pre-transformation of fractional concentrations was not
performed.

Example 2: Identification of pathfinders

Pathfinders include minerals, molecules, elements, and isotopes and are very useful for explo-
ration of uni- and multi-metal ores. These are characteristically easy to recognize, have higher
concentrations than sought element and higher occurrence frequency, and can be analyzed
cheaply and easily at much less time. Correlation matrix, R, of pre-transformed fractional
constituent data is then computed using R-mode analysis (cheaper and faster than Q-mode).
The correlation coefficients could be strongly +ve (r > .50), strongly –ve (r < �.50), and weak
(�.50 < r < +.50).

Factor analysis of R (without weak correlations) provides rotated factors that are statistically
significant to yield pathfinder(s) loaded strongly on high positive and/or negative correlations
of constituents. Pathfinders can also be identified through the use of partial correlations, but
this method is computationally more intensive, and decision may be confounded (nonunique).
Multi-element or multi-mineral ores would require canonical correlation analysis with the
mineable metals/minerals taken as criterion vector and other sets as predictor and/or control
random vectors. FA in such cases may not be useful unless criterion vector has only one
random constituent which is mineable. More details on finding geochemical pathfinders can
be obtained from Sahu [16].

Example 3: Mine feasibility.

Sustainable mining operations must insure that the expected profits/year remains positive
and substantial for meeting cash flow and other financial commitments. Mining operations
with profits depends on high sale value of high-grade and beneficiated low-grade ores to
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the future
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distributions that need separate treatments. A log (x/(1 � x)) pre-transformation of fractional
assays achieves linearity, Gaussianity, and homoscedasticity of variance with elimination of
spurious negative correlations among the constituents [15, 16].

4.1. Syngenetic deposits

The lower limit of assay value for mineable ore is given by lower than 95% confidence limit of
mean which should be marketable as well. Multi-metal ores are converted to single metal ore
through addition of equivalent prices of these metals or by using a principal component of the
mineable/marketable elements. The associated risk factor should be evaluated for use of lower
than 95% confidence limit.

4.2. Epigenetic deposits

Bimodal Gaussian pdfs which can result as the mean in host rocks may be much less than in
ore body. Univariate/multivariate discriminant function (LDF) easily separates these two
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modes for separate calculation of reserves and average assays. Since mineable ore zones may
lie within ore body, or partly in ore body and host rock, the geometry of mineable ore zone can
be complicated. A 3D mine model is necessary to delimit mineable zones, and this may be
achieved through a computer system. The associated risk factor for mining should also be
computed as indicated above.

4.3. Spatially correlated samples on log(x/(1 � x)) basis

This situation often arises in development and production stages when a large number of
geochemical data becomes available. The data is having signal (mineralized assay) and noise
(random errors) and time (spatial) series model which separated the signal needed for average
assay computation from the Gaussian noise giving the confidence limits to the average assay.

Models may be nonstationary (ARIMA (p,d,q) which is made stationary (ARMA(p,0,q) by
differencing the data ‘d’ times. Integration of location data over the spatial domain gives the
total volume and of signal gives the average assay. Such integration can be done block-wise to
obtain block reserves and block average assays. More details of general time series modeling
are given in Sahu [15]. Geo-statistical models are a special case of time series models belonging
to the ARIMA (p,1,q) if assay values are linearized prior to analysis but otherwise are generally
nonlinear since log (x/(1 � x)) pre-transformation of fractional concentrations was not
performed.

Example 2: Identification of pathfinders

Pathfinders include minerals, molecules, elements, and isotopes and are very useful for explo-
ration of uni- and multi-metal ores. These are characteristically easy to recognize, have higher
concentrations than sought element and higher occurrence frequency, and can be analyzed
cheaply and easily at much less time. Correlation matrix, R, of pre-transformed fractional
constituent data is then computed using R-mode analysis (cheaper and faster than Q-mode).
The correlation coefficients could be strongly +ve (r > .50), strongly –ve (r < �.50), and weak
(�.50 < r < +.50).

Factor analysis of R (without weak correlations) provides rotated factors that are statistically
significant to yield pathfinder(s) loaded strongly on high positive and/or negative correlations
of constituents. Pathfinders can also be identified through the use of partial correlations, but
this method is computationally more intensive, and decision may be confounded (nonunique).
Multi-element or multi-mineral ores would require canonical correlation analysis with the
mineable metals/minerals taken as criterion vector and other sets as predictor and/or control
random vectors. FA in such cases may not be useful unless criterion vector has only one
random constituent which is mineable. More details on finding geochemical pathfinders can
be obtained from Sahu [16].

Example 3: Mine feasibility.

Sustainable mining operations must insure that the expected profits/year remains positive
and substantial for meeting cash flow and other financial commitments. Mining operations
with profits depends on high sale value of high-grade and beneficiated low-grade ores to
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marketable grades. Mining costs include mine operation, transportation, beneficiation, and
disposal of mine wastes with remediation.

Main geological factors are:

i. Total reserve (W tons)

ii. Proportion of high-grade, W(H)

iii. Proportion of low-grade W(L)

iv. Proportion of gangue W(G) = 1- W(H)-W(L)

v. Assay for high-grade ore A(H)

Of these five, three factors are independent but (iv) factor W(G) is not independent of W(H)
and W(L). A(H) and A(L), assays of low-grade ores, are two additional independent factors
(total of five factors).

There are ten economic factors including profit per year, P, which must be positive; life of mine
(L = W/ PR (production rate per year in tons)); sale price per ton of marketed ore S(H); capital
cost of mine operations, C(M); capital cost of beneficiation plant, C(B); rate of interest, r;
efficiency of beneficiation, e; per ton running costs of mine, R(M); beneficiation, R(B); and
waste disposal R(D).

Economic analysis for mine operations having beneficiation processing results in profits = P:

P ¼ W W Hð Þ þW Lð Þð Þ S Hð Þ=L½ Þ– C Mð Þ þ C Bð Þ 1þ rð Þ=Lð Þ– W R Mð Þ=Lð Þ–ðW�W Hð Þ:A Hð Þ
�W Lð Þ e ðA Hð Þ– A Lð Þ=Lð Þ R Dð Þ– W R Bð Þ=Lð Þ

(21)

Above equation is a complex nonlinear one which cannot be linearized. If W(L) is negligible
(zero), then mine-site beneficiation would be unviable and associated costs C(B) and R(B)
would become zeros. Smaller mines with less low-grade ores would need pooling of nearby
small mines for establishing a combined beneficiation plant to be operated jointly by these
mines with proportional cost and profit sharing per year [14].

Example 4: 3D modeling and mine planning.

Fast, efficient, and up-to-date computer systems having links to end users are essential for this
purpose.

The following items seem to be useful:

1. Fast transmission of databases, maps, and sections to central processor online and/or
offline

2. Preparation of 3D maps using GIS technology and generation of desired sections for
planning and mine operations. Offline transmission of this to all subcenters

3. Optimal plans for mine transport, blending and beneficiation, and timeframe of works
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4. Marketing plans, expected profits vs. actual profits, doubling of assets in <5/6 years

5. Planning for new biddable targets and for extensions to present mines

6. Monitoring environmental damage and plan mitigation of such damages

7. Optimal computer architecture on faster transfer ratio in several separate computer sys-
tems acting in parallel to yield distinct outputs from a single input to the whole system

8. Mine closure plan, settlement of personnel, equipment disposal, mitigation of ground- and
surface water damages, and corporate social responsibility (CSR) for the locality and
country

Example 5: Mine sustainability.

Environmental hazards and associated mitigation costs are site-specific and hence, will
depend on local geology, topography, and climate. Mineralogy and geochemistry would affect
emissions on metallurgy, pollution by toxic metals, and leakages from dumps/tailings. Envi-
ronmental degradation is due to poor production efficiency and poor innovations.

We can achieve sustainability in mining industry through the following:

1. Market incentives with pollution prevention, focusing on management system (MS)

2. Mine closure plans with Environmental Impact Assessment (EIA) and SIA (S = social) at all
stages

3. Bonds which should be issued to clean up pollution after mine closure

4. Obtaining environmental and social performance indicators, risk assessment for environ-
mental management (EM), and use of life cycle assessment (LCA), for technology choice
and EMS

5. R&D efforts for resource augmentation

R&D efforts for exploration of new deposits, invention of natural and/or technological sub-
stitutes, and waste treatment/disposal are omitted. Since high-grade ores are comparatively
rare in occurrence and will be exhausted in finite terminal time, T, in-house R&D efforts in
mining industry should primarily concentrate on optimal utilization of associated lean-grade
ores that are not directly marketable as well as on treatment/disposal of associated waste
products. There are two ways to upgrade lean-grade ores and market the upgraded products
through in-house R&D efforts as given below:

• Optimal marketing of lean ores by blending with appropriate amount of (locally available
or imported) high-grade ores having assay value of a1

• Optimal marketing of lean ores by technological beneficiation with or without blending
with high-grade ores having assay value of a1
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marketable grades. Mining costs include mine operation, transportation, beneficiation, and
disposal of mine wastes with remediation.

Main geological factors are:

i. Total reserve (W tons)

ii. Proportion of high-grade, W(H)

iii. Proportion of low-grade W(L)

iv. Proportion of gangue W(G) = 1- W(H)-W(L)

v. Assay for high-grade ore A(H)

Of these five, three factors are independent but (iv) factor W(G) is not independent of W(H)
and W(L). A(H) and A(L), assays of low-grade ores, are two additional independent factors
(total of five factors).

There are ten economic factors including profit per year, P, which must be positive; life of mine
(L = W/ PR (production rate per year in tons)); sale price per ton of marketed ore S(H); capital
cost of mine operations, C(M); capital cost of beneficiation plant, C(B); rate of interest, r;
efficiency of beneficiation, e; per ton running costs of mine, R(M); beneficiation, R(B); and
waste disposal R(D).

Economic analysis for mine operations having beneficiation processing results in profits = P:

P ¼ W W Hð Þ þW Lð Þð Þ S Hð Þ=L½ Þ– C Mð Þ þ C Bð Þ 1þ rð Þ=Lð Þ– W R Mð Þ=Lð Þ–ðW�W Hð Þ:A Hð Þ
�W Lð Þ e ðA Hð Þ– A Lð Þ=Lð Þ R Dð Þ– W R Bð Þ=Lð Þ

(21)

Above equation is a complex nonlinear one which cannot be linearized. If W(L) is negligible
(zero), then mine-site beneficiation would be unviable and associated costs C(B) and R(B)
would become zeros. Smaller mines with less low-grade ores would need pooling of nearby
small mines for establishing a combined beneficiation plant to be operated jointly by these
mines with proportional cost and profit sharing per year [14].

Example 4: 3D modeling and mine planning.

Fast, efficient, and up-to-date computer systems having links to end users are essential for this
purpose.

The following items seem to be useful:

1. Fast transmission of databases, maps, and sections to central processor online and/or
offline

2. Preparation of 3D maps using GIS technology and generation of desired sections for
planning and mine operations. Offline transmission of this to all subcenters

3. Optimal plans for mine transport, blending and beneficiation, and timeframe of works
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4. Marketing plans, expected profits vs. actual profits, doubling of assets in <5/6 years

5. Planning for new biddable targets and for extensions to present mines

6. Monitoring environmental damage and plan mitigation of such damages

7. Optimal computer architecture on faster transfer ratio in several separate computer sys-
tems acting in parallel to yield distinct outputs from a single input to the whole system

8. Mine closure plan, settlement of personnel, equipment disposal, mitigation of ground- and
surface water damages, and corporate social responsibility (CSR) for the locality and
country

Example 5: Mine sustainability.

Environmental hazards and associated mitigation costs are site-specific and hence, will
depend on local geology, topography, and climate. Mineralogy and geochemistry would affect
emissions on metallurgy, pollution by toxic metals, and leakages from dumps/tailings. Envi-
ronmental degradation is due to poor production efficiency and poor innovations.

We can achieve sustainability in mining industry through the following:

1. Market incentives with pollution prevention, focusing on management system (MS)

2. Mine closure plans with Environmental Impact Assessment (EIA) and SIA (S = social) at all
stages

3. Bonds which should be issued to clean up pollution after mine closure

4. Obtaining environmental and social performance indicators, risk assessment for environ-
mental management (EM), and use of life cycle assessment (LCA), for technology choice
and EMS

5. R&D efforts for resource augmentation

R&D efforts for exploration of new deposits, invention of natural and/or technological sub-
stitutes, and waste treatment/disposal are omitted. Since high-grade ores are comparatively
rare in occurrence and will be exhausted in finite terminal time, T, in-house R&D efforts in
mining industry should primarily concentrate on optimal utilization of associated lean-grade
ores that are not directly marketable as well as on treatment/disposal of associated waste
products. There are two ways to upgrade lean-grade ores and market the upgraded products
through in-house R&D efforts as given below:

• Optimal marketing of lean ores by blending with appropriate amount of (locally available
or imported) high-grade ores having assay value of a1

• Optimal marketing of lean ores by technological beneficiation with or without blending
with high-grade ores having assay value of a1
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5.1. Ore blending

We assume for convenience that the exploited ore body has only one type of marketable grade
and only one type of nonmarketable lean-grade ores with associated waste materials of little
market value. The analysis can be easily extended to two or more types of marketable ores and
lean ores.

Let price per ton of ore be p and the assays and weight fractions of high-grade and lean-grade
ores be a1, f1 and a2, f2, respectively, so that waste fraction is (1- f1 – f2). We have to crush the
high-grade and lean-grade ores to suitable optimal size for blending so that the mix becomes
homogeneous and can yield a stable grade, a* > a(m), the minimum marketable grade neces-
sary for marketing purposes.

Then the average assay of blended mixture is.

a∗ ¼ W1 a1þW2 a2ð Þ= W1þW2ð Þ, (22)

where W1 and W2 are, respectively, the weights (in tons) of high-grade and lean-grade ores in
the mixture. The blended ore can be sold at a market price p per ton. The total sell value of
blended ore would be (W1 + W2)p.

The blended assay, a1*, must be greater than the minimum marketable assay, a(m), and then
the triangle law of proportional lengths of sides provides the minimumW1 value as (a(m)–a2)/
a1. However to be safe, a1* should be made 5% more than required minimum, a(m), value so
that blended ore is not rejected and we can use a minimum W1 value of (1.05 a(m) – a2)/a1). If
this minimum amount of W1 of the high-grade ore is not available, then we have to optimize
the mixing weights W1 and W2 for maximizing the profits by using constrained Lagrange
multiplier or may have to import the deficient quantity of high-grade ore.

5.2. Ore beneficiation

Beneficiation of lean ores can be performed using physical, chemical, and biochemical methods,
and the optimal technological parameters for providing maximum present value to marketed
products should be found by several experiments and using appropriate response-surface
experimental designs. The lean ores are to be finely grounded using jaw crushers, ball or rod
mills, to optimal grinding size to maximally liberate the ore minerals for beneficiation [17].

The optimal mix of beneficiation products can be estimated by using Lagrange multipliers to
maximize the net present value (defined as sell price minus cost price) of beneficiated products.
Details of applicable optimal beneficiation schemes and the associated plant designs are spe-
cific to the mine, ore type, and ore characteristics and, hence, cannot be discussed as a general
system theory. Therefore, the different ore beneficiation procedures are not discussed here.

5.3. Cutoff grade estimation

With continued rapid rate of utilization of minerals and metals for societal growth and explo-
sive rise in world population, it has become imperative to mine minerals with lower grade and
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at greater depths which induces increased costs of extraction and processing to make these
marketable. Hence, there is a greater need for conservation of these invaluable nonrenewable
finite mineral resources as well as for the preservation of fragile ecology and environment.
Balancing these two opposing concepts of maximal utilization of ores and sustainable societal
growth is the critical need of the hour [1–3, 5, 14, 25].

Mineral resources are characterized by their unique geological setting and genesis, as well as
their spatial distribution which greatly influence the optimal extraction of these nonrenewable
resources. Mining industry becomes sustainable with consistent long-term profit accruals over
the life span of the mine.

This dictates that extracted ores can be marketed with reasonable profit, with sale price (s/ton)
exceeding the cost of production (c/ton). The cost of production includes many factors such as
mining, blending, beneficiation, transport of ores and wastes for their marketing, and safe
disposals, respectively. Sale price (s/ton) of marketable ore is highly unpredictable due to
volatile demand and supply of ores, government policy, technological innovations, substitute
products, etc.

The cutoff assay, x(C), is defined as the fractional assay (x) of resource above which the
extracted product is marketable (x(M)) and above the break-even assay (x(B)) defining the
equality of sale (s/ton) and cost (c/ton) prices of the produce. Unfortunately, break-even assay,
x(B), is not very useful as a cutoff grade since at this mining strategy profits become nil and
mine becomes unsustainable. However, x(B) does provide the upper bound to the cutoff grade
x(C) for ore extraction. Profits accrue if the extractable grade is reasonably above the market-
able grade x(M) with the sale price (s/ton) greater than the production cost(c/ton) and with an
extraction rate that maintains long-term sustainability of mine (at least till the end of mine life
or ore exhaustion).

This strategy would induce a cutoff grade, x(C), much lower than the x(B) assay value but
should be equal to the minimum assay value, x min, or near zero assay value or waste
materials. The lower-grade materials with assays less than the assigned cutoff grade, x(C), are
not mined and left in situ as un-mined blocks and pillars.

The optimal cutoff assay, x(C,O), therefore, must lie satisfying the following sequence:

0 < x min < x (C,O) < x (B,R) < x(B) or x(M) < x maximum <1.0. Under the static model, even
though.

x(C,O) variation has a high range of assays (between x min and x (B)), it can be optimally
estimated using two factors of pdf of lg (x/(1 � x)) or lg(x) which is Gaussian and the ratio of
sales to cost prices (s/c).

Under a dynamic model, however, these parameters are time-varying and hence have to be
estimated for each time period of mining extractions, and hence, the procedure of estimation of
x(C,O) becomes more complex and time-consuming. Sale price is much more volatile than the
cost of production as it depends on supply and demand position, vagaries of technological
innovations, market substitutions, government interventions, and management policies.
Dynamic x(CO) must account for these dynamic changes for optimizing the current profits
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5.1. Ore blending

We assume for convenience that the exploited ore body has only one type of marketable grade
and only one type of nonmarketable lean-grade ores with associated waste materials of little
market value. The analysis can be easily extended to two or more types of marketable ores and
lean ores.

Let price per ton of ore be p and the assays and weight fractions of high-grade and lean-grade
ores be a1, f1 and a2, f2, respectively, so that waste fraction is (1- f1 – f2). We have to crush the
high-grade and lean-grade ores to suitable optimal size for blending so that the mix becomes
homogeneous and can yield a stable grade, a* > a(m), the minimum marketable grade neces-
sary for marketing purposes.

Then the average assay of blended mixture is.

a∗ ¼ W1 a1þW2 a2ð Þ= W1þW2ð Þ, (22)

where W1 and W2 are, respectively, the weights (in tons) of high-grade and lean-grade ores in
the mixture. The blended ore can be sold at a market price p per ton. The total sell value of
blended ore would be (W1 + W2)p.

The blended assay, a1*, must be greater than the minimum marketable assay, a(m), and then
the triangle law of proportional lengths of sides provides the minimumW1 value as (a(m)–a2)/
a1. However to be safe, a1* should be made 5% more than required minimum, a(m), value so
that blended ore is not rejected and we can use a minimum W1 value of (1.05 a(m) – a2)/a1). If
this minimum amount of W1 of the high-grade ore is not available, then we have to optimize
the mixing weights W1 and W2 for maximizing the profits by using constrained Lagrange
multiplier or may have to import the deficient quantity of high-grade ore.

5.2. Ore beneficiation

Beneficiation of lean ores can be performed using physical, chemical, and biochemical methods,
and the optimal technological parameters for providing maximum present value to marketed
products should be found by several experiments and using appropriate response-surface
experimental designs. The lean ores are to be finely grounded using jaw crushers, ball or rod
mills, to optimal grinding size to maximally liberate the ore minerals for beneficiation [17].

The optimal mix of beneficiation products can be estimated by using Lagrange multipliers to
maximize the net present value (defined as sell price minus cost price) of beneficiated products.
Details of applicable optimal beneficiation schemes and the associated plant designs are spe-
cific to the mine, ore type, and ore characteristics and, hence, cannot be discussed as a general
system theory. Therefore, the different ore beneficiation procedures are not discussed here.

5.3. Cutoff grade estimation

With continued rapid rate of utilization of minerals and metals for societal growth and explo-
sive rise in world population, it has become imperative to mine minerals with lower grade and
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at greater depths which induces increased costs of extraction and processing to make these
marketable. Hence, there is a greater need for conservation of these invaluable nonrenewable
finite mineral resources as well as for the preservation of fragile ecology and environment.
Balancing these two opposing concepts of maximal utilization of ores and sustainable societal
growth is the critical need of the hour [1–3, 5, 14, 25].

Mineral resources are characterized by their unique geological setting and genesis, as well as
their spatial distribution which greatly influence the optimal extraction of these nonrenewable
resources. Mining industry becomes sustainable with consistent long-term profit accruals over
the life span of the mine.

This dictates that extracted ores can be marketed with reasonable profit, with sale price (s/ton)
exceeding the cost of production (c/ton). The cost of production includes many factors such as
mining, blending, beneficiation, transport of ores and wastes for their marketing, and safe
disposals, respectively. Sale price (s/ton) of marketable ore is highly unpredictable due to
volatile demand and supply of ores, government policy, technological innovations, substitute
products, etc.

The cutoff assay, x(C), is defined as the fractional assay (x) of resource above which the
extracted product is marketable (x(M)) and above the break-even assay (x(B)) defining the
equality of sale (s/ton) and cost (c/ton) prices of the produce. Unfortunately, break-even assay,
x(B), is not very useful as a cutoff grade since at this mining strategy profits become nil and
mine becomes unsustainable. However, x(B) does provide the upper bound to the cutoff grade
x(C) for ore extraction. Profits accrue if the extractable grade is reasonably above the market-
able grade x(M) with the sale price (s/ton) greater than the production cost(c/ton) and with an
extraction rate that maintains long-term sustainability of mine (at least till the end of mine life
or ore exhaustion).

This strategy would induce a cutoff grade, x(C), much lower than the x(B) assay value but
should be equal to the minimum assay value, x min, or near zero assay value or waste
materials. The lower-grade materials with assays less than the assigned cutoff grade, x(C), are
not mined and left in situ as un-mined blocks and pillars.

The optimal cutoff assay, x(C,O), therefore, must lie satisfying the following sequence:

0 < x min < x (C,O) < x (B,R) < x(B) or x(M) < x maximum <1.0. Under the static model, even
though.

x(C,O) variation has a high range of assays (between x min and x (B)), it can be optimally
estimated using two factors of pdf of lg (x/(1 � x)) or lg(x) which is Gaussian and the ratio of
sales to cost prices (s/c).

Under a dynamic model, however, these parameters are time-varying and hence have to be
estimated for each time period of mining extractions, and hence, the procedure of estimation of
x(C,O) becomes more complex and time-consuming. Sale price is much more volatile than the
cost of production as it depends on supply and demand position, vagaries of technological
innovations, market substitutions, government interventions, and management policies.
Dynamic x(CO) must account for these dynamic changes for optimizing the current profits
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and the future expected profits. All profits must be brought to a comparable level using the
standard techniques of reduction using net profit value (NPV) [3, 14] to the present state of
time origin. Characterization of pdf of fractional assays in the ore body can be made by
measuring assays of a large number (N > 50) of independent REV [30] samples/cells/blocks
collected in the 3D space over which the resource exists.

From these sample data using the standard statistical methods, the arithmetic mean, median,
variance, standard deviation, etc. can be easily obtained/computed. However, it is well known
that the fractional assay pdf is lognormal [6, 9, 15, 16], and hence all statistical parameters and
hypothesis tests must be made on the transformed Gaussian random variable, log(x), where
log stands for common logarithm of assay value, x.

Computing on log(x) basis, we obtain the mean (u) which is median of log(x), and standard
deviation of log(x) (σ) for cutoff, x(C), and optimal cutoff, x(C,O) estimations.

In the case of high-valued ores like diamonds, U, REE, Au, Ag, etc., the optimal cutoff is to x(B).
In static analysis the geologic, assay distributional and economic factors are assumed to be
constants over time, while in dynamic analyses, these parameters are time-varying and have to
be estimated after each time unit of ore extraction (say, quarterly, half-yearly, or yearly as felt
necessary). Dynamic modeling, although more involved, would yield much greater profits
than the simpler static analysis.

5.4. Relation between break-even, x(B), and cutoff, x(C), assays

The main goal in mining is to maximize the profits by sale of mined and/or beneficiated ores
[5]. Break-even assay, x(B), is very important in mining industry as it delimits the profitable
ores from nonprofitable mineral resources.

This concept largely depends on the ratio of sales (s/ton) and cost (c/ton) prices of ore extrac-
tion of the marketable ore grade, x(M). Thus, using the pdf of fractional assays, x, if x(C) is
zero, or x min, we obtain, for cdf F(x) of assay values, x as

F x Bð Þð Þ s ¼ c (23)

or F x Bð Þð Þ ¼ 1– c=sð Þ (24)

At some positive cutoff grade x(C) > 0 and/or x min, we similarly get

1–F x Bð Þð Þ s ¼ 1� F x Cð Þð Þ c,ðð (25)

or

F x Bð Þð Þ ¼ 1– 1–F x Cð Þð Þ c=sð Þ:ð (26)

Eq. (2) can be reversed to obtain F(x(C)), as a function of F(x(B)), as
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F x Cð Þð Þ ¼ 1– 1–F x Bð Þð Þ s=cð Þ:ð (27)

Break-even grade, x(B), obtained by F�1x Bð Þ ¼ N�1x Bð Þ and, similarly, optimal cutoff grade,
x(CO), can be obtained by inverting F(x(CO)) or cutoff grade x(C) by F�1x Cð Þ ¼ N�1x Cð Þ.
In dynamic models forecasted values of (s/c) ratios are needed which is achieved by linearizing
Eq. 3 and adding random error terms to sale (e(s)/ton) and cost (e(c)/ton) prices, as

log 1–F x Cð Þð Þ ¼ log 1–F x Bð Þð Þ þ log s=cð Þ þ log e sð Þð Þ � log e cð Þð Þ:ðð (28)

The predicted values of log (1–F(x(C)) = Y(hat) from time series model equation (Eq. (25)) can,
then, be inverted to obtain x(C) as {1 – Exp (Y(hat))}. But in this paper, dynamic models (for
forecasting s and c values to get Y (hat)) are not investigated in details and not pursued further.
From Eq. (24), it is obvious that F(x(B)) is the upper limit to cdf of cutoff grade F(x(C)), and if
(s/c) is 1.0, then F(x(C)) = F(x(B)).

We can obtain the lower bound to cdf of cutoff grade F(x(C)) as the minimum assay in the
resource, x min, since fractional assay always lies above x min for any lognormal pdf.

Thus, F(x(C)) lies in the range from (x min) to (x(B)) in the following sequence:

0 < x min < x(C)/ x(C,O) < x(B,R) < x(B) < x(M) < x max<1.0; (x(M) being the marketable grade
and x(B,R) the break-even grade for mining with risk factor at alpha confidence level). The
optimal cutoff grade, x(C,O), will lie in the range from (0/x min) to (x(B))/(x(B,R) or x(M)); and
x(C,O) strongly depends on the (s/c) ratio as well as the lower (x min or 0) and upper, x(B,R) or
(x (B)) bounds of x(C).

Table 3 indicates some typical values of lower and upper bounds of x(C) for various (mineable/
economic) sale-to-cost price ratios (s/c) for a lognormal assay pdf, x, (i.e., log(x) is Gaussian).

Geologists and mining engineers have been using cutoff grade empirically, determined by
their experience or by simple thumb rule and without using the concept of pdf of assay
distribution being lognormal in the ores.

(s/c) ratios 1.15 10 100 1000 10,000 Remark

x min or zero 0.3 0.01 0.001 0.0001 0.00001 Lower bound

F(x(B)) 0.84 0.99 0.999 0.9999 0.99999 Upper bound

Standardized random variable, z, can be calculated as z = [log(x) – μ]/σ; hence we obtain x min = Exp [μ – σ. z min] and x
max = Exp (μ + σ.z max). The values, F(x(B)) and x min/zero grade, form the upper and lower bounds of cutoff grades,
respectively. However, the upper bounds to F(x(C)) given in Table 4 would be more useful, in practice, rather than those
listed in Table 3.

Table 3. Feasible break-even grade, x(B), and x min or zero grade < x(C)/ x(C,O) assume lognormal (log-Gaussian) pdf
for log(x) with mean, μ, and standard deviation, σ.
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and the future expected profits. All profits must be brought to a comparable level using the
standard techniques of reduction using net profit value (NPV) [3, 14] to the present state of
time origin. Characterization of pdf of fractional assays in the ore body can be made by
measuring assays of a large number (N > 50) of independent REV [30] samples/cells/blocks
collected in the 3D space over which the resource exists.

From these sample data using the standard statistical methods, the arithmetic mean, median,
variance, standard deviation, etc. can be easily obtained/computed. However, it is well known
that the fractional assay pdf is lognormal [6, 9, 15, 16], and hence all statistical parameters and
hypothesis tests must be made on the transformed Gaussian random variable, log(x), where
log stands for common logarithm of assay value, x.

Computing on log(x) basis, we obtain the mean (u) which is median of log(x), and standard
deviation of log(x) (σ) for cutoff, x(C), and optimal cutoff, x(C,O) estimations.

In the case of high-valued ores like diamonds, U, REE, Au, Ag, etc., the optimal cutoff is to x(B).
In static analysis the geologic, assay distributional and economic factors are assumed to be
constants over time, while in dynamic analyses, these parameters are time-varying and have to
be estimated after each time unit of ore extraction (say, quarterly, half-yearly, or yearly as felt
necessary). Dynamic modeling, although more involved, would yield much greater profits
than the simpler static analysis.

5.4. Relation between break-even, x(B), and cutoff, x(C), assays

The main goal in mining is to maximize the profits by sale of mined and/or beneficiated ores
[5]. Break-even assay, x(B), is very important in mining industry as it delimits the profitable
ores from nonprofitable mineral resources.

This concept largely depends on the ratio of sales (s/ton) and cost (c/ton) prices of ore extrac-
tion of the marketable ore grade, x(M). Thus, using the pdf of fractional assays, x, if x(C) is
zero, or x min, we obtain, for cdf F(x) of assay values, x as

F x Bð Þð Þ s ¼ c (23)

or F x Bð Þð Þ ¼ 1– c=sð Þ (24)

At some positive cutoff grade x(C) > 0 and/or x min, we similarly get

1–F x Bð Þð Þ s ¼ 1� F x Cð Þð Þ c,ðð (25)

or

F x Bð Þð Þ ¼ 1– 1–F x Cð Þð Þ c=sð Þ:ð (26)

Eq. (2) can be reversed to obtain F(x(C)), as a function of F(x(B)), as
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F x Cð Þð Þ ¼ 1– 1–F x Bð Þð Þ s=cð Þ:ð (27)

Break-even grade, x(B), obtained by F�1x Bð Þ ¼ N�1x Bð Þ and, similarly, optimal cutoff grade,
x(CO), can be obtained by inverting F(x(CO)) or cutoff grade x(C) by F�1x Cð Þ ¼ N�1x Cð Þ.
In dynamic models forecasted values of (s/c) ratios are needed which is achieved by linearizing
Eq. 3 and adding random error terms to sale (e(s)/ton) and cost (e(c)/ton) prices, as

log 1–F x Cð Þð Þ ¼ log 1–F x Bð Þð Þ þ log s=cð Þ þ log e sð Þð Þ � log e cð Þð Þ:ðð (28)

The predicted values of log (1–F(x(C)) = Y(hat) from time series model equation (Eq. (25)) can,
then, be inverted to obtain x(C) as {1 – Exp (Y(hat))}. But in this paper, dynamic models (for
forecasting s and c values to get Y (hat)) are not investigated in details and not pursued further.
From Eq. (24), it is obvious that F(x(B)) is the upper limit to cdf of cutoff grade F(x(C)), and if
(s/c) is 1.0, then F(x(C)) = F(x(B)).

We can obtain the lower bound to cdf of cutoff grade F(x(C)) as the minimum assay in the
resource, x min, since fractional assay always lies above x min for any lognormal pdf.

Thus, F(x(C)) lies in the range from (x min) to (x(B)) in the following sequence:

0 < x min < x(C)/ x(C,O) < x(B,R) < x(B) < x(M) < x max<1.0; (x(M) being the marketable grade
and x(B,R) the break-even grade for mining with risk factor at alpha confidence level). The
optimal cutoff grade, x(C,O), will lie in the range from (0/x min) to (x(B))/(x(B,R) or x(M)); and
x(C,O) strongly depends on the (s/c) ratio as well as the lower (x min or 0) and upper, x(B,R) or
(x (B)) bounds of x(C).

Table 3 indicates some typical values of lower and upper bounds of x(C) for various (mineable/
economic) sale-to-cost price ratios (s/c) for a lognormal assay pdf, x, (i.e., log(x) is Gaussian).

Geologists and mining engineers have been using cutoff grade empirically, determined by
their experience or by simple thumb rule and without using the concept of pdf of assay
distribution being lognormal in the ores.

(s/c) ratios 1.15 10 100 1000 10,000 Remark

x min or zero 0.3 0.01 0.001 0.0001 0.00001 Lower bound

F(x(B)) 0.84 0.99 0.999 0.9999 0.99999 Upper bound

Standardized random variable, z, can be calculated as z = [log(x) – μ]/σ; hence we obtain x min = Exp [μ – σ. z min] and x
max = Exp (μ + σ.z max). The values, F(x(B)) and x min/zero grade, form the upper and lower bounds of cutoff grades,
respectively. However, the upper bounds to F(x(C)) given in Table 4 would be more useful, in practice, rather than those
listed in Table 3.

Table 3. Feasible break-even grade, x(B), and x min or zero grade < x(C)/ x(C,O) assume lognormal (log-Gaussian) pdf
for log(x) with mean, μ, and standard deviation, σ.
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5.5. Profit maximization

Assuming sufficient proportion of marketable ores, (1 –F(x(B)), with sale price (s/ton) greater
than the production cost (c/ton), exists for mining until exhaustion (mine life), economic
viability is obtained if.

W: 1–F x Bð Þð Þ s > w:c:ð (29)

The optimal cutoff grade, x(C,O), should be searched for in the range of profitable cutoff grade
range (i.e., between x min and x(B)), which can be equivalent to z (C,O) value within the range
of z(x min) to z (x(B)) calculated on the basis of lognormal mean (μ) and standard deviation (σ)
of the log(x) pdf. Then the total profit, P, can be calculated as.

P ¼ W: 1� z x Cð Þð Þ: s� cð Þ:ð (30)

The optimal cutoff grade, x(C, O), would be less than x(B) and can be obtained through risk
analysis (sale price of material in the range of x(B) to x(C,O) is equal to the cost of mining up to
this lower optimal grade, x(C,O)) [5, 16]. The resulting new break-even grade, x(B,R), taking
risk at alpha level, would be less than the original break-even grade, x(B), without taking any
risk, that is, x(B,R) < x(B). Using cumulative unit normal, N(0,1), statistical tabular values, we
then obtain [5, 16].

N z x Bð Þð Þ �N z x C;Oð Þð Þð �= N z x C;Oð Þð Þ � z x minð Þ or z �∞ð Þð � ¼ c=sð Þ,½ð½ (31)

which can be easily computed at the mining office for static or dynamic modeling to obtain x
(C,O) value, as required by the mine management. Compare Eq. (31) with Eq. (27) for calcula-
tion of F(x(C) assuming mining of ores at zero assay value as the cutoff grade.

Dynamic model calculations must be updated from time to time after a fixed time period of
mining operations. In addition, forecasting techniques can be used to predict future sale price
(s/ton) and future cost price (c/ton) using time series modeling parameters estimated from
corresponding past time series data [15] to obtain c/s or s/c ratios as needed.

These forecasting techniques are complex and model parameter dependent, and hence not
pursued further here. In the case of large mines, blending and/or ore beneficiation processes
are usually employed to upgrade lean ores to marketable grades for profits as well as for waste
utilization to protect ecology/environment.

x 1 2 3 4 5 6 10 Remarks

F(x(B)) 1 0.5 0.33 0.25 0.2 0.167 0.100 Upper bound

F(x(C)) 0 0 0 0 0 0 0 Lower bound

Table 4. Values of upper bounds, F(x(B)), and lower bounds, x (min) or zero, to the cutoff grade, F(x(C)), for different
economically feasible (s/c) ratios, greater than 1.0, as obtained by Eq. (2).
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Dynamic optimization of profits is mine and ore specific and cannot yield general optimal
cutoff grade for any specific ore type (say, iron ore, copper ore, gold ore, etc.). Hence, dynamic
optimization must be done periodically in every large mine and for every block as needed. In
addition, mining company must adhere to the National Mineral Policy and Mining Laws to
have safe and uninterrupted operations.

6. Conclusions

i. Fractional constituents of rocks/ores form multicomponent system having less than full
rank to be statistically meaningful for analyses and geological inferences. A log(x/(1 � x))
pre-transformation of x data is shown to eliminate rank problem and Gaussianizes/
normalizes (independent (uncorrelated) of sample data) the random variables/vectors
for linear statistical inferences, for geologically appropriate decisions, using univariate
and multivariate statistical model procedures. More complex analyses such as depen-
dence (correlated) samples in temporal, spatial, and spatiotemporal domains are not used
here for simplicity and for lack of space.

ii. Geochemical concentrations (x; 0 < x < 1) are rarely point data but are averaged over 1, 2,
or 3D space and attached to the center of the sample. Also, measurement base is rarely
numbers, as needed for statistical analyses, but the averaged sample values over length,
area, or volume (weight) are used as random variables located at the center of sample
volume (REV). Fractional constituents are spuriously as well as complexly negatively
correlated because of closure constraint for the total measure (1.0 or 100%) and possess
nonconstant variance over their mean value because these are binomial (multinomial) for
major and minor levels which reduces to a Poisson distribution for trace components.

iii. Spatial patterns of these constituents are usually heterogeneous as mineralization inten-
sities vary over local and regional scales. Homogeneity can be achieved through sam-
pling at scales of representative elementary volume (or greater volume) and over local
scales through NN clustering techniques.

iv. Anomaly detection is a very complex task as it depends on accurate determination of
local or regional threshold levels. The associated risks for exploration of different types of
anomalies as well as for specific individual targets must be evaluated.

v. Mineralization involves highly complex nonlinear geological processes, so simple univar-
iate statistical (linear) approaches with graphical methods are neither unique nor optimal.
Multivariate approaches are also linear but are much better (however, becomes unrealis-
tic if the sample data are spatially/temporally correlated). Nonlinear methods such as
nearest neighbor, fuzzy logic (FL), genetic algorithm (GA), and soft computing (SC)
techniques are more complex to use, not dealt here, but can be useful.

vi. During exploration stage useful multivariate methods could be multiple and partial
correlation, factor (principal component) analyses, canonical correlation for identifying
pathfinders and delineating anomaly zones, two-group linear discriminant functions,
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5.5. Profit maximization

Assuming sufficient proportion of marketable ores, (1 –F(x(B)), with sale price (s/ton) greater
than the production cost (c/ton), exists for mining until exhaustion (mine life), economic
viability is obtained if.

W: 1–F x Bð Þð Þ s > w:c:ð (29)

The optimal cutoff grade, x(C,O), should be searched for in the range of profitable cutoff grade
range (i.e., between x min and x(B)), which can be equivalent to z (C,O) value within the range
of z(x min) to z (x(B)) calculated on the basis of lognormal mean (μ) and standard deviation (σ)
of the log(x) pdf. Then the total profit, P, can be calculated as.

P ¼ W: 1� z x Cð Þð Þ: s� cð Þ:ð (30)

The optimal cutoff grade, x(C, O), would be less than x(B) and can be obtained through risk
analysis (sale price of material in the range of x(B) to x(C,O) is equal to the cost of mining up to
this lower optimal grade, x(C,O)) [5, 16]. The resulting new break-even grade, x(B,R), taking
risk at alpha level, would be less than the original break-even grade, x(B), without taking any
risk, that is, x(B,R) < x(B). Using cumulative unit normal, N(0,1), statistical tabular values, we
then obtain [5, 16].

N z x Bð Þð Þ �N z x C;Oð Þð Þð �= N z x C;Oð Þð Þ � z x minð Þ or z �∞ð Þð � ¼ c=sð Þ,½ð½ (31)

which can be easily computed at the mining office for static or dynamic modeling to obtain x
(C,O) value, as required by the mine management. Compare Eq. (31) with Eq. (27) for calcula-
tion of F(x(C) assuming mining of ores at zero assay value as the cutoff grade.

Dynamic model calculations must be updated from time to time after a fixed time period of
mining operations. In addition, forecasting techniques can be used to predict future sale price
(s/ton) and future cost price (c/ton) using time series modeling parameters estimated from
corresponding past time series data [15] to obtain c/s or s/c ratios as needed.

These forecasting techniques are complex and model parameter dependent, and hence not
pursued further here. In the case of large mines, blending and/or ore beneficiation processes
are usually employed to upgrade lean ores to marketable grades for profits as well as for waste
utilization to protect ecology/environment.

x 1 2 3 4 5 6 10 Remarks

F(x(B)) 1 0.5 0.33 0.25 0.2 0.167 0.100 Upper bound

F(x(C)) 0 0 0 0 0 0 0 Lower bound

Table 4. Values of upper bounds, F(x(B)), and lower bounds, x (min) or zero, to the cutoff grade, F(x(C)), for different
economically feasible (s/c) ratios, greater than 1.0, as obtained by Eq. (2).
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Dynamic optimization of profits is mine and ore specific and cannot yield general optimal
cutoff grade for any specific ore type (say, iron ore, copper ore, gold ore, etc.). Hence, dynamic
optimization must be done periodically in every large mine and for every block as needed. In
addition, mining company must adhere to the National Mineral Policy and Mining Laws to
have safe and uninterrupted operations.

6. Conclusions

i. Fractional constituents of rocks/ores form multicomponent system having less than full
rank to be statistically meaningful for analyses and geological inferences. A log(x/(1 � x))
pre-transformation of x data is shown to eliminate rank problem and Gaussianizes/
normalizes (independent (uncorrelated) of sample data) the random variables/vectors
for linear statistical inferences, for geologically appropriate decisions, using univariate
and multivariate statistical model procedures. More complex analyses such as depen-
dence (correlated) samples in temporal, spatial, and spatiotemporal domains are not used
here for simplicity and for lack of space.

ii. Geochemical concentrations (x; 0 < x < 1) are rarely point data but are averaged over 1, 2,
or 3D space and attached to the center of the sample. Also, measurement base is rarely
numbers, as needed for statistical analyses, but the averaged sample values over length,
area, or volume (weight) are used as random variables located at the center of sample
volume (REV). Fractional constituents are spuriously as well as complexly negatively
correlated because of closure constraint for the total measure (1.0 or 100%) and possess
nonconstant variance over their mean value because these are binomial (multinomial) for
major and minor levels which reduces to a Poisson distribution for trace components.

iii. Spatial patterns of these constituents are usually heterogeneous as mineralization inten-
sities vary over local and regional scales. Homogeneity can be achieved through sam-
pling at scales of representative elementary volume (or greater volume) and over local
scales through NN clustering techniques.

iv. Anomaly detection is a very complex task as it depends on accurate determination of
local or regional threshold levels. The associated risks for exploration of different types of
anomalies as well as for specific individual targets must be evaluated.

v. Mineralization involves highly complex nonlinear geological processes, so simple univar-
iate statistical (linear) approaches with graphical methods are neither unique nor optimal.
Multivariate approaches are also linear but are much better (however, becomes unrealis-
tic if the sample data are spatially/temporally correlated). Nonlinear methods such as
nearest neighbor, fuzzy logic (FL), genetic algorithm (GA), and soft computing (SC)
techniques are more complex to use, not dealt here, but can be useful.

vi. During exploration stage useful multivariate methods could be multiple and partial
correlation, factor (principal component) analyses, canonical correlation for identifying
pathfinders and delineating anomaly zones, two-group linear discriminant functions,
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and multi-group linear discriminant functions for identifying ore from wastes and for
delineating ore zones.

But during the development and production stages, it is prudent to identify different
categories of ore and zones such as

• Marketable high grades

• Blended marketable grades

(s/c) 1.0 1.1 1.2 1.25 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

F(x(B)) F(x(C)

.005 .005

.010 .010

.015 .015

.020 .020

.025 .025

.030 .030

.035 .035

.040 .040

.045 .045 .000

.050 .050 .000 0

.100 .100 .010 0 0

.150 .150 .070 0 0 0

.200 .200 .120 .040 0 0 0

.250 .250 .175 .100 .060 .025 0 0

.300 .300 .230 .160 .120 .090 .020 0 0

.350 .350 .285 .220 .190 .145 .070 .025 0 0 0

.400 .400 .340 .280 .250 .220 .160 .010 .040 0 0 0 0

.450 .450 .395 .340 .310 .285 .230 .175 .120 .065 .010 0 0

.500 .500 .450 .400 .370 .350 .300 .250 .200 .150 .100 .050 0

.600 .600 .340 .280 .250 .220 .160 .100 .040 x x x x

.700 .700 .230 .160 .125 .090 .020 x x x x x x

.800 .800 .120 .040 x x x x x x x x x

.900 .900 .010 x x x x x x x x x x

1.00 1.00 x x x x x x x x x x x

Beyond (s/c) ratio of 2.0, the F(x(C)) values will be essentially, either, x (minimum) or zero; hence these values have not been given
in this table. The optimal cutoff grade (as given by Eq.(V.5,-2), F(x(CO))) lies between F(x(min)/zero) and F(x(B)) values.
Values of x(C) = F^-1(x(C)) = N^-1(lg(x(C)); similarly, we obtain x(CO) = F^-1 (x(CO)) = N^-1(lg(x(CO)).

Table 5. Cumulative value of fractional cutoff grade (assay), F(x(C)), as calculated by Eq. (27), for different ratios of sales/
cost prices, (s/c) ratios, and for different cumulative values of fractional break-even grade, F(x(B)), as calculated by
Eq. (26), is given in Table 5.

Minerals126

• Beneficiated marketable grades

• Low-grade ores forming future resource

• Waste material

To achieve these delineations, we use multi-group linear discriminant function approach.

Then, optimal mining, blending, beneficiation, and marketing operations would maxi-
mize profits, social aspirations, and ecological/environmental protection/remediation for
greater sustainability.

vii. Optimal utilization of unmarketable lean-grade ores helps to accumulate additional
capital for economic and social growths and reduction in costs of waste treatment and
disposal, thereby improving the health of local inhabitants, as well as helps in the conser-
vation of high-grade ores for better sustainability and for utilization in the future.

viii. Estimation of cutoff grade, x(C), or optimal cutoff grade, x(CO), involves many complex
geological, spatial assay distributional, pdf of assays in rocks/ores, and economic factors
such as sell price (s/ton) and production to marketing costs for ores plus disposal costs of
wastes (c/ton).

Estimation is simpler for static models where these random variables (rvs) are Gaussianized/
normalized using pre-transformation, log(x), and are time-invariant constants but highly
involved when these parameters vary with time and have to be updated at short intervals
(dynamic models). Estimation of cutoff grade can be obtained by solving the nonlinear equa-
tion for static models (see Table 5) and inverting the obtained F(x(c) or F(x(CO)) using the
standard unit-normal cumulative statistical tables giving N(0,1), i.e., N^ -1(0,1).

Dynamic models do not have a global solution for cutoff grade since it has to be updated at
every time interval of mining operation but yield much greater overall profits to the mining
industry.
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and multi-group linear discriminant functions for identifying ore from wastes and for
delineating ore zones.

But during the development and production stages, it is prudent to identify different
categories of ore and zones such as

• Marketable high grades

• Blended marketable grades

(s/c) 1.0 1.1 1.2 1.25 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

F(x(B)) F(x(C)

.005 .005

.010 .010

.015 .015

.020 .020

.025 .025

.030 .030

.035 .035

.040 .040

.045 .045 .000

.050 .050 .000 0

.100 .100 .010 0 0

.150 .150 .070 0 0 0

.200 .200 .120 .040 0 0 0

.250 .250 .175 .100 .060 .025 0 0

.300 .300 .230 .160 .120 .090 .020 0 0

.350 .350 .285 .220 .190 .145 .070 .025 0 0 0

.400 .400 .340 .280 .250 .220 .160 .010 .040 0 0 0 0

.450 .450 .395 .340 .310 .285 .230 .175 .120 .065 .010 0 0

.500 .500 .450 .400 .370 .350 .300 .250 .200 .150 .100 .050 0

.600 .600 .340 .280 .250 .220 .160 .100 .040 x x x x

.700 .700 .230 .160 .125 .090 .020 x x x x x x

.800 .800 .120 .040 x x x x x x x x x

.900 .900 .010 x x x x x x x x x x

1.00 1.00 x x x x x x x x x x x

Beyond (s/c) ratio of 2.0, the F(x(C)) values will be essentially, either, x (minimum) or zero; hence these values have not been given
in this table. The optimal cutoff grade (as given by Eq.(V.5,-2), F(x(CO))) lies between F(x(min)/zero) and F(x(B)) values.
Values of x(C) = F^-1(x(C)) = N^-1(lg(x(C)); similarly, we obtain x(CO) = F^-1 (x(CO)) = N^-1(lg(x(CO)).

Table 5. Cumulative value of fractional cutoff grade (assay), F(x(C)), as calculated by Eq. (27), for different ratios of sales/
cost prices, (s/c) ratios, and for different cumulative values of fractional break-even grade, F(x(B)), as calculated by
Eq. (26), is given in Table 5.
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• Beneficiated marketable grades

• Low-grade ores forming future resource

• Waste material

To achieve these delineations, we use multi-group linear discriminant function approach.

Then, optimal mining, blending, beneficiation, and marketing operations would maxi-
mize profits, social aspirations, and ecological/environmental protection/remediation for
greater sustainability.

vii. Optimal utilization of unmarketable lean-grade ores helps to accumulate additional
capital for economic and social growths and reduction in costs of waste treatment and
disposal, thereby improving the health of local inhabitants, as well as helps in the conser-
vation of high-grade ores for better sustainability and for utilization in the future.

viii. Estimation of cutoff grade, x(C), or optimal cutoff grade, x(CO), involves many complex
geological, spatial assay distributional, pdf of assays in rocks/ores, and economic factors
such as sell price (s/ton) and production to marketing costs for ores plus disposal costs of
wastes (c/ton).

Estimation is simpler for static models where these random variables (rvs) are Gaussianized/
normalized using pre-transformation, log(x), and are time-invariant constants but highly
involved when these parameters vary with time and have to be updated at short intervals
(dynamic models). Estimation of cutoff grade can be obtained by solving the nonlinear equa-
tion for static models (see Table 5) and inverting the obtained F(x(c) or F(x(CO)) using the
standard unit-normal cumulative statistical tables giving N(0,1), i.e., N^ -1(0,1).

Dynamic models do not have a global solution for cutoff grade since it has to be updated at
every time interval of mining operation but yield much greater overall profits to the mining
industry.
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