
Fractal Analysis
Edited by Sid-Ali Ouadfeul

Edited by Sid-Ali Ouadfeul

The aim of this book is to show some applications of fractal analysis in the fields of 
sciences. The first chapter introduces the readers to the book, while the second chapter 
shows the methods and challenges of fractal analysis of time-series data sets. The third 
chapter demonstrates fractal geometry as an attractive choice for miniaturized planar 

microwave filter design. The fourth chapter presents fractal antennas for wearable 
applications. The objective of the fifth chapter is to show some Parrondian games in 
discrete dynamic systems, while the last chapter reveals fractal structures of carbon 

nanotube system arrays.

Published in London, UK 

©  2019 IntechOpen 
©  dianaarturovna / iStock

ISBN 978-1-78985-433-6

Fractal A
nalysis





Fractal Analysis
Edited by Sid-Ali Ouadfeul

Published in London, United Kingdom





Supporting open minds since 2005



Fractal Analysis
http://dx.doi.org/10.5772/intechopen.74876
Edited by Sid-Ali Ouadfeul

Contributors
Enrique Peacock-Lopez, Steven Mendoza, Sid-Ali Ouadfeul, Mohamed Ismail Ahmed, M. F. Ahmed, Hadi 
Ziboon, Jawad Ali, Ian Pilgrim, Richard Taylor, Victor Kuetche Kamgang, Raissa Noule Simo

© The Editor(s) and the Author(s) 2019
The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, 
Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. 
The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or 
non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning 
the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons 
Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of 
the individual chapters, provided the original author(s) and source publication are appropriately 
acknowledged. If so indicated, certain images may not be included under the Creative Commons 
license. In such cases users will need to obtain permission from the license holder to reproduce the 
material. More details and guidelines concerning content reuse and adaptation can be foundat http://
www.intechopen.com/copyright-policy.html.

Notice
Statements and opinions expressed in the chapters are these of the individual contributors and not 
necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of 
information contained in the published chapters. The publisher assumes no responsibility for any 
damage or injury to persons or property arising out of the use of any materials, instructions, methods 
or ideas contained in the book.

First published in London, United Kingdom, 2019 by IntechOpen
eBook (PDF) Published by IntechOpen, 2019
IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, 
registration number: 11086078, The Shard, 25th floor, 32 London Bridge Street  
London, SE19SG – United Kingdom
Printed in Croatia

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Additional hard and PDF copies can be obtained from orders@intechopen.com

Fractal Analysis
Edited by Sid-Ali Ouadfeul
p. cm.
Print ISBN 978-1-78985-433-6
Online ISBN 978-1-78985-434-3
eBook (PDF) ISBN 978-1-83962-112-3



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,100+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International  authors and editors

120M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Dr. Sid-Ali Ouadfeul is currently an Associate Professor of geo-
physics at Khemis Miliana University. He received an Engineer 
diploma from the University of Boumerdes, Algeria, a Magister 
and PhD in Geophysics from the University of Sciences and 
Technology, Houari Boumedienne, Algeria. During these last two 
decades, Dr. Ouadfeul has published many papers to understand 
the earth’s underlying system using nonlinear analysis such as 

the artificial intelligence and fractal analysis. Dr. Ouadfeul is the organizer of many 
international conferences throughout the world on the understanding of chaotic 
systems in geophysics.



Preface III

Chapter 1 1
Introductory Chapter: Fractal in Sciences
by Sid-Ali Ouadfeul

Chapter 2 5
Fractal Analysis of Time-Series Data Sets: Methods and Challenges
by Ian Pilgrim and Richard P. Taylor

Chapter 3 31
Fractal Geometry: An Attractive Choice for Miniaturized Planar Microwave  
Filter Design
by Hadi T. Ziboon and Jawad K. Ali

Chapter 4 51
Fractal Antennas for Wearable Applications
by Mohamed I. Ahmed and Mai F. Ahmed

Chapter 5 69
Parrondian Games in Discrete Dynamic Systems
by Steve A. Mendoza and Enrique Peacock-López

Chapter 6 83
Fractal Structures of the Carbon Nanotube System Arrays
by Raïssa S. Noule and Victor K. Kuetche

Contents



Preface XIII

Chapter 1 1
Introductory Chapter: Fractal in Sciences
by Sid-Ali Ouadfeul

Chapter 2 5
Fractal Analysis of Time-Series Data Sets: Methods and Challenges
by Ian Pilgrim and Richard P. Taylor

Chapter 3 31
Fractal Geometry: An Attractive Choice for Miniaturized Planar Microwave 
Filter Design
by Hadi T. Ziboon and Jawad K. Ali

Chapter 4 51
Fractal Antennas for Wearable Applications
by Mohamed I. Ahmed and Mai F. Ahmed

Chapter 5 69
Parrondian Games in Discrete Dynamic Systems
by Steve A. Mendoza and Enrique Peacock-López

Chapter 6 83
Fractal Structures of the Carbon Nanotube System Arrays
by Raïssa S. Noule and Victor K. Kuetche

Contents



Preface

Fractal analysis has proven its ability to resolve many problems and ambiguities
in the full spectrum of sciences such as physics, chemistry, human biology, and 
geosciences. The aim of this book is to show some applications of fractal analysis in
the fields of sciences authored by Dr. Sid-Ali Ouadfeul, an Associate Professor of
geophysics at Khemis Miliana University. The first chapter introduces the readers
to the book, while the second chapter shows the methods and challenges of fractal 
analysis of time-series data sets. The third chapter demonstrates fractal geometry
as an attractive choice for miniaturized planar microwave filter design. The fourth
chapter presents fractal antennas for wearable applications. The objective of the
fifth chapter is to show some Parrondian games in discrete dynamic systems, while
the last chapter reveals fractal structures of carbon nanotube system arrays.
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University of Khemis Miliana,

Algeria



Preface

Fractal analysis has proven its ability to resolve many problems and ambiguities 
in the full spectrum of sciences such as physics, chemistry, human biology, and 
geosciences. The aim of this book is to show some applications of fractal analysis in 
the fields of sciences authored by Dr. Sid-Ali Ouadfeul, an Associate Professor of 
geophysics at Khemis Miliana University. The first chapter introduces the readers 
to the book, while the second chapter shows the methods and challenges of fractal 
analysis of time-series data sets. The third chapter demonstrates fractal geometry 
as an attractive choice for miniaturized planar microwave filter design. The fourth 
chapter presents fractal antennas for wearable applications. The objective of the 
fifth chapter is to show some Parrondian games in discrete dynamic systems, while 
the last chapter reveals fractal structures of carbon nanotube system arrays.

Sid-Ali Ouadfeul
University of Khemis Miliana,

Algeria



1

Chapter 1

Introductory Chapter: Fractal in 
Sciences
Sid-Ali Ouadfeul

1. Introduction

The notion of fractal was introduced for the first time in 1975 by the mathema-
tician Benoit Mandelbrot in his book entitled Fractal Objects which marked the 
beginning of his fame. The first definitions of the adjective fractal (from the Latin 
adjective fractus) come from the word “frangere” which means to break.

The irregularities of nature, of chaotic appearance, such as the irregularities 
of the seacoasts and the shape of the clouds, a tree, and a fern leaf, are in fact the 
expression of a very complex geometry of the sea. ‘infinitely small. It can be said, 
however, that a fractal object is an invariant object by dilations, translations, and 
rotations [1].

The fractal analysis has been widely used in sciences, for example, in physics, 
the fractal analysis is used in thermodynamics, particularly for the study of fully 
developed turbulence [1], in image segmentation and processing [2, 3], in astro-
physics for the study of hydrogen distribution [4], in physical medicine for tumor 
localization from mammograms [3], and in cardiology, for the study of the electro-
cardiograms [5].

In geoscience, the fractal analysis has been used in petrophysics for the 
segmentation or classification of geological formations [6–9]. It has also been 
used in geomagnetism to characterize the outer part of the geomagnetic field 
[10–14]. In environmental sciences, Burrough [15] used the semivariogram 
method to estimate the fractal dimension D for various environmental transects 
(e.g., soil factors, vegetation cover, iron ore content in rocks, rainfall levels, crop 
yields). In medicine and human biology, the fractal analysis has been applied 
in cell, protein, and chromosome structures, for example, Takahashi [16] sup-
posed that the basic design of a chromosome has a tree-like pattern. Xu et al. 
[17] assumed that the twistings of DNA-binding proteins have fractal properties. 
Self-similarity has recently demonstrated in DNA sequences (see Stanley [18]; see 
also papers in Nonnenmacher et al. [19]). Glazier et al. [20] used the multifractal 
spectrum approach to rebuild the evolutionary history of organisms from mDNA 
sequences.

The aim of this book is to gather advance researches in the field of frac-
tal analysis; the book contains seven chapters: one chapter is discussing the 
Parrondian games in discrete dynamic systems, two chapters are debating the 
application of the fractal analysis in microwave and antennas, and another 
chapter is showing some applications in medicine, while another one is talking 
about the fractal structures of the carbon nanotube system arrays and another 
chapter discuss the methods and challenges of the fractal analysis of the time-
series data sets.
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Chapter 2

Fractal Analysis of Time-Series
Data Sets: Methods and Challenges
Ian Pilgrim and Richard P. Taylor

Abstract

Many methods exist for quantifying the fractal characteristics of a structure via a
fractal dimension. As a traditional example, a fractal dimension of a spatial fractal
structure may be quantified via a box-counting fractal analysis that probes a man-
ner in which the structure fills space. However, such spatial analyses generally are
not well-suited for the analysis of so-called “time-series” fractals, which may
exhibit exact or statistical self-affinity but which inherently lack well-defined spa-
tial characteristics. In this chapter, we introduce and investigate a variety of fractal
analysis techniques directed to time-series structures. We investigate the fidelity of
such techniques by applying each technique to sets of computer-generated time-
series data sets with well-defined fractal characteristics. Additionally, we investi-
gate the inherent challenges in quantifying fractal characteristics (and indeed of
verifying the presence of such fractal characteristics) in time-series traces modeled
to resemble physical data sets.

Keywords: fractal, spatial fractal, time-series fractal, fractal analysis, fractal
dimension, self-similarity, self-affinity, topological dimension, embedding
dimension, similarity dimension, box-counting dimension, covering dimension,
variational box-counting, Hurst exponent, variance method, Dubuc variation
method, adaptive fractal analysis, power-law noise, Brownian motion, fractional
Brownian motion

1. Introduction

In this chapter, we explore a species of fractals known as “time-series” fractals.
Such structures generally may be conceived (and visualized) as functions of inde-
pendent variables whose plots exhibit shapes and patterns that are evocative of the
more familiar spatial fractals. However, lacking well-defined spatial characteris-
tics, time-series fractals call for analytical tools that depart from those of the world
of spatial fractals. To lay the foundation for a discussion of such analytical tools,
we begin with an overview of fractal structures and traditional fractal analysis
techniques. We then introduce time-series fractals and investigate the unique
analytical tools necessitated by such structures. Finally, we investigate the relative
fidelity of these analytical tools, as well as the shortcomings inherent in
performing fractal analysis on time-series fractals of limited length and/or
fine-scale detail.
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2. Motivating the fractal dimension

Mathematician Benoit B. Mandelbrot often is credited with introducing the
notion of a fractional, or fractal, dimension in his 1967 paper, “How long is the coast
of Britain?” [1]. In fact, however, the curious nature of coastline measurements had
been discussed by Lewis Fry Richardson 6 years prior in the General Systems Year-
book [2]. Richardson, a pacifist and mathematician, sought to investigate the
hypothesis that the likelihood that war would erupt between a pair of neighboring
nations is related to the length of the nations’ shared border. As Richardson and
Mandelbrot note, such a hypothesis is difficult to evaluate, since individual records
of the length of Britain’s west coast varied by up to a factor of three. Indeed, as the
precision of such measurements increases—that is, by decreasing the length of the
“ruler” used to trace the profile—the measured total length appears to increase as
well. This quality reflects the fact that the outline of the British coastline is an
example of a “self-similar” structure—that is, a structure that exhibits the same
statistical qualities, or even the exact details, across a wide range of length scales. In
light of this apparent fundamental indeterminacy, Mandelbrot posits that familiar
geometrical metrics such as length are inadequate for describing the complexity
found in nature.

Recognizing Richardson’s prior investigations, Mandelbrot notes that Richard-
son had indeed produced an empirical relation between a measured coast length L
and the smallest unit of measurement G: L Gð Þ ¼ MG1�D, where M is a positive
constant and D≥ 1—but observes that “unfortunately it attracted no attention” [1].
In Ref. [1], building upon Richardson’s observations, Mandelbrot introduces the
formalism of a fractional, or fractal1, dimension to quantify the nature of such
shapes.

Following Mandelbrot’s example, to generalize the concept of a geometrical
dimension, we may begin by examining the scaling behavior of such trivially self-
similar objects as a line, a square, and a cube. For example, consider a line segment
of length L, which can be separated into N non-overlapping subsets of length L=N,
each of which is identical to the whole segment but for a scaling factor r Nð Þ ¼ 1=N.
Analogously, a square with side length L may be decomposed into N2 facsimiles of
side length L=N, each of which is scaled down from the original by a factor
r Nð Þ ¼ N�1=2, and a cube of side length L can be decomposed into N3 facsimiles of
side length L=N with corresponding scaling ratio r Nð Þ ¼ N�1=3; see Figure 1. To
generalize this pattern, we may observe that the scaling ratio r Nð Þ follows the
relationship r Nð Þ ¼ N�1=D. In this relationship, D ¼ � log Nð Þ= log r Nð Þð Þ is known
as the similarity dimension of the structure in question.

Applying the concept of a similarity dimension to less trivial shapes is straight-
forward in the case of exactly self-similar structures, such as structures that are
constructed via iteration of a generating pattern. As an example, consider the Koch
curve, illustrated in Figure 2. The Koch curve is constructed as follows: Beginning
with a line segment of unity length, replace the middle third of the segment with an
equilateral triangle whose base has a length of 1/3 and overlies the original line
segment, then remove this overlapping base segment. The resulting figure thus
consists of four line segments, each of which has a length of 1/3. Iterating this
process for each new line segment yields a sequence of figures that exhibit increas-
ingly fine structure, with the limiting state of this series exhibiting exact self-
similarity, in the sense that a nontrivial subset of the shape is exactly identical to the

1 Though Mandelbrot discusses the concept of fractional dimension in this 1967 paper, he did not

introduce the term “fractal” until 1975 [3].
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whole. This exact self-similarity is illustrated in Figure 2, which shows that the full
Koch curve may be described as being formed from four exact copies of itself, each
scaled down by a factor of 1/3. Thus, we can apply the above relation to find that the
Koch curve has a similarity dimension of D ¼ � log 4ð Þ= log 1=3ð Þ≈ 1:26.

The similarity dimension described above represents but one example of a
plurality of dimensions that can be defined and calculated for a given figure.

Figure 1.
A line, a square, and a cube are examples of trivially self-similar Euclidian shapes. A Euclidian shape in D
dimensions may be said to contain N ¼ L=L0ð Þ�D exact copies of itself scaled by a factor of L=L0. Image
provided by R.D. Montgomery.

Figure 2.
The Koch curve is an example of an exact self-similar figure with a non-integer similarity dimension.
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2. Motivating the fractal dimension
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Indeed, the utility of the similarity dimension is limited by the fact that it applies
only to figures that exhibit exact self-similarity; by contrast, the complexity
witnessed in natural systems such as coastlines generally exhibits self-similarity
only in the statistical sense. As an example, Figure 3 illustrates a structure that
exhibits statistical self-similarity. Specifically, Figure 3 illustrates an example of a
modified Koch curve formed by randomizing the orientations of the line segments
as the structure is generated.

As a tool for quantifying the nature of such fractal structures that do not exhibit
exact self-similarity, we now turn to the (roughly self-explanatory) “box-counting
dimension,” also known as the “covering dimension.” Given a structure that
extends in two dimensions2, the box-counting dimension may be determined as
follows: First, superimpose a square grid with individual boxes of size ℓ� ℓ over
the figure in question, and count the number of boxes N ℓð Þ within which some
portion of the figure in question is present (see Figure 4). Next, repeat this proce-
dure while varying the box size ℓ and construct a plot of log N ℓð Þð Þ vs log 1=ℓð Þ; for
a self-similar structure, the data should follow a linear trend with a gradient equal to
the box-counting dimension D. Such a plot is generally known as a scaling plot.

The box-counting method also may be described in more geometrically intuitive
terms. For example, and as shown in Figure 4, one may observe that the set of all
occupied boxes at a given length scale ℓ collectively serves as an approximation of
the total structure as “observed” at the length scale ℓ. Stated differently, the set of
ℓ� ℓ boxes that overlap some portion of the base structure may be seen as
representing a snapshot of the base structure as viewed at a resolution
corresponding to the length ℓ. In general, however, the set of boxes covering the
base structure cannot be expected to represent the geometric details of the structure
at any length scale. For example, as shown in Figure 4, is evident that the incom-
patibility of the straight edges of the square boxes and the jagged boundary of the
Koch curve leads to a markedly crude representation of the structure at all length
scales, as each occupied box will always contain details that cannot be fully
represented by that box.

While the box-counting method of estimating fractal dimension is conceptually
straightforward, some care must be taken to preserve the utility of the method. For
example, one must select an appropriate range of box sizes ℓ over which to examine
the scaling trend, given that any observed fractal scaling trend will not persist over
all possible length scales. That is, for any finite structure, it is possible to encompass
the structure in a box of size L� L, for an appropriate value of L. In such a case,
applying the box-counting method with boxes of size ℓ≥L will always return a

Figure 3.
Introducing randomness into the generating algorithm of the Koch curve produces a statistically self-similar
fractal structure.

2 While the box-counting method is typically applied to structures embedded in two dimensions, it is

straightforward to generalize the technique to higher- or lower-dimensional systems.
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value N ℓð Þ ¼ 1—only one box can be filled when the box size contains the entire
structure—thus resulting in an apparent fractal dimension of zero. As another
example, when considering a range of box sizes ℓ≲L, nearly all such boxes will be
counted as filled, and the box count N ℓð Þ will scale as the square of the inverse box
size 1=ℓ. In this case, the box-counting method will return an apparent fractal
dimension of D ¼ 2, and we may say that the pattern “looks two-dimensional”
when examined at this coarse scale. When dealing with patterns found in nature,
the opposite extreme of possible length scales merits consideration as well. For a
mathematically-generated fractal figure, such as a figure that exhibits structure at
arbitrarily fine length scales, the box-counting method may be applied with arbi-
trarily small box sizes ℓ. However, naturally occurring fractal structures invariably
exhibit a smallest length scale to which a scaling trend may extend. For example,
while the scaling trend certainly must cease at the molecular and atomic scales, such
fractal scaling behavior generally diverges at length scales many times larger than
this. In such cases, applying the box-counting method at length scales ℓ smaller than
a smallest feature size observed in the structure yields a number of filled boxesN ℓð Þ
that scales linearly with the inverse box size 1=ℓ; thus, the figure “looks one-
dimensional” to the box-counting analysis at these scales.

Such conditions necessitate careful determination of the appropriate range of
length scales over which to assess fractal scaling behavior. This determination may

Figure 4.
Applying the box-counting method to the Koch curve. The number of boxes of side length ℓ occupied by some
portion of the curve follows N ℓð Þ∝ℓ�D, where D is the box-counting dimension of the curve.
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be made empirically, such as by observing the range of length scales over which the
scaling plot is sufficiently linear. Alternatively, this determination may be made by
convention, such as may be based on statistical arguments. In practice, it is gener-
ally not known a priori whether a structure under consideration should even be
expected to be a fractal, and hence whether it should be expected to produce a
scaling plot with a linear trend between cutoffs defined by appropriate physical
and/or measurement limitations. Accordingly, it is preferred to adopt conventions
with some degree of universality and that do not presuppose the existence of the
fractal scaling behavior under investigation. More specifically, it is common to
adopt the following conventions, noting that the ranges may be bounded by phys-
ical and/or measurement limitations. The coarse-scale analysis cutoff generally
corresponds to a limit of the range of length scales measured, which in turn gener-
ally is related to the coarse-scale size of the structure itself. This limit is conven-
tionally set at ℓ ¼ L=5, where L is the side length of the smallest square that may
circumscribe the structure, thus guaranteeing that the grid includes no fewer than
25 boxes. Turning to the fine scale, the physical limit is determined by the smallest
(nontrivial) feature size that is observed in the structure, while the fine-scale
measurement limit is conventionally chosen to satisfy the requirement that each
box contains no fewer than five data points. In practice, the more restrictive of
these two limits is chosen (i.e., the larger of the physical fine-scale limit and the
fine-scale measurement limit).

As a further consideration in optimizing the performance of the box-counting
method, one must select the position and orientation of the box grid relative to the
structure in question. To the extent that the box-counting method seeks to probe an
inherent quality of a structure, the observed fractal dimension should not be
affected by a spatial translation or rotation of the grid with respect to the structure,
since the structure itself has no preferred orientation. However, consider the case
shown in Figure 5, in which the box-counting method is applied to a fractal profile.
In the box-counting scheme discussed above, all boxes that contain any portion of
the structure under examination are counted toward the total; applying this to the
structure of Figure 5, we find that 35 boxes are filled using this box size ℓ. Suppose,
however, that one is able to reposition the boxes semi-independently of one
another, by translating a set of adjacent ℓ� ℓ boxes within each column of width ℓ.
Doing so, we find that a careful repositioning of the boxes within these columns

Figure 5.
An example of applying the variational box-counting method. When the boxes are constrained in a grid (left),
we find a box count N ℓð Þ ¼ 50; however, when the ℓ� ℓ boxes are allowed to shift vertically within columns
of width ℓ (right), the measured box count N ℓð Þ drops to 47.
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results in the box count N ℓð Þ dropping to 29. This apparent inconsistency serves to
motivate a refinement of the box-counting analysis as described above. Specifically,
the “variational box-counting method” includes shifting the boxes in columns as
described above so as to minimize the number of ℓ� ℓ boxes needed to entirely
cover the figure in question. The variational box-counting method thus serves to
eliminate some of the apparent ambiguity of the traditional box-counting method.
Of course, some ambiguity still remains in this amended method, given that the
rotational orientation of the columns relative to the examined structure remains
arbitrary. To eliminate this residual ambiguity, one may repeat the above-described
variational method at a variety of rotational orientations of the grid with respect to
the figure and choose the angle that minimizes N ℓð Þ for each value of ℓ. However,
in practical applications, incorporating this additional variation does not signifi-
cantly affect the measured dimensions.

3. Time-series fractal structures

The fractal structures discussed above generally represent examples of spatial
fractal structures—that is, structures with spatial extent and whose fractal charac-
teristics are embodied in their spatial form. However, many observable structures
and phenomena exhibit fractal behavior while lacking spatial form. Another impor-
tant class of structures to which fractal analysis may be directed is that of “time-
series” structures—that is, structures that may be represented as a single-valued
function of a single independent variable. As suggested by their name, a time-series
structure may refer to some variable quantity—say, stock market prices, or atmo-
spheric pressure—that fluctuates in time, but for the purposes of this work we
intend for the term to refer to any data set or plot consisting of a dependent variable
that may be represented as a single-valued function of an independent variable.

As with the spatial structures considered above, a time-series structure may
exhibit fractal scaling properties in either a statistical or an exact sense, which may
be quantified using the formalism of fractal dimensions. Unfortunately, the box-
counting methods described above for measuring a fractal dimension are ill-suited
to time-series structures. Simply put, this limitation arises from the fact that box-
counting methods assess the fractal dimension of shapes that extend in space, while
the spatial “shape” of a time-series structure is inherently undefined. That is, since
the two axes of a plot representing a time-series data set generally represent vari-
ables with distinct units, the geometric aspect ratio of such a plot is fundamentally
undefined.

As an example, consider the data set displayed in Figure 6, which plots the daily
closing price of a certain technology stock over a period of roughly 16 years. Spe-
cifically, Figure 6 illustrates three representations of the same data set, with the
respective y-axis of each illustration scaled by a distinct factor. In qualitative terms,
one may be tempted to conclude that the data in the top panel appear the most
linear and that the data in the bottom panel appear the most space-filling. Accord-
ingly, given that a box-counting fractal analysis technique essentially assesses the
space-filling properties of a structure, applying a box-counting analysis to each plot
would yield distinct results for each plot.

The difficulty here lies in the fact that a box-counting fractal analysis necessarily
treats a figure as a spatial entity whose orthogonal dimensions have the same units.
By contrast, a time-series trace such as the one displayed in Figure 6 lacks this
property, but may still exhibit fractal characteristics in the form of either statistical
or exact self-affinity. As discussed above, exact and statistical self-similarity
describe structures whose precise details or statistical properties (respectively) are
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repeated as its orthogonal dimensions are rescaled by a similar factor. By contrast,
exact and statistical self-affinity refer to structures whose precise details or statisti-
cal properties (respectively) are repeated as its two orthogonal dimensions are
resized by independent quantities [4].

Due to the incommensurability of the orthogonal axes defining a time-series
trace, such structures cannot exhibit self-similarity, only self-affinity. As an exam-
ple, Figure 7 displays the data set shown in Figure 6 alongside a subset of the data
set. When this subset is appropriately rescaled in each of the x- and y-axis, the
resulting plot shares the general statistical properties of the original trace, and hence
exhibits statistical self-affinity.

It also is possible, albeit less common, for a time-series trace to exhibit exact self-
affinity. As an example, Figure 8 illustrates three experimentally measured data
sets in which rescaling the x- and y-axes of the traces by carefully chosen factors
produces structures that share the characteristics of the original traces [5].

4. Fractal analysis of time-series traces: beyond box-counting

As discussed above, when applying a box-counting method to a time-series
structure, the measured scaling properties of the structure will depend on the aspect
ratio with which the data are presented, which is in turn an arbitrary choice.
Accordingly, applying a box-counting method to a time-series trace will return a
fractal dimension that is essentially arbitrary. Thus, it is necessary to develop fractal
analysis techniques that are insensitive to such artificial geometric parameters. In
the following, we survey a sampling of such techniques proposed in the literature.

Returning to the example of Figure 5, above, this figure in fact illustrates the
variational box-counting method as applied to fractal profile in the form of a time-
series fractal. Indeed, fractal analyses of such time-series fractal structures have
traditionally been performed using the variational box-counting method [6, 7],
which does offer performance improvements over the traditional fixed-grid box-
counting method. Nonetheless, the variational box-counting method still suffers
from a fatal flaw. To see why this is so, consider the plots shown in Figure 9.

Figure 9 illustrates the stock price data of Figures 6 and 7 represented in two
plots with the price axes respectively scaled by two different factors, as well as a
visualization of a variational box-count method applied at a “length” scale ℓ ¼ 200

Figure 6.
Daily closing prices for a single stock from December 1980 to October 1996. Each of the three plots displays the
same data, but the y-axis of each plot is scaled by a distinct factor. A box-counting fractal analysis would return
unique results for each plot, despite each plot representing the same data set.

12

Fractal Analysis

trading days. When the prices shown range from 0–100 USD (top of Figure 9), we
find that a minimum of 37 boxes are needed to entirely cover the trace. However,
when the price range is expanded to 0–1000 USD (effectively increasing the
domain: range aspect ratio of the data; bottom of Figure 9), the number of boxes
needed to cover the trace falls to 20. Indeed, the number of boxes N ℓð Þ needed to
cover the “compressed” plot will be proportional to 1=ℓ for all values of ℓ such that
the boxes are “taller” than the range of values found within any of its L=ℓ columns.
That is, as long as each box is “taller” than the vertical extent of the trace within
each column, the trace will “look” one-dimensional.

Of course, the fundamental issue is that the concept of an ℓ� ℓ “box” on a
time-series trace is meaningless, since the enclosed “area” has units of (in this
case) days times dollars. While it is entirely reasonable to overlay a spatial
figure with boxes of a well-defined area in the case of a box-counting analysis

Figure 7.
Statistical self-affinity in a fractal time-series trace. Choosing a subset of the stock price data shown in Figure 6
and rescaling the x- and y-axes yields a trace that shares statistical properties with the original.

Figure 8.
Magnetoresistance fluctuations (MCF) recorded in an electron billiard device can represent examples of exact
self-affinity in time-series structures. Each of the three columns in this figure represents a single MCF observed at
a coarse scale (bottom) and a fine scale (top). From [5].
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of a spatial fractal, the concept of a square drawn on a plot with incompatible
and independently scalable axes is ill-defined. In some cases, this inadequacy is
resolved by adopting conventions that eliminate such ambiguity. For example, a
time-series trace may be normalized in its x- and y-axes such that the domain
and range of the plot each run from 0 to 1, and the structure may be analyzed
via a box-counting analysis that utilizes a square grid that just circumscribes the
trace. While such a normalization convention may provide a consistent method
for investigating the relative scaling properties among a set of related time-
series traces, the absolute values of the dimensions produced by such analyses
would remain essentially arbitrary.

Developing a fractal analysis technique that is appropriate for time-series struc-
tures generally amounts to taking one of two approaches: (1) to treat the time-series
structure as a geometric figure without a well-defined aspect ratio, or (2) to treat
the time-series structure as an ordered record of a process that exhibits a quantifi-
able degree of randomness. Following the latter approach, Harold Edwin Hurst

Figure 9.
Visualizing a variational box-counting method applied to the stock price data of Figures 6 and 7 with a
“resolution” of ℓ ¼ 200 trading days. Displaying the data with a price range of 0–100 USD yields a box count
of 37. Displaying the data with a price range of 0–1000 USD yields a box count of 20.

Figure 10.
Examples of time-series traces characterized by Hurst exponents of (bottom to top) H ¼ 0.25, 0.50, and 0.75.
A trace with H ¼ 0.5 represents purely random process, whereas traces with H ¼ 0.25 and H ¼ 0.75 represent
processes whose subsequent increments are negatively and positively correlated, respectively.
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introduced a formalism for quantifying the nature of self-affine time-series struc-
tures in a 1951 paper on the long-term storage capacity of water reservoirs [8].

In Ref. [8], Hurst introduces the concept of the “Hurst exponent” H, which may
be understood as quantifying the character of the randomness exhibited in a time-
series structure via an autocorrelation measurement. Specifically, a Hurst exponent
ofH ¼ 0:5 describes a process that is purely random, such that the value of the trace
at time ti is entirely independent of the value at time tj, i 6¼ j. By contrast, Hurst
exponents in the range 0:5 <H < 1 represent traces exhibiting positive autocorrela-
tions, while Hurst exponents in the range 0 <H <0:5 represent traces exhibiting
negative autocorrelations. Intuitively speaking, a positive autocorrelation may be
understood as representing a trace in which a “high” value (say, relative to the
mean) is more likely than not to be followed by additional “high” values, while a
negative autocorrelation may be understood as representing a trace in which “high”
and “low” values alternate at short time scales; see Figure 10.

The Hurst exponent of a data set may be calculated by examining the scaling
properties of a “rescaled range” of the data, as follows. Consider a data set
xtf g t ¼ 1; 2; 3;…;Tð Þ, and let xi; xiþ1;…; xiþτf g, τ≤T, i ¼ 1, 2, 3,…, T � τ represent

any sequence of τ þ 1 points within the data set. The rescaled range (R/S) statistic is
then defined as:
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is then proportional to τH, such that the gradient of a plot of
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� �
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vs log τð Þ is equal to the Hurst exponent H.

The Hurst exponent also may be described as a measure of long-range correla-
tions within a data set, such that measuring these correlations as a function of
interval width may provide another measurement of the Hurst exponent. As an
example of such an analysis, the “variance method”3 calculates the scaling proper-
ties of the trace’s autocorrelation as a function of time interval4 via calculation of
the quantity

3 Not to be confused with the variational box-counting method.
4 In all discussions of time-series traces, we refer to the independent variable as “time” as a matter of

convention unless otherwise specified. Additionally, as a matter of convention, we refer to an interval of

the independent variable as a “length” unless otherwise specified.
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V Δtð Þ ¼ xtþΔt � xt½ �2
D E

t
(5)

for a range of values of Δt. This quantity is then related to the Hurst exponent as
V Δtð Þ∝Δt2H such that a plot of log V Δtð Þð Þ vs log Δtð Þ is expected to be linear
(within an appropriate range of values of Δt) with slope. 2H. In practice, however,
the variance method is found to produce a poor estimate of Hurst exponent.

As another means of quantifying the fractal properties of time-series traces,
we now turn our attention to a method proposed by Benoit Dubuc in a 1989
paper [9] on the fractal dimension of profiles. Dubuc’s proposed “variation
method”5 is conceptually similar to the variational box-counting method
described above, but improves upon this method by resolving the fundamental
arbitrariness of drawings boxes on a time-series trace. In short, Dubuc’s variation
method probes the “space-filling” characteristics of a time-series trace through
measurement of the scaling behavior of the amplitude of the trace within an ϵ
neighborhood as ϵ is varied.

In practical terms, Dubuc’s variation method may be implemented is as follows:
Consider a time-series data set xtf g t ¼ 1; 2; 3;…;Tð Þ. For a given value of ϵ, define
the functions uϵ tð Þ and bϵ tð Þ as follows:

uϵ tð Þ ¼ sup
t0∈Rϵ tð Þ

xt0 ,

bϵ tð Þ ¼ inf
t0∈Rϵ tð Þ

xt0 ,
(6)

where

Rϵ tð Þ ¼ s : jt� sj≤ ϵ and s∈ 1;T½ �f g: (7)

That is, for a given value of ϵ and for each point ti in the trace, examine the set of
points xt0f g within ϵ data points of ti, and let uϵ tið Þ and bϵ tið Þ be (respectively) the
maximum and minimum values of xt0 found in this range. Thus, uϵ tð Þ and bϵ tð Þ may
be understood as traces that represent (respectively) the upper and lower envelopes
of oscillation of a trace at a particular scale set by ϵ. At large values of ϵ, the traces
uϵ tð Þ and bϵ tð Þ will be slowly varying relative to the variation present in the original
data set; reducing the value of ϵ will produce traces uϵ tð Þ and bϵ tð Þ that each
resemble the original data set with increasing fidelity (see Figure 11).

Having constructed the traces uϵ tð Þ and bϵ tð Þ, we then define vϵ tð Þ ¼ uϵ tð Þ � bϵ tð Þ
and calculate

V ϵð Þ ¼ 1
ϵ2
∑
t
vϵ tð Þ: (8)

Conceptually, V ϵð Þ may be regarded as representing the (crucially, not neces-
sarily integer) number of ϵ� ϵ “boxes” whose total “area” would be equal to that of
the envelope bounded by uϵ tð Þ and bϵ tð Þ. Of course, the concept of “area” is ill-
defined in this context, but this is of no concern, given that we have not implied a
geometrical relationship between the x and y dimensions. In continued analogy with
spatial box-counting analyses, the fractal dimension of the trace is then determined
via the relationship V ϵð Þ∝ 1=ϵð ÞD, such that a plot of log V ϵð Þð Þ vs log 1=ϵð Þ is
expected to follow a linear trend (within an appropriate range of values of ϵ) with a
slope corresponding to the fractal dimension D.

5 Not to be confused with the variational box-counting method or the variance method.
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As a final means of quantifying the fractal properties of time-series traces, we
consider a technique known as “adaptive fractal analysis” (AFA) [10]. Similar to
Dubuc’s variation method, AFA may be broadly described as investigating the
geometrical properties of a time-series trace (in contrast to the aforementioned
analyses that are best understood as probing numerical correlations). For example,
and as discussed above, Dubuc’s variation method may be described as quantifying
the generalized “area” needed to cover a time-series trace as analyzed at different
characteristic time scales; in the case of AFA, approximations to the time-series
trace are generated at varying resolutions, and the fidelity of such approximations is
recorded as the resolution is varied. The AFA algorithm may be executed as follows:
Again, consider a time-series data set x tð Þ t ¼ 1; 2; 3;…;Tð Þ. Next, choose a window
with a width equal to an odd integer w ¼ 2nþ 1, w <T, and partition the data set
into overlapping subsets of length w such that each pair of adjacent subsets overlap
by nþ 1 data points. Within each window, the linear best-fit line to the data within
that window is calculated, resulting in a series of disconnected straight lines. That is,
the series of disconnected best-fit lines overlap in pairs such that each index in the
domain of the original data set is matched with respective points on each of two
subset fit lines (with the exception of the n data points at either end of the trace).
Next, these best-fit lines are “stitched” together to form a single, smoothly contin-
uous curve in the following manner: Label the windows that span the trace with
consecutive integers, and label the windows’ corresponding best-fit lines as
y jð Þ lð Þ l ¼ 1; 2;…; nþ 1ð Þ. Then, within each window j, construct the curve

y wð Þ lð Þ ¼ w1y jð Þ lþ nð Þ þ w2y jþ1ð Þ lð Þ, (9)

l ¼ 1, 2,…, nþ 1, where w1 ¼ 1� l� 1ð Þ=nð Þ and w2 ¼ l� 1ð Þ=n. Conceptually,
each value y wð Þ lð Þ may be thought of as representing the weighted average of the
values of the two best-fit lines with values at that index, weighted so as to be
inversely proportional to the distance between that index and the midpoint of the
window. Repeating this procedure across all windows produces a trace y wð Þ tð Þ that is
continuous and differentiable, and that may be understood as representing an
approximation to the trace x tð Þ at a length scale, or “resolution,” defined by w
(see Figure 12).

Figure 11.
Visualizing the application of Dubuc’s variation method at two distinct values of ϵ. The trace under
consideration is a fractional Brownian motion (fBm), whose properties are discussed below.

17

Fractal Analysis of Time-Series Data Sets: Methods and Challenges
DOI: http://dx.doi.org/10.5772/intechopen.81958



V Δtð Þ ¼ xtþΔt � xt½ �2
D E

t
(5)

for a range of values of Δt. This quantity is then related to the Hurst exponent as
V Δtð Þ∝Δt2H such that a plot of log V Δtð Þð Þ vs log Δtð Þ is expected to be linear
(within an appropriate range of values of Δt) with slope. 2H. In practice, however,
the variance method is found to produce a poor estimate of Hurst exponent.

As another means of quantifying the fractal properties of time-series traces,
we now turn our attention to a method proposed by Benoit Dubuc in a 1989
paper [9] on the fractal dimension of profiles. Dubuc’s proposed “variation
method”5 is conceptually similar to the variational box-counting method
described above, but improves upon this method by resolving the fundamental
arbitrariness of drawings boxes on a time-series trace. In short, Dubuc’s variation
method probes the “space-filling” characteristics of a time-series trace through
measurement of the scaling behavior of the amplitude of the trace within an ϵ
neighborhood as ϵ is varied.

In practical terms, Dubuc’s variation method may be implemented is as follows:
Consider a time-series data set xtf g t ¼ 1; 2; 3;…;Tð Þ. For a given value of ϵ, define
the functions uϵ tð Þ and bϵ tð Þ as follows:

uϵ tð Þ ¼ sup
t0∈Rϵ tð Þ

xt0 ,

bϵ tð Þ ¼ inf
t0∈Rϵ tð Þ

xt0 ,
(6)

where

Rϵ tð Þ ¼ s : jt� sj≤ ϵ and s∈ 1;T½ �f g: (7)

That is, for a given value of ϵ and for each point ti in the trace, examine the set of
points xt0f g within ϵ data points of ti, and let uϵ tið Þ and bϵ tið Þ be (respectively) the
maximum and minimum values of xt0 found in this range. Thus, uϵ tð Þ and bϵ tð Þ may
be understood as traces that represent (respectively) the upper and lower envelopes
of oscillation of a trace at a particular scale set by ϵ. At large values of ϵ, the traces
uϵ tð Þ and bϵ tð Þ will be slowly varying relative to the variation present in the original
data set; reducing the value of ϵ will produce traces uϵ tð Þ and bϵ tð Þ that each
resemble the original data set with increasing fidelity (see Figure 11).

Having constructed the traces uϵ tð Þ and bϵ tð Þ, we then define vϵ tð Þ ¼ uϵ tð Þ � bϵ tð Þ
and calculate

V ϵð Þ ¼ 1
ϵ2
∑
t
vϵ tð Þ: (8)

Conceptually, V ϵð Þ may be regarded as representing the (crucially, not neces-
sarily integer) number of ϵ� ϵ “boxes” whose total “area” would be equal to that of
the envelope bounded by uϵ tð Þ and bϵ tð Þ. Of course, the concept of “area” is ill-
defined in this context, but this is of no concern, given that we have not implied a
geometrical relationship between the x and y dimensions. In continued analogy with
spatial box-counting analyses, the fractal dimension of the trace is then determined
via the relationship V ϵð Þ∝ 1=ϵð ÞD, such that a plot of log V ϵð Þð Þ vs log 1=ϵð Þ is
expected to follow a linear trend (within an appropriate range of values of ϵ) with a
slope corresponding to the fractal dimension D.

5 Not to be confused with the variational box-counting method or the variance method.

16

Fractal Analysis

As a final means of quantifying the fractal properties of time-series traces, we
consider a technique known as “adaptive fractal analysis” (AFA) [10]. Similar to
Dubuc’s variation method, AFA may be broadly described as investigating the
geometrical properties of a time-series trace (in contrast to the aforementioned
analyses that are best understood as probing numerical correlations). For example,
and as discussed above, Dubuc’s variation method may be described as quantifying
the generalized “area” needed to cover a time-series trace as analyzed at different
characteristic time scales; in the case of AFA, approximations to the time-series
trace are generated at varying resolutions, and the fidelity of such approximations is
recorded as the resolution is varied. The AFA algorithm may be executed as follows:
Again, consider a time-series data set x tð Þ t ¼ 1; 2; 3;…;Tð Þ. Next, choose a window
with a width equal to an odd integer w ¼ 2nþ 1, w <T, and partition the data set
into overlapping subsets of length w such that each pair of adjacent subsets overlap
by nþ 1 data points. Within each window, the linear best-fit line to the data within
that window is calculated, resulting in a series of disconnected straight lines. That is,
the series of disconnected best-fit lines overlap in pairs such that each index in the
domain of the original data set is matched with respective points on each of two
subset fit lines (with the exception of the n data points at either end of the trace).
Next, these best-fit lines are “stitched” together to form a single, smoothly contin-
uous curve in the following manner: Label the windows that span the trace with
consecutive integers, and label the windows’ corresponding best-fit lines as
y jð Þ lð Þ l ¼ 1; 2;…; nþ 1ð Þ. Then, within each window j, construct the curve

y wð Þ lð Þ ¼ w1y jð Þ lþ nð Þ þ w2y jþ1ð Þ lð Þ, (9)

l ¼ 1, 2,…, nþ 1, where w1 ¼ 1� l� 1ð Þ=nð Þ and w2 ¼ l� 1ð Þ=n. Conceptually,
each value y wð Þ lð Þ may be thought of as representing the weighted average of the
values of the two best-fit lines with values at that index, weighted so as to be
inversely proportional to the distance between that index and the midpoint of the
window. Repeating this procedure across all windows produces a trace y wð Þ tð Þ that is
continuous and differentiable, and that may be understood as representing an
approximation to the trace x tð Þ at a length scale, or “resolution,” defined by w
(see Figure 12).

Figure 11.
Visualizing the application of Dubuc’s variation method at two distinct values of ϵ. The trace under
consideration is a fractional Brownian motion (fBm), whose properties are discussed below.

17

Fractal Analysis of Time-Series Data Sets: Methods and Challenges
DOI: http://dx.doi.org/10.5772/intechopen.81958



As w is decreased, y wð Þ tð Þ becomes a better approximation to x tð Þ; the scaling
behavior of this fidelity as w is varied is used to determine the Hurst exponent.
Specifically,

F wð Þ ¼ 1
T
∑
T

i¼1
y wð Þ tið Þ � x tið Þ

� �2
� �1=2

∝wH, (10)

such that a plot of log F wð Þð Þ vs log wð Þ will be linear (over an appropriate
range) with slope H.

5. Evaluating fractal analysis techniques

Each of the fractal analysis techniques discussed above is best understood as
providing an estimate of the fractal dimension or Hurst exponent that characterizes
a given time-series data set. The sections that follow present a method for evaluat-
ing the fidelity of these estimates that was developed and applied by the authors to
the fractal analysis techniques under consideration. To objectively and quantifiably
evaluate the fidelity of each of these techniques, it is desirable to investigate the
accuracy of each technique when applied to traces with known Hurst exponents/
fractal dimensions. To introduce a method for producing such “control” traces, we
begin with a general discussion of noise traces.

A noise trace, as an example of a time-series structure, may be described as a
single-valued function of a single independent variable. A variety of methods exist
for quantifying the statistical properties of noise traces. For example, in addition to
the aforementioned measurements of space-filling characteristics and long-range
correlations, a spectral analysis of a noise trace may offer a natural quantification of
the trace’s statistical properties.

Power-law noise represents a significant and broad class of noise traces. Specif-
ically, a power-law noise trace has a power spectral density given by P fð Þ∝ 1=f β. A
noise trace characterized by β ¼ 0 thus represents noise whose spectral power

Figure 12.
Examples of applying the procedure of AFA at several values of N (corresponding to the window width w
discussed in the text). The light blue trace (bottom) is a 16,384-point fractal trace with H ¼ 0:375, while the
red (top), green (second from top), and purple (third from top) traces represent approximations produced by
the AFA technique at N ¼ 1000, N ¼ 500, and N ¼ 50, respectively. Traces are vertically offset for clarity.
Note that smaller values of N yield approximations that are increasingly similar to the trace under
consideration.
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density is a constant across all frequencies, while β ¼ 1 corresponds to the “1=f
noise” that characterizes many natural systems, and β ¼ 2 is known as “brown
noise.” In principle, β can assume any value; however, we begin our investigation
by considering the β ¼ 2 case.

A “brown noise” trace characterized by β ¼ 2 is so termed owing to its relation to
Brownianmotion, which describes the net motion of a particle whose individual steps
are random and independent. Brownian motion generally may refer to a process
extending in any number of dimensions; however, we restrict our attention to brown
noises that may be understood as a time-dependent plot of the position of a particle
undergoing Brownian motion along one dimension. (As used herein, “Brownian
motion” and “brown noise” will be used interchangeably to describe a Brownian
motion in one dimension.) Given that a Brownian motion may be described as the
cumulative sum of a series of random, independent steps, it is straightforward to
generate a Brownian motion trace as a cumulative integral of a white noise trace. For
our purposes, we define a white noise trace as a series of values with zero mean taken
from a normal distribution (i.e., a Gaussian noise trace; see Figure 13). As a result, a
brown noise trace is characterized by a Hurst exponent of H ¼ 0:5.

Relaxing the restriction that the Gaussian noise trace consists of statistically
independent increments permits consecutive increments to be positively or nega-
tively correlated, such that the plot formed by the cumulative sum of the noise trace
may be characterized by a Hurst exponent that deviates from H ¼ 0:5. Such a trace
is termed a “fractional Brownian motion” (fBm). Mandelbrot and Van Ness [11]
provide a formalism for quantifying the properties of such structures as follows:
Consider a conventional Brownian motion trace B t;ωð Þ, where t denotes time and ω
represents the particular realization of the random function that generated the
specific Brownian motion. The data set B t;ωð Þ is thus a function whose increments
B t2;ωð Þ � B t1;ωð Þ have a mean of zero and a variance of ∣t2 � t1∣, and whose non-
overlapping increments B t2;ωð Þ � B t1;ωð Þ and B t4;ωð Þ � B t3;ωð Þ are statistically
independent. A “reduced fractional Brownian motion” BH t;ωð Þ, then, is further
characterized by the parameter H, 0 <H < 1, and satisfies

BH 0;ωð Þ ¼ b0,

BH t;ωð Þ � BH 0;ωð Þ ¼ 1

Γ H þ 1
2

� �
(ð0

�∞
t� sð ÞH�1=2 � �sð ÞH�1=2

h i
dB s;ωð Þ

þ
ðt
0

t� sð ÞH�1=2dBðsωÞ
�
: (11)

A fractional Brownian motion trace is thus self-affine in the sense that

BH t0 þ τ;ωð Þ � BH t0;ωð Þf g≜ h�H BH t0 þ hτ;ωð Þ � BH t0;ωð Þ½ �� �
, (12)

where

X t;ωð Þf g≜ Y t;ωð Þf g (13)

denotes that the two random functions X t;ωð Þ and Y t;ωð Þ have identical finite
joint distribution functions [11]. Thus, on average, when an interval on an fBm
trace is expanded by a factor of h, the difference of the values at the endpoints of
the interval BH t0 þ hτ;ωð Þ � BH t0;ωð Þ increases by a factor of hH. This property
represents an example of statistical self-affinity, in which the observed statistical
properties within the intervals are preserved when the x and y axes are scaled by
distinct factors (specifically, h and hH, respectively).
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density is a constant across all frequencies, while β ¼ 1 corresponds to the “1=f
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noise.” In principle, β can assume any value; however, we begin our investigation
by considering the β ¼ 2 case.

A “brown noise” trace characterized by β ¼ 2 is so termed owing to its relation to
Brownianmotion, which describes the net motion of a particle whose individual steps
are random and independent. Brownian motion generally may refer to a process
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motion” and “brown noise” will be used interchangeably to describe a Brownian
motion in one dimension.) Given that a Brownian motion may be described as the
cumulative sum of a series of random, independent steps, it is straightforward to
generate a Brownian motion trace as a cumulative integral of a white noise trace. For
our purposes, we define a white noise trace as a series of values with zero mean taken
from a normal distribution (i.e., a Gaussian noise trace; see Figure 13). As a result, a
brown noise trace is characterized by a Hurst exponent of H ¼ 0:5.
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may be characterized by a Hurst exponent that deviates from H ¼ 0:5. Such a trace
is termed a “fractional Brownian motion” (fBm). Mandelbrot and Van Ness [11]
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Consider a conventional Brownian motion trace B t;ωð Þ, where t denotes time and ω
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denotes that the two random functions X t;ωð Þ and Y t;ωð Þ have identical finite
joint distribution functions [11]. Thus, on average, when an interval on an fBm
trace is expanded by a factor of h, the difference of the values at the endpoints of
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Quantifying self-affinity using the formalism of the Hurst exponent motivates
drawing a parallel between the Hurst exponent and the fractal dimension, as fol-
lows. Following the argument of Ref. [4], consider an fBm trace VH tð Þ that extends
over a total time span Δt ¼ 1 and a total vertical range ΔVH ¼ 1. Dividing the time
span into n increments of width 1=n, we expect the vertical range of the portion of
the trace within each interval to scale as ΔtH ¼ 1=nH (see Figure 14). Accordingly,
on average, the portion of VH tð Þ present in a given interval may be covered by
ΔVH=Δt ¼ 1=nH

� �
= 1=nð Þ ¼ n=nH square boxes of side length 1=n. Thus, the total

number of square boxes of side length 1=n needed in order to cover the entire trace
is expected to be n n=nH

� � ¼ n2�H. If we recall that the spatial box-counting method

Figure 13.
The cumulative sum of Gaussian white noise results in Brownian motion.

Figure 14.
Deriving a relationship between the Hurst exponent and fractal dimension. A Brownian motion trace VH tð Þ
(H ¼ 0:5) is normalized in both dimensions to be circumscribed inside a unit square, and subsequently is
divided into n intervals of width 1/n. The self-affinity of an fBm trace leads to an estimation of the number of
square boxes needed to cover the trace at a given length scale, motivating a relationship between H and DF. See
text for details.
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relates number of square boxes of side length ℓ needed to cover a trace to the fractal
dimension of the trace as N ℓð Þ∝ 1=ℓð ÞDF , we may conclude that6 DF ¼ 2�H.

The relationship DF ¼ 2�H is appealing in its simplicity, and indeed is fre-
quently found in the literature; however, Ref. [4] is quick to acknowledge the inher-
ent difficulty in assigning a fractal dimension to a self-affine structure, given that
such a construction is predicated upon assigning an arbitrary rescaling relationship
between incompatible coordinates. Mandelbrot, too, notes the apparent relation
DF ¼ 2�H [12] and clarifies that this relation holds in the fine-scale limit. This
disparity serves to highlight a general distinction between the Hurst exponent and the
fractal dimension as descriptors of a time-series trace. Specifically, the Hurst expo-
nent may be understood as a descriptor of global correlations, while the fractal
dimension may be understood as describing a trace’s local fine-scale structure [13].

6. Relationship between fractal dimension and spectral exponent

We may continue this exercise of comparing our various statistical parameters
by considering the spectral exponent β as a means of quantifying the nature of a
fractal trace. In practice, it is impractical to utilize a spectral analysis to evaluate the
fractal properties of a time-series structure, due to the imprecision (relative to the
aforementioned fractal analysis techniques) of applying a power law best-fit curve
to characterize a spectral decomposition of a trace. Nevertheless, we may investi-
gate the relationship that exists between the spectral exponent β, the fractal dimen-
sion DF, and the Hurst exponent H, so long as we recognize the imprecisions of
these comparisons. In particular, the spectral exponent β typically is said to relate to
the Hurst exponent as β ¼ 2H þ 1, implying the relationship DF ¼ 5� βð Þ=2. This
relationship may be derived by observing that the two-point autocorrelation
function

GV τð Þ ¼ V tð ÞV tþ τð Þh i � V tð Þh i2 ∝ τβ�1 (14)

for a trace V tð Þ is related to the quantity V tτð Þ � V tð Þj j2
D E

as

V tτð Þ � V tð Þj j2
D E

¼ 2 V2� �� GV τð Þ� �
; (15)

comparing this result to the aforementioned relationship

V tþ τð Þ � V tð Þj j2
D E

∝ τ2H (16)

leads to the expression β � 1 ¼ 2H [14]. However, systematic study [15] dem-
onstrates that such a relationship is generally not very robust. Indeed, it is straight-
forward to test this robustness: In analogy to the investigation performed in Ref.
[15], we investigated the relationship between spectral exponent and fractal
dimension by generating a set of 20 noise traces, each with a length of 16,384 points
and with a β value between 0 and 2. Applying each of the previously discussed time-
series fractal analysis techniques to each of these traces produced a corresponding
set of fractal dimensions (for the variational box-counting analysis and Dubuc’s
variation analysis) or Hurst exponents (for the variance analysis); these data are
shown in Figure 15, with the Hurst exponents “converted” to fractal dimensions via

6 Note that this relation only applies to time-series fractals, since the notion of a Hurst exponent is

undefined for spatial fractals.

21

Fractal Analysis of Time-Series Data Sets: Methods and Challenges
DOI: http://dx.doi.org/10.5772/intechopen.81958



Quantifying self-affinity using the formalism of the Hurst exponent motivates
drawing a parallel between the Hurst exponent and the fractal dimension, as fol-
lows. Following the argument of Ref. [4], consider an fBm trace VH tð Þ that extends
over a total time span Δt ¼ 1 and a total vertical range ΔVH ¼ 1. Dividing the time
span into n increments of width 1=n, we expect the vertical range of the portion of
the trace within each interval to scale as ΔtH ¼ 1=nH (see Figure 14). Accordingly,
on average, the portion of VH tð Þ present in a given interval may be covered by
ΔVH=Δt ¼ 1=nH

� �
= 1=nð Þ ¼ n=nH square boxes of side length 1=n. Thus, the total

number of square boxes of side length 1=n needed in order to cover the entire trace
is expected to be n n=nH

� � ¼ n2�H. If we recall that the spatial box-counting method

Figure 13.
The cumulative sum of Gaussian white noise results in Brownian motion.

Figure 14.
Deriving a relationship between the Hurst exponent and fractal dimension. A Brownian motion trace VH tð Þ
(H ¼ 0:5) is normalized in both dimensions to be circumscribed inside a unit square, and subsequently is
divided into n intervals of width 1/n. The self-affinity of an fBm trace leads to an estimation of the number of
square boxes needed to cover the trace at a given length scale, motivating a relationship between H and DF. See
text for details.

20

Fractal Analysis

relates number of square boxes of side length ℓ needed to cover a trace to the fractal
dimension of the trace as N ℓð Þ∝ 1=ℓð ÞDF , we may conclude that6 DF ¼ 2�H.

The relationship DF ¼ 2�H is appealing in its simplicity, and indeed is fre-
quently found in the literature; however, Ref. [4] is quick to acknowledge the inher-
ent difficulty in assigning a fractal dimension to a self-affine structure, given that
such a construction is predicated upon assigning an arbitrary rescaling relationship
between incompatible coordinates. Mandelbrot, too, notes the apparent relation
DF ¼ 2�H [12] and clarifies that this relation holds in the fine-scale limit. This
disparity serves to highlight a general distinction between the Hurst exponent and the
fractal dimension as descriptors of a time-series trace. Specifically, the Hurst expo-
nent may be understood as a descriptor of global correlations, while the fractal
dimension may be understood as describing a trace’s local fine-scale structure [13].

6. Relationship between fractal dimension and spectral exponent

We may continue this exercise of comparing our various statistical parameters
by considering the spectral exponent β as a means of quantifying the nature of a
fractal trace. In practice, it is impractical to utilize a spectral analysis to evaluate the
fractal properties of a time-series structure, due to the imprecision (relative to the
aforementioned fractal analysis techniques) of applying a power law best-fit curve
to characterize a spectral decomposition of a trace. Nevertheless, we may investi-
gate the relationship that exists between the spectral exponent β, the fractal dimen-
sion DF, and the Hurst exponent H, so long as we recognize the imprecisions of
these comparisons. In particular, the spectral exponent β typically is said to relate to
the Hurst exponent as β ¼ 2H þ 1, implying the relationship DF ¼ 5� βð Þ=2. This
relationship may be derived by observing that the two-point autocorrelation
function

GV τð Þ ¼ V tð ÞV tþ τð Þh i � V tð Þh i2 ∝ τβ�1 (14)

for a trace V tð Þ is related to the quantity V tτð Þ � V tð Þj j2
D E

as

V tτð Þ � V tð Þj j2
D E

¼ 2 V2� �� GV τð Þ� �
; (15)

comparing this result to the aforementioned relationship

V tþ τð Þ � V tð Þj j2
D E

∝ τ2H (16)

leads to the expression β � 1 ¼ 2H [14]. However, systematic study [15] dem-
onstrates that such a relationship is generally not very robust. Indeed, it is straight-
forward to test this robustness: In analogy to the investigation performed in Ref.
[15], we investigated the relationship between spectral exponent and fractal
dimension by generating a set of 20 noise traces, each with a length of 16,384 points
and with a β value between 0 and 2. Applying each of the previously discussed time-
series fractal analysis techniques to each of these traces produced a corresponding
set of fractal dimensions (for the variational box-counting analysis and Dubuc’s
variation analysis) or Hurst exponents (for the variance analysis); these data are
shown in Figure 15, with the Hurst exponents “converted” to fractal dimensions via

6 Note that this relation only applies to time-series fractals, since the notion of a Hurst exponent is

undefined for spatial fractals.

21

Fractal Analysis of Time-Series Data Sets: Methods and Challenges
DOI: http://dx.doi.org/10.5772/intechopen.81958



DF ¼ 2�H. Plotting these measured parameters as a function of the well-defined
spectral exponent used to generate each trace, we see that the relationship
DF ¼ 5� βð Þ=2 breaks down for DF close to 1 or 2.

7. Generating fractional Brownian motions and characterizing fractal
analysis techniques

The framework of the investigation summarized in Figure 15 may be applied
to a more thorough investigation of the fidelity of each fractal analysis tech-
nique discussed above. That is, if we generate a fBm trace with a well-defined
Hurst exponent and subject such a trace to the analysis techniques under con-
sideration, we may evaluate the robustness of each analysis technique. In so
doing, we may evaluate not only the fidelity of each analysis method, but also
may explore how the analysis methods (individually and/or collectively)
respond to less-idealized data sets. That is, by generating fBm traces with well-
defined Hurst exponents and modifying the traces to better resemble real-world
data sets, we may gain insight into how best to interpret our analytical results
of experimentally derived data. Specifically, in addition to testing these analysis
techniques on “full-size” 16,384-point fBm traces (with 16,384 arbitrarily cho-
sen as a “sufficiently large” number), we additionally tested these analyses on
traces of reduced length and/or reduced spectral content, which may better
represent experimentally measured data sets.

A variety of methods exist for generating a fractional Brownian motion trace
that exhibits a well-defined predetermined Hurst exponent. Examples of such
methods include random midpoint displacement, Fourier filtering of white noise
traces, and the summation of independent jumps [14]. This chapter considers
randomly generated fBm traces that were created using a MATLAB program that
generates a fractional Gaussian noise trace with the desired Hurst exponent via a

Figure 15.
Measured fractal dimensions of colored noise traces generated with well-defined power spectral densities β. Each
data point represents the average value of DF measured with the respective fractal analysis method for the set of
20 traces at the corresponding value of β. Each error bar represents one standard deviation from the mean value
of DF recorded for each set of 20 traces. Lines connecting the data points are provided as a guide to the eye. The
dashed line corresponds to the relationship DF ¼ 5� βð Þ=2.
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Fourier transform and subsequently computes the cumulative sum of the noise
trace to yield a fractional Brownian motion trace with a specified well-defined
Hurst exponent.

While such computer-generated fBm traces are accurately described as
exhibiting a well-defined Hurst exponent, the inherently finite nature of these
traces precludes the traces from being fully “fractal.” That is, as with any natural
structure with finite extent, the generated fBm traces necessarily exhibit a fine-scale
resolution limit (owing to the point-wise granularity of the traces) as well as a
coarse-scale size limit (owing to the finite total length of the traces). With this in
mind, we must be content to forge ahead with the simplifying assumption that the
effects of these particular limitations on our estimates of the underlying fractal
scaling properties are negligible when considering a computer-generated fBm trace
whose total length exceeds its step increment by several orders of magnitude.
Accordingly, for the purposes of this analysis, we assume that an fBm trace gener-
ated with a predetermined Hurst exponent “Hin” and with a total length well in
excess of its resolution limit is a suitable representative of a pure fractal structure
characterized by Hin. Thus, we assume that such a trace may fairly be used as a
control against which the fidelity of the above-mentioned analysis techniques may
be evaluated.

The procedure for evaluating each of these analysis techniques is thus as
follows: We first generated a set of 50 16,384-point fBm traces as well as 50 512-
point fBm traces at each of 39 input Hurst exponents Hin between 0.025 and 0.975.
In this manner, we sought to evaluate not only the fidelity of each fractal analysis
technique in returning the expected results for the longer 16,384-point traces, but
also the effect of performing the same analyses on data sets of limited length.
Next, we applied each analysis technique under consideration to each of these
traces, returning either a measured Hurst exponent Hout or a measured fractal
dimension Dout. In the case of the Dubuc variation analysis, which returns a
measured fractal dimension, this value was “converted”7 to a Hurst exponent via
the relation Hout ¼ 2�Dout. Having extracted these values of Hout for each sample
fBm trace and for each analysis technique, we produced a plot of Hout vs Hin

representing all fBm traces analyzed with each analysis technique; these results
are displayed in Figures 16 and 17 for randomly-generated fBm traces with
lengths of 16,384 points and 512 points, respectively. In each of Figures 16 and 17,
each data point represents the average Hout value measured via the corresponding
analysis method. Each corresponding logarithmic scaling plot was fit to a straight
line between a fine-scale cutoff of five data points and a coarse-scale cutoff of 1/5
of the full length of the trace. Each error bar represents one standard deviation in
the measured values averaged to yield the corresponding data point. The dashed
black line represents the ideal relationship Hout ¼ Hin; that is, data points
representing traces whose measured Hout values exactly match their generating
Hin values would fall on this line.

In the ideal case of a perfectly fractal fBm trace subjected to an analysis tech-
nique that produces a precise and accurate value of the Hurst exponent, a plot of
Hout vs. Hin is expected to be linear with unity slope. Based on the results of the
analyses summarized in Figures 16 and 17, our results may be summarized as
follows: the variational box-counting method tends to over-estimate H except in the
case of high H values; the variance analysis tends to under-estimate H; the Dubuc

7 As discussed above, such a conversion is at best an approximation. Nonetheless, utilizing this

conversion serves as a self-consistent means of evaluating the response of this analysis technique when

applied to fBm traces of a known Hurst exponent, as well as deviations from this behavior.
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Fourier transform and subsequently computes the cumulative sum of the noise
trace to yield a fractional Brownian motion trace with a specified well-defined
Hurst exponent.

While such computer-generated fBm traces are accurately described as
exhibiting a well-defined Hurst exponent, the inherently finite nature of these
traces precludes the traces from being fully “fractal.” That is, as with any natural
structure with finite extent, the generated fBm traces necessarily exhibit a fine-scale
resolution limit (owing to the point-wise granularity of the traces) as well as a
coarse-scale size limit (owing to the finite total length of the traces). With this in
mind, we must be content to forge ahead with the simplifying assumption that the
effects of these particular limitations on our estimates of the underlying fractal
scaling properties are negligible when considering a computer-generated fBm trace
whose total length exceeds its step increment by several orders of magnitude.
Accordingly, for the purposes of this analysis, we assume that an fBm trace gener-
ated with a predetermined Hurst exponent “Hin” and with a total length well in
excess of its resolution limit is a suitable representative of a pure fractal structure
characterized by Hin. Thus, we assume that such a trace may fairly be used as a
control against which the fidelity of the above-mentioned analysis techniques may
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measured fractal dimension, this value was “converted”7 to a Hurst exponent via
the relation Hout ¼ 2�Dout. Having extracted these values of Hout for each sample
fBm trace and for each analysis technique, we produced a plot of Hout vs Hin

representing all fBm traces analyzed with each analysis technique; these results
are displayed in Figures 16 and 17 for randomly-generated fBm traces with
lengths of 16,384 points and 512 points, respectively. In each of Figures 16 and 17,
each data point represents the average Hout value measured via the corresponding
analysis method. Each corresponding logarithmic scaling plot was fit to a straight
line between a fine-scale cutoff of five data points and a coarse-scale cutoff of 1/5
of the full length of the trace. Each error bar represents one standard deviation in
the measured values averaged to yield the corresponding data point. The dashed
black line represents the ideal relationship Hout ¼ Hin; that is, data points
representing traces whose measured Hout values exactly match their generating
Hin values would fall on this line.

In the ideal case of a perfectly fractal fBm trace subjected to an analysis tech-
nique that produces a precise and accurate value of the Hurst exponent, a plot of
Hout vs. Hin is expected to be linear with unity slope. Based on the results of the
analyses summarized in Figures 16 and 17, our results may be summarized as
follows: the variational box-counting method tends to over-estimate H except in the
case of high H values; the variance analysis tends to under-estimate H; the Dubuc

7 As discussed above, such a conversion is at best an approximation. Nonetheless, utilizing this

conversion serves as a self-consistent means of evaluating the response of this analysis technique when

applied to fBm traces of a known Hurst exponent, as well as deviations from this behavior.
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Figure 16.
Plotting Hout vs. Hin for randomly-generated-16,384-point fBm traces as measured by the variational box-
counting method (yellow), adaptive fractal analysis (green), Dubuc’s variation analysis (red), and the
variance analysis (blue).

Figure 17.
Plotting Hout vs. Hin for randomly-generated 512-point fBm traces as measured by the variational box-
counting method (yellow), adaptive fractal analysis (green), Dubuc’s variation analysis (red), and the
variance analysis (blue).

Figure 18.
Comparison of a 512-point fBm trace with Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a
minimum feature size of 10 points.
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variation analysis performs well only for H � 0:5; and AFA provides an accurate
estimate of H throughout the range of H values. In the case of the shorter, 512-point
traces, the deviations from the ideal relationship Hout vs. Hin are more pronounced.
Additionally, the precision of the estimated H values for these shorter traces suffers
as well, as seen in the relatively large error bars on the data points corresponding to
the shorter traces.

We also investigated the effect on the measured H values resulting from another
common deviation from ideal fractal behavior. Specifically, in experimentally mea-
sured time-series data sets, the smallest-scale measured features often are signifi-
cantly larger than the resolution limit of the trace. Such is very often the case for
experimentally measured data sets that are asserted to represent fractal behavior, in
which the finest-scale features may exhibit a characteristic scale that is well over an
order of magnitude larger than the point-wise resolution of the trace. To probe the
effect of this limitation on a fractal analysis of such a trace, we repeated the above
technique on a set of randomly-generated 512-point fBm traces that had been

Figure 19.
Summarizing the fidelity of four fractal analysis methods in measuring the H value for randomly-generated
512-point fBm traces with a minimum feature size of 10 points. The scaling properties were observed over 1.01
orders of magnitude in length scale.

Figure 20.
Summarizing the fidelity of four fractal analysis methods in measuring the H value for randomly-generated
512-point fBm traces with a minimum feature size of 10 points. The scaling properties were observed over 0.71
orders of magnitude in length scale.
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spectrally filtered via Fourier transforms to exhibit a well-defined minimum feature
size (i.e., a well-defined maximum frequency component). Specifically, each trace
was subjected to a Fourier filter that eliminates all frequency components
corresponding to periods shorter than 10 data points, such that the resultant traces
have a minimum feature size of 10 points. Figure 22 illustrates a characteristic
result of this filtering procedure by comparing the original and Fourier filtered
versions of an fBm trace with Hin ¼ 0:5.

Performing a fractal analysis of time-series traces with limited spectral content
requires a reassessment of the length scales over which one expects to observe the
fractal scaling properties. Whereas our analysis of fBm traces whose spectral con-
tent extended to the resolution limit of the traces examined scaling properties to a
minimum length scale of five data points, we now cannot expect to see such scaling
properties at length scales smaller than our minimum feature size of 10 data points.
Given this well-defined minimum feature size, it may be tempting to set our fine-
scale analysis cutoff at 10 data points and expect to observe the desired scaling
properties at all length scales greater than this. In practice, however, the effect of

Figure 22.
Comparison of scaling plots produced by the variance method applied to a 512-point fBm trace with Hin ¼ 0:5
before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.

Figure 21.
Comparison of scaling plots produced by the variational box-counting method applied to a 512-point fBm trace
with Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.
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such spectral filtering is manifest in a fractal analysis even at length scales signifi-
cantly greater than that of the minimum feature size.

The results of passing the 512-point Fourier filtered fBm traces through the
fractal analysis techniques under consideration are displayed in Figures 19 and 20,
which illustrate the results obtained when applying fine-scale cutoffs of 10 data
points (i.e., the traces’ minimum feature size) and 20 data points, respectively. In
each of Figures 19 and 20, each data point represents the average Hout value
measured via the corresponding analysis technique using the aforementioned cut-
offs at the fine scale limit and 1/5 of the entire trace as the coarse scale cutoff limit.
Each error bar represents one standard deviation in the measured values that were
averaged to yield the corresponding data point. The dashed black line represents the
ideal relation Hout ¼ Hin, as discussed above.

Examples of the logarithmic scaling plots that yielded the data summarized in
Figures 16–17 and 19–20 are provided in Figures 21–24. For purposes of

Figure 23.
Comparison of scaling plots produced by the Dubuc variation method applied to a 512-point fBm trace with
Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.

Figure 24.
Comparison of scaling plots produced by the adaptive fractal analysis method applied to a 512-point fBm trace
with Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.
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Comparison of scaling plots produced by the variance method applied to a 512-point fBm trace with Hin ¼ 0:5
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Comparison of scaling plots produced by the variational box-counting method applied to a 512-point fBm trace
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such spectral filtering is manifest in a fractal analysis even at length scales signifi-
cantly greater than that of the minimum feature size.

The results of passing the 512-point Fourier filtered fBm traces through the
fractal analysis techniques under consideration are displayed in Figures 19 and 20,
which illustrate the results obtained when applying fine-scale cutoffs of 10 data
points (i.e., the traces’ minimum feature size) and 20 data points, respectively. In
each of Figures 19 and 20, each data point represents the average Hout value
measured via the corresponding analysis technique using the aforementioned cut-
offs at the fine scale limit and 1/5 of the entire trace as the coarse scale cutoff limit.
Each error bar represents one standard deviation in the measured values that were
averaged to yield the corresponding data point. The dashed black line represents the
ideal relation Hout ¼ Hin, as discussed above.

Examples of the logarithmic scaling plots that yielded the data summarized in
Figures 16–17 and 19–20 are provided in Figures 21–24. For purposes of

Figure 23.
Comparison of scaling plots produced by the Dubuc variation method applied to a 512-point fBm trace with
Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.

Figure 24.
Comparison of scaling plots produced by the adaptive fractal analysis method applied to a 512-point fBm trace
with Hin ¼ 0:5 before (red) and after (blue) Fourier filtering to a minimum feature size of 10 points.
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illustration, each of these figures shows the logarithmic scaling plots produced by
applying the corresponding fractal analysis technique to the specific pair of fBm
traces illustrated in Figure 18. That is, each fractal analysis technique under con-
sideration quantifies the fractal characteristic of the input trace by determining the
slope of a best-fit line to a log–log scaling plot; Figures 21–24 provide examples of
these logarithmic scaling plots.

In each of Figures 21–24, the vertical dashed lines indicate the cutoffs
between which the scaling plot is fitted with a straight line whose slope is
measured to determine Hout. For both traces in each of these figures, the coarse-
scale analysis cutoff corresponds to the location of the line labeled “1/5 of
trace.” The fine-scale analysis cutoff for the raw trace (red points) corresponds
to the location of the line labeled “5 points” (corresponding to the data in
Figure 17), while the fine-scale analysis cutoff for the filtered trace (blue
points) may be chosen as 10 data points (corresponding to the data in
Figure 19) or 20 data points (corresponding to the data in Figure 20), as
represented by respective dashed vertical lines in Figures 21–24.

8. Conclusions

Contrasting the trends displayed in Figures 19 and 20 with those displayed in
Figures 16 and 17 highlights the inherent challenge in assessing the fractal proper-
ties of time-series structures that suffer from limited total length and/or limited
resolution/spectral content. Indeed, accommodating the impact of a minimum fea-
ture size that is significantly in excess of the trace’s resolution limit generally
necessitates restricting a fractal analysis to length scales larger still than even this
observed minimum feature size. This in turn often restricts an analysis of scaling
properties to a consideration of relatively few orders of magnitude in length. For
example, performing a fractal analysis of a 512-point Fourier filtered trace using
analysis cutoffs corresponding to 10 data points and 1/5 of the trace length corre-
sponds to an analysis of the scaling behavior over barely more than one order of
magnitude in length scale; attempting to increase the accuracy of the measurement
by raising the fine-scale cutoff to 20 data points further reduces the scaling range to
0.71 orders of magnitude.

Moreover, Figures 21–24 demonstrate the difficulty in identifying an appropri-
ate fine-scale cutoff for fractal analysis of a time-series trace, even when the mini-
mum feature size found in the trace is easily identifiable and/or well-defined. The
examples of Figures 21–24 further highlight an important distinction between the
application of fractal analysis techniques to spatial and time-series fractals. In the
case of spatial fractals, it often is reasonable to expect to observe fractal scaling
behavior between the length scales corresponding to physical constraints (and in
particular at length scales sufficiently far from these cutoffs). By contrast, and as
seen in Figures 21–24, the effect of imposing (or observing) a finite minimum
feature size on a time-series trace is evident at all scales, not just at those smaller
than the minimum observed period. Accordingly, and as further illustrated in
Figures 21–24, this effect may impact the slope of a best-fit line to a logarithmic
scaling plot (and, hence, the measured fractal dimension) even when this slope is
evaluated between cutoffs that are expected to compensate for the fine-scale limi-
tation.

In light of these results, one must take care when applying these analysis tech-
niques to data sets limited in length or spectral content, as it may be difficult to
make a compelling argument for the empirical presence of fractal behavior when
examining such a narrow range of length scales. Nevertheless, it is instructive to
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examine the behavior of fractal analysis applied to known fractal structures such as
fBm traces that have been artificially subjected to such constraints. For example,
one may argue that an fBm trace that is Fourier filtered to exhibit a coarser mini-
mum feature size is analogous to a natural structure or phenomenon that has been
subjected to exterior influences such as weathering effects or measurement limits:
both may be considered examples of structures that are legitimately generated via
processes associated with fractal behavior, but whose true fractal nature has been
obfuscated by secondary considerations. In the eyes of the authors, such effects do
not necessarily render the resulting structures “less fractal” than their idealized
counterparts. Nevertheless, such effects demand careful consideration when choos-
ing an analysis method and an acknowledgment of the inherent limitations thereof.
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Chapter 3

Fractal Geometry: An Attractive 
Choice for Miniaturized Planar 
Microwave Filter Design
Hadi T. Ziboon and Jawad K. Ali

Abstract

Various fractal geometries are characterized by the self-similarity and space-
filling properties. The space-filling feature has been successfully applied to design 
multiband antenna structures for a wide variety of multifunction wireless systems. 
On another hand, the second feature has proved its validity to produce miniaturized 
antennas and passive microwave circuits including the band-pass filters (BPF). This 
chapter demonstrates the design of miniaturized microstrip BPFs that are derived 
from fractal-based DGS resonators. Many microstrip BPFs based on the Minkowski 
fractal DGS resonators will be presented together with those based on Moore and 
Peano fractal geometries. Simulation results, of all of the presented BPFs, show 
that an extra-size reduction can be obtained as the iteration level becomes higher. 
Measured and simulated results agree well with each other. A comparison has been 
conducted with other filters based on Peano and Hilbert fractal geometries. The 
results reveal that the proposed BPF offers acceptable performance and a significant 
decrease of higher harmonics.

Keywords: miniaturized microwave BPF, fractal-based DGS, Minkowski fractal 
geometry, Moore fractal geometry, Peano fractal geometry

1. Introduction

Microwave antenna and passive circuit designers have to meet the ever encoun-
tered challenges to produce components with miniaturized size and multiband 
operation. To meet these challenges, the various fractal geometries have been found 
to be an attractive choice. These geometries have two unique features: the space fill-
ing and the self-similarity. For more than two decades, these features have opened 
the novel and essential techniques for the design of the microwave antennas and 
passive circuits. The benefits of incorporating these geometries are, among many, 
enhanced bandwidths, compact sizes, partless electronic parts, and improved 
performance. Furthermore, fractal-based structures offer an additional epoch of 
optimizing design mechanisms. These mechanisms are applied successfully in the 
antenna design, although they can be implemented in a wide-ranging way [1].

Away from the application of the different fractals to produce small-size micro-
wave filters, the use of fractal geometries has been earlier to take place. In this con-
text, the antenna design and the distinctive features, that the various fractal-based 
structures have, were efficiently adopted to create compact size multi-resonant 
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Chapter 3

Fractal Geometry: An Attractive 
Choice for Miniaturized Planar 
Microwave Filter Design
Hadi T. Ziboon and Jawad K. Ali

Abstract

Various fractal geometries are characterized by the self-similarity and space-
filling properties. The space-filling feature has been successfully applied to design 
multiband antenna structures for a wide variety of multifunction wireless systems. 
On another hand, the second feature has proved its validity to produce miniaturized 
antennas and passive microwave circuits including the band-pass filters (BPF). This 
chapter demonstrates the design of miniaturized microstrip BPFs that are derived 
from fractal-based DGS resonators. Many microstrip BPFs based on the Minkowski 
fractal DGS resonators will be presented together with those based on Moore and 
Peano fractal geometries. Simulation results, of all of the presented BPFs, show 
that an extra-size reduction can be obtained as the iteration level becomes higher. 
Measured and simulated results agree well with each other. A comparison has been 
conducted with other filters based on Peano and Hilbert fractal geometries. The 
results reveal that the proposed BPF offers acceptable performance and a significant 
decrease of higher harmonics.

Keywords: miniaturized microwave BPF, fractal-based DGS, Minkowski fractal 
geometry, Moore fractal geometry, Peano fractal geometry

1. Introduction

Microwave antenna and passive circuit designers have to meet the ever encoun-
tered challenges to produce components with miniaturized size and multiband 
operation. To meet these challenges, the various fractal geometries have been found 
to be an attractive choice. These geometries have two unique features: the space fill-
ing and the self-similarity. For more than two decades, these features have opened 
the novel and essential techniques for the design of the microwave antennas and 
passive circuits. The benefits of incorporating these geometries are, among many, 
enhanced bandwidths, compact sizes, partless electronic parts, and improved 
performance. Furthermore, fractal-based structures offer an additional epoch of 
optimizing design mechanisms. These mechanisms are applied successfully in the 
antenna design, although they can be implemented in a wide-ranging way [1].

Away from the application of the different fractals to produce small-size micro-
wave filters, the use of fractal geometries has been earlier to take place. In this con-
text, the antenna design and the distinctive features, that the various fractal-based 
structures have, were efficiently adopted to create compact size multi-resonant 
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antennas [2–9]. Besides, researchers have effectively proposed a variety of fractal 
geometries to modify to the typical microstrip structures which are efficiently 
endorsed to obtain miniaturized size of multiband antennas and BPFs for great 
types of wireless communication. In this perspective, the classical Euclidean shapes, 
such as the square, have been shaped in the form of the Sierpinski carpet to design 
a dual-mode BPF [10, 11]. Numerous traditional fractal structures attracted the 
microwave passive circuit designers to produce of miniaturized microstrip BPFs 
as well [12, 13]. Microstrip structures with Peano fractal-shaped resonators and its 
modification were employed in the conventional resonators to fabricate efficient 
miniaturized single- and dual-mode BPFs with single-band performance and also 
dual-mode implementation [14–17]. Researchers attempted to try modified versions 
of the classical fractals in the attempt to get higher space-filling curves to design 
highly miniaturized resonant structures. The modified variants of the Minkowski 
fractal proved its validity to suggest microstrip BPFs with more size reduction 
[18–21]. As an impressive result, the Minkowski fractal-based BPFs are character-
ized with a resonant performance with reduced harmonics [22].

In contrast, the defected ground structures have been applied to design min-
iaturized BPFs. Enhanced filter characteristics have shown to be attractive, and a 
growing research effort has been devoted to this topic as implied in the literature. 
However, most of the reported studies have been dedicated to the design of the 
microstrip LPFs. It is worth here to say that the application of various fractals and 
their variants to reshape the defected ground structures has revealed to be success-
ful to offer extra-size reduction besides the improved filter performance [23–28]. 
The conventional Hilbert fractal geometry has been adopted to modify a defected 
ground structure in an attempt to produce a miniaturized microstrip low-pass 
filter [23]. A defected ground structure that has been modeled according to the 
Hilbert fractal curve is implemented to enhance the out-of-band performance of 
the filter. The fractal structure has been loaded with open stubs for this purpose. 
The Sierpinski carpet-based defected ground structure is successfully utilized to 
produce a microstrip low-pass filter as reported in [24]. Also, the variants of the 
Minkowski and Koch fractals were employed to modify the shape of a defected 
ground structure CSRR to produce a compact-size band-pass filter [25, 26].

In this chapter, the design of a miniaturized microstrip band-pass filter is loaded 
with a fractal-shaped defected ground structure. A Minkowski fractal variant, with 
various iteration orders, has been adopted in the modification of the form of the 
defected ground structure of the proposed BPF. In addition to the reduced size, 
the proposed band-pass filter is found to present acceptable resonant characteris-
tics with harmonics reduction capability. Even though the various fractals in the 
production of defected ground structure resonators are used to construct miniatur-
ized microstrip band-pass filters, it is interesting to mention that the proposed filter 
design presented in this work has overperformed numerous of its category since it 
possesses a considerably reduced size besides the acceptable performance.

2. The modified Minkowski fractal geometry

The most critical criterion in the selection of a fractal curve, from the aspect 
of the microwave circuit miniaturization, is its dimension. The higher the fractal 
dimension, the better the fractal curve fills the given area, therefore achieving 
higher compactness. The generation process of the traditional Minkowski fractal 
curve is adopting a square with 1/3 unit side length, instead of an equilateral 
triangle of the same side length. The corresponding fractal dimension is 1.465. For 
comparison purposes, Table 1 shows the fractal dimensions of some fractal curves 
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that are widely adopted in the design of microwave antennas and circuits. For 
this, to enhance the input/output coupling and to obtain a practical range of the 
fractal dimension of the standard Minkowski fractal curve, a modified variant is 
introduced.

Figure 1 illustrates the generation process of the proposed Minkowski fractal 
variant. The figure shows the generation of the modified version up to the second 
iteration as applied to a square ring. In this version, the typical 1/3 ratio which is the 
most popular in the generation of the majority of various fractal curves has been 
replaced by an arbitrary ratio.

As the generation process implies, the shape variations in the sequential steps, 
depicted in Figure 1(b)–(d), can be thought as a means to enlarge the surface 
charge density pat  as compared with that of the typical square ring resonator. This 
increase of the path length will lead to lower the resonant frequency. In other words, 
this will decrease the size of the resulting filter if the operating frequency is kept 
unchanged. For the nth iteration, the proposed Minkowski fractal variant has been 
found to have the perimeters given by

   P  n   =  (1 + 2    w  2   ___  L  ∘  
  )   P  n−1    (1)

where Pn is the perimeter of the nth iteration fractal structure, w2 and Lo are as 
depicted in Figure 1. Examining Eq. (1) and Figure 1, it is clear that at a specific 
iteration level, when varying w1, w2, or both, a broad diversity of structures with 
distinctive perimeters can be achieved.

According to Falconer [29], the modified version of the Minkowski fractal 
geometry is called multi-fractal or fractal geometry with more than one ratio in the 
generator: a1 and a2. For this case, the fractal dimension, D, can be obtained from 
the solution of the following equation:

  2   (  1 _ 2   (1 −  a  1  ) )    
D

  + 2  a  2  D  +  a  1  D  = 1  (2)

Fractal curve type Fractal dimensions

Koch curve 1.2618

Sierpinski triangle 1.5848

Sierpinski carpet 1.8928

Koch snowflake 1.2618

Cantor set 0.631

Minkowski curve 1.465

Table 1. 
The fractal dimensions of some fractal geometries [29].

Figure 1. 
The generation process of the proposed Minkowski fractal variant [18, 25].
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antennas [2–9]. Besides, researchers have effectively proposed a variety of fractal 
geometries to modify to the typical microstrip structures which are efficiently 
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of the classical fractals in the attempt to get higher space-filling curves to design 
highly miniaturized resonant structures. The modified variants of the Minkowski 
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[18–21]. As an impressive result, the Minkowski fractal-based BPFs are character-
ized with a resonant performance with reduced harmonics [22].
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iaturized BPFs. Enhanced filter characteristics have shown to be attractive, and a 
growing research effort has been devoted to this topic as implied in the literature. 
However, most of the reported studies have been dedicated to the design of the 
microstrip LPFs. It is worth here to say that the application of various fractals and 
their variants to reshape the defected ground structures has revealed to be success-
ful to offer extra-size reduction besides the improved filter performance [23–28]. 
The conventional Hilbert fractal geometry has been adopted to modify a defected 
ground structure in an attempt to produce a miniaturized microstrip low-pass 
filter [23]. A defected ground structure that has been modeled according to the 
Hilbert fractal curve is implemented to enhance the out-of-band performance of 
the filter. The fractal structure has been loaded with open stubs for this purpose. 
The Sierpinski carpet-based defected ground structure is successfully utilized to 
produce a microstrip low-pass filter as reported in [24]. Also, the variants of the 
Minkowski and Koch fractals were employed to modify the shape of a defected 
ground structure CSRR to produce a compact-size band-pass filter [25, 26].

In this chapter, the design of a miniaturized microstrip band-pass filter is loaded 
with a fractal-shaped defected ground structure. A Minkowski fractal variant, with 
various iteration orders, has been adopted in the modification of the form of the 
defected ground structure of the proposed BPF. In addition to the reduced size, 
the proposed band-pass filter is found to present acceptable resonant characteris-
tics with harmonics reduction capability. Even though the various fractals in the 
production of defected ground structure resonators are used to construct miniatur-
ized microstrip band-pass filters, it is interesting to mention that the proposed filter 
design presented in this work has overperformed numerous of its category since it 
possesses a considerably reduced size besides the acceptable performance.

2. The modified Minkowski fractal geometry

The most critical criterion in the selection of a fractal curve, from the aspect 
of the microwave circuit miniaturization, is its dimension. The higher the fractal 
dimension, the better the fractal curve fills the given area, therefore achieving 
higher compactness. The generation process of the traditional Minkowski fractal 
curve is adopting a square with 1/3 unit side length, instead of an equilateral 
triangle of the same side length. The corresponding fractal dimension is 1.465. For 
comparison purposes, Table 1 shows the fractal dimensions of some fractal curves 
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that are widely adopted in the design of microwave antennas and circuits. For 
this, to enhance the input/output coupling and to obtain a practical range of the 
fractal dimension of the standard Minkowski fractal curve, a modified variant is 
introduced.

Figure 1 illustrates the generation process of the proposed Minkowski fractal 
variant. The figure shows the generation of the modified version up to the second 
iteration as applied to a square ring. In this version, the typical 1/3 ratio which is the 
most popular in the generation of the majority of various fractal curves has been 
replaced by an arbitrary ratio.

As the generation process implies, the shape variations in the sequential steps, 
depicted in Figure 1(b)–(d), can be thought as a means to enlarge the surface 
charge density pat  as compared with that of the typical square ring resonator. This 
increase of the path length will lead to lower the resonant frequency. In other words, 
this will decrease the size of the resulting filter if the operating frequency is kept 
unchanged. For the nth iteration, the proposed Minkowski fractal variant has been 
found to have the perimeters given by

   P  n   =  (1 + 2    w  2   ___  L  ∘  
  )   P  n−1    (1)

where Pn is the perimeter of the nth iteration fractal structure, w2 and Lo are as 
depicted in Figure 1. Examining Eq. (1) and Figure 1, it is clear that at a specific 
iteration level, when varying w1, w2, or both, a broad diversity of structures with 
distinctive perimeters can be achieved.

According to Falconer [29], the modified version of the Minkowski fractal 
geometry is called multi-fractal or fractal geometry with more than one ratio in the 
generator: a1 and a2. For this case, the fractal dimension, D, can be obtained from 
the solution of the following equation:

  2   (  1 _ 2   (1 −  a  1  ) )    
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The generation process of the proposed Minkowski fractal variant [18, 25].
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where a1 and a2 are the ratios w1/Lo and w2/Lo, respectively. The parameters w1, 
w2, and Lo are as indicated in Figure 1.

To demonstrate the effects of varying w1 and w2 on the resulting dimension of 
the modified Minkowski fractal structure, Eq. (2) has been plotted against w1 and w2 
for as shown in Figures 2 and 3, respectively. The parameter w1 has been varied from 
zero to 0.5 in steps 0.1, while w2 has been ranged from 0.05 to 0.45 in steps of 0.1.

Examining Figures 1–3 and Eq. (2), it is clear that when w1 is equal to zero, the 
fractal dimension will equal to 1, which represents the non-fractal state. In this case, 
the resulting structure is not with a fractal shape; it is merely a Euclidean square 
which has the dimension of 1. Furthermore, when w1 and w2 are both equal to 1/3, 
which is the case with the conventional Minkowski fractal curve, the dimension will 
be 1.465 as shown in Table 1.

Figure 3. 
The variation of the fractal dimensions of the modified Minkowski fractal with the parameter w1 as a 
parameter [30].

Figure 2. 
The variation of the fractal dimensions of the modified Minkowski fractal with the parameter w2 as a 
parameter [30].
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As a conclusion, it is likely that further size reduction will take place after the 
application of the fractal-based structures to the traditional Euclidean-shaped reso-
nators. This process implies that the increased space filling of the modified struc-
tures, at the successive iteration levels, will lead to an additional size reduction. The 
enlargement in the resulting length will result in the reduction of the corresponding 
size required to implement the fractal-based BPF. Hypothetically, as n goes to infin-
ity, the resulting occupied length will approach to infinity. The capability of the 
new structure to enlarge its length in the following iteration levels has been shown 
fascinating for investigating its size reduction ability as a microstrip BPF.

3. The proposed filter design

In this work, many band-pass filters with fractal-based defected ground struc-
tures were modeled. The ground planes of these microstrip filters are defected using 
slots in the shape of two coupled resonators [31]. The suggested DGS consists of 
two coupled open-loop slot resonators in the form of the Minkowski fractal variants 
depicted in Figure 1(b)–(d). Three microstrip band-pass filters have been modeled. 
Each filter has a fractal-based defected ground structure corresponding to a speci-
fied iteration order. The performance evaluation of each filter has been carried out 
using the commercially available EM simulator, IE3D [32].

Figure 4 demonstrates the configuration of the proposed microstrip DGS BPF 
filter. Here, it is clear that L denotes the resonator side lengths of the filters, D is 
the gap width, X is the inter-resonator spacing, and W is the distance between the 
longitudinal filter center and the transmission line lower edge. It is apparent that 
two coupled open-loop slots defect the ground plane of this filter. The slots take 
the shape of the Minkowski fractal variant of the second iteration. The proposed 
band-pass filter is constructed using a substrate with a relative permittivity of 2.65 
and thickness of 1.0 mm. A microstrip transmission line is printed on the top of 
the substrate as shown in Figure 4(b). A gap with a width D is etched in its center. 

Figure 4. 
(a) The layout of the proposed DGS BPF, (b) the front and (c) the back views [31].
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using the commercially available EM simulator, IE3D [32].
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filter. Here, it is clear that L denotes the resonator side lengths of the filters, D is 
the gap width, X is the inter-resonator spacing, and W is the distance between the 
longitudinal filter center and the transmission line lower edge. It is apparent that 
two coupled open-loop slots defect the ground plane of this filter. The slots take 
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band-pass filter is constructed using a substrate with a relative permittivity of 2.65 
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The input/output ports have 50 Ω characteristic impedance. The corresponding 
transmission line width is found to be 2.75 mm. The defected ground structures are 
etched on the bottom side of the substrate as demonstrated in Figure 4(c).

Throughout the simulation of the proposed BPF, the length L is maintained 
constant as that of the open-square-loop resonator. Consequently, at the design fre-
quency of 2.45 GHz, the length L, for the simulated band-pass filter with the square 
open-loop resonator is equal to 12.50 mm at resonance. This value corresponds to 
about 0.15 λg. Then, λg is calculated as

   λ  g   =    λ  o   ____  √ 
____

  ε  reff    
    (3)

where εeff is the effective permittivity. Various EM simulators provide the means 
to calculate εeff using an embedded calculator. However, the empirical expressions 
required for the computation of εeff can be found in the literature [33]. On the other 
hand, the application of the fractal structures means that an extensive length will 
be added to that of the resonator structures. In this case, it is not conditional that 
the new lengths are equal to half or multiple of λg at resonance. This is because not 
all the resonator length will be part of the cause of realizing resonance. This fact 
becomes more evident when studying the charge density distributions on the vari-
ous parts of the modeled filters.

It should be mentioned that the resonator lengths, L, of the simulated BPFs are 
kept fixed at a specified value. In the next section, it will become apparent that 
the parameters D, X, and W play a crucial influence on the final BPF resonant 
responses.

4. The simulation results

The resonant response of a band-pass filter is, in general, assessed all over its 
passband specifications, together with its passband insertion loss. It is essential that 
the insertion loss has not exceeded a certain specified level, and it should be reliably 
below some particular value throughout the occupied passband. The band-pass 
filter has to offer as much elimination of undesired signals as possible, both in its 
lower stopband and upper stopband outside of the low-loss passband. However, to 
describe the degree of selectivity of a band-pass filter, the term what is the roll-off 
rate is introduced [34, 35]. The roll-off rate, R, of a BPF response, is defined as

  R =    | α  max    −   α  min  |  _________ 
 |  f  s   −   f  c  |  

    (4)

where αmax and αmin are the 40 dB and the 3 dB attenuation points, respectively, 
while fs and fc are the 40 dB stopband and the 3 dB cutoff frequencies. It should 

Figure 5. 
The configurations of the simulated band-pass filters with: (a) zero, (b) first iteration, and (c) the second 
iteration fractal-based defected ground structures [31].
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be noted that various values might be specified for αmax to find out the roll-off rate 
[36]. However, in this work αmax has been chosen to be 40 dB. Many BPFs with the 
defected ground structures, based on those shown in Figure 5, were modeled, and 
their performance responses have been evaluated. Two BPFs were modeled, both 
with the fractal-based resonators defected ground structures as those shown in 
Figure 5(a) and (b).

5. A parametric study

Three band-pass filters with fractal-detected ground structures, shown in 
Figure 5(a)–(c), were simulated, and their performance responses have been evalu-
ated. The side length L of all the coupled DGS resonators of the modeled filters has 
been kept unchanged at 12.50 mm and slot trace width, T of about 0.61 mm. At this 
length, the zero iteration-detected ground structure BPF resonates at 2.50 GHz. For 
the three modeled filters, a parametric study was achieved to explore the effects of 
the different BPF elements, mainly D, X, and W, on its resonant behavior as will be 
presented in the following subsections.

5.1 The first iteration fractal DGS BPF

The impact of making the gap width D varied, while maintaining the other filter 
structure elements fixed, has been demonstrated in Figure 6. The increment of D 
causes the response transmission zeros to move away from the center frequency 
position, while approximately it does not affect the filter passband. Furthermore, as 
D is increased further, the realized BPF bandwidth is extended at the expense of the 
reduction of the filter selectivity. At a specific value of D, the upper transmission 
zero will vanish.

On the other hand, when the spacing X is made variable, the resulting responses 
are displayed in Figure 7. In contrast with the impact of changing D, the variation 
of X will be insignificant on the overall filter response including both the passband 
and the stopband.

The variation of the distance between the longitudinal filter center and the 
transmission line lower edge, W, has a considerable impact on the resulting filter 
responses as clearly demonstrated in Figure 8. In this case, both of the filter passband 
and stopband are significantly worsened. As the feed line becomes near the edge of 

Figure 6. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(a) with the gap 
width, D, as a parameter.
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The input/output ports have 50 Ω characteristic impedance. The corresponding 
transmission line width is found to be 2.75 mm. The defected ground structures are 
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The configurations of the simulated band-pass filters with: (a) zero, (b) first iteration, and (c) the second 
iteration fractal-based defected ground structures [31].
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be noted that various values might be specified for αmax to find out the roll-off rate 
[36]. However, in this work αmax has been chosen to be 40 dB. Many BPFs with the 
defected ground structures, based on those shown in Figure 5, were modeled, and 
their performance responses have been evaluated. Two BPFs were modeled, both 
with the fractal-based resonators defected ground structures as those shown in 
Figure 5(a) and (b).

5. A parametric study

Three band-pass filters with fractal-detected ground structures, shown in 
Figure 5(a)–(c), were simulated, and their performance responses have been evalu-
ated. The side length L of all the coupled DGS resonators of the modeled filters has 
been kept unchanged at 12.50 mm and slot trace width, T of about 0.61 mm. At this 
length, the zero iteration-detected ground structure BPF resonates at 2.50 GHz. For 
the three modeled filters, a parametric study was achieved to explore the effects of 
the different BPF elements, mainly D, X, and W, on its resonant behavior as will be 
presented in the following subsections.

5.1 The first iteration fractal DGS BPF

The impact of making the gap width D varied, while maintaining the other filter 
structure elements fixed, has been demonstrated in Figure 6. The increment of D 
causes the response transmission zeros to move away from the center frequency 
position, while approximately it does not affect the filter passband. Furthermore, as 
D is increased further, the realized BPF bandwidth is extended at the expense of the 
reduction of the filter selectivity. At a specific value of D, the upper transmission 
zero will vanish.

On the other hand, when the spacing X is made variable, the resulting responses 
are displayed in Figure 7. In contrast with the impact of changing D, the variation 
of X will be insignificant on the overall filter response including both the passband 
and the stopband.

The variation of the distance between the longitudinal filter center and the 
transmission line lower edge, W, has a considerable impact on the resulting filter 
responses as clearly demonstrated in Figure 8. In this case, both of the filter passband 
and stopband are significantly worsened. As the feed line becomes near the edge of 

Figure 6. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(a) with the gap 
width, D, as a parameter.



Fractal Analysis

38

the defected ground structure, an improvement of the resonant filter responses will 
take place. Best performance has found at W = 1.5 mm, X = 2.5 mm, and D = 1.0 mm.

5.2 The first iteration fractal DGS BPF

An analogous investigation is performed to explore the effects of the parameters 
D, X, and W of this filter on its performance.

In this study, the side length of the fractal-based defected ground structure 
of this filter is kept the same as in Section 5.1. The additional length, that is made 
available by the application of the first iteration fractal resonator, causes the result-
ing BPF to resonate at a lower frequency. The S21 responses imply that this BPF 
resonates at 1.61 GHz. A comparison of the DGS BPF responses, those of this filter, 
reveals that this filter offers a size reduction of about 65%.

In addition to the size miniaturization offered by this filter, the resonant 
responses show that it overperforms that with the conventional DGS. This filter 

Figure 8. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(a) with the 
distance between the longitudinal filter center and the transmission line lower edge, W, as a parameter.

Figure 7. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(a) with the 
inter-resonator spacing, X, as a parameter.
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provides an improved selectivity. The impacts of the modification of the param-
eters D, X, and W on the filter S21 responses are correspondingly demonstrated in 
Figures 9–11.

In summary, the resonant responses shown in Figures 9–11 imply that this filter 
offers a most favorable resonant performance when the parameters W = 2.25 mm, 
X = 2.0 mm, and D = 0.25 mm. This filter provides a resonant response with a 
center frequency of 1.61 GHz. The resonant response is symmetrical about the 
center frequency. The results also reveal that the filter resonant response shows two 
transmission zeros located at 1.33 and 2.15 GHz. Furthermore, the resonant filter 
behavior is characterized by a steeper response with higher roll-off rates of 132.74 
and 94.81 dB/GHz, at the lower and the upper edges of the passband, respectively. 
More interesting, this BPF provides an extra rejection level in the stopband when 
compared with that offered by the filter depicted in Section 5.1.

5.3 The second iteration fractal DGS BPF

The resonant behavior of this filter has also been studied under the impacts of 
varying the same parameters on its overall performance.

In this context, it has been that this filter possesses the optimal performance 
among those examined in Sections 5.1 and 5.2. The filter scattering coefficient, S21, 
responses under the influence of the variation of the parameters D, X, and W are 
demonstrated in Figures 12–14, respectively. It is apparent from these responses 
that this band-pass filter overperforms the other two BPFs in several aspects that this 
filter presents the maximum selectivity and the top rejection level in the stopband.

Examining the resonant characteristics of this filter, it has an exciting perfor-
mance with a steep roll-off in its in-band response. The –40 dB lower edge roll-off 
rate of the passband is of 197.70 dB/GHz and that of the upper edge is of 180.04  
dB/GHz. Also, the resonant response shows that it has two transmission zeros 
almost symmetrically positioned about the center frequency. These transmission 
zeros are placed at 1.32 and 1.87 GHz. More interestingly, the filter performance 
responses reveal that it does not support the higher harmonics. Besides, accord-
ing to [27, 28], the locations of the transmission zeros, in the filter response, are 
immensely influenced by the equivalent capacitance of the defected ground struc-
tures. Consequently, the improvement of the selectivity of this filter can be clarified 
as follows. When applying iteration levels, the incorporated length will become 

Figure 9. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(b) with the gap 
width, D, as a parameter.
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available by the application of the first iteration fractal resonator, causes the result-
ing BPF to resonate at a lower frequency. The S21 responses imply that this BPF 
resonates at 1.61 GHz. A comparison of the DGS BPF responses, those of this filter, 
reveals that this filter offers a size reduction of about 65%.

In addition to the size miniaturization offered by this filter, the resonant 
responses show that it overperforms that with the conventional DGS. This filter 

Figure 8. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(a) with the 
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Figure 7. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(a) with the 
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transmission zeros located at 1.33 and 2.15 GHz. Furthermore, the resonant filter 
behavior is characterized by a steeper response with higher roll-off rates of 132.74 
and 94.81 dB/GHz, at the lower and the upper edges of the passband, respectively. 
More interesting, this BPF provides an extra rejection level in the stopband when 
compared with that offered by the filter depicted in Section 5.1.

5.3 The second iteration fractal DGS BPF

The resonant behavior of this filter has also been studied under the impacts of 
varying the same parameters on its overall performance.

In this context, it has been that this filter possesses the optimal performance 
among those examined in Sections 5.1 and 5.2. The filter scattering coefficient, S21, 
responses under the influence of the variation of the parameters D, X, and W are 
demonstrated in Figures 12–14, respectively. It is apparent from these responses 
that this band-pass filter overperforms the other two BPFs in several aspects that this 
filter presents the maximum selectivity and the top rejection level in the stopband.

Examining the resonant characteristics of this filter, it has an exciting perfor-
mance with a steep roll-off in its in-band response. The –40 dB lower edge roll-off 
rate of the passband is of 197.70 dB/GHz and that of the upper edge is of 180.04  
dB/GHz. Also, the resonant response shows that it has two transmission zeros 
almost symmetrically positioned about the center frequency. These transmission 
zeros are placed at 1.32 and 1.87 GHz. More interestingly, the filter performance 
responses reveal that it does not support the higher harmonics. Besides, accord-
ing to [27, 28], the locations of the transmission zeros, in the filter response, are 
immensely influenced by the equivalent capacitance of the defected ground struc-
tures. Consequently, the improvement of the selectivity of this filter can be clarified 
as follows. When applying iteration levels, the incorporated length will become 

Figure 9. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(b) with the gap 
width, D, as a parameter.
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Figure 12. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(c) with the gap 
width, D, as a parameter.

Figure 10. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(b) with the 
inter-resonator spacing, X, as a parameter.

Figure 11. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(b) with the 
distance between the longitudinal filter center and the transmission line lower edge, W, as a parameter.
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larger. The resulting substructures of the fractal-based resonators approach each 
other, leading to the existence of a capacitive coupling which, in turns, enhances the 
final filter skirt characteristics at both sides.

Figure 13. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(c) with the 
inter-resonator spacing, X, as a parameter.

Figure 14. 
The simulated scattering coefficient S21 responses of the modeled DGS BPF depicted in Figure 5(c) with the 
distance between the longitudinal filter center and the transmission line lower edge, W, as a parameter.

Figure 15. 
The current distributions on the surface of the ground plane of the filter at different frequencies in the resonant 
band and outside it.
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final filter skirt characteristics at both sides.
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What is more, to offering an additional physical clarification about the electro-
magnetic aspects of the modeled band-pass filter, the current distributions on its 
surface have been simulated at different frequencies in the resonant band and outside 
it. Figure 15(a)–(c) illustrate the surface current distributions at 1.30, 1.55, and 
1.70 GHz which represent the frequencies in the lower stopband, in the passband, and 
in the upper stopband, respectively. Figure 15 exhibits the current distributions on 
the surfaces of the ground plane of the modeled BPF structure. Figure 15(a) and (c) 
indicates that there is no coupling taking place between the resonators in the lower 
stopband and the upper stopband. On the other hand, the large current densities, 
exposed in Figure 15(b), represent an indication of the strong coupling which results 
in the conclusive resonance. It is apparent that the majority of the resonator length 
plays a role in causing the resonance.

6. Comparison with other fractal-based filter models

In this chapter, the modified Minkowski fractal geometry has been adopted to 
design the proposed BPF filter. The modified Minkowski fractal geometry is with 
better space-filling property to achieve more miniaturization as compared with the 
conventional Minkowski fractal geometry. However, an attempt has been carried 
out to compare the performance of the proposed filter with those modeled using 
other fractal geometries with high space-filling properties.

For this purpose, Peano and Moore fractal geometries have been adopted to 
design two BPFs based on the presented design idea. In the modeling of the pro-
posed BPF filters, the same substrate and the same resonator dimensions are used. 
Figures 16 and 17 illustrate the filter structures together with their performance 

Figure 16. 
Moore fractal-based DGS BPFs together with performance responses.

Figure 17. 
Peano fractal-based DGS BPFs together with performance responses.
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responses. It is clear that both filters offer resonant responses at a higher frequency 
than that provided by the Minkowski fractal-based BPF. This means that the 
Minkowski fractal-based BPF possesses a higher size reduction. It is worth to note 
that the BPF based on Peano fractal geometry offers dual-band resonant response 
which can be tuned to a certain extent by the filter elements. However, further 
investigation of this filter has to be conducted later.

7. Fabricated model and the measured results

A prototype of the fractal-based defected ground structure band-pass filter has 
been manufactured. The fabricated prototype uses an identical substrate with a 
relative permittivity of 2.65 and thickness of 1.0 mm. Figure 18 shows photos of the 
manufactured filter. The measured and simulated scattering coefficient responses, 
S11 and S21, are depicted in Figures 19 and 20, respectively.

The simulated and measured results of the modeled and the fabricated band-
pass filters well agree with each other. Some deviation, between the measured 
and the simulated results, is noticed. The shift of the lower edge of the passband 
response of the S21 responses is slight, while that of the upper edge is hardly 
visible. Furthermore, the measured results reveal attenuation in the passband 
region.

The production technique might cause dimensional tolerance which, in turns, 
leads to the differences observed between the measured and the simulated results. 
Employing more advanced manufacturing methods, besides the selection of a 
substrate having a more stable parameter, will result in a closer agreement.

Figure 18. 
Photos of the fabricated prototype (a) the top and (b) the bottom views.
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than that provided by the Minkowski fractal-based BPF. This means that the 
Minkowski fractal-based BPF possesses a higher size reduction. It is worth to note 
that the BPF based on Peano fractal geometry offers dual-band resonant response 
which can be tuned to a certain extent by the filter elements. However, further 
investigation of this filter has to be conducted later.

7. Fabricated model and the measured results
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Employing more advanced manufacturing methods, besides the selection of a 
substrate having a more stable parameter, will result in a closer agreement.
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The resonant behaviors of the modeled band-pass filters suggested in this work 
have to be compared with those recently reported in the literature. Table 2 sum-
marizes a comparison of the performances of the presented filters which are based 
on the zero, first, and second iteration DGS band-pass filters with those recently 
reported in the literature [27, 28]. As the table implies, the comparison is carried out 

Figure 20. 
The simulated and measured S21 responses of the fabricated filter prototype.

Filter type Filter size 
[λg]2

Roll-off rate (lower edge) 
(dB/GHz)

Roll-off rate (upper edge) 
(dB/GHz)

Zero iteration DGS 0.45 × 0.23 78.51 47.10

First iteration DGS 0.30 × 0.15 132.74 94.81

Second iteration 
DGS

0.29 × 0.14 197.70 180.04

DGS BPF [27] 0.50 × 0.25 72.54 52.86

DGS BPF [28] 0.22 × 0.17 41.11 12.75

Table 2. 
Comparison of the presented band-pass filters with those published in the literature.

Figure 19. 
The simulated and measured S11 responses of the fabricated filter prototype.
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concerning the occupied areas and the filter selectivity which in turns is expressed 
by the roll-off rates at the lower and the upper edges. In spite of the extra miniatur-
ization of the second iteration, fractal-based DGS band-pass filter is minor, but this 
BPF possesses the most excellent selectivity, among the others, regarding the lower 
and the upper edges roll-off rates. However, the realized size by each BPF has been 
calculated in terms of the guided wavelength, λg, computed at the lower resonant 
frequency. Even though the DGS band-pass filter reported in [28] is approximately 
equivalent in the occupied area with that suggested in this work, it suffers from 
poor selectivity. It has poor upper edge roll-off rate and low selectivity in the lower 
edge roll-off rate.

8. Conclusions

The defected ground structure resonator based on the Minkowski fractal 
variant reported in this chapter has confirmed its capability to produce reduced 
size microstrip band-pass filters. Besides the acceptable resonant responses of the 
suggested BPFs, the adoption of the Minkowski fractal geometry to the defected 
ground structure resonator bring about BPF designs with considerable miniatur-
ization with reference to those recently published in the literature. As expected, 
the results showed that more filter size miniaturization could be obtained when 
employing higher fractal orders. In the real practice, this might not be the situa-
tion; several restrictions are coming across the practical implementation of a filter 
prototype, especially for the higher iteration levels. Also, the results revealed that 
the proposed BPF performances are characterized by a low loss in the passband and 
high rejection in the stopband with considerable reduction of higher harmonics. 
A significant finding is that the final BPF performance possesses a high selectivity 
with steep roll-off rates at both the lower and the upper edges of the passband. A 
comparison of the performance of the DGS BPF based on the modified Minkowski 
fractal geometry with other filters based on Peano and Hilbert fractal geometries 
revealed that the proposed BPF has acceptable resonant responses with a signifi-
cant lessening of higher harmonics. Measured results of a fabricated prototype 
well agree with those evaluated by the EM simulator. The presented BPF resonant 
characteristics, besides the considerable size miniaturization, will make it an 
appropriate candidate for the application in a broad diversity of the modern wire-
less communication services.
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Chapter 4

Fractal Antennas for Wearable 
Applications
Mohamed I. Ahmed and Mai F. Ahmed

Abstract

This chapter focuses on the design and fabrication of different types of flexible 
and inflexible wearable fractal for modern wireless applications with body-area-
networks (BANs). A wearable antenna is intended to be a part of clothing used for 
modern wireless communication purposes. Fractal technology allowed us to design 
compact antennas and integrate multiple communication services into one device. 
The proposed antennas were simulated and measured by CST simulator version 
2017 and Agilent N9918A VNA respectively. Furthermore, these antennas were 
fabricated using folded copper. The measured results agree well with the simulated 
results.

Keywords: fractal, wearable antenna, metamaterial, SAR, Sierpinski carpet,  
crown rectangular, textile antenna

1. Introduction

Conventional antenna designs which include planar dipoles, monopoles, 
planar inverted-Fs (PIFAs), and microstrip patches were used in recent research 
for wearable antennas design [1]. Wearable microstrip antennas are planar. 
This made them a practical antenna type due to their low cost, low profile, light 
weight, small size and eases for fabrication to be worn or carried on human body 
[2]. A wearable antenna is a body-worn antenna which designed from textile 
materials as antenna substrates to form the “smart clothes” or in the other mean, 
is an antenna which designed and meant to be a part of clothing or integrated 
into a personal accessory (such as shoes, glasses, buttons, and helmets) [3]. The 
wearable antennas are divided into two main categories: flexible and inflexible 
wearable antennas [4].

Nowadays, the compact antenna with a better performance and multi-bands 
working frequencies is one of the main trends in modern wireless communications 
systems [5]. One of the most important techniques used to reduce the antenna’s 
dimensions is the fractal geometries. A fractal is a fragmented or split geometric 
shape that can be subdivided into parts; each of this is a reduced-size copy of the 
whole. Fractal antennas have more benefits such as; high radiation efficiency, high 
gain, wide bandwidth and reduced size etc. Generally, fractals are self-similar and 
independent of scale. There are many shapes of fractals such as Sierpinski’s gasket; 
Cantor’s comb, Von Koch’s snowflake, the Mandelbrot set, and the Lorenz attractor 
see Figure 1 [6].
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1.1 Wearable antennas design steps

1.1.1 Material selection

The fabrication process of flexible and wearable antennas depends mainly on the 
materials involved in the designed structure. Properties of conductive and dielectric 
materials used in flexible and wearable antennas, are surveyed in this section [7].

1.1.2 Dielectric materials

Dielectric materials that are used as substrates for antennas, these materials may 
be inflexible such as conventional soft PCB or flexible such as textile material in 
clothing. The textile materials must be it is flexible, easy to design, water resistant 
and light in weight to make the wearable antenna more suitable [8].

1.1.3 Conductive materials

Conductive materials may be pure metallic materials or electro-textile materials. 
The pure metallic material is pasted on the dielectric substrate which is made out 
of different materials such as: copper, gold and etc. The electro-textile materials are 
conductive fabrics [9].

1.2 Antenna design

In general, to design any rectangular wearable microstrip patch antenna should 
be considered the following parameters such as dielectric constant (εr), resonant 
frequency (fo), and height of the substrate (h) for calculating the length and the 
width of the patch [10].

1.3 Antenna simulation

There are several technologies and simulators for analysis and simulation the 
wearable antennas. CST MICROWAVE STUDIO is a computer system technology 
and is a numerical simulator which uses the finite integration technique (FIT) [11].

1.4 Performance near human

Generally, wearable antenna or body-worn antenna radiates the electromag-
netic waves (EMWs) which are absorbed by tissues of the human body. The 

Figure 1. 
The different geometries of fractals in natural [6].
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absorption of these waves will cause damage and burn human tissues [12]. So that 
it is necessary to decrease the electromagnetic energy interaction towards the 
human body tissue from the wearable antennas when in use [13]. The absorption 
of the electromagnetic waves (EMWs) from the human tissue is measured by the 
specific absorption rate (SAR) [14]. Therefore, the SAR value plays a vital role in 
any design of wearable antenna. There are some parameters which will effect on 
the SAR value such as: size, shape, location, radiated power and type of antenna 
used and etc. in [15, 16].

1.4.1 The SAR safety limitation

The SAR safety limit is based on the standardization committee and is vari-
ous in different regions in over the world. In the US is regulated by the Federal 
Communications Commission (FCC) where the acceptable maximum SAR value 
1.6 W/kg, averaged over 1 gram of tissue [17]. But in Europe, the acceptable maxi-
mum SAR value is 2.0 W/kg averaged over 10 grams of tissue which is regulated 
by the International Commission on Non–Ionizing Radiation Protection (ICNIPR) 
[17]. If the SAR value exceeds the safety limit, the antenna must be changed and 
replaced by antenna with a lower back radiation [18].

1.5 Applications of wearable microstrip antenna

The development of antenna technology for human and machine interface has 
made qualitative leaps in the use of textiles as antenna substrates [19]. In future, this 
will permit freedom to design antenna systems worn by the body and integrated 
into it so; these are called “smart clothes” [20]. They will emerge in various as 
shown in Figure 2 [21]:

1. Emergency workers outfits.

2. Medical applications.

3. Space applications.

4. Military applications.

5. Sports outfits and so forth.

Figure 2. 
The various applications of the wearable antenna [21].
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The various applications of the wearable antenna [21].
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2. Fractal wearable antenna on metamaterial cell

2.1 Fractal wearable antenna design

The simulated geometry of the proposed fractal wearable antenna is illustrated 
in Figure 3. The patch and the ground planes are squares with length = 46 mm, 
and 70 mm respectively. The substrate is made from FR4 material with thickness 
h = 1.6 mm, relative permittivity εr = 4.4 and tan (δ) = 0.02.

The inset fed line of the proposed antenna is consisted of two sections: 50 Ω 
stripline and tapered line for achieving the 50 Ω impedance matching as shown in 
Figure 4. The port dimensions are tabulated in Table 1.

The proposed third iteration fractal antenna is designed based on an iteration 
length, Lm. It is calculated as follows [22]:

Lm = 2Lm + 1 + W1m + 1 + 2W2m + 1 (14).
Where: m is the order of iteration, W1m + 1 = c1Lm; is the width of the middle 

segment, and W2m + 1 = c2Lm; is the indentation width.
Furthermore, Parameters c1 and c2, are very important parameters for the efficiency 

of the size reduction [22]. Now, in the presented fractal wearable antenna c1 and c2 are 
chosen as 0.1 and 0.4 respectively. This antenna is designed to be suitable for operating 
in GPS, WiFi like Bluetooth, and WiMax frequencies at the time as shown in Figure 5.

In addition to, a metamaterial spiral cell is meandered in the ground plane of the 
presented 3rditeration fractal wearable antenna for enhancement the SAR results (as 
shown in Figure 6). By using this spiral cell, the permeability and the permittivity 
will be negative, and then the reflection coefficient will be also negative, so that the 
SAR value is minimized.

Figure 3. 
The geometry of proposed antenna.

Figure 4. 
The port geometry.
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2.2 Simulation results

Simulation analysis of the proposed antennas is performed through the com-
mercial software simulator called CST 2016. The simulated S11 for the conventional 
patch, 1st iteration, 2nd iteration, and the 3rd iteration of the Fractal Wearable 
Antenna are shown in Figure 7. Also, the antenna radiation patterns with/without 
spiral cell in E-plane and H-plane are plotted in Figures 8 and 9.

For the four resonance frequency bands, the gain and efficiency are improved 
by using metamaterial spiral cell. The first band with return loss −23 dB from 1.54 
to1.62 GHz, this band is suitable for GPS application. In this band, the gain and effi-
ciency are 2.152 dB and 44.7% and improved with MTM spiral cell to 4.41 dB and 
79.1%. The second band with return loss −20.78 dB from 2.67 to 2.87 GHz, this band 

Parameter W1 L1 W2 L2

Value (mm) 3 18.4 8 12

Table 1. 
Strip-Line Dimensions.

Figure 5. 
The proposed fractal antenna with different iteration structures.

Figure 6. 
The geometry of spiral cell.

Figure 7. 
The S11 against frequency for three different iterations.
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is suitable for WiMax application. In this band, the gain and efficiency are 1.19 dB 
and 47.2% and improved to 3.56 dB and 55.54%. The third band with return loss 
−9.67 dB from 3.33 to 3.46 GHz, this band is suitable also for WiMax application. In 
this band, the gain and efficiency are 1.112 dB and 56.6% and improved to 2.89 dB 

Figure 8. 
Radiation pattern in E-plane at (a) 1.57, (b) 2.7, (c) 3.4 (d) 5.3 GHz.

Figure 9. 
Radiation pattern in H-plane at (a) 1.57, (b) 2.7, (c) 3.4 and (d) 5.3 GHz.
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and 67.45%. The forth band with return loss −8.56 dB from 5.24 to 5.42 GHz, this 
band is suitable for WiFi application. In this band, the gain and efficiency are 
2.29 dB and 58.5% and improved to 3.38 dB and 68.1%.

2.3 Experimental results and discussion

The prototypes of the proposed fractal antenna without and with spiral cell and 
the measured S11 for those are shown in Figures 10 and 11.

2.4 SAR calculations

Figure 12 shows that the SAR simulation results for the proposed antenna with 
spiral MTM cell. These results are shown in Figure 13 and mentioned in Table 2. 
From Figure 13 and Table 2, the intended four bands have a very low SAR value 
and do not exceed unity. Also, can be notes as the distance between the proposed 
antenna and the human is maximized, the SAR value is minimized.

2.5 Proposed antenna integrated on life jacket as application

In this section, the presented 3rd iteration fractal wearable antenna with MTM 
spiral cell is used for integration on a floating life jacket. This smart life jacket can be 
used to help humans get away in the event of an accident [23]. Also, there is another 
benefit for using that life jacket; it can be used as an isolation cover to prevent the 

Figure 10. 
The fabricated proposed antenna without MTM cell: (a) fabricated geometry, and (b) the measured and 
simulated return loss S11 with the frequency.

Figure 11. 
Fabricated proposed antenna with MTM cell: (a) top and (b) bottom view and (c) the measured and 
simulated return loss S11 with the frequency.
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water reaching the proposed antenna. The simulated life jacket with voxel model is 
shown in Figure 14, and the dimensions with some electrical characteristics of that 
simulated life jacket are tabulated in Table 3.

Figure 12. 
SAR distribution at (a) 1.57, (b) 2.7, (c) 3.4 and (d) 5.3 GHz.

Figure 13. 
Maximum SAR values by two standard: (a) FCC, and (b) ICNIRP.

Resonance frequency (GHz) SAR (W/kg)

1 g 10 g

1.57 0.452 0.237

2.7 1.02 0.925

3.4 0.67 0.384

5.3 0.75 0.249

Table 2. 
Max. SAR values for the proposed antenna with spiral cell.
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The simulated S11 for the presented wearable fractal antenna with and without 
the floating life jacket are shown in Figure 15. Furthermore, the simulated perfor-
mance results for the intended antenna with the simulated floating life jacket are 
shown in Table 4.

By using the floating life jacket is as an isolation cover for the presented antenna, 
the SAR value is also improved as shown in Figure 16. The SAR simulation results 
are shown in Table 5.

Figure 14. 
The simulated life jacket attached to the proposed antenna with voxel model: (a) front and (b) top views.

Layer type Rubber Air

Layer thickness (mm) 1.9 20

Dielectric constant (εr) 3 1

Tangent loss (σ) 0.0025 0.002

Table 3. 
Dimensions of simulated life jacket with some electrical characteristics.

Figure 15. 
Simulated S11 for the presented antenna with/without life jacket.

Resonance frequency (GHz) Gain (dB) Efficiency (%)

1.57 1.11 67.3

2.7 2.89 51.2

3.4 1.65 62.3

5.3 2.42 63.4

Table 4. 
The simulation results of the proposed antenna with life jacket.
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3. Sierpinski carpet wearable fractal antenna

The construction of Sierpinski carpet fractal antenna is more simple and easy 
to design. The zeroth iteration, the base shape is a square. In the base shape, the cen-
tral square is removed to obtain the first iteration. In first iteration geometry, eight 
squares are left to design the second iteration. This procedure is repeated to obtain 
next iterations [24]. Furthermore, this antenna is a wearable or body-worn antenna 
which used Jeans textile as a substrate. Two methods for measuring the dielectric 
constant (εr) and loss tangent (tanδ) of the Jeans material were presented in this 
chapter: a microstrip ring resonator method [25, 26] as shown in Figure 17 and 
DAK (Dielectric Assessment Kit) method [27]. The results for the two methods are 
tabulated in Table 6. Therefore, use the second method to confirm the results that 
were selected by using the first one. Also, the thickness of the jeans textile is 0.6 mm 
which measured by using screw gauge.

3.1 Fractal wearable antenna design

Figure 18 represents the geometries of the initial, first and second iterations of 
the Sierpinski carpet fractal wearable microstrip antenna. The optimized dimen-
sions of the presented three antennas are indicated in Table 7.

Figure 16. 
SAR with life jacket at (a) 1.57, (b) 2.7, (c) 3.4, (d) 5.3 GHz.

Resonance frequency (GHz) SAR (W/kg)

1 g 10 g

1.57 0.232 0.125

2.7 0.607 0.314

3.4 0.632 0.529

5.3 0.347 0.147

Table 5. 
Max. SAR values for the proposed antenna with the life jacket.
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The fabricated geometry of the 2nd iterations Sierpinski carpet fractal wearable 
microstrip antenna is shown in Figure 19a. The simulated and measured S11 for 
the three iterations antennas are shown in Figure 19b. Furthermore, the radiation 
patterns of the proposed fractal antenna in E-plane (Φ = 0°) and H-plane (Φ = 90°) 
are simulated and plotted in Figure 20. From Figure 19, Consistent results are 

Figure 17. 
(a) The fabricated ring resonator model, and (b) measured S21.

Figure 18. 
Fractal antenna structures: (a) initial, (b) 1st, (c) 2nd iterations.

Material The microstrip ring resonator method

Dry jeans Mode Resonance 
frequency (GHz)

S21 
(dB)

Dielectric 
constant (εr)

Loss 
tangent 
(tanδ)

n = 1 4.26 −35.5 1.73 0.077

n = 2 8.89 −36.9 1.69 0.073

Dielectric assessment kit method (DAK)

Dielectric constant (εr) Loss tangent (tanδ)

1.78 0.085

Table 6. 
Results of the two methods for characterization of jeans textile.

Wg Lg Wp Lp Wf Lf L1 W1 L2 W2 s

Value 
(mm)

70 70 50 50 4 10 16 16 8 8 13

Table 7. 
The optimized dimensions of three iterations antenna.
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Figure 20. 
Radiation pattern in E-plane, H-plane at: (a) 1.7, (b) 5.3, (c) 5.8 GHz.

Resonant Frequency (GHz) S11 (dB) Gain (dB) Efficiency %

1.7 −24.719 4.5 72.6

5.3 −14.778 1.78 52.3

5.8 −19.937 4.4 67.4

Table 8. 
Performance simulated results of proposed fractal antenna.

measured with simulation results. Further, the proposed 2nd iteration Sierpinski 
carpet fractal wearable microstrip antenna can be used as a multiband antenna. 
This antenna is operated at three frequency bands in the same time for modern 
wireless applications as GPS, WiMax and WiFi. The simulation performance results 
are tabulated in Table 8.

4. Crown rectangular wearable fractal (CRWF) antenna

The third wearable fractal antenna designed in this chapter is based on the 
rectangular shape and is called CRWF antenna. The base geometry construction as, 
zeroth iteration is a rectangle. The first iteration geometry is obtained by cutting 
an ellipse from the base shape and then inserting a rectangle such that the corners 
of the inserted rectangle touch the boundary of elliptical slot. The same procedure 
is repeated for the inner rectangle of first iteration geometry to obtain the second 
iteration geometry. The further iterations can be obtained [28].

Figure 19. 
Proposed fractal antenna structures: initial, 1st, and 2nd iterations.
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Figure 22. 
The S11 for the three antennas: initial, 1st, and 2nd iterations.

4.1 Fractal wearable antenna design

Figure 21 represents the geometries of the initial, 1st and 2nd iterations of the 
crown rectangular fractal wearable microstrip antenna. The optimized dimensions 
of the presented three antennas are indicated in Table 9. This antenna is also pasted 
on Jeans material as a substrate. Also, the simulated S11 for the three iterations 
antennas are shown in Figure 22. In addition, the radiation patterns of the pro-
posed antenna in E-plane (Φ = 0°) and H-plane (Φ = 90°) are simulated and plotted 
in Figure 22.

From Figure 22, the proposed 2nd iteration crown rectangular fractal wearable 
microstrip antenna can be used as a multiband antenna. This antenna is operated 
at three frequency bands in the same time with different application as WiMax, 
WiFi for modern wireless applications and the third frequency band may be used 
for fixed satellite (earth-space) applications. Also, note the great affinity between 
the first and second iterations (Figure 23). The simulation performance results are 
mentioned in Table 10.

Figure 21. 
Proposed fractal antenna structures: initial, 1st, and 2nd iterations.

Wg Lg Wp Lp Wf Lf L1 W1 L2 W2 X1 Y1 X2 Y2

57 50 37 30 3 10 15 18.5 7.5 9.25 12 11.85 6 5.9

Table 9. 
The optimized dimensions of three iterations antenna.
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Figure 22. 
The S11 for the three antennas: initial, 1st, and 2nd iterations.

4.1 Fractal wearable antenna design

Figure 21 represents the geometries of the initial, 1st and 2nd iterations of the 
crown rectangular fractal wearable microstrip antenna. The optimized dimensions 
of the presented three antennas are indicated in Table 9. This antenna is also pasted 
on Jeans material as a substrate. Also, the simulated S11 for the three iterations 
antennas are shown in Figure 22. In addition, the radiation patterns of the pro-
posed antenna in E-plane (Φ = 0°) and H-plane (Φ = 90°) are simulated and plotted 
in Figure 22.

From Figure 22, the proposed 2nd iteration crown rectangular fractal wearable 
microstrip antenna can be used as a multiband antenna. This antenna is operated 
at three frequency bands in the same time with different application as WiMax, 
WiFi for modern wireless applications and the third frequency band may be used 
for fixed satellite (earth-space) applications. Also, note the great affinity between 
the first and second iterations (Figure 23). The simulation performance results are 
mentioned in Table 10.
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Table 9. 
The optimized dimensions of three iterations antenna.



Fractal Analysis

64

5. Conclusion

This chapter focuses on the design and fabrication of different three types wear-
able fractal for modern wireless applications with body-area-networks.

A 3rd iteration fractal wearable antenna is designed and fabricated. This antenna is 
designed to be suitable for GPS, WiMax and WiFi (Bluetooth) applications at the same 
time. The presented antenna is a body-worn antenna to be attached with the human 
body. Therefore, the specific absorption ratio (SAR) plays a vital role in the design 
of this body-worn antenna. So that, the SAR value should be calculated and also 
improved. Another design is presented and also fabricated to improve the SAR value. 
The intended fractal antenna is attached with a spiral MTM cell etched in the ground 
plane. This spiral is used to minimize the SAR value by reducing the energy absorbed 
by the human body tissue. Finally, this design is integrated onto a floating life jacket. 
This smart jacket can be used for finding the human body if an accident happens.

A 2nd iteration Sierpinski carpet wearable antenna was designed and fabricated. 
This antenna was pasted on Jeans textile material as substrate. Two methods for 
measuring the dielectric constant (εr) and loss tangent (tanδ) of the Jeans mate-
rial were presented in this chapter: a microstrip ring resonator method and DAK 
method. This antenna was operated at three resonance frequencies which were 
suitable for GPS, WiFi, and WiMax application.

A crown rectangular wearable fractal antenna was designed and fabricated. The 
proposed antenna was a 2nd iteration fractal antenna to operate at three resonance 
frequencies which were suitable for WiFi and WiMax applications over BAN-
network and also might be used for satellite applications.

Figure 23. 
Radiation pattern in E-plane, H-plane at: (a) 3.3, (b) 5.8, and (c) 6.7 GHz.

Resonant Frequency (GHz) S11 (dB) Gain (dB) Efficiency % Applications

3.3 −15.19 3.4 64.7 WiMax

5.8 −16.797 3.5 65.2 WiFi

6.7 −13.85 3.44 64.9 Satellite

Table 10. 
The simulated performance results of the proposed fractal antenna.
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Chapter 5

Parrondian Games in Discrete
Dynamic Systems
Steve A. Mendoza and Enrique Peacock-López

Abstract

An interesting problem in nonlinear dynamics is the stabilization of chaotic
trajectories, assuming that such chaotic behavior is undesirable. The method
described in this chapter is based on the Parrondo’s paradox, where two losing
games can be alternated, yielding a winning game. The idea of alternating parame-
ter values has been used in chemical systems, but for these systems, the undesirable
behavior is not chaotic. In contrast, ecological relevant map in one and two dimen-
sions, most of the time, can sustain chaotic trajectories, which we consider as
undesirable behaviors. Therefore, we analyze several of such ecological relevant
maps by constructing bifurcation diagrams and finding intervals in parameter space
that satisfy the conditions to yield a desirable behavior by alternating two undesir-
able behaviors. The relevance of the work relies on the apparent generality of
method that establishes a dynamic pattern of behavior that allows us to state a
simple conjecture for two-dimensional maps. Our results are applicable to models of
seasonality for 2-D ecological maps, and it can also be used as a stabilization method
to control chaotic dynamics.

Keywords: chaos control, Parrondo’s paradox, switched dynamic systems,
ecological maps, seasonality

1. Introduction

In population dynamics, discrete dynamic systems have been used to model the
dynamics of ecological systems. One of the first maps used in ecology that suggested
to study the new, Xnþ1ð Þ, and the old, Xnð Þ, non-overlapping populations is the
logistic map. [1] Although a simple one-dimensional (1-D) map, the logistic map
shows complex dynamics including chaos. Furthermore, the analyses of the logistic
map gave us a better understanding of the properties of chaotic dynamics [2–7].

In the case of 1-D discrete dynamics, for the last 18 years, alternate dynamics
strategies have been the center of attention due to the so-called Parrondo paradox
[8–10], where two losing games can be combined to yield a winning game. Fur-
thermore, the idea that “lose + lose = win” has been extended to “chaos
+chaos = periodic” in one-dimensional maps [11]. Just recently and for the first
time, we were able to find the Parrondo dynamics in two 2-D maps [12]. In the
contest of seasonality, we consider the alternation of undesirable dynamical behav-
iors yield a desirable behavior [13, 14]. So in the context of population dynamics we
have considered cases where “undesirable + undesirable = desirable” dynamical
behaviors occur as a result of a simple alternation of parameters [15–21].

69



Chapter 5

Parrondian Games in Discrete
Dynamic Systems
Steve A. Mendoza and Enrique Peacock-López

Abstract

An interesting problem in nonlinear dynamics is the stabilization of chaotic
trajectories, assuming that such chaotic behavior is undesirable. The method
described in this chapter is based on the Parrondo’s paradox, where two losing
games can be alternated, yielding a winning game. The idea of alternating parame-
ter values has been used in chemical systems, but for these systems, the undesirable
behavior is not chaotic. In contrast, ecological relevant map in one and two dimen-
sions, most of the time, can sustain chaotic trajectories, which we consider as
undesirable behaviors. Therefore, we analyze several of such ecological relevant
maps by constructing bifurcation diagrams and finding intervals in parameter space
that satisfy the conditions to yield a desirable behavior by alternating two undesir-
able behaviors. The relevance of the work relies on the apparent generality of
method that establishes a dynamic pattern of behavior that allows us to state a
simple conjecture for two-dimensional maps. Our results are applicable to models of
seasonality for 2-D ecological maps, and it can also be used as a stabilization method
to control chaotic dynamics.

Keywords: chaos control, Parrondo’s paradox, switched dynamic systems,
ecological maps, seasonality

1. Introduction

In population dynamics, discrete dynamic systems have been used to model the
dynamics of ecological systems. One of the first maps used in ecology that suggested
to study the new, Xnþ1ð Þ, and the old, Xnð Þ, non-overlapping populations is the
logistic map. [1] Although a simple one-dimensional (1-D) map, the logistic map
shows complex dynamics including chaos. Furthermore, the analyses of the logistic
map gave us a better understanding of the properties of chaotic dynamics [2–7].

In the case of 1-D discrete dynamics, for the last 18 years, alternate dynamics
strategies have been the center of attention due to the so-called Parrondo paradox
[8–10], where two losing games can be combined to yield a winning game. Fur-
thermore, the idea that “lose + lose = win” has been extended to “chaos
+chaos = periodic” in one-dimensional maps [11]. Just recently and for the first
time, we were able to find the Parrondo dynamics in two 2-D maps [12]. In the
contest of seasonality, we consider the alternation of undesirable dynamical behav-
iors yield a desirable behavior [13, 14]. So in the context of population dynamics we
have considered cases where “undesirable + undesirable = desirable” dynamical
behaviors occur as a result of a simple alternation of parameters [15–21].

69



In our present discussion, we extend our seasonality modeling strategy to several
two-dimensional ecologically relevant maps and find that the “undesirable + unde-
sirable = desirable”, the “chaos + chaos = periodic”, as well as, the “periodic + peri-
odic = chaos” behaviors are not unique to 1-D maps. In Section 2, we consider a
delayed logistic map, and in Section 3, we analyze a Lotka-Volterra map. In Section
4, we study a modified 2-D Ricker map, and in Section 5, we analyze the
Beddington map. In Section 6, we discuss a modified Lotka-Volterra map, which
includes a logistic prey growth. We conclude in Section 7 with a discussion and a
summary of our results.

2. Delayed logistic equation

In our analysis of two-dimensional maps, we begin with the extended logistic
map that incorporates a delay in population growth, defined by the following
relation:

Xnþ1 ¼ Yn (1)

Ynþ1 ¼ C Yn 1� Xnð Þ (2)

where C is our bifurcation parameter. For the Lagged Logistic Equation, we
consider C values from 0 to 2.27 in the original map, although with alternation, we
can obtain a bifurcation diagram showing larger C values. Figure 1, shows the
regular bifurcation map of the lagged logistic model. For all of the maps we study,
both the X and Y graphs for a given show the same dynamics; for instance, param-
eters associated with chaotic dynamics in the X map are also associated with chaotic
dynamics in the Y map; since we focus on a map’s dynamics, we only show the X
function map.

From Figure 1, we define our parameter value regions associated with complex
or non-complex dynamics. The map on the left of the figure shows the whole
bifurcation map; while the right magnifies the complex region. On the right hand
figure, which is the magnified map, we can clearly see some periodic windows, but
we pick parameter values associated with complex dynamics.

Next, we switch, or alternate, the parameter values between even and odd
iterations through the following relation:

Xnþ1 ¼
f n Xn;Ynð Þ ¼ Yn if n even

f n Xn;Ynð Þ ¼ Yn if n odd

8><
>:

(3)

Ynþ1 ¼
gn Xn;Ynð Þ ¼ Ce Yn 1� Xnð Þ if n even

gn Xn;Ynð Þ ¼ Co Yn 1� Xnð Þ if n odd

8><
>:

(4)

The equation above describes our switching strategy in which we pick one
parameter for every odd iteration, which we name Co, and use the even parameter,
Ce, as our bifurcation parameter, for every even iteration. For the first type of
behavior, we pick one parameter associated with complex dynamics as our Co value
and switch it with our even parameter, Ce, in areas associated with chaotic dynam-
ics. In our case, we see chaotic dynamics for C values greater than 2.0 when we
construct the bifurcation diagram for Eqs. (1) and (2). In the resulting alternated, or
switched, bifurcation diagram, represented by Eq. (3) for the current section, we
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look for regions that have periodic oscillations that are normally associated with
chaos, thus resulting in the case “chaos + chaos = order.” Hence, for every switching
map that we study, in the figures we also show the unswitched map for the same Ce

parameter space. We make a note that the alternation of parameter values as
defined by our switching strategy may result in an extension of C parameters
yielding oscillations; that is we may see oscillations for C values greater than 2.27 as
in the case for lagged logistic map. To compare our maps with Eqs. (1) and (2), we
only study bifurcation maps using Eqs. (3) and (4) from C = 0 to 2.27.

For our analysis, we pick a Co as in the “chaos + chaos = order” case; however,
we may choose a parameter within the periodic windows in the chaotic region, and
when using the switched map, we focus on the Ce values that are less than the onset
of chaos, which for the case of the lagged logistic pap is C = 2. We use the analysis
discussed above for all of the cases in this paper.

For our first example of “chaos + chaos = periodic”, we consider the parameter
value, Co ¼ 2:10 and Eqs. (3) and (4). In our bifurcation diagram for Eqs. (3) and
(4), in Figure 2, we consider Ce greater than 2 and look for Ce values that give us
periodic oscillations. Figure 2 shows two maps at once, the left hand showing
Eqs. (1) and (2), and the right hand graph shows Eqs. (1) and (2) with Co = 2.1. In
this case, from Figure 2, we can see one region of periodicity from Ce = 2.26 to 2.27.

Another combination of parameters yielding “chaos+chaos = periodic” uses
Co = 2.15 and Eqs. (3) and (4), where Figure 3 shows a range of Ce values for which
“chaos + chaos = periodic” holds, from Ce = 2.36 to 2.38. The same figure also shows
other values for which the “chaos + chaos = periodic” relation holds, but these bands
are not as prominent as the one we focus on. Through out the paper, we make a
point that different Ce values give widely different behaviors and these differences
in dynamic behaviors reveals the differences in the Ce values that give us desirable
behaviors. For the rest of the paper, the approximate ranges of Ce will be given for

Figure 2.
Bifurcation diagram for Eqs. (1) and (2) and Eqs. (3) and (4), using Co 2.1.

Figure 1.
Lagged logistic map model, Eqs. (1,2), with C = 0 to C = 2.27 and the region from C = 1.90 to C = 2.27.
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ics. In our case, we see chaotic dynamics for C values greater than 2.0 when we
construct the bifurcation diagram for Eqs. (1) and (2). In the resulting alternated, or
switched, bifurcation diagram, represented by Eq. (3) for the current section, we
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look for regions that have periodic oscillations that are normally associated with
chaos, thus resulting in the case “chaos + chaos = order.” Hence, for every switching
map that we study, in the figures we also show the unswitched map for the same Ce

parameter space. We make a note that the alternation of parameter values as
defined by our switching strategy may result in an extension of C parameters
yielding oscillations; that is we may see oscillations for C values greater than 2.27 as
in the case for lagged logistic map. To compare our maps with Eqs. (1) and (2), we
only study bifurcation maps using Eqs. (3) and (4) from C = 0 to 2.27.

For our analysis, we pick a Co as in the “chaos + chaos = order” case; however,
we may choose a parameter within the periodic windows in the chaotic region, and
when using the switched map, we focus on the Ce values that are less than the onset
of chaos, which for the case of the lagged logistic pap is C = 2. We use the analysis
discussed above for all of the cases in this paper.

For our first example of “chaos + chaos = periodic”, we consider the parameter
value, Co ¼ 2:10 and Eqs. (3) and (4). In our bifurcation diagram for Eqs. (3) and
(4), in Figure 2, we consider Ce greater than 2 and look for Ce values that give us
periodic oscillations. Figure 2 shows two maps at once, the left hand showing
Eqs. (1) and (2), and the right hand graph shows Eqs. (1) and (2) with Co = 2.1. In
this case, from Figure 2, we can see one region of periodicity from Ce = 2.26 to 2.27.

Another combination of parameters yielding “chaos+chaos = periodic” uses
Co = 2.15 and Eqs. (3) and (4), where Figure 3 shows a range of Ce values for which
“chaos + chaos = periodic” holds, from Ce = 2.36 to 2.38. The same figure also shows
other values for which the “chaos + chaos = periodic” relation holds, but these bands
are not as prominent as the one we focus on. Through out the paper, we make a
point that different Ce values give widely different behaviors and these differences
in dynamic behaviors reveals the differences in the Ce values that give us desirable
behaviors. For the rest of the paper, the approximate ranges of Ce will be given for

Figure 2.
Bifurcation diagram for Eqs. (1) and (2) and Eqs. (3) and (4), using Co 2.1.

Figure 1.
Lagged logistic map model, Eqs. (1,2), with C = 0 to C = 2.27 and the region from C = 1.90 to C = 2.27.
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one window that satisfies the “chaos + chaos = order” or “periodicity + periodic-
ity = chaos”, since there are sometimes a variety of parameters meeting the relevant
criteria for switching.

We complete our analysis of delayed logistic map with one case in which “peri-
odic + periodic = chaos”. As mentioned beforehand, we pick our value associated
with periodic trajectories from the area associated with chaotic trajectories, and
focus on Ce values less than the chaotic region for comparison. In particular, we
choose Co ¼ 2:19 as our periodic parameter for Eqs. (3) and (4); Figure 4 shows the
corresponding bifurcation map, and, from the figure, we see one prominent exam-
ple of “periodic+periodic = chaos” for Ce = 1.85 to 2.00.

3. Lotka-Volterra model

We begin our next section by discussing a discretized form of the Lotka-Volterra
model. The Lotka-Volterra map describes predator prey interactions, assuming that
the prey has a relatively high initial population, and that the predator’s growth rate
is directly proportional to the prey’s growth rate.

The model follows a relation defined by the map below

Xnþ1 ¼ 1þ rð ÞXn � rX2
n � C Xn Yn (5)

Ynþ1 ¼ C Xn Yn (6)

In Figure 5, showing Eqs. (5) and (6), we look at the unswitched map, defined
by showing the ranges of periodic and aperiodic behavior. As in the previous
section, we use the unswitched bifurcation map as a comparison to the switched
map when using certain parameters. For this section, we focus on the interval C = 0
to 2.8, and set r = 2 for this map and the rest of the maps that have an r parameter.

Figure 3.
Bifurcation diagram for Eqs. (1) and (2), and Eqs. (3) and (4), using Co ¼ 2:15.

Figure 4.
Bifurcation diagram for Eqs. (1) and (2), and Eqs. (3) and (4), using Co 2.19.
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Xnþ1 ¼
f n Xn;Ynð Þ ¼ rþ 1ð Þ Xnð Þ � r Xnð Þ2 � CeXnYn if n even

f n Xn;Ynð Þ ¼ rþ 1ð Þ Xnð Þ � r Xnð Þ2 � CoXnYn if n odd

(
(7)

Ynþ1 ¼
gn Xn;Ynð Þ ¼ CoXnYn if n odd

gn Xn;Ynð Þ ¼ CeXnYn if n even

�
(8)

As before, we pick a Co value associated with a chaotic trajectory and alternate
with Ce, using Eq. (7), which we use as the bifurcation parameter, illustrated in
Figure 6. For this figure, we use Co = 2.1, and we can easily find conditions in which
“chaos + chaos = order.” In particular, we see this phenomena for parameter values
of Ce = 2.33–2.40. Figure 7, shows another example of “chaos + chaos = order” using
Eqs. (7) and (8) with a Co value of 2.22, and in the corresponding bifurcation
diagram for roughly Ce = 2.58–2.65.

We conclude the present section with an example of “periodicity + periodic-
ity = chaos”, using Eqs. (7) and (8) and Ce = 2.44. In this case, in Figure 8, we see

Figure 5.
Bifurcation diagram for Eqs. (5) and (6), showing the interval studied, as well as a close up of the chaotic
region.

Figure 6.
Bifurcation diagram for Eqs. (5) and (6) and Eqs. (7) and (8) with the Co value 2.1.

Figure 7.
Bifurcation diagram for Eqs. (5) and (6) and Eqs. (7) and (8) with the Co value 2.22.
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map when using certain parameters. For this section, we focus on the interval C = 0
to 2.8, and set r = 2 for this map and the rest of the maps that have an r parameter.

Figure 3.
Bifurcation diagram for Eqs. (1) and (2), and Eqs. (3) and (4), using Co ¼ 2:15.
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Bifurcation diagram for Eqs. (1) and (2), and Eqs. (3) and (4), using Co 2.19.
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gn Xn;Ynð Þ ¼ CoXnYn if n odd
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�
(8)

As before, we pick a Co value associated with a chaotic trajectory and alternate
with Ce, using Eq. (7), which we use as the bifurcation parameter, illustrated in
Figure 6. For this figure, we use Co = 2.1, and we can easily find conditions in which
“chaos + chaos = order.” In particular, we see this phenomena for parameter values
of Ce = 2.33–2.40. Figure 7, shows another example of “chaos + chaos = order” using
Eqs. (7) and (8) with a Co value of 2.22, and in the corresponding bifurcation
diagram for roughly Ce = 2.58–2.65.

We conclude the present section with an example of “periodicity + periodic-
ity = chaos”, using Eqs. (7) and (8) and Ce = 2.44. In this case, in Figure 8, we see

Figure 5.
Bifurcation diagram for Eqs. (5) and (6), showing the interval studied, as well as a close up of the chaotic
region.

Figure 6.
Bifurcation diagram for Eqs. (5) and (6) and Eqs. (7) and (8) with the Co value 2.1.

Figure 7.
Bifurcation diagram for Eqs. (5) and (6) and Eqs. (7) and (8) with the Co value 2.22.
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some chaotic behavior for values of Ce in the interval 1:75; 2:00½ �, a region that is
periodic when using Eqs. (5) and (6).

4. Modified 2-D Ricker map

Another interesting map includes an exponential term, describing the prey
growth, with a simple predator–prey interaction term. The map is determined by
the following equations:

Xnþ1 ¼ Xn Exp r 1� Xn � Ynð Þ½ (9)

Ynþ1 ¼ C Xn Ynð Þ (10)

which is in essence modified and extended to 2-D Ricker-like map [22]. The
corresponding switched map is defined below:

Xnþ1 ¼
f n Xn;Ynð Þ ¼ Xn Exp ½r 1� Xn � Ynð Þ if n even

f n Xn;Ynð Þ ¼ Xn Exp ½r 1� Xn � Ynð Þ if n odd

�
(11)

Ynþ1 ¼
gn Ynð Þ ¼ CeXnYn if n even

gn Ynð Þ ¼ CoXnYn if n odd

�
(12)

Figure 9, showing Eqs. (9) and (10), considers the range of C values we focus
on, from C = 0 to 2.8. We want to remark however, that this map also shows some
interesting behavior beyond the interval of study, but we choose this interval to get
a close up of the intervals of periodicity, since this interval is where we find our
relevant behavior. For the X function we study, at higher values, the function stays
at unity for values of C = 28 and higher, while the Y function stays at extinction, or
Y = 0.

Figure 8.
Bifurcation diagram for Eqs. (5) and (6) and Eqs. (7) and (8) with the Co value 2.44.

Figure 9.
Bifurcation map for Eqs. (9) and (10) showing the interval studied, as well as a close up of the chaotic region.
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As in previous cases, we start with finding parameter values satisfying the
“chaos + chaos = order” relation. To begin, we use Eqs. (11) and (12) with Co = 2.10,
associated with aperiodic dynamics. Figure 10 zooms into the region for which
“chaos + chaos = order” holds. From this diagram, we see a narrow region of
periodicity from C = 2.775 to 2.790.

We then use Eqs. (11) and (12) with Co = 2.26, for which Figure 11 hones in on
the relevant Ce parameter values. The interval of Ce values is significantly wider in
this case than the previous one, since we find “chaos + chaos = order” for 2.74–2.80.

We finish this section by introducing one case in which “periodic + peri-
odic = chaos”. We pick the periodic parameter Co = 2.333. In some maps, it is harder
to find periodic windows, although they could usually be found sometimes but an
extra significant figure is necessary such as in this case. We find chaos in this map
from Ce = 1.71 to 2.00, as shown in Figure 12, periodic values when using
Eqs. (11,12).

Figure 10.
Bifurcation diagram for Eqs. (9) and (10) and Eqs. (11) and (12) with the Co value 2.10.

Figure 11.
Bifurcation diagram for Eqs. (9) and (10) and Eqs. (11) and (12) with the Co value 2.26.

Figure 12.
Bifurcation diagram for Eqs. (9) and (10) and Eqs. (11) and (12) with the Co value 2.333.
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some chaotic behavior for values of Ce in the interval 1:75; 2:00½ �, a region that is
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at unity for values of C = 28 and higher, while the Y function stays at extinction, or
Y = 0.
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Figure 9.
Bifurcation map for Eqs. (9) and (10) showing the interval studied, as well as a close up of the chaotic region.
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As in previous cases, we start with finding parameter values satisfying the
“chaos + chaos = order” relation. To begin, we use Eqs. (11) and (12) with Co = 2.10,
associated with aperiodic dynamics. Figure 10 zooms into the region for which
“chaos + chaos = order” holds. From this diagram, we see a narrow region of
periodicity from C = 2.775 to 2.790.

We then use Eqs. (11) and (12) with Co = 2.26, for which Figure 11 hones in on
the relevant Ce parameter values. The interval of Ce values is significantly wider in
this case than the previous one, since we find “chaos + chaos = order” for 2.74–2.80.

We finish this section by introducing one case in which “periodic + peri-
odic = chaos”. We pick the periodic parameter Co = 2.333. In some maps, it is harder
to find periodic windows, although they could usually be found sometimes but an
extra significant figure is necessary such as in this case. We find chaos in this map
from Ce = 1.71 to 2.00, as shown in Figure 12, periodic values when using
Eqs. (11,12).

Figure 10.
Bifurcation diagram for Eqs. (9) and (10) and Eqs. (11) and (12) with the Co value 2.10.

Figure 11.
Bifurcation diagram for Eqs. (9) and (10) and Eqs. (11) and (12) with the Co value 2.26.

Figure 12.
Bifurcation diagram for Eqs. (9) and (10) and Eqs. (11) and (12) with the Co value 2.333.
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5. Beddington model

Our next map is the Beddington 2-D map defined by the following equations:

Xnþ1 ¼ Xn Exp r 1� Xnð Þ � Ynð Þ (13)

Ynþ1 ¼ C Xn 1� Exp �Ynð Þð Þ (14)

along with the corresponding alternation equation.

Xnþ1 ¼
f n Xn;Ynð Þ ¼ Xn Exp r 1� Xnð Þ � Ynð Þ if n even

f n Xn;Ynð Þ ¼ Xn Exp r 1� Xnð Þ � Ynð Þ if n odd

�
(15)

Ynþ1 ¼
gn Xn;Ynð Þ ¼ Ce Xn 1� Exp �Ynð Þð Þ if n even

gn Xn;Ynð Þ ¼ Co Xn 1� Exp �Ynð Þð Þ if n odd

�
(16)

Figure 13, showing Eqs. (13) and (14), shows the parameter range we use to
analyze the map. We pick points between 0 and 14, and show the corresponding
bifurcation diagrams within that range. We pick 14 as our maximum value because
above that parameter, there are only steady state solutions.

We start with describing our first chaotic value, Co = 10, for Eqs. (15) and (16).
Figure 14 shows the corresponding bifurcation diagram, and we see a relatively
wide range of Ce values for which we have “chaos + chaos = order”. We find this
behavior for most points of Ce between 4.54 and 4.7.

We then use Eqs. (15) and (16), with Co = 4.0, and here we also see a relatively
wide range of parameters in which we find that “chaos + chaos = periodicity”. Spe-
cifically, we see that alternating with Ce = 10.7–10.88 gives us the desired behavior,
shown in Figure 15. Our last figure pertaining to this map, Figure 16, shows the

Figure 13.
Bifurcation diagram for Eqs. (13) and (14) showing the interval studied, as well as a close up of the chaotic
region.

Figure 14.
Bifurcation diagram for Eqs. (13) and (14) and Eqs. (15) and (16) with the Co value 10.
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“periodic + periodic = chaos” behavior, for Co = 6.0. Figure 16 shows the area of the
map that is normally periodic, and shows characteristic chaotic behavior from
Ce = 1.7–3.0, although this particular map shows some periodic windows than the
other “periodic + periodic = chaos” maps.

6. Modified Lotka-Volterra map

Our last 2-D map considers a logistic growth, and an interaction term, and only a
predation term for the predator. The dynamics of this map is considerably different
than the previous two maps,

Xnþ1 ¼ 1þ rð ÞXn � r X2
n �

CXnYn

Xn þ h
(17)

Ynþ1 ¼ CXnYn

Xn þ h
(18)

As before, the switched map is shown below.

Xnþ1 ¼
f n Xnð Þ ¼ 1þ rð ÞXn � rX2

n �
CeXnYn

Xn þ h
if n even

f n Xnð Þ ¼ Xn rþ 1ð Þ � r Xnð Þ2 � CoXnYn

Xn þ h
if n odd

8>><
>>:

(19)

Ynþ1 ¼
gn Ynð Þ ¼ CoXnYn

Xn þ h
if n odd

gn Ynð Þ ¼ CeXnYn

Xn þ h
if n even

8>><
>>:

(20)

Figure 15.
Bifurcation diagram for Eqs. (13) and (14) and Eqs. (15) and (16) with the Co value 4.0.

Figure 16.
Bifurcation diagram for Eqs. (13) and (14) and Eqs. (15) and (16) with the Co value 6.0.
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Figure 14.
Bifurcation diagram for Eqs. (13) and (14) and Eqs. (15) and (16) with the Co value 10.
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“periodic + periodic = chaos” behavior, for Co = 6.0. Figure 16 shows the area of the
map that is normally periodic, and shows characteristic chaotic behavior from
Ce = 1.7–3.0, although this particular map shows some periodic windows than the
other “periodic + periodic = chaos” maps.

6. Modified Lotka-Volterra map

Our last 2-D map considers a logistic growth, and an interaction term, and only a
predation term for the predator. The dynamics of this map is considerably different
than the previous two maps,

Xnþ1 ¼ 1þ rð ÞXn � r X2
n �

CXnYn

Xn þ h
(17)

Ynþ1 ¼ CXnYn
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As before, the switched map is shown below.

Xnþ1 ¼
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n �
CeXnYn

Xn þ h
if n even

f n Xnð Þ ¼ Xn rþ 1ð Þ � r Xnð Þ2 � CoXnYn

Xn þ h
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8>><
>>:

(19)

Ynþ1 ¼
gn Ynð Þ ¼ CoXnYn

Xn þ h
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gn Ynð Þ ¼ CeXnYn

Xn þ h
if n even

8>><
>>:

(20)

Figure 15.
Bifurcation diagram for Eqs. (13) and (14) and Eqs. (15) and (16) with the Co value 4.0.

Figure 16.
Bifurcation diagram for Eqs. (13) and (14) and Eqs. (15) and (16) with the Co value 6.0.
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Aside from the r parameter, this map also has the h parameter, which we set
equal to unity. Unlike the previous two maps we study that have relevant behaviors
past C = 10, the max value of the unswitched map is C = 3.85, but chaos is only
present above C = 3.0, as shown in Figure 17.

Our first chaotic point is Co = 3.3, and the corresponding bifurcation diagram is
shown in Figure 18. There is a somewhat small region of periodicity from Ce = 3.704
to 3.724.

The second to last figure, Figure 19 shows our final odd switching parameter,
Co = 3.1 and the corresponding bifurcation diagram, which shows a similar range of
periodic parameter values, specifically, Ce = 3.70–3.72.

Our last figure, Figure 20, shows an example of “periodic + periodic = chaos”,
where we switch with Co = 3.57 and see chaos for most values between Ce = 2.5
and 3.0.

Figure 17.
Bifurcation diagram for Eqs. (17) and (18) showing the interval studied, as well as a close up of the chaotic
region..

Figure 18.
Bifurcation diagram for Eqs. (17) and (18) and Eqs. (19) and (20) with the Co value 3.3.

Figure 19.
Bifurcation diagram for Eqs. (17) and (18) and Eqs. (19) and (20) with the Co value 3.1.
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7. Discussion

In previous sections, we have analyzed five relevant ecological 2-D maps, setting
a pattern of dynamic behavior similar to the well studied “chaos + chaos = periodic”
in switched 1-D maps. Therefore, with the results discussed in this chapter, we can
extend the 1-D maps conjecture to 2-D maps. The conjecture asserts that given a
map with chaotic dynamics, we can find two parameters associated to chaotic
trajectories that, when alternated yield a periodic trajectory. In general, we can
consider these kinds of maps as nonautonomous maps because one of the parame-
ters is a function of the iterations. In most case, we pick a parameter value for the
even iterations and a different parameter for the odd iterations. But the connection
with the Parrondo’s paradox is associated with the kind of alternating parameters,
which in the conjecture are parameter associated with chaotic, or, in general, com-
plex trajectories.

The case of “chaos + chaos = periodic” was presented for the first time by
Almeida et al. [16] for simple 1-D maps, and just recently for 2-D maps by Mendoza
et al. [12]. The implication of the so-called Parrondo’s dynamics has been used to
model seasonality, but with the observation that, under the Parrondo dynamics, the
case of “periodic + periodic = chaos” is also possible [15]. As generalization we have
consider cases of “undesirable + undesirable = desirable” dynamics behaviors to
analyze simple models of seasonality [23–25], which include migration or immigra-
tion [13, 14].

In the present analysis, we emphasize the use of bifurcation diagrams to find
intervals of values in parameter space that could satisfy the “undesirable + undesir-
able = desirable” or “periodic + periodic = chaos” dynamics. Although we are
interested in modeling ecological systems and in particular the effect of seasonality,
one could use our results to look at the switched maps as a way to control chaotic
dynamics. In particular an extension to continuous dynamic systems may be rele-
vant or applicable to chemical and mechanical systems [26].

In summary, our approach of building bifurcation diagrams readily yield inter-
vals of parameter values that can show the so-called Parrondian dynamics for 1-D
and 2-D maps. We have concentrated on ecological relevant maps, but the approach
applies to any kind of maps. In particular, we can easily find parameters that show
desirable dynamics in switched maps, controlling complex or undesirable dynam-
ics, with the by product that we can also avoid the alternation of desirable dynamics
that could yield undesirable dynamics in switched maps. Finally, we believed that
we have stablished a pattern of dynamic behavior that supports the conjecture
described in previous paragraphs.

Figure 20.
Bifurcation diagram for Eqs. (17) and (18) and Eqs. (19) and (20) with the Co value 3.57.
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Aside from the r parameter, this map also has the h parameter, which we set
equal to unity. Unlike the previous two maps we study that have relevant behaviors
past C = 10, the max value of the unswitched map is C = 3.85, but chaos is only
present above C = 3.0, as shown in Figure 17.

Our first chaotic point is Co = 3.3, and the corresponding bifurcation diagram is
shown in Figure 18. There is a somewhat small region of periodicity from Ce = 3.704
to 3.724.

The second to last figure, Figure 19 shows our final odd switching parameter,
Co = 3.1 and the corresponding bifurcation diagram, which shows a similar range of
periodic parameter values, specifically, Ce = 3.70–3.72.

Our last figure, Figure 20, shows an example of “periodic + periodic = chaos”,
where we switch with Co = 3.57 and see chaos for most values between Ce = 2.5
and 3.0.

Figure 17.
Bifurcation diagram for Eqs. (17) and (18) showing the interval studied, as well as a close up of the chaotic
region..

Figure 18.
Bifurcation diagram for Eqs. (17) and (18) and Eqs. (19) and (20) with the Co value 3.3.

Figure 19.
Bifurcation diagram for Eqs. (17) and (18) and Eqs. (19) and (20) with the Co value 3.1.
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7. Discussion

In previous sections, we have analyzed five relevant ecological 2-D maps, setting
a pattern of dynamic behavior similar to the well studied “chaos + chaos = periodic”
in switched 1-D maps. Therefore, with the results discussed in this chapter, we can
extend the 1-D maps conjecture to 2-D maps. The conjecture asserts that given a
map with chaotic dynamics, we can find two parameters associated to chaotic
trajectories that, when alternated yield a periodic trajectory. In general, we can
consider these kinds of maps as nonautonomous maps because one of the parame-
ters is a function of the iterations. In most case, we pick a parameter value for the
even iterations and a different parameter for the odd iterations. But the connection
with the Parrondo’s paradox is associated with the kind of alternating parameters,
which in the conjecture are parameter associated with chaotic, or, in general, com-
plex trajectories.

The case of “chaos + chaos = periodic” was presented for the first time by
Almeida et al. [16] for simple 1-D maps, and just recently for 2-D maps by Mendoza
et al. [12]. The implication of the so-called Parrondo’s dynamics has been used to
model seasonality, but with the observation that, under the Parrondo dynamics, the
case of “periodic + periodic = chaos” is also possible [15]. As generalization we have
consider cases of “undesirable + undesirable = desirable” dynamics behaviors to
analyze simple models of seasonality [23–25], which include migration or immigra-
tion [13, 14].

In the present analysis, we emphasize the use of bifurcation diagrams to find
intervals of values in parameter space that could satisfy the “undesirable + undesir-
able = desirable” or “periodic + periodic = chaos” dynamics. Although we are
interested in modeling ecological systems and in particular the effect of seasonality,
one could use our results to look at the switched maps as a way to control chaotic
dynamics. In particular an extension to continuous dynamic systems may be rele-
vant or applicable to chemical and mechanical systems [26].

In summary, our approach of building bifurcation diagrams readily yield inter-
vals of parameter values that can show the so-called Parrondian dynamics for 1-D
and 2-D maps. We have concentrated on ecological relevant maps, but the approach
applies to any kind of maps. In particular, we can easily find parameters that show
desirable dynamics in switched maps, controlling complex or undesirable dynam-
ics, with the by product that we can also avoid the alternation of desirable dynamics
that could yield undesirable dynamics in switched maps. Finally, we believed that
we have stablished a pattern of dynamic behavior that supports the conjecture
described in previous paragraphs.

Figure 20.
Bifurcation diagram for Eqs. (17) and (18) and Eqs. (19) and (20) with the Co value 3.57.
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8. Conclusions

In previous sections, we have stablished a pattern of dynamic behavior for 2-D
maps, which have been used to model ecological systems. The dynamic pattern
allows to state that for any 2-D maps that shows chaotic dynamics for a set of
parameters, we can always find two of such parameters that, when alternate, yield a
periodic trajectory. This conjecture is an extension of the so-called Parrondo’s para-
dox, in the sense that two undesirable dynamics can be alternate to yield a desirable
dynamics. In other words, we can always find a region in parameter space, where
we can select a pair of such parameters. Therefore, we the developed methodology
can be use, in general, as a chaos control approach, and, in particular, we can use it
to model, in the case of ecological maps, seasonality. Although we interested in
ecological relevant 2-D maps, we believed that our conjecture can be extended to
other type of 1-D and 2-D maps. Finally, we consider that the major application of
the methodology is in controlling chaotic dynamics.
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Chapter 6

Fractal Structures of the Carbon
Nanotube System Arrays
Raïssa S. Noule and Victor K. Kuetche

Abstract

In this work, we investigate fractals in arrays of carbon nanotubes modeled by
an evolution equation derived by using a rigorous application of the reductive
perturbation formalism for the Maxwell equations and for the corresponding
Boltzmann kinetic equation of the distribution function of electrons in such
nanomaterials. We study the integrability properties of our dynamical system by
using the Weiss-Tabor-Carnevale analysis. Actually, following the leading order
analysis, we write the solution in the form of series of Laurent. We also use the
Kruskal’s simplification to find the solutions. Using the truncated Painlevé expan-
sion, we construct the auto-Backlund transformation of the system. We take
advantage of the above properties to construct a wide panel of structures with
fractals properties. As a result, we unearth some typical features, namely the fractal
dromion, the fractal lump, the stochastic and nonlocal fractal excitations. We also
address some physical implications of the results obtained.

Keywords: carbon nanotubes, Weiss-Tabor-Carnevale analysis, Kruskal’s
simplification, auto-Backlund transformation, fractal excitations

1. Introduction

Carbon nanotubes stand to be one of the wonder materials of the present century
[1–3] owing to their tremendous range of physical, mechanical, thermal, electronic,
and optical properties. They are found in some flat panel displays, some field-effect
transistors as emerging applications exploiting the good thermal and electronic con-
ductivities of the above nanomaterials. The carbon nanotubes were synthesized pre-
viously in 1991 as graphitic carbon needles with diameter ranging from 4 to 30 nm
and length up to 1 μm [4]. Large-scale synthesis [5] provided an impetus to research
in the area of carbon fiber growth, as well as in the production and characterization of
fullerene materials. Two years later [6], abundant single-shell tubes with diameters
of about 1 nm were synthesized. In the past few years, some studies of various
nonlinear effects in carbon nanotube arrays have been achieved. There are intrinsic
localized modes in strongly nonlinear systems of anharmonic lattices [7, 8], large-
amplitude oscillating modes with additional features of being nonlinear as well as
discrete [9], spin-wave propagation [10], propagation of short optical pulses with
dispersive nonmagnetic dielectric media [11], propagation of ultimately short optical
pulses in coupled graphene waveguides [12, 13].

83



[24] Allen LJS. An Introduction to
Mathematical Biology. Upper Saddle
River: Prentice Hall; 2007

[25] Kot M, Schaffer WM. The effects of
seasonality on discrete models of
population growth. Theoretical
Population Biology. 1984;26:340-360

[26] Kohar V, Ji P, Choudhary A, Sinha
S, Kurths J. Synchronization in time-
varying networks. Physical Review E.
2014;90:022812

82

Fractal Analysis

Chapter 6

Fractal Structures of the Carbon
Nanotube System Arrays
Raïssa S. Noule and Victor K. Kuetche

Abstract

In this work, we investigate fractals in arrays of carbon nanotubes modeled by
an evolution equation derived by using a rigorous application of the reductive
perturbation formalism for the Maxwell equations and for the corresponding
Boltzmann kinetic equation of the distribution function of electrons in such
nanomaterials. We study the integrability properties of our dynamical system by
using the Weiss-Tabor-Carnevale analysis. Actually, following the leading order
analysis, we write the solution in the form of series of Laurent. We also use the
Kruskal’s simplification to find the solutions. Using the truncated Painlevé expan-
sion, we construct the auto-Backlund transformation of the system. We take
advantage of the above properties to construct a wide panel of structures with
fractals properties. As a result, we unearth some typical features, namely the fractal
dromion, the fractal lump, the stochastic and nonlocal fractal excitations. We also
address some physical implications of the results obtained.

Keywords: carbon nanotubes, Weiss-Tabor-Carnevale analysis, Kruskal’s
simplification, auto-Backlund transformation, fractal excitations

1. Introduction

Carbon nanotubes stand to be one of the wonder materials of the present century
[1–3] owing to their tremendous range of physical, mechanical, thermal, electronic,
and optical properties. They are found in some flat panel displays, some field-effect
transistors as emerging applications exploiting the good thermal and electronic con-
ductivities of the above nanomaterials. The carbon nanotubes were synthesized pre-
viously in 1991 as graphitic carbon needles with diameter ranging from 4 to 30 nm
and length up to 1 μm [4]. Large-scale synthesis [5] provided an impetus to research
in the area of carbon fiber growth, as well as in the production and characterization of
fullerene materials. Two years later [6], abundant single-shell tubes with diameters
of about 1 nm were synthesized. In the past few years, some studies of various
nonlinear effects in carbon nanotube arrays have been achieved. There are intrinsic
localized modes in strongly nonlinear systems of anharmonic lattices [7, 8], large-
amplitude oscillating modes with additional features of being nonlinear as well as
discrete [9], spin-wave propagation [10], propagation of short optical pulses with
dispersive nonmagnetic dielectric media [11], propagation of ultimately short optical
pulses in coupled graphene waveguides [12, 13].

83



From the reductive perturbation method, Leblond and Mihalache [14, 15]
investigated the formation of ultrashort spatiotemporal optical waveforms in arrays
of carbon nanotubes while deriving a new coupled system. They actually used the
multiscale analysis for the Maxwell equations and for the corresponding Boltzmann
kinetic equation of the distribution function of electrons. The above authors [14]
showed that a perturbed few-cycle plane-wave input evolves into a robust two-
dimensional light bullet propagating without being dispersed and diffracted over
long distance with respect to the wavelength.

In the present work, our motivation is to investigate whether other types of
robust light bullets with different features can be supported by the previous arrays.
Actually, from the governing system derived by Leblond and Mihalache [14], we
need to tread into its structural properties of integrability while performing the
Weiss-Tabor-Carnevale approach [15] to such a problem and discuss in detail the
existence of fractal solutions to the system.

Weiss, Tabor and Carnevale [15] developed one of the most powerful methods
known as the Painlevé analysis [16] which is very useful in proving the integrability
of a model system. Such an analysis is helpful in generating some exact solutions, no
matter the model is integrable or not. Also, if ones wants only to prove the Painlevé
property of a model, the use of Kruskal’s simplification [17] for the WTC approach
is also addressable. Thus, if we need to find some more information from the model,
it is better to use the original WTC approach or some extended forms [18–21]. In
this work, we combine the standard WTC approach [15] with the Kruskal’s simpli-
fication [17] in view of simplifying the proof of the Painlevé integrability.

We organize the work as follows: in Section 2, we briefly present the physical
background of the system under investigation. In Section 3, we perform the WTC
method to the governing equations under study. Next, in Section 4, we take advan-
tage of the arbitrary functions generated by the previous analysis to discuss some
higher dimensional pattern formations of light bullets, namely the fractals. In the
last section, we end with a brief conclusion.

2. Physical ground of light propagation within the carbon nanotube
arrays

In a recent study, Belonenko et al. [22, 23] investigated both analytically and
numerically the propagation of light bullets within an array of carbon nanotubes.
They obtained an analytical function presenting some (2 + 1)-dimensional optical
soliton with some diffraction displays in propagation. In view of suppressing the
diffraction to obtain some robust light bullet waveform, the model is slightly mod-
ified [14] while deriving a new higher dimensional coupled system. Using the
calibration E ¼ �∂A=∂t, E and A being the electric field and the potential vectors,
respectively, and variable t being the time, taking into account of the dielectric and
magnetic properties of carbon nanotubes [24], the Maxwell equations reduce to the
following system

ΔA�Att=c2 ¼ �μ0J, (1)

where subscripts denote the partial derivatives. Constants μ0 and c are magnetic
permeability and light velocity in vacuum, respectively. We have neglected the
diffraction blooming of the laser beam in the directions perpendicular to the prop-
agation plane. The current J is directed along the axis of the nanotubes, i.e., J ¼ Jzez,
where unitary vector ez spans the z-axis. Besides, we consider the case where the
wave field is polarized in the same direction, and A ¼ Aez.
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In order to determine the current, we use a semiclassical approximation [25]
taking into account the dispersion law from the quantum-mechanical model and the
evolution of the ensemble of particles by the classical Boltzmann kinetic equation in
the approximation of relaxation time. It comes

f t � qAt f p ¼ F0 � fð Þ=τ, (2)

where constant q stands for the electron charge. The relaxation time τ can be
assessed according to Ref. [26]. The quantity f is the distribution function of
electrons in the nanotubes depending upon the time t and the momentum

p � p pφ; pz
� �

of the electron. The azimuthal component pφ reads pφ ¼ sΔpφ, and
the axial component pz is merely denoted p below. It then appears that the integer s
characterizes the momentum quantization transverse to the nanotube. We also
mention that the function F0 is the equilibrium value of the distribution f and is
known as the Fermi-distribution function expressed as

F0 ¼ 1= 1þ exp E=kBT0ð Þ½ �, (3)

in which quantities kB, T0, and E stand for the Boltzmann constant, the abso-
lute temperature, and the energy in the conduction band, respectively. In account
of the zigzag-type carbon nanotubes, the energy E is given by the Huckel π-
electron approximation as follows

E ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos apð Þ cos πs=mð Þ þ 4 cos 2 πs=mð Þ

q
, (4)

with γ ¼ 2:7eV and a ¼ 3b=2ℏ where constant b ¼ 0:142nm represents the dis-
tance between the adjacent carbon atoms. Constant m is the number of hexagons
in the perimeter of a nanotube. The surface current density Js can hence be
expressed as

Js ¼
2q
2πℏ

ð ð
vfdpφdp, (5)

where the velocity v reads v ¼ ∂E=∂p. The distribution function f can be written as

f ¼ ∑
s
Δpφδ pφ � sΔpφ

� �
f s p; tð Þ, (6)

with quantity f s representing the longitudinal distribution function relative
to the azimuthal quantum number s. The volume current density J is hence
obtained as

J ¼ Nq
πℏ

∑
s

ð
vf sdp, (7)

where constant N represents the surface density of nanotubes in the xy-plane.
We use the powerful reductive perturbation method in the short-wave approx-

imation regime [13, 28]. Assuming that the typical duration of the pulse is very
small with respect to τ and the propagation length is very long with respect to the
wavelength, we introduce the fast and slow variables

θ ¼ t� x=Vð Þ=ε, ξ ¼ εx, (8)
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of the zigzag-type carbon nanotubes, the energy E is given by the Huckel π-
electron approximation as follows

E ¼ γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos apð Þ cos πs=mð Þ þ 4 cos 2 πs=mð Þ

q
, (4)

with γ ¼ 2:7eV and a ¼ 3b=2ℏ where constant b ¼ 0:142nm represents the dis-
tance between the adjacent carbon atoms. Constant m is the number of hexagons
in the perimeter of a nanotube. The surface current density Js can hence be
expressed as

Js ¼
2q
2πℏ

ð ð
vfdpφdp, (5)

where the velocity v reads v ¼ ∂E=∂p. The distribution function f can be written as

f ¼ ∑
s
Δpφδ pφ � sΔpφ

� �
f s p; tð Þ, (6)

with quantity f s representing the longitudinal distribution function relative
to the azimuthal quantum number s. The volume current density J is hence
obtained as

J ¼ Nq
πℏ

∑
s

ð
vf sdp, (7)

where constant N represents the surface density of nanotubes in the xy-plane.
We use the powerful reductive perturbation method in the short-wave approx-

imation regime [13, 28]. Assuming that the typical duration of the pulse is very
small with respect to τ and the propagation length is very long with respect to the
wavelength, we introduce the fast and slow variables

θ ¼ t� x=Vð Þ=ε, ξ ¼ εx, (8)
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in which the quantities ε and V denote the small perturbative parameter and the
wave velocity, respectively. Accordingly, we address the following expansions

f s ¼ f 0 þ εf 1 þ⋯, A ¼ A0 þ εA1 þ⋯: (9)

Thus, at leading order ε�1, Eq. (2) yields

f 0t � qA0t f 0p ¼ 0, (10)

in which solution f 0 reads f 0 ¼ φ pþ qA0

� �
with φ being an arbitrary function.

However, at large t, the wave A vanishes and f 0 goes to its equilibrium value F0.
Thus, from Eq. (7), we write

J0 ¼ q
πℏ

∑
s

ð
v pþ qAð Þf 0 pð Þdp: (11)

Now, at leading order ε�2, the Maxwell equations transform to

V ¼ c: (12)

The order ε0 provides

2=cð Þ∂2A0=∂ξ∂θ ¼ μ0J0, (13)

which, with Eq. (11), stands for the governing model system.
The energy E is of the same order of magnitude as γ. Calculating

γ=kB ¼ 3:1� 104K shows that E is very large with respect to room temperature.
Thus, only the levels with the lowest energy are excited. Let us seek for this
minimum for a given parameter s. Hence, we find that

Emin ¼ γ∣1� 2∣ cos πs=mð Þk, (14)

for p ¼ �π=a when cos πs=mð Þ>0 and for p ¼ 0 when cos πs=mð Þ <0. Thus, as s
varies, the minimum of Emin is zero, i.e., s=m ¼ �1=3 or s=m ¼ �2=3. Therefore, for
m ¼ 6, s ¼ 2 or s ¼ 4. Besides, in other nanotubes, there is a nonzero gap between
valence and conduction bands. The gap is so great that the conductivity is very low.
Hence, only the nanotubes where m is multiple of 3 contributes. In this sense, the
expression of Es pð Þ reads

Es ¼ 2γ∣ cos ap=2ð Þ∣, (15)

for s=m ¼ 1=3 and

Es ¼ 2γ∣ sin ap=2ð Þ∣, (16)

for s=m ¼ 2=3. Calculating the velocity v ¼ ∂E=∂p, where variable p is
substituted by p� qA0, and considering the value at which the minimum is
reached, we get

v ¼ �aγ sgn sin aqA0=2
� �� �

cos aqA0=2
� �

, (17)

where sgn Xð Þ denotes the sign of X in both cases.
The current J0 can hence be expressed as
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J0 ¼ �Q sgn sin aqA0=2
� �� �

cos aqA0=2
� �

, (18)

where Q ¼ 4Nqγ=πℏð ÞΦ γ=kBT0ð Þ. The function Φ reads

Φ Xð Þ ¼
ðπ=2
�π=2

dx= 1þ exp 2Xj sin xjð Þ½ �: (19)

Inserting Eq. (18) into (13) yields the evolution equation. As a matter of illus-
tration, we assume that 0 < aqA0=2 < π and define A0

0 such that
aqA0

0=2 ¼ aqA0=2� π=2. Hence, we obtain

∂
2A0

0=∂ξ∂θ ¼ �R sin aqA0
0=2

� �
, (20)

with R ¼ 2Nqγ=πε0ℏcð ÞΦ γ=kBT0ð Þ. Assuming ∣aqA0=2∣>π, we can set
A″

0 ¼ A0 þ π=aq. Therefore, Eq. (20) remains. This shows that Eq. (20) is valid for
any A0. Retaining the second transverse derivative in the wave Eq. (13), we
derive the following

∂
2A0

0=∂ξ∂θ ¼ c=2ð Þ∂2A0
0=∂y

2 � R sin aqA0
0=2

� �
, (21)

which can be known as the two-dimensional sine-Gordon equation. Eq. (21) can
be written as

AT ¼ �BC, CT ¼ AB, BZ ¼ Cþ
ðT

BYYdT, (22)

provided B ¼ E0=Er, Z ¼ x=Lr, T ¼ t� x=cð Þ=tr, and Y ¼ y=wr, with
Er ¼ 2= aqtr

� �
, Lr ¼ �UEr=R, and wr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ctrLr=2

p
. The assumption limT!�∞A ¼ U is

regarded. The system (22) has been investigated by means of a modified Euler
scheme in Z in each substep of which the equations relative to the variable T are
solved by a scheme of the same type [14]. Unlikely, we develop an analytical
scheme known as the WTC formalism in view of studying the full integrability of
the system above while unearthing other kinds of light bullet waveforms with
compact supports.

3. Painlevé analysis

According to the standard WTC method [15], if equation Eq. (22) is Painlevé
integrable, then all the possible solutions of the system can be written in the full
Laurent series as follows

A ¼ ∑
∞

k¼0
Akgkþα, B ¼ ∑

∞

k¼0
Bkgkþβ, C ¼ ∑

∞

k¼0
Ckgkþγ, (23)

with sufficient arbitrary functions among Ak, Bk, Ck, and g, where
g ¼ g Y;Z;Tð Þ, Ak ¼ Ak Y;Z;Tð Þ, Bk ¼ Bk Y;Z;Tð Þ, and Ck ¼ Ck Y;Z;Tð Þ (k being
nonzero integers) are analytical functions within the neighborhood of g ¼ 0. The
constants α, β, and γ should all be negative integers.

The leading order analysis provides the following

α ¼ γ ¼ �2, β ¼ �1 (24)
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regarded. The system (22) has been investigated by means of a modified Euler
scheme in Z in each substep of which the equations relative to the variable T are
solved by a scheme of the same type [14]. Unlikely, we develop an analytical
scheme known as the WTC formalism in view of studying the full integrability of
the system above while unearthing other kinds of light bullet waveforms with
compact supports.
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According to the standard WTC method [15], if equation Eq. (22) is Painlevé
integrable, then all the possible solutions of the system can be written in the full
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and

A0 ¼ 2 gZ gT � g2Y
� �

, B0 ¼ 2iεgT, C0 ¼ �iεA0, (25)

where ε ¼ �1 and i2 ¼ �1.
In order to obtain the recursion relations to determine the functions Ak, Bk, and

Ck, we substitute Eqs. (23)–(25) into (22). This leads us to the following algebraic
system

MkVk ¼ T k, (26)

where Mk is a square matrix, Vk ¼ Ak;Bk;Ckð ÞT, and T k ¼ Ak;Bk; Ckð ÞT with

Ak ¼ �Bk�2,ZT þ Bk�2,YY

� k� 2ð Þ Bk�1,Z gT þ Bk�1,T gZ � 2Bk�1,Y gY þ Bk�1 gZT � gYY
� �� �

þ ∑
k�1

j¼1
AjBk�j,

(27)

and

Bk ¼ �Ak�1,T � ∑
k�1

j¼1
CjBk�j, (28)

with

Ck ¼ �Ck�1,T þ ∑
k�1

j¼1
AjBk�j, (29)

provided Ak ¼ Bk ¼ Ck ¼ 0 for k <0. The matrix Mk is given by

Mk ¼
�B0 k k� 3ð ÞA0=2 0

k� 2ð ÞgT C0 B0

�B0 �A0 k� 2ð ÞgT

0
B@

1
CA: (30)

Thus, the determinant Δk of the matrix Mk is given by

Δk ¼ � kþ 1ð Þ k� 2ð Þ k� 2ð Þ k� 4ð Þ gZ gT � g2Y
� �

g2T: (31)

If the determinant Δk of the cœfficient matrix Mk is not equal to zero, then the
functions Ak, Bk, and Ck can be obtained from Eq. (26) straightforwardly as unique
solutions. Nonetheless, when

k∈ �1; 2; 2;4f g, (32)

resonances occur.
The resonance at k ¼ �1 corresponds to the singularity manifold g, which is an

arbitrary function, and the case k ¼ 0, which is then satisfied identically by the
leading order analysis provided by Eq. (25). If the model is Painlevé integrable, we
require two resonance conditions at k ¼ 2;4, which are satisfied identically such
that the other four arbitrary functions among Ak, Bk, and Ck can be introduced into
the general series expansion given by Eq. (23).
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For k ¼ 1, we can easily obtain from Eq. (26)

A1 ¼ ιε gTB0, Z þ gZB0,T � 2gYB0, Y þ gZT�gYYð ÞB0 þ C0,T
� �

gT
,

B1 ¼ gTB0, Z þ gZB0,T � 2gYB0, Y þ gZT�gYYð ÞB0 þ 2C0,T

A0
,

C1 ¼ � ιεA1:

(33)

On the other hand, solving the case for k ¼ 2, the following resonance condition
is derived

�B0,ZT þ B0,YY þ C1,T ¼ 0: (34)

It is straightforward to see that the resonance condition given by Eq. (34) is
satisfied identically because of Eqs. (25) and (33). Then, we have, after solving
Eq. (26),

B2 ¼ C1,T � A1B1 � B0A2

A0
, C2 ¼ �ιεA2, (35)

where one of the quantities among A2 and C2 is arbitrary.
For k ¼ 3, Eq. (26) gives us

A3 ¼ ιε

2gT
�B1,ZT þ B1,YY � gTB2,Z � gZB2, T þ 2gYB2,Y
� �

þ ιε

2gT
� gZT�gYYð ÞB2 þ A1B2 þ A2B1
� �

B3 ¼ 1
2A0

�3B1,ZT þ 3B1,YY � 3gTB2,Z � 3gZB2,T þ 6gYB2,Y
� �

þ 1
2A0

�3 gZT�gYYð ÞB2 þ 2C2,T þ A1B2 þ A2B1
� �

,

C3 ¼ � ιεA3:

(36)

Let us emphasize that ∂g=∂T � gT, and so on.
For k ¼ 4, we can obtain

A4 ¼ ιε

6gT
A4 þ 2C4 � 4gTC4
� �

, B4 ¼ 1
3A0

A4 � C4 þ 2gTC4
� �

, (37)

where C4 is an arbitrary function.
Nevertheless, let us make a remark that throughout the above study, the follow-

ing relations are derived:

Bk � ιεCk ¼ 0, k ¼ 1; 2; 3;4ð Þ: (38)

Then, for k ¼ 4, Eq. (38) verifies the resonance condition. All of the resonance
conditions with four arbitrary functions are satisfied identically. Hence, the system
(22) is Painlevé integrable. Its complete integrability will be established if some
other essential properties such as the Bäcklund transformation (BT) and the Hirota
bilinearization [27–30] are derived.

The Painlevé analysis can also be used to obtain other interesting properties [15]
of the (2 + 1)-dimensional coupled system above. In this work, we use the standard
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, B4 ¼ 1
3A0
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where C4 is an arbitrary function.
Nevertheless, let us make a remark that throughout the above study, the follow-

ing relations are derived:
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Then, for k ¼ 4, Eq. (38) verifies the resonance condition. All of the resonance
conditions with four arbitrary functions are satisfied identically. Hence, the system
(22) is Painlevé integrable. Its complete integrability will be established if some
other essential properties such as the Bäcklund transformation (BT) and the Hirota
bilinearization [27–30] are derived.

The Painlevé analysis can also be used to obtain other interesting properties [15]
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truncation of the WTC expansion to obtain the BT and the Hirota bilinearization
[27–30] of the system (22). By setting

Akþ1 ¼ Bk ¼ Ckþ1 ¼ 0, for k≥ 2, (39)

Eq. (23) with (24) becomes a standard truncated expansion

A ¼ A0=g2 þ A1=g þ A2, B ¼ B0=g þ B1, C ¼ C0=g2 þ C1=g þ C2: (40)

After vanishing A3 and B3, and using Eq. (38), we can reduce the system (36) to

B1,ZT ¼ A2B1 þ B1,YY, A2,T ¼ �B1C2, C2,T ¼ A2B1: (41)

From Eq. (41), it follows that A2, B1, C2 is a solution of the system (22). Besides,
the truncated expansion Eq. (40) actually stands for a BT. Generally, in order to
construct a typical family of solution to Eq. (22) in a simple manner, it is useful to
consider very simple expressions of A2, B1, and C2. For convenience, we fix the
original seed solution as

A2 ¼ ν, B1 ¼ 0, C2 ¼ �ιεν, (42)

with parameter ν being an arbitrary constant. The seed solution is actually used
for constructing many other solutions. However, many other classes of solutions are
obtained for other existing seed solutions. It is that property of the Painlevé
approach for constructing various kinds of solutions by means of arbitrary func-
tions that makes it potential and powerfully underlying. The solutions are given by
Eq. (40) expressed in a truncated form. Many solutions are constructed in a
straightforward way due to the arbitrariness of these functions, provided to solve
analytically or numerically some nonlinear partial differential constraint equations.

Substituting the BT from Eq. (40) and using the Eq. (42) into Eq. (22), we
derive some bilinear equations which can be decoupled as

DZDTH � F ¼ v1HF, DYDTH � F ¼ �v2HF, D2
YH � F ¼ �v2HF,

DYDTF � F ¼ H2=2, D2
TF � F ¼ H2=2, D2

YF � F ¼ H2=2,
(43)

provided A ¼ DZ þ EY and C∝ BZ � BYð Þ so as to express

B ¼ H=F, D ¼ ν1Z � 2∂T ln Fð Þ, E ¼ ν2Y þ 2∂Y ln Fð Þ, (44)

with ν ¼ ν1 þ ν2. The symbols DY , DZ, and DT refer to the Hirota operators
[29–31] with respect to the variables Y, Z, and T, respectively. According to the
usual procedure, the dependent function is expanded into suitable power series of a
perturbation parameter and using them in Eq. (43), we can straightforwardly
construct the one-, two- and N-soliton solutions (N being an integer) to Eq. (22).
Nevertheless, the investigation of these solutions will be studied in detail in a
separate paper. Now, knowing the BT and the related Hirota bilinearization of
Eq. (22), we can conclude that the 2þ 1ð Þ-dimensional system above is completely
integrable.

After substitution Eqs. (25) and (33) into (40), we find

A ¼ νþ D2
Y �DZDT

� �
g � g

g2
, B ¼ 2ιε∂T ln jgjð Þ, C ¼ �ιεA: (45)
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In the next section, because of the arbitrariness of some functions derived from
the Painlevé analysis, we aim at focusing our interest to solutions for which the
quantities A and B are expressed in the reduction form Eq. (45). In order to express
some exact solutions of our initial coupled evolution system, we consider the gen-
eral ansatz for the function g in the form

g ¼ a0 þ a1Pþ a2Q þ a3PQ , (46)

where the parameter ak k ¼ 0; 1; 2; 3ð Þ is an arbitrary constant and P ¼ P Z;Tð Þ
and Q ¼ Q Y;Tð Þ are arbitrary functions of Z;Tð Þ and Y;Tð Þ, respectively.

4. Discussion of some higher dimensional solutions

With this aim, we follow the method developed by Tang and Lou [32] for
generating some families of diverse pattern formations while using the arbitrary
functions g expressed previously.

Let us mention that for some convenience, we rewrite the variables X, Y, and T
into their lower cases. Paying particular attention to fractal pattern formations,
based upon the previous works carried out on the subject, we classify the above
waves according to the different expressions of the generic lower dimensional
function Θ of two generalized coordinates ξ; tð Þ as defined by [33].

1. Nonlocal fractal pattern: we have the following

Θ ξ; tð Þ ¼ ∑
2

j¼1
λjθj∣θj∣ αj sin ln θ2j

� �h i
þ βj cos ln θ2j

� �h in on o
, (47)

provided quantities θ0j, λj, αj, and βj being arbitrary parameters. Also,
θj � kjξ� vjtþ θ0j. Variables ξ, kj, and vj are spacelike-defined, wave number, and
velocity of the j-wave component, respectively.

2. Fractal dromiom pattern: the dromion-like (lump-like) structure is exponen-
tially (algebraically) localized on a large scale and possesses self-similar structure
near the center of the pattern. The function Θ can be expressed as

Θ ξ; tð Þ ¼ exp � θj jN rþ s sin ln θ2
� �� �þ w cos ln θ2

� �� �� �� �
, (48)

with θj � kξ� vtþ θ0j, θ0 being an arbitrary parameter, and constants N, r, w,
and s are arbitrary parameters. But also we can find

Θ ξ; tð Þ ¼ ∣θ∣ α sin ln θ2
� �� �þ β cos ln θ2

� �� �� �
~N= 1þ θ4

� �
, (49)

for fractal lump solution. Constants α, β, and ~N are arbitrary parameters.
3. Stochastic fractal pattern: Such typical excitation is expressed through the

differentiable Weierstrass function ℘ defined as

℘ ξ; tð Þ ¼ ∑
N

j¼0
α�j=2 sin βjθ

� �
, N ! ∞, (50)

with constants α and β being arbitrary parameters. A stochastic fractal excitation
can be expressed as

Θ ξ; tð Þ ¼ Σ
i, j
Ri θið ÞRj θj

� �
, (51)
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truncation of the WTC expansion to obtain the BT and the Hirota bilinearization
[27–30] of the system (22). By setting

Akþ1 ¼ Bk ¼ Ckþ1 ¼ 0, for k≥ 2, (39)

Eq. (23) with (24) becomes a standard truncated expansion

A ¼ A0=g2 þ A1=g þ A2, B ¼ B0=g þ B1, C ¼ C0=g2 þ C1=g þ C2: (40)
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Eq. (40) expressed in a truncated form. Many solutions are constructed in a
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TF � F ¼ H2=2, D2

YF � F ¼ H2=2,
(43)

provided A ¼ DZ þ EY and C∝ BZ � BYð Þ so as to express

B ¼ H=F, D ¼ ν1Z � 2∂T ln Fð Þ, E ¼ ν2Y þ 2∂Y ln Fð Þ, (44)

with ν ¼ ν1 þ ν2. The symbols DY , DZ, and DT refer to the Hirota operators
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usual procedure, the dependent function is expanded into suitable power series of a
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Nevertheless, the investigation of these solutions will be studied in detail in a
separate paper. Now, knowing the BT and the related Hirota bilinearization of
Eq. (22), we can conclude that the 2þ 1ð Þ-dimensional system above is completely
integrable.

After substitution Eqs. (25) and (33) into (40), we find

A ¼ νþ D2
Y �DZDT

� �
g � g

g2
, B ¼ 2ιε∂T ln jgjð Þ, C ¼ �ιεA: (45)
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Figure 1.
Depiction of Nonlocal fractal patterns at t ¼ 0. The parameters are chosen as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and
a3 ¼ 1 such that: For p x; tð Þ ¼ Θ x; tð Þ, λ1 ¼ 1=4, λ2 ¼ 0, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ,
λ1 ¼ 1=4, λ2 ¼ 0, θ02 ¼ 0, k2 ¼ 1, and v2 ¼ 1. Note that α1 ¼ 1 and β1 ¼ 0. Panels (a) and (c) represent the
pattern formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities
represented within the square regions �3:6 � 10�2; 3:6 � 10�2

� �2 and �2:32 � 10�10; 2:32 � 10�10
� �2, respectively.

Figure 2.
Fractal dromiom excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by Eq. (40).
In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For p x; tð Þ ¼ Θ x; tð Þ,
r ¼ 3=2, s ¼ 1, w ¼ 0, N ¼ 1, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0, k2 ¼ 1, and
v2 ¼ 1. Panels (a) and (c) represent the pattern formations depicted in 3D-perspective, and the two others (b)
and (d) are their corresponding densities represented within the square regions �7 � 10�3; 7 � 10�3� �2 and
�2:8 � 10�8; 2:8 � 10�8
� �2, respectively.

92

Fractal Analysis

Figure 3.
Fractal lump excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by Eq. (40). In
this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 2 such that: For p x; tð Þ ¼ Θ x; tð Þ,
θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0, k2 ¼ 1, and v2 ¼ 1. Note that α ¼ 1, and β ¼ 0.
Panels (a) and (c) represent the pattern formations depicted in 3D-perspective, and the two others (b) and (d)
are their corresponding densities represented within the square regions �3:6 � 10�2; 3:6 � 10�2� �2 and
�2:32 � 10�10; 2:32 � 10�10� �2, respectively.

Figure 4.
Fractal stochastic nonlocal excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For
p x; tð Þ ¼ Θ x; tð Þ, λ1 ¼ 1=4, λ2 ¼ 0, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, λ1 ¼ 1=4, λ2 ¼ 0,
θ02 ¼ 0, k2 ¼ 1, and v2 ¼ 1. Note that α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the
pattern formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities
represented within the square regions �3:6 � 10�2; 3:6 � 10�2

� �2 and �2:32 � 10�10; 2:32 � 10�10
� �2, respectively.
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where Ri ¼ ℘ θið Þ þ θ2i þ μi, with μi standing for arbitrary parameter.
Stochastic fractal dromion/solitoff excitations: such structures are obtained by

including the Weierstrass function into the dromiom solution. Especially for solitoff
excitations, we can try the following:

Θ ξ; tð Þ ¼ kþ Σ
j¼0

ηj℘ θj
� �

tanhμj θj
� �

, (52)

provided quantities k, ηj, and μj being arbitrary parameters.
Stochastic fractal lump pattern: Eq. (51) is reduced as

Θ ξ; tð Þ ¼ Σ
i, j
ρjRj θj

� �
, (53)

where quantities ηj and ρj being arbitrary parameter.
Now, let us analyze different figures with respect to the previous classifications.

Thus, in Figure 1, we depict the variations of the ∣B∣-observable with space at t ¼ 0.
In a 3D�representation, the features presented in panel 1 að Þ within the space

region �3:6 � 10�2; 3:6 � 10�2� �2 � ∣B∣ and those depicted in cð Þ within region

�2:32 � 10�10; 2:32 � 10�10� �2 � ∣B∣ are self-similar nonlocal. Such a similarity in the
profiles is clearly shown in panels bð Þ and dð Þ standing for their density plots,
respectively.

Following the above figure, in Figure 2, we generate the fractal dromiom
depicting self-similar structure with density plots represented in panels bð Þ and dð Þ,
respectively. In comparison to the previous nonlocal fractal patterns, it appears that
the fractal dromions have relatively high amplitudes.

Figure 5.
Fractal stochastic dromion excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For
p x; tð Þ ¼ Θ x; tð Þ, r ¼ 3=2, s ¼ 1, w ¼ 0, N ¼ 1, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0,
k2 ¼ 1, and v2 ¼ 1. Note that α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the pattern
formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities
represented within the square regions �1 � 10�2; 1 � 10�2

� �2 and �2:6 � 10�8; 2:6 � 10�8
� �2, respectively.
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Next, in Figure 3, we obtain the fractal lump which shows self-similar structures
in panels cð Þ and dð Þ.

In addition to the above self-similar regular fractal dromion and lump excitations,
by using the lower dimensional stochastic fractal functions, we construct some other
higher dimensional stochastic fractal patterns. Thus, in Figure 4, we generate a
typical stochastic fractal nonlocal pattern with self-similarity in structure.

Besides, in Figure 5, with the selecting parameters and suitable choices of lower
dimensional arbitrary stochastic fractal dromion function as presented in the cap-
tions of these figures, we obtain higher dimensional stochastic dromion excitations.
The self-similarity in structure of the observable I � ∣B∣ shows how the peaks are

distributed stochastically within the regions �1 � 10�2; 1 � 10�2� �2 and
�2:6 � 10�8; 2:6 � 10�8� �2 for stochastic fractal dromion.

In Figure 6, we construct the fractal solitoff excitations. By reducing the region
�1:2 � 10�2; 1:2 � 10�2� �� �5; 10½ � of panel 6 að Þ to �1:5 � 10�8; 1:5 � 10�8� �� �5; 10½ �
of panel 6 cð Þ, we obtain a totally similar structure with density plots represented
in panels (b) and (d), respectively.

In Figure 7 with the selecting parameters and suitable choices of lower dimen-
sional arbitrary stochastic fractal lump function as presented in the captions of the
figure, we obtain higher dimensional stochastic lump excitations. Through the
panels (7(a) and 7(b)) depicting the variations of ∣B∣�observable, at t ¼ 0, the self-
similarity in structure of this observable shows how the peaks are distributed

stochastically within the regions �7 � 10�3; 7 � 10�3� �2 and
�2:1 � 10�10; 2:1 � 10�10� �2. In the above configurations, the stochastic fractal solitoff

Figure 6.
Fractal stochastic solitoff excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For
p x; tð Þ ¼ Θ x; tð Þ, κ ¼ 2, M ¼ 1, η0 ¼ 0, η1 ¼ 1=2, ηm ¼ 0 m≥ 2ð Þ, μ1 ¼ 1, θ01 ¼ �20, k1 ¼ 4, and v1 ¼ 1.
For q y; tð Þ ¼ Θ y; tð Þ, κ ¼ 0, M ¼ 2, η0 ¼ 0, η1 ¼ 1=5, η2 ¼ 1=4, ηm ¼ 0 m≥ 3ð Þ, μ1 ¼ μ1 ¼ 1, θ02 ¼ �15,
k2 ¼ 2, and v2 ¼ 2. Note that α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the pattern
formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities
represented within the square regions �1:2 � 10�2; 1:2 � 10�2

� �� �5; 10½ � and
�1:5 � 10�8; 1:5 � 10�8� �� �5; 10½ �, respectively.
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where Ri ¼ ℘ θið Þ þ θ2i þ μi, with μi standing for arbitrary parameter.
Stochastic fractal dromion/solitoff excitations: such structures are obtained by

including the Weierstrass function into the dromiom solution. Especially for solitoff
excitations, we can try the following:

Θ ξ; tð Þ ¼ kþ Σ
j¼0

ηj℘ θj
� �

tanhμj θj
� �

, (52)

provided quantities k, ηj, and μj being arbitrary parameters.
Stochastic fractal lump pattern: Eq. (51) is reduced as

Θ ξ; tð Þ ¼ Σ
i, j
ρjRj θj

� �
, (53)

where quantities ηj and ρj being arbitrary parameter.
Now, let us analyze different figures with respect to the previous classifications.

Thus, in Figure 1, we depict the variations of the ∣B∣-observable with space at t ¼ 0.
In a 3D�representation, the features presented in panel 1 að Þ within the space

region �3:6 � 10�2; 3:6 � 10�2� �2 � ∣B∣ and those depicted in cð Þ within region

�2:32 � 10�10; 2:32 � 10�10� �2 � ∣B∣ are self-similar nonlocal. Such a similarity in the
profiles is clearly shown in panels bð Þ and dð Þ standing for their density plots,
respectively.

Following the above figure, in Figure 2, we generate the fractal dromiom
depicting self-similar structure with density plots represented in panels bð Þ and dð Þ,
respectively. In comparison to the previous nonlocal fractal patterns, it appears that
the fractal dromions have relatively high amplitudes.

Figure 5.
Fractal stochastic dromion excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For
p x; tð Þ ¼ Θ x; tð Þ, r ¼ 3=2, s ¼ 1, w ¼ 0, N ¼ 1, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0,
k2 ¼ 1, and v2 ¼ 1. Note that α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the pattern
formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities
represented within the square regions �1 � 10�2; 1 � 10�2

� �2 and �2:6 � 10�8; 2:6 � 10�8
� �2, respectively.
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by using the lower dimensional stochastic fractal functions, we construct some other
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figure, we obtain higher dimensional stochastic lump excitations. Through the
panels (7(a) and 7(b)) depicting the variations of ∣B∣�observable, at t ¼ 0, the self-
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stochastically within the regions �7 � 10�3; 7 � 10�3� �2 and
�2:1 � 10�10; 2:1 � 10�10� �2. In the above configurations, the stochastic fractal solitoff

Figure 6.
Fractal stochastic solitoff excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 1 such that: For
p x; tð Þ ¼ Θ x; tð Þ, κ ¼ 2, M ¼ 1, η0 ¼ 0, η1 ¼ 1=2, ηm ¼ 0 m≥ 2ð Þ, μ1 ¼ 1, θ01 ¼ �20, k1 ¼ 4, and v1 ¼ 1.
For q y; tð Þ ¼ Θ y; tð Þ, κ ¼ 0, M ¼ 2, η0 ¼ 0, η1 ¼ 1=5, η2 ¼ 1=4, ηm ¼ 0 m≥ 3ð Þ, μ1 ¼ μ1 ¼ 1, θ02 ¼ �15,
k2 ¼ 2, and v2 ¼ 2. Note that α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the pattern
formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities
represented within the square regions �1:2 � 10�2; 1:2 � 10�2

� �� �5; 10½ � and
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and stochastic fractal lump excitations appear to be the waves with greater ampli-
tudes in comparison to the previous ones.

From a physical viewpoint, the observable B which has the meaning of the
dimensionless electric field shows that its intensity ∣B∣ can be nonlocal or rather self-
confined. Actually, the intensity of the electromagnetic wave propagating along the
carbon nanotube arrays is compact within the arrays. The previous study has
revealed that the light bullet intensity describes a fractal-like excitation which pro-
vides more insights into the structural dynamics of the system under investigation.

5. Summary

Throughout the present work, we investigated the formation of fractal ultra-
short spatiotemporal optical waveforms in arrays of carbon nanotubes. We followed
the short-wave approximation to derive a generic (2+1)-dimensional coupled sys-
tem. Such a coupled system was constructed via the use of the reductive perturba-
tion analysis for the Maxwell equations and for the corresponding Boltzmann
kinetic equation of the distribution function of electrons in the carbon nanotubes.
Prior to the construction of different solutions to the previous coupled equations,
we first studied the integrability of the governing system within the viewpoint of
WTC formalism [15]. Thus, we investigated the singularity structure of the system.
In this analysis, we expanded the different observables in the form of the Laurent
series. Therefore, we found the leading order terms useful to solve the recurrent
system. Solving this last system, we unearthed the different resonances of the
governing equations. At the end, we found that the number of resonances balances
seemingly the number of arbitrary functions in such a way that the governing
system has sufficient and enough arbitrary functions. Hence, we derived that the

Figure 7.
Fractal stochastic lump excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 2 such that: For
p x; tð Þ ¼ Θ x; tð Þ, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0, k2 ¼ 1, and v2 ¼ 1. Note that
α ¼ 1, β ¼ 0, ~N ¼ 2 associated to α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the pattern
formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities
represented within the square regions �7 � 10�3; 7 � 10�3� �2 and �2:1 � 10�10; 2:1 � 10�10� �2, respectively.
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system is Painlevé integrable [15]. We derived another important properties,
namely the Bäcklund transformation and the Hirota bilinearization [27–30] while
establishing the complete integrability of the system.

In the wake of the result obtained from the WTC approach of integrability, we
took advantage of the existence of some arbitrary functions to construct some
interesting solutions such as fractals. Actually, following the investigation of fractals
in many physical systems [31–33], we constructed some localized nonlinear excita-
tions with some fractal support. As a result, we found the following typical features:
the fractal dromion, the fractal lump, the stochastic and nonlocal fractal excitations.

One of the advantages of the WTC method discussed in this work is the gener-
ation of arbitrary functions useful in constructing many kinds and different solu-
tions to the governing system. From such property endowing the method with the
powerfulness, it would be rather interesting again to construct other types of
nonlinear excitations such as the bubbles, the solitoffs, the dromions, the peakons,
the fractals, among others [34–37]. These typical excitations would be useful in the
understanding, more deeply, of the interaction between light incident excitations
and carbon nanotubes for some practical issues in nanomechanical, nanoelectronic,
and nanophotonic devices, alongside some emerging applications exploiting the
good thermal and electronic conductivities of carbon nanotubes in some flat panel
displays and field-effect transistors, among others.

Also, we intend using the WTC method in order to discover more other inter-
esting properties still unknown in the carbon nanotube arrays. Previously, we
discovered the properties of compactons in CNT [38]. The different properties will
allow us in the future to improve the different uses of carbon nanotube in different
areas of life. Moreover, because of these electrical and mechanical properties (very
resistant, flexible, and lightweight), they are very suitable for the design of pressure
sensors. These could be used by engineers to prevent structural collapses in civil
engineering. They will have to measure either the pressure or the shear. Similarly,
these sensors can be used in medicine while incorporating the system in textiles for
better follow-up of patients or in a shoe sole. In another view, the sensors will have
to be able to perform a good measure of the desired size. So to refine the design of
these sensors, it will be essential to get even more information about this material.
By discovering more properties of the material, we will know more how to exploit it
in a safe way in all the various disciplines combining research and innovation.

Author details

Raïssa S. Noule and Victor K. Kuetche*
National Advanced School of Engineering, University of Yaounde I, Cameroon

*Address all correspondence to: vkuetche@yahoo.fr

© 2019 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

97

Fractal Structures of the Carbon Nanotube System Arrays
DOI: http://dx.doi.org/10.5772/intechopen.82306



and stochastic fractal lump excitations appear to be the waves with greater ampli-
tudes in comparison to the previous ones.

From a physical viewpoint, the observable B which has the meaning of the
dimensionless electric field shows that its intensity ∣B∣ can be nonlocal or rather self-
confined. Actually, the intensity of the electromagnetic wave propagating along the
carbon nanotube arrays is compact within the arrays. The previous study has
revealed that the light bullet intensity describes a fractal-like excitation which pro-
vides more insights into the structural dynamics of the system under investigation.

5. Summary

Throughout the present work, we investigated the formation of fractal ultra-
short spatiotemporal optical waveforms in arrays of carbon nanotubes. We followed
the short-wave approximation to derive a generic (2+1)-dimensional coupled sys-
tem. Such a coupled system was constructed via the use of the reductive perturba-
tion analysis for the Maxwell equations and for the corresponding Boltzmann
kinetic equation of the distribution function of electrons in the carbon nanotubes.
Prior to the construction of different solutions to the previous coupled equations,
we first studied the integrability of the governing system within the viewpoint of
WTC formalism [15]. Thus, we investigated the singularity structure of the system.
In this analysis, we expanded the different observables in the form of the Laurent
series. Therefore, we found the leading order terms useful to solve the recurrent
system. Solving this last system, we unearthed the different resonances of the
governing equations. At the end, we found that the number of resonances balances
seemingly the number of arbitrary functions in such a way that the governing
system has sufficient and enough arbitrary functions. Hence, we derived that the

Figure 7.
Fractal stochastic lump excitations depicted at t ¼ 0 by the observable ∣B∣ � I which expression is given by
Eq. (40). In this case, the parameters are selected as a0 ¼ 1, a1 ¼ 1, a2 ¼ 1, and a3 ¼ 2 such that: For
p x; tð Þ ¼ Θ x; tð Þ, θ01 ¼ 0, k1 ¼ 1, and v1 ¼ 1. For q y; tð Þ ¼ Θ y; tð Þ, θ02 ¼ 0, k2 ¼ 1, and v2 ¼ 1. Note that
α ¼ 1, β ¼ 0, ~N ¼ 2 associated to α ¼ 3=2, β ¼ 3=2, and N ¼ 100. Panels (a) and (c) represent the pattern
formations depicted in 3D-perspective, and the two others (b) and (d) are their corresponding densities
represented within the square regions �7 � 10�3; 7 � 10�3� �2 and �2:1 � 10�10; 2:1 � 10�10� �2, respectively.

96

Fractal Analysis
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