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Preface

Most oncogenes are expressed as proto-oncogenes. They are involved in cell growth
and proliferation or inhibition of apoptosis. If there are chemical, physical, or
biological factors that cause mutations in such genes, these genes are mostly upreg-
ulated and cellular proliferation increases. In this case, they are termed “oncogenes.” 
The cascade of events leading to proliferation usually predispose the cell to cancer. 
These genes are mutated and/or overexpressed at high levels in tumor cells. Tumors
of the lung, breast, pancreas, and colon may display specific oncogenetic features. 
These tumors have been largely associated with exposure to environmental carcino-
gens and a variety of biological agents, including viruses. These carcinogens can
induce specific genetic and epigenetic alterations (including modulation of DNA 
methylation, histone acetylation, and RNA expression) in these tissues, leading to
aberrant functioning of oncogenes and tumor suppressor genes. On the other hand, 
microRNAs (miRNAs) are significant modifiers of transcription and translation
of both oncogenes and tumor suppressor proteins, particularly in carcinogenesis. 
In the last 50 years, several oncogenes and miRNAs related to oncogenes have been
identified in different types of human cancers. It is now clear that high expression
of oncogenes, DNA damage response, and regulation of cell cycle are related to the
circadian clock. There are several studies on cancer drugs that target the proteins
encoded by oncogenes. In addition, the reversible nature of epigenetic modifica-
tions has led to the new field of “epigenetic therapy.” Therefore, understanding the
link between genetic alterations, epigenetic modifications, and expression of onco-
genes can unravel the molecular targets for treating cancer. This book will mainly
focus on the expressions of different oncogenes in breast, colon, and lung cancers. 
Moreover, the alterations in miRNAs in different types of cancers and the effects
of the circadian clock on the expression of oncogenes in carcinogenesis will also be
mentioned. Readers will mainly understand how the modulations and mutations in
the expressions of oncogenes and related miRNAs lead to the promotion of carcino-
genesis and how these alterations affect the carcinogenesis process in certain types
of cancers. Moreover, readers will also gain knowledge of the relationship between
the circadian clock and oncogenes.

Assoc. Prof. Dr. Pinar Erkekoglu
Editor,

Hacettepe University,
Faculty of Pharmacy,

Department of Toxicology,
Ankara, Turkey



Preface

Most oncogenes are expressed as proto-oncogenes. They are involved in cell growth 
and proliferation or inhibition of apoptosis. If there are chemical, physical, or 
biological factors that cause mutations in such genes, these genes are mostly upreg-
ulated and cellular proliferation increases. In this case, they are termed “oncogenes.” 
The cascade of events leading to proliferation usually predispose the cell to cancer. 
These genes are mutated and/or overexpressed at high levels in tumor cells. Tumors 
of the lung, breast, pancreas, and colon may display specific oncogenetic features. 
These tumors have been largely associated with exposure to environmental carcino-
gens and a variety of biological agents, including viruses. These carcinogens can 
induce specific genetic and epigenetic alterations (including modulation of DNA 
methylation, histone acetylation, and RNA expression) in these tissues, leading to 
aberrant functioning of oncogenes and tumor suppressor genes. On the other hand, 
microRNAs (miRNAs) are significant modifiers of transcription and translation 
of both oncogenes and tumor suppressor proteins, particularly in carcinogenesis. 
In the last 50 years, several oncogenes and miRNAs related to oncogenes have been 
identified in different types of human cancers. It is now clear that high expression 
of oncogenes, DNA damage response, and regulation of cell cycle are related to the 
circadian clock. There are several studies on cancer drugs that target the proteins 
encoded by oncogenes. In addition, the reversible nature of epigenetic modifica-
tions has led to the new field of “epigenetic therapy.” Therefore, understanding the 
link between genetic alterations, epigenetic modifications, and expression of onco-
genes can unravel the molecular targets for treating cancer. This book will mainly 
focus on the expressions of different oncogenes in breast, colon, and lung cancers. 
Moreover, the alterations in miRNAs in different types of cancers and the effects 
of the circadian clock on the expression of oncogenes in carcinogenesis will also be 
mentioned. Readers will mainly understand how the modulations and mutations in 
the expressions of oncogenes and related miRNAs lead to the promotion of carcino-
genesis and how these alterations affect the carcinogenesis process in certain types 
of cancers. Moreover, readers will also gain knowledge of the relationship between 
the circadian clock and oncogenes.

Assoc. Prof. Dr. Pinar Erkekoglu
Editor,

Hacettepe University,
Faculty of Pharmacy,

Department of Toxicology,
Ankara, Turkey



1

Section 1

Introduction to Oncogene
Concept



1

Section 1

Introduction to Oncogene 
Concept



3

Chapter 1

Introductory Chapter: Interactions 
between Environmental 
Chemicals and KRAS Oncogene in 
Different Cancers - Special Focus 
on Colorectal, Pancreatic, and 
Lung Cancers
Pinar Erkekoglu

1. Introduction

v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) is an oncogene. 
The KRAS gene is located on the twelfth chromosome and belongs to the Ras 
family of oncogenes. These proteins play important roles in cell division, cell dif-
ferentiation, and apoptotic cell death. Induction of KRAS with different environ-
mental chemicals leads to high expression of K-Ras protein, which in turn causes 
high cellular proliferation. These cascade of events finally initiate certain types 
of cancers, particularly colorectal (CRC), pancreatic, and lung cancers. High 
calorie intake, diets rich in meat and fat, smoking, and alcohol consumption are 
the major risk factors of CRCs, and it was estimated that in CRC, mutated KRAS 
has an incidence of ∼50%. Exposure to certain environmental chemicals [organo-
chlorine insecticides such as DDT and its metabolite dichlorodiphenyltrichloro-
ethylene (DDE); herbicides such as EPTC and pendimethalin; N-nitrosamines; 
polychlorinated biphenyls (PCBs); benzene] and drugs (anti-diabetics drugs) 
can also contribute to the increased incidence of PC throughout the world. It was 
stated that in adenocarcinomas of the pancreas, mutated KRAS has an incidence 
of ∼70–90%. Lung cancer is the leading cause of deaths worldwide. KRAS gene 
mutations are much more common in long-term tobacco smokers with lung cancer 
when compared to nonsmokers. KRAS gene mutations are observed in 15–25% 
of all lung cancer cases, being more frequent in whites vs. Asian populations. 
Lung cancers with KRAS gene mutations typically indicate a poor prognosis and 
are associated with resistance to several cancer treatments. This chapter mainly 
focuses on KRAS, interactions between environmental chemicals, and KRAS 
oncogene in different cancers, particularly in colorectal, pancreatic, and lung 
cancers.

Most oncogenes are expressed as proto-oncogenes, involved in cell growth and 
proliferation or inhibition of apoptosis. If there are chemical, physical, or biologi-
cal factors that cause mutations in such genes promoting cellular growth, these 
genes are mostly upregulated and cellular proliferation increases [1]. The cascade 
of events leading to proliferation usually predisposes the cell to cancer. In this case, 
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they are termed as “oncogenes” [1, 2]. These genes are mutated and/or overex-
pressed at high levels in tumor cells. Normally, cells repair themselves or undergo 
apoptosis if there is an interruption on the cell cycle. However, the high expression 
of multiple oncogenes, along with mutated apoptotic and/or tumor suppressor 
genes and exposure to environmental chemicals that trigger such mutations can all 
act in concert and finally cause tumorigenesis [1–3]. In the past 50 years, several 
oncogenes have been identified in different types of human cancers. There are many 
cancer drugs that target the proteins encoded by oncogenes [1–3].

Genetic and environmental interactions usually determine the profiles of 
cancers. v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) is a very 
important oncogene for the initiation of cancer [1]. It is usually found to be mutated 
in different types of cancer, particularly in colorectal cancers (CRCs), pancreatic 
cancer (PC), and lung cancer [4–6]. Concerning KRAS, different chemicals such as 
polychlorinated biphenyls (PCBs), certain antidiabetic drugs, and pesticides may 
be leading causes of KRAS mutations, and such mutations increase the expression 
of K-Ras protein in different tissues, leading to high cellular proliferation and finally 
carcinogenesis [7–9]. This chapter mainly focuses on CRCs, PC, and lung cancer 
and KRAS. Moreover, the interactions between KRAS mutations and environmental 
factors in these particular cancers will also be mentioned.

2. KRAS gene

The most important oncogene for several types of cancer is KRAS. Cytogenetic 
location of this gene is 12p12.1 [the short (p) arm of chromosome 12 at position 
12.1] [10]. The KRAS gene belongs to the Ras family of oncogenes. RAS family 
oncogenes also include two other genes: H-RAS and N-RAS. These proteins play 
important roles in cell division, cell differentiation, and apoptotic cell death. KRAS 
causes the initiation of cancer through deregulation of the G1 cell cycle [10].

The KRAS gene expresses a protein called “K-Ras,” which is part of a signal-
ing pathway known as “the RAS/microtubule-associated protein (MAP) kinase 
signaling (MAPK) pathway.” The protein carries the mitogenic signals from the 
“epidermal growth factor receptor (EGFR)” on the cell surface to the cell nucleus. 
These signals provide instructions for growth, proliferation, maturation, or dif-
ferentiation to the cell. The K-Ras protein converts a molecule called guanosine-
5′-triphosphate (GTP) into another molecule called guanosine-5′-diphosphate 
(GDP), and therefore, it is a “GTPase.” By such conversion, K-Ras protein almost 
acts like a “switch,” which is turned on and off by the GTP and GDP molecules. In 
order to transmit signals, K-Ras must bind to GTP, and this turns on the protein 
[10]. However, K-Ras protein is inactivated when it converts the GTP to GDP. This 
means that when this particular protein is bound to GDP, it does not send signals 
to the nucleus. In several pathological conditions [cardiofaciocutaneous syndrome, 
Noonan syndrome, Costello syndrome, autoimmune lymphoproliferative syndrome 
(ALPS), and epidermal nevus] and different cancers [colorectal (CRC), pancreatic 
(PC), and lung cancer; cholangiocarcinoma; and core binding factor acute myeloid 
leukemia (CBF-AML)], KRAS mutations are observed in patients [10].

3. Cancers associated with KRAS

3.1 Colorectal cancers

Colorectal cancers (adenomas or carcinomas) occur as a combination of unbal-
anced diet, environmental exposures, accumulation of genetic and epigenetic 
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instability, and oncogenic gene activations [11, 12]. It is certainly clear that unbal-
anced diet is a major risk factor for the development of CRCs. A constant, high, 
or prolonged exposure of colon to carcinogens is the primary cause for malignant 
transformation of colonocytes [11, 12]. If hereditary disposition (in terms of muta-
tions in key genes controlling cell cycle and replication) is already present, genome 
instability will accelerate tumorigenesis process [13]. It was estimated that in CRC, 
mutated K-Ras has an incidence of ∼50% [14].

The major genetic pathways of colorectal cancers (CRCs) are usually divided 
into two pathways [15, 16]:

1. “The Chromosome Instability Pathway” representing the pathway of sporadic 
CRC through the KRAS, adenomatous polyposis coli (APC), and tumor sup-
pressor protein 53 (P53) mutations.

2. The “Microsatellite Instability Pathway” representing the pathway of heredi-
tary non-2 primary KRAS mutation generally leads to a self-limiting hyper-
plastic or borderline lesion and may be implicated in the serrated pathway 
through which serrated adenomas and carcinomas may also develop.

The KRAS mutation alone is not sufficient or necessary to drive the malignant 
transformation. Therefore, additional “drivers” should be present in the develop-
ment of CRC. These additional factors include but are not limited to high calorie 
intake, diets rich in meat and fat, smoking, and alcohol consumption [17]. KRAS 
mutations are frequently found in <95% of early dysplasia, including aberrant crypt 
foci (ACF), and also in hyperplastic polyps [18–20]. The sequence in which the 
KRAS mutation occurs in relation to the APC mutation is important. The dysplastic 
lesion often progresses to carcinogenesis if a mutation in KRAS gene occurs right 
after an APC mutation [21, 22]. Because of the key role in EGFR signaling, the 
presence of a KRAS mutation predicts a very poor response to specific antibody 
(monoclonal antibodies) treatment with EGFR inhibitors such as panitumumab 
and cetuximab [23, 24].

3.2 Pancreatic cancer

Pancreatic cancer is a multifactorial and extremely aggressive type of cancer. 
Pancreatic tumors are usually highly chemoresistant, and many types of PC have 
very bad prognoses. Little information regarding the possible association of dif-
ferent risk factors with the known genetic alterations (such as activation of KRAS 
oncogene and inactivation of the p53 gene) is present in the literature [8, 25]. 
However, it was stated that in adenocarcinomas of the pancreas, mutated KRAS has 
an incidence of ∼70–90% [14].

Increasing data on the molecular pathogenesis of PC have shown that genetic 
alterations, such as mutations of KRAS and particularly epigenetic dysregulation 
(DNA methylation, histone acetylation, or microRNA expressions) of tumor-
associated genes [i.e., silencing of the tumor suppressor p16 (ink4a)], are suggested 
to be hallmarks of PC. Serine/threonine-protein kinase (Raf), phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K), and Ral guanine nucleotide dissociation stimula-
tor (RaLGDS) are the major effectors of KRAS in adenomas of pancreas [26, 27].

Repeated acute pancreatic injury and inflammation are important contributing 
factors in the development of PC. Alcohol consumption, cigarette smoking, diet 
(high coffee consumption), environmental chemicals [organochlorine insecti-
cides such as DDT and its metabolite dichlorodiphenyltrichloroethylene (DDE); 
herbicides such as s-ethyl dipropylthiocarbamate (EPTC) and pendimethalin; 
N-nitrosamines; polychlorinated biphenyls (PCBs); benzene], and drugs [diabetes 
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(high coffee consumption), environmental chemicals [organochlorine insecti-
cides such as DDT and its metabolite dichlorodiphenyltrichloroethylene (DDE); 
herbicides such as s-ethyl dipropylthiocarbamate (EPTC) and pendimethalin; 
N-nitrosamines; polychlorinated biphenyls (PCBs); benzene], and drugs [diabetes 
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drugs like glucagon-like peptide-1 (GLP-1) agonists, such as exenatide; dipeptidyl-
peptidase-4 inhibitors (DPP-4), such as sitagliptin; calcium channel blockers such 
as nifedipine, nicardipine, and diltiazem] can also contribute to the highly increas-
ing incidence of PC throughout the world. On the other hand, gall stones, diabetes, 
and obesity are the major pathological factors associated with PC [27–29]. In a study 
by Slebos et al., mutations in KRAS codon 12 were found in 75% of the PC patients. 
However, there were no differences in blood PCB levels between the KRAS wild-
type and mutant groups [8].

3.3 Lung cancer

Lung cancer is the primary cause of cancer-related deaths worldwide. Active 
and passive smoking are the two of primary causes of lung cancer. Lung cancers are 
classified as small cell (non-epithelial) or non-small cell carcinomas (epithelial-
derived). Small cell carcinomas are highly malignant; has the ability to metastasize 
easily and chemotherapy is the choice of treatment. However, treatment of non-
small cell cancer primarily involves surgical excision, supplemented by radiation or 
chemotherapy. Although this treatment method may provide partial or full recov-
ery, it also increases the risk for concurrent diseases. Using anti-cancer drugs with 
“high efficacy and low-toxicity” is the priority goal in this field [30, 31].

KRAS gene mutations are observed in 15–25% of all lung cancer cases. These 
mutations are more frequent in white populations than in Asian populations. About 
25–50% of whites with lung cancer have KRAS gene mutations, whereas 5–15% of 
Asians with lung cancer have KRAS gene mutations [14].

In lung adenocarcinomas, both KRAS-activating mutations and in and EGFR 
mutations can be observed. KRAS appear to be mutually exclusive. Three different 
mutations in the KRAS gene have been associated with lung cancer [32]. Nearly all 
of the KRAS gene mutations associated with lung cancer change the amino acid 
glycine at position 12 or 13 (Gly12 or Gly13) or change the amino acid glutamine 
at position 61 (Gln61) in the K-Ras protein. These mutations cause a constantly 
activated KRAS, which directs the cells to proliferate in an uncontrolled way, and 
the high cellular proliferation leads to tumor formation [33].

Even though KRAS mutations were identified in non-small cell lung tumors 
more than 20 years ago, the clinical value of determining KRAS tumor status is 
recently gaining importance. Recent studies indicate that patients with mutant 
KRAS tumors fail to benefit from adjuvant chemotherapy and do not respond 
to EGFR inhibitors. There is a clear need for therapies specifically developed for 
patients with KRAS-mutant non-small cell lung cancers [34, 35]. KRAS gene 
mutations are much more common in long-term tobacco smokers with lung cancer 
when compared to nonsmokers. Lung cancers with KRAS gene mutations typi-
cally indicate a poor prognosis and are associated with resistance to several cancer 
treatments [33–35].

4. Conclusion

KRAS is a very important oncogene. K-Ras protein is upregulated in different 
cancers and can cause bad prognosis of the disease. However, KRAS mutations are 
not sometimes enough to initiate cancer. Therefore, along with KRAS mutations, 
several environmental chemicals and drugs may contribute to the cascade of events 
leading to cancer.

It can be stated that in CRCs, PC, and lung cancer, KRAS mutations should be 
evaluated in clinics. On the other hand, the exposures of different environmental 
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Chapter 2

A Molecular Link between the 
Circadian Clock, DNA Damage 
Responses, and Oncogene 
Activation
Yoshimi Okamoto-Uchida, Junko Izawa and Jun Hirayama

Abstract

Circadian clocks enhance the efficiency and survival of living things by 
 organizing their behavior and body functions. There has been a long history of 
research seeking a link between circadian clock and tumorigenesis. Studies of 
animal models and human tumor samples have revealed that the dysregulation  
of circadian clocks is an important endogenous factor causing mammalian cancer 
development. The core circadian clock regulators have been implicated in the 
control of both the cell cycle and DNA damage responses (DDR). Conversely, 
several intracellular signaling cascades that play important roles in regulation of the 
cell cycle and the DDR also contribute to circadian clock regulation. This review 
describes selected regulatory aspects of circadian clocks, providing evidence of a 
molecular link of the circadian clocks with cellular DDR.

Keywords: circadian clock, DNA damage response, DNA repair, oncogenes

1. Introduction

Circadian (derived from Latin “around the day”) clocks constitute ubiquitous 
processes that regulate various biochemical and physiological events occurring 
with a 24 h periodicity, even in the absence of external cues [1, 2]. Under natural 
conditions, clocks are entrained to a 24 h day by environmental time cues, most 
commonly light. Circadian clocks are established in cell-autonomous oscillators, 
referred to as cellular clocks, which are controlled by a transcription/translation-
based negative feedback loop [3, 4]. In humans, the circadian clock generates 
circadian rhythms in synthesis and release of hormones and cardiovascular 
activities such as heart rate, blood pressure, and vascular tone [5, 6]. Moreover, 
immune responses show temporal changes in antibody levels and total number of 
lymphocytes, which are related to circadian variations [7]. Therefore, dysfunction 
of the clock can cause a variety of diseases. In particular, it has been reported that 
the circadian clocks are associated with tumor suppression in vivo, indicative of the 
theoretical foundations for cancer chronotherapy [8, 9].

At the molecular level, the circadian clocks can be divided into three  conceptual 
components [10, 11]. The first is the pacemaker, dedicated to generating and 
sustaining circadian rhythms by receiving and integrating signals from external 
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Circadian clocks enhance the efficiency and survival of living things by 
 organizing their behavior and body functions. There has been a long history of 
research seeking a link between circadian clock and tumorigenesis. Studies of 
animal models and human tumor samples have revealed that the dysregulation  
of circadian clocks is an important endogenous factor causing mammalian cancer 
development. The core circadian clock regulators have been implicated in the 
control of both the cell cycle and DNA damage responses (DDR). Conversely, 
several intracellular signaling cascades that play important roles in regulation of the 
cell cycle and the DDR also contribute to circadian clock regulation. This review 
describes selected regulatory aspects of circadian clocks, providing evidence of a 
molecular link of the circadian clocks with cellular DDR.

Keywords: circadian clock, DNA damage response, DNA repair, oncogenes

1. Introduction

Circadian (derived from Latin “around the day”) clocks constitute ubiquitous 
processes that regulate various biochemical and physiological events occurring 
with a 24 h periodicity, even in the absence of external cues [1, 2]. Under natural 
conditions, clocks are entrained to a 24 h day by environmental time cues, most 
commonly light. Circadian clocks are established in cell-autonomous oscillators, 
referred to as cellular clocks, which are controlled by a transcription/translation-
based negative feedback loop [3, 4]. In humans, the circadian clock generates 
circadian rhythms in synthesis and release of hormones and cardiovascular 
activities such as heart rate, blood pressure, and vascular tone [5, 6]. Moreover, 
immune responses show temporal changes in antibody levels and total number of 
lymphocytes, which are related to circadian variations [7]. Therefore, dysfunction 
of the clock can cause a variety of diseases. In particular, it has been reported that 
the circadian clocks are associated with tumor suppression in vivo, indicative of the 
theoretical foundations for cancer chronotherapy [8, 9].

At the molecular level, the circadian clocks can be divided into three  conceptual 
components [10, 11]. The first is the pacemaker, dedicated to generating and 
sustaining circadian rhythms by receiving and integrating signals from external 
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time cues. The second component is the input which refers to the pathway through 
which these cues are perceived and act upon the central pacemaker. The third 
element applies to how the clock affects physiology, which is achieved through the 
output pathways. In vertebrates, the cellular clocks are comprised of the circadian 
locomotor output cycles kaput (CLOCK), neuronal PAS domain-containing protein 
2 (NPAS2), brain and muscle arnt-like protein-1 (BMAL), period (PER), and cryp-
tochrome (CRY) proteins (Figure 1A) [11]. CLOCK or NPAS2 heterodimerize with 
BMAL to form an active transcription complex that transactivates clock-controlled 
genes, including Cry and Per. Once the CRY and PER proteins have been translated, 
they are translocated to the nucleus, where they inhibit CLOCK(NPAS2):BMAL-
mediated transcription through a direct protein-protein interaction. Importantly, 

Figure 1. 
Molecular mechanisms establishing circadian clocks in vertebrates. (A) Model of the vertebrate cellular clocks. 
Two basic helix-loop-helix PAS domain-containing transcription factors CLOCK and BMAL constitute 
the positive elements. When these transcription factors heterodimerize, they bind to E-boxes to drive the 
transcription of the negative components of the clock, Per and Cry genes. The products of these clock genes then 
negatively regulate their own expression, setting up the rhythmic oscillations of gene expression that drive the 
circadian clocks. CLOCK:BMAL complex also regulates clock-controlled genes, whose products mediate the 
“output” function of the clocks. CK1 phosphorylates PER protein, which is required for ubiquitination of PER 
and its subsequent degradation. An essential prerequisite for the circadian feedback loop is a short half-life of 
clock proteins. Thus, CK1-mediated degradation of PER is critical for maintenance of circadian rhythmicity of 
cellular clock. (B) Schematic representation of the proteins that are acetylated by CLOCK protein.
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when active, the CLOCK (NPAS2):BMAL complex stimulates the transcription 
of many other clock-controlled genes. These genes in turn influence functions 
external to the oscillatory mechanism itself and mediate the “output” function of 
the clock. This accounts in part for the presence of circadian rhythms in a variety of 
 physiological processes.

The phenotypes of mice with targeted disruptions of the genes encoding cellular 
clock’s components have revealed direct links between the circadian clock and non-
circadian aspects of animal physiology [6, 9]. In particular, these findings argue in 
favor of a major role played by the circadian machinery in cellular genotoxic stress 
responses and reveal intriguing links between the DNA damage responses (DDR) 
pathways and the circadian clocks. In this review, we summarize the evidence and 
explore the implications of such a link.

2.  The relationship between transcriptional regulation of oncogenes and 
circadian clocks

The disruption of circadian clocks can have a profound effect on animal health 
and is linked to abnormal development and cancer [6, 9]. Expression of the 
 circadian clock genes has been reported to be dysregulated in human cancers [12]. 
The circadian transcriptional machinery, cellular clock, has been reported to  
control expression of tumor suppressors. Thus, the abnormal control of clock 
genes’ expression in cancer cells activates oncogenic signaling pathways by 
functional inhibition of tumor suppressors, such as ataxia telangiectasia mutated 
(ATM), p53, p21, and WEE1 [12].

The Wingless-related integration site (Wnt) signaling pathways collectively 
play important roles in developmental, proliferative, and cell death processes 
[13]. Mutations in genes encoding the various components of Wnt pathways have 
been identified that contribute to various types of cancer including hepatocellular 
carcinoma, pancreatic tumors, ovarian cancer, and breast cancer. Importantly, 
there are several lines of evidence that suggest the existence of an interaction 
between circadian clocks and Wnt signaling pathways. Previous study have per-
formed microarray-based screening for circadian genes in several mouse tissues 
and have constructed a publicly accessible database, by which users can query for 
finding circadianly regulated genes or for the study of the temporal expression 
patterns of their genes of interest [14]. Interestingly, in this database, several Wnt 
signaling pathway genes, such as Axin2, Frizzled3 (Fzd3), and Disheveled (Dvl1), 
show a circadian pattern of expression, suggesting the possibility that circadian 
clocks control transcription of Wnt signaling pathway genes. The future study of 
the connecting routes that link the circadian transcriptional machinery to Wnt 
signaling pathway will reveal a molecular link between circadian clock deficiency 
and tumorigenesis.

3.  Possible roles of clock proteins in functional regulation of crucial 
components of DDR pathways

The activities associated with the physiological processes are organized in daily 
manner: during the daytime, the animal’s physiology is given over to the catabolic 
processes, whereas at night, it concentrates on the anabolic functions of growth, 
repair, and consolidation [5, 6]. Disrupt, the time-dependent regulation of physi-
ological functions in animals has profound effects on their health. In particular, 
many studies have provided evidence that disruption of the circadian clocks results 
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many studies have provided evidence that disruption of the circadian clocks results 
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in tumorigenesis [8, 9]. Importantly, mice with mutations in the Bmal1 gene show 
premature aging phenotype [15]. In addition, human CLOCK has been suggested 
to be involved in metastasis of colorectal cancer [16]. These findings implicate the 
core circadian machinery in the regulation of DDR and the cell cycle. Indeed, the 
circadian regulators have been demonstrated to interact with crucial components 
of cellular stress response pathways including the ATM, the checkpoint kinase 2 
(Chk2) kinase [17], sirtuin1 (SIRT1) deacetylase [18], and nuclear receptors  
19, 20], whereas it has been reported that DNA damage can act as a resetting cue for 
the mammalian circadian clock [21].

Histone acetyltransferases (HATs) such as CBP/p300 are known to acetylate 
nonhistone targets and have also been recognized as tumor suppressors [22, 23]. 
Translocation, amplification, overexpression, or mutation of HAT genes are 
known to occur in several forms of cancer, and several key cell cycle  proteins 
(including p53 and c-MYC) are known targets of HATs. These observations sug-
gest that HATs can also affect cell proliferation and differentiation in multiple 
ways, in addition to chromatin remodeling. It was previously reported that a 
core circadian regulator, CLOCK, has intrinsic HAT activity [24] and further 
that it acetylates a nonhistone target, the heterodimeric CLOCK-binding part-
ner BMAL (Figure 1B) [25]. CLOCK also acetylates the glucocorticoid receptor 
and the argininosuccinate synthase, negatively regulating the transactivation 
capacity and the enzymatic activity, respectively [20, 26]. It is conceivable that 
CLOCK would directly interact with and regulate key DDR regulators, lead-
ing to the acetylation of these proteins and thereby modulating their activities 
(Figure 1B).

4. Roles of circadian clocks in regulation of cell cycle

Circadian clock proteins appear to play roles in cell cycle control, acting as 
tumor suppressors. They control the timing of cell proliferation by transcriptional 
control of key cell cycle genes such as Wee1, c-Myc, and cyclin-dependent kinase 
inhibitor 1d (20 kDa protein, p20) [27–29]. In mammals, PER proteins directly 
interact with ATM and Chk2 proteins, inducing cell growth inhibition, cell cycle 
arrest, and apoptosis [17]. In addition, it has been also reported that PER1 and PER2 
interact with the androgen receptor (AR) or estrogen receptor (ER), respectively, in 
that PER1 inhibits AR-dependent transcription and PER2 induces ER degradation 
[19, 30]. These findings support the idea that clock proteins act as key players in the 
cell cycle by interacting directly with and regulating the functions of the cell cycle 
regulators.

In zebrafish, the cell cycle is directly regulated by light [31, 32]. Light deter-
mines the timing of mitosis (M phase) and DNA synthesis (S phase), establishing 
a circadian rhythm for cell cycle progression. At the molecular level, cellular clocks 
establish the circadian expression of the cell cycle genes, zebrafish Wee1 and p20 
[29, 32]. The Wee-l kinase controls the timing of the G2/M transition by directly 
phosphorylating and inhibiting cell division cycle2 (Cdc2)/cyclin B, leading to the 
suppression of mitotic cell division. In contrast, p20 regulates the G1/S transition 
of the cell cycle. Thus, the circadian control of these cell cycle regulators could be 
a mechanism establishing the circadian rhythm of cell cycle. Both cell cycle and 
circadian clock are endogenous pacemakers, and these mechanisms coexist in most 
eukaryotic cells and share several conceptual characteristics. The abovementioned 
findings point to functional links between the cell cycle and circadian clock in 
 different organisms.
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5.  Posttranslational modifications contributing to both the circadian 
clock regulation and the cellular DDR

Posttranslational modifications of proteins regulate various biological pro-
cesses at molecular levels, including gene expression, chromatin remodeling, and 
protein stabilization. These molecular events have essential roles in appropriately 
regulating biological phenomena, including development and circadian clock, by 
maintaining cellular functions, such as proliferation and molecular clocks, respec-
tively. Posttranslational modifications, such as phosphorylation, sumoylation, and 
acetylation, control the transcriptional activity, subcellular localization, and stabil-
ity of circadian clock regulators in multiple ways [4, 33]. In particular, the defects in 
phosphorylating the circadian clock regulators have been implicated in human sleep 
disorders [34, 35]. It is also well established that posttranslational modifications are 
vital for the regulation of the cell cycle and DDR. SIRT1 and casein kinase2 (CK2), 
already identified as responsible factors for posttranslational modifications of clock 
proteins [18, 36–39], have also been implicated in posttranslational modifications of 
proteins such as p53, forkhead box class O (FoxO), and E-cadherin that are involved 
in cellular metabolism, the cell cycle, and DDR [40, 41]. These findings support the 
hypothesis that the circadian clocks may be linked to other cellular processes, such 
as cell cycle control and DDR, through shared posttranslational modifications.

6.  Studies on light-dependent regulation of zebrafish circadian clock 
have revealed links of circadian clock with DNA repair and  
cellular DDR

To guarantee that an organism’s behavior remains tied to the rhythms of its 
environment, the circadian clocks must respond to environmental stimuli to be reset 
[2, 10]. The main cue for animals is light, which is provided by the day-night cycle. 
The mammalian route for circadian entrainment by light uses the retinohypothalamic 
tract, which connects directly to the central clock located in the suprachiasmatic 
nucleus of the brain [42]. This makes it difficult to analyze the light entrainment 
mechanisms of the circadian clocks, especially at cellular levels. Zebrafish peripheral 
cellular clocks display a striking feature as they are directly light responsive [43]. 
Notably, in the zebrafish-cultured cell lines, oscillations of clock gene expression can 
be entrained to new light-dark cycle, and expression of clock genes, such as zebraf-
ish Cryptochrome1a (zCry1a) and Period2 (zPer2), is transactivated by an acute light 
pulse [44–46]. These observations show that zebrafish cultured cells have the clock 
components required for a light-induced reset of circadian clock, therefore, providing 
a valuable tool for the study of general light-dependent regulation of cellular clocks.

Studies using zebrafish-cultured cells have contributed to identification of 
cellular signaling cascades involved in the light-dependent regulation of cellular 
clocks [47]. In several organisms, external stimuli are connected to a cell’s nucleus 
via MAPK signaling pathways, such as p38 and extracellular signal-regulated kinase 
(ERK) [48]. Light has been reported to activate these signaling cascades in zebrafish 
cells (Figure 2) [49]. By a pharmacological approach, it has also been reported that 
the light-induced ERK activation triggers expression of zPer2 and zCry1a genes, 
whereas the light-induced p38 activation suppresses it, highlighting a MAPK-
mediated cross-regulatory mechanism of the expression of circadian clock genes 
[49, 50]. Importantly, an increased understanding of the light-dependent cellular 
clock regulation in zebrafish has suggested intriguing associations of the circadian 
clock with DNA repair and cellular DDR as described below.



Oncogenes and Carcinogenesis

16

in tumorigenesis [8, 9]. Importantly, mice with mutations in the Bmal1 gene show 
premature aging phenotype [15]. In addition, human CLOCK has been suggested 
to be involved in metastasis of colorectal cancer [16]. These findings implicate the 
core circadian machinery in the regulation of DDR and the cell cycle. Indeed, the 
circadian regulators have been demonstrated to interact with crucial components 
of cellular stress response pathways including the ATM, the checkpoint kinase 2 
(Chk2) kinase [17], sirtuin1 (SIRT1) deacetylase [18], and nuclear receptors  
19, 20], whereas it has been reported that DNA damage can act as a resetting cue for 
the mammalian circadian clock [21].

Histone acetyltransferases (HATs) such as CBP/p300 are known to acetylate 
nonhistone targets and have also been recognized as tumor suppressors [22, 23]. 
Translocation, amplification, overexpression, or mutation of HAT genes are 
known to occur in several forms of cancer, and several key cell cycle  proteins 
(including p53 and c-MYC) are known targets of HATs. These observations sug-
gest that HATs can also affect cell proliferation and differentiation in multiple 
ways, in addition to chromatin remodeling. It was previously reported that a 
core circadian regulator, CLOCK, has intrinsic HAT activity [24] and further 
that it acetylates a nonhistone target, the heterodimeric CLOCK-binding part-
ner BMAL (Figure 1B) [25]. CLOCK also acetylates the glucocorticoid receptor 
and the argininosuccinate synthase, negatively regulating the transactivation 
capacity and the enzymatic activity, respectively [20, 26]. It is conceivable that 
CLOCK would directly interact with and regulate key DDR regulators, lead-
ing to the acetylation of these proteins and thereby modulating their activities 
(Figure 1B).

4. Roles of circadian clocks in regulation of cell cycle

Circadian clock proteins appear to play roles in cell cycle control, acting as 
tumor suppressors. They control the timing of cell proliferation by transcriptional 
control of key cell cycle genes such as Wee1, c-Myc, and cyclin-dependent kinase 
inhibitor 1d (20 kDa protein, p20) [27–29]. In mammals, PER proteins directly 
interact with ATM and Chk2 proteins, inducing cell growth inhibition, cell cycle 
arrest, and apoptosis [17]. In addition, it has been also reported that PER1 and PER2 
interact with the androgen receptor (AR) or estrogen receptor (ER), respectively, in 
that PER1 inhibits AR-dependent transcription and PER2 induces ER degradation 
[19, 30]. These findings support the idea that clock proteins act as key players in the 
cell cycle by interacting directly with and regulating the functions of the cell cycle 
regulators.

In zebrafish, the cell cycle is directly regulated by light [31, 32]. Light deter-
mines the timing of mitosis (M phase) and DNA synthesis (S phase), establishing 
a circadian rhythm for cell cycle progression. At the molecular level, cellular clocks 
establish the circadian expression of the cell cycle genes, zebrafish Wee1 and p20 
[29, 32]. The Wee-l kinase controls the timing of the G2/M transition by directly 
phosphorylating and inhibiting cell division cycle2 (Cdc2)/cyclin B, leading to the 
suppression of mitotic cell division. In contrast, p20 regulates the G1/S transition 
of the cell cycle. Thus, the circadian control of these cell cycle regulators could be 
a mechanism establishing the circadian rhythm of cell cycle. Both cell cycle and 
circadian clock are endogenous pacemakers, and these mechanisms coexist in most 
eukaryotic cells and share several conceptual characteristics. The abovementioned 
findings point to functional links between the cell cycle and circadian clock in 
 different organisms.

17

A Molecular Link between the Circadian Clock, DNA Damage Responses, and Oncogene…
DOI: http://dx.doi.org/10.5772/intechopen.81063

5.  Posttranslational modifications contributing to both the circadian 
clock regulation and the cellular DDR

Posttranslational modifications of proteins regulate various biological pro-
cesses at molecular levels, including gene expression, chromatin remodeling, and 
protein stabilization. These molecular events have essential roles in appropriately 
regulating biological phenomena, including development and circadian clock, by 
maintaining cellular functions, such as proliferation and molecular clocks, respec-
tively. Posttranslational modifications, such as phosphorylation, sumoylation, and 
acetylation, control the transcriptional activity, subcellular localization, and stabil-
ity of circadian clock regulators in multiple ways [4, 33]. In particular, the defects in 
phosphorylating the circadian clock regulators have been implicated in human sleep 
disorders [34, 35]. It is also well established that posttranslational modifications are 
vital for the regulation of the cell cycle and DDR. SIRT1 and casein kinase2 (CK2), 
already identified as responsible factors for posttranslational modifications of clock 
proteins [18, 36–39], have also been implicated in posttranslational modifications of 
proteins such as p53, forkhead box class O (FoxO), and E-cadherin that are involved 
in cellular metabolism, the cell cycle, and DDR [40, 41]. These findings support the 
hypothesis that the circadian clocks may be linked to other cellular processes, such 
as cell cycle control and DDR, through shared posttranslational modifications.

6.  Studies on light-dependent regulation of zebrafish circadian clock 
have revealed links of circadian clock with DNA repair and  
cellular DDR

To guarantee that an organism’s behavior remains tied to the rhythms of its 
environment, the circadian clocks must respond to environmental stimuli to be reset 
[2, 10]. The main cue for animals is light, which is provided by the day-night cycle. 
The mammalian route for circadian entrainment by light uses the retinohypothalamic 
tract, which connects directly to the central clock located in the suprachiasmatic 
nucleus of the brain [42]. This makes it difficult to analyze the light entrainment 
mechanisms of the circadian clocks, especially at cellular levels. Zebrafish peripheral 
cellular clocks display a striking feature as they are directly light responsive [43]. 
Notably, in the zebrafish-cultured cell lines, oscillations of clock gene expression can 
be entrained to new light-dark cycle, and expression of clock genes, such as zebraf-
ish Cryptochrome1a (zCry1a) and Period2 (zPer2), is transactivated by an acute light 
pulse [44–46]. These observations show that zebrafish cultured cells have the clock 
components required for a light-induced reset of circadian clock, therefore, providing 
a valuable tool for the study of general light-dependent regulation of cellular clocks.

Studies using zebrafish-cultured cells have contributed to identification of 
cellular signaling cascades involved in the light-dependent regulation of cellular 
clocks [47]. In several organisms, external stimuli are connected to a cell’s nucleus 
via MAPK signaling pathways, such as p38 and extracellular signal-regulated kinase 
(ERK) [48]. Light has been reported to activate these signaling cascades in zebrafish 
cells (Figure 2) [49]. By a pharmacological approach, it has also been reported that 
the light-induced ERK activation triggers expression of zPer2 and zCry1a genes, 
whereas the light-induced p38 activation suppresses it, highlighting a MAPK-
mediated cross-regulatory mechanism of the expression of circadian clock genes 
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7.  Shared regulatory pathway for circadian clock and DNA repair in 
zebrafish

Although solar light has several beneficial uses, including the regulation of 
circadian clocks, the UV component of solar light is harmful to living cells because 
it produces cytotoxic and mutagenic lesions in DNA called cyclobutane pyrimidine 
dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4) photoprod-
ucts] (Figure 2) [51, 52]. Natural selective pressure has forced the development 
of a self-defense system mediated by photoreactivation. Photoreactivation is the 
light-dependent DNA repair mechanism mediated by DNA photolyases (PHRs), 
which bind to and repair the UV-induced DNA damage using visible light as an 
energy source [53]. Two classes of PHRs have been identified, one specific for CPDs 
and the other specific for (6-4) photoproducts. Importantly, both the induction 
of PHRs in response to light and subsequent light-dependent repair of DNA by 
PHRs are essential for a successful photoreactivation in zebrafish cells [42, 54, 55]. 
Notably, the expression of the zebrafish Phr repairing (6-4) photoproduct (z64Phr) 
is regulated by the same light-induced MAPK cascades as those controlling the 
expression of the clock genes zCry1a and zPer2 (Figure 2) [49]. The light-induced 
ERK activation triggers the expression of z64Phr, whereas the light-induced p38 
activation inhibits it. Thus, the light-dependent DNA repair and regulation of the 
circadian clock are governed by shared regulatory pathways. Both CRYs and PHRs 
belong to the DNA photolyase/cryptochrome protein family and have highly similar 
amino acid sequences [42, 55, 56]. Evolutionary studies have shown that the animal 
CRY proteins functionally diverged first from the CPD photolyase and then further 

Figure 2. 
A proposal model of light signaling pathways involved in shared control of the circadian clock and DNA repair 
in zebrafish. In a variety of organisms, light induces ROS production. In zebrafish cells, the light-induced 
ROS stimulate intracellular MAPK/ERK signaling pathway, which transduces photic signal to zCry1a 
expression. The light-induced zCRY1a interacts directly with the zCLOCK:zBMAL complex and modifies 
its transcriptional capacity. Notably, the zCLOCK:zBMAL complex regulates the transcription of a variety 
of genes involved in cellular stress responses and DDR. UV component of sunlight induces DNA damage. 
Light-induced ROS and activation of MAPK/ERK pathway also induce expression of a DNA repair enzyme, 
zPHR. The induced zPHR repairs UV-damaged DNA in a light-dependent manner.
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to generate 64PHR [57]. These facts, together with the observation that zCry1a and 
z64Phr share regulatory pathways, strongly indicate an evolutionary link between 
the circadian clock and DNA repair. Importantly, evolutionary links functionally 
coupling the circadian clock and DNA repair also have been reported in other 
organisms. For example, Neurospora PRD-4, an orthologue of mammalian Chk2, 
transduces stress signals into the core circadian clock machinery, contributing the 
regulation of circadian clock [58]. Additionally, in the diatom Phaeodactylum tricor-
nutum, Phaeodactylum tricornutum cryptochrome/photolyase family1 (PtCPF1), a 
novel cryptochrome/photolyase family member, not only repairs UV-induced DNA 
damage but also acts as a transcriptional repressor of the circadian clock [59].

8.  Cellular responses to photooxidative stress are the candidate 
evolutionary origin of circadian clocks

Cellular reactive oxygen species (ROS) were originally thought to solely act 
as toxic metabolites because they react with components of DNA, proteins, and 
lipids and exert oxidative stress. However, ROS are also ideally suited as signaling 
molecules because they are small and can easily diffuse to short distances within 
a cell [60]. In addition, mechanisms for ROS production and the rapid removal 
(such as via catalase) are present in almost all cell types [61]. Much evidence has 
accumulated indicating significant roles of ROS in circadian clock controls that have 
resulted in the functional coupling of the circadian clock and DDR. For example, 
in Drosophila, a genome-wide screen identified several redox molecules as essential 
for the light entrainment of the circadian clock [62]. Similarly, a study in mammals 
showed that changes in reduced NADPH and NADH levels altered the affinity of 
the NPAS2:BMAL1 complex for its target DNA in vitro [63]. Thus, redox state may 
be an important determinant of circadian oscillations in mammalian cells. Nuclear 
factor erythroid-derived 2-like 2 (NRF2) is one of the components involved in the 
major cellular antioxidant defense pathways [64]. It induces a transcriptional pro-
gram that maintains cellular redox balance and protects cells from oxidative insults. 
Importantly, it has been reported in mouse that cellular clock generates circadian 
rhythm in NRF2 level, which is essential in regulating the rhythmic expression of 
antioxidant genes involved in glutathione redox homeostasis in the lung [65].

In zebrafish, the transcriptional induction of zCry1a and zPer2 genes has been pro-
posed to be required for the light entrainment of cellular clocks [45, 66, 67]. The light-
dependent transcription of zCry1a and zPer2 is controlled through the production and 
removal of cellular ROS [66, 68]. The light-induced ROS stimulate the intracellular 
ERK signaling pathway and transduce photic signals to the transactivation of zCry1a 
and zPer2 (Figure 2). Importantly, light increases the intracellular catalase activity by 
increasing the expression of catalase, an event that occurs after the maximum expres-
sion of the zCry1a and zPer2 genes has been reached. This increased catalase activity 
diminishes the light-induced cellular ROS levels, resulting in decreased expression 
levels of zCry1a and zPer2 genes. These findings provide evidence that ROS induced 
by light are the second messenger coupling photoreception to the entrainment of the 
circadian clock in zebrafish and further indicate that cellular responses to photooxi-
dative stress would be the evolutionary origin of circadian clocks.

9.  The light entrainment of the circadian clock in zebrafish would reflect 
a cellular response to photooxidative stress

It is conceivable that the development of circadian clocks is one way to  segregate 
daytime from nighttime processes with light-dark cycles acting as selective forces 



Oncogenes and Carcinogenesis

18

7.  Shared regulatory pathway for circadian clock and DNA repair in 
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dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts [(6-4) photoprod-
ucts] (Figure 2) [51, 52]. Natural selective pressure has forced the development 
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Figure 2. 
A proposal model of light signaling pathways involved in shared control of the circadian clock and DNA repair 
in zebrafish. In a variety of organisms, light induces ROS production. In zebrafish cells, the light-induced 
ROS stimulate intracellular MAPK/ERK signaling pathway, which transduces photic signal to zCry1a 
expression. The light-induced zCRY1a interacts directly with the zCLOCK:zBMAL complex and modifies 
its transcriptional capacity. Notably, the zCLOCK:zBMAL complex regulates the transcription of a variety 
of genes involved in cellular stress responses and DDR. UV component of sunlight induces DNA damage. 
Light-induced ROS and activation of MAPK/ERK pathway also induce expression of a DNA repair enzyme, 
zPHR. The induced zPHR repairs UV-damaged DNA in a light-dependent manner.

19

A Molecular Link between the Circadian Clock, DNA Damage Responses, and Oncogene…
DOI: http://dx.doi.org/10.5772/intechopen.81063

to generate 64PHR [57]. These facts, together with the observation that zCry1a and 
z64Phr share regulatory pathways, strongly indicate an evolutionary link between 
the circadian clock and DNA repair. Importantly, evolutionary links functionally 
coupling the circadian clock and DNA repair also have been reported in other 
organisms. For example, Neurospora PRD-4, an orthologue of mammalian Chk2, 
transduces stress signals into the core circadian clock machinery, contributing the 
regulation of circadian clock [58]. Additionally, in the diatom Phaeodactylum tricor-
nutum, Phaeodactylum tricornutum cryptochrome/photolyase family1 (PtCPF1), a 
novel cryptochrome/photolyase family member, not only repairs UV-induced DNA 
damage but also acts as a transcriptional repressor of the circadian clock [59].

8.  Cellular responses to photooxidative stress are the candidate 
evolutionary origin of circadian clocks

Cellular reactive oxygen species (ROS) were originally thought to solely act 
as toxic metabolites because they react with components of DNA, proteins, and 
lipids and exert oxidative stress. However, ROS are also ideally suited as signaling 
molecules because they are small and can easily diffuse to short distances within 
a cell [60]. In addition, mechanisms for ROS production and the rapid removal 
(such as via catalase) are present in almost all cell types [61]. Much evidence has 
accumulated indicating significant roles of ROS in circadian clock controls that have 
resulted in the functional coupling of the circadian clock and DDR. For example, 
in Drosophila, a genome-wide screen identified several redox molecules as essential 
for the light entrainment of the circadian clock [62]. Similarly, a study in mammals 
showed that changes in reduced NADPH and NADH levels altered the affinity of 
the NPAS2:BMAL1 complex for its target DNA in vitro [63]. Thus, redox state may 
be an important determinant of circadian oscillations in mammalian cells. Nuclear 
factor erythroid-derived 2-like 2 (NRF2) is one of the components involved in the 
major cellular antioxidant defense pathways [64]. It induces a transcriptional pro-
gram that maintains cellular redox balance and protects cells from oxidative insults. 
Importantly, it has been reported in mouse that cellular clock generates circadian 
rhythm in NRF2 level, which is essential in regulating the rhythmic expression of 
antioxidant genes involved in glutathione redox homeostasis in the lung [65].

In zebrafish, the transcriptional induction of zCry1a and zPer2 genes has been pro-
posed to be required for the light entrainment of cellular clocks [45, 66, 67]. The light-
dependent transcription of zCry1a and zPer2 is controlled through the production and 
removal of cellular ROS [66, 68]. The light-induced ROS stimulate the intracellular 
ERK signaling pathway and transduce photic signals to the transactivation of zCry1a 
and zPer2 (Figure 2). Importantly, light increases the intracellular catalase activity by 
increasing the expression of catalase, an event that occurs after the maximum expres-
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It is conceivable that the development of circadian clocks is one way to  segregate 
daytime from nighttime processes with light-dark cycles acting as selective forces 
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[69, 70]. In this scenario, increasing levels of oxygen-free radicals during the daytime 
may be a decisive factor in relegating the anabolic processes of mitosis, growth, and 
consolidation to the dark hours. Thus, it is reasonable that cellular signaling cascade 
mediated by ROS is utilized in the regulation of the circadian clocks and that com-
mon regulatory pathways mediate both cellular responses to photooxidative stress 
and the light-dependent regulation of the circadian clocks (Figure 2).

In addition to the photooxidative stress derived from sunlight, the UV com-
ponent of it is major source of harm to organisms [51, 52]. In zebrafish, the light 
induces expression of PHRs which repair UV-damaged DNA in a light-dependent 
manner (Figure 2) [49, 71]. Importantly, this light induction of DNA Phr expres-
sion appears to be mediated by photooxidative stress [68, 72]. These observa-
tions are consistent with the idea that photooxidative stress may be utilized as 
a signal to activate DNA repair enzymes that can protect the organism’s DNA 
from UV-induced damage. The fact that ROS, a well-known inducer of oxidative 
stress, can activate zCry1a transcription in zebrafish cells [66], together with the 
finding that zCry1a and DNA Phr are governed by shared light-induced signaling 
pathways [49], strongly suggests that, at least in zebrafish, the light entrainment 
of the circadian clock reflects a long-standing cellular response to photooxida-
tive stress (Figure 2). The zCRY1a protein interacts directly with the CLOCK 
(NPAS2):BMAL complexes and regulates its transcriptional capacity [67, 73]. The 
complexes regulate a variety of key genes involved in cellular stress responses, 
DNA repair, and cell cycle regulation [14, 74]. Thus, the circadian clock protein 
zCRY1a may be the key integrator of oxidative stress that controls the core circa-
dian machinery to regulate the transcription of genes responsible for DDR and 
cell cycle adjustments.

10. Conclusion

Many studies have identified a link between the circadian clock and tumori-
genesis [8, 12]. The core of the circadian clock mechanism is the cell-autonomous 
and self-sustained transcriptional machinery called the cellular clock. Importantly, 
the cellular clocks have been reported to regulate transcription of tumor suppres-
sors and cell cycle regulators [6, 12]. In addition, circadian proteins appear to play 
roles in cell cycle control, acting as tumor suppressors [9]. For example, it has been 
hypothesized that a core circadian regulator, CLOCK, directly interacts with key 
checkpoint proteins, leading to the acetylation of these proteins and thereby modu-
lating their activities. In support of this idea, Clock mutant mice have been reported 
to be tumor-prone [9].

Cancer chronotherapy relies on the asynchrony that exists in cell proliferation 
and drug sensitivities between normal and malignant cells [8, 12]. The administra-
tion of cancer therapy based on circadian timing has had encouraging results, but 
still lacks a strong mechanistic foundation. Thus, identification of detailed molecu-
lar links between the circadian clocks and tumorigenesis will provide the functional 
basis of cancer chronotherapy.
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Chapter 3

MicroRNAs (miRNAs) in 
Colorectal Cancer
Burcin Baran, Nazli-Mert Ozupek, Gizem Calibasi-Kocal 
and Yasemin Basbinar

Abstract

Colorectal cancer (CRC) is the third most common cancer in the world and 
third leading cause of cancer-related deaths in men and women as well. While 
early screening procedures and removal of small polyps improve the survival 
rates among the patients, there is still need for new diagnostic and therapeutic 
approaches for developing more effective treatments. MicroRNAs (miRNAs) 
are short noncoding RNA fragments, which involve in posttranscriptional 
regulation of gene expression, and they are shown to involve in tumorigenesis 
either targeting oncogenes or tumor suppressor genes. Based on the current 
studies, miRNAs are now suggested as potential biomarkers for CRC diagnosis, 
prognosis, and therapeutic responses. In this chapter, the latest findings on the 
role of miRNA in CRC in many aspects are reviewed: diagnosis (role of circular 
miRNAs in blood and miRNAs from tissue biopsies and their potential role 
in pathophysiology and diagnosis of CRC), prognosis (miRNAs related with 
metastasis, recurrence, and survival rates in CRC), and therapeutic responses 
(role of miRNAs both in chemotherapies and/or in targeted therapies in CRC). 
In conclusion, miRNAs are promising molecules for diagnosis, prognosis, and 
therapeutic responses of CRC.

Keywords: colorectal cancer, diagnosis, miRNA, prognosis, therapeutic response

1. Introduction

MicroRNAs are a subgroup of small noncoding RNAs containing 18–25 nucleo-
tides, and they do not carry any genetic information for protein expression. They 
regulate the posttranslational gene expression by binding 3′ untranslated region 
(UTR) of the target messenger RNA (mRNA). Approximately 30% of protein 
coding genes are regulated by miRNAs, and they have important roles in cellular 
functions including proliferation, differentiation, apoptosis, signaling, metabolism, 
and tumorigenesis. Due to their effect on crucial processes, miRNAs are significant 
modifiers of transcription and translation of both oncogenes and tumor suppres-
sor proteins. Hence, some of them are classified as oncomiR and tumor suppressor 
miRNA in the cellular processes of tumor [1].

First miRNA, lin-4, was discovered in Caenorhabditis elegans in 1993, and it had 
role on the regulation of larval development by the repression of a nuclear protein 
encoded by lin-14. The second discovered miRNA, let-7, is expressed in late devel-
opment and complementary to the 3′ UTR of the several genes including lin-14, 
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lin-28, lin-41, lin-42, and daf-12. After the discovery of lin-4 and let-7, miRNAs 
were shown in other organisms including plants and animals [2, 3], and over 10,000 
miRNAs have been identified in various organisms. In humans, over 2500 types of 
encoded miRNAs have been determined [4].

2. Biogenesis of miRNA

The biogenesis of miRNA is a complicated process, starting in the nucleus, 
following with posttranslational modifications, and finalized in the cytoplasm. 
Similar to gene encoding, biogenesis of primary miRNAs (pri-miRNAs) is starting 
with the transcription by RNA polymerase II or RNA polymerase III enzyme. In the 
nucleus, pri-miRNA is recognized and cleaved by Drosha enzyme to form precursor 
miRNA (pre-miRNA). The pre-miRNA is exported to cytoplasm by exportin-5. In 
the cytoplasm, pre-miRNA is bound to cytoplasmic RNase Dicer and RNA-induced 
silencing complex (RISC), which is composed of argonaute 2 (AGO2) and transac-
tivation response (TAR) RNA-binding protein (TRBP). Firstly, AGO2 cleaves the 
pre-miRNA from its 3′ end, and the cleaved pre-miRNA is further cleaved by Dicer 
into mature miRNA duplex. Mature miRNA duplex is then unwounded; while one 
strand of the miRNA remains on AGO2 protein, and the other strand (passenger 
strand) is degraded. Mostly, miRNAs are recognizing the complementary sequence 
of 3′ UTR of mRNAs, hence directing RISC to cleave mRNAs and translational 
repression of mRNAs [5, 6] (Figure 1).

Figure 1. 
miRNA biogenesis. The pathway starts miRNA transcription by RNA polymerase II or III to generate the 
primary transcripts (pri-miRNAs). Pri-miRNA is processed by the Drosha-DiGeorge syndrome critical 
region gene 8 (DGCR8, Pasha Pasha in Drosophila melanogaster and Caenorhabditis elegans) complex (also 
known as the microprocessor complex) that generates ~70 nucleotide (nt) pre-miRNAs. Pre-miRNA, which 
is recognized by the nuclear export factor exportin-5, is transferred to the cytoplasm. In the cytoplasm, the 
cytoplasmic RNase Dicer cleaves the pre-miRNA hairpin to its mature length. Dicer in complex with the 
transactivation response (TAR) RNA-binding protein (also known as TRBP and TARBP2) and argonaute 
(AGO) 1–4 mediate the processing of pre-miRNA and the assembly of the RISC (RNA-induced silencing 
complex). With the formation of this complex structure, one strand of the miRNA duplex is removed and 
single-stranded miRNA is generated. Interaction between microRNA complex and target mRNA induces post-
transcriptional silencing by destabilization of mRNA and suppression of translation [7, 8].
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3. Involvement of microRNAs in cancer

microRNA studies were began in C. elegans, as lin-4 and let-7 were identified as 
noncoding RNAs functioning in larval development. Soon after, the research groups 
focused on the function of these noncoding RNAs and discovered their homologs 
in vertebrates as well. The role of miRNAs in tumorigenesis was first reported in 
chronic lymphocytic leukemia (CLL) by two different groups in 2002. Hemizygous 
or homozygous loss of 13q14 chromosome was frequently observed among CLL 
patients [9]. Two different miR-15 and miR-16 expression levels were shown to 
be downregulated with the deletion of this locus [10]. Both miR-15/16 levels are 
inversely correlated with antiapoptotic B cell lymphoma-2 (Bcl-2) protein level 
in the cells. Introduction of miR-15/16 to the leukemic cell lines repressed Bcl-2 
expression and induced apoptosis in these cells [11]. It is now very well established 
that aberrant miRNA expression contributes to cancer [12]. miRNAs are targeting 
the genes, which involve in cell proliferation, migration, invasion, and metastasis; 
hence dysregulation of these miRNAs leads to transformation and malignancy of 
cells [13, 14]. miRNA dysregulation in cancer cells can be result of genomic dele-
tion, mutations, amplification, or epigenetic silencing [14]. A single miRNA can 
target a variety of mRNAs involved in different cell signaling pathways; interest-
ingly, a single mRNA can be targeted by several miRNAs also [15], such as Let-7, 
which is one of the initially discovered miRNAs, targets human rat sarcoma (RAS), 
high-mobility group AT-hook 2 (HMGA2), and MYC mRNAs and downregulates 
their expression [16]. Phosphotensin homolog (PTEN), which is an important regu-
lator of cell cycle, can be targeted by several different miRNAs including miR-21, 
miR-22, miR-106b-25, miR-17-92 [17].

In tumorigenesis, miRNAs either act as tumor suppressor or as an oncogene; 
interestingly, their expression is repressed or induced by transcription factors such 
as p53 or MYC via their promoter regions. miR-145 is one of the initial examples of 
tumor suppressor miRNAs. miR-145 was found to be downregulated in a variety 
of tumors including colon, breast carcinomas [18, 19]. It is interesting that tumor 
suppressor protein p53 induces miR-145 expression via p53 response element in its 
promoter. Later, miR-145 targets c-Myc or insulin receptor substrate I (IGF-R1) pro-
tooncogenes and silences their expressions, hence preventing tumor cell prolifera-
tion [18, 20] . Furthermore miR-145 inhibits invasion and metastasis by targeting 
Fli-1 or Mucin-1 [20, 21]. miR-145 also targets estrogen receptor-α (ER-α) via its 
two complementary sites and downregulates ER-α expression [22]. miR-34 family 
is another target of p53 tumor suppressor protein [23]. Another important tumor 
suppressor miRNA is miR-34 family. miR-34 family comprises three members: 
miR-34a, miR-34b, and miR-34c. While miR-34a is ubiquitously expressed in every 
tissue, expression of miR-34b and miR-34c is restricted to fallopian tubes, lungs, 
and brain [24, 25]. miR-34a is a very potential tumor suppressor since it is target-
ing many mRNAs related with proliferation [such as cyclin-dependent kinase-4 
(CDK4) and cyclin-dependent kinase-6 (CDK6)], cellular growth [such as Notch2, 
platelet-derived growth factor receptor A (PDGFRA)], antiapoptosis [Bcl-2, sirtuin 
1 (SIRT1), survivin], invasion, and migration [MET, SNAIL, cluster of differentia-
tion (CD44)] [26–28]. Downregulation of miR-34 is observed among many malig-
nancies and associated with poor prognosis [29, 30]. As a result of its role as a tumor 
suppressor, miR-34 has been applied either alone or in combination with conven-
tional therapies on several tumor cell lines and mouse tumor models and showed 
promising results [31–34]. miR-34 was first miRNA tested in human Phase I trial 
(NCT01829971). MRX34, liposomal miR-34 mimic, was tested among patients with 
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solid advanced tumors. While MRX34 treatment showed evidence of antitumor 
activity in a subset of patients, it exerts some toxicities in patients. Hence, there is 
need for further studies for improving tolerability among the patients [35, 36].

In addition to tumor suppressor miRNAs, miRNAs behave like oncogenes, 
called as “oncomiRs.” mir-21 is the first miRNA identified as oncogenic; it is 
significantly upregulated in many tumors including colon cancer, breast cancer, 
hepatocellular carcinoma, and glioblastoma [37]. miR-21 overexpression con-
tributes to cell proliferation and antiapoptotic responses by targeting important 
downstream proteins such as phosphotensin homolog (PTEN), programmed 
cell death protein 4 (PDC4), and tropomyosin I [38–40]. Besides this, miR-21 
was shown to be bona fide oncogene by causing pre-B-cell lymphoma in mouse 
models by overexpression. When mir-21 expression was inactivated, tumors 
regressed completely in few days [41].

As the importance of miRNAs became evident, miRNA expression profiles for 
each tumor type have been studied with several methodologies including microar-
ray, QRT-PCR, and next-generation sequencing [15, 42]. miRNA expression profiles 
can reflect embryonic or development origin of the tissue and able to classify the 
origin of tissue with high accuracy (>90%), even separate cell subtypes (stem cells 
vs. progenitor cells) in the same tissue [43–45]. These miRNA profiling studies open 
the way for biomarker studies. In the biomarker studies, it is aimed to find diagnos-
tic, prognostic, and predictive markers for better characterization of the disease 
and therapy response as an outcome [46].

4. miRNA and colorectal cancer

Colorectal cancer (CRC) is the second most common cancer among the women 
and third most common cancer among men. In 2016, more than 1.4 million men 
and women in the USA have been diagnosed with CRC [47]. Despite the availability 
of successful treatment options such as surgery, chemotherapy, and radiotherapy, 
the prognosis of CRC is not promising. Relapse or metastatic spread occurs after 
surgery in many CRC patients. Colorectal cancer is divided into two phenotypes 
according to mutational status. In chromosomal instability phenotype (CIN), high 
rate of inactivating mutations in adenomatous polyposis coli (APC) and tumor 
protein P53 (TP53) genes are found as well as activating mutations in Kirsten rat 
sarcoma viral oncogene homolog (KRAS) gene. However mutations in DNA repair 
genes, transforming growth factor-beta receptor II (TGFBRII) gene, Bcl2- associated 
C protein (BAX) and BRAF genes are commonly existed in microsatellite instability-
high tumors (MSI-H) [48]. Certainly, genomic background affects the miRNA 
expression in CRC, such as TP53 mutations affect miR-145 expression levels, which 
is downregulated among many CRC patients [49, 50]. Furthermore, miR-193a-3p 
expression was found as specifically downregulated in BRAF-mutated CRC cases 
[51]. The distinction between these phenotypes became more prominent in disease 
progression and therapy response, which will be discussed in the following sections. 
In CRC, to date, totally, 1870 original studies were retrieved in PubMed (as of May 
2018), in which 38 of them were clinical trials investigating miRNA expression 
patterns in both CRC tissue specimen and plasma samples and compared them with 
normal samples. Bunch of miRNAs were found to be dysregulated in CRC samples 
in these studies [52–54]. While some of these miRNAs are related with early stages 
of tumorigenesis and can be used as diagnostic markers, the others are associated 
with therapeutic response, resistance to chemotherapy, and survival prognosis, 
hence aiding the physician in making therapeutic decisions as prognostic and 
predictive biomarkers [55].
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4.1 miRNAs in colorectal cancer diagnosis

Early diagnosis is essential for CRC patients since they have more favorable 
prognosis. Fecal blood test and colonoscopy techniques are being currently used for 
early screening. However, fecal blood tests are not very efficient for detecting early 
carcinoma formation. Colonoscopy is a gold standard technique, it reduces cancer 
risk about 30–75%, yet it is invasive and expensive technique and highly uncom-
fortable for a patient [56]. Therefore, noninvasive and inexpensive screening and 
diagnostic methods or biomarkers are needed. miRNAs are promising candidates 
for noninvasive biomarker diagnosis. Diagnostic miRNAs can be isolated from 
blood or stool samples as well as tumor tissues [57] (Table 1).

There are different miRNA profiling studies comparing CRC samples with 
normal healthy tissue samples; however, each study emphasized on different set 
of miRNAs in CRC diagnosis and progression. According to miRNA profile study, 
miR-18a, -20a, -21, -29a, -92a, -106b, -133a, -143, and -145 expression levels were 
found to be significantly changed in CRC patients when compared with normal 
patients, and these markers can be used for CRC diagnosis [59]. In a systematic 
review, miR-106a, -30a-3p, -139, -145, -125a, and -133a were proposed as diagnostic 
biomarkers [60]. In another study, miR-143, -145, -21, -320, -126, -484-5p, -143, 
-145, -16, -125b, -21, and -106 were found to be candidate for diagnostic biomarkers 
[57]. While studies share some common miRNAs (such as miR143, miR145, miR106, 
miR21), they are differing in their list of miRNAs. In fact, the type of miRNAs can 
be differed due to the type of sample (blood or stool), experimental procedures, 
and used microRNA platforms. Another handicap of these studies is that they have 
been conducted with a small number of samples. Larger sample studies and addi-
tional meta-analyses are need for better determination of CRC-related diagnostic 
markers. Still, it can be said that miRNAs are very promising noninvasive markers 
for tumor diagnosis.

4.2 miRNAs in colorectal cancer prognosis

Taking part in CRC diagnosis, miRNAs are also affecting prognosis and thera-
peutic response. As mentioned before, the expression and deregulation of miRNAs 
in CRC patients are affected by chromosomal abnormalities and microsatellite 
instability [61, 62]. In CRC, miRNA expression dysregulation is shown especially 
in microsatellite instability (MSI-high) tumors. MSI-high groups are distinct 
population among CRC patients, which accounts for 15% of all cases, observed in 
hereditary cases such as Lynch syndrome or in sporadic cases mostly as a result of 
hypermethylation or inactivation of mismatch repair (MMR) genes [63]. These 
MSI tumors characterized by distinct behavior are associated with proximal tumor 
localization and high infiltration of lymphocytes. These phenotypes showed less 
distant organ metastasis than MSI stable tumors and have better prognosis [64]. 
Several miRNAs have been shown in participating in inactivation of several DNA 
mismatch repair genes, such as miR-155 downregulates mutL protein homolog 
1 (MLH1), mutS homolog 2 (MSH2), and mutS homolog 6 (MSH6) mRNAs 
expression, whereas miR-21 targets MSH2 and MSH6 mRNA and inactivates them 
[65, 66]. Overall 94 miRNAs are differently expressed in microsatellite stable and in 
microsatellite instable tumors [67]. Upregulation (miR-17, miR-20, miR-25, miR-
31, miR92, miR-93, miR-133b, miR-135a, miR-183, miR-203, and miR-223) and 
downregulation (miR-16, miR-26b, miR-143, miR-145, miR-191, miR-192, miR-
215, and let-7a) are generally observed in MSI-high tumors [68]. miRNA expression 
is also differed among TP53 and KRAS mutated tumors as well. miR-125p targets 3′ 
UTR region of p53 and represses p53 expression and accelerates the tumor growth; 



Oncogenes and Carcinogenesis

34

solid advanced tumors. While MRX34 treatment showed evidence of antitumor 
activity in a subset of patients, it exerts some toxicities in patients. Hence, there is 
need for further studies for improving tolerability among the patients [35, 36].

In addition to tumor suppressor miRNAs, miRNAs behave like oncogenes, 
called as “oncomiRs.” mir-21 is the first miRNA identified as oncogenic; it is 
significantly upregulated in many tumors including colon cancer, breast cancer, 
hepatocellular carcinoma, and glioblastoma [37]. miR-21 overexpression con-
tributes to cell proliferation and antiapoptotic responses by targeting important 
downstream proteins such as phosphotensin homolog (PTEN), programmed 
cell death protein 4 (PDC4), and tropomyosin I [38–40]. Besides this, miR-21 
was shown to be bona fide oncogene by causing pre-B-cell lymphoma in mouse 
models by overexpression. When mir-21 expression was inactivated, tumors 
regressed completely in few days [41].

As the importance of miRNAs became evident, miRNA expression profiles for 
each tumor type have been studied with several methodologies including microar-
ray, QRT-PCR, and next-generation sequencing [15, 42]. miRNA expression profiles 
can reflect embryonic or development origin of the tissue and able to classify the 
origin of tissue with high accuracy (>90%), even separate cell subtypes (stem cells 
vs. progenitor cells) in the same tissue [43–45]. These miRNA profiling studies open 
the way for biomarker studies. In the biomarker studies, it is aimed to find diagnos-
tic, prognostic, and predictive markers for better characterization of the disease 
and therapy response as an outcome [46].

4. miRNA and colorectal cancer

Colorectal cancer (CRC) is the second most common cancer among the women 
and third most common cancer among men. In 2016, more than 1.4 million men 
and women in the USA have been diagnosed with CRC [47]. Despite the availability 
of successful treatment options such as surgery, chemotherapy, and radiotherapy, 
the prognosis of CRC is not promising. Relapse or metastatic spread occurs after 
surgery in many CRC patients. Colorectal cancer is divided into two phenotypes 
according to mutational status. In chromosomal instability phenotype (CIN), high 
rate of inactivating mutations in adenomatous polyposis coli (APC) and tumor 
protein P53 (TP53) genes are found as well as activating mutations in Kirsten rat 
sarcoma viral oncogene homolog (KRAS) gene. However mutations in DNA repair 
genes, transforming growth factor-beta receptor II (TGFBRII) gene, Bcl2- associated 
C protein (BAX) and BRAF genes are commonly existed in microsatellite instability-
high tumors (MSI-H) [48]. Certainly, genomic background affects the miRNA 
expression in CRC, such as TP53 mutations affect miR-145 expression levels, which 
is downregulated among many CRC patients [49, 50]. Furthermore, miR-193a-3p 
expression was found as specifically downregulated in BRAF-mutated CRC cases 
[51]. The distinction between these phenotypes became more prominent in disease 
progression and therapy response, which will be discussed in the following sections. 
In CRC, to date, totally, 1870 original studies were retrieved in PubMed (as of May 
2018), in which 38 of them were clinical trials investigating miRNA expression 
patterns in both CRC tissue specimen and plasma samples and compared them with 
normal samples. Bunch of miRNAs were found to be dysregulated in CRC samples 
in these studies [52–54]. While some of these miRNAs are related with early stages 
of tumorigenesis and can be used as diagnostic markers, the others are associated 
with therapeutic response, resistance to chemotherapy, and survival prognosis, 
hence aiding the physician in making therapeutic decisions as prognostic and 
predictive biomarkers [55].

35

MicroRNAs (miRNAs) in Colorectal Cancer
DOI: http://dx.doi.org/10.5772/intechopen.80828

4.1 miRNAs in colorectal cancer diagnosis
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fortable for a patient [56]. Therefore, noninvasive and inexpensive screening and 
diagnostic methods or biomarkers are needed. miRNAs are promising candidates 
for noninvasive biomarker diagnosis. Diagnostic miRNAs can be isolated from 
blood or stool samples as well as tumor tissues [57] (Table 1).
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for tumor diagnosis.
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hypermethylation or inactivation of mismatch repair (MMR) genes [63]. These 
MSI tumors characterized by distinct behavior are associated with proximal tumor 
localization and high infiltration of lymphocytes. These phenotypes showed less 
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mismatch repair genes, such as miR-155 downregulates mutL protein homolog 
1 (MLH1), mutS homolog 2 (MSH2), and mutS homolog 6 (MSH6) mRNAs 
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microsatellite instable tumors [67]. Upregulation (miR-17, miR-20, miR-25, miR-
31, miR92, miR-93, miR-133b, miR-135a, miR-183, miR-203, and miR-223) and 
downregulation (miR-16, miR-26b, miR-143, miR-145, miR-191, miR-192, miR-
215, and let-7a) are generally observed in MSI-high tumors [68]. miRNA expression 
is also differed among TP53 and KRAS mutated tumors as well. miR-125p targets 3′ 
UTR region of p53 and represses p53 expression and accelerates the tumor growth; 
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hence, expression levels of miR-125p are associated with poor survival among CRC 
patients [69]. However, miR34 expression is a good prognostic marker. miR-34 is 
one of the targets of p53 protein and it increases miRNA expression. miR-34 then 
suppresses the expression of WNT pathway and epithelial mesenchymal transition 
(EMT)-related genes. Increase of miR-34b and miR-34c levels in stromal tissue is 

miRNAs Expression Target genes

miR-15a Upregulate Bcl-2

miR-17-3p Upregulate E2F, CDKN1A

miR-18a Upregulate SMAD4, KRAS

miR-19a/miR-19b Upregulate PTEN

miR-20a Upregulate BECN1, ATG16L1, SQSTM1

miR-21 Upregulate PDCD4, PTEN, SPRY2, TPMI

miR-24 Downregulate Topoisomerase-1

miR-29a Upregulate DNMT3

miR-31 Downregulate WNT, β-catenin

miR-34a Downregulate SMAD4, FRAT1, Bcl-2, c-Met

miR-92a Upregulate PHLPP2, VHL, Bim

Let-7g Upregulate KRAS, Cdk6, Cdc25, HMGA2

miR-106b Upregulate P21, E2F1

miR-133a Downregulate MCL1, BCL2L2

miR-143 Downregulate Erk5, DNMT3, KRAS

miR-145 Downregulate EGFR, IRS-1

miR-181b Downregulate ATM

miR-203 Downregulate ABL1, TP63

miR-223 Upregulate STMN1

miR-302 Upregulate GAB2, AKT2

miR-320a Downregulate VDAC, STAT3, SOX4

miR-335 Upregulate RASA-1

miR-375 Downregulate SLC7A11, IGFR1, SEC23A

miR-422a Downregulate TGF-β, CD73

miR-423-5p Downregulate RFVT3

miR-601 Downregulate PTP4A1

miR-760 Downregulate PHLPP2

Abbreviations: Bcl-2, B cell lymphoma-2; E2F, E2F transcription factor 1; CDKN1A, cyclin-dependent kinase 
inhibitor 1A; KRAS, Kirsten rat sarcoma viral oncogene homolog; PTEN, phosphotensin homolog; BECN1, Beclin 
1; ATG16L1, autophagy-related 16 like 1; SQSTM1, sequestosome 1; PDCD4, programmed cell death 4; SPRY2, 
sprouty RTK signaling antagonist 2; DNMT3, DNA methyl transferase 3; FRAT1, WNT signaling pathway regulator; 
PHLPP2, PH domain leucine-rich repeat protein phosphatase 2; VHL, von Hippel-Lindau tumor suppressor; Cdk6, 
cyclin-dependent kinase 6; Cdc25, cell division cycle 25A; HMGA2, high-mobility group gene; P21, CDKN1A, cyclin-
dependent kinase inhibitor 1A; E2F1, E2F transcription factor 1; MCL1, BCL2 family apoptosis regulator; BCL2L2, 
BCL2 like 2; EGFR, epidermal growth factor receptor; IRS-1, insulin receptor substrate 1; ATM, ataxia telangiectasia 
mutated; ABL1, v-abl Abelson murine leukemia viral oncogene homolog 1; TP63, tumor protein p63; STMN1, 
stathmin 1; GAB2, GRB2-associated binding protein 2; AKT2, v-akt murine thymoma viral oncogene homolog 2; 
VDAC, voltage-dependent anion channel; SOX4, SRY (sex-determining region Y)-box 4; SLC7A11, solute carrier 
family 7 member 11; IGFR1, insulin-like growth factor 1 receptor; TGF-β, transforming growth factor-beta; CD73, 
cluster of differentiation 73; RFVT3, known as SLC52A3 (solute carrier family 52 member 3); PTP4A1, protein 
tyrosine phosphatase 4a1.

Table 1. 
Simplified list of diagnostic miRNA markers for colorectal cancer (modified from Refs. [58, 59]).
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leading to poor prognosis in colon cancer [70–72]. miR-122, miR-214, miR-372, 
miR-15b, let-7e, and miR-17 are other dysregulated miRNAs found in TP53 mutated 
tumors [73]. miR-148-b and miR-221 are also important diagnostic markers associ-
ated with p53 mutational status, and their overexpression is associated with worse 
prognosis [74, 75]. miR-143 and miR-145 are frequently downregulated in CRC 
and their one of the targets is KRAS mRNA; hence, they are important prognostic 
and predictive biomarkers in CRC [76, 77]. Let-7 role is one of the well-studied 
tumor suppressor miRNAs, which targets RAS. Let-7a expression is higher in KRAS 
mutated metastatic samples than normal mucosa or nonmetastatic disease [78]. 
Decrease Let-7b expression is worse prognostic marker, which is associated with 
recurrence and low overall survival of patients [79]. Furthermore, decrease in miR-
487b levels is associated with liver metastasis in CRC patients [80]. Not only KRAS-
associated miRNAs act as tumor suppressor, some of them are acting oncogenic in 
prognosis. miR-200 and miR-221 are downstream miRNAs of RAS pathway, and 
high expression of these miRNAs is related with worse prognosis [81].

Furthermore, exosome-containing miRNAs (miR-17/92 cluster and miR-19a 
cluster) are evaluated as biomarkers for early diagnosis and high recurrence in 
patients with CRC [82]. miR-21-5p, miR-29-3p, and miR-148-3p levels were studied 
in CRC samples and show that dysregulation in these miRNAs is associated with 
high mortality risk [83].

4.3 miRNAs in treatment response prediction of colorectal cancer

A variety of therapeutic advances are existed for CRC treatment such as con-
ventional chemotherapy (5-fluorouracil, capecitabine, irinotecan, oxaliplatin), 
immunotherapy, radiotherapy, and chemoradiotherapy. miRNAs play an impor-
tant role in the regulation of effectiveness and resistance to these therapies and 
prediction of personalized therapy response [84, 85]. Resistance to therapy is 
still the biggest challenge for defeating cancer. It may be caused by a variety of 
reasons such as reduction in transportation and intracellular accumulation of 
drugs by modulating the activity of drug transporters such ATP-binding cas-
sette subfamily B (ABCB)/multidrug resistance (MDR) transporters (which is 
reviewed in reference [86]), dysregulation in DNA damage repair mechanisms, 
insufficient or oncogenic immune response, blockage of apoptosis, emergence 
of inflammation, and altered expression of oncogenes and tumor suppressor 
genes related with therapy response. miRNAs are actively participating in all of 
these resistance mechanisms [87, 88].

4.3.1 Chemotherapy

Although there are advances in cytotoxic and targeted therapy in CRC, drug 
resistance is one of the most important obstacles in front of successful chemother-
apy [89]. Fluoropyrimidine-based chemotherapy (5-FU or capecitabine), vascular 
endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 
(VEGFR)-targeted, and epidermal growth factor receptor (EGFR)-targeted thera-
pies are the main therapeutic methods for CRC [87]. miRNAs have role in chemo-
therapy resistance in terms of deregulation of drug metabolism-related enzymes, 
increased efflux of chemotherapeutics, impairment of chemotherapeutic-induced 
apoptosis, modulation of DNA damage repair, and autophagy [87].

miR-92b-3p, miR-3156-5p, miR-10a-5p, and miR-125a-5 were found to be 
related with progression-free survival in meta;static CRC patients treated with 
5-FU/oxaliplatin/bevacizumab regime [90]. A negative relationship was found 
between miR-27b, miR-148a, and miR-326 expression levels and progression-free 
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hence, expression levels of miR-125p are associated with poor survival among CRC 
patients [69]. However, miR34 expression is a good prognostic marker. miR-34 is 
one of the targets of p53 protein and it increases miRNA expression. miR-34 then 
suppresses the expression of WNT pathway and epithelial mesenchymal transition 
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leading to poor prognosis in colon cancer [70–72]. miR-122, miR-214, miR-372, 
miR-15b, let-7e, and miR-17 are other dysregulated miRNAs found in TP53 mutated 
tumors [73]. miR-148-b and miR-221 are also important diagnostic markers associ-
ated with p53 mutational status, and their overexpression is associated with worse 
prognosis [74, 75]. miR-143 and miR-145 are frequently downregulated in CRC 
and their one of the targets is KRAS mRNA; hence, they are important prognostic 
and predictive biomarkers in CRC [76, 77]. Let-7 role is one of the well-studied 
tumor suppressor miRNAs, which targets RAS. Let-7a expression is higher in KRAS 
mutated metastatic samples than normal mucosa or nonmetastatic disease [78]. 
Decrease Let-7b expression is worse prognostic marker, which is associated with 
recurrence and low overall survival of patients [79]. Furthermore, decrease in miR-
487b levels is associated with liver metastasis in CRC patients [80]. Not only KRAS-
associated miRNAs act as tumor suppressor, some of them are acting oncogenic in 
prognosis. miR-200 and miR-221 are downstream miRNAs of RAS pathway, and 
high expression of these miRNAs is related with worse prognosis [81].

Furthermore, exosome-containing miRNAs (miR-17/92 cluster and miR-19a 
cluster) are evaluated as biomarkers for early diagnosis and high recurrence in 
patients with CRC [82]. miR-21-5p, miR-29-3p, and miR-148-3p levels were studied 
in CRC samples and show that dysregulation in these miRNAs is associated with 
high mortality risk [83].

4.3 miRNAs in treatment response prediction of colorectal cancer

A variety of therapeutic advances are existed for CRC treatment such as con-
ventional chemotherapy (5-fluorouracil, capecitabine, irinotecan, oxaliplatin), 
immunotherapy, radiotherapy, and chemoradiotherapy. miRNAs play an impor-
tant role in the regulation of effectiveness and resistance to these therapies and 
prediction of personalized therapy response [84, 85]. Resistance to therapy is 
still the biggest challenge for defeating cancer. It may be caused by a variety of 
reasons such as reduction in transportation and intracellular accumulation of 
drugs by modulating the activity of drug transporters such ATP-binding cas-
sette subfamily B (ABCB)/multidrug resistance (MDR) transporters (which is 
reviewed in reference [86]), dysregulation in DNA damage repair mechanisms, 
insufficient or oncogenic immune response, blockage of apoptosis, emergence 
of inflammation, and altered expression of oncogenes and tumor suppressor 
genes related with therapy response. miRNAs are actively participating in all of 
these resistance mechanisms [87, 88].

4.3.1 Chemotherapy

Although there are advances in cytotoxic and targeted therapy in CRC, drug 
resistance is one of the most important obstacles in front of successful chemother-
apy [89]. Fluoropyrimidine-based chemotherapy (5-FU or capecitabine), vascular 
endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 
(VEGFR)-targeted, and epidermal growth factor receptor (EGFR)-targeted thera-
pies are the main therapeutic methods for CRC [87]. miRNAs have role in chemo-
therapy resistance in terms of deregulation of drug metabolism-related enzymes, 
increased efflux of chemotherapeutics, impairment of chemotherapeutic-induced 
apoptosis, modulation of DNA damage repair, and autophagy [87].

miR-92b-3p, miR-3156-5p, miR-10a-5p, and miR-125a-5 were found to be 
related with progression-free survival in meta;static CRC patients treated with 
5-FU/oxaliplatin/bevacizumab regime [90]. A negative relationship was found 
between miR-27b, miR-148a, and miR-326 expression levels and progression-free 
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survival in metastatic colorectal cancer patients receiving first-line oxaliplatin-
based treatment [91]. The expression of miR-326 was related with decreased overall 
survival. These results proposed that plasma miRNAs can be used as noninvasive 
biomarkers for evaluating drug response in metastatic CRC patients who are treated 
with 5-FU and oxaliplatin-based chemotherapy [91] (Table 2).

4.3.2 Immunotherapy

Since chemo/radio therapies and surgery have limitations, immunotherapy is 
a good alternative to treat CRC patients. Immunotherapy aimed to evoke immune 
system to eliminate tumors either using immune stimulatory cytokines (vaccines, 
etc.) or checkpoint inhibitors [such as cytotoxic T-lymphocyte-associated antigen 4 
(CTLA-4), programmed death 1 (PD-1) receptor, and its ligands (PD-L1/2)] [92]. 
Interestingly, immune cell filtrates more in MSI-high CRC, and these subtypes are 
responding better to immunotherapies [93].

miRNAs Therapy Expression Target genes

miR-7 EGFR-targeted Downregulate EGFR, RAF-1

miR-10b 5-FU Upregulate BIM

miR-20a Oxaliplatin Upregulate BNIP2

miR-21 5-FU Upregulate MSH2

miR-22 5-FU Downregulate BTG-1

miR-23a 5-FU Upregulate APAF-1, ABCF-1

miR-27a, miR-27b 5-FU Downregulate DPYD

miR-133b EGFR-targeted Downregulate EGFR

miR-139-5p 5-FU Downregulate Bcl-2

miR-143 Oxaliplatin Downregulate IGF-1R

miR-153 Oxaliplatin Upregulate FOXO3a

miR-199-5p, miR-375 EGFR Upregulate PHLPP1

miR-203 5-FU Downregulate TYMS

miR-203 Oxaliplatin Upregulate ATM

miR-204 5-FU Downregulate HMGA2

miR-218 5-FU Downregulate TYMS, BIRC5

miR-302, miR-369, miR-200c 5-FU Upregulate MRP8

miR-409-3p Oxaliplatin Downregulate Beclin-1

miR-425-5p 5-FU Upregulate PDCDIO

miR-494 5-FU Downregulate DPYD

miR-519c 5-FU Downregulate ABCG2, HuR

miR-520g Oxaliplatin Upregulate P21

Abbreviations: 5-FU, 5-fluorouracil; EGFR, epidermal growth factor; RAF-1, Raf protooncogene; BNIP2, BCL2-
interacting protein 2; MSH2, human mutS homolog 2; BTG-1, BTG antiproliferation factor 1; APAF-1, apoptotic 
peptidase-activating factor 1; ABCF-1, ATP-binding cassette subfamily D member 1; DPYD, dihydropyrimidine 
dehydrogenase; Bcl-2, B cell lymphoma-2; IGF-1R, insulin-like growth factor 1 receptor; FOXO3a, forkhead box 
class O3; PHLPP1, Phlpp1 PH domain and leucine-rich repeat protein; TYMS, thymidylate synthase; ATM, ataxia 
telangiectasia mutated; HMGA2, high mobility group AT-hook 2; BIRC5, baculoviral IAP repeat containing 5; 
MRP8, myeloid-related protein 8; ABCG2, ATP-binding cassette subfamily G member 2; P21, cyclin-dependent 
kinase inhibitor 1A.

Table 2. 
The expression profile of miRNAs that have role on chemotherapy response in colorectal cancer (modified from 
Ref. [85]).
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miRNAs are essential in regulation of the immune response as well. The 
role of miR-34 has been mentioned earlier. Upregulation of miR-34a elicits the 
activation of tumor-infiltrating CD8+ T cells by targeting PD-L1 [94]. miRNAs 
are also involved in innate immunity by macrophages and NK cells, and adap-
tive immunity by B cells, T cells, and dendritic cells. miR-124 modulates signal 
transducer and activator of transcription 3 (STAT3) pathway and enhances the 
T cell-mediated immune clearance [95]. miR-491 regulates the proliferation and 
apoptosis of CD8+ T cells [96]. miR-491 inhibits the activation of CD8+ T cells 
and promotes its apoptosis via targeting B-cell lymphoma-extra-large (Bcl-xL), 
cyclin-dependent kinase-4 (CDK4), and T cell factor 1 (TCF1), hence aiding 
tumor cells escaping from immune system. Tumor-derived TGF-β also induces 
the miR-491 expression. Thus, miR-491 can be evaluated as a new immunotarget 
for CRC treatment [96].

miR-196b, miR-378a, and miR-486-5p are evaluated as predictive biomarkers 
for the efficacy of the vaccine treatment in CRC [97]. miRNAs were enrolled in 
Phase II studies. In 16 patients, high expression of miR-196b-5p and low expression 
of miR-378a-3p and miR-486-5p are associated with better prognosis after vaccine 
treatment. Hence, these miRNAs can be determined as novel biomarkers for predic-
tion of outcome responses of patients [97].

4.3.3 Potential candidates

miRNAs are also involving in radiotherapy responses. The expression of miRNA-
processing enzymes Drosha and Dicer was found to be upregulated in radioresistant 
cell lines when compared with radiosensitive cell lines [98]. The role of miRNAs in 
radiotherapy response was evaluated further in the study cited as reference [87]. 
In the study, biomarkers for the prediction of chemoradiotherapy response in 
CRC were identified by using integrative and systematic bioinformatics analysis. 
The unique target genes of miR-198 and miR-765 were altered significantly upon 
transfection of specific miRNA mimics in the radiosensitive cell line. Thus, it could 
be said that miR-198, miR-202, miR-371-5p, miR-513a-5p, miR-575, miR-630, and 
miR-765 could be used for predicting the response of CRC to preoperative chemo-
radiotherapy [87]. Still, further studies are needed to understand the miRNA role in 
radiotherapy/radiochemotherapy prediction.

5. Concluding remarks and limitations

By the discovery of miRNAs, a significant number of studies have been con-
ducted to indicate the utility of miRNAs. According to the highlighted studies, 
miRNAs in body fluids have potential to be predictive, diagnostic or prognostic 
biomarkers; and also they can be therapeutic targets due to their inducer ability on 
tumorigenesis. Basically, miRNAs offer promising practice for screening, diagnosis, 
prognosis, and treatment of cancer. Therefore, these noncoding RNA fragments 
may be used alone or combined with other protocols to screen, diagnose, prognose, 
and treat cancer. However, their clinical importance is still not conclusive, and 
validation studies are needed for routine-based clinical application.

Evidences showed that inhibition of oncomiRs or replacement of tumor suppres-
sive miRNAs could be used to develop innovative treatment approaches. Further 
studies are needed to reveal the molecular mechanisms on the regulation of miRNA 
biogenesis. Determination of miRNA target genes, molecular interactions between 
target mRNA and miRNAs, and signaling pathways will help to interpret molecular 
mechanisms of cancer. Besides investigations on miRNA expression patterns and 
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survival in metastatic colorectal cancer patients receiving first-line oxaliplatin-
based treatment [91]. The expression of miR-326 was related with decreased overall 
survival. These results proposed that plasma miRNAs can be used as noninvasive 
biomarkers for evaluating drug response in metastatic CRC patients who are treated 
with 5-FU and oxaliplatin-based chemotherapy [91] (Table 2).

4.3.2 Immunotherapy

Since chemo/radio therapies and surgery have limitations, immunotherapy is 
a good alternative to treat CRC patients. Immunotherapy aimed to evoke immune 
system to eliminate tumors either using immune stimulatory cytokines (vaccines, 
etc.) or checkpoint inhibitors [such as cytotoxic T-lymphocyte-associated antigen 4 
(CTLA-4), programmed death 1 (PD-1) receptor, and its ligands (PD-L1/2)] [92]. 
Interestingly, immune cell filtrates more in MSI-high CRC, and these subtypes are 
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miRNAs are essential in regulation of the immune response as well. The 
role of miR-34 has been mentioned earlier. Upregulation of miR-34a elicits the 
activation of tumor-infiltrating CD8+ T cells by targeting PD-L1 [94]. miRNAs 
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transducer and activator of transcription 3 (STAT3) pathway and enhances the 
T cell-mediated immune clearance [95]. miR-491 regulates the proliferation and 
apoptosis of CD8+ T cells [96]. miR-491 inhibits the activation of CD8+ T cells 
and promotes its apoptosis via targeting B-cell lymphoma-extra-large (Bcl-xL), 
cyclin-dependent kinase-4 (CDK4), and T cell factor 1 (TCF1), hence aiding 
tumor cells escaping from immune system. Tumor-derived TGF-β also induces 
the miR-491 expression. Thus, miR-491 can be evaluated as a new immunotarget 
for CRC treatment [96].

miR-196b, miR-378a, and miR-486-5p are evaluated as predictive biomarkers 
for the efficacy of the vaccine treatment in CRC [97]. miRNAs were enrolled in 
Phase II studies. In 16 patients, high expression of miR-196b-5p and low expression 
of miR-378a-3p and miR-486-5p are associated with better prognosis after vaccine 
treatment. Hence, these miRNAs can be determined as novel biomarkers for predic-
tion of outcome responses of patients [97].

4.3.3 Potential candidates

miRNAs are also involving in radiotherapy responses. The expression of miRNA-
processing enzymes Drosha and Dicer was found to be upregulated in radioresistant 
cell lines when compared with radiosensitive cell lines [98]. The role of miRNAs in 
radiotherapy response was evaluated further in the study cited as reference [87]. 
In the study, biomarkers for the prediction of chemoradiotherapy response in 
CRC were identified by using integrative and systematic bioinformatics analysis. 
The unique target genes of miR-198 and miR-765 were altered significantly upon 
transfection of specific miRNA mimics in the radiosensitive cell line. Thus, it could 
be said that miR-198, miR-202, miR-371-5p, miR-513a-5p, miR-575, miR-630, and 
miR-765 could be used for predicting the response of CRC to preoperative chemo-
radiotherapy [87]. Still, further studies are needed to understand the miRNA role in 
radiotherapy/radiochemotherapy prediction.

5. Concluding remarks and limitations

By the discovery of miRNAs, a significant number of studies have been con-
ducted to indicate the utility of miRNAs. According to the highlighted studies, 
miRNAs in body fluids have potential to be predictive, diagnostic or prognostic 
biomarkers; and also they can be therapeutic targets due to their inducer ability on 
tumorigenesis. Basically, miRNAs offer promising practice for screening, diagnosis, 
prognosis, and treatment of cancer. Therefore, these noncoding RNA fragments 
may be used alone or combined with other protocols to screen, diagnose, prognose, 
and treat cancer. However, their clinical importance is still not conclusive, and 
validation studies are needed for routine-based clinical application.

Evidences showed that inhibition of oncomiRs or replacement of tumor suppres-
sive miRNAs could be used to develop innovative treatment approaches. Further 
studies are needed to reveal the molecular mechanisms on the regulation of miRNA 
biogenesis. Determination of miRNA target genes, molecular interactions between 
target mRNA and miRNAs, and signaling pathways will help to interpret molecular 
mechanisms of cancer. Besides investigations on miRNA expression patterns and 
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their molecular mechanisms, studies on technological developments for reliable 
and cost-effective miRNA applications are also extremely important to enhance 
minimally invasive routine miRNA applications. Methodological variability among 
different clinical centers is the biggest limitation for the successful combination of 
miRNAs in cancer management. Standardization and normalization of essential 
steps of miRNA applications, such as miRNA extraction, processing, biobanking, 
and quantitation, eliminate the clinical facility-based variations. Using internal 
controls and enrollment of the laboratory accreditation/validation programs may 
present benefits for standardization. miRNAs have potential to be therapeutic 
targets and treatment options. But determination of mRNAs and miRNAs interac-
tions and obtaining the large population-based multicenter cohorts are essential to 
use miRNAs in therapy. Especially before the implementation of miRNAs in clinics, 
evaluation of miRNA panels on large patient cohorts must be achieved.
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Abstract

A member of the NCOA/SRC/p160 co-activator family, AIB1 is amplified and 
overexpressed in multiple cancer types, notably breast, ovarian, and pancreatic 
cancer. Common to all members of the NCOA/SRC/p160 family are bHLH-PAS, 
receptor interaction, and CBP/p300 interacting activation domains. The protein 
acts as a scaffold to support the transcriptional activity of many DNA binding 
transcription factors, such as the ER, AP-1, E2F, NFκB, and TEADs. In doing so, 
the multi-domain protein facilitates chromatin remodeling and oncogenic gene 
transcription. Further, the AIB1Δ4 isoform promotes tumorigenesis and metas-
tasis through interaction with chromatin in the nucleus or at the periphery of the 
cell. Pathologically, AIB1 promotes the transformation of normal tissue to cancer-
ous lesions in multiple diseases, and loss delays progression. AIB1 has also been 
implicated in cancer recurrence and pharmacological resistance. We will discuss 
the structure and isoforms of AIB1, the physiological consequences of its interac-
tion with transcription factors and hormone receptors, and clinical significance of 
the protein.

Keywords: AIB1, NCOA3, SRC-3, nuclear coactivator, steroid receptor co-activator, 
oncogene, breast cancer, transcriptional co-activation, chromatin modification

1. Introduction

Amplified in breast cancer 1 (AIB1) is a transcriptional co-activator and a 
member of the nuclear co-activator (NCOA) family; the protein was discovered 
concurrently by many groups and given a variety of names, including AIB1 [1], 
ACTR [2], TRAM-1 [3], RAC-3 [4], CIP1 [5], and SRC-3 [6]. AIB1 is an oncogene 
that is amplified and overexpressed in cancer, and acts by recruiting and stabiliz-
ing chromatin remodeling complexes [1, 2, 7]. In its well-known capacity, AIB1 
interacts with nuclear receptors such as the estrogen, progesterone, and androgen 
receptor, to promote hormone dependent transcription and repression. Less well-
studied, AIB1 promotes disease progression and de-differentiation by potentiating 
oncogenic signaling through interaction with a diversity of transcription factor 
interactions in hormone-independent disease contexts [8–11]. Thus, AIB1 acts as an 
oncogene by stabilizing transcription complexes, recruiting chromatin modifying 
enzymes, and thereby amplifying oncogenic signals. Unsurprisingly, high AIB1 
levels are a poor prognostic marker across many cancer types, and also the protein 
can facilitate resistance to therapeutics in patients. Herein, we describe the form 
and function of AIB1, and its role in cancer and the clinical setting.
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2. Structure of the oncogene

2.1 The nuclear coactivator (NCOA) family

The NCOA/SRC/p160 co-activator family consists of NCOA1 (also called 
SRC-1), NCOA2 (also called SRC-2, GRIP1, or TIF2), and AIB1 (also called SRC-3, 
NCOA3, ACTR, TRAM-1, and RAC-3). The three family members share ~55% 
sequence homology, and common to all members is a bHLH-PAS domain, nuclear 
receptor interaction domains, and C-terminal activation domains (reviewed in 
[12]). As a result, the members of the NCOA family interact with many differ-
ent transcription factors, nuclear receptors, and chromatin modifying enzymes. 
Apart from mediating transcription factor interactions (detailed in Section 6 of 
this review), the homologous domains and residues are critical to protein stability 
and turnover. The bHLH-PAS domain contains residues essential for proteasomal 
mediated protein turnover (K17 and R18) as well as a nuclear localization signal; 
site-directed mutagenesis of these residues promote protein hyperstability [13]. 
Though the bHLH-PAS domain shares homology to DNA recognizing motifs found 
in both Drosophila and Humans, the NCOA family members do not directly bind 
the DNA, but rather facilitate transcriptional activity of binding partners [14]. The 
bHLH-PAS domain mediates the NCOA members’ interaction with transcription 
factors, repressors, and coactivators, but is lost in the clinically relevant Δ4 isoform 
(see Section 2.2). The middle region of the NCOA family proteins contains three 
a-helical LXXLL motifs (NR Boxes) that mediate nuclear receptor (NR) recogni-
tion and specificity [15, 16]. The affinity of the NCOA is both dependent on the 
individual nuclear receptors, as well as the specific bound ligands [17]. Interaction 
with nuclear receptors, including the well understood interaction with the Estrogen 
Receptor, is detailed in Section 4. The C-terminus contains two activation domains, 
as well as a glutamine-rich region. These activation domains are critical to the 
recruitment of chromatin remodeling enzymes CBP/p300, P/CAF, CARM1, and 
PRMT1 [2, 18]. Similar to the bHLH-PAS domain, the C-terminal activation 
domains are critical for a variety of transcription factor interactions. Furthermore, 
SRC-1 and AIB1 both have minimal acyltransferase activity, associated with their 
C-terminal activation domains, which function as histone acetyltransferases [2, 19]. 
Figure 1 illustrates the structure of AIB1 and some of its known binding partners. 

Figure 1. 
AIB1 interacts with many proteins through its independent domains. Line diagram showing some of the proteins 
that AIB1 and AIB1Δ4 interact with in a cell. Bolded proteins are described in the text of this chapter. Critical 
residues for phosphorylation (yellow) and ubiquitination (blue) are shown. bHLH = basic helix-loop-helix 
domain; PAS = PER-ARNT-SIM domain. AD = activation domain.
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It is the independent functions of the multiple domains of AIB1 that allow it to 
perform a variety of different cellular activity. Of note, the capacity of AIB1 to act 
as a co-activator is dependent not on mutually exclusive interactions, but rather on 
many simultaneous binding events in which it acts as a scaffold to support multi-
protein complex formation.

2.2 The AIB1Δ4 isoform

We have identified an isoform of the AIB1 oncogene that lacks the N-terminal 
bHLH-PAS A domain, originally designated Δ3, now called AIB1Δ4. Alternative 
splicing results in the loss of exon 4, thereby shifting the start codon to exon 7 and 
forming a N-terminal truncated, yet functional protein, missing 224 amino acids 
[20, 21]. As the isoform retains its nuclear receptor interacting domain, poly-Q 
region, and its C-terminal activation domains, the isoform can localize to estrogen 
response elements in the nucleus and recruits CBP/p300 to activate hormone 
dependent transcription [22]. Moreover, Δ4 isoform can also utilize its C-terminal 
activation domains, meaning that it can still co-activate many of hormone recep-
tors and transcription factors on which it usually acts (see Sections 4 and 6). While 
retaining the ability to perform a significant portion of its normal activity, AIB1Δ4 
cannot bind an endogenous repressor, ANCO1, and this may contribute to a signifi-
cant portion of its hyperactivity [23, 24].

AIB1Δ4 has been shown to be highly responsive to growth factor and estro-
gen signaling. While much of this chapter will be devoted to the role of AIB1 on 
promoting transcription, it can also act as a key player in repression complexes. 
The ANCO1 repressor binds and represses the AIB1-ER complex on an estrogen 
response element in the Her2 gene body. This mechanism allows for estrogen medi-
ated repression of the Her2 gene, as AIB1 in turn recruits histone deacetylases to the 
site to suppress transcription. The AIB1Δ4 isoform is not repressed by this mecha-
nism, as it lacks the bHLH-PAS domain that ANCO1 requires as a binding interface, 
and thus maintains transcription of the Her2 growth factor receptor. As a result, the 
AIB1Δ4 isoform enhances growth factor signaling input via increasing the mRNA 
levels of the receptor [24].

Interestingly, by lacking the N-terminal bHLH-PAS domain containing the 
nuclear localization signal, the Δ4 isoform localizes both to the nucleus and cyto-
plasm. In the cytoplasm, the isoform interacts with both EGFR and FAK to promote 
cell migration through promotion of Src phosphorylation. The bHLH-PAS domain 
generally acts as an inhibitor of this interaction [25]. Knockdown of AIB1 in ovar-
ian cells also results in a mislocalization of FAK, which may be due to loss of the 
isoform [26].

The role of AIB1Δ4 has been validated in vivo. AIB1Δ4 has been shown to 
increase mammary cell proliferation in tissue specific genetically engineered mouse 
models, potentially by increasing levels of IGF-1R levels on the cell surface [27]. 
Overexpression of the isoform resulted in similar hyperplasia as compared to the 
overexpression of the full-length protein, however it further presented with an 
increase in progesterone receptor signaling and cell cycle promoting cyclin levels. 
Compared to the full-length protein, AIB1Δ4 acted synergistically with ERα to 
promote mammary gland stromal and epithelial hyperplasia [28]. The isoform is 
not only seen in estrogen dependent breast cancer, as AIB1Δ4 expression levels are 
increased in metastatic triple negative (hormone-independent) and pancreatic 
cancer cell lines, compared to their isogenic parental lines [22]. More data is needed 
to explain the complete function of AIB1Δ4, which clearly plays a role in normal 
physiology, and may contribute to disease progression and invasion.
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3. Modifications and PTMs regulate AIB1 activity

Post-translational modifications (PTM) are critical to modulating the stability 
and activity of AIB1. Within the 165 kDa protein, there are multiple phosphoryla-
tion and ubiquitination sites, some of which have been well described by recent 
experimentation.

3.1 Transcriptional regulation of AIB1

AIB1 protein level is regulated by multiple processes, with levels primarily peak-
ing during the cell cycle. AIB1 autoregulates its own expression and is recruited 
to its own promoter in complex with E2F1 (see Section 6.3). AIB1 transcription is 
responsive to cell cycle cues mediated by Rb hypophosphorylation and resulting 
activation of E2F; thus, AIB1 levels increase during G1, and attenuate during S 
phase (when comparing relative levels during the cell cycle) [29]. Downregulation 
of AIB1 protein levels is, in part, mediated by the FoxG1 tumor suppressor, which 
acts by interacting with AIB1 and disrupting the interaction with E2F1 on its own 
promoter (FoxG1 additionally interrupts AIB1’s activity with other transcription 
factors, such as NFκB, AP-1, and the Estrogen Receptor) [30]. Tight control of the 
AIB1 activity is regulated by its own positive feedback and tempered by inhibitory 
protein interactions.

AIB1 is also targeted by microRNA that regulates its expression. miR-17-5p 
targets at least two sites on the AIB1 mRNA, and miR-20b also binds to AIB1 
mRNA. The two miRs are negatively correlated with AIB1 expression and loss of 
miR expression is associated with taxol resistance in breast cancer [31, 32]. These 
miRs, in addition to down regulating AIB1, interact with multiple other proteins to 
differentially regulate their gene expression. As a result, they are implicated in the 
progression or suppression of several cancers, in a context dependent manner.

3.2 The AIB1 life cycle

The stability and half-life of the AIB1 protein, once translated, is regulated by 
a series of phosphorylation and ubiquitination events (see Figure 1). There is a 
balance achieved between multi-mono-ubiquitination and long chain poly-ubiq-
uitination that creates a phosphorylation dependent ‘time clock’ for the stability of 
AIB1. GSK3 phosphorylates AIB1 at S505 and S509 in the absence of AKT signaling 
to promote its multi-mono- or poly-ubiquitination by SCFFbw7α at K723 and K726. 
Amplified AKT signaling inactivates GSK3. Multi-(mono)ubiquitination of AIB1 
then promotes hormone dependent activity through interaction with the estrogen 
receptor, whereas poly-ubiquitination promotes degradation of AIB1 [33].

An alternative variety of phosphatases regulate proteasome mediated turnover 
by binding and dephosphorylating AIB1. PDXP, PP1, and PP2A dephosphorylate 
AIB1 at S101 and S102, and negatively regulate Estrogen Receptor binding and 
cooperation. PP1 specifically stabilizes AIB1 by preventing proteasomal turnover by 
dephosphorylating the N-terminal C-region degron at the S101 and S102 residues. 
Though more stable, decreased affinity for the estrogen receptor significantly 
reduced AIB1 mediated cell growth in estrogen dependent cell lines [34]. Regulation 
of AIB1 protein levels is thus regulated by a complex series of phosphorylation and 
ubiquitination events in response to cell signaling and stimulation. The phosphory-
lation and ubiquitination sites may be unique to the pathways promoting turnover, 
and thus further study is warranted to better understand the signaling cascades that 
control AIB1 levels.
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3.3 AIB1 post-translational modifications modulate activity

AIB1 is phosphorylated at different serine and threonine residues throughout 
the different domain structures by a variety of kinases. As a result, AIB1 is respon-
sive to many different upstream signaling cascades, contributing to its oncogenic 
nature. JNK, p38, ERK, IKK, and PKA can all phosphorylate AIB1 at different resi-
dues to promote interaction with CBP and subsequently activate transcription (see 
Figure 1). Phosphorylation sites within AIB1 have been well profiled as mediators 
of certain protein-protein interactions. Six phosphorylation sites were originally 
described as essential for interaction with the estrogen and androgen receptors 
(T24, S505, S543, S857, S860, and S867). Conversely, phosphorylation at only T24 
and S867 was required for TNF mediated NFκB interaction and activity [35]. These 
phosphorylation events in response to estradiol, TNFα, and upstream IGF signaling 
thus activate AIB1 to interact with partners and potentiate transcription [35–37]. 
Additionally, we have found that Abl kinase phosphorylates AIB1 at Y1357 in 
response to IGF, EGF and estradiol stimulation, which results in AIB1 interaction 
with essential chromatin modifying enzymes. This phosphorylation event is critical 
for AIB1’s coactivator function [38]. Phosphorylation of AIB1 is thus a critical step 
in activation of the protein and is mediated by a variety of upstream signals that 
converge on the oncogenic coactivator. Some phosphorylation sites are required for 
all described activity, yet much work needs to be done to better understand what 
regulates the selectivity of AIB1 to bind with specific transcription factors and 
nuclear receptors.

4. AIB1 potentiates hormone receptor signaling

Estrogen, progesterone and androgen receptors (ER, PR, AR) are nuclear 
steroid receptors, which play a major role in sexual development and reproduc-
tion. Upon binding to their ligands, these receptors dimerize and translocate to 
the nucleus. They act as transcription factors by binding directly to unique DNA 
sequences termed response elements. Subsequently, histone modifying enzymes 
and transcriptional co-regulators are recruited to activate target gene transcription. 
AIB1 has been shown to directly interact with ER, PR and AR via its LXXLL motifs 
[39, 40]. There are two classes of estrogen receptors; ERα and ERβ. AIB1 binds 
and enhances ERα receptor-stimulated gene transcription in a ligand-dependent 
manner [6]. Upon binding to ERα, AIB1 recruits chromatin-remodeling histone 
acetyl-transferases enzymes and thus increases ERα transcriptional activity. On 
the other hand, AIB1 can regulate ERα protein levels when bound to estradiol (E2). 
AIB1 recruits ubiquitin-proteasome complex to the ligand bound ERα leading to its 
degradation. Studies have shown that when AIB1 levels are reduced, ERα levels are 
stabilized [41]. In AIB1−/− mice, delays in puberty and mammary gland develop-
ment as well as aberrant reproductive functions have been reported [5]. Similar 
observations are seen in both PR−/− and ER−/− mice emphasizing the essential 
role of AIB1 in ER and PR dependent functions. In breast cancer, AIB1 potentiates 
the development of hormone-dependent tumors and contributes to antiestrogen 
resistance [42, 43]. Lacking the inhibitory domain, AIB1Δ4 isoform has been shown 
to potentiate ER and PR transcription activity to a much greater extent than AIB1 
[20]. In breast tumor samples, the association between AIB1 level and both ER and 
PR levels has not been clearly determined. One study showed that amplification of 
AIB1 in breast cancer correlates with high expression of ER and PR [44]. Yet another 
study showed that overexpression of AIB1 in breast cancer samples was associated 
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3. Modifications and PTMs regulate AIB1 activity

Post-translational modifications (PTM) are critical to modulating the stability 
and activity of AIB1. Within the 165 kDa protein, there are multiple phosphoryla-
tion and ubiquitination sites, some of which have been well described by recent 
experimentation.

3.1 Transcriptional regulation of AIB1

AIB1 protein level is regulated by multiple processes, with levels primarily peak-
ing during the cell cycle. AIB1 autoregulates its own expression and is recruited 
to its own promoter in complex with E2F1 (see Section 6.3). AIB1 transcription is 
responsive to cell cycle cues mediated by Rb hypophosphorylation and resulting 
activation of E2F; thus, AIB1 levels increase during G1, and attenuate during S 
phase (when comparing relative levels during the cell cycle) [29]. Downregulation 
of AIB1 protein levels is, in part, mediated by the FoxG1 tumor suppressor, which 
acts by interacting with AIB1 and disrupting the interaction with E2F1 on its own 
promoter (FoxG1 additionally interrupts AIB1’s activity with other transcription 
factors, such as NFκB, AP-1, and the Estrogen Receptor) [30]. Tight control of the 
AIB1 activity is regulated by its own positive feedback and tempered by inhibitory 
protein interactions.

AIB1 is also targeted by microRNA that regulates its expression. miR-17-5p 
targets at least two sites on the AIB1 mRNA, and miR-20b also binds to AIB1 
mRNA. The two miRs are negatively correlated with AIB1 expression and loss of 
miR expression is associated with taxol resistance in breast cancer [31, 32]. These 
miRs, in addition to down regulating AIB1, interact with multiple other proteins to 
differentially regulate their gene expression. As a result, they are implicated in the 
progression or suppression of several cancers, in a context dependent manner.

3.2 The AIB1 life cycle

The stability and half-life of the AIB1 protein, once translated, is regulated by 
a series of phosphorylation and ubiquitination events (see Figure 1). There is a 
balance achieved between multi-mono-ubiquitination and long chain poly-ubiq-
uitination that creates a phosphorylation dependent ‘time clock’ for the stability of 
AIB1. GSK3 phosphorylates AIB1 at S505 and S509 in the absence of AKT signaling 
to promote its multi-mono- or poly-ubiquitination by SCFFbw7α at K723 and K726. 
Amplified AKT signaling inactivates GSK3. Multi-(mono)ubiquitination of AIB1 
then promotes hormone dependent activity through interaction with the estrogen 
receptor, whereas poly-ubiquitination promotes degradation of AIB1 [33].

An alternative variety of phosphatases regulate proteasome mediated turnover 
by binding and dephosphorylating AIB1. PDXP, PP1, and PP2A dephosphorylate 
AIB1 at S101 and S102, and negatively regulate Estrogen Receptor binding and 
cooperation. PP1 specifically stabilizes AIB1 by preventing proteasomal turnover by 
dephosphorylating the N-terminal C-region degron at the S101 and S102 residues. 
Though more stable, decreased affinity for the estrogen receptor significantly 
reduced AIB1 mediated cell growth in estrogen dependent cell lines [34]. Regulation 
of AIB1 protein levels is thus regulated by a complex series of phosphorylation and 
ubiquitination events in response to cell signaling and stimulation. The phosphory-
lation and ubiquitination sites may be unique to the pathways promoting turnover, 
and thus further study is warranted to better understand the signaling cascades that 
control AIB1 levels.
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3.3 AIB1 post-translational modifications modulate activity

AIB1 is phosphorylated at different serine and threonine residues throughout 
the different domain structures by a variety of kinases. As a result, AIB1 is respon-
sive to many different upstream signaling cascades, contributing to its oncogenic 
nature. JNK, p38, ERK, IKK, and PKA can all phosphorylate AIB1 at different resi-
dues to promote interaction with CBP and subsequently activate transcription (see 
Figure 1). Phosphorylation sites within AIB1 have been well profiled as mediators 
of certain protein-protein interactions. Six phosphorylation sites were originally 
described as essential for interaction with the estrogen and androgen receptors 
(T24, S505, S543, S857, S860, and S867). Conversely, phosphorylation at only T24 
and S867 was required for TNF mediated NFκB interaction and activity [35]. These 
phosphorylation events in response to estradiol, TNFα, and upstream IGF signaling 
thus activate AIB1 to interact with partners and potentiate transcription [35–37]. 
Additionally, we have found that Abl kinase phosphorylates AIB1 at Y1357 in 
response to IGF, EGF and estradiol stimulation, which results in AIB1 interaction 
with essential chromatin modifying enzymes. This phosphorylation event is critical 
for AIB1’s coactivator function [38]. Phosphorylation of AIB1 is thus a critical step 
in activation of the protein and is mediated by a variety of upstream signals that 
converge on the oncogenic coactivator. Some phosphorylation sites are required for 
all described activity, yet much work needs to be done to better understand what 
regulates the selectivity of AIB1 to bind with specific transcription factors and 
nuclear receptors.

4. AIB1 potentiates hormone receptor signaling

Estrogen, progesterone and androgen receptors (ER, PR, AR) are nuclear 
steroid receptors, which play a major role in sexual development and reproduc-
tion. Upon binding to their ligands, these receptors dimerize and translocate to 
the nucleus. They act as transcription factors by binding directly to unique DNA 
sequences termed response elements. Subsequently, histone modifying enzymes 
and transcriptional co-regulators are recruited to activate target gene transcription. 
AIB1 has been shown to directly interact with ER, PR and AR via its LXXLL motifs 
[39, 40]. There are two classes of estrogen receptors; ERα and ERβ. AIB1 binds 
and enhances ERα receptor-stimulated gene transcription in a ligand-dependent 
manner [6]. Upon binding to ERα, AIB1 recruits chromatin-remodeling histone 
acetyl-transferases enzymes and thus increases ERα transcriptional activity. On 
the other hand, AIB1 can regulate ERα protein levels when bound to estradiol (E2). 
AIB1 recruits ubiquitin-proteasome complex to the ligand bound ERα leading to its 
degradation. Studies have shown that when AIB1 levels are reduced, ERα levels are 
stabilized [41]. In AIB1−/− mice, delays in puberty and mammary gland develop-
ment as well as aberrant reproductive functions have been reported [5]. Similar 
observations are seen in both PR−/− and ER−/− mice emphasizing the essential 
role of AIB1 in ER and PR dependent functions. In breast cancer, AIB1 potentiates 
the development of hormone-dependent tumors and contributes to antiestrogen 
resistance [42, 43]. Lacking the inhibitory domain, AIB1Δ4 isoform has been shown 
to potentiate ER and PR transcription activity to a much greater extent than AIB1 
[20]. In breast tumor samples, the association between AIB1 level and both ER and 
PR levels has not been clearly determined. One study showed that amplification of 
AIB1 in breast cancer correlates with high expression of ER and PR [44]. Yet another 
study showed that overexpression of AIB1 in breast cancer samples was associated 
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with loss of both ER and PR expression [45]. Moreover, AIB1 strongly binds AR and 
co-activates its target gene transcription. In prostate cancer, AIB1 is shown to be 
overexpressed and its levels correlate with higher tumor grade and increased disease 
recurrence but did not correlate with serum PSA levels [46]. Several studies have 
established AIB1 as a preferred coactivator for hormone-activated AR. Mutations in 
AR that alter its binding potency to AIB1 has been found in prostate cancer patients, 
suggesting an oncogenic role of AIB1 in prostate cancer [40].

5. AIB1 potentiates membrane receptor signaling

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK). 
It is activated by EGF which mediates several functions including cell proliferation, 
cell survival, and development. AIB1 knockdown abrogated EGF growth response 
in lung, breast, and pancreatic cancer cell lines. This was a result of reduced tyro-
sine phosphorylation of EGFR at multiple residues both at autophosphorylation and 
Src kinase phosphorylation sites via less recruitment of Src homology 2 domain-
containing proteins to the EGFR. EGF-dependent phosphorylation of HER2 was 
also decreased yet no effect was seen on phosphorylation of platelet-derived growth 
factor receptor (PDGFR), HER3 or other RTKs. This suggests that the oncogenic 
effect of AIB1 may be mediated by EGFR and HER2 signaling pathways [47]. In 
a MMTV-Neu mouse model, homozygous deletion of AIB1 completely inhibits 
Neu-induced mammary tumor formation. The role of AIB1 in HER2/Neu oncogenic 
activity was elucidated in the Neu/AIB1+/− tumors showing decreased phosphory-
lated Neu, cyclin D1, and cyclin E [48]. In addition to its role as a transcription 
coactivator, AIB1 isoform, AIB1Δ4, can act in the periphery of the cell mediating 
EGFR and FAK direct interaction. Overexpression of AIB1Δ4 increased cell migra-
tion and MDA-MB-231-induced breast tumor metastasis [25].

The insulin-like growth factor (IGF)-I regulates protein turnover and has a role 
in cell proliferation and differentiation. IGF-I binds to its receptor activating a cas-
cade of intracellular tyrosine kinases which phosphorylate downstream substrates 
including IRS and Shc [49]. AIB1 is rate-limiting for IGF-I signaling and functions 
in human breast cancer cells. Knockdown of AIB1 in MCF7 cells reduced IGF-1-
stimulated anchorage-independent proliferation and IGF-I-dependent anti-anoikis 
[37]. In AIB1−/− mice, impaired insulin-like growth factor I pathway reduced 
mammary tumorigenesis and metastasis with no change in ER or PR regulated 
genes [50]. In addition, AIB1 regulates the expression of proteins involved in the 
IGF-1 signaling pathway. For example, inhibition of mTOR prevented mammary 
hyperplasia and hypertrophy that was caused by AIB1 overexpression in the mouse 
mammary gland. In mice, mTOR inhibition prevented the growth of xenografts 
from AIB1-induced mammary tumors [51].

6. AIB1 interacts with transcription factors

Though AIB1 has been primarily studied for its interaction with the Estrogen 
receptor (see Section 4), AIB1 interacts with a diverse set of transcription factors 
which may explain its oncogenic role in cancer. We will focus on the interaction of 
AIB1 with known oncogenic transcription factors to highlight the importance of AIB1 
as a transcriptional co-activator across a variety of signaling pathways. As a general 
pattern, AIB1 acts to potentiate transcription of signaling pathways; when it binds to a 
transcription factor, it tends to increase the expression of target genes synergistically. 
Additionally, many pathways simultaneously activate their effectors and act on AIB1 in 
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the cytosol to increase nuclear translocation. Thus, many growth factors signaling cas-
cades converge on transcription factors and AIB1. We have selected a few of the most 
well studied oncogenic transcription factors whose activity is increased by AIB1 in 
cancer. Figure 2 illustrates these interactions and their phenotypic consequences.

6.1 AP-1

The activator protein transcription factor is a heteromeric complex consist-
ing of Fos, Jun, ATF, and MAF family members, and can act as an oncogene that 
drives proliferative signaling. The complexes regulate a large swath of human gene 
expression and can contribute to both pro- and anti-tumorigenic gene expression 
(reviewed in [52]). AIB1 uses its C-terminal activation domains to interact with 
the Fos and Jun family members to activate and potentiate signaling, as measured 
by synthetic luciferase reporter assays and target gene expression [10]. Clinically, 
this interaction has been identified to be relevant in driving many pro-proliferative 
cancer genes. In hormone independent prostate cancer, responsiveness to IGF-Akt 
signaling by AIB1-AP-1 cooperation synergizes their effects on the transcription of 
target genes, thereby promoting cell growth and division [53]. In both hormone-
dependent and -independent breast cancer (in which AIB1 is amplified), AIB1 
interaction with and co-activation of AP-1 specifically promotes the transcription 
of matrix metalloproteinases, contributing to invasive progression [54]. Such inva-
sive behavior has also been linked to turnover of Focal Adhesions by AIB1 through 
an AP-1 dependent interaction [55]. Of note, the AIB1Δ4 isoform contains the 
domains necessary to interact with AP-1 and FAK, which may explain some of its 
endogenous role, as well as a dual functionality of this oncogenic isoform [25, 55].

6.2 The TEADs

Many recent publications have implicated YAP and TAZ, effectors nega-
tively regulated by Hippo Signaling pathway, as potent oncogenes critical to the 

Figure 2. 
Oncogenic effects and gene expression changes involving direct AIB1 interaction with transcription factors 
and membrane proteins. Graphical depiction of AIB1 interaction with binding partners, resulting phenotypic 
behavior, and select transcriptional targets (italicized).
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with loss of both ER and PR expression [45]. Moreover, AIB1 strongly binds AR and 
co-activates its target gene transcription. In prostate cancer, AIB1 is shown to be 
overexpressed and its levels correlate with higher tumor grade and increased disease 
recurrence but did not correlate with serum PSA levels [46]. Several studies have 
established AIB1 as a preferred coactivator for hormone-activated AR. Mutations in 
AR that alter its binding potency to AIB1 has been found in prostate cancer patients, 
suggesting an oncogenic role of AIB1 in prostate cancer [40].

5. AIB1 potentiates membrane receptor signaling

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK). 
It is activated by EGF which mediates several functions including cell proliferation, 
cell survival, and development. AIB1 knockdown abrogated EGF growth response 
in lung, breast, and pancreatic cancer cell lines. This was a result of reduced tyro-
sine phosphorylation of EGFR at multiple residues both at autophosphorylation and 
Src kinase phosphorylation sites via less recruitment of Src homology 2 domain-
containing proteins to the EGFR. EGF-dependent phosphorylation of HER2 was 
also decreased yet no effect was seen on phosphorylation of platelet-derived growth 
factor receptor (PDGFR), HER3 or other RTKs. This suggests that the oncogenic 
effect of AIB1 may be mediated by EGFR and HER2 signaling pathways [47]. In 
a MMTV-Neu mouse model, homozygous deletion of AIB1 completely inhibits 
Neu-induced mammary tumor formation. The role of AIB1 in HER2/Neu oncogenic 
activity was elucidated in the Neu/AIB1+/− tumors showing decreased phosphory-
lated Neu, cyclin D1, and cyclin E [48]. In addition to its role as a transcription 
coactivator, AIB1 isoform, AIB1Δ4, can act in the periphery of the cell mediating 
EGFR and FAK direct interaction. Overexpression of AIB1Δ4 increased cell migra-
tion and MDA-MB-231-induced breast tumor metastasis [25].

The insulin-like growth factor (IGF)-I regulates protein turnover and has a role 
in cell proliferation and differentiation. IGF-I binds to its receptor activating a cas-
cade of intracellular tyrosine kinases which phosphorylate downstream substrates 
including IRS and Shc [49]. AIB1 is rate-limiting for IGF-I signaling and functions 
in human breast cancer cells. Knockdown of AIB1 in MCF7 cells reduced IGF-1-
stimulated anchorage-independent proliferation and IGF-I-dependent anti-anoikis 
[37]. In AIB1−/− mice, impaired insulin-like growth factor I pathway reduced 
mammary tumorigenesis and metastasis with no change in ER or PR regulated 
genes [50]. In addition, AIB1 regulates the expression of proteins involved in the 
IGF-1 signaling pathway. For example, inhibition of mTOR prevented mammary 
hyperplasia and hypertrophy that was caused by AIB1 overexpression in the mouse 
mammary gland. In mice, mTOR inhibition prevented the growth of xenografts 
from AIB1-induced mammary tumors [51].

6. AIB1 interacts with transcription factors

Though AIB1 has been primarily studied for its interaction with the Estrogen 
receptor (see Section 4), AIB1 interacts with a diverse set of transcription factors 
which may explain its oncogenic role in cancer. We will focus on the interaction of 
AIB1 with known oncogenic transcription factors to highlight the importance of AIB1 
as a transcriptional co-activator across a variety of signaling pathways. As a general 
pattern, AIB1 acts to potentiate transcription of signaling pathways; when it binds to a 
transcription factor, it tends to increase the expression of target genes synergistically. 
Additionally, many pathways simultaneously activate their effectors and act on AIB1 in 
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the cytosol to increase nuclear translocation. Thus, many growth factors signaling cas-
cades converge on transcription factors and AIB1. We have selected a few of the most 
well studied oncogenic transcription factors whose activity is increased by AIB1 in 
cancer. Figure 2 illustrates these interactions and their phenotypic consequences.

6.1 AP-1

The activator protein transcription factor is a heteromeric complex consist-
ing of Fos, Jun, ATF, and MAF family members, and can act as an oncogene that 
drives proliferative signaling. The complexes regulate a large swath of human gene 
expression and can contribute to both pro- and anti-tumorigenic gene expression 
(reviewed in [52]). AIB1 uses its C-terminal activation domains to interact with 
the Fos and Jun family members to activate and potentiate signaling, as measured 
by synthetic luciferase reporter assays and target gene expression [10]. Clinically, 
this interaction has been identified to be relevant in driving many pro-proliferative 
cancer genes. In hormone independent prostate cancer, responsiveness to IGF-Akt 
signaling by AIB1-AP-1 cooperation synergizes their effects on the transcription of 
target genes, thereby promoting cell growth and division [53]. In both hormone-
dependent and -independent breast cancer (in which AIB1 is amplified), AIB1 
interaction with and co-activation of AP-1 specifically promotes the transcription 
of matrix metalloproteinases, contributing to invasive progression [54]. Such inva-
sive behavior has also been linked to turnover of Focal Adhesions by AIB1 through 
an AP-1 dependent interaction [55]. Of note, the AIB1Δ4 isoform contains the 
domains necessary to interact with AP-1 and FAK, which may explain some of its 
endogenous role, as well as a dual functionality of this oncogenic isoform [25, 55].

6.2 The TEADs

Many recent publications have implicated YAP and TAZ, effectors nega-
tively regulated by Hippo Signaling pathway, as potent oncogenes critical to the 
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Oncogenic effects and gene expression changes involving direct AIB1 interaction with transcription factors 
and membrane proteins. Graphical depiction of AIB1 interaction with binding partners, resulting phenotypic 
behavior, and select transcriptional targets (italicized).
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transformation of normal tissue and the progression of disease. The effectors bind 
with the TEAD family of proteins to exert their oncogenic potential as a transcrip-
tion factor complex [56–58]. Before paralogs YAP and TAZ, were implicated as 
transactivators of the TEAD family of transcription factors, the TEAD family 
was shown to interact with all the members of Nuclear Coactivator Family [8]. 
Specifically, the bHLH-PAS domain of AIB1 interacts with TEADs, likely in a larger 
complex with YAP or TAZ, and may then recruit histone modifying proteins to 
propagate transcription as measured by target genes [59]. Similarly, knockdown 
of AIB1 in cell lines significantly reduces TEAD target genes CTGF and CYR61 
[60]. Currently, it is unclear to what extent the oncogenic YAP/TAZ-TEAD com-
plex requires AIB1 or other members of the NCOA family to act as oncogenes. 
Knockdown of AIB1 in multiple studies has resulted in a modest, but significant 
reduction of TEAD transcriptional targets [60]. Interestingly, the Drosophila 
homolog of AIB1, called Taiman, contains PPxY motifs that are known to interact 
with the YAP homolog at its conserved WW domain. These PPxY motifs, however, 
are neither conserved in human AIB1, nor any member of the NCOA/SRC/p160 
family [61].

Importantly, AIB1 may be the critical mediator of TEAD cooperation with 
AP-1. Early reports show an oncogenic signature associated with AP-1 and 
TEAD co-occupancy in triple negative breast cancer that promotes more aggres-
sive disease [62]; this interaction was recently show to be mediated by AIB1 
acting as a bridge between AP-1 and TEAD [59]. However, a clear panel of 
genes co-regulated by AIB1-TEAD interaction has yet to be elucidated. Further, 
while reports have shown AIB1 to be part of the TEAD-SRF (Serum Response 
Factor) complex, the data is unclear as to whether AIB1 is required for complex 
formation, or whether YAP can recruit SRF in the absence of AIB1 [60, 63]. It is 
apparent that TEAD, AP-1, and SRF all have coordinated responses to external 
growth stimuli [64], but the extent to which AIB1 and other co-activators are 
required to propagate and potentiate oncogenic signaling remains an exciting 
and unanswered question.

6.3 E2F family

The E2F family of transcription factors are direct targets of the hypo-phos-
phorylated Rb cell cycle regulation machinery, so many E2F members promote the 
transcription of pro-proliferative genes and controls the entry into S phase (reviewed 
in [65, 66]). AIB1 interacts with E2F family members through its N-terminal bHLH-
PAS domain to promote the transcription of cdc25A, cdc6, MCMs, cyclins and Cdk. 
Depletion of AIB1 prevents cells from entering S-phase and undergoing mitosis. 
Furthermore, AIB1 controls its own expression through binding to E2F1 on its own 
promoter. As a result, AIB1 levels increase during G1 [9, 29]. Not only does E2F interact 
with AIB1 at its own promoter, but it also acts on other transcription factors, such as 
SP1, to further augment AIB1 expression [67]. This shows that direct and indirect 
binding of cell cycle effectors promote transcription of AIB1. Recently, the importance 
of an AIB1-E2F1 axis was highlighted while studying the efficacy of CDK4/6 inhibi-
tor Palbociclib across all subtypes of breast cancer; AIB1 loss partially phenocopied 
Her2 inhibition and correlated with the CDK4/6 inhibitor treatment [68]. Thus, AIB1 
contributes to cell cycle progression through E2F interaction, which is commonly 
dysregulated in cancer. This directly links AIB1 to regulation of cell cycle progression, 
implicating AIB1 further in pro-proliferative activities separate from external stimuli 
and nuclear receptor interaction.
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6.4 ETS factors

The Ets1, Ets2, and Pea3 members of the Ets family of transcription factors bind 
to DNA in response to upstream Her2 activation and resulting kinase cascades, 
mediated by ERK and JNK [69]. The Ets family members have been shown to be co-
expressed with AIB1 and both independently serve as a negative prognostic marker 
in breast and lung cancer [70, 71]. AIB1 was later shown to interact directly with the 
Ets family members to potentiate transcription of matrix metalloproteinases such 
as MMP2 to promote cell invasion and metastasis in vitro and in patients [71–73]. 
Once phosphorylated by ERK3 at S857, AIB1 specifically localized to the promot-
ers of MMP2 and MMP9 in complex with Pea3 to promote invasive behavior [74]. 
Interestingly, these MMP targets seem highly dependent on AIB1 levels, as knock-
down of AIB1 abrogated most of their expression [71].

6.5 NFκB pathway

Though many binding partners are shared between members of the NCOA 
family, mostly between SRC-1 and AIB1, cooperation with IKK is unique to AIB1. 
IKK mediates the degradation of IkB, the inhibitor of NFκB, in response to TNFα 
stimulation. Interestingly, in parallel to this, AIB1 is phosphorylated by IKK, 
increasing its nuclear localization and then can act on NFκB bound to DNA through 
its C-terminal activation domain [11, 75]. This emphasizes the ability of AIB1 to be 
to play a multi-faceted role within a signaling pathway, and the importance of its 
regulation to control its potency.

6.6 STAT6

Opposed to its role in the NFκB pathway, where AIB1 is the unique family 
member interacting with a kinase, STAT6 solely interacts with SRC-1. However, 
this does not mean AIB1 does not play a critical role. While SRC-1 directly interacts 
with STAT6 on the chromatin via its bHLH domain, AIB1 cannot. Recruited p300 
bound to STAT6 can then recruit AIB1, which potentiates STAT6 signaling. This 
represents a unique cooperation between SRC-1 and AIB1, as SRC-1 is required for 
the co-activation of STAT6, and AIB1 then potentiates the transcription complex’s 
activity. This was found to be an IL-4 dependent interaction, which acts in a dose-
dependent manner [76–79]. Such interactions are controlled by PP2A, as described 
in Section 3.2 [80].

We attempted to highlight some of the most categorized interactions between 
AIB1 and transcription factors that are well studied oncogenes. See Figure 1 for a 
more complete list of proteins that interact with AIB1.

7. AIB1 as an oncogene

7.1 Genetically engineered mouse models

Genetic models have also clearly established AIB1 as an oncogene in multiple 
cancer types. Genetically engineered mouse models that overexpress AIB1 have 
been shown to increase incidence and growth of tumors, as well as significantly 
increase hyperplasia in the breast [7]. This is not solely due to its interaction with 
the estrogen receptor, the same mice presented an increase in tumors in hormone 
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transformation of normal tissue and the progression of disease. The effectors bind 
with the TEAD family of proteins to exert their oncogenic potential as a transcrip-
tion factor complex [56–58]. Before paralogs YAP and TAZ, were implicated as 
transactivators of the TEAD family of transcription factors, the TEAD family 
was shown to interact with all the members of Nuclear Coactivator Family [8]. 
Specifically, the bHLH-PAS domain of AIB1 interacts with TEADs, likely in a larger 
complex with YAP or TAZ, and may then recruit histone modifying proteins to 
propagate transcription as measured by target genes [59]. Similarly, knockdown 
of AIB1 in cell lines significantly reduces TEAD target genes CTGF and CYR61 
[60]. Currently, it is unclear to what extent the oncogenic YAP/TAZ-TEAD com-
plex requires AIB1 or other members of the NCOA family to act as oncogenes. 
Knockdown of AIB1 in multiple studies has resulted in a modest, but significant 
reduction of TEAD transcriptional targets [60]. Interestingly, the Drosophila 
homolog of AIB1, called Taiman, contains PPxY motifs that are known to interact 
with the YAP homolog at its conserved WW domain. These PPxY motifs, however, 
are neither conserved in human AIB1, nor any member of the NCOA/SRC/p160 
family [61].

Importantly, AIB1 may be the critical mediator of TEAD cooperation with 
AP-1. Early reports show an oncogenic signature associated with AP-1 and 
TEAD co-occupancy in triple negative breast cancer that promotes more aggres-
sive disease [62]; this interaction was recently show to be mediated by AIB1 
acting as a bridge between AP-1 and TEAD [59]. However, a clear panel of 
genes co-regulated by AIB1-TEAD interaction has yet to be elucidated. Further, 
while reports have shown AIB1 to be part of the TEAD-SRF (Serum Response 
Factor) complex, the data is unclear as to whether AIB1 is required for complex 
formation, or whether YAP can recruit SRF in the absence of AIB1 [60, 63]. It is 
apparent that TEAD, AP-1, and SRF all have coordinated responses to external 
growth stimuli [64], but the extent to which AIB1 and other co-activators are 
required to propagate and potentiate oncogenic signaling remains an exciting 
and unanswered question.

6.3 E2F family

The E2F family of transcription factors are direct targets of the hypo-phos-
phorylated Rb cell cycle regulation machinery, so many E2F members promote the 
transcription of pro-proliferative genes and controls the entry into S phase (reviewed 
in [65, 66]). AIB1 interacts with E2F family members through its N-terminal bHLH-
PAS domain to promote the transcription of cdc25A, cdc6, MCMs, cyclins and Cdk. 
Depletion of AIB1 prevents cells from entering S-phase and undergoing mitosis. 
Furthermore, AIB1 controls its own expression through binding to E2F1 on its own 
promoter. As a result, AIB1 levels increase during G1 [9, 29]. Not only does E2F interact 
with AIB1 at its own promoter, but it also acts on other transcription factors, such as 
SP1, to further augment AIB1 expression [67]. This shows that direct and indirect 
binding of cell cycle effectors promote transcription of AIB1. Recently, the importance 
of an AIB1-E2F1 axis was highlighted while studying the efficacy of CDK4/6 inhibi-
tor Palbociclib across all subtypes of breast cancer; AIB1 loss partially phenocopied 
Her2 inhibition and correlated with the CDK4/6 inhibitor treatment [68]. Thus, AIB1 
contributes to cell cycle progression through E2F interaction, which is commonly 
dysregulated in cancer. This directly links AIB1 to regulation of cell cycle progression, 
implicating AIB1 further in pro-proliferative activities separate from external stimuli 
and nuclear receptor interaction.

57

The AIB1/NCOA3/SRC-3 Oncogene
DOI: http://dx.doi.org/10.5772/intechopen.80925

6.4 ETS factors

The Ets1, Ets2, and Pea3 members of the Ets family of transcription factors bind 
to DNA in response to upstream Her2 activation and resulting kinase cascades, 
mediated by ERK and JNK [69]. The Ets family members have been shown to be co-
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Ets family members to potentiate transcription of matrix metalloproteinases such 
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Once phosphorylated by ERK3 at S857, AIB1 specifically localized to the promot-
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6.5 NFκB pathway
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6.6 STAT6

Opposed to its role in the NFκB pathway, where AIB1 is the unique family 
member interacting with a kinase, STAT6 solely interacts with SRC-1. However, 
this does not mean AIB1 does not play a critical role. While SRC-1 directly interacts 
with STAT6 on the chromatin via its bHLH domain, AIB1 cannot. Recruited p300 
bound to STAT6 can then recruit AIB1, which potentiates STAT6 signaling. This 
represents a unique cooperation between SRC-1 and AIB1, as SRC-1 is required for 
the co-activation of STAT6, and AIB1 then potentiates the transcription complex’s 
activity. This was found to be an IL-4 dependent interaction, which acts in a dose-
dependent manner [76–79]. Such interactions are controlled by PP2A, as described 
in Section 3.2 [80].

We attempted to highlight some of the most categorized interactions between 
AIB1 and transcription factors that are well studied oncogenes. See Figure 1 for a 
more complete list of proteins that interact with AIB1.

7. AIB1 as an oncogene

7.1 Genetically engineered mouse models

Genetic models have also clearly established AIB1 as an oncogene in multiple 
cancer types. Genetically engineered mouse models that overexpress AIB1 have 
been shown to increase incidence and growth of tumors, as well as significantly 
increase hyperplasia in the breast [7]. This is not solely due to its interaction with 
the estrogen receptor, the same mice presented an increase in tumors in hormone 



Oncogenes and Carcinogenesis

58

independent tissues, such as lung, skin, and bone, suggesting the oncogenic role of 
AIB1 may be mediated by a variety of different tissue specific transcription factor 
interactions [46, 81]. Removal of the NCOA3 gene that encodes AIB1 in v-Ha-Ras 
driven mouse model of breast cancer also delayed tumor formation by negatively 
impacting growth factor signaling [50]. In breast cancer studies, it is clear that AIB1 
exerts its oncogenic potential through hormone receptor signaling and by positively 
affecting many pro-proliferative pathways.

There have also been genetic models implicating AIB1 as a critical mediator of 
the development and maintenance of hormone responsive and castration resistant 
prostate cancer. In hormone sensitive prostate cancer, AIB1 mediates its effects 
through androgen receptor activity, eventual castration resistant/hormone insensi-
tive disease was marked by AIB1 potentiation of Akt-mTOR signaling (similar to 
studies in the breast) [81–83]. Taken together, these data suggest that AIB1 is critical 
for the formation and progression of many cancer types, in both hormone depen-
dent and independent settings. Especially in the hormone-independent diseases, it 
is critical to study the binding partners of AIB1 in order to better understand how 
AIB1 is acting as an oncogene.

7.2 AIB1 levels and clinical outcome

Patient data has shown that the levels of AIB1 correlate with the severity and 
stage of disease. In each tissue type of origin, it is likely that AIB1 is acting as an 
oncogene in a different capacity or selectively amplifying a variety of oncogenic 
signals. We have described a few specific cancer types below that detail the predic-
tive capacity of AIB1 in disease progression.

• Breast cancer: our group and others have shown that AIB1 is overexpressed 
and amplified in breast cancer compared to normal breast tissue [1, 20]. It is 
estimated that the mRNA expression in tumors is up between 10 and 60% in 
primary tumors, and increased 30% in metastatic sites [21, 84]. When strati-
fied by grade of lesion, there is a clear positive correlation of AIB1 mRNA levels 
with worsening stage, with nearly a 65% increase in expression compared 
to normal tissue in grade 3 tumors [45]. We have also shown that increasing 
mRNA levels are associated with worse patient outcome [43]. These patients 
have dysregulated signaling pathways as previously described: augmented 
estrogen receptor signaling (in ER+ disease) and increased IGF/growth factor 
levels and enhanced in PI3K-Akt-mTOR pathway activity.

 ○ Early stage breast cancer: only 20–30% of women with stage 0 Ductal 
Carcinoma In Situ (DCIS) will progress to invasive disease. It is still unclear 
what factors promote the invasion, as genetic expression signatures of DCIS 
patients resemble those of invasive disease [85, 86]. We have shown that 
AIB1 is required for the formation of DCIS lesions in mice, and loss of AIB1 
increases tumor necrosis, and decreases proliferation and tumor burden. 
Further, genetic ablation of AIB1 significantly reduces CD44+/CD24– breast 
cancer initiating cells, thus more closely resembling differentiated luminal 
epithelium. This is in part due to disruption and downregulation of the 
Notch and Her2 signaling pathways, where AIB1 was shown to regulate 
mRNA expression of Notch, Jag, and DLL family members [87]. Thus, 
AIB1 may be promoting a breast cancer initiating cell subpopulation that is 
required to promote the invasive transition.

• Ovarian cancer: AIB1 was also found to be overexpressed and amplified in 
ovarian cancer [1]. In high grade ovarian cancer samples, 64% of patients 
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stained positive for nuclear AIB1, whereas less than 10% of patients with cys-
tomas or borderline cancer cases stained positive. [26] AIB1 polymorphs at the 
sequence level may also be predictive of ovarian cancer. CAG sequence poly-
morphisms within the glutamate track (poly-Q region) of AIB1 may also be 
predictive of ovarian cancer aggressiveness—codon lengths can vary between 
24 and 30 repeats. The shorter the track, the shorter the time to disease recur-
rence compared to patients with longer sequences [88].

• Pancreatic cancer: AIB1 is rarely expressed in normal pancreas ducts (<6% of 
patients) yet is increased in pancreatitis and high-grade neoplasia between 15 and 
20% of samples. Finally, upon progressing to pancreatic ductal adenocarcinoma 
(PDAC), nearly 65% of patients are positive for AIB1 mRNA and protein. Some 
patients also present with increased copy number, which may explain some, but 
not all of the overexpression of AIB1. Of note, the AIB1Δ4 isoform is present 
in pancreatic cancer cell lines, suggesting it acts not only through dysregulated 
hormone receptor signaling, but may also be playing unexplored roles [89]. 
AIB1 has also been shown to increase inflammatory conditions by upregulating 
CXCL1, CXCL2, and CXCL5 during disease development in a mouse model [90]. 
This may partially explain why the increase of mRNA and protein in pancreatitis 
and early stage disease is selected for as PDAC progresses in patients.

• Prostate cancer: levels of AIB1 are associated with severity/grade of prostate 
cancer. Higher levels across all stages are a negative prognostic marker in recur-
rence free survival. The Kaplan Meyer curves are similar for PSA and nuclear 
AIB1, suggesting it could serve as a biomarker for disease prognosis and pro-
gression [46, 81]. Of note, the same polymorphic CAG sequence that may be 
prognostically relevant to ovarian cancer may be relevant to prostate cancer—a 
case study of Chinese men suggested an optimal length of mid-quantity CAG 
repeats [91]. However, these data need to be repeated in a population with a 
higher incidence and risk of the disease.

• Colorectal cancer: overexpression of AIB1 was detected in 35% of samples, and 
amplification of the NCOA3 gene was detected in 10% of patients with colorectal 
cancer [92]. Levels not only varied significantly when compared to normal tissue, 
but also significantly increased by tumor grade [82]. One potential role of AIB1 in 
colorectal cancer is interaction with Estrogen Receptor Beta, which is expressed 
in CRC. In 110 patients, increasing grade of lesion showed significant upregula-
tion in the levels of expression of AIB1, ERb, and SRC-2. Paradoxically, the same 
study noted both an increase in invasion associated with higher AIB1 levels, but 
an increase in survival outcome [93]. AIB1−/− mice were also unsusceptible to 
colorectal cancer induction by azoxymethane/dextran sodium sulfate treatment 
[94]. Clearly, more data is needed to explain the role of AIB1 in colorectal cancer, 
and whether AIB1 may modulate pro- and anti-tumorigenic behavior.

7.3 AIB1 promotes metastasis

As AIB1 acts to potentiate a variety of signaling cascades, it contributes not only 
to the growth of the primary cancerous lesion, but also promotes metastasis to 
distant sites. AIB1 loss suppressed lung metastasis in MMTV-PyMT breast cancer 
models, significantly reducing the ability of the cells to metastasis. Following 
transplantation of the AIB1−/− tumors from knockout mice to wild-type PyMT 
mice, metastasis was completely lost [74]. Pancreatic and breast tumors formed in 
AIB1−/− also exhibit a more epithelial, E-cad high tumor phenotype, suggesting 
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signals. We have described a few specific cancer types below that detail the predic-
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and amplified in breast cancer compared to normal breast tissue [1, 20]. It is 
estimated that the mRNA expression in tumors is up between 10 and 60% in 
primary tumors, and increased 30% in metastatic sites [21, 84]. When strati-
fied by grade of lesion, there is a clear positive correlation of AIB1 mRNA levels 
with worsening stage, with nearly a 65% increase in expression compared 
to normal tissue in grade 3 tumors [45]. We have also shown that increasing 
mRNA levels are associated with worse patient outcome [43]. These patients 
have dysregulated signaling pathways as previously described: augmented 
estrogen receptor signaling (in ER+ disease) and increased IGF/growth factor 
levels and enhanced in PI3K-Akt-mTOR pathway activity.

 ○ Early stage breast cancer: only 20–30% of women with stage 0 Ductal 
Carcinoma In Situ (DCIS) will progress to invasive disease. It is still unclear 
what factors promote the invasion, as genetic expression signatures of DCIS 
patients resemble those of invasive disease [85, 86]. We have shown that 
AIB1 is required for the formation of DCIS lesions in mice, and loss of AIB1 
increases tumor necrosis, and decreases proliferation and tumor burden. 
Further, genetic ablation of AIB1 significantly reduces CD44+/CD24– breast 
cancer initiating cells, thus more closely resembling differentiated luminal 
epithelium. This is in part due to disruption and downregulation of the 
Notch and Her2 signaling pathways, where AIB1 was shown to regulate 
mRNA expression of Notch, Jag, and DLL family members [87]. Thus, 
AIB1 may be promoting a breast cancer initiating cell subpopulation that is 
required to promote the invasive transition.
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stained positive for nuclear AIB1, whereas less than 10% of patients with cys-
tomas or borderline cancer cases stained positive. [26] AIB1 polymorphs at the 
sequence level may also be predictive of ovarian cancer. CAG sequence poly-
morphisms within the glutamate track (poly-Q region) of AIB1 may also be 
predictive of ovarian cancer aggressiveness—codon lengths can vary between 
24 and 30 repeats. The shorter the track, the shorter the time to disease recur-
rence compared to patients with longer sequences [88].

• Pancreatic cancer: AIB1 is rarely expressed in normal pancreas ducts (<6% of 
patients) yet is increased in pancreatitis and high-grade neoplasia between 15 and 
20% of samples. Finally, upon progressing to pancreatic ductal adenocarcinoma 
(PDAC), nearly 65% of patients are positive for AIB1 mRNA and protein. Some 
patients also present with increased copy number, which may explain some, but 
not all of the overexpression of AIB1. Of note, the AIB1Δ4 isoform is present 
in pancreatic cancer cell lines, suggesting it acts not only through dysregulated 
hormone receptor signaling, but may also be playing unexplored roles [89]. 
AIB1 has also been shown to increase inflammatory conditions by upregulating 
CXCL1, CXCL2, and CXCL5 during disease development in a mouse model [90]. 
This may partially explain why the increase of mRNA and protein in pancreatitis 
and early stage disease is selected for as PDAC progresses in patients.

• Prostate cancer: levels of AIB1 are associated with severity/grade of prostate 
cancer. Higher levels across all stages are a negative prognostic marker in recur-
rence free survival. The Kaplan Meyer curves are similar for PSA and nuclear 
AIB1, suggesting it could serve as a biomarker for disease prognosis and pro-
gression [46, 81]. Of note, the same polymorphic CAG sequence that may be 
prognostically relevant to ovarian cancer may be relevant to prostate cancer—a 
case study of Chinese men suggested an optimal length of mid-quantity CAG 
repeats [91]. However, these data need to be repeated in a population with a 
higher incidence and risk of the disease.

• Colorectal cancer: overexpression of AIB1 was detected in 35% of samples, and 
amplification of the NCOA3 gene was detected in 10% of patients with colorectal 
cancer [92]. Levels not only varied significantly when compared to normal tissue, 
but also significantly increased by tumor grade [82]. One potential role of AIB1 in 
colorectal cancer is interaction with Estrogen Receptor Beta, which is expressed 
in CRC. In 110 patients, increasing grade of lesion showed significant upregula-
tion in the levels of expression of AIB1, ERb, and SRC-2. Paradoxically, the same 
study noted both an increase in invasion associated with higher AIB1 levels, but 
an increase in survival outcome [93]. AIB1−/− mice were also unsusceptible to 
colorectal cancer induction by azoxymethane/dextran sodium sulfate treatment 
[94]. Clearly, more data is needed to explain the role of AIB1 in colorectal cancer, 
and whether AIB1 may modulate pro- and anti-tumorigenic behavior.

7.3 AIB1 promotes metastasis

As AIB1 acts to potentiate a variety of signaling cascades, it contributes not only 
to the growth of the primary cancerous lesion, but also promotes metastasis to 
distant sites. AIB1 loss suppressed lung metastasis in MMTV-PyMT breast cancer 
models, significantly reducing the ability of the cells to metastasis. Following 
transplantation of the AIB1−/− tumors from knockout mice to wild-type PyMT 
mice, metastasis was completely lost [74]. Pancreatic and breast tumors formed in 
AIB1−/− also exhibit a more epithelial, E-cad high tumor phenotype, suggesting 
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a repression of epithelial-mesenchymal transition [74]. This is reflected in patient 
data, where more PDAC patients samples with lymph node metastasis (68%) stain 
positive for nuclear AIB1, as opposed to patients without metastasis, who also stain 
negative for AIB1 (42%) [95]. Similarly, in papillary thyroid cancer, levels of AIB1 
positive increase significantly from high grade lymph node positive disease (73.2%), 
compared to non-metastatic disease (41.2%) [96]. Patient samples highlight the 
role of AIB1 in metastasis, as presence of nuclear staining not only correlates with 
increased disease grade, but metastasis rate.

In molecular studies, specific transcription factor interactions with AIB1 have 
been identified as integral to promoting metastasis. The ERK3 mediated interaction 
of AIB1 with the Ets family member PEA3 results in the oncogenic transcription 
of matrix metalloproteinases MMP2 and MMP9, which promote an EMT pheno-
type and destruction of the surrounding extracellular matrix, leading to invasion 
[74]. Reduction of ERK3 or AIB1 by shRNA attenuates metastasis in lung cancer 
models; unsurprisingly ERK3 is also upregulated in lung cancer clinical samples 
[71]. Similarly, AIB1 interaction with AP-1 upregulates MMP7 and MMP10, lead-
ing to increased metastasis in breast cancer, regardless of hormone receptor status. 
Alternatively, AIB1 binds to the promoters of Notch intracellular domain targets 
to enhance Notch proliferative signaling and effecting cell cycle progression in 
colorectal cancer. AIB1 reduction by genetic knockout reduced the Notch targets 
HES1 as well as Cyclins (likely controlled by E2F1-AIB1, however). Reduction of 
AIB1 levels yields significantly reduced tumor burden and lung metastasis [94].

Finally, an underexplored area of AIB1 activity may be its role in promoting 
invasion and migration by facilitating oncogenic transcription factor cooperation. 
Recently, AIB1 was shown to be recruited to larger TEAD and AP-1 transcription 
factor complexes, and promote cooperative transcription of DOCK4 and DOCK9, 
thereby increasing mobility [59]. Endogenous TEAD and AP-1 share a significant 
degree of genomic co-enriched ChIP-seq peaks, and it remains to be seen exactly 
how much of this is mediated by AIB1, as the two transcription factors are potent 
oncogenes [62]. Further, transcription factor cooperation has been suggested with 
TEAD, AP-1, SRF, and other stimuli responsive transcription factors—determining 
to what extent AIB1 or other NCOA family members are relevant to such signaling 
networks is an unanswered question [60, 63, 64].

7.4 The role of AIB1Δ4 in metastasis

The AIB1Δ4 isoform is an N-terminally truncated splice variant that lacks the 
bHLH-PAS domain. In vitro it localizes significantly less in the nucleus, and shuttles 
more often between the nucleus and cytoplasm. It may be more readily retained 
in the cytoplasm because of its interaction with FAK and its role in focal adhesions 
(see Section 2.2) [25]. Interestingly we have found that metastatic MDA-MB-231 
triple negative cell lines and metastatic Colo357 pancreatic ductal adenocarcinoma 
lines have significantly higher AIB1Δ4/AIB1 ratio than their parental counterparts 
[22]. This aggressive phenotype may be due to loss of transcriptional repression by 
ANCO1, as we have shown previously [24].

In the cell periphery, AIB1Δ4 interacts with FAK in lamellipodia and filopodia in 
response to EGF stimulation in breast cancer cells. The isoform in unable to bind to 
the promoters of the MMPs previously described. Instead, it is phosphorylated by 
PAK1 which facilitates interaction with EGFR and FAK to promote transwell migra-
tion in vitro. These findings correlated with in vivo studies showing overexpression 
AIB1Δ4 significantly increased metastasis to the lymph node and lung [25]. These 
data match our earlier findings in isotypic cell lines and highlight the many ways 
this understudied isoform may be contributing to normal and disease biology.
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7.5 Therapeutics and AIB1

Briefly, AIB1 can contribute to chemo- or hormonal therapeutic resistance, 
promoting disease relapse. Early indications of this ‘escape route’ came about when 
stratifying AIB1 levels and outcomes of ER+ patients treated with tamoxifen, a 
selective estrogen receptor modulator that is a first line treatment. Patients with 
high AIB1 levels after receiving treatment had significantly worse outcomes than 
those with low AIB1 (oddly, patients who never received tamoxifen and also had 
AIB1 did significantly better; this has yet to be explained). The same study showed 
conclusively that high levels of Her2/Neu and AIB1 significantly increase the chance 
of relapse, likely due to crosstalk between growth factor and hormone signaling 
pathways that thereby circumvent estrogen dependence [42, 97, 98]. Later, it was 
shown that direct competition between AIB1 and PAX2 occurs on the ERBB2 
gene body encoding Her2. Loss of PAX2 reverses repression of Her2 transcription 
mediated by tamoxifen, and ectopic expression reverts AIB1 mediated tamoxifen 
resistance [99]. Finally, upregulation of AIB1 has also been shown to be a mecha-
nism of taxol resistance in breast cancer [31].

8. Discussion and conclusion

AIB1 in an oncogene that contributes to disease progression in multiple cancers. 
It primarily acts to augment transcriptional activity, thereby amplifying pro-
proliferative and pro-tumorigenic signaling cascades through binding to its many 
partners. Though primarily studied for its role in interacting with nuclear hormone 
receptors, AIB1 has been clearly implicated to play an oncogenic role in hormone 
independent cancers. Genetic manipulation or removal of the NCOA3 gene has 
almost universally slowed cancer progression wherever studied, likely by dampen-
ing all of the pathways it usually effects. From this role, its clinical importance is 
obvious, as its elevated levels is usually a negative prognostic marker.

Most clinical studies have underscored the importance of AIB1 in the progres-
sion of human disease. Overwhelmingly, expression of AIB1 is correlated with 
poor prognosis in breast, ovarian, pancreatic, prostate, and colon cancer, as well 
as increased metastasis [25, 100]. Heightened AIB1 levels have successfully been 
used in the clinic as a negative prognostic marker in post-menopausal breast cancer 
[101] and may mark tamoxifen resistance [102]. Further, preclinical investigation 
of compounds that promote the degradation of AIB1 have shown promising results 
in attenuating the effects of the oncogene [103, 104]. Interestingly, pharmacological 
hyperstimulation of AIB1 has also been shown to induce cell death by increasing 
cell stress [105].

Clarifying the extent to which AIB1 is critical in bridging cooperating transcription 
factors will further explain intracellular signaling biology and may also provide new 
targets for therapeutic development. Also, there remains a gap in knowledge surround-
ing the role of the AIB1Δ4 in the nucleus, especially in regard to global binding and 
transcriptional patterns of the isoform. Finally, elucidating the importance of AIB1 as 
an effector of growth factor and cytokine signaling may explain its potent oncogenic 
nature. It is clear that AIB1 may be both a clinically relevant prognostic marker and a 
promising therapeutic target, as evidenced by the promising preclinical data.
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[101] and may mark tamoxifen resistance [102]. Further, preclinical investigation 
of compounds that promote the degradation of AIB1 have shown promising results 
in attenuating the effects of the oncogene [103, 104]. Interestingly, pharmacological 
hyperstimulation of AIB1 has also been shown to induce cell death by increasing 
cell stress [105].

Clarifying the extent to which AIB1 is critical in bridging cooperating transcription 
factors will further explain intracellular signaling biology and may also provide new 
targets for therapeutic development. Also, there remains a gap in knowledge surround-
ing the role of the AIB1Δ4 in the nucleus, especially in regard to global binding and 
transcriptional patterns of the isoform. Finally, elucidating the importance of AIB1 as 
an effector of growth factor and cytokine signaling may explain its potent oncogenic 
nature. It is clear that AIB1 may be both a clinically relevant prognostic marker and a 
promising therapeutic target, as evidenced by the promising preclinical data.
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Abstract

The molecular landscape of non-tobacco-induced primary lung tumors dis-
plays specific oncogenetic features. The etiology of these tumors has been largely 
associated with exposure to well-established environmental lung carcinogens such 
as radon, arsenic, and asbestos. Environmental carcinogens can induce specific 
genetic and epigenetic alterations in lung tissue, leading to aberrant function of 
lung cancer oncogenes and tumor suppressor genes. These molecular events result 
in the disruption of key cellular mechanisms, such as protection against oxidative 
stress and DNA damage-repair, which promotes tumor development and progres-
sion. This chapter provides a comprehensive discussion of the specific carcinogenic 
mechanisms associated with exposure to radon, arsenic, and asbestos. It also 
summarizes the main protein-coding and non-coding genes affected by exposure 
to these environmental agents, and the underlying molecular mechanisms promot-
ing their deregulation in lung cancer. Finally, the chapter examines the anticipated 
challenges in personalized intervention strategies in non-tobacco-induced lung 
cancer.
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1. Introduction

Lung cancer remains the deadliest form of cancer across the globe [1]. While 
smoking rates have decreased in many areas, it remains to be seen if the incidence 
and mortality of primary lung cancer will experience a similar shift, particularly 
in light of the observation that close to 25% of cases arise in individuals who have 
never smoked [2]. As one of the most environmentally-influenced malignancies, 
lung tumorigenesis can result from exposure to both physical and chemical carcino-
gens. Exposure to the mix of compounds present in particulate matter is another 
well-known factor affecting the development of lung cancer [3]. However, a num-
ber of single-agent compounds in the environment have been identified as key lung 
carcinogens, particularly arsenic, asbestos and radioactive radon (222Rn) gas [4]. 
These compounds are distributed at varying, potentially-dangerous concentrations 
in the environment, affecting hundreds of millions of people worldwide.
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These compounds are distributed at varying, potentially-dangerous concentrations 
in the environment, affecting hundreds of millions of people worldwide.
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Exposure to each of arsenic, asbestos, and radon has been shown to induce 
widespread genetic and epigenetic alterations, which may account for their strong 
carcinogenicity, independent of smoking status [4]. Interestingly, the molecular 
aberrations associated with these compounds and the onset of lung cancer in 
never-smokers follows a mechanism distinct from that of tobacco smoke [5]. While 
strict guidelines regarding exposure to these compounds have been implemented 
in some regions, mounting evidence suggests that carcinogenic effects may result 
from chronic exposure to environmental levels that are well below those currently 
deemed “safe” [6, 7]. Additionally, individual differences may contribute to varying  
degrees of susceptibility to the carcinogenic effects of these compounds. For 
instance, women have been shown to have a higher incidence of lung cancer arising 
in never-smokers. This inequality can potentially be attributed to a historical bias 
towards women being more present in the home, resulting in increased exposure 
to high radon concentrations and polyaromatic hydrocarbons from various home 
combustion sources [8]. As these genetic and epigenetic aberrations might be 
indicative of specific molecular damage induced by these carcinogens, they may be 
able to be used to develop personalized approaches for risk assessment, monitoring 
and subsequent disease treatment. Thus, it is critical to uncover the extent of these 
events associated with exposure to environmental carcinogens.

Arsenic is a class I International Agency for Research on Cancer (IARC) carcino-
gen that threatens global health through its persistent accumulation in drinking 
water sources, leading to the onset of skin and lung cancers, among other diseases 
[9]. Asbestos fibers are naturally occurring silicate mineral fibers that have long 
been used in industry as building insulation, and are closely linked with not only 
the well-known outcome of mesothelioma, but also to 5–7% of all lung cancer 
cases [10]. Radon gas accounts for between 3 and 14% of all lung tumors in a given 
country and is the second most-common cause of lung cancer, behind smoking 
[11]. While the radioactive gas normally diffuses easily in open air, it can build 
up in indoor environments and is readily dissolved into water, which can lead to 
malignancies through radioactive decay and alpha particle emission [11]. Moreover, 
drinking water may be a particularly prevalent source of exposure to environmental 
carcinogens, as it is a primary route of exposure for both arsenic and radon, empha-
sizing the need for a focus on water contamination measurement and remediation. 
As arsenic, asbestos, and radon exert their carcinogenic effects through different 
exposure routes, they display similar, yet distinct mechanisms of genetic and 
epigenetic aberration, which may be useful in the identification and treatment of 
tumors caused by these agents.

In this chapter we highlight the molecular alterations induced by exposure 
to arsenic, asbestos, and radon in key lung cancer pathways, and finish with a 
discussion of the potential translational applications of environmentally-induced 
molecular damage.

2. Arsenic

2.1 Physiological and molecular impact of exposure

Arsenic exposure largely occurs through contaminated drinking-water sources, 
but this problem extends well beyond known arsenic-endemic areas. In fact, it is 
estimated that 200 million individuals are exposed worldwide to levels deemed 
non-toxic by the WHO, but shown to induce molecular damage [12].

The toxic effects of arsenic are prevalent from ingestion to excretion and are 
largely attributed to its various metabolites (Figure 1). Once ingested, arsenate 
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(AsV)—the most common form of the compound in the environment—is taken into 
cells through membrane transporters, where it is quickly reduced to arsenite (AsIII) 
by oxidoreductases including purine nucleotide phosphorylase (PNP) and glutathi-
one-s-transferase omega (GSTO). AsIII is the most toxic form of arsenic, largely due 
to its subsequent methylation by methyltransferase enzymes such as arsenic (+3) 
methyltransferase (As3MT), a process exploited for promoting the excretion of arse-
nic [13]. However, methyl groups are provided by S-adenosylmethionine (SAM), a 
key cellular methyl group donor. Methylation of arsenic inside the cell can thus lead 
to the depletion of the cellular methyl pool through a high demand on SAM, which 
then promotes global DNA hypomethylation and aberrant histone modification 
[14–17]. Disruptions in the cellular methyl pool can lead to major disruptions in 
gene expression, which is known to contribute to malignant transformation [16].

The genomic instability and global changes in gene expression resulting from 
the exposure and biotransformation of arsenic is exacerbated by the widespread 
induction of DNA damage from toxic arsenic byproducts. In fact, arsenic has been 
demonstrated to cause distinct alterations in chromatin, gene expression (both 
coding and non-coding), as well as splicing, and transcription initiation [18]. 
In particular, one of the methylated species of arsenic, monomethylarsonic acid 
(MMAIII), can interrupt the electron transport chain in mitochondria, liberating 
electrons and inducing the formation of reactive oxygen species (ROS) [15, 19, 20]. 
ROS generated from arsenic exposure result in widespread DNA damage, including 
single- and double-stranded DNA breaks, DNA base oxidation leading to muta-
tions (largely G>C → T>A transversions), adducts, deletions and even damage 
to mitochondrial DNA (mtDNA) [20–22]. Unsurprisingly, as oxidative stress is a 
known driver of tumorigenesis in multiple tissues, the DNA damage induced from 
arsenic exposure is thought to be a main mechanism of its carcinogenicity [23–25]. 
The disruption of the electron transport chain produces ROS such as hydroxyl 

Figure 1. 
Molecular mechanisms of arsenic-induced carcinogenesis.
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(AsV)—the most common form of the compound in the environment—is taken into 
cells through membrane transporters, where it is quickly reduced to arsenite (AsIII) 
by oxidoreductases including purine nucleotide phosphorylase (PNP) and glutathi-
one-s-transferase omega (GSTO). AsIII is the most toxic form of arsenic, largely due 
to its subsequent methylation by methyltransferase enzymes such as arsenic (+3) 
methyltransferase (As3MT), a process exploited for promoting the excretion of arse-
nic [13]. However, methyl groups are provided by S-adenosylmethionine (SAM), a 
key cellular methyl group donor. Methylation of arsenic inside the cell can thus lead 
to the depletion of the cellular methyl pool through a high demand on SAM, which 
then promotes global DNA hypomethylation and aberrant histone modification 
[14–17]. Disruptions in the cellular methyl pool can lead to major disruptions in 
gene expression, which is known to contribute to malignant transformation [16].

The genomic instability and global changes in gene expression resulting from 
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coding and non-coding), as well as splicing, and transcription initiation [18]. 
In particular, one of the methylated species of arsenic, monomethylarsonic acid 
(MMAIII), can interrupt the electron transport chain in mitochondria, liberating 
electrons and inducing the formation of reactive oxygen species (ROS) [15, 19, 20]. 
ROS generated from arsenic exposure result in widespread DNA damage, including 
single- and double-stranded DNA breaks, DNA base oxidation leading to muta-
tions (largely G>C → T>A transversions), adducts, deletions and even damage 
to mitochondrial DNA (mtDNA) [20–22]. Unsurprisingly, as oxidative stress is a 
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arsenic exposure is thought to be a main mechanism of its carcinogenicity [23–25]. 
The disruption of the electron transport chain produces ROS such as hydroxyl 

Figure 1. 
Molecular mechanisms of arsenic-induced carcinogenesis.
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radicals (OH∙), superoxide anion radicals (O2∙−), and hydrogen peroxide (H2O2), 
which can further damage cells through lipid oxidation, protein oxidation, and 
reduction of the mitochondrial membrane potential [26]. The subsequent libera-
tion of cytochrome c can activate apoptotic pathways through caspases, leading to 
an abnormal rate of cell death. However in addition to faulty apoptotic signaling, 
exposure to arsenic can also lead to further aberrations in DNA-repair pathways. 
Here, arsenic affects the expression of genes involved in both nucleotide- (NER) 
and base-excision repair (BER) mechanisms, allowing the cell to continue through 
the cell cycle despite extensive damage and genomic instability [27–30]. Thus, 
arsenic exposure can induce an array of molecular damage across the genome and 
epigenome, culminating in malignant transformation.

2.2 Carcinogenic mechanisms

While it is exposure to the methylated metabolic byproducts that yields the 
largest toxic effects resulting from exposure to environmental arsenic, it is notewor-
thy that even at very low doses, arsenic may be able to act as a co-mutagen to other 
known carcinogens, such as ultraviolet light, X-rays, methyl methane sulfonate, 
and tobacco smoke [15]. ROS are perhaps more immediately damaging to cells, as 
they can lead to alterations in a variety of lung cancer-specific pathways. As stated 
previously, arsenic exposure can interfere with DNA damage repair pathways, 
which exacerbates the effects of ROS generation. In the NER pathway, arsenic can 
alter the expression of key damage-repair genes, such as XPC, in a process that may 
be mediated by the proteasome [31].

Collectively, aberrations in cellular DNA-damage repair pathways may not only 
highlight mechanisms of arsenic toxicity, but also its co-mutagenic effects. One of 
the most common pathways affected in lung cancer is the constitutive activation of 
the epidermal growth factor receptor (EGFR), especially in women and individuals 
who have never smoked [32]. Both amplification and mutation can lead to EGFR 
activation, which subsequently stimulates cell proliferation. AsIII can activate proto-
oncogene c-Src (c-Src) through vicinal sulfhydryl groups, which then promotes 
phosphorylation events in intracellular EGFR tyrosine residues (Tyr845) [32]. As 
tyrosine phosphorylation is a key event in EGFR activation, AsIII thus promotes 
EGFR constitutive signaling. Alternatively, arsenic exposure may also indirectly 
affect downstream members of the EGFR pathway, through arsenic-induced 
oxidative stress and ROS, a common mechanism of environmentally-induced 
lung carcinogenesis. In a mechanism similar to that of EGFR activation, arsenic 
has been shown to induce the phosphorylation of several potential substrates of 
protein kinase B (Akt), a regulator of epithelial-to-mesenchymal transition (EMT) 
and metastasis, inducing cell migration [33]. Specifically, arsenic may affect 
c-Jun N-terminal kinase (JNK) activation and subsequent activation of signal 
transducer and activator of transcription 3 (STAT3), resulting in Akt growth and 
migration signaling [34]. Similarly, arsenic may increase the enzymatic activity of 
phosphoinositide 3-kinase (PI3K) and Akt phosphorylation, a key pathway in lung 
cancer tumorigenesis and progression [35]. The mechanism of PI3K/AKT activation 
has proven elusive, yet evidence suggests that ROS may play a mediating role, as 
well as alterations in histone modifications and activation of other related path-
ways, such as EGFR, mammalian target of rapamycin (mTOR), or polo-like kinase 
1 (PLK1) signaling [35, 36]. Phenotypically, activation of the PI3K/Akt signaling 
axis by arsenic can result in a variety of changes, including cellular growth and 
angiogenesis [37]. There are many other lung cancer-specific pathways that may 
be altered upon exposure to arsenic and its toxic byproducts, including the nuclear 

75

Oncogenetics of Lung Cancer Induced by Environmental Carcinogens
DOI: http://dx.doi.org/10.5772/intechopen.81064

factor (erythroid-derived 2)-like 2/kelch-like ECH-associated protein 1 (NRF2/
KEAP1) pathway, the nuclear factor kappa-light-chain-enhancer of activated B cells 
pathway (NF-κB), and various epigenetic pathways [35, 38]. Further experimental 
work is required to fully characterize and distinguish the molecular mechanisms of 
the pathways affected by chronic exposure to arsenic.

2.3 Prominent cancer genes affected by arsenic

As evidenced by its genome-wide effects on cellular physiology and molecular 
pathways, gene expression alterations cause by arsenic exposure can potentiate 
negative health outcomes. In fact, there are a growing number of genes that have 
been observed to have abnormal expression resulting from arsenic exposure, in 
cell lines, mouse, and human samples. Many of these genes have accepted roles in 
cancer, both as tumor-suppressors and oncogenes. Most notably, the tumor suppres-
sor gene TP53 has been shown to be epigenetically inactivated in arsenic-exposed 
cell lines [39]. Similarly, other cell line studies have suggested that low concentra-
tions of arsenic may upregulate the known lung oncogene Myc (also related to the 
cell cycle) through aberrant expression of miRNAs targeting upstream regulators of 
its transcription [40].

As previously discussed, the frequent disruption of DNA damage repair and 
stress response pathways is a common feature of arsenic-induced lung tumors. 
Notably, arsenic has been associated with stimulation of the DNA damage response 
through the upregulation of critical genes, such as the gene encoding DNA excision 
repair protein ERCC1 (ERCC1) [41], confirming that DNA damage is prevalent 
in arsenic-exposed individuals. Alternatively, arsenic may induce repression and 
decreased activity of main DNA repair enzymes, including poly [ADP-ribose] 
polymerase 1 (PARP1) inhibition (through ROS) [42], proteasomal degradation of 
xeroderma pigmentosum, complementation group C (XPC) [31], and widespread 
hypermethylation of NER genes [43]. Additional lung cancer-related genes affected 
by arsenic include: EGFR [44], cyclin-dependent kinase inhibitor 1A (CDKN1A) [45], 
and B-cell lymphoma 2 (BCL2) [46]. Despite the mounting evidence of the toxic 
effects of arsenic, the concentration and identity of key damage-related arsenic 
compounds varies widely between studies. While different arsenic-based com-
pounds affect similar pathways, specific physiological responses may vary greatly 
depending on compound type and dose response, necessitating closer examination 
of these factors in future studies.

However, it is important to note that variations in these genes may exist within 
individuals prior to arsenic exposure, and that certain genetic polymorphisms may 
make some individuals more susceptible to the genotoxic effects of arsenic. For 
instance, a single nucleotide polymorphism (rs238406; C > A) in ERCC2 (part of 
the DNA-damage response) leads to the inclusion of an alanine residue in the place 
of a cysteine in the complete protein, increasing an individual’s odds ratio for skin 
cancer to 2.04 [47]. Additionally, polymorphisms in many of the genes involved in 
the metabolism and biotransformation of arsenic may result in the production of 
different metabolic byproducts, conferring differential susceptibility and cancer 
risk [48]. This is exemplified by the rs1191439 polymorphism of As3MT, which is 
correlated with elevated MMA levels in urine [49]. Thus, the landscape of arsenic-
induced carcinogenesis is quite complex, with multiple types and outcomes of the 
molecular aberrations that can result from chronic exposure. A more comprehen-
sive understanding of the mechanisms at play may result in the identification of 
the underlying causes of lung cancer in never-smokers, and may help to direct the 
development of novel treatment strategies for these affected individuals.



Oncogenes and Carcinogenesis

74

radicals (OH∙), superoxide anion radicals (O2∙−), and hydrogen peroxide (H2O2), 
which can further damage cells through lipid oxidation, protein oxidation, and 
reduction of the mitochondrial membrane potential [26]. The subsequent libera-
tion of cytochrome c can activate apoptotic pathways through caspases, leading to 
an abnormal rate of cell death. However in addition to faulty apoptotic signaling, 
exposure to arsenic can also lead to further aberrations in DNA-repair pathways. 
Here, arsenic affects the expression of genes involved in both nucleotide- (NER) 
and base-excision repair (BER) mechanisms, allowing the cell to continue through 
the cell cycle despite extensive damage and genomic instability [27–30]. Thus, 
arsenic exposure can induce an array of molecular damage across the genome and 
epigenome, culminating in malignant transformation.

2.2 Carcinogenic mechanisms

While it is exposure to the methylated metabolic byproducts that yields the 
largest toxic effects resulting from exposure to environmental arsenic, it is notewor-
thy that even at very low doses, arsenic may be able to act as a co-mutagen to other 
known carcinogens, such as ultraviolet light, X-rays, methyl methane sulfonate, 
and tobacco smoke [15]. ROS are perhaps more immediately damaging to cells, as 
they can lead to alterations in a variety of lung cancer-specific pathways. As stated 
previously, arsenic exposure can interfere with DNA damage repair pathways, 
which exacerbates the effects of ROS generation. In the NER pathway, arsenic can 
alter the expression of key damage-repair genes, such as XPC, in a process that may 
be mediated by the proteasome [31].

Collectively, aberrations in cellular DNA-damage repair pathways may not only 
highlight mechanisms of arsenic toxicity, but also its co-mutagenic effects. One of 
the most common pathways affected in lung cancer is the constitutive activation of 
the epidermal growth factor receptor (EGFR), especially in women and individuals 
who have never smoked [32]. Both amplification and mutation can lead to EGFR 
activation, which subsequently stimulates cell proliferation. AsIII can activate proto-
oncogene c-Src (c-Src) through vicinal sulfhydryl groups, which then promotes 
phosphorylation events in intracellular EGFR tyrosine residues (Tyr845) [32]. As 
tyrosine phosphorylation is a key event in EGFR activation, AsIII thus promotes 
EGFR constitutive signaling. Alternatively, arsenic exposure may also indirectly 
affect downstream members of the EGFR pathway, through arsenic-induced 
oxidative stress and ROS, a common mechanism of environmentally-induced 
lung carcinogenesis. In a mechanism similar to that of EGFR activation, arsenic 
has been shown to induce the phosphorylation of several potential substrates of 
protein kinase B (Akt), a regulator of epithelial-to-mesenchymal transition (EMT) 
and metastasis, inducing cell migration [33]. Specifically, arsenic may affect 
c-Jun N-terminal kinase (JNK) activation and subsequent activation of signal 
transducer and activator of transcription 3 (STAT3), resulting in Akt growth and 
migration signaling [34]. Similarly, arsenic may increase the enzymatic activity of 
phosphoinositide 3-kinase (PI3K) and Akt phosphorylation, a key pathway in lung 
cancer tumorigenesis and progression [35]. The mechanism of PI3K/AKT activation 
has proven elusive, yet evidence suggests that ROS may play a mediating role, as 
well as alterations in histone modifications and activation of other related path-
ways, such as EGFR, mammalian target of rapamycin (mTOR), or polo-like kinase 
1 (PLK1) signaling [35, 36]. Phenotypically, activation of the PI3K/Akt signaling 
axis by arsenic can result in a variety of changes, including cellular growth and 
angiogenesis [37]. There are many other lung cancer-specific pathways that may 
be altered upon exposure to arsenic and its toxic byproducts, including the nuclear 

75

Oncogenetics of Lung Cancer Induced by Environmental Carcinogens
DOI: http://dx.doi.org/10.5772/intechopen.81064

factor (erythroid-derived 2)-like 2/kelch-like ECH-associated protein 1 (NRF2/
KEAP1) pathway, the nuclear factor kappa-light-chain-enhancer of activated B cells 
pathway (NF-κB), and various epigenetic pathways [35, 38]. Further experimental 
work is required to fully characterize and distinguish the molecular mechanisms of 
the pathways affected by chronic exposure to arsenic.

2.3 Prominent cancer genes affected by arsenic

As evidenced by its genome-wide effects on cellular physiology and molecular 
pathways, gene expression alterations cause by arsenic exposure can potentiate 
negative health outcomes. In fact, there are a growing number of genes that have 
been observed to have abnormal expression resulting from arsenic exposure, in 
cell lines, mouse, and human samples. Many of these genes have accepted roles in 
cancer, both as tumor-suppressors and oncogenes. Most notably, the tumor suppres-
sor gene TP53 has been shown to be epigenetically inactivated in arsenic-exposed 
cell lines [39]. Similarly, other cell line studies have suggested that low concentra-
tions of arsenic may upregulate the known lung oncogene Myc (also related to the 
cell cycle) through aberrant expression of miRNAs targeting upstream regulators of 
its transcription [40].

As previously discussed, the frequent disruption of DNA damage repair and 
stress response pathways is a common feature of arsenic-induced lung tumors. 
Notably, arsenic has been associated with stimulation of the DNA damage response 
through the upregulation of critical genes, such as the gene encoding DNA excision 
repair protein ERCC1 (ERCC1) [41], confirming that DNA damage is prevalent 
in arsenic-exposed individuals. Alternatively, arsenic may induce repression and 
decreased activity of main DNA repair enzymes, including poly [ADP-ribose] 
polymerase 1 (PARP1) inhibition (through ROS) [42], proteasomal degradation of 
xeroderma pigmentosum, complementation group C (XPC) [31], and widespread 
hypermethylation of NER genes [43]. Additional lung cancer-related genes affected 
by arsenic include: EGFR [44], cyclin-dependent kinase inhibitor 1A (CDKN1A) [45], 
and B-cell lymphoma 2 (BCL2) [46]. Despite the mounting evidence of the toxic 
effects of arsenic, the concentration and identity of key damage-related arsenic 
compounds varies widely between studies. While different arsenic-based com-
pounds affect similar pathways, specific physiological responses may vary greatly 
depending on compound type and dose response, necessitating closer examination 
of these factors in future studies.

However, it is important to note that variations in these genes may exist within 
individuals prior to arsenic exposure, and that certain genetic polymorphisms may 
make some individuals more susceptible to the genotoxic effects of arsenic. For 
instance, a single nucleotide polymorphism (rs238406; C > A) in ERCC2 (part of 
the DNA-damage response) leads to the inclusion of an alanine residue in the place 
of a cysteine in the complete protein, increasing an individual’s odds ratio for skin 
cancer to 2.04 [47]. Additionally, polymorphisms in many of the genes involved in 
the metabolism and biotransformation of arsenic may result in the production of 
different metabolic byproducts, conferring differential susceptibility and cancer 
risk [48]. This is exemplified by the rs1191439 polymorphism of As3MT, which is 
correlated with elevated MMA levels in urine [49]. Thus, the landscape of arsenic-
induced carcinogenesis is quite complex, with multiple types and outcomes of the 
molecular aberrations that can result from chronic exposure. A more comprehen-
sive understanding of the mechanisms at play may result in the identification of 
the underlying causes of lung cancer in never-smokers, and may help to direct the 
development of novel treatment strategies for these affected individuals.



Oncogenes and Carcinogenesis

76

3. Asbestos

3.1 Physiological and molecular impact of exposure

Asbestos is a term used to define a group of mineral fibers incorporated in a 
wide variety of products, including talcum powder, brake pads, and construction 
materials. While more than 50 countries have banned the use of asbestos-containing 
materials, more than 2 million metric tonnes are still produced every year, which 
still poses a great public health risk for asbestos-related diseases [50, 51]. There are 
two main classes of asbestos: chrysotile (spiral-shaped, the most common form) and 
amphibole (needle-shaped). Other elements such as iron (which can constitute up to 
30% of the weight of asbestos fibers) embedded in the surface of fibers can potenti-
ate asbestos-related pathogenic effects [52, 53]. Importantly, all identified forms of 
asbestos have been classified as carcinogens to humans (Group 1) by the IARC [54].

Exposure to asbestos fibers has been strongly linked to the development of 
malignant mesothelioma, but it is also a known contributor to the development 
of lung cancer [55–57]. Between 5 and 7% of all lung cancer cases worldwide have 
records of high levels of asbestos, mostly derived from occupational exposure (e.g., 
mining) [10]. Exposure is usually determined by the presence of pleural plaques 
(areas of fibrosis associated with past exposure to asbestos), or by detection of 
asbestos fibers in bronchoalveolar lavage (BAL) and lung tissue [58]. The primary 
source of asbestos exposure comes from inhaled fibers [54]. However, the mecha-
nism of disruption that occurs as a result of asbestos exposure is determined by the 
efficiency of fiber clearance from airway cells. Longer fibers are cleared at a slower 
rate than short fibers, and are associated with higher carcinogenic potential [59]. 
Similarly, thin fibers (width <0.25 μm) are more carcinogenic than thicker ones 
[60], likely because they can penetrate deeper in airways. Accumulation of asbestos 
fibers in the lung leads to fibrosis, inflammation, and carcinogenesis, although spe-
cific effects depend on the cumulative dose and the type of fiber inhaled [61, 62].

Asbestos-related carcinogenesis is thought to primarily result from the ability of 
the fibers to induce oxidative stress (Figure 2), although the specific mechanisms 
are not yet fully understood [63]. Asbestos induces the recruitment of alveolar 
macrophages, followed by an inflammatory reaction [64–66]. Failed phagocytosis 
of these fibers by macrophages results in the generation of ROS, together with the 
release of cytokines, chemokines, proteases, and growth factors further amplify-
ing deleterious effects of asbestos [10, 56, 67]. Additionally, the iron contained in 
asbestos fibers deposits in the lungs and cycles between the reduced and oxidized 
forms, potentially inducing further oxidative DNA damage in nearby cells via the 
Fenton reaction which converts H2O2 into more reactive ROS [10, 56, 68, 69].

In lungs, oxidative stress following asbestos exposure can activate several 
signaling pathways including mitogen-activated protein kinases (MAPK), NF-κB, 
and activator protein 1 (AP1). All of these pathways have been linked to increases in 
early response genes (e.g., JUN and FOS) that govern cell proliferation, apoptosis, 
and inflammatory signaling [55, 56].

3.2 Carcinogenic mechanisms

The most frequent asbestos-induced alterations in cancer-related genes have 
been reported in tumor suppressor genes (TSGs). Activation of p53 and p21 are 
frequently described, both in animal models and lung cancer patients with asbes-
tosis (reviewed in [63]). This likely represents the initial DNA-damage response 
following exposure to asbestos-induced oxidative stress. In lung cancer patients, 
the frequency of TP53 gene mutations is similar between asbestos-exposed and 
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unexposed NSCLC cases; however, a higher frequency of G:C to T:A transversions 
in the sequence of TP53 is observed in asbestos-exposed cases [70, 71]. Contrarily, 
other tumor suppressor genes such as CDKN2A are inactivated in asbestos-exposed 
lung cancer cases, mostly via segmental copy-number losses [72]. In murine models, 
chrysotile fibers are able to induce the activity of the c-Jun and c-Fos oncogenes and 
inactivate p53 and p16 tumor suppressors, both at the mRNA and protein levels [73].

Additionally, other well-known lung cancer genes and pathways have been 
shown to display aberrant functions in response to asbestos exposure. Different 
mechanisms of asbestos-mediated activation of the EGFR pathway have been 
described. Asbestos-induced chronic inflammation has been associated with activa-
tion of the EGFR-related and extracellular signal-regulated kinase (ERK) signaling 
pathway that promote lung epithelial cell and fibroblast proliferation [55, 56, 74]. 
Also, asbestos fibers can induce over-expression of EGFR mRNA and induce protein 
dimerization, phosphorylation, and subsequent pathway activation by directly 
interacting with the surface portion of the receptor [63, 75, 76]. On the other hand, 
DNA mutations affecting EGFR do not seem to be main mechanisms of asbestos-
induced EGFR activation. Asbestos-exposed patients displayed a significantly lower 
rate of EGFR mutations compared to non-exposed patients [77]. Moreover, it is 
unclear if there is a causal relationship between the mutations found in EGFR and 
exposure to asbestos fibers [78, 79].

Other genes, such as MAP4K3, CEBPZ, QPCT, FANCG, IGFBPL1, CCL19, 
MELK, FANCM, and CDKL1 have shown aberrant gene expression in human  
epithelial bronchial cell lines (Beas-2B), following asbestos exposure [80]. 
Asbestos inhalation also causes up-regulation of mRNA levels of matrix metal-
loproteinase family members in rat lungs, suggesting induction of extracellular 
matrix remodeling [81].

Figure 2. 
Molecular mechanisms of asbestos-induced carcinogenesis.
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At the epigenetic level, alterations affecting tumor suppressor genes have been 
observed in lung cancer cases associated with asbestos exposure, including those 
in the promoter regions of RASSF1A and CDKN2A (p16) [82]. Additionally, a 
genome-wide DNA methylation study identified differentially methylated CpGs in 
regions nearby the transcription start site of genes such as NPTN, NRG2, GLT25D2 
and TRPC3 to be significantly associated with asbestos exposure [83].

The effect of asbestos on micro RNA (miRNA) expression has been also investi-
gated. miRNAs are short (~22 nucleotide) RNA transcripts that negatively regulate 
gene expression through direct interaction with mRNAs. Interestingly, the over-
expression of miR-148b has been described in multiple independent studies. This 
miRNA was part of an asbestos-related signature in lung tumors, also composed 
of seven other overexpressed (miR-374a, miR-24-1*, let-7d, Let-7e, miR-199b-5p, 
miR-331-3p, and miR-96) and five miRNAs with decreased expression in tumors 
(miR-939, miR-671-5p, miR-605, miR-1224-5p, and miR-20) [84]. Additionally, 
miR-148b was found to be overexpressed in asbestos-related lung cancer compared 
to tumors in non-exposed individuals, and three of its targets (GADD45A, LTBP1 
and FOSB) were down-regulated in asbestos-exposed patients [84].

Despite the known genetic and epigenetic abnormalities resulting from asbestos 
exposure, a relatively small proportion of exposed individuals develop thoracic 
malignancies (mesothelioma or lung cancer). It has been hypothesized that specific 
genetic variants may confer increased risk of developing asbestos-related diseases 
[85]. Thus, recent studies have investigated the association between genomic 
variants and risk of lung cancer following asbestos exposure. In a genome-wide 
association study (GWAS) performed in the Texas lung cancer GWAS dataset, the 
authors did not find statistical evidence for gene-asbestos interaction in the etiol-
ogy of lung cancer [86]. However, the Fas signaling pathway (regulation of tissue 
homeostasis in the immune system by inducing apoptosis) was identified as the 
most significant pathway associated with asbestos exposure in the etiology of lung 
cancer. Another study identified three single nucleotide polymorphisms (SNPs) in 
the MIRLET7BHG (MIRLET7B host gene located at 22q13.31) significantly associ-
ated with increased lung cancer risk among individuals exposed to asbestos [36].

The identification of risk variants linked with asbestos-related lung cancer is a 
challenging task. Sample sizes for asbestos-related lung cancer cohorts are particu-
larly limited by the number of cases that can be unequivocally attributed to asbestos 
exposure despite other well-known factors (e.g., smoking). Thus, focusing on the 
genes and chromosomal regions found by these preliminary studies might be useful 
for more targeted strategies aiming to validate these results.

3.3 Carcinogenic potential of other fibers

While the oncogenic effects of asbestos have been extensively established, recent 
evidence indicates that non-asbestos fibers, both natural and synthetic in nature 
can also cause thoracic cancers. Non-asbestos mineral (natural) fibers include 
erionite and fluoro-edenite, among others. Erionite is a naturally occurring fibrous 
mineral that shares some physical properties with asbestos, although it is less 
widespread. In fact, it has been shown that erionite is a more potent carcinogen in 
causing malignant mesothelioma [87, 88]. Erionite activates the NLR family pyrin 
domain containing 3 (NLRP3, NALP3) inflammasome, inducing the transcription 
and production of cytokines critical to cancer initiation [89]. On the other hand, 
Fluoro-edenite (originating from volcanic activity) can induce ROS that result in 
DNA damage and increase in lactic dehydrogenase release (a damage and toxicity 
marker) in human lung adenocarcinoma (A549) and monocyte-macrophage (J774) 
cell lines [90].
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Synthetic graphene-based fibers are widely used in several industries. They 
have also been explored as a drug delivery system for cancer treatments. Physical 
similarities to asbestos, particularly its high length-to-width ratio, have raised some 
concerns about the potential carcinogenicity effects of these fibers [91]. Exposure 
to carbon nanotubules has been shown to induce oncogenic pathways, such as 
TGF-β and Akt/GSK-3β, resulting in activation of the SNAIL-1 signaling pathway 
and epithelial-mesenchymal transition [92]. Additionally, carbon nanotubules can 
generate ROS, activating MAPKs, AP-1, NF-κB, and Akt in normal and malignant 
human mesothelial cells [93]. Other genetic alterations, including micronuclei 
formation, disruption of mitotic spindles, and polyploidy have also been observed 
in response to carbon nanotubule exposure [94–96]. Moreover, it has been shown 
that exposure to carbon nanotubules can induce specific methylation changes at 
the promoter regions several genes, including DNMT1, ATM, SKI, and HDAC4, 
while they seem to have only a marginal effect on miRNA expression [97]. Thus, the 
oncogenetic factors of natural and synthetic fibers, while similar in morphology, 
are distinct entities that may collectively culminate in tumor development.

4. Radon

4.1 Physiological and molecular impact of exposure

Radon is the second most common cause of lung cancer in many countries; 
however, the intricacies of its mechanism of action remain underappreciated. The 
genotoxicity of radon is largely the result of alpha particle emission during its spon-
taneous decay into short-lived radioactive progeny (218Po and 214Po) and comparably 
long-lived radioactive 210Pb, which also induces cellular damage through alpha 
decay (Figure 3) [98].

Alpha decay is the emission of a 4 atomic mass unit helium ion (two protons and 
two neutrons), which can liberate electrons from water molecules and result in the 
generation of several types of ROS [15]. Much like the mechanisms of arsenic and 
asbestos toxicity, ROS generated as a consequence of radon exposure can lead to 
widespread molecular aberrations, especially base oxidation (leading to mismatches 
and mutagenesis), DNA strand breaks, chromosomal aberrations, and deletions. 
For example, chromatid deletions in blood lymphocytes may be a result of radon 
exposure, which may in part explain the associations between radon exposure and 
blood malignancies [8]. These events may occur at levels well below those currently 
deemed safe in many countries, exemplified by the observation of chromosomal 
abnormalities in lymphocytes at very low doses of polonium-214, a radioactive 
progeny of radon [99].

Beyond the molecular events resulting from ROS generation, alpha radiation 
from radon exposure can induce bystander responses in cells that have not been 
directly affected by alpha particles [100]. The bystander effect of radiation expo-
sure can occur through the release of signals from nearby irradiated cells, generat-
ing a physiological response in non-irradiated cells, even at relatively low doses of 
radiation [101]. The effect requires direct contact between adjacent cells, such as 
through gap junctions, as well as compounds in the surrounding medium, includ-
ing cytokines [102]. One of these compounds, nitric oxide (NO), has been shown 
to be an important factor for the cell-killing effects of the bystander response, 
largely through the direct interaction with and damage of DNA [103]. Moreover, 
NO byproducts such as dinitrogen trioxide (N2O3) can promote nitrosation of other 
amines, such as those of DNA bases, leading to cross-linking and DNA alkylation 
[102]. Another compound that may be relevant to the bystander effect of cellular 
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radiation exposure is cyclooxygenase 2 (COX-2), which is related to the NF-κB 
pathway, an effect that is attenuated upon COX-2 inhibition [103, 104]. Finally, this 
response may be dependent on TP53 status, which will be discussed in Section 4.3.

4.2 Carcinogenic mechanisms

Despite differences in the details of exposure, the molecular mechanisms con-
tributing to carcinogenesis in individuals exposed to arsenic, asbestos, and radon 
converge in that they all produce ROS. Radon has a half-life of 3.8 days, and as previ-
ously mentioned, commonly generates alpha particles and polonium decay products, 
which themselves emit further alpha radiation [105]. Alpha particles have a high 
linear energy transfer (LET) despite having relatively low penetration capability, 
meaning that they interact readily with DNA, especially in regions close to their site 
of exposure, such as the bronchial epithelium [105]. Thus, it is not surprising that 
lung malignancies are the most common type of radon-induced cancer. High LET 
radiation is distinct from low LET radiation (such as x-rays or gamma rays) in that it 
produces a substantially greater proportion of clustered damage, meaning the  
occurrence of ≥2 lesions of ≥1 different types within 1–2 helical turns of 
DNA. Clustered DNA damage is typically repaired with slower kinetics and has a 
greater likelihood of producing sequence alterations, as repair pathways converge 
and conflict with one another [106–108].

Figure 3. 
Molecular mechanisms of radon-induced carcinogenesis.
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The largest radon-induced mechanisms of carcinogenesis include DNA damage, 
ROS, and alpha particle generation; likewise, pathways associated with these func-
tions are also known to be associated with lung cancer. In fact, patients positive for 
rearrangements in the gene encoding anaplastic lymphoma kinase (ALK)—an event 
frequently found to drive lung tumorigenesis—were found to have two-fold increases 
in residential radon levels than those without these rearrangements [109, 110]. While 
a synergistic effect between radon and smoking has been suggested [11], the G:C 
to T:A transversions associated with tobacco-related molecular damage are not as 
commonly observed in individuals exposed to radon, suggesting a unique molecular 
signature in radon-associated lung tumors [15]. Again, it is important to note that 
a number of the pathways affected by radon exposure, including gene expression 
alterations and apoptotic disturbances, may actually be from cells neighboring those 
that are irradiated [104]. In fact, pro-inflammatory and ROS-generating cytokines 
such as tumor necrosis factor alpha (TNF-α) may be released upon radiation expo-
sure, which may perpetuate the damage enacted by ROS [111]. Thus, key pathways 
such as DNA repair, proliferation, and cell death can be altered in cells beyond those 
that are irradiated [111].

4.3 Prominent cancer genes affected by radon

ROS-induced DNA damage is a large factor in radon-induced carcinogenesis, 
thus, many of the examinations into genes affected by radon are relevant to DNA-
repair and apoptotic pathways. Naturally, a heavy focus is placed on TP53. Many 
investigations into TP53 examine whether hotspot mutations in TP53 can act as a 
molecular signal for radon-induced genotoxicity in at-risk populations. Although 
TP53 is observed to be altered in high exposure populations, there are limited 
observations available to suggest a consistent mutational landscape [112]. However, 
the role of TP53 in the molecular response to radon exposure may be relevant to 
the bystander effect, wherein TP53 may mediate the inhibition of response signals 
coming from irradiated cells [103]. Additionally, other key lung cancer-related genes 
may also be mutated by radon exposure, including EGFR and phosphatase and ten-
sin homolog (PTEN), but the exact mechanisms remain to be characterized [113].

As previously discussed, radon may also exhibit its carcinogenic effects epige-
netically, as evidenced by the promoter hypermethylation of the tumor suppressor 
genes CDKN2A and MGMT. In normal human lung cell lines, miRNAs shown to 
be primarily involved in cell proliferation, differentiation, and adhesion displayed 
aberrant expression upon radon exposure [114]. Moreover, the miRNA let-7e—an 
epigenetic regulator of the RAS oncogene—was found to be upregulated upon low 
radon exposure [115]. In this study, the upregulation of miRNAs targeting tumor 
suppressor genes was also noted, including PTEN, which may present an alternative 
mechanism of radon-induced carcinogenesis.

Finally, a number of studies have examined the effect of genetic polymorphisms 
of DNA damage repair genes in the outcome of individuals exposed to radon. For 
instance, individuals with a polymorphism leading to the Asp1104His substitution of 
DNA repair gene ERCC5 (XpG) displayed a higher frequency of micronuclei in their 
lymphocytes, representative of elevated cytogenetic damage and decreased radio-
sensitivity [116]. Alternatively, the absence of GSTM1 and GSTT1, members of the 
glutathione-s-transferase enzyme family—critical to detoxification and excretion—
is associated with an increased risk of lung cancer development [117, 118]. When 
radon exposure is considered, individuals with null alleles show a doubly increased 
odds ratio of lung cancer development [118]. Notably, this enzyme is relevant in the 
biotransformation and excretion of arsenic, suggesting similar carcinogenic path-
ways between these two environmental agents.
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Taken together, the molecular landscape of radon-induced carcinogenesis is 
complex and diverse, with effects being observed at the genetic, epigenetic and 
extracellular level. Future studies may examine the underlying molecular events 
common to radon-induced lung cancer, to aid in diagnosis and perhaps novel  
treatment strategies.

5. Common oncogenic features exhibited by environmental carcinogens

The landscape of the genomic disruptions induced by environmental carcino-
gens is extensive. It has been demonstrated that these compounds can induce 
alterations such as chromosomal abnormalities, DNA double-strand breaks, gene 
expression dysregulation, and epigenetic aberrations. While each agent presents a 
unique mechanism and clinical challenge, a number of parallels can be seen. The 
molecular effects of exposure to arsenic, asbestos, and radon converge in that each 
compound can result in DNA damage induced by ROS and inflammation. As these 
events occur early during tumor development, the identification of the underlying 
genomic and epigenomic abnormalities caused by these compounds is extremely 
relevant in identifying early oncogenic events and individual susceptibility 
differences.

Although the intricacies of the molecular mechanisms of alteration may differ 
between the various toxic agents, ROS generation is a common outcome of exposure 
that can lead to extensive DNA damage and further perturbations in various cellular 
compartments and processes [119]. As mitochondria are one of the primary sources 
of ROS, they are also key targets of oxidative toxicity [120]. Arsenic exposure is 
associated with dysfunction of the mitochondria, through the ability of its metabo-
lites to disrupt the mitochondrial membrane potential and reduce mitochondrial 
ATP levels, as well as ROS-induced mitochondrial damage [121, 122]. Mitochondrial 
damage induced by arsenic can then lead to numerous alterations in key signaling 
pathways, such as the decreased expression of apoptotic regulator protein Bcl-2 
[122]. Regardless of the molecular mechanism, mitochondrial insult culminates in 
apoptosis and increased inflammation, in addition to the exacerbation of reactive 
species generation; events that commonly precede tumorigenesis [121, 123].

Another frequently observed early consequence of exposure to environmental 
carcinogens is an inflammatory response. Indeed, inflammation caused by infiltrat-
ing immune cells underlies numerous hallmarks of cancer biology by providing  
key molecules for tumor survival and growth, as well as the promotion of genomic 
aberrations, again through the generation of ROS [124]. Asbestos-induced car-
cinogenesis is thought to rely heavily on the inflammatory response, where the 
macrophages of the innate immune system attempt to clear the carcinogenic fibers 
through phagocytosis [125]. However, these fibers are inherently difficult to digest, 
leading to the eventual death of the macrophage and subsequent release of pro-
inflammatory cytokines, ROS, and other growth factors [126]. Interestingly, many 
malignancies have noticeable local immune responses prior to tumor development, 
highlighting the complex and dichotomous role of host immune cells in both pro- 
and anti-tumor functions [127]. Thus, exposure to environmental carcinogens 
threatens the genetic and epigenetic landscape of oncogene expression in the devel-
opment of malignancies, and subsequently changes cellular and systemic processes.

The intertwined role of genetic and epigenetic aberrations resulting from expo-
sure to these compounds highlights the complexity of environmentally-induced lung 
cancer. However, the carcinogenic mechanisms associated with exposure to these 
agents have been mainly identified using a “one-agent-at-a-time” approach. Further, 
we have yet to understand how these factors interplay with one another in cases of 
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combined exposure and how individual genomes modulate the molecular events 
that arise following exposure. For example, it is difficult to accurately assess the 
relative risk of lung cancer in an individual who is exposed to occupational asbestos, 
arsenic-contaminated water, and high levels of domestic indoor air radon. Whether 
these factors synergize in terms of their molecular effects is not clearly understood 
and has critical implications to patient monitoring and disease management.

Recently, the idea of the human exposome has sought to provide a method for 
analyzing individual risk factors by integrating the effects of factors ranging from 
DNA-level alterations to geographic location. The human exposome is defined as 
the sum of every exposure to which an individual is subjected to from conception to 
death [128]. The exposome is dynamic: the nature, amount, and conditions of expo-
sure change over time. It also includes exposure from internal (e.g., metabolism, 
endogenous hormones, gut microflora, inflammation, oxidative stress, etc.) and 
external (e.g., radiation, infectious agents, chemical contaminants and environ-
mental pollutants, among others) sources [129]. The lungs are one of the organs at 
the highest risk of disease development from environmental exposures as the lung 
exposome can be comprised of an array of molecules and environmental insults. 
Arsenic, asbestos, and radon, together with air pollution and tobacco smoke, 
constitute a fraction of the complex mix of environmental carcinogens posing 
risks for developing thoracic malignancies in humans. However, understanding the 
oncogenic events following exposure to these agents may allow for the identification 
of key intervention points to minimize environmentally-induced lung cancer in 
at-risk populations.

6. Translational outlook for environmentally-induced cancer

As the molecular mechanisms of environmentally-induced carcinogenesis con-
tinue to emerge, a need to characterize the clinical utility of these findings should 
be underscored. This need is further emphasized by the complex interplay between 
the numerous features of the lung exposome. Many of the single cancer-associated 
genes that are affected by exposure to these environmental agents are promising 
therapeutic intervention points. For instance, targeted inhibitors of EGFR (e.g., 
erlotinib, afatinib)—a protein transcribed from a gene commonly up-regulated 
upon exposure to arsenic—are used in lung cancer treatment to interfere with the 
aberrant growth pathways activated by the upregulation of this signaling receptor 
[130]. Additionally, the association between radon exposure and ALK gene rear-
rangements in lung cancer patients may be amenable to therapy with inhibitors of 
the ALK protein (e.g., crizotinib, ceritinib) [131]. However, patients that do not 
present with alterations in genes that are clinically actionable remain extremely 
difficult to treat beyond standard regimes. Thus, it is critical to analyze the onco-
genetic alterations induced by environmental carcinogens, to not only identify 
the contribution of each of these widely-distributed agents to tumorigenesis, but 
also to direct the development of novel treatment and risk-management strategies. 
Concurrent analysis of altered genes, transcripts, and proteins may help to parse out 
the risk associated with the varying molecular aberrations that have been observed 
to be induced by these compounds [132]. This approach, while difficult in terms of 
scale, necessitates the use of geographic, demographic, and exposome level data, 
which can be scarce in areas where environmental carcinogen levels are especially 
concerning. Table 1 summarizes the currently available sources of information for 
carcinogens found in the environment that are associated with lung cancer. Overall, 
future mitigation of the environmental risk factors that lead to lung cancer will rely 
on the integration of information from the genomic to epidemiological levels.
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opment of malignancies, and subsequently changes cellular and systemic processes.

The intertwined role of genetic and epigenetic aberrations resulting from expo-
sure to these compounds highlights the complexity of environmentally-induced lung 
cancer. However, the carcinogenic mechanisms associated with exposure to these 
agents have been mainly identified using a “one-agent-at-a-time” approach. Further, 
we have yet to understand how these factors interplay with one another in cases of 
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combined exposure and how individual genomes modulate the molecular events 
that arise following exposure. For example, it is difficult to accurately assess the 
relative risk of lung cancer in an individual who is exposed to occupational asbestos, 
arsenic-contaminated water, and high levels of domestic indoor air radon. Whether 
these factors synergize in terms of their molecular effects is not clearly understood 
and has critical implications to patient monitoring and disease management.

Recently, the idea of the human exposome has sought to provide a method for 
analyzing individual risk factors by integrating the effects of factors ranging from 
DNA-level alterations to geographic location. The human exposome is defined as 
the sum of every exposure to which an individual is subjected to from conception to 
death [128]. The exposome is dynamic: the nature, amount, and conditions of expo-
sure change over time. It also includes exposure from internal (e.g., metabolism, 
endogenous hormones, gut microflora, inflammation, oxidative stress, etc.) and 
external (e.g., radiation, infectious agents, chemical contaminants and environ-
mental pollutants, among others) sources [129]. The lungs are one of the organs at 
the highest risk of disease development from environmental exposures as the lung 
exposome can be comprised of an array of molecules and environmental insults. 
Arsenic, asbestos, and radon, together with air pollution and tobacco smoke, 
constitute a fraction of the complex mix of environmental carcinogens posing 
risks for developing thoracic malignancies in humans. However, understanding the 
oncogenic events following exposure to these agents may allow for the identification 
of key intervention points to minimize environmentally-induced lung cancer in 
at-risk populations.

6. Translational outlook for environmentally-induced cancer

As the molecular mechanisms of environmentally-induced carcinogenesis con-
tinue to emerge, a need to characterize the clinical utility of these findings should 
be underscored. This need is further emphasized by the complex interplay between 
the numerous features of the lung exposome. Many of the single cancer-associated 
genes that are affected by exposure to these environmental agents are promising 
therapeutic intervention points. For instance, targeted inhibitors of EGFR (e.g., 
erlotinib, afatinib)—a protein transcribed from a gene commonly up-regulated 
upon exposure to arsenic—are used in lung cancer treatment to interfere with the 
aberrant growth pathways activated by the upregulation of this signaling receptor 
[130]. Additionally, the association between radon exposure and ALK gene rear-
rangements in lung cancer patients may be amenable to therapy with inhibitors of 
the ALK protein (e.g., crizotinib, ceritinib) [131]. However, patients that do not 
present with alterations in genes that are clinically actionable remain extremely 
difficult to treat beyond standard regimes. Thus, it is critical to analyze the onco-
genetic alterations induced by environmental carcinogens, to not only identify 
the contribution of each of these widely-distributed agents to tumorigenesis, but 
also to direct the development of novel treatment and risk-management strategies. 
Concurrent analysis of altered genes, transcripts, and proteins may help to parse out 
the risk associated with the varying molecular aberrations that have been observed 
to be induced by these compounds [132]. This approach, while difficult in terms of 
scale, necessitates the use of geographic, demographic, and exposome level data, 
which can be scarce in areas where environmental carcinogen levels are especially 
concerning. Table 1 summarizes the currently available sources of information for 
carcinogens found in the environment that are associated with lung cancer. Overall, 
future mitigation of the environmental risk factors that lead to lung cancer will rely 
on the integration of information from the genomic to epidemiological levels.
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7. Conclusions and future directions

The geographical conditions facilitating human exposure to environmental 
lung carcinogens such as arsenic, asbestos and radon occur commonly across 
the globe. While millions of individuals are known to be exposed to potentially 
damaging doses of these carcinogens, another significant part of the population 
is unaware of its exposure. Despite the worldwide impact of the public health 
risk posed by these compounds, the genomic and epigenetic consequences of 
these exposures are drastically understudied. Barriers such as: (i) availability 
of individual-level exposure data; (ii) collection of genomic, epigenomic, and 
transcriptomic readouts following acute and chronic exposure to carcinogens; 
and (iii) obtaining enough samples to reach statistical power; impose even 
further challenges to determining the true extent of environmentally-induced 
health effects.

Understanding these mechanisms could have a significant impact on the estab-
lishment of safe exposure limits for each of these agents. For instance, most of the 
current frameworks used to regulate arsenic exposure in drinking water have been 
derived from studies performed in specific populations exposed to high levels of 
arsenic, such as Bangladesh, Chile, and China [9, 133, 134]. However, an increased 
risk of arsenic-related health effects (including cancer) has been documented at 
levels below current safety thresholds that are commonly found in water sources 
throughout North America and Europe [7]. Thus, characterizing the effects of 
these agents at the genomic/epigenomic level will not only aid in determining the 
oncogenes that are perturbed in environmentally-induced lung cancers, but may 
also uncover early molecular events that can be used as diagnostic and prognostic 
markers.

The fraction of lung cancer patients who have never smoked or have ceased 
smoking is likely to increase in the coming years. Exposure to environmental car-
cinogens, such as arsenic, asbestos, and radon will play a key role in their etiology. 
Further elucidation of the detailed mechanisms driving environmentally-induced 
lung tumors will provide the much-needed insight to define specific detection meth-
ods and intervention strategies. Collectively, uncovering these carcinogen-specific 
mechanisms, as well as the affected genes driving malignant transformation, will 
greatly contribute to the development of personalized approaches to provide better 
support to lung cancer patients.
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7. Conclusions and future directions

The geographical conditions facilitating human exposure to environmental 
lung carcinogens such as arsenic, asbestos and radon occur commonly across 
the globe. While millions of individuals are known to be exposed to potentially 
damaging doses of these carcinogens, another significant part of the population 
is unaware of its exposure. Despite the worldwide impact of the public health 
risk posed by these compounds, the genomic and epigenetic consequences of 
these exposures are drastically understudied. Barriers such as: (i) availability 
of individual-level exposure data; (ii) collection of genomic, epigenomic, and 
transcriptomic readouts following acute and chronic exposure to carcinogens; 
and (iii) obtaining enough samples to reach statistical power; impose even 
further challenges to determining the true extent of environmentally-induced 
health effects.

Understanding these mechanisms could have a significant impact on the estab-
lishment of safe exposure limits for each of these agents. For instance, most of the 
current frameworks used to regulate arsenic exposure in drinking water have been 
derived from studies performed in specific populations exposed to high levels of 
arsenic, such as Bangladesh, Chile, and China [9, 133, 134]. However, an increased 
risk of arsenic-related health effects (including cancer) has been documented at 
levels below current safety thresholds that are commonly found in water sources 
throughout North America and Europe [7]. Thus, characterizing the effects of 
these agents at the genomic/epigenomic level will not only aid in determining the 
oncogenes that are perturbed in environmentally-induced lung cancers, but may 
also uncover early molecular events that can be used as diagnostic and prognostic 
markers.

The fraction of lung cancer patients who have never smoked or have ceased 
smoking is likely to increase in the coming years. Exposure to environmental car-
cinogens, such as arsenic, asbestos, and radon will play a key role in their etiology. 
Further elucidation of the detailed mechanisms driving environmentally-induced 
lung tumors will provide the much-needed insight to define specific detection meth-
ods and intervention strategies. Collectively, uncovering these carcinogen-specific 
mechanisms, as well as the affected genes driving malignant transformation, will 
greatly contribute to the development of personalized approaches to provide better 
support to lung cancer patients.
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