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In solid-state structures, phonons are important pseudoparticles that can be used to describe
characteristic properties of matter such as electrical conductivity, thermal conductivity, su‐
perconductivity, carrier scattering, and light scattering by solids, among others. Phonons are
quantized modes of vibration occurring in a crystal lattice, such as the atomic lattice of a
solid. When the unit cell contains more than one atom, the crystal will exhibit two types of
phonons: acoustic and optical phonons. Acoustic phonons can describe properties associat‐
ed with small energies and optical phonons are responsible for most optical behaviors of
solids. During the last four decades or so, low-dimensional structures have been theoretical‐
ly and experimentally researched. Theoretical research concerns itself with models such as
the bulk phonon model, the dielectric continuum model, the hydrodynamic phonon model,
and the hybrid model, among others. The aforementioned models have been used to calcu‐
late the phonon modes for heterostructures such as quantum wells, quantum wires, quan‐
tum dots, nanotubes, etc. The vibration modes of the solid-state structures have been
observed by using spectroscopic techniques such as Raman and infrared spectroscopy.

The first part of the book includes chapters related to semiconductor devices and metallic
glasses devices. More precisely, topics related to interface phonons and polaron states, carri‐
er-phonon non-equilibrium dynamics, directional projection of elastic waves in parallel ar‐
ray of N elastically coupled waveguides, collective dynamics for longitudinal and transverse
phonon modes, and elastic properties for bulk metallic glasses are included. The second part
of the book contains, among others, topics related to superconductor devices, phononic crys‐
tal devices, carbon nanotube devices such as phonon dispersion calculations using density
functional theory for a range of superconducting materials, phononic crystal-based MEMS
resonators, absorption of acoustic phonons in the hyper-sound regime in fluorine-modified
carbon nanotubes and single-walled nanotubes, phonon transport in carbon nanotubes,
quantization of phonon thermal conductance, and phonon Anderson localization.

As an editor of this book, I would like to express my gratitude to all authors for their contri‐
butions and their high research standards and constructive feedback. Lastly, I would like to
express my gratitude to the IntechOpen team for their support during the preparation of
this book.

Dr. Vasilios N. Stavrou
Hellenic Naval Academy

Greece
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Abstract

The interface optical phonons arise near the hetero-interface of a quantum nanostruc-
ture. Moreover, its spectrum and dispersion laws may differ from ones for excitations 
arising in the bulk materials. The study of such excitations can give fundamentally new 
information about the optical and transport properties of nanostructures. The interac-
tion of charged particles with polar optical phonons can lead to the large radius polaron 
creation in the materials with high ionicity. This chapter deals with the results of our 
theoretical investigations of the polaron states in quantum wells, quantum wires, and 
quantum dots. The charged particle and exciton interaction with both bulk and interface 
optical phonons are taken into account. The original method has been developed taking 
into consideration an interface phonon influence. The enhancement conditions are found 
for both strong and weak interactions. It is established that the barrier material dielectric 
properties give a decisive contribution to the polaron binding energy value for strong 
electron-phonon interaction. The manifestation of strong polaron effects is a pronounced 
demonstration of the interface optical phonon influence on optical and transport proper-
ties of nanostructures.

Keywords: interface optical phonons, quantum well, quantum wire, quantum dot, 
electron-phonon interaction, polaron

1. Introduction

The electron-phonon interaction proves to be rather weak for most of the phonon branches. 
Such interaction can be taken into account in the framework of perturbation theory. The 
interaction of charged particles with polar optical phonons turns out to be fundamentally 
different [1]. The effective constant of the electron-phonon interaction may exceed unity in 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Chapter 1

Interface Phonons and Polaron States in Quantum
Nanostructures

Aleksandr Yu Maslov and Olga V. Proshina

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.80403

Provisional chapter

DOI: 10.5772/intechopen.80403

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons  
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,  
distribution, and reproduction in any medium, provided the original work is properly cited. 

Interface Phonons and Polaron States in Quantum 
Nanostructures

Aleksandr Yu Maslov and Olga V. Proshina

Additional information is available at the end of the chapter

Abstract

The interface optical phonons arise near the hetero-interface of a quantum nanostruc-
ture. Moreover, its spectrum and dispersion laws may differ from ones for excitations 
arising in the bulk materials. The study of such excitations can give fundamentally new 
information about the optical and transport properties of nanostructures. The interac-
tion of charged particles with polar optical phonons can lead to the large radius polaron 
creation in the materials with high ionicity. This chapter deals with the results of our 
theoretical investigations of the polaron states in quantum wells, quantum wires, and 
quantum dots. The charged particle and exciton interaction with both bulk and interface 
optical phonons are taken into account. The original method has been developed taking 
into consideration an interface phonon influence. The enhancement conditions are found 
for both strong and weak interactions. It is established that the barrier material dielectric 
properties give a decisive contribution to the polaron binding energy value for strong 
electron-phonon interaction. The manifestation of strong polaron effects is a pronounced 
demonstration of the interface optical phonon influence on optical and transport proper-
ties of nanostructures.

Keywords: interface optical phonons, quantum well, quantum wire, quantum dot, 
electron-phonon interaction, polaron

1. Introduction

The electron-phonon interaction proves to be rather weak for most of the phonon branches. 
Such interaction can be taken into account in the framework of perturbation theory. The 
interaction of charged particles with polar optical phonons turns out to be fundamentally 
different [1]. The effective constant of the electron-phonon interaction may exceed unity in 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



materials with high ionicity. Moreover, the formation of a new type of elementary excitations, 
which is a bound state of charged particles and polar optical phonons, is possible even in 
bulk materials. This is the so-called large-radius polaron. The conditions for the appearance 
of such polaron are most favorable in quantum-dimensional structures. First, the additional 
branches of polar optical phonons, which are the interface phonons, appear in such structures. 
Second, the effective interaction of charged particles with polar optical phonons increases 
with the decreasing structure dimensionality. This significantly expands the range of materi-
als for the nanostructure design where the large-radius polaron formation is possible. The 
large-radius polaron appearance significantly changes the optical and transport properties 
of nanostructures. Even the manifestation of polaron superconductivity may take place [2]. 
Available theoretical studies of large radius polaron in quantum nanostructures consider the 
charged particle interaction with only one polar phonon mode [2–10]. This approach seems 
to be inconsistent for us. The phonon spectrum modification turns out to be very significant 
in quantum nanostructures. Therefore, it is necessary to take into account the interaction with 
all phonon branches in the large-radius polaron investigations.

In this chapter, conditions of strong electron-phonon interaction observation are investigated 
theoretically in the quantum well, quantum wire, and quantum dot. Particular attention is paid 
to the theory of charged particle interaction with interface optical phonons playing a decisive 
role in quantum wells and quantum wires. The contribution of interface phonons to the inter-
action energy value turns out to be comparable with that of bulk phonons in the quantum dot 
case. The conditions necessary for the strong electron-phonon interaction are obtained for all 
types of nanostructures. Analytic expressions for the polaron binding energy are found for 
nanostructures considered. In some cases, the results for the weak electron-phonon interac-
tion are discussed. This helps to understand better the interaction in a region of intermediate 
values of the coupling constant where obtaining the analytical result is impossible.

The total Hamiltonian of the system is given by:

   H ̂   =   H ̂    e   +   H ̂    ph   +   H ̂    e−ph,    (1)

where the electron Hamiltonian    H ̂    
e
    describes charged particle interaction with nanostructure 

potential;    H ̂    
ph

    contains the energies of all optical phonon branches; and    H ̂    
e−ph

    is the electron-
phonon interaction Hamiltonian. The expressions for these operators will be given below. 
The wave functions and energies corresponding to the Hamiltonian from Eq. (1) can be found 
both for the strong and for the weak electron-phonon interaction. Strong interaction is imple-
mented under the condition:

   E  pol   ≫ ℏ  ω  0  .  (2)

Here  ℏ  ω  
0
    is the optical phonon energy and   E  

pol
    is the polaron binding energy. Weak interaction 

corresponds to the inverse inequality:

  ℏ  ω  0   ≫  E  pol  .  (3)

In this case, the contribution of the electron-phonon interaction can be taken into account by 
perturbation theory.

Phonons in Low Dimensional Structures4

The adiabatic approximation turned out to be an effective method for solving the problem in the 
case of a strong electron-phonon interaction. Within the framework of this approach, the motion 
of the charged particles (electrons and holes) is considered to be fast, and vibrations of the atoms 
of the crystal lattice are supposed to be slow. The Hamiltonian from Eq. (1) can be averaged over 
the wave function of fast motion   Ψ  

m
   . The averaged Hamiltonian    H  ̂   

av
    can be written in the form:

    H ̂    av   =  E  m   { Ψ  m  }  +   H ̂    ph   +   H ̂    e−ph,av  .  (4)

Eq. (4) contains the energy of charged particles   E  
m
   { Ψ  

m
  }  , which is the functional of the wave 

function in a general case. Here    H ̂    
e−ph,av

    is the Hamiltonian of electron-phonon interaction aver-
aged over the wave function   Ψ  

m
   . In what follows, we will use the standard expression for    H ̂    

ph
   :

    H ̂    ph   =  ∑ 
r,n

     ℏ  ω  r,n    a  r,n  +    a  r,n  ,  (5)

where the index r denotes different phonon branches; n is the quantum number that takes 
various values for the different nanostructures;   a  

r,n
  +    and   a  

r,n
    are the phonon creation and anni-

hilation operators, respectively. Averaged Hamiltonian of electron-phonon interaction    H ̂    
e−ph,av

    
can be written as:

    H ̂    e−ph,av   =  ∑ 
r,n

     α (r, n)  [ a  r,n  +   +  a  r,n  ] .  (6)

Here the interaction parameters  α (r, n)   must be defined for all phonon branches in each nano-
structure type. Eq. (4) is reduced to a diagonal form with respect to the phonon variables by 
using the unitary transformation   e   −U    H ̂    

av
    e   U  , where

  U =  ∑ 
r,n

     α (r, n)  [ a  rn   −  a  rn  +  ] .  (7)

As a result, we get

   e   −U    H ̂    av    e   U  =  E  pol   { Ψ  m  }  +   H ̂    ph  .  (8)

As follows from Eq. (8), the spectrum of all phonon branches remains unchanged in the adia-
batic approximation. The value   E  

pol
   { Ψ  

m
  }   has the meaning of the binding energy of a large-radius 

polaron. This energy depends on the charge particle interaction parameters for all branches of 
the polar optical phonon spectrum. It is also a functional of the electron wave function   Ψ  

m
    that 

is used in the averaging procedure. The explicit form of this wave function   Ψ  
m
    is determined 

from the condition for the minimum of the polaron energy   E  
pol

   . This solution scheme is used 
below to find the polaron binding energy in various nanostructures.

2. Symmetric quantum well

In general, for the case of a quantum well, the interaction of charged particles with the pho-
nons of the well, barriers, and interface phonons must be taken into account. Let us consider 
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m
    is determined 

from the condition for the minimum of the polaron energy   E  
pol

   . This solution scheme is used 
below to find the polaron binding energy in various nanostructures.
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the case of complete localization of charged particles within a quantum well. In this case, the 
interaction of such particles with barrier material phonons can be neglected. Nevertheless, 
the effect of barriers is very important. This is determined by the structure and properties 
of interface phonon spectrum. To describe the properties of interface phonons, we will use 
the continuum model proposed in [11]. The spectrum of the symmetric mode of interface 
phonons is determined from the solution of the following equation:

   ε    (w)   (ω) th (  
qL

 ___ 2  )  +  ε    (b)   (ω)  = 0,  (9)

where L is the quantum well characteristic size; q is two-dimensional wave vector;   ε    (w)   (ω)   and   
ε    (b)   (ω)   are the dielectric functions of the quantum well and barriers, respectively. The frequency 
dispersion of the dielectric function in the phonon frequency region is determined as follows:

  ε (ω)  =  ε  ∞     
 ω   2  −  ω  LO  2  

 ______  ω   2  −  ω  TO  2    .  (10)

Here   ω  
LO

    and   ω  
TO

    are the frequencies of longitudinal and transverse optical phonons, respec-
tively, and   ε  

∞
    is the high-frequency dielectric constant. The expression Eq. (10) means that 

we use the approximation of dispersionless modes for bulk optical phonons. It is in this 
approximation interface, and bulk phonon modes can be considered independently [12]. The 
contribution of the antisymmetric mode of interface phonons vanishes when the Hamiltonian 
is averaged over the wave function of the charged particle localized in a symmetric quantum 
well. Let us start with the electron polaron. The amplification of the electron-phonon interac-
tion occurs in fairly narrow quantum wells having a width L that is less than the polaron 
radius   a  

0
   :

  L <  a  0  .  (11)

The exact definition of the polaron radius   a  
0
    will be given below.

When the inequality from Eq. (11) is satisfied, the electron wave function   Ψ  
m
   (e)   (r)   can be repre-

sented as a product:

   Ψ  m   (e)   (r)  =  φ  m   (z)   χ  m   ( r  ∥  ) ,  (12)

where   φ  
m
   (z)   is the transverse motion wave function that is determined by the quantum well 

potential;   r  
∥
    is the two-dimensional plane well coordinate; and   χ  

m
   ( r  

∥
  )   is yet unknown two-

dimensional wave function that is determined by electronic localization in a self-consistent 
well created by polar optical phonons.

The electron-phonon interaction parameters  α (r, n)   from Eq. (6) are given in [11, 13]. For fur-
ther discussion, we will use an explicit form of these coefficients for the symmetric interface 
mode and an even part of the interaction with the localized phonons of the quantum well. 
Performing the aforementioned procedure allows us to get the polaron binding energy   E  

pol,well
    

Phonons in Low Dimensional Structures6

from Eq. (8) as a functional of the wave function   χ  
n
   ( r  

∥
  )   for the quantum well case. It can be 

defined from the condition of minimum for this functional [13]:

  −    ℏ   2  ____ 2  m  e  
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∞
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 ε  
0
   (b)  
    is the optical dielectric 

function of the barriers; and   E  
m
    is the size quantization level energy. Eq. (13) formally coincides 

with the equation for two-dimensional polaron [3–6, 14]. However, it should be noted that 
Eq. (13) involves the electron mass within the quantum well and the optical barrier dielec-
tric constant. This combination of parameters appears because the major contribution to the 
polaron binding energy is given by interaction with interface optical phonons. In accordance 
with Eq. (13), the polaron binding energy in the quantum well is:

   E  pol,well   (e)    = −  C  1     
 m  e    e   4 

 _______   ( ε  opt   (b)  )    2   ℏ   2   ,  (14)

where   C  
1
   ≅ 0.4  is the numerical coefficient. Its value is determined by the integral of two-

dimensional polaron dimensionless wave function   χ  
m
   ( r  

∥
  )   given in [14]. In this case, the radius 

of the electron polaron state   a  
0
   (e)    is:

   a  0   
(e)   =   

 ℏ   2   ε  opt   (b)  
 _____  m  e    e   2   .  (15)

It is this quantity from Eq. (11) on which the adiabatic approximation used in our work is 
based. In the next order in the parameter from Eq. (11), some corrections to polaron binding 
energy Eq. (14) appear. These corrections can be expressed in terms of the dimensionless 
wave function of two-dimensional polaron   χ  

0
   ( r  

∥
  )   known from [14]. The calculations give the 

following:

  Δ  E  pol,well   =  E  pol,well   (e)      L ___  a  0   
(e)     ( D  V   +  D  S  )   C  2  ,  (16)

where   C  
2
   = 0.07  is the numerical factor that was calculated in [3]. The dimensionless coefficients   

D  
V
    and   D  

S
    are determined by fairly complex combinations of the phonon frequencies in the 

quantum well and barrier materials and are found in [13]. It turns out that the corrections 
to the binding energy of a polaron are related to the interaction with both bulk and interface 
phonons. According to the expressions for   D  

V
    and   D  

S
    received in [13], these corrections may 

have different signs. The total value of the binding energy depends essentially on the dielec-
tric properties of both the quantum well and the barrier materials. We note that the main 
contribution to polaron binding energy from Eq. (14) coincides with our result obtained ear-
lier in [15] by means of an approximate method for calculating the phonon fields. However, 
the accurate inclusion of corrections to   E  

pol,well
   (e)     in this approximate approach is impossible. 

Obtaining a quantity  Δ  E  
pol,well

    from Eq. (16) requires taking into account the phonon spectrum 
of the system.
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A similar consideration can be repeated for a hole polaron. The main contribution to the bind-
ing energy of a hole polaron is determined by an expression analogous to Eq. (14). It looks 
like this:

   E  pol,well   (h)    = −  C  1     
 m  h    e   4 

 _______  ℏ   2    ( ε  opt   (b)  )    2   .  (17)

Usually, for semiconductor materials, the hole mass   m  
h
    is much larger than the electron mass   

m  
e
   , then the binding energy of the hole polaron from Eq. (17) is much larger than the energy 

of the electron polaron from Eq. (14). In this case, the localization region for a hole polaron   a  
0
   (h)    

turns out to be smaller than that for an electron polaron   a  
0
   (e)   :

   a  0   
(h)   =   

 m  e   ___  m  h      a  0   
(e)   < <  a  0   

(e)  .  (18)

The condition from Eq. (18) plays an important role in the study of a polaron exciton. The inter-
action of an exciton with optical phonons has a number of additional features. Polarization 
of the medium, created by an electron and a hole, partially compensates each other. The 
degree of this compensation essentially depends on the ratio of the radii of the electron and 
hole polarons,   a  

0
   (e)    and   a  

0
   (h)   , respectively, and the exciton radius   a  

0
   (ex)   . In this case, the influence 

of the barrier dielectric properties on the exciton state must be taken into account in narrow 
quantum wells. Without allowance for the electron-phonon interaction, such influence was 
considered in [16]. In these articles, it was shown that the exciton binding energy in narrow 
symmetric quantum wells has the form:

   E  ex,well   =   
2μ  e   4 

 _______   ( ε  0   
(b)  )    2   ℏ   2   .  (19)

Here  μ  is the reduced mass of the electron and hole in the quantum well. The radius of such 
quasi-two-dimensional exciton   a  

0
   (ex)    also depends on the barrier dielectric constant   ε  

0
   (b)   . It is 

equal to:

   a  0   
(ex)   =   

 ℏ   2   ε  0   
(b)  
 ____ μ  e   2   .  (20)

Eqs. (19) and (20) are valid for narrow quantum wells, the width of which satisfies the inequality

  L <  a  0   
(ex)  .  (21)

The possibility of strong coupling of an exciton with polar optical phonons depends on the 
relationship between   a  

0
   (ex)    and   a  

0
   (h)   . It is seen from Eqs. (15) and (20) that the electron polaron 

radius is always greater than the exciton one, that is   a  
0
   (e)   >  a  

0
   (ex)   . If also   a  

0
   (h)   >  a  

0
   (ex)   , then the 

medium polarization created by the electron and hole largely compensates each other. In 
this case, for the exciton, the condition of strong coupling with phonons, as a rule, is not 
realized.

Phonons in Low Dimensional Structures8

When the opposite relationship is satisfied, that is

   a  0   
(h)   <  a  0   

(ex)  ,  (22)

the strong exciton-phonon interaction is possible. The main contribution to the polaron exci-
ton binding energy is due to the localization of the hole in the polaron well. Its size is deter-
mined by the radius of the hole polaron   a  

0
   (h)   . The motion of an electron occurs in a larger region 

of space. The medium polarization created by the electron compensates partially the polariza-
tion created by the hole. If we take into account the largest contributions with respect to the 
parameters of Eqs. (11) and (22) only, then the polaron exciton binding energy is equal to:

   E  ex,well   =  C  1     
 m  h    e   4 

 _______  ℏ   2    ( ε  opt   (b)  )    2    − 2   
 m  e    e   4 

 _______  ℏ   2    ( ε  ∞   (b)  )    2   .  (23)

The second contribution in Eq. (23) is small, compared to the first one in the parameter  
  m  

e
   /  m  

h
   ≪ 1 . It can be seen from Eq. (23) that the possibility of strong coupling of an exciton with 

optical phonons depends on parameters of both the quantum well and barrier materials. The 
appearance of a polaron exciton requires a significant difference between the effective masses 
of an electron and a hole in a quantum well. In addition, the presence of barriers made of high 
ionicity materials is necessary. In this case, the polarization properties of the quantum well 
material do not play an essential role.

For most II–VI compounds, the exciton radius   a  
0
   (ex)    from Eq. (20) is in the range  20–40  Å. The 

electron polaron radius   a  
0
   (e)    (Eq. (15)) falls within the range  50–100  Å, and hole polaron one   a  

0
   (h)    

(Eq. (18)) is approximately  10–20   Å. Therefore, the strong exciton-phonon interaction  condition 
from Eq. (22) can be satisfied. This means that the quasi-two-dimensional polaron formation 
is possible in sufficiently narrow quantum wells of width  L < 20  Å.

The heterovalent quantum wells based on II–VI/III–V materials are more promising target 
for the experimental study of polaron effects in the case of strong electron-phonon interac-
tion. For such structures, growth technologies have been developing successfully in recent 
times [17]. In the III–V compounds, effective masses of quantum well carriers are small. The 
optical dielectric function of the barriers based on II–VI materials is also rather small. Thus, 
given above values of exciton and polaron radii increase by 2 − 3 times. Hence, a quasi-two-
dimensional polaron in heterovalent quantum wells can be observed for the well widths  L ≤ 50  
Å. Quantum wells of more complex configuration (e.g., I–VII/III–V) can also become a promis-
ing object for the polaron study when strong electron-phonon interaction takes place.

3. Cylindrical quantum wire

In the quantum wires under consideration, the spectrum of interface phonons depends on the 
one-dimensional wave vector  q  directed along the wire axis. Using the same Eq. (10) for the 
dielectric functions of wire and barrier materials, we obtain the interface phonon spectrum 
equation in the context of the continuum approximation:
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Figure 1 . Wave vector dependencies of interface optical phonon energies for ZnSe/CdSe/ZnSe quantum wire;  m = 0 .

    
 I  m  '   (q  ρ  0  )  ______  I  m   (q  ρ  0  ) 

    ε    (b)   (ω)  =   
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    ε    (w)   (ω) .  (24)

Here   I  
m
    is the m-th order modified Bessel function of the first kind;   K  

m
    is the m-th order modi-

fied Bessel function of the second kind; and   ρ  
0
    is the quantum wire radius. The interface pho-

non spectrum is determined by solution of Eq. (24). The wave vector dependences of interface 
phonon frequencies are shown in Figure 1. These dependences are calculated for the quan-
tum wire based on CdSe, surrounded by ZnSe barriers for  m = 0  in Eq. (24). The compound 
parameters are taken from [18].

The adiabatic parameter of this problem is the ratio between the quantum wire radius   ρ  
0
    and 

the polaron radius   a  
0
   :

   ρ  0   ≪  a  0  .  (25)

Below, an exact analytic expression is obtained for determining the polaron radius. The inequal-
ity Eq. (25) means that the main contribution to the binding energy of a polaron is determined 
by the wave vector values which are small as:

  q  ρ  0   < 1.  (26)

According to Eq. (25), the electron wave function for n-th size quantization level can be writ-
ten as:

   Ψ    (e)   (r)  = φ ( n    (e)  ;  m    (e)  ; 𝛒𝛒) χ ( n    (e)  ;  m    (e)  ; z)   e    im    (e)  φ .  (27)
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Here   n    (e)    is size quantization level number and  φ ( n    (e)  ,  m    (e)  , 𝛒𝛒)   is the wave function of two-dimen-
sional electron motion. The electron-phonon interaction does not affect this motion, which 
occurs within a quantum wire. The wave function  χ ( n    (e)  ,  m    (e)  , z)   describes the electron localiza-
tion in phonon self-consistent potential well. Not disturbed electron states in the quantum 
wire are defined by the quantum numbers   n    (e)    and   m    (e)   . In the case of total electron localization 
inside the cylindrical quantum wire, the wave function  φ ( n    (e)  ,  m    (e)  , 𝛒𝛒)   has the form:

  φ ( n    (e)  ,  m    (e)  , 𝛒𝛒)  =  J   m    (e)     [ μ   n    (e)     ( m    (e)  )    
ρ
 __  ρ  0    ] ,  (28)

where   μ  
 n    (e)  

   ( m    (e)  )   is   n    (e)   -th root of   m    (e)   -th order Bessel function,  χ ( n    (e)  ,  m    (e)  , z)   is the wave function which 
may be obtained after solving the self-consistent problem. Thus, the total wave function from 
Eq. (27) must be normalized.

Generally, the value of polaron binding energy  Δ  E  
pol,wire

    is determined by the optical phonon 
spectrum properties and depends on electron size-quantization level number. It is necessary 
to take into account the optical phonons localized both inside the quantum wire and at the 
hetero-interface. We obtain this energy after the angle averaging procedure expressible in 
explicit form:

  Δ  E  pol,wire   = −  ∑ 
n,q

       
 α   2  (0, n, q) 

 ________ ℏ  ω  0  
   −  ∑ 

q
       

 α   2  (0, q) 
 ______ ℏ  ω  S  

  .  (29)

Here  α (0, n, q)   and  α (0, q)   are the coefficients defined in Eq. (6). The value of  Δ  E  
pol,wire

    from Eq. (29) 
is defined by the interaction of an electron with phonon modes for which  m = 0  and contains 
the contribution caused by interaction with both confined and interface phonons for all size-
quantization levels. Eq. (29) can be used for numerical analysis of electron-phonon interaction 
characteristic properties for the quantum wires of various symmetry. At the same time, the 
electron energy and wave function are obtained analytically when the inequality from Eq. 
(26) is satisfied.

The interaction of an electron with interface phonon mode of the frequency close to barrier 
frequency   ω  

LO
   (b)     gives the most significant contribution to the polaron binding energy in the 

parameter Eq. (26). It has the form:

  Δ  E  pol,wire   =    e   2  ____ 2  ε  opt   (b)      ∑ 
q
        | ∫    | χ (z)  |     

2
  exp  [iqz] dz |     

2

  ln  (q  ρ  0  ) .  (30)

Eq. (30) contains the optical dielectric function of the barriers   ε  
opt

   (b)   . In other words, the polaron 
states arise independently of the quantum wire material dielectric properties. Contribution 
due to these properties can be obtained in higher orders in the parameter from Eq. (26). It 
can be seen from Eq. (30) that phonon wave vector  q  characteristic values that determine the 
electron-phonon interaction are inversely proportional to the polaron radius magnitude, that 
is  q ≃ 1 /  a  

0
   . In this region, the logarithmic function changes slightly, and we can obtain the 

energy  Δ  E  
pol,wire

    with the same accuracy in parameter from Eq. (26):

Interface Phonons and Polaron States in Quantum Nanostructures
http://dx.doi.org/10.5772/intechopen.80403

11



Figure 1 . Wave vector dependencies of interface optical phonon energies for ZnSe/CdSe/ZnSe quantum wire;  m = 0 .
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  Δ  E  pol,wire   =    e   2  ____ 2  ε  opt   (b)     ln  (  
 ρ  0   __  a  0    )   ∑ 

q
        | ∫    | χ (z)  |     

2
  exp  [iqz] dz |     

2

 .  (31)

The electron polaron binding energy as the functional of unknown yet wave function  χ (z)   
can be obtained by substituting Eq. (31) into the average Hamiltonian from Eq. (4) and by 
variational method:

  −    ℏ   2  ____ 2  m  e  
      d   2  χ (z)  _____ dz   −  (   e   2  ___  ε  opt   (b)     ln  (  

 a  0   __  ρ  0    ) )   χ   3  (z)  =  E  pol   (e)    χ (z) .  (32)

The solution of nonlinear Eq. (32) has the form:

  χ (z)  =   1 ___ 
 √ 
___

 2  a  0    
     1 _______ ch (z /  a  0  ) 

  .  (33)

By substituting the wave function from Eq. (33) into Eq. (32), we obtain the polaron binding 
energy as:

   E  pol,wire   (e)    = −    Me   4  _______  ℏ   2    ( ε  opt   (b)  )    2     ln   2  (  
 a  0   __  ρ  0    ) .  (34)

Thus, the polaron radius   a  
0
    contains the adiabatic parameter from Eq. (25) and is equal to:

   a  0   =   
 ℏ   2   ε  opt   (b)  
 __________ 

 m  e    e   2  ln  (  
 a  0   __  ρ  0    ) 

  .  (35)

The substitution of the material parameters [18] for ZnSe/CdSe/ZnSe quantum wire into Eq. (35) 
leads one to expect that the strong polaron effects should be observed at a wire radius   ρ  

0
   < 40  Å.

The condition for polaron exciton appearance in a quantum wire is analogous to that con-
sidered above for a quantum well, Eq. (18). The basic requirement is a significant difference 
between the hole and the electron masses. If the radius of a quantum wire corresponds to the 
conditions from Eqs. (21) and (22), a complete compensation of the contributions from the 
electron and hole does not occur, and a strong electron-phonon interaction is possible.

4. Spherical quantum dot

In this chapter, we study the structures in which the quantum dot and matrix materials have 
different phonon modes and its dielectric functions are described by Eq. (10). We have used 
the approximation presented in [19], where the interface phonon spectrum is described by the 
following equation:

  l  ε    (d)   (ω)  +  (l + 1)   ε    (m)   (ω)  = 0,  (36)
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where   ε    (d)   (ω)   and   ε    (m)   (ω)   are the dielectric functions of the quantum dot and matrix materials, 
respectively;  l  is the number of the spherical harmonic for corresponding interface vibration. 
If  l = 0 , there is only one solution, which coincides with   ω  

LO
    in the matrix material. For  l ≠ 0 , 

there are two solutions for the interface phonon frequencies.

For our problem, the coefficients  α (r, n)   from Eq. (6) have the form [19]:

  α (v, nlm)  = ℏ  ω  LO   (m)   ρ (nlm)    (  4π  e   2  ___________   r  0    μ  nl  2    j  l+1  2   ( μ  nl  )   ε  opt   (m)    )    
1/2

   (37)

for the bulk phonons and

  α (s, l)  = −   (  2π  e   2  ____  ω   2   r  0  
  )    

1/2

    [ ε  ∞   (d)     
 ω  LO,d  2   −  ω  TO,d  2  

 _________   ( ω   2  −  ω  TO,d  2  )    2    l +  ε  ∞   (d)     
 ω  LO,m  2   −  ω  TO,m  2  

 __________   ( ω   2  −  ω  TO,m  2  )    2    (l + 1) ]    
−1/2

  ⋅ ℏ  ω  s    ρ  s   (lm)   (38)

for the interface phonons. Here   r  
0
    is the quantum dot radius;   j  

l
    are the spherical Bessel func-

tions; and   j  
l
   ( μ  

nl
  )  = 0 . The quantities  ρ (nlm)   and   ρ  

s
   (lm)   are the bulk and interface phonons densities, 

respectively, which have the form:

  ρ (nlm)  =  j  l   ( μ  nl     
r __  r  0    )   Y  lm   (θ, φ) ,  (39)

   ρ  s   (lm)  =   (  r __  r  0    )    
l
   Y  lm   (θ, φ) ,  (40)

where   Y  
lm

   (θ, φ)   are the spherical wave functions. After the averaging procedure over the elec-
tron wave function  Ψ (r)  , the values of the densities from the equations should be replaced by 
its average values:

   ρ  av   = ∫  d   3  r    | Ψ (r)  |     
2
  ρ (nlm) ,  (41)

   ρ  s,av   = ∫  d   3  r    | Ψ (r)  |     
2
   ρ  s   (lm) .  (42)

In this case, the energy of electron size quantization level polaron shift has the form:

  Δ  E  pol,dot   = −   ∑ 
n,l,m

    ℏ  ω  LO      | α (v, nl)  |     
2
     |  ρ  av   |     2  −  ∑ 

l,m
     ℏω (l)     | α (s, l)  |     

2
     |  ρ  s,av   |     2 .  (43)

As follows from Eq. (43), the bulk and interface phonon contributions to the polaron binding 
energy are summed. It will be seen from the further consideration that the interface phonon 
contribution can exceed the surface phonon one under certain conditions. The results obtained 
make it possible to calculate the polaron shifts for any size quantization level. Consider a 
polaron shift for a particle with a spherical wave function. For example, it could be an electron 
in the ground state. The polaron shift can be obtained analytically [20] and is equal to:
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make it possible to calculate the polaron shifts for any size quantization level. Consider a 
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   E  pol,dot   (e)    = −    e   2  __  r  0     (  0.39 ____  ε  opt   (d)     +   0.5 ___  ε  opt   (m)    ) .  (44)

It follows from Eq. (44) that taking into account matrix polarization leads to an increase in the 
polaron effect. It should be noted that there is a noticeable polaron shift even for quantum 
dots based on a nonpolar material. This is due to the presence of interface phonons that create 
the polarization in surrounding matrix. Note also that for the quantum dot case, the contribu-
tions of charged particle interaction with bulk and interface phonons are of the same order of 
magnitude in the adiabatic parameter.

   r  0   ≪  a  0  .  (45)

This is the main difference between this problem and the quantum well and quantum wire 
considered earlier. For these structures, the largest contribution in the adiabatic parameters 
from Eq. (11) and Eq. (25) is caused by the interface phonons. The inequality (45) is satisfied, 
for example, for CdSe quantum dots in a ZnSe matrix when the dot radius   r  

0
   < 30  Å.

Another significant feature of the polaron in quantum dots is a significant suppression of the 
polaron exciton state. The exciton polaron shift turns out to be zero for the localization of the 
electron and hole with wave functions of the same symmetry inside the quantum dot. The non-
zero interaction of an exciton with polar optical phonons arises for different symmetries of the 
electron and hole wave functions only. This is possible if the quantum dot is made of a material 
where interband transitions are forbidden (e.g., CuO2) or if the valence band complex spectrum is 
taken into account. The latter is typical for most III–V and II–VI semiconductor compounds. It is 
shown in [20] that taking into account the valence band degeneracy in the Luttinger Hamiltonian 
model leads to a noticeable difference between the polaron shift for the electron and hole. In this 
case, the exciton-phonon interaction can turn out to be strong at the quantum dot.

5. Weak electron: phonon interaction

The interaction of charge particles with polar optical phonons can be weak in nanostructures 
based on materials with low ionicity. When the condition Eq. (3) is satisfied, the electron-
phonon interaction described by the Hamiltonian    H ̂    

e−ph
    can be taken into account by the per-

turbation theory [21]. In the bulk crystals with weak electron-phonon interaction, the position 
of the ground electronic state level is shifted, and the electron effective mass increases [22]. 
Our calculations have shown that similar effects arise in a quantum well, and they are mainly 
due to the interaction of charge carriers with interface optical phonons. The level position 
displacement corresponds to the renormalization of the forbidden band width. When the 
electron-phonon interaction is weak, this effect is rather small. Therefore, the main attention 
will focus to polaron effect on the charged carrier effective mass change. This change for an 
electron depends on the material dielectric properties of both the quantum well and barri-
ers. A quasi-two-dimensional analog of known results for bulk materials [22] is obtained in 
the sufficiently narrow quantum well for which the size quantization energy  Δ  E  

m
    exceeds the 

quantum well localized optical phonon energy  ℏ  ω    (w)   (q)   and interface optical phonon energy  
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ℏ  ω    (s)   (q)  . The main contribution to the electron ground state energy correction with respect to 
parameter  Δ  E  

m
   / ℏ  ω    (w)   (q)   has the form:

  Δ  E  m   =   π __ 2    α  eff   ℏ  ω    (b)   +   
 p   2 
 ____ 2  m   ∗   .  (46)

The frequency from Eq. (46) is   ω    (b)   =  ω    (s)   (0)  . The polaron mass is equal to:

   m  pol   =    m    (w)   _______ 1 −  𝜋𝜋𝜋𝜋  eff   / 8
  .  (47)

Eqs. (46) and (47) are similar to the known results from two-dimensional polaron theory [14]. 
However, the effective coupling constant is equal to:

   α  eff   =    e   2  _____ 2ℏ  ω    (b)       (  2  m    (w)    ω    (b)   _______ ℏ  )    
1/2

  (  1 ___  ε  ∞   (b)     −   1 ___  ε  0   
(b)    ) .  (48)

It is seen from Eq. (48) that, just as in the case of a strong-coupling polaron, the effective 
electron-phonon interaction constant is determined by the effective electron mass inside the 
quantum well and the barrier material dielectric properties. This value is analogous to the 
Frohlich constant, but it is not a characteristic of any particular material and is determined 
by the quantum well properties. In a specific approximation, when the condition  q ≪ 1 / L  is 
satisfied, the charge particle interaction with polar optical phonons is defined by the interface 
phonon spectrum. The interface phonon frequencies in the same approximation are close to 
ones for the barrier optical phonons and can differ markedly from the quantum well optical 
phonon frequencies. This may explain the discrepancy between the experimental and theo-
retical values of the effective polaron mass for the ZnO-ZnMgO quantum well, obtained in 
[23]. In estimating the effective mass, the authors of [23] have used the Frohlich constant for 
ZnO instead of the effective constant from Eq. (48). Using the effective constants of Eq. (48) 
greatly improves the agreement between theory and experimental data.

6. Conclusions

It is shown that the interface phonons play an important role in the polaron state formation in 
quantum nanostructures. In quantum wells and quantum wires, the polaron binding energy is 
determined mainly by the interaction of charged particles with interface optical phonons. In the 
quantum dots, the contribution due to the interaction with interface phonons is additive with 
the energy of interaction with bulk phonons. Moreover, for nanostructures based on the same 
materials, the polaron binding energy increases with the structure dimensionality reduction.

Thus, the results obtained show that the barrier material ionicity degree plays a fundamental 
role for forming the large radius polarons in quantum wells and quantum wires. Meanwhile, 
the quantum well itself can be based on low ionicity material. The interaction of charged 
particles with interface optical phonons is the reason that the polaron effects are enhanced 
significantly.
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The condition for observing a polaron exciton is the essential difference between the electron 
and hole effective masses. In this case, only partial compensation of the phonon interaction with 
charged particles occurs, and the achievement of a strong electron-phonon interaction is possible.

Thus, the appearance of strong polaron effects is a clear demonstration of the interface pho-
non influence on optical and transport properties of nanostructures.
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Abstract

Electron-phonon interaction is a key mechanism for charge and heat transport in both bulk
materials as well as in state-of-the-art electronic and optoelectronic solid-state devices.
Indeed, that of an effective heat dissipation, at the diverse design levels, has always been
a primary issue in device operation and performances. In various circumstances, the
charge carrier subsystem happens to be coupled to a significant nonequilibrium optical
phonon population. This regime may be particularly pronounced in new-generation quan-
tum emitters based on semiconductor heterostructures and operating both in the mid-
infrared as well as in the terahertz region of the electromagnetic spectrum. In this chapter,
we review a global kinetic approach based on a Monte Carlo simulation technique that we
have recently proposed for the modeling of the combined carrier-phonon nonequilibrium
dynamics in realistic unipolar multisubband device designs. Results for the case of a pro-
totypical resonant-phonon terahertz emitting quantum cascade laser are shown and
discussed.

Keywords: electronic transport theory, carrier-phonon scattering, nanoelectronic devices,
density matrix, Monte Carlo simulation

1. Introduction

Electron-phonon scattering is a main mechanism behind the charge carrier dynamics in solid-
state materials and devices. Its simplest treatment assumes to consider the phonon subsystem
as characterized by a huge number of degrees of freedom in comparison to the electron one.
The former, in other words, behaves as a thermal bath, being always in thermal equilibrium
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and not crucially perturbed by the dynamics of the latter. This premise is however unconvinc-
ing for many new-generation devices, involving ultrafast and/or high-field-transport phenom-
ena in nanomaterials and nanostructures. In these cases, the carrier-quasiparticle treatment has
to be extended to properly account for phonon nonequilibrium regimes as well [1].

In general terms, the latter may be subdivided into two classes: one including coherent
phenomena, where the quasiparticle nondiagonal density matrix elements play a crucial role
—a typical example being that of the so-called coherent phonons—, and one in which, even in
the absence of such phase-coherence effects, the quasiparticle diagonal density matrix terms
significantly deviate from the equilibrium Bose distribution—a typical case being that of the
so-called hot phonon effects—.1

A paradigmatic example within this second class of nonequilibrium phenomena is represented
by quantum cascade lasers (QCLs). In the core region of these devices, the carrier dynamics in
general, and the population inversion regime in particular, are not only unavoidably affected
but in fact intentionally controlled through the electron-phonon interaction. This strategy was
the key to success for the pioneering mid-infrared emitting devices [2], but comes out to have a
crucial role also for terahertz operating structures, where the closeness of the photon and
longitudinal-optical (LO) phonon energy initially oriented toward alternative, and less intui-
tive, designs [3, 4].

QCLs are unipolar coherent light sources whose basic principle of operation may be declined
in a variety of specific—and often rather complex—designs, guided by the requested/desired
output and performances [5, 6]. For the purposes of the present review, it will suffice to focus
on their core region. The latter is basically a semiconductor multiquantum-well heterostructure
consisting of a periodic repetition of identical stages, each made up of an active region
sandwiched between an electron-injecting and an electron-collecting region. When a proper
bias is applied, each collecting region behaves as an injection one for the subsequent stage, and
an “electron cascade” takes place along the energy-level staircase in which the conduction
band is split due to quantum confinement. Since their first demonstration, the potentialities of
band-gap engineering and molecular beam epitaxy have been inspiring several successful
QCL designs for both the active region and the injector/collector part. In particular, the key
issue of establishing and maintaining the gain regime in the active region can be accomplished
by means of a proper tailoring of electron energy relaxation dynamics, resulting in a selective
depopulation of the diverse subband states. Both conventional mid-infrared as well as so-
called THz resonant-phonon designs [7] are devised in such a way that the separation between
the lower lasing subband and the ground one within each period matches the LO phonon
energy. This allows one to maximize carrier relaxation out of the former into the latter via LO
phonon emission.

As a by-product, a LO phonon population significantly out of equilibrium is expected within
the core region of the running device when—as it often happens—their generation rate is

1
Nonequilibrium electrons and phonons are sometimes referred to as ‘hot electrons’ and ‘hot phonons’, respectively.
Although such a terminology seems to suggest thermalized distributions, it is worth noting that this does not need to be
—and usually is not—the case.

Phonons in Low Dimensional Structures20

higher than the one describing their anharmonic decay into acoustic phonon modes. Actually,
if one compares the LO phonon energy with the potential energy drop allowing for the
essential subband alignment along the growth direction, it comes out that, while cascading
along the succession of equal stages, each electron generates at least one optical phonon per
period. State-of-the-art designs may include from several tens up to more than 100 stages. It
therefore easily appears how these devices are not only reliable and robust infrared light
sources but also rather effective LO phonon generators; this poses severe heat-removal issues
especially in high-performance device architectures [8, 9]. Already at the drawing board stage,
it is evident that the combined effect of high LO phonon generation rates and limited thermal
conductivity requires a realistic description of charge transport in these devices which goes
beyond the thermal bath picture, taking into account the carrier interaction with a
nonequilibrium phonon subsystem. In particular, while simplified multilevel rate-equation
models may offer a computationally light picture of the electronic cascade in the active region
[10], their quantitative/predictive value is limited and does for sure greatly benefit from the
inputs offered by the more exhaustive three-dimensional multisubband kinetic picture.

In the past, several theoretical schemes have been proposed to model the impact that
nonequilibrium phonon effects may have on the electron relaxation dynamics, and therefore
on the performances of QCLs: Monte Carlo (MC) kinetic approaches restricted to a subgroup
of subbands [11–13], within a prototypical Krönig-Penney model [12, 13] or partially refined
implementations [14]. From the experimental point of view, various studies have highlighted
peculiar nonequilibrium phonon features both in mid-infrared [15] as well as in THz QCLs
[16, 17]; in particular, a significant heating of both the electronic and the lattice subsystem has
been observed [18]. Motivated also by these evidences, we have recently addressed the issue of
developing a theoretical model suitable for the microscopic simulation of realistic devices
[19, 20], proposing an MC-based global kinetic approach [21]. In particular, our analysis has
allowed to include on equal footing the fully three-dimensional nature of the multiband
electronic structure as well as of the phonon degrees of freedom and is therefore able to
overcome significant limitations affecting some of the MC techniques previously cited.

In the present chapter, we are presenting a review of the above-mentioned global MC
approach. In particular, in Section 2 we shall describe the general coupled carrier-phonon
model and the kinetic approach based on the MC sampling of the closed set of dynamical
equations for the corresponding distribution functions; in Section 3, we will apply our model
and method to a prototypical resonant-phonon THz QCL design, highlighting the interplay
between the nonequilibrium electron and phonon populations; finally, in Section 4, we shall
summarize and draw a few concluding remarks.

2. Physical model and kinetic description

First of all, to provide quantitative and predictive insight into the details of the carrier dynamics in
unipolar multisubband devices such as QCLs, a proper treatment of the fully three-dimensional
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and not crucially perturbed by the dynamics of the latter. This premise is however unconvinc-
ing for many new-generation devices, involving ultrafast and/or high-field-transport phenom-
ena in nanomaterials and nanostructures. In these cases, the carrier-quasiparticle treatment has
to be extended to properly account for phonon nonequilibrium regimes as well [1].

In general terms, the latter may be subdivided into two classes: one including coherent
phenomena, where the quasiparticle nondiagonal density matrix elements play a crucial role
—a typical example being that of the so-called coherent phonons—, and one in which, even in
the absence of such phase-coherence effects, the quasiparticle diagonal density matrix terms
significantly deviate from the equilibrium Bose distribution—a typical case being that of the
so-called hot phonon effects—.1

A paradigmatic example within this second class of nonequilibrium phenomena is represented
by quantum cascade lasers (QCLs). In the core region of these devices, the carrier dynamics in
general, and the population inversion regime in particular, are not only unavoidably affected
but in fact intentionally controlled through the electron-phonon interaction. This strategy was
the key to success for the pioneering mid-infrared emitting devices [2], but comes out to have a
crucial role also for terahertz operating structures, where the closeness of the photon and
longitudinal-optical (LO) phonon energy initially oriented toward alternative, and less intui-
tive, designs [3, 4].

QCLs are unipolar coherent light sources whose basic principle of operation may be declined
in a variety of specific—and often rather complex—designs, guided by the requested/desired
output and performances [5, 6]. For the purposes of the present review, it will suffice to focus
on their core region. The latter is basically a semiconductor multiquantum-well heterostructure
consisting of a periodic repetition of identical stages, each made up of an active region
sandwiched between an electron-injecting and an electron-collecting region. When a proper
bias is applied, each collecting region behaves as an injection one for the subsequent stage, and
an “electron cascade” takes place along the energy-level staircase in which the conduction
band is split due to quantum confinement. Since their first demonstration, the potentialities of
band-gap engineering and molecular beam epitaxy have been inspiring several successful
QCL designs for both the active region and the injector/collector part. In particular, the key
issue of establishing and maintaining the gain regime in the active region can be accomplished
by means of a proper tailoring of electron energy relaxation dynamics, resulting in a selective
depopulation of the diverse subband states. Both conventional mid-infrared as well as so-
called THz resonant-phonon designs [7] are devised in such a way that the separation between
the lower lasing subband and the ground one within each period matches the LO phonon
energy. This allows one to maximize carrier relaxation out of the former into the latter via LO
phonon emission.

As a by-product, a LO phonon population significantly out of equilibrium is expected within
the core region of the running device when—as it often happens—their generation rate is
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higher than the one describing their anharmonic decay into acoustic phonon modes. Actually,
if one compares the LO phonon energy with the potential energy drop allowing for the
essential subband alignment along the growth direction, it comes out that, while cascading
along the succession of equal stages, each electron generates at least one optical phonon per
period. State-of-the-art designs may include from several tens up to more than 100 stages. It
therefore easily appears how these devices are not only reliable and robust infrared light
sources but also rather effective LO phonon generators; this poses severe heat-removal issues
especially in high-performance device architectures [8, 9]. Already at the drawing board stage,
it is evident that the combined effect of high LO phonon generation rates and limited thermal
conductivity requires a realistic description of charge transport in these devices which goes
beyond the thermal bath picture, taking into account the carrier interaction with a
nonequilibrium phonon subsystem. In particular, while simplified multilevel rate-equation
models may offer a computationally light picture of the electronic cascade in the active region
[10], their quantitative/predictive value is limited and does for sure greatly benefit from the
inputs offered by the more exhaustive three-dimensional multisubband kinetic picture.

In the past, several theoretical schemes have been proposed to model the impact that
nonequilibrium phonon effects may have on the electron relaxation dynamics, and therefore
on the performances of QCLs: Monte Carlo (MC) kinetic approaches restricted to a subgroup
of subbands [11–13], within a prototypical Krönig-Penney model [12, 13] or partially refined
implementations [14]. From the experimental point of view, various studies have highlighted
peculiar nonequilibrium phonon features both in mid-infrared [15] as well as in THz QCLs
[16, 17]; in particular, a significant heating of both the electronic and the lattice subsystem has
been observed [18]. Motivated also by these evidences, we have recently addressed the issue of
developing a theoretical model suitable for the microscopic simulation of realistic devices
[19, 20], proposing an MC-based global kinetic approach [21]. In particular, our analysis has
allowed to include on equal footing the fully three-dimensional nature of the multiband
electronic structure as well as of the phonon degrees of freedom and is therefore able to
overcome significant limitations affecting some of the MC techniques previously cited.

In the present chapter, we are presenting a review of the above-mentioned global MC
approach. In particular, in Section 2 we shall describe the general coupled carrier-phonon
model and the kinetic approach based on the MC sampling of the closed set of dynamical
equations for the corresponding distribution functions; in Section 3, we will apply our model
and method to a prototypical resonant-phonon THz QCL design, highlighting the interplay
between the nonequilibrium electron and phonon populations; finally, in Section 4, we shall
summarize and draw a few concluding remarks.

2. Physical model and kinetic description

First of all, to provide quantitative and predictive insight into the details of the carrier dynamics in
unipolar multisubband devices such as QCLs, a proper treatment of the fully three-dimensional
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nature of the problem is mandatory [22]. In most configurations of practical interest, the
description of the coupled electron-phonon nonequilibrium dynamics may safely be limited
to a semiclassical approach for both subsystems. Within this scheme, the kinetic variables of
interest are the electron and phonon distribution functions. The latter obey a coupled set of
nonlinear equations of motion which may be formally derived in the framework of the
quantum-kinetic theory, following a conventional single-particle correlation expansion proce-
dure and neglecting all nondiagonal carrier and quasiparticle density matrix elements [23].
Coherent phonons and electron phase-coherence effects, which may show up within the
transient ultrafast timescale [22], are indeed expected to play a minor role in the device’s
steady-state operation regime considered here. Even though the system under investigation is
spatially inhomogeneous, the LO phonon subsystem may be described in terms of a density
matrix diagonal in q, parametrized by a meso/macroscopic spatial coordinate related to the
thermal-transport space-scale. In other words, it could still be a good approximation to assume
the phonon modes and interaction potentials of the host bulk material.

In principle, the proper treatment of the steady-state properties of our prototypical device
should therefore be based on the set of coupled electron and phonon Boltzmann equations.
This task is quite demanding, since it requires, for the latter, the inclusion of both acoustic and
optical modes, ideally with finite size and quantization effects [12]. A simpler, though reason-
able, starting point suggests to focus on the main physical aspects of the energy redistribution
between charge carriers and lattice degrees of freedom. The basic idea is then to consider the
full electron subsystem (i.e., the complete set of active region and injector subbands within
each period) coupled via Frölich interaction with bulk LO phonon modes, and to include the
decay of the latter into acoustic modes (lattice thermal bath at temperature TL) via a phenom-
enological lifetime τ in their dynamical equation. The role of electron-acoustic phonon scatter-
ing is expected to be minor, due to the much lower rates, and for this reason it is not included
in the present model.

In other words, energy dissipation is modeled—and basically occurs—as a two-step process:
first, the carrier subsystem transfers a significant amount of energy to the LO phonon one;
then, the latter transfers its excess energy to additional degrees of freedom (acoustic phonons)
that are not taken into account dynamically and are characterized by a much larger heat
capacity. This second step is described via a standard relaxation-time approximation. The
structure of the closed set of coupled equations corresponding to the above-described dynam-
ics is then the following:
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where f νk∥
is the carrier distribution function corresponding to the single-particle state in

subband ν and with in-plane wavevector k∥, while nq is the average phonon occupation
number of a single LO phonon mode with wavevector q.
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Starting with the first term on the right-hand side of Eq. (1), in the framework of the Fermi’s
golden rule approximation, the electron-phonon (e-LO) coupling hamiltonian produces the
typical Boltzmann scattering structure. In particular, the latter consists of the following in- and
out-scattering terms, coming from LO phonon emission and absorption processes:
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where g�νk∥,ν0k0
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are the matrix elements of the q-dependent carrier-LO phonon coupling

coefficients within the considered multisubband electronic basis νk∥; the sign + (�) refers to
phonon emission (absorption) processes.

The second term, labeled with s, at the right-hand side of Eq. (1), generally accounts for further
scattering mechanisms, of both intrinsic and extrinsic types, that may affect the carrier dynam-
ics. Within the first sort of processes, for the kind of devices we are interested in, the electron-
electron interaction has proven to generally play a significant role [3] and should be included
in any realistic analysis (as will be done for the results presented in the next section). Regard-
ing extrinsic mechanisms, such as, for example, interface roughness and electron-impurity
scattering, they should be considered if one is interested in analyzing the behavior of a specific
device. Indeed, such processes do not significantly modify the trend of the current-voltage
characteristics since they have, unlike carrier-LO phonon scattering, a threshold-less nature
and do poorly depend on the applied bias. On the contrary, they are strongly device/sample-
dependent and their implementation therefore inevitably requires a phenomenological treat-
ment. For these reasons, they will not be considered in the following.

The structure of Eq. (1) would allow for a self-consistent charge-conserving MC electron
transport simulation on the condition that the phonon distribution nq was known [22]. This
typically occurs when the latter may be reasonably well approximated by the q-independent
Bose-Einstein term corresponding to a given (quasi)equilibrium temperature. However, this is
not the case we are presently interested in since the interplay between electron and phonon
dynamics is here expected to significantly drive the LO phonon distribution out of equilibrium
while the device is in operation. When nonequilibrium phonons are considered, their occupa-
tion numbers nq are no longer q independent and have to be obtained by solving the
corresponding dynamical equation, Eq. (2).

The Boltzmann transport equation for the electron subsystem, Eq. (1), with the previously
described contribution in Eq. (3), goes then together with the phonon counterpart in Eq. (2).
The two quantities at the right-hand side of the latter can be explicitly written as
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nature of the problem is mandatory [22]. In most configurations of practical interest, the
description of the coupled electron-phonon nonequilibrium dynamics may safely be limited
to a semiclassical approach for both subsystems. Within this scheme, the kinetic variables of
interest are the electron and phonon distribution functions. The latter obey a coupled set of
nonlinear equations of motion which may be formally derived in the framework of the
quantum-kinetic theory, following a conventional single-particle correlation expansion proce-
dure and neglecting all nondiagonal carrier and quasiparticle density matrix elements [23].
Coherent phonons and electron phase-coherence effects, which may show up within the
transient ultrafast timescale [22], are indeed expected to play a minor role in the device’s
steady-state operation regime considered here. Even though the system under investigation is
spatially inhomogeneous, the LO phonon subsystem may be described in terms of a density
matrix diagonal in q, parametrized by a meso/macroscopic spatial coordinate related to the
thermal-transport space-scale. In other words, it could still be a good approximation to assume
the phonon modes and interaction potentials of the host bulk material.

In principle, the proper treatment of the steady-state properties of our prototypical device
should therefore be based on the set of coupled electron and phonon Boltzmann equations.
This task is quite demanding, since it requires, for the latter, the inclusion of both acoustic and
optical modes, ideally with finite size and quantization effects [12]. A simpler, though reason-
able, starting point suggests to focus on the main physical aspects of the energy redistribution
between charge carriers and lattice degrees of freedom. The basic idea is then to consider the
full electron subsystem (i.e., the complete set of active region and injector subbands within
each period) coupled via Frölich interaction with bulk LO phonon modes, and to include the
decay of the latter into acoustic modes (lattice thermal bath at temperature TL) via a phenom-
enological lifetime τ in their dynamical equation. The role of electron-acoustic phonon scatter-
ing is expected to be minor, due to the much lower rates, and for this reason it is not included
in the present model.

In other words, energy dissipation is modeled—and basically occurs—as a two-step process:
first, the carrier subsystem transfers a significant amount of energy to the LO phonon one;
then, the latter transfers its excess energy to additional degrees of freedom (acoustic phonons)
that are not taken into account dynamically and are characterized by a much larger heat
capacity. This second step is described via a standard relaxation-time approximation. The
structure of the closed set of coupled equations corresponding to the above-described dynam-
ics is then the following:
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Phonons in Low Dimensional Structures22

Starting with the first term on the right-hand side of Eq. (1), in the framework of the Fermi’s
golden rule approximation, the electron-phonon (e-LO) coupling hamiltonian produces the
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out-scattering terms, coming from LO phonon emission and absorption processes:
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phonon emission (absorption) processes.

The second term, labeled with s, at the right-hand side of Eq. (1), generally accounts for further
scattering mechanisms, of both intrinsic and extrinsic types, that may affect the carrier dynam-
ics. Within the first sort of processes, for the kind of devices we are interested in, the electron-
electron interaction has proven to generally play a significant role [3] and should be included
in any realistic analysis (as will be done for the results presented in the next section). Regard-
ing extrinsic mechanisms, such as, for example, interface roughness and electron-impurity
scattering, they should be considered if one is interested in analyzing the behavior of a specific
device. Indeed, such processes do not significantly modify the trend of the current-voltage
characteristics since they have, unlike carrier-LO phonon scattering, a threshold-less nature
and do poorly depend on the applied bias. On the contrary, they are strongly device/sample-
dependent and their implementation therefore inevitably requires a phenomenological treat-
ment. For these reasons, they will not be considered in the following.

The structure of Eq. (1) would allow for a self-consistent charge-conserving MC electron
transport simulation on the condition that the phonon distribution nq was known [22]. This
typically occurs when the latter may be reasonably well approximated by the q-independent
Bose-Einstein term corresponding to a given (quasi)equilibrium temperature. However, this is
not the case we are presently interested in since the interplay between electron and phonon
dynamics is here expected to significantly drive the LO phonon distribution out of equilibrium
while the device is in operation. When nonequilibrium phonons are considered, their occupa-
tion numbers nq are no longer q independent and have to be obtained by solving the
corresponding dynamical equation, Eq. (2).

The Boltzmann transport equation for the electron subsystem, Eq. (1), with the previously
described contribution in Eq. (3), goes then together with the phonon counterpart in Eq. (2).
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with the � nq�nthq
τ term accounting for loss processes from the LO phonon subsystem due to

anharmonic decay into acoustic modes, nthq being the Bose-Einstein distribution at the lattice

(acoustic) bath temperature TL.

The structure of the coupled set of sections, Eqs. (1) and (2), allows us to simulate both the
electron and phonon dynamics by means of a MC particle-like technique. In particular, the
latter consists of a generalized simulation approach suitable to describe a fixed number of
electrons and a variable number of phonons, and can therefore be implemented in state-of-the-
art MC simulation tools [22, 24, 25]. Technically, the q dependency of the phonon occupation
numbers nq can be managed by means of a combined self-scattering and rejection technique. In
addition, the previously discussed symmetry-by-design of the device core region allows us to
evaluate the device performances within a “closed-circuit” picture. More specifically, a peri-
odic boundary condition scheme may be adopted in which the simulation/solution for the
electron dynamics is limited to a single stage only. As described in detail in Ref. [24], every
time an electron undergoes an inter-stage scattering process, it is properly re-injected into the
simulated region and the corresponding charge contributes to the current through the device.
This charge-conserving scheme allows for a purely kinetic evaluation of the device perfor-
mances such as the gain spectrum or the current-voltage characteristics. The current density
across the whole structure, for example, results as a pure output of the simulation just by a
proper counting of the in- and out-stage scattering processes.

Within the above-described simulation framework, the LO phonon lifetime, τ, and the lattice
temperature, TL, are the only free parameters. Realistic values for the former in bulk materials
are in the range 6–9 ps [26], while the latter may be accessed by means of state-of-the-art
microprobe band-to-band photoluminescence experiments, [17, 18].

3. Application to a prototypical THz coherent light source

As anticipated in the previous section, heating is a serious aspect generally affecting electronic
and optoelectronic device performances at diverse stages. For the case of typical mid-infrared
as well as THz resonant-phonon QCLs, a significant amount of LO phonons is generated in the
core region during operation and a considerable amount of energy is dissipated in the device
via Joule effect. Moreover, the combination of high LO phonon generation rates and limited
thermal conductivity may cause a significant—and, in principle, detrimental—feedback on the
electron relaxation kinetics and therefore on the device performances.

In recent years, experimental evidences highlighted the need for a deeper and more quantita-
tive insight into the impact of hot-phonon phenomena on the nonequilibrium electron dynam-
ics in THz QCL emitters [19, 20]. Motivated by these reasons, we have developed the global
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kinetic approach described in Section 2 [21]. In particular, the resonant-phonon device pro-
posed in Ref. [27] appeared to be an interesting candidate deserving further investigation that
will be reviewed here. As a starting point, besides the evident carrier-LO phonon scattering,
also carrier-carrier interaction should be included in the electron dynamical equation, Eq. (1).
This can be done employing the well-established time-dependent static-screening model
which is commonly adopted in two-dimensional systems [28]. Regarding Eq. (2), the lifetime
τ appearing there is set to the constant value of 6 ps throughout the whole simulated device
operation range. This is a realistic guess based on the lower bound value in bulk materials [26]
that allows us to investigate the relevance of nonequilibrium LO phonon effects already in the
less favorable situation corresponding to their fastest decay into thermalized acoustic modes.
Concerning the latter, the values for the input temperature parameter, TL, may be directly
extracted from microprobe band-to-band photoluminescence analysis on the operating device.
In particular, the experimental data evidence a significant device heating, with TL being bias
dependent and locally higher than the cryostat temperature (100–180 K—varying with the
applied bias—vs. 80 K) [19].

The global and three-dimensional kinetic approach reviewed here has the key feature of
directly accessing the distribution functions of the electrons in the various subbands: these
data are a straightforward output of the MC simulation. In other words, there is no a priori
assumption of carrier intrasubband thermalization. The latter, instead, may or may not even-
tually show up because of the complex and sinergistic interplay between two-particle (carrier-
carrier) and single-particle (carrier-LO phonon) interactions. It turns out that for the device that
we are considering here [21], the nonequilibrium electron distributions do show a typical
heated Maxwellian form. The corresponding subband effective temperatures are higher than
the lattice ones, in good agreement with experimental findings [19]. As will be discussed later,
a quite different scenario appears on the side of the LO phonon subsystem.

A key question when investigating and exploring novel QCL designs concerns the feedback that
the nonequilibrium phonon dynamics has on the device gain performances. Since the electron
cascading dynamics is strategically tailored and controlled by LO phonon emission processes, a
gain reduction could be a reasonable expectation. However, any reliable/quantitative answer
does require all the power and flexibility of our MC-based approach. In fact, a peculiar feature of
MC simulations is that of allowing for truly simulated experiments, in which the diverse contri-
butions to the dynamical equations may be selectively switched on and off, thus highlighting
both their individual and synergistic roles. For the case of the prototypical THz QCL device
considered here, when hot phonon effects are taken into account we indeed found a population
inversion amounting to approximately 85% of the value corresponding to the ideal case in which
the carrier subsystem interacts with a thermalized LO phonon population at the cryostat tem-
perature [19]. A closer look at the subband population dynamics shows that this is in fact a
“thermal backfilling” effect. More specifically, there is a significant reduction of the extraction
efficiency out of the lower laser subband into the ground injector one, while the thermally
activated depopulation of the upper laser states remains marginal. The presence of a nonequili-
brium phonon population translates into an enhancement of the phonon absorption rates and
this reduces the net energy relaxation/loss for the electrons [29].
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τ term accounting for loss processes from the LO phonon subsystem due to

anharmonic decay into acoustic modes, nthq being the Bose-Einstein distribution at the lattice

(acoustic) bath temperature TL.

The structure of the coupled set of sections, Eqs. (1) and (2), allows us to simulate both the
electron and phonon dynamics by means of a MC particle-like technique. In particular, the
latter consists of a generalized simulation approach suitable to describe a fixed number of
electrons and a variable number of phonons, and can therefore be implemented in state-of-the-
art MC simulation tools [22, 24, 25]. Technically, the q dependency of the phonon occupation
numbers nq can be managed by means of a combined self-scattering and rejection technique. In
addition, the previously discussed symmetry-by-design of the device core region allows us to
evaluate the device performances within a “closed-circuit” picture. More specifically, a peri-
odic boundary condition scheme may be adopted in which the simulation/solution for the
electron dynamics is limited to a single stage only. As described in detail in Ref. [24], every
time an electron undergoes an inter-stage scattering process, it is properly re-injected into the
simulated region and the corresponding charge contributes to the current through the device.
This charge-conserving scheme allows for a purely kinetic evaluation of the device perfor-
mances such as the gain spectrum or the current-voltage characteristics. The current density
across the whole structure, for example, results as a pure output of the simulation just by a
proper counting of the in- and out-stage scattering processes.

Within the above-described simulation framework, the LO phonon lifetime, τ, and the lattice
temperature, TL, are the only free parameters. Realistic values for the former in bulk materials
are in the range 6–9 ps [26], while the latter may be accessed by means of state-of-the-art
microprobe band-to-band photoluminescence experiments, [17, 18].

3. Application to a prototypical THz coherent light source

As anticipated in the previous section, heating is a serious aspect generally affecting electronic
and optoelectronic device performances at diverse stages. For the case of typical mid-infrared
as well as THz resonant-phonon QCLs, a significant amount of LO phonons is generated in the
core region during operation and a considerable amount of energy is dissipated in the device
via Joule effect. Moreover, the combination of high LO phonon generation rates and limited
thermal conductivity may cause a significant—and, in principle, detrimental—feedback on the
electron relaxation kinetics and therefore on the device performances.

In recent years, experimental evidences highlighted the need for a deeper and more quantita-
tive insight into the impact of hot-phonon phenomena on the nonequilibrium electron dynam-
ics in THz QCL emitters [19, 20]. Motivated by these reasons, we have developed the global
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kinetic approach described in Section 2 [21]. In particular, the resonant-phonon device pro-
posed in Ref. [27] appeared to be an interesting candidate deserving further investigation that
will be reviewed here. As a starting point, besides the evident carrier-LO phonon scattering,
also carrier-carrier interaction should be included in the electron dynamical equation, Eq. (1).
This can be done employing the well-established time-dependent static-screening model
which is commonly adopted in two-dimensional systems [28]. Regarding Eq. (2), the lifetime
τ appearing there is set to the constant value of 6 ps throughout the whole simulated device
operation range. This is a realistic guess based on the lower bound value in bulk materials [26]
that allows us to investigate the relevance of nonequilibrium LO phonon effects already in the
less favorable situation corresponding to their fastest decay into thermalized acoustic modes.
Concerning the latter, the values for the input temperature parameter, TL, may be directly
extracted from microprobe band-to-band photoluminescence analysis on the operating device.
In particular, the experimental data evidence a significant device heating, with TL being bias
dependent and locally higher than the cryostat temperature (100–180 K—varying with the
applied bias—vs. 80 K) [19].

The global and three-dimensional kinetic approach reviewed here has the key feature of
directly accessing the distribution functions of the electrons in the various subbands: these
data are a straightforward output of the MC simulation. In other words, there is no a priori
assumption of carrier intrasubband thermalization. The latter, instead, may or may not even-
tually show up because of the complex and sinergistic interplay between two-particle (carrier-
carrier) and single-particle (carrier-LO phonon) interactions. It turns out that for the device that
we are considering here [21], the nonequilibrium electron distributions do show a typical
heated Maxwellian form. The corresponding subband effective temperatures are higher than
the lattice ones, in good agreement with experimental findings [19]. As will be discussed later,
a quite different scenario appears on the side of the LO phonon subsystem.

A key question when investigating and exploring novel QCL designs concerns the feedback that
the nonequilibrium phonon dynamics has on the device gain performances. Since the electron
cascading dynamics is strategically tailored and controlled by LO phonon emission processes, a
gain reduction could be a reasonable expectation. However, any reliable/quantitative answer
does require all the power and flexibility of our MC-based approach. In fact, a peculiar feature of
MC simulations is that of allowing for truly simulated experiments, in which the diverse contri-
butions to the dynamical equations may be selectively switched on and off, thus highlighting
both their individual and synergistic roles. For the case of the prototypical THz QCL device
considered here, when hot phonon effects are taken into account we indeed found a population
inversion amounting to approximately 85% of the value corresponding to the ideal case in which
the carrier subsystem interacts with a thermalized LO phonon population at the cryostat tem-
perature [19]. A closer look at the subband population dynamics shows that this is in fact a
“thermal backfilling” effect. More specifically, there is a significant reduction of the extraction
efficiency out of the lower laser subband into the ground injector one, while the thermally
activated depopulation of the upper laser states remains marginal. The presence of a nonequili-
brium phonon population translates into an enhancement of the phonon absorption rates and
this reduces the net energy relaxation/loss for the electrons [29].
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Figure 1 shows the simulated current-voltage characteristics of the prototypical device we are
considering. Indeed, results obtained from diverse MC simulated experiment—at diverse levels
of description—are compared. The first set of data (triangles) corresponds to the plainest case,
that is the one in which the complete (acoustic and optical) phonon subsystem is at equilibrium
and behaves as a thermal bath at the cryostat (80 K) temperature. The other two datasets describe
the electron transport performance when LO phonon nonequilibrium phenomena are dynami-
cally taken into account and the acoustic phonon bath is at equilibrium either at the cryostat
temperature (squares) or at higher (experimentally measured) ones (discs). All the three cases
show the typical QCL behavior: as long as the injector and upper laser subbands remain aligned,
the current density increases on increasing the bias; a negative differential resistance region then
shows up at higher fields. When comparing the more realistic results (discs) with the other two,
one finds out that the above-mentioned reduction in the electron cooling process out of the lower
laser subband has a beneficial effect on the global transport dynamics across the device core
region. Thermal backfilling actually prevents the accumulation of charge carriers in the injector
ground subband, which is less efficiently coupled to the upper laser one, and forces electrons to
follow alternative relaxation paths. Indeed, the resulting current increment may amount to more
than 60% with respect to the equilibrium LO phonon case (triangles) and this is again a hot-
phonon effect in the broader sense. Nonequilibrium LO phonon phenomena at the bare cryostat
temperature for the acoustic phonon bath (squares) actually only account for a small fraction of
the above-discussed findings.

A closer inspection of the current-voltage profiles allows for further remarks. In particular, the
quantitative impact of the nonequilibrium phonon dynamics occurs at diverse levels, the most

Figure 1. Simulated current density versus applied field characteristics, obtained under diverse conditions for the LO
phonon subsystem and the acoustic phonon bath temperature. Triangles: LO and acoustic phonons at equilibrium at the
cryostat (80 K) temperature; squares: nonequilibrium LO phonons and cryostat temperature for the acoustic phonon bath;
discs: nonequilibrium LO phonons and measured TL for the acoustic phonon bath. Lines are a guide to the eye. Reprinted
from [21].
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relevant being the specific device design and the particular operation condition, that is, the
applied bias. From the theoretical modeling point of view, it follows that it is not possible to
assume an a priori heated-phonon approximation parametrized by an effective temperature:
the latter will unavoidably be device and bias dependent, and therefore fully equivalent to an a
posteriori fitting parameter with no predictive added value.

The current density across the device, being a global quantity, somehow averages over the
phonon distribution. In this respect, it does not unambiguously allow to discriminate between
the effects of a quasiequilibrium population (thermal, though heated) and a nonthermal one.
Indeed, the assessment of a nonequilibrium LO phonon population can and should be ackn-
owledged by looking at the solution of Eq. (2). Figure 2 shows the nq values obtained from the
MC simulation, as a function of the in-plane modulus q ¼ ∣qin plane∣. In particular, the plotted

quantity is obtained averaging over the dependence on the out-of-plane wavevector compo-
nent within the superlattice Brillouin minizone. These data (solid line) are compared with the
thermal, q-independent, Bose distribution at the temperature TL (dashed line). Actually, the
strictly quantitative values for the former and the latter depend on the applied bias; the quali-
tative behaviors at diverse bias show, however, a common feature: the build-up of a significant
amount of small-q LO phonons within the core region of the operating device. This is indeed a
characteristic fingerprint of the polar phonon emission process: the latter, whose rate decays as
1=q2, privileges, at resonance, q wavevectors in the proximity of the zone center.

The above-described nonthermal phonon population scenario has been recently probed and
confirmed by microRaman spectroscopy studies. In particular, an extremely good agreement
between simulated and measured data has been observed [20].

Figure 2. Longitudinal optical-phonon occupation number (solid line) as a function of the in-plane wavevector modulus,
for the operating THz QCL device considered in the text. The thermal Bose-Einstein distribution at the bias-dependent
temperature TL is also shown for comparison (dashed line). Reprinted from [21].
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relevant being the specific device design and the particular operation condition, that is, the
applied bias. From the theoretical modeling point of view, it follows that it is not possible to
assume an a priori heated-phonon approximation parametrized by an effective temperature:
the latter will unavoidably be device and bias dependent, and therefore fully equivalent to an a
posteriori fitting parameter with no predictive added value.

The current density across the device, being a global quantity, somehow averages over the
phonon distribution. In this respect, it does not unambiguously allow to discriminate between
the effects of a quasiequilibrium population (thermal, though heated) and a nonthermal one.
Indeed, the assessment of a nonequilibrium LO phonon population can and should be ackn-
owledged by looking at the solution of Eq. (2). Figure 2 shows the nq values obtained from the
MC simulation, as a function of the in-plane modulus q ¼ ∣qin plane∣. In particular, the plotted

quantity is obtained averaging over the dependence on the out-of-plane wavevector compo-
nent within the superlattice Brillouin minizone. These data (solid line) are compared with the
thermal, q-independent, Bose distribution at the temperature TL (dashed line). Actually, the
strictly quantitative values for the former and the latter depend on the applied bias; the quali-
tative behaviors at diverse bias show, however, a common feature: the build-up of a significant
amount of small-q LO phonons within the core region of the operating device. This is indeed a
characteristic fingerprint of the polar phonon emission process: the latter, whose rate decays as
1=q2, privileges, at resonance, q wavevectors in the proximity of the zone center.

The above-described nonthermal phonon population scenario has been recently probed and
confirmed by microRaman spectroscopy studies. In particular, an extremely good agreement
between simulated and measured data has been observed [20].

Figure 2. Longitudinal optical-phonon occupation number (solid line) as a function of the in-plane wavevector modulus,
for the operating THz QCL device considered in the text. The thermal Bose-Einstein distribution at the bias-dependent
temperature TL is also shown for comparison (dashed line). Reprinted from [21].
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4. Summary and conclusions

In state-of-the-art nanomaterials and related optoelectronic nanodevices, the excited (i.e.,
nonequilibrium) charge carrier dynamics often involves the emission of a significant amount
of phonons. As a consequence, the population of the latter may therefore be accordingly
driven out of equilibrium as well. This is distinctly noticeable in new-generation device
designs where relaxation via LO phonon emission is deliberately exploited as the key mech-
anism to achieve and maintain the desired transport/gain performances. In this contribution,
we have analyzed hot electron versus hot phonon effects in a prototypical THz resonant-
phonon QCL structure. In particular, we have reviewed a recently proposed MC-based
global kinetic approach describing the entire interacting electron subsystem (i.e., the com-
plete set of active region and injector subbands), coupled to a bulk LO phonon subsystem,
whose decay into acoustic modes is modeled by a phenomenological lifetime. Energy dissi-
pation occurs then via a two-step process: first, the strongly biased electron subsystem
conveys a conspicuous amount of energy into the LO phonon one; then, the latter transfers
the excess energy to additional degrees of freedom, having a much larger heat capacity. The
results of our MC simulations are in very good agreement with measured data and highlight
how and to what extent the nonequilibrium phonon dynamics may affect the electrooptical
device performances.

The simulation scheme reviewed here may be extended to account for a more refined
modeling of the LO phonon subsystem as well as to include a more realistic description of
their decay into acoustic phonon modes and of the heat transport dynamics. Indeed, it is
worth noting that the analysis presented so far, in principle, quantitatively applies only to a
specific part of the device, the one whose TL temperature is selectively accessed and sam-
pled by means of appropriate experimental techniques. Actually, mainly due to their multii-
nterface structure, the cross-plane thermal conductivity of these devices is greatly reduced
with respect to the bulk materials, resulting in a nonuniform heating along the growth
direction. The measured TL values are therefore local quantities that may show significant
variations in the direction of the applied bias. A possible way to include in the proposed
model these thermal resistance effects consists in assuming the value of TL—which is an
input parameter—to be position dependent and set it from an experimental device temper-
ature mapping.
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Abstract

We show that the directional projection of longitudinal waves propagating in a parallel array
of N elastically coupled waveguides can be described by a nonlinear Dirac-like equation in a
2N dimensional exponential space. This space spans the tensor product Hilbert space of the
two-dimensional subspaces of N uncoupled waveguides grounded elastically to a rigid
substrate (called φ-bits). The superposition of directional states of a φ-bit is analogous to that
of a quantum spin. We can construct tensor product states of the elastically coupled system
that are nonseparable on the basis of tensor product states of N φ-bits. We propose a system
of coupled waveguides in a ring configuration that supports these nonseparable states.

Keywords: one-dimensional elastic waveguides, nonseparability, elastic waves, elastic
pseudospin, coupled waveguides

1. Introduction

Quantum bit-based computing platforms can capitalize on exponentially complex entangled
states which allow a quantum computer to simultaneously process calculations well beyond
what is achievable with serially interconnected transistor-based processors. Ironically, a pair of
classical transistors can emulate some of the functions of a qubit. While current manufacturing
can fabricate billions of transistors on a chip, it is inconceivable to connect them in the
exponentially complex way that would be required to achieve nonseparable quantum super-
position analogues. In contrast, quantum systems possess such complexity through the nature
of the quantum world. Outside the quantum world, the notion of classical nonseparability
[1–3] has been receiving a lot of attention from the theoretical and experimental point of views
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in the field of optics. Degrees of freedom of photon states that span different Hilbert spaces can
be made to interact in a way that leads to local correlations. Correlation has been achieved
between degrees of freedom that include spin angular momentum and orbital angular momen-
tum (OAM) [4–9], OAM, polarization and radial degrees of freedom of a beam of light [10] as
well as propagation direction [11, 12]. Recently, we have extended this notion to correlation
between directional and OAM degrees of freedom in elastic systems composed of arrays of
elastic waveguides [13]. This classical nonseparability lies only in the tensor product Hilbert
space of the subspaces associated with these degrees of freedom. This Hilbert space does not
possess the exponential complexity of a multiqubit Hilbert space, for instance. It has been
suggested theoretically and experimentally that classical systems coupled via nonlinear inter-
actions may have computational capabilities approaching that of quantum computers [14–16].

We demonstrated in Ref. [17] that nonlinear elastic media can be used to produce phonons that
can be correlated simultaneously in time and frequency.We have also shown an analogy between
the propagation of elastic waves on elastically coupled one-dimensional (1D) wave guides and
quantum phenomena [18–21]. More specifically, the projection on the direction of propagation of
elastic waves in an elastic system composed of a 1D waveguide grounded to a rigid substrate
(denoted φ-bit) is isomorphic to the spin of a quantum particle. The pseudospin states of elastic
waves in these systems can be described via a Dirac-like equation and possess 2 � 1 spinor
amplitudes. Unlike the quantum systems, these amplitudes are, however, measurable through
the measurement of transmission coefficients. The notion of measurement is an important one as
it has been realized that separability is relative to the choice of the partitioning of a multipartite
system. Indeed, it is known that given a multipartite physical system, whether quantum or
classical, the way to subdivide it into subsystems is not unique [22, 23]. For instance, the states
of a quantum system may not appear entangled relative to some decomposition but may appear
entangled relative to another partitioning. The criterion for that choice may be the ability to
perform observations and measurements of some degrees of freedom of the subsystems [23].

The objective of this paper is to investigate the notion of separability and nonseparability of
multipartite classical mechanical systems supporting elastic waves. These systems are com-
posed of 1D elastic waveguides that are elastically coupled along their length to each other
and/or to some rigid substrate. The 1D waveguides support spinor-like amplitudes in the two-
dimensional (2D) subspace of directional degrees of freedom. The amplitudes of N coupled
waveguides span an N-dimensional subspace. Subsequently, the Hilbert space spanned by the
elastic modes is a 2N-dimensional space, comprised of the tensor product of the directional
and waveguides subspaces. This representation is isomorphic to the degrees of freedom of
photon states in a beam of light. While beams of light cannot be decomposed into subsystems,
an elastic system composed of coupled 1D waveguides can. Indeed, the elastic system consid-
ered here forms a multipartite system composed of N 1D waveguide subsystems. We show
that, since each waveguide possesses two directional degrees of freedom, one can represent the
elastic states of the N-waveguide system in the 2N dimensional tensor product Hilbert space of
N 2D spinor subspaces associated with individual waveguides. The elastic modes in this
representation obey a 2N dimensional nonlinear Dirac-like equation. These modes span the
same space as that of uncoupled waveguides grounded to a rigid substrate, i.e., N φ-bits.
However, the modes’ solutions of the nonlinear Dirac equation cannot be expressed as tensor
products of the states of N uncoupled grounded waveguides, i.e., φ-bit states.

Phonons in Low Dimensional Structures34

In Section 2 of this chapter, we introduce the mathematical formalism that is needed to
demonstrate the nonseparability of elastic states of coupled elastic waveguides in an exponen-
tially complex space. Throughout this section, we use illustrations of the concepts in the case of
systems composed of small numbers of waveguides. However, the approach is fully scalable
and can be generalized to any large number of coupled waveguides. In Section 3, we draw
conclusions concerning the applicability of this approach to solve complex problems.

2. Models and methods

We have previously considered systems constituted of N one-dimensional (1D) waveguides
coupled elastically along their length [13]. In this section, we summarize the results of these
previous investigations to develop a formalism to address our current considerations. The
parallelly coupled waveguides can be arranged in any desired way. The propagation of elastic
modes is limited to longitudinal modes along the waveguides in the long wavelength limit, i.e.,
the continuum limit. We consider the representations of the modes of the coupled waveguide
systems in two spaces. The first space scales linearly with N. The second space scales as 2N and
leads to a description of the elastic system with exponential complexity. The linear representa-
tion enables us to operate easily on the states in the exponential space.

2.1. Representation of elastic states in a space scaling linearly with N

A compact form for the equations of motion of the N coupled waveguides is:

H:IN�N þ α2MN�N
� �

uN�1 ¼ 0 (1)

Here, the propagation of elastic waves in the direction x along the waveguides is modeled by

the dynamical differential operator, H ¼ ∂2

∂t2 � β2 ∂2

∂x2. The parameter β is proportional to the

speed of sound in the medium constituting the waveguides and the parameter α2 characterizes
the strength of the elastic coupling between them (here, we consider that the strength is the
same for all coupled waveguides). uN�1 is a vector with components, ui, i ¼ 1;Nð Þ,
representing the displacement of the ith waveguide. The coupling matrix operator MN�N

describes the elastic coupling between waveguides which, in the case of N = 3 parallel wave-
guides in a closed ring arrangement with first neighbor coupling, takes the form:

MN¼3�N¼3 ¼
2 �1 �1
�1 2 �1
�1 �1 2

0
B@

1
CA (2)

Eq. (1) takes the form of a generalized Klein-Gordon (KG) equation and its Dirac factoriza-
tion introduces the notion of the square root of the operator H:IN�N þ α2MN�N

� �
. In this

factorization, the dynamics of the system are represented in terms of first derivatives
with respect to time, t, and position along the waveguides, x. There are two possible Dirac
equations:
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UN�N ⊗ σx
∂
∂t

þ βUN�N ⊗ �iσy
� � ∂

∂x
� iαU2N�2N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
⊗ σx

� �
Ψ2N�1 ¼ 0 (3)

In Eq. (3), UN�N and U2N�2N are antidiagonal matrices with unit elements. σx ¼
0 1
1 0

� �
and

σy ¼
0 i
�i 0

� �
are two of the Pauli matrices. Ψ2N�1 is a 2 N dimensional vector which repre-

sents the modes of vibration of the N waveguides projected in the two possible directions of
propagation (forward and backward) and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
is the square root of the coupling matrix.

The square root of a matrix is not unique but we will show later that we can pick any form
without loss of generality.

We choose components of the Ψ2N�1 vector in the form of plane waves ψI ¼ aIeikxeiωt with
I ¼ 1,…, 2N and k and ω being the wave number and angular frequency, respectively, Eq. (3)
becomes:

ωA2N�2N þ βkB2N�2N � αC2N�2N
� �

a2N�1 ¼ 0 (4)

where

A2N�2N ¼ IN�N ⊗ I2�2 (5a)

B2N�2N ¼ IN�N ⊗ �σzð Þ (5b)

C2N�2N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
⊗ σx (5c)

In Eqs. (4) and (5), σz ¼
1 0
0 �1

� �
is the third Pauli matrix, IN�N is the identity matrix of order

N and a2Nx1 is a 2 N dimensional vector whose components are the amplitudes aI. In obtaining
Eq. (4), we have multiplied all terms in Eq. (3) on the left by U2N�2N.

Writing Eq. (4) as a linear combination of tensor products of N �N and 2� 2 matrix operators:

IN�N ⊗ ωI2�2 � βkσz
� �� α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
⊗ σx

n o
a2N�1 ¼ 0 (6)

we seek solutions in the form of tensor products:

a2N�1 ¼ EN�1 ⊗ s2�1 (7)

.While the degrees of freedom associated with EN�1 span an N dimensional Hilbert subspace,
the degrees of freedom associated with s2�1 span a 2D space.

Replacing a2N�1 from Eq. (7) in Eq. (6) yields:

IN�NEN�1ð Þ⊗ ωI2�2 � βkσz
� �

s2�1
� �� α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
EN�1

� �
⊗ σxs2�1ð Þ

n o
¼ 0: (8)
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Choosing EN�1 to be an eigenvector, en, of the matrix
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
with eigen value λn Eq. (8)

reduces to:

en ⊗ ωI2�2 � βkσz
� �� αλnσx
� �

s2�1
� � ¼ 0 (9)

For nontrivial eigenvectors en, the problem in the space of the directions of propagation
reduces to finding solutions of

ωI2�2 � βkσz
� �� αλnσx
� �

s2�1 ¼ 0 (10)

In obtaining Eq. (9), we have also used the fact that en is an eigen vector of IN�N with eigen value 1
and we note that Eq. (9) is the 1D Dirac equation for an elastic system which solutions, s2�1, have
the properties of Dirac spinors [18–21]. The components of the spinor represent the amplitude of
the elastic waves in the positive and negative directions along the waveguides, respectively.

Eq. (10), now written in the matrix form, can now be solved for a given λn;

ωn � βk �αλn

�αλn ωn þ βk

� �
s1
s2

� �
¼ 0 (11)

This eigen equation gives the dispersion relation ω2
n ¼ βk

� �2 þ αλnð Þ2 (vide infra) and the
following eigen vectors projected into the space of directions of propagation:

s2�1 ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn þ βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn � βk

p
 !

(12)

To determine the eigen vectors of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
, we note that they are identical to the eigen vectors

of the coupling matrix MN�N and the eigen values of MN�N are also λ2
n. These properties

indicate that we do not have to determine the square root of the coupling matrix to find the
solutions a2N�1. All that is required is to calculate the eigen vectors and the eigen values of the
coupling matrix. Hence, the nonuniqueness of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
does not introduce difficulties in deter-

mining the elastic modes of the coupled system in the Dirac representation.

In the case of the coupling matrix, M3�3, presented in Eq. (2), the eigen values and real eigen
vectors are obtained as λ2

0 ¼ 0, λ2
1 ¼ λ2

2 ¼ 3, and

e0 ¼ 1ffiffiffi
3

p
1
1
1

0
B@

1
CA, e1 ¼

ffiffiffi
2

p
ffiffiffi
3

p

1
�1
2
�1
2

0
BBBB@

1
CCCCA

and e2 ¼
ffiffiffi
2

p
ffiffiffi
3

p

�1
2
1
�1
2

0
BBBB@

1
CCCCA

(13)

Eq. (3) being linear, its solutions can be written as linear combinations of elastic wave functions
in the form:

Ψ2N�1 n; kð Þ ¼ en Nð Þ⊗ s2�1 kð Þ eikxeiωn kð Þt (14)
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n ¼ βk

� �2 þ αλnð Þ2 (vide infra) and the
following eigen vectors projected into the space of directions of propagation:

s2�1 ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn þ βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωn � βk

p
 !

(12)

To determine the eigen vectors of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
, we note that they are identical to the eigen vectors

of the coupling matrix MN�N and the eigen values of MN�N are also λ2
n. These properties

indicate that we do not have to determine the square root of the coupling matrix to find the
solutions a2N�1. All that is required is to calculate the eigen vectors and the eigen values of the
coupling matrix. Hence, the nonuniqueness of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MN�N

p
does not introduce difficulties in deter-

mining the elastic modes of the coupled system in the Dirac representation.

In the case of the coupling matrix, M3�3, presented in Eq. (2), the eigen values and real eigen
vectors are obtained as λ2

0 ¼ 0, λ2
1 ¼ λ2

2 ¼ 3, and

e0 ¼ 1ffiffiffi
3

p
1
1
1

0
B@

1
CA, e1 ¼

ffiffiffi
2

p
ffiffiffi
3

p

1
�1
2
�1
2

0
BBBB@

1
CCCCA

and e2 ¼
ffiffiffi
2

p
ffiffiffi
3

p

�1
2
1
�1
2

0
BBBB@

1
CCCCA

(13)

Eq. (3) being linear, its solutions can be written as linear combinations of elastic wave functions
in the form:

Ψ2N�1 n; kð Þ ¼ en Nð Þ⊗ s2�1 kð Þ eikxeiωn kð Þt (14)

Separability and Nonseparability of Elastic States in Arrays of One-Dimensional Elastic Waveguides
http://dx.doi.org/10.5772/intechopen.77237

37



In Eq. (14), we have expressed the dependencies on the wave number k and the number of
waveguides N. The eigen vectors en Nð Þ depend on the connectivity of the N waveguides. The
space spanned by these solutions scales linearly with the number of waveguides, i.e., as 2N.

2.2. Representation of elastic states in a space scaling as 2N

We first illustrate the notion of exponential space in the case of three waveguides. Each guide is
connected to a rigid substrate and therefore constitutes a φ-bit. The waveguides are not
coupled to each other. The dynamics of the system can be described by a single equation which
is constructed as follows:

σx ⊗ σx ⊗ σx
∂
∂t

þ iβσy ⊗ σx ⊗ σx
∂
∂x1

þ iβσx ⊗ σy ⊗ σx
∂
∂x2

þ iβσx ⊗ σx ⊗ σy
∂
∂x3

� iαI2�2 ⊗ σx

�

⊗ σx � iασx ⊗ I2�2 ⊗ σx � iασx ⊗ σx ⊗ I2�2

�
Ψ8�1 ¼ 0

(15)

In Eq. (15), we are now defining a positional variable for each waveguide, namely, x1, x2, x3.
The quantity α is a measure of the strength of the elastic coupling to the rigid substrate. The

solutions are the 8 � 1 vectors Ψ8�1 ¼

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

Ψ8

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

. When seeking solutions in the form of tensor

products of spinor solutions for the three waveguides (as indicated by the upper scripts)

Ψ8�1 ¼ ψ 1ð Þ ⊗ψ 2ð Þ ⊗ψ 3ð Þ ¼ ψ 1ð Þ
1

ψ 1ð Þ
2

 !
⊗

ψ 2ð Þ
1

ψ 2ð Þ
2

 !
⊗

ψ 3ð Þ
1

ψ 3ð Þ
2

 !
¼

ψ 1ð Þ
1 ψ 2ð Þ

1 ψ 3ð Þ
1

ψ 1ð Þ
1 ψ 2ð Þ

1 ψ 3ð Þ
2

ψ 1ð Þ
1 ψ 2ð Þ

2 ψ 3ð Þ
1

ψ 1ð Þ
1 ψ 2ð Þ

2 ψ 3ð Þ
2

ψ 1ð Þ
2 ψ 2ð Þ

1 ψ 3ð Þ
1

ψ 1ð Þ
2 ψ 2ð Þ

1 ψ 3ð Þ
2

ψ 1ð Þ
2 ψ 2ð Þ

2 ψ 3ð Þ
1

ψ 1ð Þ
2 ψ 2ð Þ

2 ψ 3ð Þ
2

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(16)

it is straightforward to show that one recovers from Eq. (15), the six Dirac equations of Eq. (3)
with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN¼3�N¼3

p ¼ I3�3. The solutions of Eq. (16) are obtained from the spinor solution for
individual waveguides (j):

ψ jð Þ ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p
 !

eikxeiωt (17)
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The Hilbert space spanned by the solutions of Eq. (15) is the product space of the three 2D
subspaces associated with each waveguide. The states of a system composed ofN φ-bits span a
space when dimension is 2N .

The question that arises then concerns the possibility of writing an equation in the exponential
Hilbert space for N waveguides coupled to each other. For instance, we wish to obtain the
states of the system composed of three waveguides coupled in a ring arrangement from an
equation of the form:

σx ⊗ σx ⊗ σx
∂
∂t

þ iβσy ⊗ σx ⊗ σx
∂
∂x1

þ iβσx ⊗ σy ⊗ σx
∂
∂x2

þ iβσx ⊗ σx ⊗ σy
∂
∂x3

�iαε8�8

2
64

3
75Ψ8�1 ¼ 0 (18)

The matrix αε8�8 represents the coupling between the waveguides in the 2N¼3 space. We are
still seeking solutions in the form of tensor products (Eq. (16)). After a lengthy algebraic
manipulation, we find that we can reproduce Eq. (3) with the coupling matrix of Eq. (2) if one
chooses εij ¼ 0 excepting

ε14 ¼ ε41 ¼ ε23 ¼ ε31 ¼ 2ψ 1ð Þ
1 � ψ 2ð Þ

1 � ψ 3ð Þ
1

ψ 1ð Þ
1

; ε16 ¼ ε61 ¼ ε25 ¼ ε52 ¼ 2ψ 2ð Þ
1 � ψ 1ð Þ

1 � ψ 3ð Þ
1

ψ 2ð Þ
1

;

ε17 ¼ ε71 ¼ ε35 ¼ ε53 ¼ 2ψ 3ð Þ
1 � ψ 1ð Þ

1 � ψ 2ð Þ
1

ψ 3ð Þ
1

; ε28 ¼ ε82 ¼ ε46 ¼ ε64 ¼ 2ψ 3ð Þ
2 � ψ 1ð Þ

2 � ψ 2ð Þ
2

ψ 3ð Þ
2

;

ε38 ¼ ε83 ¼ ε47 ¼ ε74 ¼ 2ψ 2ð Þ
2 � ψ 1ð Þ

2 � ψ 3ð Þ
2

ψ 2ð Þ
2

; ε58 ¼ ε85 ¼ ε67 ¼ ε76 ¼ 2ψ 1ð Þ
2 � ψ 2ð Þ

2 � ψ 3ð Þ
2

ψ 1ð Þ
2

(19)

The Dirac equation of the three coupled waveguides in the exponential space is therefore
nonlinear. Generalization to N coupled chains will result in the following nonlinear equation:

σxð Þ⊗N ∂
∂t

þ iβσy ⊗ σxð Þ⊗N�1 ∂
∂x1

þ iβσx ⊗σy ⊗ σxð Þ⊗N�2 ∂
∂x2

þ…þ iβ σxð Þ⊗N�1 ⊗σy
∂

∂xN
�iαε2N�2N

2
4

3
5Ψ2N�1 ¼ 0

(20)

where nonzero components of ε2N�2N depend on the ψ jð Þ
i , i ¼ 1, 2; j ¼ 1, N that appear in the

solution Ψ2N�1 ¼ ψ 1ð Þ ⊗ψ 2ð Þ ⊗…⊗ψ Nð Þ. The solutions of the nonlinear Dirac equation for the
coupled waveguides span the same space as that of the system of φ-bits, i.e., uncoupled
waveguides connected to rigid substrates. The next subsection addresses the question of
separability of the coupled waveguide system into a system of uncoupled φ-bits.

2.3. Elastic states in the exponential space

For a system of waveguides that are not coupled, the elastic states, solutions of linear
equations of the form of Eq. (15), are tensor products but also linear combinations of
tensor products of spinor solution for individual waveguides (see Eq. (17)). It is therefore
possible to construct nonseparable states in the exponential space for systems of uncoupled
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In Eq. (14), we have expressed the dependencies on the wave number k and the number of
waveguides N. The eigen vectors en Nð Þ depend on the connectivity of the N waveguides. The
space spanned by these solutions scales linearly with the number of waveguides, i.e., as 2N.

2.2. Representation of elastic states in a space scaling as 2N

We first illustrate the notion of exponential space in the case of three waveguides. Each guide is
connected to a rigid substrate and therefore constitutes a φ-bit. The waveguides are not
coupled to each other. The dynamics of the system can be described by a single equation which
is constructed as follows:

σx ⊗ σx ⊗ σx
∂
∂t

þ iβσy ⊗ σx ⊗ σx
∂
∂x1

þ iβσx ⊗ σy ⊗ σx
∂
∂x2

þ iβσx ⊗ σx ⊗ σy
∂
∂x3

� iαI2�2 ⊗ σx

�

⊗ σx � iασx ⊗ I2�2 ⊗ σx � iασx ⊗ σx ⊗ I2�2

�
Ψ8�1 ¼ 0

(15)

In Eq. (15), we are now defining a positional variable for each waveguide, namely, x1, x2, x3.
The quantity α is a measure of the strength of the elastic coupling to the rigid substrate. The

solutions are the 8 � 1 vectors Ψ8�1 ¼

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

Ψ8

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

. When seeking solutions in the form of tensor

products of spinor solutions for the three waveguides (as indicated by the upper scripts)

Ψ8�1 ¼ ψ 1ð Þ ⊗ψ 2ð Þ ⊗ψ 3ð Þ ¼ ψ 1ð Þ
1

ψ 1ð Þ
2

 !
⊗

ψ 2ð Þ
1

ψ 2ð Þ
2

 !
⊗

ψ 3ð Þ
1

ψ 3ð Þ
2

 !
¼

ψ 1ð Þ
1 ψ 2ð Þ

1 ψ 3ð Þ
1

ψ 1ð Þ
1 ψ 2ð Þ

1 ψ 3ð Þ
2

ψ 1ð Þ
1 ψ 2ð Þ

2 ψ 3ð Þ
1

ψ 1ð Þ
1 ψ 2ð Þ

2 ψ 3ð Þ
2

ψ 1ð Þ
2 ψ 2ð Þ

1 ψ 3ð Þ
1

ψ 1ð Þ
2 ψ 2ð Þ

1 ψ 3ð Þ
2

ψ 1ð Þ
2 ψ 2ð Þ

2 ψ 3ð Þ
1

ψ 1ð Þ
2 ψ 2ð Þ

2 ψ 3ð Þ
2

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

(16)

it is straightforward to show that one recovers from Eq. (15), the six Dirac equations of Eq. (3)
with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MN¼3�N¼3

p ¼ I3�3. The solutions of Eq. (16) are obtained from the spinor solution for
individual waveguides (j):

ψ jð Þ ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p
 !

eikxeiωt (17)
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The Hilbert space spanned by the solutions of Eq. (15) is the product space of the three 2D
subspaces associated with each waveguide. The states of a system composed ofN φ-bits span a
space when dimension is 2N .

The question that arises then concerns the possibility of writing an equation in the exponential
Hilbert space for N waveguides coupled to each other. For instance, we wish to obtain the
states of the system composed of three waveguides coupled in a ring arrangement from an
equation of the form:

σx ⊗ σx ⊗ σx
∂
∂t

þ iβσy ⊗ σx ⊗ σx
∂
∂x1

þ iβσx ⊗ σy ⊗ σx
∂
∂x2

þ iβσx ⊗ σx ⊗ σy
∂
∂x3

�iαε8�8

2
64

3
75Ψ8�1 ¼ 0 (18)

The matrix αε8�8 represents the coupling between the waveguides in the 2N¼3 space. We are
still seeking solutions in the form of tensor products (Eq. (16)). After a lengthy algebraic
manipulation, we find that we can reproduce Eq. (3) with the coupling matrix of Eq. (2) if one
chooses εij ¼ 0 excepting

ε14 ¼ ε41 ¼ ε23 ¼ ε31 ¼ 2ψ 1ð Þ
1 � ψ 2ð Þ

1 � ψ 3ð Þ
1

ψ 1ð Þ
1

; ε16 ¼ ε61 ¼ ε25 ¼ ε52 ¼ 2ψ 2ð Þ
1 � ψ 1ð Þ

1 � ψ 3ð Þ
1

ψ 2ð Þ
1

;

ε17 ¼ ε71 ¼ ε35 ¼ ε53 ¼ 2ψ 3ð Þ
1 � ψ 1ð Þ

1 � ψ 2ð Þ
1

ψ 3ð Þ
1

; ε28 ¼ ε82 ¼ ε46 ¼ ε64 ¼ 2ψ 3ð Þ
2 � ψ 1ð Þ

2 � ψ 2ð Þ
2

ψ 3ð Þ
2

;

ε38 ¼ ε83 ¼ ε47 ¼ ε74 ¼ 2ψ 2ð Þ
2 � ψ 1ð Þ

2 � ψ 3ð Þ
2

ψ 2ð Þ
2

; ε58 ¼ ε85 ¼ ε67 ¼ ε76 ¼ 2ψ 1ð Þ
2 � ψ 2ð Þ

2 � ψ 3ð Þ
2

ψ 1ð Þ
2

(19)

The Dirac equation of the three coupled waveguides in the exponential space is therefore
nonlinear. Generalization to N coupled chains will result in the following nonlinear equation:

σxð Þ⊗N ∂
∂t

þ iβσy ⊗ σxð Þ⊗N�1 ∂
∂x1

þ iβσx ⊗σy ⊗ σxð Þ⊗N�2 ∂
∂x2

þ…þ iβ σxð Þ⊗N�1 ⊗σy
∂

∂xN
�iαε2N�2N

2
4

3
5Ψ2N�1 ¼ 0

(20)

where nonzero components of ε2N�2N depend on the ψ jð Þ
i , i ¼ 1, 2; j ¼ 1, N that appear in the

solution Ψ2N�1 ¼ ψ 1ð Þ ⊗ψ 2ð Þ ⊗…⊗ψ Nð Þ. The solutions of the nonlinear Dirac equation for the
coupled waveguides span the same space as that of the system of φ-bits, i.e., uncoupled
waveguides connected to rigid substrates. The next subsection addresses the question of
separability of the coupled waveguide system into a system of uncoupled φ-bits.

2.3. Elastic states in the exponential space

For a system of waveguides that are not coupled, the elastic states, solutions of linear
equations of the form of Eq. (15), are tensor products but also linear combinations of
tensor products of spinor solution for individual waveguides (see Eq. (17)). It is therefore
possible to construct nonseparable states in the exponential space for systems of uncoupled
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waveguides. For example, if we consider a system of two uncoupled waveguides, a possible
state of the system in the 22 space can be constructed in the form of the following linear
combination of tensor products:

Ψ4�1 ¼ s0ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p

0
@

1
A⊗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p

0
@

1
Aei2kxei2ωt � s00

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

0
@

1
A⊗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

0
@

1
Ae�i2kxei2ωt

(21)

Choosing s0 ¼ s00 and writing Eq. (21) at the location x ¼ 0, one gets:

Ψ4�1 x ¼ 0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p

0
BBBBBBB@

1
CCCCCCCA

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

0
BBBBBBB@

1
CCCCCCCA

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ei2ωt (22)

The bracket takes the form:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p� �
1
0
0
�1

0
BBB@

1
CCCA (23)

The vector

1
0
0
�1

0
BBB@

1
CCCA is not separable into a tensor product of two 2� 1 vectors. Considering on

the basis 0j i ¼ 1
0

� �
and 1j i ¼ 0

1

� �
, one can write the state given in Eq. (22) in the form of the

nonseparable Bell state:

Ψ4�1 x ¼ 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p� �
0j i⊗ 0j i � 1j i⊗ 1j iÞei2ωt�

(24)

Since the waveguides are not coupled, it is, however, not possible to manipulate the state of
one of the waveguides by manipulating the state of the other one. Simultaneous manipulation
of the state of waveguides in the exponential space requires coupling. We now address elastic
states in the coupled waveguides system.

For a system of N coupled waveguides, we construct a solution of Eq. (3) that takes the form of
a linear combination of solutions given in Eq. (14):
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Ψ2N�1 n; n0; k; ; k0ð Þ ¼ χnen Nð Þ⊗ s2�1 kð Þeikxeiωn kð Þt þ χn0en0 Nð Þ⊗ s2�1 k0ð Þ eik0xeiωn0 k0ð Þt (25)

The n and n0 correspond to two different nonzero eigen values, λn and λn0 , i.e., they correspond
to two different dispersion relations ωn kð Þ and ωn0 kð Þ. We also choose the wave number k0 such
that ωn0 k0ð Þ ¼ ωn kð Þ ¼ ω0. These modes are illustrated in Figure 1 in the case of an N = 9
waveguide system. χn and χn0 are the coefficients of the linear combination.

With en Nð Þ ¼

A1

A2

⋮
AN

0
BBB@

1
CCCA and en0 Nð Þ ¼

A0
1

A0
2

⋮
A0

N

0
BBB@

1
CCCA where the specific values of the components AI

and A0
I are determined by the connectivity and coupling of the waveguides, the state of Eq. (25)

can be rewritten as:

Ψ2N�1 n; n0; k; ; k0ð Þ ¼

χnA1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
eikx þ χn0A

0
1
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eik

0x
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eiω0t ¼

φ 1ð Þ
1

φ 1ð Þ
2

⋮
φ Nð Þ
1

φ Nð Þ
2

0
BBBBBBB@

1
CCCCCCCA

(26)

Here, we have chosen, for the sake of simplicity, the þ of the � in the s2�1 terms.

Figure 1. Schematic illustration of the band structure (circular frequency in rad s�1 versus the wave number in m�1) for an
array of nine elastically coupled waveguides arranged in a ring pattern. The four upper bands are doubly degenerate. We
have taken β ¼ 1 and α ¼ 1. The two modes with wave number k and k0 (n ¼ 3 and n0 ¼ 2) have the same frequency ω0:
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waveguides. For example, if we consider a system of two uncoupled waveguides, a possible
state of the system in the 22 space can be constructed in the form of the following linear
combination of tensor products:

Ψ4�1 ¼ s0ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(21)

Choosing s0 ¼ s00 and writing Eq. (21) at the location x ¼ 0, one gets:
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ωþ βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p

0
BBBBBBB@

1
CCCCCCCA

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ei2ωt (22)

The bracket takes the form:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p� �
1
0
0
�1

0
BBB@

1
CCCA (23)

The vector

1
0
0
�1

0
BBB@

1
CCCA is not separable into a tensor product of two 2� 1 vectors. Considering on

the basis 0j i ¼ 1
0

� �
and 1j i ¼ 0

1

� �
, one can write the state given in Eq. (22) in the form of the

nonseparable Bell state:

Ψ4�1 x ¼ 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωþ βk

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� βk

p� �
0j i⊗ 0j i � 1j i⊗ 1j iÞei2ωt�

(24)

Since the waveguides are not coupled, it is, however, not possible to manipulate the state of
one of the waveguides by manipulating the state of the other one. Simultaneous manipulation
of the state of waveguides in the exponential space requires coupling. We now address elastic
states in the coupled waveguides system.

For a system of N coupled waveguides, we construct a solution of Eq. (3) that takes the form of
a linear combination of solutions given in Eq. (14):
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Ψ2N�1 n; n0; k; ; k0ð Þ ¼ χnen Nð Þ⊗ s2�1 kð Þeikxeiωn kð Þt þ χn0en0 Nð Þ⊗ s2�1 k0ð Þ eik0xeiωn0 k0ð Þt (25)

The n and n0 correspond to two different nonzero eigen values, λn and λn0 , i.e., they correspond
to two different dispersion relations ωn kð Þ and ωn0 kð Þ. We also choose the wave number k0 such
that ωn0 k0ð Þ ¼ ωn kð Þ ¼ ω0. These modes are illustrated in Figure 1 in the case of an N = 9
waveguide system. χn and χn0 are the coefficients of the linear combination.

With en Nð Þ ¼

A1

A2

⋮
AN

0
BBB@

1
CCCA and en0 Nð Þ ¼

A0
1

A0
2

⋮
A0

N

0
BBB@

1
CCCA where the specific values of the components AI

and A0
I are determined by the connectivity and coupling of the waveguides, the state of Eq. (25)

can be rewritten as:

Ψ2N�1 n; n0; k; ; k0ð Þ ¼

χnA1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
eikx þ χn0A

0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
eik

0x

χnA1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
eikx þ χn0A

0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
eik

0x

⋮
χnAN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
eikx þ χn0A

0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
eik

0x

χnAN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
eikx þ χn0A

0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
eik

0x

0
BBBBBBB@

1
CCCCCCCA
eiω0t ¼

φ 1ð Þ
1

φ 1ð Þ
2

⋮
φ Nð Þ
1

φ Nð Þ
2

0
BBBBBBB@

1
CCCCCCCA

(26)

Here, we have chosen, for the sake of simplicity, the þ of the � in the s2�1 terms.

Figure 1. Schematic illustration of the band structure (circular frequency in rad s�1 versus the wave number in m�1) for an
array of nine elastically coupled waveguides arranged in a ring pattern. The four upper bands are doubly degenerate. We
have taken β ¼ 1 and α ¼ 1. The two modes with wave number k and k0 (n ¼ 3 and n0 ¼ 2) have the same frequency ω0:
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The first two terms in Eq. (26) form a 2� 1 spinor, φ 1ð Þ ¼ φ 1ð Þ
1

φ 1ð Þ
2

 !
, which corresponds to the

first waveguide, the next two terms form a spinor φ 2ð Þ for the second waveguide, etc. We can
then construct a solution of the nonlinear Dirac Eq. (20) in the exponential space as the tensor
product:

Φ2N�1 ¼ φ 1ð Þ ⊗φ 2ð Þ ⊗…⊗φ Nð Þ (27)

Since Eq. (20) is nonlinear, linear combinations of tensor product solutions of the form
above are not solutions. Solutions of the nonlinear Dirac equation always take the form of
a tensor product when the spinor wave functions φ jð Þ are expressed on the basis of 2� 1

vectors. 0j i ¼ 1
0

� �
and 1j i ¼ 0

1

� �
. If one desires to express Φ2N�1 as a nonseparable state,

one has to define a new basis in which this wave function cannot be expressed as a tensor
product. This is done in Section 2.5. However, prior to demonstrating this, we illustrate in
the next subsection how one can manipulate states of the form Φ2N�1 in the exponential
space.

2.4. Operating on exponentially-complex tensor product elastic states

In this subsection, we expand tensor product states of the form given in Eq. (27) in linear
combinations of tensor products of pure states in the exponential space. We illustrate this
expansion in the case of three parallel waveguides elastically coupled to each other. Each
waveguide is also coupled elastically to a rigid substrate. We treat the case where the
strength of all the couplings is the same. In that case, the coupling matrix is:

MN¼3�N¼3 ¼
3 �1 �1
�1 3 �1
�1 �1 3

0
B@

1
CA

This matrix has three nonzero eigen values λ2
0 ¼ 1, and λ2

1 ¼ λ2
2 ¼ 4 corresponding to two

dispersion relations ω2
n ¼ βk

� �2 þ αλnð Þ2 with cutoff frequencies. The second band is dou-
bly degenerate. The eigen vectors are also given in Eq. (13). We now consider an elastic
mode in the linear space that is a linear combination of these eigen modes (see Eq. (26)):

Ψ6�1 n; n0; k; ; k0ð Þ ¼

φ 1ð Þ
1

φ 1ð Þ
2

φ 2ð Þ
1

φ 2ð Þ
2

φ 3ð Þ
1

φ 3ð Þ
2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

χnA1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
eikx þ χn0A

0
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
eik
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p
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1
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0x
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ω0 þ βk

p
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0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
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0x

χnA2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
eikx þ χn0A

0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
eik

0x

χnA3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
eikx þ χn0A

0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
eik

0x

χnA3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
eikx þ χn0A

0
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
eik

0x

0
BBBBBBBBBB@

1
CCCCCCCCCCA

eiω0t (28)
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In Eq. (28), the AI ’s can be the components of the eigen vector e0 and the A0
I ’s can be linear

combinations of the components of the eigen vectors e1 and e2. We can calculate the tensor
product of the spinor components in the form of Eq. (27)

Φ23�1 ¼ φ 1ð Þ ⊗φ 2ð Þ ⊗φ 3ð Þ (29)

Eq. (29) can be rewritten after some algebraic manipulations in the form of the linear combination:

Φ23�1 ¼
ζ1

ξ1

 !
⊗

ζ2

ξ2

 !
⊗

ζ3

ξ3

 !
þ

ζ1

ξ1

 !
⊗

ζ2

ξ2

 !
⊗

ζ03

ξ03

 !
þ

ζ1

ξ1

 !
⊗

ζ02

ξ02

 !
⊗

ζ3

ξ3

 !(

þ
ζ01

ξ01

 !
⊗

ζ2

ξ2

 !
⊗

ζ3

ξ3

 !
þ

ζ1

ξ1

 !
⊗

ζ02

ξ02

 !
⊗

ζ03

ξ03

 !
þ

ζ01

ξ01

 !
⊗

ζ2

ξ2

 !
⊗

ζ03

ξ03

 !

þ
ζ01

ξ01

 !
⊗

ζ02

ξ02

 !
⊗

ζ3

ξ3

 !
þ

ζ01

ξ01

 !
⊗

ζ02

ξ02

 !
⊗

ζ03

ξ03

 !)
ei3ω0t

(30)

In Eq. (30), we have defined

ζI
ξI

� �
¼ χnAIeikx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
 !

¼ χnAIeikxs2�1 (31a)

ζ0I
ξ0I

 !
¼ χn0 0A

0
1e

ik0 0x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
 !

¼ χn0 0A
0
1e

ik0 0xs02�1 (31b)

The tensor product of Eq. (30) then reduces to

Φ23�1 ¼ χnð Þ3A1A2A3ei3kxs2�1 ⊗ s2�1 ⊗ s2�1 þ χnð Þ2χn0A1A2A0
3e

i2kxeik
0xs2�1 ⊗ s2�1 ⊗ s02�1

n

þ χnð Þ2χn0A1A0
2A3ei2kxeik

0xs2�1 ⊗ s02�1 ⊗ s2�1 þ χnð Þ2χn0A
0
1A2A3ei2kxeik

0xs02�1 ⊗ s2�1 ⊗ s2�1

þ χn0ð Þ2χnA1A0
2A

0
3e

ikxei2k
0xs2�1 ⊗ s02�1 ⊗ s02�1 þ χn0ð Þ2χnA

0
1A2A0

3e
ikxei2k

0xs02�1 ⊗ s2�1 ⊗ s02�1

þ χn0ð Þ2χnA
0
1A

0
2A3eikxei2k

0xs02�1 ⊗ s02�1 ⊗ s2�1 þ χn0ð Þ3A0
1A

0
2A

0
3e

i3k0xs02�1 ⊗ s02�1 ⊗ s02�1

o
ei3ω0t

(32)

The spinors s2�1 and s02�1 can be expressed on the basis 0j i ¼ 1
0

� �
and 1j i ¼ 0

1

� �
:

s2�1 ¼ s1 0j i þ s2 1j i (33a)

s02�1 ¼ s01 0j i þ s02 1j i (33b)

With s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
, s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
, s01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
and s02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
. Inserting Eqs. (33a)

and (33b) into Eq. (32), we can express the tensor product Φ23�1 on the basis 0j i 0j i 0j i; 0j i 0j i 1j i;f
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The first two terms in Eq. (26) form a 2� 1 spinor, φ 1ð Þ ¼ φ 1ð Þ
1

φ 1ð Þ
2

 !
, which corresponds to the

first waveguide, the next two terms form a spinor φ 2ð Þ for the second waveguide, etc. We can
then construct a solution of the nonlinear Dirac Eq. (20) in the exponential space as the tensor
product:

Φ2N�1 ¼ φ 1ð Þ ⊗φ 2ð Þ ⊗…⊗φ Nð Þ (27)

Since Eq. (20) is nonlinear, linear combinations of tensor product solutions of the form
above are not solutions. Solutions of the nonlinear Dirac equation always take the form of
a tensor product when the spinor wave functions φ jð Þ are expressed on the basis of 2� 1

vectors. 0j i ¼ 1
0

� �
and 1j i ¼ 0

1

� �
. If one desires to express Φ2N�1 as a nonseparable state,

one has to define a new basis in which this wave function cannot be expressed as a tensor
product. This is done in Section 2.5. However, prior to demonstrating this, we illustrate in
the next subsection how one can manipulate states of the form Φ2N�1 in the exponential
space.

2.4. Operating on exponentially-complex tensor product elastic states

In this subsection, we expand tensor product states of the form given in Eq. (27) in linear
combinations of tensor products of pure states in the exponential space. We illustrate this
expansion in the case of three parallel waveguides elastically coupled to each other. Each
waveguide is also coupled elastically to a rigid substrate. We treat the case where the
strength of all the couplings is the same. In that case, the coupling matrix is:

MN¼3�N¼3 ¼
3 �1 �1
�1 3 �1
�1 �1 3

0
B@

1
CA

This matrix has three nonzero eigen values λ2
0 ¼ 1, and λ2

1 ¼ λ2
2 ¼ 4 corresponding to two

dispersion relations ω2
n ¼ βk

� �2 þ αλnð Þ2 with cutoff frequencies. The second band is dou-
bly degenerate. The eigen vectors are also given in Eq. (13). We now consider an elastic
mode in the linear space that is a linear combination of these eigen modes (see Eq. (26)):

Ψ6�1 n; n0; k; ; k0ð Þ ¼

φ 1ð Þ
1

φ 1ð Þ
2

φ 2ð Þ
1

φ 2ð Þ
2

φ 3ð Þ
1

φ 3ð Þ
2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼
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eiω0t (28)
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In Eq. (28), the AI ’s can be the components of the eigen vector e0 and the A0
I ’s can be linear

combinations of the components of the eigen vectors e1 and e2. We can calculate the tensor
product of the spinor components in the form of Eq. (27)

Φ23�1 ¼ φ 1ð Þ ⊗φ 2ð Þ ⊗φ 3ð Þ (29)

Eq. (29) can be rewritten after some algebraic manipulations in the form of the linear combination:

Φ23�1 ¼
ζ1

ξ1

 !
⊗

ζ2

ξ2

 !
⊗

ζ3

ξ3

 !
þ

ζ1

ξ1

 !
⊗

ζ2

ξ2

 !
⊗

ζ03

ξ03

 !
þ

ζ1
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 !
⊗

ζ02
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 !
⊗
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 !(
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 !
⊗
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 !
⊗

ζ3
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 !
þ

ζ1
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 !
⊗

ζ02
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 !
⊗

ζ03
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 !
þ

ζ01

ξ01

 !
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 !
⊗

ζ03

ξ03

 !

þ
ζ01

ξ01

 !
⊗

ζ02
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 !
⊗

ζ3

ξ3

 !
þ

ζ01

ξ01

 !
⊗

ζ02

ξ02

 !
⊗

ζ03

ξ03

 !)
ei3ω0t

(30)

In Eq. (30), we have defined

ζI
ξI

� �
¼ χnAIeikx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
 !

¼ χnAIeikxs2�1 (31a)

ζ0I
ξ0I

 !
¼ χn0 0A

0
1e

ik0 0x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
 !

¼ χn0 0A
0
1e

ik0 0xs02�1 (31b)

The tensor product of Eq. (30) then reduces to

Φ23�1 ¼ χnð Þ3A1A2A3ei3kxs2�1 ⊗ s2�1 ⊗ s2�1 þ χnð Þ2χn0A1A2A0
3e

i2kxeik
0xs2�1 ⊗ s2�1 ⊗ s02�1

n

þ χnð Þ2χn0A1A0
2A3ei2kxeik

0xs2�1 ⊗ s02�1 ⊗ s2�1 þ χnð Þ2χn0A
0
1A2A3ei2kxeik

0xs02�1 ⊗ s2�1 ⊗ s2�1

þ χn0ð Þ2χnA1A0
2A

0
3e

ikxei2k
0xs2�1 ⊗ s02�1 ⊗ s02�1 þ χn0ð Þ2χnA

0
1A2A0

3e
ikxei2k

0xs02�1 ⊗ s2�1 ⊗ s02�1

þ χn0ð Þ2χnA
0
1A

0
2A3eikxei2k

0xs02�1 ⊗ s02�1 ⊗ s2�1 þ χn0ð Þ3A0
1A

0
2A

0
3e

i3k0xs02�1 ⊗ s02�1 ⊗ s02�1

o
ei3ω0t

(32)

The spinors s2�1 and s02�1 can be expressed on the basis 0j i ¼ 1
0

� �
and 1j i ¼ 0

1

� �
:

s2�1 ¼ s1 0j i þ s2 1j i (33a)

s02�1 ¼ s01 0j i þ s02 1j i (33b)

With s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
, s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
, s01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
and s02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
. Inserting Eqs. (33a)

and (33b) into Eq. (32), we can express the tensor product Φ23�1 on the basis 0j i 0j i 0j i; 0j i 0j i 1j i;f
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0j i 1j i 0j i; 1j i 0j i 0j i; 0j i 1j i 1j i; 1j i 0j i 1j i; 1j i 1j i 0j i; 1j i 1j i 1j ig. In defining the basis vectors for the
exponential space, we have omitted the symbols ⊗ . It is also implicit that the left, middle,
and right elements in the tensor product aj i bj i cj i correspond to the first, second, and third
waveguides, respectively.

We find

Φ23�1 ¼ T1 0j i 0j i 0j i þ T2 0j i 0j i 1j i þ…þ T8 1j i 1j i 1j igei3ω0t
�

(34)

with

T1 ¼ Q1s1s1s1 þQ2s1s1s
0
1 þQ3s1s

0
1s1 þQ4s
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0
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T7 ¼ Q1s2s2s1 þQ2s2s2s
0
1 þQ3s2s

0
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0
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0
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2s

0
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0
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0
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0
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(35g)

T8 ¼ Q1s2s2s2 þQ2s2s2s
0
2 þQ3s2s

0
2s2 þQ4s

0
2s2s2 þQ5s2s

0
2s

0
2 þQ6s

0
2s2s

0
2 þQ7s

0
2s

0
2s2 þQ8s

0
2s

0
2s

0
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(35h)

with

Q1 ¼ χnð Þ3A1A2A3ei3kx; Q2 ¼ χnð Þ2χn0ei2kxeik
0xA1A2A0

3; Q3 ¼ χnð Þ2χn0ei2kxeik
0xA1A0

2A3;

Q4 ¼ χnð Þ2χn0ei2kxeik
0xA0

1A2A3; Q5 ¼ χn0ð Þ2χneikxei2k
0xA1A0

2A
0
3; Q6 ¼ χn0ð Þ2χneikxei2k

0xA0
1A2A0

3;

Q7 ¼ χn0ð Þ2χneikxei2k
0xA0

1A
0
2A3; Q8 ¼ χn0ð Þ3A0

1A
0
2A

0
3e

i3k0x:

In a true quantum system composed of three spins for instance, states can be created in the
form of linear combinations like m1 0j i 0j i 0j i þm2 0j i 0j i 1j i þ…þm8 1j i 1j i 1j i. For the quantum
system, the linear coefficients m1, m2,…, m8 are independent. The classical elastic analogue,
introduced here, states which are given in Eq. (34) possesses linear coefficients T1,…, T8 are
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interdependent. While somewhat restrictive compared to true quantum systems, the coeffi-
cients TI depend on an extraordinary number of degrees of freedom which allows exploration
of a large volume of the exponential tensor product space. In the case of the three waveguides,
these degrees of freedom include (a) the components (or linear combinations) of the eigen
vectors of the coupling matrix through the choice of the eigen modes or the application of a
rotational operation that creates cyclic permutations of the eigen vector components, (b) the
linear coefficients χn and χn0 used to form the multiband linear superposition of states in the
linear space, (c) the frequency and therefore wave number which affect the spinor states and

the phase factors eikx and eik
0x, and (d) a phase added to the terms eikx and eik

0x.

In the case of N > 3, Eq. (21) can be extended to linear combinations of more than two modes
with the same frequency, leading to additional freedom in the control of the TI . Furthermore,
the elastic coefficients β of the waveguides and the coupling elastic coefficient α could also be
modified by using constitutive materials with tunable elastic properties via, for instance, the
piezoelectric, magneto-elastic or photoelastic effects [24–26]. Also note that in all the examples
we considered, the coupling of the waveguides had the same strength. Tunability of the
coupling elastic medium would lead to the ability to modify the connectivity of the wave-
guides and therefore the coupling matrix. Exploration of the elastic modes given in Eq. (34) can
be realized by varying any number of these variables. We illustrate in Figure 2 an example of
operation in a very simple case. Figure 2b shows that by varying a single parameter one may
achieve a wide variety of states. For instance, one can obtain states with T1 > 0 and T2 > 0 or
T1 > 0 and T2 ¼ 0 or T1 > 0 and T2 < 0 or T1 ¼ 0 and T2 ¼ 0. Another interesting example
occurs at χn0 ˜0:6, there only T5 and T8 are different from zero. Then, Φ23�1 ¼ T5 0:6ð Þ 0j i 1j i 1j iþf
T8 0:6ð Þ 1j i 1j i 1j igei3ω0t can be written as the tensor product state T5 0:6ð Þ 0j i þ T8 0:6ð Þ 1j iÞ 1j iðf
1j igei3ω0t. A similar state is also obtained for χn0 � 0:25. This is the state T1 0:25ð Þ 0j iþðf
T4 0:25ð Þ 1j iÞ 0j i 0j igei3ω0t. Varying χn0 can be visualized as a matrix operator. For example, in
this latter case, one can define the operation:

q11 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 q44 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

T1 χn0ð Þ
T2 χn0ð Þ
T3 χn0ð Þ
T4 χn0ð Þ
T5 χn0ð Þ
T6 χn0ð Þ
T7 χn0ð Þ
T8 χn0ð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

T1 0:25ð Þ
T2 0:25ð Þ
T3 0:25ð Þ
T4 0:25ð Þ
T5 0:25ð Þ
T6 0:25ð Þ
T7 0:25ð Þ
T8 0:25ð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

T1 0:25ð Þ
0
0

T4 0:25ð Þ
0
0
0
0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(36)

with q11 ¼ T1 0:25ð Þ
T1 χn0ð Þ and q44 ¼ T4 0:25ð Þ

T4 χn0ð Þ . Another interesting state occurs at χn0 ¼ 0:5. Here, we have

T1 ¼ T5, T2 ¼ T3, T4 ¼ T8 and T6 ¼ T7. We also have T3 ¼ �T5 and T4 ¼ �T6 This state can be
written as the tensor product T1 0:5ð Þ 0j i � T6 0:5ð Þ 1j iÞ 0j i � 1j iÞ 0j i � 1j iÞððð .

This simple example indicates the large variability in TI ’s (i.e., of states) that we can achieve
with a single variable. The large number of available variables will lead to even more flexibility
in defining states and operators in the exponential tensor product space.
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0j i 1j i 0j i; 1j i 0j i 0j i; 0j i 1j i 1j i; 1j i 0j i 1j i; 1j i 1j i 0j i; 1j i 1j i 1j ig. In defining the basis vectors for the
exponential space, we have omitted the symbols ⊗ . It is also implicit that the left, middle,
and right elements in the tensor product aj i bj i cj i correspond to the first, second, and third
waveguides, respectively.

We find

Φ23�1 ¼ T1 0j i 0j i 0j i þ T2 0j i 0j i 1j i þ…þ T8 1j i 1j i 1j igei3ω0t
�

(34)

with

T1 ¼ Q1s1s1s1 þQ2s1s1s
0
1 þQ3s1s
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1 þQ6s

0
1s1s

0
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0
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0
1s

0
1s

0
1

(35a)
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(35g)

T8 ¼ Q1s2s2s2 þQ2s2s2s
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(35h)

with

Q1 ¼ χnð Þ3A1A2A3ei3kx; Q2 ¼ χnð Þ2χn0ei2kxeik
0xA1A2A0

3; Q3 ¼ χnð Þ2χn0ei2kxeik
0xA1A0

2A3;

Q4 ¼ χnð Þ2χn0ei2kxeik
0xA0

1A2A3; Q5 ¼ χn0ð Þ2χneikxei2k
0xA1A0

2A
0
3; Q6 ¼ χn0ð Þ2χneikxei2k

0xA0
1A2A0

3;

Q7 ¼ χn0ð Þ2χneikxei2k
0xA0

1A
0
2A3; Q8 ¼ χn0ð Þ3A0

1A
0
2A

0
3e

i3k0x:

In a true quantum system composed of three spins for instance, states can be created in the
form of linear combinations like m1 0j i 0j i 0j i þm2 0j i 0j i 1j i þ…þm8 1j i 1j i 1j i. For the quantum
system, the linear coefficients m1, m2,…, m8 are independent. The classical elastic analogue,
introduced here, states which are given in Eq. (34) possesses linear coefficients T1,…, T8 are
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interdependent. While somewhat restrictive compared to true quantum systems, the coeffi-
cients TI depend on an extraordinary number of degrees of freedom which allows exploration
of a large volume of the exponential tensor product space. In the case of the three waveguides,
these degrees of freedom include (a) the components (or linear combinations) of the eigen
vectors of the coupling matrix through the choice of the eigen modes or the application of a
rotational operation that creates cyclic permutations of the eigen vector components, (b) the
linear coefficients χn and χn0 used to form the multiband linear superposition of states in the
linear space, (c) the frequency and therefore wave number which affect the spinor states and

the phase factors eikx and eik
0x, and (d) a phase added to the terms eikx and eik

0x.

In the case of N > 3, Eq. (21) can be extended to linear combinations of more than two modes
with the same frequency, leading to additional freedom in the control of the TI . Furthermore,
the elastic coefficients β of the waveguides and the coupling elastic coefficient α could also be
modified by using constitutive materials with tunable elastic properties via, for instance, the
piezoelectric, magneto-elastic or photoelastic effects [24–26]. Also note that in all the examples
we considered, the coupling of the waveguides had the same strength. Tunability of the
coupling elastic medium would lead to the ability to modify the connectivity of the wave-
guides and therefore the coupling matrix. Exploration of the elastic modes given in Eq. (34) can
be realized by varying any number of these variables. We illustrate in Figure 2 an example of
operation in a very simple case. Figure 2b shows that by varying a single parameter one may
achieve a wide variety of states. For instance, one can obtain states with T1 > 0 and T2 > 0 or
T1 > 0 and T2 ¼ 0 or T1 > 0 and T2 < 0 or T1 ¼ 0 and T2 ¼ 0. Another interesting example
occurs at χn0 ˜0:6, there only T5 and T8 are different from zero. Then, Φ23�1 ¼ T5 0:6ð Þ 0j i 1j i 1j iþf
T8 0:6ð Þ 1j i 1j i 1j igei3ω0t can be written as the tensor product state T5 0:6ð Þ 0j i þ T8 0:6ð Þ 1j iÞ 1j iðf
1j igei3ω0t. A similar state is also obtained for χn0 � 0:25. This is the state T1 0:25ð Þ 0j iþðf
T4 0:25ð Þ 1j iÞ 0j i 0j igei3ω0t. Varying χn0 can be visualized as a matrix operator. For example, in
this latter case, one can define the operation:

q11 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 q44 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

T1 χn0ð Þ
T2 χn0ð Þ
T3 χn0ð Þ
T4 χn0ð Þ
T5 χn0ð Þ
T6 χn0ð Þ
T7 χn0ð Þ
T8 χn0ð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

T1 0:25ð Þ
T2 0:25ð Þ
T3 0:25ð Þ
T4 0:25ð Þ
T5 0:25ð Þ
T6 0:25ð Þ
T7 0:25ð Þ
T8 0:25ð Þ

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

T1 0:25ð Þ
0
0

T4 0:25ð Þ
0
0
0
0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(36)

with q11 ¼ T1 0:25ð Þ
T1 χn0ð Þ and q44 ¼ T4 0:25ð Þ

T4 χn0ð Þ . Another interesting state occurs at χn0 ¼ 0:5. Here, we have

T1 ¼ T5, T2 ¼ T3, T4 ¼ T8 and T6 ¼ T7. We also have T3 ¼ �T5 and T4 ¼ �T6 This state can be
written as the tensor product T1 0:5ð Þ 0j i � T6 0:5ð Þ 1j iÞ 0j i � 1j iÞ 0j i � 1j iÞððð .

This simple example indicates the large variability in TI ’s (i.e., of states) that we can achieve
with a single variable. The large number of available variables will lead to even more flexibility
in defining states and operators in the exponential tensor product space.
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2.5. Nonseparability of states in exponentially complex space

States given in Eq. (27) are tensor products on the basis 0j i… 0j i 0j i; 0j i… 0j i 1j i;f 0j i… 1j i 0j i
;…; 1j i… 1j i 1j ig. They are therefore always separable in that basis. Consequently these states
cannot be written as nonseparable Bell states. However, we might be able to identify a basis in
which Eq. (27) is not separable.

Since the Dirac equation (Eq. (15)) for the uncoupled waveguides is linear, its solutions can be a
tensor product of a linear combination ofN different individual spinors. For instance,we canwrite:

Figure 2. (a) Schematic illustration of the band structure for an array of three elastically coupled waveguides arranged in
a ring pattern. Each of the waveguides is also grounded elastically to a rigid substrate. The upper band is doubly
degenerate. We have taken β ¼ 1 and α ¼ 1. We highlight the frequency ω0 ¼ 2:5 corresponding to the wave numbers
k ¼ 2:292 and k0 ¼ 1:5. (b) Calculated values of T1 (open circles), T2 and T3 (closed circles), T4 (open triangles), T5 (closed
triangles), T6 and T7 (open squares) and T8 (closed squares) as functions of χn0 for χn ¼ 0:4. We have fixed x ¼ 0.
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Ψ2N�1 ¼
r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 þ βk1

p
eik1x þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 � βk1

p
e�ik1x

r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 � βk1

p
eik1x þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 þ βk1

p
e�ik1x

 !
eiω1t ⊗…

⊗
rN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN þ βkN

p
eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN � βkN

p
e�ikNx

rN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN � βkN

p
eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN þ βkN

p
e�ikNx

 !
eiωNt

(37)

rI and μI , I ¼ 1,…, N are linear coefficients.

The state of the coupled waveguide system will be separable in the exponential space into the
state of φ-bits if

Φ2N�1 ¼ Ψ2N�1 (38)

A necessary condition for satisfying Eq. (38) is that Nω0 ¼ ω1 þ…þ ωN:

Furthermore, the first two terms in the column vector Φ2N�1 of the coupled system are φ 1ð Þ
1 φ 2ð Þ

1 …

φ Nð Þ
1 and φ 1ð Þ

1 φ 2ð Þ
1 …φ Nð Þ

2 . Their ratio is simply equal to rcN ¼ φ Nð Þ
1

φ Nð Þ
2

. Similarly, the ratio of the first

two terms in the vectorΨ2N�1 of the φ-bit system is given by ruN ¼ rN
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωNþβkN

p
eikNxþμN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN�βkN

p
e�ikNx

rN
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN�βkN

p
eikNxþμN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωNþβkN

p
e�ikNx.

Anecessary condition for Eq. (38) to be satisfied is that

rCN ¼ ruN (39)

This leads to

χnAN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
eikx þ χn0A

0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
eik

0x

χnAN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
eikx þ χn0A

0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
eik0x

¼ rN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN þ βkN

p
eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN � βkN

p
e�ikNx

rN
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ωN � βkN

p
eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN þ βkN

p
e�ikNx

which can be rewritten as:

ueikx þ u0eik
0x

veikx þ v0eik0x
¼ γeikNx þ γ0e�ikNx

δeikNx þ δ0e�ikNx

This condition takes the more compact form:

Pei kþkNð Þx þQei k�kNð Þx þ Rei k
0þkNð Þx þ Sei k

0�kNð Þx ¼ 0 (40)

P,Q, R, S are real. Eq. (40) is true for all values of position x. At x ¼ 0, we obtain the relation
PþQþ Rþ S ¼ 0. Inserting that relation into Eq. (27) and eliminating Q yields:

i2P sin kNx ¼ � Rþ Sð Þ cos kNx cos k0 � kð Þx� 1½ � þ R� Sð Þ sin k0 � kð Þ sin kNxf g
þ i Rþ Sð Þ sin k0 � kð Þxþ sin kNx R� Sð Þ cos k0 � kð Þxþ Rþ Sð Þ½ �f g

For this condition to be satisfied, one needs the real part of the right-hand side of the equation to
be equal to zero. This can be achieved for all x’s by setting k0 ¼ k. In this case, equating the
imaginary parts leads to R ¼ �P. However, when k0 6¼ k, Eq. (39) and therefore Eq. (38) are not
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2.5. Nonseparability of states in exponentially complex space

States given in Eq. (27) are tensor products on the basis 0j i… 0j i 0j i; 0j i… 0j i 1j i;f 0j i… 1j i 0j i
;…; 1j i… 1j i 1j ig. They are therefore always separable in that basis. Consequently these states
cannot be written as nonseparable Bell states. However, we might be able to identify a basis in
which Eq. (27) is not separable.

Since the Dirac equation (Eq. (15)) for the uncoupled waveguides is linear, its solutions can be a
tensor product of a linear combination ofN different individual spinors. For instance,we canwrite:

Figure 2. (a) Schematic illustration of the band structure for an array of three elastically coupled waveguides arranged in
a ring pattern. Each of the waveguides is also grounded elastically to a rigid substrate. The upper band is doubly
degenerate. We have taken β ¼ 1 and α ¼ 1. We highlight the frequency ω0 ¼ 2:5 corresponding to the wave numbers
k ¼ 2:292 and k0 ¼ 1:5. (b) Calculated values of T1 (open circles), T2 and T3 (closed circles), T4 (open triangles), T5 (closed
triangles), T6 and T7 (open squares) and T8 (closed squares) as functions of χn0 for χn ¼ 0:4. We have fixed x ¼ 0.
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(37)

rI and μI , I ¼ 1,…, N are linear coefficients.

The state of the coupled waveguide system will be separable in the exponential space into the
state of φ-bits if

Φ2N�1 ¼ Ψ2N�1 (38)

A necessary condition for satisfying Eq. (38) is that Nω0 ¼ ω1 þ…þ ωN:

Furthermore, the first two terms in the column vector Φ2N�1 of the coupled system are φ 1ð Þ
1 φ 2ð Þ
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two terms in the vectorΨ2N�1 of the φ-bit system is given by ruN ¼ rN
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Anecessary condition for Eq. (38) to be satisfied is that

rCN ¼ ruN (39)

This leads to

χnAN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk

p
eikx þ χn0A

0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 þ βk0

p
eik

0x

χnAN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk

p
eikx þ χn0A

0
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0 � βk0

p
eik0x

¼ rN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN þ βkN

p
eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN � βkN

p
e�ikNx

rN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN � βkN

p
eikNx þ μN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωN þ βkN

p
e�ikNx

which can be rewritten as:

ueikx þ u0eik
0x

veikx þ v0eik0x
¼ γeikNx þ γ0e�ikNx

δeikNx þ δ0e�ikNx

This condition takes the more compact form:

Pei kþkNð Þx þQei k�kNð Þx þ Rei k
0þkNð Þx þ Sei k

0�kNð Þx ¼ 0 (40)

P,Q, R, S are real. Eq. (40) is true for all values of position x. At x ¼ 0, we obtain the relation
PþQþ Rþ S ¼ 0. Inserting that relation into Eq. (27) and eliminating Q yields:

i2P sin kNx ¼ � Rþ Sð Þ cos kNx cos k0 � kð Þx� 1½ � þ R� Sð Þ sin k0 � kð Þ sin kNxf g
þ i Rþ Sð Þ sin k0 � kð Þxþ sin kNx R� Sð Þ cos k0 � kð Þxþ Rþ Sð Þ½ �f g

For this condition to be satisfied, one needs the real part of the right-hand side of the equation to
be equal to zero. This can be achieved for all x’s by setting k0 ¼ k. In this case, equating the
imaginary parts leads to R ¼ �P. However, when k0 6¼ k, Eq. (39) and therefore Eq. (38) are not
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satisfied. When k0 6¼ k which corresponds to considering a linear combination of multiband
states, Φ2N�1 is not separable into the tensor product of individually uncoupled φ-bit wave-
guides. Therefore, we conclude that there are a large number of solutions of the nonlinear Dirac
equation (Eq. (20)) representing states of arrangements of elastically coupled 1-D waveguides
that are not separable in the 2N dimensional tensor product Hilbert space of individual φ-bits.

We illustrate the notion of nonseparability of exponentially complex states of a coupled system
composed of N ¼ 2 waveguides on a basis in the exponential Hilbert space of two individual
φ-bits. The waveguides are coupled to each other but also to a rigid substrate such that the
coupling matrix, MN�N , takes the form:

M2�2 ¼
2 �1
�1 2

� �

The eigen values and real eigen vectors of this coupling matrix are λ2
0 ¼ 1, and λ2

1 ¼ 3 and

e0 ¼
A1

A2

� �
¼ 1ffiffiffi

2
p 1

1

� �
, e1 ¼

A0
1

A0
2

 !
¼ 1ffiffiffi

2
p 1

�1

� �
(41)

Following the procedure of Section 2.4, we construct a tensor product state in the 22 exponen-
tial space:

Φ22�1 ¼ χnð Þ2A1A2ei2kxs2�1 ⊗ s2�1 þ χnχn0A1A0
2e

ikxeik
0xs2�1 ⊗ s02�1 þ χn0χnA

0
1A2eik

0xeikxs02�1 ⊗ s2�1

n

þ χn0ð Þ2A0
1A

0
2e

i2k0xs02�1 ⊗ s02�1

o
ei2ω0t

(42)

Eq. (42) is equivalent to Eq. (32) but for two coupled waveguides.

On the basis, η1 ¼ ei2ω0tei2kxs2�1 ⊗ s2�1, η2 ¼ ei2ω0teikxeik
0xs2�1 ⊗ s02�1, η3 ¼ ei2ω0teik

0xeikxs02�1 ⊗ s2�1,

and η4 ¼ ei2ω0tei2k
0xs02�1 ⊗ s02�1, Eq. (42) can be rewritten as:

Φ22�1 ¼ a11η1 þ a12η2 þ a21η3 þ a22η4
� �

(43)

with a11 ¼ χnð Þ2A1A2 ¼ 1
2 χnð Þ2, a12 ¼ χnχn0A1A0

2 ¼ � 1
2χnχn0 , a21 ¼ χn0χnA

0
1A2 ¼ 1

2χn0χn,

and a22 ¼ χn0ð Þ2A0
1A

0
2 ¼ � 1

2 χn0ð Þ2. It is then easy to demonstrate that det
a11 a12
a21 a22

� �
¼

1
2

χnð Þ2 � 1
2
χnχn0

1
2
χn0χn � 1

2
χn0ð Þ2

�������

�������
¼ 0, which indicates that the state Φ22�1 is separable on the basis

η1; η2; η3; η4
� �

. At this stage, there is nothing surprising as the state Φ22�1 was constructed as
a tensor product. We now try to express the state given in Eq. (42) on a basis of two individu-

ally uncoupled φ-bits. Considering the Hilbert space of the first φ-bit, H 1ð Þ, we use the spinor
solutions for uncoupled waveguides given in Eq. (17) to construct the orthonormal basis
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ψ 1ð Þ
1 ¼ 1ffiffiffiffiffiffiffiffi

2ω1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 þ β1k1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 � β1k1

p
 !

eik1xeiω1t ¼ s 1ð Þ
1 k1ð Þeik1xeiω1t (44a)

ψ 1ð Þ
2 ¼ 1ffiffiffiffiffiffiffiffi

2ω1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 � β1k1

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 þ β1k1

p
 !

e�ik1xeiω1t ¼ s 1ð Þ
2 k1ð Þe�ik1xeiω1t (44b)

Similarly, we define the orthonormal basis in the Hilbert space, H 2ð Þ, of the second φ-bit,

ψ 2ð Þ
1 ¼ 1ffiffiffiffiffiffiffiffi

2ω2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ β2k2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � β2k2

p
 !

eik2xeiω2t ¼ s 2ð Þ
1 k2ð Þeik2xeiω2t (45a)

ψ 2ð Þ
2 ¼ 1ffiffiffiffiffiffiffiffi

2ω2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � β2k2

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ β2k2

p
 !

e�ik2xeiω2t ¼ s 2ð Þ
2 k2ð Þe�ik2xeiω2t (45b)

In these equations, we have used s 1ð Þ
1 k1ð Þ, s 1ð Þ

2 k1ð Þ, s 2ð Þ
1 k2ð Þ, and s 2ð Þ

2 k2ð Þ as short-hands for the
spinor parts of the basis functions.

The basis in the tensor product space H 1ð Þ ⊗H 2ð Þ is given by the four functions:

τ1 ¼ ψ 1ð Þ
1 ⊗ψ 2ð Þ

1 , τ2 ¼ ψ 1ð Þ
1 ⊗ψ 2ð Þ

2 , τ3 ¼ ψ 1ð Þ
2 ⊗ψ 2ð Þ

1 , τ4 ¼ ψ 1ð Þ
2 ⊗ψ 2ð Þ

2 (46)

We have

τ1 ¼ s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

1 k2ð Þei k1þk2ð Þxei ω1þω2ð Þt (47a)

τ2 ¼ s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

2 k2ð Þei k1�k2ð Þxei ω1þω2ð Þt (47b)

τ3 ¼ s 1ð Þ
2 k1ð Þ⊗ s 2ð Þ

1 k2ð Þei �k1þk2ð Þxei ω1þω2ð Þt (47c)

τ4 ¼ s 1ð Þ
2 k1ð Þ⊗ s 2ð Þ

2 k2ð Þei �k1�k2ð Þxei ω1þω2ð Þt (47d)

It is straightforward to show that τ1; τ2; τ3; τ4f g form an orthogonal basis. That is, τ†i τj ¼ 0 if

i 6¼ j, where τ†i is the Hermitian conjugate of τi.

We want now to express the state Φ22�1 in the τ basis:

Φ22�1 ¼ b11τ1 þ b12τ2 þ b21τ3 þ b22τ4f g (48)

For this, we now need to expand the basis vectors η1; η2; η3; η4
� �

on the basis τ1; τ2; τ3; τ4f g
We define the expansions:

η1 ¼ c11τ1 þ c12τ2 þ c13τ3 þ c14τ4 (49a)

η2 ¼ c21τ1 þ c22τ2 þ c23τ3 þ c24τ4 (49b)
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satisfied. When k0 6¼ k which corresponds to considering a linear combination of multiband
states, Φ2N�1 is not separable into the tensor product of individually uncoupled φ-bit wave-
guides. Therefore, we conclude that there are a large number of solutions of the nonlinear Dirac
equation (Eq. (20)) representing states of arrangements of elastically coupled 1-D waveguides
that are not separable in the 2N dimensional tensor product Hilbert space of individual φ-bits.

We illustrate the notion of nonseparability of exponentially complex states of a coupled system
composed of N ¼ 2 waveguides on a basis in the exponential Hilbert space of two individual
φ-bits. The waveguides are coupled to each other but also to a rigid substrate such that the
coupling matrix, MN�N , takes the form:

M2�2 ¼
2 �1
�1 2

� �

The eigen values and real eigen vectors of this coupling matrix are λ2
0 ¼ 1, and λ2

1 ¼ 3 and

e0 ¼
A1

A2

� �
¼ 1ffiffiffi

2
p 1

1

� �
, e1 ¼

A0
1

A0
2

 !
¼ 1ffiffiffi

2
p 1

�1

� �
(41)

Following the procedure of Section 2.4, we construct a tensor product state in the 22 exponen-
tial space:

Φ22�1 ¼ χnð Þ2A1A2ei2kxs2�1 ⊗ s2�1 þ χnχn0A1A0
2e

ikxeik
0xs2�1 ⊗ s02�1 þ χn0χnA

0
1A2eik

0xeikxs02�1 ⊗ s2�1

n

þ χn0ð Þ2A0
1A

0
2e

i2k0xs02�1 ⊗ s02�1

o
ei2ω0t

(42)

Eq. (42) is equivalent to Eq. (32) but for two coupled waveguides.

On the basis, η1 ¼ ei2ω0tei2kxs2�1 ⊗ s2�1, η2 ¼ ei2ω0teikxeik
0xs2�1 ⊗ s02�1, η3 ¼ ei2ω0teik

0xeikxs02�1 ⊗ s2�1,

and η4 ¼ ei2ω0tei2k
0xs02�1 ⊗ s02�1, Eq. (42) can be rewritten as:

Φ22�1 ¼ a11η1 þ a12η2 þ a21η3 þ a22η4
� �

(43)

with a11 ¼ χnð Þ2A1A2 ¼ 1
2 χnð Þ2, a12 ¼ χnχn0A1A0

2 ¼ � 1
2χnχn0 , a21 ¼ χn0χnA

0
1A2 ¼ 1

2χn0χn,

and a22 ¼ χn0ð Þ2A0
1A

0
2 ¼ � 1

2 χn0ð Þ2. It is then easy to demonstrate that det
a11 a12
a21 a22

� �
¼

1
2

χnð Þ2 � 1
2
χnχn0

1
2
χn0χn � 1

2
χn0ð Þ2

�������

�������
¼ 0, which indicates that the state Φ22�1 is separable on the basis

η1; η2; η3; η4
� �

. At this stage, there is nothing surprising as the state Φ22�1 was constructed as
a tensor product. We now try to express the state given in Eq. (42) on a basis of two individu-

ally uncoupled φ-bits. Considering the Hilbert space of the first φ-bit, H 1ð Þ, we use the spinor
solutions for uncoupled waveguides given in Eq. (17) to construct the orthonormal basis
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ψ 1ð Þ
1 ¼ 1ffiffiffiffiffiffiffiffi

2ω1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 þ β1k1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 � β1k1

p
 !

eik1xeiω1t ¼ s 1ð Þ
1 k1ð Þeik1xeiω1t (44a)

ψ 1ð Þ
2 ¼ 1ffiffiffiffiffiffiffiffi

2ω1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 � β1k1

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1 þ β1k1

p
 !

e�ik1xeiω1t ¼ s 1ð Þ
2 k1ð Þe�ik1xeiω1t (44b)

Similarly, we define the orthonormal basis in the Hilbert space, H 2ð Þ, of the second φ-bit,

ψ 2ð Þ
1 ¼ 1ffiffiffiffiffiffiffiffi

2ω2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ β2k2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � β2k2

p
 !

eik2xeiω2t ¼ s 2ð Þ
1 k2ð Þeik2xeiω2t (45a)

ψ 2ð Þ
2 ¼ 1ffiffiffiffiffiffiffiffi

2ω2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � β2k2

p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ β2k2

p
 !

e�ik2xeiω2t ¼ s 2ð Þ
2 k2ð Þe�ik2xeiω2t (45b)

In these equations, we have used s 1ð Þ
1 k1ð Þ, s 1ð Þ

2 k1ð Þ, s 2ð Þ
1 k2ð Þ, and s 2ð Þ

2 k2ð Þ as short-hands for the
spinor parts of the basis functions.

The basis in the tensor product space H 1ð Þ ⊗H 2ð Þ is given by the four functions:

τ1 ¼ ψ 1ð Þ
1 ⊗ψ 2ð Þ

1 , τ2 ¼ ψ 1ð Þ
1 ⊗ψ 2ð Þ

2 , τ3 ¼ ψ 1ð Þ
2 ⊗ψ 2ð Þ

1 , τ4 ¼ ψ 1ð Þ
2 ⊗ψ 2ð Þ

2 (46)

We have

τ1 ¼ s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

1 k2ð Þei k1þk2ð Þxei ω1þω2ð Þt (47a)

τ2 ¼ s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

2 k2ð Þei k1�k2ð Þxei ω1þω2ð Þt (47b)

τ3 ¼ s 1ð Þ
2 k1ð Þ⊗ s 2ð Þ

1 k2ð Þei �k1þk2ð Þxei ω1þω2ð Þt (47c)

τ4 ¼ s 1ð Þ
2 k1ð Þ⊗ s 2ð Þ

2 k2ð Þei �k1�k2ð Þxei ω1þω2ð Þt (47d)

It is straightforward to show that τ1; τ2; τ3; τ4f g form an orthogonal basis. That is, τ†i τj ¼ 0 if

i 6¼ j, where τ†i is the Hermitian conjugate of τi.

We want now to express the state Φ22�1 in the τ basis:

Φ22�1 ¼ b11τ1 þ b12τ2 þ b21τ3 þ b22τ4f g (48)

For this, we now need to expand the basis vectors η1; η2; η3; η4
� �

on the basis τ1; τ2; τ3; τ4f g
We define the expansions:

η1 ¼ c11τ1 þ c12τ2 þ c13τ3 þ c14τ4 (49a)

η2 ¼ c21τ1 þ c22τ2 þ c23τ3 þ c24τ4 (49b)
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η3 ¼ c31τ1 þ c32τ2 þ c33τ3 þ c34τ4 (49c)

η4 ¼ c41τ1 þ c42τ2 þ c43τ3 þ c44τ4 (49d)

Note that the cij’s are functions of k1, k2, x, and t.

We can find the coefficients cij by exploiting the orthogonality of the τi 0s. For instance, we can

multiply Eq. (49a) to the left by the Hermitian conjugate τ†1, leading to

τ†1η1 ¼ c11τ†1τ1 þ c12τ†1τ2 þ c13τ†1τ3 þ c14τ†1τ4 ¼ c11τ†1τ1 (50)

or

c11 k1; k2; x; tð Þ ¼ s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

1 k2ð Þ
� �†

s2�1 ⊗ s2�1ð Þe�i k1þk2ð Þxei2kxe�i ω1þω2ð Þtei2ω0t=

s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

1 k2ð Þ
� �†

s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

1 k2ð Þ
� � (51)

We can obtain all other cij ’s in a similar fashion. Eqs. (49a)–(49d) can be rewritten in the form:

η1
η2
η3
η1

0
BBB@

1
CCCA ¼ η4�1 ¼

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

0
BBB@

1
CCCA

τ1
τ2
τ3
τ4

0
BBB@

1
CCCA ¼ C4�4τ4�1 (52)

The matrix C4�4 can be diagonalized. Let d1, d2, d3, and d4 be the four eigen values of C4�4 with

their associated eigen vectors

v11
v12
v13
v14

0
BB@

1
CCA,

v21
v22
v23
v24

0
BB@

1
CCA,

v31
v32
v33
v34

0
BB@

1
CCA and

v41
v42
v43
v44

0
BB@

1
CCA. We can construct the

following matrix out of the four eigen vectors:

V4�4 ¼

v11 v21 v31 v41
v12 v22 v32 v42
v13 v23 v33 v43
v14 v24 v34 v44

0
BBB@

1
CCCA

On the new basis ~τ1; ~τ2; ~τ3; ~τ4f g constructed by using the relation ~τ4�1 ¼ V�1
4�4τ4�1V4�4, the

matrix that couples the η basis and the τ basis takes the form: ~C4�4 ¼

d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

0
BBB@

1
CCCA so

η1 ¼ d1~τ1, η2 ¼ d2~τ2, η3 ¼ d3~τ3 and η4 ¼ d4~τ4. On the ~τ basis, Eq. (43) can be rewritten as

Φ22�1 ¼ a11d1~τ1 þ a12d2~τ2 þ a21d3~τ3 þ a22d4~τ4f g (53)

Then on the basis ~τ, we can investigate the separability or nonseparability of Φ22�1 by calcu-
lating the determinant of the linear coefficients in Eq. (53), that is
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det
a11d1 a12d2
a21d3 a22d4

� �
¼

1
2

χnð Þ2d1 � 1
2
χnχn0d2

1
2
χn0χnd3 � 1

2
χn0ð Þ2d4

�������

�������
¼ � 1

4
χnð Þ2 χn0ð Þ2 d1d4 � d2d3½ � (54)

Only in the unlikely event of degenerate eigen values, d1, d2, d3, and d4, would this determinant
be equal to zero. A nonzero determinant given in Eq. (54) indicates that the state Φ22�1 is
nonseparable on the basis ~τ1; ~τ2; ~τ3; ~τ4f g.
The existence of nonseparable solutions to the nonlinear Dirac equation raises the possibility of
exploiting these solutions for storing and manipulating data within the 2N dimensional tensor
product Hilbert space. The exploration of algorithms for exploiting these solutions is beyond
the scope of this chapter; however, we note that these solutions may well be observed in
physical systems including elastic waveguides which are embedded in a coupling matrix. The
manipulation of the system could be achieved either by externally altering the parameters of
the system, i.e., the elastic properties of the waveguides, or by changing the frequency and
wavenumber of input waves. These possibilities are illustrated for a five-waveguide system
driven by transducers in Section 2.6.

2.6. Physical realization and actuation

Figure 3 illustrates a possible realization of a five waveguide system. The parallel elastic
waveguides are embedded in an elastic medium which couples them elastically. The wave-
guides are arranged in a ring pattern.

Modes of the form given in Eq. (21) can be excited with N transducers attached to the input
ends of the N waveguides and connected to N phase-locked signal generators to excite the
appropriate eigen vectors en and en0 . These modes can be excited by applying a superposition
of signals on the transducers with the appropriate phase, amplitude and frequency relations.
The frequencies ωn kð Þ and ωn0 k0ð Þ are used to control the spinor parts of the wave functions

Figure 3. Schematic illustration of a five waveguide system. The waveguides are composed of an elastic medium 1 in
which mass density and elastic stiffness determine the physical parameter β. The waveguides are embedded in an elastic
medium 2 in which mass density and stiffness relate to the parameter α. The waveguides are actuated via transducers (see
the text for details).
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η3 ¼ c31τ1 þ c32τ2 þ c33τ3 þ c34τ4 (49c)

η4 ¼ c41τ1 þ c42τ2 þ c43τ3 þ c44τ4 (49d)

Note that the cij’s are functions of k1, k2, x, and t.

We can find the coefficients cij by exploiting the orthogonality of the τi 0s. For instance, we can

multiply Eq. (49a) to the left by the Hermitian conjugate τ†1, leading to

τ†1η1 ¼ c11τ†1τ1 þ c12τ†1τ2 þ c13τ†1τ3 þ c14τ†1τ4 ¼ c11τ†1τ1 (50)

or

c11 k1; k2; x; tð Þ ¼ s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

1 k2ð Þ
� �†

s2�1 ⊗ s2�1ð Þe�i k1þk2ð Þxei2kxe�i ω1þω2ð Þtei2ω0t=

s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

1 k2ð Þ
� �†

s 1ð Þ
1 k1ð Þ⊗ s 2ð Þ

1 k2ð Þ
� � (51)

We can obtain all other cij ’s in a similar fashion. Eqs. (49a)–(49d) can be rewritten in the form:

η1
η2
η3
η1

0
BBB@

1
CCCA ¼ η4�1 ¼

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

0
BBB@

1
CCCA

τ1
τ2
τ3
τ4

0
BBB@

1
CCCA ¼ C4�4τ4�1 (52)

The matrix C4�4 can be diagonalized. Let d1, d2, d3, and d4 be the four eigen values of C4�4 with

their associated eigen vectors

v11
v12
v13
v14

0
BB@

1
CCA,

v21
v22
v23
v24

0
BB@

1
CCA,

v31
v32
v33
v34

0
BB@

1
CCA and

v41
v42
v43
v44

0
BB@

1
CCA. We can construct the

following matrix out of the four eigen vectors:

V4�4 ¼

v11 v21 v31 v41
v12 v22 v32 v42
v13 v23 v33 v43
v14 v24 v34 v44

0
BBB@

1
CCCA

On the new basis ~τ1; ~τ2; ~τ3; ~τ4f g constructed by using the relation ~τ4�1 ¼ V�1
4�4τ4�1V4�4, the

matrix that couples the η basis and the τ basis takes the form: ~C4�4 ¼

d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4

0
BBB@

1
CCCA so

η1 ¼ d1~τ1, η2 ¼ d2~τ2, η3 ¼ d3~τ3 and η4 ¼ d4~τ4. On the ~τ basis, Eq. (43) can be rewritten as

Φ22�1 ¼ a11d1~τ1 þ a12d2~τ2 þ a21d3~τ3 þ a22d4~τ4f g (53)

Then on the basis ~τ, we can investigate the separability or nonseparability of Φ22�1 by calcu-
lating the determinant of the linear coefficients in Eq. (53), that is
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�������

�������
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Only in the unlikely event of degenerate eigen values, d1, d2, d3, and d4, would this determinant
be equal to zero. A nonzero determinant given in Eq. (54) indicates that the state Φ22�1 is
nonseparable on the basis ~τ1; ~τ2; ~τ3; ~τ4f g.
The existence of nonseparable solutions to the nonlinear Dirac equation raises the possibility of
exploiting these solutions for storing and manipulating data within the 2N dimensional tensor
product Hilbert space. The exploration of algorithms for exploiting these solutions is beyond
the scope of this chapter; however, we note that these solutions may well be observed in
physical systems including elastic waveguides which are embedded in a coupling matrix. The
manipulation of the system could be achieved either by externally altering the parameters of
the system, i.e., the elastic properties of the waveguides, or by changing the frequency and
wavenumber of input waves. These possibilities are illustrated for a five-waveguide system
driven by transducers in Section 2.6.

2.6. Physical realization and actuation

Figure 3 illustrates a possible realization of a five waveguide system. The parallel elastic
waveguides are embedded in an elastic medium which couples them elastically. The wave-
guides are arranged in a ring pattern.

Modes of the form given in Eq. (21) can be excited with N transducers attached to the input
ends of the N waveguides and connected to N phase-locked signal generators to excite the
appropriate eigen vectors en and en0 . These modes can be excited by applying a superposition
of signals on the transducers with the appropriate phase, amplitude and frequency relations.
The frequencies ωn kð Þ and ωn0 k0ð Þ are used to control the spinor parts of the wave functions

Figure 3. Schematic illustration of a five waveguide system. The waveguides are composed of an elastic medium 1 in
which mass density and elastic stiffness determine the physical parameter β. The waveguides are embedded in an elastic
medium 2 in which mass density and stiffness relate to the parameter α. The waveguides are actuated via transducers (see
the text for details).
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s2�1 kð Þ and s2�1 k0ð Þ . The spinor components which represent a quasistanding wave can be
quantified by measuring the transmission coefficient (normalized transmitted amplitude)
along any one of the waveguides. It is then possible to operate on the eigen vectors en and en0
without affecting the spinor states or vice versa. For instance, one could apply a rotation that
permutes cyclically the components of en by changing the phase of the signal generators. Such
an operation could be quantified by measuring the phase of the transmission amplitude at the
output end of the waveguides.

3. Conclusions

We have shown that the directional projection of elastic waves supported by a parallel array ofN
elastically coupled waveguides can be described by a nonlinear Dirac-like equation in a 2N

dimensional exponential space. This space spans the tensor product Hilbert space of the two-
dimensional subspaces of N uncoupled waveguides grounded elastically to a rigid substrate
(which we called φ-bits). We demonstrate that we can construct tensor product states of the
elastically coupled system that are nonseparable on the basis of tensor product states of N
uncoupled φ-bits. A φ-bit exhibits superpositions of directional states that are analogous to those
of a quantum spin, hence it acts as a pseudospin. Since parallel arrays of coupled waveguides
span the same exponentially complex space as that of uncoupled pseudospins, the type of elastic
systems described here may serve as a simulator of interacting spin networks. The possibility of
tuning the elastic coefficients and the elastic coupling constants of the waveguides would allow
us to explore the properties of spin networks with variable connectivity and coupling strength.
The mapping between the 2N dimensional and the 2N dimensional representations of the elastic
system leads to the capacity for exploring an exponentially scaling space by handling a linearly
growing number of waveguides (i.e., preparation, manipulation, and measurement of these
states). The scalability of the elastic system, the coherence of elastic waves at room temperature,
and the ability to measure classical superpositions of states may offer an attractive way for
addressing exponentially complex problem through the analogy with quantum systems.
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Abstract

The collective dynamics for longitudinal and transverse phonon modes and elastic prop-
erties are studied for bulk metallic glasses (BMGs) using Hubbard-Beeby approach along
with our well establishes model potential. The important ingredients in the present study
are the pair-potential and local field correlation function. The local field correlation func-
tions due to Hartree (H), Taylor (T), Ichimaru and Utsumi (IU), Farid et al. (F), Sarkar et al.
(S) and Hubbard and Sham (HS) are employed to investigate the influence of the screen-
ing effects on the vibrational dynamics of Zr-Ti-Cu-Ni-Be, Zr-Cu-Ni-Al-Ta, Zr-Ti-Cu-Ni-
Al and Zr-Al-Ni-Cu. The result for the elastic constants like bulk modulus BT, rigidity
modulus G, Poisson’s ratio ξ, Young’s modulus Y, Debye temperature ƟD, the propaga-
tion velocity of elastic waves and dispersion curves are found to be in good agreement
with experimental and other available data. The present results are consistent and confirm
the applicability of model potential and self-consistent phonon theory for such studies.

Keywords: bulk metallic glass, pseudopotential, local field correction function, phonon
modes, elastic properties

1. Introduction

Bulk metallic glass-forming liquids are alloys with typically three to five metallic components
that have large atomic size mismatch and a composition close to a deep eutectic [1]. Metallic
glasses have regained considerable interest due to the fact that new glass forming composition
have been found that have a critical cooling rate of less than 100 K s�1 and can be made glassy
with dimensions of 1 cm or more. The development of such alloys with a very high resistance
to crystallization of the under cooled melt has opened new opportunities for the primary study
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of both the liquid state and the glass transition. The ability of bulk specimens has enabled
measurements of various physical, particularly mechanical, properties that were previously
impossible. Furthermore, these alloys are progressively being used for engineering applica-
tions. This new class of material is normally referred to as “bulk metallic glasses.” [1–10]

Bulk metallic glass an excellent glass forming ability and high thermal stability have attracted
much attention in the recent years. It has also occupied an important position due to their
unique physical properties and technological importance. Zr-based BMGs are the coming up
candidates to replace the usual materials used in the industry as a result of their superior
mechanical properties, for example strength, hardness, toughness and elasticity [2–10]. Recently
formation of Zr-Ti-Cu-Ni-Be, Zr-Ti-Cu-Ni-Be, Zr-Cu-Ni-Al-Ta, Zr-Ti-Cu-Ni-Al and Zr-Al-Ni-
Cu bulk metallic glass (BMGs) alloys distinguished itself from other metallic alloys by extraor-
dinary glass forming ability (GFA) [4–9]. These alloys have opened the possibility to study the
nature of glass transition in BMGs, offered the potential of BMGs as new generation engineer-
ing materials and controllable properties is one of the central issues in the condensed matter
physics and material sciences [2–10]. Metallic glass alloys are normally regarded as elastically
isotopic, and they behave as an elastic continuum at low temperatures, with well-defined
dispersion relation so that ultrasonic waves propagated through it. Perker and Johnson [9] are
made an important process of the design of the Zr–Ti–Cu–Ni–Be (Zr41Ti14Cu12.5Ni10Be22.5,
Zr45.4Ti9.6Cu10.15Ni8.6Be26.25, and Zr46.75Ti8.25Cu7.5Ni10Be27.5) five different concentration, Zr-
Cu-Ni-Al glass-forming alloy family. This family has distinct glass transition, very high stabil-
ity of supercooled liquid state and exhibits high thermal stability against crystallization. Dis-
solution of minute amount of metalloid elements into the Zr-base system can enlarge the
thermal stability and hardness of the BMG. Zr-based BMGs are used in manufacturing of
industrial production [4–9]. Recently, Agarwal has reported the phonon dispersion curves of
Zr-Ti-Cu-Ni-Be BMGs using Bhatia and Singh (BS) approach [11]. Wang et al. [4–6] have
represented elastic properties using ultrasonic method. In the present study, we have investi-
gated theoretically, phonon dispersion curve and elastic properties of Zr-based [4–10] bulk
metallic glasses with the help of pseudopotential formalism and along with Hubbard and
Beeby [12] approach and employing pseudopotential formalism along with the five different
local field correction functions due to Hartree [13], Taylor [14], Ichimaru and Utsumi [15],
Farid et al. [16], Sarkar et al. [17].

2. Theory

There are three main theoretical approaches used to compute the phonon frequency of binary
alloys: one is Hubbard and Beeby (HB) [12], second is Takeno and Goda (TG) [18], and last is
Bhatia and Singh (BS) [11]. The HB approach is the random phase approximation according to
this theory, a liquid random from a crystalline solid in two principal ways. Initially, the atoms
in the metallic glasses do not form a regular array, i.e. they disordered. So the HB theoretical
models have been employed to generate the phonon dispersion curve and their related prop-
erties of bulk metallic glass alloys in the present computation.
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The effective ion-ion interaction is given as

V rð Þ ¼ Z2e2

r
þ 2
π

ð
dqF qð Þ exp �iq � rð Þ (1)

where F(q) is the characteristic energy wave number. The first and second terms in the above
expression are due to the coulomb interaction between ion and indirect interaction through the
conduction electrons, respectively; q is the q-space wave vector, e is the charge of an electron.
In the present study, we have considered the effective atom approach to compute the phonon
dispersion curve (PDC). For the present study, we have used the Jani et al. [19–21] model
potential in q-space is given as,

Weff
B qð Þ ¼ � 4π2e2

Ω0q2
cos qreffc
� �� exp �1ð Þ qreffc

1þ qreffc
� �2 sin qreffc

� �þ qreffc cos qreffc
� �� �

0
B@

1
CA (2)

The characteristic feature of this model potential is the single parametric nature. reffc is the
potential parameter. This determination of parameter is independent of any fitting procedure
with the observed quantities. The energy wave number characteristics in expression (1) are
given by [21–25]

F qð Þ ¼ �Ω0eff q2

16π
Weff

B qð Þ
���

���
2
�

εeffH qð Þ � 1
h i

1þ εeffH qð Þ � 1
� �

1� f eff qð Þ
� �h i (3)

Here Weff
B qð Þ is the effective bare ion potential, εeffH qð Þis the Hartree dielectric response function

and f eff qð Þ is the local field correction function (LFCF) due to the Hartree (H) [13], Taylor (T)

[14], Ichimaru-Utsumi (IU) [15], Farid et al. (F) [16] and Sarkar et al. (S) [17] are used here to
include the effect of screening on the collective modes of bulk metallic glasses Zr-Ti-Cu-Ni-Be
BMG for five different concentration, Zr-Cu-Ni-Al-Ta BMG, Zr-Ti-Cu-Ni-Al BMG and Zr-Al--
Ni-Cu BMG for three different concentration. Long-wavelength limits of the phonon modes
are then used to investigate the elastic properties, viz. longitudinal sound velocity, transverse
sound velocity, Debye temperature, isothermal bulk modulus, modulus of rigidity, Poisson’s
ratio and Young’s modulus. Five different types of LFCF are employed here for the study of
the effect of exchange and correlation on the aforesaid properties. Pair potential or effective
interaction is realized through interatomic potential, ion-ion potential and electron-electron
potential developed between two similar particles like atoms, ion and electrons. The pair-
correlation function g(r) is equally important as the pair potential. It contains useful informa-
tion about the inter particle radial correlation and structure which in turn decides the electrical
thermodynamically and amorphous materials.

The effective potential and pair correlation function g rð Þ are the used to calculate the longitu-
dinal and transverse phonon frequencies. The product of the static pair-correlation function
g rð Þ and the second derivative of the interatomic potential V}

eff rð Þ are peaked at σ, which is the
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of both the liquid state and the glass transition. The ability of bulk specimens has enabled
measurements of various physical, particularly mechanical, properties that were previously
impossible. Furthermore, these alloys are progressively being used for engineering applica-
tions. This new class of material is normally referred to as “bulk metallic glasses.” [1–10]

Bulk metallic glass an excellent glass forming ability and high thermal stability have attracted
much attention in the recent years. It has also occupied an important position due to their
unique physical properties and technological importance. Zr-based BMGs are the coming up
candidates to replace the usual materials used in the industry as a result of their superior
mechanical properties, for example strength, hardness, toughness and elasticity [2–10]. Recently
formation of Zr-Ti-Cu-Ni-Be, Zr-Ti-Cu-Ni-Be, Zr-Cu-Ni-Al-Ta, Zr-Ti-Cu-Ni-Al and Zr-Al-Ni-
Cu bulk metallic glass (BMGs) alloys distinguished itself from other metallic alloys by extraor-
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nature of glass transition in BMGs, offered the potential of BMGs as new generation engineer-
ing materials and controllable properties is one of the central issues in the condensed matter
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isotopic, and they behave as an elastic continuum at low temperatures, with well-defined
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2. Theory
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models have been employed to generate the phonon dispersion curve and their related prop-
erties of bulk metallic glass alloys in the present computation.
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The effective ion-ion interaction is given as
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The characteristic feature of this model potential is the single parametric nature. reffc is the
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hard sphere diameter. The longitudinal phonon frequency ωl (q) and transverse phonon
frequency ωt(q) are given by the expression due to Hubbard and Beeby (HB).

ω2
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Here, r is the number density, M is the atomic mass, g(r) is the pair correlation function, Ω0 is
the atomic volume, F(q) and S(q) be the energy wave number characteristic and the structure
factor of the element, respectively.

In the long-wavelength limit, the phonon dispersion curve shows an elastic behavior. Hence,
the longitudinal νl and transverse νt sound velocities are also calculated by [22–25]

ωL α q and ωT α q,∴ωL ¼ vlqand ωT ¼ vlq (9)

Various elastic properties are determined by the longitudinal and transverse phonon frequencies.

The bulk modulus B, Poisson’s ratio ‘ξ’, modulus of rigidity G, Young’s modulus Y and the
Debye temperature θD are calculated using the expression below [22–25]

B ¼ r v2l �
4
3
v2t

� �
(10)

r is the isotropic density of the solid,

ξ ¼ 1� 2 v2t =v
2
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2� 2 v2t =v
2
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G ¼ r v2t (12)
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Y ¼ 2G ξþ 1ð Þ (13)
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where ‘h’ is Plank constant and kB is the Boltzmann constant.

3. Results and discussion

The input parameters and constants used in the present computation are shown in Table 1.
Pair potential (Figures 1(a)–10(a)) and the phonon frequencies of longitudinal and transverse
branch (Figures 1(b)–10(b)) of various bulk metallic glasses are shown in Figures 1–10. Our
well-established model potential is used along with five different local field correction func-
tions to computed form factors and thereby effective pair potentials. The phenomenological
approach of Hubbard and Beeby [8, 12, 21–25] is used further to compute phonon frequencies.
The longitudinal and transverse phonon frequencies show all broad features of collective
excitations of all BMGs. It is seen from the results of phonon frequencies that the nature of
peak positions are not much affected by different screening functions, but both the longitudi-
nal and transverse frequencies show deviation for H, T and S functions with respect to IU and
F screening function for present model potential. At large momentum, phonons from longitu-
dinal branch are found responsible for momentum transfer. Phonons of transverse branch
undergo large thermal modulation due to the anharmonicity of lattice vibrations in this
branch. The first minimum in the longitudinal branch corresponds to umklapped scattering
process. No experimental data of structure factor for these BMGs are available. In the long
wavelength limit, the frequencies are elastic and allow us to computed elastic constants.

BMGs Zeff Ωeff (au)3 reffc (au) Meff (amu) rseff (au)

Zr38.5Ti16.5Cu15.25Ni9.75Be20 3.100 115.447 1.0565 60.237 2.0716

Zr41Ti14Cu12.5Ni10Be22.5 3.100 119.893 1.0699 59.945 2.0978

Zr44Ti11Cu10Ni10Be25 3.100 119.809 1.0696 59.882 2.0974

Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 3.100 123.501 1.0805 59.875 2.1187

Zr46.75Ti8.25Cu7.5Ni10Be27.5 3.100 124.510 1.0834 59.710 2.1245

Zr52.25Cu28.5Ni4.75Al9.5Ta5 2.957 128.860 1.1133 80.173 2.1830

Zr57Ti5Cu20Ni8Al10 3.040 127.676 1.0385 74.493 2.1560

Zr61.88Al10Ni10.12Cu18 3.056 127.039 1.0960 76.143 2.1459

Zr64.13Al10Ni10.12Cu15.75 3.124 130.140 1.0968 76.874 2.1505

Zr65Al10Ni10Cu15 3.150 135.985 1.1099 77.395 2.1762

Table 1. Input parameters and constants.
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hard sphere diameter. The longitudinal phonon frequency ωl (q) and transverse phonon
frequency ωt(q) are given by the expression due to Hubbard and Beeby (HB).
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Here, r is the number density, M is the atomic mass, g(r) is the pair correlation function, Ω0 is
the atomic volume, F(q) and S(q) be the energy wave number characteristic and the structure
factor of the element, respectively.

In the long-wavelength limit, the phonon dispersion curve shows an elastic behavior. Hence,
the longitudinal νl and transverse νt sound velocities are also calculated by [22–25]

ωL α q and ωT α q,∴ωL ¼ vlqand ωT ¼ vlq (9)

Various elastic properties are determined by the longitudinal and transverse phonon frequencies.

The bulk modulus B, Poisson’s ratio ‘ξ’, modulus of rigidity G, Young’s modulus Y and the
Debye temperature θD are calculated using the expression below [22–25]
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where ‘h’ is Plank constant and kB is the Boltzmann constant.

3. Results and discussion

The input parameters and constants used in the present computation are shown in Table 1.
Pair potential (Figures 1(a)–10(a)) and the phonon frequencies of longitudinal and transverse
branch (Figures 1(b)–10(b)) of various bulk metallic glasses are shown in Figures 1–10. Our
well-established model potential is used along with five different local field correction func-
tions to computed form factors and thereby effective pair potentials. The phenomenological
approach of Hubbard and Beeby [8, 12, 21–25] is used further to compute phonon frequencies.
The longitudinal and transverse phonon frequencies show all broad features of collective
excitations of all BMGs. It is seen from the results of phonon frequencies that the nature of
peak positions are not much affected by different screening functions, but both the longitudi-
nal and transverse frequencies show deviation for H, T and S functions with respect to IU and
F screening function for present model potential. At large momentum, phonons from longitu-
dinal branch are found responsible for momentum transfer. Phonons of transverse branch
undergo large thermal modulation due to the anharmonicity of lattice vibrations in this
branch. The first minimum in the longitudinal branch corresponds to umklapped scattering
process. No experimental data of structure factor for these BMGs are available. In the long
wavelength limit, the frequencies are elastic and allow us to computed elastic constants.

BMGs Zeff Ωeff (au)3 reffc (au) Meff (amu) rseff (au)

Zr38.5Ti16.5Cu15.25Ni9.75Be20 3.100 115.447 1.0565 60.237 2.0716

Zr41Ti14Cu12.5Ni10Be22.5 3.100 119.893 1.0699 59.945 2.0978

Zr44Ti11Cu10Ni10Be25 3.100 119.809 1.0696 59.882 2.0974

Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 3.100 123.501 1.0805 59.875 2.1187

Zr46.75Ti8.25Cu7.5Ni10Be27.5 3.100 124.510 1.0834 59.710 2.1245

Zr52.25Cu28.5Ni4.75Al9.5Ta5 2.957 128.860 1.1133 80.173 2.1830

Zr57Ti5Cu20Ni8Al10 3.040 127.676 1.0385 74.493 2.1560

Zr61.88Al10Ni10.12Cu18 3.056 127.039 1.0960 76.143 2.1459

Zr64.13Al10Ni10.12Cu15.75 3.124 130.140 1.0968 76.874 2.1505
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3.1. Zr-Ti-Cu-Ni-Be BMG (Zr41Ti14Cu12.5Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25,
Zr46.75Ti8.25Cu7.5Ni10Be27.5, Zr44Ti11Cu10Ni10Be25, Zr38.5Ti16.5Ni9.75Cu15.25Be20)

Equation to compute phonon frequency and longitudinal and transverse sound velocity are
taken from Thakore et al. [21, 23]. Pair potential and the phonon modes computed for
Zr41Ti14Cu12.5Ni10Be22.5 BMG, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 BMG, Zr46.75Ti8.25Cu7.5Ni10Be27.5

Figure 1. (a) Pair potential for Zr41Ti14Cu12.5Ni10Be22.5 BMG. (b) Phonon dispersion curve (ωL & ωT) for
Zr41Ti14Cu12.5Ni10Be22.5 BMG along with other available data [8].

Figure 2. (a) Pair potential for Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 BMG. (b) Phonon dispersion curve (ωL & ωT) of
Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 BMG along with other available data [8].

Figure 3. (a) Pair potential for Zr46.75Ti14Cu12.5Ni10Be22.5 BMG. (b) Phonon dispersion curve (ωL & ωT) of
Zr46.75Ti14Cu12.5Ni10Be22.5 BMG, along with other available data [8].
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BMG, Zr44Ti11Cu10Ni10Be25 BMG, Zr38.5Ti16.5Ni9.75Cu15.25Be20 BMG are shown in Figures 1–5
respectively. It is observed that the study reveals the general trends of the pair potential for
BMGs considered here, suggesting that the position of the first minima is affected by the type
of screening functions. The maximum depth in the pair potential in the present study is
obtained due to S screening function for Zr41Ti14Cu12Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25
and Zr46.75Ti8.25Cu7.5Ni10Be27.5 BMGs. From Figures 2–4 it is seen from the results of phonon
frequencies that the general nature and peak positions are not affected very much by different

Figure 4. (a) Pair potential for Zr44Ti11Cu10Ni10Be25 BMG. (b) Phonon dispersion curve (ωL & ωT) for Zr44Ti11Cu10Ni10Be25
BMG.

Figure 5. (a) Pair potential for Zr38.5Ti16.5Cu15.25Ni9.75Be25 BMG. (b) Phonon dispersion curve (ωL & ωT) for
Zr38.5Ti16.5Cu15.25Ni9.75Be25 BMG.

Figure 6. (a) Pair potential for Zr52.25Cu28.5Ni4.75Al9.5Ta5 BMG. (b) Phonon dispersion curve (ωL & ωT) for
Zr52.25Cu28.5Ni4.75Al9.5Ta5 BMG.
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screening functions, but magnitude of both the longitudinal and transverse frequencies show
deviation with respect to screening function. From the Figures 2–6 that the oscillations are
prominent in the longitudinal mode as compared to transverse mode, which indicates that the
collective excitations at larger wave vector transfer due to the dispersion of longitudinal
excitation. The maximum and minimum percentile deviation for the elastic properties of bulk
modulus, modulus of rigidity, Young modulus and Debye temperature with respect to the
experimental data from Tables 2–4. For bulk modulus, the computed percentile maximum

Figure 7. (a) Pair potential for Zr57Ti5Cu20Ni8Al10 BMG. (b) Phonon dispersion curve (ωL & ωT)) for Zr57Ti5Cu20Ni8
Al10 BMG.

Figure 8. (a) Pair potential for Zr61.88Al10Ni10.12Cu18 BMG. (b) Phonon dispersion curve (ωL & ωT) for
Zr61.88Al10Ni10.12Cu18 BMG.

Figure 9. (a) Pair potential for Zr64.13Al10Ni10.12Cu15.75 BMG. (b) Phonon dispersion curve (ωL & ωT) for
Zr64.13Al10Ni10.12Cu15.75 BMG.
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deviation with respect to experimental data is found in H functions, the values are 43.82, 42.42
and 43.48% and minimum deviation is found in F functions, the values are 26.69, 24.92 and
26.25% for Zr41Ti14Cu12Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 and Zr46.75Ti8.25Cu7.5Ni10Be27.5
BMGs respectively. The computed percentile deviation for modulus of rigidity with respect
to experimental data, the maximum deviation is found to be 35.54, 35.12 and 42.55% of F

Figure 10. (a) Pair potential for Zr65Al10Ni10Cu15 BMG. (b) Phonon dispersion curve (ωL & ωT) for Zr65Al10Ni10Cu15
BMG.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. [4–6] Other [4–6]

υL�105 (cm s�2) 4.553 5.177 5.176 5.203 4.776 — 5.174

υT�105 (cm s�2) 2.629 2.989 2.988 3.004 2.757 — 2.472

BT�1012 (dyne/cm2) 0.645 0.834 0.834 0.842 0.701 1.148
1.141

1.150

G�1012 (dyne/cm2) 0.387 0.501 0.500 0.505 0.426 0.374 0.471

ξ 0.25 0.25 0.25 0.25 0.25 0.35 0.352

Y�1012 (dyne/cm2) 0.966 1.251 1.251 1.263 1.065 1.013
1.012

1.055

θD (K) 333.0 378.7 378.7 380.6 349.4 — 327

Table 2. Elastic properties of Zr41Ti14Cu12.5Ni10Be22.5 BMG.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. Other [4–6]

υL�105 (cm s�2) 4.621 5.253 5.249 5.277 4.850 — 5.171

υT�105 (cm s�2) 2.668 3.033 3.031 3.047 2.800 — 2.485

BT�1012 (dyne/cm2) 0.644 0.833 0.832 0.840 0.709 — 1.119

G�1012 (dyne/cm2) 0.386 0.499 0.499 0.504 0.426 — 0.373

ξ 0.25 0.25 0.25 0.25 0.25 — 0.35

Y�1012 (dyne/cm2) 0.966 1.249 1.247 1.260 1.065 — 1.009

θD (K) 334.7 380.5 380.2 382.2 351.3 — 327

Table 3. Elastic properties for Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 BMG.
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screening functions, but magnitude of both the longitudinal and transverse frequencies show
deviation with respect to screening function. From the Figures 2–6 that the oscillations are
prominent in the longitudinal mode as compared to transverse mode, which indicates that the
collective excitations at larger wave vector transfer due to the dispersion of longitudinal
excitation. The maximum and minimum percentile deviation for the elastic properties of bulk
modulus, modulus of rigidity, Young modulus and Debye temperature with respect to the
experimental data from Tables 2–4. For bulk modulus, the computed percentile maximum

Figure 7. (a) Pair potential for Zr57Ti5Cu20Ni8Al10 BMG. (b) Phonon dispersion curve (ωL & ωT)) for Zr57Ti5Cu20Ni8
Al10 BMG.

Figure 8. (a) Pair potential for Zr61.88Al10Ni10.12Cu18 BMG. (b) Phonon dispersion curve (ωL & ωT) for
Zr61.88Al10Ni10.12Cu18 BMG.

Figure 9. (a) Pair potential for Zr64.13Al10Ni10.12Cu15.75 BMG. (b) Phonon dispersion curve (ωL & ωT) for
Zr64.13Al10Ni10.12Cu15.75 BMG.
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deviation with respect to experimental data is found in H functions, the values are 43.82, 42.42
and 43.48% and minimum deviation is found in F functions, the values are 26.69, 24.92 and
26.25% for Zr41Ti14Cu12Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 and Zr46.75Ti8.25Cu7.5Ni10Be27.5
BMGs respectively. The computed percentile deviation for modulus of rigidity with respect
to experimental data, the maximum deviation is found to be 35.54, 35.12 and 42.55% of F

Figure 10. (a) Pair potential for Zr65Al10Ni10Cu15 BMG. (b) Phonon dispersion curve (ωL & ωT) for Zr65Al10Ni10Cu15
BMG.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. [4–6] Other [4–6]

υL�105 (cm s�2) 4.553 5.177 5.176 5.203 4.776 — 5.174

υT�105 (cm s�2) 2.629 2.989 2.988 3.004 2.757 — 2.472

BT�1012 (dyne/cm2) 0.645 0.834 0.834 0.842 0.701 1.148
1.141

1.150

G�1012 (dyne/cm2) 0.387 0.501 0.500 0.505 0.426 0.374 0.471

ξ 0.25 0.25 0.25 0.25 0.25 0.35 0.352

Y�1012 (dyne/cm2) 0.966 1.251 1.251 1.263 1.065 1.013
1.012

1.055

θD (K) 333.0 378.7 378.7 380.6 349.4 — 327

Table 2. Elastic properties of Zr41Ti14Cu12.5Ni10Be22.5 BMG.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. Other [4–6]

υL�105 (cm s�2) 4.621 5.253 5.249 5.277 4.850 — 5.171

υT�105 (cm s�2) 2.668 3.033 3.031 3.047 2.800 — 2.485

BT�1012 (dyne/cm2) 0.644 0.833 0.832 0.840 0.709 — 1.119

G�1012 (dyne/cm2) 0.386 0.499 0.499 0.504 0.426 — 0.373

ξ 0.25 0.25 0.25 0.25 0.25 — 0.35

Y�1012 (dyne/cm2) 0.966 1.249 1.247 1.260 1.065 — 1.009

θD (K) 334.7 380.5 380.2 382.2 351.3 — 327

Table 3. Elastic properties for Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 BMG.
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functions and minimum deviation is found in H function, the values are 3.47, 3.47 and 9.26%
for Zr41Ti14Cu12Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 BMGs
respectively. For Young modulus, the computed percentile maximum deviation with respect
to experimental data is found in F functions, the values are 24.72, 24.90 and 24.74% and
minimum deviation is found in H functions, the values are 4.49, 4.22 and 7.47%, for Zr41Ti14
Cu12Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 BMGs respectively.
Similarly for Debye temperature, the computed percentile maximum deviation with respect
to experimental data is found in F function, the values are 16.39, 16.90 and 16.33% and
minimum deviation is found in H function, the values are 1.86, 2.36 and 2.37%, for Zr41Ti14
Cu12Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 BMGs respectively.

Presently calculated elastic properties for Zr44Ti11Cu10Ni10Be25 and Zr38.5Ti16.5Cu15.25Ni9.75Be25
BMG are listed in Tables 4 and 5 respectively. From this table, one can see that the results are
obtained due to T, IU and F screening functions are very close to one another as compared to
the H screening function. Due to lack of experimental data and other information of elastic

Properties H [13] T [14] IU [15] F [16] S [17] Exp. [5, 6] Other [4–6]

υL�105 (cm s�2) 4.634 5.266 5.265 5.294 4.866 — 5.182

υT�105 (cm s�2) 2.675 3.040 3.0403 3.056 2.810 — 2.487

BT�1012 (dyne/cm2) 0.641 0.828 0.828 0.836 0.707 1.134 1.137
1.119

G�1012 (dyne/cm2) 0.385 0.497 0.496 0.502 0.424 0.352 0.476
0.372

ξ 0.25 0.25 0.25 0.25 0.25 0.35 0.352

Y�1012 (dyne/cm2) 0.961 1.242 1.241 1.255 1.060 0.957 1.039
1.005

θD (K) 334.7 380.4 380.4 380.4 351.5 — 327

Table 4. Elastic properties for Zr46.75Ti14Cu12.5Ni10Be22.5 BMG.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. Other

υL�105 (cm s�2) 4.544 5.171 5.180 5.207 4.765 — —

υT�105 (cm s�2) 2.624 2.986 2.991 3.006 2.751 — —

BT�1012 (dyne/cm2) 0.643 0.832 0.835 0.843 0.706 — —

G�1012 (dyne/cm2) 0.386 0.499 0.509 0.506 0.424 — —

ξ 0.25 0.25 0.25 0.25 0.25 — —

Y�1012 (dyne/cm2) 0.964 1.248 1.252 1.265 1.059 — —

θD (K) 332.5 378.3 379.1 380.9 348.7 — —

Table 5. Elastic properties of Zr44Ti11Cu10Ni10Be25 BMG.
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properties. So we do not offer any concrete remark at this stage, but it is sure that this data is
very useful for the further investigation.

3.2. Zr52.25-Cu28.5-Ni4.75-Al9.5-Ta5 BMG

Here, Our well established model potential is used along with five different types of local
field correction functions due to H, T, IU, F and S for to generate the pair potential for
Zr52.25Cu28.5Ni4.75Al9.5Ta5 BMG [4] system. Figure 5 shows the calculated pair potential for
Zr52.25Cu28.5Ni4.75Al9.5Ta5 BMG [4]. It is observed that the depth of the pair potential obtained
using model potential is highly affected. This depth affects the height and peak of the pair
correlation functions. This pair potential is helping to compute phonon frequencies of longitu-
dinal and transverse branch and it is shown in Figure 6(b). No experimental data and other
available data are found for comparison for sound velocities. So, we do not put any concert
comment on sound velocity at this point.

The absence of experimental data and other information on elastic properties like bulk modu-
lus, Poisson ratio and Debye temperature, so that, present results are compared with calcu-
lated values and other available results [5]. From the Table 7, it is observed that F function is in
good agreement with the calculated values and other available results [5]. On the other hand,

Properties H [13] T [14] IU [15] F [16] S [17] Exp. Other [5]

υL�105 (cm s�2) 3.5505 4.0124 4.0041 4.4025 3.7471 — —

υT�105 (cm s�2) 2.0499 2.3166 2.3118 2.324 2.1634 — —

BT�1012 (dyne/cm2) 0.4879 0.6230 0.6205 0.6271 0.5434 — —

G�1012 (dyne/cm2) 0.2927 0.3738 0.3723 0.3762 0.3260 — —

ξ 0.25 0.25 0.25 0.25 0.25 — —

Y�1012 (dyne/cm2) 0.7317 0.9346 0.9307 0.9406 0.8151 — 0.90

θD (K) 253.57 286.56 285.97 287.48 267.61 — —

Table 7. Elastic properties of Zr52.25Cu28.5Ni4.75Al9.5Ta5 BMG.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. Other

υL�105 (cm s�2) 4.347 4.942 4.954 4.954 4.561 — —

υT�105 (cm s�2) 2.510 2.853 2.860 2.880 2.633 — —

BT�1012 (dyne/cm2) 0.614 0.793 0.797 0.805 0.675 — —

G�1012 (dyne/cm2) 0.368 0.476 0.478 0.483 0.405 — —

ξ 0.25 0.25 0.25 0.25 0.25 — —

Y�1012 (dyne/cm2) 0.920 1.189 1.196 1.208 1.013 — —

θD (K) 322.0 366.1 367.0 368.9 337.9 — —

Table 6. Elastic properties of Zr38.5Ti16.5Cu15.25Ni9.75Be25 BMG.

Phonon Modes and Elastic Properties of Zr-Based Bulk Metallic Glasses: A Pseudopotential Approach
http://dx.doi.org/10.5772/intechopen.79568

65



functions and minimum deviation is found in H function, the values are 3.47, 3.47 and 9.26%
for Zr41Ti14Cu12Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 BMGs
respectively. For Young modulus, the computed percentile maximum deviation with respect
to experimental data is found in F functions, the values are 24.72, 24.90 and 24.74% and
minimum deviation is found in H functions, the values are 4.49, 4.22 and 7.47%, for Zr41Ti14
Cu12Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 BMGs respectively.
Similarly for Debye temperature, the computed percentile maximum deviation with respect
to experimental data is found in F function, the values are 16.39, 16.90 and 16.33% and
minimum deviation is found in H function, the values are 1.86, 2.36 and 2.37%, for Zr41Ti14
Cu12Ni10Be22.5, Zr45.4Ti9.6Cu10.15Ni8.6Be26.25 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 BMGs respectively.

Presently calculated elastic properties for Zr44Ti11Cu10Ni10Be25 and Zr38.5Ti16.5Cu15.25Ni9.75Be25
BMG are listed in Tables 4 and 5 respectively. From this table, one can see that the results are
obtained due to T, IU and F screening functions are very close to one another as compared to
the H screening function. Due to lack of experimental data and other information of elastic

Properties H [13] T [14] IU [15] F [16] S [17] Exp. [5, 6] Other [4–6]

υL�105 (cm s�2) 4.634 5.266 5.265 5.294 4.866 — 5.182

υT�105 (cm s�2) 2.675 3.040 3.0403 3.056 2.810 — 2.487

BT�1012 (dyne/cm2) 0.641 0.828 0.828 0.836 0.707 1.134 1.137
1.119

G�1012 (dyne/cm2) 0.385 0.497 0.496 0.502 0.424 0.352 0.476
0.372

ξ 0.25 0.25 0.25 0.25 0.25 0.35 0.352

Y�1012 (dyne/cm2) 0.961 1.242 1.241 1.255 1.060 0.957 1.039
1.005

θD (K) 334.7 380.4 380.4 380.4 351.5 — 327

Table 4. Elastic properties for Zr46.75Ti14Cu12.5Ni10Be22.5 BMG.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. Other

υL�105 (cm s�2) 4.544 5.171 5.180 5.207 4.765 — —

υT�105 (cm s�2) 2.624 2.986 2.991 3.006 2.751 — —

BT�1012 (dyne/cm2) 0.643 0.832 0.835 0.843 0.706 — —

G�1012 (dyne/cm2) 0.386 0.499 0.509 0.506 0.424 — —

ξ 0.25 0.25 0.25 0.25 0.25 — —

Y�1012 (dyne/cm2) 0.964 1.248 1.252 1.265 1.059 — —

θD (K) 332.5 378.3 379.1 380.9 348.7 — —

Table 5. Elastic properties of Zr44Ti11Cu10Ni10Be25 BMG.
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properties. So we do not offer any concrete remark at this stage, but it is sure that this data is
very useful for the further investigation.

3.2. Zr52.25-Cu28.5-Ni4.75-Al9.5-Ta5 BMG

Here, Our well established model potential is used along with five different types of local
field correction functions due to H, T, IU, F and S for to generate the pair potential for
Zr52.25Cu28.5Ni4.75Al9.5Ta5 BMG [4] system. Figure 5 shows the calculated pair potential for
Zr52.25Cu28.5Ni4.75Al9.5Ta5 BMG [4]. It is observed that the depth of the pair potential obtained
using model potential is highly affected. This depth affects the height and peak of the pair
correlation functions. This pair potential is helping to compute phonon frequencies of longitu-
dinal and transverse branch and it is shown in Figure 6(b). No experimental data and other
available data are found for comparison for sound velocities. So, we do not put any concert
comment on sound velocity at this point.

The absence of experimental data and other information on elastic properties like bulk modu-
lus, Poisson ratio and Debye temperature, so that, present results are compared with calcu-
lated values and other available results [5]. From the Table 7, it is observed that F function is in
good agreement with the calculated values and other available results [5]. On the other hand,

Properties H [13] T [14] IU [15] F [16] S [17] Exp. Other [5]

υL�105 (cm s�2) 3.5505 4.0124 4.0041 4.4025 3.7471 — —

υT�105 (cm s�2) 2.0499 2.3166 2.3118 2.324 2.1634 — —

BT�1012 (dyne/cm2) 0.4879 0.6230 0.6205 0.6271 0.5434 — —

G�1012 (dyne/cm2) 0.2927 0.3738 0.3723 0.3762 0.3260 — —

ξ 0.25 0.25 0.25 0.25 0.25 — —

Y�1012 (dyne/cm2) 0.7317 0.9346 0.9307 0.9406 0.8151 — 0.90

θD (K) 253.57 286.56 285.97 287.48 267.61 — —

Table 7. Elastic properties of Zr52.25Cu28.5Ni4.75Al9.5Ta5 BMG.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. Other

υL�105 (cm s�2) 4.347 4.942 4.954 4.954 4.561 — —

υT�105 (cm s�2) 2.510 2.853 2.860 2.880 2.633 — —

BT�1012 (dyne/cm2) 0.614 0.793 0.797 0.805 0.675 — —

G�1012 (dyne/cm2) 0.368 0.476 0.478 0.483 0.405 — —

ξ 0.25 0.25 0.25 0.25 0.25 — —

Y�1012 (dyne/cm2) 0.920 1.189 1.196 1.208 1.013 — —

θD (K) 322.0 366.1 367.0 368.9 337.9 — —

Table 6. Elastic properties of Zr38.5Ti16.5Cu15.25Ni9.75Be25 BMG.
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Young modulus and Shear modulus using T, IU and S local field correction functions are in
good agreement with the results mention in Ref. [5].

3.3. Zr57-Ti5-Cu20-Ni8-Al10 BMG

Here, it has been reported for the first time to generate the pair potential for the
Zr57Ti5Cu20Ni8Al10 BMG system. The computed pair potential is shown in Figure 7(a) using
present model potentials. In this case, the computed pair potential is affected by type of
screening used. The pair potential computed using model potential shows first positive mini-
mum. The depth of this minimum is affected by type of screening used and almost at the r
value where pair potential shows a positive minimum. The computed pair potential is greatly
affected by model potential.

Using a pair potential it has been projected the longitudinal and transverse phonon frequencies
for Zr57Ti5Cu20Ni8Al10 BMG are shown in Figure 7(b). From the Figure 7(b) it is understood
from the results of phonon frequencies that the nature of peak positions are not much exag-
gerated by different screening functions, but both the longitudinal and transverse frequencies
show small deviation for H, T and S functions with respect to IU and F screening function in
Figure 7(b).

On the other hand, the transverse modes undergo larger thermal modulation due to the
anharmonicity of the vibrations in the BMGs. In the long wavelength limit, the dispersion
curves are linear and confirming characteristics of elastic waves. The PDC for transverse
phonons attain maxima at a higher q value than the longitudinal phonon curve. At present
calculated elastic properties for Zr57Ti5Cu20Ni8Al10 BMG are listed in Table 8. From Table 8,
one can see that by using the T, IU and F screening functions, the results are very close to one
another as compared to the H screening function. Modulus of rigidity ‘G’, Young modulus ‘Y’
and Debye temperature is showing the better agreement with experimental values [5, 6]
computed using the T, IU and F screening while obtains due to H and S show the underesti-
mate values than the experimental and other available data. We are sure that this data is very
useful for the further investigation.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. [4–6] Other [4–6]

υL�105 (cm s�2) 3.2622 3.6125 3.6212 3.6375 3.3707 4.623 —

υT�105 (cm s�2) 1.8834 2.0857 2.0907 2.1001 1.9461 2.149 —

BT�1012 (dyne/cm2) 0.3867 0.4738 0.47608 0.4804 0.4125 0.992 —

G�1012 (dyne/cm2) 0.2318 0.2843 0.2857 0.2882 0.2475 0.301 0.301

ξ 0.25 0.25 0.25 0.25 0.25 — —

Y�1012 (dyne/cm2) 0.5795 0.7107 0.7141 0.7206 0.6188 0.82 0.82

θD (K) 233.70 258.79 259.92 260.58 241.47 270.3 270.1

Table 8. Elastic properties of Zr57Ti5Cu20Ni8Al10 BMG.
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3.4. Zr-Al-Ni-Cu BMG (Zr61.88Al10Ni10.12Cu18, Zr64.13Al10Ni10.12Cu15.15, Zr65Al10Ni10Cu15)

Our well recognized model potential is used along with five different local field correction
function for the generate pair potential for Zr61.88Al10Ni10.12Cu18, Zr64.13Al10Ni10.12Cu15.75 and
Zr65Al10Ni10Cu15 BMG system. From Figures 8(a), 9(a) and 10(a) it is observed that the study
reveals the general trends of the pair potential in all cases, suggesting that the position of the
first minimum depth in the pair potential in the present study is obtained due to F screening
function.

Using this pair potential it has been computed the longitudinal and transverse phonon fre-
quency for Zr61.88Al10Ni10.12Cu18, Zr64.13Al10Ni10.12Cu15.75 and Zr65Al10Ni10Cu15 BMG are
shown in Figures 8(b), 9(b) and 10(b) respectively. Phonon mode graphs show that the nature
of peak position is not much affected by different type of screening functions. The longitudinal
and transverse frequencies show deviation for H, T and S functions with respect to F screening
for Zr-Al-Ni-Cu BMG systems. It is obvious from the figures that the oscillations are protrud-
ing in the longitudinal mode as compared to transverse mode, which indicates that collective
excitations at larger wave vector transfer due to the dispersion of longitudinal excitation. The
influence of the results of phonon frequencies is clearly observed on the elastic constants, as we
have calculated these elastic constants from the long wavelength limit of phonon frequencies.

From the Tables 9–11 it is observed that sound velocity computed using present model
potential along with T, IU and F functions are found to be very close to one another and
calculated sound velocities using F screening function shows a good agreement with available
data [4–6]. Computed bulk modulus using model potential along with all local field correction
functions is underestimated as compared to the experimental [4] and other available data
[5, 6]. Presently computed percentile deviation for modulus of rigidity with respect to available
data. The maximum deviation is found in F screening function, the values are 25.5, 26.9 and
6.2% for Zr61.88Al10Ni10.12Cu18, Zr64.13Al10Ni10.12Cu15.75 and Zr65Al10Ni10Cu15 respectively, and
minimum deviation is found for in H function, the values are found 2.57 and 4.0% for
Zr61.88Al10Ni10.12Cu18 and Zr64.13Al10Ni10.12Cu15.75 respectively.

Presently calculated Young’s modulus and Debye temperature using local model potential
along with the S screening function is found in good agreement with available results for

Properties H [13] T [14] IU [15] F [16] S [17] Exp. [6] Other [6]

υL�105 (cm s�2) 3.6701 4.1883 4.1731 4.1990 3.8565 4.693 4.704

υT�105 (cm s�2) 2.1189 2.4181 2.4043 2.4243 2.2265 2.046 2.092

BT�1012 (dyne/cm2) 0.4975 0.6479 0.6432 0.6513 0.5493 1.077 1.083

G�1012 (dyne/cm2) 0.2985 0.3888 0.3899 0.3908 0.3296 0.293 0.291

ξ 0.25 0.25 0.25 0.25 0.25 0.375 0.37

Y�1012 (dyne/cm2) 0.7463 0.9719 0.9649 0.9769 0.8240 0.805 0.801

θD (K) 263.355 300.544 299.451 301.31 276.73 0.263 262.9

Table 9. Elastic properties of Zr61.88Al10Ni10.12Cu18 BMG.
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Young modulus and Shear modulus using T, IU and S local field correction functions are in
good agreement with the results mention in Ref. [5].

3.3. Zr57-Ti5-Cu20-Ni8-Al10 BMG

Here, it has been reported for the first time to generate the pair potential for the
Zr57Ti5Cu20Ni8Al10 BMG system. The computed pair potential is shown in Figure 7(a) using
present model potentials. In this case, the computed pair potential is affected by type of
screening used. The pair potential computed using model potential shows first positive mini-
mum. The depth of this minimum is affected by type of screening used and almost at the r
value where pair potential shows a positive minimum. The computed pair potential is greatly
affected by model potential.

Using a pair potential it has been projected the longitudinal and transverse phonon frequencies
for Zr57Ti5Cu20Ni8Al10 BMG are shown in Figure 7(b). From the Figure 7(b) it is understood
from the results of phonon frequencies that the nature of peak positions are not much exag-
gerated by different screening functions, but both the longitudinal and transverse frequencies
show small deviation for H, T and S functions with respect to IU and F screening function in
Figure 7(b).

On the other hand, the transverse modes undergo larger thermal modulation due to the
anharmonicity of the vibrations in the BMGs. In the long wavelength limit, the dispersion
curves are linear and confirming characteristics of elastic waves. The PDC for transverse
phonons attain maxima at a higher q value than the longitudinal phonon curve. At present
calculated elastic properties for Zr57Ti5Cu20Ni8Al10 BMG are listed in Table 8. From Table 8,
one can see that by using the T, IU and F screening functions, the results are very close to one
another as compared to the H screening function. Modulus of rigidity ‘G’, Young modulus ‘Y’
and Debye temperature is showing the better agreement with experimental values [5, 6]
computed using the T, IU and F screening while obtains due to H and S show the underesti-
mate values than the experimental and other available data. We are sure that this data is very
useful for the further investigation.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. [4–6] Other [4–6]

υL�105 (cm s�2) 3.2622 3.6125 3.6212 3.6375 3.3707 4.623 —

υT�105 (cm s�2) 1.8834 2.0857 2.0907 2.1001 1.9461 2.149 —

BT�1012 (dyne/cm2) 0.3867 0.4738 0.47608 0.4804 0.4125 0.992 —

G�1012 (dyne/cm2) 0.2318 0.2843 0.2857 0.2882 0.2475 0.301 0.301

ξ 0.25 0.25 0.25 0.25 0.25 — —

Y�1012 (dyne/cm2) 0.5795 0.7107 0.7141 0.7206 0.6188 0.82 0.82

θD (K) 233.70 258.79 259.92 260.58 241.47 270.3 270.1

Table 8. Elastic properties of Zr57Ti5Cu20Ni8Al10 BMG.
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3.4. Zr-Al-Ni-Cu BMG (Zr61.88Al10Ni10.12Cu18, Zr64.13Al10Ni10.12Cu15.15, Zr65Al10Ni10Cu15)

Our well recognized model potential is used along with five different local field correction
function for the generate pair potential for Zr61.88Al10Ni10.12Cu18, Zr64.13Al10Ni10.12Cu15.75 and
Zr65Al10Ni10Cu15 BMG system. From Figures 8(a), 9(a) and 10(a) it is observed that the study
reveals the general trends of the pair potential in all cases, suggesting that the position of the
first minimum depth in the pair potential in the present study is obtained due to F screening
function.

Using this pair potential it has been computed the longitudinal and transverse phonon fre-
quency for Zr61.88Al10Ni10.12Cu18, Zr64.13Al10Ni10.12Cu15.75 and Zr65Al10Ni10Cu15 BMG are
shown in Figures 8(b), 9(b) and 10(b) respectively. Phonon mode graphs show that the nature
of peak position is not much affected by different type of screening functions. The longitudinal
and transverse frequencies show deviation for H, T and S functions with respect to F screening
for Zr-Al-Ni-Cu BMG systems. It is obvious from the figures that the oscillations are protrud-
ing in the longitudinal mode as compared to transverse mode, which indicates that collective
excitations at larger wave vector transfer due to the dispersion of longitudinal excitation. The
influence of the results of phonon frequencies is clearly observed on the elastic constants, as we
have calculated these elastic constants from the long wavelength limit of phonon frequencies.

From the Tables 9–11 it is observed that sound velocity computed using present model
potential along with T, IU and F functions are found to be very close to one another and
calculated sound velocities using F screening function shows a good agreement with available
data [4–6]. Computed bulk modulus using model potential along with all local field correction
functions is underestimated as compared to the experimental [4] and other available data
[5, 6]. Presently computed percentile deviation for modulus of rigidity with respect to available
data. The maximum deviation is found in F screening function, the values are 25.5, 26.9 and
6.2% for Zr61.88Al10Ni10.12Cu18, Zr64.13Al10Ni10.12Cu15.75 and Zr65Al10Ni10Cu15 respectively, and
minimum deviation is found for in H function, the values are found 2.57 and 4.0% for
Zr61.88Al10Ni10.12Cu18 and Zr64.13Al10Ni10.12Cu15.75 respectively.

Presently calculated Young’s modulus and Debye temperature using local model potential
along with the S screening function is found in good agreement with available results for

Properties H [13] T [14] IU [15] F [16] S [17] Exp. [6] Other [6]

υL�105 (cm s�2) 3.6701 4.1883 4.1731 4.1990 3.8565 4.693 4.704

υT�105 (cm s�2) 2.1189 2.4181 2.4043 2.4243 2.2265 2.046 2.092

BT�1012 (dyne/cm2) 0.4975 0.6479 0.6432 0.6513 0.5493 1.077 1.083

G�1012 (dyne/cm2) 0.2985 0.3888 0.3899 0.3908 0.3296 0.293 0.291

ξ 0.25 0.25 0.25 0.25 0.25 0.375 0.37

Y�1012 (dyne/cm2) 0.7463 0.9719 0.9649 0.9769 0.8240 0.805 0.801

θD (K) 263.355 300.544 299.451 301.31 276.73 0.263 262.9

Table 9. Elastic properties of Zr61.88Al10Ni10.12Cu18 BMG.
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Zr61.88Al10Ni10.12Cu18, and Zr64.13Al10Ni10.12Cu15.75 and IU function is found in good agree-
ment with experimental as well as other available results [6]. On the other hand, the calculated
values of Young’s modulus and Debye temperature using model potential along with T, IU
and F screening functions are found very close to each other and good agreement with the
other theoretical data for Zr-Al-Ni-Cu BMG system.

4. Conclusion

The dispersion of longitudinal phonon shows oscillatory behavior for the large q values while
lack of thereof in the transverse phonons. The transverse phonon frequencies increase with
wave number and get saturated at the first peak of ωT ! q curves with small variations. The
ω ! q curve for the transverse phonons achieves maxima at a higher q value than the
longitudinal phonon curve. The peak heights of the longitudinal as well as transverse phonon
frequencies of these BMGs are nearly the same. Thus, the dispersion curves of these BMGs are
found to be similar.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. [4–6] Other [4–6]

υL�105 (cm s�2) 3.3964 3.9328 3.9199 3.9440 3.6025 — 5.050

υT�105 (cm s�2) 1.9609 2.2706 2.2632 2.2771 2.0799 — 2.393

BT�1012 (dyne/cm2) 0.4086 0.5478 0.5443 0.5510 0.4597 1.067 1.066
1.034
1.120

G�1012 (dyne/cm2) 0.2452 0.3267 0.3265 0.3306 0.2758 0.31 0.303
0.359

ξ 0.25 0.25 0.25 0.25 0.25 — 0.35

Y�1012 (dyne/cm2) 0.6129 0.8218 0.8164 0.8265 0.6895 0.791 0.83

θD (K) 238.2 275.9 274.9 276.6 252.7 267 267
292.9

Table 11. Elastic properties of Zr65Al10Ni10Cu15 BMG.

Properties H [13] T [14] IU [15] F [16] S [17] Exp. Other [6]

υL�105 (cm s�2) 3.6694 3.4202 4.1873 4.2100 3.8666 — 4.679

υT�105 (cm s�2) 2.1186 2.4262 2.4175 2.4306 2.2324 — 2.079

BT�1012 (dyne/cm2) 0.4940 0.6479 0.6432 0.6502 0.5481 — 1.066

G�1012 (dyne/cm2) 0.2964 0.3887 0.3859 0.3901 0.5481 — 0.285

ξ 0.25 0.25 0.25 0.25 0.25 — 0.37

Y�1012 (dyne/cm2) 0.7410 0.9718 0.9649 0.9754 0.8227 — 0.785

θD (K) 261.2 299.1 298.06 299.68 275.24 — 259.2

Table 10. Elastic properties of Zr64.13Al10Ni10.12Cu15.75 BMG.
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It is apparent from theωL! q curves of the glassymaterials that they are screening sensitive in the
low-momentum region. The difference in ω! q relation begins right from the starting value of q
and it’s becomesmaximumat the first peak of theωL! q curve, again, it tends todecrease andboth
ωL! q relations seem to converge at the first minima of theωL! q curve. The position of the first
peak is independent of the screening functions. However, the height of the peak strongly depends
on the type of screening employed in the present calculations. The phonon dispersion curve for the
Zr-based bulkmetallic glasses computed using the IU and F function give higher numerical values
than other local field correction functions. Using H-function give the lowest values for the Zr-base
bulkmetallic glasses.Agarwal has done the longitudinal and transversemodes for theZr-Ti-Cu-Ni-
Be for three different concentrations using the BS-Method. When compared with our present
approach, it is found thatmodel potential gives underestimated results.

Presently calculated elastic properties for BMGs are listed in Tables 2–11. It is observed that the
computed elastic properties using model potential are in excellent agreement with experimental
and other available theoretical data. Among the five different screening functions T, IU and F
functions show good agreement for present model potential. While due to H screening function
than the other LFCF and computed values using S lying between the F and H screening function.
For Zr-Ti-Cu-Ni-Be, Zr-Cu-Ni-Al-Ta, Zr-Ti-Cu-Ni-Al and Zr-Al-Ni-Al BMGs at different concen-
trations computed using model potential, it is observed that νl and νt, Young modulus, modulus
rigidity, Debye temperature using the T, IU, F and S local field correction functions show the very
good agreement with experimental and other available data. The Zr-based BMGs are observed
that the present results obtained due to T, IU and F screening functions are in good agreement
with available with other data. Present study clearly reveals that proper description of local field
correction function is required for the study of phonon modes of bulk metallic glasses.

Overall, we stated that the phonon dispersion curve generated from the HB approach repro-
duces satisfactorily the general characteristic of dispersion curves. The well recognized Model
potential along with IU, Farid et al. [F] and Sarkar-Sen et al. [S] local field correction functions
generates consistent results. Hence, our Model-1 potential is suitable for the studying the
phonon dynamics of bulk metallic glasses.

Author details

Punitkumar Harshadbhai Suthar

Address all correspondence to: sutharpunit@rediffmail.com

Department of Physics, CU Shah Science College, Ahmedabad, Gujarat, India

References

[1] Klement W, Willens RH, Duwez P. Non crystalline structure in solidified Gold-Silicon
Alloy. Nature. 1960;187:869

Phonon Modes and Elastic Properties of Zr-Based Bulk Metallic Glasses: A Pseudopotential Approach
http://dx.doi.org/10.5772/intechopen.79568

69



Zr61.88Al10Ni10.12Cu18, and Zr64.13Al10Ni10.12Cu15.75 and IU function is found in good agree-
ment with experimental as well as other available results [6]. On the other hand, the calculated
values of Young’s modulus and Debye temperature using model potential along with T, IU
and F screening functions are found very close to each other and good agreement with the
other theoretical data for Zr-Al-Ni-Cu BMG system.

4. Conclusion

The dispersion of longitudinal phonon shows oscillatory behavior for the large q values while
lack of thereof in the transverse phonons. The transverse phonon frequencies increase with
wave number and get saturated at the first peak of ωT ! q curves with small variations. The
ω ! q curve for the transverse phonons achieves maxima at a higher q value than the
longitudinal phonon curve. The peak heights of the longitudinal as well as transverse phonon
frequencies of these BMGs are nearly the same. Thus, the dispersion curves of these BMGs are
found to be similar.
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Abstract

Strong correlations between phonon energies and superconducting transition tempera-
tures can be extracted from phonon dispersion calculations using density functional 
theory for a range of superconducting materials. These correlations are robust and 
consistent with experimental data for key external conditions including isotope effects, 
elemental substitutions and pressure variations. Changes in the electronic band structure 
also correlate with transitions to/from superconductivity but, in general, are less sensitive 
and less obvious than phonon behaviour. A computational approach that considers both 
phonons and electrons and the presence or absence of a phonon anomaly works well for 
conventional superconducting materials with hexagonal, cubic or tetragonal symmetries. 
Superconductivity in these compounds often involves symmetry reduction in an origi-
nal non-superconducting parent compound induced, for instance, by substitution or by 
a dynamic reduction in symmetry shown in electron density distributions and Raman 
spectra. Such symmetry reduction is effectively modelled with super-lattice constructs 
which link Raman spectra with key superconducting parameters.

Keywords: density functional theory, metal diboride, electronic band structure, phonon 
dispersion, phonon anomaly, Raman spectroscopy, superlattice, superconductivity, 
transition temperature, deformation potential, Fermi level

1. Introduction

When distant neutral atoms are brought together, they eventually come close enough to form 
solids. As the atoms approach, the initial gas-like behaviour of the neutral atoms, changes to 
a correlated atomic liquid-like behaviour first, and then, to more organised collective move-
ments in the periodic, or aperiodic, solid. In a periodic solid, the electrons involved in the 
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ionic cores of the atoms retain much of their localised structure pertaining to their original 
neutral atoms, but the outer valence electron orbitals begin to overlap, forming bonds that 
stabilise the structure, if the right conditions are met [1]. Valence electrons also provide con-
duction electrons that can move around in the case of metals, and essentially, regulate overall 
collective behaviour [2]. In a metal, the valence electrons now become the entities with gas-
like behaviour, following the Fermi-Dirac statistics for particles with spin ½ [3], instead of 
Maxwell-Boltzmann statistics [4].

The gas of valence electrons is not static and neutral; and is, in fact, more like a plasma, 
capable of collective motion to shield out variations in electrostatic potential caused by the 
motion of ions [5]. This behaviour is evident when the Born-Oppenheimer approximation is 
valid; a fundamental concept in density functional theory (DFT) [6, 7]. In this approximation, 
the positions or distributions of these outer electrons adjust very quickly in response to any 
ionic core movements [3, 8]. Furthermore, on the basis of Fermi-Dirac statistics and the exclu-
sion principle, most of the electrons under the influence of external fields remain in the same 
states. Only a small fraction in the thermal layer (with energy kBT from the Fermi energy EF, 
where kB is equal to the Boltzmann constant) are free to move [5], provided these electrons can 
find empty states to move to and that energy and momentum conservation laws are fulfilled.

1.1. Valence electrons

The movement of nearly free valence electrons in a metallic solid is generally well described 
by Bloch waves, which invoke periodicities in the crystal lattice. Again, this assertion is par-
ticularly true for systems subject to the Born-Oppenheimer approximation. The collection of 
energies of allowed quantized Bloch states is grouped together in the electronic band structure, 
which correspond to the solutions of Schrodinger’s equation typically displayed in reciprocal 
space as a function of the wave vector k [3, 9]. Similarly, the equations for atomic or ionic core 
movements can be solved for the vibrational (or phonon) states and the allowed frequencies 
are grouped together in the phonon dispersion. In order to differentiate vibrational states from 
electronic states, the former and the latter are typically labelled with q and k, respectively. 
However, both q and k have the same formal periodic properties [9].

In the case of silicon or diamond, which have a two-atom basis in the lattice, or for more complex 
compounds with different atomic species, acoustic and optic branches evolve [3, 10]. The differ-
ence between acoustic and optic branches in phonon dispersions, particularly in monoatomic 
cases such as silicon or diamond, is quite similar to the difference between bonding and antibond-
ing states in the electronic spectrum [9]. The frequencies in the phonon dispersion are related to 
the interatomic bonding forces or energies, and when the calculated phonon dispersions contain 
negative frequencies (or not), this can be considered an indicator of dynamic or structural stabil-
ity or instability [7, 11, 12]. This indicator is particularly useful for analyses of situations that are 
difficult to replicate in the laboratory, such as for solids at very high pressures [7].

The Born-Oppenheimer approximation allows for the separation of variables in the equations 
of movement for electrons and for ionic cores [3, 8], and gives distinct electronic band struc-
tures and phonon dispersions. However, the two concepts are not completely independent, 
particularly for superconducting solids, such that the electron–phonon interaction often should 
be considered [3]. An electron–phonon coupling is dependent on the density of states in 
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proximity to the Fermi energy and is relatively strong for electronic bands with a high density 
of states adjacent to the Fermi energy [13]. Such coupling is important for explanations of a 
wide range of physical properties, including superconductivity [3] and especially that of the 
conventional Bardeen-Cooper-Schrieffer (BCS) type [14].

1.2. Lattice dynamics

Atoms in a crystal lattice participate in two types of oscillations of different nature [2]: (i) 
thermal oscillations, for which amplitudes and energy change with temperature become zero 
at T = 0 K; and (ii) zero oscillations, which exist even at T = 0 K and are of quantum mechanical 
origin related to Heisenberg’s uncertainties. If the amplitude of zero oscillations are commen-
surate with the mean distance between atoms, then a crystalline structure cannot be formed at 
normal pressure, even at T = 0 K, and the substance will remain liquid [2]. Another important 
subset of the thermal oscillatory motion is given by the Debye temperature, ΘD, which is 
determined by the ratio between the thermal and the bonding energies. At low temperatures 
(below ΘD), the bonding energy promotes the coordinated motion of atoms and only the low 
frequency lattice waves are excited, while at higher temperatures (above ΘD) the movement is 
more chaotic and all lattice waves are excited. In both cases, the equilibrium positions remain 
approximately in the same places [2, 15]. The concept of a high ΘD has played a significant role 
in the historical understanding of superconductivity [16].

Raman spectroscopy of crystalline solids is one of the techniques that can provide direct esti-
mates of the electron–phonon interactions, where an incident, monochromatic laser beam 
excites electrons, and as a result of interactions that are, in general with phonons, an inelasti-
cally scattered beam with a shifted frequency or wavenumber is detected. The Raman activity 
of phonon modes can be determined with reference to group symmetry analyses for the peri-
odic crystal [10, 17]. Although, in fact, the structure of a crystalline compound is not strictly 
periodic in each given instant of time because of the oscillating motion of ions [2].

DFT offers the capability to calculate electronic bands and phonon dispersions with great 
accuracy and, more recently, within viable computation time given rapid progress with soft-
ware codes and computer hardware. As a result, DFT is now an essential tool to assist with 
interpretation of experimental results. With continued success and more rigorous agreement 
between experimental and calculated results, DFT is now established as a reliable tool for 
accurate prediction of material properties. Furthermore, DFT is an effective computational 
technique for ab initio prediction of a new material’s stability and of the potential to engender 
key properties such as superconductivity.

Of perhaps greater importance is the potential to predict the superconducting transition temper-
ature, Tc, in anticipation of experimental measurement. We will demonstrate that this capacity 
is inherent in the fundamental attributes of DFT and that the practice is readily applied. We will 
use examples of existing materials to demonstrate the approach and provide reference to pre-
dicted “new superconducting materials” that are yet to be synthesised. Determination of a value 
for Tc is not only important to minimise the disappointment of synthesising an infertile haystack 
to find the elusive needle but also to plan for practical evaluations of superconducting applica-
tions. However, perhaps of even greater significance is the exceptional value of insight into the 
mechanisms and underlying interactions from which superconductivity emerges [18, 19].
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For simple structures, the Eliashberg theory—modified via the McMillan or Allen-Dynes 
equations—determines Tc from electron–phonon couplings using normal state parameters 
[20] reasonably well. Given this, it should be possible for standard DFT models to provide all 
the necessary superconducting characteristics of a material from a knowledge of the crystal 
structure. In this chapter, we explore how Raman spectroscopy can reveal the dynamic sym-
metry of superconducting materials, and how consideration of lower symmetry superlattice 
modes provides clues to materials behaviour. We will show how the energy of key phonon 
modes shows strong correlation with the value of Tc for MgB2, the archetype superconducting 
metal diboride, as well as for compositional analogues in the symmetry group.

2. MgB2: unique characteristics

Magnesium diboride, MgB2, is an electron–phonon coupled BCS-type superconductor with 
the highest superconducting transition temperature Tc for this structure type at ~40 K [21]. 
The material is a simple compound with only three atoms (two boron and one magnesium) 
in an hexagonal unit cell with P6/mmm symmetry and lattice parameters a = 3.086A and 
c = 3.524A [21, 22]. This simple structure with atoms in the second row of the Periodic Table 
and extensive microstructural and physical property characterisation, makes MgB2 ideal for 
DFT calculations that can be experimentally validated [23, 24].

A wide variety of microstructural, chemical and physical properties of MgB2 have been 
thoroughly investigated and the reader is referred to example review papers on the topic 
[24]. Investigations on MgB2 include studies using high quality crystals and polycrystalline 
materials, on isotopic effects ([25, 26], and references there in), on hydrostatic pressure effects 
([11, 27, 28], and references there in), on a variety of metal substituted forms ([29–33], and 
references there in), and other similar structures that do not superconduct or that have Tc 
values different to MgB2. This significant body of work presents experimental data that can 
be compared with outcomes from DFT calculations [11, 19, 25, 29, 30, 34, 35] and provides 
validation of structure–property interpretations. Figure 1 displays a schematic of the MgB2 
structure emphasising the layered nature of the compound.

2.1. Electronic properties

Figure 2a displays the electronic band structure (EBS) of MgB2 along representative reciprocal 
space directions for the P6/mmm group symmetry, for the reduced Brillouin zone scheme [9, 36]. 
The EBS of MgB2 contains two characteristic approximate parabolas centred at Γ, with a common 
vertex at about 0.4 eV above the Fermi energy, inverted and with different curvatures each of 
which represents different effective masses (see Figure 2a). These parabolas correspond to the σ 
heavy and light hole bands along the Γ–K and Γ–M reciprocal directions and are associated with 
electronic conduction or metallic behaviour in the plane of the boron atoms [37, 38]. Two parallel 
degenerate lines with low dispersion along the Γ–A direction, also associated with the σ bands, 
is another characteristic feature of the MgB2 EBS. These σ bands are known to couple strongly 
with the important E2g vibration modes that correspond to in-plane B–B atom movements and 
are key to superconductivity in MgB2. Other bands, not identified as σ bands, are primarily π 
bands and relate to three-dimensional movement of electrons [37, 38].
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The σ band parabolas at Γ, after folding from the extended Brillouin zones back into the 
reduced zone scheme are identified schematically in Figure 2a as red and blue lines. This 
folding of one suite of bands around Γ is exemplified in Figure 2a as extended orange dotted 
lines and, for more generic bands, is recognised in a number of key publications [39, 40]. The 
nature of these bands, and the observation that after folding the bands are nearly full, is a 
strong indication that the Fermi energy is large (compared with other AlB2-type structures) 
and that valence electrons associated with these bands completely fill the first Brillouin zone.

The coexistence in MgB2 of inverted, approximate parabolic σ bands and low dispersive 
bands in the Γ–M and Γ–A directions, respectively, results in approximately coaxial, parallel 
σ warped tubes for the Fermi surface when represented in the reduced zone scheme and as 
shown in Figure 2b. These parallel tubes correspond to hole carriers, that is, outside and 
inside are filled and empty, respectively, with electrons. This creates an inter-tubular volume 
in the reduced zone scheme, which is filled with respect to the inner tube and empty with 
respect to the outer tube [35]. This concept is awkward for physical interpretation in recipro-
cal, let alone real, space and can be more easily reconciled by assuming an extended zone 
scheme with separate inner or outer diameter tubes at alternating and adjacent reciprocal 
space points [11, 35]. Thus, the nature of the Fermi surface in MgB2 with parallel sections in 
close proximity intrinsically implies resonant behaviour of electrons and phonons.

Calculating the difference in kinetic Fermi energies for the adjacent σ bands, using the respec-
tive Fermi vectors and effective masses, results in a value of phonon energy equivalent to 
approximately twice the energy gap of MgB2 [38]. Such an energy gap corresponds to a fre-
quency approximating 1/5, or 20%, of the frequency of the E2g mode [25, 34]. This value of 
vibration frequency is a Raman active mode (after folding the Brillouin zone boundaries to the 
Γ point) for a reduced P6/mmm symmetry for MgB2 (e.g. the space group P63mc). A reduced 

Figure 1. Schematic of the MgB2 crystal structure in perspective view showing the layered nature of the compound. 
Metal atoms are gold colour and boron atoms are green; red dotted lines outline a unit cell.
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Figure 2. DFT calculated features of MgB2 using the LDA functional and Δk = 0.02A−1 showing (a) EBS highlighting the 
two characteristic parabolas (red and blue lines) centred around Γ. The folded nature of the parabolic σ bands identified 
by the orange dotted lines is discussed in the text; (b) a section of the Fermi surface showing tubular σ surfaces (light and 
dark blue) vertical segments coaxial with the c-axis.
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symmetry configuration is readily represented by a superlattice along the c-axis direction [34]. 
Such low frequency vibrations have been observed in experimental Raman spectra of MgB2 
([34], and references there in) which also varies commensurate with the isotope effect [25].

2.2. Vibrational properties

Figure 3 displays the calculated phonon dispersion (PD) for MgB2 at atmospheric pressure 
(0 GPa hydrostatic stress). The PD branches for optical phonons are labelled at the Γ point. 
The important E2g modes intersect the Γ point at about 550 cm−1 wavenumber. The “W shaped” 
region around the E2g mode at Γ below the highest adjacent frequency B1g is called a phonon 
dispersion anomaly. This feature was originally described by Kohn [41] after whom it is named 
and, for MgB2, verified experimentally using inelastic X-ray scattering (IXS) [42, 43]. Hence, 
this “W shaped” feature is not an artefact of the DFT calculations.

As we will indicate later, there are important relationships between features in the EBS and 
PD of MgB2 that are perhaps critical to the “tuning” of a structure to induce or enhance super-
conductivity. We show that the Kohn anomaly is an indicator of superconductivity in—to 
date—BCS materials [11, 19, 25, 29, 30, 34, 35]. Other features may also be important indica-
tors of resonant behaviour. For example, we note above that the two characteristic parabolas 
centred at Γ show a common vertex at ~0.4 eV above the Fermi energy (Figure 2a). In the PD, 
the Kohn anomaly is also centred at Γ with degenerate E2g modes. Of further interest, two 
other parabolas centred on A and M above the Fermi level in the EBS also show degenerate 
E2g modes at the same reciprocal lattice boundaries in the PD. These characteristics imply, a 
priori, that symmetry plays a role in the real space moderation, or distribution, of electrons 
and phonons in superconducting materials.

Figure 3. DFT calculated phonon dispersion for MgB2 at atmospheric pressure. The parameter δ is an important indicator 
of the phonon anomaly thermal energy.
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Figure 4. Superlattice construct for Mg2AlB6 (Mg:Al::2:1) representing Mg0.67Al0.33B2.

A temperature, Tδ can be extracted from measurement of the depth of the anomaly (i.e. a value 
in cm−1 for δ in Figure 3) [29, 30, 34]. The value for Tδ is strongly correlated with the supercon-
ducting transition temperature Tc. The correlation is robust and consistent with experiments 
under a wide range of external conditions including isotopic [25, 34] and metal substituted 
compositions of MgB2 [29, 30], a wide range of hydrostatic pressures [11] as well as for iso-
structural compounds in the silicate system [30]. In addition, for MgB2 we have shown that the 
depth of the anomaly is strongly correlated to the inter-tubular Fermi surface volume [11, 35] 
and to electron density variations along B–B bonds in response to movement of B atoms linked 
to the dominant E2g vibration modes [35].

To model phonon dispersions, a practical computational consideration is that the virtual crys-
tal approximation (VCA) is not implemented for plane waves in Materials Studio CASTEP 
[44]. Therefore, an alternative to representation of atom substitutions in a reduced unit cell 
structure is to use larger unit cells with substituent atoms in respective proportions. This 
approach results in a need to construct superlattices to describe metal substitution in MgB2, 
albeit the principle may apply to many layered structures.
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For Al-substituted MgB2, superlattices in the c-axis direction are well described using a range 
of diffraction and microscopy techniques [29, 45–47] (and references therein). Thus, we use 
superlattice constructs to describe intermediate compositions of metal-substituted MgB2 to 
configure models for band structure and phonon dispersion DFT calculations. Figure 4 shows 
a schematic of a superlattice for 0.33 atoms of Al substitution per Mg atom in MgB2. This prin-
ciple of a superlattice construct is also used for all other types of metals substituted into the 
MgB2 structure in the examples to follow. This approach, when combined with a converged 
PD calculation, presents an a priori validation of potential for phase stability of the specific 
composition. However, this validation does not infer solubility of the substituted metal in the 
MgB2 structure [30].

3. Transition metal diborides

As noted in Section 2, the electronic band structure and phonon dispersion of MgB2 display 
unique characteristics that are not necessarily present in other metal diborides except for 
some metal substituted variations of MgB2. We will now compare fundamental characteristics 
of MgB2 with other diborides containing metal atoms with different valence states and orbital 
characteristics. Figure 5 shows the region of the Periodic Table we systematically investigate 
using DFT calculations of both electronic band structures and phonon dispersions. In this 

Figure 5. Region of the periodic table with low atomic number transition metals (dotted red outline) investigated using 
DFT calculations of electronic bands and phonon dispersions.
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Figure 4. Superlattice construct for Mg2AlB6 (Mg:Al::2:1) representing Mg0.67Al0.33B2.
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structural compounds in the silicate system [30]. In addition, for MgB2 we have shown that the 
depth of the anomaly is strongly correlated to the inter-tubular Fermi surface volume [11, 35] 
and to electron density variations along B–B bonds in response to movement of B atoms linked 
to the dominant E2g vibration modes [35].

To model phonon dispersions, a practical computational consideration is that the virtual crys-
tal approximation (VCA) is not implemented for plane waves in Materials Studio CASTEP 
[44]. Therefore, an alternative to representation of atom substitutions in a reduced unit cell 
structure is to use larger unit cells with substituent atoms in respective proportions. This 
approach results in a need to construct superlattices to describe metal substitution in MgB2, 
albeit the principle may apply to many layered structures.
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For Al-substituted MgB2, superlattices in the c-axis direction are well described using a range 
of diffraction and microscopy techniques [29, 45–47] (and references therein). Thus, we use 
superlattice constructs to describe intermediate compositions of metal-substituted MgB2 to 
configure models for band structure and phonon dispersion DFT calculations. Figure 4 shows 
a schematic of a superlattice for 0.33 atoms of Al substitution per Mg atom in MgB2. This prin-
ciple of a superlattice construct is also used for all other types of metals substituted into the 
MgB2 structure in the examples to follow. This approach, when combined with a converged 
PD calculation, presents an a priori validation of potential for phase stability of the specific 
composition. However, this validation does not infer solubility of the substituted metal in the 
MgB2 structure [30].

3. Transition metal diborides

As noted in Section 2, the electronic band structure and phonon dispersion of MgB2 display 
unique characteristics that are not necessarily present in other metal diborides except for 
some metal substituted variations of MgB2. We will now compare fundamental characteristics 
of MgB2 with other diborides containing metal atoms with different valence states and orbital 
characteristics. Figure 5 shows the region of the Periodic Table we systematically investigate 
using DFT calculations of both electronic band structures and phonon dispersions. In this 

Figure 5. Region of the periodic table with low atomic number transition metals (dotted red outline) investigated using 
DFT calculations of electronic bands and phonon dispersions.
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analysis, we evaluate similarities and differences to MgB2, in order to identify parameters that 
control the unique features of superconductivity in MgB2.

3.1. Row 4 diborides

Figures 6 and 7 display the DFT calculated EBS and PD for the transition metal elements 
(Z = 21–23; Z = 39–41) identified in Figure 5. Of the transition metal diborides shown in 
Figures 6 and 7, ScB2 shows the most prospective resemblance to MgB2 albeit with substan-
tially reduced features. Both PDs display depressions or anomalies in their E2g branches near 
Γ from which temperatures can be extracted and correlated with a corresponding Tc [29, 30, 34]. 
The anomalies derive from co-existing heavy and light effective masses for approximate 
inverted parabolas in key sections of their EBS. These inverted parabolas are centred above 
the Fermi level at Γ for MgB2. However, for ScB2 the inverted parabolas at Γ are below the 
Fermi level yet degenerate bands of an inverted parabola format are also centred at A. In 
addition, the order of optical modes in the PD is different in ScB2 compared to MgB2 with the 
E2g modes at the highest frequency.

This apparent discrepancy in behaviour compared with MgB2 can be reconciled by consider-
ing the signs of the relevant orbitals and their likely contribution to hybrid bonding between 
boron and the metal atoms along the c-direction. Metals in a higher row, including Sc, Ti and 
V, provide valence electrons from d orbitals while in MgB2, p orbitals are predominant. While 
the lobes of p orbitals have opposite signs, those of d orbitals have the same sign. Thus, while 
hybridization of pure p orbitals in MgB2 produces a periodic pattern of orbitals in a single unit 
cell, hybridization of mixed p and d orbitals in ScB2 requires a double supercell to establish an 
appropriate periodic orbital pattern.

3.2. Row 5 diborides

As shown in Figure 7, the EBS for YB2 is similar to that shown in Figure 6 for ScB2; in par-
ticular, the configuration of heavy and light effective masses above the Fermi level at the 
boundary point A. Note also, that as with ScB2, bands at Γ in the EBS are below the Fermi 
level. A similar evaluation of the respective d orbital contribution to hybrid bonds as noted for 
ScB2 may also apply to YB2. However, the PD in Figure 7b does not clearly show an anomaly, 
but rather displays overlap between two E2g branches; one of which is concave and the other 
convex in the Γ–M and Γ–K directions. The reason for this difference in PD between YB2 and 
ScB2 is unclear but may be due to insufficient Δk grid resolution [13]. In addition, the calcula-
tion for YB2 determines a Fermi energy of −1.62 eV, which is often referred to an average 
zero-point in the interstitial space and may indicate large vacuum regions in the unit cell [48]. 
Nevertheless, these DFT calculations for YB2 suggest potential for constructive moderation 
of conduction properties by conventional materials methods including metal substitution or 
application of pressure.

Other metal diborides, such as VB2, TiB2, ZrB2 and NbB2, do not display co-existing light and 
heavy effective mass σ bands that intersect the Fermi level in their EBS. Therefore, approxi-
mately parallel Fermi surfaces and important deformation potentials, which are strongly 
linked to the superconductivity in MgB2 and in other compounds, cannot be defined in these 
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Figure 6. DFT calculated electronic bands and phonon dispersions for the first 3d transition metal diborides. (a), (c) and 
(e) shows EBS for ScB2, TiB2 and VB2, respectively, in which the two parabolic bands similar to the σ bands of MgB2 are 
identified as red and blue lines; (b), (d) and (f) shows PDs for ScB2, TiB2 and VB2 respectively, in which E2g (red) and B2g 
(blue) phonon modes are identified.
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analysis, we evaluate similarities and differences to MgB2, in order to identify parameters that 
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the lobes of p orbitals have opposite signs, those of d orbitals have the same sign. Thus, while 
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ticular, the configuration of heavy and light effective masses above the Fermi level at the 
boundary point A. Note also, that as with ScB2, bands at Γ in the EBS are below the Fermi 
level. A similar evaluation of the respective d orbital contribution to hybrid bonds as noted for 
ScB2 may also apply to YB2. However, the PD in Figure 7b does not clearly show an anomaly, 
but rather displays overlap between two E2g branches; one of which is concave and the other 
convex in the Γ–M and Γ–K directions. The reason for this difference in PD between YB2 and 
ScB2 is unclear but may be due to insufficient Δk grid resolution [13]. In addition, the calcula-
tion for YB2 determines a Fermi energy of −1.62 eV, which is often referred to an average 
zero-point in the interstitial space and may indicate large vacuum regions in the unit cell [48]. 
Nevertheless, these DFT calculations for YB2 suggest potential for constructive moderation 
of conduction properties by conventional materials methods including metal substitution or 
application of pressure.

Other metal diborides, such as VB2, TiB2, ZrB2 and NbB2, do not display co-existing light and 
heavy effective mass σ bands that intersect the Fermi level in their EBS. Therefore, approxi-
mately parallel Fermi surfaces and important deformation potentials, which are strongly 
linked to the superconductivity in MgB2 and in other compounds, cannot be defined in these 

Phonons in Low Dimensional Structures84

Figure 6. DFT calculated electronic bands and phonon dispersions for the first 3d transition metal diborides. (a), (c) and 
(e) shows EBS for ScB2, TiB2 and VB2, respectively, in which the two parabolic bands similar to the σ bands of MgB2 are 
identified as red and blue lines; (b), (d) and (f) shows PDs for ScB2, TiB2 and VB2 respectively, in which E2g (red) and B2g 
(blue) phonon modes are identified.
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Figure 7. DFT calculated electronic bands and phonon dispersions for the first 4d transition metal diborides. (a), (c) and 
(e) shows EBS for YB2, ZrB2 and NbB2, respectively, in which the two parabolic bands similar to the σ bands of MgB2 are 
identified as red and blue lines; (b), (d) and (f) shows PDs for YB2, ZrB2 and NbB2 respectively, in which E2g (red) and B2g 
(blue) phonon modes are identified.
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cases. Therefore, these compounds are unlikely to be superconducting without some modi-
fication (e.g. element doping or substitution) and do not display anomalies in their phonon 
dispersions. Such modification to the structure type, for example, adding boron to form 
NbB2.5 [49], or substituting other elements, such as in Zr1-xVxB2 [50–52] or Zr1-xNbxB2 [53] leads 
to superconductivity; as also suggested by Pickett et al. [54] based on DFT calculations of 
AlB2-type structures. These minor modifications to the stoichiometry of an MB2 structure are 
excellent examples of “fine-tuning” that achieves a dramatic change in material property. We 
surmise that this fine-tuning would be manifest in the EBS as coexisting σ bands shifting to 
above the Fermi level and the appearance of a Kohn anomaly in a PD centred around Γ.

3.3. Diboride fine tuning

Strategic utilisation of DFT models allows snapshots of dynamic electron interactions in sol-
ids. An and Pickett [55] used DFT to determine deformation potential—or the energy required 
to break the degeneracy of σ electronic bands per unit length of inter-bond distances—in 
superconductors. This work also showed that for MgB2, the E2g phonon modes are of greater 
significance for superconductivity than other optical phonon modes in this structure; con-
firming many other experimental studies at the time. To utilise this approach, the electron 
density (ED) distributions of relevant bonds are determined at discrete steps of atom displace-
ments along a bond direction. The computational technique requires calculation of the EBS 
for a particular frozen atom configuration with due consideration of symmetry conditions 
invoked by the displaced atom positions [35]. For MgB2, the structure affords an uncommon 
opportunity to evaluate deformation potentials along the direction(s) of the E2g mode which 
parallel the B–B bonds in the a-b plane.

As boron atoms are displaced from their equilibrium positions, a degeneracy at the vertex of the 
inverted σ band parabolas is broken and a deformation potential is created [55]. A critical dis-
placement is identified where the lower effective mass σ band becomes tangential to the Fermi 
level. At this point, the σ band becomes filled and can no longer take part in electron transitions 
between the heavy and light σ bands. Thus, coherency is lost and superconductivity is destroyed 
[35]. An example of this condition is shown in Figure 8a in which the EBS for atom displacement, 
Dx = 0.006 (or a change of ~3.5% of the bond length after converting from fractional values of 
the a-lattice parameter) along the E2g mode is shown compared with the equilibrium positions 
(blue lines) for boron atoms in MgB2 [35]. Figure 8b shows the region around Γ in greater detail 
depicting the relative shift of each band and the loss of degeneracy with atom displacement.

The PDs for models of deformation potential for diboride structures show corresponding 
shifts in the phonon anomaly with displacement of atoms along the E2g mode directions [35]. 
Figure 8c and d shows a partial PD for the Γ–K and Γ–M orientations of MgB2 at equilib-
rium and at Dx = 0.006 relative displacement of boron atoms from equilibrium. At the critical 
displacement (Figure 8d), the E2g mode is similar in energy to the B2g mode, as if the total 
(temperature or kinetic) energy associated with the anomaly has been stored into deformation 
potential energy. In addition, the E2g modes are clearly non-degenerate in these orientations, 
including Γ, for atom displacement Dx = 0.006 (Figure 8d). The difference in Fermi energies 
between the critical displaced position and the equilibrium position also shows a strong cor-
relation with the superconducting energy gap [35].
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Figure 7. DFT calculated electronic bands and phonon dispersions for the first 4d transition metal diborides. (a), (c) and 
(e) shows EBS for YB2, ZrB2 and NbB2, respectively, in which the two parabolic bands similar to the σ bands of MgB2 are 
identified as red and blue lines; (b), (d) and (f) shows PDs for YB2, ZrB2 and NbB2 respectively, in which E2g (red) and B2g 
(blue) phonon modes are identified.

Phonons in Low Dimensional Structures86

cases. Therefore, these compounds are unlikely to be superconducting without some modi-
fication (e.g. element doping or substitution) and do not display anomalies in their phonon 
dispersions. Such modification to the structure type, for example, adding boron to form 
NbB2.5 [49], or substituting other elements, such as in Zr1-xVxB2 [50–52] or Zr1-xNbxB2 [53] leads 
to superconductivity; as also suggested by Pickett et al. [54] based on DFT calculations of 
AlB2-type structures. These minor modifications to the stoichiometry of an MB2 structure are 
excellent examples of “fine-tuning” that achieves a dramatic change in material property. We 
surmise that this fine-tuning would be manifest in the EBS as coexisting σ bands shifting to 
above the Fermi level and the appearance of a Kohn anomaly in a PD centred around Γ.

3.3. Diboride fine tuning

Strategic utilisation of DFT models allows snapshots of dynamic electron interactions in sol-
ids. An and Pickett [55] used DFT to determine deformation potential—or the energy required 
to break the degeneracy of σ electronic bands per unit length of inter-bond distances—in 
superconductors. This work also showed that for MgB2, the E2g phonon modes are of greater 
significance for superconductivity than other optical phonon modes in this structure; con-
firming many other experimental studies at the time. To utilise this approach, the electron 
density (ED) distributions of relevant bonds are determined at discrete steps of atom displace-
ments along a bond direction. The computational technique requires calculation of the EBS 
for a particular frozen atom configuration with due consideration of symmetry conditions 
invoked by the displaced atom positions [35]. For MgB2, the structure affords an uncommon 
opportunity to evaluate deformation potentials along the direction(s) of the E2g mode which 
parallel the B–B bonds in the a-b plane.

As boron atoms are displaced from their equilibrium positions, a degeneracy at the vertex of the 
inverted σ band parabolas is broken and a deformation potential is created [55]. A critical dis-
placement is identified where the lower effective mass σ band becomes tangential to the Fermi 
level. At this point, the σ band becomes filled and can no longer take part in electron transitions 
between the heavy and light σ bands. Thus, coherency is lost and superconductivity is destroyed 
[35]. An example of this condition is shown in Figure 8a in which the EBS for atom displacement, 
Dx = 0.006 (or a change of ~3.5% of the bond length after converting from fractional values of 
the a-lattice parameter) along the E2g mode is shown compared with the equilibrium positions 
(blue lines) for boron atoms in MgB2 [35]. Figure 8b shows the region around Γ in greater detail 
depicting the relative shift of each band and the loss of degeneracy with atom displacement.

The PDs for models of deformation potential for diboride structures show corresponding 
shifts in the phonon anomaly with displacement of atoms along the E2g mode directions [35]. 
Figure 8c and d shows a partial PD for the Γ–K and Γ–M orientations of MgB2 at equilib-
rium and at Dx = 0.006 relative displacement of boron atoms from equilibrium. At the critical 
displacement (Figure 8d), the E2g mode is similar in energy to the B2g mode, as if the total 
(temperature or kinetic) energy associated with the anomaly has been stored into deformation 
potential energy. In addition, the E2g modes are clearly non-degenerate in these orientations, 
including Γ, for atom displacement Dx = 0.006 (Figure 8d). The difference in Fermi energies 
between the critical displaced position and the equilibrium position also shows a strong cor-
relation with the superconducting energy gap [35].
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The bond charges, which are highly localised along the covalent bond positions, display 
modulations which can be interpreted as superlattices of dynamic charge distribution [35]. 
Because the charge that is transferred between bonds is a fraction of the total bond charge, 
the superlattice modulation is subtle and may not be resolved by conventional diffraction 
techniques that typically reflect average models of atomic structures. Higher intensity and/
or resolution probes, such as synchrotron radiation and time resolved experiments, may be 
required to detect these subtle modulations of charge distribution.

ScB2 shows features in the PD that suggest superconductivity occurs at low temperature 
(Figure 6b) and experiment shows that the Tc for ScB2 is 1.5 K (as reported by Sichkar and 
Antonov [56]). However, as shown in Figure 6a, the inverted parabolas around Γ in the EBS 
are degenerate but ~1 eV below the Fermi level. A comparison of the full ScB2 EBS with MgB2 
(blue lines) and a more detailed view of the region around Γ is shown in Figure 9a and b, 
respectively. The potential to invoke band tuning, whereby substitution of another element 

Figure 8. EBS using the LDA functional with Δk = 0.02 A−1 for (a) for MgB2 at equilibrium (blue) and with relative atom 
displacement Dx = 0.006 (red) along the E2g mode direction (i.e. the B–B bond); (b) enlarged view around Γ showing the 
shift of σ bands causing loss of degeneracy. Partial PD for MgB2 calculated using the LDA functional for k = 0.01 A−1 in 
the Γ–K and Γ–M orientations showing changes in the E2g (red) and B2g (blue) modes under conditions of (c) equilibrium 
for Dx = 0.0 and (d) with atom displacement Dx = 0.006.
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for Sc shifts the degenerate parabolas above the Fermi level, may be a viable strategy to achieve 
a higher Tc for Sc1-xMxB2. Experiment shows that Sc substitutes for Mg in Mg1-xScxB2 [32] and, in 
general, is superconducting for x < 0.3 [33]. Calculations on the variation of phonon anomaly 

Figure 9. (a) EBS using the LDA functional with Δk = 0.02 A−1 for MgB2 (blue) compared with ScB2 (red) showing 
degenerate parabolas at Γ above and below the Fermi level, respectively; note the degenerate parabola for ScB2 centred 
around A; (b) enlarged view for MgB2 (blue) and ScB2 (red) around Γ.
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with substitution of Sc in MgB2 show a similar correlation between Tδ and experimentally 
determined Tc [30].

Figure 8 and similar comparisons in other work [30, 55] show that, in general, PDs are more 
sensitive indicators of change in electron–phonon coupling, or electron distribution [35], than 
EBS. This sensitivity to change—either via complete or partial substitution of the metal ion 
into the structure—is also evident in the comparative energy shifts in phonon modes and the 
order of modes with change of composition. For example, the type structure for this suite of 
materials is AlB2 for which the E2g mode is at the highest frequency (~950 cm−1 at Γ) and the B2g 
mode is significantly lower in energy (~500 cm−1 at Γ) [30]. In addition, the PD for AlB2 does not 
show an anomalous form for any optical mode while the EBS shows σ band parabolas at Γ and 
degenerate bands along Γ–A below the Fermi level. In comparison, substitution of Mg into 
the type structure clearly shifts both the phonon modes—reversing the order and frequencies 
of E2g and B2g (~580 and ~710 cm−1 at Γ)—and the σ bands albeit the change with the latter is 
less obvious to the casual observer. For ScB2, a similar behaviour is evident: an anomaly with 
degenerate E2g modes at Γ and along Γ–A in the PD and symmetric, degenerate σ band parabo-
las around A and Γ (above and below the Fermi level, respectively; Figure 6a and b). Again, 
the change in behaviour for ScB2 from the type structure, AlB2, is more evident via the PD.

4. MgB2: low-frequency Raman peaks

Experimental syntheses of MgB2 by vapour [57] or solid state [31, 58] methods are well docu-
mented in the literature and, in comparison to syntheses of many other superconductors, are 
uncomplicated. Commercial production of MgB2 wires [59, 60] was achieved soon after the 
publication by Nagamatsu et al. [21]. Nevertheless, there are cautionary notes about synthe-
sis of high quality MgB2 [31, 61, 62]; a particularly relevant matter for Raman spectroscopy 
because different microstructures can be formed due to small changes in processing condi-
tions (see Figure 2 in Ref. [34]).

In a comparative study of morphologies produced under similar conditions [34], large, 
micron-sized aggregates containing interpenetrating, euhedral grains of MgB2 displayed 
more peaks than those reported in prior Raman characterizations of MgB2 [34]. Importantly, 
the signal/noise ratio for these aggregates under identical conditions was significantly higher 
than the plate morphology aggregates which recorded a lower Tc value of 38.0 K [63]. The 
quality of Raman signal from the aggregates of euhedral MgB2 grains with Tc = 38.5 K [63], 
enabled detection of Raman peaks at low frequencies. Unlike Raman spectra of MgB2 single 
crystals targeting specific polarizations oriented along particular crystallographic axes [64, 65], 
a non-specific geometry with quality, randomly oriented grains presents a modified, atypical 
response compared to conventional Raman spectra.

By inspection, the most obvious interpretation of atypical Raman spectra is the activation of 
extra peaks, including those at lower frequencies [34]. These extra peaks suggest that the well-
known P6/mmm symmetry determined by bulk techniques may be incorrect or perhaps may 
indicate a lower symmetry condition. As is known, highly symmetric structures are expected 
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to have a high number of degeneracies compared with a monoclinic or triclinic structure. As 
the symmetry of a particular structure is lowered, some degeneracies can be broken and, for 
example, additional peaks may appear in Raman spectra. In addition, the bulk powder XRD 
patterns for these MgB2 samples are consistent with the accepted P6/mmm symmetry. Thus, 
if symmetry reduction is a viable interpretation of Raman spectra, the effect would likely be 
subtle and related to a sub-group of the P6/mmm space group. Of note, careful and sophisti-
cated XRD techniques have been used to show that superlattices do occur in MgB2 [66].

DFT interpretation of the Raman spectra shows that all the observed frequencies, except the 
low frequency values (i.e. less than ~300 cm−1) are, in fact, part of the list of possible frequen-
cies for MgB2 [34] with P6/mmm symmetry or related symmetry sub-groups. Raman activity 
changes between modes depending on the particular sub-group of P6/mmm. Further reduc-
tion of the symmetry required a double supercell in the c-axis direction to represent all ele-
ments of symmetry. When calculations include a superlattice structure for MgB2, all relevant 
frequencies are reproduced and additional frequencies, including the low frequencies, match 
experimental values measured using Raman and IR [34].

In essence, modes that are part of the zone boundary at A in the reciprocal lattice representa-
tion of the PD (i.e. parallel to the c-axis direction) are folded at the mid-point to that boundary 
for the lower symmetries, and therefore, become part of the Γ-point modes of a 2c-superlattice. 
This interpretation of symmetry breaking for MgB2 is instructive, not only because of the 
consistent explanation provided to experimentally determined Raman and IR spectra, but 
also because it allows for additional refinements in understanding. For example, the mode 
frequencies for MgB2 can be grouped, to a first approximation, as multiples of a harmonic 
frequency that shows a clear relationship to the superconducting energy gap [25, 34]. This 
basic frequency is equal to the pitch or slope of the linear proportionality of harmonic modes 
and is demonstrated for the obvious case of boron isotopes in MgB2 [25].

5. Extrinsic influences on MgB2

There are many external factors that influence superconductivity in MgB2; the most obvious 
of which is temperature. The maximum value of a computational modelling program is, a 
priori, to predict behaviour of a material under specific conditions. The capacity to predict the 
temperature at which a solid transitions to a superconducting state is not an unreasonable 
demand on DFT when used carefully. Two other extrinsic influences on superconductivity 
well founded on experimental data are elemental substitution and pressure. For example, the 
influence of substituent elements, including metals, on the value of Tc for many superconduct-
ing families including the cuprates and chalcogenides is well known [67–69]. In addition, 
pressure applied to single atom metals was first demonstrated in the 1920s and subsequently, 
led to discovery of 22 elemental solid superconductors [70]. We now briefly describe how 
attention to PDs and EBSs using DFT modelling provides excellent correlation with experi-
mentally determined superconducting properties for metal substituted MgB2 and for MgB2 
under pressure.
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into the structure—is also evident in the comparative energy shifts in phonon modes and the 
order of modes with change of composition. For example, the type structure for this suite of 
materials is AlB2 for which the E2g mode is at the highest frequency (~950 cm−1 at Γ) and the B2g 
mode is significantly lower in energy (~500 cm−1 at Γ) [30]. In addition, the PD for AlB2 does not 
show an anomalous form for any optical mode while the EBS shows σ band parabolas at Γ and 
degenerate bands along Γ–A below the Fermi level. In comparison, substitution of Mg into 
the type structure clearly shifts both the phonon modes—reversing the order and frequencies 
of E2g and B2g (~580 and ~710 cm−1 at Γ)—and the σ bands albeit the change with the latter is 
less obvious to the casual observer. For ScB2, a similar behaviour is evident: an anomaly with 
degenerate E2g modes at Γ and along Γ–A in the PD and symmetric, degenerate σ band parabo-
las around A and Γ (above and below the Fermi level, respectively; Figure 6a and b). Again, 
the change in behaviour for ScB2 from the type structure, AlB2, is more evident via the PD.

4. MgB2: low-frequency Raman peaks

Experimental syntheses of MgB2 by vapour [57] or solid state [31, 58] methods are well docu-
mented in the literature and, in comparison to syntheses of many other superconductors, are 
uncomplicated. Commercial production of MgB2 wires [59, 60] was achieved soon after the 
publication by Nagamatsu et al. [21]. Nevertheless, there are cautionary notes about synthe-
sis of high quality MgB2 [31, 61, 62]; a particularly relevant matter for Raman spectroscopy 
because different microstructures can be formed due to small changes in processing condi-
tions (see Figure 2 in Ref. [34]).

In a comparative study of morphologies produced under similar conditions [34], large, 
micron-sized aggregates containing interpenetrating, euhedral grains of MgB2 displayed 
more peaks than those reported in prior Raman characterizations of MgB2 [34]. Importantly, 
the signal/noise ratio for these aggregates under identical conditions was significantly higher 
than the plate morphology aggregates which recorded a lower Tc value of 38.0 K [63]. The 
quality of Raman signal from the aggregates of euhedral MgB2 grains with Tc = 38.5 K [63], 
enabled detection of Raman peaks at low frequencies. Unlike Raman spectra of MgB2 single 
crystals targeting specific polarizations oriented along particular crystallographic axes [64, 65], 
a non-specific geometry with quality, randomly oriented grains presents a modified, atypical 
response compared to conventional Raman spectra.

By inspection, the most obvious interpretation of atypical Raman spectra is the activation of 
extra peaks, including those at lower frequencies [34]. These extra peaks suggest that the well-
known P6/mmm symmetry determined by bulk techniques may be incorrect or perhaps may 
indicate a lower symmetry condition. As is known, highly symmetric structures are expected 
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to have a high number of degeneracies compared with a monoclinic or triclinic structure. As 
the symmetry of a particular structure is lowered, some degeneracies can be broken and, for 
example, additional peaks may appear in Raman spectra. In addition, the bulk powder XRD 
patterns for these MgB2 samples are consistent with the accepted P6/mmm symmetry. Thus, 
if symmetry reduction is a viable interpretation of Raman spectra, the effect would likely be 
subtle and related to a sub-group of the P6/mmm space group. Of note, careful and sophisti-
cated XRD techniques have been used to show that superlattices do occur in MgB2 [66].

DFT interpretation of the Raman spectra shows that all the observed frequencies, except the 
low frequency values (i.e. less than ~300 cm−1) are, in fact, part of the list of possible frequen-
cies for MgB2 [34] with P6/mmm symmetry or related symmetry sub-groups. Raman activity 
changes between modes depending on the particular sub-group of P6/mmm. Further reduc-
tion of the symmetry required a double supercell in the c-axis direction to represent all ele-
ments of symmetry. When calculations include a superlattice structure for MgB2, all relevant 
frequencies are reproduced and additional frequencies, including the low frequencies, match 
experimental values measured using Raman and IR [34].

In essence, modes that are part of the zone boundary at A in the reciprocal lattice representa-
tion of the PD (i.e. parallel to the c-axis direction) are folded at the mid-point to that boundary 
for the lower symmetries, and therefore, become part of the Γ-point modes of a 2c-superlattice. 
This interpretation of symmetry breaking for MgB2 is instructive, not only because of the 
consistent explanation provided to experimentally determined Raman and IR spectra, but 
also because it allows for additional refinements in understanding. For example, the mode 
frequencies for MgB2 can be grouped, to a first approximation, as multiples of a harmonic 
frequency that shows a clear relationship to the superconducting energy gap [25, 34]. This 
basic frequency is equal to the pitch or slope of the linear proportionality of harmonic modes 
and is demonstrated for the obvious case of boron isotopes in MgB2 [25].

5. Extrinsic influences on MgB2

There are many external factors that influence superconductivity in MgB2; the most obvious 
of which is temperature. The maximum value of a computational modelling program is, a 
priori, to predict behaviour of a material under specific conditions. The capacity to predict the 
temperature at which a solid transitions to a superconducting state is not an unreasonable 
demand on DFT when used carefully. Two other extrinsic influences on superconductivity 
well founded on experimental data are elemental substitution and pressure. For example, the 
influence of substituent elements, including metals, on the value of Tc for many superconduct-
ing families including the cuprates and chalcogenides is well known [67–69]. In addition, 
pressure applied to single atom metals was first demonstrated in the 1920s and subsequently, 
led to discovery of 22 elemental solid superconductors [70]. We now briefly describe how 
attention to PDs and EBSs using DFT modelling provides excellent correlation with experi-
mentally determined superconducting properties for metal substituted MgB2 and for MgB2 
under pressure.
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5.1. Metal substitution

The solubility of other metal atoms in MgB2, that is, the substitution of Mg within the struc-
ture by some other metal, is limited yet well-studied [31, 71, 72] in the wake of Nagamatsu 
et al. work [21]. Substitution by Al extends to more than 0.5 formula units (e.g. (Mg0.5Al0.5)
B2) while significant proportions of Sc [32, 33] and Ti [73] are known to substitute into MgB2. 
Other elements such as Li, Mn and Fe will substitute for Mg but at much lower amounts as 
stable phases (e.g. Li < 0.11 formula units) [31]. In nearly all cases, substitution of a metal for 
Mg in the structure results in a lower Tc compared with the Tc for MgB2 [30]. Exceptions may 
be the Ba, Rb and Cs substitutions reported to increase Tc above 40 K by Palnichenko et al. [74], 
determined using ac susceptibility.

A DFT evaluation of Al substitution in MgB2 [29] requires the use of superlattices 
to build a range of Mg1-xAlxB2 compositions as described in Section 2. PDs for a series 
of Al-substituted compositions show that the Kohn anomaly changes as Al content is 
increased. The value of δ decreases with increased Al content. As shown in Figure 10, the 
EBS for Mg0.5Al0.5B2 shows similar format to the MgB2 parabolic bands that are degenerate 
at Γ and also along Γ–A. However, these bands are shifted to lower energy, and ultimately 
to below or at the Fermi level, with increased substitution of Al for Mg in the structure. 
For Mg0.5Al0.5B2, the degenerate bands at Γ are parallel with the Fermi level which suggests 
that superconductivity for this composition is minimal or that the Tc is very low. The PD 
for Mg0.5Al0.5B2 shows a small but measureable anomaly, δ, that provides a Tδ ~ 4.5 K [29] 
and reiterates the intrinsic value of evaluating both the EBS and PD of superconducting 
materials.

Using the same methodology noted earlier, the calculated value for thermal energy of 
the anomaly also reduces consistently with experimentally determined values of Tc, 
within estimated errors [29]. A plot of Tδ calculated from the change in depth of the 
phonon anomaly in Al substituted MgB2 compared with the experimentally determined 
Tc for similar compositions is shown in Figure 11 [29]. This example, and others with 
the AlB2-type structure [29, 30] demonstrate that ab initio DFT modelling can provide 
consistent and predictable data on the presence/absence of superconductivity for BCS-
type materials. In addition, parameters extracted from these models correlate well with 
experimental data on Tc without requirement to post-facto adjust well-known proximal 
equations.

A computational limitation of this approach is the number of integer superlattice constructs 
that can be reasonably accommodated within the constraints of multi-user high performance 
computing facilities to evaluate a wide range of substituted compositions. Nevertheless, 
with careful attention to experimental details, the same approach has been applied to esti-
mate the Tδ for Sc and Ti substituted MgB2 [30]. Again, as with Al-substituted MgB2, the 
calculated Tδ obtained from measuring the depth of the phonon anomaly correlates very 
well—within systematic errors—with the experimental values of Tc determined for each 
composition [29, 30].
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Figure 10. EBS calculated using the LDA functional with Δk = 0.01 A−1 highlighting the two key parabolic bands (blue 
and red lines) degenerate at Γ and along Γ–A for (a) MgB2 and (b) Mg0.5Al0.5B2. In comparison to MgB2, the superlattice 
construct for Mg0.5Al0.5B2 results in multiple bands and differences in the relative widths of reciprocal dimensions (e.g. 
H–K and M–L) that encompass c-axis directions. The degenerate bands at Γ for Mg0.5Al0.5B2 are parallel with the Fermi 
level suggesting a lower value for Tc compared with MgB2.
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the anomaly also reduces consistently with experimentally determined values of Tc, 
within estimated errors [29]. A plot of Tδ calculated from the change in depth of the 
phonon anomaly in Al substituted MgB2 compared with the experimentally determined 
Tc for similar compositions is shown in Figure 11 [29]. This example, and others with 
the AlB2-type structure [29, 30] demonstrate that ab initio DFT modelling can provide 
consistent and predictable data on the presence/absence of superconductivity for BCS-
type materials. In addition, parameters extracted from these models correlate well with 
experimental data on Tc without requirement to post-facto adjust well-known proximal 
equations.

A computational limitation of this approach is the number of integer superlattice constructs 
that can be reasonably accommodated within the constraints of multi-user high performance 
computing facilities to evaluate a wide range of substituted compositions. Nevertheless, 
with careful attention to experimental details, the same approach has been applied to esti-
mate the Tδ for Sc and Ti substituted MgB2 [30]. Again, as with Al-substituted MgB2, the 
calculated Tδ obtained from measuring the depth of the phonon anomaly correlates very 
well—within systematic errors—with the experimental values of Tc determined for each 
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Figure 10. EBS calculated using the LDA functional with Δk = 0.01 A−1 highlighting the two key parabolic bands (blue 
and red lines) degenerate at Γ and along Γ–A for (a) MgB2 and (b) Mg0.5Al0.5B2. In comparison to MgB2, the superlattice 
construct for Mg0.5Al0.5B2 results in multiple bands and differences in the relative widths of reciprocal dimensions (e.g. 
H–K and M–L) that encompass c-axis directions. The degenerate bands at Γ for Mg0.5Al0.5B2 are parallel with the Fermi 
level suggesting a lower value for Tc compared with MgB2.
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5.2. Hydrostatic pressure

Application of hydrostatic pressure to many superconducting materials results in a change in 
the value of Tc [70]. For many materials, increased hydrostatic pressure results in a decreased 
Tc compared with ambient conditions although care is required with the experimental condi-
tions to apply pressure [27]. For MgB2, there is abundant experimental work ([11], and ref-
erences therein) on the pressure dependence of Tc including Raman and lattice parameter 
variations up to ~57 GPa [75, 76]. Similar pressure effects can be determined using ab initio 
DFT and, more importantly, the effects of pressure changes on EBS and PDs are demonstrable 
[11], noting that hydrostatic pressure is one of the few external pressure conditions for which 
PDs can be calculated [44].

Figure 12 shows the EBS and PD for MgB2 at 0 GPa and 20 GPa, respectively, and demonstrates 
a shift in the σ bands at the Fermi level although no loss of degeneracy around Γ. The shift of 
the σ bands to lower energy at 20 GPa is equivalent to ~0.05 eV. In comparison, the PD for MgB2 
under these conditions is more sensitive to pressure as indicated by the relative depth, δ, of the 
phonon anomaly centred around Γ. The change in value for δ is related to the thermal energy, 
Tδ, of the phonon anomaly [29] and shows a linear relationship with change in pressure up to 
20 GPa as well as strong correlation with experimentally determined Tc [11]. In Figure 12, the 
value of δ1 for MgB2 at 0 GPa is ~128 cm−1 while δ2 at 20 GPa is ~75 cm−1. These values result in 

Figure 11. DFT calculated values for Tδ (unfilled diamonds) based on the depth of the phonon anomaly, δ, for 
Al-substituted MgB2 compared with experimentally determined values (filled symbols) for Tc (reproduced from [29]).
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a calculated Tδ ~40 and ~20 K, at 0 and 20 GPa, respectively, consistent with experimentally 
measured Tc values for MgB2 [11, 27]. Another expected effect of increased hydrostatic pres-
sure is an overall shift of phonon modes to higher frequency as shown in Figure 12b.

Figure 12. Ab initio DFT calculations for MgB2 at 0 (blue lines) and 20 GPa (red lines) using the LDA functional with 
Δk = 0.02 A−1 for (a) electronic bands and (b) phonon dispersions centred around Γ. Note the substantial change in the 
depth of the phonon anomaly between 0 (δ1) and 20 GPa (δ2) and the higher frequencies for E2g at 20 GPa.
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a calculated Tδ ~40 and ~20 K, at 0 and 20 GPa, respectively, consistent with experimentally 
measured Tc values for MgB2 [11, 27]. Another expected effect of increased hydrostatic pres-
sure is an overall shift of phonon modes to higher frequency as shown in Figure 12b.

Figure 12. Ab initio DFT calculations for MgB2 at 0 (blue lines) and 20 GPa (red lines) using the LDA functional with 
Δk = 0.02 A−1 for (a) electronic bands and (b) phonon dispersions centred around Γ. Note the substantial change in the 
depth of the phonon anomaly between 0 (δ1) and 20 GPa (δ2) and the higher frequencies for E2g at 20 GPa.
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The shift of σ bands in the EBS for MgB2 follows a consistent trend to that observed for 
other structural variations such as metal substitution and electron density as shown above. 
Goncharov and Struzhkin [75] suggested on the basis of approximations to the Eliashberg 
formulation, that degenerate electronic bands split above and below the Fermi level at 20 GPa 
at which point experimental data diverge slightly from a linear relationship between Tc and 
P. However, it is clear from these ab initio DFT calculations that MgB2 retains the aforemen-
tioned superconductivity characteristics at 20 GPa and experimental data shows supercon-
ductivity [27]. With increased pressure, the separation of Fermi surfaces, or the inter-tubular 
distance as described above, also decreased [11]. While this decrease in inter-tubular distance 
is subtle, its relationship to the value of δ and appropriate choice of Δk grid resolution pro-
vides clarity of interpretation [11, 34] and shows that this region of reciprocal space is key 
to the determination of superconductivity for MgB2 and derivative structures [19]. The link 
between electron and phonon behaviour in MgB2, including the onset of superconductivity, 
is well modelled using ab initio DFT for a wide range of equivalent experimental conditions.

5.3. Prediction using DFT

The foregoing description of computational outcomes facilitated by a consistent ab initio DFT 
methodology using the same functionals to achieve convergent PDs across a wide range 
of conditions and compositions implies that the approach is suited to predicting electronic 
properties of other diborides, and perhaps, other structure types. Furthermore, the obvious 
but oft forgotten interdependence of the EBS and the PD of solids suggests that the strong 
electron–phonon interactions of BCS superconductors are calculable without modification 
and are predictable.

Implicit prediction of Tc for metal substituted MgB2 occurred soon after the announcement 
by Nagamatsu et al. [21] and took the form of syntheses with hole doped additions that, in 
general, led to a decrease in Tc compared with the parent compound [31, 77]. However, other 
researchers used the Eliashberg formulation to show that Na and/or Ca substitution into MgB2 
would increase Tc [78] but there is little evidence to suggest that Na, for example, is soluble 
in MgB2 [79] and, to date, a Na-substituted MgB2 has not been synthesised. More recently, 
the depth of the phonon anomaly at Γ has been used to calculate the Tδ of “unknown” metal 
substituted MgB2 as well as other compounds such as BaB2 [29, 30]. For BaB2, the PD does not 
converge until a hydrostatic pressure ~16 GPa is applied at which the estimated Tδ is between 
~60 and ~80 K depending on the linear response method chosen [29]. Using a similar strat-
egy, Ba-substituted MgB2 shows a Tδ ranging between ~62 and ~64 K (± ~6 K) depending on 
the level of substitution [29]. To date, clear evidence for synthesis of these specific modelled 
compositions is not extant.

As noted above, Palnichenko et al. [74] report syntheses of MgB2 in the presence of Rb, Cs and 
Ba which, on the basis of 11B NMR data, suggests substitution of these elements into the MgB2 
structure in a proportion of the product. Measurement of Tc using ac susceptibility shows pos-
sible onsets of superconductivity at 52, 58 and 45 K, respectively in the products. Despite the 
difficulty in interpreting the NMR data in terms of specific crystal structure(s), the implication 
from this experimental work—among the few reported attempts at charge carrier donation—is 

Phonons in Low Dimensional Structures96

that Ba substitution into MgB2 has increased Tc above that for MgB2 [74]. The trend of this 
experimental work is consistent with the outcomes calculated for Tδ from the PDs of Mg1-x 
BaxB2 [29, 30] and suggests that a priori prediction of Tc for unknown, or “new,” compounds is 
achievable.

6. Superlattices

Consideration of superlattices derived from a primary structural model provides an effective 
interpretation of fine-scale experimental data that reflect dynamic atom (or electron-ion core) 
interactions in the solid state. A superlattice may enable facile resolution of computational mod-
els that invoke atom substitution or show dynamic symmetry conditions manifest in subtle 
shifts of electron density within a structure and that are detectable using experimental tech-
niques such as Raman spectroscopy. In principle, the textbook superlattice example is of the 
mass modulation of a linear chain of identical masses denoted by m [3, 10]. The original mass m, 
separated by equal distances a, displays only acoustic modes of vibration, which have a group 
velocity related to the sound velocity. When a modulation of the masses is introduced through 
masses m and M, the new real space periodicity becomes 2a, resulting in a folding of reciprocal 
space at half the reciprocal space Π/2a. This action introduces the so called optic modes that 
have flatter dispersions than the acoustic modes as demonstrated in the PDs above. Similar 
behaviour can also be attributed to a modulation of the forces between identical masses [80] 
and this is exemplified by the phonon response to bond deformation in MgB2 as shown above.

Nevertheless, interpretation of these phenomena, particularly when dissecting the richness of 
current generation DFT models, requires careful attention to the following:

a. Multiplicity: When a superlattice is constructed, the number of atoms in the cell are multi-
plied by the integer order of the superlattice. Thus, the number of degrees of freedom 3 N 
for N atoms is multiplied accordingly. This multiplicity can result in very complex EBSs 
and PDs that are difficult to interpret in a practical manner and, of course, significantly 
increases the computational payload required for a calculation.

b. Folding of reciprocal space: Original values or modes at a boundary zone become folded 
and part of the spectrum of the superlattice Γ point. While folding will bring about benefi-
cial information for modest sized superlattices (as shown above for MgB2), interpretation 
of models for very large superlattices may also become complex, particularly for low sym-
metry structures.

c. Computational resolution: PD calculations are particularly sensitive to Δk grid resolution 
in that a phonon anomaly may not be evident or may have a very irregular appearance if 
the interval for k is too coarse [13, 34].

With attention to the above caveats, DFT is an excellent tool for real space interpretation of 
solid state phenomena that respond to variations in electron distributions induced by external 
factors.
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that Ba substitution into MgB2 has increased Tc above that for MgB2 [74]. The trend of this 
experimental work is consistent with the outcomes calculated for Tδ from the PDs of Mg1-x 
BaxB2 [29, 30] and suggests that a priori prediction of Tc for unknown, or “new,” compounds is 
achievable.
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Consideration of superlattices derived from a primary structural model provides an effective 
interpretation of fine-scale experimental data that reflect dynamic atom (or electron-ion core) 
interactions in the solid state. A superlattice may enable facile resolution of computational mod-
els that invoke atom substitution or show dynamic symmetry conditions manifest in subtle 
shifts of electron density within a structure and that are detectable using experimental tech-
niques such as Raman spectroscopy. In principle, the textbook superlattice example is of the 
mass modulation of a linear chain of identical masses denoted by m [3, 10]. The original mass m, 
separated by equal distances a, displays only acoustic modes of vibration, which have a group 
velocity related to the sound velocity. When a modulation of the masses is introduced through 
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space at half the reciprocal space Π/2a. This action introduces the so called optic modes that 
have flatter dispersions than the acoustic modes as demonstrated in the PDs above. Similar 
behaviour can also be attributed to a modulation of the forces between identical masses [80] 
and this is exemplified by the phonon response to bond deformation in MgB2 as shown above.

Nevertheless, interpretation of these phenomena, particularly when dissecting the richness of 
current generation DFT models, requires careful attention to the following:

a. Multiplicity: When a superlattice is constructed, the number of atoms in the cell are multi-
plied by the integer order of the superlattice. Thus, the number of degrees of freedom 3 N 
for N atoms is multiplied accordingly. This multiplicity can result in very complex EBSs 
and PDs that are difficult to interpret in a practical manner and, of course, significantly 
increases the computational payload required for a calculation.

b. Folding of reciprocal space: Original values or modes at a boundary zone become folded 
and part of the spectrum of the superlattice Γ point. While folding will bring about benefi-
cial information for modest sized superlattices (as shown above for MgB2), interpretation 
of models for very large superlattices may also become complex, particularly for low sym-
metry structures.

c. Computational resolution: PD calculations are particularly sensitive to Δk grid resolution 
in that a phonon anomaly may not be evident or may have a very irregular appearance if 
the interval for k is too coarse [13, 34].

With attention to the above caveats, DFT is an excellent tool for real space interpretation of 
solid state phenomena that respond to variations in electron distributions induced by external 
factors.
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7. Conclusions

Ab initio DFT models of electron and phonon behaviour in superconducting materials provide 
powerful tools for interpretation of existing, known compounds as well as for prediction of 
new compositions that may demonstrate novel, or desired, conduction properties. The full 
capacity of DFT, manifest in EBS and PD reciprocal space representations, when considered 
together for a particular compound provides unambiguous indication of potential for super-
conductivity as well as a credible estimate of Tc and an estimate of error for Tc. Either an EBS 
or PD alone may be sufficient to indicate superconductivity—for BCS-type materials—but 
both representations are necessary for minimal ambiguity. In particular, for AlB2-type struc-
tures degenerate parabolic σ bands focused at a crystallographic boundary above the Fermi 
level and with split bands at the Fermi level are a priori indicators of superconductivity, or 
that superconductivity is a strong possibility with fine-tuning of the structure. In addition, a 
phonon anomaly of the optical E2g modes degenerate at Γ is similarly an a priori indicator of 
superconductivity in AlB2-type structures. We have applied these basic principles to other 
high symmetry compounds (e.g. cubic or tetragonal superconductors and/or insulators) with 
similar interpretative clarity particularly when transcribed to real space configurations. To 
experimentally validate these principles across all superconductor families, and to design 
new predictive targets for synthesis, requires real space descriptions of compounds for rapid 
evaluation of appropriate synthesis techniques. We encourage further systematic and critical 
comparisons of the known 32 families of superconductors [81] using these DFT tools.
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Abstract

In this chapter we present the theory of phononic crystal, classification of PnC according to
its physical nature, and phononic crystal (PnC) phenomena in locally resonant materials
with 2D, and 3D crystals structure. In this chapter, phononic crystal (PnC) micro-electro
mechanical system (MEMS) resonators with different transduction schemes such as electro-
statically, piezoresistively, piezoelectrically transduced MEMS resonators are explained. In
this chapter, we employed phononic crystal strip inMEMS resonators is explained to reduce
anchor loss, and analysis of eigen frequency mode of the resonators. The phononic crystal
strip with supporting tethers is designed to see the formation of band gap by introducing
square holes, and improvement of quality factor and harmonic response. We show that
holes can help to reduce the static mass of PnC strip tether without affecting on band gaps.

Keywords: MEMS resonator, phononic crystal, piezoelectric, band gap, anchor loss

1. Introduction

Because of merits of easy fabrications and less power consumption and the better performance
with high accuracy phononic crystals MEMS resonator has become hot topic in the family of
flexible electronics. The concept of phononic crystal followed by a few years the analogous
concept of photonic crystals [1, 2] for the propagation of electromagnetic waves.

Phononic crystals are actually the acoustic waves with periodic structures which is same as
electrons crystalline structure, sometimes the acoustic waves are also refer to elastic waves.
Simply we can say phononic crystals are the artificial materials are arranged in a highly ordered
microscopic structure of array of particles. Phononic crystals (PnCs) have paid attention by
researchers over the past two decades [3]. Phononic crystals have many potential applications,
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especially in the field of information and communication technologies. Propagation of waves
can be control by phononic crystals. The field of phononics is progressing very quickly.

Nowadays there are many advances in the field of phononic crystals. Scientist and engineers
are paying deep attention in phononic crystals (PnCs) MEMS resonator. The PnCs have
significance role in the advancement of micro- and nanofields. PnCs supported tether config-
urations to isolate the energy leakage from resonator body into substrate [4]. A perfect PnC
allows for the design of devices like waveguides and cavities to control the propagation of
acoustic waves inside the band [5, 6, 34]. The PnCs can operate as coupling elements between
resonators [6, 7]. Moreover the combination of PnCs and n-type doped silicon in nano-
structures is a potential/promising candidate for thermoelectric applications [7].

In fact, the concept of phononic crystals is extended from one of photonic crystals for the
propagation of electromagnetic waves [1–9]. The nature of phononic crystals is controlling
and manipulating the propagation of elastic/acoustic waves. For example, the PnCs can pro-
hibit the propagation of acoustic (elastic waves) inside their structures through existence of
band gaps (PBG). Band gap is a frequency range in which there are no resonant guided modes
or wave propagation within the structure.

2. Theory of phononic crystal

As mention above that phononics crystal is an artificial material composed by a periodic
repetition of incorporation in a matrix. This periodic structure is formed by scattering inclu-
sions located in consistent material as a lattice structure resemble with crystal lattice existed in
the crystalline solid [10–12].

2.1. Lattice structure

The phononic band structure may be tailored with appropriate choices of materials, and
crystal lattices. An ideal crystalline solid composed of the atoms or basis (group of atoms) are
arranged by attachment of every lattice point. Let any lattice point r´ can be formed from any
other lattice point r in the space using translational operation [10]

r0 ¼ rþ T (1)

In above equation, T is the translation vector can be written as

T ¼ u1a1 þ u2a2 þ u3a3 (2)

where a1, a2 and a3 three fundamental translation vectors (primitive vectors/axis) can be lie in
arbitrary directions and u1, u2 and u3 are three arbitrary integers.

Lattice is formed by the repetition of smallest unit cell called a primitive cell. A primitive cell
(volume of space having one lattice point) is the parallelepiped defined by primitive axes a1, a2
and a3. For primitive crystal Systems with higher symmetry we use reciprocal lattice (the sum
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of the components in the k-space). Therefore, the axis vectors of the reciprocal lattice can be
constructed from three fundamental translation vectors a1, a2 and a3 [10] (Figure 1).

b1 ¼ 2π a2 � a3ð Þ
a1:a2 � a3

, b2 ¼ 2π a3 � a1ð Þ
a1:a2 � a3

, b3 ¼ 2π a1 � a2ð Þ
a1:a2 � a3

(3)

Any periodic structure, the propagation of acoustic waves in a phononic crystal is determined
by the Bloch [12] from which the band structure can be derive in the Brillouin zone. The
Brillouin zone is a unit cell in the reciprocal lattice. It should be noted that Brillouin zone can
be in one (1D), two (2D), or three dimensions (3D). For desiring the possibility of absolute band
gaps phononic crystals has been studied in One Dimension (1D) phononic crystals [13] on the
basis of literature, Two Dimension (2D) [14, 15], and Three Dimension 3D [14, 15].

2.2. Band gap

Band gaps are used to explain electronic band structures of materials. Bloch theorem tells us that
waves of a certain frequency can propagate without scattering through periodic media. But the
propagation of waves is stopped at other frequencies. The frequencies range where the propa-
gation is allowed is called bands and where the propagation is stopped is called band gaps.
Phononic band gap in the periodic structure can cause the reflection of mechanical wave when
incident on phononic crystals. So the propagation is stopped by generating the mechanical
wave inside the phononic crystal. The propagation of mechanical wave with audible frequency
range is not permitted in phononic crystals of periodicities ranging from meters to centimeters.

Figure 1. Brillouin zones of two-dimensional cross sections of square and hexagonal lattices with elementary unit cell of
lattice parameter “a,” and the radius of the inclusions “r.”
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To find the band gap in a phononic crystals, we need to understand the energy band structure
of a solid for electrons in a crystalline solid by using following Schrödinger equation [16]:

Eψ rð Þ ¼ � ℏ2

2m
∇2 þ V rð Þ

� �
ψ rð Þ (4)

where E is the total energy, Ψ is the wave function, ħ is the Planck’s constant, m is the effective
mass and V is the potential, r is the position vector, and ∇2 is the differential operator.

The above single nonrelativistic particle Eq. (4) shows the total energy is the sum of kinetic
energy, and potential energy. Bloch proved the solutions of the wave function in the Schrödinger
equation for a periodic potential with periodic function u analogous with crystal as

ψk rð Þ ¼ uk rð Þeikr (5)

where ψ is the Bloch wave, k is the crystal wave vector, r is the position, e is Euler’s number
with imaginary unit i. Actually it consist of product of a plane wave, and a periodic function
uk. The band structure is usually in the form of a dispersion relation between the angular
frequency ω and the wave vector k. And k should be in the primitive cell of the primitive lattice
vectors of the reciprocal lattice (the first Brillouin zone). Let “a” is the periodicity of one
dimensional system, then primitive reciprocal lattice vector is P = (2π/a). So the region [(�π/a),
(π/a)] is the first Brillouin zone (Figure 2) [10].

Note that gaps width depends upon the difference of wave velocities in the two materials. It
means that more difference in periodic medium gives wider band gap. Now comes to
phononic band gap. As we are much familiar that in a solid medium (material) atoms cannot
move independently since they are connected by chemical bonds and also they move around
their equilibrium positions and exert a force on their neighboring atoms to displace, and this
displacement cause the phonons creation. The phononic crystals’ band structure depend upon
the propagation of the elastic/ acoustic waves with suitable materials, shape, crystal lattices,
and inclusions with background material [17–19] based on Bragg scattering [17] or by local

Figure 2. Frequency vs. wave vector for one dimensional linear homogeneous medium (dotted lines), and two dimen-
sional periodic medium (solid lines).
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resonance (LR) mechanism [17, 20] in which band gap formed by the internal resonances of the
individual inclusions.

As we are familiar with propagation of wave with the motion of atom (say n) with wave
number k and angular frequency ω which satisfy the following equation

ψn ¼ Aeiknaeiωt (6)

With dispersion relation ω, and upper bound limit of angular frequency ω0

ω ¼ ω0 sin k
a
2

���
��� (7)

So the dispersion relation is in symmetric interval wave vector k ∈(�π/2, π/2).

2.3. Dispersions in phononic crystal

The dispersion relations are expressed in terms of the angular frequency ω(k) and wavenumber
(wave vector) k. Dispersion represent the band structure.

ω kð Þ ¼ V kð Þk (8)

where V(k) is the wave speed (V is the function of k), and k is the wave vector can be written as
k = 2π/λ. In term of phase velocity k should be Vp=ω/k. So the rate of change of angular
frequency with respect to time is

Vg ¼ ∂ω
∂k

(9)

Eq. (8) shows that dispersion curves are dependent of materials characteristics like elastic
constant, and phononic crystal structure. The band gap can be calculated as frequency range
between two continuous dispersion curves associated with wave vector k. The propagation of
acoustic wave in phononic crystal can be more due to large gap. Figure 14 describes the band
structure with dispersion curves in phononic crystal.

3. Physical nature of phononic crystal

Nature of materials (solid or fluid), and physical characteristics (density and elastic constants)
of the inclusions plays an important role in the gaps bandwidth. So, PnC can be define into
three classification according to its physical nature.

3.1. Solid–solid phononic crystals

The band gap in these structures is formed by the low and high contrast [20] between different
materials. This type of PnC can be square, triangle, and honeycomb [21] which shows its band
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gap impact. Moreover for two dimensional solid-solid PnC the elastic displacement is perpen-
dicular to the cylindrical axis in-plane propagation, and parallel to the cylindrical axis out-of-
plane propagation [22].

3.2. Fluid–fluid phononic crystals

Only longitudinal modes can exist in these PnCs. These PnCs made up of two different fluids.
Large band gap for this PnC can be found by arrangement of Soft polymer hollow cylinders in
a water background at low frequencies [23].

3.3. Solid–fluid (mixed composite) phononic crystals

These PnCs can be constructed by solid inclusions in a fluid (condensed liquid [24, 25, 33] or a
gas [26, 27]) matrix and vice versa. Only complex modes of vibration occur from longitudinal
in the fluid to longitudinal and transverse in the solid region. So that is why the mixed
composite PnCs’ acoustic band structures cannot be predicted accurately by using plane wave
expansion (PWE) method [23].

Moreover shape of the inclusions play an important role in the formation of band gap. According
to geometry PnCs can be in one (1D), two (2D), or three dimensions (3D). Absolute phononic gap
should be appear at frequency below the Bragg limit, so this phenomena can happen in locally
Resonant materials [28] and can obtained in 2D, and 3D phononic crystals.

4. Phononic crystal composition

Phononic crystals consist of different dimensional periodicity structure having their own
characteristics.

4.1. One dimensional phononic crystal

One dimensional phononic crystals (PnCs strip) [4, 18, 20, 29] are composed of two or many
layers repetition of geometrical space in a certain direction. The one -dimensional PnCs are
also called super lattices (SLs) [30]. The combination of solid–solid or solid–fluid-layered
formed each cell of super lattices. The only one direction is responsible for the propagation of
an elastic (acoustic) waves in these models.

The periodic band gap structures of SLs consist of crystalline, amorphous semi-conductors.
One-dimensional PnC is made up of N cells which show two types of confined states [12]:

i. N–1 states in the allowed bands

ii. One and only one state corresponding to each band gap and do not depend on the width
of the crystal N [31].
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From 1D systems we conclude that their design is more suitable and based on very simple
analytical and numerical calculations to understand different physical properties relevant with
band gaps. One dimensional PnCs mainly focus on exploiting the properties of stubs like the
shape of the stubs, locations of stubs on the background material, types of waves and creation
of defect of background to widen or lower band gaps [18]. In the range of low-frequency there
is a wave speed for propagation perpendicular/parallel to layering [31, 32], the one-wave speed
for propagation perpendicular to the layering, and two-wave speeds for propagation parallel
to the layering (Figure 3).

4.2. Two dimensional phononic crystal

As compare to one dimension (1D) PnC the two dimension (2D) PnC has better ability to trap the
elastic energy. Repetition of the periodicity in two directions of the space formed a 2D PnCs
structure. Its structural arrangement is like the pattern of air holes on silicon or piezoelectric
materials [5, 6]. This type of PnC slab can be constructed in square, triangle, hexagonal lattices, or
folded structure [34] stepped pillars and holes [3], honeycomb lattice [33], square pillar [19],
chessboard-patterned bi-component array, square lattice with cylinder pillars [35], and polygonal
graphene like lattice [36]. Following is the schematic of square pillars PnC plate (Figure 4) [18].

Figure 3. 1D phononic crystal structure.

Figure 4. 2D phononic crystal structure.
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A triangular Bravais lattice crystal [37] having cylinders shaped assembled structure with
vertices of the equilateral triangles with vectors a1, a2 considered as direct lattice, and b1, b2
correspond to reciprocal lattice as shown in structure below.

ai
!
:bj
!¼ 2πδij, and b1

!j ¼ b2
!j ¼ 4π

a
ffiffi
3

p
���

��� , δij is known as Kronecker delta.

4.3. Three dimensional phononic crystal

Crystals with scattering units (rod, sphere) [25] that are simply air void cylinder which gives
rise to Bragg reflections of the acoustic (elastic) waves. So constructive or destructive interfer-
ence creates in crystal and these constructive and destructive interference creates frequency
range at which wave propagate or block. The propagation, and blocking of waves refer to pass
bands, and stop bands respectively. Structure of crystal plays an important role in the creation
of band gap. It means that contrast between the materials can be produced with the large band
gaps. Like changing from water to epoxy (liquid matrix to the solid) gives larger band gaps
[38]. The fabrication process of the 3D phononic crystals requires high accuracy of structural
patterns (Figure 5) [38, 51].

Structure of 3D phononic crystal is made up of a face-centered cubic (FCC) crystal having
spheres shaped assembled structure obtained from one sphere which is added to the center of
each face of the simple cubic unit cell.

Figure 5. 3D phononic crystal structure.
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So artificially complex structure of 3D phononic crystal fascinating the researcher to develop
new kind of phononic crystal with more precise attenuation band in the range of acoustic
frequency with better performance used in an engineering field.

5. Phononic crystal based MEMS resonator

Now a days MEMS technologies and the applications of MEMS resonators in communication
systems are widely used. MEMS technologies covers many of devices like micro-sensors,
actuators, accelerometers, variable capacitors, switching filters, oscillators, couplers, and the
main is resonators, and other sensing devices. These operation of PnC MEMS devices is based
on the energy conversion between the mechanical and electrical domains [9]. There are many
MEMS component which are used in electronic application systems, Telematics, Medical
Electronics, etc., but PnC MEMS resonator play an important role in such kind of application
systems and improve the performance of devices by resonant frequency stability, quality
factor, motional resistance, nonlinearity, and power handling. Insertion loss in the filters, and
phase noise in the oscillators can be reduce by PnC MEMS resonators. It can also help to avoid
signal distortion and stabilize the operating frequency. Air scattering inclusion on solid back-
ground and two-dimensional structures are common employing in PnCs MEMS resonators.
The micro-mechanical structures of MEMS resonators operate on an electromechanical trans-
duction mechanism. This mechanism is the conversion of reversible process between electrical
and mechanical energy [39]. Electrostatic, piezoresistive, and piezoelectric are the three main

Figure 6. Transduction mechanism.
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Transduction methods which are used in MEMS resonators. Following diagram shows the
basis transduction mechanism in MEMS resonators (Figure 6).

5.1. Electrostatically-transduced MEMS resonators

Electrostatically-transduced MEMS Resonators are also known as capacitive MEMS resonators.
The basic principle of this kind of resonator is variation between electrodes and resonating body
when the resonant structure vibrates in its mode shape so that the capacitance change. The
current is change at output due to change in capacitance by following relation [11].

im ωð Þ ¼ ∂Cd

∂x
VDC _x ωð Þ (10)

where im (ω) is the motional current, ω is the angular frequency, Cd is the capacitance between
the gap and resonant body with bias voltage VDC, and _x ωð Þ is the vibration amplitude of the
resonator. A direct current (DC) (which is bias voltage) is applied to the resonator body, and an
alternating current (AC) signal to input electrodes. So the capacitance takes place between the
output electrode and resonant body. Due to this phenomena an electrostatic force between the
input/drive electrodes and resonant body generates from the combination of the AC and DC
voltages. So the structure is set into its resonant mode (frequency of the drive signal is same as
the resonant frequency of the resonator) (Figure 7).

The above structural mechanism is quite very simple it consist of two parallel-plates called
electrodes one is input (excite) and other is output (sense) electrode placed at two sides of the
resonator. Applied the DC voltage to the resonant body through anchor/support tether. The
output signal is taken from the sense electrode by giving AC signal to excite electrode.
Although a very high Q is the great advantage of electrostatic transduction through capacitive
MEMS resonators. But the main drawback of such resonator are high impedance and low
transduction efficiency at the high frequency [40].

5.2. Piezoresistively-Transduced MEMS resonators

In 1856 L. Kelvin discovered the piezoresistive effect, and later this effect is applied on MEMS
resonators as a transduction which is studied by some researchers. [41–44]. These kind of

Figure 7. Electrostatic transduction scheme.
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MEMS resonators operate based on the change of electrical resistance of material caused by
applied mechanical stress or material deformation by using transduction scheme with silicon
piezoresistive. Such phenomena can be seen in some crystalline (non-amorphous) materials.
Piezoresistive MEMS resonator show low effective impedance. Moreover piezoresistivity
depend upon electrical resistivity by following Eq. (11)

Δr
r

¼ GFð Þε (11)

where Δr/r is the relative change in specific resistivity with piezoresistor strain ε, and GF is the
strain factor (Gauge factor). Some times GF can be expressed as πE. Here E is the Young’s
modulus and π is the piezoresistivity matrix expressed below.

The principle of piezoresistively-transduced MEMS resonator is not so complicated. The elec-
trodes of resonator is applied by both voltage sources AC and DC then vibration is generated
by the electrostatic force and the resistance of resonator changes due to this effect, also an AC
current is induce by this vibration [44, 45] (Figure 8).

VDC is connected through the resistors while VAC is applied through the capacitor, and from the
supporting tether the output current has been taken.

5.3. Piezoelectrically-transduced MEMS resonators

In 1880 French physicist P. Curie was first found the piezoelectric phenomena [46] on crystals
of quartz, tourmaline, cane sugar, topaz. Piezoelectrically transduced MEMS resonators have
been developed in recent years based upon piezoelectric effects and early studies on quartz

Figure 8. Schematic of piezoresistive resonator.
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piezoelectric resonators. The basic principle of the piezoelectric MEMS resonators is that
piezoelectric effect happening in piezoelectric materials to induce electric charges on surface
of output electrodes. DC voltage must applied to resonator for operation. The impedance of
the resonators can be reduced by increasing the DC voltage, so it can improve the performance
of resonator. Electromechanical coupling of the resonators is effected by the gap between
electrodes and resonant body. Coupling can be high if the gap is narrow. In Electrostatically-
Transduced, and piezoresistively-Transduced MEMS Resonators there is a problem of high
motional impedance, so this sort of problem can be reduce by piezoelectrically-Transduced
scheme because piezoelectric operates on vibration mode then induces charges on the surface
of output electrodes when AC is applied to electrodes.

Moreover the performance of resonator depends upon quality factor, resonant frequency,
motional resistance, power handling, nonlinearity and frequency stability. Quality factor and
operating frequency are the two main parameters that can improve the performance of MEMS
devices such as electrostatically-transduced MEMS devices and piezoresistively-transduced
MEMS devices which is known as silicon-on-insulator (SOI) technology [42, 49]. But the elec-
trostatically transduced based designs is almost limited at high frequencies due to their inher-
ently small coupling coefficients.

5.4. Quality factor and band width

Quality factor is the ability of energy storage under damping mechanisms at their resonant
frequency. When the quality factor is higher, the better the performance of resonator will be
better. An ideal resonator can have an infinite quality factor value. Attenuation of quality factor
may cause the damping sources. Damping can be generated by temperature, and the nature of
materials. If Q factor is higher, then energy loss is low.

Figure 9 above shows the resonance width (band width) Δf, and f (refer to fr) is the resonant
frequency. So Q = f/Δf = 2π Estored/Edissipate per cycle, where E refers to energy.

Figure indicates the high, low, and intermediate Q factors are said to be an underdamped (Q >
1/2), over damped (Q < 1/2), and critically damped (Q = 1/2) respectively. The parameters like
bandwidth, spurious signals, ringing also dependent on Q. When the value of Q factor increase

Figure 9. Different frequency responses in MEMS resonators.
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the band width of circuit must decrease, so energy storage is better and response of circuit can
increase. Moreover when the value of Q increase the spurious signals can be removed by the
circuit (losses decrease) and circuit will be able to ring more.

5.5. Motional resistance

Motional resistance is an impedance of resonator can be expressed by the following formula
having angular frequency ω, resonator’s equivalent mass meq, and quality factor Q.

Rm ¼ ωmeq

η1η2Q
(12)

where

meq¼ eq rT

Um xm; ym
� �2

ð ð
U x; yð Þ2dxdy (13)

In above equation η is the mechanical coupling coefficient which depends upon piezoelectric
transduction mechanism (ratio of the current passing through the resonator to the maximum
velocity) can be expressed as

η ¼ i
vmax

¼ QT

Umax
(14)

where QT is the induced electric charge can be expressed as

QT ¼
ð ð

Didxdy (15)

The motional resistance and quality factor of MEMS resonators are inversely proportional to
each other.

6. Phononic crystal strips in MEMS resonator

The phononic crystals are presented as main theories for designing the support tethers in thin
film aluminum nitride on diamond contour mode MEMS resonators.

6.1. Support tether configuration

Here we introduce our work [47] on MEMS Resonators with supporting tether configurations
which is based on reflector and phononic crystal strip by using thin films piezoelectric material
(Aluminum Nitride) on diamond. Diamond is used as a substrate material. Figure 10 shows
the PnC strips support tethers of MEMS resonators.
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In this work the quality factor has been improved. Because the tether structures improve the
quality factor of MEMS resonators. PnCs also support elimination of anchor loss in the resona-
tors. PnCs can also be designed for sensor applications.

From Figure 11 we see that each resonator consists of a thin-film aluminum nitride piezoelec-
tric layer sandwiched between two gold (Au) metallic electrode layers which is located on
thick diamond substrate layer and operate at 115 and 156 MHz, respectively. Gold has a very
high electrical conductivity and very low resistivity [47] so it can reduce the energy dissipa-
tion. When thin film aluminum nitride is applied by an electric field from gold electrodes then
strain field is created in the thin film and mechanical vibration of resonators increase. Follow-
ing Eq. (16), and Eq. (17) represent the resonant frequency of WG and WS resonator with
effective mass density reff respectively.

f WG ¼ 1
2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeff

1þ Veff
� �

reff

s
(16)

f WS ¼ 1
2W

ffiffiffiffiffiffiffi
Eeff

reff

s
(17)

where L is the side length, and W is the side width of WG resonator, and WS resonator
respectively, Eeff, and veff is the effective Young’s modulus, and the effective Poisson’s ratio
respectively. We can calculate the values of Eeff, νeff, and reff by using following formula

Peff ¼
tAINpAIN þ 2tAUpAU þ tDipDi

tAIN þ 2tAU þ tDi
(18)

where tAlN, tAu and tDi are the thickness of aluminum nitride.

Clamping of tether with MEMS resonators at corners is obtained by COMSOL through FE
simulation as shown in Figure 11 above. Now come to the PnC strip with supporting tether
[47], as we discussed above that PnC is a highly periodic structure of unit cell which is the basic
block. In this work we take the PnC strip of five unit cells as shown below (Figure 12).

Figure 10. PnC MEMS resonator with supporting tethers.
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Moreover this work only investigates the band gap variation with Ws (stub width), Ls (stub
length), and Wh (side hole) of unit cells of the PnC strip.

The parameters of the WG and WS mode resonators and a unit cell of the PnC strip are given
in Table 1. Following Figure 13 shows the analysis of eigen frequency mode of the resonators
for positioning of anchor tether placement location.

As we discussed above that band gaps is used to explain electronic band structures of mate-
rials and can cause the reflection of mechanical wave in the periodic structure when incident
on phononic crystals. So here is the band structure with simulated dispersion curve represented
as blue dotted lines, and band gaps represented in yellow area having stub width: Ws = 28 μm,
stub length: Ls = 30 μm, and hole width: Wh = 2.5 μm (Figure 14).

From these results we arrived at this point that.

The role of Stub is important in the formation of band gaps, particularly in its length. If Ls is
large the band gap is wide.

i. Holes can help to reduce the static mass of the PnC strip tether without effecting on band
gaps.

Figure 11. Resonators with Eigen mode shapes.

Figure 12. Phononic crystal strip.
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effective mass density reff respectively.

f WG ¼ 1
2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eeff

1þ Veff
� �

reff

s
(16)

f WS ¼ 1
2W

ffiffiffiffiffiffiffi
Eeff

reff

s
(17)

where L is the side length, and W is the side width of WG resonator, and WS resonator
respectively, Eeff, and veff is the effective Young’s modulus, and the effective Poisson’s ratio
respectively. We can calculate the values of Eeff, νeff, and reff by using following formula

Peff ¼
tAINpAIN þ 2tAUpAU þ tDipDi

tAIN þ 2tAU þ tDi
(18)

where tAlN, tAu and tDi are the thickness of aluminum nitride.

Clamping of tether with MEMS resonators at corners is obtained by COMSOL through FE
simulation as shown in Figure 11 above. Now come to the PnC strip with supporting tether
[47], as we discussed above that PnC is a highly periodic structure of unit cell which is the basic
block. In this work we take the PnC strip of five unit cells as shown below (Figure 12).

Figure 10. PnC MEMS resonator with supporting tethers.
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Moreover this work only investigates the band gap variation with Ws (stub width), Ls (stub
length), and Wh (side hole) of unit cells of the PnC strip.

The parameters of the WG and WS mode resonators and a unit cell of the PnC strip are given
in Table 1. Following Figure 13 shows the analysis of eigen frequency mode of the resonators
for positioning of anchor tether placement location.

As we discussed above that band gaps is used to explain electronic band structures of mate-
rials and can cause the reflection of mechanical wave in the periodic structure when incident
on phononic crystals. So here is the band structure with simulated dispersion curve represented
as blue dotted lines, and band gaps represented in yellow area having stub width: Ws = 28 μm,
stub length: Ls = 30 μm, and hole width: Wh = 2.5 μm (Figure 14).

From these results we arrived at this point that.

The role of Stub is important in the formation of band gaps, particularly in its length. If Ls is
large the band gap is wide.

i. Holes can help to reduce the static mass of the PnC strip tether without effecting on band
gaps.

Figure 11. Resonators with Eigen mode shapes.

Figure 12. Phononic crystal strip.
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6.2. Quality factor and harmonic response

Several MEMS resonators has been fabricated [48] with high quality factor, temperature stabil-
ity with high frequency. Several techniques have been used to minimize the anchor loss, and
improve quality factor in resonator such as impedance mismatching between resonator body
and support tethers, quarter-wavelength tethers, narrowed-width tethers, geometrical shape-
based tethers, acoustic wave reflection based tethers. And one of the sound technique is
phononic crystal (PnC) based tethers [47] which is highly effective in reduction of anchor loss,
and improve the quality factor in resonator. High quality factor reduces motional resistance.
Phononic crystals boosting the anchor quality factor and present the ability of acoustic/elastic
wave propagation isolation as well as reflection. Figure 15 shows the Q factor, and anchor Q
factor for PnC strip tethers.

Figure 13. Resonators with Eigen mode shapes.

Figure 14. Band structure with dispersion curves in PnC.
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The maximum value of Q obtained from WG mode resonator with five-unit cell PnC strip
tethers is 398.5% and from WS mode resonator with three-unit cell PnC strip tethers is
591.1%. The values of Q and Qanchor for WS WG mode resonator, and WS mode resona-
tor for their corresponding unit cells are shown in Table 2.

To see the harmonic response of resonators voltage is applied by two sources 1 V and -1 V.
Figure 15 depicted the curve between frequency and displacement. Narrow curve indicate that
the quality factor is much higher, but this is fact that the quality factor is always limited by
energy losses. In MEMS resonator the harmonic response is represented by electric charge and
admittance (Figure 16).

6.3. Anchor loss

Anchor is basically the attachment of supporting frame mechanical connection between
the resonators In all micromechanical resonator there must be the energy loss called an anchor
damping or anchor loss due to radiation of acoustic wave energy from the resonant structure via
supporting tether [10, 48, 50, 51], so the energy entered in the substrate when resonator vibrate.

Figure 15. WG and WS modes for PnC strip supporting tethers.

Figure 16. Harmonic response: WG and WS mode PnC strip resonators with supporting tethers.
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In other words we can say that in the resonator, elastic waves are trapped at resonance. This
phenomena may cause the loss of energy. The anchor size is responsible for the loss of energy
(anchor loss). One way of reduce the anchor loss is to increase the number of tethers and slightly
reduce the size of tethers [52].

7. Summary

This chapter has employed the theory of phononic crystal, classification of PnC according to its
physical nature, and PnC phenomena in locally resonant materials with 2D, and 3D crystals
structure. In this chapter PnC MEMS resonators with different transduction schemes such as
electrostatically, piezoresistively, piezoelectrically-transducedMEMS resonators are explained. In
this chapter phononic crystal strip in MEMS resonators is explained to reduce anchor loss, so
phononic crystal strip with supporting tethers is designed to see the formation of band gap by
introducing square holes, and improvement of quality factor. Moreover few simulation tools like
COMSOL Multi-physics for designing, MATLAB for extracting parameters and EXCEL for
representation of graphs are used.
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Unit Cell WG mode WS mode

Qanchor Q Qanchor Q

1 1.2954E6 4.5638E5 3.0251E6 3.1128E5

2 2.7839E7 6.9205E5 2.2752E8 3.8383E5

3 3.3660E8 7.1349E5 lossless 4.1347E5

4 4.0541E9 7.2244E5 —

5 lossless 7.2406E5 —

Table 2. Q, and Qanchor of PnC strip tether resonators.
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Abstract

We studied theoretically the absorption of acoustic phonons in the hypersound regime in
Fluorine modified carbon nanotube (F-CNT) ΓF�CNT

q and compared it to that of undoped

single walled carbon nanotube (SWCNT) ΓSWCNT
q . Per the numerical analysis, the F-CNT

showed less absorption to that of SWCNT, thus ∣ΓF�CNT
q ∣ < ∣ΓSWCNT

q ∣. This is due to the fact
that Fluorine is highly electronegative and weakens the walls of the SWCNT. Thus, the π-
electrons associated with the Fluorine causes less free charge carriers to interact with the
phonons and hence changing the metallic properties of the SWCNT to semiconductor by
the doping process. From the graphs obtained, the ratio of hypersound absorption in

SWCNT to F-CNT at T ¼ 45K is Γ SWCNTð Þ
Γ F�CNTð Þ

≈ 29 while at T ¼ 55K, is Γ SWCNTð Þ
Γ F�CNTð Þ

≈ 9 and at

T ¼ 65K, is Γ SWCNTð Þ
Γ F�CNTð Þ

≈ 2. Clearly, the ratio decreases as the temperature increases.

Keywords: carbon nanotube, fluorinated, acoustic effects, hypersound

1. Introduction

Acoustic effects in bulk and low dimensional materials have attracted lots of attention recently.
This is due to the need of finding coherent acoustic phonons for scientific applications as
against the use of conventional direct current [1]. Materials such as homogenous semiconduc-
tors, superlattices (SL), graphene and carbon nanotubes (CNT) are good candidates for such
studies due to their novel properties such as the high scattering mechanism, the high-bias
mean-free path (l) and their sizes which enable strong electron-phonon interaction to occur
in them resulting in acoustic phonon scattering. Acoustic waves through these materials are
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characterized by a set of elementary resonance excitations and dynamic nonlinearity which
normally leads to an absorption (or amplification), acoustoelectric effect (AE) [2], and acousto-
magnetoelectric effect (AME) [3, 4]. The concept of acoustic wave amplification was first
predicted in bulkmaterials [5], and later in n-Ge [6]. In SLs, Mensah et al. [7] studied hypersound
absorption (amplification) and established its use as a phonon filter, and in [8], predicted the use
of the SL as a hypersound generator which was confirmed in [1]. In Graphene, Nunes et al. [9]
treated theoretically hypersound amplification, but Dompreh et al. [10] further proved that
absorption also occurs in the material. Experimentally, Miseikis et al. [11] and Bandhu and Nash
[12] have studied acoustoelectric effect in Graphene.

Carbon nanotubes (CNTs), on the other hand, are cylindrical hollow rod of graphene sheets
whose electronic structures are determined by the localized π-electrons in the sp2- hybridized
bonds. Absorption (Amplification) of hypersound in undoped CNT has been carried out theo-
retically by Dompreh et al. [13, 14] and experimentally by [15, 16]. Other forms of research such
as hot-electron effect [17], thermopower in CNT [18] have been carried out. Flourine-modified
CNT (F-CNT) is off-late attracting a lot of scientific interest. This is attained by doping the CNT
with Fluorine thus forming double periodic band CNTchanging frommetallic to semiconductor.
As per the studies conducted by Jeon et al. [19], absorption in F-CNT is less than that of SWCNT
but no studies have been done on the absorption of F-CNT in the hypersound regime. In this
paper, the study of absorption of acoustic phonons in metallic SWCNT and F-CNT are theoreti-
cally studied. Here, the acoustic wave considered has wavelength λ ¼ 2π=q, smaller than the
mean-free path of the CNT and then treated as a packet of coherent phonons (monochromatic
phonons) having a δ-function distribution as

N kð Þ ¼ 2πð Þ3
ℏωqvs

Φδ k� qð Þ (1)

where k is the phonon wavevector, ℏ is the Planck’s constant divided by 2π, and Φ is the sound
flux density, and ωq and vs are respectively the frequency and the group velocity of sound
wave with wavevector q. It is assumed that the sound wave is propagated along the z-axis of
the CNT.

This paper is organized as follows: In Section 2, the absorption coefficient for F-CNT and
SWCNT are calculated. In Section 3, the final equations are analyzed numerically and presented
graphically. Section 4 presents the conclusion of the study.

2. Theory

Fluorination plays a significant role in the doping process, as it provides a high surface concen-
tration of functional groups, up to C2F without destruction of the tube’s physical structure.
Doping is an easy, fast, exothermic reaction and the repulsive interactions of the Fluorine atoms
on the surface debundles the nanotube, thus enhancing their electron dispersion [20]. Figure 1
shows a one dimensional SWCNTdoped with Fluorine atoms [21]. Consider a Fluorine modified

Phonons in Low Dimensional Structures130

CNT (n, n) with the Fluorine atoms forming a one-dimensional chain. A nanotube of this nature
is equivalent to a band with unit cell as shown in Figure 2, where b is the bond length (C-C) [22].

The width for the F-(n, n) tube equals n periods (with a periodic length of 3b), and this unit cell
contains N ¼ 4n� 2 carbon atoms which is shown in Figure 3 [22]. Figure 3 shows the atomic
numbering in the unit cell of the F-(n, n) nanotube. For a conjugated π� system, in which there is
alternation of single and double bonds along a linear chain, the Hückel matrix approximation is

Figure 1. Fluorine modified SWCNTwith the Fluorine atoms showing as yellow balls.

Figure 2. Fluorinated nanotube F� n; nð Þ (dots denotes the positions of Fluorine atoms of Fluorine atoms that are
covalently bonded to C atoms).

Figure 3. Atom numbering in the unit cells of nanotubes F� n;nð Þ.
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employed to determine the electronic energy band. Proceeding as in [8, 23], we employ the
Hamiltonian of the electron-phonon system in the FCNT in the second quantization formalism as

H ¼
X
p, ν

ε νð Þ pð Þ p� e
c
A tð Þ

� �
a νþð Þ
p a νð Þ

ν þ
X
k

ωkbþk bk…

þ 1ffiffiffiffi
N

p
X
p, k

X
νν0n

ckmνν0 kzð Þa νþð Þ
p aν

0
p�kþng bþk þ b�k

� � (2)

where ν ¼ 1, 2… and for a chemically modified F-CNT, where the Fluorine atoms form a one-
dimensional chain, the energy dispersion can be deduced by using the Huckel matrix method
where translational symmetry is accounted for in [22] as

ε pz
� � ¼ εo þ Ξnγ0 cos

2N�1 apz
� �

(3)

where a ¼ ffiffiffi
3

p
b= 2ℏð Þ, Ξ is a constant, N is an integer, and εo is the minimum energy of the π�

electrons within the first Brillouin zone. For N ¼ 2, the energy dispersion for F-CNT at the
Fermi surface at the edge of the Brillouin zone is

ε pz
� � ¼ απ þ 8γo cos

3 apz
� �

(4)

Eq. (4) can be expanded as

ε pz
� � ¼ εo þ Δ1 cos 3apz

� �þ Δ2 cos apz
� �

(5)

where εo is the electron energy in the first Brillouin zone with momentum po, i.e., �π=a ≤
po ≤π=a, Δ1 ¼ Δ=kBT, Δ2 ¼ 3Δ=kBT and Δ ¼ 2γo. By employing the coulombs gauge, the elec-
tromagnetic wave E tð Þ ¼ Eo sinωt is related to the vector potential A tð Þ is the vector potential
related to the external electric field of the electromagnetic wave E tð Þ ¼ Eo sinωt by the relation

E ¼ � 1=cð Þ ∂A=∂tð Þ and is directed along the F-CNT tubular axis. a þð Þ
p and ap are the creation and

annihilation operators of an electron with quasi-momentum p in the νth miniband respectively,
and bþk and bk are the phonon creation and annihilation operators respectively. N is the number
of FCNT periods, g ¼ 0; 0; 2π=dð Þ is the FCNT reciprocal vector, and mνν0 is given by

mνν0 kzð Þ ¼
ð
φ∗
ν0 zð Þφν zð Þeikz dz (6)

where φν zð Þ is the wavefunction of the νth state in one of the one-dimensional potential wells
from which the FCNT potential is formed. The electromagnetic wave frequency is assumed to
be large compared with the inverse of the electron mean free time 1=τ and the wavelength is
taken to be large compared with the FCNT period, electron mean free path and the de Broglie
wavelength. This opens the way for us to use the dipole approximation as in [8]. Moreover,
the plane electromagnetic wave of frequency ω satisfies ω=ωp > 1, where ωp is the plasma
frequency. In the case of the phonons, we confine our considerations to those for which the
wavevector q, satisfies the conditions ql≫ 1 where l is the electron mean free path in FCNT.
Such phonons constitute a well-defined elementary excitations of the system.
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For ωτ≫ 1 and ω > ωp, ensures that the electromagnetic wave penetrate the sample and the
condition ql≫ 1 means that the hypersound wavelength is far smaller than the electron mean
free path. The phonon dispersion relation then reads as

i
∂
∂t

bq
� �

t ¼ bq;H
� �� �

t ¼ ωq bq
� �

t þ
1ffiffiffiffi
N

p C�q

X
p

mss0 �qz
� �

a sþð Þ
p a sð Þ

pþqng

D E
t

(7)

After much simplification, the phonon transition rate in the presence of the electromagnetic
reduces to

Γ qð Þ ¼ �ImΩ ¼ 2πΦ
ωqVs

X
pz, n0

X∞
ℓ¼�∞

J2
ℓ
ξð Þ

� f εn0 pz
� �� �� f εn0 pz þ ℏq

� �� �� �
δ εn0 pz þ ℏq

� �� εn0 pz
� �� ℏωq � ℓΩ

� �
(8)

that is, the imaginary part of the polarization vector. In Eq. (8) Jℓ xð Þ is the Bessel function of
order ℓ and argument x. It follows from Eq. (8) that if Γ qð Þ > 0 we have hypersound attenua-
tion, whereas if Γ qð Þ < 0 we have hypersound amplification due to absorption Γ qð Þ > 0 and
emission Γ qð Þ < 0 of ∣ℓ∣ photons from the intensified laser field.

In the region of an intense laser field, i.e., ξ≫ω, only the electron-phonon collisions with the
absorption or emission of ℓ≫ 1 photons are significant. Accordingly, in the case of ξ≫ω the
argument of the Bessel function Jℓ ξð Þ is large. For large values, the Bessel function Jℓ ξð Þ is small
except when the order is equal to the argument.

ξ ¼ eEoa2Δq
Ω2 (9)

Taking the sum over ∣ℓ∣ using the approximation in Eq. (10)

X
ℓ¼�∞

J2
ℓ
ξð Þδ E� ℓΩð Þ ≈ 1

2
δ E� ξð Þ þ δ Eþ ξð Þ½ � (10)

where E ¼ ε pz þ ℏq
� �� ε pz

� �� ℏωq. Using the Fermi Golden Rule, the phonon transition rate
reduces Γ qð Þ ¼ Uac

n,n0 where

Uac
n,n0 ¼

2πΦ
ωqVs

X
pz, p0z

X
n,n0

Gpz�ℏq,pz

�� ��2 f εn pz � ℏq
� �� �� f εn pz

� �� �� �
δ εn pz � ℏq

� �� εn pz
� �þ ℏωq � ξ

� �n

þjGpzþℏq,pz

��2 f εn0 pz þ ℏq
� �� �� f εn0 pz

� �� �� �
δ εn0 pz þ ℏq

� �� εn0 pz
� �� ℏωq þ ξ

� �o

(11)

f pz
� �¼ f εn,n0 pz

� �� �
is the unperturbed distribution function, εn,n0 pz

� �
is the energy band, n and

n0 denotes the quantization of the energy band, and G pz � ℏq;pz
� �

is the matrix element of the
electron-phonon interaction. Letting p0z ¼ pz � ℏq and employing the principle of detailed bal-
ance, we assume that scattering into a state p0z and out of the state pz is the same, and hence
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� f εn0 pz
� �� �� f εn0 pz þ ℏq

� �� �� �
δ εn0 pz þ ℏq

� �� εn0 pz
� �� ℏωq � ℓΩ

� �
(8)

that is, the imaginary part of the polarization vector. In Eq. (8) Jℓ xð Þ is the Bessel function of
order ℓ and argument x. It follows from Eq. (8) that if Γ qð Þ > 0 we have hypersound attenua-
tion, whereas if Γ qð Þ < 0 we have hypersound amplification due to absorption Γ qð Þ > 0 and
emission Γ qð Þ < 0 of ∣ℓ∣ photons from the intensified laser field.

In the region of an intense laser field, i.e., ξ≫ω, only the electron-phonon collisions with the
absorption or emission of ℓ≫ 1 photons are significant. Accordingly, in the case of ξ≫ω the
argument of the Bessel function Jℓ ξð Þ is large. For large values, the Bessel function Jℓ ξð Þ is small
except when the order is equal to the argument.

ξ ¼ eEoa2Δq
Ω2 (9)

Taking the sum over ∣ℓ∣ using the approximation in Eq. (10)

X
ℓ¼�∞

J2
ℓ
ξð Þδ E� ℓΩð Þ ≈ 1

2
δ E� ξð Þ þ δ Eþ ξð Þ½ � (10)

where E ¼ ε pz þ ℏq
� �� ε pz

� �� ℏωq. Using the Fermi Golden Rule, the phonon transition rate
reduces Γ qð Þ ¼ Uac

n,n0 where

Uac
n,n0 ¼

2πΦ
ωqVs

X
pz, p0z

X
n,n0

Gpz�ℏq,pz

�� ��2 f εn pz � ℏq
� �� �� f εn pz

� �� �� �
δ εn pz � ℏq

� �� εn pz
� �þ ℏωq � ξ

� �n

þjGpzþℏq,pz

��2 f εn0 pz þ ℏq
� �� �� f εn0 pz

� �� �� �
δ εn0 pz þ ℏq

� �� εn0 pz
� �� ℏωq þ ξ

� �o

(11)

f pz
� �¼ f εn,n0 pz

� �� �
is the unperturbed distribution function, εn,n0 pz

� �
is the energy band, n and

n0 denotes the quantization of the energy band, and G pz � ℏq;pz
� �

is the matrix element of the
electron-phonon interaction. Letting p0z ¼ pz � ℏq and employing the principle of detailed bal-
ance, we assume that scattering into a state p0z and out of the state pz is the same, and hence
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Gp0, p
�� ��2 ¼ Gp,p0

�� ��2 (12)

Substituting Eq. (12) into Eq. (11) and also converting the summation over p
0
z into an integral,

we obtain

Γ qð Þ ¼ 2πΦ
ωqvs

:
X
n, n0

Gp0 , p
�� ��2

ð
f ε pz
� �� �� f ε pz þ ℏq

� �� �� �
δ εpzþq � εpz � ℏωq þ ξ
� �

dpz (13)

The matrix element of the electron-phonon interaction is given as

∣Gp0, p∣ ¼ Λqffiffiffiffiffiffiffiffiffiffiffi
2σωq

p (14)

where Λ is the deformation potential constant, and σ is the density of F-CNT. Substituting
Eq. (14) into Eq. (13), we obtain

Γ qð Þ ¼ 2πΦ
ωqvs

Λqffiffiffiffiffiffiffiffiffiffiffi
2σωq

p
 !2X

n, n0
f εn0 pz

� �� �� f εn0 pz þ ℏq
� �� �� �

� δ εn0 pz þ ℏq
� �� εn0 pz

� �� ℏωq þ ξ
� �

dpz

(15)

The electron distribution function is obtained by obtained by solving the Boltzmann transport
equation in the presence of external electric field

∂f r; p; tð Þ
∂t

þ v pð Þ:∇rf r; p; tð Þ þ eE∇pf r; p; tð Þ ¼ � f r; p; tð Þ � f o pð Þ
τ

(16)

and has a solution of

f pz
� � ¼

ð∞
0

dt0

τ
exp �t=τð Þf o pz � eaEt0

� �
(17)

and f o pz
� �

is the Fermi-Dirac distribution given as

f o pz
� � ¼ 1

exp � ε pz
� �� μ

� �
=kBT

� �þ 1
� � (18)

where μ is the chemical potential which ensures the conservation of electrons, kB is the Boltzmann’s
constant, T is the absolute temperature in energy units. Substituting Eqs. (17) and (18) into Eq. (15),
we obtain an equation for Γ qð Þ which contains Fermi-Dirac integral of the order 1=2 as

F1=2 ηf
� �

¼ 1
Γ 1=2ð Þ

ð∞
0

η1=2f dη

1þ exp η� ηf
� � (19)
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where EF � Ecð Þ=kBT � ηf . For nondegenerate electron gas, where the Fermi level is several

kBT below the energy of the conduction band Ec (i.e., kBT≪Ec), the integral in Eq. (19)

approaches 2=
ffiffiffiffi
π

p
exp ηf

� �
. Eqs. (18) and (19) then simplifies to

f o pz
� � ¼ C exp � ε pz

� �� eaEτ
� �

=kBT
� �

(20)

where C is the normalization constant to be determined from the normalization conditionÐ
f pð Þdp ¼ no as

C ¼ 3noa2

2Io Δ1ð ÞIo Δ2ð Þ exp
εo � EF

kBT

� �
(21)

where no is the electron density concentration, T is the absolute temperature in energy units
and Io xð Þ is the modified Bessel function of zero order.

From the conservation laws, the momentum (pz) can be deduced from the delta function part
of Eq. (15) as

pz ¼ �ℏq
2
þ 1
4a

arcsin
ωq

12γoaq

� �
(22)

By substituting pz into the distribution function in Eq. (15), and after some cumbersome
calculations yields

ΓFCNT
q ¼ Γo sinh Δ1 cos 3p0að Þ sinA sin

3
2
aℏq

� �
þ Δ2 cos p0að Þ sinB sin

a
2
ℏq

� �� ��

�cosh Δ1 cos 3p0að Þ cosA cos
3
2
aℏq

� �
þ Δ2 cos p0að Þ cosB cos

a
2
ℏq

� �� �

�4 Δ2 sin p0að Þ cosB sin
a
2
ℏq

� �
þ Δ1 cosA sin 3p0að Þ sin 3

2
aℏq

� ��

þΔ1Δ2 sin p0að Þ sin 3p0að Þ cosA cosB sin
a
2
ℏq

� �
sin

3
2
aℏq

� ��

�sinh Δ1 cos 3p0að Þ cosA cos
3
2
aℏq

� �
þ Δ2 cos p0að Þ cosB cos

a
2
ℏq

� �� �

�cosh Δ1 cos 3p0að Þ sinA sin
3
2
aℏq

� �
þ Δ2 cos p0að Þ sinB sin

a
2
ℏq

� �� ��

(23)

where χ ¼ ℏωqa=vs,Θ is defined to be the Heaviside step function, α ¼ ωq=12γoaq ¼ ωq=6Δ1aq.
In the absence of an external electric field
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Gp0, p
�� ��2 ¼ Gp,p0

�� ��2 (12)

Substituting Eq. (12) into Eq. (11) and also converting the summation over p
0
z into an integral,

we obtain

Γ qð Þ ¼ 2πΦ
ωqvs

:
X
n, n0

Gp0 , p
�� ��2

ð
f ε pz
� �� �� f ε pz þ ℏq

� �� �� �
δ εpzþq � εpz � ℏωq þ ξ
� �

dpz (13)

The matrix element of the electron-phonon interaction is given as

∣Gp0, p∣ ¼ Λqffiffiffiffiffiffiffiffiffiffiffi
2σωq

p (14)

where Λ is the deformation potential constant, and σ is the density of F-CNT. Substituting
Eq. (14) into Eq. (13), we obtain

Γ qð Þ ¼ 2πΦ
ωqvs

Λqffiffiffiffiffiffiffiffiffiffiffi
2σωq

p
 !2X

n, n0
f εn0 pz

� �� �� f εn0 pz þ ℏq
� �� �� �

� δ εn0 pz þ ℏq
� �� εn0 pz

� �� ℏωq þ ξ
� �

dpz

(15)

The electron distribution function is obtained by obtained by solving the Boltzmann transport
equation in the presence of external electric field

∂f r; p; tð Þ
∂t

þ v pð Þ:∇rf r; p; tð Þ þ eE∇pf r; p; tð Þ ¼ � f r; p; tð Þ � f o pð Þ
τ

(16)

and has a solution of

f pz
� � ¼

ð∞
0

dt0

τ
exp �t=τð Þf o pz � eaEt0

� �
(17)

and f o pz
� �

is the Fermi-Dirac distribution given as

f o pz
� � ¼ 1

exp � ε pz
� �� μ

� �
=kBT

� �þ 1
� � (18)

where μ is the chemical potential which ensures the conservation of electrons, kB is the Boltzmann’s
constant, T is the absolute temperature in energy units. Substituting Eqs. (17) and (18) into Eq. (15),
we obtain an equation for Γ qð Þ which contains Fermi-Dirac integral of the order 1=2 as

F1=2 ηf
� �

¼ 1
Γ 1=2ð Þ

ð∞
0

η1=2f dη

1þ exp η� ηf
� � (19)
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where EF � Ecð Þ=kBT � ηf . For nondegenerate electron gas, where the Fermi level is several

kBT below the energy of the conduction band Ec (i.e., kBT≪Ec), the integral in Eq. (19)

approaches 2=
ffiffiffiffi
π

p
exp ηf

� �
. Eqs. (18) and (19) then simplifies to

f o pz
� � ¼ C exp � ε pz

� �� eaEτ
� �

=kBT
� �

(20)

where C is the normalization constant to be determined from the normalization conditionÐ
f pð Þdp ¼ no as

C ¼ 3noa2

2Io Δ1ð ÞIo Δ2ð Þ exp
εo � EF

kBT

� �
(21)

where no is the electron density concentration, T is the absolute temperature in energy units
and Io xð Þ is the modified Bessel function of zero order.

From the conservation laws, the momentum (pz) can be deduced from the delta function part
of Eq. (15) as

pz ¼ �ℏq
2
þ 1
4a

arcsin
ωq

12γoaq

� �
(22)

By substituting pz into the distribution function in Eq. (15), and after some cumbersome
calculations yields

ΓFCNT
q ¼ Γo sinh Δ1 cos 3p0að Þ sinA sin

3
2
aℏq

� �
þ Δ2 cos p0að Þ sinB sin

a
2
ℏq

� �� ��

�cosh Δ1 cos 3p0að Þ cosA cos
3
2
aℏq

� �
þ Δ2 cos p0að Þ cosB cos

a
2
ℏq

� �� �

�4 Δ2 sin p0að Þ cosB sin
a
2
ℏq

� �
þ Δ1 cosA sin 3p0að Þ sin 3

2
aℏq

� ��

þΔ1Δ2 sin p0að Þ sin 3p0að Þ cosA cosB sin
a
2
ℏq

� �
sin

3
2
aℏq

� ��

�sinh Δ1 cos 3p0að Þ cosA cos
3
2
aℏq

� �
þ Δ2 cos p0að Þ cosB cos

a
2
ℏq

� �� �

�cosh Δ1 cos 3p0að Þ sinA sin
3
2
aℏq

� �
þ Δ2 cos p0að Þ sinB sin

a
2
ℏq

� �� ��

(23)

where χ ¼ ℏωqa=vs,Θ is defined to be the Heaviside step function, α ¼ ωq=12γoaq ¼ ωq=6Δ1aq.
In the absence of an external electric field
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ΓFCNT
q ¼ Γo sinh Δ1 sin

3
2
aℏq

� �
sinAþ Δ2 sin

a
2
ℏq

� �
sinB

� ��

�cosh Δ1 cos
3
2
aℏq

� �
cosAþ Δ2 cos

a
2
ℏq

� �
cosB

� �� (24)

and

Γo ¼
noa2ΦΛ2qΘ 1� α2

� �

48πIo 2γoβ
� �

Io 6γoβ
� �

ω2
qσvsγoℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p

A ¼ 3
4
arcsin

ωq

12γoaq

� �
B ¼ 1

4
arcsin

ωq

12γoaq

� �
α ¼ ωq

12γoaq

(25)

To compare the result with an undoped SWCNT, we follow the same procedure as that of
F-CNT. Using the tight-binding energy dispersion of the pz orbital which is given as:

ε pz
� � ¼ �γo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos

νπ
n

� �
cos

pz
ffiffiffi
3

p
b

2ℏ

 !
þ 4 cos 2 pz

ffiffiffi
3

p
b

2ℏ

 !vuut (26)

where γo ¼ 2:6eV is the hopping integral parameter, b ¼ 0:142nm is the C-C bonding distance,
and (þ) and (�) signs are respectively the conduction and valence band. When ν ¼ 0, the
conduction and valence bands cross each other near the Fermi points, pF ¼ �2πℏ=3

ffiffiffi
3

p
b giving

the metallic nature to the armchair tube. Putting ν ¼ 0, and making the substitution, pz ¼ pzþ
3po=2ℏ in Eq. (26) gives

ε pz
� � ¼ �γo 1� 2 cos

pz
ffiffiffi
3

p
b

2ℏ

 ! !
(27)

where po ¼ 2pF ¼ 4ℏπ=3
ffiffiffi
3

p
b ≈ 1:7� 1010m�1 see [24]. Eq. (27) is equivalent to the energy dis-

persion in Eq. (5) when n ¼ 1, which is

ε pz
� � ¼ εo þ Ξγo cos apz

� �
(28)

Using Eq. (15), the absorption in SWCNT is calculated as

ΓSWCNT
q ¼ π2Λ2q2ΦnoΘ 1� α2

� �

4γ2
oω

2
qvsσ sin aℏq=2ð ÞIo 2γoβ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p

� sinh βℏωq
� �

cosh 4γoβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p
cos

aℏq
2

� �� � (29)
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where

α ¼ ℏωq

4γo sin aℏq=2ð Þ (30)

3. Results and discussions

In this formulation, we consider a novel concept of monochromatic acoustic phonon amplifi-
cation at the THz frequencies regime. Impulsive phonon excitation by a femtosecond optical
pulse generates coherent FCNT and SWCNT phonons propagating in the forward and back-
ward direction along the FCNT and SWCNT axis, that is setting up an stationary acoustic
wave. Interaction of the propagating acoustic wave with an electrically driven intraminiband
transition electron current allows for phonon absorption, connected with electron transitions
between states within an electronic miniband. The intravalley or intraminiband character of
the electron transport allows for much higher currents than interminiband electron or electron
tunneling and thus, a much stronger phonon absorption.

The general expressions for the hypersound absorption in F-CNT (ΓF�CNT
q ) and in SWCNT

(ΓSWCNT
q ) are presented in Eqs. (24) and (29) respectively. In both equations, the absorptions are

dependent on the frequency (ωq), the acoustic wavenumber (q), and temperature (T) as well as
other parameters such as the inter-atomic distances, the velocity of sound (vs) and the defor-
mation potential (Λ). In both expressions (see Eqs. (24) and (29)) a transparency window is
observed: for F-CNT is ωq ≫ 12γoaq; and for SWCNT is ωq ≫γo sin

1
2 aℏq
� �

=ℏ. These are the
consequence of conservation laws. The Eqs. (24) and (29), are analyzed numerically with
the following parameters used: Λ ¼ 9eV, q ¼ 105 cm�1, ωq ¼ 1012 s�1, vs ¼ 5� 103m=s, Φ ¼
104Wb=m2, and T ¼ 45K. The results are graphically plotted (see Figures 4–7). Figure 4 shows
the dependence of the sound absorption coefficient on the frequency (ωq) for varying q. In both
graphs, the absorption is initially high but falls off sharply and then changes slowly at high
values of ωq. Increasing the values of q correspondingly increases the obtained graph in both
doped F-CNTand undoped SWCNT though the magnitude of absorption obtained in SWCNT
exceeds that of F-CNT, that is, ∣ΓSWCNT

q ∣ > ∣ΓF�CNT
q ∣. This is in accordance with the work of Jeon

et al. [19]. In Figure 2, the graph increases to a maximum point then drops off. It then changes
again slowly at high q for both undoped SWCNTand doped F-CNT. By increasing the temper-
ature, the amplitude of the graphs reduces. For T ¼ 45K, the maximum absorption in
ΓSWCNT
q ¼ 8:2� 104 whilst that of ΓF�CNT

q ¼ 2867 which gives the ratio of the absorption
Γ SWNTð Þ
Γ F�CNTð Þ

≈ 29, whilst at T ¼ 55K, Γ SWNTð Þ
Γ F�CNTð Þ

≈ 9 and at T ¼ 65K, we had Γ SWNTð Þ
Γ F�CNTð Þ

≈ 2. Clearly, we noticed

that the ratio decreases with an increase in temperature. The nonlinear behavior in Figure 5 is
as a result of the fact that, increasing temperature increases the scattering process in the
material. The majority of electrons in this case acquire a higher velocity, shorter collision time,
and higher energy. This energetic electrons, which are the majority undergo inter-mini-band
transition (tunneling) allowing only a handful to undergo intra-mini-band transition. This
allows only the few intra-mini-band electrons to interact with the copropagating phonons
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ΓFCNT
q ¼ Γo sinh Δ1 sin

3
2
aℏq

� �
sinAþ Δ2 sin

a
2
ℏq

� �
sinB

� ��

�cosh Δ1 cos
3
2
aℏq

� �
cosAþ Δ2 cos

a
2
ℏq

� �
cosB

� �� (24)

and

Γo ¼
noa2ΦΛ2qΘ 1� α2

� �

48πIo 2γoβ
� �

Io 6γoβ
� �

ω2
qσvsγoℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p

A ¼ 3
4
arcsin

ωq

12γoaq

� �
B ¼ 1

4
arcsin

ωq

12γoaq

� �
α ¼ ωq

12γoaq

(25)

To compare the result with an undoped SWCNT, we follow the same procedure as that of
F-CNT. Using the tight-binding energy dispersion of the pz orbital which is given as:

ε pz
� � ¼ �γo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos

νπ
n

� �
cos

pz
ffiffiffi
3

p
b

2ℏ

 !
þ 4 cos 2 pz

ffiffiffi
3

p
b

2ℏ

 !vuut (26)

where γo ¼ 2:6eV is the hopping integral parameter, b ¼ 0:142nm is the C-C bonding distance,
and (þ) and (�) signs are respectively the conduction and valence band. When ν ¼ 0, the
conduction and valence bands cross each other near the Fermi points, pF ¼ �2πℏ=3

ffiffiffi
3

p
b giving

the metallic nature to the armchair tube. Putting ν ¼ 0, and making the substitution, pz ¼ pzþ
3po=2ℏ in Eq. (26) gives

ε pz
� � ¼ �γo 1� 2 cos

pz
ffiffiffi
3

p
b

2ℏ

 ! !
(27)

where po ¼ 2pF ¼ 4ℏπ=3
ffiffiffi
3

p
b ≈ 1:7� 1010m�1 see [24]. Eq. (27) is equivalent to the energy dis-

persion in Eq. (5) when n ¼ 1, which is

ε pz
� � ¼ εo þ Ξγo cos apz

� �
(28)

Using Eq. (15), the absorption in SWCNT is calculated as

ΓSWCNT
q ¼ π2Λ2q2ΦnoΘ 1� α2

� �

4γ2
oω

2
qvsσ sin aℏq=2ð ÞIo 2γoβ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p

� sinh βℏωq
� �

cosh 4γoβ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� α2

p
cos

aℏq
2

� �� � (29)
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where

α ¼ ℏωq

4γo sin aℏq=2ð Þ (30)

3. Results and discussions

In this formulation, we consider a novel concept of monochromatic acoustic phonon amplifi-
cation at the THz frequencies regime. Impulsive phonon excitation by a femtosecond optical
pulse generates coherent FCNT and SWCNT phonons propagating in the forward and back-
ward direction along the FCNT and SWCNT axis, that is setting up an stationary acoustic
wave. Interaction of the propagating acoustic wave with an electrically driven intraminiband
transition electron current allows for phonon absorption, connected with electron transitions
between states within an electronic miniband. The intravalley or intraminiband character of
the electron transport allows for much higher currents than interminiband electron or electron
tunneling and thus, a much stronger phonon absorption.

The general expressions for the hypersound absorption in F-CNT (ΓF�CNT
q ) and in SWCNT

(ΓSWCNT
q ) are presented in Eqs. (24) and (29) respectively. In both equations, the absorptions are

dependent on the frequency (ωq), the acoustic wavenumber (q), and temperature (T) as well as
other parameters such as the inter-atomic distances, the velocity of sound (vs) and the defor-
mation potential (Λ). In both expressions (see Eqs. (24) and (29)) a transparency window is
observed: for F-CNT is ωq ≫ 12γoaq; and for SWCNT is ωq ≫γo sin

1
2 aℏq
� �

=ℏ. These are the
consequence of conservation laws. The Eqs. (24) and (29), are analyzed numerically with
the following parameters used: Λ ¼ 9eV, q ¼ 105 cm�1, ωq ¼ 1012 s�1, vs ¼ 5� 103m=s, Φ ¼
104Wb=m2, and T ¼ 45K. The results are graphically plotted (see Figures 4–7). Figure 4 shows
the dependence of the sound absorption coefficient on the frequency (ωq) for varying q. In both
graphs, the absorption is initially high but falls off sharply and then changes slowly at high
values of ωq. Increasing the values of q correspondingly increases the obtained graph in both
doped F-CNTand undoped SWCNT though the magnitude of absorption obtained in SWCNT
exceeds that of F-CNT, that is, ∣ΓSWCNT

q ∣ > ∣ΓF�CNT
q ∣. This is in accordance with the work of Jeon

et al. [19]. In Figure 2, the graph increases to a maximum point then drops off. It then changes
again slowly at high q for both undoped SWCNTand doped F-CNT. By increasing the temper-
ature, the amplitude of the graphs reduces. For T ¼ 45K, the maximum absorption in
ΓSWCNT
q ¼ 8:2� 104 whilst that of ΓF�CNT

q ¼ 2867 which gives the ratio of the absorption
Γ SWNTð Þ
Γ F�CNTð Þ

≈ 29, whilst at T ¼ 55K, Γ SWNTð Þ
Γ F�CNTð Þ

≈ 9 and at T ¼ 65K, we had Γ SWNTð Þ
Γ F�CNTð Þ

≈ 2. Clearly, we noticed

that the ratio decreases with an increase in temperature. The nonlinear behavior in Figure 5 is
as a result of the fact that, increasing temperature increases the scattering process in the
material. The majority of electrons in this case acquire a higher velocity, shorter collision time,
and higher energy. This energetic electrons, which are the majority undergo inter-mini-band
transition (tunneling) allowing only a handful to undergo intra-mini-band transition. This
allows only the few intra-mini-band electrons to interact with the copropagating phonons
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leading to a decrease in absorption of the acoustic phonons. To aid a better understanding of
the comparison between the absorption obtained in both SWCNTand F-CNT, a semilog plot is
presented in Figure 6, which clearly shows that the undoped SWCNT absorbs more than the
doped F-CNT. This can be attributed to the fact that the presence of F-CNT atoms leads to
chemical activation of a passive surface CNT by adding additional electronic band structure
and altering the carbon π-bonds around the Fermi level in a non-linear manner thus forming a
band structure of width two periods [22]. As Flourine is highly electronegative it thus weakens
the walls of the CNT as it approaches it. The π-electrons attached to the Flourine which causes
less free charge carriers to interact with the phonons. Current researches have predicted sp2

bonding charge change to sp3 by F-functionlization [25–27]. This bonding charge change would
reduce the density of free carriers, consequently leading to the magnitude reduction of the
absorption [22] (Figures 4–6).

Figure 4. Dependence of Γq on ωq (left) for an undoped SWCNT, and (right) for a F-CNT by varying q at T ¼ 45K.

Figure 5. Dependence of Γq on q (left) for undoped SWCNT and (right) for doped F-CNT at T ¼ 45, 55, 65K.
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In order to put our observations in perspective, we display Figures 4 and 5 in a three-
dimensional behavior of the sound coefficient as a function of the frequency (ωq) and the
wavevector q (Figure 7).

4. Conclusion

Theoretical investigation of strong absorption of coherent acoustic phonons in an FCNT and
SWCNT at low temperature utilizing the Boltzmann’s transport equation is carried out in the
regime ql≫ 1. The absorption coefficient obtained is highly nonlinear and depends on the

Figure 7. A three dimensional plot of Γq dependence on q and ωq for doped and undoped SWCNT.

Figure 6. Semilog plot of Γq dependence on q and ωq for doped F-CNT and undoped SWCNT.
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stimulated absorption of acoustic phonons by electrically determined electrons experiencing
intraminiband transport. The study is appropriate and furthermore considers a strong absorp-
tion of energized FCNT and SWCNT phonons. The Flourine doping affects the absorption
properties of F-CNT, whereas SWCNT absorbs better than the F-CNT as was observed by Jeon
et al. [19]. The phonons absorbed in this study have THz frequencies with wavelengths in the
nanometer run, and takes into account examinations with high spatial determination, e.g., in
phonon filters, spectroscopy (phonon spectrometer), microbiology, micro-nanoelectronic gad-
gets, tetrahertz adjustment of light, nondestructive testing of microstructures, and acoustic
examination.
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Abstract

We give a theoretical review of recent development of the mesoscopic physics of phonon
transport in carbon nanotubes, including the quantization of phonon thermal conductance,
phonon Anderson localization, and so on. A single-walled carbon nanotube (SWCNT) can
be regarded as a typical one-dimensional phonon conductor and exhibits various interesting
phenomena originating from its one dimensionality. For example, a pristine SWCNTwith-
out any defects shows the quantization of phonon thermal conductance at low temperature.
On the other hand, a defective SWCNT with randomly distributed carbon isotopes shows
the phonon Anderson localization originating from the interference between phonons
scattered by isotope impurities.

Keywords: carbon nanotube, ballistic phonon, quantized thermal conductance, phonon
Anderson localization, phonon waveguide

1. Introduction

Heating of electronic devices is an unavoidable serious problem toward the realization of next-
generation nanoscale devices. Carbon nanotube (CNT) is expected to be a potential material
for removing the heat from heated devices because of its high thermal conductivity. However,
concern has been raised that intrinsic high thermal conductivity of pure CNTs is lost because of
the presence of defects in synthesized CNTs.

In this chapter, we give a review of recent progress of theoretical works on phonon transport in
CNTs focusing on the quantization of phonon thermal conductance, phonon Anderson locali-
zation, and so on. The phonon transport in CNTs shows fully quantum behaviors at low
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temperatures and exhibits strong nonlinear behaviors due to phonon-phonon interaction at
high temperatures. Therefore, traditional transport theories for bulk objects are not applicable
to the thermal transport in CNTs. In the chapter, we will introduce a novel theory for
mesoscopic phonon transport we developed and will describe various results and their physical
interpretations.

2. Coherent phonon thermal transport in carbon nanotubes

2.1. Quantized thermal conductance of carbon nanotubes

In the one-dimensional (1D) phonon system formed between heat and cold baths, the thermal
current density is described as the Landauer energy flux [1–3], which is given by

_Qph ¼
X
m

ð∞
0

dk
2π

ℏωm kð Þvm kð Þ η ωm;Thotð Þ � η ωm;Tcoldð Þ½ �ζm kð Þ (1)

where ℏωm kð Þ a phonon energy dispersion of wave number k and a phonon mode index m,

vm kð Þ ¼ dωm kð Þ=dk a group velocity, η ωm;Tαð Þ ¼ exp ℏωm kð Þ=kBTαð Þ � 1
� ��1 the Bose-Einstein

distribution function in heat baths, and ζm kð Þ is the transmission probability between the
system and heat baths [1].

Analytically, performing the integration in Eq. (1) is, generally, very difficult, and it requires a
knowledge of ωm kð Þ and ζm kð Þ as a function of m and k. However, transformation of the
integration variable in Eq. (1) from k to ωm kð Þ leads to a cancelation between vm kð Þ and the
density of state, dk=dωm, so that Eq. (1) is rewritten as

_Qph ¼
X
m

ðωmax
m

ωmin
m

dωm

2π
ℏωm η ωm;Thotð Þ � η ωm;Tcoldð Þ½ �ζm ωmð Þ (2)

Here ωmin
m and ωmax

m are the minimum and maximum angular frequencies of the mth phonon
dispersion, respectively. It is noted that Eq. (2) depends on only ωmin

m and ωmax
m regardless of the

energy dispersion. Furthermore, within the linear response limit, ΔT � Thot � Tcold ≪T
� Thot þ Tcoldð Þ=2, and the limit of adiabatic contact between the system and heat baths,

ζm ωmð Þ ¼ 1, the thermal conductance, κph ¼ _Qph=ΔT, is simplified as

κph ¼ k2BT
2πℏ

X
m

ðxmax
m

xmin
m

dx
x2ex

ex � 1ð Þ2 (3)

Carrying out the integration in Eq. (3), we can derive an analytical expression of the thermal
conductance, which can easily apply to various 1D ballistic phonon systems, κph ¼
κmin
ph � κmax

ph :
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κα
ph ¼ 2k2BT

h

X
m

ϕ 2; e�xαm
� �þ xαmϕ 1; e�xαm

� �þ xαm
� �2
2

η xαm
� �

" #
(4)

Here, α denotes “min” or “max,” ϕ z; sð Þ ¼P∞
n¼1 sn=nzð Þ is the Appel function, and

xαm ¼ ℏωα
m=kBT. In particular, an acoustic mode (ωmin

m ¼ 0) contributes a universal quantum of

κ0 ¼ π2k2BT=3h to the thermal conductance.

The thermal conductance in single-walled carbon nanotubes (SWCNTs) can be obtained by
knowing the values of ωmin

m and ωmax
m for all m. These values can be obtained from the

diagonalization of the dynamical matrix, constructed with the scaled force-constant parame-
ters [4, 5]. Figure 1 shows energy dispersion curves for the region near k ¼ 0 for a CNT with
chiral vector Ch ¼ 10; 10ð Þ, where ∣T∣ is the magnitude of the unit vector along the tube axis.
Here, the chiral vector n;mð Þ uniquely determines the geometrical structure of CNTs [5, 7].
Figure 1 shows four acoustic modes with linear dispersion: a longitudinal acoustic one, doubly
degenerate transverse acoustic ones, and a twisting one. The lowest doubly degenerate optical
(E2g Raman active) modes have an energy gap of ℏωop ¼ 2:1 meV at k ¼ 0. As shown in the
inset of Figure 1, ℏωop depends only on the tube radius R and decreases approximately

according to � 1=R2 [5, 7]. These modes always lie in low-energy dispersion relations, inde-
pendent of the geometry of SWCNTs.

Figure 2(a) shows the thermal conductances normalized to a universal value of 4κ0 (as
explained later) as a function of temperature. The calculated values approach unity in the

Figure 1. Low-energy phonon dispersion curves for a (10,10) SWCNT [6]. The inset shows the energy gap of the lowest
optical modes. Copyright 2004 American Physical Society.
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temperatures and exhibits strong nonlinear behaviors due to phonon-phonon interaction at
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to the thermal transport in CNTs. In the chapter, we will introduce a novel theory for
mesoscopic phonon transport we developed and will describe various results and their physical
interpretations.
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knowledge of ωm kð Þ and ζm kð Þ as a function of m and k. However, transformation of the
integration variable in Eq. (1) from k to ωm kð Þ leads to a cancelation between vm kð Þ and the
density of state, dk=dωm, so that Eq. (1) is rewritten as

_Qph ¼
X
m

ðωmax
m

ωmin
m

dωm

2π
ℏωm η ωm;Thotð Þ � η ωm;Tcoldð Þ½ �ζm ωmð Þ (2)

Here ωmin
m and ωmax

m are the minimum and maximum angular frequencies of the mth phonon
dispersion, respectively. It is noted that Eq. (2) depends on only ωmin

m and ωmax
m regardless of the

energy dispersion. Furthermore, within the linear response limit, ΔT � Thot � Tcold ≪T
� Thot þ Tcoldð Þ=2, and the limit of adiabatic contact between the system and heat baths,

ζm ωmð Þ ¼ 1, the thermal conductance, κph ¼ _Qph=ΔT, is simplified as

κph ¼ k2BT
2πℏ
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ðxmax
m

xmin
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dx
x2ex

ex � 1ð Þ2 (3)

Carrying out the integration in Eq. (3), we can derive an analytical expression of the thermal
conductance, which can easily apply to various 1D ballistic phonon systems, κph ¼
κmin
ph � κmax

ph :
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Here, α denotes “min” or “max,” ϕ z; sð Þ ¼P∞
n¼1 sn=nzð Þ is the Appel function, and

xαm ¼ ℏωα
m=kBT. In particular, an acoustic mode (ωmin

m ¼ 0) contributes a universal quantum of

κ0 ¼ π2k2BT=3h to the thermal conductance.

The thermal conductance in single-walled carbon nanotubes (SWCNTs) can be obtained by
knowing the values of ωmin

m and ωmax
m for all m. These values can be obtained from the

diagonalization of the dynamical matrix, constructed with the scaled force-constant parame-
ters [4, 5]. Figure 1 shows energy dispersion curves for the region near k ¼ 0 for a CNT with
chiral vector Ch ¼ 10; 10ð Þ, where ∣T∣ is the magnitude of the unit vector along the tube axis.
Here, the chiral vector n;mð Þ uniquely determines the geometrical structure of CNTs [5, 7].
Figure 1 shows four acoustic modes with linear dispersion: a longitudinal acoustic one, doubly
degenerate transverse acoustic ones, and a twisting one. The lowest doubly degenerate optical
(E2g Raman active) modes have an energy gap of ℏωop ¼ 2:1 meV at k ¼ 0. As shown in the
inset of Figure 1, ℏωop depends only on the tube radius R and decreases approximately

according to � 1=R2 [5, 7]. These modes always lie in low-energy dispersion relations, inde-
pendent of the geometry of SWCNTs.

Figure 2(a) shows the thermal conductances normalized to a universal value of 4κ0 (as
explained later) as a function of temperature. The calculated values approach unity in the

Figure 1. Low-energy phonon dispersion curves for a (10,10) SWCNT [6]. The inset shows the energy gap of the lowest
optical modes. Copyright 2004 American Physical Society.
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low-temperature limit, meaning that the phonon thermal conductance of SWCNTs is quan-
tized in unit of a universal value of 4κ0, independent of the chirality of SWCNTs. The origin of
the quantization of thermal conductance is low-energy excitations of long wavelength acoustic
phonons (four branches in Figure 1) at temperatures sufficiently low that the two lowest
optical modes with ℏωop are not excited (lowest gapped branch in Figure 2). The quantization

Figure 2. Thermal conductance as a function of temperature (a) in units of Kelvin and (b) scaled by the energy gap of the
lowest optical mode [6]. Copyright 2004 American Physical Society.
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can also be derived analytically from Eq. (4). Only the first term contributes to the conductance
at the low-T limit, leading to 4 π2k2BT=3h

� � ¼ 4κ0. Here, 4 is the number of acoustic branches.

As another important finding, the different curves of κph Tð Þ for various SWCNTs seen in
Figure 2(a) exhibit a universal feature when a scaled temperature is introduced, τop ¼
kBT=ℏωop. Taking account of the four acoustic and two lowest optical modes and substituting

the values of ωmin
m for these branches at the k ¼ 0 into Eq. (2), the thermal conductance can be

given as

κph

4κ0
≈ 1þ 3

π2 e
�1=τop 1þ 1

τop
þ 1
2τ2op

 !
(5)

The curves in Figure 2(a) are replotted against the curve of Eq. (5) with τop in Figure 2(b). It is
evident that all curves (only three curves are shown for clarity) fall on a single curve coinciding
with the curve of Eq. (5) in the low-T limit. The curves turn upward at around τop ≈ 0:14 from a
linear region in this plot (quantization plateau), with the plateau width determined by the
relation � 1=R2 (see result in the inset of Figure 1). This universal feature of κph Tð Þ of SWCNTs
indicates that the optical phonon energy gap, which is decided only by R, characterizes low-
temperature phonon transport, as shown in the inset of Figure 1. This theoretical result
supports both the experimental observations and the inferred tube-radius dependence of the
width of the thermal conductance plateau, although the unknown extrinsic factors in the
experiment makes it impossible to compare the absolute values between the experiment and
theory directly [8, 9].

The contribution of electrons to thermal conductance can be determined in a simple manner by

replacing η ωm;Tð Þ in Eq. (1) with f Em;Tð Þ ¼ 1= e Em�μð Þ=kBT þ 1
h i

and then substituting the

electron energy bands, Em, into the formula. According to this formulation, all conduction
bands crossing the Fermi energy level yield κ0, as that of phonons, even though electrons obey
different statistics. Generally, the quantum of thermal conductance should be universal out of
relation to particle statistics [1, 10].

The low-T behavior of the electronic thermal conductance in SWCNTs is dependent on
whether the SWCNT is metallic or semiconducting, which is sensitive to radius and chirality
[11, 12]. For semiconducting SWCNTs, the electronic thermal conductance, κel, should vanish
roughly exponentially in the limit of T ! 0, having an energy gap of the order of 0.1 eV
[13–15]. For metallic SWCNTs, two linear energy bands crossing the Fermi level at k > 0 [5]
contribute toκel at low temperatures, resulting in a universal value of κel ¼ 4κ0, where 4 is the
number of two spin-degenerate channels crossing the Fermi level. This result also satisfies the
Wiedemann-Franz relation between electrical conductance and electronic thermal one [16–18].
The total thermal conductance of metallic SWCNTs is given by κ ¼ κel þ κph ¼ 8π2k2BT=3h at
low temperatures.

Finally, in this subsection, a significant difference was recognized between the widths of the
quantization plateau for phonons and those for electrons in metallic SWCNTs. The characteristic
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low-temperature limit, meaning that the phonon thermal conductance of SWCNTs is quan-
tized in unit of a universal value of 4κ0, independent of the chirality of SWCNTs. The origin of
the quantization of thermal conductance is low-energy excitations of long wavelength acoustic
phonons (four branches in Figure 1) at temperatures sufficiently low that the two lowest
optical modes with ℏωop are not excited (lowest gapped branch in Figure 2). The quantization
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linear region in this plot (quantization plateau), with the plateau width determined by the
relation � 1=R2 (see result in the inset of Figure 1). This universal feature of κph Tð Þ of SWCNTs
indicates that the optical phonon energy gap, which is decided only by R, characterizes low-
temperature phonon transport, as shown in the inset of Figure 1. This theoretical result
supports both the experimental observations and the inferred tube-radius dependence of the
width of the thermal conductance plateau, although the unknown extrinsic factors in the
experiment makes it impossible to compare the absolute values between the experiment and
theory directly [8, 9].

The contribution of electrons to thermal conductance can be determined in a simple manner by

replacing η ωm;Tð Þ in Eq. (1) with f Em;Tð Þ ¼ 1= e Em�μð Þ=kBT þ 1
h i

and then substituting the

electron energy bands, Em, into the formula. According to this formulation, all conduction
bands crossing the Fermi energy level yield κ0, as that of phonons, even though electrons obey
different statistics. Generally, the quantum of thermal conductance should be universal out of
relation to particle statistics [1, 10].

The low-T behavior of the electronic thermal conductance in SWCNTs is dependent on
whether the SWCNT is metallic or semiconducting, which is sensitive to radius and chirality
[11, 12]. For semiconducting SWCNTs, the electronic thermal conductance, κel, should vanish
roughly exponentially in the limit of T ! 0, having an energy gap of the order of 0.1 eV
[13–15]. For metallic SWCNTs, two linear energy bands crossing the Fermi level at k > 0 [5]
contribute toκel at low temperatures, resulting in a universal value of κel ¼ 4κ0, where 4 is the
number of two spin-degenerate channels crossing the Fermi level. This result also satisfies the
Wiedemann-Franz relation between electrical conductance and electronic thermal one [16–18].
The total thermal conductance of metallic SWCNTs is given by κ ¼ κel þ κph ¼ 8π2k2BT=3h at
low temperatures.

Finally, in this subsection, a significant difference was recognized between the widths of the
quantization plateau for phonons and those for electrons in metallic SWCNTs. The characteristic
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energy for phonon transport at low temperature is ℏωop, typically a few meV, as described in
Figure 2(b), while that for electron transport is of the order of 0.1 eV, which corresponds to the
energy at a Van Hove singularity measured from the Fermi level [19]. As a result, it is predicted
that the quantized nature of electron thermal conductance survives up to room temperature, at
which phonons already cease to exhibit thermal quantization, giving rise to high thermal
conductance. In other words, the contribution from electrons to thermal conductance is negli-
gible compared to that from phonons at moderate temperatures. In Figure 3, the temperature
dependence of the ratio of thermal conductance κel=κph for electrons and phonons is illus-
trated. The experimentally observed ratio [20] is 1 order of magnitude lower than the present
value. The discrepancy is attributed to the theoretical treatment of SWCNTs as purely metallic,
whereas only a certain fraction � 1=3ð Þ [5, 11] of the crystalline ropes of SWCNTs in the
experiment will be metallic and contribute to κel.

2.2. Carbon nanotube as phonon waveguide

In this subsection, nonequilibrium molecular dynamics (NEMD) simulations are carried out
with the Brenner bond-order potential for carbon-carbon covalent bonds [21] and the Lennard-
Jones one for van der Waals interaction between the tube walls [22]. In our NEMD simulations,
different temperatures, TC (¼ 290 K) and TH (¼ 310 K), are assigned to several layers of the
left- and right-hand sides of a SWCNT. This leads to a thermal current from the right to left
through the SWCNT, as shown in Figure 4. The Nosé-Hoover thermostat is utilized to control
the temperature of the left and right-hand side several layers [24, 25], and we impose the fixed
boundary condition, so that the edge atoms of SWCNTs are fixed rigidly. The length of the

Figure 3. Ratio of thermal conductance by electrons, to that by phonons for a (10,10) SWCNT [6]. The inset gives results at
low temperatures on an expanded scale. Copyright 2004 American Physical Society.
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temperature-controlled layers is taken to be LC ¼ L=2, where L is the length of the phonon-
conduction region. The tunable parameters in the Nosé-Hoover thermostat method were
optimized so as to minimize contact thermal resistance [26]. In our simulations, we solve
Hamilton’s classical equations of motion using second-order operator splitting integrators
[27] with the molecular-dynamics (MD) time step of 0.5 fs.

In this subsection, the thermal conductance κ is treated as

κ ¼ Jth
TH � TC

(6)

Here, the steady-state thermal current, Jth, is calculated as follows:

Jth ¼
Pn

j¼1 ΔQH jð Þ � ΔQC jð Þ½ �
2nΔt

(7)

where n represents the number of MD steps and �ΔQH Cð Þ jð Þ is the amount of heat added to the
right temperature-controlled layers (removed from the left ones) per unit time (see Figure 4).

First, the influence of bending deformation on the thermal conductance of SWCNTs is
discussed. In our simulations, shortening the distance between the two ends of a SWCNT
realizes bending. The right panels (a)-(c) in Figure 5 illustrate the bent 5; 5ð Þ SWCNT for
compression lengths lcomp ¼ 0, 60, and 120 nm, respectively. It can be seen that the CNT is
severely bent as the edge-layer distance decreases. In the simulations, the bending deformation
arises from stretching of carbon-carbon bond lengths, and the hexagonal network of carbon
atoms in the SWCNT is not broken. The left panel in Figure 5 shows the thermal conductance of
the 5; 5ð Þ SWCNT with L ¼ 100 nm as a function of the compression length. Our simulations
exhibits that the bending does not affect the thermal conductance. Although the value of
thermal conductance depends on L, the L-dependence is not discussed here because the conclu-
sion of the study does not change qualitatively within the range from L ¼ 100 to 250 nm as
calculated. For the L-dependence, we refer the reader to other published papers [26, 28–31].

The bending robustness of κ can be understood through a perspective of the phonon disper-
sion relations as shown in Figure 6, given by the power spectra of velocity fluctuations
calculated by MD simulations [26, 28]. Figure 6(a)-(c) show the dispersion relations of the bent

Figure 4. Schematic of the SWCNT in which different temperatures are assigned to the left- and right-end several layers
[23]. Copyright 2009 the Japan Society of Applied Physics.
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temperature-controlled layers is taken to be LC ¼ L=2, where L is the length of the phonon-
conduction region. The tunable parameters in the Nosé-Hoover thermostat method were
optimized so as to minimize contact thermal resistance [26]. In our simulations, we solve
Hamilton’s classical equations of motion using second-order operator splitting integrators
[27] with the molecular-dynamics (MD) time step of 0.5 fs.

In this subsection, the thermal conductance κ is treated as

κ ¼ Jth
TH � TC

(6)

Here, the steady-state thermal current, Jth, is calculated as follows:

Jth ¼
Pn

j¼1 ΔQH jð Þ � ΔQC jð Þ½ �
2nΔt

(7)

where n represents the number of MD steps and �ΔQH Cð Þ jð Þ is the amount of heat added to the
right temperature-controlled layers (removed from the left ones) per unit time (see Figure 4).

First, the influence of bending deformation on the thermal conductance of SWCNTs is
discussed. In our simulations, shortening the distance between the two ends of a SWCNT
realizes bending. The right panels (a)-(c) in Figure 5 illustrate the bent 5; 5ð Þ SWCNT for
compression lengths lcomp ¼ 0, 60, and 120 nm, respectively. It can be seen that the CNT is
severely bent as the edge-layer distance decreases. In the simulations, the bending deformation
arises from stretching of carbon-carbon bond lengths, and the hexagonal network of carbon
atoms in the SWCNT is not broken. The left panel in Figure 5 shows the thermal conductance of
the 5; 5ð Þ SWCNT with L ¼ 100 nm as a function of the compression length. Our simulations
exhibits that the bending does not affect the thermal conductance. Although the value of
thermal conductance depends on L, the L-dependence is not discussed here because the conclu-
sion of the study does not change qualitatively within the range from L ¼ 100 to 250 nm as
calculated. For the L-dependence, we refer the reader to other published papers [26, 28–31].

The bending robustness of κ can be understood through a perspective of the phonon disper-
sion relations as shown in Figure 6, given by the power spectra of velocity fluctuations
calculated by MD simulations [26, 28]. Figure 6(a)-(c) show the dispersion relations of the bent

Figure 4. Schematic of the SWCNT in which different temperatures are assigned to the left- and right-end several layers
[23]. Copyright 2009 the Japan Society of Applied Physics.
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Figure 5. The thermal conductance of the (5,5) SWCNTwith 200 nm length as a function of the compression length [23]. The
right panels (a)–(c) represent the MD snapshots of a bended CNT. Copyright 2009 the Japan Society of Applied Physics.

Figure 6. The phonon dispersion relations of the (5,5) SWCNT with the compression length (a) 0, (b) 60, and (c) 120 nm
[23]. Copyright 2009 the Japan Society of Applied Physics.
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5; 5ð Þ SWCNT for lcomp ¼ 0, 60, and 120 nm, respectively. Since the bending deformation does
not break the hexagonal network of the SWCNT is not broken by the bending deformation, a
change of the dispersion structure due to the bending is very small. More specifically, the
dispersion structure in the low-energy region remains unchanged after the bending, whereas
that in the high-frequency region is slightly changed as shown in Figure 6. Consequently, κ at
the room-temperature is unaffected by the local bond-length deformation due to the bending.
The bending robustness obtained by our simulations supports the experimental results of
Chang et al. [32].

2.3. Phonon Anderson localization in isotope-disordered carbon nanotube

This subsection is focused on the interference effects of coherent phonons in SWCNTs. Here,
we performed calculations for two typical examples: a (5,5) metallic SWCNT with 15.0% 13C
and a (8,0) semiconducting SWCNT with 9.4% 14C. Our simulation is based on the Landauer
theory of phonon transport combined with the nonequilibrium Green’s function (NEGF)
technique [33–35]. We used the Brenner bond-order potential for the interaction between
carbon atoms [21], as used in the previous subsection. It is assumed that isotope disorder exists
only in a central region with a length L. This region is connected to semi-infinite pristine
SWCNT leads, not including any defects or impurities (Figure 7). In accordance with the
Landauer theory within the linear response with the temperature difference between hot and
cold baths [1], the phonon derived thermal conductance can be expressed as κ Tð Þ ¼Ð∞
0

dω
2π ℏω

∂f B ω;Tð Þ
∂T ζ ωð Þh i, where s ℏ is Planck’s constant, T is the average temperature of the hot

and cold baths, f B ω;Tð Þ is the Bose-Einstein distribution function for a phonon with a fre-
quency ω in the baths, and ζ ωð Þh i is the phonon-transmission function averaged over an
ensemble of samples with different isotope configurations. We adopted over 200 realizations
for each L at each ω.

In the NEGF technique, the phonon-transmission function ζ ωð Þ is given by ζ ωð Þ ¼ Tr ΓL ωð Þ½
G ωð ÞΓR ωð ÞG† ωð Þ�, where G ωð Þ ¼ ω2M �D� ΣL ωð Þ � ΣR ωð Þ� ��1 is the retarded Green’s func-

tion in the central region and ΓL Rð Þ ωð Þ ¼ i ΣL Rð Þ ωð Þ � Σ†
L Rð Þ ωð Þ

� �
is the level broadening func-

tion due to the left (right) lead [33–35]. Here, D is a dynamical matrix in the central region,M a
diagonal matrix with elements corresponding to the masses of the constituent atoms, and
ΣL Rð Þ ωð Þ a self-energy due to the left (right) lead. A merit of NEGF technique is that the phonon
transport in micrometer-length nanotubes can be efficiently computed. We can easily calculate
the statistical average of the phonon transmission for nanotubes within the wide range of tube

Figure 7. Schematic of an isotope-disordered SWCNT [36]. Copyright 2011 American Physical Society.
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Figure 5. The thermal conductance of the (5,5) SWCNTwith 200 nm length as a function of the compression length [23]. The
right panels (a)–(c) represent the MD snapshots of a bended CNT. Copyright 2009 the Japan Society of Applied Physics.

Figure 6. The phonon dispersion relations of the (5,5) SWCNT with the compression length (a) 0, (b) 60, and (c) 120 nm
[23]. Copyright 2009 the Japan Society of Applied Physics.
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technique [33–35]. We used the Brenner bond-order potential for the interaction between
carbon atoms [21], as used in the previous subsection. It is assumed that isotope disorder exists
only in a central region with a length L. This region is connected to semi-infinite pristine
SWCNT leads, not including any defects or impurities (Figure 7). In accordance with the
Landauer theory within the linear response with the temperature difference between hot and
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quency ω in the baths, and ζ ωð Þh i is the phonon-transmission function averaged over an
ensemble of samples with different isotope configurations. We adopted over 200 realizations
for each L at each ω.

In the NEGF technique, the phonon-transmission function ζ ωð Þ is given by ζ ωð Þ ¼ Tr ΓL ωð Þ½
G ωð ÞΓR ωð ÞG† ωð Þ�, where G ωð Þ ¼ ω2M �D� ΣL ωð Þ � ΣR ωð Þ� ��1 is the retarded Green’s func-

tion in the central region and ΓL Rð Þ ωð Þ ¼ i ΣL Rð Þ ωð Þ � Σ†
L Rð Þ ωð Þ

� �
is the level broadening func-

tion due to the left (right) lead [33–35]. Here, D is a dynamical matrix in the central region,M a
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transport in micrometer-length nanotubes can be efficiently computed. We can easily calculate
the statistical average of the phonon transmission for nanotubes within the wide range of tube

Figure 7. Schematic of an isotope-disordered SWCNT [36]. Copyright 2011 American Physical Society.

Mesoscopic Physics of Phonon Transport in Carbon Materials
http://dx.doi.org/10.5772/intechopen.81292

151



length with respect to huge number of isotope configurations. On the other hand, consider-
ation of many-body interactions such as phonon-phonon scattering requires much computa-
tion time in the NEGF technique.

To perform the NEGF simulations, we first optimized the structures of a pristine (5,5) metallic
and (8,0) semiconducting SWCNTs, and then calculated D from the second derivative of the
total energy of the optimized structures with respect to the atom coordinate. By using D and
the recursion method, we can easily compute ΣL Rð Þ ωð Þ. Moreover, we assume that the isotopes
are taken into account only in M.

Coherent-phonon transport is classified into three regions based on a relation among the
length L of the central region: the ballistic regime for L≪ lMFP ωð Þ, the diffusive one for
lMFP ωð Þ≪ L≪ ξ ωð Þ, and the localization one for L≫ ξ ωð Þ. Here, lMFP ωð Þ is the mean free path
and ξ ωð Þ the localization length. Before discussing the phonon-transmission histogram, we
first determine lMFP ωð Þ and ξ ωð Þ for isotope-disordered SWCNTs. We adopt the procedure
used in Ref. [37] to estimate these lengths. Figure 8(a) shows the average phonon transmission
ζ ωð Þh i of the (5,5) SWCNT with 15% 13C for various L up to 5 m. In the very low-frequency
region, ζ ωð Þh i does not decrease and is almost four, even in the presence of isotope impurities.
Perfect transmission (i.e., ballistic transport) is realized because the wavelength of acoustic
phonons in the low-ω region is much longer than L. The Landauer expression of thermal
conductance eventually exhibits universal quantization of 4κ0 at low temperatures irrespective
of the presence and absence of isotope impurities (the factor 4 reflects the number of acoustic
phonon modes).

In contrast, ζ ωð Þh i decreases rapidly in the higher frequency region with increasing L, as
shown in Figure 8(a). There are two possible mechanisms for the reduction of ζ ωð Þh i:
diffusive scattering and phonon localization. For the former, ζ ωð Þh i decreases with L
according to ζ ωð Þh i ¼ M ωð Þ= 1þ L=lMFP ωð Þð Þ, where M ωð Þ means the number of phonon
modes. On the other hand, for the latter mechanism, the phonon-transmission function
decays exponentially with L according to the scaling law ln ζ ωð Þh i ¼ �L=ξ ωð Þ. In other
words, ξ ωð Þ is defined by the scaling law. To clarify these mechanisms for the phonon-
transmission reduction, the L-dependences of ζ ωð Þh i and ln ζ ωð Þh i are plotted in Figure 8(b)
and (c) for the two mechanisms, respectively. As Figure 8(b) shows that the numerical
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This result is in excellent agreement with the phenomenological Thouless relation, ξ ωð Þ ¼
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Figure 9 shows the 13C-concentration dependence of κ Tð Þ in the (8,0) semiconducting SWCNT
with 2 μm length at 300 K. As seen in Figure 9, thermal conductance decreases rapidly as the
concentration increases. When the concentration overs about 20%, κ Tð Þ decreases by 80% in
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We now discuss the phonon-transmission fluctuation, defined by a standard deviation

Δζ ωð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ ωð Þ2
D E

� ζ ωð Þh i2
r

. Figure 10 shows Δζ ωð Þ for (a) 625 nm-long (5,5) SWCNT with

15% 13C and (b) 210 nm-long (8,0) SWCNT with 9.4% 14C. The fluctuation of a physical
quantity generally decreases as its average value increases. However, the fluctuation of pho-
non transmission is constant within the frequency region in the diffusive regime although
ζ ωð Þh i varies depending on ω [see also Figure 8(a)]. The constant value is estimated to be
Δζ ωð Þ ¼ 0:35� 0:02 and indicated by the dashed lines in Figure 10(a) and (b). Thus, Δζ ωð Þ in
the diffusive regime is universal and is independent of the background phonon transmission,
the tube chirality and length, the isotope concentration, and the type of isotopes. This universal
fluctuation is realized only in the diffusive regime and not in the ballistic and localization
regimes. Interestingly, the value of Δζ ωð Þ ¼ 0:35� 0:02 is the same as the value of the universal
conductance fluctuation (UCF) for coherent electron transport in disordered quasi-1D systems,

Figure 9. 13C-concentration dependence of thermal conductance of the (8,0) SWCNTwith 2 μm length at 300 K.

Figure 10. The root-mean-square phonon transmission for (a) the (5,5) SWCNT and (b) the (8,0) SWCNT [36]. Copyright
2011 American Physical Society.
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ΔG=G0 ¼ 0:365, within the statistical error. Here, G0 and ΔG are respectively the electrical
conductance quantum and the electrical conductance fluctuation. This means that the univer-
sal phonon-transmission fluctuation is closely related to the UCF even though electrons and
phonons obey different quantum statistics. Similar to the UCF, the reason for the macroscop-
ically observable phonon-transmission fluctuation can be qualitatively understood as follows:
the fluctuations of phonon-transmission channels cannot cancel each other because there are
very few effective transmission channels due to isotope scattering. To obtain a quantitative and
complete understanding of the universal phonon-transmission fluctuation, some sophisticated
microscopic theories are required.

In the final of this subsection, we discuss the phonon-transmission histogram P ζð Þ that con-
tains information for every moment of ζ ωð Þ. In Figure 11(a) and (b), P ζð Þ for several typical
frequencies in the diffusive regime of (a) 625 nm-long (5,5) SWCNT with 15% 13C and (b)
210 nm-long (8,0) SWCNT with 9.4% 14C are shown. All the histograms in these figures are
well described by a Gaussian distribution function with the universal fluctuation

Figure 11. Phonon-transmission histograms for several frequencies in the diffusive regime for (a) the (5,5) SWCNT and
(b) the (8,0) SWCNT, and in the localization regime for (c) the (5,5) SWNT and (d) the (8,0) SWCNT [36]. The insets show
the variance. Copyright 2011 American Physical Society.
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Δζ ωð Þ ¼ 0:35� 0:02. This is similar to the fact that the electrical conductance histogram in the
diffusive region is expressed by a Gaussian distribution function with the UCF [38].

In L≫ ξ ωð Þ regime, P ζð Þ becomes no longer a symmetric Gaussian distribution. By analogy
with the electrical conductance histogram in the localization regime [39], one can easily expect
that the asymmetric histogram is a lognormal function of ζ. In fact, P ln ζð Þ can be well
described by a Gaussian distribution as shown in Figure 11(c) and (d). Unlike the other

regimes, the variance Var ln ζ½ � � Δ ln ζð Þ2 of P ln ζð Þ decreases with increasing ln ζh i according
to Var ln ζ½ � � �2 ln ζh i as shown in the insets of these figures, similar to the situation for
electrons [38]. The transmission fluctuation in the localization regime is material independent
in the sense that the slope of Var ln ζ½ � does not depend on the tube geometry, isotope concen-
tration, or the type of isotopes. The above-mentioned results for the ballistic, diffusive, and
localization regimes are summarized in Table 1.

3. Crossover from ballistic to diffusive phonon transport

This section discusses the crossover from ballistic to diffusive phonon transport in SWCNT
using some basic arithmetic which follows from the fictitious-probe idea. In this idea, the
thermal conductance was found to formally have the same expression as the Landauer for-
mula for coherent phonon transport [1, 6]:

κ ¼
X
ν

ðωmax
ν

ωmin
ν

dω
2π

ℏω
∂f ω;Tð Þ

∂T

� �
Tν ωð Þ (8)

even when phonon-phonon scattering exists. Here, T is an averaged temperature as descried in
the previous section, and Tν ωð Þ is a phonon transmission function, effectively including the
phonon-phonon scattering given as

Tν ωð Þ ¼ ζLRν ωð Þ þ ζFLν ωð ÞζFRν ωð Þ
ζLFν ωð Þ þ ζFRν ωð Þ (9)

where ζαβν ωð Þ is the transmission function of a coherent phonon with a phonon mode ν and
frequency ω flowing from α to β leads. Note that the inelastic component of thermal conduc-
tance in Eq. (8) is neglected, because it negligibly contributes to κ of CNTs in the quasiballistic
regime.

Table 1. Phonon-transmission histogram in ballistic, diffusive, and localization regimes [36]. Copyright 2011 American
Physical Society.
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Thus far, we have discussed the role of a single probe with temperature TF . Generally, a spatial
distribution of temperature exists inside the conductor. In order to incorporate this distribu-
tion, a conductor attaching N probes in series, with respective temperatures Ti i ¼ 1; 2⋯;Nð Þ is
introduced. For N probes, the transmission function Ttot

ν ωð Þ propagating in a conductor of
length L can be written as

Ttot
ν ωð Þ ¼ Lν ωð Þ

Lþ Lν ωð Þ �
Λν ωð Þ

Lþ Λν ωð Þ (10)

where the characteristic length Lν ωð Þ � Tν=r 1� Tνð Þ is expressed by the density of scatters in
the conductor, r ¼ N=L and Tν. The derivation process of Eq. (10) is analogous to that of
effective transmission for inelastic electronic transport in mesoscopic conductors [40]. Here, it
is explained that we can regard Lν ωð Þ in Eq. (10) as the mean free path Λν ωð Þ ¼ τν ωð Þ vν ωð Þj j,
where τν ωð Þ and vν ωð Þ are the backscattering time and group velocity of a phonon with ν;ωf g,
respectively. For phonon propagation over the distance between neighboring probes
dL � L=N ¼ 1=r, the reflection probability Rν ωð Þ is given by Rν ωð Þ ¼ dL= vν ωð Þj jð Þ=τν ωð Þ
¼ 1=rΛν ωð Þ. Thus, the phonon’s mean free path is Λν ωð Þ ¼ 1=rRν ωð Þ, and Lν ωð Þ � Λν ωð Þ in
the large-N (or small-dL) limit where the transmission probability of each small segment with
length dL is close to one (Tν ωð Þ � 1).

According to the above discussion, a general expression of thermal conductance is given as

κ ¼
X
ν

ðωmax
ν

ωmin
ν

dω
2π

ℏω
∂f ω;Tð Þ

∂T

� �
Λν ωð Þ

LþΛν ωð Þ (11)

For a short conductor L≪Λν ωð Þð Þ, Eq. (11) reproduces the Landauer formula [1, 6] for coher-
ent phonon transport with perfect transmission. In the other limit L≫Λν ωð Þð ), it reduces to the
Boltzmann-Peierls formula [41].

We now apply the developed formula (11) to thermal transport in SWCNTs at room tempera-
ture. Instead of estimating Λν ωð Þ from Eq. (9), we use an phenomenological expression
Λν ωð Þ ¼ cνA=ω2T for three-phonon Umklapp scattering events in the low-frequency limit
ℏω=kBT≪ 1, where A ¼ 3:35� 1023 mK=s2 is the coupling constant for graphene [42] and cν
represents the curvature effect of a CNT (cν ¼ 1 corresponds to a graphene). By using this
expression we can perform integration in Eq. (11) analytically. Strictly speaking, this expres-
sion can apply only to acoustic phonon modes with linear dispersion, but it has been shown to
be useful to represent other modes as well [30]. Consequently, the thermal conductance is
expressed simply as:

κCNT ¼ kB
2π

X
ν

Ων arctan
ωmax

ν

Ων

� �
� arctan

ωmin
ν

Ων

� �� �
(12)

where Ων Lð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cνA=TL

p
is an L-dependent characteristic frequency, which is a key quantity

for understanding the crossover between ballistic and diffusive phonon transport in the CNTs.
The ν dependence of cν is neglected hereafter, i.e., the mode-dependent characteristic
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frequency Ων Lð Þ is replaced by Ω Lð Þ. In spite of the relative simplification, this works remark-
ably well to describe L dependence of thermal conductance in the quasi-ballistic regime, as will
be discussed below.

In Eq. (10), effects of phonon scattering at interfaces between a CNT and the left/right leads
were not included. One of simple treatments of the interfacial thermal resistance is to introduce
it by the following way: κ�1 ¼ κ�1

CNT þ κ�1
int . The interfacial resistance κ�1

int can be decided by
fitting experimental or numerical calculation data.

Now, we estimate the thermal conductance of SWCNTs by performing the NEMD simulations
[26, 28] with Brenner’s bond-order potential [21], and compare the MD results to the above-
described theory. The L-dependence of thermal conductance was quantified for various tube
lengths, up to micrometers at T ¼ 300 K (Thot ¼ 310 K and Tcold ¼ 290 K). We refer the detailed
simulation procedure to Ref. [26]. The thermal conductances for (3,3) and (5,5) SWCNTs
obtained from the NEMD simulations are shown by blue and red circles in Figure 12, respec-
tively. The solid curves representing theoretical curves given the proper choice of two param-
eters κint and c (e.g., κ�1

int ¼ 0:09 K=nW and c ¼ 0:65 for the (3,3) SWCNT) excellently agree with
the MD data. Most recently, the L-dependent thermal conductance (or conductivity) of
SWCNTs shown here has been measured in experiments [31, 44], although we cannot compare
the theory with the experiments because the detailed information on tube structure such as
number of walls and their chiralities was not described.

We return to discuss the ballistic-diffusive crossover. The relative position ofΩ Lð Þwith respect
to the phonon dispersion relation determines the thermal-transport properties of SWCNTs. As
illustrated in Figure 13, the dashed blue line indicates the position of Ω Lð Þ relative to the

Figure 12. Length dependence of thermal conductance [43]. Copyright 2009 the Japan Society of Applied Physics.
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dispersion relation. As seen in Figure 12, nanometer-length SWCNTs display the thermal
conductance independent of L, reflecting purely ballistic phonon transport. At nanometer
length, Ω Lð Þ is much larger than the energies of the phonons, as shown in the left panel of
Figure 13.

With an increase in L, up to micrometer length, the value ofΩ Lð Þ decreases, lying in the middle
of the phonon dispersion relation, as shown in the central panel of Figure 13. In this situation,
low-frequency phonon modes (ωmax

ν ≪Ω Lð Þ) give L-independent thermal conductance
reflecting a ballistic nature, whereas the high-frequency modes ωmin

ν ≫Ω Lð Þ� �
show κ∝ 1=L

reflecting a diffusive nature. The intermediate-frequency phonon modes (ωmin
ν < Ω Lð Þ < ωmax

ν )
cannot be described in terms of both Landauer and Boltzmann-Peierls formulae, and the
thermal conductance exhibits nonlinear L-dependence described by Eq. (12). Thus, it is con-
cluded that micrometer-length SWCNTs belong to the quasi-ballistic thermal transport regime
in which ballistic and diffusive phonons coexist.

Next, the case when Ω Lð Þ is much lower than the excitation frequency of the lowest optical
phonons is discussed, as shown in the right panel of Figure 13. In this case, the tube lengthL
reaches millimeters and the contribution of optical phonons to thermal conductance has a
behavior as κ∝ 1=L, resulting in constant thermal conductivity, as λ ¼ L=Sð Þκ ¼ const. Here, S

is the cross-sectional area of a SWCNT. On the other hand, the acoustic modes show κ∝L�1=2,

leading to a power-law divergence λ∝ L1=2 of thermal conductivity [29, 30]. This divergence
closely relates to the long-standing problem pointed out by Pomeranchuk in the 1940s that the
low-frequency acoustic phonon contribution to thermal conductivity diverges in the thermo-
dynamic limit L ! ∞ [45]. However, it is known, in general, that the divergence disappears if

Figure 13. The relative position of the length dependent characteristic frequencies, 270 THz (left panel), 27 THz (middle
panel), and 2.7 THz (right panel) [43]. Copyright 2009 the Japan Society of Applied Physics.
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frequency Ων Lð Þ is replaced by Ω Lð Þ. In spite of the relative simplification, this works remark-
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Figure 12. Length dependence of thermal conductance [43]. Copyright 2009 the Japan Society of Applied Physics.
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dispersion relation. As seen in Figure 12, nanometer-length SWCNTs display the thermal
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show κ∝ 1=L

reflecting a diffusive nature. The intermediate-frequency phonon modes (ωmin
ν < Ω Lð Þ < ωmax

ν )
cannot be described in terms of both Landauer and Boltzmann-Peierls formulae, and the
thermal conductance exhibits nonlinear L-dependence described by Eq. (12). Thus, it is con-
cluded that micrometer-length SWCNTs belong to the quasi-ballistic thermal transport regime
in which ballistic and diffusive phonons coexist.

Next, the case when Ω Lð Þ is much lower than the excitation frequency of the lowest optical
phonons is discussed, as shown in the right panel of Figure 13. In this case, the tube lengthL
reaches millimeters and the contribution of optical phonons to thermal conductance has a
behavior as κ∝ 1=L, resulting in constant thermal conductivity, as λ ¼ L=Sð Þκ ¼ const. Here, S

is the cross-sectional area of a SWCNT. On the other hand, the acoustic modes show κ∝L�1=2,

leading to a power-law divergence λ∝ L1=2 of thermal conductivity [29, 30]. This divergence
closely relates to the long-standing problem pointed out by Pomeranchuk in the 1940s that the
low-frequency acoustic phonon contribution to thermal conductivity diverges in the thermo-
dynamic limit L ! ∞ [45]. However, it is known, in general, that the divergence disappears if
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we take into account higher-order phonon-phonon scattering events, although the possibility
of the above-stated long-time tail in low-dimensional materials remains an open problem
[46, 47]. In either case, the agreement between the current theory and MD simulation results
indicates that the higher-order effects are negligible in the current length regime. This consists
with the previously reported observation from Boltzmann’s kinetic approach [30].

4. Thermal properties of graphene modulated by strain

Finally, we shortly mention the recent theoretical work about the thermal property in another
carbon material, a graphene [48]. In this work, the strain response of the phonon specific heat
was investigated. The low temperature behavior of the specific heat is dominated by the three
acoustic modes, i.e., the longitudinal acoustic (LA) mode, transverse acoustic (TA) mode, and
out-of-plane acoustic (ZA) mode. It is well known that the LA and TA modes have a linear
dispersion in the long wavelength region while the other has a quadratic one in the absence of
the strain [49]. This means that the ZA mode is critical for low-temperature dependence of the
specific heat. As a result, the specific heat has a linear dependence at low temperature. As the
strain increases, the dispersion of the ZA mode drastically changes, so that this dispersion
becomes linear in the same as the LA and TAmodes [50, 51]. Due to the ZAmode linearized by
the strain, the low-temperature dependence of the specific heat becomes quadratic. Therefore,
since the specific heat directly relates the thermal conductivity, it is easily expected that the
strain can also modulate the temperature dependence of the thermal conductivity.

5. Conclusion

This chapter reviewed recent progress of theoretical studies on phonon transport in SWCNTs
focusing on the quantization of phonon thermal conductance, phonon Anderson localization,
and so on. At low temperature, the phonon thermal conductance of SWCNTs has a quantized
universal value of 4κ0, where the factor, 4 is the number of the acoustic modes in SWCNTs. As
the temperature increases, the crossover from the ballistic transport to diffusive one occurs and
the thermal conductance in the intermediate region between them indicates the non-linear
dependence of tube length.
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